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Abstract

This paper studies a linear panel data model with interactive fixed effects wherein regressors,
factors and idiosyncratic error terms are all stationary but with potential long memory. The
setup involves a new factor model formulation for which weakly dependent regressors, factors and
innovations are embedded as a special case. Standard methods based on principal component
decomposition and least squares estimation, as in Bai (2009), are found to suffer bias correction
failure because the order of magnitude of the bias is determined in a complex manner by the
memory parameters. To cope with this failure and to provide a simple implementable estimation
procedure, frequency domain least squares estimation is proposed. The limit distribution of this
frequency domain approach is established and a hybrid selection method is developed to determine
the number of factors. Simulations show that the frequency domain estimator is robust to short
memory and outperforms the time domain estimator when long range dependence is present. An
empirical illustration of the approach is provided, examining the long-run relationship between

stock return and realized volatility.
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1 Introduction

For the past two decades, linear regression panel data models with interactive fixed effects (IFEs)
have been extensively studied in econometrics and applied in a wide variety of contexts where large
datasets have become available in the social and business sciences. These models allow for strong
cross section dependence via the use of latent factors that evolve over time with individual loadings
that determine the strength of the interactions and temporal dependencies in the panel. We shall
frequently use the abbreviation ‘(panel) factor model’ to represent this general class of models.

For panel factor models to be useful in applied research, it is important that the time series
properties of the regressors, factors and innovations in the generating mechanism match those that
are present in or implied by the observed data. In practical work it is often convenient to transform
dependent variables and regressors to stationarity so that the working model involves a panel of
stationary time series. But such transformations do not eliminate the possibility of stationary long
range dependence or long memory in the data. To address the complications that can arise through
the presence of long memory, the present paper studies a linear regression panel data model with IFEs
wherein the regressors, factors and idiosyncratic error terms are all stationary but may be driven by
long memory processes. The model setup therefore involves a long memory formulation of the factor
model in which short memory regressors, factors and innovations are embedded as a special case.

Panel factor model regressions are commonly used in modeling heterogeneous individual behavior
that relates to consumption, investment, inflation rates, stock returns, volatility and various other
economic and financial indicators. FEmpirical evidence of long memory has been noted in many
of these indicators, implying autocorrelation structures that differ from short memory stationary
I(0) processes. For instance, Hassler and Wolters (1995) examined monthly inflation rates for five
developed countries and confirmed the presence of long memory in the time series. Similar empirical
evidence was found by Caporale and Gil-Alana (2007) for the US unemployment rate, by Gil-Alana
and Robinson (2001) for domestic income and consumption in the UK and Japan, and by Ding et al.
(1993), Andersen et al. (2001) and Andersen et al. (2003) for stock returns, realized stock volatility
and realized exchange rate volatility, respectively.

In applied macroeconomic research, factor modeling is frequently employed to capture the effects
of latent aggregate macroeconomic or financial trends; see, e.g., Stock and Watson (1989, 2002). It is
also well known that cross section aggregation of time series can lead to the presence of long memory,
as shown by Granger (1980) and studied in economic and financial data by Chambers (1998), Pesaran
and Chudik (2014), and Michelacci and Zaffaroni (2000). Long range dependence features in the data
and processes like aggregation that underlie much data collection motivate the study of the impact of
such dependence on current methods of panel factor modeling and the development of new methods
to address the existence of long memory in the data.

The present paper undertakes this investigation and development. In particular, we study esti-

mation, inference, and associated asymptotics for the fitted coeflicients in a linear regression panel



data model with IFEs with potential long memory regressors, factors and idiosyncratic errors. The
starting point of the analysis is standard principal components least squares estimation of Bai (2009)
and its asymptotic performance under long memory. The results of this analysis reveal that, when the
joint memory properties of variables in the model is strong enough, least squares estimation produces
nonnegligible asymptotic bias which is not resolved either by analytical correction, as suggested in
Bai (2009), or by the standard half-panel jackknife methods, proposed in Fernandez-Val and Weidner
(2016). The reason for this breakdown is that the order of magnitude of the bias depends critically
on the memory parameters, as does the convergence rate of the least squares regression coefficient
estimator. Different from pure time series long memory regression, the least squares estimator of
factor model still obtains an asymptotic normal distribution due to the commonly assumed weak
dependence over cross-sectional units, and the condition that the number of cross-sectional units
goes to infinity in a comparable order with the number of time periods. Moreover, the convergence
rate and bias order can vary across the setting in which the factors contain a constant column or
not, and their joint memory together with idiosyncratic error term.

The above issues substantially complicate successful practical implementation of least squares
regression. To resolve these difficulties, the present paper proposes an alternative approach to time
domain regression by using frequency domain regression methods that have a long history of successful
use in time series regression. These methods originated in the pathbreaking studies of Hannan (1963,
1970) on spectral regression, were further developed for principal components by Brillinger (2001), for
trending time series regression (Phillips, 1991; Corbae et al., 2002), with higher order approximations
in time series regression (Xiao and Phillips, 1998), and have been implemented in long memory time
series regressions (e.g. Nielsen, 2005) and in time-dependent frequency domain principal components
modeling (Ombao and Ho, 2006). In the factor model context, the procedure follows the usual
approach of transforming the model by taking discrete Fourier transforms (DFTs) at the Fourier
frequencies, and performing principal components analysis (PCA) in the frequency domain on the
system and least squares spectral regression estimation. The combination of PCA and spectral least
squares regression yields consistent coefficient estimation and asymptotic normality under general
conditions. The asymptotic bias involved in the frequency domain estimation can be corrected and
the asymptotic variance matrix can be estimated using a frequency domain analytic analogue of the
formula used in Bai (2009). Inference is conducted using a self-normalized statistic for which there
is no need for separate estimation of the memory parameters that occur in the asymptotic bias and
covariance matrix, a feature that simplifies implementation and improves finite sample performance.

This study contributes to the current literature in two ways. First, we extend the range of
application of the factor model developed in Bai and Ng (2002), Bai (2003, 2009), Moon and Weidner
(2015), and Lu and Su (2016), by accounting for long memory and nesting short memory applications
as a special case. Second, we contribute to the literature of time series long memory modeling, studied
by Robinson and Hidalgo (1997), Marinucci and Robinson (2001), Nielsen (2005) and Christensen and

Nielsen (2006) among others, by extending spectral regression estimation and inference to the panel



factor model. Specifically, the approach developed extends narrow-band spectral estimation in time
series regression to the panel factor model, showing that asymptotic normality in this context holds
irrespective of the joint memory of the variables, a result that arises from cross section aggregation
and contrasts with time series least squares regression for which the limit theory is known to be
non-normal when the sum of the memory parameters of the regressors and the errors exceeds 0.5
(Chung, 2002).

Other recent work has considered the impact of long memory time series in panel data modeling,
notably Ergemen and Velasco (2017), Ergemen (2019) and Cheung (2022). Ergemen and Velasco
(2017) and Ergemen (2019) study a fractionally integrated factor model where the factors are removed
by the methods introduced by Pesaran (2006), projecting the regression on a fractionally integrated
cross-sectional average. Our study differs from these papers by using a semiparametric formulation
of the long memory components and our approach employs PCA in the frequency domain to estimate
the DFTs of the factors. Similar to our approach but working in a pure factor model, Cheung (2022)
seeks to estimate the memory parameters of the latent factors by PCA. Cheung (2022) focuses on
a fully parametric fractional integrated process and deals with possible nonstationarity, a feature
that our study does not include. On the other hand, our study complements the results of Cheung
(2022) by providing a limit theory for estimation of and inference concerning the coefficients in a
panel linear regression model with latent factors.

The rest of this paper is organized as follows. Section 2 introduces the factor model with pos-
sible long memory in the component variables. Section 3 develops the asymptotics of least squares
estimation in the time domain, as in Bai (2009) but allowing for stationary long memory. Section 4
provides the corresponding analysis in the frequency domain. Section 5 proposes an estimate of the
true number of factors that is based on the eigenvalue-ratio method developed by Ahn and Horenstein
(2013), establishing its consistency under certain conditions. Section 6 reports the results of Monte
Carlo simulations that explore the finite sample performance of panel least squares estimation in both
time and frequency domain formulations, demonstrating some of the difficulties that are involved in
time domain estimation. Section 7 provides an empirical application of our panel frequency domain
procedures to investigate the long-run relationship between stock returns and realized volatilities for
a monthly panel dataset of 49 industry portfolios. Section 8 concludes. Proofs of the main results
and further technical details are provided in the Online Supplement.

The following notations are adopted. For an arbitrary m X n matrix A, its transpose is denoted
by A’; its conjugate and conjugate transpose are denoted A and A* when complex; and its Frobenius
norm is ||A|| = y/tr (A’A) if A is real, or ||A|| = /tr (A*A) if A is complex. The spectral norm of
Ais ||Ally, = Vi (A’A), when A is real, and [|Ally, = \/p (A*A), when A is complex, where p, (*)
denotes the largest eigenvalue of the Hermitian matrix argument. Let Ip denote an R-dimensional
identity matrix. For any two matrix-valued sequences A; and B; of the same dimension, A; ~ B;
is defined by ;xj’(w — 1 as j — oo for each of its (m,n)-th elements. For an m x n matrix A,

55 (m,n)

Py =A(AA)71A" and M4 =1,, — P4 when A’A is nonsingular.



2 Model

This paper considers data generated by the linear panel model
Yii= X,B+NF,+ey,i=1,...,N, t=1,...,T, (2.1)

with a P-vector of regressors X;;, common regression coefficients 3, and an R-vector of latent factors
F; with factor loading vectors A;, and idiosyncratic errors €;. The variables X;;, F; and e may
be stationary long memory time series with respective memory parameter vectors given by dx =
(Xm,...,dXP)', dp = (dFl,...,dFR)’, and d.. The memory parameters of both X;; and e; are
restricted to be identical across individuals ¢, so that cross-sectional heterogeneity in memory is
induced via cross-sectional heterogeneity in the long memory factors induced by the factor loadings.
This sacrifices some generality but facilitates theoretical development.

Among the different ways of defining long memory (e.g., Haldrup and Vald’es, 2017), the linear
process approach (Robinson and Hidalgo, 1997) is adopted here. In particular, when d. and the
elements of dp and dx lie in the interval [0, %), the time series Fy, X;; and ¢;; are assumed to have

the following moving average representations:

oo
Fy = pp+Y ApiCee ;= pp+ FY, (2.2)
j=0
o
Xit = px,;+ ZAXJCX,i,t—j =px,;+Xj fori=1,...,N, and (2.3)
=0
oo
Eit = Z AeiCeit—js (2.4)
j=0

where Ap; and Ay ;j are R x R and P x P coefficient matrices, A ; is a scalar, (py, (x;; and (.,
are the corresponding innovations, and pp and py ; denote the respective means. This specification
includes stationary ARFIMA (p,d, q) time series as a special case. Differing from the factor innova-
tions (g ;, the regressor and idiosyncratic error innovations allow for heterogeneity and dependence
of X;; and € across both individuals and time periods, as detailed in Section 3. Following Bai (2009),
the least squares (LS) estimators of § and F} in the time domain are given by the solution to the

following nonlinear equations:

N
B = (Z X;MFXi> > XMY, (2.5)
i=1 =1

where X; = (Xu, - Xir), ¥/ = (Y1, Yir), and

1 & A N A .
~7 2 (Y= XiB) (Y= XiB) | = FVir, (2.6)
1=
under the identification restrictions that # = I and A/TA is a diagonal matrix. Here F' =

(Ff,....Fp)', A= (M,.. .,)\’N),, and Vyr is a diagonal matrix that stacks the eigenvalues of the



term inside the square brackets in (2.6) in descending order along its primary diagonal. The present

study focuses mainly on the asymptotic behavior of B , as developed in the next section.

3 Asymptotic Behavior of Least Squares Estimator

In the following 3°, F?, and F° denote the true values of 3, F}, and F, whereas ); continues to

denote the true value of the factor loadings as it is only implicitly estimated in what follows. Define

N N N N
Dyt (F) = % Z XMpX; — % % Z > XMpXpap| = % Z Zi (F) Z; (F),

i=1 i=1 k=1 i=1
where ag = N, (AA/N) "' Ag, and Z; (F) = MpX; — & S0 auMpXy = (Zin (F), ..., Zir (F))'.
This matrix is important in the asymptotic representation of B — % and is used in (Bai, 2009, pp.
1240). Let Z; = Zi (F®) = (Zit, ., Zir)'s Dnr = Dt (FO), Cxp = (Coxnr- - Cxvt) » Con =
(Conpr--- ,C&N’t)/, and vy (s,t) = % Zfil E (git€is) - For the memory parameters of the regressors
and factors, we use the notation dx max = maxi<,<p dx,, and dpmax = maxi<,<g dp,. Further, let
dz = (dz,,. .-, dZP)/ be the memory parameter of Z;; and set dz max = maxj<p<p dz,. Similarly, set
dx min = Minj<p<p dx,, with corresponding definitions of dpmin and dzmin. M is a generic positive
constant that may vary across locations.

Note that the nature of dz 4. and dzmin is not immediately interpretable from the above defi-
nition, as in the current studies dealing with long memory variables. This is because the relationship
between Z;(F') and F' is nonlinear (in (F}, X)) in view of the projection geometry. This can com-
plicate the usual memory order relationship since the simple linear relationship theory, wherein the
largest long memory parameter dominates in a linear combination, that is used extensively in Cheung
(2022), does not necessarily hold. In the present case, most of these complications are avoided by
the stationarity and finite moment conditions; but things can be different in nonstationary cases.
For instance, in the simple case of scalar X; = Op(1) for stationary short memory with dx = 0

and scalar F; = Op(\/T) for a unit root nonstationary factor with long memory dp = 1, we have

T X, F, o)
Zy = Xy — %Ft = 0p(1) — #(TTQ)) x Op(VT) = Op(1) — Op(%) = Op(1), where the larger

s= s

memory (dp = 1) of F; does not dominate. On the other hand, in the case of unit root scalar
X, = Oy(VT) with dx = 1 and scalar short memory factor F; = O,(1) with dp = 0, we have

Z, = X, — ZZ:TiiXFFFt = 0,(VT) = g7} x 0p(1) = O(VT) = Op(1) = Oy(VT), where now the

larger memory (dx = 1) of X; does dominate. ! Therefore we need to consider the memory param-

eter of Z; in an explicit manner here so as to avoid the complexity due to the nonlinear structure

within.

1Similar differences occur in nonstationary long memory cases. Of course, in the present stationary long memory
case, there are finite variances and the corresponding law of large numbers apply, so that a normalization condition
such as those involved in Assumption B(ii) and (iii) below avoid this issue. But in more general cases, this is an issue

that needs to be dealt with, and we leave it to the future extension.



The following assumptions are used in the technical development.

Assumption A. (i) When each element of d, € (0,3), then A, ; ~ diag (j% 1) I, as j — oo for
a = F, X, e, where dzag( jda— 1) is a diagonal matrix (or scalar if @ = €) with the main diagonal
elements given by j%~! forr =1,..., R, or jdXP_l forp=1,...,P, or j%~!; and the R x R matrix
IIr, the P x P matrix IIx and the scalar II. are all nonsingular. Otherwise, assume A, ; is square
summable in Frobenius norm.

(ii) Crys Cx¢ and (. satisfy E (CF,t“FF,t—l) =0, E (CX,t|]:X,t—l) =0, and E (Ca,t“re,t—l) =0,
where Fr;—1, Fxi—1 and F; ;1 are the corresponding filtrations.

(iii) Let Cpy(p) be the p-th element of (f;, and the analogous notation applies to (x ;. We assume
that (p, satisfy

E [CF,t(p)CF,t(q) ‘ fF,t—l} = (I)qu < oo, E CF,t(p1)<F,t(p2)CF,t(p3) ‘ ]:F,t—l - ®2,p1p2p3 < o0,

and
E [CF,t(pl)CF,t(pQ)CF,t(pg)CF,t(p4) ‘ ’FFﬂf—l = ¢’3,p1...p4 < o0
for some absolute constants ®1 pq, P2 pops and Pz, . p,, and for arbitrary p-, ¢- and pi-, ..., ps-th

elements of (p;. Also the analogous condition holds for (x, and (. ;. Additionally, (., satisfies the

following eighth-order moment condition

E Cs,t(pl) e Cs,t(pg) ’ J—..Fﬂf—l] = (I)47P1~~~P8 <0 (31>

for some absolute constant @4, ps, and for arbitrary p;-, ..., ps-th element of (_ ;.
(iv) ¢ ;. is independent of Cy ; ¢, (g, and Aj for all 7,5, =1,..., T and i,j = 1,..., N.

Assumption B. (i) E || Xy||* < M.
(i) Let F = {F € RT*® . F'F/T =1p}. We assume infpcr Dy (F) > 0.
(iii) E||FY||" < M and LFYFO 2 55 > 0 for some R x R matrix Sp, as T — co.
(iv) E||N|* < M and %A'A 2 54 > 0 for some R x R matrix X, as N — oo.

Assumption C. (i) E(g;) = 0 and E [e|* < M.

(ii) E (Eitgjs) = Ojjts, ’Jijﬂgs‘ < Tij for all (t, S), ’Jijﬂgs‘ < 14 for all (i,j),

LN
¥ > 7 <M, (3.2)
ij=1
and
1 1
T1+2d. > s <M, NT1+2d > logel <M, Trnax(4d5 Z [y (s, 8)* < M. (33)
t,s=1 i,4,t,s=1 t,s=1
4

(iii) For every (t,s) ‘N Z 1 leigis — E (eieis)]| < M.



(iv) W ngzl EtT,’s=1 |cov (gitgis, Extrs)| < M, m Zfszl Z%,k,zzl |cov (git€jt, Exsels)|
S M, and W ng::l Z;SI:&u,U:l |COV (51'7551'57 5ku5kv)| S M.
Assumption D. (i) Let Xp¢s = E(FPF?). Assume that |Spqs| < 7res, m ZZszl Thts <
M,

T
1 1
Tmax(2dz+2dp max,1) Z TisThis < M, and N Tmax(2dp, max+2dz,1) Z sl Tres < M. (34)
t,s=1 i,5,t,s=1

(ii) Let 3y jts = E(X;?txg;) and oy jts = tr (Zyijts) with x = X, Z. Assume that ||y ijes|| < Ty ts

.o 1 T
for all (i,7), Zrrsdcmar 2ot,sm1 Toots < M,

) T ) N T
Tmax(2dy max+2dz1) Z TtsTxts < M, and N2 max(2dy max+2dz1) Z Z |oijs| |0 xijes| < M.
t,s=1 1,5,k l=1%,5=1

Assumption E. (i) plimn 7y 500 D (FO) = Dy for some nonrandom positive definite matrix Dy.

(ii) When F° does not contain a constant column, N-3T%3 SN Zle 4 N (0,%); When
there exists a constant column in F0, N—2Tmax(dzmax+de1/2)=1 Zfil Zle; KN N (0,%). Here, we
have ¥ =plim p]_VZT ZQ;‘:1 ZZS:I CijitsZit Ly, where pyp = N3T37% in case FO contains a constant
column and pyp = N 2T max(dzmax+d=11/2) otherwise.

Assumption F. d. < min {dF min, dx min }-

Remark 1. Assumption A is a panel data extension of the classic setting of a stationary long
memory linear process (see, e.g., Nielsen, 2005). To be specific, the first half of Assumption A(i) is
adopted from Chung (2002), whose Lemma 2 shows that autocovariances of F, X;; and &;; satisfy,
as j — o0

1

Ppo(j) = Cov (F, ;) ~ diag (de_%) Crodiag (de_E) ;
I'x, (j) = Cov (X, Xis—j) ~ diag (jdX*%> Cxdiag (jdxfé) ’
and
Le, (j) = Cov (eir, eip—z) ~ Cej? (3.5)

for some absolute constant matrices C'ro, Cx and scalar C.. The above approximations imply the
square summability of || Aq ;|| for a = F°, X and e. Take Ao ; for instance. Assumption A(i) implies
that for any § > 0, there exists an integer K5 > 0 such that HAFO’J'HQ < (1+ 5)2 025:1 424 =2 for

some positive constant C when j > K, which then implies
00 ) K N 00 y R
D M Aro sl =D l[Apo I+ > Aposll" < Cs+ (1402 C ) D 52472 < oo,
=0 =0 i=Ks r=1j=K;

by Riemann sum approximation if dpmax < % This illustrates how Assumption A(i) defines a

stationary long memory process through the hyperbolic rate of decay of its autocovariance function.



Note that this part of Assumption A(i) only covers the long memory scenario as it emphasizes the
hyperbolic rate of decay of autocovariance function, while for short memory processes like stationary
ARMA model, the rate is usually exponential and thus not nested in this part of Assumption A(i)
by simply substituting d, = 0. Therefore in the second part we assume the stationarity of all the
variables when some short memory processes are involved. Assumption C below deals with short
and long memory uniformly, which is explained in Remark 3. As mentioned above, a widespread
alternative approach to long memory process modeling is via ARFIMA (p,d,q) specifications that
are common in applications of I (d) time series. Relative to the fully parametric ARFIMA (p,d, q)
setting, our formulation involves semiparametric long memory and is free from short-run dynamic
specification thereby avoiding potential inconsistent estimation if the parametric autoregressive or
moving average components are misspecified. In Assumption A(ii) and A(iii), moment conditions
to the eighth order are imposed to assist in the asymptotic development. Assumption A(iv) implies
that € is independent of Xj,, A;, and FY for all i, t, j, and s, a condition that rules out dynamic

panel models and is also assumed in Bai (2009).

Remark 2. Assumption B is borrowed from the Assumptions A and B in Bai (2009), specifying
finite fourth order moments for both the factors and factor loadings and a restriction of strong
factors. Note that both of the moment conditions in Assumption B(i) and B(iii) can be justified by

the corresponding fourth order moment conditions in Assumption A(i) of the innovations.

Remark 3. Assumption C(i) and C(ii) can be implied by our Assumption A. The reason why
we separately list these two sets of assumptions is that our Assumption A is comparable to the
standard definition of stationary long memory process, while our Assumption C is comparable to the
corresponding Assumption C in Bai (2009). To be specific, C(i) is implied by Assumption A(ii) and
A(iii). To see this, note that Assumption A(ii) implies the zero expectation, and (3.1) in Assumption
A(iii) together with the square summability indicated by A(i) can imply the finite eighth-order
moment. In Assumption C(ii), (3.2) is the standard condition of cross-sectional weak dependence of
€it, and the other inequalities specify the serial dependence, as they generalize Assumption C(ii) in
Bai (2009) by including long memory. They can be verified by using Theorem 1 of Chung (2002) via
a direct application of (3.5). To see this, we consider the bound |o;; 5| < 74 for all (4, j). Consider
the simplest case where i = j, we have 0y 15 = 0;i t—s by stationarity, and we can express the bound

Ts = Tt—s accordingly. Noting that 7,_; = 75_;, we have

1 & 1 & 2 2
TZTts:TZTt—s:TO"FTZTt—s:f

t,s=1 t,s=1 t>s k=

T—1
(T—k)rr+0(1). (3.6)
1

Let v, (k) be an arbitrary autocovariance function of order k of ;. By (3.5) v, (k) ~ C.k?%=—!
for some constant C. as k — oo. Then for any § > 0, there exists an integer K5 > 0 such that
(1 —6) Cek?d==1 <, (k) < (1 +0) C-k?*=~! when k > Ks. Let 74 = |y (k)| be an appropriate upper



bound for |v; (k)| uniformly over i = 1,..., N. We have

}Z (T~ kymi = ki (1-7) b +:Z; (1-7) bt
T-1 k
-3 (1-7)hwl+ow
> C.(1—96) ::Z; (1 — ;) k==l 10 (1)
=C:(1-9) TZdE;:ZI; <1 - ;ﬁ) (;ﬁ)ml +0(1)
=C.(1—0)T% /Kl i (1—7r)r2d=tar {1 +0 (;) } +0(1), (3.7

given the convergence of both f11<5/T (1 —r)r?==1ldr and ZkK:‘sl(l — £Y]v (k)| when d. > 0. The
above calculations indicate that the condition %ZZSZI Tts < M in Bai (2009) is generally violated
unless d. = 0. The same reasoning applies to show the second inequality in (3.3) as long as the
cross-sectional correlations among the {g;;} are ‘weak enough’. Analogously, for the third inequality

in (3.3), we have

1 T—1 1 T—1 k k 4d.—2
2 4de—1

k=1 k=1

1
= CET“E_I/ (1 — ) rid="2qr {1 +0 (1> } +0(1),
Ks/T T

given the convergence of the last integral, which requires d. > 1/4 so that 4d. —2 > —1. When
0 < d. < 1/4, we notice that

1 1 !
T4d5—1 / (1 . 7“) T4d5_2d7’ — T4d5_1 / r4d€_2dr — T4d5_1 / T‘4d5_1d7“, (3.8)
Ks/T Ks/T Ks/T

where the second integral is convergent. And the first integral is further given by
1 1 T
T4d51/ ride=2qp = / (7‘T)4d€_2 d(rT) = / (r*)4d5_2 d(ry) (3.9)
Ks/T Ks/T K
=T~ 1 0(1) = 0(1). (3.10)

It follows that m Z;‘g;ll (T — k)72 < M, which implies the last condition in (3.3). In the
special case where d. = 0, Assumption C(ii) degenerates to Assumption C(ii) in Bai (2009) which
involves only short-range dependence. Although in this case the integral derived at the end of (3.7)
is not convergent, the moment condition still coincides with the one in Bai (2009). One special

case of our setup is a linear process with fractional integration, like (1 — L)dF F? = e; with L the
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lag-operator and e; a short memory process. Assumption C(iii), which reflects the weak cross-
sectional dependence, is directly borrowed from Assumption C(iii) in Bai (2009). With more tedious
arguments, one can also verify Assumption C(iv), as it extends the higher-order moment conditions

of short memory process in Assumption C(iv) in Bai (2009). We omit them here for brevity.

