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Thermohaline circulation induced by bottom friction in
sloping-boundary basins

by Johan Nilsson1,2, Gösta Walin3 and Göran Broström1

ABSTRACT
We show that a velocity field in geostrophic and hydrostatic balance on the f-plane can be

diagnosed from an arbitrarily prescribed distribution of buoyancy in a basin with closed depth
contours. We emphasize the steady-state circulation associated with a large-scale horizontal
buoyancy gradient, attained in the absence of wind forcing. For inviscid motion, the diagnosed field
contains a free barotropic along-isobath flow which can be chosen arbitrarily, e.g. in such a way that
the buoyant “southern” pool of surface water essentially recirculates. Including bottom friction, we
show that steady motion requires that the net Ekman transport across closed depth contours must
vanish. This constraint determines the free barotropic motion and thereby the entire velocity field,
which proves to be independent of the strength of the bottom friction. The barotropic flow component
serves to create a “thermohaline” circulation, i.e. a circulation which tends to spread the buoyant
water horizontally. Analytical solutions and results from a numerical experiment are presented to
illustrate the steady flow resulting in a basin where the upper-ocean density increases across the
basin.

1. Introduction

The present paper investigates the steady linear f-plane circulation that is attained in a
basin with closed depth contours in the absence of wind forcing. The focus is on the
geophysically relevant case where the upper-ocean buoyancy decreases “northward” in the
basin, as outlined in Figure 1. The aim is to determine the velocity field from the buoyancy
distribution. Thus, we are essentially revisiting a classical problem in dynamical oceanog-
raphy (see Park and Guernier, 2001, for a brief overview). As in the classical approach, we
assume that the velocity field at the leading order obeys the hydrostatic and geostrophic
balance. This assumption yields the thermal wind balance, which specifies the velocity
field relative to an unknown barotropic flow component.

The presence of closed depth contours has an important dynamical consequence: Any
barotropic pressure distribution which is a function of the basin depth alone represents an
unforced steady flow in geostrophic balance. Such depth-independent isobath-following
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flows are collectively known as the geostrophic mode (cf. Greenspan, 1968, Section 2.6).
In the inviscid limit, there is no restriction on the geostrophic mode, which accordingly can
be specified arbitrarily. However, we demonstrate that viscosity, no matter how small,
constrains the free barotropic flow. In the presence of weak viscosity, we show that the
geostrophic mode is determined by the requirement that the cross-isobath transport in the
bottom Ekman layer integrates to zero in a steady state.

In the context of steady homogeneous flow, it is well established that the total Ekman

Figure 1. Illustration of a steady two-layer flow in a basin with closed depth contours, analyzed in
Section 3b. The flow is composed of two components: uq related to the buoyancy field q and u0, an
isobath-following barotropic flow which is unconstrained in the inviscid limit. In the presence of
friction, u0 is determined by the constraint that the bottom Ekman transport must integrate to zero
around the isobaths. Note that since uq � �D � 0, only u0 acts to redistribute the buoyant surface
layer.
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transport must integrate to zero around a closed depth contour (cf. Greenspan, 1968,
Section 2.17). If the wind drives surface Ekman transport across a closed depth contour, an
isobath-following geostrophic flow will arise that induces a compensating transport in the
bottom Ekman layer. Thus, given the boundary-layer physics and the wind forcing, the
steady-state velocity on closed depth contours (or more generally H/f contours) can be
calculated. This procedure was first used by Kamenkovich (1963) in an investigation of the
Antarctic Circumpolar Current. Subsequently, similar ideas have been used in oceano-
graphic studies by Walin (1972), Nøst and Isachsen (2003), and Isachsen et al. (2003). It
should be noted that in the case of homogeneous flow, the presence of friction implies that
a state of no motion is attained if the wind forcing is switched off.

The present novel result, pertaining to a stratified flow, is that bottom buoyancy
variations in the presence of friction give rise to an isobath-following barotropic flow, even
in the absence of wind forcing. We show that given the boundary-layer physics and the
buoyancy distribution, the barotropic velocity on closed isobaths can be determined,
hereby providing the absolute geostrophic velocity field. The resulting flow depends on the
presence of friction but not on its strength.

In essence, we derive a dynamical constraint from viscous Ekman-layer physics, which
on closed isobaths determines the geostrophic flow associated with a given buoyancy field.
Accordingly, we impose no constraints on the advection of buoyancy nor on the mixing
necessary for maintaining the buoyancy field in a steady state. We note, however, that
constraints on the advection of buoyancy have been employed in studies on the relation
between the hydrographic distribution and the large-scale ocean circulation. In the theory
of the ideal-fluid thermocline, pioneered by Welander (1959), the advection of buoyancy is
taken to be zero outside the surface Ekman layer. Marshall (1995), who studied the
dynamics of an ideal-fluid thermocline in the presence of bottom topography, presumed
that the advection of bottom density is zero. Also observationally-based studies generally
impose constraints on the mixing to estimate the absolute geostrophic velocity. For
instance, Bogden et al. (1993), in a study of the North Atlantic circulation, adjusted a
barotropic flow along open H/f-contours in order to minimize the advection of potential
density at mid depths. In a related study, Park and Guernier (2001) followed the idea of
Marshall (1995) and assumed that the advection of bottom density is zero.

