
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 2022

Machine Learning Methods to Estimate Whole-Brain Effective Machine Learning Methods to Estimate Whole-Brain Effective

Connectome for ASD Identification Connectome for ASD Identification

Juntang Zhuang
Yale University Graduate School of Arts and Sciences, zhuangjt12@gmail.com

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Zhuang, Juntang, "Machine Learning Methods to Estimate Whole-Brain Effective Connectome for ASD
Identification" (2022). Yale Graduate School of Arts and Sciences Dissertations. 691.
https://elischolar.library.yale.edu/gsas_dissertations/691

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/691?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

Machine Learning Methods to Estimate Whole-brain Effective

Connectome for ASD Identification

Juntang Zhuang

2022

Functional Magnetic Resonance Imaging (fMRI) is widely used to study neural-developmental

diseases such as Autism Spectrum Disorder (ASD). There are mainly two types of con-

nectome to analyze fMRI: the Functional Connectome (FC) and the Effective Connectome

(EC). FC is typically derived as the correlation between fMRI time-series from different

brain regions, while EC is derived by fitting the measurement time-series to the Dynamical

Causal Model (DCM) described by a system of Ordinary Differential Equations (ODEs).

FC is typically easier to compute yet can not reveal the causal relations among brain re-

gions; EC reveals the causal relations yet is much harder to compute and is more sensitive

to observation noise. Therefore, this dissertation aims to propose a generic framework for

estimation of EC, and identify ASD from fMRI based on EC.

First, we propose the Model Driven Learning Framework (MDL) for parameter esti-

mation in the continuous models. MDL iteratively performs three steps: 1) forward simu-

lation according to prior knowledge of the model, 2) backward pass to derive the gradient

of parameters, 3) update of parameters based on gradient information.

We derive various methods to solve each step in MDL. Specifically, for step 2), we

identify the inaccuracy of existing gradient estimation methods for continuous time mod-

els (e.g. ODEs): the adjoint method has numerical errors in reverse-mode integration; the

naive method suffers from a redundantly deep computation graph. We propose a series

of new methods which guarantee the numerical accuracy with a low memory cost. For

step 3), we propose the AdaBelief optimizer, which is a generic first-order adaptive op-

2

timizer that simultaneously achieves fast convergence, good generalization and training

stability. Furthermore, we show that an asynchronous version of AdaBelief achieves prov-

ably weaker convergence condition and faster convergence rate. We show that our MDL

significantly accelerates the fitting of DCM and estimation of EC.

To deal with the limited data and improve generalization of the classifier, we propose

the Surrogate Gap Guided Sharpness-Aware Minimization (GSAM). GSAM is based on

the observation that poor generalization often comes with a sharp loss surface of the model,

and improves generalization by jointly minimizing the training loss and the curvature of

the loss surface.

Finally, we apply the proposed MDL to estimate whole-brain EC for fMRI, and per-

formed group comparison to identify FC and EC edges that are related to ASD. Next, we

apply the estimated EC for the identification of ASD. Specifically, we conducted experi-

ments with both resting-state fMRI and task fMRI data, and compare the predictive power

of FC and EC in both cases. Furthermore, we apply GSAM to further improve the gen-

eralization performance, which significantly improves the classification performance and

reduces the dominant eigenvalue of the Hessian of the network. In summary, we apply the

proposed framework for effective connectome analysis, and improve the identification of

ASD from fMRI data.

Machine Learning Methods to Estimate Whole-brain Effective

Connectome for ASD Identification

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Juntang Zhuang

Dissertation Director: James S. Duncan

May, 2022

Copyright © 2022 by Juntang Zhuang

All rights reserved.

ii

Acknowledgments

I would like to give my warmest thanks to my advisor, Professor James S. Duncan, for his

patient guidance and strong support through all these years. It has been a great honor for

me to work together with Jim on the exciting research projects, and I’m fortunate to learn

from Jim not only the research techniques, but more importantly how to choose interesting

research topics and work as an independent researcher. Conversations with Jim were truly

encouraging and inspiring me to think out of the box, and I would not finish my PhD

without the strongest support from Jim.

I would also like to thank Nicha C. Dvornek, who has been extremely kind and helpful.

Nicha has helped with discussion and draft revision for almost all my papers and proposals

since I joined this fantastic lab, and her help is vital during my career path as a PhD

candidate.

I want to give my warmest thanks to Professor Sekhar Tatikonda, Professor Xenophon

Papademetris, Professor Hemant Tagare, Professor Larry Staib, Professor Pamela Ventola,

Professor John Onofrey and Xilin Shen. You have helped me so much and are always open

to discussion with me and provide guidance on both research and life. I’m so grateful that

I can learn from you.

I would like to thank Professor Tianyu Ma, who led me into the journey of research

when I was an undergrad. I want to thank Professor Chi Liu and Richard E Carson, without

your help I would not have the chance to start my PhD career at Yale. I also want to thank

Chung Jan Chan, Jing Wu, Hui Liu, Silin Ren, Peng Fan, Yan Xia, Luyao Shi and Yihuan

Lu, who gave so much warm help when I first entered the gate of research.

I want to thank my groups members – Francisca Melina Tibo, Zach Augenfeld, Fan

Zhang, Allen Lu, Nripesh Parajuli, Xiaoxiao Li, Junlin Yang, Shawn Ahn, Zhao Liu,

Yuan Zhou, Siyuan Dong, Daniel Pak, John Treilhard, Kevinminh Ta, Chenyu You, Jiyao

Wang, Xiaoran Zhang and Tommy Tang. You have made my PhD life very colorful and

iii

interesting.

I would like to thank Ting Liu, Boqing Gong, Liangzhe Yuan and Yin Cui for your

kind help during my internship at Google. I also want to thank my friends at Yale, Cong

Shen, Han Liu, Siyuan Gao, Xuechen Zhou, Xinxin Nie, Shaojie Ma, and the list goes on.

I want to give special thanks to Professor Chak Wong, who has encouraged me to

pursue challenging goals and has influenced my way of thinking. I would like to thank

Xiaolin Guo, who has been a supportive friend for me since undergrad and is always open

to discussion and help.

I want to thank my parents for your firm support throughout my life, without you I

would not have arrived at Yale starting from a small village. Finally, I would like to thank

my wife Yifan Ding, your trust and love is the motivation for all the proactive changes I

pursued, and I’m looking forward to all the beautiful moments for us in the future.

iv

Contents

1 Introduction 1

1.1 Autism Spectrum Disorder . 1

1.2 Introduction to fMRI . 2

1.3 Functional connectome analysis of fMRI 3

1.4 Effective connectome and dynamic causal modeling 4

1.5 Summary of contributions . 5

2 Overview of Dynamic Causal Modeling and Model-Driven Learning Frame-

work 7

2.1 Dynamic Causal Modeling . 7

2.2 Model-Driven Learning Framework . 8

3 Numerical methods for gradient estimation in continuous-time models 10

3.1 Introduction . 10

3.2 Preliminaries . 12

3.2.1 Numerical Integration Methods 12

3.2.2 Analytical form of gradient in continuous case 14

3.3 Numerical implementations in the literature 15

3.3.1 Adjoint method suffers from numerical errors 16

3.3.2 Naive Method has Deep Computation Graph 19

v

3.4 Methods . 20

3.4.1 Adaptive checkpoint adjoint (ACA) 20

3.4.2 Asynchronous Leapfrog Integrator 20

3.4.3 Memory-efficient ALF Integrator (MALI) for gradient estimation

in continuous-time models . 24

3.5 Experiments . 27

3.5.1 Validation on a toy example . 27

3.5.2 Image recognition with Neural ODE 28

3.5.3 Time-series modeling . 30

3.5.4 Continuous generative models 30

3.6 Related works . 31

3.7 Proofs and Theoretical Analysis . 32

3.7.1 Numerical errors for the adjoint method 32

3.7.2 Algorithm of ALF . 37

3.7.3 Expansion of total derivative . 38

3.7.4 Local truncation error of ALF 38

3.7.5 Stability analysis for ALF . 40

3.7.6 Damped ALF . 43

4 AdaBelief optimizer: scale stepsize by the belief in observed gradients 47

4.1 Introduction . 47

4.2 Methods . 49

4.2.1 Details of AdaBelief Optimizer 49

4.2.2 Intuitive explanation for benefits of AdaBelief 50

4.2.3 Convergence rate of AdaBelief in convex and non-convex opti-

mization . 56

vi

4.3 Asynchronous version of AdaBelief . 60

4.3.1 Algorithms . 60

4.3.2 Async AdaBelief has a weaker convergence condition 61

4.3.3 Async AdaBelief matches the oracle convergence rate 67

4.4 Experiments . 70

4.5 Proofs and theoretical analysis . 74

4.5.1 Convergence of AdaBelief in convex online learning case 74

4.5.2 Convergence of AdaBelief for non-convex stochastic optimization 80

4.5.3 Analysis on convergence conditions of Asynchronous AdaBelief . 85

4.5.4 Numerical validations . 95

4.5.5 Asynchronous AdaBelief matches the oracle convergence rate for

stochastic non-convex optimization 99

5 Surrogate Gap Guided Sharpness-Aware Minimization (GSAM) improves gen-

eralization 104

5.1 Introduction . 104

5.2 Preliminaries . 106

5.2.1 Notations . 106

5.2.2 Sharpness-Aware Minimization 107

5.3 The surrogate gap measures the sharpness at a local minimum 108

5.3.1 The perturbed loss is not always sharpness-aware 108

5.3.2 The surrogate gap agrees with sharpness 110

5.4 Surrogate Gap Guided Sharpness-Aware Minimization 111

5.4.1 General idea: Jointly minimize the perturbed loss and surrogate gap 111

5.4.2 Gradient decomposition and ascent for the multi-objective opti-

mization . 112

vii

5.5 Theoretical properties of GSAM . 113

5.5.1 Convergence during training . 113

5.5.2 Generalization of GSAM . 115

5.6 Experiments . 118

5.6.1 GSAM improves test performance on various model architectures 118

5.6.2 GSAM finds a minimum whose Hessian has small dominant eigen-

values . 119

5.6.3 Comparison with methods in the literature 120

5.6.4 Additional studies . 121

5.7 Proofs . 122

5.7.1 Proof of Lemma. 5.3.0.1 . 122

5.7.2 Proof of Lemma. 5.3.0.2 . 123

5.7.3 Proof of Lemma. 5.3.0.3 . 123

5.7.4 Proof of Thm. 5.5.1 . 124

5.7.5 Proof of Corollary. 5.5.2.1 . 130

5.7.6 Proof of Thm. 5.5.3 . 131

5.7.7 Proof for convergence of GSAM without relying on the L-smoothness

of fp . 134

5.8 Related works . 138

6 Apply MDL to identify ASD from fMRI 139

6.1 Recap of Dynamic Causal Modeling . 139

6.2 Overcoming long time series and noise in fMRI data with Multiple Shoot-

ing MDL (MS-MDL) . 140

6.2.1 Notations and formulation of problem 141

6.2.2 Multiple-shooting method . 142

viii

6.2.3 Adjoint state method . 144

6.2.4 Multiple-Shooting Adjoint State Method (MSA) 146

6.3 Validation of MSA on toy examples . 147

6.4 Apply MDL to identify ASD from fMRI data 151

6.4.1 Data acquisition and pre-processing 152

6.4.2 Improved Fitting with ACA and AdaBelief 152

6.4.3 Estimation of Effective Connectome and Functional Connectome 153

6.4.4 Group comparison . 154

6.4.5 Classification results for task fMRI 155

6.4.6 Classification results fo resting-state fMRI 157

6.4.7 Improved classification with GSAM 158

6.4.8 Studies on hyper-parameters . 161

7 Conclusions 162

Bibliography 163

ix

List of Figures

1.1 A toy model with directional edge among nodes. 3

2.1 Scheme of the Dynamic Causal Modeling (DCM). For simplicity we only

consider a 3-node system. For whole-brain fMRI DCM, the number of

nodes equals the number of parcellated regions (e.g. 100 to 200). 8

3.1 Illustration of numerical solver in forward-pass. For adaptive solvers, for each

step forward-in-time, the stepsize is recursively adjusted until the estimated error

is below predefined tolerance; the search process is represented by green curve,

and the accepted step (ignore the search process) is represented by blue curve. . 15

3.2 In backward-pass, the adjoint method reconstructs trajectory as a separate IVP.

Naive, ACA and MALI track the forward-time trajectory, hence are accurate.

ACA and MALI backpropagate through the accepted step, while naive method

backpropagates through the search process hence has deeper computation graphs. 15

3.3 With ALF method, given any tuple (zj , vj , tj) and discretized time points {ti}Nt
i=1,

we can reconstruct the entire trajectory accurately due to the reversibility of ALF. 22

3.4 Comparison of error in gradient in Eq. 3.23. (a) error in dL
dz0

. (b) error in dL
dα . (c)

memory cost. 26

x

3.5 Results on Cifar10. From left to right: (1) box plot of test accuracy (first 4

columns are Neural ODEs, last is ResNet); (2) test accuracy ±std v.s. train-

ing epoch for Neural ODE; (3) test accuracy ±std v.s. training time of 90 epochs

for Neural ODE. 26

3.6 Top-1 accuracy on ImageNet validation dataset. 29

3.7 Region of A-stability for eigenvalue on the imaginary plane for damped

ALF. From left to right, the region of stability for η = 0.25, η = 0.7,η =

0.8 respectively. As η increases to 1, the area of stability region decreases. 46

4.1 An ideal optimizer considers curvature of the loss function, instead of tak-

ing a large (small) step where the gradient is large (small) [154]. 51

4.2 Left: Consider f(x, y) = |x| + |y|. Blue vectors represent the gradi-

ent, and the cross represents the optimal point. The optimizer oscillates

in the y direction, and keeps moving forward in the x direction. Right:

Optimization process for the example on the left. Note that denominator
√
vt,x =

√
vt,y for Adam, hence the same stepsize in x and y direction;

while√st,x <
√
st,y, hence AdaBelief takes a large step in the x direction,

and a small step in the y direction. 53

4.3 Trajectories of SGD, Adam and AdaBelief. AdaBelief reaches optimal

point (marked as orange cross in 2D plots) the fastest in all cases. We

refer readers to video examples. 55

xi

4.4 Numerical results for the example defined by Eq. equation 4.7. We set the initial

value as x0 = 0, and run each optimizer for 104 steps trying different initial learn-

ing rates in {10−5, 10−4, 10−3, 10−2, 10−1, 1.0}, and set the learning rate decays

with 1/
√
t. If there’s a proper initial learning rate, such that the average distance

between the parameter and its optimal value x∗ = −1 for the last 1000 steps is

below 0.01, then it’s marked as “converge” (orange plus symbol), otherwise as

“diverge” (blue circle). For each optimizer, we sweep through different β2 values

in a log grid (x-axis), and sweep through different values of P in the definition

of problem (y-axis). We plot the result for β1 = 0.9 here; for results with dif-

ferent β1 values, please refer to appendix. Our results indicate that in the (P, β2)

plane, there’s a threshold curve beyond which sync-optimizers (Adam, RMSProp,

AdaBelief) will diverge; however, async-optimizers (ACProp, AdaShift) always

converge for any point in the (P, β2) plane. Note that for AdaShift, a larger delay

step n is possible to cause divergence (see example in Fig. 4.5 with n = 10). To

validate that the “divergence” is not due to numerical issues and sync-optimizers

are drifting away from optimal, we plot trajectories in Fig. 4.5 62

4.5 Trajectories of x for different optimizers in Problem by Eq. 4.7. Initial point

is x0 = 0, the optimal is x∗ = −1, the trajectories show that sync-optimizers

(Adam, AdaBelief, RMSProp) diverge from the optimal, validating the diver-

gent area in Fig. 4.4 is correct rather than artifacts of numerical issues. Async-

optimizers (ACProp, AdaShift) converge to optimal value, but large delay step n

in AdaShift could cause non-convergence. 63

4.6 Area of convergence for the problem in Eq. equation 4.8. The numerical experi-

ment is performed under the same setting as in Fig. 4.4.Our results experimentally

validated the claim that compared with async-uncenter (AdaShift), async-center

(ACProp) has a larger convergence area in the hyper-parameter space. 65

xii

4.7 Trajectories for problem defined by Eq. equation 4.8. Note that the optimal point

is x∗ = 0. 66

4.8 Value of uncentered second momentum vt and centered momentum st for prob-

lem equation 4.8. 66

4.9 From left to right: (a) Mean value of denominator for a 2-layer MLP on MNIST

dataset. (b) Training loss of different optimizers for the 2-layer MLP model. (c)

Performance of AdaShift for VGG-11 on CIFAR10 varying with learning rate

ranging from 1e-1 to 1e-5, we plot the performance of ACProp with learning rate

1e-3 as reference. Missing lines are because their accuracy are below display

threshold. All methods decay learning rate by a factor of 10 at 150th epoch. (d)

Performance of AMSGrad for VGG-11 on CIFAR10 varying with learning rate

under the same setting in (c). 70

4.10 Test accuracy (mean± std) on CIFAR10 datset. Left to right: VGG-11, ResNet-

34, DenseNet-121. 71

4.11 Test accuracy (%) of VGG network on CIFAR10 under different hyper-parameters.

We tested learning rate in {10−1, 10−2, 10−3, 10−4} and ϵ ∈ {10−5, ..., 10−9}. . 71

4.12 The reward (higher is better) curve of a DQN-network on the four-rooms problem.

We report the mean and standard deviation across 10 independent runs. 71

4.13 Behavior of St and gt in ACProp of multiple periods for problem (1). Note

that as k →∞, the behavior of ACProp is periodic. 91

4.14 Behavior of St and gt in ACProp of one period for problem (1). 92

4.15 Value of s+

s−
− v+

v−
when β1 = 0.2 . 95

4.16 Value of s+

s−
− v+

v−
when β1 = 0.9 . 95

4.17 Numerical experiments on problem (1) with β1 = 0.5 96

4.18 Numerical experiments on problem (1) with β1 = 0.5 96

4.19 Numerical experiments on problem (1) with β1 = 0.9 96

xiii

4.20 Numerical experiments on problem (43) with β1 = 0.85 97

4.21 Numerical experiments on problem (43) with β1 = 0.9 97

4.22 Numerical experiments on problem (43) with β1 = 0.95 97

4.24 The error between numerical sum for
∑N

i=1
1
iη

and the analytical form. . . 103

5.1 Consider original loss f (solid line), perturbed loss fp ≜ max||δ||≤ρ f(w+

δ) (dashed line), and surrogate gap h(w) ≜ fp(w) − f(w). Intuitively,

fp is approximately a max-pooled version of f with a pooling kernel of

width 2ρ, and SAM minimizes fp. From left to right are the local minima

centered at w1, w2, w3, and the valleys become flatter. Since fp(w1) =

fp(w3) < fp(w2), SAM prefers w1 and w3 to w2. However, a low fp could

appear in both sharp (w1) and flat (w3) minima, so fp might disagree with

sharpness. On the contrary, a smaller surrogate gap h indicates a flatter

loss surface (Lemma 5.3.0.3). From w1 to w3, the loss surface is flatter,

and h is smaller. 109

5.2 Illustration of GSAM. 114

5.3 Consider the loss surface with a few sharp local minima. Left: Overview

of the procedures of SGD, SAM and GSAM. SGD takes a descent step at

wt using ∇f(wt) (orange), which points to a sharp local minima. SAM

first performs gradient ascent in the direction of ∇f(wt) to reach wadv
t

with a higher loss, followed by descent with gradient∇f(wadv
t) (green) at

the perturbed weight. Based on∇f(wt) and∇f(wadv
t), GSAM updates in

a new direction (red) that points to a flatter region. Right: Trajectories by

different methods. SGD and SAM fall into different sharp local minima,

while GSAM reaches a flat region. A video is in the supplement for better

visualization. 114

xiv

5.4 Influence of ρ and α on the training of ViT-B/32. Left: Top-1 accuracy

on ImageNet. Middle: Estimation of the dominant eigenvalues from the

surrogate gap, lnσmax ≈ ln(2h/ρ2). Right: Dominant eigenvalues of the

Hessian calculated via the power iteration. Middle and right figures match

in the trend of curves, validating that the surrogate gap can be viewed as a

proxy of the dominant eigenvalue of Hessian. 118

5.5 Top-1 accuracy of Mixer-S/32 trained with different methods. “+ascent”

represents applying the ascent step in Algo. 16 to an optimizer. Note that

our GSAM is described as SAM+ascent(=GSAM) for consistency. 120

5.6 Top-1 accuracy of ViT-B/32 for the additional studies (Section 5.6.4).

Left: from left to right are performances under different data augmen-

tations (details in Appendix ??) , where vanilla method is trained for 2×

the epochs. Middle: performance with different base optimizers. Right:

Comparison between min(fp, h) and min(f, h). 121

6.1 Toy example of dynamic causal modeling with 3 nodes (labeled 1 to 3). u is a 1-D

stimulation signal, so n = 1, p = 3. A,B,C are defined as in Eq. 6.1. For sim-

plicity, though A is a 3×3 matrix, we assume only three elements A1,3, A3,2, A2,1

are non-zero. 140

6.2 Left: illustration of the shooting method. Right: illustration of the multiple-

shooting method. Blue dots represent the guess of state at split time ti. 142

xv

6.3 Results for the toy example of a linear dynamical system in Fig. 6.1. Left: error

in estimated value of connection A1,3, A3,2, A2,1, other parameters are set as 0 in

simulation. Right: from top to bottom are the results for node 1, 2, 3 respectively.

For each node, we plot the observation and estimated curve from MSA and EM

methods. Note that the estimated curve is generated by integration of the ODE

under estimated parameters with only the initial condition known, not smoothing

of noisy observation. 148

6.4 Results for the L-V model. 151

6.5 Results for the modified L-V model. 151

6.6 Compare the fitting loss of ACA and Adjoint method in fitting of DCM.

Both curves use the AdaBelief optimizer. 153

6.7 Compare the fitting loss with different optimizers in fitting of DCM. Both

curves use ACA for gradient estimation. 154

6.8 An example of MSA for one subject in task fMRI. Left: effective connectome

during task 1. Middle: effective connectome during task 2. Right: top and bot-

tom represents the effective connectome for task 1 and 2 respectively. Blue and

red edges represent positive and negative connections respectively. Only top 5%

strongest connections are visualized. 155

6.9 An example of Dynamic Functional Connectome for one subject in task fMRI.

Left: functional connectome during task 1. Middle: functional connectome dur-

ing task 2. Right: top and bottom represents the functional connectome for task

1 and 2 respectively. Blue and red edges represent positive and negative connec-

tions respectively. Only top 5% strongest connections are visualized. 155

6.10 FC edges that are significantly different between ASD and control groups. 156

6.11 EC edges that are significantly different between ASD and control groups. 156

6.12 Classification results on task fMRI data 157

xvi

6.13 Classification results on resting-state fMRI data 157

6.14 Classification results on task fMRI data, using EC and FC as input. 158

6.15 Classification results on resting-state fMRI data, using EC and FC as input. 159

6.16 Dominant eigenvalue of the Hessian of a trained network across 10-fold

cross validation for task fMRI data. 159

6.17 Dominant eigenvalue of the Hessian of a trained network across 10-fold

cross validation for resting-state fMRI data. 160

xvii

List of Tables

3.1 Comparison between different methods for gradient estimation in continuous

case. MALI achieves reverse accuracy, constant memory w.r.t number of solver

steps in integration, shallow computation graph and low computation cost. . . . 27

3.2 Top-1 test accuracy of Neural ODE and ResNet on ImageNet. Neural ODE is

trained with MALI, and ResNet is trained as the original model; Neural ODE is

tested using different solvers without retraining. 28

3.3 Top-1 accuracy under FGSM attack. ϵ is the perturbation amplitude. For Neural

ODE models, row names represent the solvers to derive the gradient for attack,

and column names represent solvers for inference on the perturbed image. . . . 28

3.4 Test MSE (×0.01) on Mujoco dataset (lower is better). Results with superscripts

correspond to literature in the footnote. 31

3.5 Test ACC on Speech Command Dataset . 31

3.6 Bits per dim (BPD) of generative models, lower is better. Results marked with

superscript numbers correspond to literature in the footnote. 31

4.1 Comparison of optimizers in various cases in Fig. 4.1. “S” and “L” repre-

sent “small” and “large” stepsize, respectively. |∆θt|ideal is the stepsize of

an ideal optimizer. Note that only AdaBelief matches the behaviour of an

ideal optimizer in all three cases. 52

xviii

4.2 Top-1 accuracy of ResNet18 on ImageNet. ⋄ is reported in PyTorch Doc-

umentation, † is reported in [20], ∗ is reported in [88]. 71

4.3 BLEU score (higher is better) on machine translation with Transformer . 72

4.4 FID (lower is better) for GANs . 72

4.5 Performance comparison between AVAGrad and ACProp. ↑ (↓) represents

metrics that upper (lower) is better. ⋆ are reported in the AVAGrad paper

[141] . 72

5.1 Top-1 Accuracy (%) on ImageNet datasets for ResNets, ViTs and MLP-

Mixers trained with Vanilla SGD or AdamW, SAM, and GSAM optimiz-

ers. 117

5.2 Results (%) of GSAM and min(fp + λh) on ViT-B/32 120

5.3 Transfer learning results (top-1 accuracy, %) 120

6.1 Mean squared error (×10−3, lower is better) in estimation of parameters for a

linear dynamical system with different number of nodes. “OOM” represents “out

of memory”. 151

6.2 Classification results on task-fMRI data using FC with different window

sizes. 160

6.3 Classification results for GSAM with different α values. 160

xix

Chapter 1

Introduction

1.1 Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that changes both

structure and function of the brain, and affects both social behavior and mental health

[107]. The core signs of ASD can be classified into two categories: persistent deficits in

social communication and interaction, and persistent and repetitive patterns of behavior

and interests [89]. The first sign include symptoms such as abnormal social approaches,

deficits in non-verbal communications and difficulties in understanding relationships. The

second sign include symptoms such as simple motor stereotypes and insistence on same-

ness. According to the data by the Center of Disease Control and Prevention (CDC), the

prevalence of ASD in the United States has risen from 1 out of 150 in the year 2000, to

1 out of 44 in the year 2018. Despite the prevalence and severeness of ASD, there are no

effective treatments for the core signs of ASD. Therefore, it’s crucial to identify the cause

and develop reliable identification methods for ASD [119, 40].

1

1.2 Introduction to fMRI

ASD is typically diagnosed with behavioral tests, and recently functional magnetic reso-

nance imaging (fMRI) has been applied to analyze the cause of ASD [34]. fMRI measures

brain activity by detecting changes associated with blood flow [62]. Specifically, the pri-

mary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast [17], which

is related to neural activity and reflects the changes in regional cerebral blood flow, vol-

ume and oxygen level. fMRI has a wide range of translational applications [95]. fMRI

has been applied together with MRI to guide neurosurgery via the functional-anatomical

localization [2]. Intraoperative fMRI has been applied to monitor the brain simulation for

Parkinson’s disease [55]. Diffusion fMRI has been applied to identify drug action [38],

the pre-symptomatic diagnosis of disease such as Alzheimer’s disease [1], Huntinton’s

disease [116], schizophrenia [102] and ASD [30]. In this thesis, we mainly focus on the

application of fMRI in early diagnosis of ASD.

fMRI can be broadly categorized into resting-state fMRI and task fMRI. Resting-state

fMRI is acquired when the subject is scanned under no stimuli. resting-state fMRI has

been applied in large-scale projects such as the Human Connectome Project (HCP) [157]

and the ABIDE Project [34]. Most resting-state fMRI image are acquired with a spatial

resolution of 1mm to 2mm at a time resolution of 1s to 2s between frames. Task-fMRI is

acquired when the subject is performing certain tasks [6], such as the Monetary Incentive

Delay Task [76], the Stop-Signal Task [80] and the Emotional N-back Task [11]. The pur-

pose of task fMRI is to correlate different brain activity patterns with tasks, for example,

active regions during a social-related task might be associated with neurodevelopmental

diseases such as ASD.

2

Figure 1.1: A toy model with directional edge among nodes.

1.3 Functional connectome analysis of fMRI

Researchers have studied the fMRI data from the perspectives of time-series analysis [40],

activation pattern [33] and connectome among different brain regions [16]. Connectome

analysis in fMRI aims to elucidate neural connections in the brain and can be generally

categorized into two types: the functional connectome (FC) [156] and the effective con-

nectome (EC) [43]. FC typically calculates the correlation between time-series of differ-

ent regions-of-interest (ROIs) in the brain, which is typically robust and easy to compute;

however, FC is descriptive and does not reveal the underlying dynamics. FC typically

calculates the “static” connectome using the entire time-series. The recently proposed

dynamic functional connectome (dFC) [122] calculates the connectome for the sliding-

window partition of time-series. Studies show that dFC can capture the change of brain

connectome varying with tasks during scan [50].

Despite the wide application of FC (and dFC), FC has an inherent drawback: the edge

3

estimated from FC is forced to be symmetric. As shown in Fig. 1.1, we consider a 3-

node system, where A(t) is the driving node that proactively evolves with time, B(t) and

C(t) just follow A(t). Due to the symmetry of FC, the edge from A to B is the same as

the edge from B to A (e.g. Correlation(A,B) = Correlation(B,A)), hence FC can

not tell whether A or B is the driving node. Furthermore, in this simple example, we

have Correlation(B,C) ̸= 0 even if node B and node C do not have direct interaction.

In the next section, we introduce the Dynamic Causal Modeling (DCM), which models

the numerical and directional interactions among nodes, hence can overcome the inherent

limitations of FC.

1.4 Effective connectome and dynamic causal modeling

The effective connectome (EC) has a underlying model, which describes the directional

interactions among nodes with a system of ordinary differential equations. Because the

underlying dynamical system is directional, EC overcomes the disadvantages caused by

the symmetry limitations with FC. Therefore, EC is a model-driven method that aims to

reveal the underlying dynamics of the system.

EC is typically estimated from the Dynamic Causal Modeling (DCM) [43], which

models the directed influence between ROIs, and is widely used in analysis of EEG [73]

and fMRI [142]. DCM is typically a Bayesian model comparison procedure which com-

pares the observation with a generative model, and the underlying model is often assumed

to be a system of ordinary differential equations (ODEs). Although the DCM can model

both linear and non-linear models in theory, in practice DCM is often restricted to low-

dimensional linear ODEs due to computation complexity.

Parameter estimation in DCM is often performed by the Expectation-Maximization

(EM) Algorithm [103]. However, conventional DCM with EM typically requires O(n2)

4

memory where n is the number of parameters to estimate, and the exact algorithm needs to

be re-derived for different models, which limits the application of DCM to high-dimensional

non-linear dynamical systems. To solve these problems, we aim to propose a generic

framework for parameter estimation in high-dimensional non-linear dynamical systems.

1.5 Summary of contributions

We propose the Model-Driven Learning Framework (MDL) in Chapter 2, which is a

generic framework for parameter estimation in high-dimensional non-linear dynamical

systems. MDL iteratively performs three steps iteratively: 1) forward simulation according

to the model, 2) gradient estimation of parameters for continuous-time dynamical systems,

3) update of parameters based on gradient. Step 1) is easy and can be performed by any

existing numerical ODE solvers (e.g. the Runge-Kutta family) [18]. We develop a series

of methods to for step 2) and 3), as summarized below.

Step 2). Gradient descent for explicit models and discrete-layer neural networks is

easy; however, for implicit models whose forward-pass is defined in an integration form

(e.g. solution to ODE), derivation of the gradient requires much effort. In step 2) we

consider both the theory and numerical implementation to derive the gradient in an ODE.

In Chapter 3, we study the numerical issues with current numerical methods for gradient

estimation in ODE, and identify that the mismatch between forward-time and reverse-

time trajectories (caused by inevitable errors in numerical integration) causes the error in

gradient estimation. We propose a series of methods to achieve accuracy at a constant

memory cost, and validate the proposed methods in both benchmark deep learning tasks

and DCM for fMRI data.

For step 3), we propose AdaBelief in Chapter 4, a first-order gradient optimizer that

achieves fast convergence, good generalization and training stability. We demonstrate that

5

AdaBelief consistently improves performance for deep learning models, and accelerates

the fitting of DCM at a twice faster speed compared to existing methods such as Adam.

We further demonstrate that an asynchronous version of AdaBelief achieves a provably

weaker convergence condition and a faster convergence rate.

In Chapter 5, we propose a generic training scheme to improve the generalization

performance. Specifically, we define an equivalent measure of sharpness of the loss land-

scape, and jointly minimize the training loss and the sharpness of loss landscape. Since

a flat loss surface is typically associated with a better generalization, out training scheme

searches for a solution with both a low training loss and a good generalization. We validate

our proposed method in both deep learning task, as well as ASD classification tasks with

both resting-state fMRI and task fMRI.

In Chapter 6, we apply the proposed MDL to estimate whole-brain EC for fMRI, and

performed group comparison to identify FC and EC edges that are related to ASD. Next,

we apply the estimated EC for the identification of ASD. Specifically, we conducted exper-

iments with both resting-state fMRI and task fMRI data, and compare the predictive power

of FC and EC in both cases. Furthermore, we apply the method in Chapter 5 to further

improve the generalization performance, which significantly improves the classification

performance.

6

Chapter 2

Overview of Dynamic Causal Modeling
and Model-Driven Learning Framework

2.1 Dynamic Causal Modeling

The Effective Connectome is typically estimated from the dynamical causal modeling

(DCM) [43]. Suppose there are p nodes (ROIs) and denote the observed fMRI time-series

signal as s(t), which is a p-dimensional vector at each time t. Denote the hidden neuronal

state as z(t); then z(t) and s(t) are p-dimensional vectors for each time point t. Denote the

hemodynamic response function (HRF) [87] as h(t), and denote the external stimulation

as u(t), which is an n-dimensional vector for each t. The model is:

f
(
[z(t) D(t)]

)
=

 dz(t)/dt
dD(t)/dt

 =

D(t)z(t) + Cu(t)

Bu(t)

 , D(0) = A (2.1)

s(t) =
(
z(t) + ϵ(t)

)
∗ h(t), z̃(t) = z(t) + ϵ(t) = Deconv

(
s(t), h(t)

)
(2.2)

where ϵ(t) is the noise at time t, which is assumed to follow an independent Gaussian

distribution, and ∗ represents convolution operation. D(t) is a p × p matrix for each

t, representing the effective connectome between nodes. A is a matrix of shape p × p,

7

Figure 2.1: Scheme of the Dynamic Causal Modeling (DCM). For simplicity we only
consider a 3-node system. For whole-brain fMRI DCM, the number of nodes equals the
number of parcellated regions (e.g. 100 to 200).

representing the interaction between ROIs. B is a tensor of shape p× p× n, representing

the effect of stimulation on the effective connectome. C is a matrix of shape p × n,

representing the effect of stimulation on neuronal state. An example of n = 1, p = 3 is

shown in Fig. 2.1. The task is to estimate parameters A,B,C (and infer D(t)) from noisy

observation s(t). Eq. 6.1 assumes the connection among nodes vary with time, which is

a common assumption for fMRI data acquired under different tasks during the scan. For

resting-state fMRI, we can assume D(t) is a constant, so the ODE on dD(t)/dt can be

removed from the model.

2.2 Model-Driven Learning Framework

We propose the Model-Driven Learning Framework (MDL) for parameter estimation in

generic non-linear dynamical systems. As shown in Algo. 1, MDL iteratively performs

three steps:

1) the forward-pass. For discrete layer models or explicit models the forward-pass is

easy; for dynamical systems defined by ODEs, the forward-pass in the integration using

any existing ODE solvers such as the RUnge-Kutta methods [18].

8

2) the backward pass. For explicit models or discrete-layer neural networks, the

backward-pass can be performed by layer-wise back-propagation [134]; for dynamical

systems, the analytical result of gradient is defined by the adjoint state equation [121],

but in practice we need to take numerical implementations very carefully as discussed in

Chapter 3.

3) Update of parameters based on gradient. Gradient based optimizers has been an

ancient yet active topic [132], for deep learning specifically, the widely used Stochastic

Gradient Descent (SGD) [15] typically generalizes well but converges slower compared to

the adaptive optimizers such as Adam [74]. In Chapter 5, we propose a new optimizer that

simultaneously achieves fast convergence and generalization, and show that our proposed

optimizer significantly accelerates the fitting of MDL.

Algorithm 1: Model-Driven Learning Framework
While not converge

1. Forward-pass

Under current parameter θ, simulate the system (e.g. integrate ODE).

2. Backward-pass

Calculate loss, derive the gradient w.r.t. parameters.

3. Update

Update parameters by gradient.

9

Chapter 3

Numerical methods for gradient
estimation in continuous-time models

3.1 Introduction

Recent research builds the connection between continuous models and neural networks.

The theory of dynamical systems has been applied to analyze the properties of neural

networks or guide the design of networks [164, 137, 91]. In these works, a residual block

[53] is typically viewed as a one-step Euler discretization of an ODE; instead of directly

analyzing the discretized neural network, it might be easier to analyze the ODE.

Another direction is the neural ordinary differential equation (Neural ODE) [21], which

takes a continuous depth instead of discretized depth. The dynamics of a Neural ODE is

typically approximated by numerical integration with adaptive ODE solvers. Neural ODEs

have been applied in irregularly sampled time-series [131], free-form continuous genera-

tive models [48, 41], mean-field games [138], stochastic differential equations [82] and

physically informed modeling [140, 176].

