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Generalized inversion of the Gent-Cane model
of the tropical Pacific with Tropical

Atmosphere-Ocean (TAO) data

by A. F. Bennett1,2, B. S. Chua1, H.-E. Ngodock3,
D. E. Harrison4 and M. J. McPhaden4

ABSTRACT
We here describe the results of our latest effort to reanalyze TAO monthly mean surface and subsur-

face temperature observations constrained by a tropical Pacific ocean model, and simultaneously to
evaluate the physical consistency of the observations and the model. Both tasks are executed by weak–
constraint, four–dimensional variational assimilation of the observations into the model. In this study
our reanalysis employs the reduced–gravity Gent–Cane model, combined with the ‘KPP–interior’
parameterization of vertical turbulent fluxes. With the limited vertical resolution adopted in previous
studies of this model, the ‘W4DVAR’ or inverse method fails to produce an acceptable reanalysis, as
the dynamical residuals are too large locally in space and time. Moreover, the objective significance
test that is an essential product of the inversion rejects the model, even though the model is imposed
only as a weak constraint, as convincingly as the even simpler Zebiak–Cane model was rejected
(Bennett et al., 1998, 2000). In order to obtain a locally plausible reanalysis of the observations,
we have to employ significantly finer vertical resolution. The calculations are extremely expensive
and technically difficult; in the interests of efficiency and convergence, we solve the fixed–interval
smoothing problem for 3–month intervals (during the 1997–1998 El Niño, December 1996–March
1998), and we impose the continuity equations for layer thickness as strong constraints. We present
detailed results for just one such experiment which shows the model in the best light. The resulting fits
to the monthly-mean data are within our prior error assumptions and so constitute a highly plausible
reanalysis. However, the significance test statistic for the inversion exceeds its expected value by many
tens of standard deviations, forcing us to the inference that the model cannot in fact be reconciled
with the observations. The paradox of locally small residuals and a large test statistic is explained by
an analysis of the degrees of freedom allowed in the weak constraints.

1. Introduction

The TAO array (McPhaden, 1995) is collecting real-time measurements of tropical Pacific
surface winds, subsurface temperatures and equatorial Pacific subsurface currents. The
regularity of these data provides an opportunity to test ocean models in a rigorously objective
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fashion, with the models expressed as a formal hypothesis. The tests are conceptually simple,
being no more than least-squares regression with additional chi–squared tests. In practice,
algorithmic efficiency and computing power are essential for testing existing ocean models
by such ‘inverse methods’ (Chua and Bennett, 2001; Bennett, 2002). The advancement
of each of these three technologies (basin scale arrays, mathematical method, and high
performance computing) enables the testing of ocean circulation models in the same way as
any other scientific hypothesis. Within this framework, an ‘ocean model’ now includes not
only equations of motion, initial values and boundary conditions, but also hypotheses about
the errors in all these assumptions. Ocean models have always been attended by an error
hypothesis, if only that all errors are zero. We shall enumerate these hypotheses below. The
formal evaluation of models is in its infancy in physical oceanography but is the foundation
of all experimental science. The situation is, in some respects, easier to grasp when models
are used to predict the occurrence of a particular event (for example, an elementary particle
of a particular energy and other specific characteristics). It is so unfamiliar in oceanography
that we find it useful to reproduce the following quote from Stommel (1954).

“By far the greatest part of physical oceanographic knowledge has been accumulated in
the following way:

(1) a grand cruise, or expedition, brings back many hydrographic stations’ worth of data;

(2) extensive plots, graphs, and tabulations of the data are made and published for the
benefit of future generations;

(3) certain of the more striking features of the data plots are noted;

(4) some plausible hypotheses are advanced to explain them.
This procedure usually exhausted the energy of those involved, and almost always
the funds, and the study usually stopped at this stage…
All the above steps are absolutely necessary, of course, otherwise we would know
nothing at all about the ocean as it really is. But for the full development of the
science there must be one additional step:

(5) The plausible hypotheses must be tested by specifically designed observations. In this
way theories can be rejected or accepted, or may be modified to become acceptable.”

We are pleased to be able, at last, to heed Stommel’s directives, and thereby to bring
physical oceanography a step closer in approach to its parent sciences.

In previous investigations (Bennett et al., 1998, 2000; Ngodock et al., 2000) we have
tested two somewhat simplified tropical models. The first was a coupled atmosphere-ocean
anomaly model after Zebiak and Cane (1987), with a 1 1

2 layer reduced-gravity linear atmo-
sphere over a 2 1

2 layer reduced gravity ocean. The second was a 2 1
2 layer reduced-gravity,

non-anomaly, Primitive-Equation ocean model after McCreary and Yu (1992).
The coupled anomaly model could not be reconciled with 12-month and 18-month seg-

ments of monthly mean wind, sea-surface temperature (SST) and depth of the 20◦C isotherm
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(Z20), to within acceptable levels of error. Specifically, the data misfits or residuals were
within the measurement tolerances, but the dynamical residuals were excessively large and
dominated the dynamical balances. The Primitive-Equation ocean model, forced either by
climatological or real-time winds, could be reconciled with SST to within about one stan-
dard error for each piece of information. However the tendency of the fully nonlinear model
to break down during assimilation, owing to vanishing layer thicknesses, led us to abandon
it before testing at higher vertical resolution.

More physically complete than the above models, but less so than the Primitive Equations
in the form widely used by Philander and others (for example, Philander and Siegel, 1985),
is the reduced–gravity model of Gent and Cane (Gent and Cane, 1989). They effect the
reduced–gravity filter by assuming that there is no horizontal pressure gradient below a
deep bounding isotherm. Any entrainment velocity across this isotherm is also disallowed.
The reduced–gravity filter eliminates the fast, external gravity-wave mode, thereby reducing
computing times typically by 50%. The reduced dynamics have been alleged to be plausibly
suitable for modeling seasonal-to-interannual variability in the tropics. Longer times scales
over which, for example, the influences of bathymetry and deep thermohaline circulation
are repressed, are beyond the representativeness of this model system. Comprehensive
descriptions of the model may be found in Gent and Cane (1989), Gent (1991) and Kaufman
and Gent (1999). In order to carry out forward integrations with the model, it is necessary to
prescribe initial conditions for all prognostic variables, and also values for all coefficients
in the parameterizations of processes unresolved by the model. The extent to which this
model and the TAO observations can be reconciled, in a weighted least–squares sense, is
the subject of our effort here. We emphasize that the reconciliation need only be within the
hypothesized uncertainties in the observations (as far as the observations can be related to
the model prognostic variables) and in the model. We shall describe below one restriction
upon the inverse model that we have found essential in order to obtain solutions.

A complete description of the inverse model, optimization algorithm and software is
very lengthy. The variational optimization algorithm employed here has been in develop-
ment for almost two decades

(
Bennett and McIntosh, 1982; Bennett, 1992; Bennett and

Thorburn, 1992; Egbert et al., 1994). A detailed account for a global Numerical Weather
Prediction model may be found in Bennett et al. (1996, 1997). An outline of the algorithm
and its implementation may be found in Chua and Bennett (2001); Bennett (2002) is a
complete text. An online interactive tutorial is available at http://iom.asu.edu. In
the interest of brevity, the model and inversion algorithm are not described here, and just
sufficient schematic mathematics is used to facilitate discussion of scientific issues. The
only detailed development here is an analysis of degrees of freedom, which we have not
found elsewhere.

We mention at this point that the TAO temperatures are collected at fixed depths, while the
Gent–Cane model computes the temperatures of layers having depths which are fixed frac-
tions of the depth of the bounding isotherm. Hence the measurement functionals which map
model temperatures to observed temperatures are nonlinear interpolations. They compound
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the nonlinearity of the inverse problem (the Gent–Cane model dynamics are nonlinear); the
problem is solved iteratively.

The outline of this paper is as follows. The TAO data and the measurement functional
for the Gent–Cane model are discussed in Section 2; details are relegated to an Appendix.
The hypothesis for the model errors and data errors is formulated in Section 3; details of the
hypothesized error covariances may be found in another Appendix. Experiments and results
for the 1997–1998 El Niño (December 1997–March 1998) are presented and discussed in
Section 4; the critical analyses of data residuals and model residuals are reserved for a
separate section (5). These two sections emphasize residuals fields and diagnostics at the
expense of the inverse fields themselves, as the latter fields conform very closely to the data.
Finally, a summary and discussion are given in Section 6.

2. Data

Ocean temperature and currents, along with many meteorological variables, are being
collected by the TAO array in the tropical Pacific. For a comprehensive view of the array
and the entire TAO project, one can visit the project website:

http://www.pmel.noaa.gov/tao/proj_over/proj_over.html

The data employed here are monthly–mean values of temperature T at the surface and at
about ten depths above 500 m. The western sampling scheme is:

1, 25, 50, 75, 100, 125, 150, 200, 250, 300, 500 m;
the eastern scheme is:

1, 20, 40, 60, 80, 100, 120, 140, 180, 300, 500 m.

In addition, a few sites (e.g., along the equator) have higher vertical resolution. The thermis-
tor depths vary from mooring region to mooring region, with more shallower sensors in the
east, for example. The monthly-mean instrumental error is 0.4 K (McCarty et al., 1997). We
assume that measurement errors are uncorrelated, that is, the measurement error covariance
matrix is diagonal with values 0.16 K2. In our earlier studies (Bennett et al., 1998, 2002)
involving the Zebiak–Cane intermediate coupled model, which has a ‘1.5 layer’ atmosphere
and a ‘2.5 layer’ ocean, the only data we assimilated were monthly means of sea surface
temperature (SST), surface winds and and the depth of the 20◦C isotherm (Z20). It is clear
that the 2000 km zonal sampling and monthly–mean temporal sampling alias the Tropi-
cal Instability Waves (e.g., Philander, 1990), which have 2 K amplitudes in temperature,
20–40 day periods and 1000 km zonal length scales. It might be argued that these aliased
waves contribute to the measurement error. The Gent–Cane model includes the dynamics
of shear instability, which is thought to be the mechanism of the TIWs. Also, the wind
analyses used here resolve the temporal and zonal scales that would be amplified by the
instability (the possible importance of narrow meridional wind structure in TIW dynamics is
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just emerging from NSCAT data: Chelton et al., 2000). We conclude that the model should
simulate the amplitude and phase of TIWs, and any failure to do so is a consequence of
error in the wind stress, in the surface boundary layer parameterizations, or in the subsur-
face mixing parameterizations. In particular, we conclude that the TIWs do not contribute to
measurement error. The monthly-mean measurements would indeed alias the model TIWs
just as they would alias real TIWs, but this is a failing of monthly-mean sampling rather than
errors in an individual measurements. Daily-mean TAO data would not alias the TIWs in
time. However the inverse, as weighted, could not fit data of such relatively high frequency.

