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Abstract 
Leveraging the fact that in many primary debt issuance markets securities of varying 
maturities are sold simultaneously, we recover participants' full demand systems by 
generalizing methods for estimating individual demands from bidding data. The estimated 
preference parameters allow us to partition primary dealers into two main classes. For the 
first class, which largely coincides with the largest money market players, we find significant 
complementarities in their demand for Treasury bills in primary markets, while for the second 
class, the patterns in their willingness to pay are mixed and time-varying. We present a 
dealer-client model that captures the interplay between the primary and secondary market to 
provide a rationale for our findings. We argue that the complementarity likely arises from the 
large dealers “making markets,” and hence requiring to hold inventory of all securities. Our 
results are useful both for minimizing the cost of financing of government debt and for 
optimally implementing financial regulation that is based upon partitioning financial 
institutions according to their downstream business strategies. 

Bank topic: Debt management; Financial markets 
JEL codes: D44, C14, E58, G12 



1 Introduction

The primary objective of Debt Management Offices (DMO) worldwide is to achieve the lowest

cost of financing over time. In order to fulfill this objective, a DMO has to decide how to sell

government debt: the format of sale, which securities to offer, and how to allocate debt across

different maturities.1 Since the expected returns of these securities are not independent, the full

demand system should be one of the crucial ingredients in these decisions. The main contribution

of this paper is to propose a method for quantifying how willingness to pay (WTP) for one maturity

depends on (expected) allocations of other maturities. In Treasury auctions for bills with 3-, 6-,

and 12-month maturities, we find small own-price elasticities and some degree of complementarities

across maturities. This suggests that debt managers can increase revenue by issuing more short-

term debt without a large impact on price, and should do so in fixed proportions across maturities.

To understand our findings of complementarities in demand, we focus on how primary dealers

link issuers of debt (in our example, government) and the final holders of debt, and how prices in

the primary market are influenced by the structure of secondary markets.2 Primary dealers buy

securities from the central bank and sell them to clients in the secondary market. In the secondary

market, different clients (asset managers, pension funds, insurance companies, etc.) demand secu-

rities with different maturities. Assets with different maturities might not be fully substitutable.

This is the classic preferred-habitat justification for the existence of market segmentation (c.f. Cul-

bertson (1957), Modigliani and Sutch (1966), Vayanos and Vila (2009), Guibaud et al. (2013),

and Greenwood and Vayanos (2014)). The role of arbitrageurs (primary dealers in our setup) is to

intermediate between market participants (clients). Primary dealers, therefore, play an important

role in making markets by taking on costly inventory to meet heterogeneous demand. This gener-

ates complementarities across maturities in the primary market even if bills are substitutes in the

secondary market.

A second contribution, therefore, is to link the parameters of the demand system for bills of

varying maturity with the secondary market by using a stylized dealer-client model. In addition

1In an ideal frictionless world, the maturity structure of government debt is irrelevant (Wallace (1981)).
2This work therefore complements the burgeoning literature on intermediary asset pricing, e.g. He and Krish-

namurthy (2013), Brunnermeier and Sannikov (2014), and He et al. (2017). This is in addition to the literature
studying how secondary market structure interacts with Quantitative Easing (c.f. D’Amico and King (2013) and
Gorodnichenko and Ray (2017)).
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to understanding demand for Treasury bills at auction, our approach can be informative about

primary dealer business models. Recent regulatory reforms call for differential treatment of financial

institutions depending on their interactions with clients. For example, the “Volcker rule” (Section

619 of the Dodd-Frank Act) prohibits banks from conducting certain investment activities to limit

speculative investment with their own accounts. There are also different reporting requirements

across banks (for example, based on their size). We show that a primary dealer’s behavior in the

primary market for government debt can potentially inform a classification relevant for regulation.

In particular, the way a primary dealer bids for securities of various maturities is indicative of her

relationship with clients in secondary markets. For a typical investor, securities of different (but

fairly similar) maturities should behave as imperfect substitutes. However, a primary dealer with a

significant money market presence and many clients might view government securities of different

maturities as complements. Such a dealer needs to cover all the markets – both to make use of

potential short-term arbitrage opportunities and to be able to serve clients with random demands.

This is not the case for dealers with a more limited money market presence; his preferences behave

more like those of a typical investor.

Our final contribution belongs to the literature on demand estimation. A central issue that arises

when estimating demand systems is unobserved heterogeneity: how to make sure that variation in

quantity choices is attributable to variation in prices and not something omitted that is correlated

with price, e.g. quality in the case of a typical discrete choice model. In the context of bond markets,

it could also be time-varying risk premia. This is usually addressed by employing instruments

aimed at isolating such exogenous variation by making the appropriate exogeneity and validity

assumptions.3 We, instead, utilize a particular institutional feature that is surprisingly common in

auctions of government debt such as those run by the US, Japan, Brazil, France, China, and Canada:

different securities (Treasury bills and bonds of different maturities) are sold simultaneously in

parallel auctions. We extend previous results on identifying WTP from bidding data in auctions

(developed by Hortaçsu (2002) and Kastl (2011), who build on the pioneering work of Guerre et al.

(2000)) to allow for the willingness to pay to depend not only on the allocation of the underlying

security, but also on holdings of securities of other maturities. Since Treasury bill auctions are held

3Koijen and Yogo (2019) adapt the widely used “BLP” approach (Berry et al. (1995)) to estimating demand
for differentiated products to financial markets. They introduce the appropriate characteristics space and discuss
potential instruments.
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simultaneously, valuations that the auction participants attach to the different securities are, among

other things, a function of the options available in the parallel auctions. These valuations, therefore,

need to be estimated jointly. Overall, the setup enables us to estimate a full demand system in the

primary (i.e., auction) market, allowing for flexible substitution patterns across securities, including

complementarities.

We use data on all 3-, 6-, and 12-month Canadian Treasury bill auctions from 2002 to 2015 to

estimate a model of simultaneous discriminatory price auctions. We find that the average dealer

views Treasury bills of different maturity offered in the primary market as weak complements. This

result may seem surprising in light of existing literature. To make our argument, we begin by

providing evidence of cross-maturity bid-updating. That is, when dealers observe their customer

bids in the auction for one maturity, they not only update their bids for the same maturity (as in

Hortaçsu and Kastl (2012)), but also make updates to other maturities. Establishing that dealers

indeed take into account their bids on different maturities simultaneously, we estimate that the

marginal valuation for a 3M bill increases when going from an allocation excluding other maturities

to one corresponding to the average observed allocations of 6M and 12M bills (about $C200 million

each) by about 0.14 basis points (bps). This “cross-market” effect is roughly 1/10th the size of the

“own-market” effect: the marginal value for the 3M bill drops by about 1.25 bps when going from

none to $C400 million Treasury bills.4 The analogous increase in valuations in the 6M and 12M

auctions are of similar, relatively small magnitudes, yet statistically significant.

To understand how bills might be complementary in the primary market, we introduce a formal

model that captures the motives that drive demand for primary dealers as described above. On

the one hand, primary dealers with direct access to the auction might keep some of the bills they

win to use as collateral in other financial markets, or to fulfill regulatory requirements.5 On the

other hand, a key role of primary dealers is to support the well-functioning of secondary markets;

they stand ready to buy and sell (and repo) in the secondary market, thus providing immediacy

through their inventory.

Our model predicts that the degree of interdependency in the dealer’s demand hinges on the

4The average allocation is 400 million bills, or 6% of the supply.
5Participants in the Canadian Derivatives Clearing Corporation, for instance, have minimum requirements to post

Treasuries as collateral. See Bartolini et al. (2010) for evidence on the important role of Treasuries as collateral in
the repo market.
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role that the dealer plays in the secondary market. It suggests that different maturities are com-

plementary for dealers who have a more diverse client base or for whom it is more costly to turn

down clients than for dealers who cater to niche clients who might favor specific maturities. Our

approach allows us to zoom in on the individual dealer level to gather evidence for this conjecture.

Based on ancillary data at the Bank of Canada, we cluster dealers into two groups: those with

large fixed-income trading desks and a broad client base, and all others.

In line with the predictions of our model, we find that complementarities for dealers in the first

group are much stronger: the parameters that capture complementarities increase by between 50%

and 494% relative to the estimates for the average dealer. Our interpretation of this result is that

the market-making effect is stronger for these large dealers. That is, these dealers are less likely to

bid at auction to take advantage of small arbitrage opportunities across maturities than they are

to bid in fixed proportions in order to support secondary markets across all maturities.

For dealers in the second group, results are less precise. We find that the demand for 3M and

6M and 6M and 12M bills are substitutes or independent, while demand for the 3M and 12M bills

are complementary. One explanation is that the preferences of these dealers fluctuate more strongly

from auction to auction, depending on the current order flows of their clients, than for dealers who

trade with many different clients on a regular basis. The market-making effect might therefore be

much smaller.

The paper is structured as follows: Section 2 describes the institutional environment and the

data set. Section 3 presents evidence for interdependencies across maturities. Section 3.1 begins by

documenting some patterns in the raw data that point towards interdependencies; Section 3.2 gives

a preview of how we identify interdependencies and summarizes the key identifying assumptions;

Sections 3.3 and 3.4 describe the structural model and our estimation strategy, respectively. Esti-

mation findings are presented in Section 3.5. Section 4 concludes. All proofs are in the Appendix.
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2 Institutional Environment and Data

2.1 Institutional Environment

In Canada, Treasury bills are issued with three maturities: 3, 6, and 12 months. Since 2002

they are sold every second Tuesday by the Bank of Canada (BoC) in three separate, but parallel,

discriminatory price auctions. All three securities have a face value of $1,000 (Canadian). Due to

the large trading sizes, however, throughout the paper the units are in millions. There are two

groups of bidders: “dealers” and “customers.” Dealers are either primary dealers or government

securities distributors. Customers can only submit bids through primary dealers, but like dealers,

they tend to be large financial institutions. They choose not to register as dealers, perhaps to

sidestep additional monitoring and dealer-obligations.6 One example is Desjardins Securities. As

the securities division of one of the largest Canadian financial institutions it is a primary dealer

in the bond market, but only a customer in the Treasury market. Similarly, both Casgrain &

Company and JP Morgan are not registered as primary dealers and yet are very important players

in the Canadian government securities markets (Hortaçsu and Kastl (2012)).

From the time the tender call opens until the auctions close, bidders may submit and update

their bids. There are two types of bids: competitive and non-competitive. A competitive bid is

a step-function with at most 7 steps. “These bids must be stated in multiples of $1,000, subject

to the condition that each individual bid be for a minimum of $100,000. Each bid shall state the

yield to maturity to three decimal places” (Bank of Canada (2016)). For the most part we convert

yields into prices:

yield =

(
face value− price

price

)(
365

days

)
, (1)

with a face value of $C1 million and days denoting the days left to maturity. Using prices instead

of yields makes bidding as well as demand schedules decreasing rather than increasing. The bid

step-function specifies how much a bidder offers to pay for specific amounts of the asset for sale.

Figure 1a depicts an example – the choice of the median dealer in a 12M auction.7 The dealer

6For more details see Sections 10 and 11 in Bank of Canada (2016).
7The median step-function is computed as follows: Determine the median number of steps in all competitive bid

functions submitted by dealers, and then take the median over all (price, quantity) tuples corresponding to each step
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offers to pay 98.68 thousand dollars for the first 50 million CAD. For the next 50 he offers to pay

less, and so on. In addition to a competitive bid, each bidder may submit one non-competitive

bid. This is a quantity order, which the bidder will win for sure, but for which he pays the average

price of all accepted competitive bid prices. It is capped at 10 million dollars for dealers and 5

million dollars for customers, and hence trivial relative to the competitive order sizes – with one

exception: the Bank of Canada itself. It utilizes non-competitive bids to reduce the previously

announced total amount for sale.8 When the auction closes, the final bids are aggregated and the

market clears where aggregate demand meets total supply. Everyone wins the amount they asked

for at the clearing price (subject to pro-rata rationing on-the-margin in case of excess demand at

the market clearing price) and pays according to what they bid.

