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The material derivative of neutral density

by Trevor J. McDougall1,2 and David R. Jackett1

ABSTRACT
An expression for the rate of change of neutral density following a fluid parcel (the material

derivative) is derived and checked numerically. This expression can be used to quantify the degree to
which neutral density varies even under purely adiabatic and isohaline motions. We also present an
approximate form of neutral density, namely a rational function of only two variables, either salinity
and conservative temperature or salinity and potential temperature.

1. Introduction

Turbulent motions in the ocean interior are highly constrained by the vertically stratified
nature of the ocean’s density field, and the energetic mesoscale eddies are not thought to
cause significant diapycnal mixing. Rather, mass and other properties are stirred and mixed
efficiently along isopycnals by the mesoscale eddies, leaving much weaker processes to
accomplish the diapycnal diffusion and diapycnal advection in the ocean interior.

Because the lateral diffusivity of mixing processes acting along isopycnals is approxi-
mately eight orders of magnitude larger than the diapycnal diffusivity that operates in the
ocean interior, it is important to have an accurate procedure for evaluating the appropriate
“isopycnal” surface in which the strong lateral mixing occurs. It is straightforward to define
a local neutral tangent plane in which parcels can be moved small distances without
experiencing vertical buoyant restoring forces. But defining horizontally extensive sur-
faces that are “neutral” is far from a trivial exercise, and the options for approximately
neutral surfaces range from potential density surfaces, patched potential density surfaces
(Reid and Lynn, 1971), neutral density surfaces (Jackett and McDougall, 1997) and
orthobaric density surfaces (de Szoeke et al., 2000).

These surfaces differ in the extent to which they achieve the three desirable but mutually
inconsistent objectives of (i) being as neutral as possible, (ii) being as quasi-material as
possible, and (iii) possessing a geostrophic streamfunction (commonly called a Montgom-
ery potential). The quasi-material concept needs explanation: a density variable is said to
be quasi-material if it is a function of only salinity and potential temperature. In this case,
when vertical heaving motion causes water parcels to undergo a change of pressure there is
no flow through the density surface. Such dia-surface flow is only due to irreversible
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mixing processes if the density variable is quasi-material. If a surface is not quasi-material,
then even an adiabatic and isohaline change in pressure will result in the flow of seawater
through the surface.

The relative importance that oceanographers place on these three properties (neutrality,
quasi-materiality and the existence of a geostrophic streamfunction) depends on the
application. For example, the layered modeling community has to date required the exact
observance of quasi-materiality, thus necessarily suffering a penalty on the score of
neutrality and also not possessing an exact geostrophic streamfunction. The approach taken
by Jackett and McDougall (1997) in forming the algorithm for the neutral density variable
was to make neutral density surfaces as neutral as possible while making no attempt at
achieving a geostrophic streamfunction. The extent of the quasi-material nature of neutral
density has not been addressed in the literature to date, and spurred on by interest in this
question from Dr Roland de Szoeke, we address this issue in the present manuscript.

We begin in Section 2 with a discussion of the observational evidence that the strong
lateral mixing occurs along neutral tangent planes. The next section examines the patched
potential density procedure of Reid and Lynn (1971) for forming approximately neutral
surfaces. We show that as the patching is done at ever finer intervals of space, the patched
potential density surface attains the neutral property. In Sections 4–7 we establish the
expressions for the material derivative of neutral density, and then in Sections 8–9 we form
a new approximate form of neutral density which is a function only of salinity and one of
either conservative temperature or potential temperature.

2. Evidence for epineutral mixing

The smallness of the dissipation of mechanical energy in the ocean interior provides the
strongest evidence that the lateral mixing of mesoscale eddies occurs along the neutral
tangent plane. If the lateral diffusivity � � 103 m2 s�1 of mesoscale dispersion and
subsequent molecular diffusion were to occur along a surface that differed in slope from
the neutral tangent plane by an angle whose tangent was s, then the individual fluid parcels
would be transported above and below the neutral tangent plane and would need to sink or
rise in order to attain a vertical position of neutral buoyancy. This vertical motion would
either (i) involve no small-scale turbulent mixing, in which case the combined process is
equivalent to epineutral mixing, or (ii), the sinking and rising parcels would mix and
entrain in a plume-like fashion with the ocean environment, so suffering irreversible
diffusion. If this second case were to happen, the dissipation of mechanical energy
associated with the diapycnal mixing would be observed. But in fact the dissipation of
mechanical energy in the main thermocline is consistent with a diapycnal diffusivity of
only 10�5 m2 s�1 (Toole and McDougall, 2001). This small value of the diapycnal
diffusivity has been confirmed by purposely released tracer experiments.

Even if all of this observed diapycnal diffusivity were due to mesoscale eddies mixing
along a direction different to neutral tangent planes, the (tangent of the) angle between this
mesoscale mixing direction and the neutral tangent plane, s, would satisfy 10�5 m2 s�1 �
s2� and using � � 103 m2 s�1 gives the maximum value of the angle s to be 10�4. Since
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we believe that bona fide interior diapycnal mixing processes (such as breaking internal
gravity waves) are responsible for the bulk of the observed diapycnal diffusivity, we
conclude that the angular difference between the direction of mesoscale eddy mixing and
the neutral tangent plane must be substantially less than 10�4; say 2 � 10�5 for argument’s
sake. This means that as ocean modelers we need to have the strong lateral mixing
occurring along directions that differ from neutral tangent planes by no more than this
angle, and this is a rather stringent requirement unless a deliberately rotated diffusion
tensor is used (Griffies et al., 1998).

3. The approach to neutrality of patched potential density surfaces

The method of Reid and Lynn (1971) of forming “isopycnal” surfaces involves using
potential density surfaces referenced to a series of pressures, usually 0 db, 1000 db,
2000 db, 3000 db and 4000 db. At the mid-point pressures 500 db, 1500 db, 2500 db and
3500 db, the potential densities referenced to the neighboring reference pressures are
matched so that the average water mass at the mid-point pressure lies on both the potential
density surfaces referenced to the neighboring reference pressures. Here we investigate
how closely this definition of a patched potential density “isopycnal” approaches a neutral
trajectory. We restrict attention to the case where there is no helicity of the neutral direction
and hence no path-dependence in the definition of a neutral surface. Helicity is defined as
n � � � n where n � ��� � 	�S is everywhere normal to the neutral tangent planes, and
McDougall and Jackett (1988) have shown that helicity is proportional to �p � �S � ��.
If one takes a meridional section (say from the Atlantic) and assumes that this section is
characteristic of the whole ocean basin, that is that the ocean is independent of longitude,
then one effectively is assuming that the helicity is zero since all of �p, �S and �� lie in
the y � z plane so the triple product �p � �S � �� is zero.

