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A generic length-scale equation for geophysical
turbulence models

by L. Umlauf1 and H. Burchard2

ABSTRACT
A generalization of a class of differential length-scale equations typically used in second-order

turbulence models for oceanic � ows is suggested. Commonly used models, like the k-e model and
the Mellor-Yamada model, can be recovered as special cases of this generic model, and thus can be
rationally compared. In addition, a method is proposed that yields a generalized framework for the
calibration of the most frequently used class of differential length-scale equations. The generic
model, calibratedwith this method, exhibits a greater range of applicabilitythan any of the traditional
models. Strati� ed � ows, plane mixing layers, and turbulence introduced by breaking surface waves
are consideredbesides some classical test cases.

1. Introduction

Together with the � rst attempts to apply so-called Reynolds-stress models to oceano-
graphic problems almost three decades ago, an ongoing debate about the best choice for the
equation determining the outer length-scale of turbulence in these models started. Numer-
ous variables have been suggested since then, among the most successful ones the product
of the turbulent kinetic energy, k, and the length scale of turbulence, l, in the model of
Mellor and Yamada (1982) (‘MY82’ in the following), and the rate of dissipation, e, in the
k-e model of Rodi (1987), ‘R87’. Very recently, Umlauf et al. (2003) extended the k-v
model3 of Wilcox (1988), ‘W88’, to buoyancy affected � ows and compared with the
MY82 and R87 models in typical oceanic situations.

Facing the fact that this list is far from complete, the problem of a rational and
comprehensive evaluation of this class of models is evident. Various arguments have been
used in the past to defend one or the other of these models. MY82 stated for example that
an equation for e is ‘fundamentally wrong,’ since a small-scale parameter like e cannot
describe a macro-scale of turbulence. R87 found this line of argumentation ‘rather
academic,’ because equations for the length-scale determining variable are found most
often in a quite empirical way.

1. Laboratoire d’Hydraulique Environnementale (LHE), Faculté ENAC, Ecole Polytechnique Féderalé de
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3. v is de� ned as the speci� c dissipation rate v } e/k.
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In this context, it should be noted that virtually all Reynolds-stress and two-equation
models adopt, explicitly or implicitly, the classical cascading model e } k3/2l2 1. This
relation, or its mathematical equivalent formulated in any other variable, can be used to
express the transport equation for one variable (say, e) in terms of any other (say, kl ).
Hence, physically, there is no objective advantage in formulating a transport equation
for a particular variable instead of any other. Mathematically and numerically,
however, the properties of the corresponding model can be strongly affected by the
choice for the length-scale determining variable. An example is the inconvenient
requirement of a wall-function in the kl equation of MY82 to reproduce the fundamen-
tal law of the wall. Neither the R87 nor the W88 model require such modi� cations. Due
to very similar parameterisations, however, all three models can be considered as
physically identical.

Even though there are a number of attempts to compare the properties of existing models
for the length-scale equation (e.g. Speziale et al., 1990; Wilcox, 1998; Burchard et al.,
1998; Burchard and Petersen, 1999; Umlauf et al., 2003), we found no rational investiga-
tion of the interesting question about the optimal choice of the length-scale variable and its
transport equation considering all possibilities among a given class of models. The generic
transport equation for the turbulent length-scale presented here is a tool to evaluate this
question. Besides this, all traditional models can be recovered as special cases of this
generic equation, and hence can be conveniently compared. We derive a set of analytical
solutions of this generic model, use them to calibrate the model constants, and demonstrate
the fundamental properties of the whole class of models. In a general framework, we
illustrate the sensitivity and fragility of these models with respect to parameter changes.
Besides the analysis of the properties of this class of models, the main result is a reliable
and robust length-scale equation with almost fully controlled properties and a greater range
of applicability in marine modelling than any of the traditional models.

The outline of the paper is as follows. In Section 2, we suggest a general framework for
the transport equation of the length-scale determining variable for the family of models
discussed here. Together with the transport equation for k and a so-called Algebraic
Reynolds-Stress Model (ASM), a generic two-equation model is de� ned. In Section 3, the
model parameters of this generic model are restricted by applying it to some standard, in
particular strati� ed, turbulent � ows. In addition, the pure balance between turbulent
transport and dissipation in shear-free, unstrati� ed and stationary turbulence is considered
in detail. It is demonstrated how this � ow relates to some recently publishedmodels for the
effects of breaking surface waves in the ocean. An analytical solution of the non-linear set
of differential equations describing this � ow is suggested and the performance of a number
of well-known two-equation models in the wave-breaking case is investigated. It is
demonstrated in Section 4 how the form of the generic length-scale can be restricted by
combining all constraints and investigating their interrelations. We use Section 5 to
con� rm the analytical � ndings with some numerical results, present an oceanographic
application, and � nally draw our conclusions in Section 6.
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2. The generic model

In this section, we present a transport equation for the generic length-scale c de� ned
below. This equation generalizes the traditional transport equations used in marine
modeling. It can either be solved in the context of any higher-order turbulence closure
model, or it can be regarded as the second equation of a generic two-equation model. Then,
it is solved simultaneously together with the classical transport equation for the turbulent
kinetic energy, k.

We formulate the transport equation for c as simply as possible. Nevertheless, it is
general enough to identify a number of well-known two-equation models used in
oceanography and meteorology as special cases of the generic model for appropriate
parameter sets. Thus, the concept outlined here allows for a rational and comprehensive
investigation of these models. Among them are the k-e model (in the form presented by
R87), the k-v model of W88 as modi� ed by Umlauf et al. (2003), and the model of
Zeierman and Wolfshtein (1986) (‘ZW86’ presently not used in geophysical modeling).
Some two-equation models, however, do not entirely � t in the framework of the generic
model and have to be treated separately. An example is the k-kl model of MY82. Because
of its outstanding position in geophysical modeling, we shall discuss some aspects of this
model explicitly.

a. The generic two-equation model

The � rst equation of the generic two-equation model introduced here describes the
evolution of the turbulent kinetic energy, k. This quantity is balanced according to

]k

]t
1 ui

]k

]xi
5 $k 1 P 1 G 2 e, (1)

which follows immediately from the contraction of the transport equation of the Reynolds
stress tensor, ^u9iu9j&. Here and in the following, ui and u9i refer to the components of the
mean and � uctuating parts of the velocity vector in the direction of the Cartesian
coordinates xi, and ^. . .& denotes the ensemble average. $k summarizes the turbulent and
viscous transport terms, and e is the rate of dissipation of k. P and G relate to the
production of turbulent kinetic energy by mean shear and buoyancy.

The solution of (1) requires the knowledge of e. In addition, common closure assump-
tions for the unknown correlation terms in the transport equations for the higher moments
also require the prescription of a � eld uniquely determining the outer time-scale of
turbulence, t. This quantity may be calculated from k and the rate of dissipation, e, but
equally well from any of the other � elds already mentioned.

Here, we suggest a generalization of the different approaches by formulating a transport
equation for a ‘generic’ statistical � eld variable, c. We require that c is uniquely related to
the � elds of k and e according to

c 5 c̃~k, e!, (2)
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where c̃ denotes an invertible function. Then, e can be computed for any given pair of k
and c, and other turbulent quantities are easily obtained; e.g., the integral length-scale, l,
can be derived from the spectral transport relation

l 5 ~cm
0 !3

k3/2

e
, (3)

where cm
0 denotes a constant of the model. We restrict the functional form of c̃ in (2) further

by assuming that its dependenceon k and e can be separated by products of powers of these
quantities,

c 5 ~cm
0 !pkmen, (4)

where the exponents p, m, n are real numbers, and the model constant appearing in (4) is
expressed in terms of cm

0 for convenience. It is evident from (3) that this equation is
identical to an equation of the form

c 5 ~cm
0!pkmln, (5)

which we prefer here for reasons explained below.
Now, we formulate a transport equation for the variable c of the form

]c

]t
1 u i

]c

]xi
5 $c 1

c

k
~cc1P 1 cc3G 2 cc2e!, (6)

where $c denotes the turbulent and viscous transport terms of c, and cc1, cc2, and cc3 are
model constants. The shape of (6) is suggested by the traditional model equations for e, kl,
and v used in ocean modelling. Additionally, (6) is the simplest, dimensionally correct
form including the effects of turbulent transport, shear production, buoyancy production
and dissipation. It would have been possible to add more terms to the right-hand side of (6)
to account for some more aspects of rotation and strati� cation. For the introduction and
investigation of the basic properties of the generic model, however, we considered it
completely suf� cient to use the simple form (6).