Though the Neural ODE has been widely applied in practice, how to train it is not

extensively studied. The naive method directly backpropagates through an ODE solver, but

10

tracking a continuous trajectory requires a huge memory. Chen et al. [21] proposed to use

the adjoint method to determine the gradient in continuous cases, which achieves constant

memory cost w.r.t integration time; however, we show that the adjoint method suffers

from numerical errors due to the inaccuracy in reverse-time trajectory. We propose the

adaptive checkpoint adjoint (ACA) method to achieve accuracy in gradient estimation at a

much smaller memory cost compared to the naive method, yet the memory consumption

of ACA still grows linearly with integration time. Due to the non-constant memory cost,

neither ACA nor naive method are suitable for large scale datasets (e.g. ImageNet) or

high-dimensional Neural ODEs (e.g. FFJORD [48]).

In this project, we further propose the Memory-efficient Asynchronous Leapfrog In-

tegrator (MALI) to achieve advantages of both the adjoint method and ACA: constant

memory cost w.r.t integration time and accuracy in reverse-time trajectory. MALI is based

on the asynchronous leapfrog (ALF) integrator [105]. With the ALF integrator, each nu-

merical step forward in time is reversible. Therefore, with MALI, we delete the trajectory

and only keep the end-time states, hence achieve constant memory cost w.r.t integration

time; using the reversibility, we can accurately reconstruct the trajectory from the end-time

value, hence achieve accuracy in gradient. Our contributions are:

1. We theoretically analyze the numerical error with the adjoint and naive methods, and

propose ACA to accurately estimate gradients of NODEs.

2. We propose a new method (MALI) to solve Neural ODEs, which achieves constant

memory cost w.r.t number of solver steps in integration and accuracy in gradient esti-

mation. We provide theoretical analysis.

3. We validate our method with extensive experiments: (a) for image classification tasks,

ACA and MALI enable a Neural ODE to achieve better accuracy than a well-tuned

ResNet with the same number of parameters; to our knowledge, MALI is the first

11

method to enable training of Neural ODEs on a large-scale dataset such as ImageNet,

while existing methods fail due to either heavy memory burden or inaccuracy. (b) In

time-series modeling, ACA and MALI achieve comparable or better results than other

methods. (c) For generative modeling, a FFJORD model trained with MALI achieves

new state-of-the-art results on MNIST and Cifar10. (d) For DCM modeling in fMRI

analysis, our method achieves significantly lower fitting loss.

3.2 Preliminaries

3.2.1 Numerical Integration Methods

An ordinary differential equation (ODE) typically takes the form

dz(t)

dt
= fθ(t, z(t)) s.t. z(t0) = x, t ∈ [t0, T], Loss = L(z(T), y) (3.1)

where z(t) is the hidden state evolving with time, T is the end time, t0 is the start time

(typically 0), x is the initial state. The derivative of z(t) w.r.t t is defined by a function

f , and f is defined as a sequence of layers parameterized by θ. The loss function is

L(z(T), y), where y is the target variable. Eq. 3.1 is called the initial value problem (IVP)

because only z(t0) is specified.

12

Algorithm 2: Numerical Integration
Input initial state x, start time t0, end time T , error tolerance etol, initial stepsize

h.

Initialize z(0) = x, t = t0

While t < T

error est =∞

While error est > etol

h← h×DecayFactor

ẑ, error est = ψh(t, z)

If error est < etol

h← h× IncreaseFactor

t← t+ h, z ← ẑ

Notations We summarize the notations following Zhuang et al. [180].

• zi(ti)/z(τi): hidden state in forward/reverse time trajectory at time ti/τi.

• Φt
ti
(zi): the oracle solution of the ODE at time t, starting from (ti, zi). Black dashed

curve in Fig. 3.1 and Fig. 3.2. Φ is called the flow map.

• ψhi
(ti, zi): the numerical solution at time ti + hi, starting from (ti, zi). Blue solid line

in Fig. 3.1.

• Lhi
(ti, zi): local truncation error between numerical approximation and oracle solution,

where

Lhi
(ti, zi) = ψhi

(ti, zi)− Φti+hi
ti (zi) (3.2)

• Ri: the local error Lhi
(ti, zi) propagated to end time.

Ri = ΦT
ti+1

(zi+1)− ΦT
ti
(zi) (3.3)

• Nf , Nz: Nf is the number of layers in f in Eq. 3.1, Nz is the dimension of z.

• Nt/Nr: number of discretized points (outer iterations in Algo. 2) in forward / reverse

13

integration.

• m: average number of inner iterations in Algo. 2 to find an acceptable stepsize.

Numerical Integration The algorithm for general adaptive-stepsize numerical ODE

solvers is summarized in Algo. 2 [161]. The solver repeatedly advances in time by a

step, which is the outer loop in Algo. 2 (blue curve in Fig. 3.1). For each step, the solver

decreases the stepsize until the estimate of error is lower than the tolerance, which is the

inner loop in Algo. 2 (green curve in Fig. 3.1). For fixed-stepsize solvers, the inner loop is

replaced with a single evaluation of ψh(t, z) using predefined stepsize h. Different meth-

ods typically use different ψ, for example different orders of the Runge-Kutta method

[135].

3.2.2 Analytical form of gradient in continuous case

We first briefly introduce the analytical form of the gradient in the continuous case, then

we compare different numerical implementations in the literature to estimate the gradient.

The analytical form of the gradient in the continuous case is

dL

dθ
= −

∫ 0

T

a(t)⊤
∂f(z(t), t, θ)

∂θ
dt (3.4)

da(t)

dt
+
(∂f(z(t), t, θ)

∂z(t)

)⊤
a(t) = 0 ∀t ∈ (0, T), a(T) =

∂L

∂z(T)
(3.5)

where a(t) is the “adjoint state”. Detailed proof is given in [121]. In the next section we

compare different numerical implementations of this analytical form.

14

Figure 3.1: Illustration of numerical solver in
forward-pass. For adaptive solvers, for each step
forward-in-time, the stepsize is recursively ad-
justed until the estimated error is below prede-
fined tolerance; the search process is represented
by green curve, and the accepted step (ignore the
search process) is represented by blue curve.

Adjoint

MALI/ACA

Naive

Figure 3.2: In backward-pass, the adjoint
method reconstructs trajectory as a sepa-
rate IVP. Naive, ACA and MALI track the
forward-time trajectory, hence are accurate.
ACA and MALI backpropagate through the
accepted step, while naive method backprop-
agates through the search process hence has
deeper computation graphs.

3.3 Numerical implementations in the literature

We compare different numerical implementations of the analytical form in this section.

The forward-pass and backward-pass of different methods are demonstrated in Fig. 3.1

and Fig. 3.2 respectively. Forward-pass is similar for different methods. The comparison

of backward-pass among different methods are summarized in Table. 3.1. We explain

methods in the literature below.

Naive method The naive method saves all of the computation graph (including search

for optimal stepsize, green curve in Fig. 3.2) in memory, and backpropagates through it.

Hence the memory cost isNzNf×Nt×m and depth of computation graph areNf×Nt×m,

and the computation is doubled considering both forward and backward passes. Besides

the large memory and computation, the deep computation graph might cause vanishing or

exploding gradient [115].

Adjoint method Note that we use “adjoint state equation” to refer to the analyti-

cal form in Eq. 6.11 and 6.10, while we use “adjoint method” to refer to the numerical

implementation by Chen et al. [21]. As in Fig. 3.1 and 3.2, the adjoint method forgets

15

forward-time trajectory (blue curve) to achieve memory cost NzNf which is constant to

integration time; it takes the end-time state (derived from forward-time integration) as the

initial state, and solves a separate Initial Value Problem (IVP, red curve) in reverse-time.

3.3.1 Adjoint method suffers from numerical errors

Theorem 3.3.1 (Picard-Lindelöf Theorem). [86] Consider the initial value problem (IVP):

dz

dt
= f(t, z), z(t = 0) = z0

Suppose in a region R = [t0 − a, t0 + a] × [z0 − b, z0 + b], f is bounded (||f || ≤ M),

uniformly continuous in z with Lipschitz constant L, and continuous in t; then there exists

a unique solution for the IVP, valid on the region where a < min{ b
M
, 1
L
}.

The Picard-Lindelöf Theorem states a sufficient condition for existence and uniqueness

for an IVP. Okamura [113] stated a necessary and sufficient condition. Without going

deeper, we emphasize that Theorem 3.3.1 has a validity region, outside this region the

theorem may not hold.

It is trivial to check NODE satisfies the above conditions; see the proof in Appendix B.

For simplicity, we assume Theorem 3.3.1 always holds on t ∈ [0, T]. (If [0, T] is outside

the region of validity, the adjoint method cannot recover the forward-time trajectory, while

the naive method and ACA record the trajectory in memory with “checkpoint”.)

Recall Φt
ti
(zi) is the flow map, which is the oracle solution starting from (ti, zi). Define

the variational flow as:

DΦt
t0
=
dΦt

t0
(z0)

dz0
(3.6)

Consider an ODE solver of order p. The local truncation error Lh(ti, zi) is of order

16

O(hp+1) and can be written as

Lh(ti, zi) = ψh(ti, zi)− Φti+h
ti (zi) = hp+1l(ti, zi) +O(hp+2) (3.7)

where l is some function of O(1). Denote the global error as G(T) at time T , then it

satisfies:

G(T) = zNt − ΦT
t0
(z0) =

Nt−1∑
k=0

Rk (3.8)

Eq. 3.8 is explained by Fig. 3.1: global error is the sum of all local errors propagated

to the end time. Rk is the propagated local error defined by Eq. 3.3. For simplicity of

analysis, we consider constant stepsize solvers with sufficiently small stepsize h, and let

Nt = Nr = N .

Theorem 3.3.2. If the conditions of the Picard-Lindelöf theorem are satisfied, then for an

ODE solver of order p, the global error at time T is:

G(t0 → T) =
N−1∑
k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk)

]
+O(hp+1) (3.9)

and the error of the reconstructed initial value by the adjoint method is:

G(t0 → T → t0) = G(t0 → T) +G(T → t0)

=
N−1∑
k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk) + (−hk)p+1DΦtk

T (zk)l(tk, zk)
]
+O(hp+1)

(3.10)

where G(t0 → T → t0) represents the global error of integration from t0 to T , then

from T to t0. Terms for reverse-time trajectory are overlined (l, z) to differentiate from

forward-time trajectory.

Proofs are provided in Sec. 3.7. Eq. 3.10 can be divided into two parts. G(t0 →

17

T) corresponds to forward-time error, as shown in Fig. 3.1; G(T → t0) corresponds to

reverse-time error, as shown in Fig. 3.2. When h is small, assume:

zk = zk +O(hp) (3.11)

l(tk, zk) = l(tk, zk) +O(hp) (3.12)

DΦtk
T (zk) = DΦtk

T (zk) +O(hp) (3.13)

Note that when existence and uniqueness are satisfied, Φ defines a bijective mapping be-

tween z(tk) and z(T), hence

DΦtk
T = (DΦT

tk
)−1 (3.14)

Plugging Eq. 3.11-3.14 into Eq. 3.10,

G(t0 → T → t0) =
∑N−1

k=0 h
p+1l(tk, zk)ek +O(hp+1) (3.15)

ek = DΦT
tk
(zk) + (−1)p+1(DΦT

tk
(zk))

−1 (3.16)

Reverse accuracy for all t0 requires ek = 0 for all k. If p is odd, the two terms in Eq. 3.16

are of the same sign; thus, ek cannot be 0. If p is even, ek = 0 requires DΦT
tk
(zk) = I ,

which requires NODE to be an identity function; in this case the model learns nothing.

Hence, the adjoint method has numerical errors caused by truncation errors of numerical

ODE solvers.

Theorem 3.3.3. For an ODE solver of order p, the error of the reconstructed initial value

by the adjoint method is
∑N−1

k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk) + (−hk)p+1DΦtk

T (zk)l(tk, zk)
]
+

O(hp+1), where Φ is the ideal solution, DΦ is the Jacobian of Φ, l(t, z) and l(t, z) are the

local error in forward-time and reverse-time integration respectively.

18

Proofs are provided in Sec. 3.7. To summarize, due to inevitable errors with numerical

ODE solvers, the reverse-time trajectory (red curve, z(τ)) cannot match the forward-time

trajectory (blue curve, z(t)) accurately. The error in z propagates to dL
dθ

by Eq. 6.11, hence

affects the accuracy in gradient estimation.

3.3.2 Naive Method has Deep Computation Graph

Note that for each step advance in time, there are on average m steps to find an acceptable

stepsize, as in Algo. 2. We give an example below:

out1, h1, error1 = ψ(t, h0, z) (3.17)

out2, h2, error2 = ψ(t, h1, z) (3.18)

... (3.19)

outm, hm, errorm = ψ(t, hm, z) (3.20)

Suppose it takes m steps for find an acceptable stepsize such that errorm < tolerance.

The naive method treats hm as a recursive function of h0, and back-propagates through all

m steps in the computation graph; while ACA takes hm as a constant, and back-propagates

only through the final accepted step (Eq. 3.20); therefore, the depth of computation graph

is O(Nf ×Nt) for ACA, and O(Nf ×Nt×m) for the naive method. Note that the output

of the forward pass is the same for both methods; the backward pass is different.

The very deep computation graph in naive method takes more memory. More impor-

tantly, it might cause vanishing or exploding gradient [115], since there’s no special struc-

ture such as residual connection to deal with the deep structure: specifically, in Eq. 3.17 to

Eq. 3.20, only hi is passed to the next step, and typically in the form hi+1 = hi/error
p
i .

19

3.4 Methods

3.4.1 Adaptive checkpoint adjoint (ACA)

ACA tries to record z(t) to avoid numerical errors, while also controlling memory cost.

ACA supports both adaptive and constant stepsize ODE solvers. ACA is summarized in

Algo. 3. Note that the forward-pass computation is the same as Algo. 2 for all methods

discussed in this chapter.

During the forward-pass, to save memory, ACA deletes redundant computation graphs

to search for the optimal stepsize. Instead, ACA applies the “trajectory checkpoint” strat-

egy, recording the discretization points ti (equivalently, the accepted stepsize hi = ti+1−ti)

and values zi (not computation graph ψhi
(ti, zi)) at a memory cost O(Nt). Considering

O(Nf) memory cost for one evaluation of ψ, the total memory cost is O(Nf +Nt).

During the backward-pass, going reverse-time, ACA performs the forward-pass and

backward-pass locally from ti to ti+1, and updates λ and dL
dθ

. Computations are evaluated

at saved discretization points {t0, ...tNt}, using saved values {z0, ..., zNt}, to guarantee

accuracy between forward-time and reverse-time trajectory. We only need to search for

optimal stepsize during the forward-pass, with m inner iterations in Algo. 2; during the

backward-pass we reuse saved stepsizes, so the total computation cost is O(Nf × Nt ×

(m+ 1)).

3.4.2 Asynchronous Leapfrog Integrator

In this section we give a brief introduction to the asynchronous leapfrog (ALF) method

[105], and we provide theoretical analysis which is missing in Mutze [105]. For general

first-order ODEs in the form of Eq. 3.1, the tuple (z, t) is sufficient for most ODE solvers

to take a step numerically. For ALF, the required tuple is (z, v, t), where v is the “approx-

20

Algorithm 3: ACA: Record z(t) with Minimal Memory
Forward (f, T, z0, tolerance):

t = 0, z = z0
state0 = f.state dict(), cache.save(state0)
Select initial step size h = h0 (adaptively with adaptive step-size solver).
time points = empty list()
z values = empty list()
While t < T :

state = f.state dict(), accept step = False
While Not accept step:

f.load state dict(state)
with grad disabled:

z new, error estimate = ψ(f, z, t, h)
If error estimate < tolerance:

accept step = True
z = z new, t = t+ h,
z values.append(z), time points.append(t)

else:
reduce stepsize h according to error estimate
delete error estimate local computation graph

cache.save(time points, z values)
return z, cache

Backward (f, T, tolerance, cache, ∂J
∂z(T)

):
Initialize λ = − ∂J

∂z(T)
, ∂L

∂θ
= 0

{z0, z1, z2, ...zN−1, zN} = cache.z values
{t0, t1, t2, ...tN−1, tN} = cache.time points
For ti in {tN , tN−1, ..., t1, t0} :

Local forward ẑi = ψ(f, zi−1, ti−1, hi = ti − ti−1)
Local backward

∂L
∂θ
← ∂L

∂θ
− λ⊤ ∂ẑi

∂θ

λ← λ⊤ ∂ẑi
∂zi−1

delete local computation graph
return ∂L

∂θ
, λ

21

Figure 3.3: With ALF method, given any tuple (zj , vj , tj) and discretized time points {ti}Nt
i=1, we

can reconstruct the entire trajectory accurately due to the reversibility of ALF.

imated derivative”. Most numerical ODE solvers such as the Runge-Kutta method [135]

track state z evolving with time, while ALF tracks the “augmented state” (z, v). We ex-

plain the details of ALF as below.

Algorithm 4: Forward of ψ in

ALF
Input (zin, vin, sin, h) where sin is

current time, zin and vin are

correponding values at time sin, h

is stepsize.

Forward s1 = sin + h/2

k1 = zin + vin × h/2

u1 = f(k1, s1)

vout = vin + 2(u1 − vin)

zout = k1 + vout × h/2

sout = s1 + h/2

Output (zout, vout, sout, h)

Algorithm 5: ψ−1 (Inverse of ψ)

in ALF
Input (zout, vout, sout, h) where sout

is current time, zout and vout are

corresponding values at sout, h is

stepsize.

Inverse s1 = sout − h/2

k1 = zout − vout × h/2

u1 = f(k1, s1)

vin = 2u1 − vout

zin = k1 − vin × h/2

sin = s1 − h/2

Output (zin, vin, sin, h)

Procedure of ALF Different ODE solvers have different ψ in Algo. 2, hence we only

summarize ψ for ALF in Algo. 4. Note that for a complete algorithm of integration for

ALF, we need to plug Algo. 4 into Algo. 2. The forward-pass is summarized in Algo. 4.

Given stepsize h, with input (zin, vin, sin), a single step of ALF outputs (zout, vout, sout).

As in Fig. 3.3, given (z0, v0, t0), the numerical forward-time integration calls Algo. 4

22

iteratively:

(zi, vi, ti, hi) = ψ(zi−1, vi−1, ti−1, hi)

s.t. hi = ti − ti−1, i = 1, 2, ...Nt (3.21)

Invertibility of ALF An interesting property of ALF is that ψ defines a bijective

mapping; therefore, we can reconstruct (zin, vin, sin, h) from (zout, vout, sout, h), as demon-

strated in Algo. 5. As in Fig. 3.3, we can reconstruct the entire trajectory given the state

(zj, vj) at time tj , and the discretized time points {t0, ...tNt}. For example, given (zNt , vNt)

and {ti}Nt
i=0, the trajectory for Eq. 3.21 is reconstructed:

(zi−1, vi−1, ti−1, hi) = ψ−1(zi, vi, ti, hi) s.t. hi = ti− ti−1, i = Nt, Nt− 1, ..., 1 (3.22)

In the following sections, we will show the invertibility of ALF is the key to maintain

accuracy at a constant memory cost to train Neural ODEs. Note that “inverse” refers to

reconstructing the input from the output without computing the gradient, hence is different

from “back-propagation”.

Initial value For an initial value problem (IVP) such as Eq. 3.1, typically z0 = z(t0)

is given while v0 is undetermined. We can construct v0 = f(z(t0), t0), so the initial

augmented state is (z0, v0).

Difference from midpoint integrator The midpoint integrator [147] is similar to

Algo. 4, except that it recomputes vin = f(zin, sin) for every step, while ALF directly

uses the input vin. Therefore, the midpoint method does not have an explicit form of

inverse.

Local truncation error Theorem 3.4.1 indicates that the local truncation error of

ALF is of order O(h3); this implies the global error is O(h2). Detailed proof is in Ap-

23

pendix 3.7.4.

Theorem 3.4.1. For a single step in ALF with stepsize h, the local truncation error of z is

O(h3), and the local truncation error of v is O(h2).

A-Stability The ALF solver has a limited stability region, but this can be solved

with damping. The damped ALF replaces the update of vout in Algo. 4 with vout = vin +

2η(u1−vin), where η is the “damping coefficient” between 0 and 1. We have the following

theorem on its numerical stability.

Theorem 3.4.2. For the damped ALF integrator with stepsize h, where σi is the i-th eigen-

value of the Jacobian ∂f
∂z

, then the solver is A-stable if

∣∣∣1 + η(hσi − 1)±
√
η
[
2hσi + η(hσi − 1)2

]∣∣∣ < 1, ∀i

Proof is in Appendix 3.7.5 and 3.7.6. Theorem 3.4.2 implies the following: when η =

1, the damped ALF reduces to ALF, and the stability region is empty; when 0 < η < 1,

the stability region is non-empty. However, stability describes the behaviour when T goes

to infinity; in practice we always use a bounded T and ALF performs well.

3.4.3 Memory-efficient ALF Integrator (MALI) for gradient estima-

tion in continuous-time models

An ideal solver for Neural ODEs should achieve two goals: accuracy in gradient estima-

tion and constant memory cost w.r.t integration time. Adjoint method achieves constant

memory at the cost of inaccuracy, ACA guarantees accuracy but requires a linearly grow-

ing memory cost. We propose a method based on the ALF solver, which to our knowledge

is the first method to achieve the two goals simultaneously.

Procedure of MALI Details of MALI are summarized in Algo. 6. For the forward-pass,

24

Algorithm 6: MALI to acheive accuracy at a constant memory cost w.r.t integra-
tion time

Input Initial state z0, start time t0, end time T
Forward

Apply the numerical integration in Algo. 2, with the ψ function defined by
Algo. 4.

Delete computation graph on the fly, only keep end-time state (zNt , vNt)
Keep accepted discretized time points {ti}Nt

i=0 (ignore process to search for
optimal stepsize)
Backward

Initialize a(T) = ∂L
∂z(T)

by Eq. 6.10, initialize dL
dθ

= 0

For i in {Nt, Nt − 1, ..., 2, 1}:
Reconstruct (zi−1, vi−1) from (zi, vi) by Algo. 5
Local forward (zi, vi, ti, hi) = ψ(zi−1, vi−1, ti−1, hi)

Local backward, get ∂f(zi−1,ti−1,θ)
∂zi−1

and ∂f(zi−1,ti−1,θ)
∂θ

Update a(t) and dL
dθ

by Eq. 6.11 and Eq. 6.10 discretized at time points
ti−1 and ti

Delete local computation graph
Output the adjoint state a(t0) (gradient w.r.t input z0) and parameter

gradient dL
dθ

we only keep the end-time state (zNt , vNt) and the accepted discretized time points (blue

curves in Fig. 3.1 and 3.2). We ignore the search process for optimal stepsize (green curve

in Fig. 3.1 and 3.2), and delete other variables to save memory. During the backward pass,

we can reconstruct the forward-time trajectory as in Eq. 3.22, then calculate the gradient

by numerical discretization of Eq. 6.11 and Eq. 6.10.

Constant memory cost w.r.t number of solver steps in integration We delete the

computation graph and only keep the end-time state to save memory. The memory cost is

Nz(Nf + 1), where NzNf is due to evaluating f(z, t) and is irreducible for all methods.

Compared with the adjoint method, MALI only requires extra Nz memory to record vNt ,

and also has a constant memory cost w.r.t time step Nt. The memory cost is Nz(Nf + 1).

Accuracy Our method guarantees the accuracy of reverse-time trajectory (e.g. blue

curve in Fig. 3.2 matches the blue curve in Fig. 3.1), because ALF is explicitly invertible

for free-form f (see Algo. 5). Therefore, the gradient estimation in MALI is more accurate

25

Figure 3.4: Comparison of error in gradient in Eq. 3.23. (a) error in dL
dz0

. (b) error in dL
dα . (c)

memory cost.

Figure 3.5: Results on Cifar10. From left to right: (1) box plot of test accuracy (first 4 columns
are Neural ODEs, last is ResNet); (2) test accuracy ±std v.s. training epoch for Neural ODE; (3)
test accuracy ±std v.s. training time of 90 epochs for Neural ODE.

compared to the adjoint method.

Computation cost Recall that on average it takes m steps to find an acceptable step-

size, whose error estimate is below tolerance. Therefore, the forward-pass with search

process has computation burden Nz × Nf × Nt ×m. Note that we only reconstruct and

backprop through the accepted step and ignore the search process, hence it takes another

Nz×Nf ×Nt× 2 computation. The overall computation burden is NzNf ×Nt× (m+2)

as in Table 3.1.

Shallow computation graph Similar to ACA, MALI only backpropagates through

the accepted step (blue curve in Fig. 3.2) and ignores the search process (green curve in

Fig. 3.2), hence the depth of computation graph is Nf × Nt. The computation graph of

MALI is much shallower than the naive method, hence is more robust to vanishing and

exploding gradients [115].

Summary The adjoint method suffers from inaccuracy in reverse-time trajectory,

the naive method suffers from exploding or vanishing gradient caused by deep compu-

26

Table 3.1: Comparison between different methods for gradient estimation in continuous case.
MALI achieves reverse accuracy, constant memory w.r.t number of solver steps in integration,
shallow computation graph and low computation cost.

Naive Adjoint ACA MALI
Computation NzNf ×Nt ×m× 2 NzNf × (Nt +Nr)×m NzNf ×Nt × (m+ 1) NzNf ×Nt × (m+ 2)

Memory NzNf ×Nt ×m NzNf Nz(Nf +Nt) Nz(Nf + 1)
Computation graph depth Nf ×Nt ×m Nf ×Nr Nf ×Nt Nf ×Nt

Reverse accuracy ✓ ✗ ✓ ✓

tation graph, and ACA finds a balance but the memory grows linearly with integration

time. MALI achieves accuracy in reverse-time trajectory, constant memory w.r.t integra-

tion time, and a shallow computation graph.

3.5 Experiments

3.5.1 Validation on a toy example

We compare the performance of different methods on a toy example, defined as

L(z(T)) = z(T)2 s.t. z(0) = z0, dz(t)/dt = αz(t) (3.23)

The analytical solution is

z(t) = z0e
αt, L = z20e

2αT , dL/dz0 = 2z0e
2αT , dL/dα = 2Tz20e

2αT (3.24)

We plot the amplitude of error between numerical solution and analytical solution varying

with T (integrated under the same error tolerance, rtol = 10−5, atol = 10−6) in Fig 6.1.

ACA and MALI have similar errors, both outperforming other methods. We also plot

the memory consumption for different methods on a Neural ODE with the same input in

Fig. 6.1. As the error tolerance decreases, the solver evaluates more steps, hence the naive

method and ACA increase memory consumption, while MALI and the adjoint method

27

Table 3.2: Top-1 test accuracy of Neural ODE and ResNet on ImageNet. Neural ODE is trained
with MALI, and ResNet is trained as the original model; Neural ODE is tested using different
solvers without retraining.

Fixed-stepsize solvers of various stepsizes Adaptive-stepsize solver of various tolerances
Stepsize 1 0.5 0.25 0.15 0.1 Tolerance 1.00E+00 1.00E-01 1.00E-02

Neural
ODE

MALI 42.33 66.4 69.59 70.17 69.94 MALI 62.56 69.89 69.87
Euler 21.94 61.25 67.38 68.69 70.02 Heun-Euler 68.48 69.87 69.88
RK2 42.33 69 69.72 70.14 69.92 RK23 50.77 69.89 69.93
RK4 12.6 69.99 69.91 70.21 69.96 Dopri5 52.3 68.58 69.71

ResNet 70.09

Table 3.3: Top-1 accuracy under FGSM attack. ϵ is the perturbation amplitude. For Neural
ODE models, row names represent the solvers to derive the gradient for attack, and column names
represent solvers for inference on the perturbed image.

ϵ = 1/255 ϵ = 2/255
MALI Heun-Euler RK23 Dopri5 MALI Heun-Euler RK23 Dopri5

Neural
ODE

MALI 14.69 14.72 14.77 15.71 10.38 10.46 10.62 10.62
Heun-Euler 14.77 14.75 14.80 15.74 10.63 10.47 10.44 10.49

RK23 14.82 14.77 14.79 15.69 10.78 10.53 10.48 10.56
Dopri5 14.82 14.78 14.79 15.15 10.76 10.49 10.48 10.51

ResNet 13.02 9.57

have a constant memory cost. These results validate our analysis in Sec. 3.4.3 and Ta-

ble 3.1, and shows MALI achieves accuracy at a constant memory cost.

3.5.2 Image recognition with Neural ODE

We validate MALI on image recognition tasks using Cifar10 and ImageNet datasets. We

modify a ResNet18 into its corresponding Neural ODE: the forward function is y = x +

fθ(x) and y = x+
∫ T

0
fθ(z)dt for the residual block and Neural ODE respectively, where

the same fθ is shared. We compare MALI and ACA with the naive method and adjoint

method.

Results on Cifar10 Results of 5 independent runs on Cifar10 are summarized in

Fig. 4.10. MALI achieves comparable accuracy to ACA, and both significantly outperform

the naive and the adjoint method. Furthermore, the training speed of MALI is similar to

ACA, and both are almost two times faster than the adjoint memthod, and three times

faster than the naive method. This validates our analysis on accuracy and computation

burden in Table 3.1.

Accuracy on ImageNet Due to the heavy memory burden caused by large images, the

28

Figure 3.6: Top-1 accuracy on ImageNet validation dataset.

naive method and ACA are unable to train a Neural ODE on ImageNet with 4 GPUs; only

MALI and the adjoint method are feasible due to the constant memory. We also compare

the Neural ODE to a standard ResNet. As shown in Fig. 3.6, the accuracy of the Neural

ODE trained with MALI closely follows ResNet, and significantly outperforms the adjoint

method (top-1 validation: 70% v.s. 63%).

Invariance to discretization scheme A continuous model should be invariant to dis-

cretization schemes (e.g. different types of ODE solvers) as long as the discretization is

sufficiently accurate. We test the Neural ODE using different solvers without re-training;

since ResNet is often viewed as a one-step Euler discretization of an ODE [51], we per-

form similar experiments. As shown in Table 4.2, Neural ODE consistently achieves high

accuracy (∼70%), while ResNet drops to random guessing (∼0.1%) because ResNet as a

one-step Euler discretization fails to be a meaningful dynamical system [124].

Robustness to adversarial attack Hanshu et al. [52] demonstrated that Neural ODE

is more robust to adversarial attack than ResNet on small-scale datasets such as Cifar10.

We validate this result on the large-scale ImageNet dataset. The top-1 accuracy of Neural

ODE and ResNet under FGSM attack [47] are summarized in Table 3.3. For Neural ODE,

due to its invariance to discretization scheme, we derive the gradient for attack using a

29

certain solver (row in Table 3.3), and inference on the perturbed images using various

solvers. For different combinations of solvers and perturbation amplitudes, Neural ODE

consistently outperforms ResNet.

Summary In image recognition tasks, we demonstrate Neural ODE is accurate, in-

variant to discretization scheme, and more robust to adversarial attack than ResNet. Note

that detailed explanation on the robustness of Neural ODE is out of the scope for this pa-

per, but to our knowledge, MALI is the first method to enable training of Neural ODE on

large datasets due to constant memory cost.

3.5.3 Time-series modeling

We apply MALI to latent-ODE [131] and Neural Controlled Differential Equation (Neural

CDE) [71, 72]. Our experiment is based on the official implementation from the literature.

We report the mean squared error (MSE) on the Mujoco test set in Table 3.4, which is

generated from the “Hopper” model using DeepMind control suite [152]; for all exper-

iments with different ratios of training data, MALI achieves similar MSE to ACA, and

both outperform the adjoint and naive method. We report the test accuracy on the Speech

Command dataset for Neural CDE in Table 3.5; MALI achieves a higher accuracy than

competing methods.

3.5.4 Continuous generative models

We apply MALI on FFJORD [48], a free-from continuous generative model, and compare

with several variants in the literature [41, 71]. Our experiment is based on the official

implementaion of [41]; for a fair comparison, we train with MALI, and test with the same

solver as in the literature [48, 41], the Dopri5 solver with rtol = atol = 10−5 from the

torchdiffeq package [21]. Bits per dim (BPD, lower is better) on validation set for various

datasets are reported in Table 3.6. For continuous models, MALI consistently generates

30

Table 3.4: Test MSE (×0.01) on Mujoco dataset (lower is better).
Results with superscripts correspond to literature in the footnote.

Percentage
of training data

RNN1 RNN-GRU1 Latent-ODE
Adjoint1 Naive2 ACA2 MALI

10% 2.451 1.972 0.471 0.362 0.312 0.35
20% 1.711 1.421 0.441 0.302 0.272 0.27
50% 0.791 0.751 0.401 0.292 0.262 0.26

Table 3.5: Test ACC on
Speech Command Dataset

Method Accuracy (%)
Adjoint3 92.8± 0.4

SemiNorm3 92.9± 0.4
Naive 93.2± 0.2
ACA 93.2± 0.2
MALI 93.7± 0.3

Table 3.6: Bits per dim (BPD) of generative models, lower is better. Results marked with super-
script numbers correspond to literature in the footnote.

Dataset
Continuous Flow (FFJORD) Discrete Flow

Vanilla4 RNODE5 SemiNorm3 MALI RealNVP6 i-ResNet7 Glow8 Flow++9 Residual Flow10

MNIST 0.994 0.975 0.963 0.87 1.066 1.057 1.058 - 0.9710

CIFAR10 3.404 3.385 3.353 3.27 3.496 3.457 3.358 3.289 3.2810

ImageNet64 - 3.835 - 3.71 3.986 - 3.818 - 3.7610

the lowest BPD, and outperforms the Vanilla FFJORD (trained with adjoint), RNODE

(regularized FFJORD) and the SemiNorm Adjoint [71]. Furthermore, FFJORD trained

with MALI achieves comparable BPD to state-of-the-art discrete-layer flow models in the

literature.

3.6 Related works

Besides ALF, the symplectic integrator [159, 167] is also able to reconstruct trajectory

accurately, yet it’s typically restricted to second order Hamiltonian systems [29], and are

unsuitable for general ODEs. Besides aforementioned methods, there are other methods

for gradient estimation such as interpolated adjoint [28] and spectral method [123], yet

the implementations are involved and not publicly available. Other works focus on the

theoretical properties of Neural ODEs [39, 151, 94]. Neural ODE is recently applied to

stochastic differential equation [82], jump differential equation [65] and auto-regressive

models [162].
01. Rubanova et al. [131]; 2. Zhuang et al. [180]; 3. Kidger et al. [71]; 4. Chen et al. [21]; 5. Finlay et al.

[41]; 6. Dinh et al. [35]; 7. Behrmann et al. [8]; 8. Kingma & Dhariwal [75]; 9. Ho et al. [59]; 10. Chen
et al. [22]

31

3.7 Proofs and Theoretical Analysis

3.7.1 Numerical errors for the adjoint method

Lemma 3.7.0.1. Suppose f is composed of a finite number of ReLU activations and linear

transforms,

f(t, z) = Linear1 ◦ReLU ◦ Linear2 ◦ ... ◦ LinearN(z)

if the spectral norm of linear transform is bounded, then the IVP defined above has a

unique solution on a bounded region.

Proof: f does not depend on t explicitly, hence is continuous in t. ReLU (and other

activation functions such as sigmoid, tanh, ...) is uniformly continuous; a linear transform

Wz is also uniformly continuous if the spectral norm of W is bounded. From Picard-

Lindelöf Theorem, the IVP has a unique solution on a bounded region.

Flow map Denote ΦT
t0
(z0) as the oracle solution to the IVP at time T , with the initial

condition (t0, z0). Then ΦT
t0
(z0) satisfies:

Φt3
t2 ◦ Φ

t2
t1 = Φt3

t1 (3.25)

d

dt
Φt

t0
(z0) = f(t,Φt

t0
(z0)) (3.26)

Φt
t0
(z0) = z0 +

∫ t

t0

f
(
s,Φs

t0
(z0)

)
ds (3.27)

Variational flow The derivative w.r.t initial condition is called the variational flow, de-

noted as DΦt
t0

, then it satisfies:

32

DΦt
t0
(z0) =

dΦt
t0
(z0)

dz0
, DΦt0

t0 = I (3.28)

DΦt0+h
t0 = I +O(h), if h is small. (3.29)

From Eq. 3.25 and 3.29, using the chain rule, we have:

DΦt
t0
(z0) =

dΦt
t0
(z0)

dz0
=
dΦt

t0+h(Φ
t0+h
t0 (z0))

dΦt0+h
t0 (z0)

dΦt0+h
t0 (z0)

dz0
= DΦt

t0+h +O(h) (3.30)

Local truncation error Denote the step function of a one-step ODE solver as ψh(t, z),

with step-size h starting from (t, z). Denote the local truncation error as:

Lh(t, z) = ψh(t, z)− Φt+h
t (z) (3.31)

For a solver of order p, the error is of order O(hp+1), and can be written as

Lh(t, z) = hp+1l(t, z) +O(hp+2) (3.32)

where l is some function of order O(1).

Global error Denote the global error as G(T) at time T , then it satisfies:

G(T) = zN − ΦT
t0
(z0) =

N−1∑
k=0

Rk (3.33)

where

Rk = ΦT
tk+1

(zk+1)− ΦT
tk
(zk) (3.34)

= ΦT
tk+1

(
Φ

tk+1

tk
(zk) + Lhk

(tk, zk)
)
− ΦT

tk+1
(Φ

tk+1

tk
(zk)) (3.35)

33

Lemma 3.7.0.2 (Approximation of Rk).

