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A B S T R A C T

Humans and other primates exhibit pro-social preferences for fairness. These preferences are thought to be
reinforced by strong reciprocity, a policy that rewards fair actors and punishes unfair ones. Theories of fairness
based on strong reciprocity have been criticized for overlooking the importance of individual differences in
socially heterogeneous populations. Here, we explore the evolution of fairness in a heterogeneous population.
We analyse the Ultimatum Game in cases where players’ roles in the game are determined by their status.
Importantly, our model allows for non-random pairing of players, and so we also explore the role played by kin
selection in shaping fairness. Our kin-selection model shows that, when individuals condition their behaviour
on their role in the game, fairness can be understood as either altruistic or spiteful. Altruistic fairness directs
resources from less valuable members of a genetic lineage to more valuable members of the same lineage,
whereas spiteful fairness keeps resources away from the competitors of the actor’s high-value relatives. When
individuals express fairness unconditionally it can be understood as altruistic or selfish. When it is altruistic,
unconditional fairness again serves to direct resources to high-value members of genetic lineages. When it is
selfish, unconditional fairness simply improves an individual’s own standing. Overall, we expand kin-selection
based explanations for fairness to include motivations other than spite. We show, therefore, that one need not
invoke strong reciprocity to explain the advantage of fairness in heterogeneous populations.

1. Introduction

Humans and certain non-human primates show preferences for
fairness even when fairness seems to be at odds with personal suc-
cess (Fehr and Fischbacher, 2003; Proctor et al., 2013). Such prefer-
ences are thought to be a reflection of an underlying prosocial tendency
to engage in strong reciprocity (Gintis, 2000). Strong reciprocators
reward cooperative neighbours and punish non-cooperative ones, so
strong reciprocity can be viewed as an individual-level adaptation that
promotes cooperative social norms.

Some of the most conspicuous examples of strong reciprocity come
from experiments involving the Ultimatum Game (Güth et al., 1982).
The game is played by two individuals who must split a resource of
fixed value. One member of the pair (the proposer) offers some fraction
of the resource to its partner and earmarks the remaining fraction for
itself. If the partner (the responder) accepts the proposer’s offer, then
the resource is divided between the individuals accordingly. However,
if the responder refuses, then both individuals receive nothing. Im-
portantly, both proposer and responder understand, in advance, all
consequences of accepting or refusing a proposal.

Given the set-up of the Ultimatum Game, it is clear that a ratio-
nal responder ought to accept any non-zero fraction of the resource
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offered by the proposer, and that a rational proposer ought to offer
the smallest fraction possible to the responder. Nevertheless, human
responders rarely accept offers that see them receive less than one-
quarter of the resource, and human proposers most often offer an even
split (Fehr and Fischbacher, 2003). Similar patterns have been reported
for chimpanzees, Pan troglodytes (Proctor et al., 2013).

The general way in which both humans and non-human primates
approach the Ultimatum Game is certainly curious, but so too is the
variation evident in their respective approaches. For example, male
humans tend to be more generous toward partners that possess certain
qualities like attractiveness and higher social status (Eisenbruch et al.,
2016). In addition, it has been argued that payoffs for chimpanzees in
the Ultimatum Game can be influenced by dominance rank (Proctor
et al., 2013). The argument for chimpanzees, here, is strengthened
by aggressive acts perpetrated by responders (Proctor et al., 2013),
combined with the fact that aggression is intimately connected to
dominance in primates (de Waal, 1986).

Despite the importance of individual quality to the Ultimatum
Game and our understanding of how it is played, theoretical explo-
ration in heterogeneous populations is still lacking. Previous modelling
work has dealt with heterogeneity of individuals playing this game
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by considering average effects (Page and Nowak, 2000). Other work
has explicitly recognized social heterogeneity, in particular, but has
also shown that additional spatial structure is needed to incentivize
fairness (Killingback and Studer, 2001). To our knowledge, though,
theoretical treatments have yet to explore heterogeneity in the Ulti-
matum Game in a way that allows one to easily outline the adaptive
significance of fairness, i.e. the purpose thereof (sensu Gardner, 2017).
This leaves open the question, what goal does fairness achieve in
heterogeneous populations?

In this paper we investigate the adaptive significance of fairness in
the Ultimatum Game with a simple mathematical model that pits a fair
strategy against a rational one. We construct an expression for the co-
variance between fitness and fairness, as has been done elsewhere (e.g.
Gintis, 2000). We then use that expression to derive a statement about
kin selection. Like previous authors (Lehmann et al., 2007; West et al.,
2008), we find that kin selection can be used in place of strong
reciprocity to characterize the advantage of fairness. We also show
that, in a heterogeneous population, kin-selection based explanations
for the advantage of fairness can be described as altruistic, spiteful, or
selfish. In particular, altruistic fairness in a heterogeneous population
disproportionately rewards high-value members of a genetic lineage,
whereas spiteful fairness disproportionately punishes competitors of
high-value members of a genetic lineage.

2. Model

We consider a population of haploid asexual individuals who can
be placed into one of two categories, e.g. high status or low status,
dominant or subordinate, large or small, etc. Admittedly, haploid asex-
ual genetics does not reflect the biology of humans and other primates.
Such a system of inheritance, though, makes our model simple without
compromising our ability to comment on taxonomic groups of interest.
We defer discussion of this point to the final section of the paper.