An oceanic cross-section in the upper 1000 db is sketched in Figure 1. The potential
density surface, 
0, referenced to the sea surface is shown, being tangential to the neutral
trajectory at p � 0 db, while a potential density surface 
1 (referenced to 1000 db) is
shown tangent to the neutral trajectory at 1000 db. These two potential density surfaces are
shown meeting at a pressure other than 500 db at point F. If these two potential density
surfaces met at 500 db then it seems clear that the patched potential density or “isopycnal”
surface of Reid and Lynn (1971) and of Reid (1994) would probably be as good an
approximation to a neutral trajectory as could be achieved with the given increment of
1000 db between successive reference pressures. But the matching procedure of Reid
(1994) does not guarantee that the osculating potential density surfaces from points A and
B meet at 500 db. In general these osculating potential density surfaces meet at another
pressure, such as at point F in Figure 1(a). Proceeding from the surface outcrop point A, the
matching procedure of Reid (1994) has the initial 
0 surface connecting to the dashed 
1

surface at point D in Figure 1(a). Here we quantify the systematic offset between the
patched potential density surfaces of Reid (1994) and the neutral trajectory by quantifying
the offset between the dashed 
1 surface and the 
1 surface through point B at 1000 db.
That is, we quantify the density difference that underlies why points D and E do not coincide.
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The variation of potential density (referenced to the sea surface) between points A and C
along the neutral trajectory of Figure 1(a) is (from (A4) of the Appendix)


0
C � 
0

A � 
0
C � 
0

D � 103Tb �
A

C

pd� � 103Tb Area0 (1)

where Area0 is shown on Figure 1(b). Here Tb is the thermobaric parameter, Tb �
	�(�/	)/�p � 2.7 � 10�12 K�1 Pa�1, and it is usually sufficiently accurate to take the

Figure 1. (a) Meridional cross-section of a neutral trajectory and some potential density surfaces that
are used to quantify the extent of the neutrality of the Reid and Lynn (1971) patched potential
density surface concept. (b) The areas Area0 and Area1 on the � � p diagram are proportional to the
potential density differences 
0

C � 
0
A and 
1

C � 
1
B of the points A, B and C of panel (a).
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thermobaric parameter to be a constant. Similarly, the difference in 
1 between points B
and C along the neutral trajectory is proportional to Area1 of Figure 1(b) since


1
C � 
1

B � 
1
C � 
1

E � 103Tb �
B

C

�p � 1000d� � 103Tb Area1. (2)

It is convenient to define the ratio of the horizontal gradients of conservative temperature
and salinity (in terms of buoyancy) at the matching pressure as RH where

RH �
�

	
�500��C � �D�/�SC � SD�. (3)

Using the differential relationship d ln �0 � 	(0)dS � �(0)d�, the temperature
difference �C � �D can be expressed in terms of Area0 by (using (1) and (3))

��C � �D� � �Tb

Area0

	�0 ��

	
�0 �

�

	
�500

1

RH
��1

. (4)

The difference in 
1 between parcels C and D can similarly be expressed as


1
C � 
1

D � �103��C � �D�	�1000��

	
�1000 �

�

	
�500

1

RH
�. (5)

The offset in 
1 between the patched potential density surface and the neutral trajectory
is given by 
1

E � 
1
D which can be found from (2), (4) and (5) to be


1
E � 
1

D � 103Tb Area0
	�1000

	�0 �RH

�

	
�1000 �

�

	
�500

RH

�

	
�0 �

�

	
�500 � � 103Tb Area1. (6)

The ratio �/	 can be expanded about 500 db using the definition of the thermobaric
parameter Tb � 	(�/	)p so that the offset (6) in 
1 can be expressed as a fraction of the
variation of 
1 that occurs between 500 db and 1000 db along the neutral trajectory as


1
E � 
1

D


1
C � 
1

E �
Area0

Area1

	�1000

	�0 �RH�1 � 500Tb/��500 � 1

RH�1 � 500Tb/��500 � 1� � 1. (7)

Ignoring the small variation of the saline contraction coefficient with pressure, that is,
taking 	(1000) � 	(0), we have that


1
E � 
1

D


1
C � 
1

E �
Area0

Area1 ��1 � RH
�1 � 500Tb/��500

�1 � RH
�1 � 500Tb/��500� � 1 (8)

and we note that points D and E would be coincident if the patched potential density
surface was the best possible approximation to a neutral trajectory on Figure 1.

It can be shown that the large square bracket in (8) is approximately the ratio of the
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horizontal gradients at 500 db of the potential densities referenced to 1000 db and 0 db,
that is,

�
1

�
0
�

p�500 db

� ��1 � RH
�1 � 500Tb/��500

�1 � RH
�1 � 500Tb/��500�. (9)

Hence we can understand that (8) will be zero and the patched potential density surface will
be as neutral as possible when the ratio of the increase in 
0 in going from 0 db to 500 db
(Area0) to the decrease in 
1 in going from 500 db to 1000 db (Area1) is equal to the ratio
of the horizontal gradients of these potential densities at 500 db.

Typically 500Tb/�(500) is about 0.1 so that the large square bracket in (8) and (9)
becomes approximately (1.1 � RH

�1)/(0.9 � RH
�1) and with RH � 2, this large square

bracket is about 1.5. Hence if the areas Area0 and Area1 on Figure 1(b) were approxi-
mately equal, the offset in 
1 (namely 
1

E � 
1
D) involved with using patched potential

density would be 50% of the variation of 
1 along the neutral trajectory between 500 db
and 1000 db, namely 
1

C � 
1
E. Equivalently (8) would only be zero in these circumstances

if the area ratio Area1/Area0 is 1.5.
In practice, in the Southern Ocean one finds that Area1 is smaller than Area0 so that (8)

takes a value larger than 0.5 in the Reid and Lynn (1971) patched potential density
procedure, meaning that this patching procedure is not the ideal patching procedure in the
Southern Ocean. However, this needs to be understood in the context of alternative
isopycnal definitions. For example, if the one definition of potential density were used over
the complete pressure range from 0 db to 1000 db then the variation of potential density
along the neutral trajectory from A to B would be the approximately triangular area under
the line from A to B in Figure 1(b) which is approximately four times Area0 or Area1.
Hence the density mismatch error given by (8) is approximately one eighth the error
involved with using a single potential density over this 1000 db pressure range. The
benefits of using Reid’s patched potential density surfaces which are never more than
500 dbar distant from the reference pressure clearly increase as one considers denser
surfaces that plunge to great depths in the ocean, compared with using a single definition of
potential density.

