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Abstract

We characterize the extreme points of first-order stochastic dominance (FOSD) in-

tervals and show how these intervals are at the heart of many topics in economics.

Using knowledge of these extreme points, we characterize the distributions of posterior

quantiles under a given prior, leading to an analogue of a classical result regarding the

distribution of posterior means. We apply this analogue to various economic subjects,

including the psychology of judgement, political economy, and Bayesian persuasion. In

addition, FOSD intervals provide a common structure to security design. We use the

extreme points to unify and generalize seminal results in that literature when either

adverse selection or moral hazard pertains.
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1 Introduction

The notion of first-order stochastic dominance has been part of economics since at least the

late 1960s. At that time, several authors established its importance for the analysis of choice

under risk (Hadar and Russell 1969; Hanoch and Levy 1969; Rothschild and Stiglitz 1970;

Whitmore 1970). See Kroll and Levy (1980), Bawa (1982), and Levy (1990) for surveys of the

body of work that followed. In this paper, we show that many well-known economic questions

can be recast in terms of first-order stochastic dominance. This reframing connects seemingly

unrelated subjects in economics—including optimal security design, Bayesian persuasion, the

psychology of judgment, and partisan redistricting—revealing that many of these subjects’

insights share a common structure.

Our main result characterizes the extreme points of first-order stochastic dominance

(FOSD) intervals. These intervals describe sets of distributions that dominate a distribution

and are simultaneously dominated by another distribution, in the sense of FOSD. The con-

vexity of FOSD intervals means that their extreme points are fundamental to understanding

their properties. We show that a distribution is an extreme point of an FOSD interval if and

only if the distribution coincides with one of the FOSD interval’s bounds, or is constant on

an interval that has at least one end attached to at least one of the FOSD interval’s bounds.

This characterization is useful to economics because various settings studied in different

literatures can be reformulated into problems involving FOSD intervals. Many canonical and

novel results in the relevant literatures follow from the characterization. We demonstrate

this through two broad classes of economic applications.

In the first class of applications, we prove an analogue to a celebrated result in probability

theory that has been widely used in economics. Consider a random variable and a signal for it.

For each signal realization, a posterior belief is determined by Bayes’ rule. For every posterior

belief, one can compute the posterior mean. Strassen’s theorem (Strassen 1965) implies that

the distribution of these posterior means is a mean-preserving contraction of the prior, and

vice versa. Rothschild and Stiglitz (1970) made clear the economic implications of Strassen’s

theorem, in particular toward the theory of risk. The Bayesian persuasion literature has

extensively applied this theorem to obtain explicit solutions to many persuasion problems

(see, for example, Gentzkow and Kamenica 2016 and Dworczak and Martini 2019).

Instead of posterior means, one can derive many other statistics of a posterior. Using the

characterization of the extreme points of FOSD intervals, we characterize the distributions of

posterior quantiles, leading to an analogue of Strassen’s theorem. The distributions of poste-

rior quantiles coincide with an FOSD interval bounded by an upper and a lower truncation

of the prior.
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The characterization of the distributions of posterior quantiles further leads to many eco-

nomic applications. For example, in the psychology of judgement, a seminal result on identify-

ing overconfidence follows immediately. It is well documented that individuals can appear to

be over or under confident when evaluating themselves (Alicke, Klotz, Breitenbecher, Yurak

and Vredenburg 1995; De Bondt and Thaler 1995; Moore 2007; Kruger, Windschitl, Burrus,

Fessel and Chambers 2008). Observing this in the literature, Benôıt and Dubra (2011) show

that this finding alone does not imply irrationality. They consider a setting where individ-

uals are asked to rank their ability on a certain task (e.g., driving skills) relative to a given

population. The main result of Benôıt and Dubra (2011) is a characterization of the set of

self-ranking data that are rationalizable by a Bayesian model. From this characterization,

they provide a necessary and sufficient condition for apparent overconfidence (e.g., more than

50% of individuals ranking themselves above the population median) to imply true overcon-

fidence (i.e., individuals are not Bayesian). As an immediate corollary, our characterization

of the distributions of posterior quantiles generalizes this result. This generalization extends

the setting beyond self-ranking questions on a relative scale to self-evaluation questions on

an absolute scale, such as raw test scores or the probability of employment after graduation,

as studied in Weinstein (1980).

As another example, our characterization of the distributions of posterior quantiles leads

to novel results in political economy, in particular on gerrymandering, or the manipulation

of electoral district boundaries. In this setting, citizens identify with an ideal position on

political issues along a spectrum. The variety of positions is represented as a distribution,

which we can call a prior. An electoral map segments citizens into districts, which splits the

prior distribution into different parts. This electoral map can be regarded as a signal, and the

distribution of ideal positions within each district of the map can be interpreted as a posterior.

If each district elects a representative holding the district’s median position (Downs 1957;

Black 1958), the composition of the legislative body (i.e., the distribution of ideal positions

of elected representatives) can then be represented as a distribution of posterior medians.

Our characterization of the distributions of posterior quantiles fully describes the scope of

legislatures that unrestrained gerrymandering can achieve. Gerrymandering can induce any

legislature within the bounds of two extremes: an “all-left” body and an “all-right” body.

In the former, the composition of the legislature only reflects citizens’ ideal positions that

are left of the population median; whereas in the latter, the composition of the legislature

only reflects citizens’ ideal positions that are right of the population median. At the same

time, any compositions beyond the “all-left” and the “all-right” bodies (e.g., anything more

right-leaning than the distribution of citizens’ ideal positions that are to the right of the

population median) are not possible through any kind of gerrymandering. Thus, the scope
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of unrestrained gerrymandering is identified by the all-left and all-right bodies, as well as

anything in between.

Our third application of the distributions of posterior quantiles is to Bayesian persuasion.

Kamenica and Gentzkow (2011) provide a framework for studying a sender’s communication

to a receiver under the commitment assumption. A practical challenge, however, is that

the concavification approach used in this literature loses tractability as the number of states

increases. An exception is when the state is one-dimensional and only posterior means are

payoff-relevant to the sender. Our characterization complements this literature, as it brings

tractability to settings where only posterior quantiles are payoff-relevant to the sender. For

example, our characterization leads to explicit solutions to a persuasion problem where the

sender’s payoff is state-independent, and the receiver chooses an action to match the state

and minimizes the absolute loss, rather than the quadratic loss. We show how this simple

change has substantive implications for the the type of information the sender optimally

discloses.

In addition to characterizing the distributions of posterior quantiles, we apply our char-

acterization of the extreme points of FOSD intervals to the security design literature. We

show how FOSD intervals present a unifying structure to security design, and we uncover

common features of the optimal securities in a wide class of security design problems. A

typical setting in security design involves an entrepreneur with an asset but no money, and

investors with money but no asset. The entrepreneur considers the type of security to issue

to investors in exchange for funding. The entrepreneur typically has more information than

the investors about how much the asset actually earned or about the effort the entrepreneur

exerted to jump-start the asset.

Two widely adopted assumptions in the literature make the security design problem

amenable to FOSD intervals. The first is limited liability. The entrepreneur cannot pay the

investors any more than all the asset’s cash flow, and the investors cannot receive anything

less than zero. Limited liability places natural upper and lower stochastic bounds on the

security’s payoff. The second assumption is that the security’s payoff is monotone in the

asset’s cash flow. See Innes (1990), Nachman and Noe (1994), and DeMarzo and Duffie

(1999) for justifications of this assumption. Monotonicity introduces a natural first-order

stochastic dominance between the asset and the security.

Two seminal papers adopt these assumptions in their analysis of the security design

problem. Innes (1990) studies the problem under moral hazard, whereas DeMarzo and Duffie

(1999) consider a situation with adverse selection. Both papers derive a standard debt

contract as an optimal security, which promises either a constant payment or the asset’s

realized cash flow, whichever is smaller. Many papers in security design that followed were

3



influenced by the Innes (1990) or DeMarzo and Duffie (1999) environment. (See, for example,

Schmidt 1997; Casamatta 2003 and Eisfeldt 2004; Biais and Mariotti 2005.)

But the optimality of standard debt in Innes (1990) and DeMarzo and Duffie (1999)

relies on another crucial assumption: The asset’s cash flow distribution (or signal about

the cash flow’s distribution) satisfies the monotone likelihood ratio property (MLRP). The

assumption is reasonable, but not without limitations (Hart 1995). By recasting the security

design problem using FOSD intervals, our characterization of the extreme points allows us to

solve for the optimal security without reliance on MLRP. This reframing also demonstrates

that many security design problems, whether afflicted by moral hazard or adverse selection,

can be unified under a common framework.

Without assuming MLRP, we show that the optimal security is not necessarily standard

debt, but contingent debt. For this security, the face value of the entrepreneur’s debt to

investors is contingent on the realized cash flow of the asset. The nature of standard debt

contracts—which grants the entrepreneur only residual rights and never has the entrepreneur

share partial equity with the investor—is preserved even without assuming MLRP. The only

difference is that the entrepreneur may be liable for more when the asset earns more.1

Overall, this paper uncovers the common underlying role of FOSD intervals in many topics

in economics, and it offers a unifying approach to answering canonical economic questions

that have been previously answered by separate, case-specific approaches. Not only do several

classical results follow from our main characterization, but we also use that characterization

to develop new findings that otherwise would have been challenging to obtain without it.

Related Literature. This paper relates to several areas. The main result connects to

characterizations of extreme points of convex sets. In this area, Hardy, Littlewood and

Pólya (1929) characterize the extreme points of a set of vectors x majorized by another

vector x0 in Rn, which is often referred to as majorization orbits.2 They show that the

extreme points of this set coincide with the permutations of x0. Ryff (1967) extends this

result to infinite dimensional spaces. Kleiner, Moldovanu and Strack (2021) characterize the

extreme points of a subset of orbits under an additional monotonicity assumption, which

is equivalent to the set of probability distributions being either a mean-preserving spread

or mean-preserving contraction of a probability distribution on R. Independently, Arieli,

Babichenko, Smorodinsky and Yamashita (forthcoming) also characterize the extreme points

1Contingent debt contracts share some similarity with state-contingent debt instruments (SCDIs) from the
sovereign debt literature, which tie a country’s principal or interest payments to its nominal GDP (Lessard
and Williamson 1987; Shiller 1994; Borensztein and Mauro 2004).

2A vector x ∈ Rn majorizes y ∈ Rn if
∑k

i=1 x(i) ≥
∑k

i=1 y(i) for all k ∈ {1, . . . , n}, with equality at k = n,
where x(j) and y(j) are the j-th smallest component of x and y, respectively.
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of mean-preserving contractions of a probability distribution on R and show that they coincide

to a class of signals they refer to as “bi-pooling.”

Compared to Kleiner, Moldovanu and Strack (2021), this paper characterizes the ex-

treme points of distributions under the first-order stochastic dominance order, rather than

the second-order stochastic dominance order. Moreover, our characterization applies to an

interval of distributions: those that are dominated by a distribution and dominate another

distribution at the same time. This contrasts with an orbit, which contains only distributions

that are either dominated by one distribution or dominate another.3 Furthermore, since any

FOSD interval can be written as a convex polyhedron defined by finitely many linear inequal-

ities when restricted to distributions supported on a common finite set, our characterization

can be regarded as a continuum analogue of the well-known fact that extreme points of such

an n-dimensional polyhedron are characterized by at least n binding linear constraints (see,

for instance, proposition 15.2 of Simon 2011).

Several recent papers exploit properties of extreme points to derive economic implica-

tions. Bergemann, Brooks and Morris (2015) use the extreme points of the convex set of

market segments that induce the same optimal monopoly price to construct the consumer-

surplus-maximizing market segmentation. Lipnowski and Mathevet (2018) use the extreme

points of posterior covers to reduce the support of optimal signals in a general persuasion

framework. Kleiner, Moldovanu and Strack (2021) use the extreme points of majorization

orbits to derive novel proofs of the celebrated Border’s condition, the Bayesian-dominance

equivalence result, optimality of bi-pooling signals in mean-based persuasion settings, as well

as the equivalence of persuasion and a class of delegation problems. Finally, several works

in mechanism design use the extreme points of feasible mechanisms to establish the optimal-

ity of rationing and randomized posted prices (e.g., Dworczak r○ Kominers r○ Akbapour

2021, Loertscher and Muir 2022, Kang 2022). These papers exploit the result of Winkler

(1988), which characterizes the extreme points of convex subsets defined by finitely many

linear inequalities.

The first application of this paper to the distributions of posterior quantiles is related

to belief-based characterizations of signals, which date back to the seminal contributions

of Blackwell (1953) and Harsanyi (1967-68). The characterization of distributions of pos-

terior means can be derived from Strassen (1965). Our application can be regarded as a

complement, as it characterizes the distributions of posterior quantiles, instead of means.

