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The effect of topography on the steady-state wind and
buoyancy-driven Subtropical Gyre

by I. A. Walkington1 and A. J. Willmott1

ABSTRACT
This paper studies the impact of topography and increased vertical resolution on steady-state wind

and buoyancy-driven circulation in the Subtropical Gyre. Buoyancy driving is represented by mass
exchange across the interface separating layers of constant density. The mass exchange in turn is
parameterized in terms of the departure of a layer thickness from a reference value. A 2-layer ocean
model is developed that incorporates topography that depends on the meridional co-ordinate, and the
problem reduces to solving a first order partial differential equation governing the upper layer inverse
planetary potential vorticity. Two distinct families of characteristic curves are required to span the
entire subtropical gyre; an “interior family” emanating from the eastern boundary and a family lying
in the northwestern corner that begin and end along the oceanic edge of the western boundary current.
It is demonstrated that when the ocean shoals (deepens) poleward, the area of the recirculating gyre in
the northwestern corner decreases (increases) in response to the increased (decreased) phase speed of
long baroclinic Rossby waves. The model is applied to the subtropical North Atlantic gyre, using
climatological Ekman pumping, zonally averaged topography and a realistic representation of the
eastern boundary and the solutions are qualitatively compared with these from a general ocean
circulation model. To address how increased vertical resolution modifies the recirculating gyre
structure, solutions are calculated for a 3-layer flat bottom ocean model. The circulation in the top
and bottom layers of this model are qualitatively similar to those in the 2-layer model. In the middle
layer there is a recirculating anticyclonic gyre of extent similar to that in the 2-layer model. Outside
this gyre is a second anticyclonic gyre of larger horizontal extent. The double-gyre structure in the
middle layer is associated with the existence of two separatrices subdividing the layers into three
regions. These curves separate two distinct families of characteristic curves each associated with the
upper and lower layer inverse planetary potential vorticity equations.

1. Introduction

In a simple, but nevertheless thought provoking model of the Subtropical Gyre,
Cushman-Roisin (1987; hereafter referred to as CR) proposes that within an anticyclonic
recirculation region adjacent to the western boundary current, thermodynamics will play an
important role in the circulation. This anticyclonic recirculation region, corresponding to
the Sargasso Sea in the North Atlantic, is characterized by a narrow poleward western
boundary current, with a broader return flow. By considering the potential vorticity budget
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of a water parcel circulating around the Subtropical Gyre, CR demonstrates that the
presence of a recirculation region in the northwestern corner of the domain, where intense
cooling occurs, will permit fluid exiting the Gulf Stream (in the case of the North Atlantic)
to re-enter the interior. CR also shows that an equivalent picture of the structure of the
Subtropical Gyre is obtained from the viewpoint of ventilation theory.

More precisely, the way in which this wind and buoyancy-driven Subtropical Gyre
operates is as follows. Downward Ekman pumping across the Subtropical Gyre drives fluid
equatorward, in the eastern half of the domain, as dictated by classical Sverdrup dynamics.
In the absence of either friction or thermodynamics operating in the western boundary
current, parcels of fluid flowing poleward in the boundary layer will lead to an accumula-
tion of waters in the upper layer of the exit region. As a consequence of this accumulation
of waters, the thermocline is depressed, setting up a high pressure cell with a geostrophi-
cally balanced anticyclonic circulation.

How do the accumulated waters at the exit region of the boundary current, with a
potential vorticity deficit, rejoin the interior? Lateral friction in the boundary current,
leading to a source of positive relative vorticity, is invoked in classical wind-driven
circulation models. Alternatively, CR proposes that water in the Sargasso Sea undergoes
intense cooling, thereby increasing the potential vorticity and allowing the water parcels to
rejoin the interior of the Subtropical Gyre. In this latter scenario the Sargasso Sea is
characterized by an anticyclonic recirculation over which intense cooling operates and in
which the upper layer potential vorticity is a minimum.

The purpose of this paper is to consider the impact of topography and increased vertical
resolution on the structure of the recirculation region expounded by CR. Does the presence
of topography force a dramatic change in the extent of the recirculating gyre? How does the
horizontal extent of the recirculating gyre vary in each layer of a 3-layer model? We
address these questions in the context of steady-state planetary geostrophic dynamics, in a
2- and 3-layer ocean model, forced by prescribed Ekman pumping, and with parameterized
mass exchange between layers. Interfacial mass exchange parameterizes the impact of a
surface heat flux on the ocean circulation. For example, if the water column is cooled then
its density increases and it sinks into the deeper ocean moving from the upper layer to the
lower layer. Therefore mass exchange between layers can be interpreted as a parameteriza-
tion of the impact of a surface heat flux.

Following CR we do not a priori prescribe the distribution of mass exchange between
the layers, but instead parameterize it in terms of the departure of a layer depth from an
equilibrium value. A similar parameterization is adopted for the transfer of water out of the
abyssal ocean into the thermocline in models of the buoyancy-driven planetary-scale
abyssal circulation by Kawase (1988), Wright and Willmott (1992) and Willmott et al.
(1996). In contrast, Luyten and Stommel (1986) prescribe the interfacial mass exchange, in
what is otherwise a similar study to that of CR on the wind and buoyancy-driven
Subtropical Gyre. The CR model is also generalized by Veronis (1988) to study the
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circulation within the Subtropical and Subpolar Gyres on a spherical earth, rather than on a
mid-latitude �-plane.

Spall (2001) examines a similar 2-layer model in an abyssal circulation context, but
includes zonal topography. However, the parameter regimes analyzed in this paper make
the use of Spall’s method inappropriate. Also in the context of abyssal circulation Hautala
and Riser (1989) developed a 3-layer wind and buoyancy driven model with arbitrary
topography. The analysis of Hautala and Riser (1989) proceeds by decoupling the lower
layer from the upper two layers. The upper two layers are then analyzed in isolation,
yielding the 2-layer flat bottom solution, which is then substituted into the lower layer
inverse planetary potential vorticity equation. The decoupling of the lower layer from the
upper two layers removes the topographic effects from the upper layers, however this
current paper shows the important role topography plays in the structure of the circulation
in all layers.

Chen and Dewar (1993) develop a 3-layer model to examine intergyre communication.
They show that each communication window corresponds to a Rossby repeller point, and
the circulation patterns in each layer are confined to a decreasing area with increasing layer
depth, a characteristic shared with the model developed in this paper. Following Rhines
and Young (1982) this model assumes homogenized potential vorticity within closed
streamlines, and therefore the circulation pattern within the recirculation region is not
analyzed, in contrast to this paper. Nishino and Minobe (2000) use a 3-1/2-layer model to
study the circulation patterns of mid-depth waters in the North Pacific. Again, the
homogenization of potential vorticity within closed streamlines is assumed, and the model
is solved under the assumption that the wind forcing dominates and that the buoyancy
forcing is a small order correction term.

In this paper we adopt the quasi-geostrophic approximation of CR, thereby obtaining
analytical solutions for a 2-layer ocean model in the presence of topography with linear
slope orientated in the meridional direction, the equivalent nonlinear geostrophic 2-layer
ocean model and a 3-layer quasi-geostrophic ocean model without topography. A method
for determining the equivalent nonlinear geostrophic solutions for a 3-layer ocean is yet to
be found. Thus, the quasi-geostrophic 3-layer solutions presented in this paper provide the
only insight into the effects of increasing the vertical resolution on the structure of the
recirculation region. The analytical solutions are particularly illuminating regarding the
parameter sensitivity of the extent of the recirculation region in each layer. With one
exception, solutions for the steady-state circulation in the presence of arbitrary 2-dimen-
sional topography remain elusive. Salmon (2002) numerically solves for the steady-state
2-layer circulation above arbitrary topography in the case when: (a) there is no mass
exchange between the layers; (b) inertial terms and linear bottom friction are retained in the
momentum equations, the solutions thereby supporting a western boundary current in a
meridional channel domain.

The plan of the paper is as follows. In Section 2 we formulate the 2-layer model and
derive the nonlinear upper layer inverse planetary potential vorticity equation and the
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quasi-geostrophic approximation of the lower layer potential vorticity equation. Section 3
develops analytical solutions of the quasi-geostrophic potential vorticity equation, and the
results are discussed in Section 4. In Section 5 results of the nonlinear model are discussed.
The model described in Section 2 is then extended to 3 layers albeit in the absence of
topography, and analytical solutions are again developed in Section 6. Results for the
3-layer model are presented in Section 7. The paper concludes in Section 8 with a summary
and discussion.