Rk = DΦT
tk+1

(
Φ

tk+1

tk
(zk)

)
Lhk

(tk, zk) +O(h2p+2
k) (3.36)

Lemma 3.7.0.2 can be viewed as a Taylor expansion of Eq. 3.35, with detailed proof

in [111].

Lemma 3.7.0.3. If Lh(t, y) = O(hp+1), then Gh(T) = O(hp)

Proof for Lemma 3.7.0.3 is in [111].

Plug Eq. 3.7 and Eq. 3.30 into Eq. 3.36, we have

Rk =
[
DΦT

tk
(zk) +O(hk)

]
Lhk

(tk, zk) +O(h2p+2
k) (3.37)

=
[
DΦT

tk
(zk) +O(hk)

][
hp+1
k l(tk, zk) +O(hp+2

k)
]
+O(h2p+2

k) (3.38)

= hp+1
k DΦT

tk
(zk)l(tk, zk) +O(hp+2

k) (3.39)

Plug Eq. 3.39 into Eq. 3.8, then we have:

G(T) =
N−1∑
k=0

Rk =
N−1∑
k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk) +O(hp+2

k)
]

(3.40)

=
N−1∑
k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk)

]
+O(hp+1

max) (3.41)

Global error of the adjoint method If we solve an IVP forward-in-time from t = 0 to

T , then take z(T) as the initial condition, and solve it backward-in-time from T to 0, the

34

numerical error can be written as:

G(t0 → T → t0) =
Nt−1∑
k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk)

]
+

Nr−1∑
J=0

[
(−hj)p+1DΦ

τj
T (zj)l(τj, zj)

]
+O(hp+1

max)

(3.42)

= G(t0 → T) +G(T → t0) +O(hp+1) (3.43)

where G(t0 → T) represents the numerical error of forward-in-time (t0 to T) solution

(discretized at step k, denoted as zk); and G(T → t0) denotes the numerical error of

reverse-in-time solution (T to t0) (discretized at step j, denoted as zj). G(t0 → T → t0)

represents the error in reconstructed initial condition by the adjoint method. Note that

generally z does not overlap with z. The local error of forward-in-time and reverse-in-

time numerical integration is represented as l and l respectively.

Although going backward is equivalent to a negative stepsize, which might cause the

second term to have different signs compared to the first term in Eq. 3.42, we demonstrate

that generally their sum cannot cancel.

For the ease of analysis, we assume the forward and reverse-in-time calculation are dis-

cretized at the same grid points, with a sufficiently small constant stepsize (For a variable-

stepsize solver, we can modify it to a constant-stepsize solver, whose stepsize is the min-

imal step in variable-stepsize solver. With this modification, the constant stepsize solver

35

should be no worse than adaptive stepsize solver). Then Eq. 3.42 can be written as:

G(t0 → T → t0) =
N−1∑
k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk)

]
+

N−1∑
k=0

[
(−hk)p+1DΦtk

T (zk)l(tk, zk)
]
+O(hp+1

max)

(3.44)

=
N−1∑
k=0

[
hp+1
k DΦT

tk
(zk)l(tk, zk) + (−hk)p+1DΦtk

T (zk)l(tk, zk)
]
+O(hp+1)

(3.45)

If the stepsize is sufficiently small, we can assume

zk = zk +O(h) (3.46)

DΦtk
T (zk) = DΦtk

T (zk) +O(h) (3.47)

l(tk, zk) = l(tk, zk) +O(h) (3.48)

Assume the existence and uniqueness conditions are satisfied on t ∈ [0, T], so ΦT
t0

defines

a homeomorphism, hence:

DΦtk
T = (DΦT

tk
)−1 (3.49)

Plug Eq. 3.46 to Eq. 3.49 into Eq. 3.45, we have

G(t0 → T → t0) =
N−1∑
k=0

hp+1l(tk, zk)ek +O(hp+1) (3.50)

ek = DΦT
tk
(zk) + (−1)p+1(DΦT

tk
(zk))

−1 (3.51)

Reverse accuracy for all t0 requires ek = 0 for all k. If p is odd, then the two terms

in ek are the same sign, and thus cannot cancel to 0; if p is even, then ek = 0 requires

DΦT
tk
(zk) = DΦT

tk
(zk)

−1 = I , which is generally not satisfied with a trained network

36

(otherwise the network is an identity function with a constant bias).

In short, solving an IVP from t0 to T with z(0) = z0, then taking z(T) as initial

condition and solving it from T to t0 and getting z(0), generally z(0) ̸= z(0) because of

numerical errors.

3.7.2 Algorithm of ALF

For the ease of reading, we write the algorithm for ψ in ALF below, which is the same as

Algo. 4 in the main paper, but uses slightly different notations for the ease of analysis.

Algorithm 7: Forward of ψ in ALF
Input (ẑin, v̂in, sin, h) = (ẑ0, v̂0, s0, h) where s0 is current time, ẑ0 and v̂0 are
correponding values at time s0; stepsize h.

Forward

s1 = s0 + h/2 (3.52)
ẑ1 = ẑ0 + v̂0 × h/2 (3.53)
v̂1 = f(ẑ1, s1) (3.54)
v̂2 = v̂1 + (v̂1 − v̂0) (3.55)
ẑ2 = ẑ1 + v̂2 × h/2 (3.56)
s2 = s1 + h/2 (3.57)

Output (ẑout, v̂out, sout, h) = (ẑ2, v̂2, s2, h)

For simplicity, we can re-write the forward of ALF as


ẑ2

v̂2

 =


ẑ0 + hf(ẑ0 +

h
2
v̂0, s0 +

h
2
)

2f(ẑ0 +
h
2
v̂0, s0 +

h
2
)− v̂0

 (3.58)

37

Similarly, the inverse of ALF can be written as

ẑ0
v̂0

 =


ẑ2 − hf(ẑ2 − h

2
v̂2, s2 − h

2
)

2f(ẑ2 − h
2
v̂2, s2 − h

2
)− v̂2

 (3.59)

3.7.3 Expansion of total derivative

For an ODE of the form
dz(t)

dt
= f(z(t), t) (3.60)

We have:

d2z(t)

dt2
=

d

dt
f(z(t), t) =

∂f(z(t), t)

∂t
+
∂f(z(t), t)

∂z

dz(t)

dt
(3.61)

For the ease of notation, we re-write Eq. 3.61 as

d2z(t)

dt2
= ft + fzf (3.62)

where ft and fz represents the partial derivative of f w.r.t t and z respectively.

3.7.4 Local truncation error of ALF

Theorem 3.7.1 (Theorem 3.4.1 in the main paper). For a single step in ALF with stepsize

h, the local truncation error of z is O(h3), and the local truncation errof of v is O(h2).

Proof. Under the same notation as Algo. 7, denote the ground-truth state of z and v starting

from (ẑ0, s0) as z̃ and ṽ respectively. Then the local truncation error is

Lz = z̃(s0 + h)− ẑ2, Lv = ṽ(s0 + h)− v̂2 (3.63)

38

We estimate Lz and Lv in terms of polynomial of h.

Under mild assumptions that f is smooth up to 2nd order almost everywhere (this is

typically satisfied with neural networks with bounded weights), hence Taylor expansion is

meaningful for f . By Eq. 3.62, the Taylor expansion of z̃ around point (ẑ0, v̂0, s0) is

z̃(s0 + h) = ẑ0 + h
dz

dt
+
h2

2

d2z

dt2
+O(h3) (3.64)

= ẑ0 + hf(ẑ0, s0) +
h2

2

(
ft(ẑ0, s0) + fz(ẑ0, s0)f(ẑ0, s0)

)
+O(h3) (3.65)

Next, we analyze accuracy of the numerical approximation. For simplicity, we directly

analyze Eq. 3.58 by performing Taylor Expansion on f .

f(ẑ0 +
h

2
v̂0, s0 +

h

2
) = f(ẑ0, s0) +

h

2
ft(ẑ0, s0) +

hv̂0
2
fz(ẑ0, s0) +O(h2) (3.66)

ẑ2 = ẑ0 + hf(ẑ0 +
h

2
v̂0, s0 +

h

2
) (3.67)

Plug Eq. 3.65, Eq. 3.66 and E.q. 3.67 into the definition of Lz, we get

Lz = z̃(s0 + h)− ẑ2 (3.68)

=
[
ẑ0 + hf(ẑ0, s0) +

h2

2

(
ft(ẑ0, s0) + fz(ẑ0, s0)f(ẑ0, s0)

)]
−
[
ẑ0 + h

(
f(ẑ0, s0) +

h

2
ft(ẑ0, s0) +

hv̂0
2
fz(ẑ0, s0)

)]
+O(h3) (3.69)

=
h2

2
fz(ẑ0, s0)

(
f(ẑ0, s0)− v̂0

)
+O(h3) (3.70)

Therefore, if
∣∣∣f(ẑ0, s0) − v̂0

∣∣∣ is of order O(1), Lz is of order O(h2); if
∣∣∣f(ẑ0, s0) − v̂0

∣∣∣
is of order O(h) or smaller, then Lz is of order O(h3). Specifically, at the start time of

integration, we have
∣∣∣f(ẑ0, s0)− v̂0 = 0

∣∣∣, by induction, Lz at end time is O(h3).

Next we analyze the local truncation error in v, denoted as Lv. Denote the ground truth

39

as ṽ(t0 + h), we have

ṽ(s0 + h) = f
(
z̃(s0 + h), s0 + h

)
(3.71)

= f(ẑ0, s0) + hft(ẑ0, s0) +
(
z̃(s0 + h)− ẑ0

)
fz(ẑ0, s0) +O(h2) (3.72)

Next we analyze the error in the numerical approximation. Plug Eq. 3.66 into Eq. 3.58,

v̂2 = 2f(ẑ0 +
h

2
v̂0, s0 +

h

2
)− v̂0 (3.73)

= f(ẑ0, s0) +
(
f(ẑ0, s0)− v̂0

)
+ hft(ẑ0, s0) + hv̂0fz(ẑ0, s0) +O(h2) (3.74)

From Eq. 3.65, Eq. 3.72 and Eq. 3.74, we have

Lv = ṽ(s0 + h)− v̂2 (3.75)

=
(
f(ẑ0, s0)− v̂0

)
+
(
z̃(s0 + h)−

(
ẑ0 + hv̂0

))
fz(ẑ0, s0) +O(h2) (3.76)

=
(
f(ẑ0, s0)− v̂0

)
+ h
(
f(ẑ0, s0)− v̂0

)
fz(ẑ0, s0) +O(h2) (3.77)

The last equation is derived by plugging in Eq. 3.65. Note that Eq. 3.77 holds for every

single step forward in time, and at the start time of integration, we have
∣∣f(ẑ0, s0)−v̂0∣∣ = 0

due to our initialization as in Sec. 3.4.2 of the main paper. Therefore, by induction, Lv is

of order O(h2) for consecutive steps.

3.7.5 Stability analysis for ALF

Lemma 3.7.1.1. For a matrix of the form

A B

C D

, if A,B,C,D are square matrices of

the same shape, and CD = DC, then we have det

A B

C D

 = det(AD −BC)

40

Proof. See [144] for a detailed proof.

Theorem 3.7.2. For ALF integrator with stepsize h, if hσi is 0 or is imaginary with norm

no larger than 1, where σi is the i-th eigenvalue of the Jacobian ∂f
∂z

, then the solver is on

the critical boundary of A-stability; otherwise, the solver is not A-stable.

Proof. A solver is A-stable is equivalent to the eigenvalue of the numerical forward has a

norm below 1. We calculate the eigenvalue of ψ below.

For the function defined by Eq. 3.58, the Jacobian is

J =


∂ẑ2
∂z0

∂ẑ2
∂v̂0

∂v̂2
∂z0

∂v̂2
∂v̂0

 =


I + h∂f

∂z
h2

2
∂f
∂z

2× ∂f
∂z

h∂f
∂z
− I

 (3.78)

We determine the eigenvalue of J by solving the equation

det(J − λI) =


h∂f

∂z
+ (1− λ)I h2

2
∂f
∂z

2× ∂f
∂z

h∂f
∂z
− (1 + λ)I

 = 0 (3.79)

It’s trivial to check J satisfies conditions for Lemma 3.7.1.1.Therefore, we have

det(J − λI) = det
[(
h
∂f

∂z
+ (1− λ)I

)(
h
∂f

∂z
− (1 + λ)I

)
−
(h2
2

∂f

∂z

)(
2× ∂f

∂z

)]
(3.80)

= det
[
− 2λh

∂f

∂z
+ (λ2 − 1)I

]
(3.81)

41

Suppose the eigen-decompostion of ∂f
∂z

can be written as

∂f

∂z
= Λ



σ1

σ2

...

σN


Λ−1 (3.82)

Note that I = ΛIλ−1, hence we have

det(J − λI) = det Λ

{
− 2λh



σ1

σ2

...

σN


+ (λ2 − 1)I

}
Λ−1 (3.83)

=
N∏
i=1

(λ2 − 2hσiλ− 1) (3.84)

Hence the eigenvalues are

λi± = hσi ±
√
h2σ2

i + 1 (3.85)

A-stability requires |λi±| < 1,∀i, and has no solution.

The critical boundary is |λi±| = 1, the solution is: hσi is 0 or on the imaginary line

with norm no larger than 1.

42

3.7.6 Damped ALF

Algorithm 8: Forward of ψ in Damped ALF (η ∈ (0, 1])
Input (ẑin, v̂in, sin, h) = (ẑ0, v̂0, s0, h) where s0 is current time, ẑ0 and v̂0 are
correponding values at time s0; stepsize h.

Forward

s1 = s0 + h/2 (3.86)
ẑ1 = ẑ0 + v̂0 × h/2 (3.87)
v̂1 = f(ẑ1, s1) (3.88)
v̂2 = v̂0 + 2η(v̂1 − v̂0) (3.89)
ẑ2 = ẑ1 + v̂2 × h/2 (3.90)
s2 = s1 + h/2 (3.91)

Output (ẑout, v̂out, sout, h) = (ẑ2, v̂2, s2, h)

Algorithm 9: ψ−1 (Inverse of ψ) in Damped ALF (η ∈ (0, 1])
Input (ẑout, v̂out, sout, h) where sout is current time, ẑout and v̂out are

corresponding values at sout, h is stepsize.

Inverse

(ẑ2, v̂2, s2, h) = (ẑout, v̂out, sout, h) (3.92)

s1 = s2 − h/2 (3.93)

ẑ1 = z2 − v̂2 × h/2 (3.94)

v̂1 = f(ẑ1, s1) (3.95)

v̂0 = (v̂2 − 2ηv̂1)/(1− 2η) (3.96)

ẑ0 = ẑ1 − v̂0 × h/2 (3.97)

s0 = s1 − h/2 (3.98)

Output (ẑin, v̂in, sin, h) = (ẑ0, v̂0, s0, h)

The main difference between ALF and Damped ALF is marked in blue in Algo. 8. In

43

ALF, the update of v̂2 is v̂2 = (v̂1 − v̂0) + v̂1 = 2(v̂1 − v̂0) + v̂0; while in Damped ALF,

the update is scaled by a factor η between 0 and 1, so the update is v̂2 = 2η(v̂1 − v̂0) + v̂0.

When η = 1, Damped ALF reduces to ALF.

Similar to Sec. 3.7.2, we can write the forward as For simplicity, we can re-write the

forward of ALF as


ẑ2

v̂2

 =


ẑ0 + ηhf(ẑ0 +

h
2
v̂0, s0 +

h
2
) + (1− η)hv̂0

2ηf(ẑ0 +
h
2
v̂0, s0 +

h
2
) + (1− 2η)v̂0

 (3.99)

Similarly, the inverse of ALF can be written as


ẑ0

v̂0

 =


ẑ2 − h 1−η

1−2η
v̂2 + h η

1−2η
f(ẑ2 − h

2
v̂2, s2 − h

2
)

1
1−2η

v̂2 − 2η
1−2η

f(ẑ2 − h
2
v̂2, s2 − h

2
)

 (3.100)

Theorem 3.7.3. For a single step in Damped ALF with stepsize h, the local truncation

error of z is O(h2), and the local truncation errof of v is O(h).

Proof. The proof is similar to Thm. 3.7.1. By similar calculations using the Taylor Ex-

pansion in Eq. 3.66 and Eq. 3.65, we have

ẑ2 − z̃(s0 + h) = (1− η)hv̂0 + hη
[
f(ẑ0, s0) +

h

2
ft(ẑ0, s0) +

hv̂0
2
fz(ẑ0, s0)

]
− h
[
f(ẑ0, s0) +

h

2
ftẑ0, s0 +

h

2
fz(ẑ0, s0)f(ẑ0, s0)

]
+O(h2) (3.101)

= (1− η)h
(
v̂0 − f(ẑ0, s0)

)
+
η − 1

2
h2ft(ẑ0, s0)

+
h2

2

(
ηv̂0 − f(ẑ0, s0)

)
fz(ẑ0, s0) +O(h2) (3.102)

44

Using Eq. 3.72, Eq. 3.66 and Eq. 3.65, we have

ṽ2 − v̂2 = (1− 2η)v̂0 + (2η − 1)f(ẑ0, s0) + (1− η)hft(ẑ0, s0)

+
(
z̃(s0 + h)− ẑ0 − ηhv̂0

)
fz(ẑ0, s0) +O(h2) (3.103)

= (2η − 1)
[
f(ẑ0, s0)− ẑ0

]
+ (1− η)hft(ẑ0, s0)

+ η
[
hf(ẑ0, s0)− hv̂0

]
fz(ẑ0, s0) +O(h2) (3.104)

Note that when η = 1, Eq. 3.102 reduces to Eq. 3.70, and Eq. 3.104 reduces to Eq. 3.77.

By initialization, we have |f(ẑ0, s0)− v̂0| = 0 at initial time, hence by induction, the local

truncation error for z is O(h2); the local truncation error for v is O(h) when η < 1, and is

O(h2) when η = 1.

Theorem 3.7.4 (Theorem 3.4.2 in the main paper). For Dampled ALF integrator with

stepsize h, where σi is the i-th eigenvalue of the Jacobian ∂f
∂z

, then the solver is A-stable if∣∣∣1 + η(hσ − 1)±
√
η
[
2hσi + η(hσi − 1)2

]∣∣∣ < 1, ∀i.

Proof. The Jacobian of the forward-pass of a single step damped ALF is

J =


I + ηh∂f

∂z
(1− η)hI + η h2

2
∂f
∂z

2η ∂f
∂z

ηh∂f
∂z

+ (1− 2η)I

 (3.105)

when η = 1, J reduces to Eq. 3.78. We can determine the eigenvalue of J using similar

45

Figure 3.7: Region of A-stability for eigenvalue on the imaginary plane for damped ALF.
From left to right, the region of stability for η = 0.25, η = 0.7,η = 0.8 respectively. As η
increases to 1, the area of stability region decreases.

techniques. Assume the eigenvalues for ∂f
∂z

are {σi}, then we have

det(J − λI) = det


(1− λ)I + ηh∂f

∂z
(1− η)hI + η h2

2
∂f
∂z

2η ∂f
∂z

ηh∂f
∂z

+ (1− 2η − λ)I

 (3.106)

= det
[(

(1− λ)I + ηh
∂f

∂z

)(
ηh
∂f

∂z
+ (1− 2η − λ)I

)
−
(
(1− η)hI + η

h2

2

∂f

∂z

)(
2η
∂f

∂z

)]
(3.107)

=
N∏
i=1

[
1 + η(hσi − 1)±

√
η
[
2hσi + η(hσi − 1)2

]]
(3.108)

when η < 1, it’s easy to check that
∣∣∣1 + η(hσi − 1)±

√
η
[
2hσi + η(hσi − 1)2

]∣∣∣ < 1 has

non-empty solutions for hσ.

For a quick validation, we plot the region of A-stability on the imaginary plane for a

single eigenvalue in Fig. 3.7. As η increases, the area of stability decreases. When η = 1,

the system is no-where A-stable, and the boundary for A-stability is on the imaginary axis

[−i, i] where i is the imaginary unit.

46

Chapter 4

AdaBelief optimizer: scale stepsize by
the belief in observed gradients

4.1 Introduction

Modern neural networks are typically trained with first-order gradient methods, which

can be broadly categorized into two branches: the accelerated stochastic gradient descent

(SGD) family [129], such as Nesterov accelerated gradient (NAG) [108], SGD with mo-

mentum [148] and heavy-ball method (HB) [120]; and the adaptive learning rate methods,

such as Adagrad [37], AdaDelta [170], RMSProp [49] and Adam [74]. SGD methods use

a global learning rate for all parameters, while adaptive methods compute an individual

learning rate for each parameter.

Compared to the SGD family, adaptive methods typically converge fast in the early

training phases, but have poor generalization performance [165, 93]. Recent progress tries

to combine the benefits of both, such as switching from Adam to SGD either with a hard

schedule as in SWATS [69], or with a smooth transition as in AdaBound [92]. Other

modifications of Adam are also proposed: AMSGrad [127] fixes the error in convergence

analysis of Adam, Yogi [169] considers the effect of minibatch size, MSVAG [5] dis-

47

sects Adam as sign update and magnitude scaling, RAdam [88] rectifies the variance of

learning rate, Fromage [10] controls the distance in the function space, and AdamW [90]

decouples weight decay from gradient descent. Although these modifications achieve bet-

ter accuracy compared to Adam, their generalization performance is typically worse than

SGD on large-scale datasets such as ImageNet [136]; furthermore, compared with Adam,

many optimizers are empirically unstable when training generative adversarial networks

(GAN) [46].

To solve the problems above, we propose “AdaBelief”, which can be easily modified

from Adam. Denote the observed gradient at step t as gt and its exponential moving av-

erage (EMA) as mt. Denote the EMA of g2t and (gt −mt)
2 as vt and st, respectively. mt

is divided by
√
vt in Adam, while it is divided by

√
st in AdaBelief. Intuitively, 1√

st
is

the “belief” in the observation: viewing mt as the prediction of the gradient, if gt deviates

much from mt, we have weak belief in gt, and take a small step; if gt is close to the predic-

tion mt, we have a strong belief in gt, and take a large step. We validate the performance

of AdaBelief with extensive experiments. Our contributions can be summarized as:

• We propose AdaBelief, which can be easily modified from Adam without extra param-

eters. AdaBelief has three properties: (1) fast convergence as in adaptive gradient meth-

ods, (2) good generalization as in the SGD family, and (3) training stability in complex

settings such as GAN.

• We theoretically analyze the convergence property of AdaBelief in both convex opti-

mization and non-convex stochastic optimization.

• We show that an asynchronous version of AdaBelief achieves both a weak convergence

condition and the oracle convergence speed for first-order gradient optimizers in the

stochastic non-convex optimization.

• We validate the performance of AdaBelief with extensive experiments: AdaBelief achieves

48

fast convergence as Adam and good generalization as SGD in image classification tasks

on CIFAR and ImageNet; AdaBelief outperforms other methods in language modeling;

in the training of a W-GAN [4], compared to a well-tuned Adam optimizer, AdaBelief

significantly improves the quality of generated images, while several recent adaptive

optimizers fail the training.

4.2 Methods

4.2.1 Details of AdaBelief Optimizer

Notations By the convention in [74], we use the following notations:

• f(θ) ∈ R, θ ∈ Rd: f is the loss function to minimize, θ is the parameter in Rd

•
∏

F ,M(y) = argminx∈F ||M1/2(x − y)||: projection of y onto a convex feasible set

F

• gt: the gradient and step t

• mt: exponential moving average (EMA) of gt

• vt, st: vt is the EMA of g2t , st is the EMA of (gt −mt)
2

• α, ϵ: α is the learning rate, default is 10−3; ϵ is a small number, typically set as 10−8

• β1, β2: smoothing parameters, typical values are β1 = 0.9, β2 = 0.999

• β1t, β2t are the momentum for mt and vt respectively at step t, and typically set as

constant (e.g. β1t = β1, β2t = β2, ∀t ∈ {1, 2, ...T}

49

Algorithm 10: Adam
Initialize θ0, m0 ← 0 , v0 ← 0,

t← 0

While θt not converged

t← t+ 1

gt ← ∇θft(θt−1)

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2t

Bias Correction

m̂t ← mt

1−βt
1
, v̂t ← vt

1−βt
2

Update

θt ←
∏

F ,
√
v̂t

(
θt−1 − αm̂t√

v̂t+ϵ

)

Algorithm 11: AdaBelief
Initialize θ0, m0 ← 0 , s0 ← 0,

t← 0

While θt not converged

t← t+ 1

gt ← ∇θft(θt−1)

mt ← β1mt−1 + (1− β1)gt

st ← β2st−1+(1−β2)(gt−mt)
2

Bias Correction

m̂t ← mt

1−βt
1
, ŝt ← st+ϵ

1−βt
2

Update

θt ←
∏

F ,
√
ŝt

(
θt−1 − αm̂t√

ŝt+ϵ

)
Comparison with Adam Adam and AdaBelief are summarized in Algo. 10 and Algo. 14,

where all operations are element-wise, with differences marked in blue. Note that no ex-

tra parameters are introduced in AdaBelief. Specifically, in Adam, the update direction is

mt/
√
vt, where vt is the EMA of g2t ; in AdaBelief, the update direction is mt/

√
st, where

st is the EMA of (gt − mt)
2. Intuitively, viewing mt as the prediction of gt, AdaBelief

takes a large step when observation gt is close to prediction mt, and a small step when the

observation greatly deviates from the prediction. .̂ represents bias-corrected value. Note

that an extra ϵ is added to st during bias-correction, in order to better match the assump-

tion that st is bouded below (the lower bound is at leat ϵ). For simplicity, we omit the bias

correction step in theoretical analysis.

4.2.2 Intuitive explanation for benefits of AdaBelief

50

Figure 4.1: An ideal optimizer considers curvature of the loss function, instead of taking a
large (small) step where the gradient is large (small) [154].

AdaBelief uses curvature information Update formulas for SGD, Adam and AdaBelief

are:

∆θSGD
t = −αmt, (4.1)

∆θAdam
t = −αmt/

√
vt,

∆θAdaBelief
t = −αmt/

√
st (4.2)

Note that we name α as the “learning rate” and |∆θit| as the “stepsize” for the ith param-

eter. With a 1D example in Fig. 4.1, we demonstrate that AdaBelief uses the curvature of

loss functions to improve training as summarized in Table 4.1, with a detailed description

below:

(1) In region 1 in Fig. 4.1, the loss function is flat, hence the gradient is close to

0. In this case, an ideal optimizer should take a large stepsize. The stepsize of SGD is

proportional to the EMA of the gradient, hence is small in this case; while both Adam and

AdaBelief take a large stepsize, because the denominator (
√
vt and

√
st) is a small value.

(2) In region 2 , the algorithm oscillates in a “steep and narrow” valley, hence both

51

Table 4.1: Comparison of optimizers in various cases in Fig. 4.1. “S” and “L” represent
“small” and “large” stepsize, respectively. |∆θt|ideal is the stepsize of an ideal optimizer.
Note that only AdaBelief matches the behaviour of an ideal optimizer in all three cases.

Case 1 Case 2 Case 3
|gt|, vt S L L

|gt − gt−1|, st S L S
|∆θt|ideal L S L

|∆θt|
SGD Adam AdaBelief SGD Adam AdaBelief SGD Adam AdaBelief

S L L L S S L S L

|gt| and |gt − gt−1| is large. An ideal optimizer should decrease its stepsize, while SGD

takes a large step (proportional to mt). Adam and AdaBelief take a small step because the

denominator (
√
st and

√
vt) is large.

(3) In region 3 , we demonstrate AdaBelief’s advantage over Adam in the “large gra-

dient, small curvature” case. In this case, |gt| and vt are large, but |gt − gt−1| and st are

small; this could happen because of a small learning rate α. In this case, an ideal optimizer

should increase its stepsize. SGD uses a large stepsize (∼ α|gt|); in Adam, the denom-

inator
√
vt is large, hence the stepsize is small; in AdaBelief, denominator

√
st is small,

hence the stepsize is large as in an ideal optimizer.

To sum up, AdaBelief scales the update direction by the change in gradient, which is

related to the Hessian. Therefore, AdaBelief considers curvature information and performs

better than Adam.

AdaBelief considers the sign of gradient in denominator We show the advantages

of AdaBelief with a 2D example in this section, which gives us more intuition for high

dimensional cases. In Fig. 4.2, we consider the loss function: f(x, y) = |x| + |y|. Note

that in this simple problem, the gradient in each axis can only take {1,−1}. Suppose the

start point is near the x−axis, e.g. y0 ≈ 0, x0 ≪ 0. Optimizers will oscillate in the y

direction, and keep increasing in the x direction.

Suppose the algorithm runs for a long time (t is large), so the bias of EMA (βt
1Egt) is

52

small:

mt = EMA(g0, g1, ...gt) ≈ E(gt), mt,x ≈ Egt,x = 1, mt,y ≈ Egt,y = 0 (4.3)

vt = EMA(g20, g
2
1, ...g

2
t) ≈ E(g2t), vt,x ≈ Eg2t,x = 1, vt,y ≈ Eg2t,y = 1. (4.4)

Step 1 2 3 4 5

gx 1 1 1 1 1

gy -1 1 -1 1 -1

Adam
vx 1 1 1 1 1

vy 1 1 1 1 1

AdaBelief
sx 0 0 0 0 0

sy 1 1 1 1 1

Figure 4.2: Left: Consider f(x, y) = |x|+ |y|. Blue vectors represent the gradient, and the
cross represents the optimal point. The optimizer oscillates in the y direction, and keeps
moving forward in the x direction. Right: Optimization process for the example on the
left. Note that denominator √vt,x =

√
vt,y for Adam, hence the same stepsize in x and y

direction; while √st,x <
√
st,y, hence AdaBelief takes a large step in the x direction, and

a small step in the y direction.

In practice, the bias correction step will further reduce the error between the EMA and

its expectation if gt is a stationary process [74]. Note that:

st = EMA
(
(g0 −m0)

2, ...(gt −mt)
2
)
≈ E

[
(gt − Egt)2

]
= Vargt, st,x ≈ 0, st,y ≈ 1

(4.5)

An example of the analysis above is summarized in Fig. 4.2. From Eq. 4.4 and Eq. 4.5, note

that in Adam, vx = vy; this is because the update of vt only uses the amplitude of gt and

ignores its sign, hence the stepsize for the x and y direction is the same 1/√vt,x = 1/
√
vt,y.

AdaBelief considers both the magnitude and sign of gt, and 1/
√
st,x ≫ 1/

√
st,y, hence

takes a large step in the x direction and a small step in the y direction, which matches the

behaviour of an ideal optimizer.

53

Update direction in Adam is close to “sign descent” in low-variance case In this

section, we demonstrate that when the gradient has low variance, the update direction in

Adam is close to “sign descent”, hence deviates from the gradient. This is also mentioned

in [5].

Under the following assumptions: (1) assume gt is drawn from a stationary distribu-

tion, hence after bias correction, Evt = (Egt)2+Vargt. (2) low-noise assumption, assume

(Egt)2 ≫ Vargt, hence we have Egt/
√
Evt ≈ Egt/

√
(Egt)2 = sign(Egt). (3) low-bias

assumption, assume βt
1 (β1 to the power of t) is small, hence mt as an estimator of Egt has

a small bias βt
1Egt. Then

∆θAdam
t = −α mt√

vt+ϵ
≈ −α Egt√

(Egt)2+Vargt+ϵ
≈ −α Egt

||Egt|| = −α sign(Egt) (4.6)

In this case, Adam behaves like a “sign descent”; in 2D cases the update is±45◦ to the

axis, hence deviates from the true gradient direction. The “sign update” effect might cause

the generalization gap between adaptive methods and SGD (e.g. on ImageNet) [9, 165].

For AdaBelief, when the variance of gt is the same for all coordinates, the update direction

matches the gradient direction; when the variance is not uniform, AdaBelief takes a small

(large) step when the variance is large (small).

Numerical experiments In this section, we validate intuitions in Sec. 4.2.2. Examples

are shown in Fig. 6.1, and we refer readers to more video examples1 for better visualization.

In all examples, compared with SGD with momentum and Adam, AdaBelief reaches the

optimal point at the fastest speed. Learning rate is α = 10−3 for all optimizers. For all

examples except Fig. 6.1(d), we set the parameters of AdaBelief to be the same as the

default in Adam [74], β1 = 0.9, β2 = 0.999, ϵ = 10−8, and set momentum as 0.9 for SGD.

For Fig. 6.1(d), to match the assumption in Sec. 4.2.2, we set β1 = β2 = 0.3 for both

1https://www.youtube.com/playlist?list=PL7KkG3n9bER6YmMLrKJ5wocjlvP7aWoOu

54

https://www.youtube.com/playlist?list=PL7KkG3n9bER6YmMLrKJ5wocjlvP7aWoOu

(a) loss function is
f(x, y) = |x|+ |y|

(b) f(x, y) = |x+y|+
|x− y| / 10

(c) f(x, y) = (x+y)2+
(x− y)2/10

(d) f(x, y) = |x|/10 +
|y|, β1 = β2 = 0.3

(e) Trajectory for
Beale function in 2D.

(f) Trajectory for Beale
function in 3D.

(g) Rosenbrock func-
tion in 2D.

(h) Rosenbrock func-
tion in 3D.

Figure 4.3: Trajectories of SGD, Adam and AdaBelief. AdaBelief reaches optimal point
(marked as orange cross in 2D plots) the fastest in all cases. We refer readers to video
examples.

Adam and AdaBelief, and set momentum as 0.3 for SGD.

(a) Consider the loss function f(x, y) = |x| + |y| and a starting point near the x axis.

This setting corresponds to Fig. 4.2. Under the same setting, AdaBelief takes a large

step in the x direction, and a small step in the y direction, validating our analysis.

More examples such as f(x, y) = |x|/10 + |y| are in the supplementary videos.

(b) For an inseparable L1 loss, AdaBelief outperforms other methods under the same

setting.

(c) For an inseparable L2 loss, AdaBelief outperforms other methods under the same

setting.

(d) We set β1 = β2 = 0.3 for Adam and AdaBelief, and set momentum as 0.3 in SGD.

This corresponds to settings of Eq. 4.6. For the loss f(x, y) = |x|/10 + |y|, gt

is a constant for a large region, hence ||Egt|| ≫ Vargt. As mentioned in [74],

55

Emt = (1 − βt)Egt, hence a smaller β decreases ||mt − Egt|| faster to 0. Adam

behaves like a sign descent (45◦ to the axis), while AdaBelief and SGD update in

the direction of the gradient.

(e)-(f) Optimization trajectory under default setting for the Beale [7] function in 2D and

3D.

(g)-(h) Optimization trajectory under default setting for the Rosenbrock [130] function.

Above cases occur frequently in deep learning Although the above cases are simple,

they give hints to local behavior of optimizers in deep learning, and we expect them to

occur frequently in deep learning. Hence, we expect AdaBelief to outperform Adam in

general cases. Other works in the literature [127, 92] claim advantages over Adam, but are

typically substantiated with carefully-constructed examples. Note that most deep networks

use ReLU activation [45], which behaves like an absolute value function as in Fig. 6.1(a).

Considering the interaction between neurons, most networks behave like case Fig. 6.1(b),

and typically are ill-conditioned (the weight of some parameters are far larger than others)

as in the figure. Considering a smooth loss function such as cross entropy or a smooth

activation, this case is similar to Fig. 6.1(c). The case with Fig. 6.1(d) requires |mt| ≈

|Egt| ≫ Vargt, and this typically occurs at the late stages of training, where the learning

rate α is decayed to a small value, and the network reaches a stable region.

4.2.3 Convergence rate of AdaBelief in convex and non-convex opti-

mization

Similar to [127, 92, 24], for simplicity, we omit the de-biasing step (analysis applicable

to de-biased version). Proof for convergence in convex and non-convex cases is in the

appendix.

Optimization problem For deterministic problems, the problem to be optimized is

56

minθ∈Ff(θ); for online optimization, the problem is minθ∈F
∑T

t=1 ft(θ), where ft can be

interpreted as loss of the model with the chosen parameters in the t-th step.

Theorem 4.2.1. (Convergence in convex optimization) Let {θt} and {st} be the sequence

obtained by AdaBelief, let 0 ≤ β2 < 1, αt = α√
t
, β11 = β1, 0 ≤ β1t ≤ β1 < 1, st ≤

st+1,∀t ∈ [T]. Let θ ∈ F , where F ⊂ Rd is a convex feasible set with bounded diameter

D∞. Assume f(θ) is a convex function and ||gt||∞ ≤ G∞/2 (hence ||gt −mt||∞ ≤ G∞)

and st,i ≥ c > 0,∀t ∈ [T], θ ∈ F . Denote the optimal point as θ∗. For θt generated with

AdaBelief, we have the following bound on the regret:

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
D2

∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2
+

D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt

Corollary 4.2.1.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem equation 4.2.1, then we

have:

∑T
t=1[ft(θt)− ft(θ∗)] ≤

D2
∞
√
T

2α(1−β1)

∑d
i=1 s

1/2
T,i +

(1+β1)α
√
1+log T

2
√
c(1−β1)3

∑d
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2
+ D2

∞β1G∞
2(1−β1)(1−λ)2α

For the convex case, Theorem 4.2.1 implies the regret of AdaBelief is upper bounded

by O(
√
T). Conditions for Corollary 4.2.1.1 can be relaxed to β1,t = β1/t as in [127],

which still generates O(
√
T) regret. Similar to Theorem 4.1 in [74] and corollary 1 in

[127], where the term
∑d

i=1 v
1/2
T,i exists, we have

∑d
i=1 s

1/2
T,i . Without further assumption,∑d

i=1 s
1/2
T,i < dG∞ since ||gt − mt||∞ < G∞ as assumed in Theorem 2.1, and dG∞ is

constant. The literature [74, 127, 37] exerts a stronger assumption that
∑d

i=1

√
Tv

1/2
T,i ≪

dG∞
√
T . Our assumption could be similar or weaker, because Est = Vargt ≤ Eg2t = Evt,

then we get better regret than O(
√
T).