This characterization generalizes the results of Benôıt and Dubra (2011), who identify the

3The qualitative structure of the extreme points of FOSD intervals shares some similarity with that given
by Kleiner, Moldovanu and Strack (2021). In particular, any extreme point of an FOSD interval either must
coincide with one of the bounds or must pool all states in an interval into one mass point.
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Bayesian-rationalizable self-ranking data where subjects place themselves relative to the pop-

ulation according to a posterior quantile.

Our gerrymandering results are related to the literature on redistricting, particularly to

Owen and Grofman (1988), Friedman and Holden (2008), Gul and Pesendorfer (2010), and

Kolotilin and Wolitzky (2020), who also adopt the distribution-based approach and model a

district map as a way to split the population distribution of voters. Existing work mainly

focuses on a political party’s optimal gerrymandering when maximizing either its expected

number of seats or its probability of winning a majority. In contrast, our result characterizes

the feasible compositions of a legislative body that a district map can induce.

Our application to Bayesian persuasion relates to that large literature (see Kamenica 2019

for a comprehensive survey), in particular to communication problems where only posterior

means are payoff-relevant (e.g., Gentzkow and Kamenica 2016; Roesler and Szentes 2017;

Dworczak and Martini 2019; Ali, Haghpanah, Lin and Siegel 2022). We complement this

literature by providing a foundation for solving communication problems where only the

posterior quantiles are payoff-relevant.

Finally, our reframing of security design using FOSD intervals connects this paper to that

large literature. Allen and Barbalau (2022) provide a recent survey. In this application, we

base our economic environments on Innes (1990), which involves moral hazard, and DeMarzo

and Duffie (1999), which involves adverse selection. We generalize and unify results in those

seminal papers under a common structure, revealing how security design problems can be

solved using FOSD intervals when either type of asymmetric information is at play.

Outline. The remainder of the paper proceeds as follows. Section 2 gives the main result.

Section 3 uses the main result to characterize the distributions of posterior quantiles. Eco-

nomic applications to the psychology of judgment, gerrymandering, and Bayesian persuasion

follow in that section. Section 4 illustrates FOSD intervals as a unifying framework for se-

curity design with limited liability when there is either moral hazard or adverse selection.

Section 5 concludes.
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2 Extreme Points of First-Order Stochastic Dominance Intervals

2.1 Notation

Let F be the collection of cumulative distribution functions (CDFs) on R.4 For any F,G ∈ F
such that G(x) ≤ F (x) for all x ∈ R, let

I(F,G) := {H ∈ F |G(x) ≤ H(x) ≤ F (x), ∀x ∈ R}.

Namely, I(F,G) is the collection of distributions that dominate F and simultaneously are

dominated by G in the sense of first-order stochastic dominance (FOSD). In other words,

I(F,G) is the first-order stochastic dominance interval between G and F .

For any F ∈ F and for any x ∈ R, let F (x−) := limy↑x F (x) denote the left-limit of F at

x. Meanwhile, for any F ∈ F and for any τ ∈ (0, 1), let F−1 be the quantile function of F .

Namely, F−1(τ) := inf{x ∈ R|F (x) ≥ τ}.5

2.2 Extreme Points of First-Order Stochastic Dominance Intervals

For any two distributions F and G, the FOSD interval I(F,G) is a convex set. Our main

result characterizes the extreme points of this set, which are in turn useful for understanding

properties of the FOSD interval.

Specifically, H is an extreme point of I(F,G) if H cannot be written as a convex combi-

nation of two distinct elements of I(F,G). A well-known equivalent definition is that H is

an extreme point of I(F,G) if and only if, for any non-zero (measurable) function Ĥ on R,

either Ĥ +H /∈ I(F,G), or H − Ĥ /∈ I(F,G). Theorem 1 characterizes the extreme points

of I(F,G).

Theorem 1 (Extreme Points of I(F,G)). For any F,G,H ∈ F such that G(x) ≤ H(x) ≤
F (x) for all x ∈ R, H is an extreme point of I(F,G) if and only if there exists a countable

collection of intervals {[xn, xn)}∞n=1 such that:

1. H(x) ∈ {G(x), F (x)} for all x /∈ ∪∞
n=1[xn, xn).

2. For all n ∈ N, H is constant on [xn, xn) and either H(x−
n ) = G(x−

n ) or H(xn) = F (xn).

Figure IA depicts an extreme point of an FOSD interval I(F,G), where the blue CDF is

the lower bound F , and the red CDF is the upper bound G. According to Theorem 1, any

4F is endowed with the weak-* topology and the induced Borel σ-algebra, unless otherwise specified.
5Note that F−1 is nondecreasing and left-continuous for all F ∈ F . Moreover, for any τ ∈ (0, 1) and for

any x ∈ R, F−1(τ) ≤ x if and only if F (x) ≥ τ .
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(A) An Extreme Point
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(B) Not an Extreme Point

Figure I
Extreme Points of I(F,G)

extreme point H of this FOSD interval must either coincide with one of the bounds, or be

constant on an interval, where at least one end of the interval reaches one of the bounds.

Appendix A.1 contains the proof of Theorem 1. We briefly summarize the argument

below. For the sufficiency part, consider any H that satisfies conditions 1 and 2 of Theorem 1,

and consider any non-zero function Ĥ. Clearly, if either H + Ĥ or H − Ĥ is not a CDF,

then it is not an element of I(F,G). If both H + Ĥ and H − Ĥ are CDFs, then they must

both be nondecreasing. Since Ĥ is non-zero, there exists x0 such that Ĥ(x0) ̸= 0. If x0 /∈
∪∞

n=1[xn, xn), then either H(x0) + |Ĥ(x0)| = F (x0) + |Ĥ(x0)| > F0(x0) or H(x0)− |Ĥ(x0)| =
G(x0)−|Ĥ(x0)| < G0(x0). Alternatively, if x ∈ [xn, xn) for some n ∈ N, then since H+Ĥ and

H− Ĥ are nondecreasing and since H is constant on [xn, xn), Ĥ must be constant on [xn, xn)

as well. This, in turn, implies that either H(xn) + |Ĥ(xn)| = F (xn) + |Ĥ(x0)| > F (xn), or

H(xn)− |Ĥ(xn)| = G(x−
n )− |Ĥ(x0)| < G(x−

n ). Therefore, either H + Ĥ or H − Ĥ is not in

I(F,G).

For the necessity part, consider any H that does not satisfy conditions 1 and 2 of The-

orem 1. In this case, as depicted in Figure IB, there exists a rectangle that lies in between

the graphs of F and G, so that when restricted to this rectangle, the graph of H is not a

step function. Then, since extreme points of uniformly bounded nondecreasing functions are

exactly the step functions (see, for example, Skreta 2006; Börgers 2015), H can be written

as a convex combination of two distinct nondecreasing functions when restricted to this rect-

angle. Since the rectangle lies in between the graphs of F and G, this, in turn, implies that

H can be written as a convex combination of two distinct distributions in I(F,G).
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2.3 The Economics of the Extreme Points

In what follows, we demonstrate how the characterization of extreme points of FOSD intervals

can be applied to various economic settings. These applications rely on two crucial properties

of extreme points. The first property—formally known as Choquet’s theorem—allows us to

express any element H of I(F,G) as a mixture of its extreme points. As a result, if one wishes

to establish some property for every element of I(F,G), and if this property is preserved

under convex combinations, then it suffices to establish the property for all extreme points

of I(F,G), which is a much smaller set.

In Section 3, we use this observation to characterize the distributions of posterior quan-

tiles. This characterization is an analogue of the celebrated characterization of the distri-

butions of posterior means that follows from Strassen’s theorem (Strassen 1965). We also

show how the characterization of distributions of posterior quantiles leads to several eco-

nomic applications. The first among these is generalizing (and simplifying the proof of) a

widely known result due to Benôıt and Dubra (2011) in the literature on the psychology of

judgment. The second application is to political redistricting, and the third application is to

Bayesian persuasion.

The second property of extreme points that we rely on is that, for any convex optimization

problem, one of the solutions must be an extreme point of the feasible set. This property

is useful for economic applications because it immediately provides knowledge about the

solutions to the underlying economic problem if it is convex and if the feasible set is related

to an FOSD interval.

In Section 4, we use this property to generalize and unify several results in the literature

on security design with limited liability. Feasible securities can be viewed as an FOSD interval

bounded from below by zero and bounded from above by the cash flow of the asset. From

this perspective, Theorem 1 sheds light on optimal securities and generalizes canonical results

in various settings, including those with moral hazard (Innes 1990) and adverse selection

(DeMarzo and Duffie 1999).

3 Distributions of Posterior Quantiles

In this section, we use Theorem 1 to characterize the distributions of posterior quantiles. We

then demonstrate the economic significance of this characterization by applying it to topics

in the psychology of judgement, gerrymandering, and Bayesian persuasion.
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3.1 Characterization of the Distributions of Posterior Quantiles

Consider a one-dimensional variable x ∈ R that is drawn from a prior F0. A signal for x is

defined as a probability measure µ ∈ ∆(F) such that∫
F
F (x)µ(dF ) = F0(x), (1)

for all x ∈ R. Let M denote the collection of all signals.6

For any distribution F ∈ F and for any τ ∈ (0, 1), denote the set of τ -quantiles of F by

[F−1(τ), F−1(τ+)].7 Furthermore, we say that a transition probability r : F × [0, 1] → ∆(R)

is a quantile selection rule if, for all F ∈ F and for all τ ∈ (0, 1), r(·|F, τ) assigns probability
1 to the set of τ -quantiles of F . In other words, a quantile selection rule r selects (possibly

through randomization) a τ -quantile for every CDF F and for every τ ∈ (0, 1), whenever it

is not unique. Let R be the collection of all selection rules.

For any τ ∈ (0, 1), for any signal µ ∈ M, and for any selection rule r ∈ R, let Hτ (·|µ, r)
denote the distribution of the τ -quantile induced by µ and r. For any τ ∈ (0, 1), let Hτ

denote the set of distributions that can be induced by some signal µ ∈ M and selection rule

r ∈ R.

Using Theorem 1, we provide a complete characterization of the distributions of posterior

quantiles induced by arbitrary signals and selection rules. To this end, define two distributions

F τ
0 and F

τ

0 as follows:

F τ
0(x) := min

{
1

τ
F0(x), 1

}
, F

τ

0(x) := max

{
F0(x)− τ

1− τ
, 0

}
.

Note that F
τ

0(x) ≤ F τ
0(x) for all x ∈ R and for all τ ∈ (0, 1). In essence, F τ

0 is the conditional

distribution of F0 in the event that x is smaller than a τ -quantile of F0; whereas F
τ

0 is

the conditional distribution of F0 in the event that x is larger than the same τ -quantile.

Theorem 2 below characterizes the distributions of posterior quantiles Hτ .

Theorem 2 (Distributions of Posterior Quantiles). For any τ ∈ (0, 1),

Hτ = I(F τ
0, F

τ

0).

Theorem 2 completely characterizes the distributions of posterior τ -quantiles by the FOSD

6From Blackwell’s theorem (Blackwell 1953), given any µ ∈ M, each F ∈ supp(µ) can be interpreted as
a posterior for x obtained via Bayes’ rule under a prior F0, after observing the realization of a signal that is
correlated with x. The marginal distribution of this signal is summarized by µ.

7F−1(τ+) := limq↓τ F
−1(q) denotes the right-limit of F−1 at τ .
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interval I(F τ
0, F

τ

0). Figure II illustrates Theorem 2 for the case when τ = 1/2. The distribution

F
1/2
0 is colored blue, whereas the distribution F

1/2

0 is colored red. The green dotted curve

represents the prior, F0. According to Theorem 2, any distribution H bounded by F
1/2
0 and

F
1/2

0 (for instance, the black curve in the figure) can be induced by a signal µ ∈ M and a

select rule r ∈ R. Conversely, for any signal and for any selection rule, the induced graph of

the distribution of posterior τ -quantiles must fall in the area bounded by the blue and red

curves.
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Figure II
Distributions of Posterior Quantiles

Theorem 2 can be regarded as a natural analogue of the well-known characterization of

the distributions of posterior means that follows from Strassen (1965). Strassen’s theorem

implies that a CDF H ∈ F is a distribution of posterior means if and only if H is a mean-

preserving contraction of the prior F0 (i.e., H majorizes F0). Instead of posterior means,

Theorem 2 pertains to posterior quantiles. According to Theorem 2, H is a distribution of

posterior quantiles if and only if H dominates the lower-truncated prior F τ
0 and is dominated

by the upper-truncated prior F
τ

0, in the sense of FOSD.

