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Influence or Advertise: The Role of Social Learning in Influencer Marketing

Abstract

We compare influencer marketing to targeted advertising from information aggregation and

product awareness perspectives. Influencer marketing leverages network effects by allowing con-

sumers to socially learn from each other about their experienced content utility, but consumers

may not know whether to attribute promotional post popularity to high content or high product

quality. If the quality of a product is uncertain (e.g., it belongs to an unknown brand), then

a mega influencer with consistent content quality fosters more information aggregation than a

targeted ad and thereby yields higher profits. When we compare influencer marketing to untar-

geted ad campaigns or if the product has low quality uncertainty (e.g., belongs to an established

brand), then many micro influencers with inconsistent content quality create more consumer

awareness and yield higher profits. For products with low quality uncertainty, the firm wants to

avoid information aggregation as it disperses posterior beliefs of consumers and leads to fewer

purchases at the optimal price. Our model can also explain why influencer campaigns either

“go viral” or “go bust,” and how for niche products, micro-influencers with consistent content

quality can be a valuable marketing tool.

Keywords: Influencer marketing, social learning, online advertising, targeting, word of mouth,

social media marketing.

1 Introduction

Influencer marketing—where a marketer promotes a product by sponsoring posts of social media

content creators with many followers—is capturing an increasing share of firm marketing budgets.

In 2022 the market was expected to surpass 16 billion US dollars1 where on Instagram alone brands

spent over 8 billion dollars in 2020—an almost 100% increase from 2017.2 Given the growth of this

marketing approach, a natural question for marketers is whether they should shift their online

marketing budgets from more established technologies (e.g., targeted display advertising) to this

new medium. This question is particularly subtle given that a marketer can target advertisements

towards followers of a specific social media influencer by paying the social media platform directly

without contracting with the influencer to create original content. Given the recent drive for

1https://influencermarketinghub.com/influencer-marketing-benchmark-report/, Accessed September 26,
2022.

2https://www.statista.com/statistics/950920/global-instagram-influencer-marketing-spending/,
accessed November 6, 2021.
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increased consumer privacy and limitations on ad targeting, influencer marketing might serve as a

viable alternative.

In this paper we study the differences between influencer and ad campaigns from a social learning

perspective using a game-theoretic model. In particular, we focus on the unique feature of influencer

campaigns which allows the followers of an influencer to interact with the influencer’s posts—

through comments, presses of the “like” button, and content sharing—and to see the response

of other followers to the content posted by the influencer. This allows influencers to play the

role of social signal aggregators for their followers and facilitate social learning when a product’s

quality or match is uncertain. In contrast, traditional online advertising, where consumers only

observe the ads delivered to them, cannot facilitate the same degree of information exchange. In

this context, we ask when it is optimal to substitute influencer campaigns for traditional (targeted)

online advertising, and within influencer campaigns, which influencer attributes are more profitable

for different product types.

A marketing campaign—both through an influencer and through advertising—achieves two

objectives. First, it makes consumers aware of the product, and second, it provides valuable

information to consumers. By facilitating social learning, influencers allow marketers to utilize a

network effect, similar in spirit to word of mouth (Galeotti et al. 2013, Campbell 2013). Unlike word

of mouth, however, where the marketers can entice consumers to speak to each other, e.g., through

exclusivity or referral rewards (Campbell et al. 2017, Kamada and Öry 2020, Carroni et al. 2020), the

influencer is encouraging interactions among the follower base by curating content and by leveraging

the social media platform’s content feed algorithm to generate exposure (Berman and Katona 2020).

When evaluating whether to choose an influencer campaign over an advertising campaign, a key

factor is to compare the information aggregation friction intrinsic to the campaign, and to evaluate

whether the campaign should focus on creating awareness or on learning of consumers, given the

ex-ante uncertainty about product quality.

In our model, a marketer can promote a product with uncertain quality or popularity through

an influencer campaign or an ad campaign. If they choose an influencer campaign, the followers of

an influencer see the promoted post and update their beliefs about the product’s quality to make

a purchase decision. The posterior belief of a consumer about the product’s quality depends on

a private signal generated from the post reflecting their liking of the post, and on the observed

2
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responses of other followers of the influencer to the post. If the marketer used a targeted ad

campaign, the consumers update their beliefs about product quality based only on a private signal

received from the ad they see. We model each signal as the sum of the post’s content quality, the

product quality, and an idiosyncratic taste component.

Learning about product quality through a campaign affects the distribution of willingness to pay

of consumers which can decrease total purchases at the profit-maximizing price, but may also allow

the marketer to charge a higher price if the option value from learning is high. How much consumers

can learn from a campaign depends on how strong the learning frictions are, which may come from

multiple sources. First, since influencers have flexibility in the content they create to promote a

product, the content quality is affected by their creativity. Higher creativity, however, can be a

double-edged sword as it can make the content quality of influencers less predictable and variable,

which affects the inference of consumers about the promoted product’s quality. For example, when

a consumer sees a viral post by an influencer for a product, they might infer that the post is

popular because of its content quality, and not because the product being presented is enticing.

Second, influencers often build their followership by focusing on specific topics, resulting in more

homogeneous content tastes of their follower base. A mismatch between the content preferences of

the user and the influencer’s post might be mistakenly attributed to lower product quality and would

greatly affect the effectiveness of social learning. Third, the number of followers of an influencer

determines the number of signals a follower observes from other followers. More followers decrease

information frictions. By contrast, learning frictions operate differently for advertising campaigns.

In these campaigns the degree of targeting determines how homogeneous the content taste of

potential consumers is and affects their learning frictions (Shin and Yu 2021). We view this as the

key determinant for information frictions coming from ads.

Furthermore, the network effect in influencer marketing has two unique features. First, the in-

formation learned by consumers is not linear in the number of followers, making micro influencers

particularly valuable for making consumers aware of products, while making mega influencers par-

ticularly valuable for a marketer who wants to benefit from the network effects of social learning.

We show that a campaign should focus on creating awareness when there is little uncertainty about

product quality, e.g., for products from established brands. By contrast, when the product quality

is very uncertain, e.g., for products from unknown brands, then social learning through a mega

3
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influencer with consistent content quality is more valuable than targeted advertising.

Second, as followers of an influencer observe each others’ information, the homogeneity of con-

sumer information sets increases and leads to ex-post more concentrated demand. As a result,

influencer campaigns tend to “go viral” or “go bust”, and this effect depends on how products are

priced. In our main model we assume that the marketer chooses a price simultaneously with the

campaign launch. Thus, the price cannot condition on whether the campaign is successful or not.

If the initial price was set too high, social learning can cause most consumers to not buy. In that

sense, an influencer campaign can be detrimental and “go-bust.” However, a marketer can extract

all rents from consumers by charging a single price after seeing whether the campaign leads to

collectively high or low willingness to pay of consumers. Such ex-post pricing can be implemented,

for example, with a discount code that is sent to the influencer if the product is less popular than

expected. Thus, social learning offers an alternative reason for the profitability of influencer promo

codes studied in Jiang et al. (2021).

Finally, we consider the benefit to consumers from influencer campaigns in terms of consumer

surplus, and extend our analysis to a model where consumers have heterogeneous product tastes.

On consumer surplus, we find that learning frictions might generate a non-monotone effect, and that

sometimes (but not always), some level of learning friction might be better for consumers. With

heterogeneity in consumption utility of the product, we show that most of our results generalize

except for one: While creative mega influencers are preferred for promoting mass market products—

when consumers have homogeneous tastes—for niche products, consistent micro influencers are

preferred. The reason is that in niche markets there is a lot of option value from learning about

the product’s quality, but social learning is less valuable as other consumers evaluate the product

itself differently because of taste heterogeneity.

Our paper makes two important contributions to the research on influencer marketing and

social learning. First, we focus on the tradeoffs when choosing between targeted ad campaigns and

influencer campaigns, a decision many marketers face today. Second, our findings capitalize on the

social learning aspect of influencer marketing and are complementary to the view that influencers are

more persuasive than ads because of the influencer’s personality or authenticity. Other research on

influencer marketing analyzed aspects such as the interaction between an influencer’s idiosyncratic

preferences and the product variety of a firm (Kuksov and Liao 2019); the optimal level of affiliation

4
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of a marketer with social media influencers and its implications on consumer welfare (Pei and

Mayzlin 2022); and the optimal regulation regarding disclosure of an influencer’s affiliation with

a marketer (Fainmesser and Galeotti 2021, Mitchell 2021). By investigating the social learning

aspect of campaigns we introduce novel criteria for evaluating the effectiveness of advertising versus

influencer campaigns.

The social learning aspect we analyze also relates to the extensive literature on word of mouth

and observational learning. Examples of research in this area include Banerjee (1992), Bikhchandani

et al. (1992) and Zhang (2010). Similarly to us, Crapis et al. (2017), Ifrach et al. (2019) and

Fainmesser et al. (2021) study how consumers learn from the signals of others. Their setting is

product reviews which are posted conditional on purchase, and hence the price of the product affects

the amount and quality of learning. A similar mechanism is also analyzed in Nistor and Selove

(2022), but this time in the context of influencer marketing. In contrast to these papers, learning

occurs simultaneously in our setting, which can explain the potential “virality” of influencer posts

and their effect on product demand.

Our findings also have potential empirical implications, because they provide insight and predic-

tions about when one should expect influencer campaigns to be beneficial, and how these benefits

will appear in consumer behavior. The effectiveness of advertising campaigns is notoriously hard

to measure, and this problem becomes even harder for influencer campaigns. Our insights can help

marketers to determine not only which type of campaign to launch, but can also help researchers

devise new methods to estimate the value of social learning and their effects in these campaigns.

The paper proceeds to present the model and its timing in Section 2, followed by the equilibrium

analysis in Section 3. Section 4 compares the profitability of advertising to influencer campaigns.

Section 5 summarizes the results and considers consumer surplus. Section 6 extends the model to

allow consumers to have heterogeneous tastes for products. The analysis focuses on determining

which products should be promoted, and through which influencers. Section 7 discusses our findings

in a broader context and concludes. The proofs of formal results appear in the Appendix.

2 Model

Overview. A firm (marketer) would like to sell a product of unknown quality qp — distributed

according to qp ∼ N (µp, σ
2
p). The coefficient of variation of this distribution

σp

µp
captures how

5
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unknown the brand is. A product with high σp comes with a lot of uncertainty about quality but

a high upside potential, for example, because it is produced by a new innovative firm without too

much track record. A low σp implies that the brand is already established and consumers have a

good idea about the quality of the product. µp normalizes this standard deviation. We normalize

the marginal cost of production to zero. The firm chooses an optimal price m and a marketing

campaign type. The marketing campaign has two purposes: First, it makes potential consumers

aware of the product, and second, it provides consumers with information about the potential

utility they will receive from buying the product.

There are two types of marketing campaigns denoted by c — a direct (targeted) advertising

campaign (c = ad) and an influencer campaign (c = inf). If the firm chooses a direct advertising

campaign with reach Nad, each of the Nad consumers sees an ad by the firm which is informative

about the quality of the product qp. If the firm partners with an influencer, the influencer promotes

the firm’s product to its Ninf followers. The key difference between the two marketing strategies

is that consumers can respond to the influencer’s content—e.g., by pressing the “like” button or

commenting on the post—and can also see the responses of other followers of the influencer.3 As a

result, each consumer can learn about the quality of the product from other consumers’ reactions

with the details provided below. We will refer to advertising campaigns as ad campaigns for brevity.

Consumption and content utility. Each consumer i experiences two types of utility—utility

from consuming the product (consumption utility ui) and utility from consuming content (content

utility vi). In the main model all consumers receive the same consumption utility ui = qp if they

buy the product at price m. This allows us to focus on the difference between ad and influencer

campaigns from an information aggregation perspective. We extend our model to heterogeneous

product utilities in Section 6.

The content utility from a promotional influencer post or an ad is experienced separately from

purchase. It depends on both the quality of the promoted product and the quality of the content

itself. Specifically, consumer i’s content utility is given by

vi = qc + qp + ϵi, (1)

3A few social media platforms do allow interactive responses to ads. However, the response rate is very low and
viewers of the ads rarely know anything about other viewers tastes and cannot learn from them.