Individuals form pairs to decide how to divide a resource of value
ℎ. To make their decision, each partnership plays the Ultimatum
Game (Güth et al., 1982). For us, though, partners always belong to
different categories. Furthermore, the role each partner adopts in the
Ultimatum Game is determined by the category to which it belongs.
For example, proposers might always be low-status individuals and re-
sponders might always be high-status individuals. It follows that we can
think of one category of individual as being synonymous with the pro-
poser role, and the other category of individual as being synonymous
with the responder role. Similar links between status and role have
been made in a previous study of the Ultimatum Game (Killingback
and Studer, 2001).

We assume that an individual’s approach to the Ultimatum Game
is determined by its genotype at a single, diallelic locus. Individuals
carrying the 𝑎 allele at this locus approach the game rationally. In
other words, they (i) offer to give their partner a fraction 𝜀 < 1

2 of
the resource when in the proposer role and (ii) accept any offer that
leaves them with some non-zero fraction of the resource when in the
role of responder. By contrast, individuals carrying the 𝐴 allele take a
fair approach, in that they (i) offer to split the resource evenly when in
the proposer role and (ii) only accept offers that leave them with at least
half of the resource when acting as responder. In some cases, we allow
individuals to express their alleles only when they adopt a particular
role. In those cases of conditional expression, individuals who adopt
the other role are carriers of the alleles only.

Let 𝛥𝑝pr and 𝛥𝑝res denote the change in the frequency of the fair 𝐴
allele that occurs among proposers and responders, respectively, over
the course of a single generation. Following previous work (Taylor,
1990; Grafen, 2018), we focus on a weighted allele-frequency change,
𝛥𝑝 = 𝜋 𝛥𝑝pr + (1 − 𝜋)𝛥𝑝res. The weight 𝜋 lies between 0 and 1. It
measures the total reproductive value of individuals in the proposer
role, defined as the probability that an allele chosen from a population
of descendants far in the future will have originated from the current

pool of proposers. Similarly, the weight 1−𝜋 measures the total repro-
ductive value of responders. We use the expression 1 − 𝜋 to reflect the
fact that a descendant allele that did not originate from a present-day
proposer must have originated from a present-day responder. Overall,
the weights 𝜋 and 1 − 𝜋 allow our model to capture the idea that
a change in the frequency of 𝐴 among proposers may not have the
same long-term evolutionary implications as an identical change in the
frequency of 𝐴 among responders. Because proposers and responders
occur with equal frequency in this model (one is always paired with
the other) we can also understand 𝜋 and 1 − 𝜋 as measuring the
reproductive value of one proposer and one responder, respectively.
If 𝜋 = 1 − 𝜋 = 1

2 , then, the proposer and responder have the same
evolutionary significance and we have no real heterogeneity. As this is
outside the scope of the paper we explore the case 𝜋 = 1

2 in Appendix A.
We can derive a simple expression for 𝛥𝑝 based on the Price (1970)

equation (see details in Appendix A), but first we need some additional
notation. We use 𝑊pr to represent the fitness of a given proposer,
measured relative to the average proposer. Similarly, we use 𝑊res
to represent the fitness of a given responder, measured relative to
the average responder. We define the fitness of a given individual,
regardless of role, as 𝑊 = 𝜋𝑊pr + (1 − 𝜋)𝑊res. Finally, we use 𝐺 to
represent the genotype of a given individual, with 𝐺 = 0 for those
carrying the 𝑎 allele, and 𝐺 = 1 for those with 𝐴. Using our new
notation we obtain

�̄� 𝛥𝑝 = Cov(𝑊 ,𝐺) (1)

where �̄� is expected value of 𝑊 . Eq. (1) predicts that the frequency
of 𝐴 increases if and only if the presence of this allele is positively
correlated with fitness. Importantly, Eq. (1) neglects mutation, and so
the weighted allele-frequency change that appears in this line is more
accurately interpreted as a partial change due to selection.

3. Inclusive-fitness analysis

Computing the covariance in Eq. (1) is difficult, in general, but is
made easier if we assume selection is weak. Because weak selection
can arise in different ways (Wild and Traulsen, 2007), we stress that
the way we use it here assumes that ℎ, the value of the resource to
be split, contributes only a small amount to an individual’s fitness.
Under this version of weak selection, and following results presented
elsewhere (Taylor, 1990, 2017; Gardner et al., 2011; Grafen, 2018), it
can be shown that

Cov(𝑊 ,𝐺) ∝
(

−𝐶 + 𝐷
2

)

+
(

𝐵 + 𝐷
2

)

𝑅 (2)

(see Appendices). Here, 𝐶 represents the additive fitness cost of switch-
ing from the rational strategy (allele 𝑎) to the fair strategy (allele 𝐴),
when partnered with an individual using the rational strategy. Along
similar lines, 𝐵 represents the additive fitness benefit of switching
from rational to fair, when partnered with a rational individual. Where
possible, 𝐷 represents the non-additive synergistic changes in fitness
achieved by rational pairs of individuals who jointly switch to fair
strategies. The coefficient 𝑅 gives the relatedness between pairs. Note
that 𝑅 = 0 means that partners are no more similar to each other than
they are to the average individual in the population (Grafen, 1985b).
With this in mind, 𝑅 approaches −1 when partners are very dissimilar
(non-kin) and approaches 1 when they are very similar (close kin).

