
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



The nonlocal model of porewater irrigation: Limits to its
equivalence with a cylinder diffusion model

by Nicola J. Grigg1,2, Bernard P. Boudreau3, Ian T. Webster1 and Phillip W. Ford1

ABSTRACT
Burrows maintained by animals in aquatic sediments ventilate the sediment and can substantially

alter the rates and pathways of biologically-mediated decomposition reactions. A well known and
effective way of modeling the impact of such bioirrigation in sediment diagenetic models is to
assume that solutes diffuse into an annulus of sediment surrounding the burrow; the reaction
diffusion equations are represented in cylindrical polar co-ordinates. More commonly, bioirrigation
of sediments is represented by one-dimensional “nonlocal” irrigation models. Their use is typically
justified by the assertion that a nonlocal model is equivalent to a radially-integrated two-dimensional
diffusion model in cylindrical-polar co-ordinates. In this paper we highlight limits to this equiva-
lence, drawing on examples from both single-species and multiple-species reaction diffusion models.
A modified derivation of the nonlocal model using a higher order Taylor series approximation was
tested but found to provide little improvement over the original model. We suggest some approaches
for choosing nonlocal coefficients and identify particular limitations to be alert to when applying the
nonlocal model.

1. Introduction

Emerson et al. (1984) first suggested that the effects of bioirrigation could be repre-
sented in a one-dimensional diagenetic model by introducing a nonlocal (linear) exchange
term. Boudreau (1984), in the same issue, demonstrated that such a nonlocal source/sink
term is mathematically equivalent to a radially integrated Aller-cylinder model (Aller,
1980) under specific, if understated, conditions. Limitations to the technique have been
known for some time. For example, a careful reading of Boudreau (1984) shows that his
derivation applies to the case of a solute produced in the sediment and requires (1) that the
lateral averaging of the reaction terms produce a meaningful and well-defined mean
reaction term that can be expressed as a function of the laterally averaged concentration,
and (2) that the radial dependence of the concentration can be adequately captured by the
first two terms of a Taylor series.

Aller (1988) argued that interactions such as nitrification and denitrification balances
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resulting from specific geometries may not be well described by this approximation.
Furthermore, Aller (2001) concluded that a nonlocal model is only a good replacement for
a full cylinder model (or a more general microenvironment model) if there is no radial
dependence of reaction or transport properties, (i.e., reaction zonation around burrows
cannot be important) and if the reaction kinetics are linear. These requirements are often
violated in multi-component diagenetic models, which consist of multiple species interact-
ing in nonlinear ways. Berg et al. (2003) recognized these limitations, pointing out in
particular that if the same irrigation parameter is used for all solutes, the effects of
irrigation may be overestimated for solutes that react with oxygen near the wall of a
well-irrigated burrow, e.g. NH4

�, Mn2�, Fe2� and H2S. Berg et al. (2003) employed
reduced irrigation parameters for affected solutes to correct for this effect.

The limitations of the nonlocal irrigation model are not well appreciated and can lead to
inappropriate use of the model. Our paper aims to illustrate these limitations through a
comparison of results from the cylinder and nonlocal models under some commonly
encountered conditions.

2. The nonlocal model

We begin our development by reviewing the derivation of the nonlocal model as found
in Boudreau (1984). Aller’s cylinder model equation is (assuming constant porosity):

�C

�t
� Ds

�2C

�z2 �
Ds

r

�

�r �r
�C

�r � � R�C, z, r� (1)

where z is vertical distance from the sediment surface, r is the horizontal distance from the
burrow center, C is the concentration of the species of interest, Ds is the molecular
diffusion coefficient corrected for tortuosity and R is a reaction term.

At the time of its formulation (Aller, 1980), R in Eq. (1) was limited to linear kinetics
with respect to the concentration C.

Typical boundary conditions for Eq. (1) are

C � C0 z � 0

C � C0 r � r1
(2)

�C

�r
� 0 r � r2

�C

�z
� B z � L

where r1 is the radius of the burrow, r2 is the outer radius of the solid annulus surrounding
the burrow and L is the depth of the burrow. C0 is a known concentration at the sediment
surface and B represents a prescribed flux at the base of the burrowed zone.