In the present study, however, the isobath-following barotropic flow generally advects
the bottom density, as delineated in Figure 1. In fact, we find that along-isobath variations
of bottom buoyancy give rise to an advection of the buoyancy field. In this respect, the
present study has similarities with the investigations by Chapman and Lentz (1994),
Hallberg and Rhines (1996), and Lentz and Helfrich (2002), which deal with various
aspects of time-dependent motion in a rotating fluid where the buoyancy varies along the
depth contours. Further, we note that Spall (2004, 2005) and Walin et al. (2004) employed
numerical and analytical methods to study aspects of the time-mean circulation in f-plane
basins with sloping boundaries. In particular, Walin et al. (2004) analyzed and discussed
the role of barotropic currents for transporting buoyant water masses along closed isobaths.
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The present work may be viewed as an extension of their study by providing a theory for
how the strength of the isobath-following barotropic flow is controlled. It should be noted
that the study by Spall (2005, this issue), focusing on a basin with open isobaths, represents
an interesting complement to the present study of the dynamics in basins with closed
isobaths.

Evidently the present study, dealing with f-plane flows, has somewhat limited oceano-
graphic applications. We note, however, that f-plane dynamics are of relevance for the
circulation in parts of the Nordic Seas and the Mediterranean, where regional closed-
isobaths features such as the Lofoten Basin and the southern Adriatic Sea are encountered.
Furthermore, the present theoretical considerations apply not only for basins with sloping
boundaries but also for regions of closed isobaths around islands and sea mounts. Iceland,
where isobaths shallower than 500 m encircle the island, provides an example where the
f-plane approximation is relevant. Moreover the present study, besides being interesting in
the context of geophysical fluid dynamics, should provide a step toward a theoretical
description of the steady flow within closed H/f-contours on a sphere that arises in
presence of spatially varying bottom buoyancy.

We underline that the present study deals with steady geostrophic circulations, i.e. flow
fields characterized by small Rossby and Ekman numbers. Thus, we do not address effects
of nonlinear dynamics and time-dependent eddies. We note that eddies generally are
important for the buoyancy distribution in basins like the Nordic Seas. In particular, eddy
fluxes tend to dominate the cross-isobath transport of buoyancy (see e.g. Spall, 2004,
2005). If the eddy-momentum fluxes are sufficiently weak, however, the time-mean
velocity and buoyancy fields will be approximately in geostrophic balance. In such
situations, the present considerations are expected to provide a leading-order description of
the time-mean circulation.

The remainder of the paper is organized as follows. Section 2 presents a theoretical
investigation of steady flow in bowl-like basins with horizontal variations of buoyancy. In
Section 3, key results are illustrated with analytical results as well as with the outcome of
an idealized numerical simulation. In the final section, the limitations and the applicability
of the present work is discussed, including some speculations on the role of sloping
boundaries for the stability of the thermohaline circulation.

2. Stratified flows in basins with closed depth contours

We consider the linear dynamics of a rotating stratified fluid in the hydrostatic limit on
an f-plane. We assume that viscous effects are confined to thin Ekman boundary layers
adjacent to the bottom and the free surface. For the interior inviscid part of the flow, the
momentum equation is given by

�u
�t

� fk � u � ��r
�1�hp, (1)
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where u � (u, v) is the horizontal velocity component, f the Coriolis parameter, k a
vertical unit vector, p the perturbation pressure, and �h the horizontal gradient operator.
The hydrostatic equation is given by

�p

�z
� �g�r�1 � q�, (2)

where g is the acceleration of gravity, �r the deep water density, and q the density anomaly.
The continuity equation is given by

�u

�x
�

�v

�y
�

�w

�z
� 0. (3)

The vertical velocity obeys the following linearized boundary conditions

w�z � 0� �
��

�t
� � · mw, w�z � �H� � �ub · �H � � · mb, (4)

where ub is the bottom velocity, � the level of the free surface, and mw and mb are the
boundary layer transports in the top and the bottom Ekman layers, respectively. The
properties of the Ekman transport will be dealt with in Section 2b.

By taking the curl of the momentum equation (1) and employing the continuity equation,
one obtains

�� � u
�t

� f
�w

�z
� 0. (5)

We integrate this equation vertically over the water column, using Eq. (4), to obtain

��

�t
�

1

f �
�H

0 �� � u
�t

dz � ub · �H � �� · m, (6)

where m � mw 	 mb is the combined top and bottom Ekman transports.

a. The steady-state interior flow field

From now on, the focus is on time-independent circulation. We integrate the hydrostatic
equation upwards from the bottom, which yields

p�x, y, z� � g�r �
�H

z

qdz � p0�x, y� � g�rz. (7)

Here, H( x, y) is the basin depth and p0 is a barotropic pressure anomaly, defined as p0( x,
y) � pb( x, y) � g�rH, where pb is the bottom pressure. The linearized surface pressure is
given by p( z � 0) � g�r�. Accordingly, Eq. (7) yields the relation
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��x, y� � �
�H

0

qdz � p0/�g�r�, (8)

where the first term on the right-hand side is known as the steric height anomaly and the
second one is the contribution to sea-surface height due to barotropic pressure anom-
aly p0.4

For time-independent flow, the momentum equation (1) reduces to the geostrophic
balance. From (7) we obtain the following expression for the geostrophic velocity

u �
g

f
k � �h �

�H

z

qdz �
1

f�r
k � �p0. (9)

By applying Leibnitz’s rule of differentiation to the first term on the right-hand side of
Eq. (9), we arrive at

u �
g

f
k � �

�H

z

�hqdz �
g

f
qbk � �H �

1

f�r
k � �p0, (10)

where qb is the density anomaly at z � �H( x, y), i.e.

qb�x, y� � q�x, y, �H�. (11)

We note that the first term on the right-hand side of (10) represents the thermal-wind
velocity relative to zero flow at the bottom. Accordingly, the velocity at the bottom is given
by

ub �
g

f
qbk � �H �

1

f�r
k � �p0. (12)

Note that the bottom-velocity component associated with qb is aligned with the depth
contours. Obviously the strength of this component varies along the isobaths if qb does.
Note furthermore that p0 alone accounts for any cross-isobath flow. Finally, it is relevant to
mention that ( g/f )qb��H� can be interpreted as the baroclinic topographic Rossby wave
speed (Spall, 2005).

b. The primary along-isobath flow

We will now show that it is possible to determine the bottom velocity in a basin with
closed depth contours provided that the buoyancy field q( x, y, z) is known. Accordingly,
the buoyancy-related part of the flow field, represented by the first two terms in Eq. (10), is

4. Note that if (8) is used to substitute p0 in (7), one obtains the more commonly used expression for p that
results if the hydrostatic equation is integrated downward from the surface.
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taken to be prescribed. The aim is thus to determine the barotropic pressure p0 and its
associated velocity field. Making use of the bottom-velocity relation (12), the steady-state
version of Eq. (6) takes the form

u0 · �H � �� · m, (13)

where

u0 �
1

f�r
k � �p0.