The right-hand side of line (2) looks like a version of Hamilton’s
(1964) rule, with cost and benefit terms modified by each partner’s
share of the synergy they generate. The similarity to Hamilton’s rule
is, of course, not accidental as we can accurately describe Eq. (2) as
the inclusive-fitness effect of fairness. In fact, we might re-write (2) as
−𝐶 +𝐵𝑅+𝐷(1 +𝑅)∕2 to make it obvious that 𝐷 can be interpreted as
a benefit awarded to the average member of a pair. Readers familiar
with work by Queller (e.g. Queller, 1985, 2011) will note that no
coefficient of synergy appears in (2). For those readers we emphasize
that the coefficient of synergy has not been omitted, rather the weak
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Fig. 1. Summary of model predictions when only the proposer expresses the fair allele 𝐴. Fairness in the Ultimatum Game is favoured over rationality in the grey region. The
opposite is true in red regions. In this scenario, fairness can be understood as a tendency toward altruism. Where it is favoured, then, fairness directs resources away from the
low-value proposer and toward its high-value kin.

selection assumption simply allows it to be subsumed by 𝑅, as shown
in Appendix C.

For the Ultimatum Game played among individuals who may be
either rational (𝑎 carriers) or fair (𝐴 carriers) we find that if alleles
are expressed only by proposers, then

𝐶 = 𝜋
(

(1 − 𝜀) − 1
2

)

𝐵 = (1 − 𝜋)
(

1
2 − 𝜀

)

𝐷 = 0.

⎫

⎪

⎬

⎪

⎭

(3)

Here, the constant 𝐶 specifically captures the additive reduction in
reproductive value experienced by a focal proposer who has decided
to switch from a rational strategy to a fair one. The constant 𝐵 rep-
resents the additive increase in reproductive value experienced by the
responder paired with the focal proposer. In this case, there is no scope
for non-additive synergistic change, as the responder does not express
the fair 𝐴 allele. After substituting (3) in (2), we find that fairness,
expressed only by proposers, is favoured by selection whenever
( 1
2
− 𝜀

)

(

−𝜋 + (1 − 𝜋)𝑅
)

> 0. (4)

Of course, fairness is disfavoured when the preceding inequality is
reversed.

Now, if alleles are expressed only by responders, we obtain

𝐶 = (1 − 𝜋)𝜀
𝐵 = −𝜋(1 − 𝜀)
𝐷 = 0.

⎫

⎪

⎬

⎪

⎭

(5)

When the previous expressions are substituted into (2), we see that fair-
ness, expressed only by responders, is favoured by selection whenever

−(1 − 𝜋)𝜀 − 𝜋(1 − 𝜀)𝑅 > 0 (6)

and disfavoured when the inequality is reversed.

Finally, when fairness is expressed by both proposer and responder
we find

𝐶 = 𝜋
(

(1 − 𝜀) − 1
2

)

+ (1 − 𝜋)𝜀,

𝐵 = (1 − 𝜋)
(

1
2 − 𝜀

)

− 𝜋(1 − 𝜀),
𝐷 = 𝜋(1 − 𝜀) + (1 − 𝜋)𝜀.

⎫

⎪

⎬

⎪

⎭

(7)

Note that to express the true non-additive consequences, represented
by 𝐷, we must subtract the additive fitness effects of switching from
the total fitness change owing to a joint move away from rationality
and toward fairness. Substituting (7) into (2) leads to

− 𝜀
( 1
2
− 𝜋

)

+ (1 − 𝜀)
( 1
2
− 𝜋

)

𝑅 =
( 1
2
− 𝜋

)

(

𝑅− 𝜀
1 − 𝜀

)

(1 − 𝜀) > 0 (8)

as the condition for fairness to be favoured.

4. Results

4.1. Either proposer or responder express fairness, not both

When only the proposer expresses the fairness allele 𝐴, condition (4)
shows fairness is advantageous when partners are kin and when the
responder has high reproductive value (Fig. 1). In this case we assert
that the purpose of fairness is to altruistically direct resources from a
low-value actor (the proposer) to a genetic relative of high value (the
responder).

When only the responder expresses fairness, condition (5) shows
fairness is advantageous only when partners are non-kin and when
the proposer has sufficiently high reproductive value (Fig. 2). Here,
we assert that the purpose of fairness is to spitefully rob resources
from a non-relative of sufficiently high-value (the proposer), by re-
jecting unfair proposals. Importantly, what we mean by ‘sufficiently
high value’ depends on 𝜀: as 𝜀 → 1

2
−

fairness is only favoured when
non-kin proposers are more valuable; as 𝜀 → 0+ fairness is favoured
for interactions with non-kin proposers of any possible value. Overall,
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Fig. 2. Summary of model predictions when only the responder expresses the fair allele 𝐴. Fairness in the Ultimatum Game is favoured over rationality in the grey region. The
opposite is true in red regions. In this scenario, fairness can be understood as a tendency toward spite. Where it is favoured, then, fairness robs resources from high-value non-kin.
Arrows show that the grey region expands to fill the lower half of the sketch as 𝜀 → 0+.

the spiteful act of rejecting an unfair proposal indirectly improves
the competitive prospects of the actor’s relatives who currently find
themselves in the proposer role.