Theorem 4.2.2. (Convergence for non-convex stochastic optimization) Under the assump-

tions:

• f is differentiable; ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower bounded.

57

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt)+ ζt,Eζt =

0, ζt⊥ζj, ∀t, j ∈ N, t ̸= j.

• At step t, the algorithm can access a bounded noisy gradient, and the true gradient is

also bounded. i.e. ||∇f(θt)|| ≤ H, ||gt|| ≤ H, ∀t > 1.

Assume minj∈[d](s1)j ≥ c > 0, noise in gradient has bounded variance, Var(gt) = σ2
t ≤

σ2, st ≤ st+1,∀t ∈ N, then the proposed algorithm satisfies:

mint∈[T] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ H√

Tα

[
C1α2(H2+σ2)(1+log T)

c
+ C2

dα√
c
+ C3

dα2

c
+ C4

]

as in [24], C1, C2, C3 are constants independent of d and T , and C4 is a constant indepen-

dent of T .

Corollary 4.2.2.1. If c > C1H and assumptions for Theorem 4.2.2 are satisfied, we have:

1
T

∑T
t=1 E

[
α2
t

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2] ≤ 1
T

1
1
H
−C1

c

[
C1α2σ2

c

(
1 + log T

)
+ C2

dα√
c
+ C3

dα2

c
+ C4

]

Theorem 4.2.2 implies the convergence rate for AdaBelief in the non-convex case

is O(log T/
√
T), which is similar to Adam-type optimizers [127, 24]. Note that regret

bounds are derived in the worst possible case, while empirically AdaBelief outperforms

Adam mainly because the cases in Sec. 4.2.2 occur more frequently. It is possible that the

above bounds are loose. Also note that we assume st≤st+1, in code this requires to use

element wise maximum between st and st+1 in the denominator.

58

Algorithm 12: Adam (Sync-
Uncenter)

Initialize x0, m0 ← 0 , s0 ← 0,
t← 0

While xt not converged
t← t+ 1
gt ← ∇xft(xt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1+(1−β2)g2t
xt ← xt−1 − α√

vt+ϵ
mt

Algorithm 13: AdaShift (Async-
Uncenter)

Initialize x0, m0 ← 0 , s0 ← 0,
t← 0

While xt not converged
t← t+ 1
gt ← ∇xft(xt−1)
mt ← β1mt−1 + (1− β1)gt
xt ← xt−1 − α√

vt−1+ϵ
gt

vt ← β2vt−1+(1−β2)g2t

Algorithm 14: AdaBelief (Sync-
Center)

Initialize x0, m0 ← 0 , s0 ← 0,
t← 0

While xt not converged
t← t+ 1
gt ← ∇xft(xt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1+(1−β2)(gt−mt)

2

xt ← xt−1 − α√
st+ϵ

mt

Algorithm 15: ACProp (Async-
Center)

Initialize x0, m0 ← 0 , s0 ← 0,
t← 0

While xt not converged
t← t+ 1
gt ← ∇xft(xt−1)
mt ← β1mt−1 + (1− β1)gt
xt ← xt−1 − α√

st−1+ϵ
gt

st ← β2st−1+(1−β2)(gt−mt)
2

59

4.3 Asynchronous version of AdaBelief

4.3.1 Algorithms

In this section, we summarize the AdaBelief [181] method in Algo. 14 and ACProp in

Algo. 15. For the ease of notations, all operations in Algo. 14 and Algo. 15 are element-

wise, and we omit the bias-correction step of mt and st for simplicity.

We first introduce the notion of “sync (async)” and “center (uncenter)”. (a) Sync vs

Async The update on parameter xt can be generally split into a numerator (e.g. mt, gt) and

a denominator (e.g.
√
st,
√
vt). We call it “sync” if the denominator depends on gt, such

as in Adam and RMSProp; and call it “async” if the denominator is independent of gt, for

example, denominator uses information up to step t − 1 for the t-th step. (b) Center vs

Uncenter The “uncentered” update uses vt, the exponential moving average (EMA) of g2t ;

while the “centered” update uses st, the EMA of (gt −mt)
2.

Adam (Sync-Uncenter) The Adam optimizer [74] stores the EMA of the gradient

in mt, and stores the EMA of g2t in vt. For each step of the update, Adam performs

element-wise division between mt and
√
vt. Therefore, the term αt

1√
vt

can be viewed

as the element-wise learning rate. Note that β1 and β2 are two scalars controlling the

smoothness of the EMA for the first and second moment, respectively. When β1 = 0,

Adam reduces to RMSProp [58].

AdaBelief (Sync-Center) AdaBelief optimizer [181] is summarized in Algo. 14.

Compared with Adam, the key difference is that it replaces the uncentered second moment

vt (EMA of g2t) by an estimate of the centered second moment st (EMA of (gt − mt)
2).

The intuition is to view mt as an estimate of the expected gradient: if the observation gt

deviates much from the prediction mt, then it takes a small step; if the observation gt is

close to the prediction mt, then it takes a large step.

60

AdaShift (Async-Uncenter) AdaShift [178] performs temporal decorrelation between

numerator and denominator. It uses information of {gt−n, ...gt} for the numerator, and uses

{g0, ...gt−n−1} for the denominator, where n is the “delay step” controlling where to split

sequence {gi}ti=0. The numerator is independent of denominator because each gi is only

used in either numerator or denominator.

ACProp (Async-Center) Our proposed ACProp is the asynchronous version of Ad-

aBelief and is summarized in Algo. 15. Compared to AdaBelief, the key difference is that

ACProp uses st−1 in the denominator for step t, while AdaBelief uses st. Note that st

depends on gt, while st−1 uses history up to step t − 1. This modification is important to

ensure that E(gt/
√
st−1|g0, ...gt−1) = (Egt)/

√
st−1. It’s also possible to use a delay step

larger than 1 similar to AdaShift, for example, use EMA({gi}ti=t−n) as numerator, and

EMA({(gi −mi)
2}t−n−1

i=0) for denominator.

4.3.2 Async AdaBelief has a weaker convergence condition

We analyze the convergence conditions for different methods in this section. We first

analyze the counter example by Reddi et al. (2018) and show that async-optimizers

(AdaShift, ACProp) always converge ∀β1, β2 ∈ (0, 1), while sync-optimizers (Adam, Ad-

aBelief, RMSProp et al.) would diverge if (β1, β2) are not carefully chosen; hence, async-

optimizers have weaker convergence conditions than sync-optimizers. Next, we compare

async-uncenter (AdaShift) with async-center (ACProp) and show that momentum center-

ing further weakens the convergence condition for sparse-gradient problems. Therefore,

ACProp has weaker convergence conditions than AdaShift and other sync-optimizers.

Sync vs Async

We show that for the example in [127], async-optimizers (ACProp, AdaShift) have weaker

convergence conditions than sync-optimizers (Adam, RMSProp, AdaBelief).

61

Figure 4.4: Numerical results for the example defined by Eq. equation 4.7. We set the initial
value as x0 = 0, and run each optimizer for 104 steps trying different initial learning rates in
{10−5, 10−4, 10−3, 10−2, 10−1, 1.0}, and set the learning rate decays with 1/

√
t. If there’s a proper

initial learning rate, such that the average distance between the parameter and its optimal value
x∗ = −1 for the last 1000 steps is below 0.01, then it’s marked as “converge” (orange plus symbol),
otherwise as “diverge” (blue circle). For each optimizer, we sweep through different β2 values in a
log grid (x-axis), and sweep through different values of P in the definition of problem (y-axis). We
plot the result for β1 = 0.9 here; for results with different β1 values, please refer to appendix. Our
results indicate that in the (P, β2) plane, there’s a threshold curve beyond which sync-optimizers
(Adam, RMSProp, AdaBelief) will diverge; however, async-optimizers (ACProp, AdaShift) always
converge for any point in the (P, β2) plane. Note that for AdaShift, a larger delay step n is possible
to cause divergence (see example in Fig. 4.5 with n = 10). To validate that the “divergence” is not
due to numerical issues and sync-optimizers are drifting away from optimal, we plot trajectories in
Fig. 4.5

62

Lemma 4.3.0.1 (Thm.1 in [127]). There exists an online convex optimization problem

where sync-optimizers (e.g. Adam, RMSProp) have non-zero average regret, and one ex-

ample is

ft(x) =


Px, if t%P = 1

−x, Otherwise
x ∈ [−1, 1], P ∈ N, P ≥ 3 (4.7)

Lemma 4.3.0.2 ([143]). For problem (1) with any fixed P , there’s a threshold of β2 above

which RMSProp converges.

Figure 4.5: Trajectories of x for different op-
timizers in Problem by Eq. 4.7. Initial point
is x0 = 0, the optimal is x∗ = −1, the tra-
jectories show that sync-optimizers (Adam, Ad-
aBelief, RMSProp) diverge from the optimal, val-
idating the divergent area in Fig. 4.4 is correct
rather than artifacts of numerical issues. Async-
optimizers (ACProp, AdaShift) converge to op-
timal value, but large delay step n in AdaShift
could cause non-convergence.

In order to better explain the two lem-

mas above, we conduct numerical experi-

ments on the problem by Eq. equation 4.7,

and show results in Fig. 4.4. Note that∑k+P
t=k ft(x) = x, hence the optimal point

is x∗ = −1 since x ∈ [−1, 1]. Start-

ing from initial value x0 = 0, we sweep

through the plane of (P, β2) and plot re-

sults of convergence in Fig. 4.4, and plot

example trajectories in Fig. 4.5.

Lemma. 4.3.0.1 tells half of the story:

looking at each vertical line in the subfig-

ure of Fig. 4.4, that is, for each fixed hyper-parameter β2, there exists sufficiently large P

such that Adam (and RMSProp) would diverge. Lemma. 4.3.0.2 tells the other half of the

story: looking at each horizontal line in the subfigure of Fig. 4.4, for each problem with a

fixed period P , there exists sufficiently large β2s beyond which Adam can converge.

The complete story is to look at the (P, β2) plane in Fig. 4.4. There is a boundary

between convergence and divergence area for sync-optimizers (Adam, RMSProp, Ad-

63

aBelief), while async-optimizers (ACProp, AdaShift) always converge.

Lemma 4.3.0.3. For the problem defined by Eq. equation 4.7, using learning rate sched-

ule of αt = α0√
t
, async-optimizers (ACProp and AdaShift with n = 1) always converge

∀β1, β2 ∈ (0, 1),∀P ∈ N, P ≥ 3.

The proof is in the appendix. Note that for AdaShift, proof for the always-convergence

property only holds when n = 1; larger n could cause divergence (e.g. n = 10 causes

divergence as in Fig. 4.5). The always-convergence property of ACProp and AdaShift

comes from the un-biased stepsize, while the stepsize for sync-optimizers are biased due

to correlation between numerator and denominator. Taking RMSProp as example of sync-

optimizer, the update is −αt
gt√
vt

= −αt
gt√

βt
2g

2
0+...+β2g2t−1+g2t

. Note that gt is used both in

the numerator and denominator, hence a large gt does not necessarily generate a large

stepsize. For the example in Eq. equation 4.7, the optimizer observes a gradient of −1 for

P − 1 times and a gradient of P once; due to the biased stepsize in sync-optimizers, the

gradient of P does not generate a sufficiently large stepsize to compensate for the effect

of wrong gradients −1, hence cause non-convergence. For async-optimizers, gt is not

used in the denominator, therefore, the stepsize is not biased and async-optimizers has the

always-convergence property.

Remark Reddi et al. (2018) proposed AMSGrad to track the element-wise maximum

of vt in order to achieve the always-convergence property. However, tracking the maxi-

mum in the denominator will in general generate a small stepsize, which often harms em-

pirical performance. We demonstrate this through experiments in later sections in Fig. 4.9.

Async-Uncenter vs Async-Center

In the last section, we demonstrated that async-optimizers have weaker convergence condi-

tions than sync-optimizers. In this section, within the async-optimizer family, we analyze

64

Figure 4.6: Area of convergence for the problem in Eq. equation 4.8. The numerical experiment is
performed under the same setting as in Fig. 4.4.Our results experimentally validated the claim that
compared with async-uncenter (AdaShift), async-center (ACProp) has a larger convergence area in
the hyper-parameter space.

the effect of centering second momentum. We show that compared with async-uncenter

(AdaShift), async-center (ACProp) has weaker convergence conditions. We consider the

following online convex problem:

ft(x) =



P/2× x, t%P == 1

−x, t%P == P − 2

0, otherwise

P > 3, P ∈ N, x ∈ [0, 1]. (4.8)

Initial point is x0 = 0.5. Optimal point is x∗ = 0. We have the following results:

Lemma 4.3.0.4. For the problem defined by Eq. equation 4.8, consider the hyper-parameter

tuple (β1, β2, P), there exists cases where ACProp converges but AdaShift with n = 1 di-

verges, but not vice versa.

We provide the proof in the appendix. Lemma. 4.3.0.4 implies that ACProp has a

larger area of convergence than AdaShift, hence the centering of second momentum fur-

ther weakens the convergence conditions. We first validate this claim with numerical ex-

periments in Fig. 4.6; for sanity check, we plot the trajectories of different optimizers in

Fig. 4.7. We observe that the convergence of AdaShift is influenced by delay step n, and

there’s no good criterion to select a good value of n, since Fig. 4.5 requires a small n for

convergence in problem equation 4.7, while Fig. 4.7 requires a large n for convergence in

65

Figure 4.7: Trajectories for problem defined
by Eq. equation 4.8. Note that the optimal point
is x∗ = 0.

Figure 4.8: Value of uncentered second mo-
mentum vt and centered momentum st for
problem equation 4.8.

problem equation 4.8. ACProp has a larger area of convergence, indicating that both async

update and second momentum centering helps weaken the convergence conditions.

We provide an intuitive explanation on why momentum centering helps convergence.

Due to the periodicity of the problem, the optimizer behaves almost periodically as t→∞.

Within each period, the optimizer observes one positive gradient P/2 and one negative

gradient -1. As in Fig. 4.8, between observing non-zero gradients, the gradient is always

0. Within each period, ACprop will perform a positive update P/(2
√
s+) and a negative

update −1/
√
s−, where s+ (s−) is the value of denominator before observing positive

(negative) gradient. Similar notations for v+ and v− in AdaShift. A net update in the

correct direction requires P

2
√
s+
> 1√

s−
, (or s+/s− < P 2/4).

When observing 0 gradient, for AdaShift, vt = β2vt−1 + (1 − β2)0
2; for ACProp,

st = β2st−1 + (1 − β2)(0 −mt)
2 where mt ̸= 0. Therefore, v− decays exponentially to

0, but s− decays to a non-zero constant, hence s+

s−
< v+

v−
, hence ACProp is easier to satisfy

s+/s− < P 2/4 and converge.

66

4.3.3 Async AdaBelief matches the oracle convergence rate

In this section, we show that ACProp converges at a rate ofO(1/
√
T) in the stochastic non-

convex case, which matches the oracle [3] for first-order optimizers and outperforms the

O(logT/
√
T) rate for sync-optimizers (Adam, RMSProp and AdaBelief) [24, 143, 181].

We further show that the upper bound on regret of async-center (ACProp) outperforms

async-uncenter (AdaShift) by a constant.

For the ease of analysis, we denote the update as: xt = xt−1 − αtAtgt, where At is the

diagonal preconditioner. For SGD, At = I; for sync-optimizers (RMSProp), At =
1√
vt+ϵ

;

for AdaShift with n = 1, At =
1√

vt−1+ϵ
; for ACProp, At =

1√
st−1+ϵ

. For async optimizers,

E[Atgt|g0, ...gt−1] = AtEgt; for sync-optimizers, this does not hold because gt is used in

At

Theorem 4.3.1 (convergence for stochastic non-convex case). Under the following as-

sumptions:

• f is continuously differentiable, f is lower-bounded by f ∗ and upper bounded by

Mf . ∇f(x) is globally Lipschitz continuous with constant L:

||∇f(x)−∇f(y)|| ≤ L||x− y|| (4.9)

• For any iteration t, gt is an unbiased estimator of∇f(xt) with variance bounded by

σ2. Assume norm of gt is bounded by Mg.

E
[
gt
]
= ∇f(xt) E

[
||gt −∇f(xt)||2

]
≤ σ2 (4.10)

then for β1, β2 ∈ [0, 1), with learning rate schedule as: αt = α0t
−η, α0 ≤ Cl

LC2
u
, η ∈

[0.5, 1)

67

for the sequence {xt} generated by ACProp, we have

1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 ≤ 2

Cl

[
(Mf − f ∗)α0T

η−1 +
LC2

uσ
2α0

2(1− η)
T−η

]
(4.11)

where Cl and Cu are scalars representing the lower and upper bound for At, e.g. ClI ⪯

At ⪯ CuI , where A ⪯ B represents B − A is semi-positive-definite.

Note that there’s a natural bound for Cl and Cu: Cu ≤ 1
ϵ

and Cl ≥ 1
2Mg

because ϵ is

added to denominator to avoid division by 0, and gt is bounded by Mg. Thm. 4.3.1 implies

that ACProp has a convergence rate of O(1/
√
T) when η = 0.5; equivalently, in order to

have ||∇f(x)||2 ≤ δ2, ACProp requires at most O(δ−4) steps.

Theorem 4.3.2 (Oracle complexity [3]). For a stochastic non-convex problem satisfying

assumptions in Theorem. 4.3.1, using only up to first-order gradient information, in the

worst case any algorithm requires at least O(δ−4) queries to find a δ-stationary point x

such that ||∇f(x)||2 ≤ δ2.

Optimal rate in big O Thm. 4.3.1 and Thm. 4.3.2 imply that async-optimizers achieves

a convergence rate of O(1/
√
T) for the stochastic non-convex problem, which matches

the oracle complexity and outperforms the O(logT/
√
T) rate of sync-optimizers (Adam

[127], RMSProp[143], AdaBelief [181]). Adam and RMSProp are shown to achieve

O(1/
√
T) rate under the stricter condition that β2,t → 1 [182]. A similar rate has been

achieved in AVAGrad [141], and AdaGrad is shown to achieve a similar rate [81]. Despite

the same convergence rate, we show that ACProp has better empirical performance.

Constants in the upper bound of regret Though both async-center and async-uncenter

optimizers have the same convergence rate with matching upper and lower bound in big O

notion, the constants of the upper bound on regret is different. Thm. 4.3.1 implies that the

upper bound on regret is an increasing function of 1/Cl and Cu, and

68

1/Cl =
√
Ku + ϵ, Cu = 1/(

√
Kl + ϵ)

where Kl and Ku are the lower and upper bound of second momentum, respectively.

We analyze the constants in regret by analyzing Kl and Ku. If we assume the observed

gradient gt follows some independent stationary distribution, with mean µ and variance

σ2, then approximately

Uncentered second momentum: 1/Cv
l =

√
Kv

u + ϵ ≈
√
µ2 + σ2 + ϵ (4.12)

Centered second momentum: 1/Cs
l =

√
Ks

u + ϵ ≈
√
σ2 + ϵ (4.13)

During early phase of training, in general |µ| ≫ σ, hence 1/Cs
l ≪ 1/Cv

l , and the centered

version (ACProp) can converge faster than uncentered type (AdaShift) by a constant factor

of around
√

µ2+σ2+ϵ√
σ2+ϵ

. During the late phase, gt is centered around 0, and |µ| ≪ σ, hence

Kv
l (for uncentered version) and Ks

l (for centered version) are both close to 0, hence Cu

term is close for both types.

Remark We emphasize that ACProp rarely encounters numerical issues caused by

a small st as denominator, even though Eq. equation 4.13 implies a lower bound for st

around σ2 which could be small in extreme cases. Note that st is an estimate of mixture

of two aspects: the change in true gradient ||∇ft(x) − ∇ft−1(x)||2, and the noise in gt

as an observation of ∇f(x). Therefore, two conditions are essential to achieve st = 0:

the true gradient ∇ft(x) remains constant, and gt is a noise-free observation of ∇ft(x).

Eq. equation 4.13 is based on assumption that ||∇ft(x) − ∇ft−1(x)||2 = 0, if we further

assume σ = 0, then the problem reduces to a trivial ideal case: a linear loss surface with

clean observations of gradient, which is rarely satisfied in practice. More discussions are

in appendix.

Empirical validations We conducted experiments on the MNIST dataset using a 2-

layer MLP. We plot the average value of vt for uncentered-type and st for centered-type

69

Figure 4.9: From left to right: (a) Mean value of denominator for a 2-layer MLP on MNIST
dataset. (b) Training loss of different optimizers for the 2-layer MLP model. (c) Performance of
AdaShift for VGG-11 on CIFAR10 varying with learning rate ranging from 1e-1 to 1e-5, we plot
the performance of ACProp with learning rate 1e-3 as reference. Missing lines are because their
accuracy are below display threshold. All methods decay learning rate by a factor of 10 at 150th
epoch. (d) Performance of AMSGrad for VGG-11 on CIFAR10 varying with learning rate under
the same setting in (c).

optimizers; as Fig. 4.9(a,b) shows, we observe st ≤ vt and the centered-type (ACProp,

AdaBelief) converges faster, validating our analysis for early phases. For epochs > 10, we

observe that min st ≈ min vt, validating our analysis for late phases.

As in Fig. 4.9(a,b), the ratio vt/st decays with training, and in fact it depends on model

structure and dataset noise. Therefore, empirically it’s hard to compensate for the constants

in regret by applying a larger learning rate for async-uncenter optimizers. As shown in

Fig. 4.9(c,d), for VGG network on CIFAR10 classification task, we tried different initial

learning rates for AdaShift (async-uncenter) and AMSGrad ranging from 1e-1 to 1e-5, and

their performances are all inferior to ACProp with a learning rate 1e-3. Please see Fig.4.11

for a complete table varying with hyper-parameters.

4.4 Experiments

We validate the performance of ACProp in various experiments, including image clas-

sification with convolutional neural networks (CNN), reinforcement learning with deep

Q-network (DQN), machine translation with transformer and generative adversarial net-

works (GANs). We aim to test both the generalization performance and training stability:

SGD family optimizers typically are the default for CNN models such as in image recog-

70

Figure 4.10: Test accuracy (mean± std) on CIFAR10 datset. Left to right: VGG-11, ResNet-34,
DenseNet-121.

Figure 4.11: Test accuracy (%) of
VGG network on CIFAR10 under differ-
ent hyper-parameters. We tested learning
rate in {10−1, 10−2, 10−3, 10−4} and ϵ ∈
{10−5, ..., 10−9}.

Figure 4.12: The reward (higher is better)
curve of a DQN-network on the four-rooms
problem. We report the mean and standard
deviation across 10 independent runs.

Table 4.2: Top-1 accuracy of ResNet18 on ImageNet. ⋄ is reported in PyTorch Documen-
tation, † is reported in [20], ∗ is reported in [88].

SGD Padam Adam AdamW RAdam AdaShift AdaBelief ACProp
69.76⋄ (70.23†) 70.07† 66.54∗ 67.93† 67.62∗ 65.28 70.08 70.46

nition [53] and object detection [128] due to their better generalization performance than

Adam; and Adam is typically the default for GANs [46], reinforcement learning [101] and

transformers [158], mainly due to its better numerical stability and faster convergence than

SGD. We aim to validate that ACProp can perform well for both cases.

Image classification with CNN We first conducted experiments on CIFAR10 image

classification task with a VGG-11 [145], ResNet34 [53] and DenseNet-121 [61]. We per-

formed extensive hyper-parameter tuning in order to better compare the performance of

different optimizers: for SGD we set the momentum as 0.9 which is the default for many

cases [53, 61], and search the learning rate between 0.1 and 10−5 in the log-grid; for

71

Table 4.3: BLEU score (higher is better) on machine translation with Transformer

Adam RAdam AdaShift AdaBelief ACProp
DE-EN 34.66±0.014 34.76±0.003 30.18±0.020 35.17±0.015 35.35±0.012
EN-VI 21.83±0.015 22.54±0.005 20.18±0.231 22.45±0.003 22.62±0.008
JA-EN 33.33±0.008 32.23±0.015 25.24±0.151 34.38±0.009 33.70±0.021
RO-EN 29.78± 0.003 30.26 ± 0.011 27.86±0.024 30.03±0.012 30.27±0.007

Table 4.4: FID (lower is better) for GANs

Adam RAdam AdaShift AdaBelief ACProp
DCGAN 49.29±0.25 48.24±1.38 99.32±3.82 47.25±0.79 43.43±4.38
RLGAN 38.18±0.01 40.61±0.01 56.18 ±0.23 36.58±0.12 37.15±0.13
SNGAN 13.14±0.10 13.00±0.04 26.62±0.21 12.70±0.17 12.44±0.02
SAGAN 13.98±0.02 14.25±0.01 22.11±0.25 14.17±0.14 13.54±0.15

other adaptive optimizers, including AdaBelief, Adam, RAdam, AdamW and AdaShift,

we search the learning rate between 0.01 and 10−5 in the log-grid, and search ϵ between

10−5 and 10−10 in the log-grid. We use a weight decay of 5e-2 for AdamW, and use 5e-4

for other optimizers. We report the mean± std for the best of each optimizer in Fig. 4.10:

for VGG and ResNet, ACProp achieves comparable results with AdaBelief and outper-

forms other optimizers; for DenseNet, ACProp achieves the highest accuracy and even

outperforms AdaBelief by 0.5%. As in Table 4.2, for ResNet18 on ImageNet, ACProp

outperforms other methods and achieves comparable accuracy to the best of SGD in the

literature, validating its generalization performance.

To evaluate the robustness to hyper-parameters, we test the performance of various

optimizers under different hyper-parameters with VGG network. We plot the results for

ACProp and AdaShift as an example in Fig. 4.11 and find that ACProp is more robust to

hyper-parameters and typically achieves higher accuracy than AdaShift.

Table 4.5: Performance comparison between AVAGrad and ACProp. ↑ (↓) represents
metrics that upper (lower) is better. ⋆ are reported in the AVAGrad paper [141]

WideResNet Test Error (↓) Transformer BLEU (↑) GAN FID (↓)
CIFAR10 CIFAR100 DE-EN RO-EN DCGAN SNGAN

AVAGrad 3.80⋆±0.02 18.76⋆±0.20 30.23±0.024 27.73±0.134 59.32±3.28 21.02±0.14
ACProp 3.67±0.04 18.72±0.01 35.35±0.012 30.27±0.007 43.34±4.38 12.44±0.02

72

Reinforcement learning with DQN We evaluated different optimizers on reinforce-

ment learning with a deep Q-network (DQN) [101] on the four-rooms task [149]. We tune

the hyper-parameters in the same setting as previous section. We report the mean and stan-

dard deviation of reward (higher is better) across 10 runs in Fig. 4.12. ACProp achieves

the highest mean reward, validating its numerical stability and good generalization.

Neural machine translation with Transformer We evaluated the performance of

ACProp on neural machine translation tasks with a transformer model [158]. For all op-

timizers, we set learning rate as 0.0002, and search for β1 ∈ {0.9, 0.99, 0.999}, β2 ∈

{0.98, 0.99, 0.999} and ϵ ∈ {10−5, 10−6, ...10−16}. As shown in Table. 4.3, ACProp

achieves the highest BLEU score in 3 out 4 tasks, and consistently outperforms a well-

tuned Adam.

Generative Adversarial Networks (GAN) The training of GANs easily suffers from

mode collapse and numerical instability [139], hence is a good test for the stability of

optimizers. We conducted experiments with Deep Convolutional GAN (DCGAN) [125],

Spectral-Norm GAN (SNGAN) [100], Self-Attention GAN (SAGAN) [172] and Relativistic-

GAN (RLGAN) [67]. We set β1 = 0.5, and search for β2 and ϵ with the same schedule as

previous section. We report the FID [56] on CIFAR10 dataset in Table. 4.4, where a lower

FID represents better quality of generated images. ACProp achieves the best overall FID

score and outperforms well-tuned Adam.

Remark Besides AdaShift, we found another async-optimizer named AVAGrad in

[141]. Unlike other adaptive optimizers, AVAGrad is not scale-invariant hence the default

hyper-parameters are very different from Adam-type (lr = 0.1, ϵ = 0.1). We searched for

hyper-parameters for AVAGrad for a much larger range, with ϵ between 1e-8 and 100 in the

log-grid, and lr between 1e-6 and 100 in the log-grid. For experiments with a WideRes-

Net, we replace the optimizer in the official implementation for AVAGrad by ACProp,

and cite results in the AVAGrad paper. As in Table 4.5, ACProp consistently outperforms

73

AVAGrad in CNN, Transformer, and GAN training.

4.5 Proofs and theoretical analysis

4.5.1 Convergence of AdaBelief in convex online learning case

For the ease of notation, we absorb ϵ into st. Equivalently, st ≥ c > 0,∀t ∈ [T]. For

simplicity, we omit the debiasing step in theoretical analysis as in [127]. Our analysis can

be applied to the de-biased version as well.

Lemma 4.5.0.1. [98] For any Q ∈ Sd
+ and convex feasible set F ⊂ Rd, suppose u1 =

minx∈F

∣∣∣∣∣∣Q1/2(x − z1)
∣∣∣∣∣∣ and u2 = minx∈F

∣∣∣∣∣∣Q1/2(x − z2)
∣∣∣∣∣∣, then we have

∣∣∣∣∣∣Q1/2(u1 −

u2)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Q1/2(z1 − z2)

∣∣∣∣∣∣.
Theorem 4.5.1. Let {θt} and {st} be the sequence obtained by the proposed algorithm, let

0 ≤ β2 < 1, αt =
α√
t
, β11 = β1, 0 ≤ β1t ≤ β1 < 1, st−1 ≤ st,∀t ∈ [T]. Let θ ∈ F , where

F ⊂ Rd is a convex feasible set with bounded diameterD∞. Assume f(θ) is a convex func-

tion and ||gt||∞ ≤ G∞/2 (hence ||gt −mt||∞ ≤ G∞) and st,i ≥ c > 0,∀t ∈ [T], θ ∈ F .

Denote the optimal point as θ∗. For θt generated with Algorithm ??, we have the following

bound on the regret:

T∑
t=1

ft(θt)− ft(θ∗) ≤
D2

∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2

∞
2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt

74

Proof:

θt+1 =
∏

F ,
√
st

(θt − αts
−1/2
t mt) = min

θ∈F

∣∣∣∣∣∣s1/4t [θ − (θt − αts
−1/2
t mt)]

∣∣∣∣∣∣
Note that

∏
F ,

√
st
(θ∗) = θ∗ since θ∗ ∈ F . Use θ∗i and θt,i to denote the ith dimension of θ∗

and θt respectively. From lemma equation 4.5.0.1, using u1 = θt+1 and u2 = θ∗, we have:

∣∣∣∣∣∣s1/4t (θt+1 − θ∗)
∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣s1/4t (θt − αts

−1/2
t mt − θ∗)

∣∣∣∣∣∣2
=
∣∣∣∣∣∣s1/4t (θt − θ∗)

∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 − 2αt⟨mt, θt − θ∗⟩

=
∣∣∣∣∣∣s1/4t (θt − θ∗)

∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2
− 2αt⟨β1tmt−1 + (1− β1t)gt, θt − θ∗⟩ (4.14)

Note that β1 ∈ [0, 1) and β2 ∈ [0, 1), rearranging inequality equation 4.14, we have:

⟨gt, θt − θ∗⟩ ≤
1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

αt

2(1− β1t)

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 − β1t
1− β1t

⟨mt−1, θt − θ∗⟩

≤ 1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

αt

2(1− β1t)

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2
+

β1t
2(1− β1t)

αt

∣∣∣∣∣∣s−1/4
t mt−1

∣∣∣∣∣∣2 + β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

Cauchy-Schwartz and Young’s inequality: ab ≤ a2ϵ

2
+
b2

2ϵ
,∀ϵ > 0

)
(4.15)

75

By convexity of f , we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
T∑
t=1

⟨gt, θt − θ∗⟩

≤
T∑
t=1

{ 1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

1

2(1− β1t)
αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + β1t
2(1− β1t)

αt

∣∣∣∣∣∣s−1/4
t mt−1

∣∣∣∣∣∣2
+

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2}(

By formula equation 4.15
)

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1

+
1

2(1− β1)

T∑
t=2

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

αt

−

∣∣∣∣∣∣s1/4t−1(θt − θ∗)
∣∣∣∣∣∣2

αt−1

]
+

T∑
t=1

[1

2(1− β1)
αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2]+ T∑
t=2

[β1
2(1− β1)

αt−1

∣∣∣∣∣∣s−1/4
t−1 mt−1

∣∣∣∣∣∣2]
+

T∑
t=1

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

0 ≤ st−1 ≤ st, 0 ≤ αt ≤ αt−1, 0 ≤ β1t ≤ β1 < 1
)

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1

+
1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt

−
s
1/2
t−1

αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2
+

T∑
t=1

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1

+
1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt

−
s
1/2
t−1

αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2
+

1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

since 0 ≤ β1t ≤ β1 < 1
)

(4.16)
76

Now bound
∑T

t=1 αt||s−1/4
t mt||2 in Formula equation 4.16, assuming 0 < c ≤ st,∀t ∈

[T].

T∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 = T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + αT

∣∣∣∣∣∣s−1/4
T mT

∣∣∣∣∣∣2
≤

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + αT√
c

∣∣∣∣∣∣mT

∣∣∣∣∣∣2
=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + α√
cT

d∑
i=1

(T∑
j=1

(1− β1,j)gj,i
T−j∏
k=1

β1,T−k+1

)2
(

since mT =
T∑

j=1

(1− β1,j)gj,i
T−j∏
k=1

β1,T−k+1

)

≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + α√
cT

d∑
i=1

(T∑
j=1

gj,i

T−j∏
k=1

β1

)2
(since 0 < β1,j ≤ β1 < 1)

=
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + α√
cT

d∑
i=1

(T∑
j=1

βT−j
1 gj,i

)2
≤

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + α√
cT

d∑
i=1

(T∑
j=1

βT−j
1

)(T∑
j=1

βT−j
1 g2j,i

)
(
Cauchy − Schwartz, ⟨u, v⟩2 ≤

∣∣∣∣∣∣u∣∣∣∣∣∣2∣∣∣∣∣∣v∣∣∣∣∣∣2, uj =√βT−j
1 , vj =

√
βT−j
1 gj,i

)
=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + α√
cT

d∑
i=1

1− βT
1

1− β1

T∑
j=1

βT−j
1 g2j,i

≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2 + α√
c(1− β1)

d∑
i=1

T∑
j=1

βT−j
1 g2j,i

1√
T(

since 1− βT
1 < 1

)
≤ α√

c(1− β1)

d∑
i=1

T∑
t=1

t∑
j=1

βt−j
1 g2j,i

1√
t(

Recursively bound each term in the sum
T∑
t=1

∗
)

77

=
α√

c(1− β1)

d∑
i=1

T∑
t=1

g2t,i

T∑
j=t

βj−t
1√
j

≤ α√
c(1− β1)

d∑
i=1

T∑
t=1

g2t,i

T∑
j=t

βj−t
1√
t

≤ α√
c(1− β1)2

d∑
i=1

T∑
t=1

g2t,i
1√
t(

since
T∑
j=t

βj−t
1 =

T−t∑
j=0

βj
1 =

1− βT−t+1
1

1− β1
≤ 1

1− β1

)

≤ α√
c(1− β1)2

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

√√√√ T∑
t=1

1

t(
Cauchy − Schwartz, ⟨u, v⟩ ≤

∣∣∣∣∣∣u∣∣∣∣∣∣∣∣∣∣∣∣v∣∣∣∣∣∣, ut = g2t,i, vt =
1√
t

)
≤ α
√
1 + log T√
c(1− β1)2

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

(
since

T∑
t=1

1

t
≤ 1 + log T

)
(4.17)

Apply formula equation 4.17 to equation 4.16, we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1

+
1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt

−
s
1/2
t−1

αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4
t mt

∣∣∣∣∣∣2
+

1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1

+
1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt

−
s
1/2
t−1

αt−1

]
+

(1 + β1)α
√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

By formula equation 4.17
)

78

≤ 1

2(1− β1)

d∑
i=1

s
1/2
1,i D

2
∞

α1

+
1

2(1− β1)

T∑
t=2

d∑
i=1

D2
∞

[s1/2t,i

αt

−
s
1/2
t−1,i

αt−1

]
+

(1 + β1)α
√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2

∞
2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt(
since x ∈ F ,with bounded diameter D∞, and

s
1/2
t,i

αt

≥
s
1/2
t−1,i

αt−1

by assumption.
)

≤ D2
∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2

∞
2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt(
αt ≥ αt+1 and perform telescope sum

)
(4.18)

Corollary 4.5.1.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem equation 4.5.1, then we

have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
D2

∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2

∞β1G∞

2(1− β1)(1− λ)2α
(4.19)

Proof: By sum of arithmetico-geometric series, we have:

T∑
t=1

λt−1
√
t ≤

T∑
t=1

λt−1t ≤ 1

(1− λ)2
(4.20)

Plugging equation 4.20 into equation 4.18, we can derive the results above.