Figure 1: Bids in the Canadian Treasury bill market

(a) Comp. Bid for 12M (Median Dealer)
(b) Time to Deadline
(very early & late bids excluded)

2.2 Data

Our data set consists of all 366 Canadian Treasury bill auctions between 2002 and 2015. Table 1

summarizes the data. On average the BoC announced issuances of C$6.41 billion for 3M bills and

that were submitted by a dealer who submitted the median number of steps.
8The amounts purchased are typically divided across maturities as a proportion of what is supplied. The amounts

purchased depend on the Bank’s projection of expected future demand for notes and the amount of Treasury bills
maturing over the following weeks. See Statement of Policy, 2015.
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Figure 2: Issuance of Canadian 3-, 6-, 12-month Treasury bills

The Bank of Canada follows a predictable issuance strategy. Displayed is a time series of the issued supply of
the 3M, 6M, and 12M bills, where the 6M issuance do not appear in the graph because they are identical to 12M
issuance. The Bank of Canada always issues as many 6M bills as 12M bills. Over time, the amounts issued of
the different maturities are perfectly correlated.
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C$2.47 billion for each of the 6M and 12M bills per auction, of which it actually distributed roughly

C$5.76 (3M) and C$2.12 billion (6/12M). The total amount issued per year was C$81 billion for

the 3M bills and C$29 billion of the longer maturities. Figure 2 plots the issuance amounts over

the period 2012–2017. Except for the spike in 3M issuance starting with the financial crisis and an

increase in government expenditures, issuances are steady and predictable.

We identify each bidder through a bidder ID, and bidders are classified as a dealer or a customer.

In total we observe 21 dealers and 76 customers over the sample period. The average auction has

11 to 12 dealers and 5 to 6 customers. Roughly 71% of participants bid for all three maturities.

Such “global participation” is even more regular among dealers. To keep their bidder status as

government security distributor or primary dealer they have to be active in the primary market.9

Consequently, almost all who are active in a given auction week go to all three auctions (95%).

9“At every auction, a primary dealer’s bids, and bids from its customers, must total a minimum of 50 per cent
of its auction limit and/or 50 per cent of its formula calculation, rounded upward to the nearest percentage point,
whichever is less. [. . .] Each government securities distributor must submit at least one winning competitive or
non-competitive bid on its own behalf or on behalf of customers, every six months.” (Bank of Canada (2016), p. 12).
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Table 1: Data Summary of 3M/6M/12M Auctions

The sample starts January 2002 and ends December 2015. There are 366 auctions per maturity. The total number of
competitive bids (including updates) in the 3-, 6-, 12-month auctions is 66382, 48927, and 56721, respectively. These
individual steps make up 18272, 15514, and 17077 different step-functions. The total number of non-competitive bids
across maturities is 2477, 2378, and 1932. From the raw data we drop competitive bids with missing bid price (133)
and competitive or non-competitive tenders with missing quantities (69). Global participation is the probability of
attending the remaining auctions, conditional on bidding for one maturity. Dollar amounts are in billions of C$.

Mean SD Min Max
3M 6M 12M 3M 6M 12M 3M 6M 12M 3M 6M 12M

Issued amount 5.76 2.12 2.12 1.68 0.52 0.52 3.05 1.22 1.22 10.40 3.80 3.80
Dealers 11.88 11.79 11.03 0.90 0.93 0.83 9 9 9 13 13 12

Global part. (%) 93.67 93.84 98.84 24.34 24.04 10.67 0 0 0 100 100 100
Customers 6.26 5.68 5.35 2.69 2.94 2.54 1 0 0 14 13 15

Global part. (%) 35.66 40.13 39.46 47.90 49.02 48.88 0 0 0 100 100 100

Comp demand as %
of announced sup. 16.29 16.91 17.02 7.96 7.61 7.31 0.002 0.019 0.005 25 25 25
Submitted steps 4.83 4.23 4.35 1.86 1.78 1.75 1 1 1 7 7 7
Updates by dealer 2.89 2.18 2.48 3.58 2.87 3.18 0 0 0 31 31 42
Updates by customer 0.12 0.13 0.19 0.40 0.40 0.58 0 0 0 4 3 9

Non-comp dem. as %
of announced sup. 0.05 0.15 0.15 0.03 0.10 0.10 5/105 4/105 2/103 0.24 0.58 0.58

We observe all bids submitted from the opening of the tender call until the auction closes. The

updating period lasts one week, although most bids are within 10 to 20 minutes prior to closing.

Figure 1b depicts box plots of the time at which bids arrive prior to the deadline, excluding very

early outliers and bids that go in after auction closure. There are very few bids that arrive late (231

out of 57,650); 22 of them win despite being late.10 We therefore keep late bids in our estimation

sample. Typically, a dealer updates his bid (competitive or non-competitive) once or twice. The

median number of updates is one. The higher average (2.26) is driven by outliers. Customers are

less likely to update, with an average number of 0.1 (and a median of no updates).

An average step-function of a competitive bid has 4.5 steps with little difference across matu-

rities. Non-competitive tenders are small in size. On average, bidders only demand 0.1% of the

total (announced) supply via non-competitive tender, with a maximal share of 0.58%. Given their

size, our structural model abstracts from non-competitive bids, and focuses solely on the decision

of placing competitive bids. The BoC, on the other hand, demands substantial amounts via non-

competitive bids to reduce the total supply on the day of the auction, which generates uncertainty

about the available supply. On average, it takes away 11.13% (3M), 14.35% (6M), 14.26% (12M)

10Bids can show up as late in our data if a bidder manually phones the Bank of Canada to place a bid just before
closing and the Bank takes some time to process it.
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with a maximum of 20.45% (3M), 41.66% (6M), 25.00% (12M) of the total previously announced

supply. Our model will need to account for unannounced changes in actual supply.

3 Interdependencies

Parallel auctions of different maturities might be interconnected both on the supply and the demand

side. On the supply side, the BoC might determine the total amount for sale at each auction jointly,

which leads to a non-zero correlation between the sold amounts across maturities.

To understand where interdependencies on the demand side may come from, it is useful to

ask what motivates financial institutions’ activity in Treasury auctions. For one, they might want

to keep some of the bills in their own inventory. Treasury bills serve as collateral in interbank

markets and repo transactions and are popular for fulfilling capital and liquidity requirements for

safe assets. Second, most bidders (primary dealers) act as market makers in the secondary market.

Therefore they buy securities of different maturities in order to sell (or repo) them to clients on

the secondary market. To avoid having to turn down clients with demand for different maturities

in the days that follow the auction, dealers want to buy bundles of maturities. How much each

bidder values the particular securities offered at auctions depends on the bank’s own balance sheets

and other factors that are internal to the institution. It is the presence of such private information

that makes it complicated to measure interdependencies on the demand side. Bidders with private

information (that might be correlated across maturities) have incentives to shade their bids so as

to minimize the prices they will have to pay for each unit they win. To estimate how strong the

interdependencies are, we first have to back out how much bidders are truly willing to pay – a

problem that is at the heart of virtually all empirical analyses of auction markets.

3.1 Preliminary Empirical Evidence of Interdependencies

Table 2 displays correlations on the supply (2a) and demand side (2b) of Canadian Treasuries.

The supply that the BoC announces exhibits perfect positive correlation across maturities. In fact,

over our long sample the BoC always announces the exact same issuance size for the 6M and 12M

9



bills. The amount it actually distributes on the auction day is also almost perfectly correlated.11

We observe a similar pattern on the demand side. The total amount financial institutions demand

(via competitive or non-competitive tender) when the auction closes is highly positively correlated

across maturities, about 0.91–0.92. This pattern is suggestive of banks having preferences for buying

assets in some fixed proportion, pointing towards complementarities. Since the correlation between

quantities actually won drops to 0.54–0.57 (for all maturities), it seems that primary dealers do not

always succeed in achieving this goal.

Table 2: Cross-Market Correlations

Q̄m is the announced issuance amount, Qm the distributed supply for m = 3, 6, 12M . qDm,i is bidder i’s demand, q∗m,i

the amount won for m = 3, 6, 12M .

(a) Supply Side

Q̄3M Q̄6M Q̄12M Q3M Q6M Q12M

Q̄3M 1.00 Q3M 1.00
Q̄6M 1.00 1.00 Q6M 0.99 1.00
Q̄12M 1.00 1.00 1.00 Q12M 0.99 1.00 1.00

(b) Demand Side

qD3M,i qD6M,i qD12M,i q∗3M,i q∗6M,i q∗12M,i

qD3M,i 1.00 q∗3M,i 1.00

qD6M,i 0.92 1.00 q∗6M,i 0.57 1.00

qD12M,i 0.91 0.91 1.00 q∗12M,i 0.54 0.57 1.00

A further piece of evidence suggesting dependencies across auctions concerns updating behav-

ior by dealers. Observing their customer orders, dealers may update their own bids. This can be

because the customer bids provide information about competition or also about the fundamental

security value (Hortaçsu and Kastl (2012)). The demand for bills across auctions is likely intercon-

nected if dealers, upon observing a customer order flow (which may be concentrated only in one

maturity), update their own bids across all maturities. To be more concrete, say a dealer observes

a customer bid in the 3M auction. This triggers the dealer to update his own bid for the 3M bill. If

11Canadian policy-makers perform stochastic simulations to determine a debt strategy that is desirable over a long
horizon, e.g. 10 years. The model (publicly available at https://github.com/bankofcanada/CDSM) trades off risks
and costs of different ways to decompose debt over the full spectrum of government securities. Part of the simulation
routine is to specify ratios between maturities, for instance 1/4th of each of the 3/6/12-month bills and 1/16th of each
of the 2/5/10/30-year bonds (see Bolder (2003)). Final issuance decisions are taken based on model simulations and
judgment. “The typical practice [of the Bank of Canada] is to split the total amount purchased by the Bank, so that
the Bank’s purchases approximate the same proportions of issuance by the government across the three maturity
tranches” (Bank of Canada (2015) p. 5).
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his demand for 3-, 6-, and 12-month bills are interrelated, this should then also lead to an update

of bids for the other maturities. To get a preliminary look at this pattern, we run the following

Probit regression on competitive bids placed by dealers:

updatei,m = αi +
∑
m

Im (βmcustomerm + δm,−mcustomer−m) + εi,m. (2)

To avoid double counting, each step-function (as in Figure 1a) is treated as one observation. The

dependent variable update takes value 1 if the dealer updated his bid in an auction, and 0 otherwise.

Im is an indicator variable equal to 1 if the update occurs in the auction for maturity m. The

independent variables customerl (for l = m or −m) are also indicator variables. They are created

in two different ways. In the more conservative specification (1) customerl takes value 1 only if

the dealer received a competitive order by his customer for maturity l immediately before taking

action in auction m himself. The second specification builds on this benchmark but takes a longer

sequence of events into account. It acknowledges that it takes time to calculate bids, enter them

manually (which until 2019 is the rule rather than exception), and transfer them electronically.

Table 3 provides an example of such a sequence. It shows the last 10 minutes of events of a dealer

before auction closure on 10 February 2015. Having observed a customer in the 3M auction, he takes

action himself and places several bids in a row. Specification (1) assigns value 0 to customer3M

in the 6M auction because the dealer has not received an order for the 3M maturity immediately

before bidding on his own behalf for the 6M bills (second-to-last column). He first bids for the

12M bills. The second specification assigns a value of 1 (last column). Here customerl is 1 for all

bids the dealer places in a sequence (each with a time difference of 20 seconds) if he has received

an order for maturity l within one minute before he places his own bid in auction m, or the latest

order the dealer achieved is for maturity l.

Table 4 displays the estimated coefficients for specifications (1) and (2), in columns (1) and

(2), respectively. The significant positive β̂m coefficients support existing evidence by Hortaçsu

and Kastl (2012) on dealer updating. They found that dealers respond to customer orders by

updating their bids within the same auction. The significantly positive δ̂m,−m suggest that dealers

also update their bids across maturities. As expected, the level of significance increases when taking

into account the fact that dealers’ bids are in practice hardly ever simultaneous, but instead placed
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in close sequence. Taken together, the evidence suggests cross-maturity updating by dealers.