In Figure 2 we show pressure, 
� and �n on the fifth surface of Reid (1994) (see Table 1)
which lies at a pressure of about 2100 dbar at low latitudes. Potential density (referred to
zero pressure) increases from the southern outcrop toward the north and is a maximum
under the influence of the Mediterranean Water. The extent of the neutrality of this patched
potential density surface can be gauged from the contours of neutral density in Figure 2(c).
As noted in the previous paragraph, the matching procedure at the 500 dbar level in the
southern hemisphere leaves something to be desired. This shows up in Figure 2(c) as a
significant gradient of neutral density on this “isopycnal” in the southern half of the
southern hemisphere: the difference of 0.04 kg m�3 between neutral density values of
28.02 kg m�3 and 28.06 kg m�3 in this latitude range is not a trivial density difference.

Now we consider what would happen if the same matching procedure of Reid and Lynn
(1971) were used but the pressure intervals that are used to define patched potential density
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surfaces is reduced from 1000 db toward zero. The first thing to notice is that the variation
of potential density along a neutral trajectory increases as the square of the pressure
interval. This can be seen from Figure 1(b) where both the pressure range and the
temperature range of the approximately triangular areas Area0 and Area1 would halve if
the pressure interval were halved from 1000 db to 500 db. In addition, the large square
bracket in (8) and (9) would be only half as far from unity. Hence we conclude (from (8)
and (2)) that as the pressure interval that is used to define the matching procedure
approaches zero, the error 
1

E � 
1
D approaches zero as the third power of the matching

pressure interval. There are of course many more such matching locations; the number of
which is proportional to the reciprocal of the matching pressure interval. Hence we
conclude that the matching error overall goes as the square of the matching pressure
interval. This serves to confirm the assertion of McDougall (1987a) that in the limit of ever
finer pressure intervals of the Reid and Lynn (1971) procedure, the patched potential
density surfaces so obtained approach neutral trajectories:—they do so quadratically fast.

In this section we have concentrated on the case of an ocean with zero helicity. In this
case the limit of very finely-patched potential density surfaces approaches the well-defined
neutral surface. The presence of a small amount of helicity in the ocean means that such
well-defined neutral surfaces do not exist and so there will always be a certain amount of
“discordance” between the individual leaves of patched potential density surfaces. Such a

Figure 2. Pressure (a), potential density (b) and neutral density (c), plotted on the fifth “isopycnal”
surface of Reid (1994).
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discordance is illustrated in Figure 14 of de Szoeke et al. (2000). It is important to realize
that this discordance is a consequence of the nonzero local value of helicity at the matching
pressure of the potential densities. The different water masses that exist in the North and
South Atlantic can be accommodated by the finely patched potential density concept
described above (and also by neutral density) because such water mass differences between
the hemispheres do not contribute to the ocean’s helicity because these water mass
contrasts are never adjacent to each other. Thus while salinity is not a single-valued
function of pressure and in situ density, the different northern and southern branches of
S( p, �) are not indicative of helicity and do not cause discordances for the finely patched
potential density procedure (simply because the two different branches are always well
separated in space).

4. The material derivative of neutral density due to changes in pressure

The neutral density computer algorithm (Jackett and McDougall, 1997) takes an oceanic
datum of salinity, temperature, pressure, latitude and longitude and labels it with a value of
neutral density. This is achieved by neutrally associating the datum with certain depths on
the four vertical casts of the pre-labeled atlas that are located at latitudes and longitudes
which are immediately adjacent to the datum. The respective pairs of fluid parcels are
deemed to be “neutrally associated” if they have the same value of potential density
referenced to the average pressures of the original datum and each of the fluid parcels on
the pre-labeled casts in turn. The label for the original datum is then taken as the weighted
average of the neutral density labels found on the adjacent labeled casts.

Neutral density was designed so that neutral density surfaces are as neutral as possible:—
the difference between the slope of the local neutral tangent plane and the neutral density
surface is minimized using a relaxation technique. Another highly desired property of
density surfaces is the quasi-material property (if a density variable is 100% quasi-
material, then flow occurs through the “isopycnals” only in response to irreversible mixing
processes (such as turbulent diapycnal mixing, double-diffusive convection, cabbeling,
thermobaricity etc.)). In order to assess the degree to which neutral density is quasi-
material, an expression is needed for the material derivative of neutral density, and this task
is addressed in this and the following three sections.

Since neutral density (Jackett and McDougall, 1997) is a function of five variables,
namely �n � �n(S, �, p, x, y), the material derivative of neutral density, d�n/dt, can be
regarded as the sum of five terms, being the relevant partial derivative multiplying the five
material derivatives Ṡ, �̇, ṗ, u and v. The nomenclature here is mostly standard with S
being the salinity on the Practical Salinity Scale, p the absolute pressure less 10.1325 dbar
(Feistel, 2003), x and y being the distance in the eastward and northward directions. The
temperature variable is the conservative temperature � of McDougall (2003) which is
simply potential enthalpy divided by a constant. Conservative temperature is a function of
salinity and potential temperature, �(S, � ), and � better represents “heat” in the ocean
than does potential temperature by more than two orders of magnitude.

Here the full expression for d�n/dt will be constructed by first considering the influence
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of ṗ at constant S, �, x and y, second, calculating the effect of the lateral movement V �
(u, v) � ( ẋ, ẏ) of a fluid parcel while its S, � and p remain constant, then thirdly and
finally (in Section 6) accounting for the effects of Ṡ and �̇ at constant p, x and y.

In order to quantify the influence of the material derivative of pressure, ṗ, on the
material derivative of neutral density, refer to Figure 3(a) which depicts a fluid parcel (SB,
�B, pB) at point B communicating neutrally to the parcel A, (SA, �A, pA) on the labeled
reference cast of the neutral density algorithm. The particular reference cast is the one at
the same longitude and latitude as Parcel B. Now the pressure of parcel B is increased to
p � ṗ�t where the parcel is now called parcel C and it communicates neutrally with parcel

Figure 3. Salinity-conservative temperature plot (a) and temperature-pressure plot (b) of points A, B,
C and D along a neutral trajectory that are used to deduce the contribution of pressure changes to
the material derivative of neutral density.
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D on the reference cast. Parcels C and D have the same potential density referenced to the
pressure 0.5( pD � pB � ṗ�t). Consider the neutral trajectory that begins at point A and
proceeds to point B, then to C then to D. These points are shown in Figure 3(b) on the � �
p diagram.