2. 2-layer model formulation

Consider a 2-layer ocean model with latitude-dependent topography and an arbitrary
eastern coastline (see Fig. 1(a)), provided that it is not multi-valued at any latitude in the

Figure 1. Schematic of; (a) the plan view of the ocean domain illustrating the eastern boundary and
the coordinate system; (b) vertical section of the 2-layer model.
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domain. Figure 1(b) shows a vertical zonal section of the model. With respect to a
right-handed Cartesian co-ordinate frame with Ox directed eastward and Oy northward,
the ocean occupies the domain x � C( y). The governing equations for the interior
steady-state geostrophic flow in a 2-layer model on a mid-latitude �-plane are

k � u1 �
�1

�0 f
�ps, (1)

� · �u1h1� � �we � q, (2)

k � u2 �
�1

f
�� 1

�0
ps � g�	�, (3)

� · �u2h2� � �q, (4)

where uj 
 (uj, vj) is the horizontal velocity in layer j ( j 
 1, 2), k is a unit vector in the
positive Oz direction, ps is the pressure in the upper layer, f 
 f0 � �y is the Coriolis
parameter, � � (x, y) is the 2-dimensional gradient operator, we is the Ekman pumping
at the base of the Ekman layer, q represents the fluid exchange between the layers, �0 is a
constant density, hj is the depth of layer j, 	 is the displacement of the interface between
the layers and g� 
 g(�2 � �1)/�2 is reduced gravity. In the definition of g�, layer j has
constant density �j. When we is negative, fluid is injected into the upper layer, and when q
is negative fluid moves from the upper layer to the lower layer.

Following CR the effects of thermodynamics are parameterized by the inclusion of q in
(2) and (4). The presence of topography is explicitly included in the definition of h2, since

h1 � h2 � H0 � ��y�, (5)

where z 
 �H0 is the reference level from which the height of the topography, �( y), is
measured (see Fig. 1). Upon eliminating uj between (1) and (4) we obtain

J� 1

�0
ps,

h1

f � � �we � q, (6)

J� 1

�0
ps � g�	,

h2

f � � �q, (7)

where J is the Jacobian operator defined as

J�A, B� �
A

x

B

y
�

A

y

B

x
.

The generalized Sverdrup balance is obtained by adding (6) and (7) and then zonally
integrating from the eastern boundary at x 
 C( y):

1

�0
ps �

g�

� ��h2

2f
� �y�h2 � � � �. (8)
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In (8)

��x, y� �
�f

� �
x

C�y�

we�s, y�ds,

��y� �
1

�0
ps

e �
g�

� ��h2
e

2f
� �y�h2

e,

��y� � �y �
�

f
�H0 � ��.

The superscript e appearing in � denotes the value of the variable at the eastern boundary.
Eq. (8) relates the pressure, ps to the layer depths. Eliminating ps in (6) using (8), we obtain
the governing equation for the lower layer inverse planetary potential vorticity, h2/f,
namely

���y �
�2g�h2

f 2�
�H0 � h2 � �� �

�g��y

f�
�H0 � h2 � ��

�
�g��yy

2f�2 �h2
2 � �h2

e�2 � 2�H0 � ���h2
e � h2����h2

f �
x

� �x�h2

f �
y

� �q.

(9)

To make further progress we must specify we and introduce a parameterization for q.
Following CR

we � �w0�1 �
y2

l2�, (10)

where w0 is the maximum amplitude of the Ekman pumping velocity and 2l is the
meridional extent of the domain. The form of q can either be prescribed, following Luyten
and Stommel (1986), or it may be parameterized as q 
 �k(h1 � h� ), following CR. In
this parameterization, h� is a constant relaxation depth. This parameterization has the
advantage that the distribution of q is internally calculated as part of the problem, and will
be used hereafter in this paper.

Adopting this parameterization of q the lower layer inverse planetary potential vorticity
equation (9) is a first order quasi-linear partial differential equation. Subsequent analysis
can follow two paths. Numerical solutions of (9) can be calculated using the method
characteristics, an approach that is adopted in Section 5. Alternatively, the approach
followed in Sections 3 and 4 is to analyze the quasi-geostrophic approximation of (9), the
advantage being that, analytical progress can be made in obtaining solutions for the gyre
structure. In these solutions it becomes transparent how bottom topography, the parameter-
ization of q and the strength of the Ekman pumping influence the gyre structure,
particularly in the interesting northwest corner of the domain where a recirculating gyre
(identifiable as the Sargasso Sea region, in the case of the N. Atlantic) naturally emerges.
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The quasi-geostrophic approximation is valid for the regime of weak Ekman pumping
and small amplitude interfacial displacement. Upon writing h2 
 H2 � 	 � �, and
assuming that (�y/f0) and (	/(H2 � �)) are both small to the same degree, and that ��y� 

O(�H2/f0), (9) reduces to the linear first order partial differential equation

��y

f0
�

�g�

f 0
2 H1 �

�2g�

f 0
3�

H1
2�	x �

�x

f0
	y � �we�1 �

�H1

f0�
� � k	 � k�H1 � h��. (11)

The generalized Sverdrup balance (8) becomes in this quasi-geostrophic limit,

1

�0
ps � g�	 �

�g�H1

f0�
	 �

g��H2 � ��

� ��y �
�

2f0
�H2 � ��� � � � �, (12)

where

��x, y� �
�f0

� �
x

0

we�s, y�ds, (13)

��y� �
1

�0
ps

e � g�	e �
�g�H1

f0�
	e �

g��H2 � ��

� ��y �
�

2f0
�H2 � ��� , (14)

��y� � �y �
�

f0
�H0 � ��. (15)

In the quasi-geostrophic models the eastern boundary is assumed to be a line of constant
longitude given by C( y) 
 0. The inclusion of a more realistic eastern boundary
introduces no new physical processes, rather it only increases the algebraic complexity of
the solutions. A more realistic form for C( y) is introduced in Section 5. In Section 3 we
develop analytical solutions of (11) driven by the Ekman pumping (10) numerically using
the Backward Differentiation Formulae (NAG, version 20, routine d02ejf) subject to
no-normal flow on the eastern boundary. Explicitly the boundary conditions are

h1�C�y�, y� � h1
e �a constant�, (16)

h1��L, y1�

f �y1�
�

h1��L, y2�

f �y2�
, (17)

where y1 and y2 are the start and end latitudes of a characteristic that begins and ends at the
oceanic edge of the western boundary current. The solutions are discussed in Section 5.

3. Solution of the quasi-geostrophic 2-layer problem

a. Topography of the form �(y)

To obtain analytical solutions of (11) it is convenient to re-cast this equation in the form

J��, 	� � we�1 �
�H1

f0�
� � k	 � k�H1 � h� � (18)
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where

��x, y� �
�

f0
�

�g�H1

f 0
2 y �

�2g�H1
2

f 0
3 � dy

�y �
�

f0
�H0 � ��

. (19)

Upon regarding 	 as a function of � and y, (18) becomes

	y �
k�

we
	 � � �

�H1

f0
�

k�

we
�H1 � h� �. (20)

The general solution of (20) is given by

	 � 	� ���e�I�y� � G�y�e�I�y� � �H1 � h� � (21)

where 	� (�) is an arbitrary function and

G�y� � � �� �
�H1

f0
�eI�y�dy,

I�y� � � k�

we
dy.

To complete the solutions for 	, an appropriate boundary condition must be imposed to
determine 	� . The domain of interest is the interior of the subtropical gyre (i.e. excluding
the western boundary current) bounded to the east by a meridional vertical coastal wall as
x 
 0. This domain is spanned by two distinct families of characteristics, in a manner
analogous to the CR model. One family of characteristic curves emanates from the eastern
boundary, where we impose the condition of no-normal flow in each layer. The second
family of characteristic curves spans the northwest corner of the domain. These curves
begin and end along the oceanic edge of the western boundary current. The question that
naturally arises is what is the boundary condition that is required for integration along these
curves? CR proposes that the upper layer potential vorticity is conserved along streamlines
within the western boundary layer because the flow is rapid giving little opportunity for the
nonconservative processes (i.e. we and q) to operate. Thus, CR imposes the constraint that
the upper layer potential vorticity at the start and end points of the characteristic curves in
the northwest corner region is identical. This assumption will also be adopted in this
model. Alternatively, we might speculate that high mixing rates exist at the outflow region
of the western boundary current due to eddies, thereby homogenizing potential vorticity.
The impact of eddy induced mixing in the outflow region of the western boundary current
is considered by Scott and Willmott (2002) in a study of meridional heat transport in the
Subtropical Gyre using a thermodynamic reduced gravity model. Scott and Willmott
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(2002) assume that enthalpy is uniformly mixed, thereby forming the basis of a parameter-
ization for the heat transport within the boundary current.

At the eastern boundary, x 
 0, the condition of no-normal flow is satisfied provided
	 
 	e, a constant. Using (21) we then obtain

	� ��� � �	e � �H1 � h� ��eI�y�� � G�y� �, (22)

where y� is the solution of �( x, y) 
 �(0, y� ), the initial latitude of each characteristic at the
eastern boundary.

