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Abstract

This paper extends recent asymptotic theory developed for the Hodrick Prescott (HP) filter
and boosted HP (bHP) filter to long range dependent time series that have fractional Brown-
ian motion (fBM) limit processes after suitable standardization. Under general conditions it is
shown that the asymptotic form of the HP filter is a smooth curve, analogous to the finding in
Phillips and Jin (2021) for integrated time series and series with deterministic drifts. Boosting
the filter using the iterative procedure suggested in Phillips and Shi (2021) leads under well
defined rate conditions to a consistent estimate of the fBM limit process or the fBM limit pro-
cess with an accompanying deterministic drift when that is present. A stopping criterion is
used to automate the boosting algorithm, giving a data-determined method for practical imple-
mentation. The theory is illustrated in simulations and two real data examples that highlight
the differences between simple HP filtering and the use of boosting. The analysis is assisted
by employing a uniformly and almost surely convergent trigonometric series representation of
fBM.

Key words: Boosting, Brownian motion, fractional process, HP filter, long range dependence.

JEL codes C22, C55, E20

1 Introduction
Whittaker (1922) introduced a method of graduating (now commonly known as smoothing) data
based on penalized maximum likelihood, minimizing an error sum of squares subject to a penalty

*Phillips acknowledges research support from the NSF under Grant No. SES 18-50860, the Kelly Fund at the
University of Auckland and an LKC fellowship at Singapore Management University.
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based on squares of third-order data differences to control roughness in the fitted curve. This
method was justified in Whittaker and Robinson (1924) by a Bayesian approach that combined a
Gaussian likelihood for the data with a Gaussian prior reflecting the presumed desirable property
of smoothness. Following much earlier work by Leser (1961) designed specifically for economic
time series applications and trend estimation, Hodrick and Prescott (1980, 1997) used second-order
data differences in the penalty. This approach became influential in macroeconometric work and
subsequently known as the ‘HP filter’.1

Let {xt}nt=1 be a time series with an unknown trend component ft and stationary component ct
that may contain a regular cyclical component. Phillips and Jin (2021)(hereafter PJ) suggested a
general form of Whittaker’s smoothing filter to identify the long run trend ft in xt by solving the
following constrained optimization problem

f̂t = argmin
ft

{
n∑

t=1

(xt − ft)
2 + λ

n∑
t=m+1

(∆δft)
2

}
, with ĉt = xt − f̂t, (1)

where λ ≥ 0 is the smoothing parameter or tuning parameter, ∆ = 1 − L, L is the lag operator
defined by Lft = ft−1 and ∆δft is the δth difference of ft. The residual ĉt is usually taken to
provide an estimate of the business cycle in economic applications, following Hodrick and Prescott
(1997). The first summation in (1) penalizes lack of fitness and the second summation penalizes
lack of smoothness. The filter is one-sided for the first and the last δ number of observations and
is two-sided for all the remaining observations. When δ = 2, the procedure is the HP filter. The
constrained optimization problem (1) involves a least squares fit coupled with an ℓ2 norm penalty
function. Recent work (Kim et al., 2009; Tibshirani, 2014; Yamada and Bao, 2021) has examined
the use of an ℓ1 norm penalty for trend filtering, which has the capability of capturing kinks in
deterministic trends and producing piecewise linear trend estimates.

A key component of the filtering procedure (1) is the tuning parameter λ which controls the
strength of the penalty in the optimization problem. Tuning parameters play an essential role in
all types of nonparametric estimation and regression. These parameters influence smoothness, rate
of convergence, and the orders of magnitude of the bias and variance. Likewise in filtering time
series using (1), the choice of λ and its asymptotic behavior turns out to play an important role in
determining the properties of trend functions estimated using the HP filter. Notably, as λ increases,
the penalty for lack of smoothness rises forcing the estimate f̂t to become smoother. When δ = 2
second-order differences of a linear trend are 0, so that increasing λ makes f̂t progressively linear,
becoming a straight line as λ → ∞. If the underlying trend process is actually nonlinear, then as
λ rises the estimated trend f̂t becomes so smooth that the estimated cycle ĉt inherits some of the
original features of the trend. On the other hand, if λ is small, the estimated trend f̂t captures much
of the fine grain features of the short-term movements in the data. In some cases, such as when the
underlying trend is well-modeled by a random wandering stochastic process, separating the trend
from cycle and noise is a serious challenge and choice of λ plays a major role in determining the
properties and accuracy of the trend and implied cycle.

Understanding the large sample properties of filters such as f̂t in (1) helps to meet this challenge
by characterizing the various trend-capture capabilities of these filters as the sample size n →

1Readers are referred to PJ(2021) for more detailed discussion and historical information on the filter.
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∞. PJ (2021)2 provided the first asymptotic analysis of the behavior of the HP filter, considering
certain prototypical cases where suitably standardized data of the form n−1/2xt=⌊nr⌋ have stochastic
process limits that involve Brownian motion. Three cases were considered, including a stochastic
process with no deterministic drift, a stochastic process with a continuous drift function, and a
stochastic process with a discrete number of trend breaks. For the case with no drift, they showed
that if λ = O(n4) as n → ∞ the estimated trend n−1/2f̂t=⌊nr⌋ converges to a much smoother, four
times differentiable stochastic process in place of Brownian motion. So the HP filter is inconsistent
in this case. When a linear drift is present, the drift is consistently estimated by the HP filter but for
more complex deterministic drifts or trend breaks the filter is inconsistent. In the presence of a trend
break process, the limiting form of the estimated trend smooths over the trend break. In all these
cases when λ = O(n4) the estimated cycle inherits some properties of the underlying stochastic
trend. These asymptotic findings depend on the mutual relation between n and λ and, particularly,
on the expansion rate of λ as n→ ∞. In general, faster expansion rates of λ yield smoother curves
for the fitted trend function, whereas slower expansion rates captures more short-term fluctuations
in the underlying stochastic process and deterministic drift function. Importantly, for sample sizes
typical in applied macroeconomics, PJ (2021) found that the setting λ = O(n4) gave empirical
results closely resembling those for the setting λ = 1600 commonly used in empirical work with
quarterly aggregate data.

In related work, Phillips and Shi (2021)(hereafter PS) developed a boosting algorithm (Tukey,
1977; Buja et al., 1989) for the HP filter to address the inconsistency of the trend estimate with
penalty setting λ = O(n4). This algorithm involves repeated use (m iterations) of the filter to refine
the original estimate. Under certain conditions as m → ∞ boosting the filter in this way provides
successive refinements that lead to consistent estimates of the underlying trend and cycle. PS
(2021) demonstrated the advantages of boosting in simulations and several empirical illustrations
with economic data. They also developed data-determined selection procedures for choice of the
number of boosting iterations in practical work.

The current paper seeks to extend the work of PJ(2021) and PS(2021) to a much wider class of
stochastically nonstationary time series. In particular, we develop asymptotic theory for filtering
trends that are generated by fractionally integrated time series using the HP filter. Suppose xt is
a fractionally integrated time series which has a fractional stochastic process limit upon suitable
standardization such that n−Hx⌊nr⌋ ⇝ BH(r), where BH is fractional Brownian motion (fBM)
with Hurst parameter H ∈ (0, 1) and stationary increments that have long-range dependence, and
⇝ signifies weak convergence. PJ(2021) and PS(2021) used the Karhunen-Loève orthonormal
series representation of Brownian motion in developing the limit theory for HP and Whittaker
filters when H = 1/2 and the time series satisfies n−1/2x⌊nr⌋ ⇝ B(r). This paper employs new
orthonormal series representations suited to fBM to develop the limit theory of the filters. The
results developed here include those for the special case of an integrated process with a Brownian
motion limit.

The paper is organized as follows. Section 2 provides some essential properties of stochastic
processes with long-range dependence that are used later in the paper. Section 3 shows that when
the data are fractionally integrated and satisfy n−Hx⌊nr⌋ ⇝ BH(r) the HP filter trend estimate
obtained with the tuning parameter setting λ = O(n4) is inconsistent and instead delivers a limit

2The original version of this paper which developed asymptotic theory for the HP filter was circulated as a working
paper in Phillips and Jin (2002).
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that is a smoothed version of the underlying trend process BH(r), analogous to the result of PJ
(2021) for I(1) integrated processes. Section 4 provides extensions of this finding to more general
trends, giving conditions for the consistent estimation of the trend by the boosted HP (bHP) filter
for fractional processes, fractional processes with polynomial and continuous drift functions as
well as trending data with trend breaks. Section 5 reports simulations demonstrating finite sample
performance of the filters in relation to the asymptotic theory, gives a stopping time rule for practical
implementation, and provides a brief empirical application of the methodology. Sections 7 and 8
are appendices with proofs (Appendix A) and useful strong approximation results (Appendix B),
respectively.

2 Long-Range Dependence
This section briefly overviews some essential definitions and results related to time series with
different covariance structures, including long-range dependence (LRD) and negative memory (an-
tipersistence), and their limit processes used in the rest of the paper.

A covariance stationary time series {uzt}t∈Z with autocovariance γu(k) = E(uztuzt+h) is said to
have LRD if

∑
k∈Z

∣∣γu(k)∣∣ = ∞. A commonly used class of LRD time series is the fractionally
integrated class, denoted I(d∗), with moving average representation

uzj =
∞∑
k=0

akεj−k, (2)

where ak ∼ ca
k1−d∗ as k → ∞, with ca ̸= 0, 0 < d∗ < 1/2, and εj

iid∼ (0, 1). It can be shown
(Giraitis et al., 2012, Proposition 3.2.1) that γu(k) ∼ cγ

k1−2d∗ , as k → ∞, with cγ = c2aB(d∗, 1−2d∗)
where B(·, ·) is the beta function, from which it follows that

∑∞
k=0 |γu(k)| = ∞. The covariance

stationary time series {uzt}t∈Z with autocovariance γu(k) = E(uztuzt+h) is said to have negative
memory, or antipersistence, if

∑∞
k=0 |γu(k)| < ∞ and

∑∞
k=0 γu(k) = 0. An empirically important

special class of time series with negative memory is the I(d∗) time series with the moving average
representation (2) where −1/2 < d∗ < 0 and

∑∞
k=0 ak = 0. The same proposition in Giraitis et al.

(2012) shows that in this antipersistence case
∑

k∈Z γu(k) = 0 and γu(k) ∼ cγ
|k|1−2d∗ , as k → ∞,

which means that
∑∞

k=0 |γu(k)| <∞ when d∗ ∈ (−1/2, 0).
Fractional Brownian motion (fBM) is a stochastic process with the moving average representa-

tion

BH(t) =
1

A(H)

[∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dB(s) +

∫ t

0

(t− s)H−1/2dB(s)

]
, (3)

and covariance kernel

rH(s, t) = E (BH(s)BH(t)) =
1

2
{|s|2H + |t|2H − |s− t|2H}, t, s ∈ R, (4)

where B(·) is standard Brownian motion, H ∈ (0, 1), and

A(H) =
( 1

2H
+

∫ ∞

0

[(1 + s)H−1/2 − sH−1/2]2ds
)1/2

.
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The increments of fBM form a stationary process with LRD when 1/2 < H < 1 (Taqqu and
Samorodnitsky, 1996, Proposition 7.2.10). We start our analysis by assuming H ∈ (1/2, 1).

Let us define, zt an I(d) process with d = d∗ + 1 by the following equation

zt =
t∑

k=1

uzk (5)

The next two results present useful connections between the I(d) time series zt and a limiting fBM
process BH with H = d− 1/2.

Lemma 2.1. (Giraitis et al., 2012, Corollary 4.4.1) Let zj be an I(d) process given by (5) with
1 < d < 1.5 and H = d− 1/2. Then, as N → ∞,

1

Nd−1/2
z⌊Nt⌋ ⇝ sdBH(t),

in the Skorokhod space D[0, 1] with the uniform metric and where s2d = c2a
B(d−1,3−2d)
(d−1)(2d−1)

.

