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Relative dispersion at the surface of the Gulf of Mexico

by J. H. LaCasce1 ,2 and Carter Ohlmann3

ABSTRACT
We examine the relative motion of pairs and triplets of surface drifters in the Gulf of Mexico. The

mean square pair separations grow exponentially in time from the smallest resolved scale (1 km) to
40–50 km, with an e-folding time of 2–3 days. Thereafter, the dispersion exhibits a power law
dependence on time with an exponent of between 2 and 3 (depending on the measure used) up to
scales of several hundred kilometers. The straining is for the most part isotropic, with only weak
regional variations. But there are suggestions of anisotropy in the western basin, probably due to
boundary current advection.

The pair velocities are correlated during the early phase and a portion of the late phase. The
relative displacement distributions during the early phase are, after an initial adjustment, non-
Gaussian and approximately constant, suggestiveof local straining.

The triplet results likewise suggest two growth phases. During the early phase, the mean area and
the longest triangle leg grow exponentially in time, the latter with a rate consistent with the
two-particle results. Most triangles are drawn out during this time. During the late period, the
triangles grow and their aspect ratios systematically decrease, suggesting an evolution to an
equilateral shape.

Although surface divergences should affect these statistics, they nevertheless strongly resemble
those found with two-dimensional turbulent � ows. If so, we would infer an enstrophy cascade at
scales below the deformation radius (40–50 km) which is probably spectrally local. The latter
implies that growth in particle separationscomes from � ow features the same size as the separations.
It is also possible there is an inverse energy cascade to scales larger than the deformation radius,
driven possibly by baroclinic instability. However, the late period statistics may also re� ect
dispersionby a large scale shear.
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We do not resolve an upper bound on the late time power law growth (i.e. we do not observe an
ultimate diffusive stage). This may re� ect shear dispersion. But it may also stem from surface
convergences which can cause long time particle correlations, as seen in recent numerical simula-
tions of particles on a surface bounding an interior turbulent � ow.

1. Introduction

Lagrangian dispersion concerns the evolution of a marked patch of � uid. The subject has
wide-ranging applications, from predicting how oil spills spread and explaining tempera-
ture distributions in the ocean, to predicting toxic chemical plume evolution and the ozone
distribution in the atmosphere. Generally, one is concerned with the translation and
distortion of such a tracer, the former dictating where a cloud goes and the latter how it is
mixed into the environment. The mean and variance of tracer concentration can be
measured using single particle statistics, whereas the covariance of the concentration
requires knowledge of the relative motion of groups of particles. It is the latter which
concerns us here.

Many of our theoretical expectations for “relative dispersion” come from turbulence
theory. Assuming the existence of a turbulent inertial range, one can deduce how mean
square particle separations vary with time and separation, over the range of scales
corresponding to the inertial range. We expect, for example, that mean square separations
grow as time to the third power in the (energy) inertial range in 3-D turbulence and for the
(inverse) energy cascade in 2-D turbulence.4 In contrast, separations grow exponentially in
time in the (2-D) enstrophy cascade. Pertinent reviews are given by Bennett (1987) and
Babiano et al. (1990).

Another relevant area of theory is that of dynamical systems. Broadly speaking this
concerns particle motion near speci� c � ow features, often in the context of kinematic
models. Pair separations grow linearly in time near elliptic points and exponentially near
hyperbolic points; the latter growth is measured in terms of Lyapunov exponents.
Boundaries between regions with different mixing characteristics are the stable and
unstable “manifolds.” There is an extensive literature on the subject, (for example Ottino,
1989). Dynamical systems ideas were used recently in an analysis of drifter data in the Gulf
of Mexico by Kuznetsov et al. (2002).

The earliest geophysical relative dispersion calculations were made in the atmo-
sphere. Richardson (1926) measured smoke spreading from stacks and showed that the
rate of plume growth increased with plume width; that his results were consistent with
an energy inertial range was demonstrated by Obhukov (1941) and Batchelor (1952a).
In two balloon experiments in the southern hemisphere stratosphere conducted in the
1970’s (“EOLE” at 200 mb and “TWERLE” at 150 mb), researchers found evidence
for exponential growth at separations of less than 1000 km (Morel and Larcheveque,
1974; Er-el and Peskin, 1981). The behavior at larger scales was less clear; in the
EOLE experiment, the mean square pair separations grew linearly in time (as with a

4. The similarity arguments depend on the units of the energy transfer rate, but not on the direction of transfer.
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diffusive process) whereas they grew faster than linearly in the TWERLE experiment,
and possibly as rapidly as time cubed.

Oceanic observations exist as well. Richardson and Stommel (1948) documented
dispersion consistent with an energy cascade at the surface of a pond and the ocean, on
scales from 50 cm to 100 m. Okubo (1971), Sullivan (1971) and Anikiev et al. (1985)
inferred similar behavior from dye spreading at the surface of the ocean (or of a lake)
over a large range of scales (see also Bennett, 1987). Davis (1985) and Poulain and
Niiler (1989) examined relative dispersion among surface drifters in the California
Current and Lacorata et al. (2001) did the same for drifters in the Adriatic. These
studies did not provide robust evidence of either an exponential or a power law
dependence. LaCasce and Bower (2000) examined subsurface � oats in the North
Atlantic and found inhomogeneous dispersion, with an inverse energy cascade possi-
bly occurring in the west (near the Gulf Stream and the North Atlantic Current), but
essentially diffusive spreading in the east.

What remains elusive is observational evidence of exponential stretching in the ocean,
as seen in the atmosphere (Morel and Larcheveque, 1974; Er-el and Peskin, 1981). The
problem evidently is one of scales. In the atmosphere, the putative enstrophy cascade range
extends to 1000 km whereas the energy-containingscale in the ocean is about an order of a
magnitude smaller. The minimum separation resolved by LaCasce and Bower (2000) was
only about 10 km, or about 5–10 times smaller than the energy containing eddies; this was
evidently insuf� cient to resolve any exponential growth. Brown and Smith (1990) used
several techniques to detect exponential growth in SOFAR trajectories but concluded only
that the absence of such stretching could not be con� rmed. Indirect evidence of such
stretching arguably does exist though; the � lamentation seen in the tracer release experi-
ments of Ledwell et al. (1998) was consistent with exponential stretching (Sundermeyer
and Price, 1998). But given the nature of the data, this could not be quantitatively
con� rmed.