Table 3: Sequence of Events of a Dealer on 02/10/2015 in last 10 Min Before Auction Closure

Update in 12M for order of 3M Update in 6M for order of 3M
Bid by Time Maturity (1) (2) (1) (2)

Customer 10:19:52 3M . . . .
Dealer 10:21:59 1Y 1 1 0 0
Dealer 10:22:17 6M 0 0 0 1
Dealer 10:22:34 3M 0 0 0 0
Dealer 10:26:52 1Y 0 0 0 0
Dealer 10:27:16 1Y 0 0 0 0
Customer 10:28:34 3M . . . .
Dealer 10:28:44 3M 0 0 0 0

Table 4: Probability of Dealer Updating Bids

The results of this table are based on the Probit regression, (2). In column (1) customerl is an indicator
variable equal to 1 if the dealer received a competitive order from a customer for maturity l immediately
before taking action in auction m himself. In column (2) customerl is an indicator variable equal to 1 if the
dealer received an order for maturity l within one minute before placing his own bid in auction m, or the latest
order received for maturity l. The total number of observations is 39,271. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Dependent variable:

update

Coefficient Verbal description (1) (2)

β̂3M update in 3M after order for 3M 0.533∗∗∗ 0.711∗∗∗

(0.056) (0.053)

δ̂3M,6M update in 3M after order for 6M 0.405∗∗∗ 0.531∗∗∗

(0.064) (0.061)

δ̂3M,12M update in 3M after order for 12M 0.303∗∗∗ 0.446∗∗∗

(0.057) (0.054)

δ̂6M,3M update in 6M after order for 3M 0.086 0.248∗∗∗

(0.063) (0.059)

β̂6M update in 6M after order in 6M 0.848∗∗∗ 0.929∗∗∗

(0.076) (0.070)

δ̂6M,12M update in 6M after order in 12M 0.729∗∗∗ 0.762∗∗∗

(0.080) (0.074)

δ̂12M,3M update in 12M after order for 3M 0.556∗∗∗ 0.664∗∗∗

(0.070) (0.066)

δ̂12M,6M update in 12M after order for 6M 0.120∗∗ 0.244∗∗∗

(0.059) (0.056)

β̂12M update in 12M after order for 12M 0.828∗∗∗ 0.934∗∗∗

(0.061) (0.059)
Constant 0.476∗∗∗ 0.448∗∗∗

(0.007) (0.007)
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3.2 A Preview of Our Identification Strategy

Our goal is to consistently estimate a parameter that measures by how much a bidder’s marginal

willingness to pay (MWTP) for some quantity of bills with maturity m changes the more he expects

to win of the other maturities −m. As a first step we must understand what drives the MWTP. We

introduce a formal model that captures the key motives for purchasing bills in the primary market.

Within our model the true MWTP can be approximated by a linear function. To be precise, let

bidder i of type sgm,i,τ in bidder group g ∈ {d = dealer, c = customer} at time τ during the auction

week have the following WTP for amount qm in auction m conditional on winning q−m of the other

two maturities and keeping a share (1− κm) on its own balance sheet:

vm(qm, q−m, s
g
m,i,τ ) = α+ (1− κm)sgm,i,τ + λmqm + δm · q−m. (3)

The vector of δm parameters measures interdependencies across maturities. Take the example of

the m = 3M auction, where q−m ≡
(
q6M q12M

)′
and δm ≡

(
δ3M,6M δ3M,12M

)
. If δ3M,6M < 0,

bidders are willing to pay less for any amount of the 3M maturity the more they purchase of the 6M

bills, hence the bills are substitutes. When δ3M,6M > 0 they are complementary, and independent

if δ3M,6M = 0.

Estimating the parameters of interest consistently is challenging for two main reasons. First,

the bank has private information about how much it values the securities.12 In our model, sgm,i,τ

is the bank’s private signal (or an index aggregate of a multidimensional signal). This generates

incentives to misinterpret the true MWTP. As in the well-known first-price auction, bidders shade

their bids to reduce the total payments they must make to win. By looking at the bids we are

thus unable to differentiate between bidders reducing their bids for strategic reasons or because

they are purchasing an interdependent good at the same time (Problem 1: Bid-shading).13 Second,

12Treasury bills have very active forward markets (“when-issued”). The presence of this market implies that a
lot of information relevant for price-discovery is aggregated prior to the auction. It is therefore not unreasonable
to assume that the heterogeneity in valuations at the time of the auction itself is driven mostly by idiosyncratic
factors such as the structure of the balance sheet, investment opportunities or repo needs – which do not depend on
private information of other dealers. Any private information about future resale value can be arbitraged away in the
when-issued market. Hence, after conditioning on the public information, one can view the information structure as
corresponding to private values. This is consistent with the results in Hortaçsu and Kastl (2012), who fail to reject
the null hypothesis of no learning about fundamentals from clients’ bids – which is one of the necessary conditions
for private values.

13Generally, so-called “demand-reduction” can be a severe problem in multi-unit auctions in which bidders have
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even if a bidder wanted to report their true MWTP, vm(qm, q−m, s
g
m,i,τ ), the disconnected auction

design does not allow it. By the rules of the auction, a bidder can, in auction m, only submit a

one-dimensional bidding step-function (such as in Figure 1a) that depends on amounts of security

m, not on securities −m (Problem 2: Disconnected market design). Summarizing both challenges:

we observe bidding functions that specify a price for amounts of one maturity only, qm, not the

true MWTP, which is a function of all maturities vm(qm, q−m, s
g
m,i,τ ) without knowing sgm,i,τ .

Our two-stage estimation procedure solves both of these problems. First, we estimate the

joint distribution of market clearing prices and recover how much each bank would bid if it

were bidding truthfully. This solves the problem of strategic bid-shading. Here we extend the

structural estimation techniques developed by Hortaçsu (2002), Kastl (2011), and Hortaçsu and

Kastl (2012) to the case of simultaneous auctions of potentially related goods. Our estimates

are consistent under the identifying assumptions that (i) private information about all maturities

sgi,τ ≡
(
sg3M,i,τ sg6M,i,τ sg12M,i,τ

)
of each bidder i at each bid-update-time τ is iid across bidders

conditional on observed auction and date characteristics, and (ii) that all bidders are ex ante sym-

metric within their bidder group (dealer or customer) and play a (type-) symmetric Bayesian Nash

Equilibrium (BNE) each time new bills are issued. In an extension we relax the latter assumption.

Given the disconnected market design, the schedule a bidder would submit if it were truthful,

call it ṽm(qm, s
g
m,i,τ ), is not his true MWTP, vm(qm, q−m, s

g
m,i,τ ). This is because his actual marginal

benefit from winning amount qm depends on how much he will win of the other assets, q∗−m,i. Since

auctions take place in parallel, this is unknown. In equilibrium, these random quantities q∗−m,iq∗−m,iq∗−m,i need

to be integrated out:

ṽm(qm, s
g
m,i,τ ) = E[vm(qm, q

∗
−m,iq∗−m,iq∗−m,i, s

g
m,i,τ )| win qm].

In the first stage of our estimation procedure we estimate ṽm(qm, s
g
m,i,τ ). In addition, we esti-

mate the joint distribution of market clearing prices which allows us to estimate the conditional

expectation E[q∗−m,iq∗−m,iq∗−m,i| win qm]. Assuming the true MWTP is linear, as in (3), we can estimate the

parameters of interest, δm, in a linear regression with bidder-auction-time fixed effects that control

demand for more than one unit (e.g. Ausubel et al. (2014)). Bid-shading should play a minor role for Treasury bills
since they are highly liquid in secondary market trading. Conditional on observables, such as the when-issued price
of these bills, or the spot price in the secondary market, bidders can infer one another’s preferences fairly accurately.
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for α+ (1− κm)sgm,i,τ .

We now proceed to describe the model and estimation strategy, before presenting our estimation

results. Throughout, random variables are denoted in boldboldbold.

3.3 A Dealer-Client Model

M perfectly divisible goods, indexed m, are auctioned in M separate discriminatory price auctions,

run in parallel. In each auction, there are two groups (g) of bidders: dealers (d) and customers (c).

We assume that the total number of potential dealers Nd and customers Nc is commonly known,

and denote the total number of bidders by N = Nc + Nd. Over the course of the auction, new

information may arrive at a discrete number of time slots τ = 0, ...,Γ. How much each bidder bids

each τ depends on their WTP. Before modelling the auction process, we introduce a stylized model

that captures the key driving factors of individual demand in the primary market.

Financial institutions participate in Treasury auctions for different purposes. They have private

information about how much they need the bills supplied at auction. Formally, we let a bidder i

of group g draw a private signal at time τ he places his bid: sgi,τs
g
i,τs
g
i,τ ≡

(
sg1,i,τsg1,i,τsg1,i,τ . . . s

g
M,i,τsgM,i,τsgM,i,τ

)
. This type

is multi-dimensional. To account for differences between bidder groups, it may be drawn from

different distributions for customers and dealers.

Assumption 1. Dealers’ and customers’ private signals sdi,τ and sci,τ are for all bidders i inde-

pendently drawn from common atomless distribution functions F d and F c with support [0, 1]M and

strictly positive densities fd and f c.

Notably, we do not need to impose any restrictions on time dependence. The reason is that we

will not pool bids from auctions that took place at different points in time. A bidder’s type can

therefore be persistent across time.

3.3.1 Micro-Foundation of Individual Demand

In the spirit of Vayanos and Vila (2009), our model features market segmentation, where in-

vestor/clients may have preferences for specific maturities and dealers function across maturities
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by participating in the primary market and making markets in secondary trading. Rather than

assume dealers are risk-averse, we assume that dealers face a cost of not meeting client demand.14

For simplicity, in this section we restrict the number of maturities to M = 2.15 For notational

convenience we drop the superscript g and the subscripts i, τ for the remainder of the section.

Further, we label one part of the private type by ν, and the other t:

s = (t, ν) with t = (t1, t2) and ν = (a, b, e, γ, κ1, κ2, ρ).

A bidder of type s obtains the following gross benefit from “consuming” amounts (1 − κ1)q1

and (1− κ2)q2:

U(q1, q2, s) = t1(1− κ1)q1 + t2(1− κ2)q2. (4)

The private type determines how much a bidder benefits from keeping a share (1− κm) ∈ [0, 1)

of the purchased bill m in his own inventory or to fulfill existing customer orders. Bidders, in

particular dealers, function as market makers in the secondary market where they distribute the

rest of the bills {κ1q1, κ2q2} among investors who are yet to arrive. To incorporate future resale

opportunities we let there be a second stage following the primary auction. In the secondary

market a (mass of) client(s) with random demand {x1x1x1,x2x2x2} arrives to the bidder.16 Equivalently,

you may imagine that there are two types of clients, each with a random demand for one of the two

maturities. For simplicity we assume that each of {x1, x2x1, x2x1, x2} is on-the-margin uniformly distributed

on [0, 1] but allow both amounts to be correlated. More specifically, {x1, x2x1, x2x1, x2} assumes the following

(Farie-Gumbel-Morgenstern cupola) density f(x1, x2) = 1 + 3ρ(1 − 2F1(x1))(1 − 2F2(x2)) with

marginal distributions Fm(xm) = xm and correlation parameter ρ ∈
[
−1

3 ,+
1
3

]
.

The bidder sells to clients who arrive as long as there is enough of the maturities for resale:

xm ≤ κmqm. Selling xm brings a payment of pmxm. The prices depend on the clients’ WTP,

14A practical reason for why we do not model dealers as risk neutral is that it is much harder to estimate auction
models with risk-averse bidders than having a cost of not meeting demand.

15Generalizing to more than two maturities is straightforward but mathematically cumbersome and brings no major
additional insights.

16The terms “client” and “customer” denote different players. Customers participate in the auction by placing bids
with dealers, while clients buy in the secondary market.
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or the aggregate demand in the secondary market more generally. For simplicity we assume that

it is linear and symmetric across maturities. The inverse demand schedule for maturity 1 in the

secondary market takes the following form:

pi,1(x1, x2|q1, q2) =


a− bx1 − ex2 for x1 ≤ κ1q1 and x2 ≤ κ2q2

a− bx1 for x1 ≤ κ1q1 and x2 > κ2q2

0 for x1 > κ1q1 and x2 > κ2q2.