Lemma 2.2. (Wang et al., 2003, Corollary 1.1.) Let zj be an I(d) process as in (5). Then on an
appropriate probability space for {εk}, we can construct a fractional Brownian motion {BH(t)}t≥0

with H = d− 1/2 such that3

sup
0≤t≤1

∣∣∣ 1

caκH
z⌊Nt⌋ −BH(Nt)

∣∣∣ = oa.s.(N
H(log logN)1/2), (6)

where cH =
∫∞
0
xH−3/2(x + 1)H−3/2dx and κ2(H) = cH(H − 1/2)−1(2H)−1. If in addition

E|ε0|p < ∞ for some p > 2, then the term oa.s.(·) on the right hand of (6) may be replaced by
oa.s.(N

H−1/2+1/p). Consequently,

sup
0≤t≤1

∣∣∣ 1

caκH
z⌊Nt⌋ −BH(Nt)

∣∣∣ = oa.s.(N
H−1/2+1/p). (7)

From the definition of fBM in (3), we have the self similarity

BH(Nt)≜N
HBH(t), (8)

where ≜ means equality in the sense of finite dimensional distributions. Using (7) and (8) gives

sup
0≤t≤1

∣∣∣ 1

caκH

z⌊Nt⌋

NH
−BH(t)

∣∣∣ = oa.s.(N
1
p
− 1

2 ), (9)

provided E|ε0|p <∞ for some p > 2.
Lemma 2.2 provides a strong approximation for fBM with Hurst parameter H ∈ (1/2, 1) lead-

ing to (9). The domain of strong approximation of fBM can be extended to the wider region
H ∈ (0, 1) using an approach developed by Szabados (2001) who constructed a stochastic process

3Correspondence with the notation in (Wang et al., 2003, Corollary 1.1.) involves setting their α = 3
2 − H and

replacing their κα with our caκH to accommodate the replacement of their moving average coefficients ψk ∼a k
−α

with our moving average coefficients ak ∼a
ca

k2−d where d = H + 1/2.
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that converges to fBM with H ∈ (0, 1) using simple moving averages of a random walk. Details of
this construction are provided in Appendix B. This work, like much of the discussion above, deals
with what are generally known as Type I fBM processes - see (Marinucci and Robinson, 1999;
Davidson and Hashimzade, 2009; Phillips, 2022). In nonstationary long memory time series, it is
often convenient to work instead with a Type II fBM process

WH(t) =
1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2dB(s), (10)

where H > 0. More specifically, consider the nonstationary fractional time series generated as

z̃t =
t∑

j=0

(d)j
j!

ε̃t−j, (11)

where d > 1/2, (d)j = d(d + 1) · · · (d + j − 1) is the forward factorial, and ε̃t is a zero mean
short memory process with moments of high enough order and a suitable summability condition
for its autocovariances. The following Lemma gives the asymptotic connection between a suitably
normalized form of the time series z̃t and the Type II fBM process WH with H = d− 1/2.

Lemma 2.3. (Phillips, 2022, Lemma 4.7) Let z̃j be a long memory time series generated by (11)

with d > 1/2 and ε̃j
iid∼ (0, 1) with E|ε̃j|p <∞ for some p > max

(
1

d−1/2
, 2
)

. Then, as N → ∞,

1

Nd−1/2
z̃⌊Nt⌋ ⇝ WH(t), (12)

where WH is the Type II fBM given by (10) with H = d− 1/2.

With a suitable extension of the probability space the weak convergence in (12) can be replaced by
a.s. convergence.

The following result gives a useful orthonormal series representation ofBH due to Dzhaparidze
and Van Zanten (2004, Theorem 4.5).

Theorem 2.4. For any H ∈ (0, 1) let u1 < u2 < · · · be the positive real zeros of J−H and
v1 < v2 < · · · be the positive real zeros of J1−H(z), where Jν is a Bessel function4 of the first kind
of order ν. Assume {Uk}∞k=1 and {Vk}∞k=1 are independent Gaussian random variables with mean
zero and variances

Var(Uk) = 2C2
Hu

−2H
k J−2

1−H(uk),Var(Vk) = 2C2
Hv

−2H
k J−2

−H(vk), C
2
H = π−1Γ(1+2H) sinπH. (13)

Then a standard fBM BH(r) over r ∈ [0, 1] can be represented a.s. in terms of the series

BH(r) =
∞∑
k=1

sinukr

uk
Uk +

∞∑
k=1

1− cos vkr

vk
Vk, (14)

both series converging absolutely, and uniformly in r ∈ [0, 1] with probability 1.

4In hypergeometric series form Jν(z) =
( z
2 )

α

Γ(α+1)0F1

(
α+ 1;−

(
z
2

)2)
=
∑∞

k=0
(−1)n(z/2)ν+2k

Γ(k+1)Γ(ν+k+1) , where Γ(z) is the
gamma function and 0F1(·; ·) the (0, 1) hypergeometric series.
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When H = 1/2 we have c1/2 = 1/π and the series representation (14) reduces to the following
orthonormal series representation of standard Brownian motion

B(r) =
∞∑
k=1

sin((k − 1
2
)πr)

(k − 1
2
)π

U ′
k +

∞∑
k=1

1− cos(kπr)

kπ
V ′
k , (15)

which is an alternative representation to the Karhunen-Loève seriesB(r) =
√
2
∑∞

k=1

sin((k− 1
2
)πr)

(k− 1
2
)π

U ′
k.

Here U ′
k and V ′

k follows standard normal distribution.

3 Asymptotic Theory of the HP filter
The HP filter is a practical technique designed to separate time series data (xt : t = 1, · · · , n)
into an underlying trend component ft and a residual cycle ct. Assuming xt = ft + ct, the filter
computes estimates of ft and ct by solving

f̂t = argmin

{
n∑

t=1

(xt − ft)
2 + λ

n∑
t=3

(∆2ft)
2

}
, ĉt = xt − f̂t, (16)

where λ > 0 is the tuning parameter that controls data smoothing, ∆ = 1−L, L is the lag operator
defined by Lft = ft−1 and ∆2ft is the 2nd order difference of ft. The first term of (16) penalizes
the lack of fitness and the second term penalizes lack of smoothness. The filter is one sided for the
first 2 and the final 2 observations and two sided for the remaining observations.

In solution matrix form, the estimated trend vector f̂HP = (f̂HP
1 , ..., f̂HP

n )′ is given by

f̂HP = (I + λD2D
′
2)

−1x, (17)

where x = (x1, ..., xn)
′ andD′

2 is the rectangular (n−2)×n block matrixD′
2 = diag{d′2, d′2, ..., d′2}

with d′2 = (1,−2, 1). Neglecting the first 2 and final 2 rows of (17), the solution can be written in
operator form as5

f̂HP
t = [λL−2(1− L)4 + 1]−1xt, ĉHP

t =
λL−2(1− L)4

1 + λL−2(1− L)4
xt. (18)

These operator forms of f̂HP
t and ĉHP

t are particularly useful in developing asymptotic theory for
the filter as the sample size n → ∞ and they will be used through the rest of this paper. In
developing an asymptotic theory for the HP filter PJ(2021) obtained large sample representations
of the operator forms in (18) for the case where the standardized data process xt=⌊n·⌋√

n
converges as

n → ∞ to Brownian motion or Brownian motion with general drift functions and possible breaks.
That limit theory allowed for different scenarios concerning the behavior of the tuning parameter λ.
When λ = O(n4), the estimated trend function was shown to be inconsistent, converging instead
to a limiting stochastic process smoother than Brownian motion; but when λ = o(n) the estimated
trend function is consistent and converges to Brownian motion. Small values or low expansion rates

5See PJ(2021) for more details, including exact finite sample operator representations of the HP and more general
versions of the Whittaker filter.
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of λ relative to the sample size naturally tend to capture more granular movement in the underlying
process, thereby reproducing the series itself rather than separating out more slow moving trend
processes. The present development extends this asymptotic analysis to cases involving time series
with long range dependence that, upon suitable normalization, have limiting fBM stochastic process
forms.

Recall the I(d) process {zj} satisfying the conditions of Lemmas 2.1 and 2.2. Hence xt :=
1

caκH

∑t
j=1 u

z
t =

1
caκH

zt follows the functional law-

Xn(·) :=
xt=⌊n·⌋

nH
⇝BH(·), (19)

where BH is fBM given by (3). Further, from (9), we have the strong approximation

sup
0≤t≤n

∣∣∣∣ xtnH
−BH

(
t

n

)∣∣∣∣ = oa.s.

(
1

n1/2−1/p

)
, for H ∈ (1/2, 1), (20)

provided E|ε0|p <∞ for some p > 2. Thus, on a suitably extended probability space we have

x⌊nr⌋
nH

−BH(r) = oa.s.(1), for H ∈ (1/2, 1). (21)

This strong approximation can be further extended to hold over the wider rangeH ∈ (0, 1) using the
alternative constructive approach developed by Szabados (2001), as mentioned above and discussed
in Appendix B.

To proceed with the extension of the asymptotic analysis of the HP filter to the fractional process
case we make the following assumptions.

Assumptions:

(A) Upon normalization by nH for some H ∈ (0, 1), the time series xt satisfies

x⌊nr⌋
nH

⇝ BH(r), r ∈ [0, 1], (22)

and in a suitably expanded probability space x⌊nr⌋
nH

a.s.−→ BH(r).

(B) Corresponding to (A), the true trend function ft is assumed to have an asymptotic trend
form in the same normalized space. In particular, the normalized trend can be represented
as n−Hft = Fn

(
t
n

)
, where Fn is a continuous function which interpolates the points {n−Hft :

t = 1, 2, · · · , n}, and as n→ ∞

ft=⌊nr⌋

nH
= Fn

(
⌊nr⌋
n

)
⇝ f(r), (23)

for some continuous (possibly stochastic) limiting trend function f(r). Further, with an ap-
propriate extension of the probability space

f⌊nr⌋
nH

− f(r) = oa.s.(1). (24)
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In the following result we set the tuning parameter to be λ = µn4. PJ(2021) found that this
setting gave results for the HP filter similar to those commonly obtained in empirical work with
sample sizes of the magnitude common in applied macroeconomic data.

Theorem 3.1. Let xt satisfy the functional law (22) and λ = µn4. For r ∈ [0, 1] define

GH
l (r) =

l∑
k=1

1

µu4k + 1

sinukr

uk
Uk +

l∑
k=1

(
1

vk
− 1

µv4k + 1

cos vkr

vk

)
Vk (25)

and

GH
∞(r) =

∞∑
k=1

1

µu4k + 1

sinukr

uk
Uk +

∞∑
k=1

(
1

vk
− 1

µv4k + 1

cos vkr

vk

)
Vk, (26)

where {Ui}∞i=1 and {Vi}∞i=1 are independent Gaussian random variables with zero means and vari-
ances given by (13). Then

(i) GH
l (·) converges to the Gaussian process GH

∞(·) uniformly for r ∈ (0, 1) and H ∈ (0, 1) as
l → ∞.

(ii) If the HP filter is applied to xt and in the expanded probability space where x⌊nr⌋
nH

a.s.−→ BH(r)

and (24) holds, the estimated trend f̂HP
t=⌊nr⌋ has the following limiting form for H ∈ (0, 1) as

n→ ∞
f̂HP
⌊nr⌋

nH

a.s.−→ GH
∞(r), (27)

and ∣∣∣∣∣ f̂
HP
⌊nr⌋

nH
−GH

Kn
(r)

∣∣∣∣∣ a.s.−→ 0. (28)

provided Kn

n
→ 0 as n,Kn → ∞.

Remarks 3.2. Theorem 3.1 shows that if xt is an I(d) process with d ∈ (1, 1.5) given by the
normalized partial sum process xt = 1

caκH

∑t
j=1 u

z
j , as in the functional law convergence (19),

and satisfying (21) on the suitably expanded probability space, then the limit theory for the HP
filter trend estimate f̂HP

t can be expressed as n−H f̂HP
⌊nr⌋

a.s.−→ GH
∞(r) for H ∈ (1

2
, 1) and r ∈ (0, 1).

The result is extended to H ∈ (0, 1) using the construction and strong approximation of Szabados
(2001).

Remarks 3.3. The Gaussian process GH
∞(·) defined by (26) is continuous and four times differen-

tiable on [0, 1]. To see this, defineG∞,1(r) =
∑∞

k=1
1

µu4
k+1

sinukr
uk

Uk andG∞,2(r) =
∑∞

k=1
1

µv4k+1
cos vkr

vk
Vk.

Note that

1

h

[
1

µu4k + 1

sinuk(r + h)

uk
Uk −

1

µu4k + 1

sinukr

uk
Uk

]
=

Uk

µu4k + 1

2 cos uk(2r+h)
2

sin ukh
2

huk

→ Uk

µu4k + 1
cosukr, as h→ 0.
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Since
∑∞

k=1
Uk

µu4
k+1

cosukr < ∞ (see the proof of 3.1), it follows that G∞,1(r) is differentiable.

In a similar fashion, G∞,2(r) is differentiable. The quantitities Vk

vk
are independent of r for all

k ∈ Z+. Hence GH
∞ is differentiable. Repeating this process, it can be shown that GH

∞ is four
times continuously differentiable by using the fact that

∑∞
k=1

Uk

u1+δ
k

< ∞ and
∑∞

k=1
Vk

v1+δ
k

< ∞
for all δ ≥ 0. It follows that the limit of the HP estimated trend function is a smooth four-times
differentiable Gaussian process distinct from the fBM limit BH(r), which is a continuous non-
differentiable process.

Remarks 3.4. Evidently the HP filter does not produce a consistent estimate of the trend when the
underlying time series xt satisfies the functional law (22). The cyclical residual of the HP filter is
ĉt = xt − f̂t. Suitably normalized and in the expanded probability space, this residual satisfies

ĉt=⌊nr⌋

nH
=
x⌊nr⌋
nH

−
f̂⌊nr⌋
nH

→a.s.

∞∑
k=1

µu4k
µu4k + 1

sinukr

uk
Uk −

∞∑
k=1

(
1

vk
− 1

µv4k + 1

cos vkr

vk

)
Vk.