In the Appendix we develop the expression (A4) for the lateral gradient of potential
density in the neutral tangent plane, and integrating (A4) around the neutral trajectory of
Figure 3(b) from point A to D we find that the difference in potential density between these
two parcels is given by

���
D � ��

A /�� � �
A

D

Tb�p � pr�d�. (10a)

Consider now the particular potential density that is referenced to the average pressure of
parcels A and D, that is, to the pressure ( pA � pD)/ 2. Taking the thermobaric coefficient
to be constant, the integral on the right of (10a) is then exactly Tb times the shaded closed
area in Figure 3(b), that is, the area A-B-C-D-A enclosed on this � � p diagram, being the
neutral trajectory A-B-C-D and the straight line joining points D and A. To lowest order in
ṗ�t, ( p � pr) and (� � �r) this area is the signed area of the triangle A-B-C namely
�1

2
Tb(� � �r) ṗ�t where �r � �A is a more convenient symbol for conservative

temperature on the reference cast that is neutrally connected to the parcel in question. Since
pA � pD is much less than the imposed pressure difference ṗ�t, this area of triangle A-B-C
is a good approximation to the shaded area A-B-C-D-A. More accurately, the shaded area
of Figure 3(b) is the difference between the areas of the triangles A-B-C and A-D-C, and
the area of this second triangle is 1

2
( pA � pD){(� � �r) � ( p � pr)�p

r } where �p
r is the

vertical temperature gradient on the reference cast with respect to pressure.
The ratio of the vertical gradient of neutral density to that of locally-referenced potential

density defines the factor b of Jackett and McDougall (1997) (this factor varies between 0.5
and 2) so that the left-hand side of (10a) is b�1 times the difference between the values of
ln �n for parcels D and A so that

�ln �n�A
D � �

1

2
bTb�� � �rṗ�t �

1

2
bTb� pA � pD��� � �r � � p � pr�p

r�. (10b)

This same vertical difference in neutral density is also related to the vertical difference in
pressure on the reference cast by (this follows simply from the definition of b)

�ln �n�A
D � �b��1g�2N2� pA � pD (10c)

and eliminating ( pA � pD) between (10b) and (10c) gives

�ln �n�A
D � �

1

2
bTbF�� � �rṗ�t (10d)

where
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F � �1 �
1

2
Tb�g2N�2��� � �r � �p � pr�p

r���1

(10e)

and F is usually close to unity. Hence the contribution of ṗ to the material derivative of
neutral density is given by

ṗ
� ln �n

�p
�

S,�,x,y

� �b
1

2
TbF�� � �rṗ. (11)

Figure 4 shows this contribution to the material derivative of neutral density due to
changes in pressure. The two axes of the figure show respectively �t times the two sides of
(11) for a given pressure excursion �p. A random {S0, T0, p0, �0

n, long, lat} observation
from the labeled Levitus data set is initially perturbed randomly in T and pressure p, and
then deterministically in S in order to retain neutrality. The temperature excursions �T0

correspond to conservative temperature excursions of up to �1°C at the sea surface and
�0.1°C at the sea floor, with the conservative temperature limit being taken linearly in
pressure between these extremes. Pressure perturbations �p0 up to �150 dbar are also
imposed so that the random datum is well removed from the labeled data set. The salinity

Figure 4. A scatter plot of the two sides of Eq. (11) which is an expression for the contribution of
pressure changes to the material derivative of neutral density.
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excursion �S0 is then found that results in the observation {S0 � �S0, T0 � �T0, p0 �
�p0, long, lat} having the neutral density value �0

n and this becomes the initial random
observation {S, T, p, long, lat} lying remote to the labeled Levitus cast for which we
calculate the contribution to the material derivative given by (11). Values for b, Tb and �r

are all found at the initial location {S0, T0, p0, �0
n, long, lat} on the labeled Levitus cast,

since this is the point of intersection of the neutral density algorithm with the labeled data
set.

The observation {S, T, p, long, lat} � {S0 � �S0, T0 � �T0, p0 � �p0, long, lat} is
now perturbed randomly by a pressure increment �p between �200 dbar and �200 dbar
and then relabeled with neutral density �n. The location of the intersection of the �n

surface with the labeled Levitus cast is used to calculate values of b, Tb, N2 and �r at this
new intersection. These are then averaged with the values previously obtained to allow
calculation of the right hand side of (11). The left-hand side is computed from the
differences in the two �n labels assigned by the two calls to the neutral density algorithm. It
is clear from Figure 4, where the results of 2 � 104 random calculations are plotted, that
Eq. (11) holds to an excellent approximation. The correlation coefficient between the two
axes is 0.995, confirming the veracity of (11).

5. The material derivative of neutral density caused by lateral advection

Now we consider the effect on d ln �n/dt of lateral advection of a fluid parcel without
change in the parcel’s S, � or p. The fluid parcel (S, �, p) at point B in Figure 5
communicates neutrally with the parcel A, (Sr, �r, pr), on the labeled reference cast at ( x,
y). When the fluid parcel B has moved to its new horizontal location at ( x � u�t, y � v�t)
it retains its three properties (S, �, p) and communicates neutrally with parcel D on a

Figure 5. Conservative temperature-pressure plot of points A, B, and D along a neutral trajectory and
point C on the same neutral density surface as A, that are used to deduce the contribution of
horizontal advection to changes to the material derivative of neutral density.
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different pre-labeled reference cast, namely the reference cast at the new latitude and
longitude, and bottle B is now given the neutral density label of point D. On this same
reference cast, point C has the same pre-labeled value of neutral density as point A on the
original reference cast at ( x, y). The difference between the conservative temperature and
pressure of bottles C and A is �tV � ���r and �tV � ��pr. While points A and C both have
the same value of neutral density, it is not 100% accurate to say that these parcels are
neutrally related as parcels would be on a neutral trajectory. This is because the small
values of helicity in the ocean ensure that any well-defined surface such as a neutral density
surface cannot be completely neutral (McDougall and Jackett, 1988; 2005a). The differ-
ence in slope between a neutral density surface and the local neutral tangent plane has been
shown to be very small in the labeled Levitus atlas data of the neutral density algorithm
(see Jackett and McDougall (1997), McDougall and Jackett (2005b), the curve labeled “�n

(labeled Levitus)” in Fig. 11 below, and the right-hand most bar in Fig. 12). We proceed
with the approximation that takes points A and C to be neutrally related and we will
subsequently make a correction for this approximation.

Now consider the trajectory C-A-B-D. The first of these three legs can be considered to
be a neutral trajectory and the other two legs are both neutral trajectories. Hence, as in the
previous section, the closed integral on the � � p diagram gives the difference between
the locally referenced potential density of parcels D and C

���
D � ��

C/�� � � Tb � p � pr �d� (12)

where the closed shaded area is enclosed by the straight lines C-A-B-D-C and the potential
density is referenced to pr � ( pD � pC)/ 2. This area on Figure 5 is the difference of the
areas of the two triangles CAB and CDB. The triangle CAB has lengths (� � �r) in the �
direction and {V � ��pr � V � ���r( p � pr)/(� � �r)} in the p direction, while the
triangle CDB has the same length (� � �r) in the � direction while the length in the p
direction is proportional to ( pC � pD) such that the area of triangle CDB is 1

2
( pC �

pD){(� � �r) � ( p � pr)�p
r }. Taking the difference of the areas of these triangles leads

to

�ln �n�C
D � �

1

2
bTb��� � �rV · ��pr � � p � prV · ���

r��t

�
1

2
bTb� pC � pD��� � �r � � p � pr�p

r�.