6
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which is the sum of content quality qc, product quality qp, and an idiosyncratic taste shock, ϵi. We

assume that qc ∼ N (µc, σ
2
c ), and ϵi ∼ N (0, τ2c ), where the value of µc, σ

2
c and τ2c depend on the

source of the content (influencer or ad campaign). To simplify exposition, we focus on some specific

values of µc, σ
2
c and τ2c for each campaign type, but the analysis is generalized in the Appendix.

We assume that µc = 0 for both campaign types. This assumption is without loss of generality,

as the Appendix shows that the marketer cannot increase their profit using campaigns with higher

average content quality.

The main differences between influencer and ad campaigns will be the source of variability of the

content utility σc and the source of variability of content preferences τc. For influencer campaigns,

the marketer has control over which influencer to work with, but uncertainty about the quality of

content may remain. The variance σ2
inf of content quality qc = qinf ∼ N (0, σ2

inf) can be interpreted

as the creativity of the influencer since the willingness to try new and varied approaches to social

media posts by the influencer may result in high variance of quality of posts. For ad campaigns,

we assume that there is no variability in content quality and set σad = 0.

With respect to idiosyncratic content preferences, a heterogeneous content taste (τc large) means

that a mismatch between the content preferences of the user and the content might be attributed

to lower product quality. The variance of the idiosyncratic content taste τinf captures follower

heterogeneity with respect to the content of the influencer. We normalize this value to 1.

For ad campaigns the degree of targeting may affect the heterogeneity of content preferences.

The consumer’s idiosyncratic utility from ad content is drawn from ϵi ∼ N (0, τ2ad), where the pre-

cision 1
τ2ad

measures the similarity in content preference between the consumers. Hence, it measures

how targeted the advertising is. If τ2ad > 1, then the ad campaign is less targeted than the influencer

campaign, and if τ2ad < 1, it is more targeted.

Note that an individual consumer’s content utility can be high because the content quality is

high, because the product quality is high or because it matches their taste well, or a combination

of those. The key premise is that it is impossible for the consumers to disentangle what the source

of liking of content is.

Consumer learning and purchase decisions. A consumer’s willingness to pay for the product

depends on her posterior belief about ui = qp after observing and interacting with the influencer

campaign, or after seeing an ad. If the firm chooses an influencer campaign, each follower i is able

7
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to see the content utility of all other followers generating the information set vinf
i = {v1, . . . , vNinf

}.

If the firm chooses an ad campaign, each consumer observes only the single ad displayed to them,

and the information they can use to update their beliefs is the singleton set vad
i = {vi}. For an

arbitrary information set v, we denote the size of the set (i.e., the number of observed content

utility values) by n = |v|, i.e., n = Ninf for influencer campaigns and n = 1 for ad campaigns.

Further, we denote the generic set of customers who are affected by the campaign by N , so that

N = Ninf for an influencer campaign and N = Nad for an ad campaign. All in all, we have:

1. For influencer campaigns (σ2
c , τ

2
c , n,N) = (σ2

inf , 1, Ninf , Ninf).

2. For ad campaigns (σ2
c , τ

2
c , n,N) = (0, τ2ad, 1, Nad).

After observing the information in vc
i , consumers update their belief about the product quality qp

and make a purchase if they expect the posterior consumption utility to be weakly higher than the

price, i.e., if

Eqp [ui|vc
i ]−m ≥ 0. (2)

Timing. The game proceeds in 3 time periods, as depicted in Figure 1. At t = 1, the marketer

sets a price m and decides whether to promote the product through targeted advertising or through

influencer marketing. At t = 2, a campaign c ∈ {ad, inf} generates a post with quality qc. Each

consumer i observe the realized content utilities in vc
i , and update their beliefs about qp. Then,

in period t = 3, consumers decide whether to purchase the product or not, and their consump-

tion utilities and marketer profits are realized. Our analysis focuses on finding subgame-perfect

equilibria.

3 Equilibrium analysis

In this section we characterize the equilibrium behavior of consumers and the marketer by backward

induction. First, we determine the demand the marketer faces. Then we characterize the profit-

maximizing price and the profit of the marketer for each campaign.

8
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Figure 1: Game timeline

Marketer sets the price m and chooses campaign c ∈ {inf, ad}

Influencer generates a post:
1) Ninf consumers made aware,
2) learn vinf = {v1, . . . vNinf

}

Consumers make
purchase decision

inf

Firm displays an ad:
1) Nad consumers made aware,
2) consumer i learns vad

i = vi

Consumers make
purchase decision

ad

t = 1

t = 2

t = 3

3.1 Consumption decision (t = 3)

In order to consume the product, consumers need to be aware of it and want to buy it. Conditional

on being aware, the purchasing decision of a consumer depends on their posterior expected quality

of the product after observing the information set vc
i . We denote this posterior expectation by

µp(v
c
i ) = Eqp [u|vc

i ]. Since by (2) a consumer i purchases if µp(v
c
i ) ≥ m for c ∈ {inf, ad}, the

expected demand for the product given a campaign c is:

Dc(m) =

Nc∑
i=1

Pr(µp(v
c
i ) ≥ m). (3)

It is worth noting that for an ad campaign, each consumer independently observes a different real-

ization of vi, resulting in different realized values of posterior means µp(v
c
i ). Hence, each consumer

has a different realized willingness to pay for the product. In contrast, for influencer campaigns,

all consumers observe the same information set vinf
i = vinf

1 . Hence, each consumer’s willingness to

pay is exactly the same ex-post. Consequently, at any given price influencer campaigns cause the

product to either “go viral” with everyone buying it, or to “go bust” with no one buying it.4 Since

we assume that the marketer has to commit to a price m ex-ante, they cannot price based on the

realized demand. In Section 7 we discuss in which situations this feature of influencer marketing

can increase marketer profits significantly if the marketer can provide the influencer with a price

4In reality not all consumers will buy the product because of heterogeneous preferences and information sets.
Nevertheless, demand will be more concentrated because of social learning. We analyze this more realistic case in
Section 6.
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discount (e.g., through a coupon code) based on the success of their post.

3.2 (Social) learning stage (t = 2)

In order to characterize the expected posterior belief about product quality µp(v
c
i ), we denote

the average content utility of all items in an information set v by v̄ =
∑

v∈v v

n . We also define

an auxiliary quantity, the relative learning friction of a campaign c as κ2c . It captures the main

differences between campaign types that drive demand and profit. For influencer campaigns

κ2inf =
σ2
inf +

1
Ninf

σ2
p

+ 1

while for ad campaigns

κ2ad =
τ2ad
σ2
p

+ 1.

In the Appendix we derive demand using the general expression κ2c =
σ2
c+

τ2c
n

σ2
p

+ 1 for a campaign of

type c. We elaborate on how κc affects consumer learning and demand after the following demand

characterization:

Proposition 1 (Demand).

In a campaign c ∈ {inf, ad}, the posterior belief about the product’s quality qp
∣∣vc

i of consumer i

is normally distributed with mean

µp(v
c
i ) = µp +

v̄c
i − µp

κ2c
. (4)

The expected demand when the marketer sets price m is

Dc(m) = N

(
1− Φ

(
m− µp

σp/κc

))
, (5)

where Φ(·) is the CDF of the standard Normal distribution.

The proposition summarizes how the posterior belief of the consumers and the expected demand

of the marketer vary with the product and campaign parameters—through the learning friction κc.

The expected posterior product quality is given by the sum of the prior mean of product quality

µp and the strength of the campaign information signal
v̄c
i−µp

κ2
c

.

10
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The learning friction κc prevents the consumer from learning about the quality of the product

perfectly. It measures the informativeness of the campaign relative to the product quality un-

certainty. There are two factors that affect the learning friction κc: First, learning is imperfect

due to the finite number of signals n in vc
i . We call this friction the finite information friction.

Importantly, for an advertising campaign n = 1, so that the finite information friction is always

significant. Second, even if the consumer observed infinitely many signal realizations in vc
i , e.g.,

because the influencer has a very large number of followers, learning can be imperfect. In this

case the learning friction κ2c equals σ2
c

σ2
p
+ 1 and remains greater than one if σ2

c > 0 . As a result,

lim
n→∞

µp(v
c
i ) = µp +

qp+qc−µp

κ2
c

̸= qp and the consumer never exactly learns the true quality of the

product.5 The reason is that the consumer cannot be sure whether to attribute the high content

utility to the content quality qc or to the product quality qp. We call this the attribution fric-

tion of social learning. In the presence of the finite information friction, there is an additional

idiosynchratic attribution friction due to τc. We compare the learning friction for advertising and

influencer campaigns in detail in Lemma 1 below.

The overall dispersion of demand (
σp

κc
) captures how differentiated consumer preferences are after

learning, and hence how much surplus the marketer can extract with a single price. It is determined

by the ex-ante uncertainty about product quality σp and how much consumer preferences disperse

due to learning. If the standard deviation
σp

κc
is large, the marketer can extract little surplus with

a single price, while with small
σp

κc
, the marketer can extract more consumer surplus.

Furthermore, note that demand decreases in the price m as we would intuitively expect. Inter-

estingly, we show in the Appendix that the expected demand is independent of the average content

quality µc for both influencer and ad campaigns. The reason is that the marketer cannot extract

surplus from content utility through product sales, because µc does not affect the expected posterior

belief about the product quality µp(v
c
i ). This means that marketers will not find an advantage for

influencer vs. ad campaigns based on different levels of average content quality. It also provides a

rationale for assuming µc = 0 without loss of generality.

Whether demand is increasing or decreasing in the information friction κc depends on whether

the price m is larger or smaller than the prior belief about product quality µp. Expression (5) shows

that when m > µp, the expected demand is decreasing in κc. If m < µp, demand is increasing in

5By the Law of Large Numbers lim
n→∞

v̄c
i = qc + qp.
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κc. In that case, learning on average convinces consumers not to buy.

Corollary 1.1. If the price is lower than the average product quality (m < µp), then demand

Dc(m) is increasing in κc. If m > µp, Dc(m) is decreasing in κc.

When we compare an ad campaign with an influencer campaign, one important comparison is

between the learning frictions. As discussed before, the learning friction of an ad campaign is driven

by the accuracy 1/τad, while for influencer campaigns, the creativity of the influencer σinf and the

number of followers Ninf matter. We summarize the comparison between the learning frictions in

influencer vs. ad campaigns in the following lemma:

Lemma 1. An advertising campaign has a larger relative learning friction than an influencer

campaign when τ2ad > σ2
inf +

1
Ninf

.

Lemma 1 highlights that learning frictions between the two marketing campaigns do not depend

on product characteristics when the products are homogeneous, but can still be different due to

the inherent features of the learning process. It also emphasizes that network effects of influencer

campaigns (large Ninf) decrease the learning friction, but that the creativity, or inconsistency, of

influencers increases the learning friction. By contrast, the reach Nad of an advertising campaign

does not affect the learning friction at all. For an ad campaign, higher reach only makes more

consumers aware of the product without affecting learning. For an influencer campaign, the impact

of reach on profits is more nuanced as we discuss in the next section.

3.3 Marketer profit-maximization (t = 1)

Based on the expected market demand, the firm sets a price m to maximize the expected profit:

max
m

m ·Dc(m) (6)

The optimal price m∗
c cannot be expressed in closed form, but can be characterized as a function

of m0
c which we define implicitly as the unique solution to:

m0
c −

1

h(m0
c)

= −µp

σp
κc, (7)
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where h(·) = ϕ(·)
1−Φ(·) is the increasing hazard function of the standard normal distribution. The right-

hand side of the equation is determined by two factors: the level of uncertainty of the product’s

quality
σp

µp
(i.e., whether the brand is established) and the relative learning friction κc. Using m0

c ,

we characterize the optimal price m∗
c as follows:

Proposition 2 (Profit-maximizing price).

The unique profit-maximizing price m∗
c is given by

m∗
c = µp +

σp
κc

m0
c . (8)

The price m∗
c exceeds the a priori expected product quality µp if and only if

√
π

2

σp
µp

> κc. (9)

Proposition 2 shows how the optimal pricem∗
c depends on the relationship between the product’s

quality uncertainty
σp

µp
and the relative learning friction κc. In particular, the optimal price can be

larger or smaller than the prior expected quality µp depending on their relationship. For example,

when the quality is very uncertain there is a lot of option value from learning about the product’s

quality, and if the learning friction is small, then this option value can be exploited. As a result,

the marketer can charge a price higher than µp.