Hereafter we will examine the relative dispersion of surface drifters in the northern Gulf
of Mexico. The data set (from the SCULP observational program) possesses much higher
drifter densities than in most previous oceanic data sets, offering more instances of closely
spaced pairs. It is not uncommon to � nd pair separations of 1 km here, an order of
magnitude smaller than with the subsurface Atlantic � oat set (LaCasce and Bower, 2000).
As such, we are afforded a closer look at pair statistics on scales of 1–50 km. The result is a
fairly clear indication of exponential stretching at scales less than about 50 km.5

As a point of presentation, we will focus exclusively on the particle group statistics
initially. We will defer interpretations (which are necessarily speculative) until the end.

5. While preparing this manuscript, we learned that others may have also detected exponential dispersion,
among � oats at 1000 m depth in the middle North Atlantic (Colin de Verdiere, pers. comm.).
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2. Data

The data come from surface drifters similar in design to those used in the Coastal Ocean
Dynamics Experiment (CODE; Davis, 1985). The drifters are composed of four rectangu-
lar panels 50 cm wide by 90 cm tall that extend from a vertical tube 10 cm in diameter.
Four small surface � oats keep the center of the drifter near 0.5 m depth. Technocean Inc.
constructed the drifters and packaged them in soluble cardboard boxes with degradable
parachutes. The drifters were deployed from aircraft. Once submerged, drifter position
within 1000 m was determined 5 to 7 times each day by Doppler ranging of the Argos
satellite locating system.

The SCULP � eld program consisted of 3 distinct segments identi� ed as SCULP I, II,
and III (Ohlmann and Niiler, in prep). SCULP-I drifter deployments occurred primarily at
15 stations (distributed as a 3 by 5 grid) within a 125 km square on the Louisiana-Texas
shelf. SCULP-I drifter deployments occurred from October, 1993, through July, 1994. The
grid was reinitialized weekly for the � rst three months, then biweekly for three months, and
� nally monthly, giving roughly one year of data. A total of 389 drifters sampled during the
SCULP-I period and drifter half-life was 56 days.

The SCULP-II drifters were deployed within a 400 by 150 km rectangle on the
northwest Florida shelf to investigate cross-shore � ows. The initial SCULP-II deployment
occurred in February, 1996, and consisted of 15 units. The grid was reinitialized every two
weeks for roughly a year. A total of 342 drifters sampled during the SCULP-II period and
drifter half life was 66 days.

The SCULP-III study was speci� cally concerned with eddies on the shelf-rise of the
Louisiana and North Florida coasts. Four deployments of 20 drifters seeded the edge of
warm eddies identi� ed with remotely sensed sea-surface temperature (AVHRR) and SSH
(T/P) data. Deployments occurred during April, 1998, on the Louisiana shelf, and during
July, 1998, on the continental margin south of the Florida-Louisiana border. The SCULP-
III drifters are excluded from this study as they seeded speci� c � ow features and because
they only yielded a small number of pairs.

Drifters such as these are advected both by geostrophic and ageostrophic � ow near the
surface and as such respond to the Ekman drift as well as the large scale � ow. Without
additional information on how to decompose the velocities, we are forced essentially to
ignore the Ekman contribution.6 The possibility of Ekman advection obviously must be
kept in mind when interpreting the results.

Perhaps more critical is that the ocean surface is divergent. Surface drifters must remain
at the surface and so cannot follow water parcels that rise or sink. This should in turn cause
deviations from theoretical expectations derived for nondivergent � ows, such as 2-D
turbulence. We will return to this point at the end.

Examples of drifter trajectories are plotted in Figure 1. These are representative of the

6. A reviewer pointed out that the Navy maintains an archive of 10 km resolution winds over the continental
US and Central America, and one might use such winds to deduce the Ekman contribution. This is beyond the
present scope but suggests an interesting direction for future work.
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pairs used in the calculations (but are only a subset of the whole drifter set). The SCULP1
pairs lie predominantly in the western Gulf and the SCULP2 pairs in the east.

3. Two particle statistics

We will consider two types of statistics hereafter: � rst those of drifter pairs and then of
triplets. To examine how drifter pairs separate as a function of time and space, we will use a

Figure 1. Trajectories of the r0 # 1 km pairs of 25 days duration from the SCULP1 and
2 experiments.
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Figure 2. (a) The mean square separationvs. time for the combined SCULP1 and 2 sets. The dashed
lines indicate the 95% con� dence limits and the straight line represents and exponential growth
with a growth rate, determined by least squares, of 0.55. (b) The mean square zonal and meridional
separation vs. time for the combined SCULP1 and 2 sets. (c) The mean square separation vs. time
for the SCULP1 and 2 sets separately. The dashed lines are the 95% con� dence limits for the
SCULP1 data.
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variety of measures deriving from both turbulence and dynamical systems studies; we will
introduce them as we go along.

a. Relative dispersion

A commonly used measure of relative dispersion is the mean square pair separation,
de� ned as:

D2~t! ; O
iÞj

~x i~t! 2 xj~t!!
2 1 ~yi~t! 2 y j~t!!

2, (1)

which indicates how particles separate as a function of time. To calculate this, we select a
set of pairs in which the individualsare closer than a given distance, r0, at some time. As in
LaCasce and Bower (2000), we include drifters launched together (“original pairs”) and
those which approach one another later on (“chance pairs”). The majority of our pairs are
of the “chance” variety.7

The resulting squared separations are then averaged for a � xed period of time (shorter
duration trajectories were discarded).8 There are 140 pair trajectories of 25 days duration
with r0 # 1 km; these are the trajectories in Figure 1.

7. A potential dif� culty is that chance pairs are more likely to have correlated positions and initial velocities,
and this can alter the approach to asymptotic dispersion regimes (e.g., Bennett, 1987; Babiano et al., 1990).
However, no systematic differences between such “original” and “chance” pairs have been found previously
(Morel and Larcheveque, 1974; LaCasce and Bower, 2000). The present set contains too few original pairs to
determine whether there is a difference.

8. The averages are typically smoother when one uses such equal length segments. Using 25 day trajectories
was a compromise between having a long enough segment to observe the changes and having enough pairs for
statistical reliability. However the results do not vary greatly with this choice.