High-frequency, nonhydrostatic internal waves can arise as part of a broad-band response
to intensive forcing on resolved scales. The Gent–Cane model is not capable of simulating
these motions at all, so we would regard their contributions to the data as measurement
errors. Now, a running average over time Ta applied to a sinusoidal signal of amplitude A

and period τ yields a signal with amplitude a = Aτ/(2πTa). If A = 2 K, τ = 5 days and
Ta = 30 days, then a = 0.06 K. We conclude that such internal motions do not lead to
significant measurement errors. Indeed, the time scale τ in the numerator is a gross upper
bound on the period of nonhydrostatic internal waves.

The TAO data are collected at certain depths z, while the model fields are defined on
surfaces of constant s, where s is a fraction of the depth of the bounding isotherm. It
is necessary therefore to interpolate model temperatures between s–surfaces in order to
obtain model values at an arbitrary depth z. Piecewise linear interpolation between layers is
functionally nonsmooth, since layer depths are dependent variables, and such functionality
is inadmissible in variational assimilation. We have therefore devised and employed a global,
nonlinear but functionally smooth interpolation scheme, described in detail in Appendix A.
The global scheme is in fact functionally analytic, that is, infinitely differentiable.

3. The Gent–Cane model as a formal hypothesis

a. Preliminaries

Our computational domain is (124E—85W, 29S—29N), in the upper ocean above 9◦C.
The spatial resolution is 1 degree zonally, 1/3 degree meridionally at the equator expanding
poleward to 1 degree, and there are 21 layers in the water column above 9◦C. The summed
layer thicknesses are:

10, 20, 35, 50, 65, 80, 100, 120, 140, 160, 180, 200, 225, 250,

275, 300, 330, 360, 405, 450, 500 m.

The vertical resolution is uncommonly high for the Gent–Cane model. It is necessitated
by the poor performance of the model at lower resolution, as became increasingly evi-
dent during preliminary integrations. To establish the model accuracy, some forward model
integrations were carried out in carefully controlled circumstances with different verti-
cal resolutions. All were initialized with the result of a 5–year, 21 1

2 –layer spin up forced
by monthly means of reanalyzed surface fluxes (described in Appendix B); the initial
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conditions for the lower–resolution integrations were obtained by interpolating from the
21 1

2 –layer initial conditions. The forward integrations were of three months’ duration, cov-
ering September, 1997–November, 1997. Reanalyzed surface fluxes were again employed.
The monthly–mean surface and subsurface temperature predictions were compared to the
1840 available TAO monthly–mean surface and subsurface data. For 7 1

2 –layer, 15 1
2 –layer

and 21 1
2 –layer integrations, the rms errors were, respectively, 5.81 K, 5.09 K and 2.84 K.

Thus 21 1
2 –layer resolution is the coarsest that makes any sense as the basis for advanced

data assimilation, given that the standard errors of the monthly–mean data are 0.4 K. A clean
comparison is not available for inversions having different vertical resolutions. In brief, the
preliminary lower–resolution inversions did not fit the observations and, like the interme-
diate coupled models (Bennett et al., 1998, 2000), grossly failed their significance tests.
Preliminary integrations of the Gent–Cane model also made clear that uniform, constant,
vertical eddy diffusivities lead to excess downward mixing of heat in particular. The sim-
plest alternative is the KPP parameterization scheme of Large, McWilliams, and Doney
(Large et al., 1994). The scheme computes the mixed-layer depth as that which yields
a critical value for a bulk Richardson number Rib; below the mixed-layer depth there
are variable diffusivities which are simple functions of a gradient Richardson number
Rig . The formula for Rib is not smooth and so has no adjoint. The principal difficulty
is the discontinuous derivative of certain universal functions of stability, at neutral stabil-
ity. According to C. Paulson (personal communication, 2003), there is no experimental
evidence to invalidate an arbitrary alteration of the slope of universal functions on the
stable side, so as to render the functions continuously differentiable. However, such a vari-
ation of the KPP scheme would require comprehensive testing for impact. In addition,
the empirical intricacies of even the regularized formula for Rib lead to excessively com-
plicated adjoints, and some algebraic relief is in order. This too requires comprehensive
testing for impact. The inversions reported here have been carried out with an assump-
tion of constant mixed-layer depth (10 m, identified with the uppermost model layer, in
which the diffusivities are held constant), and with the standard Rig-dependent diffusivity
in the ‘interior’ below the mixed layer. Forward integrations with the tangent linearization
of the KPP-interior scheme yielded negative effective diffusivities, so alternative Picard
iteration schemes were required in order to deal with this nonlinear aspect of the variational
problem.

The model and variational equations have been coded in Fortran-95 for optimal
performance on the CM-500e and IBM SP-4 (anonymous ftp.oce.orst.edu,
/dist/chua/IGC).

b. The extended model

The Gent–Cane model and the data are represented schematically as

D(U) = F + f (1)
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U(x, s, 0) = UI (x, s) + i(x, s) (2)

d = M[U] + ε. (3)

where x is the Eulerian horizontal coordinate and s the Lagrangian or thermodynamically
scaled vertical coordinate, U is the multivariate ocean state (u, v, w, T , . . . , etc), D is the
vector-valued nonlinear differential operator that expresses the dynamics of the Gent–Cane
model, and F = F(x, s, t) is the first guess forcing field including all distributed and super-
ficial forcing such as subsurface radiative heating, surface wind stresses, etc. To continue,
f = f(x, s, t) denotes the error field in the equations of motion, i denotes the error field in
the first-guess initial values UI , and ε the error in the data d. One component of d is, for
example, the monthly–mean temperature at a depth of 100 m on the mooring at (155W, 8S).
Thus, the TAO array in mimicked mathematically by the action of the functional M that
maps U = U(x, s, t), the mathematical representation of the ocean state, into a vector of real
numbers, one per datum: U → M[U] ∈ R

M . Note that the vector–valued measurement
functional M is nonlinear: see (15)–(17) in Appendix A. The error f in the equations may
owe, in this formulation, either to errors in the dynamics or in the first-guess forcing field F.
The error ε owes either to instrumental error including engineering considerations such
as mooring motion, and to error of unrepresentativeness (the reduced–gravity Gent–Cane
model cannot simulate barotropic Rossby waves, for example).

Let us now assume that the errors f , i and ε are random, having first and second moments
prescribed by the null hypothesis H0:

H0




E{f(x, s, t)} = E{i(x, s)} = E{ε} = 0

E{f(x, s, t)fT (x′, s ′, t ′)} = Cff (x, s, t; x′, s ′, t ′)
E{i(x, s)iT (x′, s ′)} = Cii (x, s; x′, s ′)
E{εεT} = Cεε

E{fiT} = 0, E{fεT} = 0, E{BiεT} = 0,

(4)

where E{ } denotes the ensemble average, and superscript T the transposed vector. We
hypothesize, without loss of generality, that the first moments vanish; otherwise they could
be included in F, UI and d. The autocovariances Cff , Cii , and Cεε may be provided in
functional form or tabular form. As usual, the cross covariances Cfi, etc. are assumed, out
of ignorance, to vanish (but see Bogden, 2001; Muccino and Bennett, 2004).

Functional forms and parameter values for the several covariances appearing in (4) are
given in Appendix B. The time-dependent fields are assumed to be statistically stationary.
The fields are all assumed to be statistically homogeneous zonally, but inhomogeneous
meridionally and vertically. The subsurface fields are all assumed uncorrelated in the verti-
cal. As in our earlier investigations we adopt, out of ignorance, the simplest ‘bell–shaped’
choices for the functional forms. We assume 100% error in the initial analyses. We assume
that the errors in the dynamical equations are dominated by the parameterization of vertical
mixing fluxes, and we assume that the errors in the KPP-parameterized flux divergences
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are 100% of the parameterized flux divergences themselves (even greater, for the eddy heat
flux of heat). The remaining choices for variances, and for decorrelation scales, are based
on our analysis of TAO climatology (see Appendix B); other climatologists may well make
other choices. However the essential features of our detailed hypothesis are simple and
robust: significant levels of error are assumed in the dynamical and initial constraints, and
the decorrelation scales imply that there are a large number of effective degrees of freedom
in the errors or constraint residuals (see Section 5). Thus the extended model should have
considerable flexibility to fit the high quality TAO data.

Our detailed hypothesis is indeed highly detailed. Once it is conceded that a complex
ocean model is dynamically imperfect, and that the imperfections have a range of variability,
quantifying that variability involves a great deal of as yet poorly known information about
the ocean. No doubt many of our assumptions are naïve, but the conventional assumption
of a perfect model is more naïve. The conventional assumption is not really less detailed:
the many error variances are all assumed to vanish.

Armed with our hypothesis, we estimate the ocean state U as the extremum Û of the
maximum–likelihood estimator J for the multivariate Gaussian random fields f , i and ε.
The estimator or penalty functional J is quadratic in f , i, and ε but is nonlinear in U. Again,
U is related to these fields through (1)–(3). The estimate Û satisfies the Euler–Lagrange
equations for extrema of J . In less formal terms, our estimate of the ocean state is a
weighted least–squares best fit to the model and the data. The weights are reciprocals, in an
integral–equation sense, of the hypothesized covariances (4). See Chua and Bennett (2001)
or Bennett (2002) for details.

The results presented in Section 4 will include, in particular, both the first–guess
(prior) penalty JF ≡ J [UF ] (where the first–guess solution UF satisfies the forward
model D(U) = F subject to U(x, s, 0) = UI (x, s)), and also the inverse or posterior
penalty Ĵ ≡ J [Û]. Note that JF consists of weighted data misfit only, while J [Û] con-
tains weighted misfits to the initial conditions and to the dynamics as well as misfits to the
data.