Similarly, the optimal price is increasing or decreasing in information frictions depending on the

level of quality uncertainty. For products with little uncertainty, e.g., products from established

brands, more information friction allows the marketer to sell to more consumers at a higher price

because there is little option value from learning. In contrast, for products with high uncertainty

about their quality, e.g., products from unknown brands, reducing information frictions, e.g., by

choosing an influencer with a higher reach N , can allow the marketer to charge a significantly

higher price. This is summarized in the following corollary.

Corollary 2.1 (Comparative statics of profit-maximizing price with respect to κc).

The profit-maximizing price m∗
c increases in κc when λ

σp

µp
< κc, and decreases in κc otherwise,

where λ ≈ 3.7 >
√

π
2 .

6

6The exact value of λ appears in the proof in the Appendix.
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By plugging-in the equilibrium price into the expression for the demand, we we can write

equilibrium demand as 1−Φ
(
m0

c

)
. Since m0

c is decreasing in κc by Equation (7), we can state the

following result:

Corollary 2.2 (Comparative statics of equilibrium demand with respect to κc).

The equilibrium demand increases in κc.

Finally, we can analyze how the marketer’s optimal profit changes with κc by plugging in the

equilibrium prices and demands into (6):

Π∗
c = Nc · π∗

c (κc) = Nc

(
1− Φ

(
m∗

c − µp

σp/κc

))
m∗

c . (10)

The analysis shows the following comparative statics in κc:

Corollary 2.3 (Comparative statics of profits with respect to κc).

The optimal profit decreases in κc if (9) is satisfied, and otherwise increases in κc.

Extremely high learning frictions allow the marketer to extract all consumer surplus by charging

m = µp absent any learning because buyers have a common prior about the product quality µp.

Given that some learning occurs, the degree to which the posteriors about product quality disperse

depend on the information friction and ex-ante product quality uncertainty. For an established

brand with low product quality uncertainty, posteriors about quality remain relatively concentrated,

while for a new brand with high product uncertainty, posteriors about product quality are always

dispersed as we have seen in Proposition 1. This intuition results in the above comparative statics

which we discuss below.

Figure 2 illustrates these different effects of the learning friction κc, where the left panels

illustrate the case for less established brands with high
σp

µp
>
√

2
π and the right panels illustrate the

case with low
σp

µp
<
√

2
π , i.e., for established brands. For established brands, κc is always higher

than
√

π
2
σp

µp
< 1, and by Proposition 2, the price m∗

c is always lower than µp. In this case, demand

increases with learning frictions, because learning more about established products leads consumers

to buy less if the price is not adjusted downwards. As a result, the marketer would like to run

a campaign only to make consumers aware of the product without them learning much about its

quality. Mathematically, this follows from the envelope theorem: the effect of learning friction on
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Figure 2: Equilibrium demand, price and profit at the optimal price as a function of κc

Unknown Brand
(

σp

µp
>
√

2
π

)
Established Brand

(
σp

µp
<
√

2
π

)
(a) Equilibrium demand (b) Equilibrium demand

(c) Optimal price (d) Optimal price

(e) Optimal profit (f) Optimal profit

Notes: The left panels display the outcomes for less-established brands with µp = 1/2 and σp = 1 resulting in high
σp/µp. The right panels display the outcomes for established brands with µp = 2 and σp = 1 resulting in low σp/µp.
The demand functions are per-person demands given by the probability of purchase.
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profit only depends on how demand is directly affected by learning frictions, which implies that for

established brands learning frictions always increase profits.

For less established brands, profits are decreasing in κc for κc < λ
σp

µp
and increasing in κc for

κc > λ
σp

µp
. This is because for small κc condition (9) is satisfied, yielding an optimal price m∗

c > µp

that is decreasing in κc. Intuitively, as discussed above, this effect is driven by the option value

of learning if consumers know little about product quality ex-ante, which the firm can exploit if

the learning friction is small: Lower frictions result in higher demand for any given price, allowing

the firm to increase the equilibrium price significantly. This price effect dominates the effect of

decreased equilibrium demand from lower κc. For large κc, the option value cannot be exploited

causing both equilibrium demand and prices to increase with learning frictions.

4 Profitability of advertising versus influencer campaigns

In this section, we use the equilibrium characterization of Section 3 in order to compare the prof-

itability of influencer and ad campaigns from an information aggregation perspective. As high-

lighted in the equilibrium characterization, the differences in the information aggregation between

influencer and ad campaigns is captured by the differences in the relative learning friction κ2c . The

degree of targeting of an ad 1
τad

and the variability of content quality σ2
inf of an influencer affect

the profit function in Equation (10) only through κ2c . However, due to the social learning role of

influencers, the number of followers Ninf affects both the information friction κ2c and the number of

consumers who are being made aware of the product. The ad reach Nad, by contrast, only affects

the number of consumers made aware.

Hence, we first compare ad and influencer campaigns if the reach/follower bases are equal and

fixed, i.e., if Nad = Ninf . Then, we explore the profitability of many micro-versus one mega-

influencer relative to an ad, where the profit with many micro-influencers can be thought of as the

sum of profit functions of the form (10).

4.1 Advertising targeting versus influencer consistency

Since the degree of targeting of an ad 1
τad

, and the creativity of an influencer σinf only enter the

profit function through the information friction κc, we can use the comparative statics result from

Corollary 2.3 to compare ad campaigns versus influencer campaigns along these two dimensions.
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We summarize this comparison in Proposition 3 and illustrate them in Figure 3.

Proposition 3 (Advertising vs. influencer marketing). Suppose that Ninf = Nad. Then:

1. For an established brand
(
σp

µp
<
√

2
π

)
an influencer campaign is more profitable than an ad-

vertising campaign if and only if κinf > κad.

2. For an unknown brand
(
σp

µp
>
√

2
π

)
we distinguish between two cases:

(a) Compared to a broad ad technology with κad > κ̂1, an influencer campaign is more

profitable than an advertising campaign when κinf > κad;

(b) Compared to a targeted ad technology with κad < κ̂1, an influencer campaign is more

profitable than an advertising campaign when either (i) κinf < min{κad, κ̂ad} or (ii)

κinf > max{κad, κ̂ad}.

κ̂ad ̸= κad is the friction level that yields the same profit as κad, all else being equal, and κ̂1

is the friction level κ̂1 > 1 that yields the same profit as κ = 1.

Figure 3: Optimal per-consumer profits as a function of κc

(a) Unknown brand
σp

µp
>

√
2
π

(b) Established brand
σp

µp
<

√
2
π

Notes: Panels (a) and (b) correspond to the profit charts in panels (e) and (f) of Figure 2, where we add the cutoffs
for κinf and κad to illustrate Proposition 3. Panel (a) uses a shorter range of κc on the horizontal axis to better
illustrate the effects of κc. Both panels depict the profit per customer of campaigns as a function of learning friction
κc. The left panel shows the effect for less established brands with high σp/µp (µp = 1/2, σp = 1) while the right
panel shows it for established brands with low σp/µp (µp = 2, σp = 1). κad and κinf indicate example values for
frictions of ad and influencer campaigns. κ̂ad is the level of κ not equal to κad that generates the same profit as κad.
κ̂1 is the level of κ ̸= 1 that generates the same profit as κ = 1.

For established brands (Figure 3(b)), higher frictions increase profits by Corollary 2.3. Thus an

influencer campaign is more profitable than an ad campaign if κinf > κad. This condition can be
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interpreted using Lemma 1. It is satisfied for influencer campaigns with large attribution frictions

driven by the variability of content quality σ2
inf , e.g., due to creativity of the influencer. It is also

satisfied if the ad campaign is very targeted (small τad), as targeting decreases the profitability of

ad campaigns for established brands. Although it might seem counter-intuitive that more targeted

campaigns are less profitable, this follows from the fact that less learning about the product’s

quality allows the marketer to charge a higher price. This effect occurs with low product quality

uncertainty
σp

µp
, i.e., when the option value from learning about the product quality is low. In fact,

in this case, the firm would ideally want to run an ad campaign that is completely uninformative

and broad, and thereby only creates awareness for the product.

With unknown brands (Figure 3(a)), a similar logic applies if the advertising campaign is broad

(case 2(a)). In that case, an influencer campaign is more profitable if the influencer is sufficiently

creative or inconsistent. Compared to a targeted ad, the option value of learning from an influencer

campaign is high. Thus, an influencer campaign with very low learning friction (case 2(b)) is more

profitable. This is the case if the influencer has low variability of content quality σ2
inf . With such

low creativity the demand for any given price might be lower, but the increase in learning increases

the willingness to pay of many consumers, allowing the marketer to charge a higher price. In this

way, the marketer can exploit the option value from learning for unknown brands.

To summarize, the marketer has a variety of options to exploit influencer campaigns to either

increase awareness without losing much pricing power, or to achieve higher profits by facilitating

social learning, which allows the marketer to charge a higher price.

4.2 Micro versus mega influencers

A common decision for marketers when designing influencer campaigns is whether to engage micro-

or mega-influencers in their campaigns. The reach Nad of an ad campaign is irrelevant for per-

consumer profit since the learning friction is not affected by the reach of ads. However, the per-

consumer profit is different for micro-influencers with few followers versus mega-influencers with

many followers. Hence, the marketer can create the same awareness with many micro-influencers

or a few mega-influencers, but the degree of learning changes in these two scenarios.7 Figure 4

compares per-customer ad campaign and influencer campaign profits as a function of the campaign’s

7For simplicity we assumed that the micro-influencers have non-overlapping follower bases and that a follower of
one micro-influencer cannot learn from the followers of another.
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reach N . One can see that for ad campaigns the profit per consumer does not depend on Nad,

but for influencer campaigns, the effect of Ninf on profit depends on the type of product being

promoted. This is because more followers always reduce the learning friction, but as Corollary 2.3

showed, learning frictions have a nuanced effect on profits.

For established brands (Figure 4(a)) we already showed that higher learning frictions are better.

As the followership of influencers only decreases learning frictions, this means that established

brands would generally benefit from influencers without too many followers, ceteris paribus.

For unknown brands, a larger follower base might increase or decrease profits, depending on

whether a higher or a lower learning friction is desirable. The three cases are illustrated in Figures

4(b) – 4(d). First, by Corollary 2.3, π∗
inf is decreasing in Ninf everywhere (Figure 4(b)) for brands

with little quality uncertainty:

√
π

2

σp
µp

<

√
σ2
inf

σ2
p

+ 1 = min
n

√
σ2
inf +

1
n

σ2
p

+ 1︸ ︷︷ ︸
=κinf

.

π∗
inf is increasing in Ninf everywhere (Figure 4(d)) for brands with high quality uncertainty:

√
π

2

σp
µp

>

√
σ2
inf + 1

σ2
p

+ 1.

Consequently, for brands with little quality uncertainty micro-influencers are always better because

they increase the per-customer learning friction. For brands with a lot of quality uncertainty, mega-

influencers are always better because they allow the consumers to learn the most and utilize the

option value of learning. Finally, for brands with intermediate levels of uncertainty (Figure 4(c)),

both micro- and mega-influencers can be more profitable than ad campaigns on a per-customer

basis. Micro-influencers tend to be more profitable if they are also creative, and mega-influencers

tend to be more profitable if they are more consistent. Influencers with intermediate follower base

size and creativity, and hence intermediate relative learning friction κinf , tend to have lower profits.
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Figure 4: Per-consumer profits as a function of campaign reach Nc and product uncertainty
σp

µp

(a)
σ2
p

µ2
p
< 2

π
(b) 2

π
<

σ2
p

µ2
p
< 2

π

(
σ2
inf
σ2
p

+ 1
)

(c) 2
π

(
σ2
inf
σ2
p

+ 1
)
<

σ2
p

µ2
p
< 2

π

(
σ2
inf+1

σ2
p

+ 1
)

(d) 2
π

(
σ2
inf+1

σ2
p

+ 1
)
<

σ2
p

µ2
p

Notes: Panels (a)-(d) illustrate profits as a function of campaign reach Nc for various values
σp

µp
in an increasing

order. Panel (a) and (b) depict an established brand and a less established brand, where influencer campaign profits
are decreasing in the reach Ninf . Panel (d) depicts very unknown brands, where influencer campaign profits are
increasing in the reach Ninf . Panel (c) shows a mildly unknown brand with intermediate range of

σp

µp
where influencer

campaign profits first decrease and then increase in Ninf .