For characteristics that begin and end along the oceanic edge of the western boundary
current, x 
 �L, the potential vorticity constraint is equivalent to requiring

	��L, y1� � 	��L, y2� �
�H1

f0
�y2 � y1�, (23)

where y1 and y2 are the start and end points of the characteristic, respectively. Using (23)
we can show that

	� ��� �

��H1

f0
�y2 � y1� � G�y2�e�I�y2� � G�y1�e�I�y1��

exp��I�y1�� � exp��I�y2��
. (24)

In general, analytical forms for G( y), and hence 	� (�), are available for limited, but
nevertheless oceanographically relevant, classes of bottom topography �.

b. Flat bottom limit

In the absence of topography, � � 0, and (19) reduces to

��x, y� �
�

f0
� �R2y, (25)

where R2 
 g�H1H2/( f0
2H0) is the internal Rossby radius of deformation. With the Ekman

pumping velocity (10) and a constant value for k in the parameterization of q, the integrals
in (21) exhibit logarithmic singularities at y 
 �l, as noted by CR. Following CR, these
singularities are avoided by assuming that k varies with latitude according to k 
 K(1 �
y/l ), where K is a constant. Clearly there is a high degree of flexibility in parameterizing
the diabatic processes, and this choice of k is no better, or worse, than a constant value.
Secondly, this non-uniform value of k does not add, or remove, any physical processes.
Thirdly, since y 
 �l is a characteristic, the zero of k at y 
 �l does not impact on the
solution in the domain of interest. Using this parameterization for k we obtain

I�y� � �ln�l � y�, (26)

G�y� � �
��H0 � H1�

f0�� � 1�
�l � y���1, (27)
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where

� �
�H0Kl

f0w0
. (28)

It will be seen that the magnitude of � controls the structure of the recirculating gyre in the
northwest corner of the domain.

The general solution for the flat bottom model is

	 � 	� ����l � y��� �
��H0 � H1�

f0�� � 1�
�l � y� � H1 � h� . (29)

Now we can evaluate the unknown function 	� (�), for the two distinct families of
characteristics, and thus the solution in the two distinct regions. For the characteristics
emanating from the eastern boundary we find that

	 � 	e�1 �
f0w0x

�2R2H0l
2 �l � y���

� �H1 � h� ��1 �
f0w0x

�2R2H0l
2 �l � y���

�
��H0 � H1�

f0�� � 1�
�l � y��1 � �1 �

f0w0x

�2R2H0l
2 �l � y����1� .

(30)

For the characteristics that begin and end along the oceanic edge of the western boundary
current we obtain

	 � �H1 � h� � �

�H0�1 �
H1

H0
�

f0�� � 1�
�l � y�

�

�H1�� �
H0

H1
� �y2 � y1�

f0�� � 1���l � y2�
� � �l � y1�

�� ��
x�l � y�

L
�

�2R2H0l
2

f0w0L
��

,

(31)

where y1 and y2 are the latitudes of the characteristic at the points where it meets the
oceanic edge of the western boundary current. These latitudes are the solutions to the
equation

��x̂, ŷ� �
f0w0L

�H0
�1 �

yi
2

l2� � �R2yi. (32)

where i 
 1, 2 specifies which solution, and x̂, ŷ is the position being considered in the
domain.
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c. Linear sloping bottom

In the presence of linear sloping topography of the form �( y) 
 ay, (19) becomes

��x, y� �
�

f0
�

�g�H1

f 0
2 y �

�g�H1
2

f 0
2a

ln�f0a

�
� H0 � ay�, (33)

using the nonuniform parameterization for k introduced in Section 3b, and

I�y� � ���1 �
a

H0
� f0

�
� l�� ln�l � y� �

ay

H0
�. (34)

It is clear that (34) reduces to the flat bottom solution (26) when a 
 0. It will be
demonstrated that as in the flat bottom case, the magnitude of � controls the structure of the
recirculating gyre. However, the explicit dependence of I on the topography shows that the
latter will exert influence on the recirculating gyre structure also.

For a linear sloping bottom G( y) can only be written in the integral form

G�y� � � �a �
��H0 � H1�

f0
�

�a

f0
y� �l � y��e��ydy (35)

where

� �
�Kl

w0 f0
�H0 � a� f0

�
� l�� , (36)

� �
�Kla

w0 f0
. (37)

4. Results of the quasi-geostrophic model

Consider first the impact on the recirculating gyre of introducing meridionally varying
topography. Figure 2 shows a contour plot of the characteristics of (18) spanning the entire
subtropical gyre, without topography. The parameter values employed in Figure 2 are
listed in Table 1. Two distinct families of characteristic curves span the entire domain.
Associated with these two families of characteristics is a separatrix. The point where the
separatrix intersects the northern open boundary is called the Rossby Repeller Point,
denoted by R in Figure 2. At R the speed of the long, non-dispersive baroclinic Rossby
waves is identical to the zonal depth integrated wind-driven velocity. The center of the
recirculating gyre in the northwest corner of the domain is marked as C in Figure 2. The
impact of the topography introduced in Section 3c on the location of the points R and C can
be determined analytically.

At R � ( xR, l ), a stagnation point, we note that

�x � 0 � �y,
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which upon using (33) yields

xR � �
�2g�H1H2l

2f 0
3w0

�
�g�H1l

2f 0
2w0

��y�l� �
���l�

f0
� . (38)

Consider the impact of linear topography, �( y) 
 ay, on xR. In this case

xR � �
�2g�H1H2l

2f 0
3w0

�
�g�H1la

2f 0
2w0

�1 �
�l

f0
� . (39)

Figure 2. Plot of characteristic curves for 2-layer model without topography.

Table 1. Table of parameter values used in the 2-layer and 3-layer model results.

f0 
 7.3 � 10�5 s�1 � 
 2 � 10�11 m�1 s�1

l 
 1.4 � 106 m L 
 5.5 � 106 m
H0 
 4 � 103 m H1 
 200 m
h� 
 200 m w0 
 1 � 10�6 m s�1

g� 
 5 � 10�3 m s�2 K 
 5 � 10�10

deepening to north a 
 2 � 10�4 shoaling to north a 
 �2 � 10�4
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When a � 0, corresponding to the ocean shoaling to the north, we see from (39) that xR

is displaced westward from the flat bottom value. We can understand this result by
considering the impact of topography on long baroclinic Rossby waves. When the ocean
depth shoals to the north, the topographic beta effect reinforces the planetary �-effect,
leading to an increase in the speed of the long baroclinic Rossby waves. At R, the eastward
depth integrated wind-driven velocity is equal and opposite to the long Rossby wave speed.
An increase in the latter displaces R westward. Conversely, when a � 0, corresponds to
the ocean depth increasing to the north, the speed of the long Rossby waves decreases and
R is displaced eastward from the flat bottom location. In principle R could be displaced to
the eastern boundary ( x 
 0), when the speed of the long topographic Rossby waves is
zero, due to the self-cancellation of the ambient planetary and topographic vorticity
gradients. From (39) it is readily seen that when xR 
 0

a � �
��H0 � H1�

f0 � �l
. (40)

Evaluating (40) using the parameter values listed in Table 1, we find that a typical value for
a is �1.69 � 10�3. On the other hand, point R will lie on the oceanic edge of the western
boundary current ( x 
 �L) when

a �
2f 0

3w0L

�g�H1l� f0 � �l�
�

��H0 � H1�

f0 � �l
. (41)

In this case evaluation of (41) shows that a typical value of a is 1.71 � 10�3.
Now consider the impact of the topography �( y) 
 ay on the location of the

recirculating gyre center C. At C 
 (�L, yc), the following conditions are satisfied



y
�PV� � 0, (42a)

�y � 0. (42b)

Condition (42a) was proposed by CR, based on the assumption that the potential
vorticity is identical at the exit and entrance points where a given streamline intersects the
oceanic edge of the western boundary current. Thus, at C the potential vorticity must be an
extremum. This provides the interfacial displacement, 	, at C given the latitude. Condition
(42b) is simply a statement of the vanishing of the zonal velocity at C. Using (33), we find
that (42b) yields

�y

f0
�

�g�H1

f 0
2 �

�2g�H1
2

f 0
3�

� 0 at C. (43)

Using (13) we then find from (43) that yc satisfies the quadratic

Ayc
2 � Byc � C � 0 (44)
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where

A �
�Lw0a

l2 �
�3g�H1a

2

f 0
3

B � �
2�Lw0H0

l2 �
2f0Lw0a

l2 �
�3g�H1�H0 � H2�a

f 0
3 �

2�2g�H1a
2

f 0
2

C � �Lw0a �
�3g�H1H2H0

f 0
3 �

�2g�H1H2a

f 0
2 �

�g�H1a

f0
�

�2g�H0H1a

f 0
2 .

Upon setting a 
 0 the solution for the latitude of the recirculating gyre center in the
absence of topography is recovered, namely

yc �
�2g�H1H2l

2

2f 0
3w0L

. (45)

Figure 3 shows a plot of yc against linear bottom slope a. For an ocean with depth shoaling
to the north (a � 0) the recirculating gyre center moves poleward, and vice versa for the

Figure 3. Plot of gyre center latitude for varying linear bottom slope.