(12a)

Similarly to (10c) we note that the vertical difference of neutral density between points C
and D is given by

�ln �n�C
D � �b��1g�2N2� pC � pD (12b)

and eliminating ( pC � pD) between (12a) and (12b) gives
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�ln �n�A
D � �

1

2
bTbF��� � �rV · ��pr � � p � prV · ���

r��t (13)

where F is given as before by (10e). Hence the contribution of lateral advection to the
material derivative of neutral density is

u
� ln �n

�x
�

S,�,p,y

� v
� ln �n

�y
�

S,�,p,x

� �
1

2
bTbF��� � �rV · ��pr � � p � prV · ���

r�.

(14a)

This relationship has been checked in a similar manner to the checking of relationship
(11) of the previous section. Random neutral excursions {S0 � �S0, T0 � �T0, p0 �
�p0, long, lat} are taken from random observations {S0, T0, p0, �0

n, long, lat} in the
labeled Levitus data set. The maximum temperature and pressure perturbations, �T0 and
�p0, are the same as in the previous section, and the salinity perturbation �S0 is again
taken so that {S0 � �S0, T0 � �T0, p0 � �p0, long, lat} has neutral density �0

n. As in the
previous section, values for b, Tb, �r and pr are all found at the initial location {S0, T0, p0,
�, long, lat} on the labeled Levitus cast. Next we increment longitude and latitude each by
one degree and re-label this datum by finding the points of intersection of the neutral
tangent plane with the labeled Levitus data. This time however there are four points of
intersection with the labeled data set, since the longitude and latitude of the perturbed
observation {S0 � �S0, T0 � �T0, p0 � �p0, long � 1, lat � 1} places the datum strictly
inside one of the boxes of the labeled data set. Values for b, Tb, �r and pr are thus
weighted averages of the values of these same quantities at each of the four casts of the
labeled data set surrounding the laterally perturbed observation. These are now averaged
with the prior values of b, Tb, �r and pr, resulting in an estimate of �t times the right-hand
side of (14a). The left-hand side of (14a), multiplied by �t, is calculated from the
differences of the natural logarithms of the two different values of �n returned by the
neutral density code. Figure 6 shows these two quantities on the two axes for 2 � 104

random calculations, where the approximate balance of (14a) is obvious. The correlation
coefficient of the two axes is 0.94 confirming the veracity of (14a).

The development (12)–(14a) has assumed both that parcels A and C are neutrally related
and that these parcels in the reference data set have the same neutral density. As mentioned
above, along a neutral trajectory in the reference data set there will be a small variation in
neutral density so that to (14a) should be added the lateral advection V � �nln �n	r of
neutral density along the neutral tangent plane in the reference data set. The difference in
slope between the neutral tangent plane and the neutral density surface in the labeled
reference data set is

s 
 �nz
r � ��zr (14b)

and this can also be expressed (see McDougall and Jackett, 1988) as �gN�2(����r �
	��Sr) which illustrates the fact that the gradients of temperature and salinity are not quite
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density compensated along the neutral density surface. The extra contribution to the lateral
advection of the logarithm of neutral density by this difference in slope s is then
�bg�1N2V � s and this must be added to (14a) so that the total contribution of lateral
advection to the material derivative of the logarithm of neutral density is

u
� ln �n

�x
�

S,�,p,y

� v
� ln �n

�y
�

S,�,p,x

� �
1

2
bTbF��� � �rV · ��pr � � p � prV · ���

r� � bg�1N2V · s.

(14c)

6. The material derivative of neutral density caused by irreversible mixing

Now we allow irreversible mixing processes to alter the salinity and conservative
temperature of our initial parcel B, taking its properties from (SB, �B, pB) to (SB � Ṡ�t,
�B � �̇�t, pB) while remaining at constant pressure, latitude and longitude. The original
parcel B is connected neutrally to the “bottle” (SA, �A, pA) on the labeled reference cast at
( x, y). That is, the two fluid parcels A and B both have the same density when referenced

Figure 6. A scatter plot of the two sides of Eq. (14a) which is an expression for the contribution of
horizontal advection to the material derivative of neutral density.
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to the mean pressure, p� � 0.5( pA � pB), as in Figure 7. The modified parcel B, namely
(SB � Ṡ�t, �B � �̇�t, pB) will be connected neutrally to a different fluid parcel (not
shown) on the reference cast.

In order to make progress we split the derivation into two parts. First we consider a
parcel C that has the updated salinity and conservative temperature of parcel B, but has a
different pressure, so chosen that the average pressure of parcel C and the parcel on the
reference cast which talks neutrally to it, parcel D, is the same as p� � 0.5( pA � pB). That
is, parcels C and D have the properties (SB � Ṡ�t, �B � �̇�t, pB � �p) and (SD, �D,
pA � �p) and they both have the same value of potential density referenced to p� �
0.5( pA � pB) � 0.5( pC � pD). The pressure perturbation �p remains to be determined.
The change in this potential density caused by the material derivatives of S and � for
parcel C is

d ln ��� p�/dt � 	� p�Ṡ � a� p��̇ (15)

and this change in potential density is evident in Figure 7 as both the differences between
parcels B and C and between parcels A and D. In order to relate these changes in potential
density to changes in neutral density on the reference cast, we first evaluate the difference
in locally-referenced potential density on the reference cast. The logarithmic vertical
gradient of this locally referenced potential density at pr � pA is the vertical gradient of ln
��( p� ) times {a( pr)�z

r � 	( pr)Sz
r}/{a( p� )�z

r � 	( p� )Sz
r}, so that for parcel C

d ln ��� pr/dt � �	� p�Ṡ � a� p��̇�a� pr�z
r � 	� prSz

r�/�a� p��z
r � 	� p�Sz

r�. (16)

By definition, the vertical gradient of the logarithm of neutral density is b times the vertical
gradient of the logarithm of locally-referenced potential density (Jackett and McDougall,

Figure 7. Salinity-conservative temperature plot of points A and B that are neutrally related, and
points C and D that are also neutrally related. This diagram is used to develop the contribution of
irreversible mixing to the material derivative of neutral density.
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1997), so the contribution of irreversible mixing to the material derivative of neutral
density for parcel C is simply b times (16), namely

b�	� p� Ṡ � a� p� �̇�a� pr�z
r � 	� prSz

r/�a� p� �z
r � 	� p� Sz

r

� b�	� p� Ṡ � a� p� �̇�1 � �1 � R�
�1�1

1

2
��1Tb� p � pr� (17)

where the second line represents the first two terms in powers of ( p � pr) in a Taylor
series expansion where the pressure variation of 	 has also been ignored in comparison to
that of �, and R� is the vertical stability ratio of the water column at the reference cast,
R� � �( pr)�z

r/(	( pr)Sz
r).