The limiting stochastic process
∑∞

k=1

µu4
k

µu4
k+1

sinukr
uk

Uk of the HP residual ĉ⌊nr⌋
nH is continuous but

not differentiable, thereby inheriting one of the distinctive properties of the underlying fBM trend
function BH(r). It follows that the HP filter fails to completely detrend the stochastic process
and instead smooths that trend process into a differentiable limit function. The result is entirely
analogous to the Brownian motion limit case where H = 1/2 studied in PJ(2021).

Remarks 3.5. To obtain a consistent trend estimator by means of the HP filter one approach is
to lower the expansion rate of the tuning parameter from λ = O(n4). This can be achieved by
letting the scale parameter µ = µl depend on a sequence l → ∞ with the property that µl → 0. If
sequential limits are taken with n→ ∞ followed by l → ∞, which is represented by (l, n)seq → ∞,
then it is apparent from the limit theory (26) in theorem 3.1 that

f̂HP
⌊nr⌋

nH

a.s.−→
n→∞

GH
∞(r) =

∞∑
k=1

1

µlu4k + 1

sinukr

uk
Uk +

∞∑
k=1

(
1

vk
− 1

µlv4k + 1

cos vkr

vk

)
Vk

a.s.−→
l→∞

∞∑
k=1

sinukr

uk
Uk +

∞∑
k=1

1− cos vkr

vk
Vk = BH(r), (29)

in view of the series representation (14) given in Theorem 2.4. The sequential convergence (29)
suggests that the underlying fBM trend can be obtained asymptotically by lowering the expansion
rate of λ. PJ(2021) showed that in the Brownian motion case (H = 1/2) this is achieved by setting
λ→ ∞ as n→ ∞ such that λ = o(n). The same property holds in the present case.

Remarks 3.6. Theorem 3.1 in PJ (2021) shows that when xt is an I(1) integrated process, corre-
sponding to H = 1/2, the standardized HP filter n−1/2f̂t converges to a four times continuously
differentiable Gaussian process. The Karhunen–Loève (KL) expansion of Brownian motion is used
to develop the limit theory in this case. Theorem 3.1 and Remark 3.2 provide the general finding
for a fractional process with fractional Brownian motion limit with Hurst parameter H ∈ (0, 1)
that embeds the Brownian motion case. In particular for H = 1

2
, we get the specialization

G
1
2∞ =

∞∑
k=1

1

µ((k − 1
2
)π)4 + 1

sin(k − 1
2
)πr

(k − 1
2
)π

U ′
k +

∞∑
k=1

(
1

kπ
− 1

µ(kπ)4 + 1

cos kπr

kπ

)
V ′
k , (30)
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where U ′
k ∼ N(0, 1) and V ′

k ∼ N(0, 1). While the expression (30) differs from that given in
PJ(2021, Theorem 3), the limit process is the same. Further, when µ = 0 we have

G
1
2∞|µ=0 =

∞∑
k=1

sin(k − 1
2
)πr

(k − 1
2
)π

U ′
k +

∞∑
k=1

1− cos kπr

kπ
V ′
k = B(r), (31)

as given in (15).

Remarks 3.7. The sample paths of fBM are nowhere differentiable just like Brownian motion. But
as the Hurst parameter H increases, these paths become smoother as indicated by their Hölder
continuity property of order stictly less than H . It follows that for larger values of H > 1/2, the
HP filter may reasonably be expected to perform better in trend determination because it seeks to
capture a smoother process than Brownian motion. Simulations reported in Figure 1 of Section
show that such improvements do occur as H increases.

4 Asymptotic Theory of the Boosted Hodrick-Prescott Filter
From Theorem 3.1 and the following discussion it is evident that use of the HP filter does not lead to
consistent estimation of a fractional Brownian motion stochastic trend when the tuning parameter
λ = O(n4). In such cases, the HP estimated cycle inherits some of the trend characteristics in the
underlying long memory time series. PS (2021) showed how this shortcoming can be remedied in
the Brownian motion case by repeated application of a boosting algorithm.

The boosting procedure involves iteration of the HP filter m times on successive HP fitted
residuals. Let the estimated fitted trend from the HP filter be f̂ = Sλ

nx with Sλ
n = (In+λD2D

′
2)

−1,
which employs the same twice-differencing matrix operator D′

2 used in (17), and ĉ = (In − Sλ
n)x.

As the mechanism of bHP filter suggests, we apply the HP filter on ĉ. So the new estimate of the
error is ĉ(2) = (In − Sλ

n)ĉ = (In − Sλ
n)

2x. Thus m iterations of the HP filter lead to the revised
cyclical and trend estimates

ĉ(m) =(In − Sλ
n)

mx (32)

f̂m
t =x− ĉ(m) = Bλ

mx, (33)

whereBλ
m = In−(In−Sλ

n)
m, In is the n×n identity matrix. PS (2021) named this iterated process

the boosted HP (bHP) filter in view of its similarity to L2-boosting in regression applications.
As discussed in PS (2021), the HP filter can be thought of as a ‘weak base learner’ in the lan-

guage of machine learning. The intuition behind the procedure is that the basic HP filter, when it
is applied once with a given dataset, is too weak to learn enough from the data to capture the un-
derlying trend in the time series. But when it is applied multiple times on the same data, boosting
improves the method’s learning capability at each iteration. In this way, the bHP filter provides the
opportunity for improved trend capture over the HP filter applied to a given set of data with a con-
ventional choice of the tuning parameter λ such as that commonly used in applied macroeconomics
with the setting λ = 1600 for quarterly data.

Following the same approach as PS (2021), we develop a limit theory that shows how the
bHP filter asymptotically enhances the performance of the HP filter when applied to fractionally
integrated data precisely in those circumstances where the HP filter is itself inconsistent. Two



12

cases are considered dealing with fractional stochastic trends with and without accompanying drift
mechanisms. The first result considers the case without drift.

Theorem 4.1. Suppose xt satisfies the functional law (22) and assume that the probability space is
expanded so that x⌊nr⌋

nH → BH(r) a.s.. Suppose further that the HP filter is iterated m times based
on the bHP algorithm with λ = µn4 and µ fixed. If m → ∞ as n→ ∞, then

f̂m
⌊nr⌋

nH

a.s.−→ BH(r) =
∞∑
k=1

sinukr

uk
Uk +

∞∑
k=1

1− cos vkr

vk
Vk, (34)

for r ∈ (0, 1) and H ∈ (0, 1). Further, if 1
Kn

+ Kn

n
+ K4

n

m
→ 0 as n,m → ∞,∣∣∣∣∣ f̂

m
⌊nr⌋

nH
−

(
Kn∑
k=1

sinukr

uk
Uk +

Kn∑
k=1

1− cos vkr

vk
Vk

)∣∣∣∣∣ −→ 0 a.s., (35)

for r ∈ (0, 1) and H ∈ (0, 1).

Remarks 4.2. PS (2021, Theorem 1) showed that, in the case where H = 1/2 and the limit
process is Brownian motion, the bHP filter is consistent under the same rate conditions. Theorem
4.1 extends their result to the general fractional case with H ∈ (0, 1). In particular, the estimated
trend obtained from the bHP filter is consistent when the same tuning parameter setting λ = µn4 is
used as in the HP filter for which the trend estimate is inconsistent. Further, whereas the estimated
trend produced by HP filter depends on the value of µ asymptotically, the estimated trend obtained
from the bHP filter is asymptotically independent of the scale parameter µ.

Remarks 4.3. When m = 1 the bHP filter is identical to the HP filter. As the number of iterations
m increases, the bHP filter captures more fine grain details in the fractional process trend path.
Correspondingly, when the underlying time series trend has an irregular path, as in the fractional
process case, the bHP filter estimate becomes less smooth as m rises. The features of the bHP filter
trend estimate are determined by both parameters λ and m but in such a way that increasing m for
given λ enables the bHP filter to compensate for shortcomings in the base learner when m = 1.
These features of the bHP filter are demonstrated in simulations reported in the next Section.

In practical work it is common for economic and financial data to manifest both stochastic
and deterministic trend properties. Deterministic drift functions can be a smooth or piecewise
smooth functions interrupted by structural breaks. To accommodate such functions, we consider
data generated by the superposition of a fractional process xt with drift as

yt = gn(t) + xt, (36)

where gn(t) is a piecewise smooth interpolating function for which gn(⌊nr⌋)
nH → g(r) and xt follows

the functional law (22). We consider first the case where g(·) is a smooth deterministic function
represented by a finite order trigonometric or time polynomial and establish consistent estimation
of such trends by the bHP filter. We next consider more general continuous deterministic functions
and piecewise continuous functions. The results follow closely from earlier analysis PJ & PS (2021;
2021) and are presented here as propositions.
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Proposition 4.4. Suppose the time series yt is generated by (36) and g(r) takes the form

g(r) = αo +
M∑
k=1

αk sin(2πkr) +
M∑
k=1

βk cos(2πkr), (37)

where at least some αk or βk ̸= 0 and maxk{αk, βk} <∞. Then, in a suitably extended probability
space

y⌊nr⌋
nH

→ g(r) +BH(r) a.s.,

and ∣∣∣∣∣ f̂
m
⌊nr⌋

nH
− g(r)−BKn

H (r)

∣∣∣∣∣→ 0 a.s.,

provided Kn

n
+ K4

n

m
→ 0 as n,m, Kn → ∞, where BKn

H (r) :=
∑Kn

k=1
sinukr
uk

Uk +
∑Kn

k=1
1−cos vkr

vk
Vk

is a finite series approximation of BH(r).

In (37) M is considered fixed. If the function g(r) has an infinite series representation with M =
∞ then a suitable summability condition must be imposed on the coefficients in (37) so that the
trigonometric series converges uniformly.

Proposition 4.5. Let yt follow (36) and suppose g(r) takes the time polynomial form

g(r) = βkr
k + βk−1r

k−1 + · · ·+ β0 where βi ̸= 0 for some i ≤ k.

Then y⌊nr⌋
nH

→ g(r) +BH(r) a.s.

and ∣∣∣∣∣ f̂
m
⌊nr⌋

nH
− g(r)−BKn

H (r)

∣∣∣∣∣→ 0 a.s.,

as n→ ∞ and m → ∞.

The HP filter is known (PJ, 2021) to preserve a polynomial drift up to degree 3 when n → ∞.
The bHP filter extends this capability as m → ∞ to replicate polynomials of higher degree (PS,
2021). Propositions 4.4 and 4.5 show that comparable results are achieved in the presence of a
fractional stochastic trend xt by using the bHP filter. These propositions can be further extended to
allow for a drift function gn(t) such that gn(⌊nr⌋)

nH → g(r) pointwise, where g(r) is any continuous
function or any piecewise continuous function, as considered in the following two results.

Theorem 4.6. Suppose yt follows (36) with gn(⌊nr⌋)
nH → g(r) pointwise and xt satisfies the functional

law (22) and g(r) is a continuous function. Then the bHP filter when applied to yt with λ = µn4

has the following asymptotics

y⌊nr⌋
nH

,
f̂m
⌊nr⌋

nH
→ g(r) +BH(r) a.s., for r ∈ (0, 1) (38)

as n,m → ∞.
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In applications it can be useful to assume that the drift function g(·) has a finite number of
structural break points or jump discontinuities. Acccordingly, suppose g(·) has b such points of
jump discontinuity at 0 < r1 < · · · < rb < 1, leading to the following forms involving time and
trigonometric polynomials

g(r) =



α0,0 + α0,1r + · · ·+ α0,M0r
M0 if r ∈ [0, r1),

...
αl,0 + αl,1r + · · ·+ αl,Ml

rMl if r ∈ [rl, rl+1),
...
αb,0 + αb,1r + · · ·+ αb,Mb

rMb if r ∈ [rb, 1],

(39)

and

g(r) =



α0,0 +
∑M0

k=1 α0,k sin(2πkr) +
∑M0

k=1 β0,k cos(2πkr) if r ∈ [0, r1)
...
αl,0 +

∑Ml

k=1 αl,k sin(2πkr) +
∑Ml

k=1 βl,k cos(2πkr) if r ∈ [rl, rl+1)
...
αb,0 +

∑Mb

k=1 αb,k sin(2πkr) +
∑Mb

k=1 βb,k cos(2πkr) if r ∈ [rb, 1]

, (40)

for some finite positive integers M0, · · · ,Mb.

Proposition 4.7. Suppose yt follows (36) with gn(⌊nr⌋)
nH → g(r) pointwise and xt follows the func-

tional law (22). If g(r) is any piecewise continuous function of the form (39) or (40), then as
1
m
+ m

n
→ 0,

f̂m
⌊nr⌋

nH

a.s.→

{
g(r) +BH(r) if r ∈ (0, 1) \ {r1, · · · , rb}
1
2
[g(ri−) + g(ri+)] +BH(r) if r = ri for some i ≤ b,

(41)

where g(ri−) and g(ri+) are the left and right limits of g(r) at the break point ri.