5 Discussion of results and consumer surplus

Our results show an interaction between the type of product promoted in terms of quality uncer-

tainty (established or unknown brand), and the learning friction of the campaign. The learning

frictions, in turn, are determined by the creativity of the influencers, the level of ad targeting, and

the size of the follower base of influencers.

For unknown brands there is a high option value from having consumers learn about the quality

of the product, which allows the marketer to increase prices and realize higher demand. In this

case the marketer would like to engage in campaigns with low learning frictions, which entail using

a highly targeted ad technology, or mega-influencers which are consistent in their posts and yield a

lower attribution friction. Thus, influencer marketing in this case allows consumers to learn about
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the product’s quality.

For established brands, quality uncertainty is low, and the impact of learning about product

quality has a potential downside of lowering demand for the product. In this case a marketer

benefits the most from campaigns that increase attention to the product but do not add too much

information about the product’s quality. These campaigns are the ones that use generic, non-

targeted ads, or many micro-influencers who are very creative. These micro-influencers generate

high attribution frictions and make learning about product quality ineffective. In this way, the

marketers inhibit learning among consumers.

One might think that consumers always benefit from learning, i.e., from facing lower learning

frictions and observing more signals from other followers of an influencer. However, similar to the

profit effects for marketers the impact is more nuanced. The following proposition characterizes

the ex-ante expected consumer surplus (CS) in social media campaigns:

Proposition 4 (Consumer Surplus). The ex-ante expected consumer surplus is given by

Evc
i ,qp,qc

[
1{µp(vc

i )≥m∗
c} · (qp −m∗

c)
]
=

σp
κc

[
1− Φ

(
m∗

c − µp

σp/κc
+

µp

κcσp

)]
·

h
(
m∗

c−µp

σp/κc
+

µp

κcσp

)
σp

− m∗
c − µp

σp/κc


The effect of κc on consumer surplus can be non-monotonic. To show this effect, we decompose

the consumer surplus as follows:

(
1− Φ

(
m0

c

))︸ ︷︷ ︸
average per customer
probability of purchase

· 1

κc︸︷︷︸
direct benefit
from learning

·
1− Φ

(
m0

c +
µp

κcσp

)
1− Φ (m0

c)
·
[
h

(
m0

c +
µp

κcσp

)
−m0

cσp

]
︸ ︷︷ ︸

effect of
consumer surplus extraction︸ ︷︷ ︸

average per purchase
consumer surplus

(11)

For high levels of learning frictions κc, the CS is decreasing in learning frictions κc. The reasons are

as follows. First, the direct benefit from learning 1
κc

decreases CS. Second, by Corollary 2.2, the

average per customer probability of purchase is increasing in κc and 1−Φ
(
m0

c

)
→κc→∞ 1. This is

because consumers are more homogeneous and the firm can therefore set a price that incentivizes

most consumers to buy. However, this marginal benefit from an increase in the learning friction
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vanishes as κc grows. Third, note that
1−Φ

(
m0

c+
µp

κcσp

)
1−Φ(m0

c)
→κc→∞ 1, and h

(
m0

c +
µp

κcσp

)
→κc→∞ 0.

By contrast, for small κc and low
σp

µp
, the firm may charge a lower price with more information

frictions as illustrated in Figure 2, extracting less surplus with higher frictions. All in all, the higher

demand and higher average surplus may dominate the direct benefit from learning. Thus, the CS

can be increasing in κc for small κc. This is illustrated in Figure 5.

Figure 5: Consumer surplus as a function of consumers’ learning frictions.

Notes: The Figure depicts the consumer surplus as a function of κc for different level of product quality uncertainty.
For high values and low values of σp/µp the consumer surplus always decreases in learning frictions. For intermediate
values, consumers might benefit from some level of learning inefficiency.

6 Consumer heterogeneity and influencer choice

The baseline model assumed homogeneous consumption utility that depends only on product qual-

ity. Realistically, many consumers have heterogeneous tastes for product consumption. This section

achieves two goals: (i) we show that many of the previous insights carry over to this more gen-

eral case, and (ii) we show that for niche products consistent micro-influencers may be preferred

to creative mega-influencers, although the same mega-influencers will be preferred for promoting

mass market products. This reversal in profitability stems from how learning frictions interact

with consumer heterogeneity. Hence, a marketer might prefer to change the type of influencers
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they engage with for different products even when the overall brand characteristics do not change.

6.1 Impact of heterogeneity in consumption preferences

Idiosyncratic consumption utilities add novel trade-offs in the following dimensions. First, the

marketer can no longer extract all surplus without consumer learning, so the demand effects will

be more nuanced compared to the homogeneous case. Second, the information set in the social

learning stage is not uniform across consumers for influencer marketing campaigns, which increases

the overall information frictions.

Formally, we assume that the consumption utility is given by ui = qp + ϵpi , where as before,

qp ∼ N (µp, σ
2
p) represents the quality of the product, but now ϵpi ∼ N (0, τ2p ) is an idiosyncratic

taste component of consumer i. Accordingly, a consumer’s content utility is given by

vi = qc + qp + ϵci + ϵpi . (12)

τ2p captures the heterogeneity in consumption taste, while the variances of ϵci , τ
2
inf = 1 and τ2ad,

capture the heterogeneity in content taste. As before, we can interpret 1
τ2ad

to be the level of

targeting of an ad.

Each marketer’s product is characterized by two parameters: the product’s taste heterogene-

ity τ2p and the uncertainty about the product quality σp/µp. We call products with a small τ2p

mass market products and products with a large τ2p niche products. We previously analyzed the

homogeneous case with τ2p = 0, which can be considered a mass market case.

We first extend the analysis of Section 3 by showing that the qualitative results remain un-

changed. Unlike in the homogeneous case, now even for an influencer campaign the information

set (vinf
i , ϵpi ) is different for every consumer i, but has an overlapping qc + qp + ϵci component for

all i. Thus, there is still a force that makes the product either “go viral” or “go bust,” but it

is less of a dichotomous (bang-bang) outcome than without ϵpi . We derive the belief distribution

qp
∣∣vc, ϵpi ∼ N

(
µp(v

c, ϵpi ), σ
2
p(v

c, ϵpi )
)
in Lemma OA.1 in the Online Appendix,8 and analogous to

Proposition 1, we characterize the demand faced by the firm in Proposition OA.1 in the Online

Appendix. Using these results, we characterize the firm’s profit maximizing price:

8The proofs for results in this Section appear in the Online Appendix.
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Proposition 5 (Optimal price with consumption heterogeneity). The unique profit-maximizing

price mhet,∗
c is given by

mhet,∗
c = µp +mhet,0

c

σp
κ̃hetc

. (13)

Moreover, the price mhet,∗
c exceeds the ex-ante expected product quality if and only if√

2

π
κ̃hetc <

σp
µp

. (14)

Proposition 5 is the heterogeneous analog of Proposition 2. In its definition, mhet,0
c is the

heterogeneity equivalent of m0
c from the solution to Equation (7) where the learning friction κc was

replaced by the heterogeneity equivalent learning friction κ̃hetc which is defined as::

κ̃hetc =
κhetc√

1 + (κhetc )2
τ2p
σ2
p

with

(κhetinf )
2 =

σ2
inf +

1 + τ2p
Ninf + τ2p
σ2
p

+ 1 (κhetad )2 =
1 + τ2ad
σ2
p

+ 1.

The expressions for κhetinf and κhetad illustrate how heterogeneity affects the learning frictions

differently for the two campaign types. First, κhetinf > κinf because consumption heterogeneity adds

another information friction. Second, when n = 1, which is the case for ad campaigns, then

κhetad = κad because without social learning from others, the consumption heterogeneity friction is

not present. Hence, consumer taste heterogeneity has the same effect for ad campaigns regardless

of their reach, but will have a different effect for influencer campaigns depending on their level of

creativity and the number of followers they reach. The profit from a campaign c is then given by

Πhet,∗
c = Nc · πhet,∗

c

(
κ̃hetc

)
= Nc

(
1− Φ

(
mhet,0

c

))
mhet,∗

c . (15)

Corollary 2.2 implies that equilibrium demand is increasing in κ̃hetc . Similarly, the optimal profits

decrease in κ̃hetc , when (14) is satisfied, and they increase otherwise, analogous to Corollary 2.3.

Consequently, previous results from the homogeneous baseline model generalize, and we can exam-
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ine how heterogeneity affects the heterogeneous learning frictions κ̃hetc . The following result shows

that consumer heterogeneity generally decrease learning frictions:

Lemma 2.

1. For any level of consumer heterogeneity κ̃hetc ≤ κc.

2. The heterogeneous learning friction is decreasing with consumer heterogeneity. Moreover,

lim
τp→0

κ̃hetc = κc and lim
τp→∞

κ̃hetc = 0. (16)

An increase in consumer heterogeneity therefore monotonically decreases the heterogeneous

learning friction κ̃hetc even though consumers benefit less from social learning. It might seem

surprising that an increase in heterogeneity lowers learning frictions. This is because the option

value of learning is also smaller for the firm. Put differently, social learning is less important if

consumption preferences are heterogeneous.

6.2 Impact of heterogeneity on influencer choice

The effect of decreasing heterogeneous learning frictions with increasing consumer heterogeneity

has important implications for the comparison of influencer marketing with ad campaigns. For

ad campaigns κ̃hetad , which is smaller then κad, is unaffected by the ad reach Nad, and is only

affected by heterogeneity τp. However, for influencer campaigns, κ̃hetinf is decreasing in the reach Ninf .

Importantly, the larger τp is, the smaller the negative impact of Ninf on κ̃hetinf , i.e.,
∂

∂τp
∂

∂Ninf
κ̃hetinf > 0,

where in the limit as τp → ∞, Ninf does not affect κ̃
het
inf = 0 and therefore per-consumer profits at

all. In that sense, for a niche product, the influencer follower base Ninf is relatively more relevant

than the influencer’s creativity when choosing an influencer. In turn, for a mass market product,

the creativity σinf or consistency of posts are relatively more relevant compared to the follower

base.

Because of the interaction between preference heterogeneity and the importance of follower base

and creativity, for niche products with large τp, different types of influencers can be more profitable

than for mass market products with small τp. This can be seen by inspection of the definition of

κhetc , which monotonously affects κ̃hetc . Consider two influencers j ∈ {1, 2} with σinf,1 < σinf,2 and
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2 = Ninf,1 < Ninf,2, i.e., influencer 2 is more creative and has a greater follower base than influencer

1. The following proposition identifies conditions where a marketer might find it profitable to

engage with mega-influencers for mass market products, but switch to using micro-influencers for

niche products.

Proposition 6. Suppose that the follower size of influencer 2 is sufficiently large.9 Consistent

micro-influencers yield the firm higher profits per consumer for niche products (τp large), and a

creative mega-influencer yields the firm higher profits per consumer for mass market products (τp

small) when:

(a) For established brands: Either 0 < σ2
inf,1 ≤ σ2

inf,2−1 or max{σ2
inf,2−1, 0} < σ2

inf,1 ≤ σ2
inf,2−

1
2 .

(b) For unknown brands: max{σ2
inf,2 −

1
2 , 0} < σ2

inf,1 < σ2
inf,2.

Intuitively, for a mass market product from an established brand (low product uncertainty),

we have shown that the marketer prefers a campaign with high information friction (Figure 3(b)).

An increase in heterogeneity τp reduces the heterogeneous learning friction κ̃hetc , and to counteract

this effect, the marketer will need to switch to influencers who have a lower follower base. We

illustrate this crossing effect in Figure 6(b), where the profit using mega-influencers is higher for

mass market products, and lower with niche products. The figure also shows that there might

be cases where there are multiple reversals of profitability between micro- and mega-influencers,

and this is because for intermediate levels of τp, the level of creativity still has a large effect. For

unknown brands, lower or higher information frictions might be more profitable (Figure 3(a)) in

general, but given the constraint that influencer 2 has more followers and is more creative, switching

to using micro-influencers for niche products will increase learning frictions and be more profitable,

as illustrated in Figure 6(a).