4. Experiments and results

a. Three-month nonlinear inversions

The inverse estimate Û for the ocean state is found as a solution of the Euler–Lagrange
equations for extrema of the penalty functional J [U]. The equations are nonlinear, owing
to the nonlinearity of the dynamical model itself, and of the measurement functional that
relates model layer temperatures to temperatures at depths. The Euler–Lagrange equations
are solved in several stages, the first of which is a Picard or functional iteration that generates
a sequence of linear Euler–Lagrange problems. Each of these problems is solved in turn by
an indirect or iterative application of the representer algorithm (Egbert et al., 1994; Amodei,
1995). If the sequence of solutions converges, the limit solves the nonlinear Euler–Lagrange
problem.
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Convergence is delicate. The conventional Picard iteration is the tangent linear scheme
(Lacarra and Talagrand, 1988), that tends to yield a negative effective eddy viscosity for the
KPP interior parameterization scheme in the tropics. The KPP interior scheme is instead
subjected here to an alternative Picard iteration, our ‘Scheme A’ (Bennett and Thorburn,
1992; Chua and Bennett, 2001; Bennett, 2002), that necessarily yields positive diffusivities.
To illustrate the two schemes, consider two choices for linearizing iterations on the product
ab: the tangent linearization is anbn−1 + an−1(bn − bn−1); Scheme A is simply an−1bn. It
has also been necessary, in the interests of convergence, to impose the continuity equations
and initial conditions for layer thickness as strong constraints; that is, no distributed volume
sources or sinks, nor initial volume errors, are allowed as controls. Without such a restriction
on its volumetrics and initial volume values, the deep bounding isotherm tends to outcrop.
These contraints could be relaxed if there were a sufficiency of regularly spaced but unbinned
and uniformly deep temperature data that could enable the construction of proxy data for
the depth of the bounding isotherm. Such data would inhibit any unrealistic outcropping.
In the further interest of convergence and computational efficiency, inversion is restricted
to three–month intervals during the major El Niño event of December 1996–March 1998
(McPhaden, 1999a, b). Finally, convergence of the Picard iteration is accelerated by the
inclusion of a relaxation effect in the forward model. The effect vanishes from the forward
model in the limit, but a small ‘ghost’ remains in the adjoint model in the limit. Thus the
reported inversion is very slightly suboptimal; details may be found in Appendix C.

A great many three–month inversions were performed with varieties of parameters. We
present here the one inversion that shows the Gent–Cane model in by far the best light, to
the extent that we are able to construct fields that fit the TAO data to within experimental
error, and that fit the equations of motion with small residuals at each point and time. This
experiment is arguably a successful reanalysis of the TAO data in the smoothing interval
September–October–November of 1997 (‘9/97–11/97’). As discussed above, all constraints
except those for layer thickness are weak, so this inversion is denoted ‘Exp. W.’ Its foil, a
pure strong–constraint inversion for the same time interval, is denoted Exp. S and is also
discussed here.

Shown in Figure 1 are the common logarithms of the first guess penalty values JF and
inverse penalty values Ĵ in each iterate, for seven Picard iterates in Exp. W. These are the
penalties respectively for the first guess or prior UF and for the inverse or posterior Û. The
former penalty consists of data misfit alone, while the latter contains dynamical, initial and
data misfits. Each iterate involves the solution of a linear Euler–Lagrange problem. Note
that the first guess forcing and initial condition in each iterate are respectively the priors
F and I, rather than the posteriors F + f̂n−1, UI + în−1 from the preceding iterate5. The
convergence is almost entirely monotone, but need not be: these iterates are not steps in a
gradient search; rather, they are steps in a Picard iteration on the nonlinear Euler–Lagrange

5. It may be proved that, were the latter choices made for the forcing and initial fields at each iterate, then the
sequence of inverse solutions Ûn would converge to a perfect fit to the data, regardless of the data weighting.
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Figure 1. Common logarithms of first–guess penalty JF (solid line) and inverse penalty Ĵ (dashed
line) for 7 Picard iterations on the nonlinear Euler-Lagrange equations, Exp. W. Each iterate is a
linear Euler-Lagrange problem.

problem. No sign of solution breakdown, such as isolated outcropping of the deep bounding
isotherm, has appeared by the seventh iterate.

Equatorial sections of monthly-mean temperature for the third month of Exp. W
(November 1997) are shown in Figure 2. Panel (a) is the conventional integration of the
nonlinear Gent–Cane model plus KPP interior scheme, panel (b) is the NOAA PMEL
standard bicubic spline interpolation of the TAO data (Soreide et al., 1996) and panel
(c) is the nonlinear inverse solution (seventh Picard iterate on the nonlinear Euler–Lagrange
equations). The first guess (a) is everywhere too warm, while the inverse (c) shows little
significant nonlocal error. The small scales in the inverse (c) are probably not credible. The
excess warmth of the first guess shown in (a) is not visually striking, as it is ‘only’ a matter
of about 2–3 degrees K. On the other hand, warming a 500 m column of water by 2.5 K in
three months requires the very considerable surface heat flux of 0.5 kW m−2. The penalties
are far more striking indicators of model performance: the standard error of measurement
is 0.4 K and so the weighted and squared data misfit for the first guess (a) is about 40 per
datum.

The model is, again, driven by reanalyzed NCEP surface fluxes and monthly–mean FSU
winds. If these were correct, and the model were correct in every other respect as well,
then the true state of the ocean would be recovered, even though the real atmosphere is in
a dynamic balance with the real ocean and even though the exchange of heat, in particular,
almost certainly does depend upon the ocean temperature. What is suspect here is the
response of the model to the inevitable error in the best available analysis of, say, just the
imposed surface fluxes of heat: the response would be affected by a temperature–dependent
air–sea exchange. We could have introduced a no–doubt flawed parameterization of such a
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Figure 2. Equatorial temperature sections of monthly mean temperature (November 1997) in
degrees◦C: (a) conventional integration of the Gent–Cane model plus KPP interior scheme;
(b) NOAA PMEL standard bicubic spline interpolation of monthly mean TAO data (Soriede et al.,
1996); (c) monthly mean of the nonlinear inverse solution (Exp. W) combining the hourly–stepped
model and the monthly mean data. Contour interval: 1.0 C.

process. However, it is not clear that imposing the inevitably–erroneous reanalyzed fluxes
through a crude feedback loop would lead to a more realistic solution. Yet it is generally
the case, in the equatorial Pacific on ENSO time scales, that surface fluxes damp SST
anomalies generated by ocean dynamical processes. So, if the feedback loop were at all
realistic, the impact of flux errors would be damped. The impact of the errors could only
be truly resolved by knowing the true fluxes. In the absence of such knowledge, we treat
the reanalyzed surface fluxes as weak constraints, and we hypothesize surface flux errors
having the same variance as the reanalyzed fluxes themselves (‘100% error’). The residual
in the surface heat flux is a maximum–likelihood assessment of the flux error, in light of
the TAO data, via the Gent–Cane model.
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Figure 3. Arithmetic means of the absolute values of the misfits to monthly–mean temperature TAO
data at TAO depths, for all TAO moorings and for September, October, November 1997. Asterisks:
first–guess or prior misfit. Circles: inverse or posterior misfit. The number of data at each depth is
given in Table 1.

An analysis of a least–squares inversion should properly commence with the first–guess
(prior) and inverse (posterior) penalties. However, we commence instead with a more intu-
itive statistic. The mean magnitudes of the misfits between the monthly–mean TAO temper-
ature at each TAO depth, and the first guess and inverse solutions, are plotted in Figure 3.
The mean is taken for all TAO moorings in September, October and November 1997. The
number of monthly–mean temperature data at each depth, for all moorings and the three
months, vary widely with depth: see Table 1. This variability in sample size is responsible
for much of the roughness seen in Figure 3. However, the essential features are clear. By
far the largest first–guess misfits are found between 75 m and 200 m, well below the surface
mixed layer throughout the equatorial Pacific. The magnitude of the misfit is as high as
4.4 K, at 150 m. This may be compared with the measurement error of 0.4 K. In compar-
ison, the inverse misfits are all less than 0.6 K. It is evident that the 21 1

2 –layer forward
model is underperforming principally near 150 m. That is, its faults owe principally to the
subsurface dynamics, and far less to either the reanalyzed surface fluxes or the assumption
of a constant mixed–layer depth.
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Table 1. Number of TAO monthly–mean temperature data at TAO depths, for all TAO moorings and
September, October, November, 1997.

Depth (m) Number

1 182
10 9
20 68
25 110
30 3
40 66
45 6
50 107
60 79
75 107
80 79

100 183
120 79
125 107
140 78
150 107
180 67
200 113
250 106
280 3
300 181

Shown in Table 2 are the prior values JF , and posterior or inverse values Ĵ , of the
penalty functionals for Exp. W. The inverse penalty Ĵ is partitioned into two additive
parts: Ĵmodel and Ĵdata . The former includes initial penalties as well as dynamical penal-
ties. Consider the first guess penalty JF . The first–guess solution UF exactly satisfies the
forward model linearized about the preceding inverse estimate (here, the third), with first–
guess initial value UI , and with first–guess forcing F. Thus JF is the weighted squared
difference between the ‘measured’ first–guess solution and the data. The measurement
functional M is also linearized about the preceding inverse. The weight in JF is the matrix
inverse of the measurement error covariance matrix; both matrices are diagonal here. If this

Table 2. First–guess (JF ) and inverse (Ĵ , Ĵmodel , Ĵdata) penalties for three-month inversions
(Exp. W and Exp. S); note that Ĵ = Ĵmodel + Ĵdata . The number of data M is also E(Ĵ ),
the expected value of the total inverse penalty.

Exp. W Exp. S

9/97–11/97 9/97–11/97
M 1840 1840
JF 73750 73750
Ĵ 3510 7438
Ĵmodel 1821 3122
Ĵdata 1689 4315
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solution were ‘good,’ then JF would be about equal to the number of data M , here 1840,
since each datum would differ from the corresponding value of the prior solution by about
one standard error (σT = 0.4 K). In fact the difference between the first–guess solution
(Exp. W) and the data is about

√
73750/1840 = 6.3 standard errors of temperature mea-

surement, or about 2.5 K. The inverse data penalty is Ĵdata = 1689; the implied rms data
misfit (0.4

√
1689/1840 = 0.38 K) is less than the hypothesized measurement error for the

monthly-mean TAO temperature data (σT = 0.4 K). If the null hypothesis H0 were correct,
then the inverse penalty Ĵ (inverse model penalty plus inverse data penalty) would be the
chi-squared variable with M degrees of freedom (e.g., Bennett, 1992). Thus its expected
value is M = 1840, and its standard deviation is

√
2M = 61. In fact, Ĵ = 3510. That is,

Ĵ differs from its expected value by 27 standard deviations. There is only a microscopically
small probability that the null hypothesis H0 is correct, and that this result is ‘bad luck.’
This is a disconcerting result, as the hypothesis allows very generous levels of error in the
dynamics in particular. It also allows many degrees of freedom in the dynamical errors (see
Section 5), with which the data may be fit.