With c following from (6), the rate of dissipation, e, can be computed from (5) and (3)
according to

e 5 ~cm
0 !31~p/n!k~3/2!1~m/n!c2~1/n!. (7)

For appropriate values of the exponents p, m, n in (5), a number of well-known models
can be directly recovered from (6). Some examples are given in Table 1. Model constants
for these models are compiled in Table 2.

It should be noted here that the factor (cm
0 )p appearing in (5) has been introduced only to

make c completely identi� able with any of the traditional variables like kl, e, and v by
simply adopting the parameters from Table 1. Mathematically, however, this factor is
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irrelevant. This is easily understood from the fact that (6) (with $c modelled according to
(11) below) can be multiplied by any constant without changing the solution.

We want to point out that not all models � t perfectly well in the framework of the
transport equation (6). The model of MY82 e.g. requires so-called wall functions to
correctly reproduce the logarithmic part of the law of the wall and also differs slightly in
the formulation of the turbulent transport terms. Strictly speaking, for this model the values
of the Schmidt-numbers in Table 2 apply only in the logarithmic wall layer (see Mellor and
Yamada, 1982).

b. The generic model in horizontally homogeneous � ows

In horizontally homogeneous � ows, in which mean and turbulent quantities (except the
mean pressure) are assumed to vary only in the direction of the vertical coordinate, z,
aligned with the acceleration of gravity, g, the fundamental properties of the generic model
can be investigated with purely analytical tools. Horizontally homogeneous � ows are also
a useful � rst order approximation for many geophysical situations. For these reasons, we
restrict ourselves to such � ows in the following.

With the above assumptions, the shear and the buoyancy production, P and G , can be
expressed according to4

P 5 2^u9w9&
]u

]z
2 ^v9w9&

]v

]z
5 ntM

2, G 5 ga^u9w9& 5 2nt
uN2, (8)

where u denotes the temperature and a the volumetric expansion coef� cient5. nt and nt
u are

the vertical turbulent diffusivities of momentum and heat, and

M2 5 S ]u

]z D
2

1 S ]v

]zD
2

, N2 5 ga
]u

]z
(9)

are referred to as the (squares of the) shear frequency and the buoyancy frequency,
respectively.

4. We use u 5 u1, v 5 u2, w 5 u3 and x 5 x1, y 5 x2 and z 5 x3.
5. For simplicity, it is assumed here that buoyancy is only due to thermal expansion.

Table 1. Exponents p, n, m de� ned in (5) and relation to the variable of the second equation in some
well-known two-equationmodels.

c Two-equation model by: p m n

v Wilcox (1988) 21 1

2
21

kl Mellor and Yamada (1982) 0 1 1

e Rodi (1987) 3 3

2
21

kt Zeierman and Wolfshtein (1986) 23 1
2

1

2003] 239Umlauf & Burchard: Length-scale equation for turbulence models



With the Algebraic Stress Models (ASMs) typically used in geophysical turbulence
models, the vertical turbulent diffusivities in horizontally homogeneous � ows can be
expressed as

n t 5 cmk1/2l, n t
u 5 c9mk1/2l, (10)

where cm and c9m are sometimes referred to as the ‘stability functions.’6 The stability
functions follow directly without further assumptions from the ASM and depend non-
linearly on nondimensional parameters describing the stability of the � ow, such as the
shear-number, S 5 k/e uM u, or the turbulent Froude-number, Fr 5 Nl/k1/2 (Mellor and
Yamada, 1974; Canuto et al., 2001). Note that cm 5 cm

0 in the unstrati� ed logarithmic
boundary layer by de� nition. The particularly simple forms of (8) and (10) in horizontally
homogeneous � ows allow for simple analytical solutions of the model equations retaining,
however, the complete information of the ASM. An extensive amount of literature is
available about stability functions and their derivation, and hence this topic will be
addressed only very brie� y below (see e.g. Burchard and Bolding (2001) and the
references therein).

For compatibility with the traditional models, the turbulent transport terms $k and $c,
appearing in (1) and (6) are expressed by gradient formulations,

$k 5
]

]z S nk
c

]k

]zD , $c 5
]

]z S nc

]c

]z D , (11)

where the diffusivities of k and c are related to the eddy diffusivity, nt, according to

nk
c 5

n t

sk
c , nc 5

n t

sc
(12)

via the constant Schmidt-numbers, sk
c and sc.

6. Note, that the function cm de� ned here is different from a constant of the same name used by R87 for the
standard k-e model.

Table 2. Model constants of some standard models converted to the notation used here. The values
of cc 3 for the models of W88 and R87 are discussed in Section 3d.

cm
0 sk

c sc cc1 cc2 cc3

k-v (W88): 0.5477 2 2 0.555 0.833 (see text)
k-kl (MY82): 0.5544 1.96 1.96 0.9 0.5 0.9
k-e (R87): 0.5477 1.0 1.3 1.44 1.92 (see text)
k-t (ZW86): 0.5477 1.46 10.8 0.173 0.225 (—)
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3. Constraints on the model parameters

Any second-order model is expected to yield reasonable results in some standard
situations like the decay of homogeneous turbulence behind a grid or the logarithmic
region of the law of the wall. Usually, reliable measurements exist in such situations and it
is straightforward to adjust the model parameters accordingly and hope that the model will
yield reliable extrapolations also to non-standard situations.

In this section, we investigate the properties of the generic model (1) and (6) in some
fundamental � ows commensurate with the approximationsintroduced in Section 2b. These
� ows, though being fundamental, are evidently also highly relevant in marine modelling.
More speci� c oceanographic � ows are considered below.

If it is assumed that the application of the model to each standard � ow results in a
constraint on the model parameters in form of an algebraic equation independent of all
others, the number of constraints that can be satis� ed at most is identical to the number of
model parameters. In the case of the traditional models, these are the six parameters are cm

0 ,
cc1, cc2, cc3, sk

c , and sc. Hence, with any model of this type it will be impossible to
account for more than six independent constraints. However, if the structure of the model
itself (i.e. the power exponents m and n appearing in (5)) is considered variable, two new
degrees of freedom can be gained. We shall refer to this property of the generic model as
its polymorphism in the following. Clearly, there may as well exist a number of con-
straints that are not independent and hence cannot be satis� ed by simply calibrating
model parameters. In such cases, the quality of the model determines, whether such
constraints can be satis� ed, at least approximately, or not. An example will be encountered
in Section 3c.

a. The logarithmic boundary layer

The � rst constraint follows from an application of the generic model to the logarithmic
boundary layer near rigid surfaces. If we de� ne the friction velocity, u* 5 (tw/r)1/2 (tw is
the shear-stress at the wall), the von Kármán constant, k, and the distance from a rigid wall,
z, well-known relations like l 5 kz and ]u/] z 5 u*/(kz) can be shown to hold7. With the
help of the transport equation of the turbulent kinetic energy, (1), it can be demonstrated
that the generic model predicts a constant k throughout the logarithmic layer according to

k 5

u*
2

~cm
0 !2 . (13)

The constant (cm
0 )2 is known to adopt a value of (cm

0 )2 ’ 0.3 (see Townsend, 1976; Mellor
and Yamada, 1982). It is a basic requirement for any stability function, cm , de� ned in (10),
to converge to this value in the logarithmic boundary layer.