386 [62, 3Journal of Marine Research



case when a � 0. Recall, that the point R migrates westward with increasing positive a,
showing that the recirculating gyre is gradually “squeezed out” of the domain. This
statement is confirmed by examining the impact of topography on the separatrix which
defines the interior boundary between the recirculating gyre, strongly controlled by
cooling, and the interior mainly wind-driven circulation. The separatrix is given by

��x, y� � ��0, l�, (46)

and in the case of linearly sloping topography (46) becomes

x � �
�g�H1l

2

f 0
2w0�y � l� �a �

�

f0
�H0 � ay���1 �

H1

a�l � y�
ln	

f0a

�
� H0 � al

f0a

�
� H0 � ay
� . (47)

A plot of the separatrix for various values of a is shown in Figure 4. When a � 0, and
increasing, the separatrix shrinks toward the northwest corner of the domain, and vice
verse for the case when a � 0.

Figure 5 shows three plots of 	 for various bottom slopes. In all plots, the interfacial

Figure 4. Plot of separatrices with the bottom slope a as a parameter.
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Figure 5. Contour plots of interfacial displacement 	 for 2-layer model; (a) total ocean depth
deepens to the north (a 
 �2 � 10�4); (b) no topography present; (c) ocean shoals to the north
(a 
 2 � 10�4).



displacement at the eastern boundary depth is taken as 	e 
 0, which means that the
eastern boundary is in thermal equilibrium and no heating or cooling takes place there.
Therefore, over the entire domain we see that there is cooling, and in the recirculating gyre
region it is significantly enhanced. This is as we expected from our examination of the path
of a water parcel, as the northwestern region is, therefore, a region of minimum PV. If we
examine pressure contours in the domain, (Fig. 6), general features of the circulation are
revealed. Firstly, in the upper layer the flow outside the northwestern region is nearly
identical to the purely wind-driven gyre, which is as we might expect because the
buoyancy flux across the layer interface has little effect in this region. In the northwestern
region the general direction of flow is anticyclonic as would be suggested by the structure
of the wind stress. However, the structure of the circulation patterns is governed by several
parameters including the strength of the buoyancy flux, wind forcing and topography. Also
as noted previously, the upper layer depth is always deeper than the reference equilibrium
depth, that is 	 � 0 for the whole domain. This means that the water is being exchanged to
the lower layer across the whole domain, but in large quantities in the northwestern region.
In the lower layer any significant flow is almost entirely restricted to the northwestern
region. Although some flow does occur outside of this region it is small due to the small
quantities of water being transferred down into the lower layer. The important thing to note
in the lower layer is that the flow in the northwestern region is cyclonic, as compared to the
anticyclonic flow in the layer above. This lower layer flow is generated by the considerable
interface displacement, cooling thus being important. Figure 7 shows how the parameter �
changes the structure of the northwestern recirculating gyre region when there is no
topography present. When � � 1 a recirculation region exists, and as � decreases in
magnitude the recirculation becomes more intense.

5. Results of the nonlinear 2-layer model

a. Location of recirculating gyre center and the Rossby repeller point

The quasi-geostrophic solutions in Section 4 reveal the qualitative impact of meridion-
ally sloping topography on the recirculating gyre. In this section, the quasi-geostrophic
approximation is relaxed. As a consequence we determine numerical solutions of (1) to (4).
Before embarking on this approach, analytical results can be obtained for the positions of
the gyre center and Rossby repeller point in the nonlinear case. To this end we first recast
(9) in terms of the upper layer inverse planetary potential vorticity, namely

���y �
�2g�h1

f 2�
�H0 � h1 � �� �

�g��y

f�
h1 �

�g��yy

2f�2 �h1
2 � �h1

e�2�� �h1

f �
x

� �x�h1

f �
y

� �we � q.

(48)

Numerical solutions of (48) are obtained by solving the three coupled characteristic
equations (Ockendon et al., 1999)
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Figure 6. As in Figure 5, except contours of upper layer pressure (continuous line) and lower layer
pressure (dotted line) are plotted.



Figure 7. Contours of pressure with; (a) � 
 0.46; (b) � 
 0.92.
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dx

ds
� ��y �

�2g��

� �H0

f
� � �

�

f� �
�g��y

�
� �

�g�f �yy

2�2 ��2 � ��e�2�, (49a)

dy

ds
� �x, (49b)

d�

ds
� �we � q, (49c)

where � 
 h1/f, is the inverse planetary potential vorticity in the upper layer and s is a
parameter measured along the characteristics.

The location of C and R provide information about the area of the recirculating gyre. At
R the depth-integrated wind-driven zonal velocity is balanced by the westward speed of
long Rossby waves (see Fig. 2). Let the location of R be given by ( xR, l ), where xR is to be
determined. At R the following equations are satisfied:

dx

ds
� 0,

y � l.

The Rossby repeller point R is a stagnation point and the first equation is a statement of this
fact. Using these conditions it is found that the zonal co-ordinate of the Rossby repeller
point is given by

xR � �
�2g�l

2f 3w0
h��H0 � h� � �� �

�g�l�y

2f 2w0
h� �

�g�l�yy

4f 2�w0
�h�2 � �h1

e�2�. (50)

In the absence of topography (50) reduces to Eq. (39), provided f is replaced by f0. In this
case xR in (50) is displaced to the east of the quasi-linear value in (39), for a given
parameter regime. Further, the term proportional to �yy in (50) is absent in the quasi-linear
expression for xR, and it can have a significant impact on the value of the co-ordinate xR.
The term proportional to �yy in (50) is absent if the interfacial mass exchange is assumed to
vanish at the eastern boundary (ie h� 
 h1

e). We also observe that (50) is independent of k, a
parameter whose value is highly uncertain. In other words, xR is independent of the
parameterization of the buoyancy flux.

The location of the recirculating gyre (see Fig. 2) center, C, can also be calculated
analytically. Let C be located at (�L, yC), where yC is to be determined. At C we require;
(a) the zonal flow in the upper layer vanishes; (b) the potential vorticity attains an
extremum. These conditions are equivalent to

d�/dy � 0
psy � 0 � at x � �L. (51)

Using (8), the second of Eq. (51) yields
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��y �
�2g�h1

f 2�
�H0 � h1 � �� �

�g��y

f�
h1 �

�g��yy

2f�2 �h1
2 � �h1

e�2� � 0, at x � �L. (52)

Note that (52) is the co-efficient of �x and that at x 
 �L the left-hand side of (48)
vanishes, using the first of Eq. (51). Therefore, at C we deduce that

h1 �
w0

k �1 �
yc

2

l2� � h� . (53)

Substituting (53) into (52) yields a transcendental equation for, yc, the latitude of C. This
equation is given in Appendix A. If there is no topography, � 
 0, then the gyre center is
determined by the solution of a fourth order polynomial which is also derived in Appendix
A. The latitude of C as a function of, a, the slope of the linear bottom topography �( y) 

ay is plotted in Figure 8. If the slope increases, (a � 0), so that the ocean shoals to north,
then the gyre center moves north, and vice versa if the ocean deepens to the north. By
considering the size of the recirculating region as being set by a balance between the depth
integrated wind forcing and the westward propagating long Rossby waves, this effect upon
the gyre center would be expected. If the ocean shoals (deepens) to the north, the

Figure 8. Plot of gyre center latitude against linear bottom slope.
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topographic beta effect enhances (mitigates) the planetary beta effect, and the speed of long
baroclinic Rossby waves is increased (decreased), thereby reducing (increasing) the size of
the recirculating region moving the gyre center poleward (equatorward). Comparing the
nonlinear result and the quasi-geostrophic results shown in Figure 3, it is seen that the
results are qualitatively similar. However, the nonlinear results have a much smaller range
of topographic slopes that allow a repeller point to exist.

b. Volume fluxes

Insight into the structure of the subtropical gyre circulation can also be obtained by
considering the volume transport across the open zonal boundaries and the open meridional
boundary to the west. In the absence of topography, the northern and southern zonal
boundaries, where the Ekman pumping vanishes, by assumption, are streamlines for the
depth integrated flow. Therefore, the downward Ekman pumping acting over the entire
subtropical gyre is balanced by a discharge into the western boundary layer of the depth
integrated flow. Is this statement valid when topography is present?

To answer this, first consider the meridional volume transport in the upper layer across
the northern zonal boundary:

N1 � �
�L

C�y�

v1h1dx at y � l. (54)

Using (1) and (8), N1 can be written as:

N1 � �g�

2f
�he � h� 1� �

�g�

3f 2�
��he�2 � h� 1

2�� �he � h� 1� (55)

where h1(C( y), y) 
 he, a constant, and h1(�L, l ) 
 h� 1. For the sign of the term in the
square brackets to be negative, � must be positive and

3��H0 � ���he � h� 1� � 3f �y�he � h� 1� � 2���he�2 � h� 1
2� at y � l. (56)

As the depth of the upper layer is constrained to be less than or equal to the total depth of
the ocean, then for the term in the square brackets to be negative, there must be a
substantial negative bottom slope. To obtain the bounds on �y, such that the term in the
square brackets is negative, it is helpful to write

�y � A�y�
�

f
�H0 � ��, (57)

where A( y) is an unknown function. Then � takes the form

� � �A�y� � 1�
�

f
�H0 � ��. (58)
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On the northern boundary we obtain bounds for A(l ), and thus for �y(l ), within which
range the term in the square brackets in (55) is negative. The lower bound is given by � �
0, and yields, A(l ) � �1. The upper bound can be deduced from (56), namely

A�l� �
2��he�2 � h� 1

2�

3�he � h� 1��H0 � ��
� 1, (59)

where the first term on the right-hand side of (59) is strictly less than unity, since he, h� 1 �

H0 � �. Typically, �y(l ) lies in the range �0.965 � 10�3 � �y(l ) � �1 � 10�3.
Further insight on the volume flux across y 
 l can be obtained by splitting the range of

integration in (54) into two parts, from the eastern boundary to the Rossby repeller point,
R, and from R to the oceanic edge of the western boundary current. We then obtain

N1 � �g�

2f
�he � h� � �

�g�

3f 2�
��he�2 � h� 2�� �he � h� �

� �g�

2f
�h� � h� 1� �

�g�

3f 2�
�h� 2 � h� 1

2�� �h� � h� 1�.