Figure 2. (Continued)
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The relative dispersion curve for the r0 5 1 km pairs is shown in Figure 2a on a
log-linear scale. We see that the curve at times less than 10 days is approximately linear,
and this is our � rst indication of exponential growth. The best � t exponential has a growth
rate of 0.55 6 0.10, corresponding to an e-folding time is approximately 2 days.
Exponential growth occurs over length scales of 5 to 50 km.

The (presumed) exponential growth phase does not begin immediately but is preceded
by an adjustment which takes about two days. This may represent a period during which
particles lose “memory” of their initial positions and velocities (Bennett, 1987; Babiano et
al., 1990). It may also re� ect boundary current advection in the west (see below). Its
presence however does not imply that exponential growth is absent at scales less than
5 km, merely that we haven’t captured that.

Several more points can be deduced. First, the dispersion at all times is isotropic within
the errors (Fig. 2b); so there is no preference for either zonal or meridional spreading. This
is also true for the SCULP1 and SCULP2 subsets individually.

The second point concerns regional variations. The most important such variation is that
pairs in the western Gulf are in� uenced by a boundary current. The latter � ows southwest-
ward along the Gulf coast of Texas, with speeds of several tens of cm/sec in shallower
regions. The pair trajectories in this region clearly show the in� uence of the current
(Fig. 1). The current is plainly visible if one box-averages the (single) drifter velocities
(Ohlmann and Niiler, in prep.). The pairs most affected are those in the SCULP1 set which
begin life inshore of roughly the 50 m isobath; there are 47 such pairs.

With this number of pairs it is impossible to determine their dispersion de� nitively, but
this is evidently closer to a power law growth than an exponentialone. If so, the growth rate
is somewhat faster than quadratic in time. Such super-diffusive growth can occur with a
lateral shear (Sec. 6). Power law growth is initially faster than exponentialgrowth, and it is
for this reason that the SCULP1 dispersion is somewhat greater than the SCULP2
dispersion for the � rst couple of days (Fig. 2c). Notice that the SCULP2 pairs appear to
exhibit exponential growth to the smallest resolved scale.

In any case, the boundary pairs evidently have relatively little effect on the early dispersion.
This is presumably because they represent a minority of the set of 140, and also perhaps
because the power law growth is quickly overshadowed by the exponentialone in the mean.

Third, and perhaps most surprising, is that there is no detectable dependence of
dispersion on water depth. Many of the drifters originate over the shelf, often in water less
than 10 m deep, in both SCULP1 and SCULP2. But excluding pairs which are in such
shallow water (at some time) doesn’t alter the results. For example, removing all pairs
which were in less than 25 m of water reduced the number of pairs from 140 to 75, but did
not change the dispersion within the errors. The result is the same excluding those in less
than 50 m (although the errors are then signi� cantly larger).9

9. One could conceivably look for topographic in� uences by projecting the dispersion into coordinates parallel
and perpendicular to the isobaths. However it is less clear how to do this with relative displacements than with
absolute displacements (LaCasce, 2000).
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The dispersive growth after day 10 is closer to a power law, as shown in the log-log plot
of Figure 3; this curve derives from the smaller set (n 5 65) of 50 day pair trajectories.
The power law dependence is evident from 10 to 50 days, and the best-� t exponent is 2.2 6

0.8. The meridional dispersion in this period is somewhat greater than the zonal, but not
signi� cantly so at the 95% con� dence level.

This power law growth is faster than the late time diffusive growth seen in the
subsurface North Atlantic, where D2 } t (LaCasce and Bower, 2000). In fact, no such
diffusive regime is seen here, at least up to the largest scales sampled (roughly 300 km).

Not shown in the � gures are the cross correlations:

Dxy~t! ; O
iÞj

~x i 2 x j!~y i 2 yj!, (2)

which are not signi� cantly different from zero for the set as a whole. This is in line with
isotropic dispersion. Most of the pairs originate in the northern Gulf, so a zero cross
correlation implies no preferred tendency for the pairs to separate westward or eastward.
The pairs in the SCULP1 set entrained in the boundary current do have a signi� cant
(positive) cross correlation, but this is a biased selection; exclude them and the remaining
subset has a negative cross correlation (re� ecting southeast-ward motion).

b. Finite time Lyapunov exponents

Our second measure is designed speci� cally for particles separating exponentially in
time. If a pair is separating thus, its maximum Lyapunov exponent (Lichtenberg and
Lieberman, 1992):

Figure 3. The total dispersion vs. time on a log-log plot (to emphasize the power law growth at later
times).
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l 5 limt®` limr~0!®0

1
t

log S r~t!

r~0!D (3)

is a nonzero constant (here r(t) and r(0) are the pair separations at times t and 0). However,
assuming pairs experience different straining rates over their lifetimes, it makes more sense
to calculate the Lyapunov exponent as a function of time, the Finite Time Lyapunov
exponent (FTLE):

lT~t! 5 limr~0!®0

1
t

logS r~t!

r~0!D . (4)

One can calculate the FTLE for each pair and then observe the distribution of values as a
function of time. To do this, we will use the set of pairs (with r0 # 1 km) used previously,
excluding those pairs trapped in the western boundary current. Given that the dispersion
results imply exponential growth during the � rst 10 days, we calculated the Lyapunov
exponents, lT(t) during that same period.

Histograms of lT(t) for days 3, 6 and 9 are shown in Figure 4. The curves suggest
distributionswhich become progressively sharper and whose mean decreases, from 0.77 at
t 5 3, to 0.51 at t 5 6, to 0.43 at t 5 9. The corresponding e-folding times thus vary from
about one and a half to two and a half days, in agreement with the 2 day time scale deduced
from relative dispersion.

Figure 4. The FTLEs at 3, 6, and 9 days for the r0 # 1 km drifter pairs. Note how the distribution
becomes narrower in time, with a peak correspondingto an e-folding time of roughly two days.
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The relative sharpness of the distribution suggests that most pairs experience approxi-
mately the same straining; broader distributions would mean either more regional or
temporal (because the pairs occur at different times) variations. In addition, the distribution
of exponents is becoming more Gaussian. The kurtosis10 decreases from 5.7 at t 5 3 to 3.4
at t 5 6 and 3.6 at t 5 9. Were the � ow chaotic, a Gaussian distribution would imply the
Lagrangian sampling was ergodic (Shepherd et al., 2000), that is, that particles visit all
accessible regions. Again, a similar interpretation here is complicated by having pairs at
different times.