4.2. Both proposer and responder express fairness

Matters are more complicated when both proposer and responder
can express fairness. Condition (8) shows that fairness, in this case, is
favoured when 1

2 − 𝜋 and 𝑅 − 𝜀
1−𝜀 have the same sign. In other words,

fairness is favoured when either (i) the proposer is less valuable than
the responder ( 12 > 𝜋) and partners are close kin (𝑅 > 𝜀

1−𝜀 ), or (ii) the
proposer is more valuable than the responder ( 12 < 𝜋) and partners are
distant or non-kin (𝑅 < 𝜀

1−𝜀 ) (Fig. 3).
The synergy present in the model suggests the inclusive-fitness

narrative surrounding the advantage of fairness might be awkward,
or even unattainable. Strictly speaking, the inclusive-fitness effect of
a behaviour should ignore fitness effects that are received from the
focal actor’s social environment (Hamilton, 1964). By its very nature,
though, synergy captured by the 𝐷 term requires us to consider simul-
taneous deviant action from both actor and its partner. We get around
this problem by modifying costs to include frequency-dependent effects
necessary to deal with synergy (Gardner et al., 2011). In other words,
we simply use −𝐶 + 𝐷

2 and 𝐵 + 𝐷
2 as the cost and benefit of fairness,

respectively, and put these into Hamilton’s rule.
From line (8) we find that the cost term

−𝐶 + 𝐷
2

= −𝜀
( 1
2
− 𝜋

)

(9)

is negative only when the proposer is less valuable than the responder;
when the opposite is true, this so-called cost is actually a benefit reaped
by the actor. Similarly, the benefit term in (8),

𝐵 + 𝐷
2

= (1 − 𝜀)
( 1
2
− 𝜋

)

, (10)

is only a true benefit when the proposer is less valuable than the
responder. When the proposer is more valuable than the responder, the
so-called benefit is really a cost.

With costs and benefits laid out, we argue that the advantage of
fairness when the proposer is less valuable can be understood as an
altruistic act: the average fair individual tends to pay a cost to provide
a benefit to a close relative. Referencing the top left quadrant of
Fig. 3, we go further and say that, again, fairness serves the purpose of
directing resources from less valuable individuals to the more valuable
members of the same lineage.

When the proposer is more valuable, fairness achieves an advantage
because it generates a benefit (i.e., a false cost) for the average fair
individual while simultaneously imposing a cost (i.e., a false benefit)
on distant-kin and non-kin competitors. Evidently, fairness can simply
be characterized as selfish in this scenario.

5. Discussion

Conspecifics are rarely identical. In some cases the differences be-
tween them not only reflect social structure, but also result in divergent
abilities to acquire and hold resources, or share resources with their
neighbours (Sapolsky, 2005; Watts, 2010; Sánchez-Amaro et al., 2018;
Zeng et al., 2022). Such differences occur even among laboratory-
housed primates similar to those used in studies of pro-social be-
haviour (Boccia et al., 1988). Given that heterogeneity is pervasive and
can be linked to social interactions, we wanted to know how it affects
the evolution of pro-social preferences for fairness. We asked specif-
ically, what adaptive purpose does fairness serve in a heterogeneous
population?

To answer our question we analysed the well-known Ultimatum
Game in the case where individuals who adopt a given role are not
the evolutionary equivalent of those who adopt the opposing role.
For example, socially dominant individuals might be proposers dispro-
portionately often because they are better able to acquire resources,
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Fig. 3. Summary of model predictions when both proposers and responders can express the fairness allele 𝐴. Fairness in the Ultimatum Game is favoured over rationality in grey
regions. The opposite is true in red regions.

or to oversee how resources are distributed. Alternatively, physically
dominant individuals might be responders disproportionately often
because they can acquire resources indirectly from subordinates with
relatively little effort.

Previous authors have interpreted fairness in the Ultimatum Game
as a tool for reputation management (Milinski, 2013). Under this view,
fairness is enforced by concerns about future punishment from strong
reciprocators, but the view itself is not universally accepted. Opponents
claim that explanations based on strong reciprocity create confusion
that can only be resolved by framing the advantage of fairness us-
ing ‘kin selection’ terms, most notably ‘spite’ (Lehmann et al., 2007;
West et al., 2008). Others claim that strong reciprocity ignores the
importance that players place on maintaining their standing in socially
heterogeneous populations (Yamagishi et al., 2012). Our results have
combined elements from both objections and framed the purpose of
fairness in heterogeneous populations using kin-selection language.

For heterogeneous populations we find that fairness, when it is
expressed only by individuals in one particular role, serves to either
direct resources toward the actor’s more valuable relatives, or keep
resources from the competitors of more valuable relatives. In the former
instance, fairness can be described as an act of altruism, and in the
latter instance it can be described as an act of spite. Our use of typical
‘kin selection’ terms like ‘altruism’ and ‘spite’ is facilitated by the fact
that conditional expression of fairness in this model eliminates the
synergistic fitness effects that can sometimes confound Hamilton’s rule
(Queller, 1985; but see Grafen, 1985a and Gardner et al., 2011). This
same observation has been made in other settings where synergy plays
a noticeable role (Queller, 1996), but here we take it as evidence that
fairness need not be a reflection of strong reciprocity. In this way, we
align with points made in Lehmann et al. (2007) and West et al. (2008),
but also we reveal that kin-selection forces can allow fairness to be
viewed as altruistic, not just spiteful.

When fairness can be expressed by individuals in both roles, synergy
between partners can be realized. For this case, we provided a version
of Hamilton’s rule that divides the synergistic fitness effects equally

between a fair actor and its partner (it was, in fact, a simple generaliza-
tion of a condition provided by Gardner et al. 2011 and Taylor 2017).
Our version of the rule exploited the weak-selection assumption to
effectively hide the allele-frequency dependence inherent to the model,
which meant we could state simple conditions for the advantage of
fairness. Those conditions again show that fairness can be an altruistic
act whose purpose is to see that resources are directed to higher-value
members of the same genetic lineage. We also find that fairness can be
understood as a selfish act under some conditions, but in all cases where
fairness can be expressed in both roles its advantage can be described
using kin-selection terminology only.