79

4.5.2 Convergence of AdaBelief for non-convex stochastic optimiza-

tion

Assumptions

• A1, f is differentiable and has L−Lipschitz gradient, ||∇f(x)−∇f(y)|| ≤ L||x−

y||, ∀x, y. f is also lower bounded.

• A2, at time t, the algorithm can access a bounded noisy gradient, the true gradient

is also bounded. i.e. ||∇f(θt)|| ≤ H, ||gt|| ≤ H, ∀t > 1.

• A3, The noisy gradient is unbiased, and has independent noise. i.e. gt = ∇f(θt) +

ζt,Eζt = 0, ζt⊥ζj, ∀j, t ∈ N, t ̸= j

Theorem 4.5.2. [24] Suppose assumptions A1-A3 are satisfied, β1,t is chosen such that

0 ≤ β1,t+1 ≤ β1,t < 1, 0 < β2 < 1,∀t > 0. For some constant G,
∣∣∣∣∣∣αt

mt√
st

∣∣∣∣∣∣ ≤ G,∀t. Then

Adam-type algorithms yield

E
[T∑

t=1

αt⟨∇f(θt),∇f(θt)/
√
st⟩
]
≤

E

[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/
√
st

∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣
∣∣∣∣∣
1

+ C3

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣
∣∣∣∣∣
2]

+ C4

(4.21)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of

T , the expectation is taken w.r.t all randomness corresponding to {gt}.

Furthermore, let γt := minj∈[d] min{gi}ti=1
αi/(
√
si)j denote the minimum possible value

of effective stepsize at time t over all possible coordinate and past gradients {gi}ti=1. The

80

convergence rate of Adam-type algorithm is given by

mint∈[T] E

[∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2] = O

(
s1(T)

s2(T)

)
(4.22)

where s1(T) is defined through the upper bound of RHS of equation 4.21, and
∑T

t=1 γt =

Ω(s2(T))

Proof: Full proof is in [24].

Theorem 4.5.3. Assume minj∈[d](s1)j ≥ c > 0, noise in gradient has bounded variance,

Var(gt) = σ2
t ≤ σ2,∀t ∈ N, then the AdaBelief algorithm satisfies:

min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ H√

Tα

[C1α
2(H2 + σ2)(1 + log T)

c
+ C2

dα√
c
+ C3

dα2

c
+ C4

]
=

1√
T
(Q1 +Q2 log T)

where

Q1 =
H

α

[C1α
2(H2 + σ2)

c
+ C2

dα√
c
+ C3

dα2

c
+ C4

]
Q2 =

HC1α(H
2 + σ2)

c

Proof: We first derive an upper bound of the RHS of formula equation 4.21, then

derive a lower bound of the LHS of equation 4.21.

E
[T∑

t=1

∣∣∣∣∣∣αtgt/
√
st

∣∣∣∣∣∣2] ≤ 1

c
E
[T∑

t=1

d∑
i=1

(αt,igt,i)
2
] (

since 0 < c ≤ st,∀t ∈ [T]
)

=
1

c

d∑
i=1

T∑
t=1

α2
tE(gt,i)2

81

=
1

c

T∑
t=1

α2
tE
[∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 + ∣∣∣∣∣∣σt∣∣∣∣∣∣2] (4.23)

E
[T∑

t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1

]
= E

[d∑
i=1

T∑
t=1

αt−1√
st−1,i

− αt√
st, i

]
(

since αt ≤ αt−1, st,i ≥ st−1,i

)
= E

[d∑
i=1

α1√
s1,i
− αT√

sT,i

]
≤ E

[d∑
i=1

α1√
s1,i

]
≤ dα√

c

(
since 0 < c ≤ st, 0 ≤ αt ≤ α1 = α, ∀t

)
(4.24)

E
[T∑

t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2] = E
[T∑

t=1

d∑
i=1

(αt√
st
− αt−1√

st−1

)2
i

]
≤ E

[T∑
t=1

d∑
i=1

∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣
i

α√
c

]
(

Since
∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣ = αt−1√
st−1

− αt√
st
≤ αt−1√

st−1

≤ α√
c

)
≤ dα2

c

(
By equation 5.25

)
(4.25)

Next we derive the lower bound of LHS of equation 4.21.

E
[T∑

t=1

αt⟨∇f(θt),
∇f(θt)√

st
⟩
]
≥ 1

H
E
[T∑

t=1

αt

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2] ≥ α
√
T

H
min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2

(4.26)

Combining equation 4.23, equation 5.25, equation 5.83 and equation 5.85 to equa-

82

tion 4.21, we have:

α
√
T

H
min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ E

[T∑
t=1

αt⟨∇f(θt),
∇f(θt)√

st
⟩
]

≤ E
[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/
√
st

∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1
+ C3

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2]+ C4

≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c
+ C3

dα2

c
+ C4 (4.27)

≤ C1

c

T∑
t=1

E
[
α2
t (H

2 + σ2)
]
+ C2

dα√
c
+ C3

dα2

c
+ C4

≤ C1α
2(H2 + σ2)(1 + log T)

c
+ C2

dα√
c
+ C3

dα2

c
+ C4 (4.28)

(
since αt =

α√
t
,

T∑
t=1

1

t
≤ 1 + log T

)

Re-arranging above inequality, we have

min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ H√

Tα

[C1α
2(H2 + σ2)(1 + log T)

c
+ C2

dα√
c
+ C3

dα2

c
+ C4

]
=

1√
T
(Q1 +Q2 log T) (4.29)

where

Q1 =
H

α

[C1α
2(H2 + σ2)

c
+ C2

dα√
c
+ C3

dα2

c
+ C4

]
(4.30)

Q2 =
HC1α(H

2 + σ2)

c
(4.31)

83

Corollary 4.5.3.1. If c > C1H and assumptions for Theorem 4.5.2 are satisfied, we have:

1

T

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2] ≤ 1

T

1
1
H
− C1

c

[
C1α

2σ2

c

(
1 + log T

)
+ C2

dα√
c
+ C3

dα2

c
+ C4

]
(4.32)

Proof: From equation 5.85 and equation 4.27, we have

1

H
E
[T∑

t=1

αt

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2] ≤ E
[T∑

t=1

αt⟨∇f(θt),
∇f(θt)√

st
⟩
]

≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c
+ C3

dα2

c
+ C4

(4.33)

By re-arranging, we have

(1
H
− C1

c

) T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2] ≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c
+ C3

dα2

c
+ C4

≤ C1α
2σ2

c

(
1 + log T

)
+ C2

dα√
c
+ C3

dα2

c
+ C4

(4.34)

By assumption, 1
H
− C1

c
> 0, then we have

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2] ≤ 1
1
H
− C1

c

[
C1α

2σ2

c

(
1 + log T

)
+ C2

dα√
c
+ C3

dα2

c
+ C4

]
(4.35)

84

4.5.3 Analysis on convergence conditions of Asynchronous AdaBelief

Convergence analysis for Problem 4.7

Lemma 4.5.3.1. There exists an online convex optimization problem where Adam (and

RMSprop) has non-zero average regret, and one of the problem is in the form

ft(x) =


Px, if t mod P = 1

−x, Otherwise
x ∈ [−1, 1],∃P ∈ N, P ≥ 3 (4.36)

Proof. See [127] Thm.1 for proof.

Lemma 4.5.3.2. For the problem defined above, there’s a threshold of β2 above which

RMSprop converge.

Proof. See [106] for details.

Lemma 4.5.3.3. For the problem defined by Eq. equation 4.36, ACProp algorithm con-

verges ∀β1, β2 ∈ (0, 1),∀P ∈ N, P ≥ 3.

Proof. We analyze the limit behavior of ACProp algorithm. Since the observed gradient

is periodic with an integer period P , we analyze one period from with indices from kP to

kP + P , where k is an integer going to +∞.

From the update of ACProp, we observe that:

mkP = (1− β1)
kP∑
i=1

βkP−i
1 × (−1) + (1− β1)

k−1∑
j=0

β
kP−(jP+1)
1 (P + 1) (4.37)

(
For each observation with gradient P,we break it into P = −1 + (P + 1)

)
= −(1− β1)

kP∑
i=1

βkP−i
1 + (1− β1)(P + 1)β−1

1

k−1∑
j=0

β
P (k−j)
1 (4.38)

= −(1− βkP
1) + (1− β1)(P + 1)βP−1

1

1− β(k−1)P
1

1− βP
1

(4.39)

85

lim
k→∞

mkP = −1 + (P + 1)(1− β1)βP−1
1

1

1− βP
1

=
(P + 1)βP−1

1 − PβP
1 − 1

1− βP
1

(4.40)(
Since β1 ∈ [0, 1)

)

Next, we derive limk→∞ SkP . Note that the observed gradient is periodic, and limk→∞mkP =

limk→∞mkP+P , hence limk→∞ SkP = limk→∞ SkP+P . Start from index kP , we derive

variables up to kP + P with ACProp algorithm.

index = kP,

mkP , SkP (4.41)

index = kP + 1,

mkP+1 = β1m0 + (1− β1)P (4.42)

SkP+1 = β2SkP + (1− β2)(P −mkP)
2 (4.43)

index = kP + 2,

mkP+2 = β1mkP+1 + (1− β1)× (−1) (4.44)

= β2
1mkP + (1− β1)β1P + (1− β1)× (−1) (4.45)

SkP+2 = β2SkP+1 + (1− β2)(−1−mkP+1)
2 (4.46)

= β2
2SkP + (1− β2)β2(P −mkP)

2 + (1− β2)
[
β1(P −mkP)− (P + 1)

]2
(4.47)

index = kP + 3,

mkP+3 = β1mkP+2 + (1− β1)× (−1) (4.48)

= β3
1mkP + (1− β1)β2

1P + (1− β1)β1 × (−1) + (1− β1)× (−1)

(4.49)

SkP+3 = β2S2 + (1− β2)(−1−mkP+2)
2 (4.50)

= β3
2SkP + (1− β2)β2

2(P −mkP)
2

86

+ (1− β2)β2
[
β1(P −mkP)− (P + 1)

]2
(β2 + β2

1) (4.51)

index = kP + 4,

mkP+4 = β4
1mkP + (1− β1)β3

1P + (−1)(1− β1)(β2
1 + β1 + 1) (4.52)

SkP+4 = β2SkP+3 + (1− β2)(−1−mkP+3)
2 (4.53)

= β4
2SkP + (1− β2)β3

2(P −mkP)
2

+ (1− β2)β2
[
β1(P −mkP)− (P + 1)

]2
(β2

2 + β2β
2
1 + β4

1) (4.54)

· · ·

index = kP + P,

mkP+P = βP
1 mkP + (1− β1)βP−1

1 P + (−1)(1− β1)
[
βP−2
1 + βP−3

1 + ...+ 1
]

(4.55)

= βP
1 mkP + (1− β1)βP−1

1 P + (β1 − 1)
1− βP−1

1

1− β1
(4.56)

SkP+P = βP
2 SkP + (1− β2)βP−1

2 (P −mkP)
2

+ (1− β2)
[
β1(P −mkP)− (P + 1)

]2(
βP−2
2 + βP−3

2 β2
1 + ...+ β0

2β
2P−4
1

)
(4.57)

= βP
2 SkP + (1− β2)βP−1

2 (P −mkP)
2

+ (1− β2)
[
β1(P −mkP)− (P + 1)

]2
βP−2
2

1− (β2
1/β2)

P−1

1− (β2
1/β2)

(4.58)

As k goes to +∞, we have

lim
k→∞

mkP+P = lim
k→∞

mkP (4.59)

lim
k→∞

SkP+P = lim
k→∞

SkP (4.60)

87

From Eq. equation 4.56 we have:

mkP+P =
(P + 1)βP−1

1 − PβP
1 − 1

1− βP
1

(4.61)

which matches our result in Eq. equation 4.41. Similarly, from Eq. equation 4.58, take

limit of k →∞, and combine with Eq. equation 4.60, we have

lim
k→∞

SkP =
1− β2
1− βP

2

[
βP−1
2 (P − lim

k→∞
mkP)

2 +
[
β1(P − lim

k→∞
mkP)− (P + 1)

]2
βP−2
2

1− (β2
1/β2)

P−1

1− (β2
1/β2)

]
(4.62)

Since we have the exact expression for the limit, it’s trivial to check that

Si ≥ SkP , ∀i ∈ [kP + 1, kP + P], i ∈ N, k →∞ (4.63)

Intuitively, suppose for some time period, we only observe a constant gradient -1 without

observing the outlier gradient (P); the longer the length of this period, the smaller is the

corresponding S value, because S records the difference between observations. Note that

since last time that outlier gradient (P) is observed (at index kP + 1 − P), index kP has

the longest distance from index kP + 1 − P without observing the outlier gradient (P).

Therefore, SkP has the smallest value within a period of P as k goes to infinity.

For step kP + 1 to kP + P , the update on parameter is:

index = kP + 1,−∆kP+1
x =

α0√
kP + 1

P√
SkP + ϵ

(4.64)

index = kP + 2,−∆kP+2
x =

α0√
kP + 2

−1√
SkP+1 + ϵ

(4.65)

...

index = kP + P,−∆kP+P
x =

α0√
kP + P

−1√
SkP+P−1 + ϵ

(4.66)

88

So the negative total update within this period is:

α0√
kP + 1

P√
SkP + ϵ

−

[
α0√
kP + 2

1√
SkP+1 + ϵ

+ ...+
α0√

kP + P

1√
SkP+P + ϵ

]
︸ ︷︷ ︸

P−1 terms

(4.67)

≥ α0√
kP + 1

P√
SkP + ϵ

−

[
α0√
kP + 1

1√
SkP + ϵ

+ ...+
α0√
kP + 1

1√
SkP + ϵ

]
︸ ︷︷ ︸

P−1 terms

(4.68)(
Since SkP is the minimum within the period

)
=

α0√
SkP + ϵ

1√
kP + 1

(4.69)

where α0 is the initial learning rate. Note that the above result hold for every period of

length P as k gets larger. Therefore, for some K such that for every k > K, mkP and SkP

are close enough to their limits, the total update after K is:

∞∑
k=K

α0√
SkP + ϵ

1√
kP + 1

≈ α0√
limk→∞ SkP + ϵ

1√
P

∞∑
k=K

1√
k

If K is sufficiently large

(4.70)

where limk→∞ SkP is a constant determined by Eq. equation 4.62. Note that this is the

negative update; hence ACProp goes to the negative direction, which is what we expected

for this problem. Also considering that
∑∞

k=K
1√
k
→∞, hence ACProp can go arbitrarily

far in the correct direction if the algorithm runs for infinitely long, therefore the bias caused

by first K steps will vanish with running time. Furthermore, since x lies in the bounded

region of [−1, 1], if the updated result falls out of this region, it can always be clipped.

Therefore, for this problem, ACProp always converge to x = −1, ∀β1, β2 ∈ (0, 1). When

β2 = 1, the denominator won’t update, and ACProp reduces to SGD (with momentum),

and it’s shown to converge.

89

Lemma 4.5.3.4. For any constant β1, β2 ∈ [0, 1) such that β1 <
√
β2, there is a stochastic

convex optimization problem for which Adam does not converge to the optimal solution.

One example of such stochastic problem is:

ft(x) =


Px with probability 1+δ

P+1

−x with probability P−δ
P+1

x ∈ [−1, 1] (4.71)

Proof. See Thm.3 in [127].

Lemma 4.5.3.5. For the stochastic problem defined by Eq. equation 4.71, ACProp con-

verge to the optimal solution, ∀β1, β2 ∈ (0, 1).

Proof. The update at step t is:

∆t
x = −α0√

t

gt√
St−1 + ϵ

(4.72)

Take expectation conditioned on observations up to step t− 1, we have:

E∆t
x = −α0√

t

Etgt√
St−1 + ϵ

(4.73)

= − α0
√
t
(√

St−1 + ϵ
)Etgt (4.74)

= − α0
√
t
(√

St−1 + ϵ
)[P 1 + δ

P + 1
− P − δ
P + 1

]
(4.75)

= − α0δ
√
t
(√

St−1 + ϵ
) (4.76)

≤ − α0δ
√
t
(
P + 1 + ϵ

) (4.77)

where the last inequality is due to St ≤ (P + 1)2, because St is a smoothed version of

squared difference between gradients, and the maximum difference in gradient is P + 1.

90

Figure 4.13: Behavior of St and gt in ACProp of multiple periods for problem (1). Note
that as k →∞, the behavior of ACProp is periodic.

Therefore, for every step, ACProp is expected to move in the negative direction, also

considering that
∑∞

t=1
1√
t
→∞, and whenever x < −1 we can always clip it to -1, hence

ACProp will drift x to -1, which is the optimal value.

Numerical validations

We validate our analysis above in numerical experiments, and plot the curve of St and gt

for multiple periods (as k → ∞) in Fig. 4.13 and zoom in to a single period in Fig. 4.14.

Note that the largest gradient P (normalized as 1) appears at step kP + 1, and S takes it

minimal at step kP (e.g. SkP is the smallest number within a period). Note the update

for step kP +1 is gkP+1/
√
SkP , it’s the largest gradient divided the smallest denominator,

hence the net update within a period pushes x towards the optimal point.

91

Figure 4.14: Behavior of St and gt in ACProp of one period for problem (1).

Convergence analysis for Problem 4.8

Lemma 4.5.3.6. For the problem defined by Eq. equation 4.78, consider the hyper-parameter

tuple (β1, β2, P), there exists cases where ACProp converges but AdaShift with n = 1 di-

verges, but not vice versa.

ft(x) =



P/2× x, t%P == 1

−x, t%P == P − 2

0, otherwise

P > 3, P ∈ N, x ∈ [0, 1]. (4.78)

Proof. The proof is similar to Lemma. 4.5.3.3,we derive the limit behavior of different

methods.

index = kP,

mkP , vkP , skP

92

index = kP + 1,

mkP+1 = mkPβ1 + (1− β1)P/2 (4.79)

vkP+1 = vkPβ2 + (1− β2)P 2/4 (4.80)

skP+1 = skPβ2 + (1− β2)(P/2−mkP)
2 (4.81)

...

index = kP + P − 2,

mkP+P−2 = mkPβ
P−2
1 + (1− β1)

P

2
βP−3
1 + (1− β1)× (−1) (4.82)

vkP+P−2 = vkPβ
P−2
2 + (1− β2)

P 2

4
βP−3
2 + (1− β2) (4.83)

skP+P−2 = skPβ
P−2
2 + (1− β2)βP−3

2 (
P

2
−mkP)

2 + (1− β2)βP−4
2 m2

kP+1 + ...

+ (1− β2)β2m2
kP+P−4 + (1− β2)(mkP+P−3 + 1)2 (4.84)

index = kP + P − 1,

mkP+P−1 = mkP+P−1β1 (4.85)

vkP+P−1 = vkP+P−2β2 (4.86)

skP+P−1 = skPβ
P−1
2 + (1− β2)βP−1

2 (
P

2
−mkP)

2 + (1− β2)βP−3
2 m2

kP+1 + ...

+ (1− β2)β2
2m

2
kP+P−4 + (1− β2)β2(mkP+P−3 + 1)2 + (1− β2)m2

kP+P−2

(4.87)

index = kP + P,

mkP+P = mkPβ
P
1 + (1− β1)

P

2
βP−1
1 + (1− β1)(−1)β2

1 (4.88)

vkP+P = vkPβ
P
2 + (1− β2)

P 2

4
βP−1
2 + (1− β2)β2

2 (4.89)

skP+p = skPβ
P
2 + (1− β2)βP−1

2 (
P

2
−mkP)

2 + (1− β2)βP−2
2 m2

kP+1 + ...

+ (1− β2)β3
2m

2
kP+P−4 + (1− β2)β2

2(mkP+P−3 + 1)2

+ (1− β2)m2
kP+P−2β2 + (1− β2)m2

kP+P−1 (4.90)

93

Next, we derive the exact expression using the fact that the problem is periodic, hence

limk→∞mkP = limk→∞mkP+P , limk→∞ skP = limk→∞ skP+P , limk→∞ vkP = limk→∞ vkP+P ,

hence we have:

lim
k→∞

mkP = lim
k→∞

mkPβ
P
1 + (1− β1)

P

2
βP−1
1 + (1− β1)(−1)β2

1 (4.91)

lim
k→∞

mkP =
1− β1
1− βP

1

[P
2
βP−1
1 − β2

1

]
(4.92)

lim
k→∞

mkP−1 =
1

β1
lim
k→∞

mkP (4.93)

lim
k→∞

mkP−2 =
1

β1

[
lim
k→∞

mkP−1 − (1− β1)0
]

(4.94)

lim
k→∞

mkP−3 =
1

β1

[
lim
k→∞

mkP−2 − (1− β1)(−1)
]

(4.95)

Similarly, we can get

lim
k→∞

vkP =
1− β2
1− βP

2

[P 2

4
βP−1
2 + β2

2

]
(4.96)

lim
k→∞

vkP−1 =
1

β2
lim
k→∞

vkP (4.97)

lim
k→∞

vkP−2 =
1

β2
lim
k→∞

vkP−1 (4.98)

lim
k→∞

vkP−3 =
1

β2

[
lim
k→∞

vkP−2 − (1− β2)× 12
]

(4.99)

For ACProp, we have the following results:

lim
k→∞

skP = lim
k→∞

1− β2
1− βP

2

[
βP−4
2 (

P

2
−mkP)

2 + β3
2

βP−5
2 − β2(P−4)

1 β2
1− β2

1β2
+ β2

2(mkP+P−3 + 1)2

+ β2m
2
kP+P−2 +m2

kP+P−1

]
(4.100)

lim
k→∞

skP−1 = lim
k→∞

1

β2

[
skP − (1− β2)m2

kP

]
(4.101)

lim
k→∞

skP−2 = lim
k→∞

1

β2

[
skP−1 − (1− β2)m2

kP−1

]
(4.102)

94

Figure 4.15: Value of s+

s−
− v+

v−
when β1 =

0.2
Figure 4.16: Value of s+

s−
− v+

v−
when β1 =

0.9

lim
k→∞

skP−3 = lim
k→∞

1

β2

[
skP−2 − (1− β2)(mkP−2 + 1)2

]
(4.103)

(4.104)

Within each period, ACprop will perform a positive update P/(2
√
s+) and a negative

update −1/
√
s−, where s+ (s−) is the value of denominator before observing positive

(negative) gradient. Similar notations for v+ and v− in AdaShift, where s+ = skP , s
− =

skP−3, v
+ = vkP , v

− = vkP−3. A net update in the correct direction requires P

2
√
s+
> 1√

s−
,

(or s+/s− < P 2/4). Since we have the exact expression for these terms in the limit sense,

it’s trivial to verify that s+/s− ≤ v+/v− (e.g. the value s+

s−
− v+

v−
is negative as in Fig. 4.15

and 4.16), hence ACProp is easier to satisfy the convergence condition.

4.5.4 Numerical validations

We conducted more experiments to validate previous claims. We plot the area of conver-

gence for different β1 values for problem (1) in Fig. 4.17 to Fig. 4.19, and validate the

always-convergence property of ACProp with different values of β1. We also plot the area

of convergence for problem (2) defined by Eq. equation 4.78, results are shown in Fig. 4.20

to Fig. 4.22. Note that for this problem the always-convergence does not hold, but ACProp

has a much larger area of convergence than AdaShift.

95

Figure 4.17: Numerical experiments on problem (1) with β1 = 0.5

Figure 4.18: Numerical experiments on problem (1) with β1 = 0.5

Figure 4.19: Numerical experiments on problem (1) with β1 = 0.9

96

Figure 4.20: Numerical experiments on problem (43) with β1 = 0.85

Figure 4.21: Numerical experiments on problem (43) with β1 = 0.9

Figure 4.22: Numerical experiments on problem (43) with β1 = 0.95

97

(a) Trajectories of AdaShift with various n for
problem (1). Note that optimal is x∗ = −1.
Note that convergence of problem (1) requires a
small delay step n, but convergence of problem
(2) requires a large n, hence there’s no good
criterion to select an optimal n.

(b) Trajectories of AdaShift with various n for
problem (43). Note that optimal is x∗ = 0.0,
and the trajectories are oscillating at a high fre-
quency hence appears to be spanning an area.

98

4.5.5 Asynchronous AdaBelief matches the oracle convergence rate

for stochastic non-convex optimization

Problem definition and assumptions

The problem is defined as:

minx∈Rd f(x) = E[F (x, ξ)] (4.105)

where x typically represents parameters of the model, and ξ represents data which typically

follows some distribution.

We mainly consider the stochastic non-convex case, with assumptions below.

A.1 f is continuously differentiable, f is lower-bounde by f ∗. ∇f(f) is globalluy Lips-

chitz continuous with constant L:

||∇f(x)−∇f(y)|| ≤ L||x− y|| (4.106)

A.2 For any iteration t, gt is an unbiased estimator of ∇f(xt) with variance bounded by

σ2. The norm of gt is upper-bounded by Mg.

(a) Egt = ∇f(xt) (4.107)

(b) E
[
||gt −∇f(xt)||2

]
≤ σ2 (4.108)

99

Convergence analysis of Async-optimizers in stochastic non-convex optimization

Theorem 4.5.4 (Thm.4.1 in the main paper). Under assumptions A.1-2, assume f is upper

bounded by Mf , with learning rate schedule as

αt = α0t
−η, α0 ≤

Cl

LC2
u

, η ∈ [0.5, 1) (4.109)

the sequence generated by

xt+1 = xt − αtAtgt (4.110)

satisfies

1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 ≤ 2

Cl

[
(Mf − f ∗)α0T

η−1 +
LC2

uσ
2α0

2(1− η)
T−η

]
(4.111)

where Cl and Cu are scalars representing the lower and upper bound for At, e.g. ClI ⪯

At ⪯ CuI , where A ⪯ B represents B − A is semi-positive-definite.

Proof. Let

δt = gt −∇f(xt) (4.112)

then by A.2, Eδt = 0.

f(xt+1) ≤ f(xt) +
〈
∇f(xt), xt+1 − xt

〉
+
L

2

∣∣∣∣∣∣xt+1 − xt
∣∣∣∣∣∣2 (4.113)(

by L-smoothness of f(x)
)

= f(xt)− αt

〈
∇f(xt), Atgt

〉
+
L

2
α2
t

∣∣∣∣∣∣Atgt

∣∣∣∣∣∣2 (4.114)

= f(xt)− αt

〈
∇f(xt), At

(
δt +∇f(xt)

)〉
+
L

2
α2
t

∣∣∣∣∣∣Atgt

∣∣∣∣∣∣2 (4.115)

≤ f(xt)− αt

〈
∇f(xt), At∇f(xt)

〉
− αt

〈
∇f(xt), Atδt

〉
+
L

2
α2
tC

2
u

∣∣∣∣∣∣gt∣∣∣∣∣∣2
(4.116)

100

Take expectation on both sides of Eq. equation 4.116, conditioned on ξ[t−1] = {x1, x2, ...xt−1},

also notice that At is a constant given ξ[t−1], we have

E
[
f(xt+1)|x1, ...xt

]
≤ f(xt)− αt

〈
∇f(xt), At∇f(xt)

〉
+
L

2
α2
tC

2
uE
∣∣∣∣∣∣gt∣∣∣∣∣∣2 (4.117)(

At is independent of gt given {x1, ...xt−1}, and Eδt = 0
)

In order to bound RHS of Eq. equation 4.117, we first bound E
[
||gt||2

]
.

E
[∣∣∣∣∣∣gt∣∣∣∣∣∣2∣∣∣x1, ...xt] = E

[∣∣∣∣∣∣∇f(xt) + δt

∣∣∣∣∣∣2∣∣∣x1, ...xt] (4.118)

= E
[∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2∣∣∣x1, ...xt]+ E

[∣∣∣∣∣∣∇δt∣∣∣∣∣∣2∣∣∣x1, ...xt]+ 2E
[〈
δt,∇f(xt)

〉∣∣∣x1, ...xt]
(4.119)

≤
∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 + σ2 (4.120)(

By A.2, and∇f(xt) is a constant given xt
)

Plug Eq. equation 4.120 into Eq. equation 4.117, we have

E
[
f(xt+1)

∣∣∣x1, ...xt] ≤ f(xt)− αt

〈
∇f(xt), At∇f(xt)

〉
+
L

2
C2

uα
2
t

[∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 + σ2
]

(4.121)

= f(xt)−
(
αtCl −

LC2
u

2
α2
t

)∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 + LC2
uσ

2

2
α2
t (4.122)

By A.5 that 0 < αt ≤ Cl

LC2
u

, we have

αtCl −
LC2

uα
2
t

2
= αt

(
Cl −

LC2
uαt

2

)
≥ αt

Cl

2
(4.123)

101

Combine Eq. equation 4.122 and Eq. equation 4.123, we have

αtCl

2

∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 ≤ (αtCl −
LC2

uα
2
t

2

)∣∣∣∣∣∣∇f(xt)||2 (4.124)

≤ f(xt)− E
[
f(xt+1)

∣∣∣x1, ...xt]+ LC2
uσ

2

2
α2
t (4.125)

Then we have

Cl

2

∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 ≤ 1

αt

f(xt)−
1

αt

E
[
f(xt+1)

∣∣∣x1, ...xt]+ LC2
uσ

2

2
αt (4.126)

Perform telescope sum on Eq. equation 4.126, and recursively taking conditional expecta-

tions on the history of {xi}Ti=1, we have

Cl

2

T∑
t=1

||∇f(xt)
∣∣∣∣∣∣2 ≤ T∑

t=1

1

αt

(
Ef(xt)− Ef(xt+1)

)
+
LC2

uσ
2

2

T∑
t=1

αt (4.127)

=
Ef(x1)
α1

− Ef(xT+1)

αT

+
T∑
t=2

(1

αt

− 1

αt−1

)
Ef(xt) +

LC2
uσ

2

2

T∑
t=1

αt

(4.128)

≤ Mf

α1

− f ∗

αT

+Mf

T∑
t=1

(1

αt

− 1

αt−1

)
+
LC2

uσ
2

2

T∑
t=1

αt (4.129)

≤ Mf − f ∗

αT

+
LC2

uσ
2

2

T∑
t=1

αt (4.130)

≤ (Mf − f ∗)α0T
η +

LC2
uσ

2α0

2

(
ζ(η) +

T 1−η

1− η
+

1

2
T−η

)
(4.131)(

By sum of generalized harmonic series,
n∑

k=1

1

ks
∼ ζ(s) +

n1−s

1− s
+

1

2ns
+O(n−s−1), (4.132)

ζ(s) is Riemann zeta function.
)

102

Then we have

1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)∣∣∣∣∣∣2 ≤ 2

Cl

[
(Mf − f ∗)α0T

η−1 +
LC2

uσ
2α0

2(1− η)
T−η

]
(4.133)

Validation on numerical accuracy of sum of generalized harmonic series

We performed experiments to test the accuracy of the analytical expression of sum of har-

monic series. We numerically calculate
∑N

i=1
1
iη

for η varying from 0.5 to 0.999, and forN

ranging from 103 to 107 in the log-grid. We calculate the error of the analytical expression

by Eq. equation 4.132, and plot the error in Fig. 4.24. Note that the y-axis has a unit of

10−7, while the sum is typically on the order of 103, this implies that expression Eq. equa-

tion 4.132 is very accurate and the relative error is on the order of 10−10. Furthermore,

note that this expression is accurate even when η = 0.5.

Figure 4.24: The error between numerical sum for
∑N

i=1
1
iη

and the analytical form.

103

Chapter 5

Surrogate Gap Guided
Sharpness-Aware Minimization

(GSAM) improves generalization

5.1 Introduction

Modern neural networks are typically highly over-parameterized and easy to overfit to

training data, yet the generalization performances on unseen data (test set) often suffer

from a gap from the training performance [171]. Many studies try to understand the gen-

eralization of machine learning models, including the Bayesian perspective [97, 110], the

information perspective [84], the loss surface geometry perspective [60, 66] and the kernel

perspective [64, 163]. Besides analyzing the properties of a model after training, some

works study the influence of training and the optimization process, such as implicit regu-

larization of stochastic gradient descent (SGD) [14, 177], the learning rate’s regularization

effect [83], and the influence of the batch size [70].

These studies have led to various modifications to the training process to improve

generalization. [69] proposed to use Adam in early training phases for fast convergence,

then switch to SGD in late phases for better generalization. [63] proposed to average

104

weights to achieve a wider local minimum, which is expected to generalize better than

sharp minima. A similar idea was later used in Lookahead [174]. Entropy-SGD [19]

derived the gradient of local entropy to avoid solutions in sharp valleys. Entropy-SGD had

a nested Langevin iteration, inducing much higher computation costs than vanilla training.

The recently proposed Sharpness-Aware Minimization (SAM) [42] is a generic train-

ing scheme that improves generalization and has been shown especially effective for Vi-

sion Transformers [36] when large-scale pre-training is unavailable [23]. Suppose vanilla

training minimizes loss f(w) (e.g., the cross-entropy loss for classification), where w is

the parameter. SAM minimizes perturbed loss defined as fp(w) ≜ max||δ||≤ρ f(w + δ),

which is the maximum loss within radius ρ centered at model parameter w. Intuitively,

vanilla training seeks a single point with a low loss, while SAM searches for a neighbor-

hood within which the maximum loss is low. However, we show that a low perturbed loss

fp could appear in both flat and sharp minima, implying that only minimizing fp is not

always sharpness-aware.

Although the perturbed loss fp(w) might disagree with sharpness, we find surrogate

gap defined as h(w) ≜ fp(w) − f(w) agrees with sharpness — Lemma 5.3.0.3 shows

that the surrogate gap h is an equivalent measure of the dominant eigenvalue of Hessian

at a local minimum. Inspired by this observation, we propose the Surrogate Gap Guided

Sharpness Aware Minimization (GSAM) which jointly minimizes the perturbed loss fp

and the surrogate gap h: a low perturbed loss fp indicates a low training loss within the

neighborhood, and a small surrogate gap h avoids solutions in sharp valleys and hence nar-

rows the generalization gap between training and test performances (Thm. 5.5.3). When

both criteria are satisfied, we find a generalizable model with good performance.

GSAM consists of two steps for each update: 1) descend gradient∇fp(w) to minimize

the perturbed loss fp (this step is exactly the same as SAM), and 2) decompose gradi-

ent ∇f(w) of the original loss f(w) into components that are parallel and orthogonal to

105

∇fp(w), i.e., ∇f(w) = ∇∥f(w) + ∇⊥f(w), and perform an ascent step in ∇⊥f(w) to

minimize the surrogate gap h(w). Note that this ascent step does not change the perturbed

loss fp because ∇f⊥(w) ⊥ ∇fp(w) by construction.

We summarize our contribution as follows:

• We define surrogate gap, which measures the sharpness at local minima and is easy

to compute.

• We propose the GSAM method to improve generalization of neural networks. GSAM

is widely applicable and incurs negligible computation overhead compared to SAM.

• We demonstrate the convergence of GSAM and its provably better generalization than

SAM.

• We empirically validate GSAM over image classification tasks with various neural

architectures, including ResNets [53], Vision Transformers [36], and MLP-Mixers

[153].

5.2 Preliminaries

5.2.1 Notations

• f(w): A loss function f with parameter w ∈ Rk, where k is the dimension of param-

eters.

• ρt ∈ R: A scalar value controlling the amplitude of perturbation at step t.

• ϵ ∈ R: A small positive constant (to avoid division by 0, ϵ = 10−12 by default).

• wadv
t ≜ wt + ρt

∇f(wt)
||∇f(wt)||+ϵ

: The solution to max||w′−wt||≤ρt f(w
′) when ρt is small.

106

• fp(wt) ≜ max||δ||≤ρt f(wt + δ) ≈ f(wadv
t): The perturbed loss induced by f(wt). For

each wt, fp(wt) returns the worst possible loss f within a ball of radius ρt centered at

wt. When ρt is small, by Taylor expansion, the solution to the maximization problem

is equivalent to a gradient ascent from wt to wadv
t .

• h(w) ≜ fp(w) − f(w): The surrogate gap defined as the difference between fp(w)

and f(w).

• ηt ∈ R: Learning rate at step t.

• α ∈ R: A constant value that controls the scaled learning rate of the ascent step in

GSAM.

• g(t), g(t)p ∈ Rk: At the t-th step, the noisy observation of the gradients ∇f(wt),

∇fp(wt) of the original loss and perturbed loss, respectively.

• ∇f(wt) = ∇f∥(wt)+∇f⊥(wt): Decompose∇f(wt) into parallel component∇f∥(wt)

and vertical component∇f⊥(wt) by projection∇f(wt) onto∇fp(wt).