Theorem 4.8. Suppose yt follows (36) with gn(⌊nr⌋)
nH → g(r) pointwise for r ∈ [0, 1] and xt fol-

lows the functional law (22). If g(r) is any piecewise bounded continuous function with breaks at
{r1, r2, ..., rb}, then as 1

m
+ m

n
→ 0,

f̂m
⌊nr⌋

nH

a.s.→

{
g(r) +BH(r) if r ∈ (0, 1) \ {r1, · · · , rb}
1
2
[g(ri−) + g(ri+)] +BH(r) if r = ri for some i ∈ {1, 2, ..., b},

(42)

where g(ri−) and g(ri+) are the left and right limits of g(r) at the break point ri.

These results show consistency of the bHP filter under the stated conditions for trend functions
composed of fractional processes and deterministic continuous drift functions. When the dift func-
tion has a finite number of structural breaks or jump discontinuities, the bHP filter is consistent
everywhere except for the break points at which points the limit form of the bHP filter is given
by the mid-point of the trend-break, analogous to a Fourier series representation of a piecewise
continuously differentiable function.
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5 Simulations, Implementation and Empirics
This section reports the results of simulation exercises and real data analyses to illustrate the effects
of bHP filter estimation of stochastic trends involving nonstationary long memory time series. A
stopping time for practical implementation of the boosting algorithm is provided following PS
(2021), and its use is evaluated in simulations. Empirical applications to US interest rates and
unemployment rate series are reported at the end of this section.

5.1 Simulations
Finite sample performance of the HP and bHP filters is examined for nonstationary trending time
series with various values of the memory parameter d in the innovation process. We consider
several data generating processes representative of empirical economic data and study the bHP
filter’s performance in terms of bias, variance, and mean squared error (MSE). The data-determined
stopping rule criterion for the boosting iteration suggested in PS (2021) and the related automated
version of the bHP filter are used in the simulations.

5.1.1 HP Filter for Different Values of d

According to Remark 3.7, the HP filter may reasonably be expected to perform better in trend
determination for larger values of H > 1/2. Accordingly, we conduct a simulation exercise by
incorporating ARFIMA in the data generating process. The simulation design is as follows. First,
let u(z)t be a stationary ARFIMA(0, d∗, 0) time series as given by (2), u(e)t ∼ iid N (0, 1) be inde-
pendent u(z)t , and gn(t) be a deterministic sequence. Define:

zt = zt−1 + u
(z)
t ≡ I(d) with 1 + d∗ = d ∈ (0.5, 1.5)and d∗ ∈ (−0.5, 0.5) (43)

et = 0.5et−1 + u
(e)
t + u

(e)
t−1,

x̃t = gn(t) + zt,

xt = x̃t + et. (44)

In the specification (43) zt is an I(d) process generated as a random walk whose step size u(z)t

is an ARFIMA(0, d∗, 0) time series. In (44) et is an ARMA(1, 1) stationary process, x̃t is a trend
process consisting of a non-random drift component gn(t) and the stochastic trend component zt,
and xt is the observed time series, which allows for stationary deviations or measurement error in
observations of x̃t.

In this simulation the performance of the HP filter is assessed for different values of the mem-
ory parameter d. Based on (44), paths of xt of length n = 100 are generated for each d =
{0.55, 0.7, 0.85, 1.15, 1.3, 1.45} (i.e., with d∗ = {−0.45,−0.3,−0.15, 0.15, 0.3, 0.45}). For this
first simulation gn(t) ≡ 0 and 1, 000 replications are conducted. The HP filter is applied with
λ = 1600 giving the filtered series x̂t and a standardized sum of squared errors (StSSE) is com-
puted:

StSSE =

∑100
t=1(x̃t − x̂t)

2

Var(x̃t)
.
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Figure 1 shows histogram counts of StSSE for various values of d. These indicate that as
d increases StSSE decreases. This finding is explained by the properties of the limit process.
After appropriate standardization x̃t converges to a Type I fBM as in (3) with H = d − 1/2 for
d ∈ [1, 1.5). As H increases, the path of the Type I fBM becomes smoother by virtue of the
Hölder condition. Increasing smoothness in the limiting trend process enables the HP filter, which
is itself a smoother, to deliver improved estimates of the underlying trend. On the other hand, as d
increases, the variability of x̃t increases. Hence, instead of working with a sum of squared errors
(SSE) criterion, we use StSSE to compare the histograms. The plots reveal increased efficiency of
the HP filter as d increases over the entire range (0.5, 1.5). Analogous results (not reported here)
were obtained with data generated from the same model but with zt replaced by z̃t as in (11).

Figure 1: Histograms of the StSSE of the estimated trend by the HP filter with λ = 1600 based
on a 1, 000 replications. The simulation is performed as described in (44) with gn ≡ 0 and d =
0.55, 0.7, 0.85, 1.15, 1.3, 1.45.

5.1.2 Predicting Trend with Different Values of m

As shown in Theorem 3.1 the HP filter does not typically restore the underlying trend even asymp-
totically. Boosting the filter is computationally tractable and provides a more robust method of
isolating the trend function in a nonstationary time series. As discussed in Remark 4.3, the boosted
filter employs two tuning parameters, λ and m, in trend extraction, the choice of λ usually being
given by that of the HP filter itself and the boosting iteration parameter m aiding identification of
local as well as global trend behavior.

This simulation exercise explores how boosting can enhance HP filter performance and capture
more long term features in the data as m increases. We consider three cases: a stochastic trend
without any deterministic trend, a stochastic trend with a continuous drift, and a stochastic trend
with a piecewise continuous function. Data of length n = 100 are generated as described in (44)
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Type Equation
Stochastic Process without Drift gn(t) ≡ 0

Stochastic Process with Continuous Drift gn(t) = 10
(
t
n

)2
+ 30

(
t
n

)4
Trend-break Stochastic Process gn(t) = 20I(t > 0.5n+ 1)

Table 1: The form of the deterministic trend

with error et replaced by e0t = −0.5e0t−1+u
(e)
t +u

(e)
t−1 and the structure of gn(t) used in the simulation

is given in Table 1. We use λ = 1600 for this simulation, as in typical quarterly data economic
applications.
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Figure 2: In each panel, observations xt are shown by black dots, the underlying trend process x̃t
by the solid gray lines, the deterministic trend gn(t) by the dashed gray lines, and the fitted trend
lines obtained by the HP filter (red line) and bHP filters (lines colored sequentially from red to
blue). The stochastic trend component zt is an I(1.25) time series for x̃t generated as in (44).

The results are presented in Figures 2 and 3 for I(1.25) and I(0.75) stochastic processes zt,
respectively. In each figure, black dots represent observations xt, the solid gray line is the stochastic
trend x̃t and the dashed gray line is the deterministic trend gn(t). According to Theorem 4.1, the
estimated trend should improve as the HP filter is iterated. The red line gives the estimated trend
obtained by the HP filter. The sequential lines from red to blue show how that estimate is refined
and reflects more detail of the underlying trend for m = 2, 4, 8, 16, 32, 64, 128. For the trend
break process, the estimated trend by the bHP filter undergoes a smooth transition at the break
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point t = 50. The transition is more rapid as the number of iterations increase and the value at
the breakpoint is close to the average of the immediate values on both sides of the breakpoint, as
asymptotic theory predicts. For the case d = 0.75, the pattern is similar to that of d = 1.25 as the
HP filter is iterated from 1 to 128. Clearly, boosting works better than the HP filter in both cases.
The figures also suggest that the estimate becomes stable after sufficiently large m and changes
little with further iterations. The stability of the bHP filter is further investigated in Section 5.1.3.
In sum, the bHP filter evidently captures a smoothed version of the underlying trend in the observed
data. This conclusion is consistent with simulation results for the special unit root case d = 1 in PS
(2021).
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Figure 3: In each panel, observations xt are shown in black dots, the underlying trend process x̃t by
the solid gray lines, the deterministic trend gn(t) by the dashed gray lines, and the fitted trend lines
obtained by the HP filter (red line) and bHP filters (lines sequentially colored from red to blue). For
the stochastic trend component zt, an I(0.75) process is used to generate xt in (44).

5.1.3 Bias-Variance Trade-Offs in Boosting

Bias reductions in statistical estimation often lead to a rise in variance. Similar effects occur with
boosting as variance tends to increase with each iteration of the boosted filter. This section reports
the findings of simulations that were conducted to explore how bias, variance, and MSE change
with boosting iterations of the filter. For this analysis, the following five DGPs similar to those of
PS (2021, Section 3) were employed.

• DGP 1: The data are generated as in (44) with gn(t) = 500( t
n
)3.
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• DGP 2: DGP 1 but with gn(t) = 500( t
n
)4.

• DGP 3: DGP 1 but with gn(t) = 5t
1
5 cos(0.05πt0.09), a deterministic sinusoidal trend.

• DGP 4: DGP 1 but with gn(t) = cos(0.5πt) to emulate a time-dependent periodic pattern
often present in economic data, interpreted as a cycle.

• DGP 5: DGP 3 with the stochastic trend zt replaced by

z
(1)
t = u

(z)
t I(t < 0.5n) +

t− 0.5n

n
−

t∑
j=⌊0.5n⌋

u
(z)
t

 I(t ≥ 0.5n),

giving a stationary first half trajectory followed by a partial sum process.

The simulation design for the computation of bias, variance and MSE is given in the following
algorithm, with a sample size n = 100 unless otherwise indicated.

• Step 1: Simulate x̃t as a combination of stochastic and deterministic trends according to (44).

• Step 2: Generate measurement errors et and data using xt = x̃t + et, calculate the bHP filter
from the data with λ = 1600 and iteration parameter m settings from 1 to 40. Repeat 50
times to find the bias variance and MSE of the bHP estimates of the trend process x̃t.

• Step 3: Repeat 100 times to compute the average bias, variance, and MSE for each m.
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Figure 4: The plots show the bias, variance and MSE of the estimated trend obtained by the bHP
filter for DGPs 1-3 when λ = 1600 and d = 0.75, 1.25.
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Figure 4 shows the bias, variance and MSE of the estimated bHP filter trend for DGPs 1-3
when λ = 1600 and d = 0.75, 1.25. Squared bias drops significantly with a single iteration from
m = 1 to m = 2 as does the MSE. Variance initially increments at a slow rate compared with bias
reductions but the MSE stabilizes after a few boosting iterations, a finding that matches PS (2021,
Section 3.1).

5.2 Stopping Time Criteria
As noted above, boosting can significantly improve trend estimation with several iterations but after
the MSE stabilizes boosting additional iterations can lead to overfitting. Use of a suitable stopping
criterion is therefore recommended for practical implementation. PS (2021) described two data-
based methods for selecting the iteration number m. One method uses the ADF unit root test with
a 5% significance level at each iteration until the test shows stationarity. This procedure is called
bHP-ADF. The second method uses the following information criterion to control overfitting the
observations

IC(m) =
ĉ(m)′ ĉ(m)

ĉHP ′ ĉHP
+ log(n)

tr(Bλ
m)

tr(In − Sλ
n)

(45)

The resulting procedure is called bHP-BIC. The first term of (45) calculates the ratio of the error
sum of squares obtained by the bHP filter, ĉ(m)′ ĉ(m) with m iterations relative to the error sum of
squares of the HP filter ĉHP ′

ĉHP . The quantity tr(Bλ
m) measures effective degrees of freedom after

applying the bHP filter with parameters (λ,m) and tr(In − Sλ
n) the effective degrees of freedom

after the HP filter. The ratio of these degrees of freedom scaled by log(n) gives the penalty term to
control overfitting. The measure tr(Bλ

m) has the following asymptotic form as n→ ∞:

tr(Bλ
m) = n−

n−2∑
k=1

(λγ2k)
m

(1 + λγ2k)
m
(1 + o(1)), γ2k = 4

(
1− cos

kπ

n− 1

)2

,

which is shown in PS (2021) to increase as m increases whereas ∂tr(Bλ
m)/∂m decreases as m

increases. When λ = O(nδ) for some δ > 0 and m is finite, tr(Bλ
m) → 2 and [tr(In − Sλ

n)− (n−
2)] → 0 as n→ ∞, so the penalty term has order 2 log(n)/n→ 0 as n→ ∞.

Simulations were performed to investigate the effects of changing m as n increases with vari-
ations in λ according to the sample size n. For each pair {(d, n) : d = 0.55, 1.15, 1.45;n =
64, 128, 256}, 500 sample paths were generated as in (44) with a continuous drift gn(t) trend as
given in Table 1. The bHP-BIC filter was implemented for λ ∈ {100, 1600, 25600}, roughly match-
ing λ ∝ n4, in each of the simulated trajectories. Figure 5 plots histograms of the 500 resulting
values of m for each n. Evidently, the optimal value ofm selected by BIC tends to increase with the
sample size n and therefore matching increases in λ in this experiment, allowing more iterations of
the filter.