7. It is assumed that the turbulent scale, l, introduced in (3) coincides with Prandtl’s mixing length, kz, close to
walls.

2003] 241Umlauf & Burchard: Length-scale equation for turbulence models



The second constraint arises from the insertion of the law-of-the-wall relations in the
second equation of the generic model, (6). To be compatible with the law of the wall, this
equation requires that

sc 5
n2k2

~cm
0 !2~cc2 2 cc1!

. (14)

With the exponent n taken from Table 1, corresponding relations for the traditional
two-equation models can be easily constructed from this equation.

Table 3 summarizes some model constants satisfying the compatibility relation (14).
The MY82 model computes a value of k 5 0.4 only when a term resulting from the wall
function of this model is added to cc2 in (14) (see Umlauf et al., 2003). Note the high value
of the standard R87 model.

b. Decay of homogeneous turbulence

Another example of a simple but fundamental turbulent situation is the temporal decay
of isotropic, homogeneous turbulence (approximated by the spatial decay of turbulence
behind grids in laboratory settings). At large times, t, data from many experiments are well
described by a power law of the form

k

k0
5 AS t

t0
D d

, (15)

with constant A and initial values of the kinetic energy, k0, and the eddy turnover time, t0.
The decay rates, d, have been thoroughly documented. Experiments (Bradshaw, 1975;
Townsend, 1976; Domaradzki and Mellor, 1984; Mohamed and Larue, 1990) suggest that
d is in the range 21.3 , d , 21. DNS, generally conducted at low Reynolds numbers,
produce consistently higher values. For example, Briggs et al. (1996) obtain a value near
21.5 from their DNS. Here, we adopt the intermediate value d 5 21.2 and remark that
none of results presented below is sensitive with respect to small changes in d.

In homogeneous decaying turbulence, (1) and (6) reduce to a balance between the rate
and dissipation terms, respectively. The coupled system of ordinary differential equations
can be solved for given initial values k0 and c0. The solution can be shown to reduce to
(15) at large times. Then, the decay exponent, d, is determined by

Table 3. Model parameters consistent with (14). The values have been derived by assuming the
standard value cm

0 5 0.5477 for the k-v model, the k-e model and the k-kt model, and cm
0 5

0.5544 for the MY82 model. Note, that the MY82 model requires an additional wall-function to
yield k 5 0.4.

k-v (W88) k-kl (MY82) k-e (R87) k-kt (ZW86)

k (orig.): 0.409 0.4 0.433 0.41
k 5 0.4: sv 5 1.92 s l 5 1.96 se 5 1.11 st 5 10.26
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d 5 2
2n

2m 1 n 2 2cc2
, (16)

and thus depends only on the structure of the model (i.e. m and n) and the model constant
cc2. For given exponents m and n, the experimental value of d implies the third
fundamental constraint on the model parameters. Note, that the predicted decay rate, d, is
completely independent of the ASM.

The decay rates for k predicted by some models8 are summarized in Table 4. It can be
seen that all models compute results in the range of the measurements, and, in fact, most
models have been calibrated to perform well in this situation.

c. Homogeneous turbulent shear � ow

A natural extension of decaying homogeneous turbulence is the inclusion of an
homogeneous shear and an aligned homogeneous strati� cation. Since turbulence is still
assumed to be homogeneous, the divergence of any turbulent transport term vanishes and
the intricate interplay between the stabilizing effects of strati� cation and the destabilizing
action of shear can be isolated. Thus, it is not surprising that this highly interesting special
case of turbulence has been explored extensively by laboratory experiments (Tavoularis
and Corrsin, 1981a,b; Tavoularis and Karnik, 1989; Rohr et al., 1988), by Direct
Numerical Simulation (Gerz et al., 1989; Holt et al., 1991; Jacobitz et al., 1997; Shih et al.,
2000) and by Large-Eddy Simulation (Kaltenbach et al., 1994). That � ows of this kind are
also crucial in many oceanographic � ows has recently been pointed out by Baumert and
Peters (2000).

In the context of the generic two-equation model, this turbulent � ow is mathematically
established by neglecting the turbulent transport terms and the advective part of the
material time derivative. Then, (1) and (6) reduce to a set of ordinary differential equations
and it can be shown that all two-equation models discussed here are isomorphic (Baumert
and Peters, 2000).

Using the chain rule of differentiation, the relation

1
l

dl

dt
5

1
n

1
c

dc

dt
2

m

n

1
k

dk

dt
(17)

8. (16) also applies to the MY82 model, since homogeneous turbulence can only occur distant from walls,
where the in� uence of the wall function of this model is negligible.

Table 4. Temporal decay rate, d, for homogeneous,unstrati� ed turbulenceas computed by different
two-equationmodels.

k-v (W88) k-kl (MY82) k-e (R87) k-kt (ZW86)

decay rate d 21.2 21 21.087 21.29
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for the mixing length, l, follows immediately from (5). With (17), the generic model
expressed by (1) and (6) can be used to derive an evolution equation for the integral length
scale, l,

1
l

dl

dt
5 2S1

n
cc2

2
m

nD e

k
1

1
k SS1

n
cc1

2
m

n DP 1 S1
n

cc3
2

m

nDGD . (18)

Completely analogous, the turbulent time-scale, t 5 k/e, evolves according to

1
t

dt

dt
5 2S1

n
cc2 2

m

n
2

1

2D e

k
1

1
k S S1

n
cc1 2

m

n
2

1

2DP 1 S1
n

cc3 2
m

n
2

1

2DGD . (19)

Tennekes (1989) derived an equation similar to (18) (however only for the special case of
the k-e model applied to unstrati� ed � ows) and stated that ‘on dimensional grounds, l
cannot depend upon the shear because the shear is homogeneous and cannot impose a
length scale’ (also see Baumert and Peters (2000)). Since the shear production, P, of
course, depends on the shear, this important statement requires the factor in front of P in
(18) to vanish9. This leads to the fourth fundamental constraint,

cc1 5 m. (20)

Comparison of the values of m from Table 1 with the actual model parameter cc1 from
Table 2 illustrates that, in fact, all models, except the model of ZW86, are close to this
constraint. The value ce1 5 3/ 2, given in Table 1 for the k-e model, corresponds precisely
to the value suggested by Tennekes (1989) for this model.

There is considerable experimental support for the theoretical argument of Tennekes.
Tavoularis and Karnik (1989) compiled a large number of laboratory results of quasi-
homogeneous turbulence subject to a homogeneous shear (but without active strati� cation)
and explicitly stated that the growth rate of the integral scale ‘is essentially independent of
the shear.’ Besides this, many experiments and numerical investigations cited in the
introduction to this subsection indicate that for situations with strong shear, turbulence
reaches a state of ‘structural equilibrium,’ in which the turbulent time-scale, t, is
approximately constant and the turbulent parameters exhibit exponential growth10. It is
easy to show that for tÇ 5 0 also the generic model predicts exponential growth of turbulent
quantities like k or the Reynolds stress tensor, ^u9iu9j&.

It is instructive to look at the implicationsof Tennekes argument for unstrati� ed � ows in
structural equilibrium in the context of the generic model. First, it should be noted that in
structural equilibrium the left hand side of (19) is zero by de� nition (t is constant). Then,
(19) becomes algebraic and can easily be solved for cc1, yielding

9. Evidently, the same argument does not apply to the buoyancy term in (18). It is well-known that buoyancy
does set an upper limit (usually referred to as the Ozmidov-scale) to the vertical turbulent length-scale also in
homogeneous turbulence.

