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ARTICLE

Epigenetic memories and the evolution of
infectious diseases
David V. McLeod1,2, Geoff Wild3 & Francisco Úbeda 4✉

Genes with identical DNA sequence may show differential expression because of epigenetic

marks. Where epigenetic marks respond to past conditions, they represent a form of

“memory”. Despite their medical relevance, the impact of memories on the evolution of

infectious diseases has rarely been considered. Here we explore the evolution of virulence in

pathogens that carry memories of the sex of their previous host. We show that this form of

memory provides information about the sex of present and future hosts when the sexes differ

in their pathogen’s transmission pattern. Memories of past hosts enable the evolution of

greater virulence in infections originating from one sex and infections transmitted across

sexes. Thus, our results account for patterns of virulence that have, to date, defied medical

explanation. In particular, it has been observed that girls infected by boys (or boys infected by

girls) are more likely to die from measles, chickenpox and polio than girls infected by girls (or

boys infected by boys). We also evaluate epigenetic therapies that tamper with the memories

of infecting pathogens. More broadly, our findings imply that pathogens can be selected to

carry memories of past environments other than sex. This identifies new directions in per-

sonalised medicine.
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In general, the term ‘epigenetics’ refers to the molecular
mechanisms underlying the differential expression of genes
with identical DNA sequences in response to environmental

factors —for example, diet, stress, parental origin— thus resulting
in different phenotypes (gene ‘plasticity’)1,2. Environmental fac-
tors leave marks that do not change the DNA sequence of the
gene, for example, DNA methylation or histone modification1–3.
Some of these ‘epigenetic marks’ are maintained during the life-
time of an individual (henceforth ‘epigenetically acquired’ marks)
but they are not inherited from one generation to the next
(Fig. 1a.iii). Other marks, however, are inherited across genera-
tions (henceforth ‘epigenetically inherited’ marks)1,2 (Fig. 1a.i-ii).
There is abundant evidence of epigenetic inheritance in plants
and mammals2,4. In plants, for example, the exposure of flax
(Linum usitatissimum) to demethylating agents results in early
flowering, a phenotype that continues to be observed in later
generations when these agents are absent5. In mammals, the
exposure of mice (Mus musculus) to early-life stress (maternal
separation) results in depression, a phenotype that continues to
be observed in descendants that were not separated from their
mothers6,7. Epigenetic inheritance thus opens up the fascinating
possibility that genes have ‘memories’ of past environmental
conditions that, in turn, affect their expression even after con-
ditions have changed.

Due to its medical and developmental implications, epigenetic
inheritance has received a lot of attention that has advanced our
knowledge of phenomena like cancer and foetal growth8,9. Despite
the abundant attention that epigenetic inheritance has received, to
our knowledge memories have not been considered when studying
the epidemiology and evolution of infectious diseases. This over-
sight is not justified from a scientific-interest perspective: epige-
netic inheritance has the potential to affect a wide array of
pathogen phenotypes. The oversight is also not justified from a
medical perspective: if we better understand the forces that act to
shape pathogens, then we can possibly devise better strategies to
treat the infections they create. Finally, the oversight is not justi-
fied from an empirical perspective: there is abundant evidence of
epigenetic marks established through exposure to environmental
conditions that regulate the expression of genes underpinning
virulence or transmission1,3,10–18. Furthermore, some of these
epigenetic marks are inherited across multiple generations of the
pathogen, e.g., marks carried by the EBV virus, Salmonella
enterica, Candida albicans and Plasmodium falciparum1,3,11,18. In
the case of P. falciparum, exposure to the antibiotic blasticidin,
leads this pathogen to epigenetically adjust the expression profile
of its var-family genes to avoid the action of the antibiotic itself;
these epigenetic marks are transmitted to multiple generations of
pathogens after the antibiotic has disappeared10,19. Here we work
towards filling this gap by considering epigenetic memories in the
evolution of infectious pathogens.

We advance theory by studying the evolution of virulence in
pathogens that can remember the sex of the host from which they
came (henceforth, ‘origin-specific virulence’) (Fig. 2a). We outline
conditions under which natural selection favours pathogens that
retain the memory of the sex of the host they originated from
over those that do not. Furthermore, we make testable predictions
about the greater virulence of pathogens inherited from one sex as
opposed to the other. In addition, we investigate when pathogens
that can condition their virulence on the sex of their previous host
will be selected to add information regarding the sex of their
current host (henceforth, ‘origin-&-sex-specific virulence’)
(Fig. 2b). We make explicit predictions about the greater viru-
lence of pathogens originating from and infecting the same sex, as
opposed to originating from and infecting the opposite sex. By
providing testable predictions we aim to motivate experimental
work that test epigenetic memories in pathogens.