(5)

The price function for maturity 2 is analogous. It splits into three cases. In the first, clients

for both bills arrive and the bidder has enough of both in their inventory for resale. The bidder

charges a bundle price of {p1(x1, x2|q1, q2), p2(x1, x2|q1, q2)} for selling {x1, x2}. In the second case

the bidder can only sell maturity 1. This might be because only clients with demand for this

maturity arrive or because the bidder does not have enough of the other maturity in inventory for

resale, x2 > κ2q2. The price the bidder charges is independent of the maturity he does not sell,

p1(x1, x2|q1, q2) = a − bx1. Finally, if the bidder does not hold enough of either bill to satisfy the

demand of client(s) he cannot sell. Notice that the magnitudes of the resale prices are characterized

by three parameters {a, b, e}. A higher intercept a > 0 increases the bidder’s bargaining power,

and with it the price he can charge for each unit sold. Parameter b > 0 governs the price-sensitivity

of clients. Large clients (who demand more) have more negotiating power and can drive down the

price. When e > 0 bills are substitutes in the secondary market, and vice versa for complements.

Selling {x1, x2} generates a resale revenue of

revenue(x1, x2|q1, q2) = pi(x1, x2|q1, q2)x1 + p2(x1, x2|q1, q2)x2. (6)

Turning down clients is costly for the bidder. An unhappy client is, for instance, less likely to

contact the bidder again in the future. In reality, a bidder might even want to source the security

a client demands in the repo market so as to avoid losing his customer in the longer run. This

is costly for the bidder because it is expensive to borrow or buy additional Treasury bills on the
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secondary market when demand is high. In our model, bidders face the following cost function:

cost(x1, x2|q1, q2) =



0 if x1 ≤ κ1q1 and x2 ≤ κ2q2

γx1 if x1 > κ1q1 and x2 ≤ κ2q2

γx2 if x1 ≤ κ1q1 and x2 > κ2q2

γx1x2 if x1 > κ1q1 and x2 > κ2q2.

(7)

This function captures the idea that it is more costly to turn down larger clients, i.e. those with

larger demand. The important feature for our results is that it is supermodular in x1, x2, i.e.

has increasing differences.17 This means that the marginal cost from turning down a client who

demands one maturity is higher the larger the order for the other maturity.

Taken together, a bidder expects to derive the following payoff from winning q1, q2 at time τ in

the primary market:

V (q1, q2, s) = U(q1, q2, s) + E [revenue(x1x1x1,x2x2x2|q1, q2)− cost(x1, x2x1, x2x1, x2|q1, q2)] . (8)

The gross payoff determines how much a bidder is willing to pay on-the-margin. Consider auction

1. At time τ the bidder is willing to pay v1(q1, q2, s) = ∂V (q1,q2,s)
∂q1

for amount q1 conditional on

winning q2 of the other maturity. The appendix shows that v1(·, ·, s) is a third-order polynomial

for any s. It can be approximated by a linear function. Taking the first-order Taylor expansion

around (E[x1x1x1],E[x2x2x2]) = (1/2, 1/2) we obtain the following result.

Proposition 1. The marginal willingness to pay of a bidder with type sgm,i,τ for amount qm condi-

tional on winning q−m in the other auction can be approximated by

vm(qm, q−m, s
g
m,i,τ ) = αgm,i,τ + (1− κgm,i,τ )tgm,i,τ + λgm,i,τqm + δgm,i,τq−m for m = 1, 2−m 6= m,

(9)

where αgm,i,τ , λ
g
m,i,τ , δ

g
m,i,τ are polynomials of the exogenous parameters {κg1,i,τ , κ

g
2,i,τ , γ

g
i,τ , ρ

g
i,τ , a

g
i,τ , b

g
i,τ , e

g
i,τ}.

17Supermodularity is for functions that map from Rn → R equivalent to increasing differences: cost(x′1, x
′
2|q1, q2)−

cost(x1, x
′
2|q1, q2) ≥ cost(x′1, x2|q1, q2)− cost(x1, x2|q1, q2) for x′1 ≥ x1 and x′2 ≥ x2.
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The higher the private marginal benefit t1 from keeping a share (1 − κ1) of the bill for per-

sonal usage, the more the bidder is willing to pay. Bills might be substitutable or complementary

depending on the underlying exogenous parameters.

To understand this result, let us contrast the extreme cases where the bidder sells all of maturity

1 (κ1 = 0), sells all of maturity 2 (κ2 = 0), or keeps all of both (κ1 = κ1 = 1) and the demand of

clients is stochastically independent (ρ = 0).

v1(q1, q2, s1) =


t1 if κ1 = 0

1
4κ1(bκ2

1 − 2γ) + (1− κ1)t1,i,τ + κ2
1((a− bκ1) + 1

2γ)q1 if κ2 = 0

1
8(2(b+ e)− 6γ) + ((a− b)− 1

4e+ 7
8γ)q1 + 1

4(3γ − 2e)q2 if κ1 = κ2 = 1.

When buying only for its own account (κ1 = 0) a bidder is willing to pay the marginal value

that the bill brings to his own institution, t1. When he anticipates that he will sell at least some of

maturity 1, his MWTP in auction 1 decreases in q1 as long as his clients are sufficiently price-elastic

(i.e. b is sufficiently high). If he sells all of both maturities (κ1 = κ2 = 1) the MWTP is independent

of his private type t1. How much he is willing to pay for one maturity now hinges on the amount

he wins of the other maturity. Whether bills are substitutes or complements in the primary market

depends on how large γ is relative to e. More generally one can derive the following corollary which

will be useful when interpreting our estimation results. It holds for the general case where clients’

demand might be correlated (ρ 6= 0) and the bidder keeps any amount of bills (κ1, κ2 ∈ [0, 1]).

Corollary 1. Securities in the primary market become more complementary for bidder of type si,τ

when

(i) they are weaker substitutes in the secondary market (egi,τ ↓),

(ii) it is more costly to turn down clients (γgi,τ ↑), or

(iii) it is more likely that clients with demand for different maturities arrive (ρgi,τ ↑).

The corollary has two interesting implications. First, it highlights that bills might be substi-

tutable for clients, or more generally for traders in the secondary market (ei > 0), but complemen-

tary for bidders who purchase in the primary auctions to sell the bills in the secondary market.
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Through the lens of our model, the existing literature using market-level data to estimate the de-

gree of substitutability between government securities (e.g., Koijen and Yogo (2019)) estimates the

mean of parameter ei. We, instead, focus on the preferences of dealers in the primary market.

Second, the corollary tells us that it is possible that some bidders view bills as substitutes and

others as complements, as long as the joint distribution of parameters vgi,τvgi,τvgi,τ is not degenerate. There

could, for example, be a group of bidders for which it is more costly to turn down clients (high γi) or

whose clients are more likely to demand variety (high ρi) than for other bidders. We might expect

financial institutions whose primary business is to trade Treasury bills to be part of this group,

while it might be relatively less costly to turn down clients (low γi) or less likely to serve clients

who seek to buy different maturities (low ρi) for financial institutions whose primary business lies

outside the money market.

3.3.2 The Auctions

In modeling the auction process we build on Hortaçsu and Kastl (2012)’s model of a stand-alone

auction.18 Motivated by the previous section, we assume that the MWTP is linear.

Assumption 2. The marginal willingness to pay of a bidder with type sgm,i,τ for amount qm con-

ditional on purchasing q−m of the other two securities −m is

vm(qm, q−m, s
g
m,i,τ ) = αgi,m + (1− κgi,m)tgm,i,τ + λgi,mqm + δgi,m · q−m, (9)

with λgi,m < 0, |δgi,m| < λgi,m and αgi sufficiently high such that the marginal willingness to pay does

not drop below 0 for any amount that might be for sale.

A bid in auction m consists of a set of quantities in combination with prices. It is a step-function

which characterizes the price the bidder would like to pay for each amount.

18See Kastl (2017) for a review of advances in the application of Industrial Organization tools in finance.
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Assumption 3. In auction m each bidder has the following action set each time an offer is placed:

Am =


(bm, qm,Km) : dim (bm) = dim(qm) = Km ∈ {1, ...,Km}

bm,k ∈ [0,∞) and qm,k ∈ [0, 1]

bm,k > bm,k+1 and qm,k > qm,k+1∀k < Km.

Notice that qm,k ∈ [0, 1]. It represents the share of total supply. This allows us to compare bids

in auctions with different sizes of supply. A bid of 0 denotes non-participation.

To capture the updating process of bids prior to auction closure, we assume that new information

may arrive at each time slot τ . At τ = 0, a bidder draws an iid random variable Ψi ∈ [0, 1]. It is

one dimension of the bidder’s private signal and thus unobservable to competitors. It corresponds

to the mean of an iid Bernoulli random variable, Ωi, which determines whether the bidder’s later

bids will make it in time to be accepted by the auctioneer. More specifically, for τ > 0, the bidder’s

information set includes the realizations ωi ∈ {0, 1} of Ωi, where ωi = 1 means that the bid of time

τ will make it in time. This gives an incentive to bid at each arrival of new information because

there might not be an opportunity to successfully bid in the future.

Given that the rules of the auction do not allow for customers to submit their own bids, at

each time τ all customers who want to place an order are matched to a dealer. The dealer can

observe his customer’s bid. This provides him with additional information at time τ – one that

is unavailable to other dealers or customers. A dealer might have the same customer in all three

auctions. Denoting the information obtained from observing a customer’s bids at time τ in auction

m by Zm,i,τ , dealer i’s information set or, equivalently, his “type” is θgi,τ = (sgi,τ , Z1,i,τ , Z2,i,τ , Z3,i,τ ).

If he only has a customer in one auction, say for maturity 1, θgi,τ = (sgi,τ , Z1,i,τ ), and so on. Notice

that by Assumption 1, (sgi,τs
g
i,τs
g
i,τ ,Zi,τZi,τZi,τ ) are independent across dealers and time. However, sgi,τs

g
i,τs
g
i,τ and Zi,τZi,τZi,τ

can be correlated within a dealer across τ .

Definition 1. A pure-strategy is a mapping from the bidder’s set of types at each time τ to the

action space of all three auctions: Θg
i,τ → A1 ×A2 ×A3.

A choice in auction m by a bidder with information θgi,τ may be summarized as bidding function
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bgm,i,τ (·, θgi,τ ) or equivalently as a demand function ygm,i,τ (·, θgi,τ ). The latter specifies how much an

agent demands at each admissible price. When auction m closes at τ = Γ, the auctioneer aggre-

gates individual demands of the bidders’ final bids. The market clears at the lowest price P cm at

which aggregate demand, denoted
∑Nc

i=1 y
c
m,i,Γ(pm, θ

c
i,Γ) +

∑Nd
i=1 y

d
m,i,Γ(pm, θ

d
i,Γ), satisfies aggregate

supply. The latter is the announced amount for sale net of what the BoC demands in the form

of non-competitive bids during the auction plus all other competitive bids by bidder i’s competitors.

Assumption 4. Supply {Q1Q1Q1,Q2Q2Q2,Q3Q3Q3} is a random variable distributed on [Q
1
, Q1] × [Q

2
, Q2] ×

[Q
3
, Q3] with strictly positive marginal density conditional on sgi,τ ∀i, g = c, d and τ .

If aggregate demand equals total supply exactly there is a unique market clearing price P cm.