Next, consider the means and variances of the various penalty values discussed so far
for Exp. W. Again, the expected or mean value of Ĵ is always M , the number of data. The
means of the penalty values JF , Ĵmodel and Ĵdata , and the variances of all these penalty val-
ues, depend upon the so-called representer matrix which is the key to each linear inversion
(Bennett et al., 2000; Bennett, 2002). Explicit, direct computation of this M × M matrix
is prohibitive, requiring M adjoint and M forward model integrations; the advantage of the
indirect inversion algorithm employed here is that it enables computation of the inverse with-
out explicitly constructing the representer matrix (Egbert et al., 1994). However, the matrix
may be approximated by Monte Carlo methods, which are just sufficiently accurate for the
purpose of approximating the means and variances of penalty values. Statistical simulation
is possible, since the representer matrix is also a covariance matrix (Bennett, 1992; 2002).
Random forcing errors f and random initial errors i are synthesized so that they have the
covariances in the null hypothesis (4). The synthesis details are tedious but standard signal
processing, (see Bennett, 2002). These synthetic random inputs lead, by forward integra-
tion, to sample estimates of the error in the first guess solution UF . The sample covariance
of the errors in the M ‘measurements’ of UF is an approximation to the representer matrix.
The issue of sample size is important, but is less critical for crude diagnostics than for
an accurate state estimate. The penalty values are gross statistics of the inversion and so
their sample estimates stabilize rapidly: see Table 3. The smoothing interval is 9/97–11/97
(Exp. W); the forward model, the adjoint models and the measurement functionals are lin-
earized about the third Picard iteration. Sample estimates of one column of the representer
matrix itself (not shown) have not converged, even after 500 samples, to the column com-
puted from the Euler–Lagrange equations. The sample estimate of one diagonal entry of the
representer matrix is also shown in Table 3. Note that the entire representer matrix could
be calculated from the Euler–Lagrange equations, with M = 1840 forward and M = 1840
backward integrations. But, again, sample estimation suffices for moments of JF , etc.
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Table 3. Expectation values and standard deviations of first–guess and inverse penalties, for Exp. W.
Recall E(Ĵ ) = M . These values depend upon the first–guess data misfit h and the representer
matrix or ‘measured’ background error covariance R, and are obtained as Monte Carlo estimates
based on 194, 385, and 502 samples. Only the forward model is required (tangent linearization
around the sixth Picard iterate). For comparison, one element of R is computed deterministically
by solving the Euler-Lagrange equations.

(194) (385) (502)

E(JF ) 19978 19841 19967

E(Ĵmodel) 183 318 375

E(Ĵdata) 1657 1521 1465√
var(JF ) 4141 3815 3767√

var(Ĵmodel) 19 23 25√
var(Ĵdata) 35 67 80

R3,3 = 0.7669 0.9082 0.8972 0.8754

Comparing Tables 2 and Table 3, it is clear that every penalty value in Exp. W significantly
exceeds its expected value. In particular, the inverse data penalty exceeds its expected value

(E{Ĵdata} = 1465) by nearly three standard deviations (

√
var{Ĵdata} = 80). Moreover,

Ĵmodel (=1821) exceeds its expected value (E{Ĵmodel} = 375) by 58 standard deviations

(

√
var{Ĵmodel} = 25). The null hypothesis is significantly rejected by Exp. W. Either the

hypothesized measurement errors or the hypothesized model errors (dynamical or initial)
are underestimates, or they all are.

b. Alternative hypotheses

(i) The reduced penalty Ĵ for preliminary Exp. W is 3510, while the number of data M

is 1840. If all the first-guess standard errors were rescaled by
√

3510/1840 = 1.38, then
the reduced penalty would be equal to its expected value and the rescaled hypothesis would
seem to survive the significance test. Indeed, our knowledge of dynamical error statistics
is especially vague, and such rescaling would not be unreasonable. However, while we
do not have a sample set of cleanly comparable experiments, our experience with variety
of experiments for this three–month interval and others during the 1997–1998 El Niño
clearly suggests that the sample standard deviation of the rescaled reduced penalties for
this and other intervals would greatly exceed even the rescaled expected standard deviation√

2M = 61, and so the rescaled hypothesis would still be rejected. In any event, the original
hypothesis is that the initial errors and subsurface flux parameterization errors are 100%, so
it would serve little scientific purpose to assume them to be even larger (138%); at this point
the dynamical constraints in the inversion are becoming slack. A further consideration for
rescaling is that the variability amongst smoothing intervals within a single ENSO episode
may be conceived as nonstationarity, rather than variability within one population. In any
event, that variability contradicts the already loose error hypothesis adopted here.
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(ii) Much of the recently published work on variational ocean data assimilation has
allowed residuals in the initial conditions and surface fluxes only. No residuals have been
allowed in any equation of motion. That is, all dynamical constraints have been ‘strong.’ As
in our previous work, we impose the momentum and heat equations as weak constraints.
The layer–thickness equations are imposed as strong constraints, otherwise we encounter
divergence of the iterations on the nonlinear Euler–Lagrange equations for the best fit. A
completely ‘strong constraint’ inversion is feasible with the algorithm used here, simply
by setting all the prior dynamical error variances to zero, except for the momentum and
heat equations in the uppermost layer. The latter equations must be weak constraints, as the
surface fluxes only appear within these equations. For comparison, Exp. S is a repetition of
the ‘weak constraint’ Exp. W, with just such a modification. The results for both are shown
in Table 2. First, the reduced value of the total penalty Ĵ for Exp. S is more than double
the value for Exp. W. Second, the inverse model penalty Ĵmodel is almost doubled, even
though the dynamics in Exp. S are strong in all but the surface layer. The increase owes to
the significantly greater inverse initial penalty Ĵinit : 2582 for Exp. S, 731 for Exp. W. The
inverse dynamical penalties Ĵdyn, summed over all layers, are 548 and 1134 respectively.
Disagreement with Table 2 owes to integration error. On the other hand, the inverse dynam-
ical penalties in the surface layer alone are 548 (recall that only the surface layer is weak in
Exp. S) and 72.7, respectively. The reduced data penalties: 4316 and 1689 respectively, are
equivalent to rms errors of 0.6 K and 0.38 K respectively. Broken down into monthly rms
values for 9/97–11/97, these are (0.61, 0.64, 0.59) K and (0.38, 0.47, 0.31) K respectively.
The increasing effectiveness of the deep dynamical controls or residuals, as time progresses,
is evident. In summary, the strong constraint inversion uses excessive deep initial tempera-
tures, and excessive surface stresses for three months, to control the deep temperatures for
three months. The weak constraint inversion achieves better fit to the data with moderate
initial and surface residuals, combined with moderate heat–equation residuals at depth.

Other alternative hypotheses, for the surface flux errors, are described in Appendix D.

5. Residuals

Conventional numerical models of stratified ocean circulation produce great volumes of
output, but the volume produced by inverse models is overwhelming. In the first place, four–
dimensionality is of the essence in fixed–interval smoothing. Second, there is another entire
state variable: the adjoint variable. In addition, there are the penalty values as described in
Section 4 but, being integrated statistics, these are of much lower dimensionality. In this
largely expository development of a stratified inverse model, we have selected for emphasis
the residuals from amongst the many inverse products. The residuals are obtained as adjoints
convolved with the prior covariances (see e.g. Bennett, 2002)

Both the penalty JF for the first–guess solution and the penalty Ĵ for the inverse estimate
are weighted sums of dynamical, initial and data residuals. The residuals for the refined
experiment (Exp. W, Picard iteration 7) will now be analyzed in detail. All the residuals will
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be seen to be smaller than the hypotheses for their standard deviations. This is seemingly
in conflict with the unexpectedly large values of the penalties; the paradox is resolved by
considering the effective degrees of freedom in the fit.

a. Data residuals

Histograms of the first–guess data residual h = d − M[UF ] and inverse data residual
a = d−M[Û] are shown in Figures 4a, 4b respectively. The first guess means and standard
deviations are µ = −1.52 K, σ = 2.03 K, for the the inverse they are µ = −1 × 10−2 K,

Figure 4. Histogram of (a) prior data residual hm = dm − Mm[UF ] : µ = −1.52 K, σ = 2.03 K.
(b) posterior data residual am = dm − Mm[Û] : µ = −1 × 10−2 K, σ = 0.38 K (1 ≤ m ≤ M =
1840, Exp. W). Note the different ranges for both abscissae, which are in units of K.
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Figure 5. Normal probability plot for (a) first–guess data residual hm; (b) inverse data residual am.
(1 ≤ m ≤ M = 1840, Exp. W). Note the different ranges for both abscissae, which are in units of K.

σ = 0.38 K. The first–guess solution UF is too warm, owing most likely to excess downward
mixing of heat. The inverse Û is corrected by distributed heat sinks which are the inverse
estimates of these mixing errors. The histograms, especially the posterior, are normal in
appearance. Normal probability plots of h and a are shown in Figure 5, confirming the
impression of normality, especially for a, and also suggesting that least squares is close to
being the estimator of maximum likelihood.