10. This statement applies at least to the high Reynolds-number runs in the recent DNS of Shih et al. (2000).
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cc1 5 m 1 nS e

P S 1
n

cc2 2
m

n
2

1

2D 1
1

2D , (21)

or, by expressing cc2 with the help of (16),

cc1 5 m 1 nS e

P

1
d

1
1

2D . (22)

Comparison with (20) reveals that models calibrated according to Tennekes argument, and
according to (16), in structural equilibrium necessarily require

e

P
5 2

d

2
, (23)

completely independent of the ASM. For a commonly accepted value of d 5 21.2 (see
above), one obtains e/P 5 0.6, not far from e/P ’ 0.68, suggested by Tavoularis and
Karnik (1989). Above this, expressing the shear-production, P, according to (8) and using
(3) and (10), it is a few algebraic steps to show that

e

P
5

1

cm
e S2 5 2

d

2
, (24)

where we used

cm
e 5 ~cm

0 !3cm, S 5
k

e
uM u (25)

for convenience.
Since the stability function cm

e , resulting from an appropriate ASM, in general depends
on the shear number, S, the second equality in (24) constitutes a non-linear equation for S.
As an example, we discuss a stability function recently suggested by Canuto et al. (2001),
which simpli� es in the absence of strati� cation according to

cm
e 5

0.107 2 0.00012S2

1 1 0.0287S2 2 0.0000337S4 , (26)

(see Burchard and Bolding, 2001). Solving (24) for this stability function, a shear-number
of S 5 5.39 is computed, close to the value S ’ 5 suggested by many laboratory
experiments (see Wilcox, 1998). Note, that the stability function of Canuto et al. (2001)
adopts the value cm

e 5 0.057 in structural equilibrium, considerably lower than the value
cm

e 5 0.09 used in the standard models of ZW86, R87, and W88. The predicted
dimensionless shear-stress ^u9w9&/k 5 20.31 is in good agreement with the value
^u9w9&/k ’ 20.32 found by Tavoularis and Karnik (1989). Thus, Tennekes argument
leads to a highly consistent behaviour of the generic model in structural equilibrium and
hence (20) proves to be a simple but powerful constraint.

Another interesting result can be obtained from the combination of some of the previous
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� ndings. Expressing cc2 and cc1 by (16) and (20), respectively, the compatibility relation
(14) can be re-written as

sc 5
2k2d

~cm
0 !2~d 1 2!

n, (27)

which illustrates that for all meaningful values of the temporal decay rate, 22 , d , 0,
the exponent of the length-scale, n, must be negative in order to insure sc . 0. Thus, all
models with positive n will require additional wall-functions. This is in particular true for
the k-kl model of MY82 with n 5 1.

d. Mixed layer deepening

The correct prediction of mixed layer deepening into a strati� ed � uid due to a wind
stress at the surface is one of the most crucial requirements for an oceanic turbulence
model. This situation has been frequently interpreted by analogy with the classical
experiment of Kato and Phillips (1969) and its re-interpretation by Price (1979), in which
the entrainment in a linearly strati� ed � uid subject to a constant surface stress was
investigated. The results of this experiment have been used by numerous authors to
calibrate their turbulence models.

In particular, it has been shown by Burchard and Bolding (2001) for the R87 model, by
Burchard (2001a) for the MY82 model, and by Umlauf et al. (2003) for the W88 model
that, remarkably, the mixed layer depth predicted by these models depends almost
exclusively on the value of the Richardson number, Ri 5 N2/M2, computed in a
homogeneous, strati� ed shear-� ow in steady-state. This value is usually referred to as the
steady-state Richardson number, Rist (Rohr et al., 1988; Kaltenbach et al., 1994; Jacobitz
et al., 1997; Shih et al., 2000).

Generalizing the procedure of the above authors, we � rst assume tÇ 5 0 and P 1 G 5 e

in (19). Then, expressing the production terms P and G by (8) and (10), the steady-state
Richardson number, Rist, follows from (19) according to

Rist 5
cm

c9m

cc2 2 cc1

cc2 2 cc3
. (28)

Since it is well-known that, with the equilibrium assumption, stability functions reduce to
functions of Ri only (Mellor and Yamada, 1974; Galperin et al., 1988), (28) is a nonlinear
equation for the model constant cc3 for given Rist. Note, that the structure parameters, m
and n, do not appear in (28). This implies that the type of the two-equation model is
irrelevant for the prediction of the mixed layer depth, as long as (28) is ful� lled for
identical Rist. Numerical examples with very different values of m and n con� rmed indeed
that the mixed layer depth depends only on Rist. This extends the � ndings of the authors
mentioned above, who demonstrated that for all traditionalmodels the mixed layer depth in
the experiment of Kato and Phillips (1969) could almost perfectly be reproduced, provided
the parameter cc3 was chosen to correspond to Rist ’ 0.25 (see Umlauf et al., 2003). The
proper choice of cc3 constitutes the � fth fundamental constraint; its de� nite value is
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discussed in Section 4. Note, that in unstable situations, a different value of the parameter
cc3 needs to be used. This does not cause a discontinuity in the model because the
buoyancy term in (6) is zero at the transition between stable and unstable � ows. An
evaluation of the length-scale equations in convective � ows, however, is intimately related
to the third-order modelling of the triple correlation terms, a topic which is out of the scope
of this paper.

So far, � ve of six possible constraints for the traditional models have been prescribed.
We consider all of them to be fundamental for the class of models considered here. In the
following section, we concentrate on steady-state, quasi shear-free, inhomogeneous
turbulence, the only � ow exhibiting a pure balance between turbulent transport and
dissipation. This � ow is of importance in oceanographic turbulence models, since it
directly relates to some recently suggested models for turbulence generated by breaking
gravity waves in lakes or in the ocean.

e. Shear-free turbulence

The � rst step in understanding the behaviour of two-equation models in the surface layer
affected by breaking gravity waves is the investigation of a special case, in which
turbulence decays spatially away from a source without mean shear. Turbulence generated
by an oscillating grid in a water tank has been used in various laboratory settings to study
the spatial decay of velocity � uctuations in this basic turbulent � ow, where turbulent
transport and dissipation balance exactly. Having the in� uence of grid generated turbu-
lence on inter-facial mixing in strati� ed � uids in mind, pioneering works of this type were
conducted by Thompson and Turner (1975) and Hop� nger and Toly (1976). Since their
results were not entirely conclusive, a number of similar experiments followed until very
recently (Hannoun et al., 1988; Nokes, 1988; deSilva and Fernando, 1992; Cheng and
Law, 2001).

A direct numerical simulation (DNS) of the transport-dissipation balance at low
Reynolds numbers was performed by Briggs et al. (1996), who apparently were also the
� rst to investigate the performance of some standard down-gradient models for the
turbulent transport terms appearing in the balance equation of the Reynolds-stress tensor.
These authors found that the models for the transport terms underpredict the measure-
ments, but correctly reproduce the trends. Since the contraction of these (isotropic)
transport models leads to an eddy-diffusivitymodel as in (11), we assume that the turbulent
transport in shear-free turbulence is represented at least qualitatively correct in our model.
For this reason, we con� ne ourself here to the transport model (11) and investigate the
performance of the generic model (and other two-equation models) in this framework. The
implications of model performance in shear-free turbulence will be compared to available
data on breaking surface waves in Section 5.

All grid stirring experiments cited in Table 5 con� rm a power law for the decay of k and
a linear increase of the length scale l according to

k 5 K~z 1 z0!
a, l 5 L~z 1 z0!, (29)
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where K, L, and z0 are constants, and the source of turbulence has been assumed to be at
z 5 0. In these experiments, z0 5 l/L at z 5 0 is not related to any kind of surface
roughness length. Rather, it is connected to the length scale of injected turbulence which is
determined uniquely by the spectral properties of turbulence at the source. As already
pointed out by Thompson and Turner (1975), the decay of k occurs with respect to the
so-called virtual origin z 5 2z0 which never coincides with the position of the source. In
agreement with Hop� nger and Toly (1976), we de� ne the virtual origin as the point, where
the turbulent length-scale, l, becomes zero. It has been remarked by almost all authors that
the decay coef� cients are very sensitive with respect to small uncertainties in position of
the virtual origin.