The necessity part of Theorem 2 is straightforward from the martingale property of pos-

terior beliefs. Indeed, for any signal µ ∈ M and for any r ∈ R,

Hτ (x|µ, r) ≤ µ({F ∈ F|F−1(τ) ≤ x}) = µ({F ∈ F|F (x) ≥ τ}),

for all x ∈ R, where the first inequality holds because the right-hand side corresponds to the

distribution of posterior quantiles induced by µ when the lowest τ -quantile is selected with

11



probability 1. Furthermore, for any x ∈ R, if we regard F (x) ∈ [0, 1] as a random variable

whose distribution is implied by µ, it then follows from (1) that its distribution must be

a mean-preserving spread of F0(x). As a result, µ({F ∈ F|F (x) ≥ τ}) can be at most

min{F0(x)/τ, 1}, since otherwise, the mean of F (x) can never be F0(x). This implies that

Hτ (x|µ, r) ≤ F τ
0(x). A similar argument leads to the conclusion that Hτ (x|µ, r) ≥ F

τ

0(x).

The sufficiency part, however, is more challenging. To prove this, one would in principle

need to construct a signal that generates the desired distribution of posterior quantiles for

every distribution H ∈ I(F τ
0, F

τ

0). Although it might be easier to construct a signal that in-

duces some specific distribution of posterior quantiles, constructing a signal for any arbitrary

distribution H ∈ I(F τ
0, F

τ

0) does not seem to be tractable.8 Nonetheless, Theorem 1 allows us

to bypass this challenge and focus on distributions that satisfy its conditions 1 and 2. Indeed,

since the mapping (µ, r) 7→ Hτ (·|µ, r) is affine, it suffices to construct signals that induce the

extreme points of I(F τ
0, F

τ

0) as posterior quantile distributions. The proof of Theorem 2 in

Appendix A.2 explicitly constructs a signal (and a selection rule) for each extreme point of

I(F τ
0, F

τ

0). To illustrate the intuition, consider an extreme point H of I(F τ
0, F

τ

0) that takes

the following form:

H(x) =


F τ

0(x), if x < x

F τ
0(x), if x ∈ [x, x)

F
τ

0(x), if x ≥ x

,

for some x, x such that F τ
0(x) = F

τ

0(x
−), as depicted by Figure IIIA. To construct a signal

that has H as its distribution of posterior quantiles, separate all the states x /∈ [x, x]. Then,

take α fraction of the states in [x, x] and pool them uniformly with each separated state

below x, while pooling the remaining 1 − α fraction uniformly with the separated states

above x. Since F τ
0(x) = F

τ

0(x
−), by choosing α correctly, each x < x, after being pooled

with states in [x, x], would become a τ -quantile of the posterior it belongs to, as illustrated

in Figure IIIB.9 Similarly, each x > x would become a τ -quantile of the posterior it belongs

to as well. Together, by properly selecting the posterior quantiles, the induced distribution

of posterior quantiles under this signal would indeed be H.

Although the characterization of Theorem 2 may seem to rely on selection rules r ∈
R, the result remains (essentially) the same even when restricted to signals that always

induce a unique posterior τ -quantile, provided that the prior F0 has full support on an

8For example, F
τ

0 and F τ
0 can be attained using a modified version of the “matching extreme” signal

introduced by Friedman and Holden (2008). However, matching extreme signals would inevitably assign
positive probability to posteriors whose quantiles are nearby the prior quantile, and hence, matching extremes
cannot induce any distributions H ∈ I(F τ

0 , F
τ

0) that assign probability zero to some interval containing
[F−1

0 (τ), F−1
0 (τ+)].

9Specifically, α = 1−τ
τ F0(x)/(

τ
1−τ (1− F0(x

−)) + 1−τ
τ F0(x)).
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Constructing a Signal that Induces H

interval. Theorem 3 below formalizes this statement. To this end, Let H0
τ be the collection

of distributions of posterior τ -quantiles that can be induced by some signal where (almost)

all posteriors have a unique τ -quantile. The characterization of H0
τ relates to a family of

perturbations of the set I(F τ
0, F

τ

0), denoted by {I(F τ,ε
0 , F

τ,ε

0 )}ε>0, where

F τ,ε
0 (x) :=

{
1

τ+ε
F0(x), if x < F−1

0 (τ)

1, if x ≥ F−1
0 (τ)

; and F
τ,ε

0 (x) :=

{
0, if x < F−1

0 (τ)
F0(x)−(τ−ε)

1−(τ−ε)
, if x ≥ F−1

0 (τ)
,

for all ε ≥ 0 and for all x ∈ R. Note that I(F τ,0
0 , F

τ,0

0 ) = I(F τ
0, F

τ

0), and that {I(F τ,ε
0 , F

τ,ε

0 )}ε>0

is decreasing in ε under the set-inclusion order.10

Theorem 3 (Distributions of Unique Posterior Quantiles). For any τ ∈ (0, 1) and for any

F ∈ F0 that has a full support on an interval,⋃
ε>0

I(F τ,ε
0 , F

τ,ε

0 ) ⊆ H0
τ ⊆ I(F τ

0, F
τ

0).

As an immediate corollary of Theorem 2 and Theorem 3, we now have an analogue of the

celebrated law of iterated expectation, which we refer to as the law of iterated quantiles.

Corollary 1 (Law of Iterated Quantiles). Consider any τ, τ̃ ∈ (0, 1).

1. For any F0 ∈ F and for any closed interval Q ⊆ R, Q = [H−1(τ), H−1(τ+)] for some

H ∈ Hτ̃ if and only if Q ⊆ [(F τ̃
0)

−1(τ), (F
τ̃

0)
−1(τ+)].

10As a convention, let I(F τ,ε
0 , F

τ,ε

0 ) := ∅ when ε ≥ max{τ, 1− τ}.
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2. For any continuous F0 ∈ F that has a full support on an interval and for any x̂ ∈ R,

x̂ ∈ [H−1(τ), H−1(τ+)] for some H ∈ H0
τ̃ if and only if x̂ ∈ [(F τ̃

0)
−1(τ), (F

τ̃

0)
−1(τ)].

According to Corollary 1, while the expectation of posterior means under any signal

is always the expectation under the prior, the possible τ -quantiles of posterior τ̃ -quantiles

are exactly [(F τ̃
0)

−1(τ), (F
τ̃

0)
−1(τ+)]. For example, the collection of all possible medians of

posterior medians is exactly the interquartiles [F−1
0 (1/4), F−1

0 (3/4)] of the prior.

3.2 Economic Applications

Apparent Overconfidence

A key issue in the psychology of judgment is explaining why people rank themselves better or

worse than others in certain tasks. By the 2000s, a consensus had emerged among researchers

that most people commonly rank themselves as better than average on simple tasks and

worse than average on difficult tasks (Moore 2007; Kruger, Windschitl, Burrus, Fessel and

Chambers 2008). Up for debate, however, was whether this behavior was rational.

Here we show how Theorem 3 can speak to this debate. Consider the following setting of

individual self-evaluation, a setting due to Benôıt and Dubra (2011). There is a unit mass

of individuals, and each one of them is attached to a “type” x ∈ [0, 1], which is distributed

according to a CDF F0 ∈ F . Common interpretations of x in the literature include skill

levels, scores on a standardized test, the probability of being successful at a task, or simply

an individual’s ranking in the population in percentage terms. Individuals are asked to

predict their own type x. Given a finite partition 0 = z0 < z1 < . . . < zK = 1 of [0, 1], a

prediction dataset is a vector (θk)
K
k=1 ∈ [0, 1]K with

∑K
k=1 θk = 1, where θk denotes the share

of individuals who predict there own type is in [zk−1, zk).

It is well-documented in the experimental literature that a prediction dataset can be

very different from the population distribution F0. One common explanation found in this

literature is that individuals are truly overconfident or truly underconfident (Alicke, Klotz,

Breitenbecher, Yurak and Vredenburg 1995; De Bondt and Thaler 1995; Camerer 1997). But

Benôıt and Dubra (2011) proposed an alternative explanation: This difference can simply

be caused by noises in each individual’s signal. People are only apparently misconfident.

Individuals can still be fully Bayesian even if the prediction dataset is different from the

population distribution. We show next how a general version of Benôıt and Dubra (2011)’s

insight follows immediately from Theorem 3.

Consider the following Bayesian framework: Each individual receives a signal s ∈ S for

their type x, which is drawn from a conditional distribution given each realized x. After

observing their signal realizations, individuals then update their belief via Bayes’ rule, and
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they predict their types according to their posterior medians (e.g., Hoelzl and Rustichini

2005). Given the distribution F0 of types and a partition 0 = z0 < z1 < . . . < zK = 1, a

prediction dataset (θk)k∈K is said to be median rationalizable (τ -quantile rationalizable),11 if

there exists a signal for x such that the induced posterior has a unique median (τ -quantile)

with probability 1, and that for all k ∈ {1, . . . , K}, the probability of the posterior median

(τ -quantile) being in the interval [zk−1, zk) is θk.
12

Under this framework, theorem 1 (and theorem 4) of Benôıt and Dubra (2011) character-

izes the collection of median (τ -quantile) rationalizable datasets, under the assumption that

F0(zk) = k/K for all k ∈ {1, . . . , K}. In other words, Benôıt and Dubra (2011) characterize

the collection of rationalizable datasets in the context of self-ranking, where individuals are

asked to place themselves into a K-cile relative to the population according to their posterior

medians (τ -quantiles).

Although relative self-ranking is one of the common types of experiments in the literature,

as noted by Benôıt and Dubra (2011), many other experiments involve some absolute scales.

For example, a large overconfidence literature asks students to forecast their exam scores

(e.g., Murstein 1965; Grimes 2002; Hossain and Tsigaris 2015), which are typically on an

absolute scale of 0 to 100. Alternatively, Weinstein (1980) asks students to predict their

employment probabilities after graduation, which are also on an absolute scale of 0 to 1. As

an immediate corollary of Theorem 3, we generalize the result of Benôıt and Dubra (2011)

and characterize the collection of τ -quantile rationalizable datasets on an arbitrary scale.13

Corollary 2 (Rationalizable Apparent Misconfidence). For any τ ∈ (0, 1), for any F0 ∈ F
with full support on [0, 1], and for any partition 0 = z0 < z1 < . . . < zK = 1 of [0, 1], a

prediction dataset (θk)
K
k=1 is τ -quantile rationalizable if and only if for all k ∈ {1, . . . , K},

k∑
i=1

θi <
1

τ
F0(zk) (2)

11Not all experiments would clearly instruct the individuals to use their posterior median when predicting
their ability. Other statistics of a posterior could potentially be used by an individual when the instruction
is not clear. When individuals use the posterior means to predict their types, the set of rationalizable data
would be given by the mean-preserving contractions of the prior, as noted by Benôıt and Dubra (2011).

12In other words, (θk)
K
k=1 is τ -quantile rationalizable if there exists H ∈ H0

τ such that H(z−k )−H(z−k−1) =
θk. Technically speaking, Benôıt and Dubra (2011) use a less stringent requirement regarding multiple quan-
tiles. However, as shown below, our results generalize their conclusion even with this stringent requirement.

13Note that the scale on which the dataset lies is unrelated to the statistics that individuals use to predict
their type. Therefore, it would be reasonable to assume that individuals predict their performance—both on
a relative scale and an absolute scale—using either the median, a τ -quantile, or the mean of their posteriors.
As Benôıt and Dubra (2011) note: “Just considering medians and means, there are four ways to interpret
answers to scale questions”.
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and
K∑
i=k

θi <
1− F0(z

−
k−1)

1− τ
(3)

Proof. The necessity part follows directly from the proof of theorem 4 of Benôıt and Dubra

(2011). For sufficiency, consider any prediction dataset (θk)
K
k=1 such that (2) and (3) hold.

Let H(x) be the distribution that assigns probability θk at (zk + zk−1)/2. Then, there

exists ε > 0 such that H ∈ I(F τ,ε
0 , F

τ,ε

0 ). By Theorem 3, there exists a signal µ with

µ({F ∈ F|F−1(τ) < F−1(τ+)}) = 0 such that H(x) = Hτ (x|µ) for all x ∈ R, which in turn

implies that µ τ -quantile-rationalizes (θk)
K
k=1, as desired. ■

Remark 1. For comparison, when zk = k/K for all k, and when F0 is uniform, Corollary 2

specializes to theorem 4 of Benôıt and Dubra (2011), whose proof relies on projection and

perturbation arguments and is not constructive. In addition to having a more straightfor-

ward proof and yielding a more general result, another benefit of Theorem 3 is that the

signals rationalizing a feasible prediction dataset are semi-constructive: The extreme points

of I(F τ,ε
0 , F

τ,ε

0 ) are attained by explicitly constructed signals, as shown in the proof of The-

orem 3. It is also noteworthy that, although theorem 4 of Benôıt and Dubra (2011) can be

used to prove Theorem 2 indirectly (by taking K → ∞ and establishing proper continuity

properties) when F0 admits a density, the same argument cannot be used to prove Theorem 3,

which is crucial for the proof of Corollary 2.14

Limits of Gerrymandering

Beyond the psychology of judgment, Theorem 2 and Theorem 3 can be applied to political

redistricting. The study of redistricting ranges across many fields: Legal scholars, political

scientists, mathematicians, computer scientists, and economists have all contributed to this

vast literature.15

While existing economic theory on redistricting has largely focused on optimal redistrict-

ing or fair redistricting mechanisms (e.g., Owen and Grofman 1988; Friedman and Holden

2008; Gul and Pesendorfer 2010; Pegden, Procaccia and Yu 2017; Ely 2019; Friedman and

Holden 2020; Kolotilin and Wolitzky 2020), another fundamental question is the scope of

redistricting’s impact on a legislature. If any electoral map can be drawn, what kinds of

legislatures can be created? In other words, what are the “limits of gerrymandering”?