5.2.2 Sharpness-Aware Minimization

Conventional optimization of neural networks typically minimizes the training loss f(w)

by gradient descent w.r.t. ∇f(w) and searches for a single point w with a low loss. How-

ever, this vanilla training often falls into a sharp valley of the loss surface, resulting in

inferior generalization performance [19]. Instead of searching for a single point solution,

SAM seeks a region with low losses so that small perturbation to the model weights does

not cause significant performance degradation. SAM formulates the problem as:

minw fp(w) where fp(w) ≜ max||δ||≤ρ f(w + δ) (5.1)

107

where ρ is a predefined constant controlling the radius of a neighborhood. This perturbed

loss fp induced by f(w) is the maximum loss within the neighborhood. When the per-

turbed loss is minimized, the neighborhood corresponds to low losses (below the perturbed

loss). For a small ρ, using Taylor expansion around w, the inner maximization in Eq. 5.1

turns into a linear constrained optimization with solution

argmax||δ||≤ρ f(w+ δ) = argmax||δ||≤ρ f(w)+ δ
⊤∇f(w)+O(ρ2) = ρ

∇f(w)
||∇f(w)||

(5.2)

As a result, the optimization problem of SAM reduces to

minw fp(w) ≈ minw f(w
adv) where wadv ≜ w + ρ

∇f(w)
||∇f(w)||+ ϵ

(5.3)

where ϵ is a scalar (default: 1e-12) to avoid division by 0, and wadv is the “perturbed

weight” with the highest loss within the neighborhood. Equivalently, SAM seeks a solution

on the surface of the perturbed loss fp(w) rather than the original loss f(w) [42].

5.3 The surrogate gap measures the sharpness at a local

minimum

5.3.1 The perturbed loss is not always sharpness-aware

Despite that SAM searches for a region of low losses, we show that a solution by SAM is

not guaranteed to be flat. Throughout this paper we measure the sharpness at a local min-

imum of loss f(w) by the dominant eigenvalue σmax (eigenvalue with the largest absolute

value) of Hessian. For simplicity, we do not consider the influence of reparameterization

on the geometry of loss surfaces, which is thoroughly discussed in [79, 78].

108

Figure 5.1: Consider original loss f (solid line), perturbed loss fp ≜ max||δ||≤ρ f(w + δ)

(dashed line), and surrogate gap h(w) ≜ fp(w)− f(w). Intuitively, fp is approximately a
max-pooled version of f with a pooling kernel of width 2ρ, and SAM minimizes fp. From
left to right are the local minima centered at w1, w2, w3, and the valleys become flatter.
Since fp(w1) = fp(w3) < fp(w2), SAM prefers w1 and w3 to w2. However, a low fp could
appear in both sharp (w1) and flat (w3) minima, so fp might disagree with sharpness. On
the contrary, a smaller surrogate gap h indicates a flatter loss surface (Lemma 5.3.0.3).
From w1 to w3, the loss surface is flatter, and h is smaller.

Lemma 5.3.0.1. For some fixed ρ, consider two local minima w1 and w2, fp(w1) ≤

fp(w2) ≠⇒ σmax(w1) ≤ σmax(w2), where σmax is the dominant eigenvalue of the Hes-

sian.

We leave the proof to Appendix. Fig. 5.1 illustrates Lemma 5.3.0.1 with an example.

Consider three local minima denoted as w1 to w3, and suppose the corresponding loss

surfaces are flatter from w1 to w3. For some fixed ρ, we plot the perturbed loss fp and

surrogate gap h around each solution. Comparing w2 with w3: Suppose their vanilla losses

are equal, f(w2) = f(w3), then fp(w2) > fp(w3) because the loss surface is flatter around

w3, implying that SAM will prefer w3 to w2. Comparing w1 and w2: fp(w1) < fp(w2),

and SAM will favor w1 over w2 because it only cares about the perturbed loss fp, even

though the loss surface is sharper around w1 than w2.

109

5.3.2 The surrogate gap agrees with sharpness

We introduce the surrogate gap that agrees with sharpness, defined as:

h(w) ≜ f(wadv)− f(w) (5.4)

Intuitively, the surrogate gap represents the difference between the maximum loss within

the neighborhood and the loss at the center point. The surrogate gap has the following

properties.

Lemma 5.3.0.2. Suppose the perturbation amplitude ρ is sufficiently small, then the ap-

proximation to the surrogate gap in Eq. 5.4 is always non-negative, h(w) = f(wadv) −

f(w) ≥ 0,∀w.

Lemma 5.3.0.3. For a local minimum w∗, consider the dominate eigenvalue σmax of the

Hessian of loss f as a measure of sharpness. Considering the neighborhood centered atw∗

with a small radius ρ, the surrogate gap h(w∗) is an equivalent measure of the sharpness:

σmax ≈ 2h(w∗)/ρ2.

The proof is in Appendix. Lemma 5.3.0.2 tells that the surrogate gap is non-negative,

and Lemma 5.3.0.3 shows that the loss surface is flatter as h gets closer to 0. The two

lemmas together indicate that we can find a region with a flat loss surface by minimizing

the surrogate gap h(w).

110

5.4 Surrogate Gap Guided Sharpness-Aware Minimiza-

tion

5.4.1 General idea: Jointly minimize the perturbed loss and surro-

gate gap

Inspired by the analysis in Section 5.3, we propose Surrogate Gap Guided Sharpness-

Aware Minimzation (GSAM) to minimize both the perturbed loss fp and surrogate gap

h:

minw

(
fp(w), h(w)

)
. (5.5)

Intuitively, by minimizng fp we search for a region with a low perturbed loss similar to

SAM, and by minimizing h we search for a local minimum with a flat surface. A low

perturbed loss implies low training losses within the neighborhood, and a flat loss surface

reduces the generalization gap between training and test performances [19]. When both

are minimized, the solution gives rise to high accuracy and good generalization.

Potential caveat in optimization It is tempting and yet sub-optimal to combine the

objectives in Eq. 5.5 to arrive at minw fp(w) + λh(w), where λ is some positive scalar.

One caveat when solving this weighted combination is the potential conflict between the

gradients of the two terms, i.e.,∇fp(w) and∇h(w). We illustrate this conflict by Fig. 5.2,

where ∇h(w) = ∇fp(w) − ∇f(w) (the grey dashed arrow) has a negative inner product

with ∇fp(w) and ∇f(w). Hence, the gradient descent for the surrogate gap could poten-

tially increase the loss fp, harming the model’s performance. We empirically validate this

argument in Sec. 5.6.4.

111

5.4.2 Gradient decomposition and ascent for the multi-objective op-

timization

Our primary goal is to minimize fp because otherwise a flat solution of high loss is mean-

ingless, and the minimization of h should not increase fp. We propose to decompose

∇f(wt) into components that are parallel and orthogonal to ∇fp(wt), respectively (see

the black and blue arrows in Fig. 5.2):

∇f(wt) = ∇f∥(wt) +∇f⊥(wt). (5.6)

The key is that updating in the direction of ∇f⊥(wt) does not change the value of the

perturbed loss fp(wt) because ∇f⊥ ⊥ ∇fp by construction. Therefore, we propose to

perform an ascent step in the ∇f⊥(wt) direction, which achieves two goals simultane-

ously — it keeps the value of fp(wt) intact and meanwhile decreases the surrogate gap

h(wt) = fp(wt)− f(wt) (by increasing f(wt)).

The full GSAM Algorithm is shown in Algo. 16 and Fig. 5.2, where g(t), g(t)p are

noisy observations of ∇f(wt) and ∇fp(wt), respectively, and g(t)∥ , g
(t)
⊥ are noisy observa-

tions of ∇f∥(wt) and ∇f⊥(wt), respectively, by projecting g(t) onto g(t)p . We introduce a

constant α to scale the stepsize of the ascent step. Steps 1) to 2) are the same as SAM: At

current point wt, step 1) takes a gradient ascent to wadv
t followed by step 2) evaluating the

gradient g(t)p at wadv
t . Step 3) projects g(t) onto g(t)p , which requires negligible computation

compared to the forward and backward pass. In step 4),−ηtg(t)p is the same as in SAM and

minimizes the perturbed loss fp(wt) with gradient descent, and αηtg
(t)
⊥ performs an ascent

step in the orthogonal direction of g(t)p to minimize the surrogate gap h(wt) (equivalently

increase f(wt) and keep fp(wt) intact). In coding, GSAM feeds the “surrogate gradient”

∇fGSAM
t ≜ g

(t)
p − αg(t)⊥ to first-order gradient optimizers such as SGD and Adam.

112

The ascent step along g(t)⊥ does not harm convergence SAM demonstrates that min-

imizing fp successfully trains the network and generalizes better than minimizing f . Even

though our ascent step along g(t)⊥ increases f(w), it does not affect fp(w), so GSAM still

decreases the perturbed loss fp in a way similar to SAM. In Thm. 5.5.1, we formally prove

the convergence of GSAM. In Sec. 5.6 and Appendix C, we empirically validate that the

loss decreases and accuracy increases with training.

Illustration with a toy example We demonstrate different algorithms by a numerical

toy example shown in Fig. 5.3. The trajectory of GSAM is closer to the ridge and tends to

find a flat minimum. Intuitively, since the loss surface is smoother along the ridge than in

sharp local minima, the surrogate gap h(w) is small near the ridge, and the ascent step in

GSAM minimizes h to pushes the trajectory closer to the ridge. More concretely,∇f(wt)

points to a sharp local solution and deviates from the ridge; in contrast, wadv
t is closer

to the ridge and ∇f(wadv
t) is closer to the ridge descent direction than ∇f(wt). Note

that ∇fGSAM
t and ∇f(wt) always lie at different sides of ∇fp(wt) by construction (see

Fig. 5.2), hence∇fGSAM
t pushes the trajectory closer to the ridge than∇fp(wt) does. The

trajectory of GSAM is like descent along the ridge and tends to find flat minima.

5.5 Theoretical properties of GSAM

5.5.1 Convergence during training

Theorem 5.5.1. Consider a non-convex function f(w) with Lipschitz-smooth constant

L and lower bound fmin. Suppose we can access a noisy, bounded observation g(t)

(||g(t)||2 ≤ G,∀t) of the true gradient ∇f(wt) at the t-th step. For some constant α, with

learning rate ηt = η0/
√
t, and perturbation amplitude ρt proportional to the learning rate,

113

Figure 5.2: Illustration of GSAM.

Algorithm 16: GSAM Algorithm
For t = 1 to T

0)
ρt = ρmin + (ρmax − ρmin)

lr−lrmin

lrmax−lrmin

1) wadv
t = wt + ρt

g(t)

||g(t)||+ϵ
, g(t) is a

noisy observation of∇f(wt).
2) Get g(t)p (a noisy observation of
∇fp(wt)) by back-propagation at wadv

t .
3) g(t) = g

(t)
∥ + g

(t)
⊥ Decompose g(t)

into components that are parallel and
orthogonal to g(t)p .

4) Update weights:
Vanilla wt+1 = wt − ηtg(t)
SAM wt+1 = wt − ηtg(t)p

GSAM
wt+1 = wt − ηtg(t)p + αηtg

(t)
⊥

Figure 5.3: Consider the loss surface with a few sharp local minima. Left: Overview of
the procedures of SGD, SAM and GSAM. SGD takes a descent step at wt using ∇f(wt)
(orange), which points to a sharp local minima. SAM first performs gradient ascent in the
direction of ∇f(wt) to reach wadv

t with a higher loss, followed by descent with gradient
∇f(wadv

t) (green) at the perturbed weight. Based on ∇f(wt) and ∇f(wadv
t), GSAM up-

dates in a new direction (red) that points to a flatter region. Right: Trajectories by different
methods. SGD and SAM fall into different sharp local minima, while GSAM reaches a
flat region. A video is in the supplement for better visualization.

114

e.g., ρt = ρ0/
√
t, we have

1

T

T∑
t=1

E
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
≤ C1 + C2 log T√

T
,

1

T

T∑
t=1

E
∣∣∣∣∣∣∇f(wt)

∣∣∣∣∣∣2
2
≤ C3 + C4 log T√

T

where C1, C2, C3, C4 are some constants.

Thm. 5.5.1 implies both fp and f converge in GSAM at rate O(log T/
√
T) for non-

convex stochastic optimization, matching the convergence rate of first-order gradient opti-

mizers like Adam.

5.5.2 Generalization of GSAM

In this section, we show the surrogate gap in GSAM is provably lower than SAM’s, so

GSAM is expected to find a smoother minimum with better generalization.

Theorem 5.5.2 (PAC-Bayesian Theorem [96]). Suppose the training set has m elements

drawn i.i.d. from the true distribution, and denote the loss on the training set as f̂(w) =

1
m

∑m
i=1 f(w, xi), where we use xi to denote the (input, target) pair of the i-th element.

Let w be learned from the training set. Suppose w is drawn from posterior distributionQ.

Denote the prior distribution (independent of training) as P , then

Ew∼QExf(w, x) ≤ Ew∼Qf̂(w)+4

√(
KL(Q||P) + log

2m

a

)
/m with probability at least 1−a

Corollary 5.5.2.1. Suppose perturbation δ is drawn from distribution δ ∼ N (0, b2Ik), δ ∈

Rk, k is the dimension of w, then with probability at least
(
1− a

)[
1− e−

(
ρ√
2b

−
√
k
)2]

Ew∼QExf(w, x)− C ≤ max||δ||2≤ρ f̂(w + δ)− C︸ ︷︷ ︸
ĥ

+4

√(
KL(Q||P) + log

2m

a

)
/m

(5.7)

115

ĥ ≜ max||δ||2≤ρ f̂(w + δ)− f̂(w) = 1

m

m∑
i=1

[
max||δ||2≤ρ f(w + δ, xi)− f(w, xi)

]
(5.8)

where C = f̂(w) is the empirical training loss, and ĥ is the surrogate gap evaluated on

the training set.

Corollary 5.5.2.1 implies that minimizing ĥ (right hand side of Eq. 5.7) is expected to

achieve a tighter upper bound of the generalization gap (left hand side of Eq. 5.7). The

second term on the right of Eq. 5.7 is typically hard to analyze and often simplified to L2

regularization [42].

Theorem 5.5.3 (Unlike SAM, GSAM decreases the surrogate gap). Under the assumption

in Thm. 5.5.1, Thm. 5.5.2 and Corollary 5.5.2.1, we assume the Hessian has a lower-

bound |σ|min on the absolute value of eigenvalue, and the variance of noisy observation

g(t) is lower-bounded by c2. The surrogate gap h can be minimized by the ascent step

along the orthogonal direction g(t)⊥ . During training we minimize the sample estimate of

h. We use ∆ĥt to denote the amount that the ascent step in GSAM decreases ĥ for the t-th

step. Compared to SAM, the proposed method generates a total decrease in surrogate gap∑T
t=1 ∆ĥt, which is bounded by

αc2ρ20η0|σ|2min

G2
≤ lim

T→∞

T∑
t=1

∆ĥt ≤ 2.7αL2η0ρ
2
0 (5.9)

We provide proof in the appendix. The lower-bound of
∑T

t=1∆ĥt indicates that GSAM

achieves a provably non-trivial decrease in the surrogate gap. Combined with Corol-

lary 5.5.2.1, GSAM provably improves the generalization performance over SAM.

116

Table 5.1: Top-1 Accuracy (%) on ImageNet datasets for ResNets, ViTs and MLP-Mixers
trained with Vanilla SGD or AdamW, SAM, and GSAM optimizers.

Model Training ImageNet-v1 ImageNet-Real ImageNet-V2 ImageNet-R ImageNet-C
ResNet

ResNet50
Vanilla (SGD) 76.0 82.4 63.6 22.2 44.6

SAM 76.9 83.3 64.4 23.8 46.5
GSAM 77.2 83.9 65.2 24.4 47.9

ResNet101
Vanilla (SGD) 77.8 83.9 65.3 24.4 48.5

SAM 78.6 84.8 66.7 25.9 51.3
GSAM 78.9 85.2 67.1 26.3 52.1

ResNet152
Vanilla (SGD) 78.5 84.2 66.3 25.3 50.0

SAM 79.3 84.9 67.3 25.7 52.2
GSAM 79.8 85.8 68.1 26.8 53.5

Vision Transformer

ViT-S/32
Vanilla (AdamW) 68.4 75.2 54.3 19.0 43.3

SAM 70.5 77.5 56.9 21.4 46.2
GSAM 73.1 80.5 59.7 23.1 47.2

ViT-S/16
Vanilla (AdamW) 74.4 80.4 61.7 20.0 46.5

SAM 78.1 84.1 65.6 24.7 53.0
GSAM 79.5 85.1 67.0 24.6 53.1

ViT-B/32
Vanilla (AdamW) 71.4 77.5 57.5 23.4 44.0

SAM 73.6 80.3 60.0 24.0 50.7
GSAM 76.8 82.8 62.8 25.3 52.0

ViT-B/16
Vanilla (AdamW) 74.6 79.8 61.3 20.1 46.6

SAM 79.9 85.2 67.5 26.4 56.5
GSAM 81.2 86.6 69.3 27.2 55.6

MLP-Mixer

Mixer-S/32
Vanilla (AdamW) 63.9 70.3 49.5 16.9 35.2

SAM 66.7 73.8 52.4 18.6 39.3
GSAM 68.6 75.8 55.4 23.3 45.3

Mixer-S/16
Vanilla (AdamW) 68.8 75.1 54.8 15.9 35.6

SAM 72.9 79.8 58.9 20.1 42.0
GSAM 75.1 81.9 61.8 23.9 48.9

Mixer-S/8
Vanilla (AdamW) 70.2 76.2 56.1 15.4 34.6

SAM 75.9 82.5 62.3 20.5 42.4
GSAM 76.8 83.3 63.7 23.6 48.2

Mixer-B/32
Vanilla (AdamW) 62.5 68.1 47.6 14.6 33.8

SAM 72.4 79.0 58.0 22.8 46.2
GSAM 73.8 80.0 60.0 27.8 52.4

Mixer-B/16
Vanilla (AdamW) 66.4 72.1 50.8 14.5 33.8

SAM 77.4 83.5 63.9 24.7 48.8
GSAM 78.3 84.5 65.7 28.7 55.0

117

0.050 0.075 0.100 0.125 0.150 0.175 0.200
72

73

74

75

76

77

To
p-

1
Ac

cu
ra

cy
 (%

)

Top-1 Accuracy
= 0.4
= 0.5
= 0.6

0.050 0.075 0.100 0.125 0.150 0.175 0.200
1.0

1.2

1.4

1.6

1.8

2.0

2.2

ln
(2

h/
2)

Estimation of dominant eigenvalue
= 0.4
= 0.5
= 0.6

0.050 0.075 0.100 0.125 0.150 0.175 0.200

2.5

3.0

3.5

4.0

4.5

ln
(

m
ax

(H
))

Measured dominant eigenvalue
= 0.4
= 0.5
= 0.6

Figure 5.4: Influence of ρ and α on the training of ViT-B/32. Left: Top-1 accuracy on
ImageNet. Middle: Estimation of the dominant eigenvalues from the surrogate gap,
lnσmax ≈ ln(2h/ρ2). Right: Dominant eigenvalues of the Hessian calculated via the
power iteration. Middle and right figures match in the trend of curves, validating that the
surrogate gap can be viewed as a proxy of the dominant eigenvalue of Hessian.

5.6 Experiments

5.6.1 GSAM improves test performance on various model architec-

tures

We conduct experiments with ResNets [53], Vision Transformers (ViTs) [36] and MLP-

Mixers [153]. Following the settings by [23], we train on the ImageNet-1k [31] training

set using the Inception-style [150] pre-processing without extra training data or strong

augmentation. For all models, we search for the best learning rate and weight decay for

vanilla training, and then use the same values for the experiments with SAM and GSAM.

For ResNets, we search for ρ from 0.01 to 0.05 with a stepsize 0.01. For ViTs and Mixers,

we search for ρ from 0.05 to 0.6 with a stepsize 0.05. In GSAM, we search for α in

{0.01, 0.02, 0.03} for ResNets and α in {0.1, 0.2, 0.3} for ViTs and Mixers. Considering

that each step in SAM and GSAM requires twice the computation of vanilla training, we

experiment with the vanilla training for twice the epochs of SAM and GSAM, but we

observe no significant improvements from the longer training (Table ?? in appendix). We

summarize the best hyper-parameters for each model in Appendix ??.

118

We report the performances on ImageNet [31], ImageNet-v2 [126] and ImageNet-Real

[12] in Table 5.1. GSAM consistently improves over SAM and vanilla training (with SGD

or AdamW): on ViT-B/32, GSAM achieves +5.4% improvement over AdamW and +3.2%

over SAM in top-1 accuracy; on Mixer-B/32, GSAM achieves +11.3% over AdamW and

+1.4% over SAM. We ignore the standard deviation since it is typically negligible (<

0.1%) compared to the improvements. We also test the generalization performance on

out-of-distribution data (ImageNet-R and ImageNet-C), and the observation is consistent

with that on ImageNet, e.g., +5.0% on ImageNet-R and +6.2% on ImageNet-C for Mixer-

B/32.

5.6.2 GSAM finds a minimum whose Hessian has small dominant

eigenvalues

Lemma 5.3.0.3 indicates that the surrogate gap h is an equivalent measure of the dominant

eigenvalue of the Hessian, and minimizing h equivalently searches for a flat minimum.

We empirically validate this in Fig. 5.4. As shown in the left subfigure, for some fixed

ρ, increasing α decreases the dominant value and improves generalization (test accuracy).

In the middle subfigure, we plot the dominant eigenvalues estimated by the surrogate gap,

σmax ≈ 2h/ρ2 (Lemma 5.3.0.3). In the right subfigure, we directly calculate the dominant

eigenvalues using the power-iteration [99]. The estimated dominant eigenvalues (middle)

match the real eigenvalues σmax (right) in terms of the trend that σmax decreases with α and

ρ. Note that the surrogate gap h is derived over the whole training set, while the measured

eigenvalues are over a subset to save computation. These results show that the ascent step

in GSAM minimizes the dominant eigenvalue by minimizing the surrogate loss, validating

Thm 5.5.3.

119

64

66

68

70

72

To
p-

1
Ac

cu
ra

cy
 (\

%
)

ImageNet accuracy
Vanilla
Entropy
SAM
SAM+ascent
ASAM
ASAM+ascent

70

72

74

76

78

To
p-

1
Ac

cu
ra

cy
 (\

%
)

ImageNet-Real accuracy
Vanilla
Entropy
SAM
SAM+ascent
ASAM
ASAM+ascent

50

52

54

56

58

To
p-

1
Ac

cu
ra

cy
 (\

%
)

ImageNet-v2 accuracy
Vanilla
Entropy
SAM
SAM+ascent
ASAM
ASAM+ascent

Figure 5.5: Top-1 accuracy of Mixer-S/32 trained with different methods. “+ascent” rep-
resents applying the ascent step in Algo. 16 to an optimizer. Note that our GSAM is
described as SAM+ascent(=GSAM) for consistency.
Table 5.2: Results (%) of
GSAM and min(fp+λh) on
ViT-B/32

Dataset min(fp + λh) GSAM
ImageNet 75.4 76.8
ImageNet-Real 81.1 82.8
ImageNet-v2 60.9 62.8
ImageNet-R 23.9 25.3

Table 5.3: Transfer learning results (top-1 accuracy, %)
ViT-B/16 Mixer-B/16 Mixer-S/16

Vanilla SAM GSAM Vanilla SAM GSAM Vanilla SAM GSAM
CIFAR10 98.1 98.6 98.9 95.4 97.8 98.5 94.1 96.1 98.4
CIFAR100 87.6 89.1 89.7 80.0 86.4 88.0 77.9 82.4 87.8
Flowers 88.5 91.8 91.7 82.8 90.0 90.0 83.3 87.9 90.5
Pets 91.9 93.1 94.1 86.1 92.5 93.5 86.1 88.7 93.5
mean 91.5 93.2 93.6 86.1 91.7 92.5 85.4 88.8 92.6

5.6.3 Comparison with methods in the literature

Section 5.6.1 compares GSAM to SAM and vanilla training. In this subsection, we fur-

ther compare GSAM against Entropy-SGD [19] and Adaptive-SAM (ASAM) [78], which

are designed to improve generalization. Note that Entropy-SGD uses SGD in the inner

Langevin iteration and can be combined with other base optimizers such as AdamW as

the outer loop. For Entropy-SGD, we find the hyper-parameter “scope” from 0.0 and 0.9,

and search for the inner-loop iteration number between 1 and 14. For ASAM, we search

for ρ between 1 and 7 (10× larger than in SAM) as recommended by the ASAM authors.

Note that the only difference between ASAM and SAM is the derivation of the perturba-

tion, so both can be combined with the proposed ascent step. As shown in Fig. 5.5, the

proposed ascent step increases test accuracy when combined with both SAM and ASAM

and outperforms Entropy-SGD and vanilla training.

120

Light Medium Strong

72

74

76

78

80

To
p-

1
Ac

cu
ra

cy
 (\

%
)

Influence of augmentations
Vanilla
SAM
GSAM

Adam AdaBelief

70

72

74

76

78

To
p-

1
Ac

cu
ra

cy
 (%

)

Influence of base optimizers
Vanilla
SAM
GSAM

ImageNet ImageNet-Real ImageNet-v2
50

55

60

65

70

75

80

Im
pr

ov
em

en
t i

n
Ac

cu
ra

cy
 (%

) min(fp, h) v.s. min(f, h)
min(fp, h)
min(f, h)

Figure 5.6: Top-1 accuracy of ViT-B/32 for the additional studies (Section 5.6.4). Left:
from left to right are performances under different data augmentations (details in Ap-
pendix ??) , where vanilla method is trained for 2× the epochs. Middle: performance
with different base optimizers. Right: Comparison between min(fp, h) and min(f, h).

5.6.4 Additional studies

GSAM outperforms a weighted combination of the perturbed loss and surrogate gap

With an example in Fig. 5.2, we demonstrate that directly minimizing fp(w) + λh(w) as

discussed in Sec. 5.4.1 is sub-optimal because ∇h(w) could conflict with ∇fp(w) and

∇f(w). We empirically validate this argument on ViT-B/32. We search for λ between 0.0

and 0.5 with a step 0.1 and search for ρ in the same grid as SAM and GSAM. We report the

best accuracy of each method. Top-1 accuracy in Table 5.2 show the superior performance

of GSAM, validating our analysis.

min(fp, h)min(fp, h)min(fp, h) vs. min(f, h)min(f, h)min(f, h) GSAM solves min(fp, h) by descent in ∇fp, decomposing

∇f onto ∇fp, and an ascent step in the orthogonal direction to increase f while keep fp

intact. Alternatively, we can also optimize min(f, h) by descent in∇f , decomposing∇fp

onto∇f , and a descent step in the orthogonal direction to decrease fp while keep f intact.

The two GSAM variations perform similarly (see Fig. 5.6, right). We choose min(fp, h)

mainly to make the minimal change to SAM.

GSAM benefits transfer learning Using weights trained on ImageNet-1k, we finetune

models with SGD on downstream tasks including the CIFAR10/CIFAR100 [77], Oxford-

flowers [112] and Oxford-IITPets [114]. Results in Table 5.3 shows that GSAM leads to

better transfer performance than vanilla training and SAM.

121

GSAM remains effective under various data augmentations We plot the top-1 ac-

curacy of a ViT-B/32 model under various Mixup [173] augmentations in Fig. 5.6 (left

subfigure). Under different augmentations, GSAM consistently outperforms SAM and

vanilla training.

GSAM is compatible with different base optimizers GSAM is generic and appli-

cable to various base optimizers. We compare vanilla training, SAM and GSAM using

AdamW [90] and AdaBelief [181] with default hyper-parameters. Fig. 5.6 (middle subfig-

ure) shows that GSAM performs the best, and SAM improves over vanilla training.

5.7 Proofs

5.7.1 Proof of Lemma. 5.3.0.1

Suppose ρ is small, perform Taylor expansion around the local minima w, we have:

f(w + δ) = f(w) +∇f(w)⊤δ + 1

2
δ⊤Hδ +O(||δ||3) (5.10)

where H is the Hessian, and is positive semidefinite at a local minima. At a local minima,

∇f(w) = 0, hence we have

f(w + δ) = f(w) +
1

2
δ⊤Hδ +O(||δ||3) (5.11)

and

fp(w) = max||δ||≤ρ f(w + δ) = f(w) +
1

2
ρ2σmax(H) +O(||δ||3) (5.12)

where σmax is the dominate eigenvalue (eigenvalue with the largest absolute value). Now

consider two local minima w1 and w2 with dominate eigenvalue σ1 and σ2 respectively,

122

we have

fp(w1) ≈ f(w1) +
1

2
ρ2σ1 fp(w2) ≈ f(w2) +

1

2
ρ2σ2

We have fp(w1) > fp(w2) ≠⇒ σ1 > σ2 and σ1 > σ2 ≠⇒ fp(w1) > fp(w2) because the

relation between f(w1) and f(w2) is undetermined. □

5.7.2 Proof of Lemma. 5.3.0.2

Since ρ is small, we can perform Taylor expansion around w,

h(w) = f(w + δ)− f(w)

= δ⊤∇f(w) +O(ρ2)

= ρ||∇f(w)||2 +O(ρ2) > 0 (5.13)

where the last line is because δ is approximated as δ = ρ ∇f(w)
||∇f(w)||2+ϵ

, hence has the same

direction as∇f(w). □

5.7.3 Proof of Lemma. 5.3.0.3

Since ρ is small, we can approximate f(w) with a quadratic model around a local minima

w:

f(w + δ) = f(w) +
1

2
δ⊤Hδ +O(ρ3)

where H is the Hessian at w, assumed to be positive semidefinite at local minima. Nor-

malize δ such that ||δ||2 = ρ, Hence we have:

h(w) = fp(w)− f(w) = max||δ||2≤ρ f(w + δ)− f(w) = 1

2
σmaxρ

2 +O(ρ3) (5.14)

123

where σmax is the dominate eigenvalue of the hessian H , and first order term is 0 because

the gradient is 0 at local minima. Therefore, we have σmax ≈ 2h(w)/ρ2. □

5.7.4 Proof of Thm. 5.5.1

For simplicity we consider the base optimizer is SGD. For other optimizers such as Adam,

we can derive similar results by applying standard proof techniques in the literature to our

proof.

Step 1: Convergence w.r.t function fp(w)

By L−smoothness of f(w), we have

||∇f(w1)−∇f(w2)|| ≤ L||w1 − w2|| (5.15)

Hence we can derive the smoothness of fp(w)

∣∣∣∣∣∣∇fp(w1)−∇fp(w2)
∣∣∣∣∣∣ = ∣∣∣∣∣∣∇f(w1 + ρ

∇f(w1)

||∇f(w1)||+ ϵ

)
−∇f

(
w2 + ρ

∇f(w2)

||∇f(w2)||+ ϵ

)∣∣∣∣∣∣
(5.16)

≤ L
∣∣∣∣∣∣(w1 + ρ

∇f(w1)

||∇f(w1)||+ ϵ

)
−
(
w2 + ρ

∇f(w2)

||∇f(w2)||+ ϵ

)∣∣∣∣∣∣
(5.17)(

f is Lipschitz
)

≤ L
∣∣∣∣∣∣w1 − w2

∣∣∣∣∣∣+ Lρ
∣∣∣∣∣∣ ∇f(w1)

||∇f(w1)||+ ϵ
− ∇f(w2)

||∇f(w2)||+ ϵ

∣∣∣∣∣∣
(5.18)

≤ L
∣∣∣∣∣∣w1 − w2

∣∣∣∣∣∣+ Lρ

ϵ

∣∣∣∣∣∣∇f(w1)−∇f(w2)
∣∣∣∣∣∣ (5.19)(x

||x||+ ϵ
is Lipschitz-continuous with constant

1

ϵ

)

124

≤
(
L+

L2ρ

ϵ

)∣∣∣∣∣∣w1 − w2

∣∣∣∣∣∣ (5.20)(
f is Lipschitz

)

Hence we prove the smoothness of fp. For simplicity, we denote Lp = L + L2ρ
ϵ

as the

Lipschitz constant of fp(w).

For simplicity of notation, we denote the update at step t as

dt = −ηtg(t)p + ηtαg
(t)
⊥ (5.21)

By smoothness of fp(w), we have

fp(wt+1) ≤ fp(wt) + ⟨∇fp(wt), dt⟩+
Lp

2

∣∣∣∣∣∣dt∣∣∣∣∣∣2
2

(5.22)

= fp(wt) + ⟨∇fp(wt),−ηtg(t)p + αηtg
(t)
⊥ ⟩+

Lp

2

∣∣∣∣∣∣dt∣∣∣∣∣∣2
2

(5.23)

Take expectation conditioned on observation up to step t (for simplicity of notation, we

use E short for Ex to denote expectation over all possible data points) conditioned on

observations up to step t, we have

Efp(wt+1)− fp(wt) ≤ −ηt⟨∇fp(wt),Eg(t)p ⟩+ αηt⟨∇fp(wt),Eg(t)⊥ ⟩

+
Lp

2
η2tE
∣∣∣∣∣∣− g(t)p + αg

(t)
⊥

∣∣∣∣∣∣2
2

(5.24)

≤ −ηtE
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
+ 0 +

Lp(α + 1)2

2
G2η2t (5.25)(

Since Eg(t)⊥ is orthogonal to∇fp(wt) by construction,

||g(t)|| ≤ G by assumption
)

125

Hence we have

ηtE
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
≤ fp(wt)− Efp(wt+1) +

Lp(α + 1)2G2

2
η2t (5.26)

By telescope sum, we have:

T∑
t=1

ηtE
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
≤ fp(w0)− Efp(wT) +

Lp(α + 1)2G2

2

T∑
t=1

η2t (5.27)

Since ηt = η0/
√
t, we have

η0√
T

T∑
t=1

E
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
≤ LHS ≤ RHS (5.28)

≤ fp(w0)− fmin +
Lp(1 + α)2G2η20

2

(
1 + log T

)
(5.29)

(5.30)

Hence

1

T

T∑
t=1

E
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
≤
[fp(w0)− fmin

η0
+
Lp(1 + α)2G2η20

2

(
1 + log T

)]
/
√
T (5.31)

=
C1 + C2 log T√

T
(5.32)

where C1, C2 are some constants. This implies that the regret w.r.t fp(w) converges at rate

O(log T/
√
T).

126

Step 2: Convergence w.r.t. function f(w)

We prove the risk for f(w) convergences for non-convex stochastic optimization case us-

ing SGD. Denote the update at step t as

dt = −ηtg(t)p + αηtg
(t)
⊥ (5.33)

By smoothness of f , we have

f(wt+1) ≤ f(wt) + ⟨∇f(wt), dt⟩+
L

2

∣∣∣∣∣∣dt∣∣∣∣∣∣2
2

(5.34)

= f(wt) + ⟨∇f(wt),−ηtg(t)p + αηtg
(t)
⊥ ⟩+

L

2

∣∣∣∣∣∣dt∣∣∣∣∣∣2
2

(5.35)

For simplicity, we introduce a scalar βt such that

∇f∥(wt) = βt∇fp(wt) (5.36)

where ∇f∥(wt) is the projection of ∇f(wt) onto ∇fp(wt). When perturbation amplitude

ρ is small, we expect βt to be very close to 1.

Take expectation conditioned on observations up to step t for both sides of Eq. 5.35,

we have:

Ef(wt+1) ≤ f(wt) +

〈
∇f(wt),−

ηt
βt

(
∇f(wt)−∇f⊥(wt)

)
+ αηtEg(t)⊥

〉
+
L

2
E
∣∣∣∣∣∣dt∣∣∣∣∣∣2

2

(5.37)

= f(wt)−
ηt
βt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2
2
+
(1

βt
+ α

)
ηt

〈
∇f(wt),∇f⊥(wt)

〉
+
L

2
E
∣∣∣∣∣∣dt∣∣∣∣∣∣2

2

(5.38)

127

= f(wt)−
ηt
βt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2
2
+
(1

βt
+ α

)
ηt

〈
∇f(wt),∇f(wt) sin θt

〉
+
L

2
E
∣∣∣∣∣∣dt∣∣∣∣∣∣2

2

(5.39)(
θt is the angle between∇fp(wt) and ∇f(wt)

)
= f(wt)−

ηt
βt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2
2
+
(1

βt
+ α

)
ηt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2
2
(| tan θt|+O(θ2t)) +

L

2
E
∣∣∣∣∣∣dt∣∣∣∣∣∣2

2

(5.40)(
sinx = x+O(x2), tanx = x+O(x2) when x→ 0.