We use the fact that u0 � �H � � � (Hu0) and integrate Eq. (13) over an area enclosed by
the curve C. By using Gauss’ theorem to convert the area integrals to line integrals, we
obtain

�
C

Hu0 · nds � ��
C

m · nds,

where n is the outward normal unit vector of C and ds the length element along the curve.
If C coincides with a closed depth contour, the net geostrophic transport vanishes. Thus,
we find that

�
C�H�

m · nds � 0, (14)

stating that the Ekman-layer transport across a closed depth contour must integrate to zero
in a steady state (cf. Greenspan, 1968, Section 2.17). Accordingly, steady-state solutions to
Eq. (13) exist only if Eq. (14) is fulfilled. In what follows we will focus on the
along-isobath component of u0, which proves to be determined by this constraint.

In the inviscid limit (i.e. m � 0), the relation (13) simply states that the barotropic
component of the flow must be aligned with the depth contours:

u0 · �H � 0. (15)

This is satisfied provided that the barotropic pressure p0 is a function of the basin depth
only, i.e. p0 � p0(H) implying that

�p0 �
dp0

dH
�H.

By using this result, we can write the bottom velocity given by (12) as

ub � �g

f
qb�x, y� �

1

f�r

dp0

dH�k � �H. (16)
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Evidently, the flow associated with p0(H) is aligned with the isobaths and its strength is
proportional to the local bottom slope. In the inviscid limit, there is no further constraint on
p0; as long as it depends only on H it represents a steady-state solution, known as a
geostrophic mode (Greenspan, 1968). It is important to recognize that if qb varies along the
isobaths, p0(H) cannot be chosen such that the bottom velocity vanishes everywhere. As a
consequence, the variation of the flow along isobaths associated with a variation of qb will
always remain superimposed on the geostrophic mode. It is only in the special case when
qb is constant along the isobaths that Eq. (16) has a solution with zero bottom velocity.
Thus, we make the important conclusion that variations in bottom buoyancy along the
depth contours invariably result in along-isobath velocities at the bottom.

When the viscous boundary layers are thin compared to the depth scale of the
bathymetry (see also Section 2e), the flow will still to the leading order be aligned with the
depth contours, i.e. the leading-order bottom velocity is given by (16). However, the
presence of friction brings the constraint (14) into play. To proceed with the analysis, we
need to specify the properties of the boundary-layer transport m. Employing Ekman theory
(e.g. Pedlosky, 1987), we find that the boundary layer transports are related to the surface
wind stress 
w and the bottom stress 
b according to

m � �k � �
w � 
b�/��r f �. (17)

For simplicity, we chose a linear representation of the bottom stress


b � �r fheub, (18)

where he characterizes the depth of the bottom Ekman layer.
We now limit our attention to the case without wind forcing, i.e. 
w � 0; wind effects

will be dealt with briefly in Section 2d. By using the explicit expression for the bottom
boundary-layer transport in Eq. (14), we arrive at

�
C�H�

ub · ds � 0, (19)

where ds is the length element along the depth contour C(H). It should be underlined that
this relation does not imply that the bottom velocity is zero. Rather, by substituting the
bottom-velocity given by (16) into Eq. (19), we obtain

g

f �
C�H�

qb�x, y���H�ds �
1

f�r

dp0

dH �
C�H�

��H�ds � 0.

This relation determines the pressure field p0(H) that yields zero net cross-isobath
transport in the bottom Ekman layer. Straightforward rearrangements leads to

dp0

dH
� �g�rq̂�H�, (20)
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where for notational convenience we have introduced the quantity

q̂�H� � �
C�H�

qb��H�ds��
C�H�

��H�ds��1

, (21)

which is a slope-weighted measure of the mean-isobath buoyancy.
By using (20), we finally obtain the following expression for the bottom velocity

ub �
g

f
�q̂�H� � qb�x, y���H � k. (22)

We note that the bottom velocity is independent of the choice of reference density. Adding
a constant to q does not alter the bottom velocity, although the magnitudes of q̂(H) and
qb( x, y) will be altered. When the reference density �r is chosen such that the densest
water in the basin is characterized by q � 0, the flow component u0 is associated with
cyclonic flow and comprises the entire bottom velocity in regions where the buoyancy
anomaly vanishes.

It should be emphasized that the bottom velocity is independent of the actual strength of
the bottom friction, though the effects of friction have been invoked to determine the free
barotropic flow u0. The relation (21) specifies the barotropic flow when the bottom stress
obeys the linear law given by Eq. (18). We note that the same result is also obtained when
the bottom velocity is subjected to a no-slip boundary condition, provided that the viscosity
is constant. We note furthermore that it is possible to extend the present analysis to
encompass more general representations of the bottom stress. For the purpose of illustra-
tion, consider the quadratic bottom-stress law 
b � �rcd�ub�ub, where cd is the drag
coefficient. From Eq. (17) it follows that the net bottom boundary-layer transport across the
closed depth contour C(H) is given by

�
C�H�

m · nds �
cd

f �
C�H�

�ub�ub · ds.