Nevertheless, the inverse residuals are unexpectedly too large. Their arithmetic mean is
small, but their sample standard deviation is too large. Indeed, the expected value of each
residual am is zero while the expected standard error σm

a is a known formula (Bennett,
2002, Eq. 2.3.24). These formulae depend upon the representer matrix R which, being a
covariance, we approximate with Monte Carlo estimates. The estimates for R3,3 have not
converged after 502 samples (see Table 3). The correct value (R3,3 = 0.7669) is obtained by
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Figure 6. Vertical profiles of inverse initial penalty Ĵinit , totalled over the horizontal, versus layer
index. Solid line: zonal velocity. Dotted line: meridional velocity. Dashed line: temperature.

explicit calculation of the representer for the third component of the measurement functional
M. Such 12% inaccuracy precludes the use of Monte–Carlo methods for the computation of
the inverse circulation estimate Û (Bennett, 2002), but suffices for “off–line” approximations
of moments of inverse residuals. Defining a′

m = am/σm
a , the arithmetic mean of a′

m is
−3.17 × 10−2 while the sample standard deviation over M is σ′

a = 1.10, which indicates
again the poor data fit. See also Table 2, Exp. W, and Table 3: Ĵdata = 1689, E{Ĵdata} =
1465,

√
var{Ĵdata} = 80.

b. Initial residuals

The first–guess initial penalty is exactly zero, since UF (x, s, 0) = UI (x, s). The posterior
initial penalties in Exp. W for zonal velocity (solid line), meridional velocity (dotted line)
and temperature (long-dashed line) are shown in Figure 6, layer by layer, integrated over
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Figure 7. Initial temperature residuals: (a) weak constraint inversion (Exp. W), layer 5, min =
−1.7 K, max = 1.7 K, interval = 0.2 K; (b) strong constraint inversion (Exp. S), layer 7, min =
−11.5 K, max = 2.9 K, interval = 1.0 K.

the horizontal coordinates. All the penalties are dimensionless, by virtue of their respective
weightings. There are no residuals in the initial layer thicknesses, since the first–guess initial
conditions for thicknesses have been imposed as strong constraints. There is a significant
penalty for temperature, peaked at level 9 (or a nominal depth of 140 m). The total for all
layers and all variables is Ĵinit = 731, which may be compared with the expected value
E{Ĵmodel} = E{Ĵdyn} + E{Ĵinit } = 375. Separate computation of E{Ĵdyn} and E{Ĵinit }
is extremely expensive and has not been carried out. Nevertheless, it may be concluded
that even the prior estimate of 100% error in the initial temperature (see Section 3b) is
exceedingly optimistic. These initial conditions, it may be recalled, were the final values of
a 5 year long spin-up from rest, driven by NCEP/NCAR and FSU surface fluxes. Shown in
Figure 7 are the initial temperature residuals for (a) layer 5 in the weak inversion Exp. W
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and (b) layer 7 in the strong inversion Exp. S. The chosen layers have the largest residuals;
the extrema in the layers are (a) 1.7 K, −1.7 K; (b) 2.9 K, −11.5 K. Note in particular the
absurd minimum residual of −11.5 K introduced by the strong inversion.

c. Dynamical residuals

The inverse penalties in Exp. W for the zonal momentum equation, the meridional
momentum equation and the temperature equation for selected layers are shown in
Figures 8 a–c, as functions of time in days, integrated over the entire horizontal domain.
Again, all the penalties are dimensionless, by virtue of their respective weightings. There are
no residuals for the continuity equations for layer thickness, since the equations are imposed
as strong constraints. The penalties shown in Figures 8 a–c all vanish at t = 90 days, since
the weighted residuals (the adjoint variables) all vanish at that time as an Euler-Lagrange or
extremal condition. In layer 1 (and layer 2, not shown) the dominant penalty is that for the
temperature equation. In layer 3 (and layers 4–6, not shown), the zonal momentum penalty is
dominant. This residual must be a modification to the meridional pressure gradient, consis-
tent with the observed meridional variations in temperature. In layer 7 (and layers 8–21, not
shown) only the temperature equation penalty is significant, since the momentum equations
are effectively strong constraints in the deepest layers: see the vertical profiles of prior error
covariances in Figure 14. The 90-day time-integrals are shown in Figure 9, layer by layer. The
totals for the three equations for (u, v, T ), summed over all layers and all time are (523, 30,
581). Their grand total is Ĵdyn = 1134. The expected value is E{Ĵdyn} ≤ E{Ĵmodel} = 375,

with a standard deviation of
√

var{Ĵdyn} ≤
√

var{Ĵmodel} = 25, thus the seemingly very
conservative (large) first–guess estimates of dynamical error are not conservative enough;
a variance rescaling by 1134/375 = 3.0 is in order.

The inverse dynamical penalties in the surface layer, for the strong constraint inversion
(Exp. S; not shown) are far larger than the corresponding weak constraint penalties (Exp. W,
shown in Figure 8c). Specifically, the surface layer penalties for zonal momentum, meri-
dional momentum and heat in Exp. S exceed those in Exp. W by factors of up to 50, 5 and
2 respectively. Recall that only the surface layer dynamics in Exp. S are weak, since that
layer includes the surface fluxes of momentum and heat; the dynamics of all other layers
in Exp. S are strong. The zonal momentum residuals in the surface layer, for Exp. W and
S, are shown in Figure 10 for Day 60: November 1, 1997. What are, in effect, excessive
surface fluxes of zonal momentum in Exp. S lead to partial geostrophic balance of deep
meridional temperature gradients in fair agreement with the deep TAO data. The alternative
found in Exp. W, namely, moderate increases in heat flux divergences at depth, achieves
better agreement.

d. Dynamical balances

The dominant processes in the heat equation are shown in Figure 11 (Exp. W). These
are layer–by–layer profiles for a selected day (Day 15: September 15, 1997), and for a
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Figure 8. Time series of inverse dynamical penalty Ĵdyn, totalled over the horizontal. Solid line:
zonal velocity. Dotted line: meridional velocity. Dashed line: temperature. (a) Layer 1; (b) Layer 3;
(c) Layer 6.
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Figure 9. Vertical profiles of inverse dynamical penalty Ĵdyn, totalled over the horizontal and time.
Solid line: zonal velocity. Dotted line: meridional velocity. Dashed line: temperature.

selected TAO array mooring site at (125W, 2N). The values have been joined with straight
line segments for clarity, and plotted against depth z. The long dashed lines are the hypoth-
esized standard deviations for the heat equation errors. The dominant processes above 50 m
are the time rate of change

(
∂T
∂t

)
, the horizontal advection (u · ∇T ), and the negative of

the Richardson–number–dependent parameterization of turbulent heat flux in the vertical
(−KPP). These processes do not balance above 10 m, where there is a significant residual
(rT = f̂T , where the hat denotes the optimal or inverse value). Again, the mixed layer depth
has been set to 10 m and only the ‘KPP-interior’ parameterization has been used. Between
50 m and 200 m, the dominant processes are primarily the time rate of change

(
∂T
∂t

)
, and

the vertical advection
(
w ∂T

∂z

)
, and secondarily the horizontal advection (u · ∇T ). There

is a significant residual (rT ) between 130 m and 160 m. Below 200 m, all processes are
insignificant relative to the hypothesized error.

The dominant processes in the zonal momentum equation are shown in Figure 12. These
are values for Day 15, for the TAO array mooring site at (155W, 8N), layer by layer as
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Figure 10. Residuals in the surface layer equation for zonal momentum, Day 60 (November 1, 1997).
Units are: 10−7 m s−2. (a) Exp. W: weak dynamics in every layer; min = −4.4, max = 6.0,
interval = 1.0. (b) Exp. S: weak dynamics in the surface layer only; min = −40.0, max = 29.0,
interval = 5.0.

in Figure 11. There is a residual ru = f̂u between 40 m and 100 m, but it lies within the
hypothesized standard error. At all depths, the dominant processes are the zonal acceleration(

∂u
∂t

)
and the Coriolis acceleration (−βyv).

In a conventional analysis, these dynamical balances would be investigated for the pres-
ence of meridional circulation, Tropical Instability Waves, equatorial Kelvin waves or
Rossby waves. The significance of the meridional velocity does not of course preclude
the presence of Kelvin waves here in this potentially mixed wave field. On the other hand,
the insignificance of the zonal pressure gradient does tend to preclude Kelvin waves. Yet,
as Stommel points out (Stommel, 1989), free wave solutions are in general inadequate
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Figure 11. Vertical profiles of the dynamical balance for temperature at (125W, 2N) on Day 15.
Units are: 10−6 K s−1. The long dashed lines are the hypothesized standard deviations ±σT for the
dynamical residual rT . Only significant terms in the balance are plotted. The ordinary derivatives
indicated in the legend are in fact partials.

characterizations of real ocean circulation; it is argued elsewhere (Bennett, 1992, 2002)
that the rational characterization is in terms of the modes of circulation observable by the
array, here the TAO array. These array modes are forced solutions of the equations of motion.
We omit such a characterization here in the interests of brevity.

Mindful of Stommel’s warning, we nevertheless offer a conventional analysis of the opti-
mal dynamical balances. The meridional momentum balance (not shown) is approximately
geostrophic, as is expected for these long–wave, equatorially confined, subinertial motions.
The vertical momentum balance is hydrostatic by assumption, and volume is conserved
in a Boussinesq fluid (Phillips, 1966). It is a textbook exercise to show that these primary
balances (including those seen in Figs. 11 and 12) admit travelling disturbances confined
to the upper ocean, with the meridional velocity having the functional form

v(x, y, z, t) ∼ sin[κ(x + ct)] exp[−nz]V (y), (5)

where κ is an unspecified zonal wavenumber and n an unspecified but positive vertical
length scale. The function V (y) is related to the parabolic cylinder functions (Abramowitz
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Figure 12. Vertical profiles of the dynamical balance for zonal momentum at (155W, 8N), Day 15
(September 15, 1997). Units are: 10−6 m s−2. The long dashed lines are the hypothesized standard
deviations ±σu for the dynamical residual ru. Only significant terms in the balance are plotted. The
ordinary derivatives indicated in the legend are in fact partials.

and Stegun, 1964). The meridional length scales appearing in V are the decay scale
√

c/β

and the oscillation scale
√

N/(βn), where N is the Nyquist freqency (Phillips, 1966). The
other components of velocity, and the thermodynamic variables, have similar forms. The
disturbances are equatorially confined (V → 0, as |y| → ∞) provided the phase speed c

is positive, that is, if the zonal propagation is westward. In other words, the dynamical
balances that support the optimal fits to the data also admit familiar and simple patterns of
equatorial circulation (e.g., Philander, 1990). Indeed, the optimal estimate of the equatorial
circulation manifests many of the features of (5), as well as those of the hypothesized error
covariances that shape the dynamical residuals. The climatological choices (Tables 4 and 5)
for the scales of the covariances are consistent with the approximate dynamical balances
seen in Figures 11 and 12. The optimal fit to the TAO observations is an unexceptionable
estimate of the ocean state.

e. Degrees of freedom

There would seem to be a conflict between the unexpectedly large values of the dynamical
penalties (see Tables 2, 3) and the moderate values of the residuals in the equations of
motion. There was no such conflict for the coupled intermediate model investigated by
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Table 4. Standard deviations and decorrelation scales for dynamical residuals. Layers are assumed
to be uncorrelated.

