
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Public Health Theses School of Public Health 

January 2023 

Association Of Diurnal Temperature Range With Pediatric Association Of Diurnal Temperature Range With Pediatric 

Influenza Hospitalization Rates In The United States, 2009 – 2019 Influenza Hospitalization Rates In The United States, 2009 – 2019 

Khang Duy Tran 
khangdtran10@gmail.com 

Follow this and additional works at: https://elischolar.library.yale.edu/ysphtdl 

Recommended Citation Recommended Citation 
Tran, Khang Duy, "Association Of Diurnal Temperature Range With Pediatric Influenza Hospitalization 
Rates In The United States, 2009 – 2019" (2023). Public Health Theses. 2352. 
https://elischolar.library.yale.edu/ysphtdl/2352 

This Open Access Thesis is brought to you for free and open access by the School of Public Health at EliScholar – 
A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Public Health Theses by an 
authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, 
please contact elischolar@yale.edu. 

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/ysphtdl
https://elischolar.library.yale.edu/ysph
https://elischolar.library.yale.edu/ysphtdl?utm_source=elischolar.library.yale.edu%2Fysphtdl%2F2352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/ysphtdl/2352?utm_source=elischolar.library.yale.edu%2Fysphtdl%2F2352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


 

 

 

 

 

 

 

 

Association of Diurnal Temperature Range with Pediatric Influenza  

Hospitalization Rates in the United States, 2009 – 2019 

 

 

Khang Tran 

Year Completed: April 2023 

Master of Public Health in Epidemiology of Microbial Diseases 

Yale School of Public Health 

Advised by Dr. Inci Yildirim 

Thesis reader: Dr. Jill Kelly 

 

 

 

 

 

 

 



ASSOCIATION OF DIURNAL TEMPERATURE RANGE WITH INFLUENZA 1 

Abstract 

Introduction: Climate change may have a negative impact on respiratory illnesses, such as 

influenza. Diurnal temperature range (DTR), an indicator of climate change, is the difference 

between the maximum and minimum temperature within a day or a week. As the climate warms, 

global DTR decreases, though there might be regions where DTR increases instead. Previous 

literature conducted in non-U.S. regions found both positive and negative associations between 

DTR and influenza infections. A group especially vulnerable to the effects of DTR are children 

less than 5 years of age due to their less-developed thermoregulation capability. This study thus 

aimed to explore the association of DTR with pediatric influenza hospitalization rates in different 

U.S. states from 2009 to 2019 to further understand this relationship. Methods: Utilizing weekly 

influenza hospitalization rates from the Center for Disease Control and Prevention (CDC)’s 

FluSurv-NET surveillance system and meteorological data from the National Oceanic and 

Atmospheric Administration (NOAA), we employed a distributed non-linear lag model and a 

generalized additive model using a quasi-Poisson distribution to examine the complex non-linear 

relationship between the two variables, adjusting for relative humidity, mean temperature, and 

precipitation. Results: New York’s Albany and Rochester, Michigan, and California exhibited 

positive associations between DTR and pediatric influenza hospitalization rate (relative risk at 

maximum DTR was 3.06 (95% confidence interval (CI): 1.532 – 5.893), 1.97 (95% CI: 1.018 –

3.812), 2.07 (95% CI: 1.185 – 3.601), and 1.69 (95% CI: 1.054 – 2.707), respectively). 

Additionally, there was a respective 1,403% (p = 0.007), 475% (p = 0.045), 569% (p = 0.011), and 

344% (p=0.030) change in hospitalization rate for every 1°C increase in DTR. Conclusions: Our 

results can be used to inform the development of an early warning system that can alert the 

potential impact of significant increase in DTRs. With regard to climate change, if global DTR 
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decreases as the climate warms, then our results suggest that hospitalization rates will decrease as 

well, though in regions where DTR increases, hospitalization rates might increase. Further research 

on the relationship between temperature variability and respiratory infections that utilizes more 

granular data and that considers other important meteorological factors, influenza strain type, and 

vaccination history is needed.  
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Introduction 

Due to the rise in anthropogenic greenhouse gas emissions, climate change events such as 

rising temperatures, extreme flood and drought events, and weather variability pose great risks to 

human health (Pörtner et al., 2022). Specifically, 93 out of 103 primary research articles have 

found a positive association between a climatological factor (e.g., temperature, precipitation, and 

relative humidity) and an epidemiological factor (e.g., incidence, mortality, and hospitalization) of 

influenza infections. At the biological level, studies discovered that virus viability, infectivity, 

mutation rate, and transmissibility positively correlate with lower temperature and high humidity, 

though the extent varies for different strains of influenza viruses (Lane et al., 2022). Other studies 

focus on environmental conditions such as air pollution and UV radiation, but do not relate them 

to climate change, rendering knowledge in this field largely unexplored. 

One important meteorological indicator of climate change is diurnal temperature range 

(DTR), which refers to the difference between the maximum and minimum temperatures in one 

day or week (Lu et al., 2022). As global atmospheric warming increases, global DTR decreases 

because there are larger increases to the daily minimum temperatures compared to the daily 

maximum temperatures, which has been the trend since early 1950s (Makowski et al., 2008). 

However, this is global DTR and may not pertain to specific regions, where DTR may actually 

increase instead. As such, there has been recent interest in examining the relationship between 

temperature variability as an indicator of climate change and respiratory illnesses, such as 

influenza. This is mainly because DTR has an impact on human health that is independent of the 

impacts of other temperature variables such as extreme temperatures (Cheng et al., 2014). Several 

studies conducted in the United States found that sudden large temperature changes may cause 
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respiratory mortality (Zhang et al., 2017) and may heavily impact the seasonality of influenza (Li 

et al., 2018) after adjusting for other temperature variables. 