Remark 4. Assumption D(i) and D(ii) can be verified by using the convergence rate established in
Theorem 3 of Chung (2002), where by construction of Z;; it could be treated as a potentially long
memory process as well. To provide an intuitive explanation for Assumption D, take Fy, assume
R =1, and let v (k) denote the autocovariance function of F. Then vz (k) ~ Cpk?¥¥~! for some

constant Cp as k — oco. Following the reasoning in (3.6) and (3.7), we have

T T-1

1 1
— Y TisTrs == 3 (T = k) 7hrpr + O (1)
2T t,s=1 T k=1
Ks 3 T-1 i
=y (1 - T) MOIIGIESY <1 — T> [y (B)] [ve (B)| + O (1)
k=1 k=K
T-1 k
=% (1-7) h®lhe G+ 00
k=Kj
T-1 k
2 2de—17.2dp—1
> C.Cp(1-0)7 ) <1—T>k k24r=1 1 0(1)
k=K;
2 o 12 . 1 T—1 k k 2de+2dp—2
— _ £ Fr—4i_ - —_
=C.Cp(1-06)>°T T};}; (1 T) <T> +0(1)
=85

1
= C.Cp (1-6)° T2d5+2dF_1/
Ks/T

(1 —r) r2det2dr=2g, {1 + O (;) } +0(1).

The integral in the last equality is convergent only when d. + dp > % When d. +dp < 1/2, we can
readily show T2d=+2dr—1 fll(s/T (1 —r)r?d+2dr=24r — O(1) by the same reasoning as used in (3.8)-
(3.10). It follows that m Zg:s:l TesTrts < M and the first part of (3.4) in Assumption

D(i) holds. Similarly, the second part of (3.4) also holds provided the cross-sectional correlations are

sufficiently weak.

Remark 5. Assumption E(i) corresponds partly to Assumption E in Bai (2009) and is required for
the asymptotic covariance matrix of B — Y. Assumption E(ii) is related to the convergence rate of
B — 8°. Because of cross-sectional weak dependence of ;;, we can use the Lindeberg-Lévy CLT over
i, which requires a uniform boundedness of the second moment of Z/e; after certain normalization.
For the data generating processes in (2.2)-(2.4), we observe that under the strict exogeneity condition
in Assumption A(iv), the temporal dependence of Z;e; is dominated by the mean of Z;;, denoted

by @, when it is nonzero. For a simple illustration, consider Zthl Zireq for arbitrary 4. Its mean is

11



zero and its variance-covariance matrix is given by

T T ! T
E (Z Zit&‘t) <Z Zz't5z‘t> = Y E(ZuZ,) E (cucis)
t=1 t=1

t,s=1
T

t,s=1

where Zf, is defined in the same way as X in (2.4). By Assumptions C(ii) and D(ii),

T T
> wayE (easis) = O (TH%) and 3" B (Z320) B (susi) = O (T Clmmt21D)

t,s=1 t,s=1

Then pizp, dominates in the above summation as along as puy # 0, and only the autocovariance
structure of €;; is applicable because of its mean-zero nature. Note that by definition, Z; can be
interpreted as the residual of the linear projection of X; on the column space of F°, demeaned by a
weighted average. So by construction E(Z/F?) = 0 holds, and E (Z;) = 0 if F° contains a constant
column or if

Xit = ¢ Fp + uge,

with E (uit | F 0) = 0, is the true data generating process. That is, X;; follows a pure factor model
with the latent factor given by F?. The latter setting is adopted in some current studies (see
Ergemen, 2019, among others) and appears somewhat restrictive but is easy to deal with in practice.
In this study we allow both settings described above but only emphasize the former in assumption.
If E(Z;) = 0, the convergence rate is adopted from Theorem 3 in Chung (2002). In pure time
series models, we do not obtain asymptotic normality for the OLS estimator when dz ax + de > %;
but in panel data models, weak dependence over i and a large number of individual units helps
regain asymptotic normality by virtue of cross-section averaging. In addition, a constant column in
FY indicates the existence of individual fixed effects in our model. In Bai (2009), the presence of
individual fixed effects is only a special case where the LS estimator is less efficient by ignoring this
feature than the one based on the within-group transformed model. But in our model, individual
fixed effects may affect the convergence rate of the LS estimator when long memory exists in the
idiosyncratic error term. In the presence of individual fixed effects in our model, it is possible to
conduct within-group transformation prior to LS estimation. Readers are referred to the online

supplement for discussion of the asymptotic behavior of the LS estimator in the transformed model.

Remark 6. Assumption F is motivated by the notion of fractional cointegration, which generalizes
the usual concept of cointegration in the time series literature; see, e.g., Marinucci and Robinson
(2001). It also implies that d. < dzmin by virtue of the construction of Z;.

Let F,Qt and Zj;; denote the r-th and k-th element of FtO and Z;, respectively. The following

theorem establishes the asymptotic distribution of the LS estimator B .
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Theorem 3.1 Suppose that Assumptions A-F hold and T/N — p € (0,00) as (N,T) — oo. Then

we have X X
PNT (B -8 - Fioad ANT — NCNT> 4 N (0,Dy'D;Y),

where pnp is defined in Assumption E(iii), Dy and ¥ are given in Assumption E(i)-(ii), and the bias

terms Ayt and Cnt are each Oy (1) and given by

N N ~\ 1 -1
1 1 . [ FUF AA
-1
ANt = —DNTNQﬂHdEZXZ(MFONZQkF< T ) (N) Aiy and
=1 k=1
N / —1 —1 N
41 (X; = V;)) FO (FYFO NA 1
1 1
ov = Dy S (EE) () F v
i=1 k=1

LNl
where V; = % Sy @i Xp with ag = N, (ANA) Ak

The above theorem shows that the usual convergence rate of the LS estimator B is slowed by
the presence of long memory. In terms of the limit distribution, although asymptotic normality still
holds, the bias terms now have orders that are dependent on the long memory parameters, which
affect the validity of bias correction based on the usual analytical form and the half-panel jackknife.
In the special case where all memory parameters are zero, the above result is the same as the one
obtained by Bai (2009), which shows how Theorem 3.1 nests the short memory setting as a special
case. However, the convergence rate pyp has a complex representation based on whether F has a
constant column, and whether dz max + d. exceeds % This limit theory substantially complicates the
implementation of LS estimation, which is illustrated by Monte Carlo simulations in Section 6. In
particular, the traditional analytical bias correction behaves poorly in the presence of long memory,
together with poor inference based on the estimator of asymptotic covariance matrix proposed under
serial weak dependence. This difficulty in implementation and general poor performance call for
an alternative methodology to deal with stationary long memory in panel factor models. The next
section develops a new frequency domain least squares (FDLS) approach that extends the use of

spectral regression with long memory time series to the panel context.

4 FDLS Estimation and Asymptotic Theory

4.1 Estimation

Transform model (2.1) by taking discrete Fourier transforms (DFTs ) for all i = 1,..., N over the

Fourier frequencies v; = 2%” forj=1,...,L
1 T E T 1 T 1 T
Yyl = Xiels 4 ——— Ny T FOeit epettVi, 4.1
27T ; " V2T ; * VorT ; ! V27T ; * (4.1)
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where i = /—1 is the imaginary unit. Recall that use of the frequencies ~y; provides a mean correction
in the frequency domain so that the DFT of F? in (2.2) is

ZFO ity; _ [ Zelt'y] + ZFO ity; _ pp———— %

el (1 — e‘T%

T
+ 2 :Fo 1t7] 2 :Ftoeltvj’
t=1

since 77 = ¢12™ = 1 for all integers j = 1, ..., L.
For ease of notation, let Wy;; = Zthl Yieli and similarly define Wy ;;, Wr; and W, ;;. Let
/ !/
Wai = (Wias s Wi) fora =Y, X, and We = (Wi, Wi, ) . Note that Wi, Wi, and

Wr are L x 1, L x P, and L x R matrices, respectively. Stack Wy; and W ; respectively into Wy

and Wx, which are an N x L matrix and an N x L x P tensor. Then (4.1) can be rewritten as
Wy,ij = B Wxij + XiWpgo j + Weyj,i=1,...,N,j=1,...,L. (4.2)

This model can also be treated as a panel data model, with T" time periods replaced by L frequencies.

Then application of FDLS estimation employs the following objective function

N
1 *
SSR(B,Wr,A) = > Wy — Wi = Weki)* (Wyi — Wx i — Wei)
=1
1
= 7 Wy = Wx s — AWg |, (4.3)

subject to the constraints that I‘FWFWFFF/T = Iz and A’A is diagonal, where I‘F = diag { dr = 1/2}.
Here, Wxf3 = Zp:l Wgﬁp with 3, and W% corresponding to the p-th element of § and the p-th
slice of Wx. Note that I'r is an R x R diagonal matrix for normalization over the frequency domain.
Such a normalization is justified by the properties of the average periodogram, as considered in the

assumptions and remarks below. Let WFJ =T rWg; and /~\Z = f}lx\i and rewrite the model (4.2) as
Wy.i; = BWxij + MWp,+Weii=1,...,N, j=1,...,L, (4.4)

or in vector-matrix notation
Wy, = Wxi8+ Wk + Wy, i=1,...,N, (4.5)

- - - / - - - - - .
where Wp = <WF,1, - 7WF,L) . Note that Wr = Wgrl'p and A = ()\1,...,)\]\[)/ = AF;l, and
WI’;WF /T = I by construction. Define the projection matrix in a complex vector space by

MWF = HL - WF <W}WF) W; = ]IL — PWF

Clearly, the columns of Wy span the same space as those of Wr because

PW =Wr (W}VVF> VNV; = WFfFf‘;; (WFWF) 1FFWF =Py..
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Then by construction My, Wr = WrMyy,. = 0. It follows that we can premultiply both sides of
(4.5) by My, to obtain

MWFWY7i = MWFWXJ/B + MVT/FWEW i=1,...,N.

Infeasible FDLS estimation of 8 obtained by regressing My, Wy, on My, Wy ; yields

-1
B (W) = g: Re (W5 My, WX,Z-)] i Re (Wi My, W) -
i=1 =1

Next consider infeasible FDLS estimation of the factors and factor loadings. Given [ define
Ui =U; (B) =Y; — X;p and its DFT Wy; taken over the same Fourier frequencies. Then Wy ; has

the following pure factor structure in the frequency domain
Wi = Wehi + We .

Set Wy = (Wya,...,Wyn) and We = (We1,...,Wey)', which are N x L matrices. Then the FDLS
objective function is
1 * 1 N L ’
w7t KWU - AWF> (WU - AWF)] - Z; )WUW MW (4.6)
This objective function is essentially a frequency domain version of that in (Bai, 2009, pp. 1236).
Concentrate A out using .

A=WyWp (W;:WF) = Wy W /T, (4.7)
along with the restriction Wi Wpr/T = Ig. Then, using (4.7) the objective function in (4.6) becomes
tr [(WU — AW}) (WU - AWQ)] =tr [(WU — WUWFWII:/T> (WU - WUWFVNVII:/T)]

— tr (WiWy) — tr (W;W[}‘WUWF) JT. (4.8)

Minimizing (4.6) is equivalent to maximizing tr <WI’;W5WUWF), yielding a typical principal
components analysis (PCA) problem in the frequency domain, where WWy is the stacked peri-
odogram of U. As documented in Brillinger (2001, pp. 70, 342), PCA continues to work in this
frequency domain setting and the estimator of Wg, denoted by WF, is given by the eigenvectors
of Wi;Wy scaled by VT that correspond to its R largest eigenvalues, all of which are real because
Wi Wy is Hermitian. As in Bai (2009), indeterminacy over rotation for W still holds by virtue of
the restriction WF*,WF /T = Ig. Moreover, this PCA decomposition leads to an estimator of Wr,
which is normalized column-wise by the matrix r . So Wr is not identified here and the same issue
holds for A. However, this lack of identifiability is immaterial for estimation of .

In practice, we iterate between 3 and Wp. So the feasible FDLS estimator (B, Wp) of (,B, WF)
is given by the solution to the following set of nonlinear equations:

-1
B= i Re (Wi My, WX,i)] i Re (W3 My, W) (4.9)
i=1 =1
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and
N

ﬁ > (Wy,z‘ - WX,iB) <Wy,i - Wx,iﬁ) *] Wr = WrVNr, (4.10)

i=

where Vi is the diagonal matrix containing the R largest eigenvalues in decreasing order of the
term inside the square brackets of (4.10). Next estimate A by A = WUWF/T = (A, AN,
where Wy = (WUJ, cel, WU,N)/ and WUJ' denotes the DFT of U; = U;(B). It is easy to verify that
AA /N = V1. We now develop asymptotic theory for the estimators B and Wp.

4.2 Asymptotic properties of the FDLS estimator

~ dy. —L ~ ~
To proceed, we start with some notation. Let I'y = dz‘ag(’yLXp ?) and Wx; = Wx ;I'x for each i in
the same manner as T F and WF were defined above. Similarly, let fa = 'ydLE*l/ % and V~V£i = Wayifg.

As in the time domain, define

N N N
1 1
D}VL (WF) = ﬁ E Re (W;(,iMWFWX,i) — W E E Re (W;(,iMWFWX,kaik)
i=1 1=1 k=1

N
= % Z Re (Wz,i (F)" Wz, (F)),
i=1

where Wy (F) = My, W i— % S8 My, Wy gaig. Let Wy = Wy, (F°) and DY, = DY, (Wpo).
Then Z;; can be defined in the time domain as if its DF'T over Fourier frequencies is given by Wz,
and WZJ is defined in the same manner as Wx,i above. Let f.;(-) denote the marginal spectral

density of g;;. We now introduce some extra assumptions that are specified for FDLS estimation.

Assumption A*. (i) Denote the (P + R+ 1)-vector Vi = (X Fto’,eit)/. For each i, {Vj,t > 1} is

it?

covariance stationary and has spectral density matrix satisfying

Jvi(y) ~T(y) Tl (y) asy =07, (4.11)

where Y; isa (P+ R+ 1) x (P+ R+ 1) symmetric matrix that is finite uniformly over ¢ with the
following structure:
Tixx YTixr O
Ti=| Tixp Yrr 0 |,
0 0 Tiee
in which for each 4, the P x P and R x R submatrices T; xx and T pp are positive definite, and the

scalar Y; .. > 0. I' () is a diagonal matrix given by

I' () = diag ('y_dxl ey Tdxp R 7,7_dFR7,y—ds> .
(ii) There exists 6 € (0, 2] such that for each 1,

—da—dy

‘fV,i,(ab) — Vi, (ab)Y =0 (70_d“_db> asy — 07",
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fora,b=1,...,(P+ R+ 1), where fy; ) (7) denotes the (a,b)th element of fy; (v) and v; (4) are
constants independent of .

(ili) Let Vi = py + 3720 Av,jCvi4—;» where Ayj is a block-diagonal matrix consisting of Ax ;,
Ap,j and A j in order, as given by (2.2)-(2.4). Let Ay (v) =>_2, Ay e, As y — 0F,

HWH — 0 (v | Ava()I)

fora=1,...,(P+ R+1), where Ay ,(7) is the a-th row of Ay, (7).

- d . - -
Assumption B*. (i) Let I'x ; = diag(fijp) and assume E “1“)(*73-1/1/)4—,2-J-“4 < M and %W;‘“VVXZ RS
Z)V}/,i > (0 for some matrix ZW,Z-, asT —> oo foreachi=1,...,N.
(ii) Let W = {WF e CLxR . Wy = Wpf‘F, W}WF/T = ]IR}. Assume infy, ), D}L\,L (W) > 0.
(iii) Let I'p; = diag(fy?F") and assume E HIV“FJ-T/VFJH4 < M and %W}Wp RS W > 0 for some

matrix ZJVTV, as T — oo.

8 I
Assumption C*. (i) E H’y?a Weijll <M and lVVE*iVVw- EN Y > 0 for some matrix 3. ;, as T — 0.

Wl W’ W71 —Ue o, —Ue=
(ii) Let ikl = E’W“k aﬂ‘ and oim = E‘Wuk S Assume Ciiht < 'ykd v d }’}/,
\Jo %;amll < st'y 2de W for all (k,1) and
| N
N oy < M. (4.12)
ij=1
Let UU kl ‘E( We W )’ Assume ‘ag/fl‘ < Eg for all (i, 7),
,YQdE L L
W 2
ah < M, okl < M, and vy (k)" <M, (4.13)
Li+ade k=1 NLHQdE ,jzl klzl‘ K ‘ T log Lk;l

where 'yN (k1) = & Zz LE <W5ZlW:zk>

(iii) Let Q; = I.E (Wg,iWayi) I'., where I, = diag (’y?g). The largest eigenvalue of §2; is bounded
uniformly over ¢ and T as T" — oo.

(iv) For every (k. 1), B[N =3yl S8, [We W2y — BOW. 02| | < .

(v) 7\7LL2 ]'Yj—l Zkl 1 |C0V(Wa szE ik We jt Ejl)| <M, Nij;z ]'?;'mnzl Zil:l |cov(W, KW ko
WemtWZ )| < M, and %z S0 Sy leov(We g W2y, We g W2 )| < M.

e,il?

Assumption D*. (i) Let I'y = dz’ag('yLZp) and plim(y 1)_o0 vzlsz}LVL (Wgo) Tz = DV for some
matrix DW > 0.

. \/ -ir

(i) YoET2 N Re (W5, W)

2d5 1

NT Zz 1R6(FZWZ1W5Z)Re(W;iWZJI‘Z>,

4 N (0,2, where S =plim3,, > 0, and =f, =
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2 2

ffydsﬁ F’YL

(111) maxiy<;<nN E S M and maxi<;<nN E Zl 1 W*

W2

WXJ', WF, and WF)\Z

Assumption E*. (i) £+ 1 — 0as T — oo.

(i) Let d = max {dx max; AFmax; @Zmax}, d = min{dx min, dFmin; dZmin}, and Ad = d — d.
Assume that d. < 1, d > d. and 7(3 — d) > 3.

(iii) (N5 + (L/N)Y2 + L71/2)5 28

Remark 7. Assumption A* imposes standard restrictions on multivariate stationary long memory
processes (e.g. Christensen and Nielsen, 2006). Assumption A*(i) complements Assumption A(i)
as it defines the long memory processes through their joint spectral density matrix around the
zero frequency, where a certain power law is satisfied. Under stationary long memory, Assumption
A*(i) and A(i) are basically equivalent, but the former assumption in the frequency domain also
holds uniformly under short memory. Note that the spectral density matrix is permitted to have
heterogeneous constant multipliers across ¢, which indicates heterogeneous cross-correlation and auto-

correlation among different cross-sectional units.

Remark 8. Assumption B* extends the conditions in Assumption B to the frequency domain,
consistent with the probability limit for the average (cross-) periodogram shown in Robinson (1994,
Theorem 1) and Lobato (1997, Theorem 1) for the univariate and multivariate cases. It is also
consistent with Robinson (1995a, Theorem 1 & (3.16)) on the approximation of the spectral density

by expectation of the periodogram.

Remark 9. Assumption C* extends Assumption C to the frequency domain, with C*(i) giving
the probability limit of averaged periodogram and the fourth order moment of periodogram of the
idiosyncratic error as in B*(i) and B*(iii). C*(ii) gives conditions of cross-sectional weak dependence
in (4.12) and of serial dependence over frequencies in (4.13) for the DFT of the idiosyncratic errors.
The condition in (4.12) is comparable to that in (3.2) in the time domain, and it is imposed to
support C*(v). The conditions in (4.13) are based on Robinson (1995b, Theorem 2), which gives the
limit of E(WZ;W.;) at the Fourier frequencies. To see this, we use the fact that |E(W. W ;)| <
{EWeaW 1) 2}1/2 and call upon Robinson (1995b, Theorem 1), which in our setting 1nd1cates that

W, i W*.
IME{ SiE et
T=oo  fei ()2 fei (1)

for some positive constant M < oo. Then

L (kD)% )

k=1 k=1
2
_dg —de <M (Z jod=—3% dg>

k=1

(kl)*
E+1’

M

}:m@mmmww@gM
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2
1
e >Md <Td5+é”i{“0<;>}> =0 (L),
7T €

which explains the order in (4.12). By the same reasoning (4.13) is explained by

L (k)
Z'VJV\[T/ kl Z (k lzfsl (Vi) fei (M)
k=1 =1 +
L 2 2
<M (Zk% ! k2de> <M(T2d52k ) =0 (T** 108> L).
k=1

C*(iii) mimics Assumption C(ii) in Bai (2009) in the time domain, as it adopts C*(i) to control the

order in frequency. C*(iv) implies weak cross-sectional dependence.

Remark 10. Assumption C*(v) gives higher order conditions that likewise mimic those in the time

domain. For further exposition denote W, ;; = 'y?e W.i; and taking the first part of C*(v)

L
S Jeon(WeaeWeins WestWeg)| = D2 D7 i 2 cov(We Wi, Wea W)
ij=1k,l=1 ij=1k,l=1

< Z ZL: . 2dg,yl \/Var (W&sz;k) Var (Wg Jle gl)

E)W Il a]l‘

'7 \/]E ‘Ws szE Jik

< T2 2— 4d5)

IN IN

M~ []=
LM
oy =2
| wm
IS &

M=

q

by (4.12) and Riemann sum approximation.

Remark 11. Assumption D*(i) and D*(ii) extends the distribution theory in Christensen and
Nielsen (2006, Theorem 2) to the factor model. This is a high-order assumption because Wz; by
construction is not the DF'T of a linear process like Wx ; or W. Different from the time domain setup,
Assumption C* does not really impose ‘weak dependence’ over frequencies as the normalization there
is only slightly stronger than using the limit of averaged periodogram. This is confirmed in the proof
of Theorem 2 in Christensen and Nielsen (2006) as weak dependence over frequencies only occurs in
the cross-periodogram between the error and the regressors, rather than in their periodograms, and

this property is reflected in Assumption D*(iii) of our factor model.

Remark 12. Assumption E*(i) is standard in the literature on narrow-band frequency domain

estimation with long memory data, and it is needed as the parametric power law of the spectral
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density of a long memory process holds locally at the zero frequency. E*(ii) and E*(iii) impose
further conditions on the largest memory parameters of the regressors and factors. Clearly, E*(ii)
and E*(iii) are satisfied under E*(i) if Ad = 0 and N/T — p € (0,00). These restrictions could be
relaxed if knowledge of the true memory parameters (or consistent estimation of them) of the latent
factors is available in advance. With such information Wr can be estimated directly without using

I'r in the normalization.