14This is because of the the failure of upper-hemicontinuity when signals that induce multiple quantiles
are excluded.

15See, for example, Shotts (2001); Besley and Preston (2007); Coate and Knight (2007); McCarty, Poole
and Rosenthal (2009); Fryer Jr and Holden (2011); McGhee (2014); Stephanopoulos and McGhee (2015);
Alexeev and Mixon (2018).
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Theorem 2 and Theorem 3 describe the extent to which unrestrained gerrymandering

can shape the composition of elected representatives. Consider an environment in which

a continuum of citizens vote, and each citizen has single-peaked preferences over positions

on political issues. Citizens have different ideal positions x ∈ R, and these positions are

distributed according to some F0 ∈ F . In this setting, a signal µ ∈ M can be thought

of as an electoral map, which segments citizens into electoral districts, such that a district

F ∈ supp(µ) is described by the conditional distribution of the ideal positions of citizens who

belong to it.16 Each district elects a representative, and election results at the district-level

follow the median voter theorem. That is, given any map µ ∈ M, the elected representative of

each district F must have an ideal position that is a median of F . When there are multiple

medians in a district, the representative’s ideal position is determined by a selection rule

r ∈ R, which is either flexible or stipulated by election laws.17

Given any µ ∈ M and any selection rule r ∈ R, the induced distribution of posterior

medians H1/2(·|µ, r) can be interpreted as a distribution of the ideal positions of the elected

representatives. Meanwhile, the bounds F
1/2
0 and F

1/2

0 can be interpreted as distributions of

representatives that only reflect one side of voters’ political positions relative to the median

of the population. Specifically, F
1/2
0 describes an “all-left” legislature, which only reflects

citizens’ ideal positions that are left of the population median. Likewise, F
1/2

0 represents

an “all-right” legislature, which only reflects citizens’ ideal positions that are right of the

population median . As an immediate implication of Theorem 2 and Theorem 3, Proposition 1

below completely characterizes the set of possible compositions of the legislature across all

election maps.

Proposition 1 (Limits of Gerrymandering). For any H ∈ F , the following are equivalent:

1. H ∈ I(F 1/2
0 , F

1/2

0 ).

2. H is a distribution of the representatives’ ideal positions under some map µ ∈ M and

some selection rule r ∈ R.

Furthermore, for any fixed selection rule r̂ ∈ R, every H ∈ ∪ε>0I(F
1/2,ε
0 , F

1/2,ε

0 ) is a distribu-

tion of the representatives’ ideal positions under some map µ ∈ M and selection r̂.

Hence, any composition of the legislative body ranging from the “all-left” to the “all-

right,” and anything in between those two extremes, can be procured by some gerrymandered

16See Yang and Zentefis (2022a) for a formal link between segmenting a prior and partitioning a population
on a physical, two dimensional map.

17Recall that any voting method that meets the Condorcet criterion (e.g., majority voting with two office-
seeking candidates) satisfies the median voter property in this setting (Downs 1957; Black 1958).
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map. Meanwhile, any composition that is more extreme than the “all-left” or the “all-right”

bodies is not possible regardless of how the districts are drawn.18

If we specify the model for the legislature to enact legislation, we may further explore

the set of possible legislative outcomes that can be enacted. One natural assumption for the

outcomes, regardless of the details of the legislative model, is that the enacted legislation must

be a median of the representatives (i.e., the median voter property holds at the legislative

level).19 Under this assumption, an immediate implication of Corollary 1 is that the set of

achievable legislative outcomes coincides with the interquartile range of the citizenry’s ideal

positions, as summarized by Corollary 3 below.

Corollary 3 (Limits of Legislative Outcomes). Suppose that the median voter property holds

both at the district level and at the legislative level. Then an outcome x ∈ R can be enacted

as legislation under some map if and only if x ∈ [F−1
0 (1/4), F−1

0 (3/4)].

According to Corollary 3, while the only Condorcet winners in this setting are the popula-

tion medians, gerrymandering expands the set of possible legislation to the entire interquartile

range of the population’s views. Moreover, if the population is more polarized (i.e., the in-

terquartile range is wider), more extreme legislation can pass. Conversely, Corollary 3 also

suggests it is impossible to enact any legislative outcome beyond the interquartile range,

regardless of how the districts are drawn.

Finally, Proposition 1 can help identify the citizenry’s distribution of ideal positions. A

common approach to identify that distribution is to map public opinion survey responses to

an ideological spectrum. But a disadvantage of this approach is the absence of consistent

questions asked over time to create a stable mapping and the lack of representativeness in

some surveys (Lax and Phillips 2009). Identifying the ideal positions of elected officials

has been more successful because of the abundance of roll-call voting records available in

the estimation (Poole and Rosenthal 1985; Shor and McCarty 2011). Nonetheless, inferring

the citizenry’s distribution of ideal positions from that of elected officials is difficult, as the

distribution of ideal positions of elected officials might be very different from that of the

citizenry due to gerrymandering.

Using Proposition 1, one can identify the possible distributions of citizens’ ideal positions

from the observed distribution of representatives’ ideal positions. Suppose that H is the

observed distribution of representatives’ ideal positions. Proposition 1 implies that the pop-

18Gomberg, Pancs and Sharma (2022) also study how gerrymandering affects the composition of the
legislature. However, the authors assume that each district elects a mean candidate as opposed to the
median.

19See McCarty, Poole and Rosenthal 2001; Bradbury and Crain 2005; and Krehbiel 2010 for evidence that
the median legislator is decisive. See also Cho and Duggan (2009) for a microfoundation.
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ulation distribution F0 must have H be dominated by F
1/2

0 and dominate F
1/2
0 at the same

time. This leads to Corollary 4 below.

Corollary 4 (Identification Set of F0). Suppose that H ∈ F is the distribution of ideal

positions of a legislature. Then the distribution of citizens’ ideal position F0 must satisfy

1

2
H(x) ≤ F0(x) ≤

1 +H(x)

2
, (4)

for all x ∈ R. Conversely, for any F0 ∈ F satisfying (4), there exists a map µ ∈ M and a

selection rule r ∈ R, such that H is the distribution of ideal positions of the legislature.

According to Corollary 4, the distribution of citizens’ ideal positions can be identified by

(4), even when only the distribution of the representatives’ ideal positions can be observed.20

Quantile-Based Persuasion

Theorem 2 and Theorem 3 also lead to applications in Bayesian persuasion. Consider the

Bayesian persuasion problem formulated by Kamenica and Gentzkow (2011): A state x ∈ R

is distributed according to a common prior F0. A sender chooses a signal µ ∈ M to inform

the receiver, who then picks an action a ∈ A after seeing the signal’s realization. The ex-

post payoffs of the sender and receiver are uS(x, a) and uR(x, a), respectively. Kamenica

and Gentzkow (2011) show that the sender’s optimal signal and the value of persuasion

can be characterized by the concave closure of the function v̂ : F → R, where v̂(F ) :=

EF [uS(x, a
∗(F ))] is the reduced-form value function of the sender, and a∗(F ) ∈ A is the

optimal action of the receiver under posterior F ∈ F .21

When |supp(F0)| ≥ 2, this “concavafication” method requires finding the concave closure

of a multi-variate function, which is known to be computationally challenging, especially

when |supp(F0)| = ∞. For tractability, many papers have restricted attention to preferences

where the only payoff-relevant statistic of a posterior is its mean (i.e., v̂(F ) is measurable with

respect to EF [x]). See, for example, Gentzkow and Kamenica (2016); Kolotilin, Li, Mylovanov

and Zapechelnyuk (2017); Dworczak and Martini (2019); Arieli, Babichenko, Smorodinsky

and Yamashita (forthcoming) and Kolotilin, Mylovanov and Zapechelnyuk (2022b).

A natural analogue of this “mean-based” setting is for the payoffs to depend only on the

posterior quantiles. Just as mean-based persuasion problems are tractable because distri-

butions of posterior means are mean-preserving contractions of the prior, Theorem 2 and

20In Yang and Zentefis (2022b), we apply the same logic and use Theorem 2 and Theorem 3 to characterize
the identification set of a nonparametric quantile regression function.

21When there are multiple optimal actions, subgame-prefection would always select the one that the sender
prefers most.

19



Theorem 3 provide a tractable formulation of any “quantile-based” persuasion problem, as

described in Proposition 2 below.

Proposition 2 (Quantile-Based Persuasion). Suppose that the sender’s and receiver’s payoffs

are such that there exists τ ∈ (0, 1), a selection rule r ∈ R, and a measurable function

vS : R → R in which v̂(F ) =
∫

R vS(x)r(dx|F, τ), for all F ∈ F . Then

cav(v̂)[F0] = sup
H∈I(F τ

0 ,F
τ
0 )

∫
R
vS(x)H(dx). (5)

Proof. Let v̄(F ) := supx∈[F−1(τ),F−1(τ+)] vS(x) for all F ∈ F . Then, by Theorem 2,

cav(v̂)[F0] ≤ cav(v̄)[F0] = sup
H∈I(F τ

0 ,F
τ
0 )

∫
R
vS(x)H(dx).

Meanwhile, by Theorem 3,

sup
H∈∪ε>0I(F τ,ε

0 ,F
τ,ε
0 )

∫
R
vS(x)H(dx) ≤ cav(v̂)[F0].

Together, since cl({I(F τ,ε
0 , F

τ,ε

0 )}) = I(F τ
0, F

τ

0), (5) then follows. ■

By Proposition 2, any τ -quantile-based persuasion problem can be solved by simply choos-

ing a distribution in I(F τ
0, F

τ

0) to maximize the expected value of vS(x), rather than con-

cavafying the infinite-dimensional functional v̂. Furthermore, since the objective function of

(5) is affine, Theorem 1 further reduces the search for the solution to only distributions that

satisfy its conditions 1 and 2.22

For example, consider the canonical setting where the receiver chooses an action to match

the state and minimizes some loss function, while the sender’s payoff is state-independent.

To fix ideas, we can let the sender be an investment advisor and the receiver be a client. The

investment advisor wishes to persuade the client to allocate a fraction a ∈ [0, 1] of wealth in

stocks and the remaining 1− a fraction in bonds. The client would prefer different portfolio

allocations under different states x ∈ [0, 1] of the economy.

22A recent elegant contribution by Kolotilin, Corrao and Wolitzky (2022a) provides a tractable method that
simplifies persuasion problems with a one-dimensional state and a one-dimensional action in certain cases.
One of these cases is when the receiver’s payoff is supermodular and the sender’s payoff is state-independent
and increasing in the receiver’s action. One of their examples within this case has the sender’s payoff being
state-independent and increasing in the receiver’s action, while the receiver’s optimal action for each posterior
is quantile-measurable. When one further assumes that the sender’s payoff is increasing, the conditions of
Proposition 4 lead to the same example. Since we allow for arbitrary (state-independent) sender payoffs,
Proposition 4 generalizes this example in an orthogonal direction and complements their method.
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A standard assumption in this setting is that the receiver’s loss function is quadratic, so

that uR(x, a) := −(x−a)2. Under this assumption, the receiver’s optimal action a∗(F ), given

a posterior F , equals the posterior expected value EF [x], and hence, the sender’s problem is

mean-measurable. This leads to a tractable problem since the distributions of the receiver’s

actions are equivalent to mean-preserving contractions of the prior.23 With Proposition 4,

we are now able to completely solve the sender’s problem when the receiver’s loss function is

absolute rather than quadratic. That is, when uR(x, a) := −|x− a|, or more generally, when

uR(x, a) := −ρτ (x− a), with ρτ (y) := y(τ − 1{y < 0}) being the “pinball” loss function. For

any τ ∈ (0, 1), when the receiver’s payoff is given by uR(x, a) = −ρτ (x− a) and the sender’s

payoff is uS(x, a) = vS(a), since any a ∈ [F−1(τ), F−1(τ+)] is optimal for the receiver when

the posterior is F , Proposition 2 applies, and the sender’s problem can be rewritten via (5).