As a further test for regional variations, we can use the FTLE to partition pairs
geographically according to separation rate, for instance by mapping pairs with 0.3 #

l(t 5 9) # 0.6. Doing so however yielded no hints of regional variability; the subsets
spanned the same areas as did the larger set.

We emphasize that FTLE’s do not prove that exponential stretching is occurring; the
present exponents however are consistent with that notion. As stated, the FTLE’s also
support the previous assertion that the relative dispersion is nearly homogeneous.

c. Finite scale Lyapunov exponents

A potential dif� culty with relative dispersion as a measure concerns the means of
averaging; one averages distances at � xed times. So for example, a pair 10 km apart at day
3 is averaged with another only 1 km apart. If dispersion is dominated by structures the
same size as the particle separation, averaging pairs with different separations could blur
the dependencies.

An alternate approach is instead to average times at � xed distances. This is the idea
behind the so-called “Finite Scale Lyapunov Exponent” or “FSLE” (Aurell et al., 1997;
Lacorata et al., 2001; Boffetta and Sokolov, 2002). It is not a new idea; distance is also the
independentvariable in Richardson’s (1926) distance-neighborformulation (the dependent
variable is the time derivative of relative dispersion, the relative diffusivity). But the FSLE
has the additional advantage of being effectively an integral quantity rather than a
derivative, and so is generally smoother than a diffusivity.

To calculate the FSLE, one chooses a set of distances which increase multiplicatively:

Rn 5 aRn21 5 anR0 (5)

and then calculates the times required for each pair displacement to grow to successive Rn.
The times are then averaged for each distance class. The resulting estimate for the
maximum Lyapunov exponent varies with distance and is given by:

lS~n! 5
1

log~a!
K 1
Tn
L. (6)

10. The kurtosis is the fourth order moment normalized by the squared second order moment. For a Gaussian
distribution, it has a value of three.
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An important difference with the FSLE concerns which pairs are used. Whereas the
previous measures used the subset of “chance” and “original” pairs closer than a certain
separation (r0) at one time, the FSLE uses all sets of possible pairs. We record the
separation as a function of time for each pair of drifters (present at the same time), from the
minimum separation to the � nal separation at the end of the pair’s lifetime. The times
required to move from one distance marker, Rn, to the next are found and added to the
relevant bins. The means thus represent different numbers of pairs, with larger numbers at
larger separations.

We used all the drifters for this calculation, including those initially in the boundary
current in the west (using only the SCULP1 or SCULP2 data yielded essentially the same
results). We chose the scale factor in (5) to be a 5 =2 (an arbitrary choice which merely
determines the number of bins). The result for the full set of data is shown in Figure 5.
Plotted is the Lyapunov exponent, lS(r), vs. distance; also shown are the estimated 95%
con� dence limits (which are narrow due to the very large number of pairs).

Like the relative dispersion, the FSLE suggests two phases of growth. At scales smaller
than about 10–20 km (early times), lS is nearly constant; at larger distances, it is
decreasing with an approximate power law dependence on distance.

Consider the early phase. The Lyapunov exponent at small scales is decreasing, but very
slowly. Were it constant, it would imply exponential growth because the associated

Figure 5. The FSLEs for the full data set. The small dotted lines indicate the 95% con� dence limits.
The implied Lyapunov exponent is nearly constant at small scales, and decays as D2 / 3 at larger
scales.
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e-folding time would likewise be constant. The Lyapunov exponent here is roughly 0.35,
corresponding to an e-folding time of about three days. The curve suggests it is constant up
to a scale of 10 km.

Recall that relative dispersion suggested an e-folding of 2 days and exponential growth
up to roughly 50 km. The difference in time scales is not large but the discrepancy in length
scales is harder to ignore. There are two possible causes for the latter: the use of all
available pairs in the FSLE and/or the change in dependent and independent variables.

To infer which is more important, we calculated the FSLE for two sets, the full set of
SCULP2 pairs and those with r0 # 1 km initially (as noted, the dispersion for the SCULP2
set is identical to that of the combined set). We see (Fig. 6) that the subset has a constant
Lyapunov exponent which is about the same as that calculated for the full set. But now the
near-exponential growth persists to 40–50 km. So the earlier decrease in ln for the FSLE
from the full set of pairs is due to having more pairs.

Why would this be? Flow inhomogeneity is one possible explanation; if so, it is by
chance that the drifters with r0 # 1 km happen to lie in regions where there is exponential
growth up to 50 km. The drifters with 1 , r0 , 10 km lie in regions where such growth
occurs only up to 10 km. Such a situation obviously seems fortuitous (and our previous
indications suggest to the contrary that the straining is largely homogeneous in the sampled
regions).

A more likely possibility is that the drifters with 1 , r0 , 10 km still have correlations

Figure 6. The FSLEs for the SCULP2 set and for the subset of SCULP2 drifters which have r0 #

1 km. The Lyapunov exponent is nearly constant over a larger range of scales in the subset.
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between their positions and velocities, delaying the onset of exponential growth. This
effect is clearly seen in numerical experiments (Babiano et al., 1990). It is also a likely
reason why LaCasce and Bower (2000) never observed exponential growth: their � oats
were too far apart initially. It is not known what causes the correlations for these pairs, but
this may stem from using “chance” rather than original pairs; we cannot evaluate this
without more data.

As noted, the r0 # 1 km subset and the full set have identical e-folding times (Fig. 6). So
the difference in growth rate from that predicted by relative dispersion stems from the
change in independent variable, not the addition of more pairs. This difference is however
small; so the variable change at least with this set is of secondary importance. Indeed the
general agreement between Figures 6 and 2 at small scales suggest the relative dispersion
and the FSLE are in quantitative agreement.

Then there is the decrease of the FSLE at large scales. Like the relative dispersion, the
FSLE suggests a power law dependence. But here ^1/T& } D2 2/3, implying the mean
square distance is growing as time cubed. This is not signi� cantly different than the result
from relative dispersion, given the errors on the latter. In fact, the exponent is better
constrained with the FSLE because the latter uses all pairs available at a given time,
regardless of their nearest separation. Where the relative dispersion calculation used
65 pairs of 50 days duration, the FSLE has 7280 pairs with separations of 75 km. The
number of pairs with larger separations is greater still. Note too that the FSLE calculated
for the subset of drifters with r0 # 1 km also exhibits a D22/3 decay at large scales (Fig. 6)
(here again the FSLE has more pairs at large separations).