(60)

It is clear that if the eastern boundary condition is he 
 h� , as is assumed in this paper, then
there is no volume flux in the upper layer through the northern boundary between the
eastern boundary and the Rossby repeller point R. It is also clear from (55) that if the upper
layer is deeper on the eastern (western) boundary than the western (eastern) boundary then
the net volume flux in the upper layer is out of (in to) the domain, providing �y is outside of
the bounds set above, else the opposite is true.

The volume flux through the northern boundary in the lower layer is given by

N2 � �
�L

C�y�

v2h2dx at y � l, (61)

and upon evaluation (61) becomes

N2 �
�g�

f 2� � ��he�2 � h� 1
2�

3
�

�H0 � ���he � h� 1�

2 � �he � h� 1�. (62)

The second term in the square brackets is always larger than the first, since he and h� 1 are
both less than or equal to H0 � �. Therefore the direction of the mass flux through the
northern boundary in the lower layer is given by the sign of (he � h� 1), which means that in
most cases the mass flux will be in the opposite direction to the upper layer. The exceptions
being when �y(l ) is in the range of values stated above, meaning the sign of the term in the
square bracket in (54) is negative.

The total flux through the northern boundary is given by

NT � N1 � N2,
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which upon using (55) and (62) becomes

NT �
g��y

2f�
��he�2 � h� 1

2� at y � l. (63)

We observe that the total mass flux is dependent upon the slope of the topography at y 
 l.
For a flat bottom ocean there is no net mass flux through the northern boundary, as
expected.

Following an analysis similar to that for the northern boundary, it can be shown that the
meridional volume flux in the upper layer across the open southern zonal boundary, y 

�l, is given by

S1 � �g�

2f
�he � h̃1� �

�g�

3f 2�
��he�2 � h̃1

2�� �he � h̃1�, (64)

where he 
 h1(C(�l ), �l ) and h1(�L, �l ) 
 h̃1. The meridional volume flux in the
lower layer across y 
 �l is given by

S2 �
�g�

f 2� � ��he�2 � h̃1
2�

3
�

�H0 � ���he � h̃1�

2 � �he � h̃1�, (65)

and the total flux through the southern boundary is

ST �
g��y

2f�
��he�2 � h̃1

2�. (66)

When the eastern boundary condition imposes no mass flux between the layers, h1
e 
 h�

(the equilibrium depth), then there is no mass flux through the open zonal southern
boundary, and there is no mass flux through the open zonal northern boundary between the
eastern boundary and the Rossby repeller point, R. The inclusion of topography, in general,
supports a flux through the open zonal boundaries that will not balance itself, that is the flux
through the open northern zonal boundary is not equal in direction and magnitude to the
volume flux through the open zonal southern boundary. Therefore, this flux must be
balanced by a flux through the open meridional boundary.

Due to mathematical complexities, only the barotropic flux will be examined here. The
total volume flux through the oceanic edge of the western boundary layer is given by

W � �
�l

l

�u1h1 � u2h2�dy at x � �L. (67)

Evaluating (67) in a similar manner to the meridional volume fluxes across y 
 �l, yields

W � �g��y

2f�
��h1

e�2 � h1
2��

�l

l

� �
�l

l �

f
�dy, (68)
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W � �NT � ST� � Ekman. (69)

The total flux through the western boundary is clearly seen to be made up of two distinct
parts. The first part is the topographically induced flux. This flux clearly balances the flux
induced by the topography through the open zonal boundaries. The second part is
independent of topography and represents the fluid injected by Ekman pumping over the
entire domain. When the eastern boundary coincides with x 
 0, the last term on the
right-hand side of (69) is given by (4w0Ll )/3.

c. Numerical solutions

The characteristic equations (49a, b, c) form a stiff system and is solved numerically
using the Backward Differentiation Formulae (NAG, version 20, routine d02ejf) subject to
no-normal flow on the eastern boundary. Explicitly the boundary conditions are

h1�C�y�, y� � h1
e �a constant�, (70)

h1��L, y1�

f�y1�
�

h1��L, y2�

f�y2�
, (71)

where y1 and y2 are the start and end latitudes of a characteristic that begins and ends at the
oceanic edge of the western boundary current.

The parameter values employed in the numerical solutions are found in Table 1. Two
families of characteristic curves are required to span the domain. The first family begins at
the eastern boundary and ends at the oceanic edge of the western boundary layer. The
second family begins and ends at the oceanic edge of the western boundary layer. The
separatrix that separates the two families of characteristics defines the “interior” boundary
of the recirculation region in the northwestern corner (see Fig. 2). The separatrix meets the
open northern boundary at the Rossby repeller point, R. Figure 9(a) shows contours of the
upper layer depth when topography is absent. The northwestern corner can clearly be seen
to be an area of maximum upper layer depth and therefore an area of minimum upper layer
planetary potential vorticity. The recirculation region is characterized by a large interfacial
mass flux, showing that the recirculation region is an area of maximum cooling. Figure 9(b)
shows contours of the pressure in each layer, and are almost coincident with streamlines for
the flow.2 The recirculation region corresponds to an anticyclonic flow in the upper layer,
and in the lower layer the flow is directed from the oceanic edge of the western boundary
current to the northern zonal boundary. In the outer region the flow in the upper layer is
nearly the wind driven solution and there is little flow in the lower layer.

With the introduction of a linear sloping bottom, �( y) 
 ay, the structure of the
recirculating gyre is significantly altered when the ocean shoals to the north (Figs. 10(a)
and (c)), corresponding to a 
 2 � 10�4, the upper layer recirculating gyre in the

2. On an f-plane pressure is a streamfunction.
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Figure 9. Contour plots of; (a) upper layer depth; (b) pressure in the upper layer, ps, in continuous
lines and pressure in the lower layer, ps � g�	, in broken lines. Topography is absent.

398 [62, 3Journal of Marine Research



northwest corner shrinks in area, as predicted in Section 3a. In the lower layer the flow
becomes more meridionally aligned in the recirculating gyre region, compared with the
case when � 
 0 (Fig. 9(b)). Contrast these solutions with those shown in Figures 10(b)
and (d), in which a 
 �2 � 10�4, corresponding to an ocean that deepens to the north.
The area of the recirculating gyre in the upper layer is increased. In this case, the flow in
both layers in the northwest corner adopts a recirculating pattern.

We now consider the application of the model to the subtropical gyre of the North
Atlantic. Specifically, the model is driven by Ekman pumping calculated using a fourth
order interpolating polynomial fitted to the zonally averaged climatological zonal wind
stress of Hellerman and Rosenstein (1983). Figure 11(a) shows a plot of the zonally
averaged zonal wind stress over the latitude range 21N to 41N, together with the
interpolating polynomial. The resulting Ekman pumping velocity vanishes at y 
 �l, l

Figure 10. As in Figure 9, except topography �( y) 
 ay is included with a 
 2 � 10�4 (plots (a)
and (c)) and a 
 �2 � 10�4 (plots (b) and (d)).
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Figure 11. Plot of; (a) climatological Hellerman and Rosenstein (1983) wind stress against latitude;
(b) contours of the upper and lower layer pressure field for a flat bottom ocean driven by Ekman
pumping calculated using the wind stress in (a). The line types in (b) follow the convention of
Figure 9.
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(corresponding to latitudes 21N and 41N). Figure 11(b) shows a contour plot of the
pressure field in each layer, associated with the climatological Ekman pumping, with
topography absent. Comparing Figure 9(b) with Figure 11(b) we observe that the strength
of the recirculating gyre is increased in the latter, in response to increased Ekman pumping
in the northern half of the domain compared with the former case.