Dynamical residuals Standard deviation σ Zonal scale Lx Meridional scale Ly Time scale τ

fu, fv (surface) see Fig. 15 3 × 106 m 5 × 105 m 2.5 × 106 s
fu, fv (subsurface) see Fig. 15 106 m 2.5 × 105 m 5 × 105 s

fT (surface) see Fig. 15 3 × 106 m 5 × 105 m 2.5 × 106 s
fT (subsurface) see Fig. 15 106 m 106 m 5 × 105 s

fh 4 × 10−7 m s−1 106 m 106 m 5 × 105 s

Bennett et al., (1998, 2000); both total penalties and pointwise residuals were significantly
too large. A scale analysis indicates that there is no inconsistency here. For example, the
total dynamical penalty for the temperature is approximately

JT =
(

fT

σT

)2
XYZtmax

LxLyLzτ
(6)

where X, Y , Z, tmax are the ranges for x, y, z and t , while Lx , Ly , Lz and τ are the
decorrelation scales for the residual fT in the heat equation. The scale estimate (6) is not
immediately obvious: as is shown in Chua and Bennett (2001) and Bennett (2002), the
weights in the penalty are related to the hypothesized error covariances through integral
equations. To continue, (6) may be written ĴT = (

fT

σT

)2
NT , where NT is the effective

number of degrees of freedom in the dynamical residual within the four dimensional domain.
The error correlation scales define internally correlated residual ‘blobs’ in 4D; the number
of such blobs in the 4D domain of the model is the effective number of controls on the
circulation. It is intuitively clear that if there are many more blobs than there are data, then
a good fit to the dynamics, initial conditions and data may be feasible even if the error
hypothesis is wrong.

The relationship between the test statistic and the residuals is illustrated here using a multi-
dimensional algebraic least squares problem. Let U be a state vector in R

N . For simplicity,
the dynamical model is chosen to be the unit matrix:

U = F + f (7)

where F is the first–guess forcing and f the first–guess forcing error. In particular, UF = F.
The data are

d = MU + ε (8)

Table 5. Standard deviations and decorrelation scales for initial residuals. Layers are assumed to be
uncorrelated.

Initial residuals Standard deviation σ Zonal scale Lx Meridional scale Ly

u, v (above 50 m) see Fig. 13 106 m 2.5 × 105 m
u, v (below 50 m) see Fig. 13 3 × 106 m 5 × 105 m

T see Fig. 14 106 m 106 m$
hT 25 m 3 × 106 m 5 × 105 m
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where d ∈ R
M . For simplicity, the linear measurement operator M is chosen to be a projec-

tion: the first M rows of the N × N identity matrix IN×N and hence MMT = IM×M . The
measurement error is ε. For simplicity the estimator or penalty is chosen to be diagonal:

J [U] = fT f

σ2
f

+ εT ε

σ2
ε

= (U − F)T (U − F)

σ2
f

+ (d − MU)T (d − MU)

σ2
ε

. (9)

The hypothesis is that the model possesses N uncorrelated degrees of freedom each having
the variance σ2

f , while there are M data with uncorrelated errors each having the variance

σ2
ε . The extremum of J is

Û = F + σ2
f MT β̂, (10)

since the M ‘representers’ are just the M rows of σ2
f M. The representer coefficients β̂ are

β̂ = h

σ2
f + σ2

ε

, (11)

where h ≡ d − MF. It is readily shown that

Ĵ = J [Û] = Ĵmodel + Ĵdata = Ĵ
σ2

f

σ2
f + σ2

ε

+ Ĵ σ2
ε

σ2
f + σ2

ε

= hT h

σ2
f + σ2

ε

. (12)

The total model residual is

(Û − F)T (Û − F) = σ2
f Ĵmodel = Ĵ

σ4
f

σ2
f + σ2

ε

. (13)

Note that the null hypothesis implies E{hhT} = (σ2
f + σ2

ε )I. In particular, E{hhT} =
M(σ2

f + σ2
ε ), E{Ĵ } = M and var{Ĵ } = 2M . Suppose, as is approximately the case

for Exp. W, that Ĵmodel = Ĵdata = 1
2 Ĵ = M . It must be the case that σ2

f = σ2
ε , and so the

rms model residual component is√
(Û − F)T (Û − F)

N
=

√
M

N
σf . (14)

Thus, while there are only M degrees of freedom in the ‘data subspace’ of the state space R
N

(in which subspace the inverse lies: see e.g., Bennett, 1992), the variance in each degree of
freedom is shared by N components or blobs. Thus, pointwise presentation of residuals as in
Figures 11, 12 can be misleading when the presentation indicates relatively small residuals.
When the number M of data (and hence the number of observable degrees of freedom) is
far less than the number N of degrees of freedom in the state space (data subspace plus
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null subspace), the pointwise residuals rn = f̂n = Ûn −Fn and data misfits ε̂n can be small
(|rn| < σf , 1 ≤ n ≤ N ; |ε̂m| ≤ σε, 1 ≤ m ≤ M) but the test statistic is not misled
(Ĵ − M � √

2M).
For a 90-day inversion, and remembering that there are residuals in the dynamics of

zonal velocity, meridional velocity and temperature, the number of residual degrees of
freedom is approximately N = 30,000. The number of data is approximately M = 2,000,
so (M/N)1/2 ∼= 1/4, thus (14) is roughly consistent with the residuals in Exp. W: see
Figure 11. Dynamical residuals for velocity have less impact upon the temperature than
do the dynamical residuals for temperature, so the preceding numerical estimate for the
effective number of degrees of freedom N tends to be excessive on the one hand; on the
other, velocity residuals are likely to be relatively larger than temperature residuals: see
Figure 12. The value of N is particularly large owing to the assumption that the dynamical
residuals are uncorrelated in the vertical, which has been discretized here into 21 layers.
The assumption would seem excessive, as the ENSO thermal variability in the circulation
can be efficiently represented with two or three vertical modes. However, what is at issue
here is the number of modes in the error in the parameterization of vertical fluxes. Our
almost total lack of knowledge of this number motivated us to be as generous as possible to
the Gent–Cane model, by admitting as many residual degrees of freedom in the vertical as
possible. Assuming only two or three degrees of freedom would have been effectively the
same as replacing the inverse Gent–Cane ocean model with the inverse intermediate-model
ocean of Bennett et al. (1998, 2000). The latter is a variant of the Cane–Zebiak model, and
has only 2 1

2 oceanic layers and which requires unacceptably large residuals in order to fit
just the SST and 20 C isotherm depth. The SST data and the subsurface temperature data
at the 8 or 9 depths included here would have been even more difficult to fit.

We infer that these Gent–Cane inversions fit the observations closely with modest resid-
uals in the dynamics, not because the hypothesized errors are far too conservative (too big),
but simply because there are so many more degrees of freedom in the dynamical residu-
als than in the data. The weighted least squares estimator J correctly takes into account
the number of degrees of freedom in both. Its reduced value Ĵ is the appropriate test
statistic, and the reduced values clearly indicate that the hypothesized errors are in fact
optimistic (too small). Also, the paucity of monthly mean TAO data relative to the num-
ber of degrees of freedom in the inverse model does not prevent an objective test of the
model.

The ‘uncorrelated’ estimator (9) which simplified this analysis is not less general than an
estimator for correlated residuals, since the vector of dynamical residuals may be projected
onto the eigenvectors of the dynamical error covariance matrix. Equally, the covariance
for the data residuals may be independently diagonalized. Moreover, the ‘identity’ model
operator in (7) is not less general than any well-posed model operator. Finally, it should also
be noted that this entire critique of model residuals has been kind. If the null hypothesis were
sound, the residuals would be smaller than their inverse or posterior standard deviations,
which are smaller than the first guesses or priors: see e.g., Bennett (1992).



30 Journal of Marine Research [64, 1

6. Summary and discussion

Previous long–term integrations of the reduced–gravity tropical circulation model of Gent
and Cane (1989), forced by monthly mean climatological surface fluxes, lead to annual aver-
age equatorial SST which is ‘quite realistic’ (Gent, 1991). The model has been tested here by
attempting to reconcile it with high quality surface and subsurface monthly mean measure-
ments of ocean temperature collected by the TAO array. That is, the smallest residuals in the
equations of motion and surface fluxes (FSU pseudo stresses and NCEP/NCAR reanalyzed
heat fluxes) have been sought consistent with the monthly mean TAO data. The residuals
are smallest in the sense of yielding weighted least-squares best fits simultaneously to the
dynamics, initial conditions and data; the weights are inverses of the hypothesized error
covariances for each constraint. First–guess means and autocovariances for the errors are
based on climatology, and on direct measurements of subsurface flux profiles. The subsur-
face flux parameterizations using the KPP interior scheme have been assumed 100 % in error.
By ‘Gent–Cane model’ we mean not only the equations of motion and the supply of inputs,
but also the hypothesized errors in all this structure. The essential features of our detailed
hypothesis are simple and robust: significant levels of error are assumed in the dynamical and
initial constraints, and the decorrelation scales imply that there are a large number of effec-
tive degrees of freedom in the errors or constraint residuals. We have tested the combined
hypothesis in a standard way, that is, by minimizing the associated estimator of maximum
likelihood. This minimization process is also the generalized inversion of the overdeter-
mined system of equations of motion, initial conditions, boundary conditions and data.

Our first finding is that the ‘forward’ Gent–Cane model only yields a general resemblence
to the TAO data (±3 K) if there are at least 21 1

2 model layers. We therefore caution against
the general use of the model at lower resolution; all the inverse model experiments reported
here use this minimal acceptable resolution.