The values in Table 5 suggest that the decay rate for the turbulent kinetic energy is likely
to be between 23 , a , 22. The values of L, i.e. the slope of the turbulent length scale, l,
indicate that in all cases L , k ’ 0.4. Despite this fact, all previous authors adopted L 5
k , which implies that length-scales in wall-bounded shear � ows and in shear-free � ows
behave identically (Craig and Banner, 1994; Burchard, 2001b).

In stationary, shear-free, unstrati� ed turbulence, the generic model simpli� es to a
balance between the turbulent transport terms and the dissipative terms in (1) and (6).
Using the de� nition of c, (5), and the scaling for the rate of dissipation, (3), the transport
and dissipation of k and c are balanced according to

d

dz S cm

sk
c k1/2l

dk

dzD 5 ~cm
0 !3

k3/2

l
,

(30)
d

dz S cm

sc

k1/2l
d

dz
~~cm

0 !pkmln!D 5 cc2~cm
0 !p13km1~1/2!ln21.

Note, that in shear-free turbulence, the shear number is S 5 0 by de� nition and stability
functions always reduce to a constant which is, however, different from the constant cm

0

approached in the logarithmic boundary layer. It follows, e.g., from (26) that for the ASM
of Canuto et al. (2001) this constant is cm 5 0.107.

Table 5. Decay exponent for the turbulent kinetic energy, a, and the constants of proportionalityfor
the length-scale, L, in grid stirring experiments and DNS. The values in brackets have been
calculated by assuming that the decay exponent for the horizontal velocity � uctuations is half of
that for k.

Measured decay rates: a L

Thompson and Turner (1975) 2(3.0) 0.1
Hop� nger and Toly (1976) 22.0 0.17–0.33
Nokes (1988) 2(1.7–3.0) —
Hannoun et al. (1988) 2(2.0) 0.1
Briggs et al. (1996), DNS 22.45 —
Cheng and Law (2001) 2(2.0) 0.06–0.2
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For the solution of this nonlinear system, we inserted the expressions (29) in (30). From
(3) and (10), power-laws follow then also for e 5 E( z 1 z0)b and nt 5 N( z 1 z0)g . A
similar method has already been used by Umlauf et al. (2003) to investigate the W88
model.

Inserting (29) into (30)1 yields the equation

~aL!2 5
2

3
~cm

0!2Rsk
c, (31)

where the constant ratio R 5 cm
0 /cm follows uniquely from the respective ASM. The

power-law (29) can also be inserted in (30)2 to yield

~am 1 n!S S 1

2
1 mD a 1 nD L2 5 ~cm

0!2Rsccc2. (32)

The physical meaningful roots of (31) and (32) are

a 5 2
4n~sk

c!1/2

~1 1 4m!~sk
c!1/2 2 ~sk

c 1 24sccc2!
1/2 ,

(33)

L 5 cm
0R1/2S ~1 1 4m 1 8m2!sk

c 1 12sccc2 2 ~1 1 4m!~s k
c~sk

c 1 24sccc2!!
1/2

12n2 D 1/2

.

For the standard models (without ASM), R 5 1 may be assumed. Then, with the values of
m and n from Table 1 and the model parameters from Table 2, solutions for the k-e model
of R87, and the k-v model of W88 can be directly recovered as special cases of this
equation. The solution for the MY82 (not shown) is slightly more complicated because of
the presence of the wall-function. Predicted decay rates for the turbulent quantities are
listed in Table 6. Comparison with the measured values in Table 5 reveals that of the
classical models only the model of W88 reproduces correct decay rates. The decay
predicted by the R87 is much too strong and, as illustrated in Figure 1, extremely sensitive

Table 6. Constant of proportionality,L, for the turbulent length scale, l. Decay exponent, a, for the
turbulent kinetic energy, b for the rate of dissipation, and g for the turbulent diffusivity, as
computed by different two-equationsmodels. k 5 0.4 refers to the models calibratedwith the help
of (14) to compute this value of the von Kármán constant. E2 5 0 refers to the model of MY82
without wall function.

Computed decay rates: L a b g

W88 0.25 22.53 24.79 20.26
W88, k 5 0.4 0.24 22.68 25.01 20.34
MY82 0.16 23.85 26.78 20.92
MY82, E2 5 0 0.22 22.87 25.30 20.43
R87, se 5 1.3 0.09 24.97 28.46 21.49
R87, k 5 0.4 0.025 217.78 227.67 27.89
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with respect to small changes in the parameters. In addition, the denominator in the
expression for a in (33) may become zero for certain parameters inside the range of those
most commonly used. Then, the decay rate becomes in� nite (see Fig. 1). For the standard
parameters of the R87 model, this ‘singularity’ occurs at se 5 se

crit ’ 1.042. For smaller
values of this parameter, model results become unphysical (see Section 5). The model of
MY82 predicts different decay rates depending on the in� uence of its wall-function. This
implies, quite unphysically, that the predicted decay for the same physical process depends
on the vertical position of its occurrence in the water column.

A more detailed discussion can be found in Umlauf et al. (2003). Some numerical results
are presented in Section 5.

4. Model calibration and polymorphism

Recall from the discussion in Section 3 that � ve of the six model parameters have
already been chosen to satisfy some fundamental constraints. Only one parameter is left:
The Schmidt number for the turbulent kinetic energy, sk

c . Since sk
c appears in both

equations of (33), either a or L can be adjusted to the measured values by varying this
parameter, but not both. After assigning a de� nite value to sk

c , the calibration possibilities
of the traditional models are exhausted and the value of the second quantity follows
automatically, and, regrettably, not in conformance with the measurements in most cases.
Any attempt of calibrating both, a and L, will inevitably violate one of the fundamental
constraints mentioned above.

Figure 1. Decay exponent, a, of the R87 model in shear-free turbulence as a function of the model
parameter se and ce2 according to (33)1 . For clarity, the exponents are cut off for a , 220 and
a . 0. The singularity of a is indicated by the vertical surface in the plot. The standard values are
se 5 1.3 and ce2 5 1.92. The value se 5 1.11 corresponds to k 5 0.4 according to Table 3.
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To overcome this problem, we propose to make use of the polymorphic nature of the
generic model and consider the structure of the two-equation model itself for calibration.
Accepting this point of view, two new ‘model parameters’, the exponents m and n de� ned
in (5), become available.

a. Model groups with common properties

The new approach is best demonstrated with an example. Supposed, we decide to
prescribe (inspired from Table 5) the values a 5 22.0 and L 5 0.2 in shear-free
turbulence, without touching any of the constraints mentioned earlier. Then, from (31) it
follows immediately that sk

c 5 0.8 (R 5 1 is assumed here for simplicity). Recall, that
(cm

0 )2 ’ 0.3, also appearing in (31), is dictated from the fundamental constraint (13) and
should not be changed signi� cantly.

Inserting the constraints (16) and (27) in (32), an equation expressing the exponent m in
terms of n (or vice-versa) can be obtained. The result for n can be written as

n 5 2
1

4~2 1 d!~k2R 2 L2!
~4dk2Rm 2 ~1 1 4m!~2 1 d!aL2

1 Î8m~1 1 2m!~2 1 d!2~k2R 2 L2!a2L2 1 ~24dk2Rm 1 ~2 1 d!~1 1 4m!aL2!2 !.

(34)

After assigning appropriate values for the von Kármán constant, k, the decay coef� cient of
homogeneous turbulence, d, the spatial decay rate, a, and the slope, L, an in� nite number
of pairs of m and n satisfying (34) can be derived. Each corresponds to a different
two-equation model. Some example are given in Table 7.