Under these conditions the asymptotic theory of FDLS estimation of the panel factor model can

be established. The first result concerns consistency.

Proposition 4.1 Suppose Assumptions A-D and A*-B* hold. Then as (N,T) — oo, we have
(i) B+ B;

(ii) W OWF/T is asymptotically invertible and HP —Pw,, 0.

Proposition 4.1(i) establishes the consistency of 3 and Proposition 4.1(ii) shows that the column
space of W is asymptotically the same as Wro or WFo. These are used in the subsequent analyses.

The limit distribution of B is given in the following theorem.

Theorem 4.2 Suppose Assumptions A, B and A*-E* hold and N/T — p € (0,00) as (N,T) — oo
Then

d -1 -1
VRT3 00— ) % (0.0 ) s (o)),
where DY and S are defined in Assumption D*, the asymptotic bias term A]V\I,/T s given by

_1 N
AWT =-Iy (D]V\II/L) 1 Z Re (WXz Wi NT Zd’tag <|WE kj| ) WFG)\Z)

= - (DJTVL (WF0)> 1 T Z Re (WXZ Wr NT Zdw’g ('WE kil ) WFG;\i)

k=1

=0p(d1),

SN |
. . . = W= W, AL
where diag (]W57kj|2> = diag <|Wg7k1|2,...,dwg (|W57kL|2)), G = ( F% F> (ANA> , DY, =

,Yzll'\ZD:]i'VL (WFO) FZ — Op (1); Cmd ¢L — L*1fyidZ,min+2dF,min_dX,max_ng,max_2ds.

The number of frequency ordinates L (or h = %) can be treated as a frequency domain ‘bandwidth’

7)
parameter, measuring the width of the region local to the zero frequency that is used in estimation.
Because only these frequencies near zero are used, the resulting FDLS estimator B converges to the
~1/2rate. This

reflects the tradeoff between robustness (against long memory) and efficiency. In addition, Theorem

true value at the (N L)_l/ 2_rate, which is slower than the usual parametric (NT)

4.2 indicates that we have a single asymptotically nonnegligible bias term that corresponds to the
one of order O(1/T) in the time domain LS estimator of Bai (2009). The other bias term of order
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O(1/N) in Bai (2009) is asymptotically negligible here because vVNL/N = /L/N = o(1) under
Assumption E*(i) and the condition that N/T — p € (0, 00).

To perform inference the asymptotic bias and variance matrix need to be estimated. But to
incorporate the fact that bias order depends on the memory parameters, we require the estimation
of all memory parameters. This then motivates the development of an analytic bias correction that
does not rely on estimation of the memory parameters. Importantly, use of DFTs in the frequency
domain asymptotically removes serial correlation, as indicated by Assumption C*. This leads to
weak dependence over both the cross-sectional units and frequencies and it is possible to correct bias
analytically.

To achieve this end, we first propose to estimate

. 1 L
AV, = —WDLL (Wgo)~ Z;Re (WXZ Wy deg (\Wg kil ) WFG)\i>

by replacing Wro, \; and diag <|W€7kj\2) with Wg, \; and Q = diag (VV6 le Ko W&kLW;kL)v

respectively, where WE,Z- =Wy, — WXZB — Wg\ = (W57il, ey WE,L'L)’. Then ANT can be estimated
by

W 1 ~W -1 N 1 N A 2 A,A - Q
ANT = —§7 (DNL) > Re Wx My, 2 > W N il (4.14)
=1 k=1

where DY, = ﬁZfLRe(WZiWZJ)’ Wzi = Wi My, — L5y, Wi My, Gik, and a;, =

~ e Nt A ~b ~ ~
A (ANA) M. The bias-corrected estimator of 8 is simply 3 ¢ = 08— A]V\I,/T. For asymptotic variance

- _ . -1 . ~1
matrix estimation, we estimate (D) ! sy (DY) ! by (D]V\‘,/L> sV, (D]V\I,/L> , Where

N
A ]. Ik 17T 7% 11
ZJV\[/'/L = W E Re (WZﬂ;Wa,i) Re (WE,Z'WZ»l) ’
i=1

which is justified when the {C E,i’t} are independent across i. The following theorem gives the limit

C . . ~b .
distribution of 3 and can be used for inference on 3.

Theorem 4.3 Suppose Assumptions A, B and Assumption A*-E* hold and N/T — p € (0,00) as
(N, T) — co. Suppose that {Ce,i’t} is independent across i. Then

1
- —3 ~b
(EJV\[Z/L> * DY (5 = 50) 4 N(0,1p).

An important property of the limit theory in Theorem 4.3 is its self-normalization and no mem-
ory parameters are involved in the estimation of the asymptotic bias and variance. This property
is particularly useful because simulations suggest that inference based on nonparametric plug-in es-
timators, such as local Whittle estimators of the memory parameters, can perform poorly in finite

samples. To appreciate why self normalization works here, observe that
. -1 . . -1 3 1
(D) S8, ()™~ VTS (D) S (D) VAT = 00 (1),
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as confirmed in the proof of Theorem 4.3.

5 Determination of the Number of Factors

It has so far been assumed that the true number of factors is known, whereas in practice this number
has to be determined empirically in most cases. A procedure is therefore needed for consistent
estimation of the true number of factors, denoted R°. For the pure factor model, various methods
are available: see Bai and Ng (2002) for an information criterion approach, Onatski (2010) for an
‘edge distribution’ approach, Ahn and Horenstein (2013) (AH afterwards) for eigenvalue ratio (ER)
and growth ratio (GR) approaches, and Jin et al. (2021) for a cross-validation approach. Here we
propose to extend AH’s ER approach to the FDLS setting. The same intuition as that explained in
AH applies here. To proceed, we specify an upper bound Rpax > RY. The procedure we develop has

the following steps based on a modified version of AH.

1. Perform FDLS estimation using Rmax factors, as indicated by (4.9) and (4.10) using model

(4.4), and correct for bias as in Theorem 4.3. Denote the resulting estimator B( Runax)*

2. Let @y = Yy _X’L{t/B(Rmax)' Stack {1} into an N x T matrix U. Then derive the first (Rpax+1)
largest eigenvalues of UU’/NT, denoted by fiy7 j, j =1,..., Rmax + 1. For j =0, let fixp; =
w (N, T) using a mock eigenvalue w (N, T').

3. Define the eigenvalue ratio ER(j) = PNTi_ The ER estimate of R is given by Rpr =

ANT,j+1
MAX0<j< Rynay LR (F)-

It is easy to see that @, follows the approximate pure factor model
Uit = Yit — XftB(Rmax) = X (ﬁo - B(Rmax)> + N Fy + €ir. (5.1)

And the time domain LS estimator of £° is not used due to the difficulty in correcting its bias using
either closed form or jackknife. In terms of the mock eigenvalue, we follow the setup in AH as
presented in the following Assumption G. More details of its setup and the choice of Ryax will be
discussed in the simulation.

To assist in the following analysis it is helpful to introduce some additional notation, as in AH.
Let 1), (A) be the k-th largest eigenvalue of matrix A. Let unp) = ¥y [(AIA/N> (F/F/T>] for
k=1,...,R% Let m = min(N,T), m = max (N,T), and |-| the integer part of its real argument.
We add the following conditions.

Assumption G. (i) plim iypy = py for some py, € (0,00) and for each k = 1,...,R%. (ii) R" is
finite. (iii) w (N, T) — 0 and w (N,T)m — oo as m — 0.

Assumption H. (i) 0 < y = limy,oo m/m < 1.

22



11
(ii) Let E be the N x T matrix consisting of the elements €5, then £ = R2ZG3;, where Z is an
1 1
N x T matrix with i.i.d. elements along both dimensions with finite fourth moment; and R7 and G
are symmetric square roots of positive definite matrices Ry and G with ¢, (Rr) < ¢1, ¥ (GNn) < 1

uniformly over N and T, respectively.

Assumption I. (i) ¢y (Rr) > ¢ for all T'.
(ii) Let y* = limy, o0 57 = min (y,1). Then there exists a real number d* € (1 — y*, 1] such that
de*NJ (GN) > C9 for all N.

Assumption J. Consider the linear combination Wxa = 25:1 apW¥% such that W% is an N x L
complex matrix of DFTs of the p-th regressor component, and the P x 1 vector « satisfies |a| = 1.

There exists a constant b > 0 such that

1 .
acBP o<1 NT TR%;OHMT (el (W) = brwpat

Assumptions G-I are comparable to Assumptions A, C and D in AH. These three assumptions
are not related to the level of persistence among any variables, and thus can continue to hold in
the present setup. Assumption J is the frequency domain extension of Assumption NC in Moon
and Weidner (2015), which rules out asymptotic collinearity of the regressors. Assumption B in AH
imposes conditions on the moments and cross-sectional and serial dependence of the factors, factor
loadings and idiosyncratic errors, which are covered by our Assumptions B and C.

With these additional assumptions the following theorem establishes consistency of the factor

number estimator R and the preliminary FDLS coefficient estimator B( Runax)

Theorem 5.1 Let Ry > R > 0 be a fized integer. Suppose Assumption B, C, G-J and B*, C*
- 1 .
and E* hold. Then H Bt — | = O <73 dvaﬂ‘“) and im0 Pr (Rer = RY) = 1.

Theorem 5.1 focuses attention on the case where Ry .y is a fixed integer in order to derive the
preliminary consistency rate of 3 (Rmax) 11 terms of the Frobenius norm. Consistency of Rpr indicates
that in practice the estimate Rpp can be used as a substitute for the true number of factors when

N and T are sufficiently large.

6 Monte Carlo Simulations

This section reports the results of Monte Carlo simulations designed to assess the performance of
the time and frequency domain estimates of the regression coefficient % and estimates of the factor

number RC.
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6.1 Data generating processes (DGPs)
We use two DGPs based on the model
Yie = X[,8° + N F) + O3, (6.1)

where 80 = (0.1,0.1), X; = (Xuir, Xoir)', X = (Mi, \g) and FQ = (FY,, F9,)". Here, P = R® = 2,
and 6. is set to control the signal-to-noise (SN) ratio to be around 4, where the SN ratio is defined
by the standard deviation (Std) ratio Std (X;t,BO + N, FY) /Std (6eit) . We first generate %, as follows

i = 03¢5, 1 + eir, (6.2)

where e;; ~ I (d.) is a fractionally integrated process generated by i.i.d. A(0, 1) innovations. Then we
consider cases with and without conditional heteroskedasticity for €;;. For conditional homoskedas-

ticity we set ;4 = €f,. For conditional heteroskedasticity we generate €;; as follows

X X;
eit = 0.061/ - Leo. (6.3)

For the factor process we use the specification, we have F = 0.8F, and

F‘to — 04Ft0_1 + €f7t, (64)

where ef; ~ I (dy) is a bivariate fractionally integrated process generated by i.i.d. N (0, 4) innovations

with mutually independent components. The regressor X,; is generated by

RO
Xpit = Z (Xri + Ari) (Bt + FRy) + X7 0 (6.5)
r=1
with X7 = 0.5X0, 1 + expits €xpie ~ 1 (dx) with i.i.d. A(0,9) innovations same as above. This

regressor DGP, adopted from Moon and Weidner (2015), ensures the correlation with factors. x,,; ~
N (1,1) and Ay ~ N (1,1) for each r = 1,2. The innovations efy, €, €z 1it, €22it, and Aij, A2i, X4
and yo,; are all mutually independent.

Combining the two error term cases we have two DGPs designated below as DGP1 and DGP2:
DGP1 combines (6.2) and (6.4) with conditional homoskedasticity and DGP2 combines (6.3) and
(6.4) with conditional heteroskedasticity. In terms of sample size, we consider N, T = 100, 200 and
the case N = 50 and T = 260 which fits the dataset in our following application. Various values of
the memory parameters are considered for d., dy and dx such that the memories among the elements
of R factors and P regressors are homogeneous. We use 300 replications for each case below and

results are presented for the second element of all bivariate vectors.
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6.2 Time and frequency domain least squares estimation

First, we examine the finite sample performance of the time and frequency domain LS estimators B
and . For evaluation, we focus on the bias (BIAS), standard deviation (STD) and root mean square
error (RMSE). For inference, we consider the coverage probability (COVP) of the 95% confidence
intervals based on the asymptotic normal critical values, which for the time domain estimator are
calculated using the asymptotic covariance estimator proposed by Bai (2009) as if there were no
long memory; and in the frequency domain the critical values are derived using the self-normalized
inference scheme given in Theorem 4.3.

The following combinations of memory parameters are considered, covering various cases of sta-
tionary short and long memory: (1) dy = de = dx = 0, (2) df = dx = 0.2 and d. = 0.1, (3)
dy =dx =0.3 and d. = 0.2, (4) dy = dx = 0.4 and d. = 0.2. Case (1) involves only short memory
and cases (2)-(4) involve stationary long memory time series. We further consider the case d. = 0.2,
dy = dx = 0.6 which partly covers the setup in our empirical application. We include such memory
cases to illustrate the performance of our estimator when the regressors and factors are nonstationary
long memory processes, although our present theory does cover such cases yet.

The results for time domain estimation are presented in the left panel of Table 1 and Table 2
for each DGP respectively, where bias corrections are conducted using the analytic formulae of Bai
(2009) to obtain Bbc. Clearly, the time domain LS estimator, after bias correction, performs well in
terms of coverage probability only under short memory or weak long memory as in case (2). This
estimator typically has mostly prominent downward bias when the joint memory is strong enough. In
addition, the convergence rate contaminated by memory parameters adversely affects the accuracy
of inference from the results of empirical coverage probabilities.

For FDLS estimation DFTs of (6.1) are calculated over the Fourier frequencies v, = 2% for
j=1,..., L, with bandwidth L = |T%%] and L = |T"] respectively. Note that these two settings of
bandwidth, together with memory parameters given by (1)-(4) above, satisfy our Assumption E*(ii)
and (iii). The right two panels in Table 1 and 2 present the results for the bias-corrected FDLS
estimator Bbe studied in Theorem 4.3. From these results it is evident that under short memory,
the FDLS estimator performs almost as well as the time domain LS estimator: both estimators
exhibit good bias control and coverage probabilities. This occurs even though the FDLS estimator
is asymptotically less efficient due to its use only of frequencies close to zero, and the bias is better
controlled for the time domain LS estimator. In contrast, when stationary long memory exists,
especially when joint long memory is stronger the FDLS estimator significantly outperforms the time
domain LS estimator, prominently correcting for bias in the right direction and most importantly
showing good coverage probability in all cases. There is no systematic gain by setting a wider
bandwidth from L = |T%3| to L = |T°6| except for efficiency when all long memory parameters are
stationary. Nevertheless, when both factors and regressors are nonstationary, the bias correction in

FDLS does not outperform the time domain estimator in DGP2 with conditional heteroskedasticity
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and L = |T°®]. Note that no prominent over-coverage is observed so our self-normalized inference
is valid, as one may worry about how larger the standard error of FDLS relative to the time domain

one will solely explain the increase of coverage probabilities.

6.3 Estimation of R°

Now we study the finite sample performance of the factor number estimator Rpp for both DGPs
when the true number of factors RY equal to either 2 or 4. In both cases we set Rmax = 8, as indicated
by our a priori information about the maximal value of R? being 4. Although not presented here, we
find a larger choice of Ryax does not change the results prominently. Moreover, the mock eigenvalue
is set to be w (N,T) = Y%, fiyyy/log (m) as suggested by Ahn and Horenstein (2013). For the

sole purpose of comparison we also consider the information criterion (IC) proposed by Bai (2009),

1Cy (1) =t (V (1, F*)) +r (N N+TT> In < NN+TT> ,

where V (r, FT> = 37 SN ST 82 (r), &t (r) is the residual in the time domain LS estimation

viz.,

when r factors are used, and F" is the associated estimator of the factor matrix. For both R r and
the IC estimator, we report the average (Mean), the median (Median), the ratios of correct estimation
(RCE), over-estimation (ROE) and under-estimation (RDE) of the true number R in Tables 3-4 for
DGPs 1 and 2 respectively, under the bandwidth L = [T%¢]. As evident from the results in Tables
3-4, in DGP1 both estimators can consistently estimate the R under short memory and weakly
long memory, but Rpp significantly outperforms the IC estimator when joint memory is strong in
DGP1 and under all setups in DGP2. This illustrates the robustness of ER estimator compared to
the IC one. One shortcoming for the Rpg estimator is that it may suffer from underestimation in
the nonstationary case in DGP 2 when the sample size is small, but its performance quickly improves

as the sample size increases.

7 Empirical Application

The methodology in this study is applied to re-investigate the relationship between stock returns and
realized volatilities, which has been an essential theme of asset pricing literature. The pioneering
work by French et al. (1987), Campbell and Hentschel (1992) and Duffee (1995) have established
the negative relationship between the aggregate levels of stock returns and realized volatilities using
value-weighted market portfolio. Such results are confirmed by the follow-up studies such as Dutt
and Humphery-Jenner (2013) using global aggregate level data and by Ang et al. (2006, 2009) using
firm level data. Conversely, Duffee (1995) and Grullon et al. (2012) find the evidence of positive
relationship between the returns and volatilities in firm level instead. To explain such a contradiction,

Grullon et al. (2012) suggest there might be some aggregate market conditions that affect both
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the market returns and volatilities simultaneously, which motivates us to take such conditions into
consideration by modeling them through the use of common factors.

Moreover, the nature of long memory of the realized volatility, as aforementioned, has been well
documented by the current literature (Andersen et al., 2003; Christensen and Nielsen, 2007, among
others). In a recent study, Liu (2022) tries to decompose the volatility into two components, the more
persistent long-run component modeled by unit root and the less persistent short-run component.
And the negative relationship between returns and volatilities is found to be significant for the long-
run component. This study emphasizes how the persistent part of volatility, which can be modeled by
long memory as well, can heavily explain the return-volatility relation, and therefore it is important
to consider and handle the long memory as indicated by our theory. In this application we estimate
a parsimonious factor model using the FDLS approach. Specifically, we consider the regression of
excess returns of individual industry portfolios, Rex;+, on the contemporaneous and lagged values of
industry-level volatility, VOL;; and the first-difference of the log of averaged firm sizes Size; ¢, which

are known in month ¢, viz.,
Rexy = ,VOLy + BoAlog Sizey + N.FY + e, (7.1)

where \; and FtO are factor loadings and factors that are of R-dimension, the regressand Rex; =
Rj; — Ry, where R;; is the value-weighted average return of stocks within industry ¢ at month ¢, and
Ry is the risk-free rate at the same time. The regressor Alog Size;; = log Size; — log Size; 31 is
a control variable that measures the change of market capitalization of industry ¢; and the monthly

volatility VOL;; is calculated using the daily returns following Ergemen and Velasco (2017), as

Ny 2

s€Et

where Rex;s is the excess return of industry ¢ at day s, and NV; is the number of trading days in
month ¢. Different from some current studies, we do not include control variables like book-to-market
ratio explicitly, but they can still be well-controlled by the factors and factor loadings. Our dataset
is adopted from Kenneth French’s Data Library for 49 industries in the U.S. listed companies, with
time spanning from 2000 to 2021, giving a balanced panel with N =49 and T = 263.

Table 5 presents the descriptive statistics of the data for all industries and all three variables
involved, with local Whittle estimates (denoted by cZ) of the memory parameters for each variable
with bandwidth L = |T 0'6J. We can see that for most of industries, Rex;; and Alog Size; have
short memory only as the local Whittle estimator is not significant at up to 10%-level, while for some
industries these two variables turn out to be either antipersistent (af < 0) or stationary long memory.
Meanwhile VOL;; exhibits a very strong evidence of being long memory, with some industries lying

in the slightly nonstationary range with memory parameter around 0.6.”

ZWhile the theoretic framework in the present paper does not include cases where memory parameters in the
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Table 6 presents the bias-corrected FDLS estimates of 8, and 3, together with their standard
errors. To estimate the number of factors, we set Rma.x = 8 and obtain the estimate RER =4. In
fact, this estimate is obtained for all Ry € [4,8]. As a robustness check, we also consider the other
values of R for the estimation by varying it from 3 to 8 in Table 6. Obviously, the results indicate
that the realized volatility has a negative effect on the stock returns at the industry level, which
is consistent with the early findings in the literature. Our inclusion of factor influences and a long
memory structure also support the argument of Liu (2022) and respond to the concern about missing

variable issues in Grullon et al. (2012).

8 Conclusion

This paper studies estimation and inference in a linear panel data model with interactive fixed effects
by allowing for stationary long memory behavior in the regressors, the factors and the idiosyncratic
errors. In this broad context, the usual time domain least squares and principal components ap-
proach produces estimates with asymptotic biases that are difficult to correct in practice, as well
as poor inference due the complication caused by long memory. The alternative frequency domain
least squares estimation developed here takes advantage of the spectral behavior at low frequencies
associated with the possible presence of long memory time series. The new approach has favorable
asymptotic properties and simulations show that the procedure is well behaved in finite samples.
Several extensions of the present framework and results are possible. First, using the same frame-
work, memory parameters of the factors and idiosyncratic errors can be obtained using local Whittle
estimation with the estimated factors and residuals, for which we can develop asymptotic theory as in
the current long memory literature. Second, as in Ergemen (2019), it is possible to consider a panel
regression where the memory parameters for the regressors and the errors are heterogeneous across
individuals or/and the regression coefficients are heterogeneous. Third, it is worth extending the
asymptotic theory to allow for stationary antipersistent data with d € (—%, 0). Finally, extensions of
the approach and the limit theory to include nonstationary or nearly nonstationary long memory data
within the same panel factor model framework would substantially widen the compass of potential

applications of this frequency domain approach. These challenges are left for future research.

regressors and errors are heterogeneous across individuals, we still employ the FDLS method to fit this empirical model.
Indeed, even though we conjecture that heterogeneity among the memory parameters does not affect consistency of
the FDLS estimator of the regression coefficients, it will still affect the rates of convergence, the variance matrix and
inference. Hence, what is emphasized here is the long memory nature of the data as a whole and how it is accommodated

using our new frequency domain methodology.
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Table 3: Estimation of R® (DGP1)

RO =2 RO=4
Method Mean  Median RCE ROE RDE Mean  Median RCE ROE RDE
c de =0,d; =0,dx =0 (0 = 1.5)
N, T =100 2 2 1 0 0 4 1
N,T = 200 2 2 1 0 0 4 1
N =50,T = 260 2 2 1 0 0 4 1
de =0.1,dy =0.2,dx =0.2 (6 =1.4)
N, T =100 2 2 1 0 0 4 1
N,T = 200 1 0 0 4 1
N =50,T = 260 1 0 0 4 1
de =0.2,df =03, dx = 0.3 (0. = 1.8)
N, T =100 2.810 0.227 0.773 0 4.657 0.390 0.610
N, T =200 2.890 0.153 0.847 0 4.713 0.303 0.697
N =50, =260 2.010 0.990 0.010 0 4.003 0.997 0.003
de = 0.2, df = 0.4, dx = 0.4 (6 = 2.5)
N,T =100 2.683 0.347 0.653 0 4.440 0.580 0.420
N, T =200 2.760 0.263 0.737 0 4.463 0.543 0.457
N =50,7T =260 2.010 0.990 0.010 0 4.003 0.997 0.003
de =02,dy =0.6, dx = 0.6 (6 =3.1)
N, T =100 2.450 0.580 0.420 0 4.223 4 0.780 0.220
N, T =200 2.507 0.510 0.490 0 4.130 4 0.870 0.130
N =50,T = 260 2 2 1 0 0 4 4 1 0 0
ER de=0,df =0,dx =0
N,T =100 1 0 0 4 1
N, T =200 1 0 0 4 1
N =50,T = 260 2 2 1 0 0 4 1
de =0.1,dy =0.2,dx =02
N, T =100 2 2 1 0 0 4 1
N, T =200 1 0 0 4 1
N =50,T = 260 1 0 0 4 1
de =0.2,dy =0.3,dx =03
N, T =100 1 0 0 4 4 1
N,T = 200 1 0 0 4 1
N =50,T = 260 1 0 0 4 1
de =0.2,dy =04,dx =04
N, T =100 1 0 0 3.990 4 0.997 0 0.003
N, T =200 1 0 0 4 4 1 0 0
N =50,T = 260 2 2 1 0 0 4 4 1 0 0
de =0.2,dy =0.6,dx = 0.6
N,T =100 1.977 2 0.977 0 0.023 3.950 4 0.980 0 0.020
N, T =200 2 2 1 0 0 4 4 1 0 0
N =50,T = 260 2 2 1 0 0 3.990 4 0.997 0 0.003