For instance, if the sender’s payoff vS is nondecreasing, then F
τ

0 is optimal, whereas if vS

is nonincreasing, F τ
0 is optimal. Or, as in many settings, vS may be non-monotonic. In the

example of the investment advisor and the client, the advisor’s commission might be tied to

cross-selling some of the firm’s newer mutual funds over others. If one of those newer funds

is a blended portfolio of stocks and bonds, the advisor’s payoff might be quasi-concave in

the client’s chosen portfolio weight, with a peak at some a0 ∈ (0, 1) that has the client put

some wealth in stocks and the remainder in bonds, rather than all wealth in either asset class

alone. In this case, assuming that a0 < F−1
0 (τ), the solution to (5) is given by

H∗(x) :=

{
0, if x < a0

F τ
0(x), if x ≥ a0

.

Notice that if vS is concave, then the sender’s optimal signal is always the null signal if the

receiver’s loss function is quadratic. In contrast, when the receiver’s loss function is absolute,

the sender would optimally reveal some information about the state. In other words, the

shape of the receiver’s loss function has substantive implications for the type of information

the sender optimally discloses.

4 Security Design with Limited Liability

In this second class of applications, we show how FOSD intervals pertain to security design

with limited liability. Security design searches for optimal ways to divide the cash flows of

assets across financial claims as a way to mitigate informational frictions. We generalize

and unify seminal results in this literature under a common framework when either type

23See Dworczak and Martini (2019) for a characterization of the solutions and an interpretation of the
Lagrange multipliers.
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of asymmetric information is at play. Section 4.1 addresses security design problems under

moral hazard, whereas Section 4.2 handles those under adverse selection.

4.1 Security Design with Moral Hazard

Consider the following setting of security design in the presence of moral hazard, a setting

due to Innes (1990). A risk-neutral entrepreneur issues a security to an investor to fund a

project. The project needs an investment I > 0. If the project is funded, the entrepreneur

then exerts costly effort to develop the project. If the effort level is e ≥ 0, the project’s

profit is distributed according to Φ(·|e) ∈ F , and the (additively separable) effort cost to the

entrepreneur is C(e) ≥ 0.

A security specifies the return to the investor for every realized profit x ≥ 0 of the project.

Both the entrepreneur and the investor have limited liability, and therefore, any security must

be a (measurable) function H : R+ → R such that 0 ≤ H(x) ≤ x for all x ≥ 0. Moreover,

a security is required to be monotone in the project’s profit.24 Given a security H, the

entrepreneur chooses an effort level to solve

sup
e≥0

∫ ∞

0

(x−H(x))Φ(dx|e)− C(e). (6)

For simplicity, we make the following technical assumptions: 1) The supports of the profit

distributions {Φ(·|e)}e≥0 are all contained in a compact interval, which is normalized to [0, 1].

2) Φ(·|e) admits a density ϕ(·|e) for all e ≥ 0. 3) {Φ(·|e)}e≥0 and C are such that (6) admits

a solution and every solution to (6) can be characterized by the first-order condition.25

The entrepreneur’s goal is to design a security to acquire funding from the investor while

maximizing the entrepreneur’s expected payoff. Specifically, let F (x) := x and let G(x) :=

1{x = 1} for all x ∈ [0, 1]. The set of securities can be written as I(F,G). The entrepreneur

24Requiring securities to be monotone is a standard assumption in the security design literature (Innes
1990; Nachman and Noe 1994; DeMarzo and Duffie 1999). Monotonicity can be justified without loss of
generality if the entrepreneur can contribute additional funds to the project so that only monotone profits
would be observed.

25For example, we may assume that C is strictly increasing and strictly convex and that ∂
∂eϕ(x|e) > 0,

∂2

∂e2ϕ(x|e) ≤ 0 for all x and for all e.
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solves

sup
H∈I(F,G), e≥0

[∫ 1

0

[x−H(x)]ϕ(x|e) dx− C(e)

]
s.t.

∫ 1

0

[x−H(x)]
∂

∂e
ϕ(x|e) dx = C ′(e) (7)∫ 1

0

H(x)ϕ(x|e) dx ≥ (1 + r)I,

where r > 0 is the rate of return on a risk-free asset.

Innes (1990) characterizes the optimal security in this setting using an additional crucial

assumption: The project profit distributions {ϕ(·|e)}e≥0 satisfy the monotone likelihood ratio

property (Milgrom 1981). Under this assumption, he shows that every optimal security must

be a standard debt contract Hd(x) := min{x, d} for some d > 0. While the simplicity

of a standard debt contract is a desirable feature, the monotone likelihood ratio property

is arguably a strong condition (Hart 1995), where higher effort leads to higher probability

weights on all higher project profits at any profit level. It remains unclear what the optimal

security might be under a more general class of distributions.

Using Theorem 1, we can generalize Innes (1990) and solve the entrepreneur’s problem

(7) without the monotone likelihood ratio property. As we show in Proposition 3 below,

contingent debt contracts are now optimal. We say that a securityH ∈ I(F,G) is a contingent

debt contract, if there exists an interval partition {In} of [0, 1] and a sequence {dn} ⊆ (0, 1]

such that H(x) = Hdn(x) for all x ∈ In. Figure IV illustrates a contingent debt contract Ĥ

with I1 = [0, 1/2), I2 = [1/2, 1], d1 = 1/4, and d2 = 3/4. Under Ĥ, if the project’s profit x is

below 1/2, the entrepreneur owes debt with face value 1/4; instead, if the profit is above 1/2,

the entrepreneur owes debt with a higher face value 3/4. The entrepreneur’s required debt

payment to the investor is contingent on the entrepreneur’s capacity to pay, which itself is

linked to the realized profit of the project.26

Clearly, every standard debt contract with face value d is a contingent debt contract where

I1 = [0, 1] and d1 = d. Moreover, a contingent debt contract never involves the entrepreneur

and investor sharing in the equity of the project. To see how the cash flow is split between

parties, suppose the project earned x ∈ (1/2, 3/4). The entrepreneur would default on the high

face-value debt contract (d2 = 3/4), and the investor would take claim of all project profits

x. If, instead, the project earned x ∈ (1/4, 1/2), the investor would receive the low face-value

amount (d1 = 1/4), and the entrepreneur would retain the amount x− 1/4. In general, under

26Contingent debt contracts share some similarity with state-contingent debt instruments (SCDIs) from the
sovereign debt literature, which tie a country’s principal or interest payments to its nominal GDP (Lessard
and Williamson 1987; Shiller 1994; Borensztein and Mauro 2004).
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Figure IV
A contingent Debt Contract

any contingent debt contract, either the entrepreneur defaults and the investor absorbs all

rights to the project’s worth, or the entrepreneur pays a certain face value and retains the

residual profit.

From Theorem 1, we show that a portfolio of at most three contingent debt contracts is

optimal.

Proposition 3. There exists contingent debt contracts {H∗
i }3i=1 and {λi}3i=1 ⊆ [0, 1], with

λ1 + λ2 + λ3 = 1, such that H∗ := λ1H
∗
1 + λ2H

∗
2 + λ3H

∗
3 is a solution to the entrepreneur’s

problem (7).

Proof. For any fixed e ≥ 0, the objective function of the entrepreneur’s security design

problem (7) is linear, and the two constraints are linear. Thus, for any fixed e, (7) must

have a solution that is an extreme point of the feasible set. By proposition 2.1 of Winkler

(1988), extreme points of the feasible set must take the form of a convex combination of at

most three extreme points of I(F,G). The proof is then completed by noticing that H is an

extreme point of I(F,G) if and only if H is a contingent debt contract. ■

According to Proposition 3, it is sufficient for the entrepreneur to use a portfolio of

contingent debt contracts without sharing the equity of the project with the investor. The

nature of standard debt contracts, which grant the entrepreneur only residual rights, is

preserved even without the monotone likelihood ratio assumption. The only difference is

that the entrepreneur may be liable for more when the project earns more.

To better understand Proposition 3, recall that the optimality of standard debt con-

tracts in Innes (1990) is due to (i) the risk-neutrality and the limited-liability structure
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of the problem, and (ii) the monotone likelihood ratio property of the profit distributions.

Indeed, for any incentive-compatible and individually-rational contract, risk neutrality al-

lows one to construct an individually-rational standard debt contract with the same ex-

pected payment. Meanwhile, the monotone likelihood ratio property ensures that this debt

contract inventivizes the entrepreneur to exert higher effort, thus relaxing the incentive-

compatibility constraint. Without the monotone likelihood ratio assumption, simply repli-

cating an individually-rational contract with a standard debt contract may distort incentives

and lead to less efficient effort and suboptimal outcomes. In this regard, Proposition 3 shows

that simple portfolios of contingent debt contracts are enough to replicate the profit level of

all other feasible contracts while preserving incentive compatibility and individual rational-

ity. In essence, the proposition separates the effects of risk neutrality and limited liability on

security design from the effects of the monotone likelihood ratio property.

At a more technical level, Proposition 3 is reminiscent of mechanism design problems

whose solutions feature rationing or randomized posted prices. (See, for example, Samuelson

1984; Dworczak r○ Kominers r○ Akbapour 2021; Loertscher and Muir 2022; Kang 2022).

The common structure of these problems is that the objective function is affine, the feasible

set is the collection of uniformly bounded monotone functions, and the constraints are affine

in the choice variables. Proposition 2.1 of Winkler (1988) implies that there must be at least

one solution that can be represented as a convex combination of at most n+1 extreme points

of the feasible set, where n is the number of constraints. Just as rationing and randomized

posted-price mechanisms are mixtures of posted-price mechanisms—which are extreme points

of the feasible set—portfolios of contingent debt contracts are mixtures of extreme points of

the feasible set I(F,G) in problem (7) as well.

4.2 Security Design with Adverse Selection

Consider the following setting of security design in the presence of adverse selection, a setting

due to DeMarzo and Duffie (1999). There is a risk-neutral security issuer with discount rate

δ ∈ (0, 1) and a unit mass of risk-neutral investors. The issuer has an asset that generates

a random cash flow x ≥ 0. The cash flow is distributed according to Φ0 ∈ F , which is

supported on a compact interval normalized to [0, 1]. Because δ < 1, the issuer has demand

for liquidity and therefore has an incentive to sell a limited-liability security backed by the

asset to raise cash. A security is a nondecreasing, right-continuous function H : [0, 1] → R+

such that 0 ≤ H(x) ≤ x for all x. Let F (x) := x and G(x) := 1{x = 1} for all x ∈ [0, 1].

The set of securities can again be written as I(F,G).

Given any security H ∈ I(F,G), the issuer first observes a signal s ∈ S for the asset’s

cash flow. Then, taking as given an inverse demand schedule P : [0, 1] → R+, she chooses a
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fraction q ∈ [0, 1] of the security to sell. If a fraction q of the security is sold and the signal

realization is s, the issuer’s expected return is

δ (E[x−H(x)|s] + (1− q)E[H(x)|s]) + qP (q) = q(P (q)− δE[H(x)|s]) + δE[x|s].

Investors observe the quantity q, update their beliefs about x, and decide whether to purchase.

DeMarzo and Duffie (1999) show that, in the unique equilibrium that survives the D1

criterion,27 the issuer’s profit under a security H, when the posterior expected value of the

security is E[H(x)|s] = z, is given by

Π(z|H) := (1− δ)z
1

1−δ

0 z−
δ

1−δ ,

where z0 is the lower bound of the support of E[H(x)|s]. Therefore, let Φ(·|s) be the condi-

tional distribution of the cash flow x given signal s, and let Ψ : S → [0, 1] be the marginal

distribution of the signal s. The expected value of a security H is then

Π(H) := (1− δ)

(
inf
s∈S

∫ 1

0

H(x)Φ(dx|s)
) 1

1−δ
∫
S

(∫ 1

0

H(x)Φ(dx|s)
)− δ

1−δ

Ψ(ds).

As a result, the issuer’s security design problem can be written as

sup
H∈I(F,G)

Π(H).

Using a variational approach, DeMarzo and Duffie (1999) characterize several general

properties of the optimal securities without solving for them explicitly. They then specialize

the model by assuming that the signal structure {Φ(·|s)}s∈S has a uniform worst case, a

condition slightly weaker than the monotone likelihood ratio property that requires the cash

flow distribution to be smallest in the sense of FOSD under some s0, conditional on every

interval I of [0, 1].28 With this assumption, DeMarzo and Duffie (1999) show that a standard

debt contract Hd(x) := min{x, d} is optimal.

With Theorem 1, we are able to generalize this result and solve for an optimal security

while relaxing the uniform-worst-case assumption. As in Section 4.1, we say that a security is

27An equilibrium in this market is a pair (P,Q) of measurable functions such that Q(E[H(x)|s])(P ◦
Q(E[H(x)|s])−δE[H(x)|s]) ≥ q(P (q)−δE[H(x)|s]) for all q ∈ [0, 1] with probability 1, and P ◦Q(E[H(x)|s]) =
E[H(x)|Q(E[H(x)|s])] with probability 1.