Each bidder wins their demand at the market clearing price and pays for all units according to

their individual price offers. When there are several prices at which total supply equals aggregate

demand by all bidders, the auctioneer chooses the highest one. Finally, in the event of excess

demand at the market clearing price, bidders are rationed pro-rata on-the-margin.19

Denoting the amounts bidder i gets allocated by qci =

(
qc1,i qc2,i qc3,i

)
when submitting

bgi,τ (·, θgi,τ ) ≡
(
bg1,i,τ (·, θgi,τ ) bg2,i,τ (·, θgi,τ ) bg3,i,τ (·, θgi,τ )

)
his total surplus is

TS(bgi,τ (·, θgi,τ ), sgi,τ ) = V (qci , s
g
i,τ )−

3∑
m=1

∫ qcm,i

0
bgm,i,τ (x, θgi,τ )dx (10)

in the event in which τ is the time of his final bid, with V (qci , s
g
i,τ ) given by (9). It is the total

utility he achieves from obtaining the amounts he wins minus the total payments he must make.

Ex ante, when placing a bid, the bidder knows neither how much he will win nor at which price

the market will clear. His optimal choice maximizes the expected total surplus.

Definition 2. A BNE is a collection of functions bgi,τ (·, θgi,τ ) that for each bidder i and almost every

19“Under this rule, all bids above the market clearing price are given priority, and only after all such bids are
satisfied, the remaining marginal demands at exactly price P c = p are reduced proportionally by the rationing
coefficient so that their sum exactly equals the remaining supply. An alternative rationing rule would, for example, not

give bids at higher prices priority.” (Kastl (2011)). The rationing coefficient satisfies Rm(P c
m) =

Qm−TD+
m(Pm

c )

TDm(Pc
m)−TD+

m+(Pc
m)

where TDm(P c
m) denotes the total demand at price P c

m, and TD+
m(P c

m) = limpm↓Pc
m
TDm(pm).
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type θgi,τ at each time τ maximizes the expected total surplus, E[TS(bgi,τ (·, θgi,τ ), sgi,τ )].

We focus on type-symmetric BNE of the auction game, in which bidders who are ex ante

identical follow the same strategies. Dealers who draw the same type play the same function, and

similarly for customers. Across bidder groups strategies might be asymmetric.

bdi,τ (·, θdi,τ ) = bd(·, θdi,τ ) and bci,τ (·, θci,τ ) = bc(·, θgi,τ ) ∀i, τ.

3.4 Estimation Strategy

3.4.1 First Stage of the Estimation Strategy

To solve the problem of strategic bid-shading we recover what the bidder would bid if he were

truthful by extending Hortaçsu (2002), Kastl (2011), Kastl (2012), and Hortaçsu and Kastl (2012)

to the case of simultaneous auctions of potentially related goods. To determine which marginal

valuations rationalize the observed bids we must first characterize the optimality conditions for

the type-symmetric BNE of the game. Here we extend Wittwer (2020), who characterizes the

equilibrium in simultaneous discriminatory price auctions under more stringent assumptions than

we impose in this paper.

Bidding incentives in simultaneous discriminatory price auctions are similar to those in an iso-

lated auction (see Wittwer (2020)). To fix ideas, we begin with the benchmark case of auctions

of independent goods. Securities in our model are unrelated if all δ parameters are equal to 0.

In this case gross utility is additively separable across maturities and the WTP for one maturity

vm(qm, s
g
m,i,τ ) is independent of the amount allocated to this bidder in auctions of other maturities.

In addition, all markets clear separately. A bid offered for good 1 will not affect the payment

the agent has to make for good 2 because the agent’s demand for good 1 can, by the rules of a

standard discriminatory price auction, only depend on the price for good 1. Since neither utility

nor payments are interrelated, strategic incentives are identical to those in an isolated auction. In

determining his best reply to all others, the bidder can, therefore, focus on each auction in isolation.

If the bidder knew the residual supply curve when choosing his bids, he would just pick a point on
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this curve that maximizes his total surplus. Yet, when making his choices, he does not know this

curve as it depends on the random total supply and the private information of his competitors. He

thus has to integrate out the uncertainty about the market clearing price and evaluate marginal

benefits and costs of changing a bid. The marginal cost is losing the surplus on the last infinitesi-

mal unit demanded, which happens exactly when the price is between bids, defined by the kth and

k+ 1st step. The marginal benefit is saving the difference between these bids whenever the market

clearing price ends up being actually weakly lower than bk+1.

Proposition 2 (Unrelated Goods). Consider a bidder i of group g with private information θgi,τ

who submits K̂m(θgi,τ ) steps in auction m at time τ . Under Assumptions 1-4 in any type-symmetric

BNE every step k in his bid function bgm(·, θgi,τ ) has to satisfy

vm(qm,k, s
g
m,i,τ ) = bm,k +

Pr
(
bm,k+1 ≥ P cmP cmP cm|θ

g
i,τ

)
Pr
(
bm,k > P cmP

c
mP
c
m > bm,k+1|θgi,τ

)(bm,k − bm,k+1) ∀k < K̂m(θgi,τ )

and bm,k = vm(q̄m(θgi,τ ), sgm,i,τ ) at k = K̂m(θgi,τ ) where q̄m(θgi,τ ) is the maximal amount the bidder

may be allocated in the equilibrium.

This equation allows us to estimate the marginal valuations that rationalize the observed bids

at all steps bm,k of all bidders at all times and auctions. Following Hortaçsu (2002) the approach is

to estimate the distribution of the market clearing price using a resampling procedure. It relies on

the assumption that private information is not interdependent across bidders, so that “each bidder i

cares about others bidding strategies only insofar as they affect the distribution of bidder i’s residual

supply” (Hortaçsu and McAdams (2010)). The choice of bid by bidder i transforms the distribution

of the residual supply into the distribution of the market clearing price. In a standard multi-unit

auction with no bid-updating in which N bidders draw independent private information and play

the symmetric BNE in T auctions with identical covariates, the resampling procedure works as

follows: Fix bidder i. For all bidders that did not bid in an auction, augment the data with their

bids being 0. Draw a random sample N − 1 bid-vector with replacement from the sample of NT

bids. Construct bidder i’s realized residual supply were others to submit these bids. Repeating

this routine many times gives a consistent estimate of the distribution of the market clearing price.
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Our setup is, even if there are no interdependencies across auctions, more complicated. First, we

have two bidder groups (dealers and customers) which may be ex ante asymmetric. Second, bidders

may update their bids within an auction with dealers observing their customers’ bids. Hortaçsu

and Kastl (2012) have extended the resampling procedure for this more complex environment.20

We extend this approach for stand-alone auctions to the cases of parallel auctions below.

It is highly unlikely that demands for Treasury bills of different maturities are independent,

in particular when the maturities are similar. Bidders take this interconnection across auctions

into account when determining their optimal bidding strategies. Consider an auction for maturity

m = 1. When preferences are no longer separable across maturities, the agent’s MWTP for amount

q1 depends on how much of the other goods he gets allocated, v1(q1, q−1, s
g
1,i,τ ). Ideally, he would

want to condition his price b1,k for amount q1,k on how much he will purchase of the other secu-

rities in equilibrium, q∗−1,i ≡
(
q∗2,i q∗3,i

)′
. Since the rules of the auction do not allow participants

to express their preferences in this way, they have to integrate out the uncertainty. Conditional

on winning q1,k, which happens when b1,k ≥ P c1P
c
1P
c
1 > b1,k+1, a bidder expects a marginal benefit of

E
[
v1

(
q1,k,q∗−1,iq∗−1,iq∗−1,i, s

g
1,i,τ

)∣∣∣ b1,k ≥ P c1P
c
1P
c
1 > b1,k+1, θ

g
i,τ

]
. Analogous to the decision process in an isolated

auction, the agent equates the benefit of winning the bid with its marginal cost. Since auctions

clear separately the cost is identical to the cost in an isolated auction with one important differ-

ence. With stochastic dependence across auctions, market clearing prices are connected. With M

maturities, they are drawn from a joint M -dimensional distribution.

Proposition 3 (Related goods). Consider a bidder i of group g with private information θgi,τ who

submits K̂m(θgi,τ ) steps in auction m at time τ . Under Assumptions 1-4 in any type-symmetric

BNE every step k in his bid function bgm(·, θgi,τ ) has to satisfy

ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) = bm,k +

Pr
(
bm,k+1 ≥ P cmP cmP cm|θ

g
i,τ

)
Pr
(
bm,k > P cmP

c
mP
c
m > bm,k+1|θgi,τ

)(bm,k − bm,k+1) ∀k < K̂m(θgi,τ )

20The procedure is as follows: Drawing Nc customer bids from the empirical distribution of customer bids. If a
customer did not participate, replace his bid by a 0. For each customer bid vector, draw a corresponding dealer
bid. If a zero customer bid is drawn, draw from the pool of uninformed dealers (those who did not observe any
customer bids). If a nonzero customer bid is drawn, draw from the pool of dealers’ bids, which have been submitted
having observed a “similar” customer bid with equal probabilities. Those are customer bids whose quantity-weighted
bid price are sufficiently close (according to a pre-defined bandwidth). The resulting estimate of the distribution of
clearing prices is consistent (Hortaçsu and Kastl (2012)).
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with

ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) ≡ E

[
vm

(
qm,k, q

∗
−m,iq∗−m,iq∗−m,i, s

g
m,i,τ

)∣∣∣ bm,k ≥ P cmP cmP cm > bm,k+1θ
g
i,τ

]

for m = 1 . . .M with −m 6= m, and bm,k = ṽm(q̄m(θgi,τ ), sgm,i,τ |θ
g
i,τ ) at k = K̂m(θgi,τ ) where q̄m(θgi,τ )

is the maximal amount the bidder may be allocated in an equilibrium.

Analogously to a stand-alone auction, we can estimate the marginal valuations by estimating the

distribution of residual supply curves, now jointly for all maturities. With M = 3 parallel auctions,

the benchmark resampling procedure of Hortaçsu (2002) must be changed in that a choice of a

bidder is now a triplet of bidding functions submitted on a given auction day. Fixing such a triplet

of bids submitted by a bidder, one then draws a random subsample of N−1 bid-vector triplets with

replacement from the sample of NT bids, and constructs bidder i’s realized residual supply ∀m were

others to submit these bids to determine the realized clearing prices P c =
(
P c3M P c6M P c12M

)
, and

the amount i would have won q∗i =
(
q∗3M,i, q

∗
6M,i, q

∗
12M,i

)
for all q∗i , P

c. Repeating this procedure a

large number of times provides an estimate of the joint distribution of market clearing prices and,

equally important, the corresponding amount of each security i would win.

There are two complications when auctions are not considered separately. First, bids in different

auctions are not submitted at the exact same time given electronic or human delays (see the example

in Table 3). In our procedure, we define bids to be “simultaneous” if they are the closest bids of all

bids a bidder places within 200 seconds, or they are the last bids made before the auction deadline,

i.e. final bids. Setting an upper bound of 200 seconds seems sensible when looking at the number of

seconds between bids across maturities which we know were determined “simultaneously”. Those

are cases where the bidder does not update his bids over the course of the auctions. On average

551(383) seconds pass between such bids for different maturities by dealers(customers). Excluding

outliers reduces the time (see Figure 3).

Second, a customer might place his order via different dealers in an auction week. He might, for

instance, go via one dealer in the 3M auction and via another in the 6M auction. Furthermore, two

bids for the same maturity but by different customers might go through the same dealer. Neither of

these two cases happens more than a handful of times. Therefore, we assume that the information
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Figure 3: Time Between Bids of Those Who Do Not Update

This figure plots the distribution of times between bids for both dealers and customers who do not update
their bids. Time is in seconds.

set of dealers who observe the same customer is independent across maturities, conditional on his

own signal. In addition, we restrict the number of possible observed customer bids to two. Given

that most customers only submit one bid and that there are many more dealers than customers in

a typical auction, this simplifying restriction is reasonable.

With these simplifications our procedure is as follows: DrawNc customer bids from the empirical

distribution of customer bids at date t. If a customer did not participate in one auction, replace

his bid by 0. For each customer, find the dealer(s) who observed this customer’s bid(s). If the

customer submitted only one bid, take the dealer who observed it. If the customer submitted more

than one bid, draw uniformly over dealer-bids having observed this customer. Finally, if the total

number of dealers drawn is at this point lower than the total number of potential dealers, draw the

remaining bids from the pool of uninformed dealers, i.e. those who do not observe a customer bid

in any of the three auctions. Note that – while theory allows for many updates – we restrict the

number of possible observed customer bids to two in order to simplify our resampling algorithm.