Note: In the parentheses we set the 6.’s under R? = 4, so as to maintain the proper SN ratio.
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Table 4: Estimation of R® (DGP2)

RO =2 RO=4
Method Mean Median RCE ROE RDE Mean Median RCE ROE RDE
c de =0,df =0,dx =0 (6 =1.6)
N, T =100 4.877 0.050 0.950 0 5.743 6 0.153 0.847
N,T =200 4.107 4 0.093 0.907 0 5.120 5 0.307 0.693
N =50, =260 2.953 0.383 0.617 0 4.240 4 0.790 0.210
de =0.1,dy =0.2,dx =0.2 (0 = 1.4)
N,T =100 5.970 6 0.023 0.977 0 6.377 0.053 0.947
N,T =200 5.553 5.500 0.010 0.990 0 6.150 0.080 0.920
N =50, =260 3.497 3 0.247 0.753 0 4.490 0.600 0.400
de =0.2,dy =0.3,dx = 0.3 (6 = 1.5)
N,T =100 7.323 0 1 0 7.433 0.007 0.993
N,T = 200 7.610 0 1 0 7.563 0 1
N =50,T =260 4.767 5 0.020 0.980 0 5.207 5 0.277 0.723
de =02,dy =04, dx =04 (6: =1.2)
N, T = 100 7.220 8 0 1 0 7.367 0.007 0.993
N,T = 200 7.520 8 0 1 0 7.470 0 1
N =50,T =260 4.673 4.500 0.023 0.977 0 5.227 5 0.277 0.723
de =02, df = 0.6, dx = 0.6 (0. = 1.1)
N,T =100 7.040 7.500 0 1 0 7.383 8 0.007 0.993
N,T =200 7.200 8 0 1 0 7.323 8 0.003 0.997
N =50,T7 =260 4.897 5 0.067 0.933 0 5.510 5 0.227 0.773
ER de =0,d; =0,dx =0
N,T =100 2 2 1 0 0 4 1
N, T =200 2 1 0 0 4 1
N =50,T = 260 2 1 0 0 4 1
de =0.1,dy =0.2,dx =0.2
N, T =100 2 1 0 0 4 4 1 0
N, T =200 2 1 0 0 4 4 1 0
N =50,T = 260 2 1 0 0 3.997 0.997 0.003
de =0.2,dy =0.3,dx =0.3
N, T =100 1.993 2 0.993 0 0.007 3.900 0.947 0.003 0.050
N, T = 200 2 2 1 0 0 4 1 0 0
N =50,T = 260 2 2 1 0 0 3.997 0.997 0 0.003
de =0.2,dy =04,dx =04
N, T =100 1.997 2 0.997 0 0.003 3.893 0.950 0.050
N,T =200 2 2 1 0 0 4 1 0
N =50,T = 260 2 2 1 0 0 3.987 0.993 0.007
de =0.2,dy =0.6,dx =0.6
N, T =100 1.950 2 0.950 0 0.050 3.143 0.630 0.007 0.363
N,T = 200 1.987 2 0.987 0 0.013 3.820 0.927 0 0.073
N =50,T7 =260 1.970 2 0.970 0 0.030 3.557 0.820 0 0.180

Note: In the parentheses we set the 6:’s under R% = 4, so as to maintain the proper SN ratio.
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Table 5: Descriptive statistics and memory parameter estimation in the application

Rex VOL ASize
Industry Mean STD Max Min d Mean STD. Max Min d Mean STD Max Min d
Agric  0.834 6.333 20.97 -18.20 -0.053  6.625 4.242 37.59 1.12 0.626, 0.012 0.226 1.642 -2.625 0.035
Food 0.683 3.871 17.56 -11.12 0.041  4.079 2.234 21.94 1.58 0.270, 0.006 0.056 0.249 -0.427 -0.017
Soda  0.989 6.082 28.48 -22.46 -0.107  5.548 3.259 23.49 1.64 0.392, 0.013 0.132 1.810 -0.253 0.011
Beer 0.710 4.151 11.37 -14.76 -0.072  4.442 2.733 28.67 1.51 0.400, 0.005 0.078 0.403 -0.822 -0.033
Smoke 1.341 6.465 32.38 -22.18 0.147  5.865 3.374 26.86 2.01 0.520, 0.007 0.077 0.281 -0.454 0.075
Toys 0.708 7.030 22.77 -23.40 -0.072  6.950 3.396 31.38 2.52 0.539, 0.010 0.083 0.601 -0.268 -0.007
Fun  1.110 8.011 39.30 -31.60 -0.013  7.785 4.581 35.84 2.25 0.505, 0.007 0.123 0.739 -0.764 0.332;
Books 0.340 6.207 30.73 -25.27 0.123  5.953 3.795 26.85 1.99 0.452, -0.001 0.099 0.460 -0.699 0.031
Hshld 0.595 3.984 11.40 -14.73 -0.167. 4.336 2.687 25.29 1.85 0.313, 0.007 0.045 0.112 -0.160 -0.067
Clths  1.147 6.331 24.91 -21.69 -0.082  6.471 3.489 30.03 2.30 0.411, 0.013 0.065 0.224 -0.209 -0.133
Hlth  0.864 6.143 20.57 -19.55 -0.080  5.703 3.166 30.06 1.80 0.308, 0.009 0.065 0.212 -0.229 0.024
MedEq 0.962 4.671 13.92 -19.24 -0.030  5.063 2.702 25.18 1.96 0.263, 0.009 0.056 0.173 -0.341 -0.099
Drugs 0.661 4.236 13.14 -11.10 0.213,  4.860 2.565 22.13 1.71 0.280, 0.001 0.053 0.126 -0.302 -0.120
Chems 0.816 6.085 19.05 -21.06 -0.159. 6.197 3.616 29.25 2.34 0.436, 0.004 0.070 0.303 -0.353 -0.212,
Rubbr 0.954 6.097 31.94 -20.84 -0.074  5.634 2922 23.25 1.87 0.496, 0.011 0.077 0.417 -0.259 -0.051
Txtls 0.904 9.191 58.92 -36.09 -0.047  7.802 4.894 39.17 2.60 0.548,  0.008 0.161 1.435 -1.444 -0.016
BldMt 0.909 6.792 34.40 -31.89 -0.097  6.272 3.813 34.41 2.37 0.415, 0.005 0.078 0.294 -0.408 -0.155,.
Cnstr  1.039 7.314 21.86 -32.15 -0.019  8.131 4.434 36.53 3.18 0.421, 0.010 0.086 0.198 -0.420 0.033
Steel  0.550 9.260 26.24 -32.99 -0.006  9.229 4.841 40.91 3.73 0.500, 0.004 0.099 0.233 -0.400 0.015
FabPr 0.740 8.397 30.37 -32.63 -0.103  8.253 4.378 41.60 2.45 0.394, 0.010 0.138 1.143 -0.824 -0.072
Mach 1.018 7.012 23.02 -29.83 -0.189, 6.908 3.992 31.77 2.56 0.463, 0.009 0.073 0.202 -0.346 -0.184..
ElcEq 0.699 6.709 22.87 -24.78 -0.053  6.672 3.849 33.10 2.32 0.430, -0.003 0.137 0.216 -1.823 0.086
Autos  1.041 9.467 49.56 -36.50 0.108  7.767 4.478 32.88 2.57 0.588,  0.009 0.095 0.420 -0.438 0.019
Aero  0.903 6.922 3250 -36 0.004  6.482 4.169 40.86 2.25 0.415, 0.005 0.075 0.279 -0.444 -0.063
Ships  1.336 7.832 29.15 -22.61 -0.067  7.227 3.397 27.80 2.53 0.432, 0.005 0.142 0.256 -1.855 0.068
Guns 1.274 5.858 18.40 -21.77 0.010  5.996 3.337 30.21 2.56 0.464, 0.009 0.066 0.216 -0.245 0.176,
Gold  0.825 10.329 33.90 -33.61 -0.039 10.644 4.512 43.98 4.27 0.360, 0.008 0.128 0.785 -0.408 -0.001
Mines 1.159 8.752 26.95 -34.83 -0.073  8.775 4.825 41.96 3.49 0.424, 0.009 0.095 0.236 -0.432 -0.009
Coal  0.848 13.676 43.54 -40.85 0.130  13.017 6.864 50.99 3.91 0.590, -0.008 0.198 0.404 -2.134 -0.134,
Oil 0665 7.010 32.92 -34.81 0.063  7.096 4.271 39.32 2.07 0.433, 0.005 0.073 0.293 -0.411 0.021
Util  0.749 4.178 11.23 -13.14 0.130  4.614 3.101 30.23 1.64 0.290, 0.008 0.042 0.147 -0.141 0.151
Telem 0.224 5.228 21.20 -16.30 0.270,  5.187 3.357 27.64 1.76 0.508, 0.004 0.055 0.191 -0.175 0.093
PerSv  0.563 5.889 18.59 -26.22 -0.077  6.021 3.022 28.30 2.52 0.334, 0.009 0.067 0.331 -0.305 -0.075
BusSv 0.704 5.189 18.16 -24.03 0.082  5.260 3.216 31.57 1.69 0.361, 0.008 0.055 0.167 -0.262 0.090,
Hardw 0.599 8.046 24.94 -33.88 0.091 7.472 4.702 29.46 2.27 0.619, 0.003 0.098 0.231 -0.835 0.092
Softw  0.672 6.650 23.83 -22.83 0.110  6.346 3.938 27.12 1.45 0.510, 0.008 0.071 0.230 -0.235 0.065,
Chips 0.811 8.240 26.84 -32.62 0.109  7.736 4.718 30.16 2.27 0.622, 0.009 0.089 0.445 -0.383 0.135,
LabEq 1.007 6.546 20.49 -23.13 0.014  6.286 3.541 24.74 1.94 0.503, 0.012 0.072 0.240 -0.292 -0.061,
Paper 0.565 5.136 23.10 -18.31 -0.026  5.166 2.865 24.31 1.85 0.426, 0.005 0.056 0.208 -0.258 -0.008
Boxes 0.887 5.861 18.06 -19.64 -0.171.  6.027 3.142 27.76 2.30 0.359, 0.009 0.066 0.175 -0.320 -0.205;
Trans 0.847 5.526 17.06 -16.57 -0.081  5.968 3.152 28.90 2.40 0.465, 0.010 0.065 0.433 -0.190 -0.107
Whisl  0.730 5.014 15.93 -21.09 0.065  5.056 2.894 28.33 1.81 0.307, 0.008 0.052 0.140 -0.246 -0.027
Rtail  0.795 4.863 18.64 -14.92 0.036  5.296 2.921 21.46 1.94 0.447, 0.009 0.051 0.186 -0.153 -0.105
Meals 0.100 4.873 18.64 -22.47 -0.042  5.152 3.006 31.68 1.79 0.351, 0.011 0.055 0.171 -0.253 -0.015
Banks 0.588 6.283 19.71 -27.23 0.014  6.866 5.450 35.41 1.67 0.707, 0.005 0.072 0.183 -0.502 -0.062
Insur  0.792 5.492 22.40 -26.86 0.157. 5.504 4.163 33.03 1.66 0.527, 0.007 0.058 0.182 -0.298 0.100
RIEst 0.863 8.275 66.01 -37.59 -0.017  6.536 5.124 37.76 2.07 0.628, 0.011 0.106 0.756 -0.511 0.059
Fin  0.789 7.082 19.51 -26.20 0.014  7.488 5.034 33.62 1.40 0.614, 0.011 0.100 1.107 -0.306 -0.009,
Other 0.355 5.819 21 -22.35 0.064  5.666 3.789 26.60 1.65 0.598, 0.008 0.200 2.468 -1.571 -0.055

Note: The subscripts a, b and ¢ of d indicate the significance at

1%, 5% and 10% nominal levels respectively. And for the

maximal and minimal values, we round to only two decimal places for simplicity.
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Table 6: Estimation results in the application

R 3 4 5 6 7 8

B° 0095 -0.116 -0.134 -0.117 -0.120 -0.127
se.(BY) (0.034) (0.033) (0.030) (0.026) (0.021) (0.021)

Bhe 0.732 0916 0.982 0982 1.027 1.135
se.(BY) (0.110) (0.105) (0.088) (0.085) (0.078) (0.068)
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This supplement has three parts. Section A contains the proofs of the main results in Sections 3-5
of the paper. Section B provides proofs of the lemmas stated in Section A. Section C presents some

results for the time domain least squares estimation based on the within-group transformed equation.

A Proofs of the Main Results in Sections 3—5

This section proves the main results in Sections 3-5. These proofs call upon some technical lemmas
that are proved in Section B. Throughout the present proofs, we use C' to denote a constant that

may vary according to position and A < B to denote A/B = O (1).
A.1 Proof of Theorem 3.1

Tor prove Theorem 3.1, we need the following four lemmas.

Lemma A.1 Suppose Assumptions A-E and the other conditions in Theorem 3.1 hold. Let H =
(A]:[A) <F¥F> V1\771“ and d N7 = min (NI/Q,Tl_maX(QdE’l/Q)). Then

=], (Jp=] +5t).

Lemma A.2 Suppose Assumptions A-E and the other conditions in Theorem 3.1 hold. Then we
have

>

/
1 &
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B=#1)-

Lemma A.3 Suppose Assumptions A-E and the other conditions in Theorem 5.1 hold. Let Jg =

“ ;e\ —1 1 —1
— 57 SN XM+ Sn erel FGN;, where G = (%) (%) . Then

Js = A{r + Op (N_%ng_% (HB - 50H + 6]7\717“)> ;

where Alyp = — 5 Sy XM p s Soh, i FGN; = O, (T?%71) and Qi = E(exe) for k =
1,...,N.



Lemma A.4 Suppose Assumptions A—E and the other conditions in Theorem 3.1 hold. Then

1 N

NT &
1 & 1 &

= %7 > | X{Mpo — v > ainX;Mpo

=1 k=1

-1 -1
o _ 1 N (X;—Vy)'F° (Forpo AA 1 N ’ 1
where CRip = w7 Doim1 —— 7 7 N N 2k=1 MELE = Op (N) .

Proof of Theorem 3.1. By the definition of 3 in (2.5), we have
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For the first term on the right hand side (r.h.s.) of the last equation, we notice that MFF0 =

M (F° — FH™Y), where H is as defined in Lemma A.1: H = (A—NA) (F;F) Vit = G7'Wyi. The

asymptotic invertibility of H and Vyp can be proved as in Proposition 1 of Bai (2009), as its proof

does not involve any premise of serial persistence and continues to hold under long range dependence.
Then
1 L 1 L . N .
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i=1 i=1 i=1

Let 6 = 3 — 8°. By the eigenvalue equation (2.6)

N N N
) 1 a1 . 1 o
FVr = = > X8 X[ F 7 S XiONFUE 7 > Xibel F
i=1 i=1 i=1

N N N
1 N A 1 N, N 1 N
— E FONO XIF — — § S XF+ — § FO\e F
tNT L7 MO TNT £ €0 Xkt + N 2 i

A 0 A 0y /07 1
TNT Zi:l SNETE A+ N Zi:l el N Zi:l FEMNETE
= L+---+1y, (A.2)

so that FVy7G — FO = (I + - - - 4+ I3) G and
1 & 1 &
i=1 i=1

The order of the Jy elements are derived by the same reasoning as in the proof of Lemma A.l.

Starting with J;, we have

N N
1 1 Y .
= o D XIMp—— > X406 XL PG
[BAl ‘NTZ,:1 TUINT &~ k00 Xp PG

2



R 1 & NTINE RS T
< o XA gz o0l 3] 77 v
Nﬁ;II Il HNT;H Al vl LS

1 1
<[ (NlTi ||Xi|2>2 (}Vi ||Ai||2> LS alr=o, ()
i=1 =1 k=1

where we use the fact that HMFHsp = T F|| = VR, and Assumption B(i) and B(iv). For .Js,
we have
N N
1 XIMpXy\ (e, F°H .
h= e 2 (SR (B ond
i=1 k=1
N N 0
X/M; Xk% (F F H) )
+FZZ - GXid = Ja1 + Jaz.
=1 k=
Note that

N N
1 XM X\ (e, FOH -
a1l = || 372 Zzl ( ) < T > G\id

i=1k

N

I nl
e, H 1
TH vz 2o 1%

k

Sy

1
S Xl |
<[3] rm ia

2

IN
S

Nng;uXinz [NZHA [ ] [
el

by Assumption B(i) and B(iv). By the arguments used to show (B.2) in the proof of Lemma A.2 and

Assumption D(i), we find that J% = O, (T?%~!) = 0, (1). Therefore || J31]| = o, <H3H) Similarly,
we can show |[|J32] = op (HSH) by Lemma A.1. Then ||J3|| = op (H(ﬂ)) The same approach shows

a ()

5

S

S./ j317

N
/
1 XM, (NT§ kb X F )G)\

1
Ts|| = ||—=
151 ’NT

1=

For Jy, we have

N
[ all = ' NLZ ( ZFO/\k(SXk )G)\
= k 1
1 zN:X’M (FO FH—l) i/\ § X EFGA
Ty i n - k 7
N2T2 g F k

= )

N }1/2 HFO FH-

N
1 1
< - § 12 - § 112



by Lemma A.1. For Jg, we have

1 N 1 N E,F
/ 0 rr—1 k .
~NT E_l X;Mp (F — FH ) (N E A 7 )G)\Z

k=1
N ~
1 e F
il P
Nkz_1 ko

‘FO —FH‘lH

6] =|

NVT \/]LTHFO_FH_IH

=0, (v i3 (1 i) o [5] +ov)
o () + 0 (v,

by Lemmas A.1 and A.2.
As in Bai (2009), J2 and J; directly enter the asymptotic distribution and Jg contributes to the

L X
S Z [ [
i=1

S

bias under possible long range dependence. For Jg we employ the following decomposition:

1 1
—_— / A — /A .
Js = =57 2 XiMp D ereh PG
i=1 k=1
1 1 1 1
= N XM~—> LGN, — — > X'M,—— ' —0) FOHG),
NT; i FNT; L NT; i FNT;(E’“% ) i

N N
1 1 .
— o D XM= > (ekeh — ) (B = FOH) G = Jsa + Tz + Jss.
i=1 k=1
By Lemma A.3, Jg; = A% = O, (Tst_l) and
Jsa+Jss = Op (N*%TME*1 + N7 (H(SH + 5,}})) = o, (HSH)JrOp (N*lef*% + N*%Ti”df*%) .
In sum, we have
1 A 1 1 3
7 D XIMEFON = Jo+ Jr + A% + 0, (HéH) +0, (N—les—é + N—§T3ds—é) . (A3)
i=1
Combining (A.1) and (A.3) yields
1 N A 1 N 1 1 3
(NT Y XIMpX; + o, (1)) 0=t =+ > XMpei+ Jr+ A +0, (N—les—a + N—5T3ds—a> ,
i=1 i=1
which implies that
[DNT <F> +0p (1)] (B - 50>

N N

1 1 o _1 _ 1 _3

- (X;MF D) aikX,gMp> e + A% + O, (N 2 7201 | N2 2) . (A4)
=1 k=1
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Then, by Lemma A.4 and the conditions % — p >0 and dz max > de,

D (£) +0, (W] pwr (B 8°)

N N
1
= BN | XM = = > anXiMg | &+ pnp ARy + g Op (N7 T2 4 N73T973)
=1 k=1
PNT Y / 1 Y ! o o [ G P | _ld. -1 1
= 72 XiMpo — NZ“ikaMFO gi + pnr (A{r + CRr) + pnTOp (N 2T A NI 25NT> .
=1 k=1

N
p o (0]
= Z Zigi + pyr (Ap + CRr) +0p (1)

recalling that Z; = MFoXi—% Zi\[zl a;xMpo Xy By Assumption E(i), Dy (FO) NT Zl \ 2l Z;
Dy > 0. Using this assumption and Lemma A.1, we deduce that DNT(F) = Dyt ( —i—Op (H H + (5NT) =
Do+ 0, (1). It follows that

- 1 1 d _ B
PNT <5 -8 - Tioaa ANT — NCNT> SN (0,D5'EDg 1),
where
N N o ;N —1
w1 1 1 [ FYF A
Ayt = —Dyr (F°) NI ZX{MFNZQkF< - ~ \;, and
i=1 k=1
N -1 1 N
1 (X; — Vi) F° ( FYFO NA
= -D FOY 7! LR \ieles
Cnt NT( ) NTZZ; T T N ; kELEi

This completes the proof of Theorem 3.1. W

A.2 Proofs of the results in Section 4
To prove Proposition 4.1, we use the following lemma.

Lemma A.5 Under Assumptzons A-D and A*—B* we have
(i) SUPW e HNT Zz Wi My, Wi =op (1);
(i1) SUPW ew H NT ZN by WMy, Ws,i =0, (1);
(iii) SUPY, e HNT ZZ (W ( Wy PWFo) Ws*l

=0, (1).

Proof of Proposition 4.1. (i) The proof follows closely that of Proposition 1 in Bai (2009, pp.
1264). Let § = 3 — Y. By definition, the FDLS estimator <B ) Wp) solves the following concentrated

minimization problem

(B, WF) = arg BGR;I}%GW SNT (57 WF) :



where W = {WF € CL*B . Wp = Wpl'p, W;VNVF/T = ]IR}. Recall the original objective function is
given by (4.3) and by (4.4)

SSR(B,Wr,\) = (Wy,i = Wx i —Wphi)" Wy — Wx,i8— W)

M-

@
I
—

(Wy,z' - Wx,B— WFj\i)* <WY,i - Wx,iB— WFS\z) :

I
,MZ

1

)

Let Wyi = Wy, (B) = Wy, — Wx ;5. As in (4.7), we concentrate out A by plugging

\i = (WFWF> Wi (Wy,; — Wx,i8) = Wi (Wy,; — Wxi8) /T = WiWy./T

into the above objective function and simplify to obtain the concentrated objective function

~ NT «

=1

SNt (5, WF) _ ! EN: (Wy,z‘ - WxiB — WFS\Z')* (WY,i — Wxif — WFS\i> — % i w,
i=1

N N
1 S * < 1 i}
= > (Wi = WeWiWoa/T) " (Woss = WelWiWos/T) = < S0 W2Myg, W
N
1 N .
N7 2= Wri = WxiB)” My, (Wyi — Wxif) — Z WMy, Wei.

=1

As in Bai (2009), we approximate Sy (ﬁ, WF) with another random function Sy (ﬁ,Wp) as

follows
SNt (6, WF) = Snr (6, WF) + 5’ Z Wi My, Wei + % Z WMy, Wi
1 & -
~T ; N WMy, W2 + NT Z * My, Wrodi

N
1 *
~T Z We,i (PVVF — PWFO) Wei,
i=1

where

N *
: - 1 WM., Wio\ /A/A
_ s/ * _ ) o 1%
Swr (B,Wr) =4 (NT > WXJ-MWFWXJ> 54 tr [( iz ) < v ﬂ
1 & 1 X
(R * / *
O §':1 Wi My, Wiodi + o ;:1 NW oMy, W 6.

By Lemma A.5, Syt <B,Wp) = Syt (B,WF> + 0p (1), uniformly over 8 € RF and Wp e W,
so that it is sufficient to focus on the approximate objective function SnT (B,WF>. Note that

6



Sy (60, H WFo) = 0 for any asymptotically invertible matrix H by construction, and because Lpis
also invertible, SnT (ﬁo, H Wpo) = 0 holds as well. Let

1 & 1 (AA 1
A= 2 WM e B = (N ¢ “L) 0= g 2 (e My i)

and n = vec(My;, Wro), where vec(-) vectorizes by stacking columns. Then
Syt (ﬁ, WF) — §'AS + 1 By + 8'C*n + " C§

=¢ (A-C*B7'C) 6+ (n*+6'C*B™") B (n+ B~'C9)

= §'DI (W) + 6% B6.
By Assumption B(iv), B is positive definite asymptotically, and so as DT(WF) by Assumption B*(ii).
Therefore Syt (ﬂ, Wp) >0if 6 =8—8°+#0or Wg # HWyo, which implies (BO,HWF0> is the
unique minimizer of Syt (ﬁ, WF) over the restrictions. With this result, in conjunction with the
uniform approximation before and arguments used in Bai (2009, p. 1265), we conclude that Bis a
consistent estimator for 5.