On the other hand, for a fixed λ, if n increases tr(Bλ
m) increases for any m and tr(In − Sλ

n)
decreases. Hence the penalty term increases, contributing to early termination of the iterations.
Simulations were performed to monitor how the empirical distribution of m behaves for fixed λ but
different values of the sample size n and d. The same combinations of d and n as before were used
with fixed λ = 1600. Figure 6 shows that as n increases, the optimal m decreases for each d. Thus,
the optimal m for n = 256 is left shifted relative to those for larger values of n, and the optimal m
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for n = 64 is most skewed to the right, confirming that the number of iterations typically reduces
as n increases given a fixed λ.
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Figure 5: Stopping times for bHP-BIC with sample sizes n ∈ {64, 128, 256}, dependence param-
eter d ∈ {0.55, 1.15, 1.45}, λ ∈ {100, 1600, 25600} varied according to n, and gn(t) generated as
the continuous drift in Table 1.
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Figure 6: Stopping times for bHP-BIC with fixed λ = 1600, sample sizes n ∈ {64, 128, 256},
dependence parameters d ∈ {0.55, 1.15, 1.45}, and gn(t) the continuous drift in Table 1.

In the bias, variance, and MSE computations of Section 5.1.3, the values of m selected under
bHP-ADF and bHP-BIC were also calculated. The results are shown in the histograms of Figure
7, which display 100 values of the average m obtained for DGPs 1-3 and for d ∈ {0.75, 1.25} in
the simulations. In the upper panel (DGP 1), where gn(t) is a cubic polynomial, about 20% of the
average m obtained by bHP-ADF are less than 2; in the middle panel (DGP 2), where gn(t) is a
4th degree polynomial, fewer than 5% of the average m are below 2 . As indicated in PS (2021),
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the HP filter does not remove higher-order polynomial trends without boosting and this property is
evident in Figure 7 for both values of d. In the lower panel (DGP 3) more than 80% of the average
number of iterations are less than 2.

Figure 7 shows that BIC selection produces many more iterations to minimize the information
criterion, leading to histograms for m that are more scattered than those of the ADF selection for
each of the DGPs and each value of d. The optimal m from BIC is also more scattered in the lower
panel for DGP 3, which corresponds to the finding in Figure 4 that average bias and MSE decline
more slowly for this DGP.
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Figure 7: The distribution of the average number of iterations of the bHP filter with λ = 1600
shown for DGPs 1, 2, and 3 and for d ∈ {0.75, 1.25}.

d HP bHP-ADF bHP-BIC AR(4)
Stoc. Trend 0.75 1.525147 1.338978 1.298727 3.248710

Stoc.+Deter. Trends 0.75 1.593383 1.383501 1.289304 3.697556
Stoc. Trend+Mean Shift 0.75 8.153291 6.075353 4.385433 8.568215

Stoc. Trend 1.25 3.912214 2.126089 1.352408 4.622455
Stoc.+Deter. Trends 1.25 3.964066 2.162909 1.368690 4.584532

Stoc. Trend+Mean Shift 1.25 9.529270 7.356215 3.927817 9.009112

Table 2: The MSE of the estimated trend computed using the HP, bHP-ADF, and bHP-BIC filters
with λ = 1600 and an AR(4) model. The values d ∈ {0.75.1.25} were used in simulating the
stochastic trend. The data are generated as in (44) and Table 1.

The HP and bHP filters were next compared with an AR(4) regression, a method frequently used
in empirical work with quarterly economic data and recently recommended by Hamilton (2018).
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Data were generated as in (44) and Table 1 with sample size n = 100. The HP, bHP-ADF, and bHP-
BIC filters were computed, AR(4) models were fitted, and MSEs calculated ignoring the initial and
end four points to enable comparisons with the AR(4) model as in PS (2021). Table 2 reports the
results, which show that the AR(4) model produces the highest MSEs in fitting each of the trend
processes and for each d ∈ {0.75, 1.25}. The AR(4) MSEs are almost three times those of the bHP-
BIC filter. Both the HP filter and the bHP-ADF performed poorly for trajectories with a stochastic
trend and mean-shift compared to bHP-BIC. For all scenarios, the bHP-BIC filter consistently
outperformed the other approaches in trend determination.

Simulations were also conducted using the same model design (44) but an aggregation process
for the stochastic trend defined by (11) which converges to a type II fBM upon suitable standard-
ization, in place of the mechanism (43). The findings closely matched those given in Table 2 and
are not reported here.

5.2.1 MSE for Different Values of λ and Comparison with AR(4) Model

This section provides histogram plots to assess the robustness of the bHP filter by monitoring the
variation of its MSE according to different choices of λ. Data generation for this simulation is
similar to that of 5.1.3. All combinations of DGP 3 and DGP4, λ ∈ {400, 800, 1200, 1600}, and
d ∈ {0.75, 1, 1.25} are employed. The algorithm is as follows.

• Step 1: Fix the value of d and the DGP. Simulate x̃t for the specific DGP and value of d.

• Step 2: Generate the error et of length 100 and the bHP-BIC is applied for different value of
λ = 400, 800, 1200, 1600. This is repeated 50 times. The MSE and the average number of
iterations are recorded.

• Step 3: Repeat the whole process 100 times to get 100 values for MSE and the average
iterations.

Figure 8: Distributions of the average number of iterations in the bHP-BIC filter for λ ∈
{400, 800, 1200, 1600} and d ∈ {0.75, 1, 1.25} using DGP 3.

Figures 8 and 9 show histograms of the number of iterations in filtering DGP 3 and DGP 4
with bHP-BIC. The number of iterations m increases as λ increases. As Remark 3.5 suggests, the
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performance of the HP filter generally improves with smaller λ because the lower the penalty in
(16) the greater the capacity of the filter to capture granularity or local behavior in a trajectory.
Accordingly, it is expected that the boosted filter will need fewer iterations with smaller λ.

Figure 9: Distributions of the average number of iterations by the bHP-BIC filter for λ ∈
{400, 800, 1200, 1600} and d ∈ {0.75, 1, 1.25} using DGP 4.

Figure 10: Distribution of the average MSE of the estimated trend from the bHP-BIC filter for
λ ∈ {400, 800, 1200, 1600} and d ∈ {0.75, 1, 1.25} using DGP 3.
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Figure 11: Distributions of the average MSE of the estimated trend by the bHP-BIC filter for
λ ∈ {400, 800, 1200, 1600} and d ∈ {0.75, 1.00, 1.25} using DGP 4.

The next exercise aims to assess the performance of the HP, bHP-ADF, and bHP-BIC filters
compared to that of an AR(4) regression. DGPs 1-5 are used to generate 200 samples. All five
models are fitted and the MSEs calculated. To accommodate the AR(4) regression in the compari-
son, four initial and final points are eliminated. For DGPs 1-5, the values of d considered here are
0.75 and 1.25. For DGP 4, gn(t) is a periodic function with values between [−1, 1] with periodicity
4, small enough in comparison to n so that gn(t) can be considered a cycle. The MSE under differ-
ent DGPs are provided in Table 3.

d HP bHP-ADF bHP-BIC AR(4)

DGP1 0.75 2.740997 2.696103 2.169544 6.165538
1.25 4.108391 2.603417 2.486829 6.245990

DGP 2 0.75 4.684468 2.672197 2.407895 6.244237
1.25 6.265164 2.603666 2.756768 6.261346

DGP 3 0.75 2.748083 2.698715 2.057356 5.817983
1.25 4.423393 2.563303 2.473243 5.778962

DGP 4 0.75 1.811997 2.605251 1.930835 3.811153
1.25 3.293247 2.534033 2.433160 5.293758

DGP 5 0.75 2.824658 2.823368 2.111107 6.178783
1.25 3.430196 2.732810 2.271670 6.086447

Table 3: The MSE of the estimated trend computed using the HP, bHP-ADF, bHP-BIC and AR(4)
uder different DGPs.

The MSEs of bHP-BIC and bHP-ADF are very similar in all cases and are less than the MSEs
produced by the HP filter and the AR(4) regression. The underlying trends in DGPs 1 and 2 have
time polynomials of order 3 and 4. For DPG 2, the HP filter has the highest MSE, as it fails
to capture the 4th degree polynomial trend. DGP 3 reflects a slow-moving cycle with varying
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magnitude depending on time. DGP 4 involves a small deterministic cycle of periodicity 4, and
DGP 5 involves a break in the stochastic trend and the same cycle as DGP 3. In this variety of
complex trend and cycle generating processes, the bHP filter successfully captures the underlying
mechanism of each trend process and maintains a systematically low MSE throughout. The MSE
of bHP-BIC is uniformly lower than that of bHP-ADF and is higher for d = 1.25 than d = 0.75.

5.3 Empirical Examples
This section reports empirical applications of the methodology to two examples where long mem-
ory is present in the data. Monthly data was collected for the U.S. effective federal funds rate
(EFFR) and quarterly data were collected for the seasonally adjusted U.S. unemployment rate for
the period 1973-20216. Over these five decades seven U.S. recessions have been recorded by the
NBER.7 Considerable variation and a longer term drift are evident in the federal Funds rate with
rates approaching 20% during the 1981 recession and rates falling to near zero following the GFC
and again during the Covid 19 pandemic. The unemployment rate also fluctuates with high levels
of unemployment following the 1981 recession, the GFC and during the covid 19 pandemic of
2020. The data are shown in Figure 12.
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Figure 12: Estimated trends of the effective monthly Federal Funds rate and quarterly U.S. unem-
ployment rates over 1973 2021 obtained from the bHP filter. Observations are shown by the solid
black line and the bHP filter by colored lines for different values of m. Shaded areas are the NBER
recorded U.S. recessions.

6The data are sourced from the St. Louis Fed ( https://fred.stlouisfed.org.)
7See https://www.nber.org/research/business-cycle-dating.
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For each of the time series the memory parameter d is estimated using the exact local Whittle
procedure (Shimotsu and Phillips, 2005), which allows for both stationary and nonstationary long
memory and enables valid confidence interval construction. The estimated values and confidence
intervals are given in Table 4. Both the series show clear evidence of nonstationary long memory
based on these estimates and confidence intervals. The underlying trend in the series is estimated
using the HP and bHP-BIC filters. Since the unemployment rate data is collected quarterly and
the EFFR series is monthly, the penalty parameters were set to λ = 1600 and 34 × 1600, respec-
tively. AR(4) regressions were also fitted to the series to compare results from this method with the
estimated trend behavior obtained from the HP and automated bHP filters.

Data set Bandwidth Parameter Value of d Confidence Interval
Monthly EFFR 5820.7 0.879 (0.7736, 0.9838)

Quarterly Uemployment Rate 1960.7 0.842 (0.6886, 0.9947)

Table 4: Confidence intervals for d obtained from exact local Whittle estimation.

Figure 12 shows how, with a rising number of iterations, the boosted HP filter captures more
specific features of the data path and does so more prominently with the EFFR data while still
smoothing over short run fluctuations and noise. However, as already discussed, after a certain
number of iterations the HP filter changes the estimate negligibly with further iterations and can
lead to overfitting. An automated bHP filter is therefore applied to avoid overfitting. The bHP-BIC
used 26 iterations for the EFFR data and 99 iterations for the unemployment rate data in fitting
the trends. The results are displayed in Figure 13 for the period 1973-2021. An AR(4) regression
was also used and gave results that closely match the raw data, seemingly overfitting and failing
to distinguish underlying trend behavior in the data. With autoregressive fitting the estimates are
predictive and driven by immediately preceding values, whereas the bHP filter uses data from the
past and future to estimate trend behavior and direction at each time point, except for a few terminal
points in the data. In consequence, AR fitting is highly impacted by local behavior in the data and
susceptible to short run noise contamination of the underlying trend.

Figure 14 provides a snapshot of how the HP, bHP-BIC, and the AR(4) methods perform over
January 1990 to December 2010. During this period, there are multiple peaks and valleys along
the paths of both time series with three recession periods. The HP filter notably underperforms in
revealing the magnitude of the rate hikes and drops over these periods and by failing to capture the
transitions. On the other hand, the autoregression estimates suffer from markedly overfitting the
data. Use of boosting enables the bHP-BIC filter to capture more of the trend paths and directions
in the data than the HP filter, while resisting the evident overfitting of autoregressive methods.
These findings corroborate other recent empirical evidence concerning the use of autoregressions,
HP filtering and boosted filtering in business cycle research (Hall and Thomson, 2021, 2022; Mei
et al., 2022).
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Figure 13: Estimated trends of effective monthly Federal Funds rates and quarterly U.S. unemploy-
ment rates from 1973- 2021 obtained by HP, bHP-BIC and AR4 regression methods. The actual
data are shown by the black lines. The shaded regions show the NBER recorded recessions.
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Figure 14: Estimated trends in effective monthly Federal Funds rates and quarterly U.S. unemploy-
ment rates from January 1990- December 2010 obtained by the HP, bHP-BIC and AR(4) regression
methods. The shaded regions show the NBER recorded recessions.
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6 Conclusion
This paper develops asymptotic theory for smoothing filters that are used to estimate the underlying
trends in time series data, with a focus on the properties of the Hodrick-Prescott filter and its
recently developed boosted version allowing for a wide class of nonstationary time series with
possibly fractional stochastic process limits. Earlier research had shown that in the case of time
series with a unit root where the normalized series converges to Brownian motion the HP filter
fails to remove the stochastic trend even asymptotically. To mitigate this weakness, recent research
suggested boosting the HP filter by iterating the filter and established that this procedure delivers
a consistent estimate of the trend and improves finite sample performance of both the fitted trends
and residual cycle elements in cases of unit root and deterministic trending time series. The current
paper extends these results to a much wider class of nonstationary long range dependent time
series with fractional stochastic process limits. The analysis reveals that the HP filter produces
inconsistent trend and cycle estimates within this wider class and that boosting enables consistent
estimation. The same benefits of boosting continue to hold for time series with deterministic drifts
and possible structural breaks.