The mechanism behind this remains to be studied, although findings have consistently 

proposed that sudden changes in temperature may cause weakened human immune functions, 

triggering an immune evasion (Graudenz et al., 2006; Guo et al., 2011; Loh et al., 2013). This may 

be a result of the human thermoregulation mechanism’s inability to adjust to large and sudden 

temperature changes (Guo et al., 2016). Contradictorily, Yap et al. (2021) found that larger daily 

DTR shortens the lifetime of coronaviruses and influenza viruses, posing decreased risks after 

adjusting for other factors. This means that while humans are more susceptible to risks posed by 

respiratory viruses due to a compromised immune system with increased DTR, there is also a 

decreased risk associated with shortened virus lifetime. These findings add to the complexity of 

the relationship between temperature variability and respiratory infections. 

This is also reflected in the current body of literature that examines the relationship 

between DTR and influenza incidence, as there were mixed findings. Studies in China found a 

positive association between large DTR and influenza hospitalization and incidence (Lao et al., 

2018), though Li et al. (2018) found this to only be true during dry periods and Ma et al. (2022) 

concluded that the association was negative for Flu-B but positive for Flu-A. Another study in 

South Korea found that high DTR was associated with an increase in influenza incidence only in 

temperate regions after controlling for factors like temperature and humidity (Park et al., 2020). 

As evident from these findings, factors such as seasonality, influenza strain type, and geography 

all seem to play a big role.  

What many of these studies have in common, however, is their focus on locations in the 

eastern hemisphere, and to our knowledge, there are very few studies conducted in the United 
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States (Liu et al., 2020; Yap et al.; 2021). The implications that these studies’ findings have for 

public health is very important, but the disagreeing results and the lack of generalizability makes 

the implications inapplicable in other regions of the world that are also experiencing climate 

change events at a rapid rate. For this reason, we honed in on the United States to explore the 

relationship between diurnal temperature range and influenza risks with consideration for 

seasonality and geography by focusing on just the influenza season and on each individual state. 

The specific outcome variable examined was pediatric influenza hospitalization rate, specifically 

among those 0 to 4 years of age, as Li et al. (2018) found that when exposed to large DTR, children 

less than 5 years of age experienced a 71.35% higher rate of influenza hospitalization than other 

age groups. Additionally, Basu and Ostro (2008) postulated that their vulnerability to temperature 

variation may be the result of a less-developed thermoregulation capability. 

 

Methods 

Study Design 

 Public national datasets from the Center for Disease Control and Prevention (CDC) and 

the National Oceanic and Atmosphere Administration (NOAA) were utilized to analyze the 

association between DTR, the predictor variable, and pediatric influenza hospitalization rates, the 

response variable. Given that these datasets did not have personal identification and that no 

questionnaires, testing, or interviews were conducted, this study was purely observational and 

ecological as the data was examined at the population level.  

Due to the long-term nature of climate change, the availability of data, and the onset of the 

COVID-19 pandemic in 2020, the study period was weekly data spanning from 2009 to 2019, with 
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Sunday being defined as the first day of the week. The target population for the outcome were 

children in the United States under the age of five.  

 

Hospitalization Data 

 Pediatric influenza hospitalization data was retrieved from the CDC’s Influenza 

Hospitalization Surveillance Network (FluSurv-NET) system. The CDC conducts population-

based surveillance using laboratory-confirmed influenza-associated hospitalization data from 

hospitals in 14 states to produce weekly hospitalization rates, which are calculated as “the number 

of residents of a defined area who are hospitalized with a positive influenza laboratory test divided 

by the total population within the defined area” (CDC, 2023). A laboratory-confirmed case is 

defined as a laboratory-confirmed positive test for influenza within 14 days prior to or during 

hospitalization. The Influenza-Like Illness Surveillance Network (ILINet), which reports 

outpatient visits to healthcare providers for influenza-like illnesses, would have offered a more 

complete picture of influenza activity in all 50 states since it also captures non-severe cases that 

do not result in hospitalization (CDC, 2022). However, the FluSurv-NET system provided data 

disaggregated by age, which was necessary for this study since it focused on children ages 0 to 4, 

and laboratory-confirmed data, so there was no potential for confounding by other respiratory 

illnesses. 

 Coverage for the FluSurv-NET system consisted of 13 states that are a part of the Emerging 

Infections Program (EIP) and the Influenza Hospitalization Surveillance Program (IHSP). States 

participating in the EIP included: California, Colorado, Connecticut, Georgia, Maryland, 

Minnesota, New York, Oregon, Tennessee. Those participating in the IHSP were Michigan, New 

Mexico, Ohio, and Utah. A preliminary examination of the data for each state revealed that only 
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10 contained data from 2009 to 2019, so these states were selected for this study: California, 

Colorado, Connecticut, Georgia, Maryland, Minnesota, New York, Oregon, Tennessee, and 

Michigan. Data for New York in particular existed in two separate datasets, one representing 

Albany and the other being Rochester, thereafter simply referred to by their names. While it would 

have been consistent to aggregate both to represent New York as a whole, such granular data 

allowed for a better depiction of the association. Appendix 1 demonstrates the number of 

participating counties in each state and the percentage of state population represented by the data. 

Appendix 2 lists the names of the participating counties in each state.  