Lastly, the FSLE, like the relative dispersion, does not change at the largest sampled
scales. In other words, the power law growth evidently increases without bound. We know
this cannot be, because eventually the coasts will limit separations (as seen in the Adriatic
by Lacorata et al., 2001). However the Gulf is more than 1000 km across, a scale
substantially larger than our largest pair separations, so the drifter lifetimes are evidently
too short for us to resolve growth saturation.

The FSLE therefore supports exponential growth in pair separations at scales less than
40–50 km, with a e-folding time of roughly 3 days. To capture properly the upper bound
on this growth, we had to restrict the set to pairs with r0 # 1 km. The implied growth at
large scales, such that D2 } t3, is faster than that deduced from relative dispersion. The
difference comes apparently from the FSLE averaging over many more pairs.

d. Relative velocities and displacements

A signature of processes like chaotic advection is that the pair velocities are correlated.
In contrast, particles experiencinga random walk have uncorrelated velocities, with an rms
two particle velocity difference just twice the single particle rms velocity:

^~u i 2 u j!
2& 5 ^~u i!

2& 1 ^~u j!
2& 2 2^u iu j& < 2^~u i!

2&. (7)

The ratio of the relative velocity variance to twice the single particle velocity variance is
thus a useful measure of pair velocity correlation (e.g. LaCasce and Bower, 2000). Using
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the r0 # 1 km pairs of 50 days duration, we see that the drifter velocities are correlated
over at least the � rst 25 days (Fig. 7). Thereafter the normalized variance � uctuates (and
possibly increases in the meridional direction) around a value somewhat less than one.

We see that the early period of exponential growth is also one of correlated pair
velocities.The late period dispersion is super-diffusive (D2 increases faster than linearly in
time) and the variances suggest correlated velocities at this time as well. The super-
diffusive dispersion persists at least to day 50; the variances may or may not be increasing
after day 25, but still may be less than unity at the latest times.

We may compare these variances to those found by LaCasce and Bower (2000) for
subsurface � oats in the North Atlantic. In the eastern Atlantic, their (normalized) variances
were near one for the entire period, suggesting pair velocities essentially uncorrelated from
the outset (the minimum separation, r0, was roughly 10 km). In the west though the
variances were similar to these: small initially and rising to a value near one after roughly
30 days. So there, as here, we inferred correlated velocities over at least the initial period.

One can also examine how velocity correlations vary with pair separation. Theoretical
arguments suggest that if (under certain circumstances) relative dispersion has a particular
dependenceon time, then the relative velocity variance should exhibit a dependence on the
separation distance. With exponential dispersion for instance, the mean square relative
velocity should be proportional to distance squared (e.g. Morel and Larcheveque, 1974).
We evaluated this dependency in two ways, � rst by comparing the variances at � xed times
vs. the root of the dispersion at the same times and second, by binning the variances in
distance bins, as with the FSLE. The results however were not consistent, even in the early

Figure 7. The relative velocity variances in the zonal (solid) and meridional (dashed) directions as
functionsof time. The varianceshave been normalizedby twice the single particle variance, so that
decorrelatedpair velocities would have a normalized variance of one.
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period. It is unclear why this was so, although it may be the relative velocities, involving
differences, converge more slowly than the dispersion.11

Lastly we consider the distribution of relative displacements. The probability density
function (PDF) of displacements is of central importance because all moments are derived
from it (relative dispersion being the second moment). Particles undergoing a random walk
would have a Gaussian displacement PDF, with a kurtosis of three. But coherent advection
often produces non-Gaussian PDFs; previous observations suggest the latter may be
common. Er-el and Peskin (1981) found non-Gaussian PDFs for both zonal and meridional
separations between balloon pairs from the TWERLE experiment, at a point during an
exponential growth phase. Davis (1985) found the distribution of displacements between
drifter pairs in the CODE set off California were non-Gaussian at times soon after
deployment. And LaCasce and Bower (2000) found non-Gaussian PDFs among � oat pairs
in the subsurface western North Atlantic, during a super-diffusive growth phase. In all
cases, the PDFs had elevated kurtoses, indicating an excess of large (energetic) displace-
ments over what one would have with a Gaussian distribution.

Here too theory provides predictions (discussed hereafter). Of interest at the moment is
whether the PDFs change in time. Er-el and Peskin (1981) calculated the displacement
kurtosis at only one time, so we don’t know whether their PDFs were evolving or not.
Davis (1985) calculated the PDFs at two times, once after deployment, when the PDF was
non-Gaussian, and later when it was Gaussian. But we don’t know whether the kurtosis
changed during the early period. LaCasce and Bower did monitor the PDFs in time and
their kurtoses (in the western Atlantic) were evidently � uctuating around a constant value.

The relative displacement kurtoses from the SCULP data are shown in Figure 8; plotted
are the zonal, meridional and total displacement kurtoses. There are several interesting
features. All three kurtoses are elevated during the � rst 20–25 days. But the meridional
kurtosis exhibits a sharp increase in the � rst two days which is not mirrored in the zonal
kurtosis. From days 5 to 25, the kurtoses are comparable in both directions and are
hovering around a constant value (although noisy). After day 25, the zonal kurtosis is
approximately three but the meridional kurtosis remains elevated; the latter causes the total
displacement kurtosis also to be somewhat greater than three at late times.

The rapid initial growth in the meridional kurtosis may re� ect the in� uence of the
boundary current, because the latter is meridionally-oriented where most of the pairs are
(Fig. 1). The meridional growth moreover is found with the SCULP1 set but not the
SCULP2 set.

But the initial anisotropy is evidently a transient and, as stated, the kurtoses in both
directions are comparable, non-Gaussian and approximately constant from day 5 to nearly
day 25. The total kurtosis hovers around a value of 7, exactly as it did with the western

11. Morel and Larcheveque (1974), in studying the EOLE ballon pairs, observed exponential growth up to
scales of about 1000 km, as noted previously. Their velocity variances however exhibited a dependence on
distance which was not consistent with the dispersion. Curiously, the observed dependence (deduced from their
Fig. 9) was similar to ours using the � rst method of calculation. This agreement is perhaps fortuitous.
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Atlantic � oat data of LaCasce and Bower (2000). After the initial adjustment, the PDFs
thus maintain their shapes, approximately.