When topography and a representation of the eastern boundary are incorporated into the
model, the resulting subtropical gyre circulation is shown in Figure 12(b). The GEBCO 97
topographic data set is used to calculate a zonally averaged bathymetry over the latitude
range 24N and 27N, as shown in Figure 12(a). For computational purposes, solutions of
(49a, b, c) are calculated using a fifth order interpolating polynomial representation of the
zonally averaged bathymetry, plotted as a broken line in Figure 12(a). If instead the
derivatives �y and �yy are calculated from the zonally averaged bathymetry curve, “noisy”
fields, unsuitable for calculating numerical solutions of (49a, b, c), result. It is informative
to compare Figure 12(b) with Figure 13(a) which shows contours of the upper 500 m in the
Atlantic Ocean, as determined from a 0.5° eddy-resolving global ocean general circulation
study by Semtner and Chervin (1992). Recalling that layer depth anomalies can be
reinterpreted as temperature anomalies, we can see clear qualitative agreement between
Figure 12(b) and Figure 13(a), particularly in the neighborhood of the recirculating gyre.
The sharp reversals in the isotherms of Figure 13 are reproduced in this process model
study, and the same overall structure, of a tight recirculation region in the northwestern
corner surrounded by a broader recirculation is seen within the entire subtropical gyre of
both figures. Figure 13(b), also taken from Semtner and Chervin (1992), shows contours of
the surface heat flux, revealing that in the northwestern corner of the subtropical gyre in the
North Atlantic, intense cooling takes place. In the layered model, this intense cooling
region appears as a region of maximum upper layer depth.

6. Formulation of the 3-layer model

We now examine the impact of increased vertical resolution on the structure of the
recirculating gyre. In particular we address the question, what is the horizontal extent of the
recirculating gyre within each layer? To this end, we develop a 3-layer flat bottom
planetary geostrophic ocean model in a domain identical to that discussed earlier. The
introduction of topography into this 3-layer model greatly increases the mathematical
complexity of the problem, and is beyond the scope of this study.

The equations of motion governing wind and buoyancy driven steady-state planetary
geostrophic dynamics in a 3-layer ocean model are

k � u1 �
�1

�0 f
�ps, (72)

� · �u1h1� � �we � q1, (73)

k � u2 �
�1

f
�� 1

�0
ps � g�1	1�, (74)
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Figure 12. Plot of; (a) the zonally averaged topography (solid line) calculated from the GEBCO 97
data base for the latitude range 24N to 37N and an interpolating polynomial (broken line); (b)
contours of the upper (solid line) and lower layer pressure fields when the model is driven by
climatological Ekman pumping and includes representations of the topography and the eastern
boundary.
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Figure 13. Plot reproduced from Semtner and Chervin (1992) of: (a) Contours of the time mean
temperature averaged over the upper 500 m of the water column. Contour interval is 1°C. (b)
Surface heat flux. Contour interval is 20 W m�2.
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� · �u2h2� � �q1 � q2, (75)

k � u3 �
�1

f
�� 1

�0
ps � g�1	1 � g�2	2�, (76)

� · �u3h3� � �q2, (77)

where we is the Ekman pumping velocity, assumed to vary only with latitude, at the base of
the Ekman layer, and q1 and q2 represent the fluid exchange between layers 1 and 2 and
layers 2 and 3, respectively, due to surface heating and cooling. Following the notation of
Section 2, u3 denotes the horizontal velocity in the bottom layer (labeled 3) and 	2 is the
interfacial displacement between the middle layer 2 and the bottom layer 3.

It is straightforward to reduce (72) to (77) to a system of three equations that only
involve the layer depths:

J� 1

�0
ps,

h1

f � � �we � q1, (78)

J� 1

�0
ps � g�1	1,

h2

f � � �q1 � q2, (79)

J� 1

�0
ps � g�1	1 � g�2	2,

h3

f � � �q2. (80)

Upon adding (78) to (80) we obtain

1

�0
psx �

g�1
H0

h1x�H0 � h1� �
g�2
H0

h3h3x �
f 2

�H0
we,

which upon integration with respect to x from the eastern boundary, gives

1

�0
ps �

g�1
2H0

h1�2H0 � h1� �
g�2

2H0
h3

2 � � � �, (81)

where

��x, y� �
�f 2

�H0
�

x

0

we�s, y�ds,

� �
1

�0
ps

e �
g�1

2H0
h1

e�2H0 � h1
e� �

g�2
2H0

�h3
e�2.

In the Sverdrup balance (81), variables with a superscript e denote the value of that
quantity on the eastern boundary, x 
 0. We now eliminate ps in (78) and (80) using (81)
to obtain a pair of coupled first order partial differential equations of the form
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��x �
g�2
H0

h3h3x��h1

f �
y

� ��y �
g�2
H0

h3h3y �
�g�1h1

fH0
h1�H0 � h1���h1

f �
x

� �we � q1 (82)

��x �
g�1
H0

h1h1x��h3

f �
y

� ��y �
�g�2
fH0

h3�H0 � h3� �
g�1
H0

h1h1y��h3

f �
x

� �q2 (83)

Eqs. (82) and (83) represent the governing equations for the inverse planetary vorticity
in layers 1 and 3, respectively. As in Section 2 we consider we 
 �w0(1 � y2/l2) and
parameterize the mass exchange terms as q1 
 �k1(h1 � H1) and q2 
 �k2(h1 � h2 �
H1 � H2), where k1 and k2 are constants. The choice of parameterization of the mass
exchange between the lower two layers is open to endless debate. One could use the
thickness of the middle layer in comparison to some reference depth, or as we have adopted
here, the total depth of the upper two layers in comparison to some reference depth. We
have chosen this parameterization for two reasons. First, we consider entrainment of fluid
across any interface to arise from heating/cooling at the ocean surface. Thus it is reasonable
to parameterize q2 in terms of the departure of the total depth of the fluid, above the
interface separating layers 2 and 3, from a reference value. Second, the parameterization
allows analytical progress to be made in the quasi-geostrophic approximation. Adopting
other parameterizations based on departures of the layer depths for q2 will not, of course,
introduce any new physics.

Calculating numerical solutions of (82) and (83) is beyond the scope of this paper.
However, progress can be made by adopting the quasi-geostrophic approximation used for
the 2-layer model in Section 2. In the linear quasi-geostrophic approximation, interfacial
displacements are assumed to be small due to weak Ekman pumping. Let h1 
 H1 � 	1,
h3 
 H3 � 	2 and assume that (�y/f0), (	1/H1), (	2/H3) are all small to the same
degree. Linearization of the coupled system, (82) and (83) then yields

��y

f0
�

�g�1
f 0

2H0
H1�H0 � H1��	1x �

�x

f0
	1y �

�g�2
f 0

2H0
H1H3	2x � �we�1 �

H1

H0
� � k1	1 (84)

��y

f0
�

�g�2
f 0

2H0
H3�H0 � H3��	2x �

�x

f0
	2y �

�g�1
f 0

2H0
H1H3	1x � �we

H3

H0
� k2	2 (85)

while (81) becomes

1

�0
ps � g�1�H1 � 	1� �

g�1H1

2H0
�H1 � 2	1� �

g�2H3

2H0
�H3 � 2	2� � � � �, (86)

where

��x, y� �
�f 0

2

�H0
�

x

0

we�s, y�ds
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� �
1

�0
ps

e � g�1�H1 � 	1
e� �

g�1H1

2H0
�H1 � 2	1

e� �
g�2H3

2H0
�H3 � 2	2

e�.

We have now reduced the problem to solving the linear coupled system of partial
differential Eqs. (84) and (85). First we write (84) and (85) in the matrix form

A�x � B�y � c (87)

where

A � �
�y

f0
�

�g�1
f 0

2H0
H1�H0 � H1�

�g�2H1H3

f 0
2H0

�g�1H1H3

f 0
2H0

�y

f0
�

�g�2
f 0

2H0
H3�H0 � H3� � (88)

B � � �
�x

f0

0

0 �
�x

f0

� (89)

c � � �we�1 �
H1

H0
� � k1	1

�we

H3

H0
� k2	2

� (90)

and �T 
 (	1, 	2). The goal is to de-couple (87), thereby allowing analytical solutions to
be determined. This can be achieved by first introducing new dependent variables � 
 (�1,
�2)T defined by

� � P�, (91)

where

P � �p1, p2�,

and p1 and p2 are the eigenvectors of B�1A written in column form. The eigenvectors and
their corresponding eigenvalues are given in Appendix B. Using (91) it is straight forward
to re-write (87) as

��x � �y � d, (92)

where

� � diag��1, �2�,
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d �
1

�2 � �1 �
�H0

f0
��2 � �2

H1

H0
�

H3

H0
� �

f0

�x
��k2�1 � k1�2��1 � �k2 � k1��2�2�

�
�H0

f0
��1 � �1

H1

H0
�

H3

H0
� �

f0

�x
��k1 � k2��1 � �k1�1 � k2�2��2� �

and

�1,2 �
1

2g�2H1H3
�g�2H3�H0 � H3� � g�1H1�H0 � H1� � �1/2�.

In (92) coupling between the equations for �1 and �2 only arises from d. However, if we
assume k1 
 k2 
 k, say, we observe that (92) decouple. The assumption k1 
 k2 is not
overly restrictive, in the light of the highly idealized parameterization for the mass
exchange terms q1, q2. Indeed, there is no a priori reason to expect that these constants of
proportionality should be distinct. To summarize, when k1 
 k2 
 k, we find that �1 and �2

satisfy

��
�y

f0
�

�

2f 0
2H0

�g�1H1�H0 � H1� � g�2H3�H0 � H3� � �1/2���1x �
�x

f0
�1y

�
we

�2 � �1
��2 � �2

H1

H0
�

H3

H0
� � k�1,

(93)

��
�y

f0
�

�

2f 0
2H0

�g�1H1�H0 � H1� � g�2H3�H0 � H3� � �1/2���2x �
�x

f0
�2y

� �
we

�2 � �1
��1 � �1

H1

H0
�

H3

H0
� � k�2.