Overall, our findings outline the adaptive purpose of fairness in
heterogeneous populations. They point to the reasons why factors like
spatial structure – factors that affect patterns of genetic relatedness
in populations – have been seen to promote the evolution of fair-
ness (Killingback and Studer, 2001). By uncovering the logic behind
fairness, we have helped future authors predict the fate of fairness in
new situations where specific theoretical exploration is lacking.

It is interesting to ask, does there exist a cultural evolutionary
process that might mirror the process we explore here? The simple
answer is, yes. The mathematical formalism upon which our model
rests, namely the Price (1970) equation, is not restricted to genetic
systems, as Price himself acknowledged in his original work. When
framing the problem as cultural evolutionary process, we would shift
focus away from a genetic locus, where alleles are found, to a cultural
locus, where ideas are found (Lehmann et al., 2008). Relatedness, 𝑅,
would then be a measure the extent to which partners’ strategies are
culturally correlated. The interpretation of the coefficient 𝜋 would also
change: in a cultural model 𝜋 would represent the cultural influence of
the proposer.

Our model assumed individuals are haploid and asexual, and this
is certainly at odds with the biology of humans and other primates.
Nevertheless, our simple assumptions about individuals’ genetics do not
compromise our ability to apply our findings broadly. In evolutionary
game theory, equilibrium predictions made by haploid asexual models
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match those made by one-locus diploid models (Geritz and Kisdi,
2000). And while coefficients of relatedness definitely change with the
genetic system one considers (e.g. Taylor, 1988), the fact that we treat
these coefficients as model inputs means the model itself is sufficiently
flexible to handle whatever value one may care to study (haploid or
diploid) (Cooper et al., 2018). In general, though, we recognize that
we are – as Grafen (1984) points out – taking an often-justifiable
‘‘leap of faith’’ that the genetic system underlying fairness will find the
same strategies as those found by the asexual agents envisioned by our
model.

As mentioned, our analysis also relied on a weak-selection assump-
tion. That assumption allowed us to recover a version of Hamilton’s
rule that incorporated synergy, but we did not make the assumption to
recover Hamilton’s rule. In fact, the weak-selection assumption allowed
us to express fitness differences among individuals as simple functions
of payoffs arising from the Ultimatum Game. Simply put, our version
of Hamilton’s rule was a by-product of an assumption we needed for
other reasons. It could be that a notion of strong reciprocity – one
that is distinct from altruism or spite – is required when selection is
strong. Nevertheless, it seems that strong reciprocity can be ignored
in the weak-selection domain. Previous theoretical and empirical work
has demonstrated that the size of the resource to be split can influence
how the Ultimatum Game is played (Härdling, 2007; Andersen et al.,
2011), especially when the resource is large enough to impact indi-
vidual success significantly (Cameron, 1999). It would, therefore, be
interesting to explore adaptive explanations of fairness based on strong
reciprocity and under strong selection. Those explorations, however,
will have to contend with the challenge of clearly linking individual
fitness to payoffs associated with specific social interactions if some-
thing other than random interactions is studied. What is more, it is
unclear how important windfalls, like those presented to players in
experimental versions of the Ultimatum Game (e.g. Cameron, 1999),
have been in shaping the evolution of pro-social tendencies. So, while
effects of resource size reported by others cannot be denied, we might
speculate that they are artificial and have little to do with the adaptive
significance of fairness established over the course of species’ evolution.
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Appendix A. Fitness and allele-frequency change

Individuals receive a payoff from playing the Ultimatum Game, and
this payoff contributes to its fitness. We use 𝑤𝑗 to denote the payoff
expected by a focal individual in role 𝑗 = pr, res, and we use �̄�𝑗 to
denote the payoff expected by the average individual in role 𝑗. We then
express fitness of the focal individual in role 𝑗 as

𝑊𝑗 =
1 + 𝛿 𝑤𝑗

1 + 𝛿 �̄�𝑗
(A.1)

where the constant 𝛿 > 0 describes the extent to which payoff affects
fitness. If 𝛿 is small, we say selection is weak because the Ultimatum
Game contributes little to fitness. We stress that this is not weak
selection in the usual sense: allele 𝐴 does not have low phenotypic
penetrance (Wild and Traulsen, 2007).

With our version of the weak-selection assumption in place, we
approximate fitness as

𝑊𝑗 ≈ 1 + 𝛿 (𝑤𝑗 − �̄�𝑗 ). (A.2)

We now introduce 𝑤𝑗,𝑋|𝑌 to denote the payoff obtained by a focal
individual in role 𝑗 who carries allele 𝑋 = 𝑎, 𝐴 when partnered with
an individual in the opposite role, ¬𝑗, who carries allele 𝑌 = 𝑎, 𝐴. We
can use this new piece of notation to express the fitness residual of a
focal individual as

𝛿(𝑤𝑗 − �̄�𝑗 ) = 𝛿(𝑤𝑗,𝐴|𝑎 −𝑤𝑗,𝑎|𝑎
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

−𝐶𝑗

)𝐺𝑗 + 𝛿(𝑤𝑗,𝑎|𝐴 −𝑤𝑗,𝑎|𝑎
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝐵¬𝑗→𝑗