(ii) Given consistency of 3, the proof follows exactly as in Proposition 1 in Bai (2009, p. 1265).
|

To prove Theorem 4.2 the following lemmas are employed.

Lemma A.6 Suppose Assumption A, B, and A*-E*, and the other conditions of Theorem /.2 hold.
~ e W WF _
Let H = (ANA) < £ >VN5. Then

T3

T T r o -1 —d maxfds
WF*WF()HH =0p <5W1,NTH5*ﬁOH+N By >’

h 6 _ %7dX,max %7dF,max %7d5
where Ow1,NT = V], L +7L -

Lemma A.7 Suppose Assumptions A, B, and A*-E*, and the other conditions of Theorem 4.2 hold.

Then N .
]. W*1WF o _1 _1 é72d maxfds
T () =0 (s [p ] vt )
i=1

1 1—dx max—de [ _3—dFmax 1-d.
where dw,nL, = N~ 27 (’yL +77 .

Lemma A.8 Suppose Assumptions A, B, and A*-E*, and suppose the other conditions of Theorem
1.2 hold. Let Jy = — sz SN Re(WE My, gy SO0, We W2 WG ) and

N N
1 N 1 , ARV /e
ANt = — 57 ;_1 Re (WX,iMWFM ;_1 diag (\Ws,kj! ) WFG>‘1> ;

7



where diag (|W€7kj|2) denotes the diagonal matriz formed from \W€7;€j]2, j=1,...,L. Then

TL

— d min_d max —l 1 2d€+ d ,min_d ,max 3 _1 1-d max dg
0y (et ) s (1) 407 )

= 1 242dp min—d —3dp,max—2d
JS — ANT + Op ( + F,min X ,max F,max €

where ANT — Op (%ryi+2df7‘,min7dX,max73dF,max72d£) )

Lemma A.9 Suppose Assumptions A, B, and A*-E*, and suppose the other conditions of Theorem
4.2 hold. Recall that Wy; = & S0 awWx .. Then

VNLypF Tz de-lp, &

NT ZR [sz sz)MWFWs,i}
WX;ZT 1FzZR (W, — WVZ)MWFOWW]JFOP(FV%F (5 BO))+op(1).

Proof of Theorem 4.2. Let 6 = 8 — °. Recall that

where Wy; = WXﬂﬂO + WFo 5\1 + We;. Then
N
NT ; Re (W)*(,iMwF WX,i)] (5 - /3())

NT i Re (W;(,iMWFWFO;\Z‘) + % i Re <W;(Z1\/IWF W51i> . (A.5)
=1 i=1

. N ~ ~ N

First, we study 1= 32 Re (W;QMWFWFOM). Note that My, Wro =My, (Wpo — Wl 1),

where the asymptotic invertibility of H can be proved using similar reasoning as that used in the
time domain. We consider the following eigenvalue problem

Nng (Wy,z‘ - WX’LB) <Wy,i - WX,B) *] Wp = WpVnL.

By expanding Wy ; in the above equation, we have
T ) T ;N
T _ Y LI 7 /A VAT ISR ¢ A ST 1A%
WrVNL = NT ;1 Wx 00 Wx ,Wg NT ;1 Wx ioNWpoWr NT ;1 Wx oW, ,Wp

N N N
1 <l ot 1 TR 1 . 2
TZZ,_1 A0 WiiWr = 3 Zi_l 0 WxiWr + 57 Zi_l AW Wr



ZWgz)\'WFOWF—i—NTZWH WF+—ZWFOA Vi Wr
=04+ I (A.6)

This, in conjunction with the definition of H given in Lemma A.6, implies that

Wi = Well ' = = (044 &) (WpaWr/7) (RA/N) " == (044 ]5) G

Then
1 - 1 .
i=1 i=1
1 & 8 C N =
= > Re (W;‘QMWF (WFO . WFH*) F;l)\i)

1
= —% f: Re (W;(,iMWF <f1 +--+ 1:8) G/\i)
i=1

=Ji+-+ Js, (A7)

-
Il

- ~ A -1 -
where G = (WI’;OWF/T> ! (NA/N)™'. Tt is easy to show that H = O, ( i ma") and G =

1 -
O, <’yC£F’mm 2) by Assumption B(iv) and B*(iii). For J;, we have

N N
. 1 ) 1 - AN
HJlH - H NT Zi_ XMy <NT D Wi 0 Wi F) G

~ HGH H H ZHWXZH ¥ NTZHWXkH
N 3/2 N %
ClFmin*l <12 ]. 2 1 5
< ) 2 5H L i 1 N
e {NT;”WXH} [N;H H
drmin=3 | 5| 3/2-3dX max 1+dp,min—3dx max || 3|
frd ’YLF7 2 6H Op (PYL/ X, )Op (1) = Op <,YL+ F, X, (5H ) ’

M.

where we use the fact that W
F

1-2dx max
o =1 and = SN L IWxkl? = 0, < * > by Assump-

tion B*(i). It is easy to see that we can express J; = —J;d for some matrix J; with ) J
Op( 1+dF,min*3dX,max

L

SH) As in the time domain, Jo will enter the asymptotic distribution and it

is therefore retained for now. For J3, we make the following decomposition:

Js = 57 Z Re (le (NT > W koW kWF> GAi>



N N B * T r7
Wi My, W W* WroHY\ . -
Ni E E Re < X" We X’k> ( ek O ) G)\i(S]

=1 k=1

N N [ v * (W — WeoH
g gt [ (M W wo, (We=Wpolt)\ ]
‘o Re ( X, II:VF > e ) GAb | = T30 + J32.
=1 k=1

First,

[SIE
SIS

1

d 1 1 & 1
J H len 3 S W 42 - A 2 -
|71 5 w7 2o Wil | oI 50

N |=

drmin-t (5] 1 o 21N e 1 & _—
,min— 3 . il . *
S8 o Il NT2;]1W€,kWFo

d min — 1-2d max 1.1 l_ds 1-2d max
IVLF’ > 119]| Op (7L * )Op(l)Op (T 2L 297 >Op(1)0p <7L F’ >

1 2— 2dFmax 2dX,max+(dF,min_d€)
= Op ( 2L ’YL

-

by Assumption B(iv), B*(i), C*(i) and D*(iii). By the same reasoning and Lemma A.6,

; 1 N N X 3
F,min — N 2 2 ) ~ ~
|| < 2 5] ﬁguwx,iu [N;HM! WZHWE,kH ] — ||Wr — W
d ,max d min — N S
= 0, (qyHenem s (s 3]+ 3yt )
where 0y, y7 is defined in Lemma A.6. In addition, it is easy to see that we can write j37l = —jglg

1 2— 2dF max 2dX,max+ (dF,min*ds)
and

for some matrix j?fl for I = 1,2 with ng‘lH = Op< 3L~ 2y,

T 2—2d max_d max d min_2d — = 1-2d max d min_d
Jé‘,z:Op(vL * pmact(1, E)N é“‘VL Koo (4 )

Next,

-

N
‘J4H - HNTZW)“ (lvlTZWFox\ké WXkWF) G
k=1

1 < )
Wi My, | W WerH ) Nd Wi W | GA;
H Z X (NTZ:I FoO— WF ) k X EVWEF

H( 3 Wl H>2 Vel

NT: =

2dpmin—1 ||%|| 1 1 1
< F,min H(SH* . 27 )\ 27
S - }iﬂjuwx,zu N ;:1:” I

=0 <PyidFYmm_1 HS‘D O (71L_2dx’mx> Op(1)Op (5W1 NT H H + N"2yE st)

=

< dF,minfé

W |5

WFOﬁH

10



— Op (/yidF,minfde,max <5W1,NT HSH + N_%’Y}l dF max ds) S ) ,
and
1 N
"JE)H_'NTZW)“ (NTZWEkéI/I/XkWF) G
d mln
S = Z Wil 172l — [

—O < dme 2

5—d max 1-d max dE 1-2d max+ d min —
H) fo<vz ' >o<w >=op(w ).
l

_ 2dF' mln_de max _1 1- dF max dE
‘ =071, N7z,

It is easy to see that we can J; = —jl*(NS for I = 4,5 with Hjjf

+ idp min 2dX’max5W1,NT HSH) = Op(vrzdx’max%dﬂminidg)). For Jg, we have by Lemma A.6
and A.7 that
N .
. 1 % WF .
- [ s ng e (30|
k=1
1 & 1 & fa
_ * i -1\ -1 &,k s
_ ' NT;WXZMW (WFo—WpH )r (N;)\k = )G ;
< dlen % rr—11+—1
<y Wil v || ZA =

2d min_]- 5—d ,max 71 ]- d max dE
=0p(vf’ )Op(vi ' )0 (swnsr 3] + =227 )
<0 (s 5] - )

~o, (ALNT |37 + Aoz HSH +anr)

dX max+2dF min dX max+2dF min — 2dF max ds

where Ay y7 = VL 5W1 NTOW,NL, Do NT = VL (5W1 NrN"2L” 2’YL

+ow NN~ é'yl dF’“‘”‘*dE), and Agny = N~ 17,3 i X maxt2dp,min=3dPmax—20c Noto that we can
write JG = _J6,15+ j&Q with ng,l = O <A1 NT H H + Ay NT) and HJ6 2” = Ag NT) Next, j7

contributes to the asymptotic distribution and is kept here.

Last, for Jg, by Lemma A.8 we have Jg = An7 + Js, where

N N
b S (it S ()

i=1 k=1
1 2+2dF min dX max 3dF max 2d5
~ 0, ( or , (A.8)
and
7 1 2+4+2dF min—dX, max—3dF,max—2de
| Js|| = Op <T"y A , :

11



. d min_d max 1-2d:+(d 7min_d ,max I 1 max -
e [CI L EE )
= Op (Al,NT HSH + AQ,NT) .

Here Ayt will enter the bias and we can write Jg = —jg,lg + j§’2 with Hjéle =0, (AI,NT) and
12l = Op (A2n7)-
Now, by (A.5) and (A.7), we have

o ZN:Re (WiMy, WX,Z«)] (B=8") = (Fi+-+ Js) + % EN: Re (WM, Wey)
i=1 =1

It follows that

()

N
-, .1 . .
= Jiat AN+ iz + o D Re (Wi My, Wei) + I, (A.9)

N
% > Re (WM, Wx,i) = o + J.
i=1

where J, = Jl +J3 1—|—J3 2+J4 +J5 —|—J6 1- By construction, DNL (WF> NT Zl 1 Re (WXZM Wx Z)

. Let Gy, = YNEE T2 N R ((WxMyg, = % S0 0§ My, ) Wei). Then premul-
tiplying both sides of (A 9) by VN ’yde 1y vields

’}/erz [DNL (WF) + J } 'y;vN ’}/%F (,3 ﬁ()) vIN ’ydE 1FZ (jg’Q + AnT + j8,2) + éNL-
(A.10)
To simplify the last expression and obtain the final distributional result, we will show that: (i)
—1 T T _ T _ Lo 7 _ 172dZ,min . \/7 ds 1 Tx
Y2 Tz |Dyp (Wr) = Dyp| Tz = 0p(1); (i) ||| = 0p (7, ; (i) Ly Tz Jfy = 0p(1)
for 1 = 6,8; and (iv) Cnr = Cnp + C]’QL(NS + 0, (1) where

VNIV E T, & LS= v
CynL = — N7 ZRe WXlMW —Nzaikwx,kMWFo Wei
k=1

\/7 de— 1F
L TE S e (30,

and Cy; = op (\/ ’y A ) Noting (ii) implies that 4;'TzJ.l'z = 0,(1), combining these
results with (A.10) yields

[’YZIPZD}[\/LPZ +op(1 )] VNLYET, (ﬂ 50) = Onp + VNLAF T zANT + 0p(1).
Let DY, = ~7'T2D}, Tz + 0, (1). Then by Assumption D(i), DY, & DYV > 0. It follows that
-1
VNI, (5 ﬁ()) = [DN} + 0, (1)] " O + [DV, +0, ()] VNLYEIT 2 ANy + 0p(1).
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Then

VNLET, (B 6 -

) = [DW, +0,(1)] " Cnr +0p(1)
SN (0.(08) = (o) ).

where AWT is as defined in the statement of Theorem 4.2 and the second line holds by Assumptions

D(i) and D*(ii) and the Slutsky theorem. In addition, we can show that AY, =
L—lfy2dZ,m1n+2dF,m1n dX,max 3dF,max 2d5

where ¢, =

Op (¢1) by (A.8),

We now show (i)-(iv) in turn. For (i), the result holds by Lemma A.6 and our regularity conditions.

For (ii), we can apply Assumption E* about the relative magnitude among the memory parameters

and the convergence rate of & to show that

2dZ,min_1 T*
7L Ji

2dZ,min_1 Tx
7L J3,1

2dZ,min_l *
J3o

7L

and

2dZ,min+dF,min _3dX,max
Op <’YL

i) = o0

0, (Té Loy}t 207min 2 Emax =2 ma (dF*m‘“_d5)> = op(1);

op (s (s ] ) ) <o
Oy ( 247 mint 24F,min =20 mex— (5W17NT HSH +N_%72 e da)) = op(1);
O,

( 2dZ mln_2dX max+(dFm1n ) HSH) = 0 (1)
= 0p ;

2dZ,ni -1 N QdZ,min_ClX,ma>('|'2d}7‘,mirl_§ N
v Op (AI,NT H‘SH + A2,NT) =0y <7L 20w, NTOW,NL ||0

3
2

2dz min—d +2dF min— —2d 1 1-d d
+Op <'}/L Z,min X,max F,min (6W1 NTN 2 L Q’YL F,max — + 5WNLN 2’)/ F,max — E))

2dy min—1 11 ¥ —1 dpmin—d +2d 7 mi L 2dz min—2de+(dFmin—dx
'YL Z,min HjékJH — Op <5W1,NT <T2d5 17LF,m1n X, max Z,min — + N— 2,}/L min € ( min max) _ 0p(].).

Then ’yzdz min ij

have

d min+d -1 T
NIyt ey

and

(1). Next, we show (iii). Following the above analyses of Js and Jg, we

d min+d -1
’ =0y < VN Ly A37NT)
. _ 1_ . _ 1
:Op< /NLV%Z,mm'ng 1/_}/[2/ dX,max+2dF,m1n N 2L—§'y 2dFmax dEN—— 1 dFmax d5>

_1 1+2dF,min+dZ,min_3dF,max_dX,max_ds _
+OP<N L >*0p<1)7

dZ m1n+ds 1 T* _ %+dZ,min+2dF,min7dX,max73dF,max7dE
VN Ly, HJ8,2H =0p (71
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Ti-2d; 'L +7i

1
+ O ( L 2 dF,min+dZ,min_dX,max_dF,max 3 _2d€+d2,min+dF,min_dX,max_dF,max>
p

= 0p(1).

Then (iii) holds. Last, (iv) follows from Lemma A.9. This completes the proof of Theorem 4.2. W

Proof of Theorem 4.3. Recall that i}@fL = ﬁ Z£1R9<W§7iW€7i>Re (W:ZWZZ> and ER,L =

2de —1

VLNT Zi]ilRe (FsziWw)Re (W;iWZ’iFZ) . It suffices to prove the theorem by showing that (i)
VT Z(DY, —DY )Tz =0, (1), (ii) NLy2%=20,8W T, -1, = 0, (1), and (iii) vV NLy%T; (A,
*AJV\[Z/T) = op(1).

We first prove (i). Recall that lA)]V\‘,/L = ﬁ ZfilRe(VAV},iWZJ) = ﬁ ZfilRe (W;(’iMWFWXJ)
—ﬁ Zf\il Zglee<W},iMWF WX,kaik> and D}LVL has equal to D]VVVL with Wg and @;;, replaced by

their true values. It follows that

—1 N

—_ A~ Y L'z *

'z (DN = Dy ) Tz = 2223 Re (Wi (My, — My, ) Wi ) Tz
i=1

,yfll—\Z 1 N N
_ LT w3 Z Z Re (W;(,iMWFWXk (a, — aik)>] 'y
=1 k=1
,yleZ 1 N N
SITZ LSS e (Wi (M, My ) w)] r,
=1 k=1
=dy +dy + ds.

where we use the fact that My, = My . For di, we have
FO F

N
2d ,min—1 1 2 2d 7min_1
e S 73t ST Wl [Py, Py | S 3o
=1

Note that
2

/2

HPWF B P‘;VFO

— tr (IR —WiPy WF/T> — otr | Iz —

A ~ ~ ~ -1 ~ ~
WiWeo (WieWro ) WioWr
T T T

ViolWrofl | Wio(Wr = Wy )

~ ~ ~ ~ ~ ~ ~ * ~ ~ —1
Wi Wil Wie(We — WeoH) " (Wi Wipo
= tr ]IR — —+

T T T

T T

- { [I[R e (VVFTWF) ﬁ] =L (e W) Wyt — L, (W W)
L (= W) Wi (VVFTWF) e (W~ o)

14

|



= di1 +dig 4+ diz + dia.

Note that Hﬁ” = Op(’ylL_MF’max) as used in the proof of Lemma A.6. For di1, we have
_ (W Weo \ - _ (WEWeo \ -
dyy = tr <]IR—H* <F°F°> H) < VR|[lz — I (FOTFO> H

T
1-2d max < 1 1-d max_ds 1-2d min
0y (5 v [+ -1 70 )) o, (o ).

by (B.10) in the proof of Lemma A.9, and Assumption E*(iii) given the convergence rate of B.
Similarly, by Lemma A.6 and Assumption B*(iii), |di2| = |di3] = op ('ylL_QdZ’mi“), and |dy4| is of
smaller order. Consequently, we have ||di] < 'deZ’mi“_l HP

L = 0p(1). By Assumption
B(iv), ||ds]| has the same order as ||dy]|.

WF - PWFO

Ai, where A =
WUWF/T, WU = (WUJ, "‘7WU,N), is an N x L complex matrix with VAVUJ' = Wyﬂ' — WX,iBy and
j\i = W;WU7i/T. Note that

A A -1 PN —1 ~ o~ —1
< [ A*A <~ | [ AFA - [ A'A o
«%r@mz&( N) (Ai—H”Ai)JrAk <N> —H*(N> H| H '\
oy i (B2) e
+ )\k—ﬁil)\k f{*( ) Aizzﬁf,ik-
N /=1

_1F .
Then dy = — Y ) | Lr? [1\}2 Y Yl Re (WX,iMWFWXﬁka““)] Pz = Yy dar. For dn, we
have

N k[ AR\ —
For ds, note that we can rewrite a;, = )\:,f <ANA> N, and a; = )\Z (ANA)

'Y_IFZ 1 N A*[\ -1
* N 3 r—1%
| da1]] = —LT mZZRe WXJMWFWXJC)%( N) ()\i—H 1&) T,
=1 k=1
N N Aer\ L
2d 1 1 . ~ 1= 1 o [ ATA
< 212 min ()\»—H 1A») WA —— ST Wkl A
~ 7L NTS ; i i) Wx NT;;H Xkl || Ak N
< 24z min—dx -1 1 N ~ 1% .
< ,min ,max— g )\ _ Hi >\> W 1,
L NT3 ;( ' )X

by the fact that 5\2 (A;,A

-1 /. -
) ()\i - H —1)\2,) is a scalar and the property of PCA in the frequency

domain. Note that

M- HN =W (WW . WXJB) JT — H '

Wi (VVFO N+ Wei— Wx,ifi) -

Nl =N~

. - . R 1. -
Wi (WFO - WFH*1) Nt WiaWe — = Wil
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where we use the fact that %W}WF =1Ig. So

N o
; (Ai 7 Ai) Wi,

NT?
0 ((r2rm5my 41205 [ 5 b i | b
(A.11)
by Lemma A.6 and D*(iii) and Assumption E*(iii). Therefore
[da1[| = Op (DLNT HSH + D2,NT) =o0p(1),
dF,mint2dz min 2+2dz min—3d X, max 1 2+2dz min—2dX max—de

and DQ NT=N" 2L77

, where the last equality in the above dlsplayed equation

. 2d max -~
with Dy N7 = v} * 25W1 NTHV]
—i—N_l 2+dF m1n+2dZ min 2dX ,max dF max de
holds by the convergence rate of B and Assumption E*(iii). Analogously, we can show that ||d2;|| =

op (1). For daz, we have

—1 N
I'y 1 .
o) = VLT szm (W5 My, Wi il A)]
=1 k=1
2d N 1 N A -
goptemt L LS HH =S Wl HAkH Hde
i=1 2 p=1

— Op (lyidF,min+2dZ,min_2dX,max_ ) Hd22

. cein—1 , g
where dgy = (A A) —H* (ANA> H. Analogous to the analysis of (A.11), we have

- (5) o ()2 (3
~ 1

§+dF min—6dF max A —1%x

2 s 3 - * *
<vi o A A

5

+dF min 6dF max

<7

L

dF min — l_dX,max < _1 l"‘dF,min_dF,max_d _1 é_QdF,max_d

x Op << 25W1,NT+’>'2 H5 +N72v;} T+ L7242 ° .

(A.12)

Therefore doo is dominated by do; and thus asymptotically negligible as well.
Next, we show (ii). Noting that NLy;' = NT/(27), we have

NLy¥=2r,30 1, - 51,
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2de.—1 N

;i — Z Ty [Re (WZWE> Re (W;iWZ,i) — Re (W}, W.;) Re (W;iWZ,Z-)} Ty
V%ds_lger Wi Wey — Wi, Wey) Re (W, Wy,

2rNT £ 77¢ ( Zitles T By “) o (WeiWzi) Iz

2d.—1 N

;Lr = ; 'zRe (WZWE) Re (W;iwz,i - W;iWZ,i) Tz = wi +ws.

For wy, we have

N|=

1
2d.—1 2
||w1|| 5 (r}/L Z HFZ (WZzWaz WZ?,WE z) ’2>

By Assumption D*(iii), w12 = Op(1). For w1, we have

2d.—1
(n ZHFZWZZWMH ) = JunJun.