By using the expression for the bottom velocity given by Eq. (22) and requiring that the net
boundary-layer transport across the isobaths vanishes, we obtain the equation determining
q̂(H) for the quadratic stress law:

0 �
cdg

2

f 3 �
C�H�

�q̂ � qb��q̂ � qb���H�2ds.

Generally, q̂(H) has to be calculated numerically from this expression. Also in this case,
the calculated bottom velocity will be independent of the drag coefficient cd and the
viscosity.
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c. Summary of the key results

The flow field is described by two components: u � uq 	 u0. The first component is
related to local buoyancy variations [see Eq. (10)] and given by

uq �
g

f
k � �

�H

z

�hqdz �
g

f
qbk � �H, (23)

where the former term on the right-hand side is the thermal-wind velocity relative to the
bottom and the latter term represents a depth-independent contribution to the along-isobath
flow at the bottom. The second component u0(H), which is purely barotropic, is present
along the entire isobath; its strength is determined so that the net bottom Ekman transport
across the closed isobath is zero. In the limit of small viscosity, the nonlocal flow
component is given by

u0 �
g

f
q̂�H��H � k. (24)

In the special case where the bottom stress is proportional to the bottom velocity, the
quantity q̂(H) is given by Eq. (21).

In Section 3, we will consider the depth-integrated flow. Straightforward calculations,
using Eqs. (23, 24), show that the depth-integrated flow is described by  � q 	 0

where (see Walin et al., 2004)

q�x, y� � �
g

f �
�H

0

z · qdz, (25)

0�H� � �
g

f �
0

H

q̂�H�HdH. (26)

d. A comment on wind forcing

The analysis can be extended to include wind stress acting on the surface. In this case,
the constraint on the boundary-layer transport given by (14) yields

�
C�H�


w · ds � �rfhe �
C�H�

ub · ds � 0.

This relation states that the sum of the Ekman transports in the bottom and the surface layer
must integrate to zero around a closed depth contour (Walin, 1972), or more generally
around a closed H/f contour (Nøst and Isachsen, 2003). By using the expression for the
bottom velocity given by (16), p0(H) can be determined. We find that the bottom velocity
now is given by
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ub � �g

f
�q̂�H� � qb�x, y�� � �w�H�	�H � k, (27)

where

�w�H� �
1

hef�r
�

C�H�


w · ds��
C�H�

��H �ds��1

. (28)

We note that the wind stress induces a mean flow along the isobaths, which strength is
inversely proportional to the Ekman depth. Thus, in contrast to the buoyancy-related flow,
the strength of the wind-driven flow component depends on the magnitude of the bottom
friction.

e. The cross-isobath circulation

In the preceding analysis, we have used the terms weak friction and small viscosity in a
rather vague sense. For completeness, we provide a proper definition and take the
opportunity to comment briefly on the cross-isobath circulation. Let us consider the case
where the wind stress is zero, implying that the boundary-layer divergence is given by �� �

m � he� � ub, where he is the Ekman-layer depth. In this case Eq. (13) assumes the form

u0 · �H � he� � ub.

An elementary scale analysis of this equation shows that if the length-scale over which the
flow varies normal to the isobaths is comparable to the length-scale of the bathymetry, then
the ratio between the velocity components perpendicular and parallel to the isobaths is
given by he/H. Note that this applies also in the presence of wind forcing provided that the
mean wind stress acting along the isobath is comparable to the variation in wind stress over
the same isobath (cf. Nøst and Isachsen, 2003). In the regime we consider, where he/H is
taken to be small, the cross-isobath flow is thus determined by the vorticity of the
leading-order bottom velocity, given by Eq. (22). It should be noted that the vertical
velocity is exactly zero outside the bottom boundary layer, even at the order he/H (see
Pedlosky, 1987, Section 4.9). Wind-induced Ekman pumping is required to create vertical
motions in the interior of the fluid.

We note that the straightforward scaling considered above can break down on isobaths
that pass through a saddle point. The reason is that Eq. (27) may predict different
along-isobath velocities on depth contours that converge near the saddle point but enclose
different sub-basins. If this occurs, the calculated along-isobath velocity becomes discon-
tinuous at the saddle point, hereby violating the scaling assumption that the flow and the
bathymetry varies over comparable length scales. This issue will not be considered further
here, but we note that Welander (1968) discussed some qualitative aspects of a similar
problem.
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3. Illustrative examples

Based on the present theoretical results, we explore the steady-state circulation attained
in a basin with a large-scale horizontal buoyancy difference and closed isobaths. We will
provide three examples of this type of flow. To begin with, we investigate the flow in two
cases where the buoyancy fields are described by simple analytical expression. Finally, we
apply the present results in an attempt to deduce the velocity field from the buoyancy field
obtained in a numerical simulation with an ocean-circulation model.

a. Flow in a bowl-shaped circular basin

We consider a bowl-shaped circular basin with the radius R, the coordinates r, �, and
the depth H � H(r). Since the bottom slope is constant along the isobaths, q̂ simply
becomes the mean isobath buoyancy. Accordingly, Eq. (21) simplifies to

q̂�H� �
1

L�H� �
C�H�

qbds, (29)

where L(H) is the length around the isobath H. For the purpose of obtaining a simple
analytical solution, we chose a parabolic depth profile defined by

H�r� � HM�1 � �r/R�2�, (30)

and the buoyancy field

q �
�q

2
�1 � �r/R� sin ���� · exp�z/d�, (31)

which ranges linearly from �q in the “south” to zero in the “north” (note that y � r sin (�))
and decreases exponentially with depth.