 The FluSurv-NET system only conducts surveillance during flu season, which is from 

October to April. The CDC reports data by Morbidity and Mortality Weekly Report (MMWR) 

week, which is defined as the “week of the epidemiologic year for which the National Diseases 

Surveillance System (NNDSS) disease report is assigned by the reporting local or state health 

department for the purposes of MMWR disease incidence reporting and publishing” (CDC, 2013). 

MMWR week 1 is typically the first week of the surveillance year and MMWR week 52 or 53 is 

the last week. Each flu season within the FluSurv-NET system runs from week 40 of the previous 

year (October) to week 17 of the adjacent year (April). Though this means that there are gaps in 

the data, having a 10-year span of data helped to strengthen the statistical validity of the analysis. 

Furthermore, the focus on just the influenza season accounted for seasonality.   

 

Meteorological Data 

 While the original source of meteorological data was the National Oceanic and 

Atmospheric Administration (NOAA), datasets were obtained from a third-party provider of 

weather data called Visual Crossing (Visual Crossing, n.d.). This tool allowed for easy retrieval of 
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multiple meteorological variables from the desired locations all at once. To maintain consistency 

with the limited data available for hospitalization rates, only meteorological data from each state’s 

catchment area was included. For example, for California, meteorological data only reflected that 

of Alameda, Contra Costa, and San Francisco counties and not the whole state since these were 

the counties for which hospitalization data was reported. Additionally, dates for this dataset 

matched with that of the hospitalization rate dataset by a two-week lag due to a one-week lag in 

reporting (CDC, 2022) and another week lag to account for the delay in the exposure-outcome 

relationship (Park, 2019). In other words, when one is exposed, the outcome associated with the 

exposure is assumed to be 2 weeks later. 

Meteorological data used for the analysis included daily maximum, minimum and mean 

temperature, precipitation (rainfall depth), and relative humidity, all of which were converted to 

their weekly version (7-day moving average). DTR was derived from the difference between the 

maximum and minimum temperatures within 1 week.  

 

Statistical Analysis 

Given that the effects of DTR are lagged and non-linear, analysis required the use of the 

distributed non-linear lag model (DNLM) with a quasi-Poisson generalized additive model (GAM) 

(Gasparrini et al., 2010; Gasparrini, 2011; Park et al., 2019). The quasi-Poisson model was chosen 

over the Poisson model to account for overdispersion and over the negative binomial model due 

to a lower residual deviance to degree of freedom ratio, which signifies a good fit, and a 

consideration for the non-linear relationship that can be better depicted by logarithmic functions. 

The resulting model used for analysis was adapted from previous studies on the same topic (Li et 

al., 2018; Ma et al., 2022): 
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log[E (Yt)] = α + βDTR0–2t + ns (mean temperature0–2t, df = 3) + ns (RH0-2t, df = 3)  

+ ns (precipitation0-2t, df = 3) + ns (time, df = 4/per year) + week of year 

E (Yt) is the expected pediatric influenza hospitalization rate on week t. α denotes the 

intercept and β indicates the coefficient of DTR with a lag of 0-2 weeks. This lag structure was 

chosen due to a 1-week reporting delay and another 1-week delay between exposure and outcome 

(CDC, 2023; Park, 2019). The term DTR represents the cross-basis matrix obtained after applying 

DLNM. To capture the non-linear relationship, a natural cubic spline function (ns) accompanies 

each of the other confounding predictor variables (mean temperature, relative humidity, and 

precipitation) to capture the flexible and non-linear relationship with the response variable. The 

degree of freedom (df) of 3 for these variables are consistent with literature that conducted 

sensitivity analyses in their studies to determine the best value (Gasparrini et al., 2010; Ma et al., 

2022). The time term with a df of 4 per year was included as a smoothing function to control for 

seasonality and long-term trends (Wang et al., 2020). Week of year denotes the categorical week 

of the year. This was included to account for week-of-year patterns that may be unrelated, such as 

different hospitalization rates on certain weeks of the year due to factors such as reporting delays 

or healthcare staffing levels.  

The inclusion of vaccination rates was considered for the model, as immunization against 

influenza plays a major role in preventing flu-associated hospitalizations (Ferdinands et al., 2014; 

Rondy et al., 2017; Thompson et al., 2018). Unfortunately, the available vaccination data provided 

by the CDC do not cover the entirety of the study period (CDC, 2022).  

All data management and analytical processes were conducted in the statistical 

programming software R software version 4.1.3 (The R Project for Statistical Computing, Vienna, 
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Austria). Geographical visualizations of results were completed in ArcGIS Pro version 3.0.1 (Esri) 

using state and county boundaries from the U.S. Census and climate data from NOAA.  

 

Results 

 Table 1 showcases the mean DTR and pediatric influenza hospitalization rate by state. 

Focusing on DTR, Colorado experienced the highest mean value at 13.08°C, while Oregon had 

the lowest mean value at 8.59°C. With regard to mean weekly hospitalization rate, Michigan had 

the highest at 3.61 followed by Colorado (2.65), Maryland (1.99), Minnesota (1.92), Albany 

(1.81), Rochester (1.57), Connecticut (1.48), California (1.32), Georgia (1.19), Tennessee (1.02), 

and Oregon (0.95). A more detailed summary statistics of meteorological factors and weekly 

pediatric influenza hospitalization rates for each state are depicted in Appendix 3. 