While there is abundant evidence that pathogens can retain
memories of past environments1,3,11,18, we are not aware of
experiments testing whether pathogens retain the sex of their
previous host. However, information on the sex of the previous
carrier is widespread in genes of plants and mammals that are
imprinted20–22. Parallels on information acquisition can be drawn
between gametic cells proliferating in female and male somatic
environments and pathogens multiplying in females and male
hosts. If genes in gametic cells are able to acquire information on
the sex of their current carrier and pass it on to genes in the next
carrier (imprinted genes) it does not seem too far fetched to
consider genes in pathogens that are able to acquire information
on the sex of their current host and pass it on to pathogenic genes
in the next host (in particular when it has been shown that
pathogens can acquire information on their current environment
and maintain it through division1,3,11,18).

Our results can explain the puzzling observations of virulence
patterns in measles, chickenpox and polio wherein those with
infections contracted from same-sex individuals develop a less
virulent infection compared to those infected by the opposite
sex23–26. That, in developing countries, girls infected with measles
by boys are more likely to die from the infection than girls infected
by girls, is a well-established result that remains poorly
understood23,24,27. What is interesting about this pattern is that it
cannot be explained by differences in virulence between girls and
boys (i.e., due to differences between the sexes in their immune
system) as differences between the sexes will affect equally infec-
tions received from girls and boys. Here we argue that pathogens
with epigenetic memories of the sex of the host from which they
came, can explain the complex patterns of virulence found in
measles, chickenpox and polio. Finally, we explore the implica-
tions of our findings for the treatment of infectious diseases. In
particular, we predict when the use of drugs that erase some
epigenetic memories in pathogens will reduce their virulence.

Results
Infectious-disease dynamics. We consider a structured host
population consisting of two possible host types, female (type j= f)
and male (type j=m). A host of a given sex, j, infected with a
pathogen that most recently originated from a sex-k host, recovers
from its infection at rate γ, dies from causes unrelated to the
infection at rate μ (natural mortality) and dies from causes related
to the infection at a rate αj,k (virulence) (see Fig. 3).

We model transmission using a law of mass-action with rate
constant βi←j, where i in this context refers to the sex of the
susceptible host and j refers to the sex of the infective host. We make
the standard assumption that there is a trade-off between virulence
and transmission28–31. This trade-off could be mediated by the rate
of pathogen replication within an infected host28–31. For example, a
greater replication rate could increase disease transmission but would
also increase host mortality. For clarity, we will use
βi jðαj;kÞ ¼

αj;k
αj;kþθi j

, where θi←j is a positive parameter that controls

how quickly the transmission benefits of higher virulence saturate.
Hosts also belong to one of two subpopulations, ℓ=A and ℓ=B,

and individual hosts move between these at a per-capita rate σ.
Subpopulations differ with respect to the pattern of contact between
hosts and/or the influx susceptible hosts. We use c‘i$j ¼ c‘j$i to
denote the probability with which an interaction between a sex-i host
and sex-j host occurs in subpopulation ℓ. In addition, we use Λ‘

j to
denote the total rate at which sex-j susceptible individuals are
recruited to subpopulation ℓ (e.g., through birth or immigration) (see
Fig. 3). If cAi$j ¼ cBi$j and ΛA

j ¼ ΛB
j for all i, j, then the two-

subpopulation model collapses to a one-population model. We will
consider the one- and two-subpopulation models separately.
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Fig. 1 Schematic representation of the different types of epigenetic marks observed in different organisms. Panel a refer to complex organisms, that is
diploid with germline-soma differentiation. Each sub-panel depicts a different type of epigenetic mark a.i trans-generational epigenetically inherited,
a.ii inter-generational epigenetically inherited, and a.iii epigenetically acquired. Panel b refer to complex organisms that are haploid with no germline-soma
differentiation. Sub-panel b.i depicts epigenetically inherited marks, while b.ii depicts epigenetically acquired marks.
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Let S‘j and x‘j;k denote the density of susceptible sex-j hosts, and
infected sex-j hosts who contracted the infection from a sex-k host,
respectively, in subpopulation ℓ at time t. Then the description above
gives rise to the following system of twelve differential equations:

_S
‘

i ¼ Λ‘
i � μS‘i � S‘i ∑jc

‘
i$j∑kβi jðαj;kÞ x‘j;k þ γ ∑jx

‘
i;j þ σðS:‘i � S‘i Þ;

_x‘j;k ¼ S‘j c
‘
j$k∑iβj kðαj;kÞ x‘k;i � ðαj;k þ μþ γÞx‘j;k þ σðx:‘j;k � x‘j;kÞ;

ð1Þ
where dots indicate differentiation with respect to time, where ℓ,
¬ℓ∈ {A, B} with ¬ℓ≠ ℓ, and where i, j, k∈ {f,m}.