This includes most cases as most bidders update once or twice.

The estimation procedure gives consistent estimates under two scenarios: In the benchmark, all

bidders (customers and dealers) are ex ante symmetric. In particular, dealers do not know whether
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their rivals have complementary, substitutable, or independent preferences for different maturities.

This is plausible if we believe that these preferences are mostly driven by fluctuating factors in

the secondary market. In the second scenario, there are two groups of dealers. They consistently

display different preferences, for example, because they follow different business models. Each

dealer is aware of how many dealers are in each group but they do not know dealer identities.21

Alternatively, we can allow each dealer to know which dealer is in which group by further extending

the resampling procedure.

In our main specification we impose marginal valuations ṽm(·, sgm,i,τ |θ
g
i,τ ) to be weakly decreas-

ing. Increasing valuations would imply increasing equilibrium bidding functions, which cannot be

submitted by the rules of the auction. Furthermore, to correct for outliers that occasionally occur

due to small values of the denominator in the estimated (marginal) hazard rate of the market

clearing price, P̂r
(
bm,k > P cm > bm,k+1|θgi,τ

)
, we trim our estimated marginal values. Specifically,

we restrict each to be lower than the bidder’s maximal bid plus a markup of about 0.4 bps (C$40

for 12M, C$20 for 6M, C$10 for 3M). The size of the markup is motivated by the distribution of

how bidders shade the untrimmed estimated marginal values per step, i.e., v̂t,m,i,,τ,k − bt,m,i,,τ,k.

Figure 4 shows that the vast majority of the (untrimmed) shading factor lie below 0.4 bps and the

median bid-shading in all cases is zero.22

3.4.2 Second Stage of the Estimation Strategy

Our resampling procedure delivers a consistent estimate of the joint distribution of market clearing

prices and the amount bidder i wins in equilibrium conditional on the information he has at time

τ . This allows us to estimate how much he expects to win of the other maturities if he were to win

a given quantity in maturity m:

Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
= E

[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|bt,m,i,τ,k ≥ P ct,mP ct,mP ct,m > bt,m,i,τ,k+1, θt,i,τ

]
+ εqt,m,i,τ,k. (11)

Moreover, using Proposition 3, we can use the marginals of this joint distribution to obtain an

estimate of how much bidder i would be willing to pay at step k at time τ in auction m of week t

21With this specification, our estimates are consistent if the number of bidders is large enough.
22Results are robust to reasonable assumptions about the markup.
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Figure 4: Distribution of the untrimmed shading factor

This figure plots the distribution of the untrimmed (raw) shading factor for the three maturities, 3, 6, and
12 months. The shading factor is measured in Canadian dollars.

given the observed bid:

v̂t,m,i,τ,k = E
[
vm

(
qt,m,i,τ,k, q

∗
t,−m,iq∗t,−m,iq∗t,−m,i, s

g
m,i,τ

)∣∣∣ bt,m,i,τ,k ≥ P ct,mP ct,mP ct,m > bt,m,i,τ,k+1, θt,i,τ

]
+ εvt,m,i,τ,k. (12)

Assuming linearity of the MWTP (Assumption 2), we can now estimate the following linear regres-

sion with auction-bidder-time fixed effects ut,m,i,τ ≡ α+ (1− κm)tgt,m,i,τ :

v̂t,m,i,τ,k = ut,m,i,τ + λmqt,m,i,τ,k + δm · Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
+ εt,m,i,τ,k, (13)

for m = 1 . . .M,m 6= m on a subsample with competitive bids of more than one step to identify

the parameters of interest. Figure 5 shows that it is the case for virtually all dealer bids: almost

all submit more than one step. In Appendix 6 we show that our findings are robust to excluding

the first step in addition.
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Figure 5: Steps by Bidder Groups

This figure plots the frequency of bid-steps taken by the customers (gray) and dealers (red).

3.5 Estimation Results

We restrict attention to dealers. First, we present the estimation results for “an average dealer”

(Table 5). We then split dealers into groups to allow for heterogeneity in preferences (Tables 6

and 7). Our model predicts that dealers with a broad client base whose main business it is to

trade in the money market are more likely to have complementary preferences. To test whether our

data supports this conjecture, we split the dealers into two groups. The first group consists of the

five dealers with large money market desks. They are the most active players with a broad client

base. The second group includes dealers whose primary business lies outside money markets. Huyn

et al. (2017) use a similar breakdown to highlight the increase in agent-based trading relative to

principal-based for dealers in the “other” group.

In addition, we run all regressions (13) using observed bids (bt,m,i,τ,k) to complement our results

using v̂t,m,i,τ,k (see Appendix 6). This gives an idea of whether bid-shading (bt,m,i,τ,k − v̂t,m,i,τ,k)

is sensitive to interdependencies across auctions. If we use bids rather than valuations, the λ

parameters are biased downwards. This would suggest flatter marginal valuations than estimated.

The δ parameters, on the other hand, are biased upwards. Using bids overestimates the degree of

complementarities compared to the case where we allow dealers to shade their bids strategically.
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In line with the model, we report results with marginal valuations and bids expressed in C$

(prices), not yields. Whenever we quote a number in bps it is the estimated value from the

corresponding regressions performed with yields.23 All quantities are expressed as a percentage

of the total amount issued in the auction, thereby facilitating the comparison of auctions with

different supply.

Table 5: Preferences of the average dealer

Using bids for all dealers, this table reports estimates for equation (13). Estimates are interdependencies given
by the δ parameters. Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M -5.229∗∗∗ (0.0267) λ6M -8.450∗∗∗ (0.0485) λ1Y -16.96∗∗∗ (0.0860)
δ3M,6M 0.178∗∗ (0.0625) δ6M,3M 0.626∗∗∗ (0.106) δ1Y,3M 1.087∗∗∗ (0.207)
δ3M,1Y 0.241∗∗∗ (0.0669) δ6M,1Y 0.437∗∗∗ (0.114) δ1Y,6M 0.418 (0.215)
const 995661∗∗∗ (0.367) const 991657∗∗∗ (0.721) const 981633∗∗∗ (1.258)

N 58542 42282 50410

Table 6: Preferences of dealer group 1

Using bids for dealer group 1 (main dealers), this table reports estimates for equation (13). Estimates are
interdependencies given by the δ parameters. Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M -6.213∗∗∗ (0.0487) λ6M -9.499∗∗∗ (0.0848) λ1Y -19.82∗∗∗ (0.152)
δ3M,6M 1.054∗∗∗ (0.111) δ6M,3M 1.217∗∗∗ (0.177) δ1Y,3M 0.887∗∗ (0.342)
δ3M,1Y 0.363∗∗ (0.123) δ6M,1Y 0.940∗∗∗ (0.200) δ1Y,6M 1.412∗∗∗ (0.388)
const 995671∗∗∗ (0.543) const 991420∗∗∗ (1.058) const 981251∗∗∗ (1.863)

N 28592 21406 25134

Table 7: Preferences of dealer group 2

Using bids for dealer group 2 (other dealers), this table reports estimates for equation (13). Estimates are
interdependencies given by the δ parameters. Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M -4.708∗∗∗ (0.0288) λ6M -7.829∗∗∗ (0.0538) λ1Y -14.98∗∗∗ (0.0913)
δ3M,6M -0.306∗∗∗ (0.0683) δ6M,3M 0.196 (0.122) δ1Y,3M 1.484∗∗∗ (0.238)
δ3M,1Y 0.275∗∗∗ (0.0716) δ6M,1Y 0.139 (0.125) δ1Y,6M -0.210 (0.224)
const 995662∗∗∗ (0.465) const 991917∗∗∗ (0.928) const 982107∗∗∗ (1.572)

N 29863 20818 25097

An average dealer. The estimation results when pooling across all dealers are displayed in

Table 5. Recall that the face value of a bill is in millions of Canadian dollars. Before discussing

23As a rule of thumb, 100/50/25 C$ of a 12M/6M/3M bill are approximately 1 basis point of a yield.
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the estimated degree of interdependency (the δ parameters), consider first by how much a dealer’s

MWTP for maturity m changes in qm (the λ parameters of the first column in all tables). This

helps provide a sense of magnitudes. As expected, marginal utility is strictly decreasing (all λ’s are

significantly negative). They are not large in magnitude, however, indicating that valuations are

fairly flat with respect to quantity. Increasing the amount of the 3M bills by 1% of total supply, for

example, decreases a dealer’s marginal benefit from owning the 3M bill by C$5.229 or about 0.21

bps. Given the large average allocated amounts (about 8.12% of the issued supply or C$544 million

of 3M bills per dealer), there is a more sizable difference between the value of the first and last

Treasury bill: about 1.7 bps. The other two maturities exhibit similar patterns: In the 6M/12M bill

auction, the bidder’s marginal valuation drops by C$8.45/16.96, or about 0.17 bps. This translates

to a difference in values for the first and last won Treasury bill (on average 8.12% of the issued

supply or C$204 million per dealer) of about 1.37 bps for both, the 6M and 12M bills. Given the

small price variation in the submitted bid step-functions (recall Figure 1a) this finding should not

be that surprising. Intuitively, financial institutions have a rather precise idea of the price at which

the primary market will clear, since all securities we consider are highly liquid. To avoid paying

unnecessarily high prices, they submit bids that vary closely around the clearing price they expect,

conditional on publicly available information (such as prices in the when-issued market).

With these “own” effects in mind, we can turn to the discussion of our main parameters of

interest. All δ parameters are positive but relatively small. This suggests that bills are weak

complements for the average dealer. In the 3M auction, the estimates imply that the bidders’

valuation increases by about (0.178 ∗ 8.12% + 0.241 ∗ 8.12%)/25 ≈ 0.14 bps when obtaining the

average amount of the 6M and 12M bills (8.12% of the supply of each), rather than nothing. For

auctions of the longer maturities the complementarities are similar. The valuation for bidders in

the 6M auction increases by about (0.626 ∗ 8.12% + 0.437 ∗ 8.12%)/50 ≈ 0.1 + 0.07 = 0.17 bps

and the valuation of bidders in the 12M auction by about (1.087 ∗ 8.12% + 0.418 ∗ 8.12%)/100 ≈

0.09 + 0.03 = 0.12 bps when going from owning nothing of the other two maturities to obtaining

the average amounts won.

Heterogeneities in preferences. Our model of demand predicts that dealers with different

business models have different preferences. According to Corollary 1, bills are more complementary
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for dealers for whom it is more costly to turn down clients or whose clients are more likely to demand

different maturities. Both is more likely to be true for dealers whose primary business lies in the

money market. They have a broader base of clients with demand (or a preferred habitat) for

different bills and might worry more about sustaining this base.

To test for preference heterogeneity we split the dealers into two groups. Our first group

contains dealers with large money market desks and many clients for whom we suspect to find

stronger complementarities (called “main dealers”). The second includes “other dealers”.

Our results, displayed in Tables 6 and 7, confirm our conjecture. Compared to an average

dealer (Table 5), bills are more complementary for a dealer with a money market focus. All of the δ

parameters, with the exception of δ1Y,3M , increase relative to our baseline estimates. The percentage

increase is relatively large, ranging from 50% up to 494%.24 All estimates of complementarities

are statistically significant. Yet they are relatively small: The dealer’s valuation in the 3/6/12M

auction increases by about 0.32 + 0.1 = 0.42/0.19 + 0.14 = 0.33/0.07 + 0.11 = 0.18 bps when

going from owning nothing of the other two maturities to obtaining the average amounts won.

This compares to an “own-maturity” drop in valuation for 3/6/12M bills of 1.99/1.42/1.43 bps

when going from winning nothing in the auction for 3/6/12M bills to winning the average amounts.

Therefore, complementarities are relatively weak.

The preferences of dealers who have smaller money market trading desks differ from those whose

primary business lies in the money market. The estimation results of Table 7 are less convincing

than the results presented thus far. Only three out of the six point-estimates are statistically

significant. One reason for this could be that preferences of dealers in this second group are more

volatile over time. Client demand might fluctuate more from week to week for smaller dealers

relative to those with a broad client base. Taken together, it seems as if 3M and 6M bills, as well

as 6M and 12M bills, might be substitutes, while 12M and 3M bills are complementary.