We are not yet done in this section because parcel C has an unwanted change in pressure,
and this needs to be countered using the result (11) of Section 4. The vertical distance
between the two points A and D on the reference cast, is given by �t times (15) divided by
(	( p� )Sz

r � �( p� )�z
r), and the pressure difference, pD � pA, divided by the time interval �t

is the value of ṗ that must be added to parcel C to retain the pressure of the sum of the two
processes constant at pB. Using this value of ṗ in the expression (11) shows that the
additional contribution to the material derivative of neutral density is

1

2
�gbTbF�� � �r��� p� �̇� 	� p� Ṡ/��� p� �z

r � 	� p� Sz
r (18)

where F is again given by (10e). The sum of the contributions of these two processes is the
material rate of change of neutral density at fixed values of pressure, latitude and longitude,
which is simply the following sum of (17) and (18), (noting that the square of the buoyancy
frequency N on the reference cast is given by g(a( pr)�z

r � 	( pr)Sz
r))

Ṡ
� ln �n

�S
�

�,p,x,y

� �̇
� ln �n

��
�

S,p,x,y

� �bg�1
�a�p��̇ � 	�p�Ṡ

�a�p��z
r � 	�p�Sz

r �N2 �
1

2
�g2TbF�� � �r�

(19)

� �b�a� p��̇ � 	� p�Ṡ�1 � �1 � R�
�1�1

1

2
��1Tb� p � pr��1 �

1

2
�g2N�2TbF�� � �r�.

The first line of the right-hand side of (19) has been checked using a similar finite
difference technique to the checks of (11) and (14a) in the previous two sections. Random
neutral excursions {S0 � �S0, T0 � �T0, p0 � �p0, long, lat} are taken from random
observations {S0, T0, p0, �0

n, long, lat} in the labeled Levitus data set, with the maximum
temperature and pressure perturbations �T0 and �p0 being the same as before. The salinity
perturbation �S0 is taken to ensure neutrality, in terms of lying on the same neutral tangent
plane so that {S0 � �S0, T0 � �T0, p0 � �p0, long, lat} has the same neutral density as
{S0, T0, p0, �0

n, long, lat}. Values for b, Tb, �, N2, �r, Sz
r and �z

r are all found at the
initial location {S0, T0, p0, �0

n, long, lat} on the labeled Levitus cast, while the
mid-pressure coefficients are computed as �(S0, T0, p� ) and 	(S0, T0, p� ) where p� � ( p0 �
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p)/ 2. The observation {S, T, p, long, lat} � {S0 � �S0, T0 � �T0, p0 � �p0, long, lat}
is now perturbed by random salinity and temperature perturbations in the range between
�0.2 psu and �0.2 psu and in the range between �1.0°C and �1.0°C and then {S � �S,
T � �T, p, long, lat} is re-labeled with neutral density and the intersection {S1, T1, p1, �,
long, lat} of the neutral tangent plane with the labeled Levitus cast is used to compute new
values of b, Tb, �, N2, �r, Sz

r and �z
r, and mid-pressure values �(S1, T1, p� ) and 	(S1, T1,

p� ), where now p� � ( p1 � p)/ 2. These two sets of cast and mid-pressure values are
averaged and then used to calculate �t times the right-hand side of (19). This is plotted in
Figure 8 against �t times the left-hand side of (19), namely � ln (�n), for 2 � 104 random
computations, where again we find good agreement between both sides of the equation.
The correlation coefficient between the two axes is 0.994.

7. The dianeutral velocity

The material derivative of neutral density is then the sum of the three different effects,
given by the sum of (11), (14c) and (19), namely

Figure 8. A scatter plot of the two sides of Eq. (19) which is an expression for the contribution of
irreversible mixing to the material derivative of neutral density.
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d ln �n/dt � �b
1

2
TbF�� � �rṗ (20)

� b
1

2
TbF��� � �rV · ��pr � � p � prV · ���

r�

� bg�1N2V · s

� b�g�1N2 �
1

2
�gTbF�� � �r� �a� p� �̇� 	� p� Ṡ

�a� p� �z
r � 	� p� Sz

r
.

The last line here is to be expected in the sense that when there are diabatic mixing
processes, so that �̇ and Ṡ are nonzero, one would expect that neutral density would
change. The first line says that when there is a water mass contrast between the fluid parcel
and the labeled reference cast (from whence the parcel gains its neutral density label) then
any changes in the pressure of the fluid parcel, including those changes due to adiabatic and
isohaline movements, lead to changes in the parcel’s neutral density. Note that the
temperature contrast is a local contrast in the sense that it does not involve the total
variation of water masses over the whole world ocean but only the change in water mass
with time (eg seasonal changes) at a given horizontal location. The second line in (20) is
nonzero if the ratio of V � ��pr and V � ���r is not the same as the ratio of ( p � pr) to
(� � �r). This term scales the same as the first term on the right of (20) in that ṗ and V �

��pr tend to have similar magnitudes.
Writing the material derivative of pressure with respect to neutral density coordinates,

ṗ � pt	� � V · ��p � e�pz, (21)

where e� is the vertical velocity through the neutral density surface (called dianeutral
velocity for convenience) we write the left-hand side of (20) as e�(ln �n)z, and follow
de Szoeke et al. (2000) in collecting the terms in e� together so that (20) becomes

e� � ��� � 1� pt	� � V · ��p� pz
�1 (22)

� ��� � 1�V · ��pr �
� p � pr

�� � �r
V · ���

r�� pz
�1

� ��V · s

� ��� � ��� � 1
�a� p��̇ � 	� p�Ṡ

�a� p��z
r � 	� p�Sz

r

where �� is defined by

�� �

�N2 �
1

2
�g2Tb�� � �r �

1

2
�g2Tb� p � pr�p

r�
�N2 � �g2Tb�� � �r �

1

2
�g2Tb� p � pr�p

r� (23a)
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so that (�� � 1) is

��� � 1 �

�
1

2
�g2Tb�� � �r

�N2 � �g2Tb�� � �r �
1

2
�g2Tb� p � pr�p

r� . (23b)

Hence (�� � 1) is nonzero to the extent that there is a water mass contrast (� � �r)
between the seawater parcel that is being labeled and the data on the labeled reference data
set that communicates neutrally with the seawater sample. For reasonable values of (� �
�r) and ( p � pr) the denominator in (23a) and (23b) is close to N2 and �� is close to 1.

Eqs. (20) and (22) are the main results of this paper so far, being expressions for the
material derivative of neutral density and the dianeutral velocity. The form (22) is useful as
it isolates the undesirable feature that the vertical velocity through a neutral density surface
is not only caused by irreversible mixing processes, but also is partially due to adiabatic
motions such as the vertical heave of the water column. The first three lines of (22)
represent the contribution to the flow through the neutral density surface of (i) the adiabatic
temporal heaving of the neutral density surface, (ii) the adiabatic sliding of fluid along the
neutral density surface, and (iii) the fact that neutral tangent planes do not exactly coincide
with neutral density surfaces even in the reference data set. Note that as (� � �r) tends to
zero, (�� � 1) also tends to zero so that the second line of (22) is well-behaved and
becomes proportional to ( p � pr)V � ���r.