Evolutionary dynamics of pathogen virulence. We study the
evolutionary dynamics of pathogen virulence using an invasion
analysis32,33. This analysis considers a rare mutant pathogen that
expresses a novel virulence phenotype as it competes against an
established resident strain. It relies on the assumption that the
dynamics described in (1) have brought the global population
very close to an equilibrium at which the resident strain is
maintained in an endemic state.

Typically an invasion analysis yields a measure of the invasion
fitness of a rare mutant. In this case, the measure would reflect the
expected number of secondary infections created by a mutant
expressing virulence phenotype ~αj;k≠αj;k. Rather than working
directly with this measure, we opt to investigate its first derivative,
i.e. the selection gradient:

λ0j;kðαj;kÞ ¼ ∑
‘¼A;B

�x‘j;k

h
∑

i¼f ;m
v‘i;j c

‘
i$j

�S‘i
dβi jð~αj;kÞ

d~αj;k|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðaÞ

�v‘j;k
d~αj;k
d~αj;k|ffl{zffl}
ðbÞ

i
~αj;k¼~αj;k

ð2Þ
where v‘i;j is the reproductive value of a i ← j infection currently

found in subpopulation ℓ and overbars indicate variables at
equilibrium (e.g., �x‘j;k is x‘j;k at equilibrium). Term (a) in Eq. (2)
expresses the rate at which secondary i ← j infections in
subpopulation ℓ rise with increasing mutant virulence. That is
the upside of increased virulence. Term (b), on the other hand,
represents the rate at which host mortality goes up as mutant
virulence increases and captures the downside. By weighting (a)
and (b) by reproductive value, Eq. (2) captures the long-term
evolutionary significance of small changes in mutant virulence.
Overall, the selection gradient, λ0j;kðαj;kÞ, gives the direction of
travel through trait space that produces the greatest instantaneous
increase in mutant fitness. When this quantity is positive (resp.
negative), selection favours an increase (resp. decrease) αj,k.

The selection gradient revealed by our analysis, along with any
constraints owing to a pathogen’s inability to adjust based on the
sex of its host or its host of origin, establishes the evolutionary
trajectory for each resident virulence trait αj,k. We expect to find
an ‘evolutionarily stable’ (ES) virulence trait, denoted α�j;k, at the
end of a given trajectory. We identify these ES values
computationally using an iterative numerical procedure (see
“Methods” and Note 1 of the Supplementary Information).

It is not difficult to intuit that the evolutionary dynamics
associated with (2) could give rise to ES levels of virulence that
depend on the sex of a pathogen’s current host (current sex j).
Given that transmissibility βi←j explicitly depends on j, we expect
the nature of the virulence-transmission trade-off to change
depending on the sex of the host in which a strain is currently
found; thus, the optimal balance struck between transmissibility
and virulence follows suit in a sex-specific manner. This basic
point can be derived from models with different types of hosts
when assuming that the types considered are female and male
hosts34. Interestingly, when transmissibility does not explicitly
depend on the sex of the current host (infectivity), but does

Host of origin Host of origin and sex of host

Host Host

Epigenetically inherited Epigenetically inherited and acquired

Replication
Transmission

Transmission

Replication

Transmission

Previous Current
Host Host
Previous Current

Sex previous host
Female
Male

Sex current host
Female
Male

Host
Next

Host
Next

Fig. 2 Cycle of epigenetic marks on pathogens. The first panel represents the cycle of epigenetically inherited marks on pathogens, that is marks
underpining origin-specific virulence. The second panel represents the cycle of epigenetically inherited and acquired marks on pathogens, that is marks
underpining origin-&-sex-specific virulence.
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explicitly depend on the sex of the future host (future sex i)
(susceptibility), natural selection does not favour the evolution of
sex-specific virulence. When transmissibility does not explicitly
depend on either the sex of the current or future host, natural
selection favours the evolution of sex-specific virulence when
vertical transmission is considered35.

It may be more difficult to intuit that evolutionary processes
like the one suggested by (2) would predict ES virulence traits that
depend on the sex of the host from which a given infection was
acquired (sex of origin). This is especially true because, in the
model we present here, sex of origin does not explicitly affect the
transmission-virulence trade-off. We relax this assumption in
the Supplementary Information (Note 1) for completeness.
Nevertheless, adjusting virulence in the sex of origin can be
advantageous when (i) the trade-off is affected by the sex of the
susceptible host (susceptibility), and (ii) a sufficiently strong

correlation exists between the sex of the host of origin and the sex
of the host in which the next infection is likely to become
established. As we detail below, the former requirement can be
established by assuming one sex is more resistant to infection
than the other, and the latter requirement can be established in
the two-subpopulation setting we have here.