(94)

To solve for �1 we rewrite (93) in the form

J��1, �1� �
we

�2 � �1
��2 � �2

H1

H0
�

H3

H0
� � k�1, (95)

where

�1�x, y� �
�

f0
�

�

2f 0
2H0

�g�1H1�H0 � H1� � g�2H3�H0 � H3� � �1/2�y. (96)

If we now consider �1 
 �1( y, �1) then �1 satisfies

�1y �
�H0k

f0we
�1 �

�

f0��2 � �1�
��2H0 � �2H1 � H3�. (97)

Clearly we wish to compare the solutions of the 2- and 3-layer models and therefore we
again assume k 
 K(1 � y/l ). The solution of (97) is then given by
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�1��1, y� � �� 1��1��l � y��� �
�H0

f0�� � 1���2 � �1�
��2 � �2

H1

H0
�

H3

H0
� �l � y�, (98)

where � is once again defined by (28). In common with the 2-layer model, the magnitude
of � strongly controls the structure of the recirculating gyre.

A similar methodology leads to a solution for �2 of the form

�2��2, y� � �� 2��2��l � y��� �
�H0

f0�� � 1���2 � �1�
��1 � �1

H1

H0
�

H3

H0
� �l � y�, (99)

where

�2 �
�

f0
�

�

2f 0
2H0

�g�1H1�H0 � H1� � g�2H3�H0 � H3� � �1/2�y. (100)

To complete the solution for �1 and �2 we must determine ��1(�1) and ��2(�2). At the
eastern boundary the condition of no normal flow must be imposed in all three layers. In
layers 1 and 2 this boundary condition is equivalent to

�1 �
	2

e � �2	1
e

�1 � �2
�2 �

�1	1
e � 	2

e

�1 � �2
at x � 0 (101)

where 	1
e and 	2

e are constants. Application of the first of (101), with the aid of (96), yields

�1�x, y� � �	2
e � �2	1

e

�1 � �2
��1 �

f0w0x

�2H0l
2R1

2 �l � y���

�

�H0��2 � �2

H1

H0
�

H3

H0
�

f0�� � 1���2 � �1�
�l � y��1 � �1 �

f0w0x

�2H0l
2R1

2 �l � y����1�
(102)

where

R1
2 �

1

2f 0
2H0

�g�1H1�H0 � H1� � g�2H3�H0 � H3� � �1/2�

and � is a constant given by (114). Solution (102) is valid when �1 � �lR1
2, where the

curve �1 
 �lR1
2 is the separatrix between the two families of characteristic curves of (93).

Similarly, application of the second of (101) yields

�2�x, y� � ��1	1
e � 	2

e

�1 � �2
��1 �

f0w0x

�2H0l
2R2

2 �l � y���

�

�H0��1 � �1

H1

H0
�

H3

H0
�

f0�� � 1���2 � �1�
�l � y��1 � �1 �

f0w0x

�2H0l
2R2

2 �l � y����1�
(103)

408 [62, 3Journal of Marine Research



where

R2
2 �

1

2f 0
2H0

�g�1H1�H0 � H1� � g�2H3�H0 � H3� � �1/2�.

Solution (103) is valid when �2 � �lR2
2, where the curve �2 
 �lR2

2 defines the
separatrix between the two families of characteristic curves of (94).

The solutions (102) and (103) are valid in the domain spanned by characteristics
emanating from the eastern boundary. In the northwest recirculating gyre region, the
characteristic curves begin and end along the oceanic edge of the western boundary current
(at x 
 �L), in a manner analogous to the 2-layer model. To determine the solution in the
region spanned by this family of characteristic curves we once again demand that the value
of the potential vorticity at the start and end points of each characteristic be identical. In
layers 1 and 2 this boundary condition is equivalent to

�1��1�y1�� � �1��1�y2�� �
�

f0��1 � �2�
�H0 � �2H1 � H3��y2 � y1�, (104)

�2��2�y1�� � �2��2�y2�� �
�

f0��2 � �1�
�H0 � �1H1 � H3��y2 � y1�. (105)

Using the fact that the characteristics of �1 and �2 are isopleths of �1 and �2 respectively,
we find that

�� 1��1� �

�H0�y2 � y1���2 � � � 1 � �2�
H1

H0
� �

H3

H0
�

f0�� � 1���2 � �1���l � y2�
� � �l � y1�

��
�l � y1��l � y2�, (106)

and therefore within the recirculating gyre region (98) takes the form

�1�x, y� �

�H0�y2 � y1���2 � � � 1 � �2�
H1

H0
� �

H3

H0
�

f0�� � 1���2 � �1���l � y2�
� � �l � y1�

��

� ��
x�l � y�

L
�

�2H0l
2R1

2

f0w0L
��

�
�H0

f0�� � 1���2 � �1�
��2 � �2

H1

H0
�

H3

H0
��l � y�

(107)

where y1(�1) and y2(�1) are solutions to the equation �1 
 f0w0L/�H0(1 � y2/l2) �
�R1

2y. Similarly, the solution for �2 is given by

�� 2��2� �

�H0�y2 � y1��� � 1 � �1 � �1�
H1

H0
� �

H3

H0
�

f0�� � 1���2 � �1���l � y2�
� � �l � y1�

��
�l � y1��l � y2�, (108)

and using (99) we find that in the recirculation gyre region
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�2�x, y� �

�H0�y2 � y1��� � 1 � �1 � �1�
H1

H0
� �

H3

H0
�

f0�� � 1���2 � �1���l � y2�
� � �l � y1�

��

� ��
x�l � y�

L
�

�2H0l
2R2

2

f0w0L
��

�
�H0

f0�� � 1���2 � �1�
��1 � �1

H1

H0
�

H3

H0
��l � y�,

(109)

where again y1(�2) and y2(�2) are solutions to the equivalent equation �2 
 f0w0L/
�H0(1 � y2/l2) � �R2

2y. Finally, the solutions for �1 (namely (102) and (107)) and �2

(namely (103) and (109)) can be used to reconstruct the interfaces 	1 and 	2 using (91).

7. 3-layer model results

It is clear that we would expect to find, in general, three distinct regions in each layer,
each bounded by a separatrix. These separatrices are those associated with the characteris-
tics of the equations for �1 and �2 and will be apparent in all three layers. The three distinct
regions will, in general, support circulation patterns not found in the 2-layer flat bottom
model. Table 1 lists the parameters used in all the results shown here, unless otherwise
stated, with the addition of H3 
 3 � 103 m and g�2 
 1 � 10�3 m s�2. Figure 14 plots
contours of the interfacial displacements, 	1 and 	2. The two separatrices can be seen in
Figure 14(a) and (b). From these plots we can deduce the direction of the interfacial mass
fluxes. Figure 14(a) shows that the mass flux between layers 1 and 2 is everywhere into
layer 2, though strongest in the northwestern corner. Thus the upper layer is everywhere
cooling and the strongest cooling is in the northwestern corner, as expected. Figure 14(b)
shows that, in general, fluid is downwelling from layer 2 to layer 3, although in the northern
central region fluid is moving from layer 3 to layer 2 corresponding to the region where the
middle layer depth is at its most shallow.

Figure 15 shows the pressure contours in each of the 3 layers. In the upper layer we see a
similar picture to the 2-layer model, a tight recirculation gyre in the northwestern corner
and outside of this a flow broadly similar to the purely wind driven solution. With small
changes to k and g�1, the existence of the second separatrix in the upper layer becomes
clear, in contrast to the case shown in Figure 15(a). Qualitatively the circulation in the
upper layer remains the same for this particular Ekman pumping in all parameter regimes
that are oceanographically relevant. The direction of flow is anticyclonic, and the mass
exchange is everywhere down into the middle layer. In the middle layer the two
separatrices are clearly visible and create three distinct circulation patterns. In the region
exterior to the outer separatrix we find weak circulation, similar to that in the outer region
of the lower layer in the 2-layer model. This is due to the small amount of mass exchange in
this region. In the northwestern region we find a circulation similar to that of the upper
layer, a tight recirculation region that is anticyclonic. In this region the mass exchange is
again down into the lower layer. In the middle region, between the separatrices, we observe
two opposing gyres, an anticyclonic gyre in the southwestern portion and a cyclonic gyre in
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Figure 14. Contour plots of; (a) 	1 the interfacial displacement between layers 1 and 2; (b) 	2 the
interfacial displacement between layers 2 and 3.
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Figure 15. Contour plot of the pressure; (a) ps, in layer 1; (b) ps � g�1	1, in layer 2; (c) ps � g�1	1 �
g�2	2, in layer 3.



the northeastern portion. Generally, a cyclonic region which recirculates water through the
northern boundary, and an anticyclonic region, which recirculates water through the
western boundary, exist in varying strengths, depending upon the size of the parameter k.
In the cyclonic region there is a net increase of mass. However, in the anticyclonic region
the amount of mass exchange is enough to balance that received from the upper layer and
indeed exceed it, although only by a small amount. This can be seen from the circulation in
the lower layer (Fig. 15(c)). Here, as in the 2-layer model, there is only significant flow in
the northwestern region. This circulation is cyclonic and indicates a net influx of fluid. The
depth integrated flow however is equal to the purely wind driven barotropic flow and
therefore the net flux through the northern boundary is zero. The sensitivity of the structure
of the circulation in the middle layer to the distribution of the mass flux across the upper
and lower interfaces is illustrated in Figure 16, where k 
 3 � 10�10, a decrease in
magnitude compared to the control value (see Table 1). The cyclonic region is much larger
in extent compared with that in Figure 15(b).