Table 1. Mean DTR and pediatric influenza hospitalization rate in each state by order of highest 

to lowest DTR 

State Mean DTR (°C) 
Mean Pediatric Influenza 

Hospitalization Rate 

Colorado 13.08 2.65 

Tennessee 10.85 1.02 

Georgia 10.70 1.19 

California 9.84 1.32 

Albany 8.85 1.81 

Michigan 8.77 3.61 

Maryland 8.73 1.99 

Connecticut 8.65 1.48 

Minnesota 8.59 1.92 

Rochester 8.29 1.81 

Oregon 7.29 0.95 
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Relative Risk Associated with DTR 

The regression analysis yielded mixed results. Figure 1 showcases relative risk (RR) at 

different DTR values in each state. Relative risk refers to the chance of an event (pediatric 

influenza hospitalization rate) occurring due to an exposure (DTR) (Tenny & Hoffman, 2023). A 

relative risk value of 1 indicates no difference between two variables; a value less than 1 means 

that the event is less likely to result from the exposure; and a value larger than 1 means that the 

event is more likely to result from the exposure. Present in each plot is a reference DTR value 

where the associated relative risk value is 1, signifying a change in direction of hospitalization rate 

after crossing this threshold. An upwards curve indicates increased hospitalization rate among 

those exposed to the associated values of DTR compared to those exposed to the reference DTR 

value, and a downwards curve depicts decreased hospitalization rate due to exposure of the DTR 

value higher than the reference value. For example, a relative risk of 1.16 means that the pediatric 

influenza hospitalization rate was 16% higher among those exposed to that associated DTR value 

compared to those who are exposed to the reference DTR value at which the relative risk is 1.  

Albany, Rochester, Michigan, California, Georgia, Minnesota, and Colorado experienced 

an increase in relative risk as DTR increased, with the former four locations having a 95% 

confidence interval that does not include one, suggesting that the mean difference is statistically 

significant at the 5% level. Oregon, Tennessee, Connecticut, and Maryland experienced a decrease 

in relative risk as DTR increased, though all are not statistically significant. The DTR ranged from 

3.5°C to 20°C. 
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A. B.  

C. D.  

E. F.  
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G. H.  

I. J.  

K.  

Figure 1. Relative risk for the relationship between DTR and pediatric influenza hospitalization 

rate. Axes are not on the same scale due to climate differences in each state.  
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Figure 2, which depicts relative risk at minimum DTR, reveals that among those who are 

exposed to this DTR value in California, Colorado, Georgia, Michigan, Minnesota, Albany, and 

Rochester, pediatric influenza hospitalization rate was actually lower compared to those who were 

exposed to higher values of DTR. California, Michigan, Albany, and Rochester all exhibited 

statistically significant relative risk values of 0.52 (95% CI: 0.284 – 0.936), 0.45 (95% CI: 0.247 

– 0.830), 0.36 (95% CI: 0.196 – 0.769), and 0.49 (95% CI: 0.245 – 0.981), respectively. On the 

other hand, Connecticut, Maryland, Oregon, and Tennessee had relative risk values of 1.45 (95% 

CI: 0.947 – 2.21), 1.16 (95% CI: 0.717 – 1.880), 1.70 (95% CI: 0.607 – 4.770), and 1.83 (95% CI: 

0.857 – 3.906), suggesting that those exposed to the minimum DTR in these states had a higher 

pediatric influenza hospitalization rate than those who were exposed to higher values of DTR. 

However, these were not statistically significant results (95% CI crossed 1).  

  

Figure 2. Relative risk at minimum DTR. Black outlines indicate counties that participate in the 

FluSurv-NET system in each state.  



ASSOCIATION OF DIURNAL TEMPERATURE RANGE WITH INFLUENZA 18 

 

The relative risk at maximum DTR for all states ranged from 0.58 to 2.1. As depicted in 

Figure 3, Connecticut, Maryland, Oregon and Tennessee exhibited a relative risk below 1 at 

maximum DTR, suggesting that hospitalization rate was lower among those exposed to the 

maximum DTR compared to those who were exposed to all lower values of DTR. However, these 

values were not statistically significant (95% CI crossed 1). Locations with the highest relative 

risk at maximum DTR were Albany, Rochester, and Michigan with statistically significant values 

of 3.06 (95% CI: 1.532 – 5.893), 1.97 (95% CI: 1.018 – 3.812), and 2.07 (95% CI: 1.185 – 3.601), 

respectively. California was the only other location with a statistically significant relative risk of 

1.69 (95% CI: 1.054 - 2.707). Appendix 4 provides a complete summary statistic of relative risk at 

the mean and at different quantiles of DTR. 

 

Figure 3. Relative risk at maximum DTR. Black outlines indicate counties that participate in the 

FluSurv-NET system in each state. 
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Regression Coefficient  

 Another important component to assess was the regression coefficient of the predictor 

variable. Regression coefficients (β) in a quasi-Poisson model indicates that for every unit increase 

in the predictor variable the expected value of the response variable will increase by a factor of 

e(β), adjusting for overdispersion in the data. This can also be depicted as percentage change, or 

(e(β) -1) * 100%, in hospitalization rate for a 1°C increase in DTR. As depicted in Table 2 and 

visualized geographically in Figure 4, Albany and Rochester had the largest coefficient of the 

predictor variable DTR of 2.71 (p = 0.007) and 1.75 (p = 0.045), respectively. This means that in 

both of these locations, for every 1°C increase in DTR, the pediatric influenza hospitalization rates 

would increase by 1,403% and 475%, respectively. Michigan followed with a coefficient of 1.90 

(569% increase; p = 0.011) and California with a coefficient of 1.49 (344% increase; p = 0.030). 