)𝐺¬𝑗

+ 𝛿
(

(𝑤𝑗,𝐴|𝐴 −𝑤𝑗,𝑎|𝑎) − (𝑤𝑗,𝐴|𝑎 −𝑤𝑗,𝑎|𝑎) − (𝑤𝑗,𝑎|𝐴 −𝑤𝑗,𝑎|𝑎)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐷𝑗

)

𝐺𝑗𝐺¬𝑗

(A.3)

where 𝐺𝑗 and 𝐺¬𝑗 are random variables that indicate the presence of
the fair 𝐴 allele in the focal individual and its parnter, respectively.
Note that the fitness deviation written in this new form emphasizes
neighbour-modulated effects on the payoff expected by the focal in-
dividual. It includes additive effects of the individual’s own actions
(term labelled 𝐶𝑗), additive effects owing to the partner’s actions (term
labelled 𝐵¬𝑗→𝑗), and the non-additive consequences of joint action of
both partners (term labelled 𝐷𝑗). It is instructive to note that the terms
−𝐶𝑗 , 𝐵¬𝑗→𝑗 , and 𝐷𝑗 can be understood as coefficients from a least-
squares regression of response variable 𝑤𝑗 − �̄�𝑗 on predictors 𝐺𝑗 , 𝐺¬𝑗 ,
and 𝐺𝑗𝐺¬𝑗 .

If we now calculate Cov(𝑊 ,𝐺 | focal ind. in role = 𝑗)
def
= Cov(𝑊𝑗 , 𝐺𝑗 ) we find

Cov(𝑊𝑗 , 𝐺𝑗 )

= 𝛿

⎛

⎜

⎜

⎜

⎜

⎝

−𝐶𝑗 Cov(𝐺𝑗 , 𝐺𝑗 )
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=Var𝐺𝑗

+𝐵¬𝑗→𝑗Cov(𝐺𝑗 , 𝐺¬𝑗 ) +𝐷𝑗Cov(𝐺𝑗 , 𝐺𝑗𝐺¬𝑗 )

⎞

⎟

⎟

⎟

⎟

⎠

= 𝛿 Var𝐺𝑗

(

−𝐶𝑗 + 𝐵¬𝑗→𝑗
Cov(𝐺𝑗 , 𝐺¬𝑗 )

Var𝐺𝑗
+𝐷𝑗

Cov(𝐺𝑗 , 𝐺𝑗𝐺¬𝑗 )
Var𝐺𝑗

)

.

(A.4)

We recognize 𝑅𝑗 =
Cov(𝐺𝑗 ,𝐺¬𝑗 )

Var𝐺𝑗
as the coefficient of relatedness between

partners (Michod and Hamiton, 1980), but from the perspective of
the individual in role 𝑗. We also recognize 𝑆𝑗 = Cov(𝐺𝑗 ,𝐺𝑗𝐺¬𝑗 )

Var𝐺𝑗
as the

coefficient of synergy between partners (Queller, 1985), but again from
the perspective of the individual in role 𝑗. If 𝑝𝑗 is the expectation of 𝐺𝑗
and 𝑓 the expectation of 𝐺𝑗𝐺¬𝑗 , then we can also write

𝑅𝑗 =
𝑓 − 𝑝𝑗 𝑝¬𝑗
𝑝𝑗 (1 − 𝑝𝑗 )

and 𝑆𝑗 =
𝑓
𝑝𝑗

(A.5)

as alternative forms.
We also recognize that

Cov(𝐸{𝑊 |focal ind. in role 𝑗}, 𝐸{𝐺|focal ind. in role 𝑗} ) = 0 (A.6)

owing to the fact that 𝐸{𝑊 |focal ind. in role 𝑗} = 1. It follows from a
standard partition of covariance that

Cov(𝑊 ,𝐺) = 𝐸Cov(𝑊 ,𝐺 | focal ind. in role = 𝑗)

= 𝜋prCov(𝑊pr , 𝐺pr ) + 𝜋resCov(𝑊res, 𝐺res) (A.7)
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where 𝜋𝑗 is the probability mass we assign to the covariance in role 𝑗.
The probability mass used in (A.7) must be the limiting distribution of
the Markov chain with transition matrix

𝑇 =
[

𝑝pr←pr 1 − 𝑝pr←pr
1 − 𝑝res←res 𝑝res←res

]

(A.8)

where 𝑝𝑗←𝑗 gives the probability that an allele carried by an individual
in role 𝑗 descended from one carried by an individual in role 𝑗 in the
previous generation (Taylor, 1990).

In biological terms, the elements of the limiting distribution, 𝜋pr
and 𝜋res, would give the total reproductive value of individuals in the
different roles if 𝑇 remained fixed from one generation to the next. In
reality, though, the entries of 𝑇 can change over time; nevertheless,
its limiting distribution is still helpful. Specifically, the distribution
allows us to weigh the allele-frequency changes we have most recently
observed – namely 𝛥𝑝pr and 𝛥𝑝res – to determine whether they combine
in a way that generates a selective advantage for 𝐴 (Grafen, 2015).
This is the motivation behind defining the weighted allele frequency,
𝛥𝑝 = 𝜋pr𝛥𝑝pr + 𝜋res𝛥𝑝res. The same definition also permits us to say

𝛥𝑝 = Cov(𝑊 ,𝐺) = 𝛿 𝜋prVar𝐺pr
(

−𝐶pr + 𝐵res→pr𝑅pr +𝐷pr𝑆pr
)