8. Neutral limitations of �a(S, �)

We consider now how neutral a function of only S and �, �a(S, �), can be. We ask
what feature of the ocean hydrography limits the ability to achieve a minimum or zero
value of the gradient of �a everywhere in a neutral tangent plane, �n�a? We can write
�n�a as

�n�
a � b�S, ��nS � a�S, ��n� (24)

where b(S, �) � �S
a and a(S, �) � ���

a . Since 	(S, �, p)�nS � �(S, �, p)�n� in a
neutral tangent plane, (24) can be written as

a�1�n�
a � �n�b�S, �

a�S, �

��S, �, p

	�S, �, p
� 1� . (25)

If pressure is a single-valued function of temperature along a neutral trajectory, then it is
clearly possible to choose the functions a(S, �) and b(S, �) such that their ratio is equal to
(�/	)(S, �, p) and hence �n�a � 0. If, however, p(�) ceases to be a single-valued
function along the neutral trajectory such as at the point marked with a cross in Figure 9,
then it becomes impossible to maintain �n�a � 0. To see this we pursue a reductio ad
absurdum proof by assuming �n�a � 0, and then consider two points, say points 1 and 2,
that have the same value of � on either side of the extremum in �. Since b(S, �) is the
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saline contraction coefficient for the approximate density variable, we require it to be
nonzero, implying that S can be written as a function of �a and �. Hence the two parcels
have not only the same values of � and �a but also the same values of salinity. However,
since the two parcels have different pressures, (�/	)(S, �, p) is different on either side of
the temperature extremum so that (from (25)) �n�a cannot be zero all the way from point 1
to point 2 along the neutral trajectory, contradicting the assumption that �n�a � 0. We
conclude that it is the multi-valued nature of p(�) in Figure 9; that is, the fact that p is not a
single-valued function of � along the neutral trajectory that ensures that any and every
variable that is a function only of S and � must vary along the neutral trajectory.

We can also understand this inherent limitation to the neutrality of a function of S and �

by considering the region in space near a location where �S � �� � 0 as shown in
Figure 10. The surfaces of constant salinity and temperature will in general have different
curvatures in space and we show two locations marked A and B which have the same
values of S and �. In general these isohaline and isothermal surfaces will not be flat but
rather they will have a gradient of pressure along them so that parcels A and B will have
different values of p. Hence the pressures of these two parcels cannot both be described by
the same single-valued function p � p(S, �). Without a single functional form p �
p(S, �) it is not possible to choose any function �a(S, �) so as to have (25) being zero.
We conclude that it is from locations where �S � �� � 0 that the different branches of
p � p(S, �) diverge. In other words, different branches of this function emanate from
locations where �n� � 0 and �np � 0, and it is these locations that ensure that �a(S, �)
cannot be neutral.

Figure 9. Sketch of the variation of conservative temperature and pressure along a neutral trajectory
from the southern to the northern hemisphere. The discussion in the text concentrates on the point
of extreme temperature on this diagram, marked with a cross.
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9. Approximate forms of neutral density, �a(S, �) and �a(S, �)

We seek two approximate functions for neutral density �n when expressed in terms of
salinity S and either potential temperature � or conservative temperature �. The functional
form adopted for both of these functions is a rational function, i.e., a ratio of two
polynomials. Recent work with the equation of state in McDougall et al. (2003) and Jackett
et al. (2005) has found advantages in these approximating functions over more traditional
polynomials. These advantages relate to the numerical stability of the functional form, the
economy of its computational cost and the ability of this form in approximating a larger
class of functions than those that can be accommodated by polynomials. The traditional
equation of state, known as the International Equation of State (Fofonoff and Millard,
1983) also possesses this structure.

The exact form for the rational functions is that suggested by the fits to the equation of
state in McDougall et al. (2003) and Jackett et al. (2005). Specifically, for just two
independent variables S and one of either � or �, this reduces to a rational function with a
numerator of 7 terms and a denominator with 10 terms, for a total of 16 unknown
parameters. The precise definitions of these functions are

�a�S, � �
Pn�S, �

Pd�S, �
and �a�S, � �

Pn�S, �

Pd�S, �
, (26)

where the terms and coefficients of Pn(S, � ), Pd(S, � ), Pn(S, �), and Pd(S, �) are given
in Tables 1 and 2. The coefficients have been computed by minimizing a cost function that
is a weighted sum of several components that include: (i) the root mean squared difference
between a global �n field and the corresponding rational function approximation, (ii) the
maximum absolute difference between the global �n field and the corresponding rational
function approximation and (iii) the percentage of the global ocean whose fictitious
diapycnal diffusivity Dfictitious � K	��az � �nz	2 exceeds 10�5 m2 s�1. Here ��a and �n

are respectively the two dimensional lateral gradient operators in the approximating
rational function surface and the well defined neutral tangent plane, and K is a lateral
diffusivity, which we take as 1000 m2 s�1. The quantity K	��az � �nz	2 represents the
diffusivity of density that is fluxed across the neutral tangent plane when the tangent of the

Figure 10. Sketch of some surfaces of constant S and of � surrounding the location where �S �
�� � 0. Note the two points marked A and B that have the same values of S and �, but in general
have different values of pressure. Hence the pressure at points A and B cannot both be described
by the same function p(S, �).
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surface corresponding to the approximating rational function does not line up exactly with
this plane (see McDougall and Jackett, 2005b). The global �n field is obtained by labeling
with neutral density the global atlas data of Gouretski and Koltermann (2004) (see also
Koltermann et al., 2004). Components (i) and (ii) fit the approximating rational functions
to the neutral density variable �n, with component (ii) being necessary to achieve a
monotonically increasing function of depth. Component (iii) minimizes the alignment of
the approximating function with the neutral tangent plane, and is an important measure of
the accuracy of any surface in such an approximation. Weights were chosen subjectively so
as to achieve the best overall fits.

Figure 11 displays the frequency distribution of the logarithm to the base 10 of the
fictitious diffusivity Dfictitious � 1000	�Surfacez � �nz	2 for various surfaces for all data in a
global ocean atlas excluding the Arctic Ocean and marginal seas. The fictitious diapycnal
diffusivity was evaluated for lateral mixing along �n surfaces, 
2 surfaces and the

Table 1. Terms and coefficients of the polynomials Pn(S, � ) and Pd(S, � ) defining the rational
function approximation of neutral density �n. A check value is �a(35, 20) � 1024.59416751197
kg m�3.