438 [63, 2Journal of Marine Research



Following Boudreau (1984), Eq. (1) can be multiplied by r/(r2
2 � r1

2) and integrated
laterally to give,

�C�

�t
� Ds

�2C�

�z2 �
2Dsr1

r2
2 � r1

2

�C

�r
�

r1

� R�C, z, r�. (3)

The laterally averaged concentration in Eq. (3) is defined as

C� �
2� �r1

r2 rCdr

2� �r1

r2 rdr
�

2

r2
2 � r1

2 �
r1

r2

rCdr. (4)

This laterally averaged concentration is intended to approximate the average concentration
for a horizontal slice through a “cylinder” in Aller’s model. Note that the definition does
not include the central tube itself.

The laterally averaged reaction term in Eq. (5) is given by

R�C, z, r� �
2

r2
2 � r1

2 �
r1

r2

rR�C, z, r�dr. (5)

Unless this averaged reaction can be expressed as an explicit function of C� , r and t, the
averaging procedure will not produce a usable model. R(C, r, z, t) can be written in terms
of C� only if it is linear in C (or is linearizable). The kinetics in Aller’s original model, and
those then considered by Boudreau (1984), are indeed linear.

Boudreau (1984) next made the assumption that (�C/�r)�r�r1
can be approximated by

�C

�r
�

r�r1

�
C� � C0

r� � r1
(6)

where r� is the unknown radial point at which C� occurs (r1 	 r� 	 r2), i.e. that the first two
terms of a Taylor series could adequately describe the gradient between the solute
concentration at the tube wall and the mean concentration that occur at a radial distance r� .

As a result of the two assumptions expressed by Eqs. (5) and (6), the radially averaged
concentration will obey a one-dimensional reaction-diffusion equation of the form

�C�

�t
� Ds

�2C�

�z2 � 
�C� � C0� � R�C� , z� (7)

where


�z� �
2Dsr1

�r2
2 � r1

2��r� � r1�
. (8)

The second term on the right-hand side of Eq. (7) constitutes an apparent source/sink
that accounts for the effects of 3-D irrigation. Because the term is driven by the
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concentration difference, C� ( z) � C0, which generally refers to nonadjacent points, it is
called a nonlocal transport. Physically this term accounts for irrigation by allowing
exchange of water between any depth z in the irrigated zone and the overlying water.

Eq. (6) can be replaced with a higher-order approximation to the radial concentration
gradient at the burrow wall. Rather than adopting a linear approximation, taking the next
highest order Taylor series expansion amounts to assuming that the concentration profile is
a quadratic (three unknown parameters) with the following conditions providing three
equations: C(r1) � C0; C(r�) � C� ; and �C( z, r)/�r�r2

� 0. Solving this system yields:

�C

�r
�

r1

�
2�r2 � r1�

�r1 � r���2r2 � r� � r1�
�C0 � C� �. (9)

In which case Eq. (8) is replaced with


�z� �
4Dsr1

�r2 � r1��r1 � r���2r2 � r� � r1�
. (10)

We will address three points in this paper:

1) To what extent are the approximations in Eqs. (6) and (9) accurate, and can they be
improved?

2) According to Eq. (8), 
 is a function of diffusivity and r� , both of which differ
between chemical species, and can both be functions of depth. Given it is common
practice simply to use the same 
 value across many species and at all depths in a
model, is this simplification valid?

3) Integrating the reaction term is only possible if reaction kinetics are linear and
independent of the concentration of other species. How well does this approach work
for a set of coupled nonlinear differential equations, as is typical for multiple species
diagenesis models?

3. The comparator 3-D models

Each of our questions is answered by making direct comparisons between solutions to
the full cylinder model and nonlocal model. To answer the first two questions, we drew on
cylinder model results from Aller (1980). The reaction terms in this example are linear,
allowing us to test just one of the assumptions underlying the equivalence between cylinder
and nonlocal models, i.e., the approximation to the radial concentration gradient. To
address our third question, regarding the implications of averaging the nonlinear reaction
term, we coupled a nitrogen dynamics model—based on Blackburn and Blackburn
(1993)—to a cylindrical burrow irrigation model.
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a. Analytical solutions from Aller (1980)

Aller (1980) employed the cylinder model with the following reaction term

R�C, z� � k�Ceq � C� � R0 exp���z� � R1 (11)

to model the sediment-water exchange of sulfate (SO4
2�), ammonium (NH4

�) and dissolved
silica (DSi), where k, R0, � and R1 are empirical constants and Ceq is an equilibrium
concentration. The steady state analytical solution to the cylinder model is (Aller, 1980):