7 Conclusion

What contributes to the popularity of influencer marketing campaigns? And when should marketers

consider using them instead of targeted ad campaigns? We studied these questions using a model

that focuses on the effect of social learning that is enabled by social media influencers, but that is

9We provide lower bounds on Ninf,2 and thresholds for
σp

µp
in the proof in the Online Appendix.
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Figure 6: Effect of consumer heterogeneity on difference of per-consumer profits for two influencers

(a) Unknown brand (b) Established brand

Notes: Panels (a) and (b) illustrate the difference in profits π∗
inf,1 − π∗

inf,2 between campaigns with consistent micro-
influencers and a creative mega-influencer as a function of consumer heterogeneity τp for various values of

σp

µp
.

Consistent micro-influencers lead to higher profit for a niche product with a higher τp. Panel (a) depicts an unknown
brand:

σp

µp
= 4, σ2

inf,1 = 0.7. Panel (b) depicts an established brand:
σp

µp
= 0.4, σ2

inf,1 = 0.5. Both panels: Ninf,1 = 2,

Ninf,2 = 25, σ2
inf,2 = 1.1.

rarely possible using targeted ad campaigns. First, we highlight that a marketer should evaluate

whether the product has high product quality uncertainty (e.g., because it belongs to an unknown

brand) or low quality uncertainty (e.g., because it belongs to an established brand). For established

brands, the marketer should focus on campaigns that focus on making consumers aware of a product

without providing too much information. Instead, for unknown brands, learning can increase

profits by allowing the marketer to charge a higher price for the product. Second, we show how

information frictions may operate differently for ad campaigns and influencer campaigns. The

attribution friction—that stems from the inability to separate enjoying the social media post for

its entertainment content from the quality of the product promoted—can be high if the influencer

is very creative or if the follower base has heterogeneous content taste. The finite information

friction is always present for ad campaigns, but is low for influencers with a large follower base.

Since the number of followers affect the information frictions in this way, mega-influencers do not

only make more consumers aware, but also lead to a lot of social learning. Hence, for established

brands, it can be valuable to engage many micro-influencers with high content creativity instead

of mega-influencers, to achieve high awareness of the product while minimizing social learning.

Another notable finding is that influencer campaigns—especially those with many followers—

concentrate beliefs of consumers and allow the marketer to charge a price that entices all consumers
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to buy the product. This “one price fits all” effect is not feasible for ad campaigns. As a result,

influencer campaigns generate a “go viral” or “go bust” effect, which affect the benefit that different

types of promoted products can gain. One implication of the demand concentration of influencer

campaigns is that a marketer can use a discount after the campaign to make it even more profitable.

The strategy would operate as follows: before the campaign the marketer would set a relatively

high price for the product, and then depending on the success of the campaign (whether the

response from consumers was positive or negative), the marketer can offer a discount code through

the influencer to extract the potential consumer surplus. This strategy is not possible with an

ad campaign, because one price will not extract much surplus after an ad campaign that does

not concentrate consumer beliefs. In essence, influencer marketing with many followers allows a

marketer to use the network effect to price discriminate based on the consumers’ responses to the

campaign.

Because we focused on the impact of social learning in this paper, we abstracted away from

other considerations that affect the efficacy of influencer and advertising campaigns. Particularly,

we did not consider the compensation contract between the influencer and the marketer, nor did

we allow the influencer to strategically choose which products they promote. These choices were

made to compare influencer and ad campaigns using an apples-to-apples comparison that removes

the effect of market equilibria in ad prices and influencer campaign costs. Our comparison can

provide guidance to marketers on when they should expect to pay influencers more, and what

returns they should see from these campaigns. Endogenizing the incentive contracts for influencers

and considering competitive ad markets are two promising future directions for additional research.

Two other forces that we did not model can potentially come from the consumer side. Consumers

might consider signals from other followers of the influencer with different weights than their own

signal, while our model assumes that all signals have equal weight. In this case similar forces to

our model should apply, but such a framework would add yet another learning friction of influencer

marketing. Another force that is of interest revolves around the dynamics of consumers. As

consumers do not all simultaneously observe the social media posts by the influencers, there is

a potential for observational learning and other word-of-mouth effects that have been previously

analyzed in the literature (Banerjee 1992, Bikhchandani et al. 1992, Zhang 2010, Kamada and Öry

2020, Fainmesser et al. 2021). Analyzing the effects of such dynamics is another promising avenue
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for future work.

The results we uncovered are useful for both practitioners and researchers. For practitioners, we

uncovered important features of influencer and ad campaigns that may be relevant for campaign

effectiveness, and that shhould be used when planning campaigns. We also provide normative

findings about the effects of influencer campaigns on overrall learning, consumer surplus and firm

profits. Measuring and identifying the effects of influencer campaigns is notoriously difficult because

of the endogenous nature of the data being observed. Thus, for researachers, our results provide

predictions about outcomes that are generated by influencer campaigns in the presence of social

learning, and also provide a benchmark that can be used to compare ad and influencer campaigns

beyond simple ROI metrics. We also provide predictions on which products we expect to be

promoted by influencer campaigns. Our framework uncovers new mechanisms that make influencer

marketing succeed or fail, which can strengthen the conclusions from empirical analysis that focuses

on estimating the effectiveness of social media promotion campaigns.
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Fainmesser, I. P., D. Olié Lauga, and E. Ofek (2021). Ratings, reviews, and the marketing of new

products. Management Science 67 (11), 7023–7045.

Galeotti, A., C. Ghiglino, and F. Squintani (2013). Strategic information transmission networks.

Journal of Economic Theory 148 (5), 1751–1769.

Ifrach, B., C. Maglaras, M. Scarsini, and A. Zseleva (2019). Bayesian social learning from consumer

reviews. Operations Research 67 (5), 1209–1221.

Jiang, B., O. Turut, and T. Zou (2021). A one-sentence tweet or a one-hour video? influencing the

influencer’s recommendations with discounts. Available at SSRN 3922188.
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Appendix – Proofs

Proof of Proposition 1. For the posterior belief about the product’s quality, we define the following

vector notation:

q =

qc

qp

 ∼ N

µc

µp

 ,

 σ2
c 0

0 σ2
p

 .

Since qc and qp are independent, their sum is distributed qc + qp ∼ N (µc + µp, σ
2
c + σ2

p). Consumer

i’s content utility is distributed vi ∼ N (qc + qp, τ
2
c ).

We denote the density of the distribution of a random vector a by fa, and with a slight abuse

of notation we denote the argument of the density functions by the same letter as the random

variables, i.e., fa(a).

By Bayes’ rule, the probability density of the vector q conditional on the observations in v is

given by:

fq|v(q) =
fv|q(v)fq(q)

fv(v)
∝ fv|q(v)fq(q). (17)

Since the vi’s are i.i.d from N (qc + qp, τ
2
c ), the likelihood fv|q(v) equals:

fv|q(v) =

n∏
i=1

fvi|q(vi) ∝
n∏

i=1

exp

(
−(vi − qp − qc)

2

2τ2c

)
= exp

(
−
∑n

i=1(vi − qp − qc)
2

2τ2c

)
. (18)

Further, the prior fq(q) equals:

fq(q) = exp

−1

2

(
qc − µc qp − µp

) 1
σ2
c

0

0 1
σ2
p

qc − µc

qp − µp

 . (19)

We expand the exponents in (18) and (19) to rewrite (17) in the standard form of a multivariate
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normal density. First, (18) can be written as:

−
∑n

i=1(vi − qp − qc)
2

2τ2c
= − 1

2τ2c

nq2c + nq2p + 2nqcqp︸ ︷︷ ︸
(I)

−2

n∑
i=1

viqc − 2

n∑
i=1

viqp︸ ︷︷ ︸
(II)

+

n∑
i=1

(vi)
2

︸ ︷︷ ︸
(III)


= − n

2τ2c
q′

1 1

1 1

q

︸ ︷︷ ︸
(I1)

+

∑n
i=1 vi
τ2c

(
1 1

)
q︸ ︷︷ ︸

(II1)

−
∑n

i=1(vi)
2

2τ2c︸ ︷︷ ︸
(III1)

, (20)

Next, we expand the exponent in (19) as follows

− 1

2

(
qc − µc qp − µp

) 1
σ2
c

0

0 1
σ2
p

qc − µc

qp − µp


= −1

2
q′

 1
σ2
c

0

0 1
σ2
p

q+
(
µc µp

) 1
σ2
c

0

0 1
σ2
p

q− 1

2

(
µc µp

) 1
σ2
c

0

0 1
σ2
p

µc

µp


= −1

2
q′

 1
σ2
c

0

0 1
σ2
p

q

︸ ︷︷ ︸
(I2)

+

(
µc

σ2
c

µp

σ2
p

)
q︸ ︷︷ ︸

(II2)

−1

2

(
µ2
c

σ2
c

+
µ2
p

σ2
p

)
︸ ︷︷ ︸

(III2)

. (21)

To derive the expression in (17) we add the exponents in (20) and in (21):

I1 + I2 = −1

2
q′

 n
τ2c

n
τ2c

n
τ2c

n
τ2c

+

 1
σ2
c

0

0 1
σ2
p

q

= −1

2
q′

 n
τ2c

+ 1
σ2
c

n
τ2c

n
τ2c

n
τ2c

+ 1
σ2
p

q, (22)

II1 + II2 =

[(∑n
i=1 vi
τ2c

∑n
i=1 vi
τ2c

)
+

(
µc

σ2
c

µp

σ2
p

)]
q

=

(∑n
i=1 vi
τ2c

+
µc

σ2
c

∑n
i=1 vi
τ2c

+
µp

σ2
p

)
q, (23)

III1 + III2 = −
∑n

i=1(vi)
2

2τ2c
− 1

2

(
µ2
c

σ2
c

+
µ2
p

σ2
p

)
.

When X ∼ N (µ,Σ) is drawn from a bivariate normal distribution, its probability density
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function is given by

fX(X) =
1

2π det(Σ)
1
2

exp

[
−1

2
(X− µ)′Σ−1(X− µ)

]
=

1

2π det(Σ)
1
2

exp

[
−1

2
X′Σ−1X+ µ′Σ−1X− 1

2
µ′Σ−1µ

]
.

By comparing the quadratic form X′Σ−1X to (22) we find Σq(v) and then we recover the mean

µq(v
c) by post-multiplying the linear coefficients of (23) with Σq(v).

The posterior variance-covariance results in:

Σq(v) =


1

σ2
c

+
n

τ2c

n

τ2c
n

τ2c

1

σ2
p

+
n

τ2c


−1

=


(σ2

p +
τ2c
n )σ2

c

σ2
c + σ2

p +
τ2c
n

−
σ2
cσ

2
p

σ2
c + σ2

p +
τ2c
n

−
σ2
cσ

2
p

σ2
c + σ2

p +
τ2c
n

(σ2
c +

τ2c
n )σ2

p

σ2
c + σ2

p +
τ2c
n



=


(σ2

p +
τ2c
n )σ2

c

κ2cσ
2
p

−σ2
c

κ2c

−σ2
c

κ2c
σ2
p

(
1− 1

κ2c

)


and the posterior mean of q|v is

µq(v)
′ =

(∑n
i=1 vi
τ2c

+
µc

σ2
c

∑n
i=1 vi
τ2c

+
µp

σ2
p

)
Σq(v)

=

(
nv̄c

τ2c
+

µc

σ2
c

nv̄c

τ2c
+

µp

σ2
p

)
(σ2

p +
τ2c
n )σ2

c

σ2
c + σ2

p +
τ2c
n

−
σ2
cσ

2
p

σ2
c + σ2

p +
τ2c
n

−
σ2
cσ

2
p

σ2
c + σ2

p +
τ2c
n

(σ2
c +

τ2c
n )σ2

p

σ2
c + σ2

p +
τ2c
n


=

(
(σ2

p +
τ2c
n )µc + (v̄c − µp)σ

2
c

σ2
c + σ2

p +
τ2c
n

(σ2
c +

τ2c
n )µp + (v̄c − µc)σ

2
p

σ2
c + σ2

p +
τ2c
n

)

=

(
µc +

σ2
c

σ2
p

v̄c − µc − µp

κ2c
µp +

v̄c − µc − µp

κ2c

)
.

The expression for µp(v
c) equals µp +

v̄c − µc − µp

κ2c
, with expectation

E[µp(v)] = µp +
qc + qp − µc − µp

κ2c
.
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The independence across the vi’s implies that the variance of µp(v) equals

Var(µp(v)) =
τ2c
nκ4c

.