The late time behavior is also of interest. We noted earlier that the late time dispersion
was isotropic at the 95% level. But this is not in con� ict with having anisotropic kurtoses
because the latter, being a fourth order moment, is more sensitive to outliers. The
discrepancy is more pronounced in the SCULP1 set, so the cause of the anisotropy is in the
west and is likely the boundary current. While only a minority of the pairs are in the
current, the number is large enough to affect the kurtoses, evidently.

To summarize, the relative velocities and displacements are consistent with correlated
pair velocities during the � rst 25 days (and possibly longer). The relative displacement
kurtoses are approximately constant during this early period, following transient growth
which only occurs in the meridional direction. After day 25, the zonal kurtosis is Gaussian
but the meridional kurtosis is not. These anisotropies may stem from boundary current
advection in the west.

4. Three particle dispersion

Given the relatively large number of drifters in this data set, we can go beyond two
particle statistics to consider the behavior of clusters. Surface drifter clusters have been

Figure 8. The kurtosis of the relativedisplacementsas functions of time. The solid line is for the total
displacements and the circles/crosses are for the meridional/zonal displacements.Note the former
is not simply the mean of the latter two. A value of three, indicating a Gaussian distribution, is
indicated.
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examined before by Okubo and Ebbesmeyer (1976) and Molinari and Kirwan (1975).
These authors discussed in particular how to deduce vorticity, divergence and strain rates
from the group displacements. But where their focus was single clusters, we will consider
instead the average behavior of a number of different clusters.

The theory pertaining to clusters of particles dates back at least to Batchelor (1952b). He
considered what would happen to a � uid patch small enough so that the local strain � eld
was approximately uniform (as in the dissipation range in 3-D turbulence). The patch
would be � attened out as it spread exponentially in two directions and collapsed
exponentially in the third (that the latter balances the former is required by incompressibil-
ity). The prediction was consistent with observations of dispersing heat anomalies in the
laboratory (Townsend, 1951).

More recently, particle clusters have been examined in light of their relation to
multi-pointEulerian correlationsof tracer concentration (in particular, the so-called “scalar
turbulence” problem). Pertinent reviews are given by Warhaft (2000), Shraiman and Siggia
(2000) and Falkovich et al. (2001). Multi-point correlations can reveal aspects of the
mixing geometry which two point correlations are unable to resolve, and this has direct
consequences for clusters of particles (Pumir, 1998; Celani and Vergassola, 2001).

Hereafter we examine triangles of drifters. We searched for triangles in the SCULP data
set in much the same way that we sought pairs (in other words, we use “chance” triangles).
We found pairs which shared a single drifter, then checked the closest all three were at a
given time. If the sum of the two pair distances was less than a certain amount (say, 2 km),
then we selected that triangle. As before, we chose equal length records for averaging. As
with the two particle statistics, the triplets appear to exhibit two evolutionary phases. We
consider each in turn.

a. Early period

The early growth period coincides with the exponential growth phase for the particle
pairs (the � rst 10 days). Were the ocean surface incompressible, then exponential growth
in one direction would be balanced by exponential contraction in the normal direction, as in
Batchelor’s theory. Patches would be drawn out into � laments. Of course the sea surface is
not non-divergent, but this is a useful conceptual reference.

For this period, we used 15 day triangle trajectories, derived from the r0 # 1 km pairs;
we extracted 32 triangles of this duration with the two leg separation of 2 km.12 A typical
trajectory is shown in Figure 9. The triangle translates and rotates, stretching as it goes.
However it is clear that the area is increasing in time. This is true in the mean as well (Fig.
10). The area is growing exponentially during the � rst 10 days, with an e-folding time
comparable to that inferred from two particle relative dispersion (about 2 days; Sec. 3a).

A triangle can be characterized by two normal distances, its base and its height. To be
de� nite, we de� ne the base to be the longest triangle leg; the height is then twice the area

12. Some triangles shared two drifters, meaning the 32 realizations are not statistically independent. So the
error bars on the following plots should be regarded as a lower bound on the 95% con� dence interval.
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divided by the base. We see (Fig. 11) that the mean triangle base is growing exponentially
during the � rst 10 days, with a e-folding rate of 0.28. This corresponds to a time scale about
two days for the dispersion (a squared distance). So the base pairs are behaving like the
larger set of pairs considered in Section 3a.

However, the mean height is also growing. If the height were actually contracting, we
would expect to see it hover around 1 km, the spatial resolution of the data. But while it is
near 1 km for the � rst week, but is signi� cantly greater than that by day 9. Of course, this is
near the end of the exponential growth phase, when the triangle area is probably no longer
representative of a true 2-D marked � uid, but there nevertheless seems to be monotonic
growth during the early period. We cannot say with certainty whether this growth is
exponential or something else (for instance a power law dependence).

As noted, surface divergence is a possible cause for the areal growth. To check this, we
used the triplets to calculate vorticity and divergence, following the prescription of Okubo
and Ebbesmeyer (1976) and Molinari and Kirwan (1975). This method assumes the cluster
is small enough so that the shears are locally linear (i.e. it retains the � rst order terms in a
Taylor expansion of the velocity relative to the cluster center of mass).13

13. The second order terms are assumed to be due to noise. One then minimizes the noise in a least squares
sense to obtain estimates of the velocity shears at the cluster center. A triangle represents the smallest cluster one
can use; then the residual of the � t (the noise estimate) is identically zero. Okubo and Ebbesmeyer suggest using at
least 6 particles, but this was not possible with the present data.

Figure 9. The trajectory of a triangle of drifters over a 25 day period. The sum of the three sides is
less than 3 km initially. The trajectory is superimposed on smoothed contours of the bottom
topography;shown are the 0, 100, 500, 1000, 2000 and 3000 m isobaths.
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Figure 10. The mean area of 32 triangles found from pairs less than 1 km apart. The error bars are the
95% con� dence limits for a student t distributionwith 31 degrees of freedom. As stated in the text,
the actual number of degrees of freedom is probably smaller, given that some triangles share two
drifters.