All the aforementioned states possessed p-values less than 0.05, indicating that the results were 

statistically significant.  

 While not statistically significant, Connecticut, Maryland, Oregon, and Tennessee 

exhibited an opposite trend with a respective 69% (p = 0.089), 32% (p = 0.545), 73% (p = 0.313), 

and 79% (p = 0.120) reduction in hospitalization rate for a 1°C increase in DTR. 
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Table 2. DTR coefficient and percent change in hospitalization for a 1°C increase in DTR 

 

State Coefficient 

% Change in 

Hospitalization Rate for a 

1°C Increase in DTR 

 

P-value 

California 1.49 344 0.030* 

Colorado 0.47 60 0.322 

Connecticut -1.16 -69 0.089 

Georgia 0.85 134 0.325 

Maryland -0.39 -32 0.545 

Michigan 1.90 569 0.011* 

Minnesota 1.04 183 0.220 

New York – Albany 2.71 1403 0.007* 

New York – Rochester 1.75 475 0.045* 

Oregon -1.31 -73 0.313 

Tennessee -1.57 -79 0.120 

*P-value < 0.05, indicating statistical significance. 

 

Figure 4. Regression coefficient of DTR. Coefficients for California, Michigan, Albany, and 

Rochester had p-values < 0.05. Black outlines indicate counties that participate in the FluSurv-

NET system in each state.  
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Discussion 

Relationship between DTR and Influenza Hospitalization Rate 

This study aimed to examine the association of DTR with pediatric influenza 

hospitalization rate in the United States from 2009 to 2019. Given the imminent threat posed by 

various meteorological changes resulting from climate change, it is necessary to discuss how DTR 

as an indicator of climate change, affects health outcomes, namely influenza hospitalization rates 

among children less than five years of age.  

After adjusting for the effects of relative humidity, precipitation, and mean temperature, 

all of which contribute to influenza (Tamerius et al., 2013), the results showed conflicting 

associations between DTR and pediatric influenza hospitalization rate. Figure 1 reveals that there 

was a positive association between these two variables in California, Colorado, Georgia, Michigan, 

Minnesota, Albany, and Rochester while there was a negative association in Connecticut, 

Maryland, Oregon, and Tennessee. However, statistically significant results from Rochester, 

Albany, Michigan, and California validates the positive association, suggesting that pediatric 

influenza hospitalization rate was higher among those exposed to a DTR value above the threshold 

compared to those who were not exposed. Thus, DTR should be considered in discussions relating 

to influenza. 

These results align with a large body of literature on the topic. Most notably, a similar study 

conducted in Hong Kong found that among children less than 5 years of age, exposure to a large 

DTR was associated with a 71.35% higher rate of influenza hospitalization, which was the largest 

percent change among all age groups (Li et al., 2018). In both Zhang et al. (2020) and Ma et al. 

(2021), a larger DTR was also found to have a positive relationship with Flu-A. Furthermore, Lao 

et al. (2018) found a statistically significant association between DTR and influenza incidence 



ASSOCIATION OF DIURNAL TEMPERATURE RANGE WITH INFLUENZA 22 

among children and the elderly in Beijing with those exposed to the maximum DTR experiencing 

a 1.2% higher incidence than those who were not exposed. DTR was also positively associated 

with other respiratory illnesses as well, such as pneumonia (Cicco et al., 2020; Miyayo et al., 2021; 

Pedder et al., 2021) and chronic respiratory diseases (Liang et al., 2009; Ma et al., 2018; Wang et 

al., 2020). Although the physiological mechanism for this effect is not widely understood, previous 

research posits that exposure to a large daily temperature change may negatively affect respiratory 

and humoral and cellular immunity functions, thereby triggering to the onset of a respiratory 

outcome (Bull, 1980; Imai et al., 1998).  

This study found statistically insignificant negative associations between DTR and 

pediatric influenza hospitalization rate in some states. There exists some literature with similar 

results. In two separate studies conducted in China, while a larger DTR was associated with 

increased Flu-A risk, low DTR did so for Flu-B (Zhang et al., 2020; Ma et al., 2022). Seasonality 

factors other than the influenza season might make a difference, as another study conducted in 

China found DTR to have a significant positive association with influenza during dry periods, but 

had an insignificant negative association during humid periods (Li et al., 2018). The same trend 

also existed for other respiratory viruses, such as COVID-19, where the relative risk was about 0.9 

per 1°C increase in DTR (Islam et al., 2020; Liu et al., 2020).  

At the cellular level, Yap et al. (2021) found that higher DTR shortens the lifetime of 

coronaviruses and influenza viruses, suggesting that there might be a negative association between 

the magnitude of DTR and influenza incidence. It must be noted, however, that the number of 

studies supporting the negative association found in this study is far less than that supporting a 

positive association. This reveals the complex impact DTR has on influenza and suggests that virus 
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strain type, viral characteristics, and regional and seasonal differences might all play a big role in 

determining the association between these two variables.   

 

Climate Change 

In the context of climate change, if the statistically significant positive association of DTR 

with pediatric influenza hospitalization rate reflect reality, the implications might be a positive one 

for public health. Since studies reveal that climate change is causing a decrease in DTR (Qu et al., 

2014; Guan et al., 2022), then a positive relationship suggests that influenza risks may actually 

decrease as a result of climate change since a decrease in DTR also means a decrease in the relative 

risk of hospitalization rate. As illustrated in the plots for Albany, Rochester, Michigan, and 

California in figure 1, if DTR were to decrease to reach values below that of the threshold, then 

those exposed to these DTR values will have a lower risk compared to those exposed to the 

reference DTR value. However, this implication must be investigated further, as climate change is 

a long-term phenomenon, and cannot be adequately evaluated based on just ten years of data 

(Abbass et al., 2022). 