2d:—1 2

2’7
= w11 twWi1,2-

+

2d5 1 9
wip < ‘

NT HFZWZ% (W“ W“)

Z |07 (W2 = W) We
Following the proof in (i), we can show that wqq2 = 0, (1). To study wi1,1, we note that

Wei—Wei= Wy — Wei) — WxiB — Wr;
= Wy + Wl (xi - Er*%) + (WF - WFOg) A+ (WF - wpoﬁ) (xi - ﬁrlxi)

Il
Mu;
§z

(A.13)
/=1
It follows that
2d5 1 72d5 1 R B B 9
wi1,1 5 Z HFZWZZWX z6 ‘ + L Z HFZWZZWFOH <>\ H_lAi> ’
72d5 1 _ ~ 72d5 1 N . 9
A zurzwzw—wﬂﬂ) LS e

— ~ ~ ~ |12
— Op (7}1 2dX,max) _|_ (72 2dF max) + O ( 2d5+2dF max -1 HWF _ WFOHH )
= Op(l)?

by Assumption E*(iii) and (A.11). Then w; = 0,(1). An analogous proof gives wy = o, (1).
Now, we show (iii): v NLV%EFEI (A%T — A]V\[,/T> = 0p(1). Recall that

VNI A,

A A —1
I 1/ NLy%~'T 1 XL A’A 5
- _ ,},LII‘ZD]V\‘,/LI‘Z} Lyr ZZR WiM WFN—E W i
k=1

NT
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—1
=— |y 'TZzDV,Tz| Ny,
and
de o
VNIAET Ay

ro —1 F,Yds 1FZ - ~ ~
=- _’YLIFZD}LVLFZ NT ZR Wx My, NT Zdzag <\W5 kg | ) WrGA;

- VNI, & o o
— — [h7'T2D}, 1| e ZR (WXZ N}; ag (IWesl®) eVt 1A,

_ .= t 171
=—|v, I'zDyn;T'z| Na,,

where we use the fact that GH = Vy Ll Note that the two denominator parts are fyzlf Zﬁ]‘f,/LF 7 and
fyZlI‘ ZDR, Iz, and we have shown that their difference is asymptotic negligible above. So it suffices
to consider the difference N7 and N5. Note that

T

mWT§GMWWOmMﬂﬁwwﬁ

N; — Ny =

de—1
-1p
VNI, Z§ Re | W ,M

NT

de—1 o
FX[T FZZR <WXZ e NTdeg (1Wers ) Wevieh (A - H-lw)
ED1+D2,

1
where we use the fact that (ANA) = V1 by (4.7) and (4.10). For Dy, we have

=

. _ _1
||D1|| gm’yiz,mm‘f'de dX,max 3

7 2 (- i (12.57)) |

k=1

Since by (A.13),

1 3 Fr—1% 2 20 SR -1 2
‘Wa,kj) ’WE k‘] ~ HWX kj(sH + HWFO ()\k - H )\k) H + H (WF,j - WFO,]H) H )\k

)

we have

1

N L
d mm+d€ —d max~— 9 1 T 2
D1l S VNI XQNZZWM—MW\
k=1 j=1

d min+d —d max_l
S\/ﬁ'yLZ’ = 2

1
NT

i O < /NL,}/%J"dZ,min‘i‘de—ng,max
- Yp L

> (e o Wit (38 | () -0 )

5H2> +O < /NLryé+dZ,min+d€_dX,max_dF,max>
p L :
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For || Dz||, we have

T
) ‘mzdiag('%kf'Q)
k=1

It is easy to show the asymptotic negligibility of both D; and Ds by the same reasoning as before
and Assumption C*(i) and E*(ii). This completes the proof of Theorem 4.3. B

i — H7\

N
dZ,min"!‘ds_dX,max_l 1
IDsl| S VNI : (N Zl
1=

A.3 Proofs of the results in Section 5

Proof of Theorem 5.1. First we prove the consistency of B( Rumax): €xtending the proof of The-
orem 4.1 in Moon and Weidner (2015) to the frequency domain framework. Note that S(p ) =
arg mingepp LRmex (8) . In view of the objective function (4.3), and by considering (4.6), (4.7) and
(4.8) together with the property of PCA, we have

2

LRmex (8) = min

1 ~ ~
] i 7”Wy—WX5—Ava
AE(CNXRmaX,WFE(CLXRInaX NT

. 1 «
T e ~NT T [(WY — WxB) My, (Wy — Wxp) ]

L

_ % ST [(Wy = WxB) (Wy — WxB)]
r=Rmax+1

subject to the identification restrictions, where p,.() represents the r-th largest eigenvalue. Note that
Wy = Wx % + AR }’,o + W,, where we put the superscripts to emphasize the true values. Then

2
ﬁﬁ?ﬁ" (B) = min

1 o s
- § AO !/ A /
AG(CNXRmaX,WFG(CLXRmaX NT HWX + WE + WFO WF

2

1 .
> i — |[Wxd + W, — AW,
oe CLxRmax+RO NT H X0+ We F

 AeCN*Rmax+R0 1

1
N . NT Mz *}
W O R 10 NT " [(WX‘S + We) My, (Wixd + We)

= min —
WFecL % Rmax+RO INT

+tr (WoW2) 4 2tr [(Wxd) W2}
L

S (W) (Wxd)] + N7t (WeW?) + N2t [(Wx6) W/
T:Rnlax+R0+1

(2 (Rumax + B°) [We||? + 2 (Rumax + B°) | W] ||WX5||)

{tr [(Wxa) My, (Wxé)*] Ctr (WEPWFWE*) ™ [(Wxa) PWFWQ‘]

1
>
- NT
1

NT

]' * —2zlg 1-d max_de
> b 612 + ot (WW2) + Oy (v2) + 0 (Jell vy ") (A14)

by Assumption B*(i), C*(i) and J, where § = 8 — 8°. Next,

2

8 (Bl ) < LR (8°) = min

7 [+ 20 - A
— W + AW — AW
AGCNXRmax7WFECL><Rmax NT © F F
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1 *
< o I = ot (W), (A.15)

Let & (Runax) =3 (Runax) — B°. Then combining (A.14) and (A.15) we have

o[+ 0p (372) + O ([

1- deax ds
fYL > S 07

which implies H5 Rua) || = Op (’yL o, max) = 0p (1) by Assumption E*(ii).

Next, we prove of the consistency of ER estimator. Let py7 ; denote the j-th largest eigenvalue
of <A&A> (F /FO> for j > 1. Let ¢ = ¢} (1 + \f) , ¢ = cay™* (1 — \/by*)2 and y** = lim;, 00 % It
suffices to show that

(i) £ATi — NTS 4 (1) = O, (1) for j=1,...,R% — 1;

X

KENT,j+1 KNT,j4+1
s ﬁ‘NT RO “NT,RO—FOP<N7%+m_1+(B(Rmax)_5)> D
(ii) =—= > = = 00; and
ANT,RO41 [ct+op(1)]/m
oo\ PNT RO ctop(1) - c 0
ili) =—— < forj=1,...,|d*m| —2R” —1.
(iif) BT RO+ 1 — ctop(l) J - ]

As shown in Ahn and Horenstein (2013), all the reasoning in the proof of their Theorem 1 also
holds here except that fiyp ; denotes the j-th largest eigenvalue of ¥ NT , where U = =X <~5( Rumax) TU =
— szl Xp(S(Rmax)p—i—U by (5.1). Here 5(Rmax),p denotes the pth element of S(Rmax)- Following the proof
of Lemma A.11 and A.9 in AH, we can see it is sufficient to show that for any j = 1,..., |d°m| — RO,

Y, (]UVUT) v (7 )+ ost)

For notational simplicity, we focus on the case when the regressor is a scalar. Note that
uu o uu’ 1 . - / , ) )
NT ~ NT [NT (X 5RW> (X 5RW) NT (X 53‘“*) v= WU (X 5Rmax) ]

uu’
= NT + RnT.

It is easy to show that ||Ry7| = O, (5 Rmax) under Assumption B and C(i). Then by Weyl’s

inequality (or Lemma A.5 in AH) we have
uu’ uu’ Uy’ <
v, (NT) oy (g )+ o e =05 (7 ) + 00 (B (A16)

Next, we denote ZF as the matrix of first k-largest eigenvectors of (]]\,—[g normalized by E¥ZF /T = 1.
Then for any k= 1,..., R,

o (55) o (rvos o) S (35) e ).

as ‘tr (%E’“R"k ‘ < H 1=k ’

(A.16) and (A.17) hold for arbitrary j,k = 1,..., [d°m|—

RY, which implies that ¢; (W) (8 (UU,> + Oy (6 Rmax)' The remaining proof will be the same
as in AH using []]V—%: and the mock eigenvalue jiyp o so that the consistency of our ER estimator is

ensured by the consistency of B( Runax)- B
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B Proofs of the Technical Lemmas

Proof of Lemma A.1. Let § = B — 3°. The proof follows closely that of Proposition A.1(ii) in Bai
(2009). By the decomposition in (A.2), the fact that Ig = FOA/TAF;F, and the definitions of H and

G, we have

~ —1
R FOf AAN X
FVnrp ( ) ( > —FY=FH 1 - FO°

T N
~N\ —1
FYf AMAN !
:(Il+"‘+18)( > ( > =+ +13)G.

T N

Then T3 — T3

~ _1
Pt = | < T (I + -+ DD ).

. o\ =1 /a1
’FVNT (EE) ™ (32) 7 = o
Note that 72 FH = +/R. As in Bai (2009), it is easy to argue that H is asymptotically nonsingular,
so is G. Then |G| = Op (1) and it remains to derive the order of T3 || I¢|| for £ =1,...,8. First,

N 2
Lo Xl 502 et |1 £ 512
< — =
< % 3 R o 4 2] = o (J).

where we use the fact that 1= Zf\i 1 |X;]> = O, (1) by Assumption B(i) and Markov inequality.
Next,

T3 || =T

1 N /
NV
N7 > X668 X[ F
=1

T3 ||| =T"2 5

N N
1 S\ 0/ T 1 HXZHF ”)‘lHF
N7 z;XiékiF Pl s+ Z; R e
1= 1=

VT
1O ) & ) N .
§<NT;HXiII> (NZZIHAZ-H) 18] = o ([13])

where the last equality holds by Assumption B(iii) and B(iv) and Markov inequality. By the same
token, we have T2 4] = T2 Hﬁ SN FO)\ZS,X{}%H =0, (H8H> . For I3, we have

1 1 & 1 o (12X el
T2 ||| =T 2 —§ X, 06 F <7§ ik U1 | ¥
? [l “\NT — 108 T N4 T

(sEmer) (s er) -o. (.

LY eing{FH =0, (H3H) For I, we have

-t

|

and similarly, T2 || I5|| = T~z

2 2

<L

1 _
~N|NT :OP(N 1)’

N
§ /
)\7;51'

i=1

_ 1
Tl =

1 N
e
ﬁF E 1 )\Zst
1=
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where the last equality holds by the fact that
N
S ad
i=1

2

1 N M N
R —_ ! < — F
NT NT Z: (sies) EQGA) < N Z: 75 =0 (1)

by Assumption A(v), B(iv) and C(ii). Therefore T2 ||Ig]| = Op(N~2). Analogously, T~ ||I;||* =
(2

% H ﬁ Zfil Ei)\;FO'FH =0, (N_l) . Note that the orders of terms I;—I7 all replicate those in (Bai,

2009, pp. 1267).

Now, we study Ig. Let Ig; denote the ¢t-th row of Ig, which can be decomposed as follows:

I8t NT z:gzt6 F Z Z5zt5st/
= %Z’VN (s,t) FL + = Z < Zgztgzs YN (s t)) Fl=TIgq + It 2,

where vy (s,t) = 5 XLy E(eagis). Then T7H|Tg|* = T, [ Tsel® < 2T S0, [ Tsea ]l +
271 Zthl |]I8t72\|2 = I} + I1,. By Cauchy-Schwarz inequality and Assumption C(ii),

1 (1.2 )\ (1 ) AN ) )
I <= | = - nll < = 2 =0 (Tmax4 eyl —2) )
1_T<T;;ms,t>)( SF)NW;;W@» )

For 115, we have

T T 2 11 T T
mep 3 St <1335 e
1 1
1 1 & 2\’ 2
<3| X (ER) z(z@m) ~ 0,07
s,u=1 s,u=1

where £, = + ZZ]\L 1 Eit€is — YN (8, 1), and the last equality above holds by Assumption B(iii) and the
fact that

1 I T 2 T
=) Z E <Z fstfut) § Z maXE|§vt| (B.1)
t=1 u=1

s,u=1
T2
-o(3)

by Assumption C(iii). Then T | I5]|* = O, (N—1 4 pmax(dde,1)=2)  Therefore by the invertibility of
R 2 112
H, we can conclude that = HF — FOHH =0, <H5H + 5N2T> .

T2
— max[E |—

N 4
N2 o § 81155111 - 5zt5iv)]
=1
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Proof of Lemma A.2. Note that + ZN \i EiF =+ Zle \; F L +4 ZN \; M = A +

Ay. For Ay, we have

N N
1 e FOH 1 e/ Fo _
Note that
o 1 X
E|| 4] = Wi;IE (elFOFYe;) (M)A N2T2 ,]thsZIE citgjs) E (FYFNN;)
it |E (FYFNN)| S8 &
< max jt s |N2(T; s8N z)‘ Z Z “E (Eit€js)‘
ij=1ts=1
M N T
= N272 Z Z |E (eit€is)| = O (N71T2d571> ) (B.2)
i,5=1t,s=1

where the second quality holds by Assumption A(v), and the second inequality can be derived
from Assumption B(iii) and B(iv) using Cauchy-Schwarz inequality, and the last equality holds by
Assumption C(ii). Then A; = O, <N_%Td5_%). For A,, following the proof of Lemma A.1 and

;e\ —1 ’ —1
recalling that G = (F OTF ) (ANA) , we have

P & E(FePE) X ag(FHﬂ—FO)
N & T N &7 T

N
Z (L +--+ 1) GH

=(a1+---+as) GH.

Then it remains to bound a,’s by following partly the proof of Lemma A.4(ii) in Bai (2009) and using

some results derived in the proof of Lemma A.1. For ay, we have

N N
1 FOVIRIEN
las]l = ||N2T222Aie;xk55 X, FG
=1 k=1
N
a2 1 1 1 ~
<T7 28| —= — X 2 FH
: NTZ<N || kn) e Fa(iel
k=1
2\ 3 1
ez 1 N1 || 2/ X )\ ?
ST 8| | 7 2o 3 | 2o i e (NTZHXku>
k=1 1= k=1
1
N N 2\ 2
_ix2 1 1 EETPRERTINE:
= 1=




.55t

S;iﬂzjizm@ﬂﬁﬂzo(NAT%)

i,j=11,s=1

1
< max— Z ‘IE )\’)\ thst)‘ NeT Z Z E (eitgjs)|

by Assumptions B(i), B(iv) and C(ii). Similarly,
1 ZN:A»E’. 12N:X SNFYF ) @
NT D

=1

laz|| =

N

N _
ng ZAané/\’ (A];A>
1 L1
5NT21<N 3 et ) 4
1 XL || %\ * 1 &
WZW ZAiE;Xk (NZ”)%Hz)

k=1 =1 k=1
25),
1 Y 1
NT 2 @E:mﬁ
1 N N 1
WA TS
TR 2\ 3 | XN B
(NTZN? > higiXi (NTZHEkHQ>
k=1 =1 k=1
T 5”)

[N

and

0, (N—% de—3

Next,

1 Y 1 )
— N e [ =S FMSXLF

L1 Y 1 &
—= /
<T 2NTZ< NZ)\,@-F
k=1 =1
- 0y (-t

where the last equality holds by using Cauchy-Schwarz inequality, Assumption B(i) and B(iv), and

laall = |

Il rm) I+

the same reasoning to obtain the order of A; above. For as we have

1 1
NT N

/XF

as|| =

=1 k=1
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A 1 Xl
< %7 veal | | o ks aile
NZ(HWZ )(m ! ) !
1 1
N 2\ 2 T N 2
R 1 1 1 1 (| Xk ||
< _ _ _ _
<[] N@m?m) ¥ 3 (g el )
- o v
Note that
1 L1 Y 1 1 &
Blon) = 7 2 7 2 BN Eleus) < max[BON) 77 2 7 2 [Bleusyl =0 (V7))

by Assumption B(iv) and C(ii), and

kY ( Zuektu ) (}Vi ’XT’“”2> —0,(1)

t=1 k=1

by Cauchy-Schwarz inequality, Assumption B(i) and C(i). Then |las|| = O, (N_1/2 HESH) For ag, we
have
1L (1 & -
ag — ]VTZI)\ZEZ (MZF/\kng> G
N
N2T2 Z N 30 Feh, [FOH + (F — FH)| G = ag + aga.

i=1 k=1
Note that E Hﬁ Z L NiEs FH N2T2 Zu L E(gigis) E(N N FLFs) = O, (N—1T2d5—1) by using the
same reasoning as we analyze A; above, we have

2

a1 || = HN2T2 > e FZAkekFHG =7 ZA eF| =0, <N71T2d571> ’
= k=1
and
N
lasa| = H ~IT Z/\ eiF > M, (F FOH) G
i=1 k=1

N
1 ~
NT 2 M (F—FOH)H

1 N
=1

; —FOHH

1 1 1 Y : 1 & :
<0, (N*aTdrﬁ) <N > H/\k”2> <NT . Hfsk\2> T
P k=1
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R R

by Lemma A.1. Then |jag|| = O, (]\7_1T2d€_1 4+ N"37%3 (HSH + 5&%)) . Next, for a7 we have

R 1 Y
laz|| = NT i€y (NTZ%)\;FO’F> G
=1 k=1

1 XX AA -1
/ /
NoT 2 2 NN ( N )

k=1 1=1
1 L1 X 1 Y
S 2= D e || D emk
NT = ||VN i=1 F VN k=1 F

A
3~
M=

N 2
1 _
ﬁ E )\’L'Eit = Op (N 1)
=1

t=1

using the same reasoning as above by Assumption B(iv) and C(ii).

Lastly, we study ag by making the following decomposition

N N
1 A
a8 = Sagm D M€Y Eke, [FOJEJF(F‘FOHHGEG“””'

i=1 k=1
For agy, we have
N N T T
as1 (HG)_I N2T2 Z Z Ai Z CitCht Z s s
=1 k=1 t=1 s=1

Note that
N

lagiall < Tﬁ kz

[P

1
2\ 2

L, NI
T Z Z Aileiert — E (k)]

i=1 t=1

N

1
—_— Nilewer: — E (eje
LSS Muek ~ Bleusi)

i=1 t=1

N
< O Tds Zl

by arguments as used in the analysis of A; above and Assumption C(ii). By Assumption C(iv),

R ’
\/ﬁ Z )\1 €zt€kt 5zt5k:t)]
=1 t=1

1N
Blv 2




N N T
1 1
N Z NT Z Z i) E{leitens — E (citenr)][ejsehs — E (€558ks)]}
k=1 i,j=1t,5=1
v NI
= N2T Z Z |cov (git€kts €js€ks)| = O (T2d5) .
igk=1t,s=1

It follows that that ||agia]| = O, (N_%Tmf*l). Next, noting that

1 N N 1 T 1 T
sl 33l (13 ) | 3|
k=1 i=1 t=1 T.S:l
| I 2\ 2 ;| NN 1 T
E[lasy)| < [ maxE | ||—=S " epeF E(AJ)Z (eie
ot < | me | 52| ) | 2233w () (3 oo

< MT?%

N T B
Nz\fZ;T;UE 52t£kt|—0( N—11d: 2)

by Cauchy-Schwarz inequality, the reasoning for A; above, and Assumption C(ii). Then ||ag|| =
Oy <N’1Td5_%) and ||agi|| = OID(N_%TMf1 + N’leE_%). Next we analyze aga:

N N
_ 1 -
ageG~ ! = T E E Ni€jerel, (F - F0H>
i=1 k=1

o1 (P FOH) e (F - Fo)

1 N N T
SN ST Tt ]; <T 2 2 AE e ) 7

= ag2q + agop

where &, = \/% Zf\;l 23:1 Aileiert —E (ciere)]. It is easy to show that < fc\;l E|&]* =0 (T2
under Assumptions A(v), B(iv) and C(iv). Then by Lemma A.1,

P& e (P FUH)
e P

T (S EREA v al (F FOH) 2
_W{N;Hsku} B

k:

= (NT)"?0, (Tdf) Op (H(SH - 5]—VlT> :

1/2

and

11K (1 o (F - FoH)
||(182bHSN NZ fZZ/\iE(&tEkt) B —

i=1 t=1
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1/2
N 2y 1/

T
% Z Z NE (€i€kt)

=1 t=1

1N
s 2

k=1

= N7'0, (1) 0y (|3 + o5%)

S0 flasall = Op (V737912 4 N1 (||3] + 054 ) ) and flag]| = Op(N~3T21 4 N7IT43)
0y ((N=2rd1/2 4 N1y (|8 + 03%) )

In sum, we can conclude that

aF

(N 3743 f N1 4 N3

)

which then completes the proof of Lemma A.2. W

Proof of Lemma A.3. Consider the following decomposition of Js:
1 X N N N

1 - 1 1 .
Js = XiMp—= > UFGN + —= > X[Mp— k= Q) FGXi = Jg1 +
*TNT P ! FNTkZ1 b ’+NTZZ; i FNT;(@C% k) i 81 + Js2,

where Q) = E (exe},) and Jg1 = Anp. For Jgi, we have

1 & 1 &
—_— - / -
il = || 77 22 XM ZQkFG)\ NT >
i=1 k=1 sp

1 1

. Nz 2 , Z 2
S NoT2 Z Z E (eitgis) E (ercrs) | < T2 Z (s | =0, (Tmax@da’lm*l) ;

ik=1t,s=1 Pyt

by Assumption B(i), B(iv) and C(ii). For Jga, we make the decomposition

N
1
X/Mp— Q) FOH
Js2 = NT Z FNT ; EkEL — k G\
N
ZX MFNT > (erer — ) (F = FOH)GA; = Jsor + Jsoa.
= k=1

For Jgo1, we have

N N N
1 ~ 4
Jgo1 = N2T2 ; EZ: Ek{:‘k Qk) FYHG); ] N2T2 ; ; |:XZ{TFF’ (5k5;€ — Qk) FOHG)\z:|
1Y 1 L& 1.
fﬁz GFPHGA = 555 ) ) [X{TFF’ (exek — ) FOHGAZ-]

i=1 i=1 k=1

= Jgo1a + JR210,
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where (; = \/% Z]kvzl % Zthl Zstl Xt (erters — E (ereers)) FY. Note that

N T
1 1
E||¢]* = N Z T2 Z E (X} XiuF)'Fy) cov (extes Einiv)
i,k=1 t,s,u,v=1
T

N
1 |
< max [E(XpXaF(R)| = D 75 D loov(enens: cwcin)| = O (T4d5>,

i,k,t,s,u,v
o i,k=1 t,s,u,v=1

by Assumption C(iv). With this, we can readily show that Jgo1, = Op(N_%TQdfl). For Jga1p, wWe

have

1 N 1 T T
‘ T o7 20 O Prlewers — E(ewea)] Y

k=1 t=1 s=1

N
1 .
sasell S fN*ZHXZ‘FH Il

N T T
| T IS W RN P
1 1 M1 LT - . o
N\/7T ka_:th:;; t [5kt5ks_ (5kt5ks)] '
| N rr
VNT ||[VN Z ZZ ( - HE ) [exters — E (reers)] Fy'
punri e

= ﬁ {Js2161 + Js2102} -

Using the same reasoning as used for Jgo14, we can show Jgo1p1 = O (N_%Tmf_l) In addition, by

Lemma A.1 and the fact H N Zk | (exel, — H = T2+d£ under Assumption C,

= 0p (b (] + 43)) -

Then Jgo1, = O, (N 3Td==3 (H H + 5NT)> Next, for Jgoo we have

1 N
ﬁz Ekgk;_Qk;

10
[ Jg2102]| S —= HF - FOHH '
vT ot

N N
3 2 KM iz (eueh — ) (7 FOH) O
=1

LS (a0 Lo rom] = 0, (vt (] +45%))
k=1

In sum, we have Js = Ay7 + O), <N7%T2d5_1 + N-z7%~3 (H(?H + 6&%)) , which finishes the proof
of Lemma A.3. W

(| Js22| = '

<

Proof of Lemma A.4. Following the proof of Lemma A.8 in Bai (2009), we first study
1N
~NT ZXZI (MFO — Mﬁ) €i
i=1
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by making the following decomposition

N
1
=1

N
1
=1

y Exi(F-Fom) o NXI(F-FH)
:NTZ T HFEH_NTZ T (F_FH) Ei
=1 =1
1 K X/FOH 1 XL x/FO FOr g0y 1
o F0H> _ i \gH — Fle;
TNTL T ( +NT; T < T > €
=a+b+c+d.