C�z, r� � C0 � Bz �
2

LDs
�
n�0

� Gn

n
2 	 U0�nr�

U0�nr1�
� 1
 sin ��nz�

�
2B

L �
n�0

� ��1�nU0�nr�

�n
2U0�nr1�

sin ��nz�

(12)

where

n � 0, 1, 2, · · ·

�n � �n �
1

2� �

L

n � � k

Ds
� �n

2� 1/2

Gn �
k�C0 � Ceq�

�n
�

R1

�n
�

��1�nkB

�n
2 �

R0���1�n� exp���L� � �n�

��2 � �n
2�

U0�nr� � K1�nr2�I0�nr� � I1�nr2�K0�nr�

and Iv( z) and Kv( z) are the modified Bessel functions of the first and second kind,
respectively, of order v. Aller (1980) set parameters to the values shown in Table 1 (with
only r2 used as a fitting parameter) and found excellent agreement between modeled and
field profiles.

b. Numerical multi-species nitrogen model

We implemented a multi-species nitrogen cycling model using Aller’s cylinder model
burrow geometry, Eq. (1). Such a model is appropriate for investigating nitrification-
denitrification interactions in the sediment. Five chemical species, oxygen (O2), nitrate
(NO3

�), dissolved organic carbon (DOC), ammonium (NH4
�) and nitrogen gas (N2) were

modeled using the kinetics based on those described in Blackburn and Blackburn (1993).
Twelve species were represented in their model: carbon dioxide (CO2), dissolved organic
carbon (DOC), dissolved organic nitrogen (DON), sulfide (HS�), adsorbable ammonium
(NH4_ex), NO3

�, N2, particulate organic carbon (POC), particulate organic nitrogen (PON),
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O2 and sulfate (SO4
2�). The reasons for omitting seven of the species are varied. The

evolution of nitrogen species PON and DON can be approximated from carbon by
assuming a fixed C:N ratio. An explicit POC concentration was replaced with a production
rate of DOC (PDOC) which specifies the rate and distribution of DOC production. CO2 was
omitted, as its exclusion does not affect the distributions of other species. A model version
was constructed which included adsorbable ammonium, however there was negligible
difference in results when it was excluded from the model. The authors of the original
model have also routinely omitted adsorbable NH4

� from their model formulation. A model
version was constructed with HS� and SO4

2� included, and their exclusion was found to
have little influence on the results for this application. Reduction of DOC by SO4

2� is
included in the model without explicitly modeling the concentration of SO4

2� (i.e. we
assume there is excess SO4

2�).
The expressions for the reaction rates of the remaining species are:

RO2 � �k3O2_stim�DOC� � 2k6O2_stim �NH4
��

RNO3
� � �k4NO3_stimO2_inhib�DOC� � k6O2_stim �NH4

��

RDOC � PDOC � k3O2_stim�DOC� (13)

� 2k5SO4_stimO2_inhib�DOC� � 1.25k4NO3_stimO2_inhib�DOC�

RN2 � 0.5k4NO3_stimO2_inhib�DOC�

RNH4
� � k3O2_stim

�DOC�

�CN
� 1.25k4NO3_stimO2_inhib

�DOC�

�CN

� 2k5SO4_stimO2_inhib

�DOC�

�CN
� k6O2_stim�NH4

��

Table 1. The cylinder model parameters used in Aller (1980).

Variable SO4
2� NH4

� DSi

C0 14.7 mM 0.0002 mM 0.074 mM
B �0.1 mM cm�1 0.011 mM cm�1 0.060 mM cm�1

Ds 0.717 cm�2 d�1 1.33 cm2 d�1 0.687 cm2 d�1

� 0.36 cm�1 0.61 cm�1 0
R0 �0.383 mM d�1 0.267 mM d�1 0
R1 �0.061 mM d�1 0.0081 mM d�1 0
k 0 0 0.2 d�1

Ceq — — 0.577 mM
r1 0.05 cm 0.05 cm 0.05 cm
r2 2.1 cm 2.1 cm 2.1 cm
L 15 cm 15 cm 15 cm
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where square brackets represent porewater concentration, and �CN is the carbon to nitrogen
ratio (assumed to follow Redfield C:N stoichiometry of 106:16). The rate constants are the
same as those specified by Blackburn and Blackburn (1993): k3 � 30 d�1 for DOC
oxidation by O2; k4 � 30 d�1 for DOC oxidation by NO3