Making use of the Eqs. (24, 22), we find that the along-isobath velocity associated with
p0 is given by

v0�r� �
gq̂�H�

f ��
�H

�r �, (32)

and that the along-isobath velocity at the bottom is given by

vb�r, �� �
g

f
�q̂�H� � qb�r, �����

�H

�r �. (33)

We note that the bottom velocity reverses sign where qb(r, � ) � q̂(H), i.e. where the local
buoyancy equals the mean isobath buoyancy. In the present example, the bottom velocity is
explicitly given by

vb � �g�qHM

fR �r*
2 sin ��� exp��H*�,
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where r* � r/R and H* � H(r)/d. Note that vb becomes exponentially small on isobaths
located deeper than the scale depth d defined in Eq. (31). As illustrated in Figure 2d, the
bottom current is cyclonic in the “northern” part of the basin and anticyclonic in the
“southern” part.

Consider next the depth-integrated flow  � q 	 0, which can be calculated by using
the general relations (25, 26) and the bathymetry and the buoyancy field specified by
Eqs. (30, 31). After some calculations, we obtain

q �
g�qd2

f
�1 � r* sin ���� · �1 � �1 � H*� exp��H*��,

0 � �
g�qd2

f
�1 � �1 � H*� exp��H*��.

The structure of the depth-integrated flow depends on the ratio between the maximum
basin depth HM and the depth scale of the stratification d; quantities defined in Eqs. (30,
31). Figure 2 illustrates the case d/HM � 1/4, implying that the stratification is shallow
compared to the depth of the basin. In the absence of side boundaries, the buoyancy field
described by (31) would be associated with a horizontally uniform thermal-wind velocity
directed towards the east (i.e. flowing in the positive x-direction). However, the sloping
side boundaries serve to redirect the circulation. The baroclinic flow component q,
concentrated towards the southern part of the basin, forms an anticyclonic gyre that
essentially recirculates the eastward thermal-wind transport in the interior of the basin. In
the absence of a bottom Ekman layer, this would provide a steady-state circulation.
However when friction is included, the flow 0 must be added in order to cancel the net
Ekman transport across the isobaths. The barotropic flow 0 circulates cyclonically along
the isobaths and is concentrated towards the rim of the basin, where the buoyancy varies on
the depth contours. For the buoyancy field under consideration, the total stream function
q 	 0 is comprised by two mirror-image gyres: one in the north spinning cyclonically
and one in the south spinning anticyclonically.

It is of interest to examine the implied advection of buoyancy, which in a steady state
must be balanced by some diabatic process. For the present buoyancy field, the thermal
wind flow relative to the bottom is parallel to the isolines of buoyancy; cf. the Eqs. (23, 31).
Accordingly, the buoyancy field is advected solely by the barotropic bottom velocity field,
i.e. u � �q � ub � �q. Making use of the Eq. (31) and the expression for vb, one obtains

ub · �q � ��g�q2HM

4fR2 �r*
2 sin �2�� exp�z/d � H*�.

(To visualize the horizontal structure of ub � �q, it is helpful to note that r2 sin (2� ) �
2xy.) To balance this pattern of buoyancy advection, the water column must be subjected
to cooling in the north-east quadrant and to heating in the north-west quadrant (the
situation is reversed in the two southern quadrants). Note that the buoyancy advection
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decreases exponentially with z as well as with basin depth. Further, since the bottom
boundary-layer transport is directed 90 degrees to the left of the bottom current [see the
Eqs. (17, 18)], the Ekman layer transports denser fluid down the slope in the north, while
lighter fluid is transported up-slope in the south. Accordingly, the Ekman-layer flow acts to
decrease the along-isobath variation of buoyancy and thereby also the bottom velocity; cf.
Eq. (33).

b. A generalized two-layer flow

Consider the situation delineated in Figure 1, where a homogeneous surface layer with
the depth D( x, y) and the buoyancy anomaly �q is encountered in a basin where the
reminder of the water has a constant and slightly higher density (characterized by q � 0).
Somewhere in the northern part of the basin, the denser water reaches the surface along a
front. Thus, the central southern part of the basin is stratified in two layers. However on the

Figure 2. An analytical example of the flow in a circular parabolic basin where the buoyancy
decreases with y; see Section 3a. Panels a–c show the depth-integrated flow associated with the
baroclinic component q and the barotropic component 0 as well as the total flow, given by q 	
0. Panel d shows the along-isobath bottom velocity, which in the present case reverses sign along
y � 0. Note that the flow fields are presented on nondimensional form.
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part of the slope covered by the buoyant water, where D � H( x, y), as well as northward
of the density front, a single vertically homogeneous layer is encountered.

To begin with, we focus on the local flow within the buoyant layer. By applying the
Eqs. (23, 25), we obtain

uq �
g�q

f
k � �D, q�x, y� �

g�qD2

2f
.

We underline that these formula describe the flow in the entire buoyant layer: the results
apply where the upper layer floats above the denser water as well as on the slope where the
buoyant water reaches down to the bottom, implying that D � H( x, y). Further, we note
that the flow uq is aligned with the contours of constant D. Accordingly this flow
component does not cause any advection of depth of the buoyant layer, i.e. uq � �D � 0.
Rather, uq only recirculates the buoyant water. If DM represents the maximum depth of the
buoyant layer, the net recirculation (say Mq) is given by

Mq �
g�qDM

2

2f
. (34)

Consider next the isobath-following barotropic flow, which must be present to cancel the
cross-isobath Ekman transport induced by the local flow within the buoyant layer. To keep
things simple, we assume that the bottom slope is constant along the isobaths, which allows
us to use the formula (32) to calculate the barotropic flow associated with p0(H). On the
depth contours that pass into the buoyant layer, we find that the barotropic along-isobath
flow is given by

v0�H� � �
g�q

f ��
�H

�n�. (35)

