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Abstract 
 

Statistical Methods for Genetic Prediction of Complex Traits in Single and Multiple 

Populations 

 
Geyu Zhou 

 
2022 

 

Genetic prediction of complex traits, also known as polygenic risk score (PRS), is 

constructed by combining the estimated effect sizes of genetic markers across the 

genome for an individual. PRS has shown great promise in biomedical and clinical 

research for disease prevention, monitoring and treatment. However, the development 

of accurate prediction models is challenging due to the wide diversity of genetic 

architecture, limited access to individual level data, and the demand for computational 

resources. The broader application of PRS to the general population is further hindered 

by the poor transferability of PRS developed in Europeans to non-European populations.  

In this thesis, we develop two statistical methods to help address these 

limitations. Chapter 1 includes a review of PRS from a statistical perspective. In Chapter 

2, we present a summary statistics-based nonparametric method SDPR that is adaptive 

to different genetic architectures, statistically robust, and computationally efficient. The 

material is drawn from the manuscript “A fast and robust Bayesian nonparametric 

method for prediction of complex traits using summary statistics” with minor 

modification. In Chapter 3, we develop a statistical method called SDPRX that can 

effectively integrate genome wide association study summary statistics from different 
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populations to improve the prediction accuracy in non-European populations. The 

material is drawn from the manuscript “SDPRX: A statistical method for cross-population 

prediction of complex traits” in preparation. 
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Chapter 1 

1.1 Introduction 

How genetic factors contribute to the variation of phenotypes (traits) is a central 

question of genetic research. Mendelian traits, defined as traits following Mendelian 

inheritance laws (recessive or dominant), are usually controlled by a single gene or 

locus. In humans, single gene disorders are relatively well-studied as they have clear 

inheritance pattern with few contributing genetic factors. For example, mutations of the 

CFTR gene cause cystic fibrosis and excessive CAG repeats of the HTT gene cause 

Huntington disease [1, 2]. In contrast, most traits, regardless of discrete or continuous, 

are complex as they do not follow a simple Mendelian inheritance pattern and are 

influenced by many genetic factors. Complex traits are also affected by environmental 

factors. For example, diet composition and exercise frequency affect the lipid level and 

the risk of heart disease.  

The study of complex traits dates back to the late 1800s. Francis Galton found 

that heights of children and their parents were correlated [3]. At that time, the cause of 

correlation was hard to explain as there was no direct link between Mendelian and 

complex traits. In 1918, R.A. Fisher proposed the famous “infinitesimal model” and 

showed that a trait value can be broken down as the sum of a genetic and non-genetic 

(environmental) component, with the genetic component being a large number of 

Mendelian factors (alleles of genes) with additive effects [4, 5]. Random sampling of a 

large number of Mendelian factors, each with small effect sizes on average, produces a 
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normally distributed trait in the population. A toy example to illustrate this point would 

be assuming that each allele identically and independently follows a Bernoulli 

distribution with a unit effect size, then the sum of alleles tends to the normal 

distribution when the number of alleles is large. The infinitesimal model has been quite 

successful in modeling quantitative traits in plants and animal breeding, and is still 

useful in the modern genomics era. 

 

1.2 Genome-wide association studies 

The completions of the Human Genome Project and the HapMap Project provided a 

reference map to study common genetic variations in human populations. It allows the 

design of high-throughput single-nucleotide polymorphism (SNP) array to measure the 

genotypes of an individual in a cost-effective way. A typical SNP array is able to 

simultaneously measure about 1 million markers of an individual across the genome, 

and imputation can further increase the number of markers up to around 100 millions. 

Consequently, it allows the experimental design of genome-wide association studies 

(GWAS), which helps dissect the genetic basis of complex traits.     

GWAS starts by recruiting samples to form a cohort and collect their genotypes 

and phenotypes. A statistical test is then performed to assess the association of each 

SNP (a count of 0, 1, 2 of one of the two alleles) with the trait. The result is often 

recorded and made publicly available in the summary statistics format (Figure 1.1). Over 

the past decades, GWAS have been successful to identify a large number of SNPs 
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associated with complex traits. The discovery power of GWAS increases with the sample 

size. As the sample size of GWAS increases, it reveals that the genetic architecture of 

most complex traits is polygenic, in the sense that they are associated with thousands of 

SNPs with relatively small effect sizes. For example, it is estimated that most 100Kb 

windows in the genome include variants that affect height and a randomly chosen 1Mb 

window contains variants that contribute to schizophrenia [6, 7].  

 

1.3 Genetic prediction of complex traits 

The data from GWAS can also be used to predict complex traits. Because most 

genotypes of an individual do not change across the lifetime, accurate genetic 

prediction can facilitate disease screening and prevention at an early stage or even long 

before the onset. Genetic prediction of complex traits is commonly referred as 

polygenic risk score (PRS) when the predicted trait is disease [8]. However, PRS can also 

be used to describe the prediction of continuous traits. The simplest way to construct 

PRS is a linear weighted sum of the dosage of genotypes by the estimated effect sizes 

(Figure 1.1) [8].  
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Figure 1.1. A simple illustration of GWAS and PRS. After collecting samples and 

performing the statistical test (linear regression for continuous traits and logistic 

regression for binary traits), the result is recorded in the summary statistics, which 

contain the identifier, tested allele and estimated effect size of each SNP. PRS of an 

individual is calculated as the weighted sum of the counts of alleles with weights being 

the estimated effect sizes. 