To study heterogeneity in preferences, we classified dealers into two groups ex ante and show

differences in bidding behavior. There is a group of dealers for which bills are complementary –

large money market firms; and a group of smaller dealers whose demand is more idiosyncratic. Our

24The percentage increase is calculated by taking the difference between the parameters of Tables 5 and 6 over the
baseline parameter of Table 5.
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methodology, however, could be used to uncover groups, especially in settings with many players.

These groups might in fact be relevant for regulation in markets where regulation restricts trading

depending on dealer-client relationships.

4 Conclusion

In this paper we study interdependencies in the demand for securities of different maturities. Using

data from Canadian Treasury bill auctions over a 15-year period, we find that 3-, 6-, and 12-month

bills are oftentimes weakly complementary in the primary market. To explain our findings we

present a model that captures the interplay between the primary and secondary market. We argue

that the typical bidder of a primary auction buys bills not only for his own balance sheets but

also (or even primarily) to distribute them in the secondary market where different clients demand

different maturities. A bidder anticipates that it will be costly to turn down clients in case he

did not buy sufficiently many bills at auction, or to satisfy their demand by purchasing the bills

from other financial institutions at higher prices. This generates complementarities in the primary

market even if Treasury bills are substitutes in other financial markets. Primary dealers, therefore,

are supporting liquidity across maturities in the Canadian money market.
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Hortaçsu, A. and D. McAdams (2010). Mechanism choice and strategic bidding in divisible good
auctions: An empirical analysis of the Turkish Treasury auction market. Journal of Political
Economy 118 (5), 833–865.

Huyn, D., J. Johal, and C. Garriott (2017). Do Canadian broker-dealers act as agents or principals
in bond trading? Bank of Canada SAN No. 2017-11.

Kastl, J. (2011). Discrete bids and empirical inference in divisible good auctions. Review of
Economic Studies 78, 974–1014.

35



Kastl, J. (2012). On the properties of equilibria in private value divisible good auctions with
constrained bidding. Journal of Mathematical Economics 48, 339–352.

Kastl, J. (2017). Recent advances in empirical analysis of financial markets: Industrial organiza-
tion meets finance. In B. Honoré, A. Pakes, M. Piazzesi, and L. Samuelson (Eds.), Advances in
Economics and Econometrics: Eleventh World Congress (Econometric Society Monographs),
pp. 231–270. Cambridge: Cambridge University Press.

Koijen, R. S. J. and M. Yogo (2019). A demand system approach to asset pricing. Journal of
Political Economy 127 (4), 1475–1515.

Modigliani, F. and R. Sutch (1966). Innovations in interest rate policy. The American Economic
Review 56 (1/2), 178–197.

Vayanos, D. and J.-L. Vila (2009). A preferred-habitat model of the term structure of interest
rates. NBER Working Paper No. 15487.

Wallace, N. (1981). A Modigliani-Miller theorem for open-market operations. The American
Economic Review 71 (3), 267–274.

Wittwer, M. (2020). Interconnected pay-as-bid auctions. Games and Economic Behavior 121,
506–530.

36



Appendix

5 Proofs

5.1 Proof of Proposition 1 and Corollary 1

For notational convenience we drop the superscript g and the subscript i, τ of all parameters
{κg1,i,τ , κ

g
2,i,τ , γ

g
i,τ , ρ

g
i,τ , a

g
i,τ , b

g
i,τ , e

g
i,τ}.

Proposition 1. Recall that the dealer expects the following payoff from owning q1, q2:

V (q1, q2, s) = U(q1, q2, s) + E [revenue(x1x1x1,x2x2x2|q1, q2)− cost(x1, x2x1, x2x1, x2|q1, q2), ] (8)

with revenue(x1, x2|q1, q2) =
∑2

m=1 pm(x1, x2|q1, q2)xm. Given the aggregate inverse demand of
the dealer’s clients (5):

V (q1, q2, s) = U(q1, q2, s)

+

∫ κ1q1

0

∫ κ2q2

0

[p1(x1, x2)x1 + p2(x2, x1)x2]f(x1, x2)dx1dx2

+

∫ κ1q1

0

∫ 1

κ2q2

[p1(x1)x1 − γx2]f(x1, x2)dx1dx2 +

∫ 1

κ1q1

∫ κ2q2

0

[p2(x2)x2 − γx1]f(x1, x2)dx1dx2

−
∫ 1

κ1q1

∫ 1

κ2q2

[γx1x2]f(x1, x2)dx1dx2.

Inserting the assumed functional forms (4), (5), and f(x1, x2) = 1 + 3ρ(1 − 2F1(x1)(1 − 2F2(x2)),
integrating and taking the partial derivative w.r.t. q1 we obtain:

v1(q1, q2, s1) =1/2γκ1(−1 + ρ)− 2γκ1κ
3
2q

3
2ρ+ 1/2γκ1κ

2
2q

2
2(1 + 3ρ)

+ q21(−6γκ3
1κ2q2ρ+ 3(3γ + 2e)k31k

2
2q

2
2ρ− 4(γ + 2e)κ3

1κ
3
2q

3
2ρ+ κ3

1(−b+ γρ))

+ q1(2(3γ + 2e)κ2
1κ

3
2q

3
2ρ+ cκ2

1κ2q2(1 + 3ρ) + 1/2κ2
1(2a+ γ − 3γρ)− 1/2κ2

1κ
2
2q

2
2(γ + 2e+ 15γρ+ 6eρ))

+ (1− κ1)t1.

A Taylor expansion around
(

1
2 ,

1
2

)
gives

v1(q1, q2, s1) =(1− κ1)t1 + h0(κ1, κ2, γ, ρ) + h1(κ1, κ2, γ, a, b, e, ρ)q1 + h2(κ1, κ2, e, ρ)q2

with

h0(κ1, κ2, γ, ρ) =
1

16
(4bκ3

1 + 2eκ2
1κ

2
2(2 + (6− 9κ1 − 6κ2 + 8κ1κ2)ρ))

+
1

16
(γκ1(8(−1 + ρ) + κ2

1(−2 + κ2)(2 + κ2(−11 + 8κ2))ρ))

+
1

16
(γκ1(+2κ2

2(−1− 3ρ+ 4κ2ρ) + 2κ1κ2(−2 + κ2 − 3(−1 + κ2)(−2 + 3κ2)ρ)))

h1(κ1, κ2, γ, a, b, e, ρ) =
1

8
κ2

1(8a− 8bκ1 − 2eκ2
2(1 + (−1 + 2κ1)(−3 + 2κ2)ρ))

+
1

8
κ2

1(γ(4 + 4κ2 − κ2
2 − (−2 + κ2)(−6 + 3κ2 − 6κ2

2 + 2κ1(−2 + κ2)(−1 + 2κ2))ρ))

h2(κ1, κ2, γ, e, ρ) =− 1

4
κ1k2(−2γκ1 + γ(−2 + κ1)k2 + 2eκ1k2)(1 + 3(−1 + κ1)(−1 + k2)ρ)
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Corollary 1. Securities become more complementary when h2(κ1, κ2, γ, e, ρ) increases. For any
κm ∈ [0, 1] and any ρ that is within the allowed range of correlation parameters of the Farlie-
Gumbel-Morgenstern Distributions with uniform marginal distributions, [−1/3, 1/3]:

∂h2(κ1, κ2, γ, e, ρ)

∂e
= −(1/2)κ2

1κ
2
2(1 + 3(−1 + κ1)(−1 + κ2)ρ)︸ ︷︷ ︸

≥0

≤ 0

∂h2(κ1, κ2, γ, e, ρ)

∂γ
= −(1/4)κ1(κ1(−2 + κ2)− 2κ2)︸ ︷︷ ︸

≤0

κ2(1 + 3(−1 + κ1)(−1 + κ2)ρ)︸ ︷︷ ︸
≥0

≥ 0

∂h2(κ1, κ2, γ, e, ρ)

∂ρ
= −(1/4)κ1(κ1(−2 + κ2)− 2κ2)︸ ︷︷ ︸

≤0

κ2(1 + 3(−1 + κ1)(−1 + κ2)ρ)︸ ︷︷ ︸
≥0

≥ 0

5.2 Proof of Proposition 2

The proposition follows from Proposition 3 when all δ parameters are 0.

5.3 Proof of Proposition 3

Take the perspective of bidder i who belongs to group g ∈ {c, d}. Fix his type, a time slot τ ,
as well as one of his information sets θgi,τ , and let all other agents j 6= i play a type-symmetric
equilibrium. In this equilibrium it must be optimal for the bidder to choose the same set of
functions {bg1(·, θgi,τ ), ...bgM (·, θgi,τ )} as all other bidders in his bidder group with information θgi,τ .
These M functions must jointly maximize the bidder’s expected total surplus. It must therefore be
the case that each of the functions bgm(·, θgi,τ ) maximizes his expected total surplus separately when
fixing all the other bidding functions −m at the optimum. To determine necessary conditions of
the type-symmetric equilibrium we can consequently fix the agent’s strategy in all but one auction
at the equilibrium. Without loss take this auction to be the one for security 1.

The remainder of the proof extends Kastl (2012)’s proof for a K-step equilibrium of a discrimi-
natory price auction that takes place in isolation without difficulties. To facilitate the comparison
with the original proof (on pp. 347–348 of Kastl (2012)) we copy it as closely as possible but adopt
the notation used in this article.

There are two main differences to the original proof. First, our framework allows bidders to
update their bids due to arrival of new information. Such information arrives at discrete time slots
τ = 1...Γ. Bidding functions do not (only) depend on the bidder i’s type sgi,τ drawn at time τ but
on the (entire) information set at that time θgi,τ . It includes the type, sgi,τ ⊆ θgi,τ . Since only final
bids count, bidders bid as if it was their last bid each time they place a bid. We can just keep some
τ fixed throughout the proof.

Second, following Hortaçsu and Kastl (2012) we allow for asymmetries in bidding behavior be-
tween dealers and customers. They draw types from (potentially) different distributions and may
have different information available. The original proof extends to this setup.

Simplified Notation. We drop subscripts τ, i as well as superscript g. We refer to the amount a

bidder with information θ wins at market clearing in auction m (for a given set of strategies in the
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event that τ is the time of the bidder’s final bid) by qc1q
c
1q
c
1, and the amount he wins in equilibrium by q∗1q

∗
1q
∗
1.

Notice that both, qc1q
c
1q
c
1 and q∗1q

∗
1q
∗
1 are (for given strategies of all agents) functions of the total supply

Q1Q1Q1 and the information of all agents {θiθiθi}Ni=1. They are implicitly defined by market clearing.

The proof of the proposition relies on three lemmas. The second and third are taken from Kastl
(2012).

Lemma 1. Fix a bidder with information θ.

Denote his marginal willingness to pay in auction m at step k when submitting some function

b′1(·, θ) with {(b′1,k, q′1,k−1), (b′1,k+1, q
′
1,k)} by

ṽ1(q1, θ|b′1,k, b′1,k+1) ≡ E
[
v1

(
q1, q

∗
−1q∗−1q∗−1, s1

)∣∣ b′1,k ≥ P c1P c1P c1 > b′1,k+1, θ
]

for q1 ∈ (q′1,k−1, q
′
1,k]. (14)

(i) ṽ1(q1, θ|b′1,k, b′1,k+1) is bounded.

(ii) In equilibrium, where the bidder submits function b1(·, θ) with {(b1,k, q1,k−1), (b1,k+1, q1,k)},
(ii) ṽ1(q1, θ|b1,k, b1,k+1) is decreasing in q1 and right-continuous in b1,k.