7 Appendix A: Proofs
Proof of Theorem 3.1:

i. To prove part (i), we rely on the following two preliminary steps. Step 1 proves weak conver-
gence of the finite dimensional distributions of {GH

l (r) : r ∈ [0, 1]} to the finite dimensional
distributions of {GH

∞(r) : r ∈ [0, 1]}. Step 2 shows that the sequenceGH
l (·) is asymptotically

tight in C[0, 1].

Step 1: GH
l is a Gaussian process with zero mean and covariance function

Cov(GH
l (r), G

H
l (s)) =

l∑
k=1

(sinukr)(sinuks)

(µu4k + 1)2u2k
Var(Uk)

+
l∑
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[
1
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− 1

µv4k + 1

cos vkr

vk

] [
1
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− 1
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cos vks

vk

]
Var(Vk)

:=I l01 + I l02.

GH
∞ is a Gaussian process with zero mean and covariance function

Cov(GH
∞(r), GH

∞(s)) =
∞∑
k=1

(sinukr)(sinuks)

(µu4k + 1)2u2k
Var(Uk)

+
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k=1
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1
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− 1

µv4k + 1

cos vkr
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] [
1
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Note that
∣∣∣∑l

k=1
(sinukr)(sinuks)

(µu4
k+1)2u2

k
Var(Uk)

∣∣∣ < K0

∣∣∣∑∞
k=1

1
u2
k
Var(Uk)

∣∣∣ for some constant K0 as

uk = O(k). Now, Var(Uk) =
2C2

H

u2H
k J2

1−H(uk)
and J2

1−H(uk) ∼ 2
πuk

. Hence, we write-∣∣∣∣∣
l∑

k=1

(sinukr)(sinuks)

(µu4k + 1)2u2k
Var(Uk)

∣∣∣∣∣ ≤ K0

∣∣∣∣∣
∞∑
k=1

2C2
Hπuk

2u2+2H
k

∣∣∣∣∣ <∞

Thus I l01 converges uniformly and absolutely to I01 on [0, 1]2 as l → ∞. Similarly, we
can show that I l02 converges uniformly and absolutely to I02 on [0, 1]2. This implies that
Cov(GH

l (r), G
H
l (s)) converges to the Cov(GH

∞(r), GH
∞(s)) uniformly and absolutely for

(r, s) ∈ [0, 1] × [0, 1]. Hence the finite dimensional distributions of {GH
l (r) : r ∈ [0, 1]}

converge to the finite dimensional distributions of {GH
∞(r) : r ∈ [0, 1]} and this verifies step

1.

Step 2: Define, G1
l (r) =

∑l
k=1

1
µu4

k+1
sinukr
uk

Uk. Apply the maximal inequality for sub-
Gaussian processes ((Van der Vaart and Wellner, 1996, Corollarly 2.2.8)) to G1

l (·), giving

E sup
dl(s,t)<δ

|G1
l (s)−G1

l (t)| ≤ K

∫ δ

0

√
log(N(ϵ, [0, 1], dl))dϵ.

Here K is a universal constant, N(ϵ, [0, 1], dl) is the ϵ−covering number on the semi-metric
space ([0, 1], dl) and dl is the standard deviation semi-metric for which

d2l (s, t) = Var(G1
l (s)−G1

l (t)) =
l∑

k=1

(sinuks− sinukt)
2

[uk(1 + µu4k)]
2

σ2
u

≤
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k=1

(sinuks− sinukt)
2σ2

u

u2k

≤ Var(Bl
H(s)−Bl

H(t))

≤ |t− s|2H ,

where Var(Uk) = σ2
u. By following the proof of Dzhaparidze and Van Zanten (2004, The-

orem 4.5), Gl(·) can be shown to be uniformly equicontinuous in probability and hence the
process is asymptotically tight in C[0, 1]. This proves step 2 of part (i). Now apply Van der
Vaart and Wellner (1996, Theorem 1.5.4) which ensures that weak convergence of finite di-
mensional distributions combined with asymptotic tightness is sufficient for the sequence
{GH

l (r) : r ∈ [0, 1]} to converge weakly in C[0, 1], the set of continuous functions equipped
with supremum metric. Finally, by a virtue of the Lévy-Ito-Nisio Proposition ((Van der Vaart
and Wellner, 1996, Proposition A.1.3)) it is equivalent to convergence with probability one
in C[0, 1] and this completes the proof of part (i).

ii. First recall from (14) that a fBM can be expressed by

BH(r) =
∞∑
k=1

sinukr

uk
Uk +

∞∑
k=1

1− cos vkr

vk
Vk
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for r ∈ [0, 1]. Since the series converges almost surely and uniformly in r ∈ [0, 1], we define
a finite series approximation

BKn
H (r) :=

Kn∑
k=1

sinukr

uk
Uk +

Kn∑
k=1

1− cos vkr

vk
Vk, (46)

where Kn → ∞ as n → ∞. Therefore,
∣∣BKn

H (r) − BH(r)
∣∣ = oa.s.(1), and then by using

(22), we have,

sup
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)
− xt
nH

∣∣∣∣ = oa.s.(1) (47)

whenever Kn → ∞ as n → ∞. It follows that the HP trend solution has the approximated
form as n→ ∞
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(48)

As explained in PJ (2021), the oa.s.(1) error order in (48) holds since the two sided moving
average filter generated by the operator 1

λL−2(1−L)4+1
is an absolutely summable weighted

moving average with stable geometric decay (McElroy (2008)) which retains the error order
by majorization since the errors in (20) and (47) hold uniformly for t ≤ n. Next, we find an
explicit form of (48). Define
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where Im{·} and Re{·} denote the imaginary and real parts of their complex number argu-
ments. We write

n(1− L)ψk

(
t

n

)
= nIm

(
eiuk

t
n (1− e−i

uk
n )

uk

)

=
Im
[
eiuk

t
n (1−

∑∞
m=0(−i

uk

n
)m/m!)

]
uk/n

= Im

[
eiuk

t
n

(
i

(
1 +O

(
u2k
n2

))
+O

(uk
n

))]
= ukRe

[
eiuk

t
n

uk

(
1 +O

(
u2k
n2

))]
+ ukIm

[
eiuk

t
n

uk

(
O
(uk
n

))]
, (50)
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uniformly for k ≤ Kn as uk, vk = O(k) and t ≤ n. Also

nL−1(1− L)ψk

(
t

n

)
=ukRe

[
eiuk(

t
n
+ 1

n
)

uk

(
1 +O

(
u2k
n2

))]
+ ukIm

[
eiuk(

t
n
+ 1

n
)

uk

(
O
(uk
n

))]

=ukRe

[
eiuk

t
n

uk

(
1 +O

(
u2k
n2

))]
+ ukIm

[
eiuk

t
n

uk

(
O
(uk
n

))]
.

Similarly,

nL−1(1− L)ϕk

(
t

n

)
= −vkIm

[
eivk

t
n

vk

(
1 +O

(
v2k
n2

))]
+ vkRe

[
eivk

t
n

vk

(
O
(vk
n

))]
,

uniformly for all k ≤ Kn and t ≤ n. Since d
dr

(
sinulr
ul

)
= cosulr, the operator n(1 − L)

applied to ψk

(
t
n

)
acts asymptotically like the differential operator D = d

dr
on ψk

(
t
n

)
as

Kn

n
→ 0 with n→ ∞ and L−1 acts like an identity operator asymptotically. By repeating the

above steps, we find that

n2(1− L)2ψk

(
t

n

)
= n(1− L)n(1− L)ψk

(
t

n

)
= n(1− L)

{
Re

[
eiuk

t
n

(
1 +O

(
u2k
n2

))]
+ Im

[
eiuk

t
n

(
O
(uk
n

))]}
= ukRe

(
eiuk

t
n (1− e−i

uk
n )

uk/n

)(
1 +O

(
u2k
n2

))

+ ukIm

(
eiuk

t
n (1− e−i

uk
n )

uk/n

)
O
(uk
n

)
= ukRe

[
eiuk

t
n

(
i

(
1 +O

(
u2k
n2

))
+O

(uk
n

))](
1 +O

(
u2k
n2

))
+ ukIm

[
eiuk

t
n

(
i

(
1 +O

(
u2k
n2

))
+O

(uk
n

))]
O
(uk
n

)
= −ukIm

[
eiuk

t
n

(
1 +O

(
u2k
n2

))]
+ ukRe

[
eiuk

t
n

(
O
(uk
n

))]
= −u2kIm

[
eiuk

t
n

uk

(
1 +O

(
u2k
n2

))]
+ u2kRe

[
eiuk

t
n

uk

(
O
(uk
n

))]
.

Hence recursively, we obtain

n4(1− L)4ψk

(
t

n

)
= u4kIm

[
eiuk

t
n

uk

(
1 +O

(
u2k
n2

))]
+ u4kRe

[
eiuk

t
n

uk

(
O
(uk
n

))]
,

uniformly for k ≤ Kn. Further,

n4L−2(1− L)4ψk

(
t

n

)
= u4kIm

[
eiuk(

t
n
+ 2

n
)

uk

(
1 +O

(
u2k
n2

))]
+ u4kRe

[
eiuk(

t
n
+ 2

n
)

uk

(
O
(uk
n

))]
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= u4kIm

[
eiuk

t
n

uk

(
1 +O

(
u2k
n2

))]
+ u4kRe

[
eiuk

t
n

uk

(
O
(uk
n

))]

= u4kIm

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ u4kRe

[
eiuk

t
n

uk

(
O

(
Kn

n

))]
.

(51)

The last line in (51) is explained by noting that uk = O(k) and k ≤ Kn. Using (51), for any
l ∈ N, we can write iteratively

[n4L−2(1−L)4]lψk

(
t

n

)
= u4lk Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+u4lk Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]
,

(52)
uniformly for k ≤ Kn and 0 ≤ t ≤ n. Similarly, we have

[n4L−2(1−L)4]lϕk

(
t

n

)
= v4lk Re

[
eivk

t
n

vk

(
1 +O

(
K2

n

n2

))]
+v4lk Im

[
eivk

t
n

vk

(
O

(
Kn

n

))]
,

(53)
uniformly for k ≤ Kn and 0 ≤ t ≤ n. Now, the operations in square parentheses in (48) can
be evaluated as follows

1

λL−2(1− L)4 + 1
ψk

(
t

n

)
=

∫ ∞

0

exp{−(λL−2(1− L)4 + 1)s}dsψk

(
t

n

)
=

∫ ∞

0

e−s

∞∑
l=0

(−µn4L−2(1− L)4s)l

l!
ψk

(
t

n

)
ds, λ = µn4

=

∫ ∞

0

e−s

∞∑
l=0

(−µs)lu4lk
l!

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}
ds

=

∫ ∞

0

e−s−µu4
ksds

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}

=
1

µu4k + 1

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}
,

(54)

where the third equality above follows from (52). By iterating previous steps on ϕk, we
obtain,

1

λL−2(1− L)4 + 1
ϕk

(
t

n

)
=

1

µv4k + 1

{
Re

[
eivk

t
n

vk

(
1 +O

(
K2

n

n2

))]
+ Im

[
eivk

t
n

vk

(
O

(
Kn

n

))]} (55)
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uniformly for k ≤ Kn. Also, 1
λL−2(1−L)4+1

1
vk

= 1
uk

for all k ∈ N, as vk is a constant. Now,
(54), (55), and the representation of BKn

H in (46) imply that

1

λL−2(1− L)4 + 1
BKn

H

(
t

n

)
=

Kn∑
k=1

1

λL−2(1− L)4 + 1

[
ψk

(
t

n

)
Uk +

(
1

vk
− ϕk

(
t

n

)
Vk

)]

=
Kn∑
k=1

1

µu4k + 1

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}
Uk

+
Kn∑
k=1

[
1

vk
− 1

µv4k + 1

{
Re

[
eivk

t
n

vk

(
1 +O

(
K2

n

n2

))]
+ Im

[
eivk

t
n

vk

(
O

(
Kn

n

))]}]
Vk

:=I1 + I2.