Even though each line in this table represents a different two-equation model with
completely different model constants, each of the two groups of models (with a 5 22.0
and a 5 22.5, respectively) performs completely identical in all situations discussed until
here. Thus, the generic model allows for the formulation of groups of two-equation models
with fully controlled properties from the outset. Figure 2 illustrates this fact graphically.
Each curve in this � gure represents a solution of (34) for a given set of constraints as
indicated in the caption. Models corresponding to these curves perform identically in all
standard situations with a and L as indicated. However, the models may exhibit a different

Table 7. Some parameter sets for the generic model with k 5 0.4, d 5 21.2, (cm
0 )2 5 0.3, cc 1

5
m and the log-layer compatibility relation, (27).

a L m n cc2 sk
c sc

22.0 0.20 1.00 20.67 1.22 0.80 1.07
22.0 0.20 2.00 21.09 2.36 0.80 1.75
22.5 0.20 1.00 21.05 1.35 1.25 1.68
22.5 0.20 2.00 21.74 2.58 1.25 2.78

2003] 251Umlauf & Burchard: Length-scale equation for turbulence models



behaviour in other situations not discussed yet. Applying the model to one more
independent constraint amounts to the selection of one point on each of the curves. In this
sense, the generic model can be regarded as a tool to objectively determine an optimal
two-equation model for a certain set of constraints.

Finally, it should be remarked that, from Section 3d, the steady-state Richardson number
Rist has to re-computed for each new combination of a two-equation model and an ASM.
Evidently, we cannot present all possible combinations here. However, Table 8 gives some
examples for the ASM of Canuto et al. (2001), combined with a number of well-known
models (including the generic model with m 5 1 corresponding to the � rst line of Table 7,
which will be our � nal recommendation). Numerical tests with these models demonstrated
that the mixed layer depth predicted for the experiment of Kato and Phillips (1969) were
almost identical to the experimental results, if the value Rist 5 0.25 was adopted (also see
Umlauf et al., 2003).

Figure 2. Graphical presentation of model groups that behave identically in the standard situations
with k 5 0.4, d 5 21.2, (cm

0 )2 5 0.3, cc 1
5 m and the log-layer compatibility relation, (27).

Also displayed are the positions of the k-e model and the k-v model. The dots mark two models
that were integratednumerically (see Section 5).

Table 8. Value of the model constant cc 3 corresponding to Ris t 5 0.25 computed from (28) for
different models and the ASM of Canuto et al. (2001). ‘Generic’ corresponds to the � rst line of
Table 7.

MY82 R87 W88 Generic (m 5 1)

2.62 20.629 20.642 0.05
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b. Plane mixing-layer

To � nd a � nal constraint with a certain generality, we considered a turbulent plane
mixing layer without strati� cation. Among other classical � ows like the turbulent wake
and jet, we felt that the plane mixing layer is of greatest relevance in oceanic situations.
The geometry of this � ow is sketched in Figure 3. Numerous experimental investigations
con� rmed the self-similarity of this � ow, in which statistical quantities depend only on the
similarity variable h de� ned as

h 5
y

d~x!
, (35)

where, according to all measurements, the function d( x) is linear in x.
Interestingly, the group of models considered here also exhibits a self-similar solution

for this � ow, and thus can directly be compared to the measurements. The transformation
of the governing equations into self-similar form is, however, somewhat tedious and
cannot be demonstrated here in full detail. An exhaustive discussion of the general
procedure can be found in some textbooks on turbulence (see Wilcox, 1998).

The � rst step is to re-write the statistical quantities in the plane mixing-layer in
self-similar form. The velocity for example is expressed as

u 5 U18~h!, (36)

where U1 is the velocity in the upper part of mixing layer for y ® ` (see Fig. 3). The
turbulent kinetic energy, k, and the length scale, l, are expressed in self-similar form as

Figure 3. Geometry of the turbulent mixing layer for a � ow with u 5 U1 in the upper layer and u 5
0 in the lower layer.
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k 5 _~h!U1
2, l 5 +~h!d. (37)

With the help of (3), (5), and (10), expressions for c, e, and nt, can be written as

c 5 3~h!U1
2mdn, e 5 %~h!U1

3d21, n t 5 1~h!U1d, (38)

respectively.
Using the above expressions, the governing equations for the mean and turbulent

quantities can be transformed into self-similar form, provided d 5 x is identi� ed in
accordance with the experiments. The balance of momentum can then be reformulated as

489 5 ~189!9 , (39)

where the primes denote derivatives with respect to h, and

4 5 2E
0

h

8dh (40)

has been introduced for convenience.
Similarly, equations for the turbulent kinetic energy,

4_9 5 1892 1 S 1

sk
c _9D 9 2 %, (41)

and the generic length scale,

n38 1 439 5
3

_
~cc11892 2 cc2

%! 1 S 1

sc

39D 9, (42)

can be obtained from (1) and (6).
We iteratively solved the nonlinear set of equations (39)–(42) with a � nite-volume

method on a staggered grid. The results for the model of MY82 (without wall-function),
the model of R87, and the model of W88 are presented in the left panel of Figure 4. All
models have been used in their ‘standard’ versions with constant cm . It can be seen that the
models roughly follow the classical data-set of Liepmann and Laufer (1947). Evidently,
however each model fails at either the upper or the lower end of the mixing layer. In
particular, these models predict a sharp interface between the turbulent and non-turbulent
regions at the ends of the mixing layer. Even though it is true that the instantaneous
interface is sharp, the same is not true for its average position as clearly indicated by the
data of Liepmann and Laufer (1947). Above this, a sharp interface may lead to serious
numerical inaccuracies (see Wilcox (1998)).

Results for the generic model with m 5 1 and m 5 2, corresponding to the � rst and
second line in Table 7, are displayed in the right panel of Figure 4. The spreading rate of the
plane mixing layer is clearly underpredicted by the model with m 5 2. However, with m 5
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1 the � t to the data is satisfying and at least as good as any of the traditional models, and
also the problem with the sharp mixing layer interface is avoided.

We therefore recommend this parameter set (including the parameter cc3 discussed in
the previous section), which yields a two-equation model with almost fully controlled
properties for a great range of typical oceanic � ows.

5. Discussion

Since the correct behavior of the generic model in standard situations (logarithmic
boundary layer, decay of homogeneous turbulence, etc.) is asserted by the calibration
procedure in Section 3, we discuss here the more speci� c case of a free surface � ow with
strong wind forcing and breaking waves.

It has been shown in numerous studies (Kitaigorodskii et al., 1983; Thorpe, 1984;
Osborn et al., 1992) that the simple assumption of a logarithmic law-of-the-wall � ow very
close to the surface does not hold under breaking waves. Using state-of-the-art measuring
techniques, recent publications (Anis and Moum, 1995; Terray et al., 1996; Gemmrich and
Farmer, 1999; Terray et al., 1999) suggested more re� ned models for the effects of wave
breaking and, in addition, proposals for the vertical distribution of the dissipation rate,
e( z), in the upper few meters in the ocean and in lakes. The results obtained by these
authors, however, exhibit a large scatter, and at present one has to conclude that the
mechanics of the wave breaking problem are not fully understood.

Nevertheless, there appears to be an agreement upon the following points:
(1) Turbulence is produced in a thin ‘breaking layer.’ Its thickness may be comparable to

the signi� cant wave height, Hs, if waves break (Terray et al., 1996). Some authors,
however, � nd much smaller values (Gemmrich and Farmer, 1999). (2) Below this layer,
turbulence is dominated by the balance between dissipation and turbulent transport of

Figure 4. Numerical solutions of (39)–(42) compared to the data of Liepmann and Laufer (1947).
Left panel: The traditional models of MY82, R87, and W88. Right panel: The generic model with
m 5 1 and m 5 2 according to the � rst two lines in Table 7.
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turbulent kinetic energy introduced in the ‘breaking layer.’ In this ‘transport layer,’ the rate
of dissipation probably decays according to a power law. (3) Below the wave affected
layer, where shear production becomes increasingly important, a � ow region with a
logarithmic velocity distribution exists.