Proof of Lemma 1. (i) By Assumption 2

ṽ1(q1, θ|b′1,k, b′1,k+1)
(9)
= α+ (1− κ1)s1 + λ1q1 + δ1 · E

[
q∗−1q∗−1q∗−1|b′1,k ≥ P c1P

c
1P
c
1 > b′1,k+1, θ

]
for q1 ∈ (q′1,k−1, q

′
1,k]. Since types and total supply are drawn from distributions with bounded

support by Assumptions 1 and 4, E
[
q∗−1q∗−1q∗−1|b′1,k ≥ P c1P

c
1P
c
1 > b′1,k+1, θ

]
and with it ṽ1(q1, θ|b′1,k, b′1,k+1) is

bounded.

(ii) In equilibrium ṽ1(q1, θ|b1,k, b1,k+1) must be decreasing in q1 or it could not give rise to a
decreasing bidding function that fulfills the necessary conditions of Proposition 3.

To see why ṽ1(q1, θ|b1,k, b1,k+1) is right-continuous in b1,k note first that it can only jump dis-
continuously if changing b1,k breaks a tie between this bidder and at least one other bidder. Since
there can be only countably many prices on which a tie might occur, however, there must exist a
neighborhood at any b1,k for which for any price in that neighborhood there are no ties. Therefore,
when perturbing bk, there cannot be any discontinuous shift in the conditional probability measure
and thus in the object of interest.

Lemma 2. Fix a bidder with information θ.

If at some step k in auction 1, Pr(qc1q
c
1q
c
1 ≥ q1,k|θ) > 0, then b1,k ≤ ṽ1(q1, θ|b1,k, b1,k+1).

Proof of Lemma 2. The proof is analogous to Kastl (2012)’s proof of Lemma 2. It suffices to
replace v(q, s) in the original proof by ṽ1(q1, θ|b1,k, b1,k+1) and rely on Lemma 1.

Lemma 3. (i) Ties occur with zero probability for a.e. θ in any K-step equilibrium of simultaneous

discriminatory price auctions except possibly at the last step (k1 = K1).
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(ii) If a tie occurs with positive probability at the last step, a bidder with information θ must

be indifferent between winning or losing all units between the lowest share he gets allocated after

rationing in the event of a tie qRAT
1

and the last infinitesimal unit he may be allocated in equilibrium,

q1:

b1,K1 = ṽ1(q̄1, θ|b1,K1) where q̄1 = sup
{Q1,θ−i}

y1(b1,K1 , θ|Q1, θ−i) ∀q1 ∈ [qRAT
1

, q1].

Proof of Lemma 3. The proof is also analogous to the proof of Lemma 1 in Kastl (2012). In
essence it suffices to replace the bidder’s true valuation v(q, s) in Kastl (2012) by ṽ1(·, θ|bk, bk+1)
in equilibrium and ṽ1(·, θ|b′k, b′k+1) for deviations and rely on Lemma 1.

To facilitate this conversion, we demonstrate the beginning of the proof: Suppose that there
exists an equilibrium, in which for a bidder i with information set θ a tie between at least two
bidders can occur with positive probability π1 > 0 in auction 1. Since there can be only finitely
many prices that can clear the market with positive probability, in order for a tie to be a positive
probability event, it has to be the case that there exists a positive measure subset of information sets
Θ̂−i ∈ [0, 1]N−1 such that for some bidder j, and all profiles of information sets θ−i ∈ Θ̂′−i ⊂ Θ̂−i
(another positive measure subset) and some step k and l we have b1,k(θi) = b1,l(θj) = P c1 . Without
loss suppose that this event occurs at the bid (b1,k, q1,k), and that the maximum quantity allocated
to i after rationing is q̄RAT1 < q1,k. Let S̄R1π denote the maximal level of the residual supply at b1,k
in the states leading to rationing at b1,k.

Consider a deviation to a step b′1,k = b1,k + ε and q′1,k = q1,k where ε is sufficiently small.
This deviation increases the probability of winning q1,k − q1,k−1 units. Most importantly in the
states that led to rationing under the original bid, the bidder with information θ will now obtain
qu1 > q̄RAT1 where qu1 ≥ min{q1,k, S̄

R
1π}. Notice that since we hypothesized a positive probability

of a tie at b1,k, we need to have q1,k−1 < q̄RAT1 < q1,k due to rationing pro-rata on-the-margin.
Therefore, the lower bound on the increase in θ’s expected gross surplus from such a deviation is

EDε = π1

(
Ṽε(q

u
1 , θ)− Ṽ (q̄RAT1 , θ)

)
(EDε)

where

Ṽε(q
u
1 , θ) ≡

∫ q̄RAT
1

0

ṽ1(q1, θ|b1(q1|θ)) +

∫ qu1

q̄RAT
1

ṽ1(q1, θ|b′1,k, b′1,k+1)dq1

and

Ṽ (q̄RAT1 , θ) ≡
∫ q̄RAT

1

0

ṽ1(q1, θ|b1(q1|θ))dq1

with ṽ1(q1, θ|b1(q1|θ)) denoting the true valuation when submitting b1(q1|θ) not just at step k, as
ṽ1(q1, θ|b1,k, b1,k+1), but including all previous steps (if any).

To continue, let us first focus on steps other than the last one, k < K1, and suppose that
ṽ1(·, θ|b1,k, b1,k+1) is strictly decreasing. The increased bid b1,k + ε also results in an increase in the
payment for the share requested at this step. This increase, however, is bounded by (q1,k−q1,k−1)ε.
Comparing the upper bound on the change in expected payment with the lower bound on the
change in expected gross utility, in order for this deviation to be strictly profitable we need to
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obtain

(q1,k − q1,k−1)ε < π1EDε. (15)

As b1,k ≤ ṽ1(q1,k, θ|b1,k, b1,k+1) by Lemma 2 and ṽ1(q1,k, θ|b1,k, b1,k+1) < ṽ1(qu1 , θ|b1,k, b1,k+1), the
LHS of (15) goes to 0 and the RHS to a strictly positive number as ε→ 0. Since ṽ1(q1, θ|b1,k, b1,k+1)
is for any q1 ∈ [q̄RAT1 , q1,k] right-continuous in b1,k, the proposed deviation would indeed be strictly
profitable for the bidder with information θ. Moreover, there can be only countable many θ’s with
a profitable deviation, otherwise bidder i could implement this deviation jointly and thus for a.e.
information sets θ ties have zero probability in equilibrium for all bidders i.

Relying on Lemma 1, the remainder of the proof is analogous to the original proof. It suffices
to replace v(q, s) by ṽ1(·, θ|bk, bk+1) in equilibrium and ṽ1(·, θ|b′k, b′k+1) when deviating, as well as

V (q∗, s) − V (q̄RATi , s) by EDε. In our environment with updating, a tie may occur with positive
probability only at the last step and the bidder with information θ (at the previously fixed time τ)

must not prefer winning any units in
[
qRAT

1
, q1

]
where q1 = sup{Q1,θ−i} y1(b1,K1 , θ|Q1, θ−i) is the

maximal quantity the bidder may be allocated in an equilibrium (in the event that τ is the time of
his final bid).

Proof of Proposition 3. At step k = K1 Lemma 2 specifies the optimal bid-choice. At steps
k < K1 Lemma 3 can be applied. Kastl (2012) perturbs the kth step to q′1 = q1,k − ε and takes the
limit as q′1 → q1,k. The original proof goes through without complications. It suffices to replace
the type s by the information set θ, E [V (Qci (Q,SSS,yyy(·|S)), si)| states] by E

[
V (q∗1q

∗
1q
∗
1, q
∗
−1q∗−1q∗−1, s)

∣∣ θ, states
]

with all states as specified in the original proof, and similarly E [V (Qci (Q,SSS,yyy
′(·|S)), si)| states] by

E
[
V (qc1q

c
1q
c
1, q
∗
−1q∗−1q∗−1, s)

∣∣ θ, states
]

where qc1q
c
1q
c
1 denotes the amount the bidder wins at market clearing under

the deviation in our simplified notation.
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6 Robustness

6.1 Regressions with bids rather than marginal valuations

In this section we report results measuring interdependence across maturities using observed bids

rather than using the marginal valuations estimated using the auction model. Across all specifica-

tions, when using bids the λ parameters are downward biased relative to using marginal valuations

while the δ parameters are upward biased. The former would lead us to underestimate the steepness

of valuations while the latter would lead us to overestimate the degree of complementarities across

maturities.

Table 8: The average dealer (with bids as independent variables)

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M -4.924∗∗∗ (0.0256) λ6M -7.789∗∗∗ (0.0465) λ1Y -15.54∗∗∗ (0.0815)
δ3M,6M 0.384∗∗∗ (0.0599) δ6M,3M 1.034∗∗∗ (0.102) δ1Y,3M 1.606∗∗∗ (0.196)
δ3M,1Y 0.367∗∗∗ (0.0642) δ6M,1Y 0.642∗∗∗ (0.109) δ1Y,6M 1.112∗∗∗ (0.204)
const 995651∗∗∗ (0.351) const 991639∗∗∗ (0.692) const 981593∗∗∗ (1.193)

N 58542 42282 50410

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: Dealer group 1 (with bids as independent variables)

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M -5.871∗∗∗ (0.0471) λ6M -8.738∗∗∗ (0.0826) λ1Y -18.23∗∗∗ (0.146)
δ3M,6M 1.330∗∗∗ (0.107) δ6M,3M 1.541∗∗∗ (0.172) δ1Y,3M 0.957∗∗ (0.327)
δ3M,1Y 0.435∗∗∗ (0.119) δ6M,1Y 1.131∗∗∗ (0.195) δ1Y,6M 2.403∗∗∗ (0.372)
const 995661∗∗∗ (0.524) const 991402∗∗∗ (1.031) const 981210∗∗∗ (1.782)

N 28592 21406 25134

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 10: Dealer group 2 (with bids as independent variables)

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M -4.425∗∗∗ (0.0272) λ6M -7.228∗∗∗ (0.0503) λ1Y -13.66∗∗∗ (0.0849)
δ3M,6M -0.146∗ (0.0646) δ6M,3M 0.665∗∗∗ (0.115) δ1Y,3M 2.424∗∗∗ (0.221)
δ3M,1Y 0.429∗∗∗ (0.0677) δ6M,1Y 0.350∗∗ (0.117) δ1Y,6M 0.303 (0.208)
const 995652∗∗∗ (0.440) const 991899∗∗∗ (0.868) const 982067∗∗∗ (1.463)

N 29863 20818 25097

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

42



6.2 Robustness with respect to the number of steps included in the regression

Here we display the estimation results when using bidding functions with more than 2 rather than

more than 1 step as in the main specification. On the left it uses the marginal values as independent

variable, on the right the bids. Qualitatively, all findings are as in our main specification. Results

for the 6M and 12M auctions are available upon request.

Table 11: All dealer - 3M Bill Auction (using bidding functions with > 2 steps)

vk bk
λ3M -5.285∗∗∗ (0.0271) -4.979∗∗∗ (0.0260)
δ3M,6M 0.169∗∗ (0.0641) 0.378∗∗∗ (0.0614)
δ3M,1Y 0.240∗∗∗ (0.0684) 0.366∗∗∗ (0.0655)
Constant 995696.4∗∗∗ (0.367) 995686.6∗∗∗ (0.351)

Observations 55822 55822

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 12: Dealer group 1 - 3M Bill Auction (using bidding functions with > 2 steps)

vk bk
λ3M -6.214∗∗∗ (0.0492) -5.870∗∗∗ (0.0474)
δ3M,6M 1.057∗∗∗ (0.112) 1.333∗∗∗ (0.108)
δ3M,1Y 0.372∗∗ (0.125) 0.444∗∗∗ (0.120)
Constant 995725.1∗∗∗ (0.539) 995715.5∗∗∗ (0.520)

Observations 27656 27656

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13: Dealer group 2 - 3M Bill Auction (using bidding functions with > 2 steps)

vk bk
λ3M -4.795∗∗∗ (0.0295) -4.512∗∗∗ (0.0279)
δ3M,6M -0.346∗∗∗ (0.0711) -0.184∗∗ (0.0672)
δ3M,1Y 0.275∗∗∗ (0.0741) 0.429∗∗∗ (0.0701)
Constant 995671.3∗∗∗ (0.471) 995661.2∗∗∗ (0.445)

Observations 28147 28147

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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