+𝛿 𝜋resVar𝐺res
(

−𝐶res + 𝐵pr→res𝑅res +𝐷res𝑆res
)

(A.9)

as shown in Taylor (1990).
We can study the expression in Eq. (A.9) more easily if we assume

that roles in the Ultimatum game are assigned randomly. In that case,
we have no reason to think that the reproductive value of partners
differ, nor do we have reason to believe that genetic variance, relat-
edness, or synergy depends on role (e.g. as in Hawk–Dove–Bourgeois
game between relatives studied by Maynard Smith, 1982). Given the
assumption, then, we obtain

Cov(𝑊 ,𝐺) ∝ −
𝐶pr + 𝐶res

2
+

𝐵res→pr + 𝐵pr→res

2
𝑅 +

𝐷pr +𝐷res

2
𝑆, (A.10)

where the multiplicative factor of one-half appears because an individ-
ual is equally likely to be proposer or responder, and where

− 𝐶pr = 1
2
− (1 − 𝜀), −𝐶res = −𝜀, 𝐵pr→res =

1
2
− 𝜀, 𝐵res→pr = −(1 − 𝜀)

𝐷pr =
1
2
− (1 − 𝜀) −

( 1
2
− (1 − 𝜀)

)

− (−(1 − 𝜀)) = 1 − 𝜀

𝐷res =
1
2
− 𝜀 − (−𝜀) −

( 1
2
− 𝜀

)

= 𝜀. (A.11)

The reader will benefit from a more detailed explanation of the
expressions in line (A.11). We obtain −𝐶pr by determining the change
in payoff experienced by a focal individual in the role of proposer who
decides to change from rational to fair (i.e., from 𝑎 to 𝐴), given that
they are paired with a rational responder (see line (A.3)). Because this
focal individual would have received (1 − 𝜀) (had it been rational) but
now receives 1

2 (it has become fair), we determine −𝐶pr to be 1
2 −(1−𝜀).

We obtain −𝐶res = 0 − 𝜀 in an analogous way, but we do so by placing
the focal individual in the role of responder.

We obtain 𝐵pr→res by determining the change in payoff experienced
by a rational focal individual, in the role of responder, when the
proposer with whom the individual is paired decides to change from
rational to fair (see line (A.3)). Whereas the focal individual would
have received 𝜀 (i.e., it would have responded by accepting any non-
zero proposal), it now receives 1

2 because its partner has switched its
approach to the game. This leaves us with 𝐵pr→res = 1

2 − 𝜀. We find
𝐵res→pr = 0 − (1 − 𝜀) using the same approach, but with the focal
individual cast as proposer.

Determination of coefficients 𝐷pr and 𝐷res is more involved. The
former is associated with the change in payoff experienced by focal
individual, in the role of proposer, when both the focal individual and
its partner switch from rational to fair (see line (A.3)). The correct
𝐷pr , however, describes only the non-additive effects associated with
the switch: the coefficients −𝐶pr and 𝐵res→pr have already completely
captured the additive effects. It follows that if the total change in

the proposer’s payoff resulting from the partners’ simultaneous shift to
fairness is 1

2 − (1 − 𝜀), then the correct value of 𝐷pr is determined by
subtracting −𝐶pr and 𝐵res→pr from 1

2 − (1 − 𝜀). We find 𝐷res in the same
way, but place the focal individual in the role of responder.

From (A.10) and (A.11) we find that, when roles are decided at
random,

Cov(𝑊 ,𝐺) ∝ −1 + 𝑅
2

+ 𝑆. (A.12)

In this case, when 𝑆 < 1∕2, meaning fair individuals are more likely to
be partnered with rational individuals, fairness itself can be favoured
only when 𝑅 < 0, meaning partners are non-kin (Fig. A.1). When
𝑆 > 1∕2, fair individuals tend to be partnered with fair individuals,
and so fairness can be favoured when 𝑅 over a range that includes both
negative and positive values, meaning partners can be non-kin or kin
(Fig. A.1).

Appendix B. Actor-centred model

The expression in (A.9) takes a neighbour-modulated approach to
fitness accounting. For us, this means that (A.9) focuses our attention
on an individual in role 𝑗 and on how it is affected by itself and its
partner. In the main text, however, we take an actor-centric approach
to fitness accounting and enumerate how an individual in role 𝑗 affects
itself and its partner. To do this, we re-write (A.9) as,

Cov(𝑊 ,𝐺) = 𝛿 𝜋prVar𝐺pr
(

−𝐶pr +𝐷pr𝑆pr
)

+ 𝜋pr𝐵res→pr (𝑓 − 𝑝pr𝑝res)
+ 𝛿 𝜋resVar𝐺res

(

−𝐶res +𝐷res𝑆res
)

+𝜋res𝐵pr→res(𝑓 − 𝑝pr𝑝res)

= 𝛿 𝜋prVar𝐺pr
(

−𝐶pr +𝐷pr𝑆pr
)

+ Var𝐺res 𝜋pr𝐵res→pr𝑅res

+ 𝛿 𝜋resVar𝐺res
(

−𝐶res +𝐷res𝑆res
)

+Var𝐺pr𝜋res𝐵pr→res𝑅pr

= 𝛿 Var𝐺pr
(

−𝐶pr𝜋pr + 𝑅pr𝐵pr→res𝜋res +𝐷pr𝑆pr𝜋pr
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(a)

+ 𝛿 Var𝐺res
(

−𝐶res𝜋res + 𝑅res𝐵res→pr𝜋pr +𝐷res𝑆res𝜋res
)

.
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(b)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(B.1)

By re-organizing terms in the actor-centred way we can more easily
identify the relevant pieces in cases where the locus in question either

(a) controls proposer behaviour only (relevant piece labelled (a) in
Eqs. (B.1)), or

(b) controls responder behaviour only (relevant piece labelled (b) in
Eqs. (B.1)).