�; k5 � 5 d�1 for DOC oxidation
by SO4

2�; k6 � 30 d�1 for NH4
� oxidation by O2 (nitrification); k7 � 200 d�1 for HS�

oxidation by O2. The stimulation and inhibition functions are:

C_stim � � �C�/Ccrit if �C� � Ccrit

1 otherwise
(14)

O2_inhib � � 1 � �O2�/Ccrit if �O2� � Ccrit

0 otherwise

where Ccrit is 30 nmol cm�3. SO4_stim is an exception, and is simply given a value of 1.
The model was solved in Matlab, using the method of lines (Boudreau, 1997). The

cylindrical-polar diffusion equation was represented by a central finite difference approxi-
mation in space, hence reducing the system of coupled partial differential equations to a set
of ordinary differential equations (ODEs). The model allowed for a finer grid to be
prescribed at the burrow wall, so providing greater spatial resolution at this interface. At
the interface between two grid sizes, second order finite difference formulas for an uneven
grid were used (Boudreau, 1997, p. 326). Matlab’s stiff ODE solver, “ode15s,” was used to
solve the system of equations. The solver’s performance was improved by specifying a
sparse analytical Jacobian matrix for the system of equations, and modifying “ode15s” to
perform a column permutation prior to any LU decompositions (matrix decomposition to a
product of upper and lower triangular matrices).

4. Results and discussion

a. Validity of approximating the gradient at the burrow wall

Eq. (6) will constitute a reasonable approximation of the gradient at the burrow wall if
higher-order derivatives are not significant. This point is illustrated in Figure 1. The solid
line is the actual radial solute profile (at an arbitrary z). The line labeled “a” is the
extension of the slope (gradient) of this profile at the tube wall, r � r1. The line labeled “b”
is the linear gradient predicted by Eq. (6). The top diagram, Figure 1A, illustrates the case
where higher-order derivatives have only a modest influence; line b is then a passable
approximation to line a, and application of Eq. (6) would be appropriate. The bottom
diagram, Figure 1B, displays the situation when the profile has strong curvature in the
slope; under this condition, line b is not a reasonable approximation to the actual wall
slope, line a. If we employ (9) instead of Eq. (6), the comparison is between a quadratic that
links C(r1, z) and C� , rather than a linear function, but the argument is identical.

Which of the diagrams in Figure 1 best describes natural sediments? To answer this
question we examined the examples used in Aller (1980), i.e., a prototypical nearshore
mud; the solutions for ammonium (NH4

�), sulfate (SO4
2�) and dissolved silica (DSi) are
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shown in Figure 2. The dotted lines in the figures plot r� , i.e., the radial coordinate of C� at
each depth for each of these species. For all three solutes, r� is located roughly midway
between r1 and r2. The radial concentration gradients are steepest at the burrow wall, r �
r1, and a visual inspection of the data suggests that the concentration gradient between r1

Figure 1. Hypothetical solute profiles (solid lines) with a weak radial gradient (A) and a strong radial
gradient (B). The dashed lines (a) in both diagrams are the extensions of the initial (wall) gradients,
while the dotted lines (b) are the predicted initial gradients assuming a two-term Taylor series
between the initial wall concentration and the radially averaged concentration.
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Figure 2. Concentration distributions of SO4
2�, DSi and NH4

� calculated from Eq. (12) using the
model parameters in Table 1. The dotted line plots r� .

Figure 3. Comparison between the analytical radial derivative at r1 (solid line), the approximation
given in Eq. (6) (dotted line) and the higher order approximation given in Eq. (9) (dash-dot line).
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and r� is appreciably nonlinear. Figure 3 provides a visual comparison between the
analytical radial derivative at r � r1 and the approximations given by Eqs. (6) and (9) as a
function of depth for this same example. (To create this figure, Eqs. (8) and (10) were used
to calculate two 
( z) profiles, and Matlab’s “ode15s” function was used to find a steady
state numerical solution to the nonlocal model, Eq. (7), using these 
 profiles.) Note that
the Taylor series approximations in Eqs. (6) and (9) grossly underestimate the actual
gradient, i.e., the situation is characterized by Figure 1B.