28Specifically, they assume that there exists some s0 ∈ S such that, for any s ∈ S and for any interval
I ⊂ [0, 1], (i) Φ(I|s0) = 0 implies Φ(I|s) = 0, and (ii) the conditional distribution of the asset’s cash flow
given signal realization s and given that the cash flow falls in an interval I, which is denoted Φ|I(·|s)/Φ(I|s),
dominates that conditional distribution given signal realization s0, denoted Φ|I(·|s0)/Φ(I|s0), in the sense of
first-order stochastic dominance.
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a contingent debt contract if there exists an interval partition {In} of [0, 1] and {dn} ⊆ (0, 1]

such that H(x) = Hdn(x) for all x ∈ In. Instead of a uniform worst case, we only assume

that there is a worst signal s0 such that Φ(·|s) dominates Φ(·|s0) in the sense of FOSD for

all s ∈ S. With this assumption, the issuer’s security design problem can be written as

sup
H∈I(F,G),z≥0

[
(1− δ)z

1
1−δ

∫
S

(∫ 1

0

H(x)Φ(dx|s)
)− δ

1−δ

Ψ(ds)

]

s.t.

∫ 1

0

H(x)Φ(dx|s0) = z. (8)

As shown by Proposition 4 below, there always exists an optimal security in this setting that

is a portfolio of at most two contingent debt contracts.

Proposition 4. There exists contingent debt contracts H∗
1 , H

∗
2 and λ ∈ [0, 1] such that H∗ :=

λH∗
1 + (1 − λ)H∗

2 is a solution to the issuer’s problem (8). Furthermore, if Φ(·|s) has full

support on [0, 1] for all s ∈ S, this solution is unique.

Proof. For any fixed z ≥ 0, the objective function of the issuer’s problem (8) is convex, and

the constraint is linear. Thus, an extreme point of the feasible set must be a solution to

(8). By proposition 2.1 of Winkler (1988), such an extreme point can be written as a convex

combination of at most two extreme points of I(F,G), as desired, since H is an extreme

point of I(F,G) if and only if H is a contingent debt contract. For uniqueness, notice that

when Φ(·|s) has full support for all s, the objective function of (8) is strictly convex in H.

Therefore, every solution must be an extreme point of the feasible set. This completes the

proof. ■

Overall, this section showcases the unifying role of extreme points of FOSD intervals

in security design. Rationalizing the existence of different financial securities observed in

practice has been a crowning achievement of this literature. The literature has done this

under a variety of economic environments and assumptions, which punctuates the robustness

of these securities as optimal contracts. But that variety also makes it hard to sort the

essential modeling ingredients from the inessential ones. And the core features that connect

these environments are not readily apparent.

An advantage of recasting feasible securities as an FOSD interval is that it strips the

problem down to its basic elements. Whether the setting has hidden action or hidden in-

formation, and whether the asset’s cash flow distributions exhibit MLRP, are not defining.

Limited liability, monotone contracts, and convexity of the issuer’s objective function are

the core elements that deliver debt as an optimal security. The terms of the debt contract
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somewhat differ from those of a standard one, as the face value of the debt is now contingent

on the asset’s cash flow, but the nature of debt contracts, which never has the issuer and

investor share in the asset’s equity and grants the issuer only residual rights, still prevails.

Without knowledge of the extreme points of FOSD intervals, solving the security design

problem without the MLRP assumption would have been substantially harder. Thus, just

as in the other economic applications of this paper, Theorem 1 offers a unified approach to

answering classic economic questions that have been previously answered by case-specific ap-

proaches. Well-known results directly follow, but so do new insights that are straightforward

to uncover using this framework.

5 Conclusion

We characterize the extreme points of first-order stochastic dominance (FOSD) intervals, and

we reveal how these intervals are at the heart of many distinct topics in economics. We show

that any extreme point of an FOSD interval must either coincide with one of the FOSD inter-

val’s bounds, or be constant on an interval, where at least one end of the interval reaches one

of the bounds. FOSD intervals describe the distributions of posterior quantiles. We apply

this insight to topics in the psychology of judgment, political economy, and Bayesian persua-

sion. We also use this insight to prove the law of iterated quantiles. Finally, FOSD intervals

provide a common structure to security design. We unify and generalize seminal results in

that literature when either adverse selection or moral hazard afflicts the environment.

Other applications involving FOSD intervals undoubtedly exist. For instance, their link

to the distributions of posterior quantiles opens many potential research avenues. When

consumers’ values or firms’ marginal costs follow distributions, different points on the in-

verse supply and demand curves are quantiles, which might contain further applications in

consumer or firm theory. Inequality is often measured as an upper percentile of the wealth

or income distribution, making it eligible for analysis. Likewise, settings in which the fea-

sible set can be represented as an FOSD interval, such as R&D investments and screening

problems with stochastic inventories, are yet other directions for future work.
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Appendix

A.1 Proof of Theorem 1

Consider any F,G,H ∈ F such that G(x) ≤ H(x) ≤ F (x) for all x ∈ R. We first show that if H satisfies

1 and 2 for a countable collection of intervals {[xn, xn)}∞n=1, then H must be an extreme point of I(F,G).

To this end, first note that I(F,G) ⊆ F is a convex subset of the collection of Borel-measurable functions

on R. Since the collection of Borel-measurable functions on R is a real vector space, it suffices to show

that for any Borel-measurable Ĥ with Ĥ ̸= 0, either H + Ĥ /∈ I(F,G) or H − Ĥ /∈ I(F,G). Clearly, if

H+ Ĥ /∈ F or H− Ĥ /∈ F , then it must be that either H+ Ĥ /∈ I(F,G) or H− Ĥ /∈ I(F,G). Thus, we may

suppose that both H + Ĥ and H − Ĥ are in F . Now notice that since Ĥ ̸= 0, there exists x0 ∈ R such that

Ĥ(x0) ̸= 0. If x0 /∈ ∪∞
n=1[xn, xn), then H(x0) ∈ {G(x0), F (x0)} and hence both H(x0)+|Ĥ(x0)| > F (x0) and

H(x0)− |Ĥ(x0)| < G(x0). Thus, it must be that either H + Ĥ /∈ I(F,G) or H − Ĥ /∈ I(F,G). Meanwhile,

if x0 ∈ [xn, xn) for some n ∈ N, then Ĥ must be constant on [xn, xn) as H is constant on [xn, xn) as both

H + Ĥ and H − Ĥ are nondecreasing. Thus, either H(xn) + |Ĥ(xn)| = F (xn) + |Ĥ(x0)| > F (xn), or

H(x−n )− |Ĥ(x−n )| = G(x−n )− |Ĥ(x0)| < G(x−n ), and hence either H + Ĥ /∈ I(F,G) or H − Ĥ /∈ I(F,G), as

desired.

Conversely, suppose that H is an extreme point of I(F,G). To show that H must satisfy 1 and 2 for

some countable collection of intervals {[xn, xn)}∞n=1, we first claim that if G(x−0 ) < H(x0) := η < F (x0) for

some x0 ∈ R, then it must be that either H(x) = H(x0) for all x ∈ [F−1(η+), x0] or H(x) = H(x0) for all

x ∈ [x0, G
−1(η)). Indeed, suppose the contrary, so that there exists x ∈ [F−1(η+), x0) and x ∈ (x0, G

−1(η))

such that H(x) < H(x0) < H(x−). Then, since H is right-continuous, and since H(x) < H(x0) <

H(x−), it must be that H−1(η) > F (η+) and H−1(η+) < G(η). Moreover, since x 7→ F (x−) is left-

continuous, H−1(η) > x ≥ F−1(η+) implies F (H−1(η)−) > η. Likewise, H−1(η+) < x < G−1(η) implies

that G(H−1(η+)) < η. Now define a function Φ : [0, 1]2 → R2 as

Φ(ε1, ε2) :=

(
η − ε2 −G(H−1((η + ε1)

+))

F (H−1(η − ε2)
−)− η − ε1

)
,

for all (ε1, ε2) ∈ [0, 1]2. Then Φ is continuous at (0, 0) and Φ(0, 0) ∈ R2
++. Therefore, there exists (ε̂1, ε̂2) ∈

[0, 1]2\{(0, 0)} such that Φ(ε̂1, ε̂2) ∈ R2
++. Let η := η − ε̂2 and η := η + ε̂1, it then follows that

G(H−1(η+)−) ≤ G(H−1(η+)) < η < η < η < F (H−1(η)−) ≤ F (H−1(η)). (A.9)

Now consider the function h : [H−1(η), H−1(η+)] → [η, η], defined as h(x) := H(x) for all x ∈ [H−1(η), H−1(η+)].

Clearly h is nondecreasing. As a result, since the extreme points of the collection of uniformly bounded

monotone functions are step functions (see, for instances, Skreta 2006 and Börgers 2015), η < h(x0) =

H(x0) = η < η implies that there exists distinct nondecreasing, right-continuous functions H1, H2 :

[H−1(η), H−1(η+)] → [η, η] and constant λ ∈ (0, 1) such that h(x) = λH1(x) + (1 − λ)H2(x), for all
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x ∈ [H−1(η), H−1(η+)]. Now define Ĥ1, Ĥ2 as

Ĥ1(x) :=

{
H(x), if x /∈ [H−1(η), H−1(η+)]

h1(x), if x ∈ [H−1(η), H−1(η+)]
;

and

Ĥ2(x) :=

{
H(x), if x /∈ [H−1(η), H−1(η+)]

h2(x), if x ∈ [H−1(η), H−1(η+)]

Clearly λĤ1 + (1− λ)Ĥ2 = H.

It now remains to show that Ĥ1, Ĥ2 ∈ I(F,G). Indeed, for any i ∈ {1, 2} and for any x, y ∈ R

with x < y, if either x, y /∈ [H−1(η), H−1(η+)], then Ĥi(x) = H(x) ≤ H(y) /∈ Ĥi(y). Meanwhile, if

x, y ∈ [H−1(η), H−1(η+)], then Ĥi(x) = hi(x) ≤ hi(y) = Ĥi(x). If x < H−1(η) and y ∈ [H−1(η), H−1(η+)],

then Ĥi(x) = H(x) ≤ η ≤ hi(y) = Ĥi(y). Likewise, if y > H−1(η+) and x ∈ [H−1(η), H−1(η+)], then

Ĥi(x) = hi(x) ≤ η ≤ H(y) = Ĥi(y). Together, Ĥi must be nondecreasing, and hence Ĥi ∈ F for all

i ∈ {1, 2}. Moreover, for any i ∈ {1, 2} and for all x ∈ [H−1(η), H−1(η+)], from (A.9), we have

G(x) ≤ G(H−1(η+)) < η ≤ hi(x) ≤ η < F (H−1(η)−) ≤ F (x).

Together with H ∈ I(F,G), it then follows that G(x) ≤ Ĥi(x) ≤ F (x) for all x ∈ R, and hence Ĥi ∈
I(F,G) for all i ∈ {1, 2}. Consequently, there exists distinct Ĥ1, Ĥ2 ∈ I(F,G) and λ ∈ (0, 1) such that

H = λĤ1 + (1− λ)Ĥ2. Thus H is not an extreme point of I(F,G), as desired.

As a result, for any extreme point H of I(F,G), the set {x ∈ R|G(x) < H(x) < F (x)} can be partitioned

into three classes of open intervals: IF , IG, and IF,G such that for any open interval (x, x) ∈ IF , H is a

constant on [x, x) and H(x) = F (x); for any open interval (x, x) ∈ IG, H is a constant on [x, x) and

H(x−) = G(x−); and for any open interval (x, x) ∈ IF,G, H is a constant on [x, x) and F (x) = H(x) =

H(x−) = G(x−). Note that since F,G,H are nondecreasing and since H ∈ I(F,G), every interval in IF

and IG must have at least one of its end points being a discontinuity point of H. Since H has at most

countably many discontinuity points, IF and IG must be countable. Meanwhile, any distinct intervals

(x1, x1), (x2, x2) ∈ IF,G must be disjoint. Moreover, for any pair of these intervals with x1 < x2, there

must exist some x0 ∈ (x1, x2) at which H is discontinuous. Therefore, since H has at most countably many

discontinuity points, IF,G must be countable as well.