Since little is known about the production mechanisms in the uppermost ‘breaking
layer’, we model the turbulent energy source simply by a � ux boundary condition of the
form

n t

sk

]k

]z
5 2hu*

3, (43)

where u* is the surface friction velocity and h ’ 100 an empirical model constant. The
minus sign accounts for the fact that k decreases away from the surface. This model was
suggested by Craig and Banner (1994). Its basic assumptions were later con� rmed by
Terray et al. (1996), at least for a fully developed wave � eld. Since we assume that the
thickness of the ‘breaking layer’ is of the order of Hs (see Terray et al., 1996), there is some
ambiguity about the precise position where (43) should be applied. In our case, z 5 0 refers
to the bottom of the unresolved ‘breaking layer’ and not to the water surface as e.g. in
Terray et al. (1996, 1999).

In the transport layer, the class of turbulence models presented here should predict
power-laws according to the shear-free solutions (see Section 3e), provided the local
shear-production is in fact negligible.However, due to the wind stress, velocity shear in the
upper part of the water column will always be present under breaking surface waves, and it
has to be examined to what extent the shear-free solutions presented above retain their
applicability.

In the models, the in� uence of the mean shear manifests itself in two ways: via the shear
production, P, and via the shear-number S appearing in (26). In that sense, the shear-
number is a structure parameter describing the relative in� uence of the mean shear on the
transport of turbulence away from the ‘breaking layer.’

To derive an expression for the shear-number in the ‘transport layer,’ we postulate that
the power laws (29) remain approximately valid even when shear caused by the wind-
stress is present. We will have to justify this assumption a-posteriori. To compute an
expression for the velocity gradient, recall � rst that the balance of momentum in a
stationary horizontal boundary layer without pressure-gradient simpli� es to

n t

]u

]z
5 2u*

2, (44)

where the unusual minus sign is due to the fact that the velocity actually decreases away
from the free surface (positive z). This equation is valid even with injection of k according
to (43). Substituting the power-laws (29) in (10), (44) can be solved for the velocity
gradient needed to compute S. We want to remark that by integrating the expression for the
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velocity gradient, it can be shown that the velocity decays according to a power law with
slope 2a/2.

With the help of (29), (3), and the parameterisation (43), a short calculation yields then

S 5 S 2

3D
1/3

~~cm
0 !3cmh~sk

c!1/2!22/3S z 1 z0

z0
D 2a

, 0.25S z 1 z0

z0
D 2a

, (45)

where the last inequality holds for all models considered here. Remarkably, the shear
number S does not depend on the normalized surface shear, u*

2, which is a direct
consequence of the cubic dependence of the � ux of k on u* in (43). S increases slowly
away from the surface but remains small compared to S ’ 3.5 in the log layer or S ’ 5 in
homogeneous shear-� ows provided z does not exceed a few times Hs, since z0 is of the
order of Hs (see Terray et al., 1996; 1999). From (26) it follows then that cm is very close to
the shear-free value cm 5 0.107, and the shear-free solutions (33) remain a good
approximation also in the case with u* Þ 0, i.e. in the wave-breaking case.

This interesting result states that a typical Reynolds-stressmodel predicts the mean shear
to affect the structure of turbulence in the ‘transport layer’ only marginally. However, if z
exceeds a few times Hs, the shear-number may be large. But then also the shear-production
becomes signi� cant and the shear-free solutions loose their validity always.

Clearly, this scenario relies on the concept of some ‘small-scale’ turbulence injected by
breaking waves in the presence of some ‘large-scale’ turbulence caused by local shear
production. Effects of large coherent structures (‘Langmuir-circulation’) may also be of
importance, but their effects on turbulent transport in the mixing layer are just beginning to
be understood, and currently no useful models exist for their inclusion into a Reynolds-
stress model of the type described here (see Thorpe et al., 2003).

a. Idealized test cases

The generic model was implemented and solved numerically with a � nite-volume
technique on a staggered grid. The resolution was in all cases � ne enough to exclude any
dependenceof the results on grid spacing. We considered the problem of spatially decaying
turbulence along the coordinate direction z from a planar source at z 5 0 with and without
a constant shear stress applied at z 5 0. The � ux of k was computed according to (43). All
results refer to the stationary case. The model runs were conducted for two different
parameter sets corresponding to the � rst and second parameter set given in Table 7 (with
m 5 1 and m 5 2). For comparison, also the results of the k-e model are discussed.

The left panel of Figure 5 illustrates the increase of the integral scale, l, with increasing
distance from the source in non-dimensional form. It is evident that in the shear-free cases
this scale increases linearly with a slope L 5 0.2, just as predicted by the theory (see Table
7). A remarkable feature of these pro� les is the virtual collapse of pro� les computed with
two different models corresponding to m 5 1 and m 5 2 in Table 7. This was to be
expected from the theory.

Wave breaking corresponds to the more realistic case with a surface shear stress added at
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z 5 0. Then, the model still predicts a boundary layer for ( z 1 z0)/l0 , 10 (the ‘transport
layer’), in which shear production is small compared to dissipation, and l behaves
according to the shear-free case. Below this layer (and a small transition region), the slopes
of the length-scales in both cases rapidly approach k 5 0.4, an indication for the existence
of a logarithmic layer (see below). The k-e model, displayed in the right panel of Figure 5
for two values of the model constant se in the neighborhoodof the standard value se 5 1.3
exhibits a similar behaviour. In accordance with the values of L in Table 7, the length scale
increases much slower than that of the generic model and, in fact, too slowly compared to
the measured values from Table 5.

Pro� les of the turbulent kinetic energy, k, for the same situation are displayed in Figure
6. The left panel of this � gures reveals that in the shear-free case the generic model almost
perfectly predicts a slope of a 5 22 and coinciding pro� les for m 5 1 and m 5 2 (as
required for the � rst two models in Table 7). For the cases with shear, again a boundary
layer for ( z 1 z0)/l0 , 10 develops, in which the pro� les coincide with those of the

Figure 5. Left panel: Dimensionless representation of the turbulent length scale, l, with distance z
from the source for the � rst two models from Table 7 with and without a constant shear at z 5 0.
Right panel: Same as left panel, but now for the standard k-e model with different values of se.

Figure 6. Same as in Figure 5, but now for the turbulent kinetic energy, k.
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shear-free cases. Below this layer, k tends to become constant, another indication for the
existence of a logarithmic region. The k-e model, displayed on the right panel of this
� gure, exhibits in principle a similar behaviour, even though for this model the decay is too
rapid compared to the measured values and is, as evident from the � gure, also very
sensitive with respects to small changes in the model parameter se (see Table 6).

The left panel of Figure 7 illustrates the numerical consequence of the singular behavior
of the k-e model: In the shear-free case, for se , se

crit 5 1.042 the length-scale tends to
decrease with increasing distance from the source, in contrast to all measurements. For
se 5 1.0, the decay of k, displayed in the right panel of Figure 7, does not conform to a
power-law. Due to the decreasing length-scale and the rapid decay of k, mixing is strongly
suppressed, even for small values of z. The cases with a constant shear stress at z 5 0 are
analogous to the previous results and the undesired behaviour of the k-e model beyond the
singularity is con� ned to the wave-affected boundary layer.

The structure of the velocity pro� le resulting from a constant shear and injection of k at
z 5 0 is investigated in Figure 8 for the generic model with m 5 1 and m 5 2. The left
panel of this � gure focuses on the upper layer with an approximate transport-dissipation
balance. Recall that it was remarked above that from the analytical solutions it can be
shown that the velocity decays according to a power law with slope 2a/2. Since in this
example we use a 5 22 (see Table 7), the velocity must decrease linearly in the ‘transport
layer’, and this is in fact observed in the left panel of Figure 8 for values smaller than ( z 1
z0)/z0 ’ 4.