Next, let Φ(·) denote the CDF of the standard normal distribution and ϕ(·) its PDF. A consumer

i’s individual demand with price m is

Pr(µp(v)) ≥ m) = 1− Φ

(
m− E[µp(v)]√
Var(µp(v))

)
.

In particular, the demand is determined by the realization of vc
i . Then the demand faced by the

firm is

D(m; qp, qc) = N ·
∫
1

(
1

κ2c

(
x

√
τ2c
n

+ qp + qc − µc

)
+

(
1− 1

κ2c

)
µp ≥ m

)
ϕ(x) dx.

Integrating over x, we get

D(m; qp, qc) = N

1− Φ

(m− µp)κ
2
c + µp + µc − qp − qc√

τ2c
n

 .

Next, we can calculate the firm’s expected demand Eqp,qc [D(m; qp, qc)]. Normalizing qc + qp as

w =
qc+qp−µc−µp√

σ2
c+σ2

p

∼ N (0, 1), we get

Eqp,qc [D(m; qp, qc)] = N

(
1− Φ

(
m− µp

σp
κc

))
.

Proof of Lemma 1.

κad > κinf ⇐⇒ κ2ad > κ2inf ⇐⇒ τ2ad > σ2
inf +

τ2inf
Ninf

.

Proof of Proposition 2. The marketer’s expected revenue is π(m) = m ·Eqp,qc [D(m; qp, qc)]. Taking
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derivative of the expected revenue with respect to m, we obtain

∂π(m)

∂m
= n

(
1− Φ

(
m− µp

σp
κc

))
·
(
1− m

σp
κc · h

(
m− µp

σp
κc

))
,

where h(·) = ϕ(·)
1−Φ(·) is the hazard function of the standard normal distribution. To show that m∗

c

is the unique profit maximizing price, we will show that (1) the necessary first-order condition is

also sufficient, and (2) m∗
c satisfies the first-order condition for profit maximization.

The sign of ∂π(m)
∂m is determined by the sign of the second factor 1− m

σp
κc ·h

(
m−µp

σp
κc

)
as the first

factor is always positive. Since the hazard function h(x) is strictly increasing, 1− m
σp
κc ·h

(
m−µp

σp
κc

)
is strictly decreasing in m. When m is sufficiently small, 1− m

σp
κc · h

(
m−µp

σp
κc

)
> 0, whereas when

m is sufficiently large, 1− m
σp
κc · h

(
m−µp

σp
κc

)
< 0. It follows that ∂π(m)

∂m > 0 when m is sufficiently

small and ∂π(m)
∂m < 0 when m is sufficiently large, and that the sign of ∂π(m)

∂m only changes once.

Therefore, there is a unique m∗
c such that ∂π(m)

∂m

∣∣∣
m=m∗

c

= 0.

To complete the proof of the first part of the proposition, we verify that the expression of

m∗
c = µp + m0

c
σp

κc
satisfies 1 − m

σp
κc · h

(
m−µp

σp
κc

)
= 0. Since m∗

c is a linear transformation from

m0
c , substitution of m0

c into m∗
c satisfies the equation 1− m

σp
κc · h

(
m−µp

σp
κc

)
= 0 if and only if m0

c

satisfies the equation

1− 1

σp

(
µp +m0

c

σp
κc

)
κc · h

(
m0

c

)
= 0.

Simplifying the equation above, m0
c satisfies m0

c − 1
h(m0

c)
= −µp

σp
κc, which is precisely the definition

of m0
c . Therefore, the revenue-maximizing price is m∗

c .

To prove the second part of the proposition, we note that m∗
c > µp if and only if m0

c > 0, which

is the condition in (9).

Proof of Corollary 2.1. Differentiating the optimal price m∗
c from (8) with respect to κc yields:

dm∗
c

dκc
= −σp

κ2c
m0

c +
σp
κc

dm0
c

dκc
, (24)

where by (7):

−µp

σp

dκc
dm0

c

= 1 +
h′(m0

c)

(h(m0
c))

2
=⇒ dm0

c

dκc
= −σp

µp

1

1 + h′(m0
c)

(h(m0
c))

2

. (25)
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Plugging (25) into (24) yields:

dm∗
c

dκc
= −σp

κ2c

h(m0
c)

(h(m0
c))

2 + h′(m0
c)

(
1 +

m0
ch

′(m0
c)

h(m0
c)

)
. (26)

Since the hazard function for the standard normal distribution is strictly increasing, the last factor

1+ m0
ch

′(m0
c)

h(m0
c)

above determines the sign of the derivative dm∗
c

dκc
. In particular, dm∗

c
dκc

> 0, i.e., the firm’s

optimal price is increasing in κc if and only if 1 + m0
ch

′(m0
c)

h(m0
c)

< 0, and it is decreasing in κc if and

only if 1 + m0
ch

′(m0
c)

h(m0
c)

> 0. Since m0
ch

′(m0
c)

h(m0
c)

is increasing in m0
c then

1 +
m0

ch
′(m0

c)

h(m0
c)

< 0 ⇐⇒ m0
c < m0

c ,

where m0
c is the unique number such that 1 + m0

ch
′(m0

c)
h(m0

c)
= 0. Consequently, λ = 1

h(m0
c)

−m0
c .

Proof of Corollary 2.2. When the firm sets the price at m∗
c , the equilibrium demand is 1−Φ(m0

c).

m0
c is decreasing in κc. Since the CDF for the standard normal distribution is increasing, Φ(m0

c) is

decreasing in κc. Consequently, the equilibrium demand is increasing in κc.

Proof of Corollary 2.3. Totally differentiation Equation (7) with respect to κc yields:(
1 +

h′(m0
c)

h(m0
c)

2

)
dm0

c

dκc
= −µp

σp
.

Since the hazard function h(·) is increasing, it follows that dm0
c

dκc
< 0.

Next, totally differentiating the marketer’s profit per consumer at the profit-maximizing price

(either m∗
inf or m

∗
ad) with respect to κc yields:

dπ∗
c

dκc
= −ϕ(m0

c)
dm0

c

dκc

(
σpm

0
c

κc
+ µp

)
+
(
1− Φ(m0

c)
) σp dm0

c
dκc

κc − σpm
0
c

κ2c

=
(
1− Φ(m0

c)
) [σp

κc
− h(m0

c)

(
σpm

0
c

κc
+ µp

)]
dm0

c

dκc
−
(
1− Φ(m0

c)
) σpm0

c

κ2c
.

The factor
σp

κc
−h(m0

c)
(
σpm0

c
κc

+ µp

)
in the first summand equals zero by the definition of m0

c . Hence,

dπ∗
c

dκc
= −

(
1− Φ(m0

c)
) σpm0

c

κ2
c

and the sign of dπ∗
c

dκc
is determined by the sign of m0

c . To conclude, π∗
c is

increasing with κc iff m0
c < 0, that is, κc >

σp

µp

√
π
2 , and it is decreasing with κc iff m0

c > 0, that is,

κc <
σp

µp

√
π
2 .
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Proof of Proposition 3. As both campaigns reach the same population size we can focus on the

firm’s revenue per consumer at the campaign-specific revenue-maximizing price π∗
c = (1−Φ(m0

c))m
∗
c .

For an established brand,
σp

µp

√
π
2 < 1, and κc is always larger than 1, by Corollary 2.3, π∗

c is

increasing with κc iff κc >
σp

µp

√
π
2 . Hence π∗

inf > π∗
ad iff κinf > κad >

σp

µp

√
π
2 .

For an unknown brand, if κad > κ̂1 > 1, then an influencer campaign is more profitable only

when the influencer campaign has an even higher level of learning friction, i.e., κinf > κad, leading

to the first case in the proposition, because the profit is increasing in κc, similarly to the case of an

established brand.

If κad < κ̂1, then an influencer campaign yields a higher profit than an advertising campaign if

the learning friction κinf is outside the range between κad and κ̂ad, as by Corollary 2.3, the profit

is decreasing in κc for low values and increasing in κc for high values. If κinf is below this range,

we are in case (ii), and if it is above, we are in case (iii).

Proof of Proposition 4. Recall that m∗
c = µp +

σp

κc
m0

c . The ex-ante consumer surplus is:

E[CS] = Ev,qp,qc

[
1{µp(v)≥m∗

c} · (qp −m∗
c)
]
= Eqp,qc [D(m∗

c ; qp, qc) (qp −m∗
c)]

= Eqp,qc

1− Φ

(m∗
c − µp)κ

2
c + µp + µc − qp − qc√

τ2c
n

 (qp −m∗
c)


= Eqp

1− Φ

(m∗
c − µp)κ

2
c + µp − qp√

σ2
c +

τ2c
n

 (qp −m∗
c)


=

1− Φ

m∗
cκc −

(
κc − 1

κc

)
µp

σp

 ·

 1

κc
h

m∗
cκc −

(
κc − 1

κc

)
µp

σp

− (m∗
c − µp)


=

σp
κc

[
1− Φ

(
m∗

c − µp

σp/κc
+

µp

κcσp

)]
·

h
(
m∗

c−µp

σp/κc
+

µp

κcσp

)
σp

− m∗
c − µp

σp/κc

 . (27)
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Online Appendix – Equilibrium analysis with consumer heterogene-

ity

We extend the results from Section 3 to the case when consumers have idiosyncratic consumption

utility for the product. We assume that the heterogeneity in consumption utility ϵpi and hetero-

geneity in follower content utility ϵci are independently distributed. For ease of comparison, we keep

the structure of the analysis as close as possible to Section 3.

Product demand A consumer i buys the product if E[qp|v, ϵpi ]+ϵpi ≥ m. Thus, while a consumer

understands her idiosyncratic taste for a product, she only observes other followers’ overall con-

sumption utilities. We denote the average consumption utility of all items in v other than follower

i’s utility by v̄−i =
1

n−1

∑
j ̸=i

vi. Then, analogous to Proposition 1, we characterize the distribution

of qp
∣∣v, ϵpi . The derivation below focuses on an influencer campaign with variance τ2inf for ϵ

c
i . The

derivation for an ad campaign (omitted) follows a similar approach, but without any social learning

from other users:

Lemma OA.1 (Social learning). Consumer i’s posterior belief about qp given v and ϵpi is

qp
∣∣v, ϵpi ∼ N

(
µp(v, ϵ

p
i ), σ

2
p(v, ϵ

p
i )
)

where

µp(v, ϵ
p
i ) = µp +

n−1
n

τ2inf

τ2inf+
τ2p
n

v̄−i +
1
n

τ2inf+τ2p

τ2inf+
τ2p
n

(vi − ϵpi )− µc − µp

(κhetc )2

σp(v, ϵ
p
i ) = σ2

p

(
1− 1

(κhetc )2

)
.

Proof. We calculate the posterior belief of the vector (qc, qp) after observing vc given the prior

q =

qc

qp

 ∼ N

µc

µp

 ,

 σ2
c 0

0 σ2
p

 .

Consumer i’s content utility net of the product taste shock is normally distributed vi − ϵpi ∼

N (qc + qp, τ
2
inf). Also, each consumer i’s observation of any other consumer j’s content utility vj |q

1
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is normally distributed with E[vj ] = qp + qc, and Var(vj) = τ2p + τ2inf for j = 1, . . . , N , j ̸= i. By

Bayes’ rule, the probability density of the vector q conditional on the observations vc and ϵpi is

given by

fq|vc,ϵpi
(q) =

fvc
−i|q(v

c
−i)fq|vi,ϵpi (q)

fvc
−i
(vc

−i)
=

fvc
−i|q(v

c
−i)

fvc
−i
(vc

−i)

fvi,ϵpi |q(vi − ϵpi )fq(q)

fvi,ϵpi (vi − ϵpi )

∝ fvc
−i|q(v

c
−i) · fvi,ϵpi |q(vi − ϵpi ) · fq(q). (28)

By the fact that the vj ’s are independently drawn from N (qc + qp, τ
2
p + τ2inf), we know that

fvc
−i|q(v

c
−i) =

∏
j ̸=i

fvj |q(vj) ∝
∏
j ̸=i

exp

(
−(vj − qp − qc)

2

2(τ2p + τ2inf)

)
= exp

(
−
∑

j ̸=i(vj − qp − qc)
2

2(τ2p + τ2inf)

)
.