Together, for any extreme point H of I(F,G), there exists countably many intervals {[xn, xn)}∞n=1 :=

IF ∪ IG ∪ IF,G such that H satisfies 1 and 2. This completes the proof. ■

A.2 Proof of Theorem 2

To show that Hτ ⊆ I(F τ
0 , F

τ
0), consider any H ∈ Hτ . Let µ ∈ M and any r ∈ R be a signal and a selection

rule, respectively, such that Hτ (·|µ, r) = H. By the definition of Hτ (·|µ, r), it must be that, for all x ∈ R,

H(x|µ, r) ≤ µ({F ∈ F|F−1(τ) ≤ x}) = µ({F ∈ F|F (x) ≥ τ}).
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Now consider any x ∈ R. Clearly, µ({F ∈ F|F (x) ≥ τ}) ≤ 1, since µ is a probability measure. Moreover, let

M+
x (q) := µ({F ∈ F|F (x) ≥ q}) for all q ∈ [0, 1]. From (1), it follows that the left-limit of 1−M+

x is a CDF

and a mean-preserving spread of a Dirac measure at F0(x). Therefore, whenever τ ≥ F0(x), then M+
x (τ) can

be at most F0(x)/τ to have a mean of F0(x).
29 Together, this implies that µ({F ∈ F|F (x) ≥ τ}) ≤ F τ

0(x)

for all x ∈ R.

At the same time, by the definition of Hτ (·|µ, r), it must be that, for all x ∈ R,

Hτ (x−|µ, r) ≥ µ({F ∈ F|F−1(τ+) < x}) = µ({F ∈ F|F (x) > τ}).

Now consider any x ∈ R. Since µ is a probability measure, it must be that µ({F ∈ F|F (x) > τ}) ≥ 0.

Furthermore, let M−
x (q) := µ({F ∈ F|F (x) > q}) for all q ∈ [0, 1]. From (1), it follows that 1 − M−

x is

a CDF and a mean-preserving spread of a Dirac measure at F0(x). Therefore, whenever τ ≤ F0(x), then

M−
x (τ) must be at least (F0(x)− τ)/(1− τ) to have a mean of F0(x).

30 Together, this implies that µ({F ∈
F|F (x) > τ}) ≥ F

τ
0 for all x ∈ R, which, in turn, implies that F

τ
0(x) ≤ Hτ (x−|µ, r) ≤ Hτ (x|µ, r) ≤ F τ

0(x)

for all x ∈ R, as desired.

To prove that I(F τ
0 , F

τ
0) ⊆ Hτ , we first show that for any extreme point H of I(F τ

0 , F
τ
0), there exists a

signal µ ∈ M and a selection rule r ∈ R such that H(x) = Hτ (x|µ, r) for all x ∈ R. Consider any extreme

point H of I(F τ
0 , F

τ
0). By Theorem 1, there exists a countable collection of intervals {(xn, xn)}∞n=1 such

that H satisfies 1 and 2. Since (1−F τ
0(x))F

τ
0(x) = 0 for all x /∈ [F−1

0 (τ), F−1
0 (τ+)], there exists at most one

n ∈ N such that 0 < H(xn) = F τ
0(xn) = F

τ
0(x

−
n ) = H(x−n ) < 1. Therefore, for x and x defined as

x := sup{xn|n ∈ N, H(xn) = F τ
0(xn)},

and

x := inf{xn|n ∈ N, H(x−n ) = F
τ
0(x

−
n )},

respectively, it must be that x ≥ x, and that for all n ∈ N, either xn ≤ x and H(xn) = F τ
0(xn); or xn ≥ x

and H(x−n ) = F
τ
0(x

−
n ). Henceforth, let N1 be the collection of n ∈ N such that xn ≤ x and H(xn) = F τ

0(xn),

and let N2 be the collection of n ∈ N such that xn ≥ x and H(x−n ) = F
τ
0(x

−
n ). Note that N1 ∪ N2 = N and

that |N1 ∩ N2| ≤ 1, with xn = x and xn = x whenever n ∈ N1 ∩ N2.

We now construct a signal µ ∈ M and a selection rule r ∈ R such that Hτ (·|µ, r) = H. To this end,

let η := H(x−) − H(x) and let x̂ := inf{x ∈ [x, x]|H(x) = H(x−)}. Note that by the definition of x and

x, if η > 0, then x̂ ∈ (x, x) and H(x) = H(x) for all x ∈ [x, x̂), while H(x) = H(x−) for all x ∈ [x̂, x). In

particular, F τ
0(x̂) ≥ H(x̂) = F τ

0(x)+η, and hence F0(x̂)− τη ≥ F0(x). Likewise, F0(x̂)+(1− τ)η ≤ F0(x
−).

Let

y := F−1
0 ([F0(x̂)− τη]+), and y := F−1

0 (F0(x̂) + (1− τ)η)).

It then follows that x ≤ y ≤ x̂ ≤ y ≤ x, with at least one inequality being strict if η > 0. Next, define F̂0

29More specifically, to maximize the probability at τ , a mean-preserving spread of F0(x) must assign probability
F0(x)/τ at τ , and probability 1− F0(x)/τ at 0.

30More specifically, to minimize the probability at τ , a mean-preserving spread of F0(x) must assign probability
(F0(x)− τ)/(1− τ) at 1, and probability 1− (F0(x)− τ)/(1− τ) at 0.
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as follows: F̂0 ≡ 0 if η = 0; and

F̂0(x) :=


0, if x < y

F0(x)−(F0(x̂)−τη)
η , if x ∈ [y, y)

1, if x ≥ y

,

if η > 0. Clearly F̂0 ∈ F if η > 0, and x̂ ∈ [F̂−1
0 (τ), F̂−1

0 (τ+)]. Moreover, for all x ∈ R, let

F̃0(x) :=
F0(x)− ηF̂0(x)

1− η
.

By construction, ηF̂0+(1− η)F̃0 = F0. From the definition of y and y, it can be shown that F̃0 ∈ F as well.

Furthermore,

F̃0(x
−)− F̃0(x) =

F0(x
−)− F0(x)− η

1− η
=

1

1− η

[
τ

1− τ
(1− F0(x

−)) +
1− τ

τ
F0(x)

]
.

Next, define F̃1 and F̃2 as follows:

F̃1(x) :=


F0(x)

F0(x)+α(F0(x−)−F0(x)−η)
, if x < x

F0(x)α(F0(x)−F0(x)−η)
F0(x)+α(F0(x−)−F0(x)−η)

, if x ∈ [x, x)

1, if x ≥ x

;

and

F̃2(x) :=


0, if x < x

(1−α)(F0(x)−F0(x)−η)
1−F0(x−)+(1−α)(F0(x−)−F0(x)−η)

, if x ∈ [x, x)
F0(x)−F0(x)+(1−α)(F0(x−)−F0(x)−η)

1−F0(x−)+(1−α)(F̃0(x−)−F̃0(x)−η)
, if x ≥ x

,

where

α :=
1−τ
τ F0(x)

τ
1−τ (1− F0(x−)) +

1−τ
τ F0(x)

.

By construction, α̃F̃1+(1−α̃)F̃2 = F̃0, where α̃ ∈ (0, 1) is given by α̃ := [F0(x)+α(F0(x
−)−F0(x)−η)]/(1−η).

Moreover, F̃1(x) ≥ τ , and F̃2(x
−) ≤ τ .

Now define two classes of distributions, {F̃ x
1 }x≤x and {F̃ x

2 }x≥x, as follows:

F̃ x
1 (z) :=


0, if z < x

F̃0(x), if z ∈ [x, x)

F̃0(z), if z ≥ x

; and F̃ x
2 (z) :=


F̃0(z), if z < x

F̃0(x
−), if z ∈ [x, x)

1, if z ≥ x

.

Note that, since F̃1(x) ≥ τ and F̃2(x
−) ≤ τ , x ∈ [(F̃ x

1 )
−1(τ), (F̃ x

1 )
−1(τ+)] for all x ≤ x and x ∈

[(F̃ x
2 )

−1(τ), (F̃ x
2 )

−1(τ+)] for all x ≥ x. Moreover, for any n ∈ N1 and for any m ∈ N2, let

F̃n
1 (z) :=

1

F̃0(xn)− F̃0(xn)

∫ xn

xn

F̃ x
1 (z)F̃0(dx),
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and

F̃m
2 (z) :=

1

F̃0(xm)− F̃0(xm)

∫ xm

xm

F̃ x
2 (z) dF̃0(dx),

for all z ∈ R. By construction, F̃n
1 , F̃

m
2 ∈ F and xn ∈ [(F̃n

1 )
−1(τ), (F̃n

1 )
−1(τ+)], xm ∈ [(F̃n

2 )
−1(τ), (F̃n

2 )
−1(τ+)]

for all n ∈ N1 and m ∈ N2.

Next, for any x ∈ R, let G̃x ∈ F be defined as

G̃x(z) :=


F̃ x
1 (z), if x ∈ (−∞, x]\ ∪n∈N1 [xn, xn)

F̃n
1 (z), if x ∈ [xn, xn), n ∈ N1

F̃ x
2 (z), if x ∈ [x,∞)\ ∪m∈N2 [xm, xm)

F̃m
2 (z), if x ∈ [xm, xm), m ∈ N2

,

for all z ∈ R. Let

H̃(x) :=


H(x)
1−η , if x < x
H(x)
1−η , if x ∈ [x, x)

H(x)−η
1−η , if x ≥ x

,

and define µ̃ as

µ̃({G̃x ∈ F|x ≤ z}) := H̃(z),

for all z ∈ R. Then, by construction, for any z ∈ R,∫
F
F (z)µ̃(dF ) =

∫
R
G̃x(z)H̃(dx) = F̃0(z). (A.10)

Moreover, let r̃ : F × (0, 1) → ∆(R) be defined as

r̃(F, τ̂) :=

{
δ{F−1(τ̂+)}, if F = G̃x, x ≥ x

δ{F−1(τ̂)}, otherwise
,

for all F ∈ F and for all τ̂ ∈ (0, 1). It then follows that Hτ (x|µ̃, r̃) = H̃(x) for all x ∈ R. Next, let

µ ∈ ∆(F), r ∈ R together be defined as

µ := (1− η)µ̃+ ηδ{F̂0},

and

r(F, τ̂) :=

{
δ{x̂}, if F = F̂0, τ = τ̂

r̃(F, τ̂), otherwise
,

for all F ∈ F and for all τ̂ ∈ (0, 1). Since F0 = ηF̂0 + (1 − η)F̃0, together with (A.10), we have µ ∈ M.

Moreover, since Hτ (·|µ̃, r̃) = H̃, we have Hτ (x|µ, r) = H(x) for all x ∈ R.

Lastly, let Γ be a collection of probability measures γ ∈ ∆(R × F) such that γ({(x, F ) ∈ R × F|x ∈
[F−1(τ), F−1(τ+)]}) = 1 and ∫

R×F
F (x)γ(dx,dF ) = F0(x),
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for all x ∈ R. Define a linear functional Ξ : Γ → F as

Ξ(γ)[x] := γ((−∞, x],F),

for all γ ∈ Γ and for all x ∈ R. Then, since for any Ĥ in the set of extreme points ext(I(F τ
0 , F

τ
0)) of

I(F τ
0 , F

τ
0), there exists µ̂ ∈ M and r̂ ∈ R such that Hτ (x|µ̂, r̂) = Ĥ(x) for all x ∈ R, it must be that

ext(I(F τ
0 , F

τ
0)) ⊆ Ξ(Γ).

Now consider any H ∈ I(F τ
0 , F

τ
0). Since I(F τ

0 , F
τ
0) is a compact and convex set of a metrizable,

locally convex topological space,31 Choquet’s theorem implies that there exists a probability measure ΛH ∈
∆(I(F τ

0 , F
τ
0)) with ΛH(ext(I(F τ

0 , F
τ
0))) = 1 such that∫

I(F τ
0 ,F

τ
0 )
Ĥ(x)ΛH(dĤ) = H(x),

for all x ∈ R. Define a measure Λ̃H by

Λ̃H(A) := ΛH({Ξ(γ)|γ ∈ A}),

for all measurable A ⊆ Γ. Since ΛH(ext(I(F τ
0 , F

τ
0))) = 1 and ext(I(F τ

0 , F
τ
0)) ⊆ Ξ(Γ), Λ̃H is a probability

measure on Γ. For any x ∈ R and for any measurable A ⊆ F , let

γ((−∞, x], A) :=

∫
Γ
γ̃((−∞, x], A)Λ̃H(dγ̃),

and let µ(A) := γ(R, A). By construction, for all x ∈ R,∫
F
F (x)µ(dF ) =

∫
Γ

(∫
R×F

F (x)γ̃(dx̃, dF )

)
Λ̃H(dγ̃) = F0(x),

and hence µ ∈ M. Furthermore, by the disintegration theorem (c.f., Çinlar 2010, theorem 2.18), there exists

a transition probability ξ : F → ∆(R) such that γ(dx,dF ) = ξ(dx|F )µ(dF ). Let r(F, τ̂) := ξ(F ) for all

F ∈ F and for all τ̂ ∈ (0, 1). Since Λ̃H(Γ) = 1, we have r ∈ R. Finally, for any x ∈ R, since Ξ is affine,

Hτ (x|µ, r) = γ((−∞, x],F) =Ξ(γ)[x]

=

∫
Γ
Ξ(γ̃)[x]Λ̃H(dγ̃)

=

∫
ext(I(F τ

0 ,F
τ
0 ))

Ĥ(x)ΛH(dĤ)

=H(x),

as desired. This completes the proof. ■

31To see this, recall that for any sequence {Hn} ⊆ I(F τ
0 , F

τ

0), Helly’s selection theorem implies that there exists a
subsequence {Hnk

} ⊆ {Hn} that converges pointwise (and hence, in weak-*) to some H ∈ I(F τ
0 , F

τ

0).
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A.3 Proof of Theorem 3

By Theorem 2, for any ε > 0,

H0
τ ⊆ Hτ = I(F τ

0 , F
τ
0).