One must also consider that there is a plethora of other meteorological indicators of climate 

change that may also impact influenza risks. These impacts can affect risks differentially since 

each location has different permutations of meteorological trends, many of which were not 

factored into this study. Some examples include air pollution, extreme weather events, and wind 

speed (Liu et al., 2020). Furthermore, some locations are warming at a different rate than others, 

especially those in the sub-tropic regions (Stuecker et al., 2020).  

We attempted to understand whether there was any geographic or climatological trend that 

may explain the conflicting associations by visualizing the different states’ relative risk values and 
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regression coefficients in Figures 2-4, but no such trend seemed to exist. Overlaying the 5 Köppen 

climates in the U.S. on the participating counties in each state, we found that counties in the four 

states that exhibited a negative association between DTR and pediatric influenza hospitalization 

rate (Oregon, Tennessee, Connecticut, and Maryland) fall into regions that have a moist sub-

tropical mid-latitude climate (Figure 5). Only two states with positive associations have 

participating counties that fall in this region. Wang et al. (2017) found that in addition to relative 

humidity, vapor pressure, and temperature, regional climate heterogeneity also had a significant 

impact on influenza risks. Had there been available data for other states, we would have been able 

to better identify any geographic trends. Thus, the relationship is complex, and further exploration 

with all of the aforementioned confounding factors are necessary for a better understanding.  

 
Figure 5. Köppen climates of the United States (NOAA, n.d.). Black outlines indicate counties that 

participate in the FluSurv-NET system in each state.  
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Predictions and Public Health Implications 

 Furthermore, this study generated regression coefficient values that could be used to 

forecast pediatric influenza hospitalization rates in the future. As previously postulated, locations 

with statistically significant coefficient values were Albany, Rochester, Michigan, and California. 

This value was used to predict the percent change in hospitalization rate for a 1°C increase in DTR. 

All four locations yielded a percent change larger than 300%, demonstrating the large effect DTR 

has on pediatric influenza hospitalization rate.  

Such a powerful tool can be used by public health professionals and organizations in 

various ways. Firstly, this study’s results on risk differences among the studied states allow health 

departments and national government agencies to have a better idea of where efforts should be 

allocated, whether it be in the form of further research or interventions. Another usage for such 

results is to set up an early-warning system based on the current ability to predict daily and weekly 

temperature. For example, one can use the weather forecast system to trigger an alarm when it is 

predicted that there will be a 1°C increase in DTR from the norm. If such an event were to occur, 

local governments can send out advisory notices to share with the general population, especially 

parents with children less than five years of age, the different kinds of measures they can take to 

protect themselves and their children. Such measures can be in the form of tips like maintaining a 

constant temperature within the household or work environment to avoid the drastic fluctuations 

in temperatures. This effort can be implemented in tandem with social programs that aim to address 

other meteorological factors. 

Kapwata et al. (2022) applied the knowledge of such data to create a metric for heatwave 

detection and an early warning system for heatwaves. With previous literature discovering DTR 

as one of the most suitable metrics for integration in a Heat-Health Warning System (HHWS) in 
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South Africa, the researchers employed DTR data from past heatwaves to determine a threshold 

at which mortality would increase and to predict the differential impacts of DTR on mortality per 

a 1°C increase. Integration of this knowledge into a HHWS would allow for alerts and recommend 

measures to be sent out to the public prior to the event to help them combat the negative 

consequences of heatwaves. 

 

Limitations and Future Research 

This study was not without limitations. Although the relative risks and coefficients were 

statistically significant for Albany, Rochester, Michigan, and California, one must proceed with 

caution as the data from these locations represent less than 10% of their respective state population, 

whereas data from states with statistically insignificant results represent more than 29% of their 

state population (appendix 1). Furthermore, Figure 2 reveals that the counties in Michigan and 

California are very close to each other, whereas those in the other states are generally far apart. 

This may play a role in the consistency of weather trends and hospitalization surveillance, as 

counties that are farther apart may experience more distinctive weather trends from each other. 

However, we do not know for certain why this phenomenon exists as the data is not granular 

enough. This may also be why Rochester and Albany had such high relative risks and regression 

coefficients; the data was more granular, and the relationship was therefore more accurately 

depicted by the model. Thus, these results, though significant, should not be generalized to the 

whole state.  

 A major limiting characteristic of the influenza dataset used is that it consists of weekly 

instead of daily hospitalization rates. As Park et al. (2019) posits, daily influenza data better reflects 

meteorological factors’ impacts. This is especially true for DTR, which has more of an immediate 
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effect on the body day-to-day rather than week-to-week (Park et al., 2019). Many studies on this 

topic have used daily data, but we were limited by the lack of available data that would allow us 

to investigate influenza by age group. Our study did, however, compensate for this limitation by 

analyzing the trend over the course of ten years, which provided a sufficient number of data points. 

Additionally, because the CDC only reports influenza data seasonally for MWWR weeks 40 to 52 

and weeks 1 to 17 of the adjacent year, we did not get a full picture of influenza trends over the 

course of a whole year. The availability of such data would have also allowed us to use results 

from the non-influenza season as a comparison. 