Despite the possibly complicated relationship between
transmissibility and virulence, when describing our results
we will compare transmissibilities (and only transmissiblities)
that arise using a benchmark level of virulence. This bench-
mark, denoted αbm, reflects the predictions made by our model
under the assumption of no pathogen plasticity. By evaluating
βi←j at the benchmarked α value, we can highlight the
transmission differences that precede the origin of pathogen
plasticity. To be clear, βi←j should be henceforth understood as
βi←j(αbm).
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Fig. 3 Flow diagram of two subpopulation epidemiological model. More details can be found in the main text and Note 1 of the Supplementary
Information.
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In the Supplementary Information (Note 2), we provide more
details on our evolutionary analysis, including explicit calcula-
tions using the selection gradient; here we focus upon the key
results. In particular, we address two questions: i. When does
origin-specific or origin-&-sex-specific virulence evolve? ii. When
do we expect to observe greater virulence of pathogens with a
particular origin or a particular origin in a particular sex? We pay
attention to contrasting patterns of virulence exhibited by
infections transmitted between same-sex individuals against
patterns exhibited by infections transmitted between opposite-
sex individuals. This contrast is deserving of special attention as it
is related to complex patterns of virulence in measles, chickenpox
and polio—patterns that cannot be explained by recourse to sex-
specific virulence.

Origin-specific virulence: no population structure. In this sec-
tion and the next, we explore the evolution of virulence when
pathogens have epigenetically inherited information about the sex of
the host from which they came, denoted α•,k. Henceforth, bullets
represent a lack of dependency of the variable on the term they replace.

Origin-specific virulence can evolve when transmissibility
depends on both the sex in which the pathogen currently
resides and the sex that follows (see Note 5 of the
Supplementary Information and Fig. 4). In this circumstance,
two patterns emerge. If the average same-sex transmissibility
exceeds the average cross-sex transmissibility, then greater
virulence occurs in infections originating from the sex with

greater average infectivity (if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf f βm m

q
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf mβm f

q
, then

α��;k > α��;:k when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf kβm k

q
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf :kβm :k

q
; Fig. 4i). By

contrast, if average cross-sex transmissibility exceeds same-sex

transmissibility, then the pattern is reversed: pathogen originat-
ing from the sex with the lower infectivity are more virulent
(Fig. 4ii).

The intuition behind this result is that a pathogen’s origin
provides information about the sex of the current host. Virulence
then evolves to be lower in the sex that can infect more readily.
For example, if the average cross-sex transmissibility is higher
than the average same-sex transmissibility, then a pathogen with
female origin is more likely to be infecting a male. In this case,
when the average transmissibility from a sex (i.e. the infectivity of
that sex) is higher in males, pathogens are selected to evolve lower
virulence in males which corresponds to lower virulence when of
female origin. In this scenario, origin-specific marks provide
information about the sex of the current host. If reliable
information about the sex of the current host were available,
selection would favour the evolution of sex-specific virulence over
origin-specific virulence. If a pathogen can gain information on
the sex of its current host immediately after infection (or shortly
after), it would not be selected to keep memories. However, if it
takes the pathogen some time to gain this information, it will be
selected to keep memories.

Origin-specific virulence: population structure. We now
assume transmission depends only on the sex to which the
pathogen is transmitted (susceptibility of a sex), βi←j= βi←•. Here,
origin-specific virulence evolves as long as subpopulations differ
with respect to the sex-specific influx of new susceptible indivi-
duals (ΛA

j ≠ ΛB
j ), or with respect to contact structure (cAi$j ≠ cBi$j)

(Fig. 5 and Supplementary Information Note 4). Most notably,
when sex-k is less susceptible to infection, the virulence of
pathogens with sex-k origin evolves to be greater (if βk←• < β¬k←•,
then α��;k > α��;: k; Fig. 5).
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Fig. 4 Evolution of origin-specific virulence with different infectivity and susceptibility between the sexes. On each sub-panel, the difference between
evolutionarily stable virulence of female- and male-acquired infections are plotted as circles whose area scales with the extent of the difference. Circles are

centred according to the average infectivity of females, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βm fβf f

q
, and average infectivity of males, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf mβm m

q
. In subpanel i,

average transmissibility between individuals of the same sex, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf fβm m

q
, is higher than the average transmissibility between individuals of the

opposite sex, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf mβm f

q
. In sub-panel ii, the average transmissibility between individuals of the same sex is lower than the average