In situation (a), proposers carrying the 𝐴 allele always make fair
proposals, but responders carrying the 𝐴 allele accept any non-zero
proposal with which they are presented. In situation (b), responders
carrying the 𝐴 allele always reject unfair offers, but proposers carrying
the 𝐴 allele make unfair offers.

One key consequence of conditional behaviour is that the synergistic
terms in (A.11) are lost. Loss of synergy has also been observed in other
games following the introduction of conditional behaviour (Queller,
1996). For (a), when only the proposer acts we have

− 𝐶pr = 1
2
− (1 − 𝜀), −𝐶res = 0, 𝐵pr→res =

1
2
− 𝜀, 𝐵res→pr = 0

𝐷pr =
1
2
− (1 − 𝜀) −

( 1
2
− (1 − 𝜀)

)

− (0) = 0

𝐷res =
1
2
− 𝜀 − (0) −

( 1
2
− 𝜀

)

= 0 (B.2)

and we note that all terms in (b) have vanished. By contrast, for (b),
when the only responder acts, we have

− 𝐶pr = 0, −𝐶res = −𝜀, 𝐵pr→res = 0, 𝐵res→pr = −(1 − 𝜀)
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Fig. A.1. When roles are assigned at random, fairness is favoured over rationality only when the coefficient of relatedness between partners, 𝑅, and the coefficient of synergism,
𝑆, take specific values highlighted in grey. The line separating the grey region from the red region is 𝑅 = 2𝑆 − 1. The region labelled as non-feasible corresponds to 𝑅 > 𝑆 which
cannot occur.

𝐷pr = 0 − (1 − 𝜀) − (0 − (1 − 𝜀)) − (0) = 0

𝐷res = −𝜀 − (−𝜀) − (0) = 0. (B.3)

and now all terms in (a) have vanished. To help the reader, we
emphasize that the coefficients in lines (B.2) and (B.3) are determined
using the same basic steps outlined in the previous appendix. The key
difference, here, is that fairness cannot expressed by one of the two
partners: in (B.2) the responder is always rational, while in (B.3) the
proposer is always rational. These constraints give rise to the zeros that
we see in (B.2) and (B.3), respectively. We also emphasize that, in the
main text, we weight 𝐶𝑗 and 𝐵¬𝑗→𝑗 by 𝜋𝑗 = 1−𝜋¬𝑗 to obtain payoffs 𝐵,
𝐶, and 𝐷 in lines (4) (scenario a) and line (5) (scenario b).

Appendix C. Dynamics

We derived Eq. (A.9) by assuming 𝛿 is small, i.e. by assuming the
social interaction between proposer and responder contributes only
very little to the overall fitness of each. This same assumption also
allows us to estimate 𝜋𝑗 , Var𝐺𝑗 , 𝑅𝑗 , and 𝑆𝑗 by calculating each when
𝛿 = 0. The ability to estimate key quantities is only useful if we have
a particular dynamic scenario in mind, and we turn our attention to
dynamics in this section.

We assume the population is finite, is not subject to selection (𝛿 =
0), but is subject to drift. We assume further that the two alleles at
the locus in question, 𝑎 and 𝐴, are maintained in the long term by
infrequent symmetric mutation. In fact, for us, mutations are so rare
that we can (have) neglected them elsewhere in our analysis.

From the description above we can conclude that quantities like
variance, relatedness, and synergy will wander over time in a random
manner. Ideally, we would average out the randomness so that pre-
dictions in the main text reflect our expectations in some sense. The
averaging we choose, here, takes expectations over all realizations of
the random process described above, in line with previous work (e.g.
Taylor et al., 2007). By symmetry, it is clear that the frequency of the

𝐴 allele among individuals in any role is one-half; thus averaging leads
us to 𝑝pr = 𝑝res = 1∕2.

No further discussion is needed, but we will add a few more com-
ments. First, we note that we use Var𝐺𝑗 = 𝑝𝑗 (1 − 𝑝𝑗 ). Whether this
is reasonable or not is of no consequence since the variance is just a
constant term we factor out of the covariance expression. Second, we
leave 𝜋𝑗 unspecified but note that it could also be estimated provided
additional assumptions about population dynamics are made. Third,
this section of the appendix is only relevant to the case in which
both proposer and responder express fairness, because it is only in this
case that we have to contend with both relatedness coefficients and
coefficients of synergy. On that topic, we find that 𝑆 = 𝑓∕(1∕2) and so

𝑅 =
(1∕2)𝑆 − (1∕2)2

(1∕2)2
↔

1 + 𝑅
2

= 𝑆. (C.1)

This leads to Eq. (2). Importantly, it also suggests that the result pre-
sented in line (A.12) is zero. In other words, when roles are determined
at random fairness is not visible to selection, at least approximately.
We might use a higher-order approximation to improve on (A.12), but
that is beyond the scope of this work. That said, we focus instead on
cases where roles are not determined at random, so 𝜋 ≠ 1∕2 and the
population is truly heterogeneous.
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