Next, we need to show the series in I1 and I2 converge uniformly and almost surely as
Kn, n→ ∞ and Kn

n
→ 0. Hence, we can ignore the terms of O

(
K2

n

n2

)
and since uk = O(k),

I1 can be reduced to

I1 =
Kn∑
k=1

1

µu4k + 1

sinuk
t
n

uk
Uk +

Kn∑
k=1

1

1 + µu4k

1

uk
O

(
Kn

n

)
Uk

=
√
2

Kn∑
k=1

1

µu4k + 1

sinuk
t
n

uk
CHu

−H
k J−1

1−H(uk)U
′
k

+
√
2 O

(
Kn

n

) Kn∑
k=1

1

1 + µu4k

1

uk
CHu

−H
k J−1

1−H(uk)U
′
k

:= I11 +O

(
Kn

n

)
I12,

where we replaced Uk by
√
2CHu

−H
k J−1

1−H(uk)U
′
k and U ′

k is a standard normal random vari-

able, see (13). The uk are the roots of J−H . Hence, by using the property, J2
v (z) + J2

v+1(z) ∼
2

πz
for large z and choosing v = −H , we get J2

1−H(uk) ∼ 2
πuk

. This leads to E|I12| ≤
C
∑Kn

k=1
1

1+µu4
k

1

u
1+H−1/2
k

< ∞ for some constant C > 0, since uk = O(k). Therefore,

I12 < ∞ almost everywhere for H ∈ (0, 1). Similarly, E|I11| ≤ E|I12| < ∞ which im-
plies that I11 <∞ almost every-where. Hence, combining I11 and I12, we get,

I1 =
Kn∑
k=1

1

µu4k + 1

sinuk
t
n

uk
Uk +Oa.s.

(
Kn

n

)
. (56)

For I2, we decompose the series as

I2 =
Kn∑
k=1

Vk
vk

−
Kn∑
k=1

1

1 + µv4k

cos vk
t
n

vk
Vk +O

(
Kn

n

)
×

Kn∑
k=1

1

1 + µv4k

1

vk
Vk
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:= I21 + I22 + I23 ×O

(
Kn

n

)
.

Now

Var(I21) =
Kn∑
k=1

2C2
Hv

−2H
k J−2

−H(vk)

v2k
< C

Kn∑
k=1

C2
Hv

−2H
k πvk
v2k

<∞ for some constant C

if Kn → ∞ as n → ∞. Thus, IKn
21 := I21 is an L2 bounded martingale with respect to

the natural filtration. Hence, by the martingale convergence theorem IKn
21 converges a.s. to∑∞

k=1
Vk

vk
as Kn → ∞. By applying the same method as used to show the convergence of I11

and I12, the convergence of I22 and I23 can be established. Hence, we get,

I2 =
Kn∑
k=1

Vk
vk

−
Kn∑
k=1

1

1 + µv4k

cos vk
t
n

vk
Vk +Oa.s.

(
Kn

n

)
, (57)

for all Kn ∈ N. By combining (56) and (57), we write,

1

µn4L−2(1− L)4 + 1
BKn

H

(
t

n

)
=

Kn∑
k=1

1

µu4k + 1

sinuk
t
n

uk
Uk +

Kn∑
k=1

[
1

vk
− 1

1 + µv4k

cos vk
t
n

vk

]
Vk

+Oa.s.

(
Kn

n

)
(58)

for H ∈ (0, 1). Finally, (48) and (58) together show that

f̂HP
Kn

(t)

nH
=

[
Kn∑
k=1

1

µu4k + 1

sinukr

uk
Uk +

Kn∑
k=1

(
1

vk
− 1

µv4k + 1

cos vkr

vk

)
Vk

]
+Oa.s.

(
Kn

n

)
+o(1).

Therefore, the continuous limit form of the HP filter applied to the stochastic trend xt is

GH
∞(r) =

∞∑
k=1

1

µu4k + 1

sinukr

uk
Uk +

∞∑
k=1

[
1

vk
− 1

µv4k + 1

cos vkr

vk

]
Vk

provided Kn → ∞, Kn

n
→ 0 as n→ ∞. This yields the desired results in (27) and (28).

Proof of remark 3.5: For a sequence {µL}∞L=1 , we obtained from the proof of Theorem 3.1,

f̂HP
Kn

(t)

nH
=

[
Kn∑
k=1

1

µLu4k + 1

sinukr

uk
Uk +

Kn∑
k=1

(
1

vk
− 1

µLv4k + 1

cos vkr

vk

)
Vk

]
+Oa.s.

(
Kn

n

)
+ o(1).

We have uk, vk = O(k), so that for any Kn, both µLu
4
k, µLv

4
k → 0 uniformly as K4

nµL → 0. Thus,
taking Kn → ∞ as n→ ∞ such that Kn

n
→ 0 followed by µL → 0 as L→ ∞ gives the result.

Proof of Theorem 4.1: Since xt satisfies the functional law (22), we can write

(1− Sλ
n)

m x⌊nr⌋
nH

= (1− Sλ
n)

mBH(r) + o(1) = (1− Sλ
n)

mBKn
H (r) + o(1), (59)
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where BKn
H (r) is the finite series approximation of BH(r) given by (46) and Sλ

n = 1
1+µn4L−2(1−L)2

with λ = µn4. We further write,

(1− Sλ
n)

mBKn
H

(
t

n

)
=

(
µn4L−2(1− L)4

1 + µn4L−2(1− L)4

)m
[

Kn∑
k=1

sinuk
t
n

uk
Uk +

Kk∑
k=1

1− cos vk
t
n

vk
Vk

]

=

(
µn4L−2(1− L)4

1 + µn4L−2(1− L)4

)m Kn∑
k=1

ψk

(
t

n

)
Uk

+

(
µn4L−2(1− L)4

1 + µn4L−2(1− L)4

)m Kn∑
k=1

(
1

vk
− ϕk

(
t

n

))
Vk

:=I3 + I4,

where ψ and ϕ are defined by (49). Now, we claim that I3 and I4 can be written as

I3 =
Kn∑
k=1

µmu4mk
(µu4k + 1)m

Im

(
eiuk

t
n

uk

)
Uk +Oa.s.

(
Kn

n

)
, (60)

and

I4 = −
Kn∑
k=1

µmv4mk
(µv4k + 1)m

Im

(
eivk

t
n

vk

)
Vk +Oa.s.

(
Kn

n

)
, (61)

respectively. Combining (60) and (61), we see that

(1− Sλ
n)

mBKn
H

(
t

n

)
=

Kn∑
k=1

µmu4mk
(µu4k + 1)m

Im

(
eiuk

t
n

uk

)
Uk −

Kn∑
k=1

µmv4mk
(µv4k + 1)m

Im

(
eivk

t
n

vk

)
Vk

+Oa.s.

(
Kn

n

)
,

(62)

forH ∈ (0, 1). Recall that by applying the HP filter m times, we have the estimated cycle and trend
as

ĉ
(m)
t

nH
= (1− Sλ

n)
m xt
nH

, (63)

and
f̂
(m)
t

nH
= (1− (1− Sλ

n)
m)

xt
nH

= (1− (1− Sλ
n)

m)BKn
H (r) + oa.s.(1), (64)

respectively. Now, if (1− Sλ
n)

mBKn
H (r) tends to zero a.s., then

f̂m
⌊nr⌋

nH
→ BH(r), giving the desired

result. To see this, first note that
(

µ(iuk)
4

1+µ(iuk)4

)m
≤
(
1 + 1

µu4
Kn

)−m

for all u1 < u2 < · · · < uKn and

0 ≤ k ≤ Kn. The upper bound
(
1+ 1

µu4
Kn

)−m

tends to zero if and only if −m log(1+ 1
µu4

Kn

) → −∞.

Now −m log(1 + 1
µu4

Kn

) → ∞ if m
u4
Kn

→ ∞ as Kn → ∞. Similarly,
(

µ(ivk)
4

1 + µ(ivk)4

)m

→ 0, as

m
v4Kn

→ ∞. Therefore, the LHS in (62) tends to zero if
K4

n

m
,
Kn

n
→ 0 as n → ∞. Consequently,
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from (63) and (64)
ĉmt
nH

= 0 and
f̂m
t

nH
→ BH(t) almost surely and this completes the proof of the

main results of the Theorem. It remains to prove the claims in (60) and (61) by using a technique
similar to the derivation of (52) and (53). First, note that(

µn4L−2(1− L)4

1 + µn4L−2(1− L)4

)m

ψk

(
t

n

)
= (µn4L−2(1− L)4)m

∫ ∞

0

e−(1+µn4L−2(1−L)4)ssm−1

(m− 1)!
ψk

(
t

n

)
ds

=
(µn4L−2(1− L)4)m

(m− 1)!

∫ ∞

0

e−ssm−1

∞∑
l=0

(−sµn4L−2(1− L)4)lψk

(
t

n

)
ds

=
1

(m− 1)!

∫ ∞

0

e−ssm−1

∞∑
l=0

(−s)l(µn4L−2(1− L)4)l+m

l!
ψk

(
t

n

)
ds

=
1

(m− 1)!

∫ ∞

0

e−ssm−1

∞∑
l=0

(−s)l(µu4k)(l+m)

l!
ds

×

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}
ds

=
µmu4mk
(m− 1)!

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}

×
∫ ∞

0

e−ssm−1

∞∑
l=0

(−sµ)lu4lk
l!

ds

=
µmu4mk
(m− 1)!

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}

×
∫ ∞

0

e−s−sµu4
ksm−1ds

=
µmu4mk

(µu4k + 1)m

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}
.

Hence I3 can be written as

I3 =
Kn∑
k=1

µmu4mk
(µu4k + 1)m

{
Im

[
eiuk

t
n

uk

(
1 +O

(
K2

n

n2

))]
+ Re

[
eiuk

t
n

uk

(
O

(
Kn

n

))]}
Uk.

We need to show that I3 converges as n,Kn → ∞ and Kn

n
→ 0. Following a similar argument to

the finiteness of
∑Kn

k=1
Vk

vk
<∞ in Theorem 3.1 it can be shown that

∑Kn

k=1
Uk

uk
<∞ with probability

1 as Kn → ∞. Moreover,

Var

(
Kn∑
k=1

µmu4mk
(µu4k + 1)m

Im

(
eiuk

t
n

uk

)
Uk

)
< Var

(
Kn∑
k=1

Uk

uk

)
<∞,
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and

Var

(
Kn∑
k=1

µmu4mk
(µu4k + 1)m

(
Uk

uk

))
< Var

(
Kn∑
k=1

Uk

uk

)
<∞.

Using the martingale convergence theorem as in the convergence of I21 in the proof of Theorem
3.1, the sums in I3 can be shown to be finite a.s. for H ∈ (0, 1) as Kn → ∞, giving O

(
Kn

n

)
×∑Kn

k=1

µmu4m
k

(µu4
k+1)m

Uk

uk
= Oa.s.

(
Kn

n

)
. Therefore, I3 can be written as

I3 =
Kn∑
k=1

µmu4mk
(µu4k + 1)m

Im

(
eiuk

t
n

uk

)
Uk +Oa.s.

(
Kn

n

)
, (65)

which proves the claim in (60). Next, we need to compute I4. The ratio Vk

vk
does not depend on t so

that (1− L)Vk

vk
= 0 and hence (

µn4L−2(1− L)4

1 + µn4L−2(1− L)4

)m
Vk
vk

= 0,

giving I4 = −
(

µn4L−2(1−L)4

1+µn4L−2(1−L)4

)m∑Kn

k=1 ϕk

(
t
n

)
Vk. Next, by using the same method as used to

compute I3, we obtain

I4 = −
Kn∑
k=1

µmv4mk
(µv4k + 1)m

Im

(
eivk

t
n

vk

)
Vk +Oa.s.

(
Kn

n

)
, (66)

which yields the claim in (61).

Proof of Proposition 4.4:

We have (1− (1− Sλ
n)

m)
yt=⌊nr⌋

nH
= (1− (1− Sλ

n)
m)
gn(⌊nr⌋)
nH

+ (1− (1− Sλ
n)

m)
x⌊nr⌋
nH

. Theorem

4.1 shows that (1− (1− Sλ
n)

m)
x⌊nr⌋
nH

a.s−→ BH(r) and it remains to show

(1− (1− Sλ
n)

m)
g⌊nr⌋
nH

→ g(r), (67)

as n→ ∞. Note that gn(r)
nH = g(r) + o(1) and it follows that

[
1−

(
1− Sλ

n

)m] gn ( t
n

)
nH

=
[
1−

(
1− Sλ

n

)m]
g

(
t

n

)
+ o(1). (68)

To get the desired result (67) we show that[
1−

(
1− Sλ

n

)m]
g

(
t

n

)
→ g(r) (69)

as n→ ∞. Write

g

(
t

n

)
= αo +

M∑
k=1

αkIm(e
i2πk t

n ) +
M∑
k=1

βkRe(e
i2πk t

n ), (70)
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and

n(1− L)g

(
t

n

)
= n

[
M∑
k=1

αkIm(e
2iπk t

n (1− e−2iπk 1
n )) +

M∑
k=1

βkRe(e
2iπk t

n (1− e−2iπk 1
n ))

]
. (71)

Using 1− e−2iπk 1
n = 2iπkn−1 +O

(
k2

n2

)
, we can rewrite (71) as

n(1− L)g

(
t

n

)
=

M∑
k=1

αkIm

(
e2iπk

t
n

(
2iπk +O

(
k2

n

)))

+
M∑
k=1

βkRe

(
e2iπk

t
n

(
2iπk +O

(
k2

n

)))
.