Pn(S, �) Coefficients Pd(S, �) Coefficients

constant 1.0023063688892480 � 103 constant 1.0
� 2.2280832068441331 � 10�1 � 4.3907692647825900 � 10�5

�2 8.1157118782170051 � 10�2 �2 7.8717799560577725 � 10�5

�3 �4.3159255086706703 � 10�4 �3 �1.6212552470310961 � 10�7

S �1.0304537539692924 � 10�4 �4 �2.3850178558212048 � 10�9

S� �3.1710675488863952 � 10�3 S �5.1268124398160734 � 10�4

S2 �1.7052298331414675 � 10�7 S� 6.0399864718597388 � 10�6

S�3 �2.2744455733317707 � 10�9

S3/2 �3.6138532339703262 � 10�5

S3/2�2 �1.3409379420216683 � 10�9

Table 2. Terms and coefficients of the polynomials Pn(S, �) and Pd(S, �) defining the rational
function approximation of neutral density �n. A check value is �a(35-20) � 1024.43863927763
kg m�3.

Pn(S, �) Coefficients Pd(S, �) Coefficients

constant 1.0022048243661291 � 103 constant 1.0
� 2.0634684367767725 � 10�1 � 4.4946117492521496 � 10�5

�2 8.0483030880783291 � 10�2 �2 7.9275128750339643 � 10�5

�3 �3.6670094757260206 � 10�4 �3 �1.2358702241599250 � 10�7

S �1.4602011474139313 � 10�3 �4 �4.1775515358142458 � 10�9

S� �2.5860953752447594 � 10�3 S �4.3024523119324234 � 10�4

S2 �3.0498135030851449 � 10�7 S� 6.3377762448794933 � 10�6

S�3 �7.2640466666916413 � 10�10

S3/2 �5.1075068249838284 � 10�5

S3/2�2 �5.8104725917890170 � 10�9
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iso-surfaces of the two rational functions �a(S, � ) and �a(S, �) of (26). The best surfaces
in approximating the neutral tangent plane from this selection of surfaces are clearly the
two neutral density surfaces. The more accurate one of these is the neutral density surface
in the Levitus data that underlies the definition of neutral density; the computations for all
other surfaces take place in the Gouretski and Koltermann (2004) global ocean atlas. The
very small slope error when using the Levitus data set that is in the pre-labeled neutral
density software indicates the inherent limitation in forming any kind of “density” surface
due to the fact that neutral trajectories in the ocean are helical in nature. The 
2 surface is
more accurate than other potential density surfaces and orthobaric density surfaces (see
McDougall and Jackett, (2005b)). The iso-surfaces corresponding to the two approximat-
ing rational functions lie in between the neutral density surfaces and the 
2 surface, with
the surfaces for the variables �a(S, �, p) and �a(S, �, p) having very similar distributions.

In Figure 12 we show the percentage of data that has a fictitious diapycnal diffusivity
larger than 10�5 m2 s�1 for the five frequency distributions of Figure 11. It follows that in
terms of this measure the two rational function approximations to neutral density yield
surfaces that are better than the 
2 surfaces, but are not as good as the surfaces of the full

Figure 11. Frequency distribution of the logarithm of the fictitious diapycnal diffusivity arising from
mixing along various coordinate surfaces.
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neutral density variable. For example, in terms of the volume estimates, �a(S, � ) and
�a(S, �) give improvements of 23% and 21% to the 
2 estimate, compared to a 63%
improvement for �n.

10. Discussion

We have argued that the low levels of mechanical energy dissipation in the ocean can be
interpreted as providing evidence that the energetic mesoscale eddies do mix properties
predominantly along the neutral tangent plane. This neutral tangent plane can be thought of
locally as the potential density surface referenced to the pressure of the location in
question. Section 3 above has demonstrated that the patched potential density method of
Reid and Lynn (1971) locally approaches the neutral tangent plane in the limit as the
intervals over which the patching procedure is applied is reduced towards zero.

Much of this paper has been spent deriving and verifying the expression (20) for the
material derivative of neutral density (from which the expression (22) for the dianeutral
velocity follows). The non-ideal nature of neutral density can be seen from (22) to be
proportional to the expression (23b) for (�� � 1) which is approximately proportional to

Figure 12. Percentages of the global ocean data for which the fictitious diapycnal diffusivity is
greater than 10�5 m2 s�1. The right-hand bars are for the percentages of the global ocean volume
while the left-hand bars are the percentages of data pairs in the global atlas (in which the standard
pressures are more closely spaced in the upper ocean than in the deep).
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the water-mass contrast between the data in question and the reference cast of the
pre-labeled data set to which the data are neutrally related. (In addition, there is the small
term due to the ocean’s helicity which means that even the reference data set of the neutral
density software does not have neutral density surfaces exactly aligned with neutral tangent
planes.) As the water-mass contrast (� � �r) and the corresponding pressure difference
( p � pr) go to zero, so neutral density behaves as a quasi-material surface. The extent of
the non quasi-material behavior is thus proportional to the contrasts in water-mass
properties between the data and the local pre-labeled data. We use these expressions in
McDougall and Jackett (2005b) to compare the extent of the non quasi-material nature of
neutral density with that of orthobaric density.

The last part of this paper presents rational function approximations to neutral density,
these rational functions being functions only of salinity and either potential temperature or
conservative temperature (by contrast, neutral density also depends on pressure, latitude
and longitude). Eden and Willebrand (1999) constructed such a variable just for the North
Atlantic. They constrained their density variable to be not only as neutral as possible, but
also so that its horizontal density gradient was as close as possible to the horizontal
gradient of in situ density (which is equivalent to requiring that our factor b be close to
unity). The rational functions presented here were derived with only one requirement in
mind, namely to be as neutral as possible for a function of only the two conservative
variables. These rational functions could be used to define the surfaces in a layered ocean
model, using the technology developed by Sun et al. (1999) to evaluate the horizontal
pressure gradient.
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APPENDIX

The variation of potential density in the neutral tangent plane

In the neutral tangent plane the gradients of salinity and conservative temperature are
related neutrally so that (McDougall, 1987a)

��S, �, p�n� � 	�S, �, p�nS (A1)

where � and 	 are the relevant thermal expansion and saline contraction coefficients. The
gradient of potential density referenced to the general reference pressure pr is given by

�n ln �� � 	�S, �, pr�nS � ��S, �, pr�n� � 	�S, �, pr��

	
� p �

�

	
� pr��n� (A2)

where the first expression simply comes from the chain rule of differentiation operating on
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the functional form of potential density, ��(S, �, pr), and the second expression has used
(A1). Using the definition of the thermobaric parameter

Tb � 	���/	/�p, (A3)

to lowest order in the pressure difference ( p � pr), (A2) can be written as

�n ln �� � Tb� p � pr��n� (A4)

and in many applications the thermobaric parameter, Tb � 2.7 � 10�12 K�1 Pa�1, can be
taken to be constant (see Fig. 9b of McDougall, 1987b).
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