Then the likelihood function in (28) becomes

fvc
−i|q(v

c
−i) · fvi,ϵpi |q(vi − ϵpi ) ∝ exp

(
−
∑

j ̸=i(vj − qp − qc)
2

2(τ2p + τ2inf)
−

(vi − ϵpi − qp − qc)
2

2τ2inf

)
. (29)

Also, by the assumption on the prior distribution of q,

fq(q) ∝ exp

−1

2

(
qc − µc qp − µp

) 1
σ2
c

0

0 1
σ2
p

qc − µc

qp − µp

 . (30)

We expand the exponents in (29) and (30) and collect terms:

−
∑

j ̸=i(vj − qp − qc)
2

2(τ2p + τ2inf)
= − 1

2(τ2p + τ2inf)


∑
j ̸=i

(qc + qp)
2

︸ ︷︷ ︸
(I)

−2
∑
j ̸=i

vj(qc + qp)︸ ︷︷ ︸
(II)

+
∑
j ̸=i

v2j︸ ︷︷ ︸
(III)


= − n− 1

2(τ2p + τ2inf)
q′

1 1

1 1

q+

∑
j ̸=i vj

τ2p + τ2inf

(
1 1

)
q−

∑
j ̸=i v

2
j

2(τ2p + τ2inf)
, (31)

2
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Hence, the exponent in (29) is reduced to

−
∑

j ̸=i(vj − qp − qc)
2

2(τ2p + τ2inf)
−

(vi − ϵpi − qp − qc)
2

2τ2inf

= −

(
n− 1

2(τ2p + τ2inf)
+

1

2τ2inf

)
q′

1 1

1 1

q

︸ ︷︷ ︸
(I1)

+

(∑
j ̸=i vj

τ2p + τ2inf
+

vi − ϵpi
τ2inf

)(
1 1

)
q︸ ︷︷ ︸

(II1)

−

( ∑
j ̸=i v

2
j

2(τ2p + τ2inf)
+

(vi − ϵpi )
2

2τ2inf

)
︸ ︷︷ ︸

(III1)

.

(32)

As the summand (III1) is deterministic, we can omit it.

Next, we expand the exponent in (30) as follows

− 1

2

(
qc − µc qp − µp

) 1
σ2
c

0

0 1
σ2
p

qc − µc

qp − µp


= −1

2
q′

 1
σ2
c

0

0 1
σ2
p

q+
(
µc µp

) 1
σ2
c

0

0 1
σ2
p

q− 1

2

(
µc µp

) 1
σ2
c

0

0 1
σ2
p

µc

µp


= −1

2
q′

 1
σ2
c

0

0 1
σ2
p

q

︸ ︷︷ ︸
(I2)

+

(
µc

σ2
c

µp

σ2
p

)
q︸ ︷︷ ︸

(II2)

−1

2

(
µ2
c

σ2
c

+
µ2
p

σ2
p

)
︸ ︷︷ ︸

(III2)

. (33)

We then add the exponents calculated above:

I1 + I2 = −1

2
q′

 n−1
τ2p+τ2inf

+ 1
τ2inf

+ 1
σ2
c

n−1
τ2p+τ2inf

+ 1
τ2inf

n−1
τ2p+τ2inf

+ 1
τ2inf

n−1
τ2p+τ2inf

+ 1
τ2inf

+ 1
σ2
p

q, (34)

II1 + II2 =

(∑
j ̸=i vj

τ2p + τ2inf
+

vi − ϵpi
τ2inf

+
µc

σ2
c

,

∑
j ̸=i vj

τ2p + τ2inf
+

vi − ϵpi
τ2inf

+
µp

σ2
p

)
q, (35)

In order to determine the mean and variance-covariance matrix of q|vc, ϵpi , we first calculate the

inverse of the matrix in (34) to derive Σq|vc,ϵpi
and then rewrite the vector in (35) as µ′

q|vc,ϵpi
Σ−1
q|vc,ϵpi

3
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in order to derive the mean µq|vc,ϵpi
. The posterior’s variance-covariance matrix equals:

Σq|vc =

 n−1
τ2p+τ2inf

+ 1
τ2inf

+ 1
σ2
c

n−1
τ2p+τ2inf

+ 1
τ2inf

n−1
τ2p+τ2inf

+ 1
τ2inf

n−1
τ2p+τ2inf

+ 1
τ2inf

+ 1
σ2
p


−1

=

[
1

σ2
cσ

2
p

+

(
n− 1

τ2p + τ2inf
+

1

τ2inf

)(
1

σ2
c

+
1

σ2
p

)]−1
 n−1

τ2p+τ2inf
+ 1

τ2inf
+ 1

σ2
p

− n−1
τ2p+τ2inf

− 1
τ2inf

− n−1
τ2p+τ2inf

− 1
τ2inf

n−1
τ2p+τ2inf

+ 1
τ2inf

+ 1
σ2
c


=

σ2
cσ

2
pτ

2
inf(τ

2
p + τ2inf)

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

 n−1
τ2p+τ2inf

+ 1
τ2inf

+ 1
σ2
p

− n−1
τ2p+τ2inf

− 1
τ2inf

− n−1
τ2p+τ2inf

− 1
τ2inf

n−1
τ2p+τ2inf

+ 1
τ2inf

+ 1
σ2
c



=


[nσ2

pτ
2
inf + τ2inf(τ

2
p + τ2inf) + τ2pσ

2
p]σ

2
c

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

−
(nτ2inf + τ2p )σ

2
cσ

2
p

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

−
(nτ2inf + τ2p )σ

2
cσ

2
p

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

[nσ2
c τ

2
inf + τ2inf(τ

2
p + τ2inf) + τ2pσ

2
c ]σ

2
p

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

 ,

The transpose of the posterior mean of q|vc, ϵpi is

µ′
q|vc,ϵpi

=

(∑
j ̸=i vj

τ2p + τ2inf
+

vi − ϵpi
τ2inf

+
µc

σ2
c

∑
j ̸=i vj

τ2p + τ2inf
+

vi − ϵpi
τ2inf

+
µp

σ2
p

)(
Σ−1
q|vc,ϵpi

)−1

=

(∑
j ̸=i vj

τ2p + τ2inf
+

vi − ϵpi
τ2inf

+
µc

σ2
c

∑
j ̸=i vj

τ2p + τ2inf
+

vi − ϵpi
τ2inf

+
µp

σ2
p

)

·


[nσ2

pτ
2
inf + τ2inf(τ

2
p + τ2inf) + τ2pσ

2
p]σ

2
c

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

−
(nτ2inf + τ2p )σ

2
cσ

2
p

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

−
(nτ2inf + τ2p )σ

2
cσ

2
p

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)

[nσ2
c τ

2
inf + τ2inf(τ

2
p + τ2inf) + τ2pσ

2
c ]σ

2
p

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)



=


[
nσ2

pτ
2
inf + τ2inf(τ

2
p + τ2inf) + τ2pσ

2
p

]
µc +

[(∑
j ̸=i vj

)
τ2inf + (vi − ϵpi )(τ

2
p + τ2inf)− (nτ2inf + τ2p )µp

]
σ2
c

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)[

nσ2
c τ

2
inf + τ2inf(τ

2
p + τ2inf) + τ2pσ

2
c

]
µp +

[(∑
j ̸=i vj

)
τ2inf + (vi − ϵpi )(τ

2
p + τ2inf)− (nτ2inf + τ2p )µc

]
σ2
p

(nτ2inf + τ2p )(σ
2
c + σ2

p) + τ2inf(τ
2
p + τ2inf)


′

.

Comparing these expressions to the ones in Proposition 1, where consumers have homogeneous

tastes for the product, we see that consumers learn differently from other followers’ signals, leading

to a quality estimate of v̄c
−i − µc, and her own signal, leading to a quality estimate of vi − ϵpi − µc.

The signals from other consumers’ content utility are more noisy because they have different tastes

4

Electronic copy available at: https://ssrn.com/abstract=4324888



of consumption. This is reflected in the fact that
τ2infn+τ2p
τ2inf(n−1)

(σ2
c +σ2

p)+
τ2inf+τ2p
n−1 > n

n−1(σ
2
c +σ2

p)+
τ2inf
n−1 .

Similarly, the consumer’s own signal is stronger which is reflected in the fact that
τ2infn+τ2p
τ2inf+τ2p

(σ2
c +

σ2
p) + τ2inf < n(σ2

c + σ2
p) + τ2inf .

Using the result on the posterior belief, and noting thatD(m; qp, qc) =
∑
i
Pr (µp(v, ϵ

p
i ) + ϵpi ≥ m|qp, qc),

we characterize the product’s demand analogously to Proposition 1:

Proposition OA.1 (Demand). When the firm sets its price at m, the expected market demand is

Eqp,qc [D(m; qp, qc)] = N

(
1− Φ

(
m− µp

σp/κ̃hetc

))
. (36)

Proof. By Lemma OA.1, the demand is determined by these three random variables:

(i) v̄−i|qp, qc ∼ N

(
qp + qc,

τ2p + τ2inf
n− 1

)
, (ii) (vi − ϵpi )|qp, qc ∼ N (qp + qc, τ

2
inf), (iii) ϵpi ∼ N

(
0, τ2p

)
.

which are mutually independent conditional on qp and qc. We define q = qp + qc, x = v̄−1−q√
τ2p+τ2

inf
N−1

,

y =
vi−ϵpi−q

τinf
, z =

ϵpi
τp
. We write the product’s demand given price m and qualities qc and qp as:

D(m; qp, qc) = N ·
∫∫∫

1

(
Σx

x

√
τ2p + τ2inf
n− 1

+ q − µc

+Σy (yτp + q − µc) + Σp + zτp ≥ m

)

· ϕ(x)ϕ(y)ϕ(z) dx dy dz (37)

where

Σx =
τ2infσ

2
p

(σ2
c + σ2

p)τ
2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

Σy =

τ2inf+τ2p
n−1 σ2

p

(σ2
c + σ2

p)τ
2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

Σp =
σ2
c τ

2
inf + (τ2inf + σ2

c )
τ2p+τ2inf
n−1

(σ2
c + σ2

p)τ
2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

µp.

5
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Since

1

Σx

x

√
τ2p + τ2inf
n− 1

+ q − µc

+Σy (yτp + q − µc) + Σp + zτp ≥ m


= Pr

x ≥ m− Σp − zτp − Σy (yτp + q − µc)− Σx(q − µc)

Σx

√
τ2p+τ2inf
n−1

 ,

integrating over x yields

D(m; qp, qc) = N

∫∫ 1− Φ

m− Σp − zτp − Σy (yτp + q − µc)− Σx(q − µc)

Σx

√
τ2p+τ2inf
n−1

ϕ(y)ϕ(z) dy dz.

Integrating over y, by the formula
∫
Φ(a1 + b1y)ϕ(y) dy = Φ

(
a1√
1+b21

)
, we get

D(m; qp, qc) = N

∫ (
1− Φ

(
a1√
1 + b21

))
ϕ(z) dz,

with

a1 =
m− Σp − zτp − (Σx +Σy)(q − µc)

Σx

√
τ2p+τ2inf
n−1

,

b1 = − Σyτp

Σx

√
τ2p+τ2inf
n−1

= −

√
τ2p+τ2inf
n−1

τinf
⇒
√
1 + b21 =

√√√√τ2inf +
τ2p+τ2inf
n−1

τ2inf
.

Using the formula
∫
Φ(a2 + b2z)ϕ(z) dz = Φ

(
a2√
1+b22

)
again, we can further simplify

D(m; qp, qc) = N

(
1− Φ

(
a2√
1 + b22

))
, (38)

6
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where

a2 =
m− Σp − (Σx +Σy)(q − µc)

Σx

√
τ2p+τ2inf
n−1

= (m− Σp)
(σ2

c + σ2
p)τ

2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

τinfσ2
p

√
τ2p+τ2inf
n−1

√
τ2inf +

τ2p+τ2inf
n−1

− (q − µc)

√√√√√ τ2p+τ2inf
n−1 + τ2inf

τ2inf
τ2p+τ2inf
n−1

,

b2 = − τp
τinf

(σ2
c + σ2

p)τ
2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

σ2
p

√
τ2p+τ2inf
n−1

√
τ2inf +

τ2p+τ2inf
n−1

,

√
1 + b22 =

√√√√√√1 +
τ2p
τ2inf

(
(σ2

c + σ2
p)τ

2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

)2
σ4
p
τ2p+τ2inf
n−1

(
τ2inf +

τ2p+τ2inf
n−1

) .