If Eq. (6) is not an acceptable approximation to the gradient at the wall, is there a likely
acceptable linear approximation that involves only C� and C0? This latter restriction is
needed because we cannot afford to introduce another unknown concentration and hope for
a useful formula. The positive answer to this question is illustrated in Figure 4. The linear
extension of the initial gradient contains a point that has a corresponding concentration C� ;
thus, (C� � C0)/(re � r1) constitutes a reasonable linear approximation,

�C

�r
�

r1

�
C� � C0

re � r1
. (15)

The objection to this equation would be that re is unknown, but remember that r� was also
an unknown, and this was not an impediment to the application of the nonlocal irrigation
model. With Eq. (15), the exchange coefficient adopts the altered definition


 �
2Dsr1

�r2
2 � r1

2��re � r1�
(16)

Figure 4. Illustration of the approximation of the initial wall gradient by Eq. (15). re is the radial
distance where the extension of the initial gradient would encounter the radially averaged
concentration of the profile.
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and following the derivation in Boudreau (1984), irrigation again appears as a nonlocal
source-sink for solutes that meet the other relevant conditions. While both r� and re can, in
principle, be calculated from the solution of the 3-D tube model, in practice both are
unknown and 
 is a fitting parameter.

b. Validity of using a constant value for 


The most common application of Eq. (7) assumes that 
 is a constant across all chemical
species and at all depths. Values of 
 are found by calibration against measured profiles,
and the expression given in Eq. (8) is rarely used in practice, although it has been employed
by Furukawa et al. (2000) and Koretsky et al. (2002). Treating re in Eq. (16) as a free
fitting parameter that is the same for each species (while retaining different Ds values for
each species), we found that re � 0.2 cm yields values of 
SO4 � 0.11 d�1, 
Si � 0.10 d�1

and 
NH4 � 0.20 d�1 which produce profiles that are visually indistinguishable from the
radially-averaged analytical solutions. It should be noted that the value of 
 differs for each
species as they each have different Ds values, but they are derived from a common re. If
the same value of 
 (
 � 0.14 d�1) is used for all three species, the match between the two
models is still good, but less convincing—see Figure 5. The implication is that the use of a
single value of 
 is not necessarily valid for multiple species models.

Given that useful values of 
 do exist, an alternative method for finding them could be to

Figure 5. Comparison between the average concentration profile calculated from Eq. (12) (solid line)
and the steady state numerical solution to Eq. (7) using Eq. (8) to calculate 
 (dotted line) and
Eq. (10) to calculate 
 (dashed line). A process of trial and error was also used to find a single
value of 
 that provided a good match across all three species (dash-dot line, 
 � 0.14).
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evaluate a one-dimensional radial model, calculate the radial gradient at the burrow wall
and then calculate a value of 
 that would make the following expression true:


�C� � C0� �
2Ds

r2
2 � r1

2 r1

�C

�r
�

r�r1

. (17)

The steady state equation for the one-dimensional radial model is

Ds

r

�

�r
r

�C

�r
� R�C, r� � 0. (18)

For zeroth order reaction kinetics, R � R1, the analytical solution is

C�r� �
�R1

4Ds
r2 �

R 1r2
2

2Ds
ln �r� � C0 �

R1r 1
2

4Ds
�

R1r 2
2

2Ds
ln �r1�. (19)

For first order reaction kinetics, R � k(Ceq � C), the analytical solution is

C � A1I0�r� � A2K0�r� � Ceq (20)

where A1, A2 and  are constants

A1 �
�C0 � Ceq�K1�r2�

U�r1�

A2 �
�C0 � Ceq�I1�r2�

U�r1� (21)

 � �k/Ds

U�r� � K1�r2�I0�r� � I1�r2�K0�r�.

These latter expressions can be used to compare the analytical radial profiles with the linear
and quadratic approximations underlying the derivations of Eqs. (8) and (10)—see
Figure 6. The 
 values calculated using Eq. (7), with the analytical solutions to Eq. (18)
providing the radial gradient and C� , are a close match to those found by fitting re as a free
parameter, i.e. alternative values of 
SO4 � 0.11 d�1, 
Si � 0.11 d�1 and 
NH4 �
0.20 d�1.

c. Application to a multiple-species system

The analysis so far has been limited to single-species models with reaction terms that are
easily integrated radially. Sediment diagenesis models are typically coupled multiple-
species models. In such models the reaction terms are more complicated, and because they
are dependent on other species’ concentrations, they are likely to vary appreciably with r.