For a, we have

(£ - HFO) <NTZZFX”5”)H

T
lall = Z
s=1 i=1 t=1
T )\ 2 . 2\ 3
TSI LRV DI ES 3 R 3) LB
s=1 i=1 t=1
-0, (14 (] +4)
by Lemma A.1 and the fact that
LIy T 2
E\ 72 | v 2o 2 B Xaseie
s=1 NT =1 t=1
A N T
~ T £« N2T? > > E(eiei) B (FYEX(Xs)
s=1 i,j=1rt=1
< I??}SE(FO'FOX/ st N2T2 Z Z |E (eitejr)| = O ( 1T2d5_1>

i,j=1rt=1

under Assumptions B(i), B(iv) and C(ii). Next, for b we have

N X! (F FOH)

ol = NTZ

. /
<F _ FOH) e

1
2\ 2

1“021TT _ —172 (|3l _ s—1
(M) (L35 0, ( 2 ([ 55

|
=) Xiseu
N=

by Cauchy-Schwarz inequality, Lemma A.1 and the fact that
1 Il X T, N T
72 | % ZXisffit Z f5E] Z (ireje) E (XiaXs)
t,s=1 i=1 =1 ij=1t=1
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< max{E( Xjs) N2T Z Z [E (eieeje)| = O (N~ )

4,7,8

i,0=1t=1
Next, we study ¢ by making the following decomposition:

N -1

1 X/FO (FYF0 N /

¢ NTZ;J‘ T ( “

N -1

1 L XIFO ( FOFO . :

+—S" 2 (HE - < > (FE~ - FO) i =c1+ 0o
NT po T T

1 L xR0

o —1
For ¢y we have, by denoting Q = HH' — (FOTFO) that
'F N /
CQ(FHT - FY) -

lleall =

NT «
=1

— % )» [E; (P - F) (Xfo)} vec (Q)

i=1
SH)} vec (Q)

= [Op (N*%Tdfﬂ + 0, <N*%Td€*%

by the proof of Lemma A.2. Next by Assumption B(iii) and Lemma A.1,

o (F - roit) = 0y (J3] + 63%)

and the same order holds for TF’ ( P FOH ) Then pre-multiplying TF/ < — F'H ) by H' and

using the transpose of TF, (F — F0H>, we can obtain

FO/FO

Tp— H' H=0, (H HHNT)

where the same order holds for I R—%H H' and thus for Q). Therefore ¢ = O, (N 3T~ (H H +4 NT) ) .
For ¢, we have by (A.2) and the proof of Lemma A.1 that

N -1
1 X[FO (FYF0 oV
-5 FH —F)
T NT < T < T ( &

N -1 1/~ —1
1 X/FY /0 g0 AA F' o
:NTZ Zj‘ ( T ) <N> ( T ) (II+"'+IS)/€7JECI,1+"'+CI’8-
i=1

- v oo\ =1 7N =1 /0N —1
For ¢1; we have, by denoting G = (FOTFO) (ANA> (Ffo) that

N X'F

1 XFO 1
|Cl,1||=HNZ L GI{&‘

NT 4 T
=1

Z F X108 X

I
—_
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21 iHXZfFO
N\/Ti:1 T

led == 1] 577 ki 1X4l* = O <H$HZ>

by Assumption B(i), B(iii) and C(ii), and the fact that G = O, (1). For ¢; 2, we have

N N
1 X/FO .1
= G Aed X,
||Cl72H NT ZZ; T NT ; k ]C€7/
N N
Nl X/FO 1 L
Sl v 2| 7 ‘ N || 2 Kheii
=1 k=1
N 9\ 3 N 2\ 2
A1 1 X/FO0 L
=0, (JV_%TdS_l/2 ’ 6 ) )

by Cauchy-Schwarz inequality and similar arguments as used above. Similarly, ¢; o = O, <N —37%3

for ¢ = 3,4,5 as in the proof of Lemma A.1. Let w be a P x 1 nonrandom vector with |w| = 1.

N

1 ’X’FO
- NT; T

1 N
NT Z F'F )\kskel
k

FOpoNTL oAt 1 N1 & ’X’FO
_tr<< T > <N> NT; Z)\kskal

k=1
N N
1 o1 W' X!
5 N;Akgkngi L
1 N ’X’ 0 (1)
1 NEa
NTk:1 N

where the last equality holds by the fact that

2

A
Ve D
NT i3

t=114,j=1

by Assumption B(i), B(iii) and C(ii), and similarly E Hﬁ Zfil giw' X!

corrected. Therefore we denote ¢17 = —Cnt = O, (%) Lastly, for c1 g we have
N N N
1 X/FO .1 L or 1 X’FO 1 0 ,
c18 = NT ;1 lT GNT ,;1 H Fepere; + NT ;1 NT ,;1 <F F ) ELELED

= %Z Z E P‘;)‘J]

N
1
(eitejr) < mgx ’E [tr X N z::

= 1,81 +C1,82-
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2
= O, (1). Note that the

probability order of ¢;7 is the same as that in Bai (2009) and it is a potential bias term to be



Note that
N

1 170 N N 110 N
c181 = ! Z X’f CNJ]\;T ZH’FO’ek[ezsi —E (e}ei)] + L Z X G Z H'FY:.E (eei)
k=1 ‘

NT 4
=1

= C1,811 + €1,812-

For ¢y 811,
1 L,
|werg11| = N2 Z FOGH'FYelei — E (ehe) W' X]
ik=1
]‘ 0s / / /
< NIToE Z; FVlerei — E (ehe) Jw' X
11 &1 & Nerr &L e :
f,f N; ﬁg%&— 5k€z)] 'X] (NT;HF /5kH>

wh—t

o0 (- i74) 0 (1) =0, (v 177

where the last equality holds by the fact that

2

1| 1 &
N Z NT Z[sﬁﬂei — E (ehei) ' X]
k=1 =1
W X! X jw
= N— [ ] Z E {[eiert — E (citert)] [ejseks — E (55€ks)]}
t,s=1

W XX 1
< rrzlz;xIE [ ] Z Z E [(extcit — E (exteit)) (ers€js — E (rs€js))]
1,5,k=1t,s=1

A

N T
1 —
VT 2 O leov(eush g = O (N1

ijk=1t,5=1
by Assumption B(i), B(iii) and C(iv). Next,

N N
11 X/FO .
= **E Gy H'FY
levsaz HN N&Z T~ & o

E (e,€1)
T

where the expectation of the term is bounded above by

N

N <H“ | ”F%D PN

< M X’F0
-
- N

FO’
max
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So c1812 = O, (N_lef_l/Q) and c; g1 = Op(N_%TQdE_l). For ¢ g2, we make the following decom-

position

N
1 X/F 1
c1,82 = g -

R /
NT T NT (F — F0H> €k [6262- —-E (6262‘)]
1

.

MZEMZ

N
1 XIFY 1 © o) ,
NT E ;‘LT GNT (F — F H) LB (5k5i) = C1,821 + €1,822-

=1

B
Il

1
For the first term on the r.h.s., we have
1

y

N T 2

N
1 1 1

e s21ll S — E — § X! E lexieir — E (epeeit)]
T\N el | EAK S e

- 1t0 (), (] 55) 0, (-7

(F— FUH)Isk

D=
A
k‘

H P4

1/2Td€—15 1 )

by (B.3) and the derivation of order of the term As in the proof of Lemma A.2. In addition,

lc1g22l S NLN Z HX/FO i = O (N_ (H H +5NT))

by Lemma A.1 and arguments as used to analyze cjgi2 above. Therefore we can conclude that

=0, (vt 57) (] )
Lastly, we study d.

H jo FUH) -

1 X/F0 1 1
F/
NT; @ TN

ar-0,( (5 1))

we we use the fact that ||Q|| = O, <H3H + 5]_\,1T> derived above.

Il = ‘

X/F°
]TH [P Q)

N

As in Bai (2009), the approximation error of the second part,

N

N / N
1 1 1
T; (NkZ:laszk> (MFO _MF) g = ]\U’;Vl/ (MFO _Mp) -

can be expressed by replacing X; with V;, and apply the same arguments and probability order as

above. Then we concludes that

1 N
NT Z“szk F]@

=1

1 N

ﬁz XMFo—fZaszkMFO g — CNT
+0, ( N"27% 2 H H+5NT)+H H + N"27%de- 1>
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This completes the proof of Lemma A.4. B
Proof of Lemma A.5. (i) Note that
1 & WpW;
F
3 WMy, W= S W - S e <
i=1
under the restriction Wr € W = {WF : W;WF/T = JIR}. We first study A;. Recall that X, ;

denotes the p-th element of X;;. Let Wx, ; denote the p-th element of of Wx; and Wx,; =
(Wx, i1, -, Wx, iz)'- The modulus of %W;‘}p’iWE,i satisfies

N
[N

1
’ TW;(P»iW‘E’i =

L

1 1

ZWX;MJ gij| = TZWXp7ijW;(p,ij TZW‘EZJW:W
Jj=1 Jj=1

1
2

FXp,i(’YL) F i(7r)

by Cauchy-Schwarz inequality. Note that F X, (vz) and Faﬂ' (v7) are averaged periodograms of
{th};[:l and {e;}_,. Under Assumption A, A* and G, we can adopt Theorem 1 in Robinson
(1994) to obtain

Fx E.;
M&landwﬁ)lasjﬂ—)m, (B4)
Fx,.(r) Fei(ve)

where Fx,, (v.) and F(yy) are the “pseudo spectral distribution” for {th}z:l and {ei}l_,,

- 1-2d ~ v
respectively. Then we can conclude that Fx, , (v.) ~ ji )Q{jfxppv **and Foj (y,) ~ 11(12’25 7}1_2‘15,
where T'; x x pp denotes the (p, p)-th element of T; x x. This result is compatible with our Assumption
B*(i) and C*(i), and implies that for each p,

ZXX,pp 1 2dx, | *

1 ” 1
ice  1-2d.|°
‘ 1-2d. 't

1
FPNRE

=1

1
N 2
1 7, X X pp’r l_pr_da
il ; —o.(1
Ng<1—2dx)(1—2d€) L orll)

by Assumption A*(i) and the fact that dx, and d. being strictly less than % It follows that

N
Z Wva WE

P 1 N
2 _ * .
||A1H - pz:; NT ;WXP,Z'WE{L

with dx max = maxi<,<p dx,. Next, for Ay we have

N
1~ 1
A = N Z ( Wx ZWF> (TWFW€,i> =N ;Ai,ZlAi,m-
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Note that A4; 21 is a P x R matrix and A; 922 an R X 1 vector. Consider an arbitrary p-th element
of Aj21A; 20, which is given by Zle A; 21 prAi 22y, where A; 91 and A; 92, denotes the (p,r)-th

element of A; 21 and the rth element of A; 29, respectively:
1 - 1 -
Aio1pr = TW)*(]J,,‘WFT, and A; 22, = TWE,We,z‘,

where Wx, ; and WFT are both L x 1 vectors that refer to the DF'T of p-th element of the regressor X;;
- dm —1
and the r-th element of F; (which may not be the true vector). By construction Wg. =~ LFT *WE,.

=0 < é_pr) and
p \ VL

Then using the same reasoning that analyzes A;, we obtain ‘%W)*(p z'WFT

‘%W;TWE’/L'

1
=0, (72 ds) uniformly in ¢. It follows that

2
2(1=dx max—de
- Op (7[( X )) .

< max

142]* = Z

p=1

E § Az21pr 1,22,1

r= 1

E Az21pr 1,22,1

That is, A2 = O, (fylL 4 max—de ) . In sum, we have

1 N
NT 2 VM
i=1

(ii) and (iii): The proof is similar to that of (i) and thus omitted. W

sup
V~VF ew

=0, (1).

Proof of Lemma A.6. Let 6 = 8 — 3. As in the proof of Lemma A.1, we consider the following

eigenvalue problem

N
1
NT ; (WYz Wx zﬂ) <WY,i Wx 15) ] Wrp=WprVNL (B.5)
By expanding Wy; in (B.5), we have
(AN 1 & - 1S
WeVNL = = Y Wx,i00 Wi ,Wr — —— Z Wx iO ;Wi Wp — —— Z W OW2 W
T & NT ¢ NT ¢
N
ZWFoAM/VXZWF Zwma Wi Wr + NTZWFOAW W
5 1 e e
! * * *
; W MW WE + = NT Z WeiW2Wr + o ; Wro N Wi Wi
E]1+..._|_]~9. (B.6)
Since INQZVNVFO ( ) < WF/T) we have WFVNL*WFO </~\//~\/N) (N;OWF/T) :f1+"'+
I5. Recall that H = </~\/A) < T F) Vz\; Then
I 1 . - . -1/, -1 - -
WFOHH =73 {WFVNL (W;OWF/T) (A A/N) - WFO] HH
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1

= T2

(h +-- fs) (W;}()WF/T>_1 <1~XIJ~X/N> _1}~IH
< ’%(HHH+ [ v

given the invertibility of W;io We /T by Proposition 4.1 using the same reasoning as in the proof of
Proposition 1 in Bai (2009). It is sufficient to study Ii,...,Is. For I;, we have

N
B 1 . .
T || 1| = T || o D W 08 W
i=1
N N
]. ]. 2 1% 2 _ 1 2~ 1 ]. 2 ] % 2
< <> Wl HaH T4 ||We | S & 30 1wl 3]
NZT NZT
— O ( 1- 2dX max) — Op (7272dX,max SH) ,
where we use the fact that T~ 2 WFH = VR and w7 SN Wxal? = 0, < 1-2dx, m‘”‘) by following

arguments used in the proof of Lemma A.5 under Assumption B*(i). Similarly,

N
~ 1 1 ~ 1
| =7 S — S Il || 73
NT3: =

lN 1/21N~21/2~
{mrg et {FRBI 1

— 0 ( 1/2 dX max) Op <7i/27dF,max) HSH — 0p (’yzde,maxde,max

[

N
1 A
T2 Wx 0N Wik W
=1

)

- . -2
by Assumption B(iv), the fact that \; = F;l)\i and that % HWFO = O, (1) by following arguments

used in the proof of Lemma A.5. Analogously, we have

N
T3 ||| = T2 ]\;T;WX,iSWQiWF =0, (’yl e )
1= _1f 1 N ol - 1—d —dr || 3
] = A <o (e )
1| = _1l 1 N / 1—d —de || %
T2 ||| = T2 M;WméW}le =0, (" 9]))
For I we have
1] = 1 N 1 S
T 2 IGHZT 2 MZlWFO)\ZWEZWF S 1 Zl)‘l E*,z
1= =
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by Assumption C*(i) and C*(ii) using the similar reasoning as in the proof of Lemma 1(ii) in Bai and
o

the reasoning as used in the proof of Lemma A.1 and consider the transpose of the [-th row of Ig as

Ng (2002). Note that I7 is a conjugate transpose of I, so T~ 3

I6H. For Iy, we follow

N

L N
1 1 . w o =
Ig; = NT ;Z;E WeaWei) Wek + = Z <N ; WeaWea — v (K, l)) Wrk = Isn + Is o,

where ’yN (k1) = & ZZ LE ( =W, ) and ka denotes the k-th column of Wg. Note that

2

E (W-aWZi) Wrk

.MZ
M=

@
Il
—
e
Il
—_

I
<
j}—‘
]
E

E (WailW;i ) (W*]lws jm) WF kWFm

—
.
<.
Il
—
=
—

Efw

s]l €7jm’

_.
.
<.
Il
—
=

IA
<
j'_l
Mh
WE
=M= ;M-
=R
=
%

IA
3 -
3
™
]
]
=
5
§m
\g
3

by Assumption C*(ii). In addition, + Zl 1 ng lgH =0, (N 152-= 4d5> following the same reasoning

as above and using Assumption C*(iv). Then T~ 2 Ig” =0, ( 1/27};2‘15) . In sum, we have

T I ! dx max l_d max l_ds < —= max —=
WFOHH: (72 - <72 g >H5H+N571Ldp T+N 12d5>

= Op <5W1,NT HSH + N_%,Yi dFmax ds) ,

dX max l7dF,max lfds
where dyy NT—’YL i +77 -

Proof of Lemma A.7. The proof of this lemma parallels that of Lemma A.2. Note that

1 VV>|< WF N W E[ 1 N Wp — WFOH
N;)\i N; Zed 70T NZ: ( ) = A, + A». (B.7)
For Ay, we have
a1l < & 7 HZA Wi

1_ 3_ _
— O ( 1— 2dFmax> Op <NéL%"}/[2/ dE) — Op <NéNé72 2dF,ma,x d€>

38



by B*(iii) and D*(iii), and the fact that H = O, ( 2, "““‘) as in the proof of Lemma A.6. Next,

we denote .
L (Wi W NMAY 2, min—1
G= ( T ) ( N ) =Op (’YL ) '

Following the proof of Lemma A.6, we have for As that

(WF W H)

<.

1 N
NZ_:A

1

1N
N2

.

. iA W;Z-<I~1+"'+I~8>éﬁ

NT 7

NZ,:1 T

1 N

WZ)\ <I1+'--+Ig>za1—|—---+a8,

i=1
using the fact that HC:‘I:IH = HVA?iH = O (1). For a;, we have
N

1 1
N,ZA TW“NT ZWX’“M Wi W

=1 =

S ;Tiuwusir

k=
3
<N-% ) on i) B - (b e

by Assumption B*(i) and C*(i). Similarly,

las]l =

l
T2

)

N
1 1
N E i TWElNT E Wx k(s)\kWFOWF

=1

laz]| =

1 ||E 1 &
S — (IS AW — S IWxkll Il 7% [Wo | 3]
i=1 NTz 5

1 || 1 & s
* _l 5
S — [z NTDWXW} T4 [Wiol| 3]
= k=1

l_ds — max - max = —= g_d max_d max_def
~0, (N—éryi >0p (3 m) 0p (/27 |38 = 0y <N b2 drmandx,

S

N
zlvz “NTZWX’“(; S

- LN 1/2 | X 1/2
we L wsa} {2 o
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=0, (vbak Y ou () 0y () [ = 0y (-bok 5

5),

1Ll 1 iy .
laall = || & ;/\iTW;iWZWFo)\ké Wi Wr
1 || & N .
> aw Wkl Il 772 |[W H(SH
T |2 ;’;\ Xkl ARl T2 [Wopo
. N 1/2
1 ~
E AT 77 Wil |3
T NT: Z NT ];IWMH} 2 [|[Wiol|
~ 3_ _ _ ~
:Op (N > < 1/2 deax> p(,y}l/z_dF,max> H(SH :Op <N5712/ dX,maX dF,max de 5H>7
and
AR | 1 I o
llas|| = NZMTW;"W ;WE,MS Wx sWr
;N 1/2 L 1/2
{NTZHWMH} {NTZHWX,W} 3]
k=1
1 **ds 2—d. 1/2—d max < —d ,max <
:op<N by )op(y;/ )0, (712 |3 = 0 (N b3 5).

For ag, we have ag = N2T2 ZN AW, Z]kV:1 Wpo)\kW;k [WFoﬁI + (WF — WFoﬁ) = ag1 + a2
Note that

N
1
Ha6,1|| = HN2T2 Z)\Z WFO Z)\kW kWFOH
i=1

2

< |rrd| H Z AW W o

< %_dF,max
~ VL

% Z AW Wio
=1
_ O < dFmax) Op <N71L71’y%72d6) Op (,y;zdF,max> — Op (N 1L 1 3dFmax2d5> ’

by Assumption D*(iii). Next
lag 2|l = H REIE Z AW W ko Z NeWZ (WF - WFoH) H
Z A,

l_d max < _ 1 1—dp max—de
> p<vz =)o)

2T
(o
=03 (3 e [+ ),

T—% Wl T2

W — wFof{H
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1

1 d ,max lfd max 77d5 2
by Lemma A.1, where dyw1,nT = 7] X (’yi fomax 4 i ) Note that the order of H @ Zf\;l MW,

is obtained because

q R
AWZEN = = 5 E (AXpAi) E (WZ,W,
NT? ; T Tz‘,kz—l ( k ) Ek)
T
< Hil%x ‘E ()‘;c)”)} N2T Z Z UE (W;ﬂWE,kl)’ =0 (N_17£_2d5>
’ ik=11=1

by Assumption B(iv), C*(i) and C*(ii). Then
a6 — Op <N 1L 1 3dFmax +N 1 dFmax E <6W17NT HSH +N7%72 dFmax ds)) .

For a7 we have, by the same reasoning as ag 2 that

N
)
=1

2
NN2T Z)‘ az

_1
T2 Wl
1_
— Op ( 1,7}/ 2d5> Op (’yz dF,max> O <N_ dFmaX 2d5> )

laz|| =

For ag, we have

N
1
a5 = <y D MW, § We kW2, [WFOH n (Wp . WFOH)} = g + ags.
=1

Note that
1 N N L R ~
081 = N7 SN N WEaWer —E (W2 We )| W2 Wro H
=1 k=1 =1
1 N N L R ~
T NeTe Z Z Ai ZE (W2 aWe ) W2 Wio H = ag 11 + ag 12
i=1 k=1 =1

N N L
1 )
las.ll € <z D |IDo A D [WeaWert = E (WeaWe)] lHWQkWFoHH
k=1 |li=1 =1
1 L N L 2\ 2 | X 2
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1 1 3 2dp nax—3d
_ — = —_= 2 ,max €
= Op <N 2L 2 >

by Assumption B(iv), B*(iii), C*(i), C*(v) and E*(iii) using the same reasoning as studying agi, in
the proof of Lemma A.2. To be specific,

1 N N L 2
E mz SN WEaWe iy —E (W2 We )]

k=1 |[li=1 =1

1 N L

= N2 Z E (A;k)‘h) Z E { [Ws leE kl — (We 1ZW€ kl)] [Ws thE,km - (We th&km)] }

hik=1 Lm=1

1 N L

= STEMNM) D cov Wy We ke, W We o]
hik—=1 ILm=1
. N
< maXi’h£2()\i Ah) Z Z }COV [W;ilWE,kl’ Wa hmwé,km] } =0 (L2724d5> :
hik=1,m=1

Next, ag 12 follows that

las 12 < NWEZHA [ (Z\E W2 W) )HW W |

i=1 k=1

57}: 2dFmaxN2TZH l”z (Z ‘E aleE Kl > \F Hwe kWFO
=1

~

1

712dme | NN 2\ 2 T i 2%
\/> (NZH/\H ) NZZ(Z‘E sleEkl)‘> (NZTHWE’]CWFO )
NT i=1 k=1 \I= k=1
=0, (WIL_MF’““‘"‘*N‘%T*) 0, (1)O (L722d5> 0, <L b2 dg)

:Op (N QL—— 2 2dFmax 3d£>

2/\

by Cauchy-Schwarz inequality and Assumptions B(iv), C*(i), C*(ii) and D*(iii). To be specific,

S (o) <SS (S O]
g;zN(on)?(sz?df> =0 (1:")

Therefore, ag1 = O, | N~ 3 L_’ ~2dpmax 3d5>. As for the order of ag 2, the similar reasoning holds

except we replace T3

Wp — WFoH H and obtain
7l —l 1 d max dS
las.l| = O, <N b2 (5W1NTH H+N 2 >>
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where 01, N7 is defined in Lemma A.6. Then

1

ag = Op <Né7L <L77 1245 max + 5W17NT HSH + N7%72 dF,max— de)) .