Figure 11. The mean base (squares) and height (pluses) of the 32 triangles from the 1 km pairs. The
straight line represents a best-� t exponentialwith a growth rate of 0.28.
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Performing the calculation and then averaging among the triangles, we found the
estimated rms divergence and vorticity were of the same order, roughly 5 3 1025 sec21,
and did not vary in time. The mean divergence and vorticity were not different from zero at
the 95% level. Such estimates by themselves are not unrealistic, but the calculated time
series of vorticity and divergence exhibited large changes from day to day, and frequently
even changed sign. Similar behavior was found for individual drifter clusters by Molinari
and Kirwan (1975).

To understand these changes, we examined the individual drifters’ motion relative to the
center of mass in different triangles. A typical example is shown in Figure 12 from the
period during the � rst 7 days. Despite that the triangle as a whole moves smoothly, as in
Figure 9, the drifters’ motions relative to the center of mass are quite random, with each
drifter making sudden 1–2 km jumps in different directions. These jumps will obviously
corrupt shear estimates, yielding the sudden sign changes mentioned before. Moreover
adding a fourth or � fth drifter (assuming similarly random jumps) is unlikely to improve
the situation much.

There are several possible explanations for the random jumps. There is the aforemen-
tioned satellite positioning error of about 1 km. Then there is the surface Ekman � ow,
which we have ignored but which could also cause de� ections from large scale advective
patterns. And then there is the fact that drifters “slip” in the wind; a typical error associated
with windage is 1 cm/sec for a 10 m/sec wind, so daily changes in wind could produce
1 km de� ections. So there are several plausible explanations.

These random jumps may be the cause of the apparent growth in the mean triangle

Figure 12. The positions of three drifters relative to their center of mass, during the initial week of
the triangle lifetime. Note the apparently random motion, with scales on the order of 1 km.
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height, as discussed hereafter. Future studies with higher resolution drifter data (say with
drifters tracked by the Global Positioning System) may help elucidate this issue.

b. Late period

Beyond 10 days, the drifter triangles presumably no longer re� ect a patch of � uid (they
also contain “unmarked � uid”) and their areas will change. The two particle results for this
time period suggest that squared distances between drifters grow as a power law of time.
So we would expect, for instance, the rms of the triangle leg distances:

R2 ;
1

3
~r12

2 1 r23
2 1 r13

2 !

should grow similarly.
To examine this, we require data from a longer period. Since there are only 5 triangles

from the r0 # 1 km pairs which last for 50 days, we must take larger initial separations.
Using instead the r0 # 5 km pairs, we increase the set to (a still modest) N 5 25. Their
mean rms leg, R, is shown in Figure 13. It exhibits a power law growth from just before day
10 to day 50, from scales of roughly 20 km to 200 km. The best � t exponent is 1.2 6 0.2,
corresponding to mean square separations growing like t2.460.4. This is consistent with the
relative dispersion result (where D2 } t2.2).

The point of interest here, with regards to theory, is that the triangle shape should change
to accommodate its growth in size, a consequence of Lagrangian particles maintaining a
constant tracer correlation (Celani and Vergassola, 2001). Theory predicts that triangles

Figure 13. The mean size R (the rms of the triangle legs) of triangles derived from pairs with r0 #

5 km. The 95% con� dence limits are shown, as is a power law growth of t1 . 2 .
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which are “degenerate” (have all three vertices on the same line) evolve toward an
equilateral shape in a Richardson growth regime (D2 } t3).

We observe such changes. Exponential stretching during the early period leave the
triangles in something close to a degenerate state (as in a � lament), but thereafter the
triangles become more equilateral. We can gauge this by tracking the ratio of the mean
triangle base to the mean height (Fig. 14). The aspect ratio is large during the initial period,
with the base roughly an order of magnitude larger than the height. But during the late
phase, after day 10, the aspect ratio decreases monotonically. In fact, the ratio decreases
approximately as t2 4/5 to day 50. Obviously this power law decrease cannot continue
inde� nitely, if the triplets evolve to equilateral triangles (with nearly unitary aspect ratio).
But the trend is clear.

5. Summary

We have examined the statistics of pairs and triplets of surface drifters in the Gulf of
Mexico. The two particle statistics suggest two growth phases: an approximately exponen-
tial growth up to 40–50 km separations, with an e-folding time of 2–3 days, followed by a
power law growth to larger scales. No diffusive regime was seen, at least up to the largest
sampled scales (roughly 300 km). The different measures used agree on the exponential
growth, but predict slightly different growth rates in the late period; relative dispersion
suggests D2 } t2.2 whereas the FSLE implies growth which is cubic in time. The two
particle relative velocities are correlated during the early phase and at least a portion of the

Figure 14. The mean aspect ratio (base divided by height) of triangles derived from pairs with r0 #

5 km. The aspect ratio during the late period decreases approximatelyas t2 4 / 5 .
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late phase. During the early phase, the relative displacements have roughly constant
kurtoses.

The measures for the most part suggest isotropic straining with at best weak regional
variations. However, there are several indications of anisotropy in the western basin, in the
early dispersion and more particularly in the displacement kurtosis (which is more
sensitive to outliers in the distribution). The likely cause is the swift southward-� owing
boundary current there, which advects a number of the pairs.

The three particle statistics also suggest two growth phases. During the initial phase, the
mean triangle area and its longest leg are growing exponentially in time with e-folding
times consistent with that deduced from two particle dispersion. During the late phase, the
rms triangle leg exhibits a power law growth with R } t1.2. This corresponds to a
dispersive growth proportional to t2.4, comparable to that inferred from two particle
dispersion. At the same time, the mean triangle aspect ratio (de� ned as the ratio of the
triangle base, the longest leg, to its height) decreases monotonically.

6. Discussion

The present results bear similarities to those found in two dimensional turbulence. The
2-D enstrophy cascade has exponential growth in pair separations (Bennett, 1987; Babiano
et al., 1990), as seen here at small scales. If this is occurring, we would infer a source of
enstrophy at the 40–50 km scale and an enstrophy cascade to smaller scales.

Exponential growth could occur with either a collection of 50 km eddies (a “nonlocal”
cascade) or with a continuumof eddy scales (a local cascade). However, in the former case,
the relative displacement kurtoses would be expected to grow exponentially; in a local
cascade, the kurtoses are constant (Bennett, 1984). The present kurtoses were approxi-
mately constant at small scales, so the cascade is at most weakly non-local (corresponding
to a k23 wavenumber spectrum of kinetic energy).