The cylinder model was run with the same burrow geometry as earlier examples. A
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40-day run was sufficient to bring the cylinder model solution to steady state. PDOC was
uniformly distributed with a value of 200 nmol cm�3 d�1, which corresponds to a carbon
mineralization rate of 25.5 mmol m�2 d�1 for this burrow geometry, assuming PDOC is
zero below the burrowed zone of sediment. A zero flux boundary condition was prescribed
at the maximum z value. Figure 7 illustrates the steady state concentration distributions
from this configuration.

The original derivation for 
, Eq. (8), produced a poor fit to the model profiles. Using a
one-dimensional radial model and calculating 
 from Eq. (17) provided an improved

Figure 6. Analytical solutions to 1D radial diffusion model (solid line) compared with linear (dotted
line) and quadratic (dashed line) approximations. Circles mark the location of (r� , C� ).
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match. The best match was found by treating re as a free parameter in Eq. (16) and
substituting the value for re found in the previous single-species examples for this
geometry, re � 0.2 cm—see Figure 8.

These last two cases demonstrate a trade-off that is faced when dealing with nonlinear
reaction terms. Calculating 
 from Eq. (17) ensures that radial gradient implicit in 

matches the burrow wall gradient in the cylinder model. Yet this calculation yields a poorer
match than the second approach, where a single re value is treated as a free parameter in
Eq. (16). Plotting the re and C� values on the radial profiles for each species demonstrates
that this second approach yields a poorly matched radial gradient at the burrow wall for
NH4

� and NO3
� (Fig. 9), yet it produces a better match to the radially-averaged concentra-

tion profiles for these species (Fig. 8). A consequence of the nonlinear reaction term is that
it is impossible to match both the radial gradient implicit in 
 and the radially-averaged
concentration profiles simultaneously. This example demonstrates that this kind of prob-
lem is likely to affect species that have a strong radial dependence in their reaction rate
(e.g. in this particular case the thin nitrification zone leads to a nitrate maximum in a
narrow zone near the burrow wall, and the consumption of NH4

� in the oxic zone leads to a
flattened NH4

� gradient close to the burrow wall). One can imagine even worse situations
where a linear extrapolation from r1 would not even intersect a value of C� over the whole
annulus (e.g. if there is a zero flux or reversal in the sign of the gradient due to strong

Figure 7. Two-dimensional steady-state concentration distributions from the 5-species nitrogen
cycling model.
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consumption or production in the zone at the burrow wall). The inability to match both the
gradient implicit in 
 and average concentrations has implications for flux calculations, as
discussed below. The remaining discussion on the nonlocal model refers to the case where

 has been derived from Eq. (16) using re � 0.2 cm. Eq. (7) assumes that R(C, r, z) �
R(C� , z) is a reasonable approximation; yet in the nitrogen model the reaction terms are
coupled and nonlinear. A comparison between R(C, r, z) and R(C� , z) profiles demon-
strates that they are indeed very different (Fig. 10) which makes the good match between
nonlocal and cylinder model concentrations even more surprising. In fact, although the
absolute differences between the nonlocal and radially-averaged concentrations are low,
there are some substantial relative differences between the concentrations for O2 (and to a
lesser extent, NO3

�). At depth, the radially averaged O2 concentrations are more than a
factor of 7 higher than the nonlocal values. This difference is enough to ensure that R(C� , z)
is much closer to R(C, r, z) than might be expected.

The generation of accurate sediment profiles is useful; however, the goal of many
sediment diagenesis models is to link the sediment dynamics to the water column by
inferring fluxes between the two systems. The cylinder model flux formulae as modified
from Aller (1980) to represent the flux per unit of planar sediment surface are then given
by:

Jcyl � Jz � Jr (22)

Figure 8. Comparison between the cylinder model (solid line) and nonlocal model with three
alternative derivations of 
: Eq. (8) (dash-dot line); Eq. (8) but modified so that re is a fitting
parameter and takes the value re � 0.2 (dashed line); and using a one-dimensional radial model to
calculate 
 from Eq. (17) (dotted line).
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where

Jz � �

2��Ds �r1

r2
�C

�z
�

z�0

rdr

2� �r1

r2 rdr

Jr � �
Ar

Az

�Ds �0
L

�C

�r
�

r�r1

dz

�0
L dz

and Az is the surface area of the cylinder top at z � 0 and Ar is the surface area of the
burrow wall.