Unlike the inversions of the Cane–Zebiak–like intermediate anomaly model with its
linearized continuity equations (Bennett et al., 1998, 2000), but like the inversions of a
2 1

2 layer primitive equation model (Ngodock et al., 2000), the iterations on the nonlinear
Euler–Lagrange equations for the best fit to the 21 1

2 –layer Gent–Cane model and TAO data
over twelve months do not converge owing to outcropping of the deep bounding isotherm.
We speculate from other experience that more observations of the depth of this isotherm
would keep it under control. In the absence of a sufficiency of high–quality, regularly spaced
but unbinned data for the depth of the bounding isotherm, convergence of our algorithm has
been obtained by imposing the continuity equation for the deep bounding isotherm, and the
initial depth of the isotherm, as strong constraints (allowing no residuals), and by restricting
the inversions to intervals of three months. We have reported in detail the inversion that
shows the model in the best light.

The best inversion fits the data within monthly–mean observational error. Moreover, the
residuals for the momentum equations and internal energy equations are not only smaller
than the respective first–guess standard errors, but play only modest roles in the dynamical
balances. We have therefore achieved the operational objective of a four–dimensional ocean
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analysis of real surface fluxes and real subsurface data, fairly closely constrained by an
appropriately complete model of tropical Pacific circulation. This is as valuable an analysis
as is presently available. Nevertheless, the significance tests for the inversion indicate that
the reanalysis has a low probability and that if more data were available, such good fits to
the data could only be obtained by admitting model residuals in excess of their hypothesized
values. A rescaling of the hypothesized variances would be of little scientific value, as the
dynamical constraints would be close to becoming slack. There is a simple explanation for
the seeming paradox of locally–small residuals and large posterior penalties: the number of
effective degrees of freedom in the weak constraint model, especially in the vertical, greatly
exceeds the existing number of monthly mean TAO surface and subsurface data. Thus an
excellent data fit can be obtained, with locally–small dynamical residual variance shared
over the many effective degrees of freedom. However, the test statistic is not misled since it
properly tallies the effective degrees of freedom. Thus we pause before affirming Stommel’s
conclusion: The plausible hypothesis must be tested by specifically designed observations,
since we have been able test and reject a model with an independently–designed data set.
Nevertheless, affirmation of our conclusion: the model would be unable to fit data having
greater vertical resolution, requires either additional vertical resolution in the mooring data,
or profile data from, say, the ARGO floats (http://www.argo.ucsd.edu/).

Some previous assessments of ocean models for El Niño events have compared the
realism of solutions driven by four or five different analyses of the surface wind in the same
event. Harrison et al. (1989) employ the Primitive–Equation ocean model of Philander
and Siegel (1985), and abstract their findings as follows. Comparing the hindcasts with
(ship–of–opportunity expendable bathythermograph) observations, we find that the gross
large–scale changes of the ENSO event… are found in each hindcast. However, major
quantitative differences exist between each hindcast and the observations in at least some
region for some time and some variable. Hackert et al. (2001) use a 19 1

2 –layer Gent–Cane
model, with remotely–sensed winds as well as NWP–based analyses. Their findings may
be summarized similarly. Harrison et al. (1989) draw the following striking conclusions. In
almost every comparison, the range of hindcast results brackets the observations, suggesting
that the (Philander and Siegel, 1985) model physics is plausible…. Improved knowledge
of the surface wind stress field (and its curl) is a minimum requirement if we are to assess
more critically model performance, and to identify needed model performance.

In comparison, the optimally perturbed model here fits the observations within observa-
tional error. Moreover, the perturbations which minimize the data misfits are themselves of
insignificant amplitude, point–by–point. The Monte–Carlo simulations also reported here
strongly indicate that in fact a very large number of perturbations or samples is needed for
an effective direct exploration of the error space. The indirect search for an optimum via a
variational algorithm is admittedly expensive, but a maximum–likelihood estimate is found.
The standard regression analysis used here establishes that the seemingly good fit is in fact
statistically unreliable, owing to an excess of degrees of freedom in the control space (the
number of space–time correlated ‘blobs’ in the subsurface flux residuals). Our conclusion
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may seem to be at odds with Harrison et al. (1989). In the strictest of terms, we conclude
that a four–dimensional analysis of TAO data using the Gent–Cane model must allow for
significant errors in the subsurface fluxes; perturbations of the surface wind fields are less
effective at controlling the subsurface temperatures. On the other hand, the TAO subsurface
data cannot identify wind field errors in the null space of the array; the first–guess wind
analysis should of course be as good as possible.6

Intermediate coupled models have been used recently by Morss and Battisti (2004a,b)
for the design of ENSO observing systems. Those authors caution that “the results are
only applicable to the real world to the extent that the simulated system is an adequate
representation of the real system.” We concur, and add to our earlier caution by warning
against the use of this reduced–gravity model, or the intermediate coupled models also
rejected by inversions with TAO data, for the design of observing arrays. We add further
that, of course, an ocean model must be tested with real ocean data if it is to be used to design
observing arrays. On the other hand, the observing array that provides the test data cannot be
designed without an hypothesis about the circulation that is to be observed, that is, without an
ocean model. Ocean array design and ocean model testing are inextricably intertwined. The
generalized inversion of an ocean model, as performed here, simultaneously tests the ocean
model and reveals the conditioning or efficiency of arrays for observing the hypothesized
circulation.

This test of the Gent–Cane model is made with data from the 1997–98 El Niño. Our
experience with an intermediate coupled model has been equally clear rejection of that
model by TAO data for the moderate 1994–95 El Niño, the mild 1995–96 La Niña and the
very strong 1997–98 El Niño. We infer that the conclusions of this test of the Gent–Cane
model are not limited to any one climate state.

The suspected fault in the hypothesized model surely must result from our poor under-
standing of errors in surface and subsurface flux parameterizations—especially the latter in
the vertical direction—rather than to the underlying hydrodynamical assumptions (Boussi-
nesq fluid, hydrostatic approximation, reduced gravity, etc). It is implausible that filtering
the barotropic mode is a primary model flaw, but the possibility cannot be tested with this
model, nor with the data available to us. The vertical distributions of prior and posterior
temperature errors (Fig. 3) strongly indicate that the fault lies in the parameterized sub-
surface fluxes rather than in the reanalysed surface fluxes or in the assumption of a fixed
mixed–layer depth. Neverthless, we infer the need for more knowledge of the biases and
the spatial and temporal covariances of errors in all flux parameterizations. Of course, it
would even more desirable to have better parameterizations, or in other words, to solve
the problem of stratified turbulence. But inverse modeling (and in particular, hypothesis
testing) would benefit greatly just from more reliable quantitative bounds on the problem,
be they observational or theoretical. That is, we would benefit from better parameterization

6. Wind perturbations are in the null space for the thermal array if those perturbations lead, via the ocean
dynamics, to no changes in measured temperatures.
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error statistics. It might be concluded that what has been tested here is the KPP interior
parameterization scheme rather than the pseudolaminar dynamics of the Gent–Cane model
itself, since the KPP scheme is used here as a basis for formulating error priors. However,
the inversions show that the Gent–Cane model may be fit to the data by allowing locally
marginally insignificant dynamical residuals of unspecified origin. On the other hand, the
very significantly large number of energetic degrees allowed in the error field is critical to
the good fit, regardless of the source of error.

Finally, it is necessary to consider that the scaled vertical coordinate in the Gent–Cane
model may not in fact lead to adequate numerical resolution in the seasonal thermocline and
shallower. The accuracy of the horizontal pressure gradient is of concern in any model with
a nonuniformly stretched vertical coordinate (Haidvogel and Beckmann, 1999). However,
the numerical resolution employed here in all directions should resolve the monthly–mean
equatorial circulation. Preliminary forward integrations with a standard, level–coordinate,
Primitive–Equation model having the same nominal vertical resolution as used here, and
forced by identical surface fluxes, do yield fractionally more accurate first–guess solutions,
but the subsurface flux parameterizations remain as the principal suspects.

A great deal of intricate code is needed for the implementation of the generalized inverse
algorithm and diagnostics employed here, beyond even the development of an adjoint ocean
model. However, the code is freely available as a model–independent or modular system
(the ‘Inverse Ocean Modeling’ system, or IOM). The code is accessed and executed via a
graphical user interface that prompts for paths, information about data structures, run–time
environment, etc. Several community ocean models already conform to the IOM protocols.7
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APPENDIX A

Global nonlinear analytic interpolation

We define the temperature measurement functional by

T (z) =
K∑

k=1

wk(z)Tk (15)

7. http://iom.asu.edu
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where T (z) is the model temperature interpolated to depth z, while T1, . . . , TK are the model
temperatures on surfaces s1, . . . , sK , with weights w1, . . . , wK . We require that each wk(z)

be smooth, and
K∑

k=1

wk(z) = 1 (16)

for all z. We choose

wk(z) = exp
{−(z − zk)

2D−2
}

K∑
j=1

exp
{−(z − zj )2D−2

} (17)

where z1, . . . , zK are the local instantaneous depths of the surfaces s1, . . . , sK , and
D = 25 m is the nominal layer thickness (there are 21 layers spanning 500 m). Thus,
(15)–(17) maps the model variables Tk and zk into the ‘datum’ T (z), but in a nonlinear fash-
ion. The interpolation algorithm (15)–(17) reconstructs a synthetic profile representative
of the tropical thermocline (an hyperbolic tangent profile from 30◦C to 10◦C, centered at
200 m, with a vertical scale of 50 m, sampled every 25 m) to within the 0.4 K standard error
prescribed for the real monthly–mean data. Our Picard iteration (described in Section 4)
replaces the nonlinear functional (15)–(17) with its tangent linearization about preceding
inverse estimates of Tk and zk . However, (15)–(17) obtains in the limit. A piecewise lin-
ear interpolation through the layers might seem simpler but its segments, being defined by
layer depths, are dependent variables. Hence such a piecewise scheme is, like the global
scheme (15)–(17), functionally nonlinear but lacks the functional differentiability of the
global scheme. The global scheme is in fact analytic, that is, infinitely differentiable.