Here, n is a general coordinate (taken to increase towards the coast) perpendicular to the
isobaths and � is fraction of the depth contour covered by the buoyant water, i.e. ��q is the
mean isobath buoyancy, as defined by Eq. (29). We note that v0 flows in a cyclonic sense
and increases in strength with �. Furthermore, v0 comprises the entire velocity in the
“north” and is zero on the isobaths situated below the buoyant layer. As evident from
Figure 1, this barotropic flow acts to redistribute the pool of buoyant water. As a
consequence, surface buoyancy fluxes and mixing must be present to keep the buoyancy
field in a steady-state. Next, we focus on the bottom velocity within the buoyant layer. By
using (33), we find that

vb�H� � ��1 � ��
g�q

f ��
�H

�n�, (36)

showing that the bottom current is anticyclonic within the buoyant layer.
To estimate the volume transport associated with the nonlocal flow v0, we assume that �
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is approximately constant on the isobaths traversing the buoyant layer (i.e. the length of the
isobaths within the buoyant layer are assumed to be nearly equal). By integrating v0 � H
from the isobath z � �DM to the coast, we obtain

M0 � �
g�qDM

2

2f
� �Mq. (37)

This volume flow accounts for the diapycnal circulation, i.e. the advective buoyancy flux is
given by �q � M0. There are two things worth pointing out regarding M0. To begin with,
Mq always exceeds M0, showing that a fraction 1 � � of the buoyant water recirculates.
Further, the strength of M0 increases with the area of the slope covered by buoyant water
(i.e. with �). Thus, if the buoyant layer expands poleward, the strength of the nonlocal
barotropic flow increases and accordingly also the diapycnal circulation. Conversely, a
small pool of buoyant water in a basin occupied chiefly by dense water is associated with a
weak diapycnal circulation. Presumably, these results can be used in the context of
conceptual models of the thermohaline circulation (cf. Nilsson and Walin, 2001), an issue
that we will return to in the discussion section.

Further, we note that the two-layer case can be related to the continuously stratified flow
considered in Section 3a: The buoyancy distribution given by Eq. (31), with a constant
north-south gradient, corresponds to a two-layer flow characterized by � � 1/2, i.e. the
strength of the depth-integrated northern cyclonic gyre equals that of the southern
anticyclonic one. A continuous buoyancy distribution, for which the north-south gradient
is more pronounced in the northern part of the basin, corresponds to a two-layer case
having a value of � closer to unity, implying that the northern gyre is stronger than the
southern one.

c. A numerical simulation

We will now demonstrate that our theoretical considerations can be used to qualitatively
reconstruct the velocity field in a numerical simulation from the modeled buoyancy field.
We have used the MITgcm (Marshall et al., 1997a,b) to conduct a simulation in a basin
with sloping boundaries. The basin is rectangular, 6000 � 6000 km, and its depth increases
linearly from the coast to a maximum depth of 3000 m, which is reached 2000 km from the
coast. The central part of the basin has a flat bottom. (Note that the isobath structure is
outlined by the stream function 0 in Fig. 4b.)

The model uses Cartesian coordinates on an f-plane, with f � 10�4 s�1. The horizontal
grid spacing is 100 km and the grid has 60 � 60 points. The model has 25 vertical levels
with a spacing ranging from 50 m at the surface to 200 m at the bottom. Horizontal and
vertical viscosities are 5000 m2 s�1 and 10�3 m2 s�1, respectively, the vertical diffusivity
is 10�4 m2 s�1. The horizontal mixing is represented by the GM scheme with the isopycnal
diffusivity 103 m2 s�1. The density depends linearly on temperature; the thermal expansion
coefficient is equal to 2 � 10�4°C�1. The boundary condition on the tangential velocity is
no-slip on the solid boundaries. At the surface, the temperature is restored towards the
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profile �T[cos (�y/L) 	 1]/ 2, where �T � 20�C and L is the basin length. The restoring
time scale is 12.5 days, implying that a deviation of one °C from the restoring temperature
yields a surface heat flux of 185 W m�2. (Note that the thermal restoring is so short that the
sea surface temperature is essentially prescribed.) The model has been integrated for 2000
years, which allows the simulation to attain essentially a steady state.

Figure 3 shows the horizontal structure of the temperature and velocity at two different
depths at the end of the simulation. At the surface the temperature is very close to the
restoring temperature profile. However at 600 m, in the lower part of the thermocline, the
warmest water is encountered in the central basin. The bottom velocity (illustrated by the
arrows closest to the boundaries in Fig. 3) is cyclonic in the northwestern part of the basin,
while it is anticyclonic in the southeastern part. Note that the bottom temperatures at the
two locations where the bottom current reverses direction are approximately equal. This is
in agreement with the results presented in Section 2, cf. Eq. (33). It should be underlined
that the temperature field is not prescribed in the model. At the end of the simulation, a
dominant balance between horizontal advection and vertical diffusion is established in
interior of the model domain. Note furthermore that the Rossby number in the simulation is
on the order of 10�2, implying that the vertical motions are weak and primarily occur
within the bottom Ekman layer on the slope; see Spall (2004) for a further discussion of the
vertical circulation in an f-plane basin with sloping side boundaries.