)

Also note when perturbation amplitude ρt is small, we have

∇fp(wt) = ∇f(wt + δt) = ∇f(wt) +
ρt

||∇f(wt)||2 + ϵ
H(wt)∇f(wt) +O(ρ2t) (5.41)

where δt = ρt
∇f(wt)

||∇f(wt)||2 by definition, H(wt) is the Hessian. Hence we have

| tan θt| ≤
||∇fp(wt)−∇f(wt)||

||∇f(wt)||
≤ ρtL

||∇f(wt)||
(5.42)

where L is the Lipschitz constant of f , and L−smoothness of f indicates the maximum

absolute eigenvalue of H is upper bounded by L. Plug Eq. 5.42 into Eq. 5.40, we have

Ef(wt+1) ≤ f(wt)−
ηt
βt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2

2
+
(1

βt
+ α

)
ηt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2
2
| tan θt|+

L

2
E
∣∣∣∣∣∣dt∣∣∣∣∣∣2

2

(5.43)

≤ f(wt)−
ηt
βt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2

2
+
(1

βt
+ α

)
Lρtηt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣
2
+
L

2
E
∣∣∣∣∣∣dt∣∣∣∣∣∣2

2

(5.44)

≤ f(wt)−
ηt
βt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2

2
+
(1

βt
+ α

)
LρtηtG+

L

2
E
∣∣∣∣∣∣dt∣∣∣∣∣∣2

2
(5.45)(

Assume gradient has bounded norm G.
)

(5.46)

128

≤ f(wt)−
ηt
βmax

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2
2
+
(1

βmin

+ α
)
LρtηtG+

L

2
E(α + 1)2G2η2t

(5.47)(
βt is close to 1 assuming ρ is small,

hence it’s natural to assume 0 < βmin ≤ βt ≤ βmax

)

Re-arranging above formula, we have

ηt
βmax

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2

2
≤ f(wt)−Ef(wt+1) +

(1

βmin

+α
)
LGηtρt +

L

2
(α+1)2G2η2t (5.48)

perform telescope sum and taking expectations on each step, we have

1

βmax

T∑
t=1

ηt

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2

2
≤ f(w0)−Ef(wT)+

(1

βmin

+α
)
LG

T∑
t=1

ηtρt+
L

2
(α+1)2G2

T∑
t=1

η2t

(5.49)

Take the schedule to be ηt = η0√
t

and ρt = ρ0√
t
, then we have

η0
βmax

1√
T

T∑
t=1

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2

2
≤ LHS (5.50)

≤ RHS (5.51)

≤ f(w0)− fmin +
(1

βmin

+ α
)
LGη0ρ0

T∑
t=1

1

t
+
L

2
(α + 1)2G2η20

T∑
t=1

1

t

(5.52)

≤ f(w0)− fmin +
(1

βmin

+ α
)
LGη0ρ0(1 + log T)

+
L

2
(α + 1)2G2η20(1 + log T) (5.53)

Hence
1

T

T∑
t=1

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2
2
≤ C3√

T
+ C4

log T√
T

(5.54)

129

whereC1, C4 are some constants. This implies the convergence rate w.r.t f(w) isO(log T/
√
T).

Step 3: Convergence w.r.t. surrogate gap h(w)

Note that we have proved convergence for fp(w) in step 1, and convergence for f(w) in

step 3. Also note that

∣∣∣∣∣∣∇h(wt)
∣∣∣∣∣∣2

2
=
∣∣∣∣∣∣∇fp(wt)−∇f(wt)

∣∣∣∣∣∣2
2
≤ 2
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
+ 2
∣∣∣∣∣∣∇f(wt)

∣∣∣∣∣∣2
2

(5.55)

Hence
1

T

T∑
t=1

∣∣∣∣∣∣∇h(wt)
∣∣∣∣∣∣2

2
≤ 2

T

T∑
t=1

∣∣∣∣∣∣∇fp(wt)
∣∣∣∣∣∣2
2
+

2

T

T∑
t=1

∣∣∣∣∣∣∇f(wt)
∣∣∣∣∣∣2

2
(5.56)

also converges at rate O(log T/
√
T) because each item in the RHS converges at rate

O(log T
√
T). □

5.7.5 Proof of Corollary. 5.5.2.1

Using the results from Thm. 5.5.2, with probability at least 1− a, we have

Ew∼QExf(w, x) ≤ Ew∼Qf̂(w) + 4

√
KL(Q||P) + log 2m

a

m
(5.57)

Assume δ ∼ N (0, b2Ik) where k is the dimension of model parameters, hence δ2 (element-

wise square) follows a a Chi-square distribution. By Lemma.1 in [79], we have

P
(
||δ||22 − kb2 ≥ 2b2

√
kt+ 2tb2

)
≤ exp(−t) (5.58)

hence with probability at least 1− 1/
√
n, we have

||δ||22 ≤ b2

(
2 log

√
n+ k + 2

√
k log

√
n

)
≤ 2b2k

(
1 +

√
log
√
n

k

)2

≤ ρ2 (5.59)

130

Therefore, with probability at least 1− 1/
√
n = 1− exp

(
−
(

ρ√
2b
−
√
k
)2)

Eδf̂(w + δ) ≤ max||δ||2≤ρ f̂(w + δ) (5.60)

Combine Eq. 5.58 and Eq. 5.60, subtract the same constant C on both sides, and under the

same assumption as in [42] that Ew∼QExf(w, x) ≤ Eδ∼N (0,b2Ik)Ew∼QExf(w + δ, x)we

finish the proof. □

5.7.6 Proof of Thm. 5.5.3

Step 1: a sufficient condition that the loss gap is expected to decrease for each step

Take Taylor expansion, then the expected change of loss gap caused by descent step is

E⟨∇fp(wt)−∇f(wt),−ηt∇fp(wt)⟩ (5.61)(
where Eg⊥ = ∇f⊥(wt)

)
= ηt

[
−
∣∣∣∣∇fp(wt)

∣∣∣∣2
2
+
∣∣∣∣∇fp(wt)

∣∣∣∣
2

∣∣∣∣∇f(wt)
∣∣∣∣
2
cos θt

]
(5.62)

where θt is the angle between vector∇fp(wt) and ∇f(wt).

The expected change of loss gap caused by ascent step is

E⟨∇fp(wt)−∇f(wt), αηt∇f⊥(wt)⟩ = −αηt
∣∣∣∣∇f⊥(wt)

∣∣∣∣2
2
< 0 (5.63)

Above results demonstrate that ascent step decreases the loss gap, while descent step might

increase the loss gap. A sufficient (but not necessary) condition for E⟨∇h(wt), dt⟩ ≤ 0

requires α to be large or |
∣∣∇f(wt)

∣∣∣∣
2
cos θt ≤

∣∣∣∣∇fp(wt)
∣∣∣∣. In practice, the perturba-

tion amplitude ρ is small and we can assume θt is close to 0 and
∣∣∣∣∇fp(wt)

∣∣∣∣ is close to

131

∣∣∣∣∇f(wt)
∣∣∣∣, we can also set the parameter α to be large in order to decrease the loss gap.

Step 2: upper and lower bound of decrease in loss gap (by the ascent step in orthog-

onal gradient direction) compared to SAM.

Next we give an estimate of the decrease in ĥ caused by our ascent step. We refer to

Eq. 5.62 and Eq. 5.63 to analyze the change in loss gap caused by the descent and ascent

(orthogonally) respectively. It can be seen that gradient descent step might not decrease

loss gap, in fact they often increase loss gap in practice; while the ascent step is guaranteed

to decrease the loss gap.

The decrease in loss gap is:

∆ĥt = −⟨∇f̂p(wt)−∇f̂(wt), αηt∇f̂⊥(wt)⟩ = αηt
∣∣∣∣∇f̂⊥(wt)

∣∣∣∣2
2

(5.64)

= αηt
∣∣∣∣∇f̂(wt)

∣∣∣∣2
2
| tan θt|2 (5.65)

T∑
t=1

∆ĥt ≤
T∑
t=1

αL2ηtρ
2
t (5.66)

(
By Eq. 5.42

)
(5.67)

≤
T∑
t=1

αL2η0ρ
2
0

1

t3/2
(5.68)

≤ 2.7αL2η0ρ
2
0 (5.69)

Hence we derive an upper bound for
∑T

t=1 ∆ĥt.

Next we derive a lower bound for
∑T

t=1 ∆ĥt Note that when ρt is small, by Taylor

expansion

∇f̂p(wt) = ∇f̂(wt + δt) = ∇f̂(wt) +
ρt

||∇f̂(wt)||
Ĥ(wt)∇f̂(wt) +O(ρ2t) (5.70)

132

where Ĥ(wt) is the Hessian evaluated on training samples. Also when ρt is small, the

angle θt between ∇f̂p(wt) and∇f̂(wt) is small, by the limit that

tanx = x+O(x2), x→ 0

sinx = x+O(x2), x→ 0

We have

| tan θt| = | sin θt|+O(θ2t) = |θt|+O(θ2t)

Omitting high order term, we have

| tan θt| ≈ |θt| =
||∇f̂p(wt)−∇f̂(wt)||

||f̂(wt)||
=
||ρtĤ(wt) +O(ρ2t)||
||∇f̂(wt)||

≥ ρt|σ|min

G
(5.71)

where G is the upper-bound on norm of gradient, |σ|min is the minimum absolute eigen-

value of the Hessian. The intuition is that as perturbation amplitude decreases, the angle

θt decreases at a similar rate, though the scale constant might be different. Hence we have

T∑
t=1

∆ĥt =
T∑
t=1

αηt
∣∣∣∣∇f̂(wt)

∣∣∣∣2
2
| tan θt|2 +O(θ4t) (5.72)

≥
T∑
t=1

αηtc
2
(ρt|σ|min

G

)2
(5.73)

=
αc2ρ20η0|σ|2min

G2

T∑
t=1

1

t3/2
(5.74)

≥ αc2ρ20η0|σ|2min

G2
(5.75)

where c2 is the lower bound of ||∇f̂ ||2 (e.g. due to noise in data and gradient observation).

Results above indicate that the decrease in loss gap caused by the ascent step is non-trivial,

hence our proposed method efficiently improves generalization compared with SAM. □

133

5.7.7 Proof for convergence of GSAM without relying on the L-smoothness

of fp

In this section, we provide a proof for the convergence of GSAM without replying on the

L-smoothness of fp.

By L−smoothness of f and the definition of fp(wt) = f(wadv
t), and definition of

dt = wt+1 − wt and wadv
t = wt + δt we have

fp(wt+1) = f(wadv
t+1) ≤ f(wadv

t) + ⟨∇f(wadv
t), wadv

t+1 − wadv
t ⟩+

L

2

∣∣∣∣∣∣wadv
t+1 − wadv

t

∣∣∣∣∣∣2
(5.76)

= f(wadv
t) + ⟨∇f(wadv

t), wt+1 + δt+1 − wt − δt⟩

+
L

2

∣∣∣∣∣∣wt+1 + δt+1 − wt − δt
∣∣∣∣∣∣2 (5.77)

≤ f(wadv
t) + ⟨∇f(wadv

t), dt⟩+ L
∣∣∣∣∣∣dt∣∣∣∣∣∣2 (5.78)

+ ⟨∇f(wadv
t), δt+1 − δt⟩+ L

∣∣∣∣∣∣δt+1 − δt
∣∣∣∣∣∣2 (5.79)

It’s trivial to see that Eq. 5.78 has the same form as Eq. 5.22, except the constant Lp

is replaced with a constant 2L which is even better bounded, so we can reuse RHS of

Eq. 5.25 by replacing Lp with 2L. Now we focus on the difference caused by Eq. 5.79.

By definition of δt, we have

δt = ρt
g(t)

||g(t)||+ ϵ
(5.80)

δt+1 = ρt+1
g(t+1)

||g(t+1)||+ ϵ
(5.81)

where g(t) is the gradient of f at wt evaluated with a noisy data sample. When learning

134

rate ηt is small, the update in weight dt is small, and expected gradient is

∇f(wt+1) = ∇f(wt + dt) = ∇f(wt) +Hdt +O(||dt||2) (5.82)

where H is the Hessian at wt. Therefore, we have

E⟨∇f(wadv
t), δt+1 − δt⟩ = ⟨∇f(wadv

t), ρtE
g(t)

||g(t)||+ ϵ
− ρt+1E

g(t+1)

||g(t+1)||+ ϵ
⟩ (5.83)

≤ ||∇f(wadv
t)||ρt

∣∣∣∣∣∣E g(t)

||g(t)||+ ϵ
− E

g(t+1)

||g(t+1)||+ ϵ

∣∣∣∣∣∣ (5.84)

≤ ||∇f(wadv
t)||ρtϕt (5.85)

where the first inequality is due to (1) ρt is monotonically decreasing with t, and (2)

triangle inequality that ⟨a, b⟩ ≤ ||a|| · ||b||. ϕt is the angle between the unit vector in the

direction of∇f(wt) and∇f(wt+1). The second inequality comes from that (1)
∣∣∣∣∣∣ g

||g||+ϵ

∣∣∣∣∣∣ <
1 strictly, so we can replace δt in Eq. 5.83 with a unit vector in corresponding directions

multiplied by ρt and get the upper bound, (2) the norm of difference in unit vectors can be

upper bounded by the arc length on a unit circle.

When learning rate ηt and update stepsize dt is small, ϕt is also small. Using the limit

that

tanx = x+O(x2), sinx = x+O(x2), x→ 0

We have:

tanϕt =
||∇f(wt+1)−∇f(wt)||

||∇f(wt)||
+O(ϕ2

t) (5.86)

=
||Hdt +O(||dt||2)||
||∇f(wt)||

+O(ϕ2
t) (5.87)

≤ ηtL(1 + α) (5.88)

135

where the last inequality is due to (1) max eigenvalue of H is upper bounded by L because

f is L−smooth, (2) ||dt|| = ||ηt(g∥ + αg⊥)|| and Egt = ∇f(wt).

Plug into Eq. 5.85, also note that the perturbation amplitude ρt is small so wt is close

to wadv
t , then we have

E⟨∇f(wadv
t), δt+1 − δt⟩ ≤ L(1 + α)Gρtηt (5.89)

Similarly, we have

E
∣∣∣∣∣∣δt+1 − δt

∣∣∣∣∣∣2 ≤ ρ2tE
∣∣∣∣∣∣ g(t)

||g(t)||+ ϵ
− g(t+1)

||g(t+1)||+ ϵ

∣∣∣∣∣∣2 (5.90)

≤ ρ2tϕ
2
t (5.91)

≤ ρ2tη
2
tL

2(1 + α)2 (5.92)

Reuse results from Eq. 5.25 (replace Lp with 2L) and plug into Eq. 5.78, and plug Eq. 5.89

and Eq. 5.92 into Eq. 5.79, we have

Efp(wt+1)− fp(wt) ≤ −ηtE
∣∣∣∣∣∣∇fp(wt)

∣∣∣∣∣∣2
2
+

2L(α + 1)2

2
G2η2t

+ L(1 + α)Gρtηt +
2L3(1 + α)2

2
η2t ρ

2
t (5.93)

Perform telescope sum, we have

Efp(wT)− fp(w0) ≤ −
T∑
t=1

ηtE||∇fp(wt)||2 +
[
L(1 + α)2G2η20 + L(1 + α)Gρ0η0

] T∑
t=1

1

t

+ L3(1 + α)2η20ρ
2
0

T∑
t=1

1

t2
(5.94)

136

Hence

ηT

T∑
t=1

E||∇fp(wt)||2 ≤
T∑
t=1

ηtE||∇fp(wt)||2 ≤ fp(w0)− Efp(wT) +D log T +
π2E

6

(5.95)

where

D = L(1 + α)2G2η20 + L(1 + α)Gρ0η0, E = L3(1 + α)2η20ρ
2
0 (5.96)

Note that ηT = η0√
T

, we have

1

T

T∑
t=1

E||∇fp(wt)||2 ≤
fp(w0)− fmin + π2E/6

η0

1√
T

+
D

η0

log T√
T

(5.97)

which implies that GSAM converges at a rate of O(log T/
√
T), and all the constants here

are well-bounded.

137

5.8 Related works

Besides SAM and ASAM, other methods were proposed in the literature to improve gener-

alization: [85] proposed extrapolation of gradient, [166] proposed to manipulate the noise

in gradient, and [27] proved label noise improves generalization, [168] proposed to adjust

learning rate according to sharpness, and [175] proposed model perturbation with similar

idea to SAM. [63] proposed averaging weights to improve generalization, and [54] re-

stricted the norm of updated weights to improve generalization. Many of aforementioned

methods can be combined with GSAM to further improve generalization.

Besides modified training schemes, there are other two types of techniques to improve

generalization: data augmentation and model regularization. Data augmentation typically

generates new data from training samples; besides standard data augmentation such as

flipping or rotation of images, recent data augmentations include label smoothing [104]

and mixup [104] which trains on convex combinations of both inputs and labels, auto-

matically learned augmentation [26], and cutout [32] which randomly masks out parts of

an image. Model regularization typically applies auxiliary losses besides the training loss

such as weight decay [90], other methods randomly modify the model architecture during

training, such as dropout [146] and shake-shake regularization [44]. Note that the data

augmentation and model regularization literature mentioned here typically train with the

standard back-propagation [133] and first-order gradient optimizers, and both techniques

can be combined with GSAM.

Besides SGD, Adam and AdaBelief, GSAM can be combined with other first-order

gradient optimizers, such as AdaBound [92], RAdam [88], Yogi [169], AdaGrad [37],

AMSGrad [127] and AdaDelta [170].

138

Chapter 6

Apply MDL to identify ASD from fMRI

In this section, we apply the gradient estimation in Chapter 3 and optimization technique

in Chapter 4 to the MDL framework, and apply MDL on fMRI data to estimate effective

connectome (EC). To deal with the long time series and noise in data, we combine the

mulitple-shooting method with MDL. Furthermore, we perform classification of ASD vs

control based on our estimated connectome.

6.1 Recap of Dynamic Causal Modeling

The Effective Connectome is typically estimated from the dynamical causal modeling

(DCM) [43]. Suppose there are p nodes (ROIs) and denote the observed fMRI time-series

signal as s(t), which is a p-dimensional vector at each time t. Denote the hidden neuronal

state as z(t); then z(t) and s(t) are p-dimensional vectors for each time point t. Denote the

hemodynamic response function (HRF) [87] as h(t), and denote the external stimulation

as u(t), which is an n-dimensional vector for each t. The model is:

f
(
[z(t) D(t)]

)
=

 dz(t)/dt
dD(t)/dt

 =

D(t)z(t) + Cu(t)

Bu(t)

 , D(0) = A (6.1)

139

1

2

3

u

Figure 6.1: Toy example of dynamic
causal modeling with 3 nodes (labeled
1 to 3). u is a 1-D stimulation signal,
so n = 1, p = 3. A,B,C are defined
as in Eq. 6.1. For simplicity, though A
is a 3 × 3 matrix, we assume only three
elements A1,3, A3,2, A2,1 are non-zero.

s(t) =
(
z(t) + ϵ(t)

)
∗ h(t), z̃(t) = z(t) + ϵ(t) = Deconv

(
s(t), h(t)

)
(6.2)

where ϵ(t) is the noise at time t, which is assumed to follow an independent Gaussian

distribution, and ∗ represents convolution operation. D(t) is a p × p matrix for each

t, representing the effective connectome between nodes. A is a matrix of shape p × p,

representing the interaction between ROIs. B is a tensor of shape p× p× n, representing

the effect of stimulation on the effective connectome. C is a matrix of shape p × n,

representing the effect of stimulation on neuronal state. An example of n = 1, p = 3 is

shown in Fig. 6.1. The task is to estimate parameters A,B,C from noisy observation s(t).

6.2 Overcoming long time series and noise in fMRI data

with Multiple Shooting MDL (MS-MDL)

A DCM model is typically optimized using the expectation-maximization (EM) algorithm

[103]. Despite its wide application and good theoretical properties, a drawback is we

need to re-derive the algorithm when the forward model changes, which limits its applica-

tion. Furthermore, current DCM can not handle large-scale systems, hence is unsuitable

for whole-brain analysis. In this section, we propose Multiple-Shooting Adjoint (MSA),

which is a generic method for parameter estimation in high-dimensional non-linear dy-

namical systems, and can be viewed as a special case of MDL for the continuous-time

140

models.

6.2.1 Notations and formulation of problem

We summarize notations here for the ease of reading, which correspond to Fig. 6.2.

• z(t), z̃(t), z(t): z(t) is the true time-series, z̃(t) is the noisy observation, and z(t) is

the estimation. If p time-series are observed, then they are p-dimensional vectors for

each time t.

• (ti, ẑi)
N
i=0: {ẑi}Ni=0 are corresponding guesses of states at split time points {ti}Ni=0.

See Fig. 6.2. ẑi are discrete points, while z̃(t), z(t), z(t) are trajectories.

• fη: Hidden state z(t) follows the ODE dz
dt

= f(z, t), f is parameterized by η.

• θ: θ = [η, z0, ...zN]. We concatenate all optimizable parameters into one vector for

the ease of notation, denoted as θ.

• λ(t): Lagrangian multiplier in the continuous case, used to derive the adjoint state

equation.

The task of DCM can be viewed as a parameter estimation problem for a continuous

dynamical system, and can be formulated as:

argmin
η

∫ (
z(τ)− z̃(τ)

)2
dτ s.t.

dz(τ)

dτ
= fη(z(τ), τ) (6.3)

The goal is to estimate η from observations z̃. In the following sections, we first briefly

introduce the multiple-shooting method, which is related to the numerical solution of a

continuous dynamical system; next, we introduce the adjoint state method, which effi-

ciently determines the gradient for parameters in continuous dynamical systems; next, we

141

target

Observation

Estimation

Figure 6.2: Left: illustration of the shooting method. Right: illustration of the multiple-shooting
method. Blue dots represent the guess of state at split time ti.

introduce the proposed MS-MDL method, which combines multiple-shooting and the ad-

joint state method, and can be applied with general forward models and gradient-based

optimizers; finally, we introduce the DCM model, and demonstrate the application of MS-

MDL.

6.2.2 Multiple-shooting method

The shooting method is commonly used to fit an ODE under noisy observations, which is

crucial for parameter estimation in ODE. In this section, we first introduce the shooting

method, then explain its variant, the multiple-shooting method, for long time-series.

Shooting method The shooting method typically reduces a boundary-value problem

to an initial value problem [57]. An example is shown in Fig. 6.2: to find a correct initial

condition (at t0 = 0) that reaches the target (at t1 = 1), the shooting algorithm first takes

an initial guess (e.g. ẑ0(0)), then integrate the curve to reach point (t1, z0(1)); the error

term target− z0(1) is used to update the initial condition (e.g. ẑ1(0)) so that the end-time

value z1(1) is closer to target. This process is repeated until convergence. Besides the

initial condition, the shooting method can be applied to update other parameters.

142

Multiple-shooting method The multiple-shooting method [13] is an extension of the

shooting method to long time-series; it splits a long time-series into chunks, and applies

the shooting method to each chunk. Integration of a dynamical system for a long time is

typically subject to noise and numerical error, while solving short time-series is generally

easier and more robust.

As shown in the right subfigure of Fig. 6.2, a guess of initial condition at time t0 is

denoted as ẑ0, and we can use any ODE solver to get the estimated integral curve z(t), t ∈

[t0, t1]. Similarly, we can guess the initial condition at time t1 as ẑ1, and get z(t), t ∈ [t1, t2]

by integration as in Eq. 6.5. Note that each time chunk is shorter than the entire chunk

(|ti+1 − ti| < |t3 − t0|, i ∈ {1, 2}), hence easier to solve. The split causes another issue:

the guess might not match estimation at boundary points (e.g. z(t1) ̸= ẑ1, z(t2) ̸= ẑ2).

Therefore, we need to consider this error of mismatch when updating parameters, and

minimizing this mismatch error is typically easier compared to directly analyzing the entire

sequence.

The multiple-shooting method can be written as:

argmin
η,z0,...zN

J = argmin
η,z0,...zN

N∑
i=0

∫ ti+1

ti

(
z(τ)− z̃(τ)

)2
dτ + α

N∑
i=0

(
z(ti)− ẑi

)2
(6.4)

z(t) = ẑi +

∫ t

ti

fη
(
z(τ), τ

)
dτ, ti < t < ti+1, i ∈ {0, 1, 2, ...N} (6.5)

whereN is the total number of chunks discretized at points {t0, ...tN}, with corresponding

guesses {ẑ0, ...ẑN}. We use z(t) to denote the estimated curve as in Eq. 6.5; suppose t falls

into the chunk [ti, ti+1], z(t) is determined by solving the ODE from (ẑi, ti), where ẑi is

the guess of initial state at ti. We use z̃(t) to denote the observation. The first part in

Eq. 6.4 corresponds to the difference between estimation z(t) and observation z̃(t), while

the second part corresponds to the mismatch between estimation (orange square, z(ti))

143

and guess (blue circle, ẑi) at split time points ti. The second part is weighted by a hyper-

parameter α. The ODE function f is parameterized by η. The optimization goal is to

find the best η that minimizes loss in Eq. 6.4, besides model parameters η, we also need

to optimize the guess ẑi for state at time ti, i ∈ {0, 1, ...N}. Note that though previous

work typically limits f to have a linear form, we don’t have such limitations. Instead,

multiple-shooting is generic for general f .

6.2.3 Adjoint state method

Our goal is to minimize the loss function in Eq. 6.4. Let θ = [η, z0, ..., zN] represent

all learnable parameters. After fitting an ODE, we derive the gradient of loss L w.r.t

parameter θ and state guess ẑi for optimization.

Adjoint state equation

Note that different from discrete case, the gradient in continuous case is slightly compli-

cated. We refer to the adjoint method [121, 180, 21]. Consider the following problem:

dz(t)

dt
= fθ

(
z(t), t

)
, s.t. z(0) = x, t ∈ [0, T], θ = [η, z0, ...zN] (6.6)

ŷ = z(T), J
(
ŷ, y
)
= J

(
z(0) +

∫ T

0

fθ(z, t)dt, y
)

(6.7)

where the initial condition z(0) is specified by input x, output ŷ = z(T). The loss function

J is applied on ŷ, with target y. Compared with Eq. 6.3 to Eq. 6.5, for simplicity, we use θ

to denote both model parameter η and guess of initial conditions {ẑi}. The Lagrangian is

L = J
(
z(T), y

)
+

∫ T

0

λ(t)⊤
[dz(t)
dt
− fθ(z(t), t)

]
dt (6.8)

144

where λ(t) is the continuous Lagrangian multiplier. Then we have the following:

∂J

∂z(T)
+ λ(T) = 0 (6.9)

dλ(t)

dt
+
(∂fθ(z(t), t)

∂z(t)

)⊤
λ(t) = 0 ∀t ∈ (0, T) (6.10)

dL

dθ
−
∫ 0

T

λ(t)⊤
∂fθ(z(t), t)

∂θ
dt = 0 (6.11)

We skip the proof for simplicity. In general, the adjoint method determines the initial

condition λ(T) by Eq. 6.9, then solves Eq. 6.10 to get the trajectory of λ(t), and finally

integrates λ(t) as in Eq. 6.11 to get the final gradient. Note that Eq. 6.9 to Eq. 6.11 is

generic for general θ, and in case of Eq. 6.4 and Eq. 6.5, we have θ = [η, z0, ...zN],

and ∇θ = [∂L
∂η
, ∂L
∂z0
, ... ∂L

∂zN
]. Note that we need to calculate ∂f

∂z
and ∂f

∂θ
, which can be

easily computed by a single backward pass; we only need to specify the forward model

without worrying about the backward, because automatic differentiation is supported in

frameworks such as PyTorch and Tensorflow. After deriving the gradient of all parameters,

we can update these parameters by gradient descent.

Note that though J(z(T), y) is defined on a single time point in Eq. 6.8, it can extend

to the integral form
∫ T

t=0
loss(t)dt. We can defined F as dF (t)

dt
= loss(t), F (0) = 0, then

F (T) (for a single time point T) equals the integral.

Adaptive Checkpoint Adjoint Eq. 6.9 to Eq. 6.11 are the analytical form of the gra-

dient in the continuous case, yet the numerical implementation is crucial for empirical

performance. Note that z(t) is solved in forward-time (0 to T), while λ(t) is solved in

reverse-time (T to 0), yet the gradient in Eq. 6.11 requires both z(t) and λ(t) in the inte-

grand. Memorizing a continuous trajectory z(t) requires much memory; to save memory,

most existing implementations forget the forward-time trajectory of z(t), and instead only

145

Algorithm 17: Multiple-Shooting Adjoint (MSA)

Input Observation z̃(t), number of chunks N , learning rate lr.
Initialize model parameter η, state {ẑi}Ni=0 at discretized points {ti}Ni=0

Repeat until convergence
(1) Estimate trajectory z(t) from current parameters by the multiple shooting

method as in Eq. 6.5.
(2) Compute the loss J in Eq. 6.4, plug J in Eq. 6.8. Derive the gradient by

ACA in Chapter 3.
(3) Update parameters with first-order gradient optimizers discussed in

Chapter 4.

record the end-time state z(T) and λ(T) and solve Eq. 6.6 and Eq. 6.9 to Eq. 6.11 in

reverse-time on-the-fly.

While memory cost is low, existing implementations of the adjoint method typically

suffer from numerical error: since the forward-time trajectory (denoted as
−−→
z(t) = z(t)) is

deleted, and the reverse-time trajectory (denoted as
←−−
z(t)) is reconstructed from the end-

time state z(T) by solving Eq. 6.6 in reverse-time,
−−→
z(t) and

←−−
z(t) cannot accurately overlap

due to inevitable errors with numerical ODE solvers. The error
−−→
z(t) −

←−−
z(t) propagates to

the gradient in Eq. 6.11 in the ∂f(z,t)
∂z

term. Please see Chapter 3 for a detailed explanation.

To solve this issue, we use the ACA (see Chapter 3) which records
−−→
z(t) using a

memory-efficient method to guarantee numerical accuracy. In this work, we use ACA

for its accuracy.

6.2.4 Multiple-Shooting Adjoint State Method (MSA)

Procedure of MSA MSA is a combination of the multiple-shooting and MDL, which is

generic for various f . Details are summarized in Algo. 17. MSA iterates over the follow-

ing steps until convergence: (1) estimate the trajectory based on the current parameters,

using the multiple-shoot method for integration; (2) compute the loss and derive the gra-

dient using the adjoint method; (3) update the parameters based on the gradient.

146

Advantages of MSA Previous work has used the multiple-shooting method for param-

eter estimation in ODEs [117], yet MSA is different in the following aspects: (A) Suppose

the parameters have k dimensions. MSA uses an element-wise update, hence has only

O(k) computational cost in each step; yet the method in [117] requires the inversion of a

k × k matrix, hence might be infeasible for large-scale systems. (B) The implementation

of [117] does not tackle the mismatch between forward-time and reverse-time trajectory,

while we use ACA [180] for accurate gradient estimation in step (2) of Algo. 17. (C) From

a practical perspective, our implementation is based on PyTorch which supports automatic-

differentiation, therefore we only need to specify the forward model f without the need to

manually compute the gradient ∂f
∂z

and ∂f
∂θ

. Hence, our method is off-the-shelf for general

models, while the method of [117] needs to re-implement ∂f
∂z

and ∂f
∂θ

for different f , and

conventional DCM with EM needs to re-derive the entire algorithm when f changes.

6.3 Validation of MSA on toy examples

We first validate MSA on toy examples of linear dynamical systems, then validate its per-

formance on large-scale systems and non-linear dynamical systems.

A linear dynamical system with 3 nodes We first start with a simple linear dynamical

system with only 3 nodes. We further simplify the matrix A as in Fig. 6.1, where only

three elements in A are non-zero. We set B as a zeros matrix, and u(t) as a 1-dimensional

147

Figure 6.3: Results for the toy example of a linear dynamical system in Fig. 6.1. Left: error in
estimated value of connection A1,3, A3,2, A2,1, other parameters are set as 0 in simulation. Right:
from top to bottom are the results for node 1, 2, 3 respectively. For each node, we plot the observa-
tion and estimated curve from MSA and EM methods. Note that the estimated curve is generated
by integration of the ODE under estimated parameters with only the initial condition known, not
smoothing of noisy observation.

signal. The dynamical system is linear:

 dz(t)/dt
dD(t)/dt

 =

D(t)z(t) + Cu(t)

0

 , D(0) = A, u(t) =


1, f loor(t

2
)%2 = 0

0, otherwise

(6.12)

z̃(t) = z(t) + ϵ(t), ϵ(t) ∼ N(0, σ2) (6.13)

u(t) is an alternating block function at a period of 2, taking values 0 or 1. The observed

function z̃(t) suffers from i.i.d Gaussian noise ϵ(t) with 0 mean and uniform variance σ2.

We perform 10 independent simulations and parameter estimations. For estimation of

DCM with the EM algorithm, we use the SPM package [118], which is a widely used

standard baseline. The estimation in MSA is implemented in PyTorch, using ACA [180]

as the ODE solver. For MSA, we use the AdaBelief optimizer [181] to update parameters

with the gradient; though other optimizers such as SGD can be used, we found AdaBelief

converges faster in practice.

For each of the non-zero elements in A, we show the boxplot of error in estimation

148

in Fig. 6.3. Compared with EM, the error by MSA is significantly closer to 0 and has a

smaller variance. An example of a noisy observation and estimated curves are shown in

Fig. 6.3, and the estimation by MSA is visually closer to the ground-truth compared to

the EM algorithm. We emphasize that the estimated curve is not a simple smoothing of

the noisy observation; instead, after estimating the parameters of the ODE, the estimated

curve (for t > 0) is generated by solving the ODE using only the initial state. Therefore,

the match between estimated curve and observation demonstrates that our method learns

the underlying dynamics of the system.

Application to large-scale systems After validation on a small system with only 3 nodes,

we validate MSA on large scale systems with more nodes. We use the same linear dynam-

ical system as in Eq. 6.12, but with the node number p ranging from 10 to 100. Note

that the dimension of A and B grows at a rate of O(p2), and the EM algorithm estimates

the covariance matrix of size O(p4), hence the memory for EM method grows extremely

fast with p. For various settings, the ground truth parameter is randomly generated from

a uniform distribution between -1 and 1, and the variance of measurement noise is set as

σ = 0.5. For each setting, we perform 5 independent runs, and report the mean squared

error (MSE) between estimated parameter and ground truth.

As shown in Table 6.1, for small-size systems (number of nodes <= 20), MSA con-

sistently generates a lower MSE than the EM algorithm. For large-scale systems, since the

memory cost of the EM algorithm is O(p4), the algorithm quickly runs out-of-memory.

On the other hand, the memory cost for MSA is O(p2) because it only uses the first-order

gradient. Hence, MSA is suitable for large-scale systems such as in whole-brain fMRI

analysis.

Application to general non-linear systems Since neither the multiple-shoot method

149

nor the adjoint state method requires the ODE f to be linear, our MSA can be applied to

general non-linear systems. Furthermore, since our implementation is in PyTorch which

supports automatic differentiation, we only need to specify f when fitting different mod-

els, and the gradient will be calculated automatically. Therefore, MSA is an off-the-shelf

method, and is suitable for general non-linear ODEs both in theory and implementation.

We validate MSA on the Lotka-Volterra (L-V) equations [160], a system of non-linear

ODEs describing the dynamics of predator and prey populations. The L-V equation can

be written as:

f
(
[z1(t), z2(t)]

)
=

dz1(t)/dt
dz2(t)/dt

 =

ζz1(t)− βz1(t)z2(t)
δz1(t)z2(t)− γz2(t)

 ,
z̃1(t)
z̃2(t)

 =

z1(t) + ϵ1(t)

z2(t) + ϵ2(t)


(6.14)

where ζ, β, δ, γ are parameters to estimate, z̃(t) is the noisy observation, and ϵ(t) is the

independent noise. Note that there are non-linear terms z1(t)z2(t) in the ODE, making EM

derivation difficult. Furthermore, the EM method needs to explicitly derive the posterior

mean, hence needs to be re-derived for every different f ; while MSA is generic and hence

does not require re-derivation.

Besides the L-V model, we also consider a modified L-V model, defined as:

dz1(t)/dt = ζz1(t)− βϕ(z2(t))z1(t)z2(t) (6.15)

dz2(t)/dt = δϕ(z1(t))z1(t)z2(t)− γz2(t) (6.16)

where ϕ(x) = 1/(1 + e−x) is the sigmoid function. We use this example to demonstrate

the ability of MSA to fit highly non-linear ODEs.

We compare MSA with LMFIT [109], which is a well-known python package for

non-linear fitting. We use L-BFGS solver in LMFIT, which generates better results than

other solvers. We did not compare with original DCM with EM because it’s unsuitable for

150

Table 6.1: Mean squared error (×10−3, lower is better) in estimation of parameters for a linear
dynamical system with different number of nodes. “OOM” represents “out of memory”.

10 Nodes 20 Nodes 50 Nodes 100 Nodes
EM 3.3± 0.2 3.0± 0.2 OOM OOM

MSA 0.7± 0.1 0.9± 0.3 0.8± 0.1 0.8± 0.2

Figure 6.4: Results for the L-V model. Figure 6.5: Results for the modified L-V
model.

general non-linear models. The estimation of the curve for t > 0 is solved by integrating

using the estimated parameters and initial conditions. As shown in Fig. 6.4 and Fig. 6.5,

compared with LMFIT, MSA recovers the system accurately. LMFIT directly fits the long

sequences, while MSA splits long-sequences into chunks for robust estimation, which may

partially explain the better performance of MSA.

6.4 Apply MDL to identify ASD from fMRI data

We applied EC and FC on the classification task of ASD vs Control with both resting-state

fMRI and task fMRI. Our results show that combing EC with FC achieves a consistent

improvement in classification accuracy.

151

6.4.1 Data acquisition and pre-processing

Task-fMRI data

fMRI for 82 children with ASD and 48 age and IQ-matched healthy controls were ac-

quired. The fMRI (BOLD, 132 volumes, TR = 2000ms, TE = 25ms, flip angle = 60◦,

voxel size 3.44×3.44×4 mm3) was acquired on a Siemens MAGNETOM Trio 3T scanner.

A biological motion perception task and a scrambled motion task [68] were presented

in alternating blocks (24s). fMRI data was then pre-processed with FSL with the following

standard procedures: 1) motion correction, 2) interleaved slice timing correction, 3) brain

extraction with BET, 3) spatial smoothing with a full-width at half-maximum (FWHM)

of 5mm, 5) high-pass temporal filtering. For parcellation, we use the AAL atlas which

consists of 116 ROIs.