 Vaccination has a major impact on influenza risks but was not included due to limited data 

availability. Although flu vaccines’ effectiveness depends on multiple factors and can vary each 

season, it can still significantly reduce risks of hospitalizations (Campbell et al., 2020) and deaths 

(Flannery et al., 2017) among children. However, the current influenza vaccination surveillance 

system does not have available data spanning the entirety of the study period, so this type of data 

was not included (CDC, 2022). Inclusion of vaccination rates in the model may help to explain the 

complex relationship between DTR and pediatric influenza hospitalization. For example, 

Connecticut and Maryland, two of the states exhibiting a negative association, consistently had the 

higher vaccination coverage at 75% and above among children between 6 months to 4 years old, 

whereas California and Michigan, the two states that demonstrated a statistically significant 

positive association, had lower vaccination coverage at about 60 to 70 percent (CDC, 2022). 

Although superficial, these observations suggest that vaccination coverage may play a role in this 

relationship. Thus, future research should incorporate this important variable into the model.  

Our study was one of the first to explore this relationship in the United States. For this 

reason, it served a peripheral purpose of identifying states that may potentially exhibit higher 
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influenza risks due to DTR. As such, future research should focus on a single state and examine 

the variables on an even smaller scale. For example, both Zhang et al. (2020) and Ma et al. (2021) 

investigated the relationship between DTR and Flu-A and Flu-B cases in Shanghai and Shenzhen, 

China, respectively, and found significant but contrasting associations between the two types of 

influenza. This may reveal whether a particular strain of flu might be more sensitive to DTR. 

Human behaviors and virus pathogenicity are also two variables to consider for future research, as 

humans and viruses will continue to adapt to the changing climate in various ways.  

 

Conclusion 

 Climate change may have a negative impact on respiratory illnesses, such as influenza, 

which this study aimed to investigate through an associated meteorological variable, diurnal 

temperature range (DTR). Specifically, the relationship between DTR and pediatric influenza 

hospitalization rates in different U.S. states between 2009 and 2019 was examined. To achieve 

this, the study integrated available government datasets with a robust non-linear lag regression 

model that had been consistently used by previous literature on this topic.   

 Being one of the first of its kind to explore this relationship in the United States, our study 

found a statistically significant positive association between these two variables in Albany, 

Rochester, Michigan, and California. This finding can be used to inform the development of early 

warning systems and adaptation strategies and to inspire further research in these regions. 

Variables to consider in future research include other climate-related meteorological factors, 

vaccination history, and influenza strain type, all of which may illuminate this complex non-linear 

relationship. Although other regions show statistically insignificant results, it may also be worth 
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to investigate them if more granular data became available so that the field of public health can 

benefit from the implications of a more accurate picture of the relationship.  
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Appendix 

Appendix 1. State characteristics. 

 

Table 1. Number of participating counties in each state and the percentage of state population 

represented by the data (CDC, 2023; Census Bureau, 2020). 

State % of State Population Represented Number of Participating Counties 

California 9.00% 3 

Colorado 49.00% 5 

Connecticut 29.00% 2 

Georgia 39.00% 8 

Maryland 46.00% 6 

Michigan 13.00% 5 

Minnesota 55.00% 7 

New York - 

Albany 
1.56% 1 

New York - 

Rochester 
1.05% 1 

Oregon 44.00% 3 

Tennessee 26.00% 8 
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Appendix 2. Participating counties in each state (CDC, 2023). 

California: Alameda, Contra Costa, San Francisco 

Connecticut: New Haven, Middlesex 

Colorado: Adams, Arapahoe, Denver, Douglas, Jefferson 

Georgia: Fulton, DeKalb, Clayton, Cobb, Douglas, Gwinnett, Rockdale, Newton 

Maryland: Baltimore, Howard, Anne Arundel, Harford, Carroll, Queen Anne’s 

Minnesota: Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, Washington 

Michigan: Clinton, Eaton, Genesee, Ingham, Washtenaw 

New York – Albany 

New York – Rochester  

Oregon: Clackamas, Multnomah, Washington 

Tennessee: Cheatham, Davidson, Dickson, Robertson, Rutherford, Sumner, Williamson, Wilson 
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Appendix 3. Summary statistics of weekly meteorological factors and weekly influenza 

hospitalization rates for each state. 

 

Table 1. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in California 

Variables    Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 9.84 4.23 8.03 9.89 11.69 16.31 

 Mean Temperature (°C) 12.82 5.32 10.31 12.47 15 22.18 

 Relative Humidity (%) 69.37 41.91 63.37 70.26 75.52 88.71 

 Precipitation (mm) 1.75 0 0.01 0.53 2.49 12.74 

Weekly Hospitalization Rate       
  Influenza 1.32 0 0 0.9 2 6.9 

 

 

 

Table 2. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Colorado 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 13.08 7.41 11.69 13.13 14.63 17.73 

 Mean Temperature (°C) 4.29 -11.47 0.17 3.66 8.54 21.26 

 Relative Humidity (%) 51.78 23.21 43.28 52.12 59.25 83.76 

 Precipitation (mm) 0.58 0.00 0.03 0.19 0.78 7.04 

Weekly Hospitalization Rate       
  Influenza 2.65 0.00 0.50 1.70 4.00 17.7 

 

 

 

Table 3. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Connecticut 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 8.65 3.94 7.31 8.49 10.00 13.99 