Next, we can calculate the firm’s expected demand Eqp,qc [D(m; qp, qc)]. Define the normalized

q as w =
q−µc−µp√

σ2
c+σ2

p

∼ N (0, 1). Using the same integration formula again, we get

Eqp,qc [D(m; qp, qc)] = N

(
1− Φ

(
a3√
1 + b23

))
,

where

b3 = −
√
σ2
c + σ2

p

√√√√√√√√√√√

τ2p+τ2
inf

n−1
+τ2inf

τ2inf
τ2p+τ2

inf
n−1

1 +
τ2p
τ2inf

(
(σ2

c+σ2
p)τ

2
inf+(τ2inf+σ2

c+σ2
p)

τ2p+τ2
inf

n−1

)2

σ4
p

τ2p+τ2
inf

n−1

(
τ2inf+

τ2p+τ2
inf

n−1

)
,

= −
σ2
p

(
τ2inf +

τ2p+τ2inf
n−1

)√
σ2
c + σ2

p√
τ2infσ

4
p

(
τ2inf +

τ2p+τ2inf
n−1

)
τ2p+τ2inf
n−1 + τ2p

(
(σ2

c + σ2
p)τ

2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

)2
a3 =

(m− Σp)
[
(σ2

c + σ2
p)τ

2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

]
√
τ2infσ

4
p

(
τ2inf +

τ2p+τ2inf
n−1

)
τ2p+τ2inf
n−1 + τ2p

(
(σ2

c + σ2
p)τ

2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

)2 +
b3µp√
σ2
c + σ2

p

.
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Hence,

√
1 + b23 =

√√√√√√1 +
σ4
p(σ

2
c + σ2

p)
(
τ2p+τ2inf
n−1 + τ2inf

)2
τ2infσ

4
p

(
τ2inf +

τ2p+τ2inf
n−1

)
τ2p+τ2inf
n−1 + τ2p

(
(σ2

c + σ2
p)τ

2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

)2 .
and

a3√
1 + b23

= (m− µp)

√√√√√ (σ2
c + σ2

p)τ
2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

σ4
p

(
τ2p+τ2inf
n−1 + τ2inf

)
+ τ2p

[
(σ2

c + σ2
p)τ

2
inf + (τ2inf + σ2

c + σ2
p)

τ2p+τ2inf
n−1

] .

One can verify that the expression above equals (m− µp)
κ̃het
c
σp

with

κ̃hetc =
κhetc√

1 + (κhetc )2
τ2p
σ2
p

(κhetc )2 =

σ2
c + τ2c

1 +
τ2p
τ2c

n+
τ2p
τ2c

σ2
p

+ 1.

Proof of Proposition 5. We derive the optimal price by comparing the expected demands in Equa-

tions (5) and (36). When the normalized learning friction κ̃hetc in a heterogeneous market substitutes

for the relative learning friction in a homogeneous one, the marketer expects identical demands. It

follows that the marketer would set its price by optimizing the same profit function while replacing

κc with κ̃hetc . The unique profit-maximizing price in a heterogeneous market has the same form as

in the homogeneous market.
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Proof of Lemma 2. For part 1, κ̃hetc ≤ κc iff

σ2
c + τ2c

1+
τ2p

τ2c

n+
τ2p

τ2c

σ2
p

+ 1

1 +


σ2
c + τ2c

1+
τ2p

τ2c

n+
τ2p

τ2c

σ2
p

+ 1


τ2p
σ2
p

≤
σ2
c +

τ2c
n

σ2
p

+ 1

⇐⇒σ2
c + τ2c

1 +
τ2p
τ2c

n+
τ2p
τ2c

+ σ2
p ≤

(
σ2
c +

τ2c
n

+ σ2
p

)
1 +


σ2
c + τ2c

1+
τ2p

τ2c

n+
τ2p

τ2c

σ2
p

+ 1


τ2p
σ2
p



⇐⇒τ2c
1 +

τ2p
τ2c

n+
τ2p
τ2c

≤ τ2c
n

1 +

σ2
c + τ2c

1+
τ2p

τ2c

n+
τ2p

τ2c

σ2
p

+ 1


τ2p
σ2
p

+ (σ2
c + σ2

p)


σ2
c + τ2c

1+
τ2p

τ2c

n+
τ2p

τ2c

σ2
p

+ 1


τ2p
σ2
p

⇐⇒τ2c

 τ2c + τ2p
nτ2c + τ2p

−
σ4
p + τ2p

(
σ2
c + τ2c

τ2c +τ2p
nτ2c +τ2p

+ σ2
p

)
nσ4

p

 ≤ (σ2
c + σ2

p)

(
σ2
c + τ2c

τ2c +τ2p
nτ2c +τ2p

+ σ2
p

)
τ2p

σ4
p

⇐⇒τ2c

(
τ2c + τ2p
nτ2c + τ2p

− 1

n

)
≤
(
σ2
c +

τ2c
n

+ σ2
p

) (σ2
c + τ2c

τ2c +τ2p
nτ2c +τ2p

+ σ2
p

)
τ2p

σ4
p

.

The last inequality follows by expanding the two sides.

For part 2, we directly verify that

∂(κ̃hetc )2

∂τ2p
∝ −τ4c [n

2(σ2
c + σ2

p)
2 + n(2(σ2

c + σ2
p)τ

2
c − σ4

p) + τ4c + σ4
p]

− 2τ2c (σ
2
c + σ2

p + τ2c )(n(σ
2
c + σ2

p) + τ2c )τ
2
p − (σ2

c + σ2
p + τ2c )

2τ4p < 0.

Their limiting behavior as τp approaches 0 follows from the definitions of the learning frictions.

When τp approaches infinity,

lim
τp→∞

κhetc =
σ2
c + τ2c
σ2
p

+ 1.

9

Electronic copy available at: https://ssrn.com/abstract=4324888



In particular, it is bounded both from above and away from 0. Then as τp → ∞, the normalization

factor as the denominator

√
1 + (κhetc )2

τ2p
σ2
p
of κ̃hetc approaches infinity. Therefore,

lim
τp→∞

κ̃hetc = 0.

Proof of Proposition 6. We proceed with the proof in two steps. First, we analyze the behavior

of κ̃hetinf for the two influencers, testing whether and when κ̃hetinf,1 − κ̃hetinf,2 changes sign as τp in-

creases. Second, we use Corollary 2.3—which tells us that the monotonicity of profit-per-consumer

with respect to κ̃hetinf (recall that κ̃hetinf plays the exact same role as κc in the homogeneous model

on profitability)—to understand how brand value interacts with consumer heterogeneity to affect

profitability.

To determine the sign of κ̃hetinf,1 − κ̃hetinf,2, solving for κ̃hetinf,1 = κ̃hetinf,2 yields the following quadratic

expression denoted by Q(τp):

Q(τp) = Aτ2p +Bτp + C, (39)

where

A = σ2
inf,1 − σ2

inf,2,

B = Ninf,1(σ
2
inf,1 − σ2

inf,2 − 1) +Ninf,2(σ
2
inf,1 + 1− σ2

inf,2),

C = Ninf,2 −Ninf,1 +Ninf,1Ninf,2(σ
2
inf,1 − σ2

inf,2).

It suffices to determine the sign of Q(τp) as κ̃hetinf,1 − κ̃hetinf,2 > 0 if and only if Q(τp) > 0. Under

the assumption that σinf,1 < σinf,2 and since τp > 0, we can focus on analyzing the following three

cases:

(1) Q(τp) has no positive root—either it has no roots at all, or it has no positive root(s). In this

case, κ̃hetinf,1 − κ̃hetinf,2 < 0 for any τp.

(2) Q(τp) has two roots of different signs. In this case, κ̃hetinf,1 − κ̃hetinf,2 > 0 when τp is small, and

κ̃hetinf,1 − κ̃hetinf,2 < 0 when τp is large.

(3) Q(τp) has two positive roots (including the case of a double root). In this case, κ̃hetinf,1−κ̃hetinf,2 < 0
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when τp is either sufficiently small or sufficiently large. Otherwise, κ̃hetinf,1 − κ̃hetinf,2 > 0.

We can determine the sets of parameter values (Ninf,1, Ninf,2, σinf,1, σinf,2) that satisfy the conditions

of each case. For example, case (1) requires either ∆(Q(τp)) < 0, or B < 0 and C < 0. Case (2)

requires to ∆(Q(τp)) > 0 and C > 0. Case (3) requires ∆(Q(τp)) ≥ 0, B > 0, and C < 0. Further

imposing the requirements that Ninf,2 ≫ 0 and Ninf,1 = 2 will not eliminate any of the three cases

above, but will eliminate some solutions sets to every case. We obtain the following sets of solutions.

(1’) is the solution set to case (1), etc.

(1’) 0 < σ2
inf,1 ≤ σ2

inf,2 − 1, and Ninf,2 > 2.

(2’) max{σ2
inf,2 −

1
2 , 0} < σ2

inf,1 < σ2
inf,2, and Ninf,2 >

2
1+2σ2

inf,1−σ2
inf,2

.

(3’) max{σ2
inf,2 − 1, 0} < σ2

inf,1 ≤ σ2
inf,2 −

1
2 , and Ninf,2 >

2+2(σ2
inf,2−σ2

inf,1)
2

(1+σ2
inf,1−σ2

inf,2)
2 .

If we impose that Ninf,2 > max

{
2, 2

1+2σ2
inf,1−σ2

inf,2
,
2+2(σ2

inf,2−σ2
inf,1)

2

(1+σ2
inf,1−σ2

inf,2)
2

}
, then we reduce these solution

sets to conditions only on σinf,1 and σinf,2. This completes the first step of the proof. Using

Corollary 2.3, which in the context of κ̃hetinf , says that the equilibrium profit-per-consumer π∗
inf is

increasing in κ̃hetinf if and only if κ̃hetinf >
√

π
2
σp

µp
, we observe that π∗

inf will generally exhibit a U-shape

with respect to τp because κ̃hetinf is decreasing in τp.

We now analyze the three cases from the first step in two scenarios: (a)
√

π
2
σp

µp
is greater than the

highest possible value of κ̃hetinf , which occurs for very unknown brands, and (b)
√

π
2
σp

µp
is attainable

by κ̃hetinf for some τp, which occurs for well established brands. By Lemma 2, the possible range of

κ̃hetinf is (0, κinf ]. Hence, we are in scenario (a) if and only if
√

π
2
σp

µp
> κinf .

Case (1) κ̃hetinf,1 < κ̃hetinf,2 for any τp: In scenario (a), π∗
inf is increasing in τp, and π∗

inf,1 > π∗
inf,2 for

any τp. In scenario (b) π∗
inf,1 < π∗

inf,2 when τp is small and π∗
inf,1 > π∗

inf,2 when τp is large.

Case (2) κ̃hetinf,1 − κ̃hetinf,2 > 0 when τp is small, and κ̃hetinf,1 − κ̃hetinf,2 < 0 when τp is large: In scenario

(a), π∗
inf,1 < π∗

inf,2 when τp is small and π∗
inf,1 > π∗

inf,2 when τp is large. In scenario (b) π∗
inf,1 > π∗

inf,2

when either τp is very low or very high.

Case (3) κ̃hetinf,1 − κ̃hetinf,2 < 0 when τp is either sufficiently small or sufficiently large: In scenario

(a), π∗
inf,1 > π∗

inf,2 when either τp is very low or very high. In scenario (b), π∗
inf,1 < π∗

inf,2 when τp is

very low, and π∗
inf,1 > π∗

inf,2 when τp is very high.

Combining the different scenarios, creative mega-influencer are better under low consumer

heterogeneity and consistent micro-influencer are better under high consumer heterogeneity for
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unknown brands when max{σ2
inf,2 − 1

2 , 0} < σ2
inf,1 < σ2

inf,2; and for established brand, when

0 < σ2
inf,1 ≤ σ2

inf,2 − 1 or max{σ2
inf,2 − 1, 0} < σ2

inf,1 ≤ σ2
inf,2 −

1
2 .
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