We now take the simulated temperature field and use the results of Section 2 in an
attempt to reconstruct the modeled velocity field. A difficulty in comparing the theory with
the model results is that the bottom Ekman layer extends over one or two grid cells in the
simulation. Thus, the “top” of the boundary layer may be encountered relatively far above
the bottom in the simulation. As a consequence, it is not straightforward to compare the
bottom velocities quantitatively. Instead we focus on the depth-integrated flow, anticipat-
ing that the theoretical results are capable of describing the qualitative features of this flow
field. For this purpose, we have used the same procedure as in the two analytical examples
considered above: To calculate the flow, we have employed Eqs. (25, 26) and the definition
(21) on the simulated temperature field; Figure 4 shows the results. As in the previous
analytical examples, the baroclinic flow q essentially recirculates the buoyant water
masses. We note that the theoretically calculated total flow q 	 0 is in qualitative
agreement with the depth-integrated flow diagnosed directly for the simulated velocity
field. (The fact that the theoretical flow has a slightly larger amplitude is presumably due to
a poor resolution of the Ekman layer and the presence of lateral viscosity in the
simulation.) Based on Eq. (37), we can estimate the degree of recirculation (i.e. the
parameter �) in the numerical model: The ratio between 0 and q is about 1/2, suggesting
that some 50% of the depth-integrated flow recirculates within the pool of buoyant water
visible in Figure 3.

It should be noted that although the agreement between the model results and the theory
are reasonable, the coarse vertical resolution in the model precludes a more rigorous
quantitative comparison. In fact, the present numerical calculation cannot unambiguously
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demonstrate the controlling influence of the vertical viscosity in the Ekman layer since the
model has other forms of dissipation (including some numerical diffusion) that may serve
the same role. However, this is a numerical problem rather than a limitation of the theory,
which applies for nearly-inviscid flows with a low Rossby number.

It is interesting to note that the present numerically calculated flow has qualitative

Figure 3. The steady-state temperature and horizontal velocity structure from a numerical f-plane
simulation conducted in a basin with sloping side boundaries (see Section 3c). The maximum
horizontal velocity in the simulation is on the order of 0.1 m s�1. Note that in the model, the rate of
change of temperature is affected by advection, vertical and horizontal diffusion, and parameter-
ized convection.
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similarities with the numerical results obtained by Spall (2005) using a rectangular basin
with open isobaths. In his model, the isobaths are blocked by a vertical wall at the southern
(i.e. warm) end of the basin. Away from the southern wall, where the depth gradually
increases from the coastal boundary, the bottom flow tends to be cyclonic and aligned with
the isobaths. Furthermore, the strength of the cyclonic bottom flow tends to increase with
decreasing bottom buoyancy, a state of affairs consonant with the present theoretical
considerations. We note that Spall provides a somewhat different interpretation of the
intensification of the cyclonic bottom flow in the northern part of the basin.

Finally, it is relevant to mention that preliminary results suggest that the present
theoretical considerations also are capable of qualitative reproducing the time-mean
velocity field in the eddy-permitting f-plane simulations reported by Walin et al. (2004).
This indicates that even in the presence of time-dependent eddies, the time-mean bottom

Figure 4. Horizontal transport stream functions pertaining to the numerical f-plane simulation. The
contour interval is 5 Sv (in c and d are also the contours �2.5 and �7.5 Sv drawn) and negative
contours are dashed and the zero contour is dotted. Panels a–c show the flow calculated from the
simulated temperature field employing Eqs. (25, 26). Panel d shows the total stream function
calculated from the simulated velocity field.
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velocity evolves toward the state in which the cross-isobath Ekman transport integrates to
zero on closed depth contours. However, a further analysis of the numerical simulations
reported by Walin et al. is outside the scope of the present study.

4. Discussion

We have theoretically investigated steady-state flows in bowl-shaped basins on an
f-plane in the presence of weak bottom friction. We have shown that the free along-isobath
barotropic flow (i.e. the geostrophic mode) can be determined by requiring that the net
cross-isobath Ekman transport vanishes in a steady state. This constraint permits the
specification of the geostrophic velocity field on closed isobaths from a knowledge of the
buoyancy distribution. An important result is that the bottom velocity is determined by the
buoyancy distribution around the entire closed depth contour. As a consequence, the
steady-state circulation in a bowl-shaped basin is nonlocal in nature. The transient
dynamics have not been considered in the present work. We note, however, that the
barotropic pressure p0 spins up on the time-scale f�1(H/he)—typically on the order of
weeks to months—provided that the basin is small compared to the barotropic Rossby
radius (cf. Walin, 1972; Cederlöf, 1988; Hallberg and Rhines, 1996; Isachsen et al., 2003).
Accordingly, the present steady-state results should describe the response of the isobath-
following barotropic flow to changes in bottom buoyancy that occur on seasonal (or
longer) time scales.

Emphasis has been given to the geophysically interesting case where the surface
buoyancy decreases northwards in a basin with closed isobaths. The theoretically deduced
circulations as well as the numerically simulated flow have the following general
characteristics:

1. The bottom velocity is aligned with the depth contours and flows cyclonically
(anticyclonically) where the buoyancy is less (larger) than the mean buoyancy on the
isobath.

2. The vertical extent of the flow is set by the depth of the stratification, i.e. the bottom
velocity is zero on depth contours where the buoyancy is constant.

3. The depth-integrated flow forms two gyres; a cyclonic gyre harboring denser water
and an anticyclonic one harboring lighter water.

4. The northward flow along the western margin separates from the coast at the gyre
boundary.

It deserves to be noted that the present f-plane circulations, in a broad sense, reproduce
some elements of the circulation in the northern North Atlantic. A particularly intriguing
feature of the analysis is that a “subpolar gyre” and cyclonic boundary-trapped currents
emerge in the “northern” part of the basin, even in the absence cyclonic wind forcing.

It should be emphasized that the beta effect introduces new physics. We note, however,
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that some features characterizing the present f-plane circulations are encountered also in
numerical simulations conducted in bowl-shaped single-hemisphere basins in the absence
of wind forcing (see Winton, 1997; Spall and Pickart, 2001; Park and Bryan, 2001). These
simulations, which are driven by an imposed surface buoyancy gradient and the presence
of vertical diffusivity, yield depth-integrated flows comprised by two gyres. In the
simulations, cyclonic circulation is consistently encountered in the northern part of the
basin—a feature that tend to be absent in simulations conducted in basins with a flat bottom
(Winton, 1997; Park and Bryan, 2001).