It remains to show that ⋃
ε>0

I(F τ,ε
0 , F

τ,ε
0 ) ⊆ H0

τ .

To this end, let M0
τ be the collection of µ ∈ M such that µ({F ∈ F|F−1(τ) < F−1(τ+)}) = 0. Consider

any ε > 0 and any extreme point H of I(F τ,ε
0 , F

τ,ε
0 ). By Theorem 1, there exists a countable collection of

intervals {(xn, xn)}∞n=1 such that H satisfies 1 and 2. Since (1 − F τ,ε
0 (x))F

τ,ε
0 (x) = 0 for all x ̸= F−1

0 (τ),

there exists at most one n ∈ N such that 0 < H(xn) = F τ,ε
0 (xn) = F

τ,ε
0 (x−n ) = H(x−n ) < 1. Therefore, for x

and x defined as

x := sup{xn|n ∈ N, H(xn) = F τ,ε
0 (xn)} and x := inf{xn|n ∈ N, H(x−n ) = F

τ,ε
0 (x−n )},

respectively, it must be that x ≥ x, and that, for all n ∈ N, either xn ≤ x and H(xn) = F τ,ε
0 (xn), or

xn ≥ x and H(x−n ) = F
τ,ε
0 (x−n ). Henceforth, let N1 be the collection of n ∈ N such that xn ≤ x and

H(xn) = F τ,ε
0 (xn), and let N2 be the collection of n ∈ N such that xn ≥ x and H(x−n ) = F

τ,ε
0 (x−n ). Note

that N1 ∪ N2 = N and that |N1 ∩ N2| ≤ 1, with xn = x and xn = x whenever n ∈ N1 ∩ N2.

We now construct a signal µ ∈ M0
τ such that Hτ (·|µ) = H. First, let η := H(x−) − H(x) and let

x̂ := inf{x ∈ [x, x]|H(x) = H(x−)}. Note that, by the definition of x and x, if η > 0, then x̂ ∈ (x, x) and

H(x) = H(x) for all x ∈ [x, x̂), while H(x) = H(x−) for all x ∈ [x̂, x). In particular, F τ,ε
0 (x̂) ≥ H(x̂) =

F τ,ε
0 (x) + η, and hence F0(x̂)− (τ + ε)η ≥ F0(x). Likewise, F0(x̂) + (1− τ + ε)η ≤ F0(x

−). Now let

y := F−1
0 ([F0(x̂)− τη]), and y := F−1

0 (F0(x̂) + (1− τ)η).

It then follows that x ≤ y ≤ x̂ ≤ y ≤ x, with at least one inequality being strict if η > 0. Next, define F̂0

as follows: F̂0 ≡ 0 if η = 0; and

F̂0(x) :=


0, if x < y

F0(x)−(F0(x̂)−τη)
η , if x ∈ [y, y)

1, if x ≥ y

,

if η > 0. Clearly F̂0 ∈ F if η > 0, and x̂ = F̂−1
0 (τ). Moreover, for all x ∈ R, let

F̃0(x) :=
F0(x)− ηF̂0(x)

1− η
.

By construction, ηF̂0+(1− η)F̃0 = F0. From the definition of y and y, it can be shown that F̃0 ∈ F as well.

Furthermore,

F̃0(x
−)− F̃0(x) =

F0(x
−)− F0(x)− η

1− η
=

1

1− η

[
τ − ε

1− (τ − ε)
(1− F0(x

−)) +
1− (τ + ε)

τ + ε
F0(x)

]
.
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Next, define F̃1 and F̃2 as follows:

F̃1(x) :=


F0(x)

F0(x)+α(F0(x−)−F0(x)−η)
, if x < x

F0(x)α(F0(x)−F0(x)−η)
F0(x)+α(F0(x−)−F0(x)−η)

, if x ∈ [x, x)

1, if x ≥ x

;

and

F̃2(x) :=


0, if x < x

(1−α)(F0(x)−F0(x)−η)
1−F0(x−)+(1−α)(F0(x−)−F0(x)−η)

, if x ∈ [x, x)
F0(x)−F0(x)+(1−α)(F0(x−)−F0(x)−η)

1−F0(x−)+(1−α)(F̃0(x−)−F̃0(x)−η)
, if x ≥ x

,

where

α :=

1−(τ+ε)
τ+ε F0(x)

τ−ε
1−(τ−ε)(1− F0(x−)) +

1−(τ+ε)
τ+ε F0(x)

.

By construction, α̃F̃1+(1−α̃)F̃2 = F̃0, where α̃ ∈ (0, 1) is given by α̃ := [F0(x)+α(F0(x
−)−F0(x)−η)]/(1−η).

Moreover, F̃1(x) = τ + ε > τ , and F̃2(x
−) = τ − ε < τ .

Now define two classes of distributions, {F̃ x
1 }x≤x and {F̃ x

2 }x≥x, as follows:

F̃ x
1 (z) :=


0, if z < x

F̃0(x), if z ∈ [x, x)

F̃0(z), if z ≥ x

; and F̃ x
2 (z) :=


F̃0(z), if z < x

F̃0(x
−), if z ∈ [x, x)

1, if z ≥ x

.

Note that, since F̃1(x) > τ and F̃2(x
−) < τ , x = (F̃ x

1 )
−1(τ) = (F̃ x

1 )
−1(τ+) for all x ≤ x and x = (F̃ x

2 )
−1(τ) =

(F̃ x
2 )

−1(τ+) for all x ≥ x. Moreover, for any n ∈ N1 and for any m ∈ N2, let

F̃n
1 (z) :=

1

F̃0(xn)− F̃0(xn)

∫ xn

xn

F̃ x
1 (z)F̃0(dx),

and

F̃m
2 (z) :=

1

F̃0(xm)− F̃0(xm)

∫ xm

xm

F̃ x
2 (z) dF̃0(dx),

for all z ∈ R. By construction, F̃n
1 , F̃

m
2 ∈ F and xn = (F̃n

1 )
−1(τ) = (F̃n

1 )
−1(τ+), xm = (F̃n

2 )
−1(τ) =

(F̃n
2 )

−1(τ+) for all n ∈ N1 and m ∈ N2. Next, for any x ∈ R, let G̃x ∈ F be defined as

G̃x(z) :=


F̃ x
1 (z), if x ∈ (−∞, x]\ ∪n∈N1 [xn, xn)

F̃n
1 (z), if x ∈ [xn, xn), n ∈ N1

F̃ x
2 (z), if x ∈ [x,∞)\ ∪m∈N2 [xm, xm)

F̃m
2 (z), if x ∈ [xm, xm), m ∈ N2

,

for all z ∈ R. Let

H̃(x) :=


H(x)
1−η , if x < x
H(x)
1−η , if x ∈ [x, x)

H(x)−η
1−η , if x ≥ x

,
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and define µ̃ as

µ̃({G̃x ∈ F|x ≤ z}) := H̃(z),

for all z ∈ R. Then, by construction, for any z ∈ R,∫
F
F (z)µ̃(dF ) =

∫
R
G̃x(z)H̃(dx) = F̃0(z). (A.11)

Furthermore, Hτ (x|µ̃) = H̃(x) for all x ∈ R. As a result, from (A.11), for µ ∈ ∆(F) defined as

µ := (1− η)µ̃+ ηδ{F̂0},

since F0 = ηF̂0+(1−η)F̃0, it must be that µ ∈ M0
τ . Moreover, since Hτ (·|µ̃) = H̃, we have Hτ (x|µ) = H(x)

for all x ∈ R.

Lastly, consider any H ∈ I(F τ,ε
0 , F

τ,ε
0 ). Since I(F τ,ε

0 , F
τ,ε
0 ) is a convex and compact set in a metrizable

space, Choquet’s theorem implies that there exists a probability measure ΛH ∈ ∆(I(F τ,ε
0 , F

τ,ε
0 )) that assigns

probability 1 to ext(I(F τ,ε
0 , F

τ,ε
0 )) such that

H(x) =

∫
I(F τ,ε

0 ,F
τ,ε
0 )

H̃(x)ΛH(dH̃).

Meanwhile, define the linear functional Ξ : M0
τ → F as

Ξ(µ̃)[x] := µ̃({F ∈ F|F−1(τ) ≤ x}),

for all µ̃ ∈ M0
τ and for all x ∈ R. Now define a probability measure Λ̃ on M0

τ by

Λ̃H(A) := ΛH({Ξ(µ̃)|µ̃ ∈ A}),

for all A ⊆ M0
τ . Then, since ΛH(ext(I(F τ,ε

0 , F
τ,ε
0 ))) = 1 and since, for any H̃ ∈ ext(I(F τ,ε

0 , F
τ,ε
0 )), there

exists µ̃ ∈ M0
τ such that H(x) = Hτ (x|µ̃), it must be that Λ̃H(M0

τ (U)) = 1, and hence Λ̃H is a probability

measure on M0
τ . Let µ̃ ∈ M0

τ (U) be defined as

µ̃(A) :=

∫
M0

τ

µ(A)Λ̃H(dµ),

for all measurable A ⊆ F . Then, since Ξ is linear, it follows that

H(x) =

∫
I(F τ,ε

0 ,F
τ+ε
0 )

H̃(x)ΛH(dH̃) =

∫
M0

τ

Ξ(µ)[x]Λ̃H(dµ)

=Ξ(µ̃)[x]

=Hτ (x|µ̃),
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and therefore, H ∈ H0
τ . Together, for any ε > 0, any H ∈ I(F τ,ε

0 , F
τ,ε
0 ) must be in H0

τ . In other words,⋃
ε>0

I(F τ,ε
0 , F

τ,ε
0 ) ⊆ Hτ

0 .

This completes the proof. ■

A.4 Proof of Corollary 1

For 1, consider any H ∈ Hτ̃ . By Theorem 2, H ∈ I(F τ̃
0 , F

τ̃
0). Thus, (F τ̃

0)
−1(τ) ≤ H−1(τ) ≤ H−1(τ+) ≤

(F
τ̃
0)

−1(τ+), and therefore [H−1(τ), H−1(τ+)] ⊆ [(F τ̃
0)

−1(τ), (F
τ̃
0)

−1(τ+)]. Conversely, consider any interval

Q = [x, x] ⊆ [(F τ̃
0)

−1(τ), (F
τ̃
0)

−1(τ+)]. Then, let H be defined as

H(x) :=


0, if x < x

τ, if x ∈ [x, x)

1, if x ≥ x

,

for all x ∈ R. Then H ∈ I(F τ̃
0 , F

τ̃
0) and Q = [H−1(τ), H−1(τ+)]. Moreover, by Theorem 2, H ∈ Hτ̃ , as

desired.

For 2, consider any H ∈ H0
τ̃ . By Theorem 2, H ∈ I(F τ̃

0 , F
τ̃
0). Thus, it must be that [H−1(τ), H−1(τ+)] ⊆

[(F τ̃
0)

−1(τ), (F
τ̃
0)

−1(τ)]. Conversely, for any x̂ ∈ ((F τ̃
0)

−1(τ), (F
τ̃
0)

−1(τ+)), note that since x̂ > (F τ̃
0)

−1(τ)

and since F0 is continuous, we have F0(x̂)/τ > τ̃ . Similarly, we also have (F0(x̂) − τ)/(1 − τ) < τ̃ . Let

ε := min{F0(x̂)τ − τ̃ , τ̃ − (F0(x̂)− τ)/(1− τ)}. Then, either x̂ = (F τ̃ ,ε
0 )−1(τ) or x̂ = (F

τ̃ ,ε
0 )−1(τ). Since both

F τ̃ ,ε
0 and F

τ̃ ,ε
0 are in I(F τ̃ ,ε

0 , F
τ̃ ,ε
0 ), Theorem 3 implies that x̂ = H−1(τ) for some H ∈ H0

τ̃ . Lastly, note that

under a signal µ ∈ M such that µ assigns probability τ to F τ
0 and probability 1− τ to F

τ
0 , we have µ ∈ M0

τ̃

andH τ̃ (x|µ) = τ for all x ∈ [(F τ̃
0)

−1(τ), (F
τ̃
0)

−1(τ)]. Hence, [(F τ̃
0)

−1(τ), (F
τ̃
0)

−1(τ)] ⊆ [H−1(τ), H−1(τ+)] for

some H ∈ H0
τ̃ , as desired.

■
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