(72)

We also have

nL−2(1− L)g

(
t

n

)
=

M∑
k=1

αkIm

(
e2iπk

t
n

(
2iπk +O

(
k2

n

)))

+
M∑
k=1

βkRe

(
e2iπk

t
n

(
2iπk +O

(
k2

n

)))

=
M∑
k=1

αk(2πk)Im

[
e2iπk

t
n

(
i+O

(
k

n

))]

+
M∑
k=1

βk(2πk)Re

[
e2iπk

t
n

(
i+O

(
k

n

))]
.

Similarly,

n2L−2(1− L)2g

(
t

n

)
=

M∑
k=1

αk(2πk)
2Im

[
e2iπk

t
n

(
i+O

(
k

n

))(
i+O

(
k

n

))]

+
M∑
k=1

βk(2πk)
2Re

[
e2iπk

t
n

(
i+O

(
k

n

))(
i+O

(
k

n

))]

=
M∑
k=1

αk(2πk)
2

[
Im
(
i2e2iπk

t
n

)
+O

(
k

n

)]

+
M∑
k=1

βk(2πk)
2

[
Re
(
i2e2iπk

t
n

)
+O

(
k

n

)]
,

and

n4L−2(1− L)4g

(
t

n

)
=

M∑
k=1

αk(2πk)
4

[
Im
(
e2iπk

t
n

)
+O

(
k

n

)]
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+
M∑
k=1

βk(2πk)
4

[
Re
(
e2iπk

t
n

)
+O

(
k

n

)]
.

Therefore, for any general l ∈ N, we obtain

(n4L−2(1− L)4)lg

(
t

n

)
=

M∑
k=1

αk(2πk)
4l

[
Im
(
e2iπk

t
n

)
+O

(
k

n

)]

+
M∑
k=1

βk(2πk)
4l

[
Re
(
e2iπk

t
n

)
+O

(
k

n

)]
.

Next, computing (68) we have

(1− Sλ
n)

mg

(
t

n

)
=(µn4L−2(1− L)4)m

∫ ∞

0

e−(1+µn4L−2(1−L)4)ssm−1

(m− 1)!
g

(
t

n

)
ds

=
(µn4L−2(1− L)4)m

(m− 1)!

∫ ∞

0

e−ssm−1

∞∑
l=0

(−sµn4L−2(1− L)4)l

l!
g

(
t

n

)
ds

=
1

(m− 1)!

∫ ∞

0

e−ssm−1

∞∑
l=0

(−s)l(µn4L−2(1− L)4)l+m

l!
g

(
t

n

)
ds

=
M∑
k=1

αk

(m− 1)!

∫ ∞

0

e−ssm−1

∞∑
l=0

(−s)lµl+m(2πk)4(l+m)

l!

[
Im
(
e2iπk

t
n

)
+O

(
k

n

)]
ds

+
M∑
k=1

βk
(m− 1)!

∫ ∞

0

e−ssm−1

∞∑
l=0

(−s)lµl+m(2πk)4(l+m)

l!

[
Re
(
e2iπk

t
n

)
+O

(
k

n

)]
ds

=
M∑
k=1

αk{µ(2πk)4}m

(m− 1)!

[
Im
(
e2iπk

t
n

)
+O

(
k

n

)]∫ ∞

0

e−s−sµ(2πk)4sm−1ds

+
M∑
k=1

βk{µ(2πk)4}m

(m− 1)!

[
Re
(
e2iπk

t
n

)
+O

(
k

n

)]∫ ∞

0

e−s−sµ(2πk)4sm−1ds

=
M∑
k=1

αk{µ(2πk)4}m

(1 + µ(2πk)4)m

[
Im
(
e2iπk

t
n

)
+O

(
k

n

)]

+
M∑
k=1

βk{µ(2πk)4}m

(1 + µ(2πk)4)m

[
Re
(
e2iπk

t
n

)
+O

(
k

n

)]

=
M∑
k=1

{µ(2πk)4}m

(1 + µ(2πk)4)m

[
αkIm

(
e2iπk

t
n

)
+ βkRe

(
e2iπk

t
n

)]
+

M∑
k=1

{µ(2πk)4}m

(1 + µ(2πk)4)m
(αk + βk)O

(
M

n

)
.

We assume maxk{αk, βk} <∞. Hence,
M∑
k=1

{µ(2πk)4}m

(1 + µ(2πk)4)m
(αk + βk)O

(
M

n

)
=O

(
M

n

) M∑
k=1

(αk + βk)
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=O

(
M

n

)
M max

k
{αk, βk}

=O

(
M2

n

)
.

Therefore,

(1− Sλ
n)

mg

(
t

n

)
=

M∑
k=1

{µ(2πk)4}m

(1 + µ(2πk)4)m

[
αkIm

(
e2iπk

t
n

)
+ βkRe

(
e2iπk

t
n

)]
+O

(
M2

n

)
. (73)

The desired result (69) follows if we can show that the summation in (73) tends to 0. Note that

|e2iπk t
n | < 1 and hence the summations will go to zero if

(
µ(2πk)4

1 + µ(2πk)4

)m

→ 0 for all k. As

shown in the proof of Theorem 4.1,
(

µk4

1 + µk4

)m

goes to zero if
M4

m
→ 0, where k ≤ M . Thus(

1− Sλ
n

)m gn( t
n)

nH → 0 combined with the results of Theorem 4.1 imply

(1− (1− Sλ
n)

m)
y⌊nr⌋
nH

=
f̂m
⌊nr⌋

nH
→ g(r) +BH(r),

almost surely as n→ ∞ and m → ∞ and this completes the proof.

Proof of Proposition 4.5: The proof is similar to the proof of the corresponding result for the
Brownian motion case in (Phillips and Shi, 2021, Theorem 2) and is omitted.

Proof of Theorem 4.6: We have (1− (1− Sλ
n)

m)
y⌊nr⌋
nH

= (1− (1− Sλ
n)

m)

[
gn(⌊nr⌋)
nH

+
x⌊nr⌋
nH

]
. It

is already shown in Theorem 4.1 that (1 − (1 − Sλ
n)

m)
xt=⌊nr⌋

nH

a.s−→ BH(r). Hence it remains to
show that (1 − (1 − Sλ

n)
m)

g⌊nr⌋
nH = g(r) as n → ∞. Recall that g⌊nr⌋

nH → g(r) for all r ∈ [0, 1].
By the Weierstrass approximation theorem, for any ϵ > 0, there exists some p ∈ N such that
|P (r)−g(r)| < ϵ for all r ∈ [0, 1], where P (·) is a p’th degree polynomial. On the other hand, (1−
(1−Sλ

n)
m)gn(⌊nr⌋)

nH = (1−(1−Sλ
n)

mg(r)+o(1), which implies
∣∣(1− (1− Sλ

n)
m)
(g⌊nr⌋

nH − P (r)
)∣∣ <

ϵ+o(1). Now, by following the proof of Proposition 4.5 we can show (1− (1−Sλ
n)

m)P ( t=⌊nr⌋
n

) →
P (r) where as n,m → ∞. Thus given any ϵ > 0, there exists a p’th degree polynomial such that∣∣(1− (1− Sλ

n)
m)

g⌊nr⌋
nH − P (r)

∣∣ < ϵ as n,m→ ∞. This completes the proof.

Proof of Proposition 4.7: The proof is similar to the proof of Phillips and Shi (2021, Theorem 3)
when g(r) is piecewise polynomial and is omitted. Next, let g(·) be of the form (40). Define r0 = 0

and rb+1 = 1. Now, by imitating the proof of Proposition 4.4, we find
f̂m
⌊nr⌋
nH

a.s.→ g(r) + BH(r) for

r ∈ (ri, ri+1), where i = 0, 1, · · · , b. Thus at points of continuity
f̂m
⌊nr⌋
nH

a.s.→ g(r) + BH(r). For
r = ri, i = 1, 2, · · · , b, we consider two intervals [ri−1, ri) and [ri, ri+1). Now g(r) has finite left
and right limit at r = ri and fBm is a continuous process. Hence,

lim
r→ri−

f̂m
⌊nr⌋

nH
= lim

r→ri−
g(r) +BH(ri) and lim

r→ri+

f̂m
⌊nr⌋

nH
= lim

r→ri+
g(r) +BH(ri).
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On the other hand, the bHP filter evaluated at any interior point r ∈ (0, 1) employs the neighboring
data points on both left and right sides symmetrically for sufficiently large n. Therefore, at any
breakpoint {ri}bi=1,

f̂m
⌊nr⌋

nH

a.s.→ 1

2

[
lim

r→ri−
g(r) + lim

r→ri+
g(r)

]
+BH(ri)

and this completes the proof.

Proof of Theorem 4.8: Let g(·) take the following form

g(r) =


g1(r) r ∈ [r0, r1) where r0 = 0

g2(r) r ∈ [r1, r2)
...

...
gb+1(r) r ∈ [rb, rb+1] where rb+1 = 1.

Each gi is bounded continuous and hence g(·) has bounded left and right limits at all break points.
Consider gi on the interval [ri−1, ri], where i = 1, 2, ..., b + 1. By the Weierstrass approximation
given ϵ > 0 we can find a polynomial Pi of order pi, such that |Pi(r) − gi(r)| < ϵ for all r ∈
[ri−1, ri]. Thus for a fixed ϵ > 0, we obtain b + 1 many polynomials {Pi}b+1

i=1 with order {pi}b+1
i=1

such that |Pi(r)− gi(r)| < ϵ for r ∈ [ri−1, ri). Using Proposition 4.7 gives the required result.

8 Appendix B: Strong Approximation
Lemma 2.2 in the main text gives a strong approximation for fBM with Hurst parameter H ∈
(1/2, 1). To extend the domain of strong approximation to H ∈ (0, 1) we briefly outline the ap-
proach developed by Szabados (2001) who constructed a stochastic process that converges to fBM
with H ∈ (0, 1) using simple moving averages of a random walk. The so-called KMT approxima-
tion (Komlós et al., 1976) is used in this development and the result is given as follows.

Suppose the sequence of random variables {Xt} ∼ iid(0, 1) has finite moment generating
function E(exp(uX1)) < ∞ for |u| ≤ u0, where u0 > 0 and for which the partial sums S(k) =
X1 + · · · +Xk for k > 0 are as close to BM as possible. If {W (t)}t≥0 is a given Wiener process,
then for any n ≥ 1 a sequence W (1), · · · ,W (N) can be constructed, such that the following holds
(Komlós et al., 1976, theorem 1))

P

(
max
0≤k≤N

|S(k)−W (k)| > C0 log n+ x

)
< K0e

−λ̄x,

for any x > 0, where C0, K0 and λ̄ are positive constants that may depend on the distribution of
Xk, but not on N and x.

Using this result Szabados (2001) constructed a new stochastic process based on S(k), that
converges to fBM for H ∈ (0, 1). For any integer p > 0, let ∆t = 2−2p and tx = x∆t. He defined
a shrunken random walk B∗

p(tk) = 2−pSp(k), where 0 ≤ k ≤ K22p and K > 0. Finally, a new
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stochastic process is presented as follows

B∗(H)
p (tk) =

k−1∑
r=−∞

h(tr, tk)[B
∗
p(tr +∆t)−B∗

p(tr)]

=
2−2Hp

Γ(H + 1
2
)

k−1∑
r=−∞

[(k − r)H− 1
2 − (−r)H− 1

2
+ ]Xp(r + 1),

(74)

where (a)+ = max{0, a} and

h(s, t) =
1

Γ(H + 1
2
)
[(k − r)H− 1

2 − (−r)H− 1
2

+ ], s ≤ t.

Theorem 8.1. (Szabados, 2001, theorem 3) For any H ∈ (0, 1), a sequence of processes B∗(H)
p (t)

(t ≥ 0, p = 0, 1, 2, · · · ) can be constructed that converges a.s. and uniformly to a fBM BH(t) on
any compact interval [0, K], K > 0. If p ≥ 1, C ≥ 2 and C0 is large enough, it follows that

P

(
max
0≤k≤K

|BH(t)−B∗(H)(t)
p | ≥ ᾱ∗

(1− 2−β∗(H))2
p2−β∗(H)p

)
≤ 6(K22p)1−C + 4Ko(K22p)−λ̄Co

The undefined constants used in this result are given in Szabados (2001) and are not required for
the current development.

Now define a stochastic process DH
p (tk) : k = 0, · · · , 22p for H ∈ (0, 1) by the following

equation.

DH
p (tk) =

1

Γ(H + 1
2
)

k−1∑
r=−∞

[(k − r)H− 1
2 − (−r)H− 1

2
+ ]Xp(r + 1) = B∗(H)

p (tk)2
2Hp (75)

As p→ ∞, it follows from Theorem 8.1 that for any H ∈ (0, 1),

DH
p (t)

22Hp

a.s.→ BH(t). (76)
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