APPENDIX B

Error correlations, variances and scales

Our knowledge of errors in turbulent flux parameterizations in the tropical Pacific Ocean
is poor, so we adopt the simplest and most computationally convenient forms for the covari-
ances hypothesized in (4). The covariances are separable with respect to all independent
variables: time, the vertical and both horizontal coordinates. The covariance factor for time
is stationary, and the covariance factor for the zonal coordinate is homogeneous. The merid-
ional and vertical factors are inhomogeneous. The parameters in each factor are based on
those employed in Bennett et al. (1998, 2000) and Ngodock et al. (2000), which were in
turn derived from long-term TAO statistics (Kessler et al., 1996). The parameter values
in Bennett et al. (1998, 2000) relate to a model of anomalies with respect to the tropical
annual cycle, and so had to be modified for the Gent–Cane total disturbance model. As in
the earlier studies, pseudo surface stresses are monthly mean Florida State University (FSU)
values (Legler and O’Brien, 1988); surface fluxes of heat are monthly-mean NCEP/NCAR
reanalyses (Kalnay et al., 1996); scale estimates for FSU and NCEP/NCAR errors are ours.
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The parameters used here are listed in Tables 4 and 5. The notation fu etc. denotes the
residual in the zonal momentum equation, etc.

Temporal covariances

Temporal covariances are assumed to be stationary, and temporal correlations Ct are
assumed to be Markovian:

Ct(t
′ − t ′′) = exp

[
−|t ′ − t ′′|

τ

]
, (18)

where τ is a decorrelation time. The stationarity assumption is dubious. ENSO is an inter-
mittent event, possibly with trends in means and higher moments, but these moments are
all poorly known. Again, the assumption concerns dynamical errors rather than the ocean
state itself, and so the moments even worse known.

Zonal covariances

Zonal covariances are assumed to be homogeneous, and zonal correlations Cx are
assumed to be ‘bell-shaped’:

Cx(x
′ − x ′′) = exp

[
− (x ′ − x ′′)2

L2
x

]
, (19)

where Lx is a zonal decorrelation length.

Meridional covariances

Meridional covariances are assumed to be inhomogeneous. The standard deviation is
also assumed to be ‘bell-shaped’:

σy(y) = exp

[
−y2

2l2
y

]
, (20)

where ly is a shear length.
The meridional correlation Cy is assumed to be ‘bell-shaped’:

Cy(y
′ − y ′′) = exp

[
− (y ′ − y ′′)2

L2
y

]
, (21)

where Ly is a meridional decorrelation length.

Vertical covariances

Vertical covariances are assumed to be inhomogeneous. The vertical profiles of stan-
dard deviations for the initial velocity residuals (errors in initial conditions) are plotted in
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Figure 13. Vertical profile of the hypothesized standard deviation of initial velocity residual (units
for σ : m s−1).

Figure 13. The standard errors in the initial analyses of zonal and meridional velocities are
both assumed to be 100% of the NCEP/NCAR re–analysis standard deviations for those
quantities (Kalnay et al., 1996). That is, both standard errors are assigned the value of
0.5 m s−1 above 50 m depth surface, decreasing linearly to zero at 450 m. The standard
errors for temperature analyses are also assumed to 100%, and are equated to the TAO
vertical profile of climatological, all–mooring standard deviation of temperature (Fig. 14).

The vertical standard deviations for the dynamical residuals inferred from Peters et al.,
(1988, Fig. 10), are plotted here in Figure 15. These profiles have been obtained as follows.
The vertical profiles observed by Peters et al. (1988) for eddy fluxes of respectively zonal
momentum, meridional momentum and heat, are modeled quite realistically by

|Jmx | = 4 × 10−2F(z) N m−2 (22)

|Jmy | = 1 × 10−2F(z) N m−2 (23)

|JH | = 80F(z) W m−2 (24)

where the form factor F(z) is

F(z) = 1 − tanh
(

z−50
20

)
1 − tanh

(− 50
20

) , (25)

z being measured in meters. The standard deviations σ of the dynamical residuals are
assumed 100% of the flux divergences:

σ
(
ru(z), rv(z), rT (z)

) =
(

ρ−1

∣∣∣∣∂Jmx

∂z

∣∣∣∣ , ρ−1

∣∣∣∣∂Jmy

∂z

∣∣∣∣ , (ρCp)−1

∣∣∣∣∂JH

∂z

∣∣∣∣
)

(26)
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Figure 14. Vertical profile of the standard deviation of temperature, according to TAO climatology
(units for σ: K).

with ρ = 103 kg m−3 and Cp = 4 × 103 J kg−1 K−1. To clarify, subgridscale stresses are
parameterized here using the KPP-interior scheme for diffusivities dependent upon local
Richardson numbers (Large et al., 1994); it is assumed that the errors in the divergences of
these flux parameterizations are as large as the divergences of the actual turbulent stresses
observed by Peters et al. (1988). It has been found that the heat flux divergence errors must
be much larger than actual flux observations if the TAO subsurface temperature data are to
be fit; the dashed line in Figure 15 is the enhanced magnitude, rather than the observed flux
divergence profile.

The horizontal eddy flux of total thickness is parameterized with an eddy diffusivity
Ah = 1.25 × 103 m2 s−1. Assuming a thickness variation of 20 m over a length scale of
2.5 × 105 m yields a diffusive rate of change of thickness of 4 × 10−7 m s−1. The standard
error in this parameterization should be assumed to be 100 %, that is, the standard deviation
of the thickness residual rh should be set at 4 × 10−7 m s−1.

The vertical correlations of all the initial residuals and dynamical residuals are assumed
to be ‘white’, that is, errors at different discrete s-levels are assumed to be uncorrelated; for
example,

Cs(sn, sm) = δn,m. (27)

Surface fluxes

The Gent–Cane model is driven by surface fluxes of momentum and heat. The priors
of the momentum fluxes (pseudo stresses) are monthly-mean FSU archived values (Legler
and O’Brien, 1988); priors for the heat fluxes are monthly-mean NCEP/NCAR reanalyses
(Kalnay et al., 1996). The standard deviations in the errors of these fluxes we estimated from
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Figure 15. Vertical profile of observed eddy flux divergences. Solid line: zonal momentum, m s−2.
Dotted line: meridional momentum, m s−2. Dashed line: heat, K s−1 (enhanced).

the scales of the NCEP/NCAR reanalyses of winds and heat fluxes. Specifically, momentum
flux errors δq were estimated from wind errors δua by

δq = ρaCD|δua|2. (28)

With an air density ρa = 1.2 kg m−3, a drag coefficient CD = 1.67 × 10−3 and |δua| =
2 m s−1, (28) yields δq = 8 × 10−3 kg m−2 s−1. Distributing these fluxes over a 10 m thick
upper oceanic layer of density 103 kg m−3, the standard error of acceleration in the upper
layer is 8 × 10−7 m s−2. A somewhat larger estimate would be obtained by replacing |δua|2
in (28) with Ua|δua|, with Ua a mean wind speed around 5 m s−1; indeed, the chosen estimate
of surface stress error is somewhat smaller than our very pessimistic scale estimate of errors
in the subsurface momentum fluxes. However, such a linearization of the pseudostress error
is unconvincing. Nevertheless, experiments have been performed with larger priors for the
surface stress error, and are described in Appendix D. The heat flux error is assumed to be
35 W m−2; distributed over the upper layer, this yields a standard error of temperature rise
of, coincidentally, 8 × 10−7 K s−1. The horizontal decorrelation scales for the surface flux
errors are also based on NCEP/NCAR reanalyses.

Notes

(1) It may be seen in Table 4 that some length scales are depth dependent. The covariances
are separable because of the lack of vertical correlation: see (27).

(2) The horizontal decorrelation scales Lx , Ly in Table 4 are the same as those assumed
for the 2 1

2 reduced-gravity model inverted by Ngodock et al. (2000). The decorrelation
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time τ is shorter here, since the higher vertical resolution here should better resolve internal
gravity waves.

(3) All cross-correlations between different circulation variables are assumed to
vanish.

Composite covariances

Initial residuals

The components of the initial residuals have covariances of the form

Cuu
ii (x ′, y ′, sn, x

′′, y ′′, sm) = σu
i (sn)σ

u
i (sm)δn,mσy(y

′)σy(y
′′)Cy(y

′ − y ′′)Cx(x
′ − x ′′).

(29)

The initial standard deviations are listed in Table 5.

Dynamical residuals

The components of the dynamical residuals have covariances of the form

Cuu
ff (x ′, y ′, sn, t

′, x ′′, y ′′, sm, t ′′) = σu
f (sn)σ

u
f (sm)δn,mσy(y

′)σy(y
′′)

× Cy(y
′ − y ′′)Cx(x

′ − x ′′)Ct (t
′ − t ′′). (30)

APPENDIX C

Relaxation

A relaxation effect is added to the Picard iterations on the forward model (3), of the
form

Dn−1Un = F + fn + λ�2(Un − Un−1), (31)

where Dn−1 is a linear operator that depends upon the preceding iterate Un−1. There is a
corresponding term in the adjoint equation:

D†
n−1An = · · · + λ�2An, (32)

where the superscript dagger denotes the adjoint operator. The dependent variable is An is
the adjoint variable, that is, a weighting of the dynamical residual fn. The ellipsis denotes
impulsive terms arising from the measurement functionals (see e.g., Bennett, 2002). Note
that the relaxation effect in (31) vanishes in the limit, but the adjoint remains in (32) as
a ‘ghost.’ Thus the correct adjoint equation is not solved, and so the inversion is sub-
optimal. However, in the experiment reported here, the diffusive relaxation parameter
λ = 103 m2 s−1, while the conventional horizontal diffusivity already included in the iter-
ated dynamical operator Dn−1 and in its adjoint is 105 m2 s−1. Thus the suboptimality is
very slight.
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APPENDIX D

Alternative hypotheses

Increasing the hypothesized standard errors in the NCEP surface fluxes of heat and
momentum, from 35 W m−2 and 8 × 10−3 N m−1 to the surface values of the standard
errors in the subsurface fluxes (which were set equal to the actual fluxes of 80 W m−2 and
4 × 10−2 N m−1 observed by Peters et al., 1988), leads to slightly better dynamical fits and
data fits. However, the test statistic Ĵ is still way too large.

Restoring the standard errors in the NCEP surface fluxes to their originally hypoth-
esized values, and reducing their decorrelation scales from 3 × 106 m to 106 m leads
to a slightly worse fit. There are more degrees of freedom in the surface flux controls
or inputs, but the original total variance is now distributed over these extra degrees of
freedom. The dynamics acts as a low–pass filter and so passes mostly the larger-scale
inputs. These have had their variance reduced, thus there are fewer effective degrees
of freedom in the output, rather than more. There is not a useful definition of a vari-
ance spectrum for this inhomogeneous solution; were there one, the spectral shape would
have become flatter but more importantly the spectral amplitude would have become
lower.
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