transmissibility between individuals of the opposite sex. In both sub-panels, the results are based on a one-population model in which there are no sex-
specific differences in background mortality, no possibility of recovery, and no difference in the influx of sexes to the population. Parameters (see
Supplementary Information Note 1 and Available Code): c-values all 1, m= 35, ρ= 0.5, μ= 0.5, γ= 0, θi←j ranged from 0.5 to 1.5 and all combinations were
considered (94different combinations).
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The intuition behind this result is that the differences between
subpopulations establishes a positive correlation between the sex
of the host the pathogen will infect, and the sex of the host from
which the pathogen originated. Virulence evolves to be lower
when an infection originates from the sex that can be infected
more readily. For example, if subpopulation A shows a higher rate
of same-sex contacts and subpopulation B a higher rate of cross-
sex contacts, a female-origin pathogen in either of these
populations is likely to end up infecting a female next. When
the susceptibility is higher in males, pathogens are selected to
evolve higher virulence when of female origin. In this scenario
origin-specific marks provide information about the sex of the
next host. In this case, even if information about the sex of the
current host were available, selection favours the evolution origin-
specific virulence over sex-specific virulence.

Origin-&-sex-specific virulence. So far we have explored the
evolution of virulence when pathogens can only make use of
inherited information. Here we extend our previous analysis to
include pathogens that can adjust their virulence in response to
inherited information about the sex of the host they came from,
and acquired information about the sex of the host in which they
currently reside, denoted αj,k. This extension is motivated by the
complex virulence patterns observed in measles, chickenpox, and
polio25,36. These infections result in greater mortality in girls
infected by boys and in boys infected by girls25,36, a pattern that
cannot be explained by invoking origin-specific or sex-specific
virulence alone. In particular, sex-specific virulence could explain
greater mortality arising from infections occurring in a given sex,
and origin-specific virulence could explain greater mortality in
infections originating from a given sex, but neither alone can
yield the observed virulence patterns. Thus, it takes origin-&-sex-
specific virulence to explain the reported interaction effects.
What’s more, shifting the focus from pathogens to hosts, these
patterns cannot be readily explained by sex-specific differences in
the immune response or gene expression profiles alone. These
differences would explain sex-specific virulence but not those
differences seen in measles, chickenpox and polio.

In the absence of population structure, origin-&-sex-specific
virulence will not evolve as information about the sex of the host
of origin provides no adaptive value beyond information about
the sex of the current host (i.e., sex-specific virulence).

The two-subpopulations model expands the scope for the
evolution of origin-&-sex-specific virulence. In this section, we
explore two ways in which this expansion can occur.

Firstly, in the presence of population structure, origin-&-sex-
specific virulence can evolve even when transmissibility is the
same for all host types (that is, βi←j= β•←•). In this case, however,
subpopulations must differ with respect to the sex-specific influx
of susceptible hosts (ΛA

j ≠ ΛB
j ), and the pattern of contact

between host types (cAi$j ≠ cBi$j). Origin-&-sex-specific virulence
is favoured, then, because it is an indirect response to the
conditions the pathogen is likely to encounter in the future.

As an example, consider a case in which contacts in one
subpopulation tend to occur more frequently between same-sex
individuals (cAj$j > cAj$:j), whereas contacts in the other sub-
population tend to be between individuals of the opposite sex
(cAj$j < cAj$:j). Suppose further that opportunities to create new
infections are more abundant in the former subpopulation
because birth rates there are greater (ΛA

j > ΛB
j ). Under these

conditions, we find higher virulence from infections acquired
from same-sex individuals on average, meaning ðα�f ;f þ
α�m;mÞ > 1

2 ðα�f ;m þ α�m;f Þ (Fig. 6).
The intuition behind this result rests on a two-part rationale.

First, when births balance deaths on a global scale, as they do in
our model at equilibrium, a higher birth rate in one subpopula-
tion disproportionately buffers the negative consequences of
virulence there. As a result, there is less disincentive to be virulent
in the population where same-sex contacts dominate. Second,
knowing that the sex of the host of origin matched (resp. did not
match) the sex of the current host would suggest to a pathogen
that the consequences of virulence are less (resp. more) dire than
they might be otherwise.