Resting-state fMRI data

We use the ABIDE I [34] per-processed data for our experiments. We omit the data points

whose length of time-series is less than 100, resulting in 301 control subjects and 264

ASD subjects. We use the same sliding window of length 30 to estimate EC and FC

within each window, and adjacent windows slide by 5 frames. We choose the C-PAC

[25] pre-processing pipeline consisting of the following steps: 1) structural pre-processing

with AFNI and FSL, 2) slice time correction, 3) motion correction, 4) skull-strip, 5) global

mean intensity normalization, 6) nuisance signal regression, 7) band-pass filtering and 8)

registration to the anatomical space.

6.4.2 Improved Fitting with ACA and AdaBelief

We compare ACA vs Adjoint method in the fitting of DCM, and plot the results in Fig. 6.6.

We observe that ACA consistently generates a lower training loss than the adjoint method,

152

Figure 6.6: Compare the fitting loss of ACA and Adjoint method in fitting of DCM. Both
curves use the AdaBelief optimizer.

validating our analysis on the numerical accuracy in gradient estimation discussed in

Chapter 3.

We further compare AdaBelief with Adam in the fitting of DCM, and plot the results

in Fig. 6.7. For both experiments we use the ACA method to derive the gradient accu-

rately, and feed the gradient into different optimizers. We observe that AdaBelief achieves

comparable fitting loss as Adam within half the training time.

6.4.3 Estimation of Effective Connectome and Functional Connec-

tome

Estimation of EC

We use the AAL atlas [155] containing 116 ROIs. For each subject, the parameters for

dynamic causal modeling as in Eq. 6.1 is estimated using MSA. An example snapshot of

153

Figure 6.7: Compare the fitting loss with different optimizers in fitting of DCM. Both
curves use ACA for gradient estimation.

the effective connectome (EC) during the two tasks is shown in Fig. 6.8, showing MSA

captures the dynamic EC.

Estimation of FC

We estimate the Dynamic Functional Connectome (DFC) using a sliding-window with a

windowsize of 20 time points, and every two adjacent windows are separated by 1 time

point. We use the AAL template and calculate the Pearson Correlation among regions for

each sliding window.

6.4.4 Group comparison

We perform a group comparison between the ASD and control groups, and plot the edges

with a p-value smaller than 0.05 (with Bonferroni correction). We plot the results for FC

in Fig. 6.10, and plot the results for EC in Fig. 6.11. Despite the difference, both FC and

EC edges include regions in the frontal lobe and the temporal lobe, which match previous

154

Figure 6.8: An example of MSA for one subject in task fMRI. Left: effective connectome during
task 1. Middle: effective connectome during task 2. Right: top and bottom represents the effective
connectome for task 1 and 2 respectively. Blue and red edges represent positive and negative
connections respectively. Only top 5% strongest connections are visualized.

Figure 6.9: An example of Dynamic Functional Connectome for one subject in task fMRI. Left:
functional connectome during task 1. Middle: functional connectome during task 2. Right: top
and bottom represents the functional connectome for task 1 and 2 respectively. Blue and red edges
represent positive and negative connections respectively. Only top 5% strongest connections are
visualized.

findings in the literature on ASD.

6.4.5 Classification results for task fMRI

We conduct classification experiments for ASD vs. control using EC, FC and EC-FC

concatenated together as the predictor. The classification of a subject is based on the

majority vote of the predictions across all time points. We experimented with a InvNet

[179] of 20 layers with a feature dimension of 32. Results for a 10-fold subject-wise

cross validation are shown in Fig. 6.12. For classification using task-fMRI data, using

EC generates slightly better accuracy, F1 score, AUC and Precision than using FC as the

155

Figure 6.10: FC edges that are significantly different between ASD and control groups.

Figure 6.11: EC edges that are significantly different between ASD and control groups.

156

Figure 6.12: Classification results on task fMRI data

Figure 6.13: Classification results on resting-state fMRI data

predictor; we also notice that using EC-FC as input consistently improves the classification

performance.

6.4.6 Classification results fo resting-state fMRI

For resting-state fMRI data, We use the ABIDE I [34] per-processed data for our experi-

ments. We omit the data points whose length of time-series is less than 100, resulting in

301 control subjects and 264 ASD subjects. We use the same sliding window of length 20

to estimate EC and FC within each window, and choose 30 frames of EC and 30 frames

of FC for each subject. We use the same neural network for classification as in task-fMRI

experiments.

We report the results for a 10-fold cross validation in Fig. 6.13. We found that for

157

Figure 6.14: Classification results on task fMRI data, using EC and FC as input.

resting-state fMRI data, FC appears to be more predictive than EC. This could be caused

by that when the subject is not performing task during resting-state fMRI scan, the external

stimulation is random and can not be modeled in DCM, therefore estimation of EC is

inaccurate. By combining EC and FC together as the input, we observe an improvement

in classification performance.

6.4.7 Improved classification with GSAM

We further apply the GSAM method proposed in Chapter 5 to the classification task de-

scribed above, and show the results for task fMRI and resting-state fMRI in Fig. 6.14 and

Fig. 6.15 respectively. We observe consistent improvement with GSAM. We further plot

the dominant eigenvalue of the Hessian of a trained model in Fig. 6.16 and Fig. 6.17 for

task and resting-state fMRI respectively, and validate that the proposed GSAM method

reduces the sharpness (dominant eigenvalue of Hessian of the prediction function).

158

Figure 6.15: Classification results on resting-state fMRI data, using EC and FC as input.

Figure 6.16: Dominant eigenvalue of the Hessian of a trained network across 10-fold cross
validation for task fMRI data.

159

Figure 6.17: Dominant eigenvalue of the Hessian of a trained network across 10-fold cross
validation for resting-state fMRI data.

Table 6.2: Classification results on task-fMRI data using FC with different window sizes.

Window ACC F1 AUC

FC

10 65.4 71.2 50.5
20 62.3 71.9 53.8
30 61.5 69.1 53.3
40 63.8 69.1 54.2

EC 68.9 74.0 68.8

Table 6.3: Classification results for GSAM with different α values.

alpha ACC F1 AUC

GSAM

0 76.9 83.5 76
0.1 78.5 82.9 75.6
0.3 79.2 83.8 74.7
0.5 77.7 83.4 72.2

Vanilla 73.3 71.6 75.7

160

6.4.8 Studies on hyper-parameters

We conduct extra experiments to study the influence of hyper-parameters. Specifically,

we report the classification results using dynamic FC with different window sizes in Ta-

ble. 6.2. For different sliding window sizes, every two adjacent windows are moved by

1 time frame. As Table. Table. 6.2. shows, using a window size of 10 generates the best

performance; however, the performance of EC outperforms FC by a large margin.

We conduct extra experiments with different α values and report them in Table. 6.3.

For all experiments, we use both FC and EC as the input. We observe that α = 0.3 achieves

the best result, and even the worst result with α = 0 still outperforms results with vanilla

optimizers. The results further validate that GSAM significantly reduces the sharpness of

neural network and improves the identification of ASD.

161

Chapter 7

Conclusions

In this thesis, we aim to identify ASD based on fMRI data. fMRI data is typically ana-

lyzed by the (dynamic) Functional Connectome (FC), which is defined as the correlation

between time-series from different ROIs. However, FC is a descriptive model and does not

capture the underlying causal relations among brain regions. Effective Connectome (EC)

is estimated from the Dynamic Causal Modeling, and captures the causal relation among

regions by modeling the brain as a dynamical system. However, due to the difficulty for

parameter estimation in dynamical systems, EC is typically limited to small-scale system

(<10 nodes), which hinders its application in the whole-brain network analysis. There-

fore, in this thesis, we develop the Model-Driven Learning Framework (MDL), which is a

generic framework for parameter estimation in high-dimensional continuous-time models,

and can be used to efficiently fit DCM and derive EC.

We first solve the gradient estimation for continuous-time models in Chapter 3. We

identify that the numerical errors in forward-time and reverse-time trajectories cause the

error in gradient estimation for dynamical systems. Based on above observation, we pro-

pose the Adaptive Checkpoint Adjoint (ACA) method to avoid the numerical errors. We

empirically validate that ACA generates a significantly lower fitting loss than existing

methods.

162

In Chapter 4, we propose AdaBelief, an adaptive first-order gradient optimizer that

achieves fast convergence and training stability. We empirically validate that AdaBelief

fits DCM 2x faster than other optimizers such as Adam.

In Chapter 5, we propose GSAM, which jointly minimizes the training loss and the

curvature of the loss landscape, hence GSAM enables both a high training accuracy and

generalization performance on test set.

In Chapter 6, we apply the methods developed in previous chapters to fMRI data.

Specifically, we use the gradient estimation method in Chapter 3 and the optimizer in

Chapter 4 to efficiently fit DCM to fMRI data and estimate EC. Next, we use EC and FC

as the input to classify ASD vs control. We observe that the combination of EC and FC

improves the classification performance. We then apply GSAM in Chapter 5 to further

improve the classification performance, and identify that GSAM reduces curvature of the

loss surface and improves generalization in the ASD vs control classification task.

In summary, we propose a series of methods that combine into the MDL method, which

is a generic framework for parameter estimation in high-dimensional non-linear dynamical

systems. MDL is an off-the-shelf method. We apply MDL to identify ASD based on fMRI

data as the main application of our method.

163

Bibliography

[1] Federica Agosta, Michela Pievani, Cristina Geroldi, Massimiliano Copetti, Gio-

vanni B Frisoni, and Massimo Filippi. Resting state fmri in alzheimer’s disease:

beyond the default mode network. Neurobiology of aging, 33(8):1564–1578, 2012.

[2] Neculai Archip, Olivier Clatz, Stephen Whalen, Dan Kacher, Andriy Fedorov, An-

driy Kot, Nikos Chrisochoides, Ferenc Jolesz, Alexandra Golby, Peter M Black,

et al. Non-rigid alignment of pre-operative mri, fmri, and dt-mri with intra-operative

mri for enhanced visualization and navigation in image-guided neurosurgery. Neu-

roimage, 35(2):609–624, 2007.

[3] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and

Blake Woodworth. Lower bounds for non-convex stochastic optimization. arXiv

preprint arXiv:1912.02365, 2019.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv

preprint arXiv:1701.07875, 2017.

[5] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and vari-

ance of stochastic gradients. arXiv preprint arXiv:1705.07774, 2017.

[6] Deanna M Barch, Gregory C Burgess, Michael P Harms, Steven E Petersen,

Bradley L Schlaggar, Maurizio Corbetta, Matthew F Glasser, Sandra Curtiss, Sachin

164

Dixit, Cindy Feldt, et al. Function in the human connectome: task-fmri and indi-

vidual differences in behavior. Neuroimage, 80:169–189, 2013.

[7] Evelyn ML Beale. On minimizing a convex function subject to linear inequalities.

Journal of the Royal Statistical Society: Series B (Methodological), 17(2):173–184,

1955.

[8] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-

Henrik Jacobsen. Invertible residual networks. In International Conference on

Machine Learning, pp. 573–582, 2019.

[9] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anand-

kumar. signsgd: Compressed optimisation for non-convex problems. arXiv preprint

arXiv:1802.04434, 2018.

[10] Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the dis-

tance between two neural networks and the stability of learning. arXiv preprint

arXiv:2002.03432, 2020.

[11] MA Bertocci, GM Bebko, BC Mullin, SA Langenecker, CD Ladouceur, JRC

Almeida, and Mary L Phillips. Abnormal anterior cingulate cortical activity during

emotional n-back task performance distinguishes bipolar from unipolar depressed

females. Psychological medicine, 42(7):1417–1428, 2012.

[12] Lucas Beyer, Olivier J. Henaff, Alexander Kolesnikov, Xiaohua Zhai, and Aaron

van den Oord. Are we done with imagenet? arXiv preprint arXiv:2002.05709,

2020.

[13] Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct

solution of optimal control problems. IFAC Proceedings Volumes, 1984.

165

[14] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pp. 177–186. Springer, 2010.

[15] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the

trade. 2012.

[16] Edward T Bullmore and Danielle S Bassett. Brain graphs: graphical models of the

human brain connectome. Annual review of clinical psychology, 7:113–140, 2011.

[17] Richard B Buxton. Introduction to functional magnetic resonance imaging: princi-

ples and techniques. Cambridge university press, 2009.

[18] Jeff R Cash and Alan H Karp. A variable order runge-kutta method for initial value

problems with rapidly varying right-hand sides. ACM Transactions on Mathemati-

cal Software (TOMS), 16(3):201–222, 1990.

[19] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Bal-

dassi, Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina.

Entropy-sgd: Biasing gradient descent into wide valleys. Journal of Statistical

Mechanics: Theory and Experiment, 2019(12):124018, 2019.

[20] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan

Gu. Closing the generalization gap of adaptive gradient methods in training deep

neural networks. In IJCAI, 2020.

[21] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neu-

ral ordinary differential equations. Advances in neural information processing sys-

tems, 2018.

[22] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen.

166

Residual flows for invertible generative modeling. In Advances in Neural Informa-

tion Processing Systems, pp. 9916–9926, 2019.

[23] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers

outperform resnets without pretraining or strong data augmentations, 2021.

[24] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence

of a class of adam-type algorithms for non-convex optimization. arXiv preprint

arXiv:1808.02941, 2018.

[25] Cameron Craddock, Sharad Sikka, Brian Cheung, Ranjeet Khanuja, Satrajit S

Ghosh, Chaogan Yan, Qingyang Li, Daniel Lurie, Joshua Vogelstein, Randal Burns,

et al. Towards automated analysis of connectomes: The configurable pipeline for

the analysis of connectomes (c-pac). Front Neuroinform, 42:10–3389, 2013.

[26] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V

Le. Autoaugment: Learning augmentation policies from data. arXiv preprint

arXiv:1805.09501, 2018.

[27] Alex Damian, Tengyu Ma, and Jason Lee. Label noise sgd provably prefers flat

global minimizers. arXiv preprint arXiv:2106.06530, 2021.

[28] Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Ci-

chocki, and Ivan Oseledets. Interpolated adjoint method for neural odes. arXiv

preprint arXiv:2003.05271, 2020.

[29] Alfredo M Ozorio De Almeida. Hamiltonian systems: chaos and quantization.

Cambridge University Press, 1990.

[30] Omar Dekhil, Hassan Hajjdiab, Ahmed Shalaby, Mohamed T Ali, Babajide Ayinde,

Andy Switala, Aliaa Elshamekh, Mohamed Ghazal, Robert Keynton, Gregory

167

Barnes, et al. Using resting state functional mri to build a personalized autism

diagnosis system. PloS one, 13(10):e0206351, 2018.

[31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pp. 248–255. Ieee, 2009.

[32] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional

neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[33] Adriana Di Martino, Kathryn Ross, Lucina Q Uddin, Andrew B Sklar, F Xavier

Castellanos, and Michael P Milham. Functional brain correlates of social and

nonsocial processes in autism spectrum disorders: an activation likelihood estima-

tion meta-analysis. Biological psychiatry, 65(1):63–74, 2009.

[34] Adriana Di Martino, David O’connor, Bosi Chen, Kaat Alaerts, Jeffrey S Anderson,

et al. Enhancing studies of the connectome in autism using the autism brain imaging

data exchange ii. Scientific data, 2017.

[35] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using

real nvp. arXiv preprint arXiv:1605.08803, 2016.

[36] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[37] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of machine learning research,

12(Jul):2121–2159, 2011.

168

[38] Eugene P Duff, William Vennart, Richard G Wise, Matthew A Howard, Richard E

Harris, Michael Lee, Karolina Wartolowska, Vishvarani Wanigasekera, Frederick J

Wilson, Mark Whitlock, et al. Learning to identify cns drug action and efficacy us-

ing multistudy fmri data. Science translational medicine, 7(274):274ra16–274ra16,

2015.

[39] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In

Advances in Neural Information Processing Systems, pp. 3140–3150, 2019.

[40] Nicha C Dvornek, Pamela Ventola, Kevin A Pelphrey, and James S Duncan. Iden-

tifying autism from resting-state fmri using long short-term memory networks. In

International Workshop on Machine Learning in Medical Imaging, pp. 362–370.

Springer, 2017.

[41] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman.

How to train your neural ode: the world of jacobian and kinetic regularization. In

International Conference on Machine Learning, 2020.

[42] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-

aware minimization for efficiently improving generalization. arXiv preprint

arXiv:2010.01412, 2020.

[43] Karl J Friston and Lee Harrison. Dynamic causal modelling. Neuroimage, 2003.

[44] Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485,

2017.

[45] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics, pp. 315–323, 2011.

169

[46] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pp. 2672–2680, 2014.

[47] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-

ing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[48] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Du-

venaud. Ffjord: Free-form continuous dynamics for scalable reversible generative

models. arXiv preprint arXiv:1810.01367, 2018.

[49] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[50] Abigail S Greene, Siyuan Gao, Dustin Scheinost, and R Todd Constable. Task-

induced brain state manipulation improves prediction of individual traits. Nature

communications, 9(1):1–13, 2018.

[51] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.

Inverse Problems, 34(1):014004, 2017.

[52] YAN Hanshu, DU Jiawei, TAN Vincent, and FENG Jiashi. On robustness of neural

ordinary differential equations. In International Conference on Learning Represen-

tations, 2019.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

[54] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun,

Gyuwan Kim, Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the

170

slowdown for momentum optimizers on scale-invariant weights. arXiv preprint

arXiv:2006.08217, 2020.

[55] Volker Hesselmann, Bettina Sorger, Ralf Girnus, Kathrin Lasek, Mohammad

Maarouf, Christoph Wedekind, Jürgen Bunke, Oliver Schulte, Barbara Krug, Klaus

Lackner, et al. Intraoperative functional mri as a new approach to monitor deep

brain stimulation in parkinson’s disease. European radiology, 14(4):686–690, 2004.

[56] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In Advances in neural information processing systems, pp. 6626–6637,

2017.

[57] Francis Begnaud Hildebrand. Introduction to numerical analysis. 1987.

[58] Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its recent

magnitude. Coursera, 2012.

[59] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++:

Improving flow-based generative models with variational dequantization and archi-

tecture design. arXiv preprint arXiv:1902.00275, 2019.

[60] Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering

flat minima. In Advances in neural information processing systems, pp. 529–536,

1995.

[61] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 4700–4708, 2017.

171

[62] Scott A Huettel, Allen W Song, Gregory McCarthy, et al. Functional magnetic

resonance imaging, volume 1. Sinauer Associates Sunderland, MA, 2004.

[63] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and An-

drew Gordon Wilson. Averaging weights leads to wider optima and better gen-

eralization. arXiv preprint arXiv:1803.05407, 2018.

[64] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-

vergence and generalization in neural networks. arXiv preprint arXiv:1806.07572,

2018.

[65] Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. In

Advances in Neural Information Processing Systems, pp. 9847–9858, 2019.

[66] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Ben-

gio. Fantastic generalization measures and where to find them. arXiv preprint

arXiv:1912.02178, 2019.

[67] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing

from standard gan. arXiv preprint arXiv:1807.00734, 2018.

[68] Martha D Kaiser, Caitlin M Hudac, Sarah Shultz, Su Mei Lee, Celeste Cheung,

et al. Neural signatures of autism. PNAS, 2010.

[69] Nitish Shirish Keskar and Richard Socher. Improving generalization performance

by switching from adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

[70] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization

gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

172

[71] Patrick Kidger, Ricky T. Q. Chen, and Terry Lyons. “Hey, that’s not an ODE”:

Faster ODE Adjoints with 12 Lines of Code. arXiv:2009.09457, 2020.

[72] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled

differential equations for irregular time series. arXiv preprint arXiv:2005.08926,

2020.

[73] Stefan J Kiebel, Marta I Garrido, Rosalyn J Moran, and Karl J Friston. Dynamic

causal modelling for eeg and meg. Cognitive neurodynamics, 2008.

[74] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[75] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1

convolutions. In Advances in Neural Information Processing Systems, pp. 10215–

10224, 2018.

[76] Brian Knutson, Andrew Westdorp, Erica Kaiser, and Daniel Hommer. Fmri visu-

alization of brain activity during a monetary incentive delay task. Neuroimage, 12

(1):20–27, 2000.

[77] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. 2009.

[78] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adap-

tive sharpness-aware minimization for scale-invariant learning of deep neural net-

works. arXiv preprint arXiv:2102.11600, 2021.

[79] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional

by model selection. Annals of Statistics, pp. 1302–1338, 2000.

173

[80] Chiang-shan Ray Li, Cong Huang, R Todd Constable, and Rajita Sinha. Imaging

response inhibition in a stop-signal task: neural correlates independent of signal

monitoring and post-response processing. Journal of Neuroscience, 26(1):186–192,

2006.

[81] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient de-

scent with adaptive stepsizes. In The 22nd International Conference on Artificial

Intelligence and Statistics, pp. 983–992. PMLR, 2019.

[82] Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duve-

naud. Scalable gradients for stochastic differential equations. arXiv preprint

arXiv:2001.01328, 2020.

[83] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization

effect of initial large learning rate in training neural networks. arXiv preprint

arXiv:1907.04595, 2019.

[84] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao

metric, geometry, and complexity of neural networks. In The 22nd International

Conference on Artificial Intelligence and Statistics, pp. 888–896. PMLR, 2019.

[85] Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-

batch training in deep learning. In International Conference on Machine Learning,

pp. 6094–6104. PMLR, 2020.

[86] Ernest Lindelöf. Sur l’application de la méthode des approximations successives

aux équations différentielles ordinaires du premier ordre. Comptes rendus hebdo-

madaires des séances de l’Académie des sciences, 116(3):454–457, 1894.

[87] Martin A Lindquist, Ji Meng Loh, Lauren Y Atlas, and Tor D Wager. Modeling

174

the hemodynamic response function in fmri: efficiency, bias and mis-modeling.

Neuroimage, 45, 2009.

[88] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng

Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond.

arXiv preprint arXiv:1908.03265, 2019.

[89] Catherine Lord, Mayada Elsabbagh, Gillian Baird, and Jeremy Veenstra-

Vanderweele. Autism spectrum disorder. The Lancet, 392(10146):508–520, 2018.

[90] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017.

[91] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neu-

ral networks: Bridging deep architectures and numerical differential equations. In

International Conference on Machine Learning, pp. 3276–3285. PMLR, 2018.

[92] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods

with dynamic bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

[93] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous

neural networks. arXiv preprint arXiv:1906.05890, 2019.

[94] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime

Asama. Dissecting neural odes. arXiv preprint arXiv:2002.08071, 2020.

[95] Paul M Matthews, Garry D Honey, and Edward T Bullmore. Applications of fmri

in translational medicine and clinical practice. Nature Reviews Neuroscience, 7(9):

732–744, 2006.

[96] David McAllester. Simplified pac-bayesian margin bounds. In Learning theory and

Kernel machines, pp. 203–215. Springer, 2003.

175

[97] David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth

annual conference on Computational learning theory, pp. 164–170, 1999.

[98] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for on-

line convex optimization. arXiv preprint arXiv:1002.4908, 2010.

[99] RV Mises and Hilda Pollaczek-Geiringer. Praktische verfahren der gle-

ichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechan-

ics/Zeitschrift für Angewandte Mathematik und Mechanik, 9(1):58–77, 1929.

[100] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. arXiv preprint

arXiv:1802.05957, 2018.

[101] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-

inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[102] Oury Monchi, John G Taylor, and Alain Dagher. A neural model of working mem-

ory processes in normal subjects, parkinson’s disease and schizophrenia for fmri

design and predictions. Neural Networks, 13(8-9):953–973, 2000.

[103] Todd K Moon. The expectation-maximization algorithm. ISPM, 1996.

[104] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When does label smoothing

help? arXiv preprint arXiv:1906.02629, 2019.

[105] Ulrich Mutze. An asynchronous leapfrog method ii. arXiv preprint

arXiv:1311.6602, 2013.

[106] Shi Naichen, Li Dawei, Hong Mingyi, and Sun Ruoyu. Rmsprop can converge with

proper hyper-parameter. ICLR, 2021.

176

[107] Kate Nation, Paula Clarke, Barry Wright, and Christine Williams. Patterns of read-

ing ability in children with autism spectrum disorder. J Autism Dev Disord, 2006.

[108] Yu Nesterov. A method of solving a convex programming problem with conver-

gence rate o(1/k2̂). In Sov. Math. Dokl, volume 27, 1983.

[109] Matthew Newville, Till Stensitzki, Daniel B Allen, Michal Rawlik, Antonino In-

gargiola, and Andrew Nelson. Lmfit: Non-linear least-square minimization and

curve-fitting for python. 2016.

[110] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian ap-

proach to spectrally-normalized margin bounds for neural networks. arXiv preprint

arXiv:1707.09564, 2017.

[111] Jitse Niesen et al. On the global error of discretization methods for ordinary differ-

ential equations. In Citeseer, 2004.

[112] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over

a large number of classes. In 2008 Sixth Indian Conference on Computer Vision,

Graphics & Image Processing, pp. 722–729. IEEE, 2008.

[113] Hirosi Okamura. Condition nécessaire et suffisante remplie par les équations

différentielles ordinaires sans points de peano. Mem. Coll. Sci., Kyoto Imperial

Univ., Series A, 24:21–28, 1942.

[114] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and

dogs. In 2012 IEEE conference on computer vision and pattern recognition, pp.

3498–3505. IEEE, 2012.

[115] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

177

recurrent neural networks. In International conference on machine learning, pp.

1310–1318, 2013.

[116] Jane S Paulsen, Janice L Zimbelman, Sean C Hinton, Douglas R Langbehn, Cather-

ine L Leveroni, Michelle L Benjamin, Norman C Reynolds, and Stephen M Rao.

fmri biomarker of early neuronal dysfunction in presymptomatic huntington’s dis-

ease. American Journal of Neuroradiology, 25(10):1715–1721, 2004.

[117] M Peifer and J Timmer. Parameter estimation in ordinary differential equations for

biochemical processes using the method of multiple shooting. 2007.

[118] William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E

Nichols. Statistical parametric mapping: the analysis of functional brain images.

2011.

[119] Mark Plitt, Kelly Anne Barnes, and Alex Martin. Functional connectivity classifica-

tion of autism identifies highly predictive brain features but falls short of biomarker

standards. NeuroImage: Clinical, 7:359–366, 2015.

[120] Boris T Polyak. Some methods of speeding up the convergence of iteration meth-

ods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17,

1964.

[121] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. 2018.

[122] Maria Giulia Preti, Thomas AW Bolton, and Dimitri Van De Ville. The dynamic

functional connectome: State-of-the-art and perspectives. Neuroimage, 160:41–54,

2017.

[123] Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutnı́k. Snode:

178

Spectral discretization of neural odes for system identification. arXiv preprint

arXiv:1906.07038, 2019.

[124] Alejandro F Queiruga, N Benjamin Erichson, Dane Taylor, and Michael W Ma-

honey. Continuous-in-depth neural networks. arXiv preprint arXiv:2008.02389,

2020.

[125] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[126] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do im-

agenet classifiers generalize to imagenet? In International Conference on Machine

Learning, pp. 5389–5400, 2019.

[127] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and

beyond. arXiv preprint arXiv:1904.09237, 2019.

[128] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. arXiv preprint

arXiv:1506.01497, 2015.

[129] Herbert Robbins and Sutton Monro. A stochastic approximation method. The an-

nals of mathematical statistics, pp. 400–407, 1951.

[130] HoHo Rosenbrock. An automatic method for finding the greatest or least value of

a function. The Computer Journal, 3(3):175–184, 1960.

[131] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differ-

ential equations for irregularly-sampled time series. In Advances in Neural Infor-

mation Processing Systems, pp. 5320–5330, 2019.

179

[132] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[133] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, California Univ San Diego

La Jolla Inst for Cognitive Science, 1985.

[134] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[135] Carl Runge. Über die numerische auflösung von differentialgleichungen. Mathe-

matische Annalen, 46(2):167–178, 1895.

[136] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-

genet large scale visual recognition challenge. International journal of computer

vision, 115(3):211–252, 2015.

[137] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differ-

ential equations. Journal of Mathematical Imaging and Vision, pp. 1–13, 2019.

[138] Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung.

A machine learning framework for solving high-dimensional mean field game and

mean field control problems. Proceedings of the National Academy of Sciences,

117(17):9183–9193, 2020.

[139] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Advances in neural infor-

mation processing systems, pp. 2234–2242, 2016.

180

[140] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamil-

tonian graph networks with ode integrators. arXiv preprint arXiv:1909.12790,

2019.

[141] Pedro Savarese, David McAllester, Sudarshan Babu, and Michael Maire. Domain-

independent dominance of adaptive methods. arXiv preprint arXiv:1912.01823,

2019.

[142] Mohamed L Seghier, Peter Zeidman, Alex P Leff, and Cathy Price. Identifying ab-

normal connectivity in patients using dynamic causal modelling of fmri responses.

Front. Neurosci, 2010.

[143] Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. {RMS}prop can converge

with proper hyper-parameter. In International Conference on Learning Representa-

tions, 2021. URL https://openreview.net/forum?id=3UDSdyIcBDA.

[144] John R Silvester. Determinants of block matrices. The Mathematical Gazette, 84

(501):460–467, 2000.

[145] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[146] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[147] Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge

university press, 2003.

[148] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-

181

https://openreview.net/forum?id=3UDSdyIcBDA

tance of initialization and momentum in deep learning. In International conference

on machine learning, pp. 1139–1147, 2013.

[149] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement learning. Artificial

intelligence, 112(1-2):181–211, 1999.

[150] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 1–9, 2015.

[151] Paulo Tabuada and Bahman Gharesifard. Universal approximation power of deep

neural networks via nonlinear control theory. arXiv preprint arXiv:2007.06007,

2020.

[152] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las

Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.

Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[153] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,

Thomas Unterthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lu-

cic, et al. Mlp-mixer: An all-mlp architecture for vision. arXiv preprint

arXiv:2105.01601, 2021.

[154] Marc Toussaint. Lecture notes: Some notes on gradient descent. 2012.

[155] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Criv-

ello, Olivier Etard, et al. Automated anatomical labeling of activations in spm using

a macroscopic anatomical parcellation of the mni mri single-subject brain. Neu-

roimage, 2002.

182

[156] Martijn P Van Den Heuvel and Hilleke E Hulshoff Pol. Exploring the brain network:

a review on resting-state fmri functional connectivity. Eur Neuropsychopharmacol,

2010.

[157] David C Van Essen, Kamil Ugurbil, Edward Auerbach, Deanna Barch, Timothy EJ

Behrens, Richard Bucholz, Acer Chang, Liyong Chen, Maurizio Corbetta, San-

dra W Curtiss, et al. The human connectome project: a data acquisition perspective.

Neuroimage, 62(4):2222–2231, 2012.

[158] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30:5998–6008, 2017.

[159] Loup Verlet. Computer” experiments” on classical fluids. i. Thermodynamical prop-

erties of Lennard-Jones molecules. Physical review, 159(1):98, 1967.

[160] Vito Volterra. Variations and fluctuations of the number of individuals in animal

species living together. ICES Journal of Marine Science, 3, 1928.

[161] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II.

Springer Berlin Heidelberg, 1996.

[162] Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks.

In Advances in Neural Information Processing Systems, pp. 1545–1555, 2019.

[163] Colin Wei, Jason Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Gener-

alization and optimization of neural nets vs their induced kernel. 2019.

[164] E Weinan. A proposal on machine learning via dynamical systems. Communica-

tions in Mathematics and Statistics, 5(1):1–11, 2017.

183

[165] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin

Recht. The marginal value of adaptive gradient methods in machine learning. In

Advances in Neural Information Processing Systems, pp. 4148–4158, 2017.

[166] Zeke Xie, Li Yuan, Zhanxing Zhu, and Masashi Sugiyama. Positive-negative mo-

mentum: Manipulating stochastic gradient noise to improve generalization. arXiv

preprint arXiv:2103.17182, 2021.

[167] Haruo Yoshida. Construction of higher order symplectic integrators. Physics letters

A, 150(5-7):262–268, 1990.

[168] Xubo Yue, Maher Nouiehed, and Raed Al Kontar. Salr: Sharpness-aware learning

rates for improved generalization. arXiv preprint arXiv:2011.05348, 2020.

[169] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar.

Adaptive methods for nonconvex optimization. In Advances in neural information

processing systems, pp. 9793–9803, 2018.

[170] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[171] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. 2017.

[172] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention

generative adversarial networks. In International conference on machine learning,

pp. 7354–7363. PMLR, 2019.

[173] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

184

[174] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead opti-

mizer: k steps forward, 1 step back. In Advances in Neural Information Processing

Systems, pp. 9593–9604, 2019.

[175] Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks

via adversarial model perturbation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 8156–8165, 2021.

[176] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplec-

tic ode-net: Learning hamiltonian dynamics with control. arXiv preprint

arXiv:1909.12077, 2019.

[177] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, et al. Towards

theoretically understanding why sgd generalizes better than adam in deep learning.

arXiv preprint arXiv:2010.05627, 2020.

[178] Zhiming Zhou, Qingru Zhang, Guansong Lu, Hongwei Wang, Weinan Zhang,

and Yong Yu. Adashift: Decorrelation and convergence of adaptive learning rate

methods. In International Conference on Learning Representations, 2019. URL

https://openreview.net/forum?id=HkgTkhRcKQ.

[179] Juntang Zhuang, Nicha C Dvornek, Xiaoxiao Li, Pamela Ventola, and James S

Duncan. Invertible network for classification and biomarker selection for asd. In

MICCAI, 2019.

[180] Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Pa-

pademetris, and James Duncan. Adaptive checkpoint adjoint for gradient estimation

in neural ode. ICML, 2020.

[181] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek,

185

https://openreview.net/forum?id=HkgTkhRcKQ

Xenophon Papademetris, and James Duncan. Adabelief optimizer: Adapting step-

sizes by the belief in observed gradients. NeurIPS, 2020.

[182] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient

condition for convergences of adam and rmsprop. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 11127–11135, 2019.

186

	Machine Learning Methods to Estimate Whole-Brain Effective Connectome for ASD Identification
	Recommended Citation

	Introduction
	Autism Spectrum Disorder
	Introduction to fMRI
	Functional connectome analysis of fMRI
	Effective connectome and dynamic causal modeling
	Summary of contributions

	Overview of Dynamic Causal Modeling and Model-Driven Learning Framework
	Dynamic Causal Modeling
	Model-Driven Learning Framework

	Numerical methods for gradient estimation in continuous-time models
	Introduction
	Preliminaries
	Numerical Integration Methods
	Analytical form of gradient in continuous case

	Numerical implementations in the literature
	Adjoint method suffers from numerical errors
	Naive Method has Deep Computation Graph

	Methods
	Adaptive checkpoint adjoint (ACA)
	Asynchronous Leapfrog Integrator
	Memory-efficient ALF Integrator (MALI) for gradient estimation in continuous-time models

	Experiments
	Validation on a toy example
	Image recognition with Neural ODE
	Time-series modeling
	Continuous generative models

	Related works
	Proofs and Theoretical Analysis
	Numerical errors for the adjoint method
	Algorithm of ALF
	Expansion of total derivative
	Local truncation error of ALF
	Stability analysis for ALF
	Damped ALF

	AdaBelief optimizer: scale stepsize by the belief in observed gradients
	Introduction
	Methods
	Details of AdaBelief Optimizer
	Intuitive explanation for benefits of AdaBelief
	Convergence rate of AdaBelief in convex and non-convex optimization

	Asynchronous version of AdaBelief
	Algorithms
	Async AdaBelief has a weaker convergence condition
	Async AdaBelief matches the oracle convergence rate

	Experiments
	Proofs and theoretical analysis
	Convergence of AdaBelief in convex online learning case
	Convergence of AdaBelief for non-convex stochastic optimization
	Analysis on convergence conditions of Asynchronous AdaBelief
	Numerical validations
	Asynchronous AdaBelief matches the oracle convergence rate for stochastic non-convex optimization

	Surrogate Gap Guided Sharpness-Aware Minimization (GSAM) improves generalization
	Introduction
	Preliminaries
	Notations
	Sharpness-Aware Minimization

	The surrogate gap measures the sharpness at a local minimum
	The perturbed loss is not always sharpness-aware
	The surrogate gap agrees with sharpness

	Surrogate Gap Guided Sharpness-Aware Minimization
	General idea: Jointly minimize the perturbed loss and surrogate gap
	Gradient decomposition and ascent for the multi-objective optimization

	Theoretical properties of GSAM
	Convergence during training
	Generalization of GSAM

	Experiments
	GSAM improves test performance on various model architectures
	GSAM finds a minimum whose Hessian has small dominant eigenvalues
	Comparison with methods in the literature
	Additional studies

	Proofs
	Proof of Lemma. 5.3.0.1
	Proof of Lemma. 5.3.0.2
	Proof of Lemma. 5.3.0.3
	Proof of Thm. 5.5.1
	Proof of Corollary. 5.5.2.1
	Proof of Thm. 5.5.3
	Proof for convergence of GSAM without relying on the L-smoothness of fp

	Related works

	Apply MDL to identify ASD from fMRI
	Recap of Dynamic Causal Modeling
	Overcoming long time series and noise in fMRI data with Multiple Shooting MDL (MS-MDL)
	Notations and formulation of problem
	Multiple-shooting method
	Adjoint state method
	Multiple-Shooting Adjoint State Method (MSA)

	Validation of MSA on toy examples
	Apply MDL to identify ASD from fMRI data
	Data acquisition and pre-processing
	Improved Fitting with ACA and AdaBelief
	Estimation of Effective Connectome and Functional Connectome
	Group comparison
	Classification results for task fMRI
	Classification results fo resting-state fMRI
	Improved classification with GSAM
	Studies on hyper-parameters

	Conclusions
	Bibliography