The 2-D turbulent energy cascade exhibits pair dispersion which increases cubically in
time, as may be the case here at large scales. If so, we would infer a source of energy at
40–50 km. The most likely candidate is baroclinic instability, given that the deformation
radius in the Gulf is roughly 45 km (Chelton et al., 1998). The energy cascade moreover is
thought to be a local phenomenon, so we would not expect to see increasing displacement
kurtoses here either.

Contrary to as assumed in 2-D turbulence though, the ocean surface is divergent.
Interestingly, turbulent dispersion in compressible � ows has been examined recently
(Falkovich et al., 2001 and references therein). An example of the system studied is a rigid
surface bounding a volume which is experiencing isotropic, homogeneous 3-D turbulence.
Schumacher and Eckhardt (2002) have examined relative dispersion in such an environ-
ment, and they � nd that pairs on the surface exhibit Richardson dispersion (as would be
expected for pairs in the interior). Interestingly, they also observe that the pairs never reach
a diffusive stage; this they attribute to long term particle correlations induced by
convergent clustering.

We must be cautious in making direct comparisons because the ocean interior is
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different than in the aforementioned models. In particular, the interior � ow at scales greater
than a kilometer is closer to two dimensional, with the vertical velocity second order.
Given that, surface divergences may be less important than with a fully 3-D interior � ow,
and if so, the surface relative dispersion might mirror the quasi-2-D dispersion in the
interior. Obviously we would have to characterize the subsurface dispersion in the Gulf to
substantiate such a claim. But the most intriguing similarity is that we likewise do not
observe a late-time diffusive stage, and this is perhaps related to surface convergences.

Recall that LaCasce and Bower (2000) observed dispersion consistent with an inverse
cascade from scales of roughly 10 to 200 km, near the Gulf Stream. But they also observed
diffusive spreading at the largest scales (greater than 200 km). The difference may be that
their study employed subsurface � oats which are less subject to divergence effects.

However, the large scale dispersion can also possibly be explained by stochastic mixing
in the presence of a lateral shear (e.g. Bennett, 1987). Consider a linearly-sheared zonal
� ow with isotropic stochastic (random) motion superimposed. The pair displacements
would obey:

Dy } t1/2, Dx } t1/2 1 U~y!t ® Dx } t3/2 1 Out1/2u, (8)

and the zonal dispersion would hence increase cubically in time. We have several
indications of lateral shear. For one, we see that pairs in the western Gulf are advected by a
boundary current (Fig. 1). Second, the SCULP1 relative dispersion increases faster than the
SCULP2 dispersion initially, perhaps with a power law growth. Lastly, the displacement
kurtoses are anisotropic in the late phase, with non-Gaussian displacements only in the
meridional direction (Fig. 8). Shear dispersion could also prevent late-time diffusion.

But there are objections to the shear explanation as well. For one, it would be only by
coincidence that shear dispersion begins at the deformation radius. Why wouldn’t the
transition from exponential growth occur at a larger scale? Second, a linear shear should
draw triangles of particles out; in the example above, the aspect ratio of the longest leg
divided by the height should increase linearly in time. Our three particle statistics indicate
the opposite occurs. The only way to explain our results would be if the early exponential
growth was occurring perpendicular to the shear, which seems unlikely.

However, given the different indications, we believe that neither shear dispersion nor an
inverse cascade can rigorously be ruled out. And of course, both might be occurring
simultaneously.

A reviewer pointed out that the present results, regardless of any association with 2-D
turbulence, are probably still indicativeof the Eulerian energetics. As discussed by Bennett
(1987) and Babiano et al. (1990), relative dispersion can be used to deduce the wavenum-
ber spectrum of the kinetic energy. The relationship between the kinetic energy spectrum
and the vorticity spectrum, V(k):

V~k! 5 k2E~k!,

does not require the � ow to be solenoidal, merely isotropic. So the drifter dispersion may
re� ect the surface kinetic energy spectra, regardless of surface divergence effects.
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We wondered whether the non-conservation of the triangle areas at the earliest times
was evidence of surface divergence effects. But this need not be true; such growth can also
occur in a non-divergent � ow if the particles experience random perturbations. Consider
the random strain model of Kraichnan (1974). In this, the separation vector D between two
particles evolves according to:

d

dt
D1 5 pD1,

d

dt
D2 5 2pD2 (9)

where D1 and D2 are the separation components in the direction of the principal axes of the
local rate of strain tensor, and p is a stationary random variable. This model yields
exponential growth and contraction and moreover reproduces most of the statistical
features of an enstrophy cascade (Bennett, 1984).

As we have seen, the drifters experience small scale (order 1 km) de� ections (Fig. 12)
due possibly to Ekman advection, windage effects or positioning errors. To incorporate
these into the random strain model, we would append stationary noise terms to the RHS of
both equations in (9). Then, under the same limit considered by Kraichnan (in which the
decay time associated with the mean of p is much longer than the decorrelation time of p),
the separations parallel to the strain axis would grow exponentially but the normal
separations would grow diffusively (as time to the one-half power). Triangle areas would
then likewise grow exponentially in time, and with an e-folding time consistent with that
deduced from two particle dispersion. So areal growth need not re� ect surface divergence.

The observation of exponential growth is probably the most signi� cant � nding in the
present study. LaCasce and Bower (2000) also looked for this but did not � nd it. We have
had two advantages in this regard: (1) we have much smaller initial pair separations (1 km
rather than 10 km) and (2) the deformation radius is slightly larger in the Gulf of Mexico
(45 km vs. 10–30 km). The result is a longer range of scales over which to observe such
stretching.

With regards to the Gulf of Mexico, the most interesting observation may be of local
turbulent straining. The Loop eddies are a well known feature here (Kutsenov et al., 2002
and references therein). But our results suggest a spectral continuumof eddies, with eddies
of a given scale affecting relative dispersion at the same scale.

Lastly, these results tell us something about the fate of tracers at the sea surface in the
Gulf, for instance spilled oil. Exponential stretching is associated with the drawing out of
tracer into long � laments. These � laments become narrower as they lengthen, until lateral
mixing limits their collapse (Garrett, 1983). Such � lamentation is very different than
simple lateral diffusion because maximum concentrations and strong gradients are better
preserved. Recognizing this, as well as the scales up to which exponential growth occurs,
could well aid spill containment strategies.
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