Second, the evolution of origin-&-sex-specific virulence can be
supported in the presence of sex-specific transmissibilities as well. In

i ii

Ex
ce

ss
 o

f f
em

al
e 

su
sc

ep
tib

ili
ty

10

0

−10

maxnone maxnone

β f
←

•−
β m

←
• 

Higher virulence
female-origin inf
α∗•f > α∗•m 

α∗•f < α∗•m 

Higher virulence
male-origin inf G

reater fem
ale sus

β
f←

• >β
m

←
•

G
reater m

ale sus
β

f←
• <β

m
←

•
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difference between evolutionarily stable virulence associated with female- and male-acquired infections are plotted as circles whose area scales with the
extent of the difference. Circles are centred according to the extent of the difference between subpopulations and the excess female susceptibility, defined
as βf←•− βm←•. There are no sex-specific differences in background mortality, there was no possibility of recovery, and there was only weak mixing of
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with no difference (indicated as `none') to one in which one subpopulation is strongly female biased while the other is strongly male biased (indicated as
‘max’). In sub-panel ii, the subpopulations differ in their contract structure, from a scenario with no difference (‘none’) to one in which in subpopulation A,
contacts are exclusively same-sex (cAi$j ¼ cAj$j), while in subpopulation B, contacts are exclusively cross-sex (cBi$j ¼ cB:j$j).
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order for this virulence pattern to evolve, transmissibilities must show
both sex-specific susceptibility and sex-specific infectivity. If
transmissibilities are sex-specific, though, we can relax conditions
on subpopulations, insisting that they only differ with respect either
the sex-specific in susceptible hosts, or the pattern of contacts

between host types. As before, origin-&-sex-specific virulence is
favoured because it is an indirect response to the conditions the
pathogen is likely to encounter in the future.

In general, when average same-sex transmissibility is higher,
then infections currently found in one sex but originating from

and higher average female infectivity (Fig 4.ii):

and higher average male infectivity (Fig 4.i):
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Fig. 8 Summary of results regarding the evolution of origin-specific virulence. We focus on the case when female-origin virulence will be greater than
male-origin one. Each row indicates a set of different assumptions regarding the population structure and pathogen’s transmissibility.
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the opposite sex show greater average virulence (ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf f βm m

q
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βf mβm f

q
, then 1

2 ðα�f ;f þ α�m;mÞ < 1
2 ðα�f ;mþ

α�m;f Þ; Fig. 7).

Discussion
Our research shows that genes in pathogens can be selected to
retain epigenetic memories of the sex of the host from which the
infection originated. Our research also shows that genes in
pathogens can be selected to combine epigenetic memories of the
sex of the host from which the infection originated with

information on the sex of the current host. Pathogens are selected
to retain epigenetic memories when they convey reliable infor-
mation about: the past, present, and future sex of the host they
infect. Epigenetic memories about a past host can provide the
pathogen: (i) information about opportunities for transmission
that depend on the host they originated from; (ii) information
about the sex of the current host (Fig. 8); (iii) information about
the sex of future hosts (Fig. 9). Epigenetic memories about a past
host that evolve to provide indirect information about the sex of
the current host will be out-competed by direct information on
the sex of the current host. On the contrary, epigenetic memories
about a past host that evolve to provide information about the sex
of future hosts (e.g., due to asymmetries in contact networks, or
difference density of susceptibles) will out-compete information
on the sex of the current host.

From an abstract perspective, our findings relate to previous
work on the evolution of epigenetic cues in heterogeneous
environments37–41. When the environment experienced by the
individual is heterogeneous, epigenetic memories can evolve
when they contain information about the current environment
(e.g., strong environmental autocorrelation or limited migration)
that could not be obtained otherwise (e.g., due to time lags,
environmental noise/variability)37–41. In our model, from a
pathogen’s perspective, sex can be thought as a two-state het-
erogeneous environment. Consistent with previous work, we find
that epigenetic cues may evolve when they provide information
on the sex of the current host, and this information cannot be
obtained directly—for example, due to a delay between the
moment of infection and the time when information on the sex of
the host may be available. In addition, we find that epigenetic
cues may evolve when they provide information on attributes of
the population in which the host is found. In particular, such cues
are of value when information on the sex of the past host informs
about future transmission opportunities.

To support the evolution of origin-specific and/or origin-
&-sex-specific virulence there must be differences between either
host sexes in their infectivity and susceptibility, or a population
structured according to differences in the interactions between
the sexes. These biological and social differences are pervasive in
human populations: differences between the sexes in infectivity
and in susceptibility are ubiquitous42–48; differences between
social groups with respect to their sex ratios and/or the contact
patterns between individuals of the same and opposite sexes have
been widely reported49,50. The outcome will be virulence that
differs when the pathogen was transmitted from a female rather
than a male (origin-specific virulence) or virulence that differs
when the pathogen was transmitted from a female and infecting a
female, or transmitted from a male and infecting a female (origin-
&-sex-specific virulence). The latter complex patterns of virulence
can result in greater average virulence in same-sex infections than
cross-sex transmission infections or vice versa.