Because the system is at steady state and there is no advection, the total flux for a species
can also be found by integrating that species’ reaction term:

Jcyl �
2 �0

L �r1

r2 �Rrdrdz

r 2
2 � r 1

2 . (23)

Figure 9. Radial profiles at the base of the cylinder model ( z � L) for NO3
� and NH4

�. Dashed lines
show the location of re and C� . Dotted lines show the actual gradient at r1 and the gradient assumed
by the choice of re.
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If the total flux between the sediment and overlying water is to be predicted with the
nonlocal model, the diffusive flux across the sediment boundary and an integrated nonlocal
flux term needs to be included in the calculation:

Jnl � ��Ds

�C�

�z
�

z�0

� �
0

L

�
�C� � C0�dz . (24)

Fluxes predicted from the two-dimensional and nonlocal models are significantly different
for some species (Table 2). In particular, the NH4

� flux is more than four times higher in the
nonlocal model, and the NO3

� flux is 26% of the value predicted by the cylinder model.

5. Conclusion

The equivalence between nonlocal and cylinder models derived by Boudreau (1984)
rests on two key assumptions: that a Taylor series approximation to the radial concentra-

Figure 10. Comparison between reaction profiles. Solid line: R(C, z, r), where C is the concentra-
tion distribution from the cylinder model; Dashed line: R(C� , z) where C� is the radially-averaged
concentration calculated from the cylinder model; Dotted line: R(C� , z), where C� is the
concentration profile produced by the nonlocal model (as shown in Fig. 8).

Table 2. Fluxes predicted from the cylinder and nonlocal models (mmol m�2 d�1).

O2 NO3
� DOC N2 NH4

�

Cylinder model flux (Jcyl) �10.5 0.97 0.16 1.30 0.25
Nonlocal model flux (Jnl) �8.47 0.25 0.14 1.26 1.05
Jnl/Jcyl 0.80 0.26 0.90 0.97 4.21
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tion gradient is valid, and that nonlinear reaction terms can be radially averaged and take
the same functional form, i.e. R(C, r, z) � R(C� , z). Using analytical solutions to the full
cylinder model drawn from Aller (1980), we have demonstrated that the radial concentra-
tion gradient profiles are poorly approximated with both linear and quadratic Taylor series
approximations. Further, applying the derived 
 profiles in a nonlocal model yields a poor
match to the radially averaged cylinder model solutions. We conclude that using Eq. (8) or
(10) to calculate 
( z) may not yield results that match the cylinder model, and the poor
match is solely due to the poor Taylor series approximation to the radial gradient, as
reaction kinetics were linear in these examples.

We have also found that for applications with linear reaction rates, meaningful 
 values
are possible by replacing the Taylor series approximation, Eq. (6), with an approximation
based on a linear extension of the initial gradient, Eq. (15). r� is then replaced by the radial
distance, re, at which the extension of the initial gradient reaches the radially averaged
concentration C� . The exchange parameter 
 is then defined by Eq. (16), which can be
calculated as a fitting parameter to data or from a one-dimensional radial model using
Eq. (17).

Greater challenges are faced when attempting to model multiple-species systems
containing coupled nonlinear reaction terms. Using a one-dimensional radial model to find

 values produced an improved fit over using Eq. (8); however the match was still poor.
Substituting the fitted re value from the single-species examples into Eq. (8) yielded the
best results; however, the reaction rate profiles and fluxes produced by the nonlocal and
cylinder models still differed. We conclude that when modeling reactions with a strong
radial dependence in reaction rates (e.g. where substantial production or consumption
occurs in a narrow band near the burrow wall), it cannot be assumed that a nonlocal model
will give the same results as the cylinder model.

It should be emphasized that the nonlocal irrigation model’s performance differs from
the cylinder model only under quite specific circumstances discussed above. The model
remains ideally suited to modeling inert tracers or species with simple reaction kinetics, so
long as some effort is made to justify the choice of nonlocal parameter. It would also be
misleading to suggest that the cylinder model is the ideal standard against which all other
models should be assessed. Both models are only approximations of complicated pro-
cesses, and indeed there are likely to be circumstances where a nonlocal model might be
more appropriate than a cylinder model (e.g. rapid episodic advective fluxes between
sediment and overlying water).
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