 Mean Temperature (°C) 5.43 -10.39 0.71 4.54 9.51 21.94 

 Relative Humidity (%) 65.83 44.45 59.95 66.59 71.21 84.29 

 Precipitation (mm) 2.51 0.00 0.48 1.72 3.52 15.02 

Weekly Hospitalization Rate       
  Influenza 1.48 0.00 0 0 1.9 24.6 
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Table 4. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Georgia 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 10.70 3.91 8.97 10.84 12.21 17.11 

 Mean Temperature (°C) 11.41 -4.04 7.52 11.50 15.69 24.38 

 Relative Humidity (%) 66.68 42.5 59.92 65.99 73.70 92.62 

 Precipitation (mm) 3.31 0 0.51 2.10 5.02 18.91 

Weekly Hospitalization Rate       
  Influenza 1.19 0 0 0.4 1.5 12 

 

 

 

Table 5. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Maryland 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 8.73 3.99 7.5 8.61 10.03 14.33 

 Mean Temperature (°C) 7.23 -9.5 3.05 6.87 11.5 21.56 

 Relative Humidity (%) 66.88 44.84 61.05 66.78 72.8 89.52 

 Precipitation (mm) 2.02 0 0.45 1.44 2.89 16.73 

Weekly Hospitalization Rate       
  Influenza 1.99 0 0 1.2 2.9 16.3 

 

 

 

Table 6. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Minnesota 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 8.59 2.77 7.03 8.56 10.11 15.47 

 Mean Temperature (°C) -0.22 -19.28 -6.5 -0.56 6.55 20.03 

 Relative Humidity (%) 70.44 42.63 65.61 71.36 76.76 89.3 

 Precipitation (mm) 0.98 0 0.06 0.31 1.29 9.9 

Weekly Hospitalization Rate       
  Influenza 1.92 0 0 1 2.5 19.6 
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Table 7. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Oregon 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 7.29 3.19 5.47 6.57 8.37 16.67 

 Mean Temperature (°C) 7.83 -3.38 5.48 7.8 10.2 17.38 

 Relative Humidity (%) 78.95 45.09 74.58 80.58 84.68 92.74 

 Precipitation (mm) 3.86 0 1.44 2.97 5.34 25.76 

Weekly Hospitalization Rate       
  Influenza 0.95 0 0 0 1 16.1 

 

 

 

Table 8. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Tennessee 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 10.85 5.61 8.91 10.64 12.47 19.77 

 Mean Temperature (°C) 9.32 -8.03 4.83 9.5 14.04 23.69 

 Relative Humidity (%) 68.86 46.84 62.59 68.53 75.21 90.92 

 Precipitation (mm) 2.98 0 0.78 2.2 4.38 17.45 

Weekly Hospitalization Rate       
  Influenza 1.02 0 0 0 1.8 7.7 

 

 

 

Table 9. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in New York – Albany  

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 8.85 2.97 7.29 8.71 10.157 16.37 

 Mean Temperature (°C) 2.75 -13.67 -1.84 2.21 7.47 16.47 

 Relative Humidity (%) 65.74 44.16 60.16 66.04 71.81 87.07 

 Precipitation (mm) 2.32 0 0.69 1.7 3.52 13.01 

Weekly Hospitalization Rate       
  Influenza 1.81 0 0 0 3.7 12.6 
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Table 10. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in New York – Rochester 

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 8.29 2.73 6.67 7.91 9.54 14.91 

 Mean Temperature (°C) 2.95 -14.59 -1.59 2.64 7.37 17.43 

 Relative Humidity (%) 70.67 47.51 66.6 71.33 75.71 89.4 

 Precipitation (mm) 2.08 0 0.68 1.68 2.81 12.91 

Weekly Hospitalization Rate       
  Influenza 1.57 0 0 0 1.6 15.4 

 

 

  

Table 11. Summary Statistics of Weekly Meteorological Factors and Weekly Influenza 

Hospitalization Rate in Michigan  

Variables Mean Minimum 25th  50th 75th Maximum 

Weekly Meteorology       

 DTR (°C) 8.77 2.9 6.84 8.53 10.56 16.57 

 Mean Temperature (°C) 2.37 -15.43 -2 2.14 7.43 17.95 

 Relative Humidity (%) 72.64 49.99 6.67 73.75 78.13 90.63 

 Precipitation (mm) 1.66 0 0.42 1.12 2.24 9.78 

Weekly Hospitalization Rate       
  Influenza 3.61 0 0 1.9 5.8 59.8 
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Appendix 4. Relative risk  

 

Table 1. Relative risk of pediatric influenza hospitalization at the mean and at different quantiles 

of DTR 

 

 Relative Risk at Mean and Different Quantiles of DTR 

State Mean Minimum 25th 50th 75th Maximum 

California* 0.99 0.52 0.69 0.93 1.26 1.69 

Colorado 1.03 0.85 0.93 1.02 1.12 1.23 

Connecticut 0.95 1.45 1.15 0.92 0.73 0.58 

Georgia 1.05 0.73 0.87 1.03 1.22 1.44 

Maryland 1.00 1.16 1.08 1.00 0.92 0.85 

Michigan* 1.06 0.45 0.66 0.97 1.41 2.07 

Minnesota 1.04 0.67 0.82 1.01 1.24 1.52 

New York – Albany* 1.27 0.36 0.61 1.05 1.79 3.06 

New York – Rochester* 1.07 0.49 0.69 0.98 1.39 1.97 

Oregon 1.06 1.70 1.31 1.01 0.78 0.60 

Tennessee 1.05 1.83 1.34 0.98 0.72 0.53 

*95% CI for RR does not cross 1 for all values of DTR, indicating statistical significance.   
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