Our findings offer an explanation for the complex pattern of
virulence identified by doctors in diseases like measles, chickenpox
and polio. More than two decades ago, it was observed that in
countries with limited access to medical treatment, girls infected with
measles by boys were 2.5 times more likely to die from the infection
than girls infected by other girls23 (Fig. 10i). Similarly, boys infected
by girls were 1.7 times more likely to die than boys infected by other
boys (Fig. 10ii). Overall, average cross-sex infections with measles
were twice as virulent when compared to average same-sex infections
(Fig. 10iii). This same qualitative result has been replicated by other
studies24 and extended to infections with chickenpox and polio25,26.
While these complex patterns of virulence are well established
empirically, their origins remain a mystery27. Focusing on the host,
differences in virulence between cross-sex and same-sex infections
cannot be explained by sex differences in the immune system or in
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Fig. 10 Virulence of cross-sex and same-sex measles infections. Sub-
panel i shows the ratio of case fatalities (χ) in cross-sex infections relative
to same-sex infections, defined as (χmf+ χfm)/(χmm+ χff), in two studies
conducted in children 6-35 months old in Guinea-Bissau and Senegal.
Notice that in both cases infections from the opposite sex are roughly twice
as virulent as infections from the same sex. Sub-panel ii shows the ratio of
case fatalities in cross-sex infections relative to same-sex infections broken
down by sex of the infected. This ratio in infected boys is given by the
proportion of boys infected by girls relative to the one infected by boys, that
is χmf/χmm and in infected girls is given by the proportion of girls infected by
boys relative to the one infected by girls, that is χfm/χff. Notice that in all
cases infections from the opposite-sex are more virulent than infections
from the same-sex, that is χ¬jj/χjj > 1, ranging between 1.5 and 2.5 times
more virulent. Finally, sub-panel iii shows the proportion of case fatalities in
each of the sexes when infected by each of the other sexes in the two
studies conducted in Guinea-Bissau and Senegal23,24.
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gene expression alone. The latter would result in different virulence in
girls and boys but the lack of effects due to the origin of the infection
would result in the cancellation of these differences; if there were only
sex-specific effects caused by the immune system, cross-sex and
same-sex virulence would not differ on average.

We argue that epigenetically inherited and acquired marks
allow the evolution of sex-&-origin-specific virulence in patho-
gens in ways that can explain greater virulence of cross-sex
infections as opposed to same-sex infections, as observed in
measles, chickenpox and polio23–26. We devised two plausible

scenarios in which such complex patterns may evolve; both cases
require a population structure where subpopulations differ with
respect to their contact patterns in a sex-specific manner. For
example, a population where the pathogen is transmitted within
two groups of individuals. One group may be formed largely by
individuals with primarily same-sex interactions, and the other
group by individuals with largely cross-sex interactions. One way
in which greater virulence of cross-sex infections may evolve is
when, in addition to the aforementioned contact structure, the
two groups differ in their sex ratio and/or size (Fig. 6).

dα
dx

>0

Lower virulence

Re-activation of the

Demethylation

Virulence
enhancer

Virulence
inhibitor

α•,f > α•,• > α•,m 

Higher virulence

Re-activation of the

αf,m > αm,f > α•,• > αm,m > αf,f 

CH3

CH3

dα
dy

<0

Demethylation

virulence inhibitor

virulence enhancer

Lower virulence

Re-activation of the

Demethylation

Higher virulence

Re-activation of the

CH3

CH3

Demethylation

virulence inhibitor

virulence enhancer

CH3CH3

Demethylation

Demethylation

CH3 CH3

Virulence
enhancer

Virulence
inhibitor

Lower virulence

Higher virulence

Female-origin pathogen
Male-origin pathogen

Female
Male

Pathogen’s virulence
High

Low

Hosts’s sex

Pathogen’s origin

α•,f

α•,m

αf,m

αm,f

αm,m

αf,f

Fig. 11 Predictions for the effects of epigenetic therapy on the virulence of an infection. Here we consider haploid pathogens with two types of genes:
one whose greater expression x enhances virulence, dαdx > 0, (henceforth virulence enhancer), and another one whose greater expression y inhibits virulence,
dα
dy < 0, (henceforth virulence inhibitor). Epigenetically inherited marks are established by methylation of promoter regions resulting in reduced expression of
the gene. Epigenetic interventions consist of demethylating the pathogen’s genome. In sub-panel i, we consider pathogens exhibiting origin-specific
virulence. When infections originating in females are more virulent (α•f > α•m), pathogens of female-origin are selected to methylate the promoter of
virulence inhibitor genes thus increasing the virulence of the infection. Therefore epigenetic interventions that demethylate infections from females will re-
activate virulence inhibitors and reduce the virulence of the infection. In sub-panel ii, we consider pathogens showing origin-&-sex-specific virulence. When
the virulence of pathogens with male-origin in females is higher (αfm > αmf > αmm > αff), pathogens with male-origin in females are selected to methylate the
promoter of virulence inhibitor genes thus increasing the virulence of the infection. Thus epigenetic interventions that demethylate infections in females
originating from females, will re-activate virulence inhibitors and thus reduce the virulence of the infection. Notice, however, that pathogens with the same
male-origin but infecting females, will respond to the same epigenetic intervention in the opposite manner, that is increasing the virulence of the infection.
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Alternatively, greater virulence in cross-sex infections may evolve
when in addition to the aforementioned contact structure there is
greater same-sex transmissibility (Fig. 7).