A slope of k 5 0.4 for the integral scale, l, and the constancy of k are strong indicators
for the existence of a logarithmic velocity pro� le below the transport-dominated boundary
layer. Then, the velocity should decay logarithmically according to

u 5 2
u*
k

log
z 1 z0

z0
1 c, (46)

Figure 7. Same as the right panels in Figure 5 and Figure 6, but now for the case with se 5 1.0. The
negative values of the ordinate result from the fact that the virtual origin z 5 2z0 is reversed due
to the negative slope of the length scale, L.
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where c denotes an unknown constant determined by the outer region of the � ow. The
quantity z0 is usually referred to as the roughness length in this context. However, since
here the properties of the turbulence at the surface are set exclusively by its source, z0

cannot be related to any kind of ‘roughness’ in the classical sense. The value of z0 was
found by extrapolating the part of the pro� le with slope equal to k in the left panel of Figure
5 to the point, where it intersects the (nondimensional) z-axis11. The right panel of Figure 8
illustrates that the velocity pro� le indeed closely follows the predicted form of (46),
provided u is made dimensionless with quantities relevant to the logarithmic layer. This
panel also suggests that enhanced turbulence due to breaking waves leads to a reduction of
the surface speed with respect to the logarithmic velocity pro� le. This corresponds to
measurements in the upper layer discussed in Terray et al. (1999) and Umlauf et al. (2003).

b. Surface wave breaking

In this � nal section, pro� les of the dissipation rate e as computed by the generic
two-equation model are compared to observations of micro-structure under wind-driven,
breaking surface waves in oceans and lakes. As already discussed before, this � ow is a
generalization of pure shear-free turbulence.

Detailed measurements in the ‘transport layer’ demonstrated that the turbulent dissipa-
tion rate decays approximately according to a power law with slopes between b 5 22.7
and b 5 21.9, in contrast to a slope of 21 for the logarithmic law (see e.g. Terray et al.,
1996; Drennan et al., 1996; Anis and Moum, 1995). This is not necessarily in contradiction
with the laboratory observations compiled in Table 5, suggesting 25.55 , b , 23.55
from (3), since in both cases a different origin has been used. It has been by pointed out by
Terray et al. (1996) that even though their data suggest a decay rate of b ’ 22 (with

11. An analytical expression for the position of z0 can only be found by solving the full set of model equations
in steady-state, and such a solution is not available yet.

Figure 8. Dimensionless plot of the mean velocity, v, with distance, z, from the source. A constant
shear is applied at z 5 0. Left panel: Linear scaling with z0 . Right panel: Logarithmic scaling
with z̃0 .
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respect to the surface), they compare well to the model of Craig and Banner (1994) with
b 5 23.4 (with respect to the virtual origin, where l 5 0), if they are plotted with respect
to the same origin. To achieve agreement of the two origins, we compare models and data
by referring to the origin z 5 0 located at the bottom of the ‘breaking layer’ (see above).

Terray et al. (1999) displayed various oceanic measurements in one graph, non-
dimensionalised by the observed signi� cant wave height, Hs, and the surface friction
velocity, u*, and found that the data reasonably collapsed into one curve. To reproduce the
trends in these data, Burchard (2001b) investigated a k-e model with modi� ed turbulent
Schmidt number, se, yielding a decay rate of b 5 22.68 for the dissipation rate. Using the
same origin suggested also here, he was able to reproduce the data of Terray et al. (1999)
well for z0/Hs 5 0.5. However, this modi� ed k-e model was based on the assumption L 5
k 5 0.4 always, which is evidently not supported by laboratory experiments compiled in
Table 5.

We used the generic model with b 5 24, L 5 0.2, and k 5 0.4 to reproduce the data
compiled by Terray et al. (1999). The results are illustrated in Figure 9, which demon-
strates that most of the data are � tted well for z0 5 Hs, even somewhat different choices
for z0/Hs are conceivable. Only near the surface for z 1 z0 # Hs the observations are not

Figure 9. Observationsand simulations of turbulentdissipationrate in the wave-enhancedlayer. The
observations of Terray et al. (1996), Drennan et al. (1996) and Anis and Moum (1995) are
normalized by surface TKE � ux and signi� cant wave height, see Terray et al. (1999). The
simulations have been carried out with the generic model surface length scale z0 5 l0 /L to wave
height Hs ratios of 2.0, 1.0 and 0.5. For comparison, the logarithmic law and the shear-free case
have been included. The empirical constant h 5 100 is the coef� cient of proportionality for
relating the surface � ux of turbulent kinetic energy to the cubed friction velocity, u*.
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met very well for z0 5 Hs. However, this region belongs to the ‘breaking layer,’ which is
not resolved in our model by de� nition, and hence agreement cannot be expected.

Given all the uncertainties, we claim that the generic two-equation model yields
reasonable estimates of enhanced turbulence under breaking surface waves. However, as
already pointed out by Craig (1996), the major remaining problem is to estimate the
length-scale, z0, or the relevant scale of turbulence under breaking waves.

6. Conclusions

We discussed the properties of a family of differential length-scale equations typically
used in marine Reynolds-stress models of turbulent � ows. A general framework for these
equations was suggested, from which the most well-known ocean turbulence models can
be directly recovered as special cases: The k-kl model of MY82, the k-e model of R87, and
the extended k-v model of Umlauf et al. (2003).

This general framework for the length-scale equation can be regarded as both, a useful
tool to analyse existing models and a generalized model equation on its own, with free
parameters to be determined. We investigated both aspects.

The analysis of traditional models illustrated that they perform comparably in the
classical standard � ows, where production equals dissipation. However, in accordance
with earlier � ndings of Umlauf et al. (2003), it was demonstrated that in shear-free
situations, where the rate of dissipation is balanced by turbulent transport from an in� nite
planar source (e.g. a � eld of breaking surface waves), all models except the model of W88
fail. Even though this model appears to be the most generally applicable from a theoretical
point of view, it is known to exhibit an extreme sensitivity with respect to the prescribed
freestream value of turbulent quantities in free shear-� ows (mixing layer, free jet, wake).
This problem, which has not been discussed here, has been extensively investigated by
Menter (1992) and Wilcox (1998). In addition, even though all of the traditional models
predicted roughly the correct spreading rates for the unstrati� ed plane mixing layer, they
had dif� culties in reproducing the correct pro� les close to the edges.

In contrast, the generic length-scale equation, with parameters chosen in the way
suggested here, is free of these problems. We showed how the framework of this equation
can be used to derive a turbulence model with maximum control of its properties: After
choosing reasonable values for physically signi� cant key parameters, i.e. the von Kármán
constant, k, the homogeneous decay rate, d, the spatial decay rates, a and L , and the
steady-state Richardson number, Rist, all model parameters are � xed. In addition, the set of
analytical solutions of the generic model presented here offers useful insight into the
fragile inter-dependence of the model parameters. With these parameters, the model will
also perform satisfactorily in homogeneousstrati� ed shear-� ows, predict the correct mixed
layer depth in strati� ed � ows, and yield the correct spreading rate in unstrati� ed plane
mixing layers. These properties, which are of crucial importance in many oceanic
situations, cannot all be shared by any of the traditional models. We want to remark that
this fact, evidently, does not imply that the generic model will never fail. We think,
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however, that, given the level of complexity of the models we discussed, the generic model
is optimal in many marine situations.

Finally, it should be pointed out that, once the generic model is implemented in a
numerical code, each of the traditional models can be recovered by simply changing a few
parameters. There are virtually no computational extra costs compared to the traditional
models.
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