8. Conclusions

Two- and three-layer linear quasi-geostrophic models and a two-layer nonlinear geostro-
phic model of the steady-state wind and buoyancy driven subtropical gyre circulation are
developed in this paper, extending the study of CR. Buoyancy driving is represented by

Figure 16. Contour plot of middle layer pressure when K 
 3 � 10�10.
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mass exchange between the layers, parameterized in terms of the departure of a layer depth
from an equilibrium value. CR demonstrated that models of this type support a recircula-
tion region in the northwest corner of the domain, associated with a deep upper layer,
where the upper layer planetary potential vorticity acquires a minimum and where
significant cooling takes place. In the North Atlantic, this recirculation region is identified
as the Sargasso Sea.

In this paper it is demonstrated that when the total ocean depth shoals (deepens) to the
north the area of the recirculating gyre decreases (increases). This result is readily
understood by studying the impact of topography on the separatrix, separating the two
distinct families of characteristic curves spanning the entire subtropical gyre. At one end of
the separatrix, where it intersects the northern open zonal boundary, is a stagnation point
called the Rossby repeller (R). At this point the speed of long westward propagating
baroclinic Rossby waves is equal and opposite to the zonal wind-driven depth integrated
flow. The background potential vorticity gradient is modified by the presence of topogra-
phy (via the topographic beta effect) thereby altering the speed of the baroclinic Rossby
waves, and hence the location of R. The impact of topography on the location of the center
of the recirculating gyre (C) is also determined analytically.

An analysis of the volume fluxes across the open boundaries, in the geostrophic 2-layer
model, is also presented. The introduction of topography creates a flux through the open
zonal boundaries which must in general be balanced by a flux through the open western
boundary. The western boundary also has a constant flux determined by the amount of fluid
injected by the Ekman pumping over the entire domain. If the eastern boundary condition
implies no mass exchange between the layers at the boundary, then the flux through the
zonal boundaries is confined to the northern zonal boundary west of the Rossby repeller.

The extension of this 2-layer model to include arbitrary topography is beyond the scope
of this paper. From a technical viewpoint, it is not possible to analytically derive a
generalized Sverdrup balance equation algebraically relating the layer depths. Without
such an equation it is not possible to obtain a single equation for either the upper or lower
layer potential vorticity. Thus, we are confronted with solving a coupled pair of first order
partial differential equations, governing the potential vorticity in each layer.

Rather than attempt to find solutions of the planetary geostrophic equations, a numerical
approach could be adopted to study the impact of arbitrary topography on the recirculating
gyre. For example, a numerical model by Salmon (2002), of the wind driven 2-layer
shallow water equations with arbitrary bottom topography, could provide some insight into
this wind and buoyancy driven problem with arbitrary topography. The unsteady numerical
model retains inertial terms and linear friction, thereby supporting a western boundary
current, but does not include interfacial mass flux terms. However, the model is easily
modified to include interfacial mass flux terms and this is being examined.

To address the impact of increased vertical resolution on the structure of the recirculat-
ing gyre, a 3-layer quasi-geostrophic model, with topography absent, is examined. Here we
found that the circulation in the upper and lower layers is qualitatively similar to that in the
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top and bottom layers, respectively, of a 2-layer model. Further, the recirculation region in
the top layer of the 3-layer model responds in a similar manner to variation in the strength
of the mass exchange between layers, as in the 2-layer case.

The middle layer has three distinct regions, associated with the existence of two
separatrices. In the 3-layer model the circulation is governed by a pair of coupled first order
partial differential equations governing the planetary potential vorticity in layers 1 and 3.
The characteristic curves associated with each of these equations exhibit a separatrix and
these subdivide each layer into three regions. In the interior region of the middle layer (ie
the region between the eastern boundary and bounded to the west either by the edge of the
western boundary current or the first separatrix encountered) the flow is weak due to weak
buoyancy driving. In the northwest corner of this layer the flow is similar to that in the
upper layer. However, in the region between the two separatrices the circulation can
exhibit a rich structure, that is determined by the strength and distribution of the interfacial
mass fluxes.

What features of the 2- and 3-layer solutions are exhibited in a continuously stratified
ocean? A steady-state continuously stratified wind and buoyancy driven model for the
subtropical gyre has been studied by Cushman-Roisin (1984). Here again, a recirculating
region emerges, albeit for a rather narrow range of parameters. Analytical progress in the
Cushman-Roisin (1984) study is made possible by the assumed similarity structure of the
solution. However, the Cushman-Roisin (1984) solutions differ markedly with the layer
solutions discussed here. The discrepancies between these two models are not surprising
because the similarity structure imposes “self-similar solutions” at all levels, a property
that is not exhibited in the 3-layer solutions. It would be interesting to numerically
determine wind and buoyancy driven subtropical gyre solutions of the planetary geostro-
phic equations using the models of Edwards et al. (1998) or Samelson and Vallis (1997).

Finally, it would be worthwhile to determine how the extent of the recirculating gyre
changes with unsteady Ekman pumping, varying on the seasonal time scale, say. The
development of the unsteady model for long-time scales is straightforward (Johnson and
Willmott, 1981) and the governing equation for the interfacial displacement is again a first
order partial differential equation but now in three independent variables.
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APPENDIX

A. Recirculating gyre center latitude

Substituting (53) into (52) yields the transcendental equation for the gyre center latitude:

2004] 415Walkington & Willmott: Effect of topography on circulation



�2��L � C�w0�1 �
yc

2

l2� � fCyw0�1 �
yc

2

l2� �
2f�L � C�w0yc

l2 �
f�L � C�w0�yy

� �1 �
yc

2

l2�
�

�2g�h�

f 2 �H0 � h� � �� �
�g��y

f
h� �

�g��yy

2f�
�h�2 � �h1

e�2� �
�2g�w0

kf 2 �1 �
yc

2

l2�
� �H0 �

w0

k �1 �
yc

2

l2� � �� �
�g�w0�y

kf �1 �
yc

2

l2� �
�g��yy

2f� �w0
2

k2 �1 � yc
2

l2 �2

� �h1
e�2� � 0.

(110)

In the case when topography is absent, � 
 0, and the eastern boundary corresponds to the
meridional barrier x 
 0 (i.e. C( y) 
 0), (110) becomes

�2�Lw0�1 �
yc

2

l2� �
2fLw0yc

l2 �
�2g�h�

f 2 �H0 � h��

�
�2g�w0

kf 2 �1 �
yc

2

l2��H0 �
w0

k �1 �
yc

2

l2�� � 0.

(111)

Eq. (111) can be written as a fourth order polynomial for the gyre center latitude yc:

�2�Lw0 f 0
2�2 �

2f 0
3Lw0�

3

l
�

�2g�w0
2

k2 � ŷ4 � �4�Lw0 f0� �
6f 0

3Lw0�
2

l � ŷ3

� �2�Lw0 f 0
2�1 � �2� �

6f 0
3Lw0�

l
�

2�2g�w0
2

k2 �
�2g�w0H0

k � ŷ2

� �2f 0
3Lw0

l
� 4�Lw0 f 0

2�� ŷ �
�2g�w0

2

k2 � 2�Lw0 f 0
2 � �2g�h� �H0 � h� �

�
�2g�w0H0

k
� 0,

(112)

where � 
 �l/f0 and ŷ 
 yc/l.

B. Eigenvalues and eigenvectors of B�1A

The eigenvalues, �1 and �2, satisfy the characteristic equation

det�B�1A � �I� � 0.

After some lengthy algebra we obtain

�1,2 � �
�y

�x
�

�

2f0�xH0
�g�1H1�H0 � H1� � g�2H3�H0 � H3� � �1/2�, (113)

where
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� � g�1
2H1

2�H0 � H1�
2 � g�2

2H3
2�H0 � H3�

2 � 2g�1g�2H1H3

� �H1H3 � H0
2 � H0H1 � H0H3�. (114)

The eigenvector pj associated with each eigenvalue �j ( j 
 1, 2) is given by

p1 � � 1
1

2g�2H1H3
�g�2H3�H0 � H3� � g�1H1�H0 � H1� � �1/2� � (115)

p2 � � 1
1

2g�2H1H3
�g�2H3�H0 � H3� � g�1H1�H0 � H1� � �1/2� � . (116)
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