Our research suggests the possibility of developing epigenetic
therapies by interfering with pathogens’ memories. Epigenetic
therapies have been widely used in the treatment of cancer9,51,
and their use in the treatment of infectious diseases is starting to
be implemented. If evidence of epigenetic marks modifying the
virulence of pathogens transmitted from different sexes were to
be found, it would be possible to use the predictions of our model
to guide modifications of the epigenome of pathogens exhibiting
origin-specific virulence. When pathogens of male origin are
selected for lower virulence they will under-express any gene
whose expression is positively correlated with virulence (‘viru-
lence enhancer’) (Fig. 11). By contrast, when pathogens of female
origin are selected for higher virulence, they will underexpress
any gene whose expression is negatively correlated with virulence
(‘virulence inhibitor’) (Fig. 11).

Epigenetic marks in viruses and bacteria are often implemented
by downregulating the expression of genes via differential
methylation of the promoter of a gene3,52, although this is not the
only mechanism and the mechanisms are more diverse in other
pathogens53,54. While our model applies to any mechanism of
non-genetic inheritance, for the purpose of illustrating how our
model may guide epigenetic therapy we focus on marks estab-
lished via methylation of the promoter. In particular, here we
explore an epigenetic intervention to reduce the virulence of an
infection by demethylating the pathogen’s genome using, as a
criterion, the sex of the host from which the pathogen originated.
This can be achieved through different pharmacological agents, i.
e generic DNA methyltransferase inhibitors53,54 or specific use of
CRISPR to demethylate a gene55. When natural selection results
in higher virulence of infections originating from a given sex, we
predict that genome-wide demethylation of the pathogen origi-
nated from that sex, and only that sex, will reduce virulence
(Fig. 11). This is because demethylation will upregulate previously
muted virulence inhibitors in pathogens originating from one sex,
but will upregulate previously muted virulence enhancers in
pathogens originating from the other sex (Fig. 11). Importantly,
indiscriminate demethylation will produce undesirable effects
when directed at pathogens without accounting for their origin.
For specific patterns of virulence, our model allows us to predict
the outcome of treatments that demethylate the pathogen’s
genome.

More generally, our work suggests that complex patterns of
virulence (origin-specific or origin-&-sex specific) can be under-
stood in terms of the selective pressures that affect the pathogen.
We propose the intriguing possibility that pathogen’s memories
of past environments may be driving the virulence of infections.
Our research focuses on the sex of the previous host but our
results could be extended to other characters (e.g., stress levels
caused by differences in the socioeconomic status of hosts). The
possibility that there may be a variety of epigenetically inherited
memories advocates the need for personalised approaches to
infections in which factors like sex or social status can inform the
best course of action to treat a disease. This research aims to be a
first step in that direction.

Methods
We identify Evolutionarily Stable levels of virulence using a numerical invasion
analysis implemented in Matlab56. A detailed description of our approach can be
found in Note 2.1 of the Supplementary Information, and custom code and the
numerical data it generates are available for download. Briefly, results are obtained
by guessing the ES levels of virulence, then carrying out the following five-step
procedure: (i) Substitute the most recent guess into the system of equations in (1),
then integrate forward in time to find the equilibrium levels of susceptible and

infected hosts. (ii) Use the equilibrium levels of susceptible and infected hosts to
construct the selection gradients described in (2). (iii) Update the guess by either
incrementing it (when the corresponding selection gradient is positive) or decre-
menting it (when the corresponding selection gradient is negative). (iv) Repeat (i-
iii) until the magnitude of each relevant selection gradient is within a tolerance of
zero. (v) Return each of the most recent guesses as the estimates of the various ES
virulence levels.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The numerical results used to produce Figs 4–7 and figures that appear in the
Supplementary Information can be found at https://github.com/geoffwild/
McLeod_et_al_NComm and at https://zenodo.org/deposit/4939424.

Code availability
Custom code was written using Matlab56 and can be found at https://github.com/
geoffwild/McLeod_et_al_NComm and at https://zenodo.org/deposit/4939424.
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