In the analysis of the two-layer flow in Section 3b, we found that the nonlocal barotropic
flow was proportional to the recirculating baroclinic flow; see Eq. (37). Furthermore we
noted that the barotropic flow u0, which arises due to the presence of bottom friction, alone
accounts for the buoyancy advection. These findings are interesting in the context of the
classical thermocline scaling, which essentially concerns the volume balance of the pool of
buoyant thermocline water (cf. Welander, 1986). Two competing processes are assumed to
affect the pool of buoyant water: A gain due to vertical mixing and a loss due to poleward
advection. The strength of the latter process is estimated from the thermal-wind relation
employing the equator-to-pole buoyancy difference. A conceptual difficulty, however, is
that the thermal-wind relation actually ties the north–south buoyancy difference to the
strength of the east–west flow, rather than to the strength of the poleward flow. Accord-
ingly, the thermocline scaling presumes that the meridional transport of buoyant water is
proportional to the zonal one—a state of affairs in broad agreement with results from
idealized numerical simulations (cf. Park and Bryan, 2000; Nilsson et al., 2003). To
examine the underlying physics, Marotzke (1997) conducted a theoretical analysis of the
circulation in a flat-bottomed one-hemisphere basin where vertical mixing was assumed to
occur only near the side boundaries. His analysis predicted that the east–west and the
north–south buoyancy differences are coupled. Evidently, this also couples the transports.
The present f-plane analysis also predicts that the zonal thermal-wind transport is
proportional to the poleward transport of buoyant water. However in the present case, it is
the effect of bottom friction that connects the transports, rather than the fact that the zonal
buoyancy difference mirrors the meridional one.

In this context, it should be noted that a sloping bottom boundary may become
“slippery” in a stratified fluid (cf. Garrett et al., 1993; MacCready and Rhines, 1993;
Chapman and Lentz, 1994). In essence, what happens is that the cross-isobath flow within
the bottom Ekman layer acts to modify the near-bottom buoyancy field in such a way that
the associated geostrophic shear reduces the velocity at the bottom. If unopposed, this
processes will eliminate the buoyancy anomaly at the bottom and thereby also the bottom
velocity and the associated bottom stress. As a consequence mixing must be present in
order to maintain the along-isobath variation of the bottom buoyancy and the associated
bottom velocity; see Eq. (22). Furthermore, the analytical examples considered in Section
3 suggest that, outside the Ekman layer, the buoyancy field is primarily advected by the
barotropic velocity, i.e. the buoyant water in the upper ocean will essentially recirculate in
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the absence of the barotropic flow. Thus, to obtain a diapycnal circulation (i.e. a
thermohaline circulation) in a bowl-shaped basin requires mixing, which creates bottom
buoyancy anomalies, and bottom friction, which creates the barotropic along-isobath flow
that advects the buoyancy field.

Finally we speculate on whether topography can have a stabilizing influence on a
thermohaline ocean circulation. To be concrete, we imagine an increased freshwater input
to the Nordic Seas, serving to decrease the density difference between the water masses in
the central basin and the inflowing warm Atlantic water. The generally anticipated
response is a reduced exchange across the Greenland–Scotland Ridge, which would further
accelerate the freshening and potentially destabilize the system (see e.g. Hansen et al.,
2004). This scenario presumes that the cross-ridge flow is essentially controlled by the
local buoyancy contrast.

The present theoretical and numerical results, however, suggest that the circulation in
general also has a barotropic component, which traces the isobaths. The strength of this
barotropic flow reflects the buoyancy difference over the entire stretch of the closed
isobaths, see Eq. (22). Thus, a local buoyancy anomaly in “high latitudes” should only
have a weak effect on the barotropic flow. Furthermore, the buoyancy anomaly must
penetrate down to the isobaths that guide the barotropic flow to make an impact.
Accordingly, the barotropic flow should be essentially insensitive to shallow surface-
trapped freshwater anomalies. It should be noted that the strength of the barotropic current
decreases if the large-scale buoyancy contrast is diminished. As a consequence, the
presence of a non-locally controlled barotropic flow does not necessarily remove Stom-
mel’s positive feedback between salinity- and flow-anomalies (cf. Nilsson and Walin,
2001). However, the strength of this potentially destabilizing feedback is presumably
reduced in basins with closed isobaths.

We emphasize that the present results, pertaining to flow along closed isobaths on an
f-plane, may not be directly applicable for barotropic flows on essentially open H/f-
contours in the northern North Atlantic. We note, however, that the northward flow of
Atlantic water off the Norwegian coast has one nearly barotropic branch, confined on the
isobaths that extends southward over the Greenland–Scotland Ridge (e.g. Orvik et al.,
2001). This current, known as the Norwegian Atlantic Slope Current, carries roughly half
of the Atlantic water flowing northwards through the Nordic Seas. From the perspective of
the present study and the results reported by Walin et al. (2004), the barotropic slope
current appears to be central for the thermohaline exchange over the ridge—a process
traditionally viewed as a primarily baroclinic phenomenon. An intriguing question is
whether the strength of Norwegian Atlantic Slope Current is affected by the bottom
buoyancy distribution in North Atlantic. However, further investigations on the dynamics
of non-locally controlled barotropic flows are required to answer this question.
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assistance.

REFERENCES
Bogden, P. S., R. E. Davis and R. Salmon. 1993. The North Atlantic circulation: Combining

simplified dynamics with hydrographic data. J. Mar. Res., 51, 1–52.
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