In sum, we have

N W2, WF

Z)\

5

3_ _ 2
=0, <N5L$'yi 2rme ds) + Oy <N 20X, maxde )
~ 3_ _

o ) +0, <N—572 P

5_ —_ 3_ —

Op <N_1L_1’7[2/ 3dF,max 2d6> Op (N—llylgl dF,max 2d5>

J— §_d max_2d5 < —_= max €
0 (v i [ v )

_1 é_dX max dFmax
+0p <N iyl

i)

3_ _ -
+0, (N_éfyz 3 (L_%'ylL 2dF max +owi,NT H5H + N_%'ylL dFmax— de))

= 0, (dwa i + dz o] ),

l_d max l_de .
where dw N, = N~ ;fyl 9X max—de <72 fFmax i ) This completes the proof of Lemma A.7. B

Proof of Lemma A.8. For Jg we have the following decomposition:

Jg = ZRe (WXIMWF NT Z We W WrGA; )
1 . 1 I Wi W . .
i,k=1 ik=1
= js,a + j8,b~
First, we can decompose j&a as follows
8 1 YR
Jsa =375 2 Re (W}‘(,iWS W W G ) 273 O Re (W;ZWE RN (WF - WFUH) G )
ik=1 ik=1
1 N L o : 3 1 N L o . .
= a7z 2 Re | D WxiiWeriWeniWio jHGN | = 555 D Re | Y Wi We iy We s Wio  HGA;
ik=1 j=1 ik=1 G#l

N
1 . ~ o\ x
— a7 2 Re (Wi WopWey (Wi — Wi 1) G
i,k=1

= jS,al + js,a2 + js,as,
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and j&b similarly

Wi,
Jsp = N2T2 kZlRe( i ;WFO Wi WeniWho ;HGA;

Wi We
N2T2 Z Re( | ZWFO We ki WeaWpo lHG')\
i,k=1 j#l

X s k(Wp—WFoH> GA)

N2T2 Z Re ( ML (Wi — W) WopW2y (Wi — Wio ) GA)
= j8,b1 + j8,b2 + j8,b3 + j8,b4~
Next, define j&l = j&al + jgybl, and define J~872 and jg,g analogously. Note that

1 N L

j8,1 = —— Re WX,ijWE,kjWE,kjowo f[é)\z
N2T? .
i,k=1 j=1
N * z L
1 W5 Wr - _ o ) .
# e 2 Re | T A W Wk e Wi AN
1,R= =

Let J; = (th, Fto’)/, and W ;; its DFT at frequency V- Then j&al and j&bl correspond to the sub-
matrices of Z]LZI W/J,ijW&kjW&kijLij with different weighted sum over ¢ and k. And the same no-
tation works for Jg 2. Following (22)-(35) in the proof of Theorem 2 in Christensen and Nielsen (2006)

. . . z 24-2dF min—4dX max —3dF max—2d,
and using Cauchy-Schwarz inequality, we can show that Js1 = O, (%'y A X £ E)
5 242d F min—dX max —3dF max —2d, o
and Jgo = O, (%fy; F’ x F‘ 5). In addition, we can show that

N N
1 1 - 2 T A 1 2+42dF min—d X, max—3dF,max—2de
— 5> Re (W;iMWFM 3" diag (\WEM; ) WFG/\i> +0, (T (AR min - >
=1

I ANT+O (11_‘ i+2dFm1n dX max 3dFrndx 2d6),

by how we bound j&g. For j&g, we have

N
Jsa = _ﬁ Z Re (W;(%MWFWERW;k (WF — WFoI:I) G‘)\i)
ik=1
1 N 1 N . L
=-N7 ; Re (W)*(ZMWFM ;E (WEkWS‘k) (WF — WF0H> GM)



N N
1 . 1 . . N
= > Re (WXJMWFNT > (WeWey, = E (WepW2y)) (Wi — Wiol ) G/\i>
i=1 k=1
= j8,31 + j8,32-
For j&gl, we have

1

N
dme bl 1 WXZ
Tl S92 5 2|
H . FY NT i=1 H \/T

N
1 . 2 1 n - -
Il D2 192l [IE2 12, == || W = Wi |
NS VT
— Op <T2d5*17iF,min—dX,max (5W17NT HSH + N7%71L dFmax ds))

by Assumption C*(iii). For j&gg, we have
N

; (WeaW2y, — E (Wep W) ' \/1? ‘

d min -1 lfd max —= — N —= - max~— Ge
=05 (327274} 00 (25 00 (vh21) 0 (e 7] -l

1_2ds d min_d max —= €
=0, (N_éVL +He * )<(5W1NTH H—i—N 2 1 A max— d>>7

1

N
T dmln 1 1
[ssal| = 272 = Dol Nl
i=1

\WF _ WFOFIH

because
N
> (Wek E (W, WZ))) ]
k=1
1
1 N ’
<57 | ;ltr [(We W2 —E (We,W2y)) (We W2 (W, W2))']
7 1
1 L :
- — Z OV (We Wiy Wt Wegn) | = O (N739172%)
i,k=11,m=1
by Assumption C*(v). In addition, js,b4 is dominated by j&bg in order and is of asymptotically

smaller order. This completes the proof of Lemma A.8. B
Proof of Lemma A.9. We first show

/N de—1 /N de—1
L FZZR (WM, WH)— b FZZRe (W M, We) +0p (1).

NT NT

Noting that My, —Mw,, = Pw,, — Py, and Py, = WFW;;/T, we have

LTSS e[, (P, P W
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F’Y _IFZ Z Re

F’Yds 111Z Z Re

F’Yds 1FZ ZRQ

de—1 R TRy -1
\/ r W W, . W .
V z ZRe SXE <F° FO) WioWe,;

=a+b+c+d.

We study a, b, ¢ and d in turn. First, for a we have

VN1 Wg — WgpoH ) H*W?
lal| = Ly FZZRe sz( F FO ) FO

NT T Ws,i

NIy~ 1HFZH -~
T o, -]

NT?
< 1- 2dFmax\/7 -1 1 Tk 1 ~ ﬁ
< Ly 0zl § %anx,iu [wrowei ¢ — Wiof|

d max dZ, min— 1 d max —de —= -
=y P NLyEy ™o, (L Zyp )O (5W1NT N~zy;~ 2d)

2d mm_2d mdx"’l d mdx_d
— N ’YCI{EF 10 ( Z, F, X, E(SWI,NTH H)

+0, < 2—2dF max— 2d5+dz,min—dxﬁmax)
= oy (VI ') [3]) + o0 1,

by Lemma A.6 and the fact that

NA W*OWF _ 1-2dF max
() (M) v o)

and L/T converges to zero sufficiently fast to represent an undersmoothed estimator.

|-

Next, for b we have

VNI,

Il = ‘ /A ZR (Wi (W = Wiol1) (Wi = Wiol) We)
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< VNLyE Ty ZIIWXzH IWe.ill WF—WF0H
NT T

- i max N — —2dp max—2de
_\/7,yds 1 dZ,mmO (72 dX d)o <5W1NTH H +N l’yi 2 F, 2 )

2 L ‘
de 1 2dZ mm_dX max_ds 2_2dF,max_2ds+dZ,m1n_dX,max
= \/ ’YL F O ( 5”11 NT + Op 7N"}/L

= op (VNIA§ 2 [3]) + 00 (1)
Next, for ¢ we have
VNLy%==1 EN:R - Weo HH (WFH 1—WF0) -
TONT A T il

Y . -1
where Q = HH* — (%W}OWF0> . For co, we have

de— lP N W* Z‘WFO - . _ o
v X[T 23 X’T OfH 1(WF—WFOH) W

lez]| = ‘

i=1

<dee—1urzu{NTZHWXZHHWHH}{T WFOHH} l@] {2
R L e L[

Then it remains to study the order of HQH To do that, we consider

1 - R L .
7Wio (WF - WF0H> =0p <5W1,NT H5H + Ny T ds) ; (B.8)
and similarly
1 . /- ~ ~ ~ —1 1—dpmax—de
TWF (WF — WFOH) =0, (6W1,NT H&H +N"2v;, F ) . (B.9)
Then
_ W Wpo - 1o, _ W Wpo -
]IR—H*FOTFOHH = TW}WF()—H*FOTWHH (B.10)

< H; (Wi = Wyol)" (Wr = Wpo) H + H; (W — Wyol)’ WFOgH
Wi (W= )|
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= HﬁH Op (5W1,NT HSH + Ny e df) =0, ('ylL*QdF’max (5W1,NT HSH N5yl dRmas= de)) .

and so is the probability order of HQH Therefore we conclude that
_ _ _ )
\/77%51"‘ 10 < 2dZ min dX max d€+2dF min 2dF max 6W1 NT H H )

_|_ O dZ min dX,max+2dF,min_2dF,max £ 2_2dF,max_2dE
NL

= 0p (\/ﬁ’y% I‘;H HSH) +op,(1).

Next for ¢; we have

= ~ ~ -1
VNLy; Tz Iy Wx iWro [ WgWro o= o O\
Cc1 = NT Z Re T T (WFH - WF0> Ws,i

=1

* TT Trx TX -1 — Trk 1T -1
T T

N

=1
VNIA*T, S Wi W
:' N > S GW, N ZWXkéékaWEZ
=1
1 N 2
< VN e e
Ly zII{NTZIIWx [ IV H}NT =} G

N
ds+d rnin_]- 1 71 $ 5
< VNI {NTZ Wl HWE,Z-H} LS Wl HGH HéH
i=1 k=1

d +dZ, in—1 17dX’ —d 172dX1 2d
— /NL"}/ € min O <7L max € Op ,}/L max O F,min—
— O ( / dZ mm+2dF mln*3dX max

i) =on (VB 21 [3]).

2d min—1
<’yL o ) . Next, for c; 2 we have

. -2
where we use the fact that HGH < HFFH =

/N de— Ip T, N * 'WFO .
ezl = ‘ JZTT > X’} GIL W,

=1
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N e GWiWpo o ZAk(SWXkWE,

“u} { Z Wl kau} {riwmn} e 9]
Tz T
< VNLyltdzmn=lo (vi‘dx""“‘de)Op (/) 0, ( 7 dFW)O CAI

2d mm+2d mm_d de_Qd max —d <
_ / ’Ycll,sr IO ( F, Z, F, X, € 5H>

=0 (Fv ez 3]

Similarly, we can show that c; 3 to ¢1 5 are each o, (\/ N IfydLs

B ‘ VNLy:T, i Wi Wro .

i=1

< VNI 1HFzH{NT

FEIH HSH) For ¢1,6, we have

NT 2 7 Gl

/7 N * I
_ ‘ 7d€ 1FZ WXiWFO <

/ 'Yds ].FZ N W* WFO Coey 1 N .
‘ NT 2 Xéf’ GWFNTZWE”“A;“ Foflen

i=1

SVNLy§! HFZH

||

N
1 N
FO szH “3ZWFWE’k)\k
NT3 P
:\/ﬁ’yierdz’mi“ O, (L %71 dx,max— d5>
'j FRp—
L [ e

— 1 24 min_d max_d +d min_d max <
= VNI JT 510, (L bypamn dmedebdrmn - dims sy, o 15

-1 ;72dF,max7d5+dZ,min7dX,max+dF,min7dF,max
+0, | L7227}

= 0p (\/ﬁ’ydf

|1 3]) + ont0)

11— dX ,max dF maxids %_dF,max
by Lemma A.7 where dw,nr = N~ 27 ’ 7

14 .
+~3 ). For ¢;7, with a non-

random P-vector w such that [|w|| = 1, we have

wers]

/ ,,Yde 1 /FZ Z WXJ
NT T

P anw.,

i=1

~ ~ -1
~ W, W ~ ! W, ,wF Wk
= T o 9 (”T =) () D e

5 1(4) FZWXZWFO

< /77118 1H1:F

HNT \FZ’“ E’“\FZ
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VNI HFFH
NT il \FZMWEM
1 1
de—1 2\ 3 2\ 3
R 11 ) ()
; =1 \/NiZI e Tl:l \/Nkil e

| L l4dz min+drmin—dx max—2d
o 2 ,min ,min ,max £ _
- Op < N’YL - Op(l)a

where A; = %w’ r ZW;‘UWFO. Note that this term corresponds to one of the asymptotic bias in the
time domain LS estimator but it asymptotically negligible here due to the smaller order of magnitude
for L. To make our asymptotic theory more comparable with the one in time domain, we keep this
term explicit. The last two equalities hold by the following reasoning;:

L 1 L N
Z ZAWEzl SWZZ’E AA*HE szl |
=1

2

N

L N
= ﬁ >3 Bl (B [WeaWzy|) (B.11)

where E (We,ﬂng ‘ < ;%% (5W)? by Assumption C*(ii). Note that E|A;A%| < E (|| A | Agll) <

\/E | A;|I* E || Ag||*. Denote W x ;; as the conjugate of Wx ;;, and WFOJ = fF,jWFoJ as in Assumption
C*(iii). Define W ;; analogously. Then

L
1 T r- *
E|Ail* = wTz ) E (WXMVV}O,JT%WFOJWXJZ) Izw
7l=1
L hd ~
HES (F;gjWX’ile’w’jF;;F%I‘;}WFo,lW}‘(yilI‘;(’ll) Ty
=1

2dZ min _dX max dX max

PRSP B (|| Vi Wi | [0 1 Wk )

— O ( 2— 2dX max+2dZ mm)

1
2\ 2
by Assumption B*(i) and B*(iii). In addition, &= SE ngﬂ <E ‘We’il Wa*,k:l‘ ) =0 (rylL 2d5> So

(B.11) is O ( 32 max 2d5+2dz’mi“>. Similarly, we have

2
=0 ('y}: ZdE) ,

1
T2
=1

L X
— Z MeWe kit
VN
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which altogether forms the order of ¢ 7. Then lastly c; g is given by

\/7fyd5 1 ZiWXZ

 Grw,
NT T 8

c18 =
=1
V NL’)/dE_IFZ N W;(-WFO v A
= L Z % GWFNTZng kWEZ

NT ,
i=1 k=1
VNI L Wi W
NT Z } GH WFO ZWak S Wei
i=1
\/7’}/1E 1 N W;(<WFO o R
NT Z } G(WF_WF°H> NTZW‘E’“ SpWei = c181 + c182.

1=

Then it remains to study c1 g1 and cq,g2. For ¢q 81, we have

VNINE Ty i Wi Wro o

€181 = NT T GH*WFO NT ZWak Wg kWE’L - (W*kWs z)]
i=1
/ ’Yds IFZ N W* ‘WFO ‘-
NT > X’} GH WFo ZWs RE (W2 Wei) = cisin + cisio
i=1
Note that
le1si|
\/NL’}/ _1FZ 1 N W_;k( WFO L s 1 -
= Z D W Wea —E (W2 Wea)] | GHY {W*OW }
gk;l il — e,klVVe,il F ek
‘ NT N\/Tz 1 =1 VT
N N WX W & 2\ 2
SVNLyE Ty Z N\fz z S W Wi — B (W2 We)]
k =1
N 1
1 1 -, 2\ ?
: <NT k=1 ?WFOWM >

1_
— Op (\/ﬁfyiz,min"rde_l) O <N’}/L 2de— dXJnax) Op <TéLé"}/z ds)

1 1 2d5 +d mln d max
(JL o )—%m

by Assumption D*(iii), where the last two equalities hold by Assumption C*(i) and the fact that

N 2

N T L

1 1 W5 Wro
» = > [WeuWeit — B (W2 gWea)]

NVT < T ) :

=1

E

- 2—4d5 1-2d ,max
=0 (N 17L v )

(B.12)
by Assumption C*(v) following the similar reasoning to (B.3) in the proof of Lemma A.4. Similarly
c1,812 has the same order, which is obtained by replacing W;lea,il —E (W*leE,il) on the left hand

&,

k=1
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side of (B.12) by E (WE*MWE il) and using Assumption C*(ii). For ¢ go, we have

NL dg*llﬂ N W* ZWFO . R B N\ % 1 N . .
ergp = e I N G (W= W) o 0 Wk W2 Wi — B (W2 W)
i=1 k=1
\/ ")/dE 1FZ N W iWFO o - ~ ~\N* 1 N .
i=1 k=1
= c1,821 + C1,822,
By Assumption B*(iii) and B*(iv), we have
ler,g21 ]
de—1p N owx iWFO oo L .
‘ VN XrT 2y Wil (WF . WFOH) TZWM S Wei — B (W2 W)
. 1
2\ 2

d 1 2dF min — 1 al 1 al WX ZWFO L * *
ST e (3 S R S w5 )
k=1 =1

1 L1 St 2\®
x (NTkZ_lHﬁ (Wr = Wrofl) W >
3 ds d max < —= max €
st o (s -

= VN 021 0, (35 0, (W]
~ [ L 1- - : -
= OP (a?),NL H(SH + N,}/i dX,rnax dF,max+dZ,mln+2dF,mln 3d5> — Op (m,y%s

by Lemma A.6, as
1L 1 * 2 2 2d —2d
T T '] — max € —2d.
E(mkz_lHﬁ(WF‘WF(’H) We >:O<<5W1NTH [ >Vi2 >

1 2d min+2d min_d max_3d
and a3 N = \/NL’y‘zE % i X . Next for ¢j 822, we have by the same

-1 _1
L7 IN"2y
reasoning and conditions that

e ) + o)

ler,g22]]
= ’ F = VWEo ) N e,k e,kWei
NT P T NT P
N N * .
. W3 W ofl 1 1 o - N\ * E (WE kWs,z)
ds_l 2d ,min X F s
SVNLYE Tzl " z_: } N;HT (WF_WFOH) We k - 7
. 9y 1/2
W Wro

9y 1/2 .
s

(Wi = Wiot) W,y

N
2d al
< des—l HFZ” ,}/ F,min — { Z
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1en 1 o (Ws*,kW )
% NZNZ T
=1 k=1
< E —d max —=
= VNLyE 1 Ty y3 0, <<5WLNTH5H+N5ﬁ 45 ) ( X, >0 (vtyi)
— NL dsr IO (]\]—l 2dZ Inln+2dFm1n—dX max 3d65W1 NTH H < /£ dme+2dme_dX rrlax_dFmax_3d6>
=0 <\/ﬁ'yd 1_51“ HSH) + o0, (1)

by Lemma A.6 and by Assumption C*(ii).
Lastly for d we have

v N ’ydg 11—‘Z i WX 1WF

_ W;(iWFO v Wa,i
<V e H@HNZH | \ ;
9y 1/2 9y 1/2

WX i WFO

< VNLyE ' ez Q) NZH

-1 1- danx ds))

1-2d max
= VNLy¥1||T2]| O, ( " <5WLNT‘

1
O ( dX mdx> Op (L_%"y[z/ d5>
— —l 1-d ,max d5+2d min72d max < 2—d max
:\/NLﬂjl“ZlOp< 2y “ " 5W1,NTH5H>+OP (7/; *

= 0p (\/ﬁ’y% F;H HSH) +0,(1),

7dF, max —2de +dZ,mi11 7dF, max )

by Assumption D*(iii) as before.

This completes the proof of approximation for the first part as

DS e (i )

_ VNI 1FZZR (W Mo W) + o (VIS T2 [3]) + 00 (1.

NT
The second part is given by

\/7’7 _IFZ Z Re

(;f i aikwgk) (MWF — MWFO) W]
= FX;T 1FZ ZR [Ww( e —MWFO) W} .
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By replacing Wx ; by Wy,;, we can obtain the same order for the second part. Then we conclude

that

/7,yd5 1FZ N .
NT Z Re WX 7 WF Z alkWX7k‘MWF WE,i
k:l

N : LSS
’7 Z ZRe WX,iMWFO — N ZaikWX,kMWFO Wa,i
k=1
+ o0, (\/ﬁﬁsrg HaH) +o,(1).

This completes the proof of Lemma A.9. B

C Demeaned Time Domain Least Squares Estimation

In this section, we briefly study an alternative estimation method in time domain, the LS estima-
tion based on the within-group demeaned equation. Such analysis can help understand in another
perspective the complexity in time domain LS estimation due to long memory.

By (2.2) and (2.3), the model in (2.1) can be rewritten as

Y = Xz{tﬁo + A;Fto + i
= (MX,i + X7) BY+ )\;‘ (hp + F7) +eu
= X5 B° + NF + i + it (C.1)

where fi; = ,u,XJﬂO + A\jpp is an additive individual effect. Then following Bai (2009), we conduct

the LS estimation to its demeaned (with-group transformed) version
Ya = X5 8%+ NEY + 2, (C.2)

where Y,-t =YY, Y, = T Zt 1 Yit, and Xft, ?, and ¢; are analogously defined. Let X 0 =
(X, ... X%) and F° = (F?,...,F2). Define Y; analogously. We consider the PCA based on (C.2).

The LS estimators 8* and F* of 8° and F° solve the system of nonlinear equations:

N
B* = (Z X{"MF*X;)> > X Mp-Y; (C.3)
=1 =1

and

!

NlT i (YZ - Xzoﬁ*) (Yz - X{)ﬁ*> F* = F*Vnr. (C.4)

=1

Let Zf = M, X2 — & 300 aMp, X7

1

The following theorem presents the asymptotic distribution of 3*.
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Theorem C.1 Suppose that Assumptions A-F hold and T/N — p € (0,00) as (N,T) — oo. Let C*
denote the probability limit of

’

cmp(e) L3 BT ) ) T

=1

with V;O = % Zivzl aikX,i,’. Then for some positive definite matrices Dy and ¥ we have
(i) when dzmax + de > % and dpmax + de > %,

1 ~
A’{) SN (0,05 D7)

T2_dZ,max _dF,max_QdE

11 1
Nfo—dE * o0 & e
272 <ﬂ ﬁ NC
where A7 is the probability limit of

N N TS B N |

- N\l 1 : 1 o FOFe AA

Ar=-D (F 0) NT9Zmaxtdz > XM, NTdrmaxtds Zek&kFo( T > ( N ) .
i=1 k=1

(ii) when dzmax + de > 3 > dpmax + de,

1
T (dZ n]ax+d8)T

11 N 1 ., SR
Na2T2d (5 BO—NC’ - A2> N<07D012D01)7

where A% is the probability limit of

N N < -1 , -1
. o\ 1 o 1 o [ FOEO A'A
A= D (F) i 257 MFNT;MF< T ) (N) .

(iii) when dpmax + de > 3 > dzmax + de,

[
[SIES

Na2T

1 1 g o

—d, * 0 * * —1 —1

c(pr—p0— —Cr - A —>N(0,D $D )
<B B N Tl_(dF,max'i'dE)T% 3) 0 0

where A% is the probability limit of

N
~ -\ L 1 oo AA
*x / Lo
A3 =-D (FO) NT3 ZXO M o NTAF,max+de ngekF ( T ) (N) Ais
=1

(iv) when dzmax + ds < % and dpmax + de < %,

1 1 L
N2T2 4 (5* - 50 - TAZ;) 4N (o, Dglngl) ,

where A} is the probability limit of

AN
. , o [ FOE° A'A
Ay =-D ( ) — ZX 'Mp,— 7T Z&?kakF ( T ) (N) i

NT711
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With the within-group transformation, the LS estimator now obtains a unified convergence rate
that only depends on the memory parameter of idiosyncratic error term. For each case, we have
two bias terms where %B* is common and asymptotically negligible when d. = 0 and the order of
the other bias term depends both on dzmax + d. and dpmax + de. The latter bias feature makes it

difficult to implement the LS estimator in the time domain.

Proof of Theorem C.1. The proof of Theorem C.1 follows the same steps used in the proof of
Theorem 3.1. It is easy to see that all the asymptotically negligible terms there are still negligible
here, and thus we can focus on the order of bias terms and the convergence rate of 5*. Specifically, the
orders of two bias terms of the LS estimator of model (C.2), C* and A;f, j=1,...,4, are respectively

related to the orders of the following two terms

v (Xo=VE) o fpopo\ T faa) e
gfj:_NlTZ( T) ( T > <N> ]bkz)\kékéiy (C.5)

i=1 =1
and . .
N N . . - ’ -
~ 1 . 1 /o Fo'Fe AA
LI o & VIR Sy 220 .6

First, for (C.5), we can use the same arguments as in the non-demeaned model to obtain ¢j ; =

O, (%). For (C.6), we firstly denote z¢ = X?Mp.,. Then by the definition of Z, we can see the

memory parameter vector of Z is dz, which implies that

- 1l n (1 s 1 - Fope\ (AN
Jg = _WZZ (Tzzitékt> (TZFtoékt> ( T ) (N) Ai
t=1

i=1 k=1 t=1

where %Z;‘le Z%¢g (c.f. % EtT:l FPéy;) can be treated as the sample cross-covariance between Zf,

(c.f. F?) and eg. Therefore Assumption D(i) implies that

LS e {Op (Tr+at) | i dp 4+ d. >
- 1 b
Tt Op(T~%), if dp +d. <}

which further implies that

O, (T4zmaxtde =1 drmaxtde=1) if o+ d. > 3 and dpmax + de > 3
_ 0, (Tdzmax +ds—1T—%) i dgmax + de > 3 > dpmax + d
0, TdFamafods—lT*%) if dpmax + de > 1 > dy max + de
Op(T71) if dzmax +de < 3 and dpmax + de < 5

Then the asymptotic representation of 8* — 3° follows that

5 g0 :D(FO)—l

N
1 / %
—E Z*E’i+€{77+J§ +0p(a]_\/1T)’
NT & ‘
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and Assumption F implies that N—3Td==3 Zfil Z;‘/éi LN (O, i) In addition, D (FO> 2 Dy > 0.

Then we have

anT (18* _ BO _ %C* _ 1 +2d£)_/4’{) i} N(O,QO) if dzmax +de > % & dFmax + de > %

T27(dF,max +dZ,max

* * * d 0 1

ant ( 8°— B — 5 C* - Tlf(dz,mlmds)T% A3 ) = N(0,Q0) if dzmax +de > 5 > dpmax + de
* * * q 0 1

ant | 8" — BO - %C - Tlf(dF,m1x+ds)T% A3 — N(O, QO) if dF,max +d. > % > dZ,max +d.

anNT (B* - 50 - %C* - %AZ) i} N(O,Qo) if dZ,max + dz—: < % & dF,max + ds < %

where ayr = N%Téfdf, Qo = Dalif)gl, and C*, A}, A3, A5 and A} are as defined in the theorem.

This completes the proof of Theorem C.1. B
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