 

The accuracy of PRS generally depends on two factors: heritability and the 

accuracy of estimated effect sizes. Heritability is the proportion of phenotypic variance 

that can be explained by genetic factors, which also serves as the theoretical upper 

bound of the prediction accuracy (proportion of phenotypic variance explained by PRS) 

[9]. The theoretical upper bound can only be achieved if all genetic markers affected the 

trait are known and their effect sizes are estimated without error [9]. These two 

conditions are neither satisfied based on current research progress.  

On the one hand, SNPs on the high-throughput GWAS array are typically not the 

causal variants. Their associations are more likely because they are in linkage 



 5 

disequilibrium (LD) and thus tagged with the causal variants. Rare variants, presumably 

having large effect sizes, are usually not included or well-tagged in GWAS. Therefore, 

heritability estimated based on GWAS SNPs is smaller than the heritability of a trait. For 

example, heritability of height is believed to be 0.7-0.8 based on twin studies but the 

heritability estimated from GWAS SNPs is only around 0.5 [9]. Heritability estimated 

from GWAS SNPs thus serves as the upper bound of the prediction accuracy of PRS.  

On the other hand, the effect sizes of genetic markers cannot be estimated 

without error as the sample size of GWAS is always finite. Currently, the number of 

GWAS SNPs is typically 1-10 million and the sample size of GWAS is 50-500K. Most 

complex traits are affected by a large number of SNPs with relatively small effect sizes. 

The variance of the estimated effect size through marginal linear regression is 

approximately reciprocal to the GWAS sample size. Hence, if the true effect size of one 

SNP is 10-3, the accuracy of the estimated effect size is low even when the sample size of 

GWAS is 100K. The estimation error further propagates as effect sizes of many SNPs are 

aggregated to calculate PRS.  

How to improve the performance of PRS is a key issue of PRS research. It can be 

foreseen that the prediction accuracy would increase as more GWAS with a large 

sample size are being conducted. Meanwhile, developing statistical methods that can 

achieve the best performance is also important.  
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1.4 Statistical methods 

1.4.1 Multiple linear regression 

Almost every statistical method of PRS can be understood in a multiple linear regression 

framework. We begin by defining 𝑦 as an 𝑁 ×  1 vector of the phenotypes measured in 

𝑛 individuals, and 𝑋 as an 𝑁 ×  𝑀 matrix with each column representing the genotypes 

of 𝑀 SNPs in each individual. Genotypes are coded as the number of alleles (i.e. 0, 1, 2). 

We further assume that 𝑦 and each column of 𝑋 are normalized to have mean 0 and 

variance 1. The normalized genotypes no longer are coded as 0 ,1, 2. We note that the 

normalization usually does not significantly affect the prediction performance in the real 

data analysis. The following linear model connects y with X: 

𝑦 = 𝑋𝛽 + 𝜖 (1.1) 

where 𝛽 is a 𝑝 ×  1 vector of SNP effect sizes and 𝜖 is an 𝑛 × 1 vector of environmental 

effects. We assume that 𝑦 is continuous for simplicity, though the discussion still applies 

to binary traits if we view 𝑦 as the liability [10]. Because 𝑁 ≪ 𝑀 in the real GWAS 

setting, conventional maximal likelihood estimator (MLE) cannot be used to estimate 𝛽. 

Instead, most PRS methods make assumptions about 𝛽 and fit the model using 

regularization or in a fully Bayesian way. We note that SNPs located closely to each 

other on the chromosome are often highly correlated due to linkage disequilibrium (LD). 

The estimator of 𝛽 automatically adjusts for LD if the model is fitted in a joint way. 
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1.4.2 Summary statistics-based methods 

Methods requiring the full knowledge of 𝑦 and 𝑋 are often referred as individual-level 

data-based, which were largely developed in the early GWAS era when the sample size 

was moderate. Individual-level data-based methods have two drawbacks, which limit 

their use in the current GWAS era. First, most studies would not make 𝑦 and 𝑋 publicly 

available due to privacy concerns. Second, the computational burden is intensive as 

typically 𝑁 is 50-500K and 𝑀 is 1-10 million for current GWAS.  

Recent method development has shifted towards the use of summary statistics 

as most studies make their GWAS summary statistics publicly available (Figure 1.1). The 

discussion in the sections 1.2 and 1.3 are also based on summary statistics.  For each 

SNP 𝑗, the weight �̂�𝑗  in the summary statistics are usually obtained by performing the 

marginal linear regression  �̂�𝑗 = 𝑋𝑗
𝑇𝑦/𝑁 assuming normalized genotypes and 

phenotypes. Direct use of weights in the summary statistics (Figure 1.1) to construct PRS 

is problematic because the marginal regression does not adjust for LD and thus weights 

for SNPs in LD can be highly correlated or even the same (Figure 1.2).  

 



 8 

Figure 1.2. The plot of linkage disequilibrium (LD) matrix. As shown in the red dots, SNPs 

that are located close to each other on the chromosome are highly correlated. If two 

SNPs 𝑋1 and 𝑋2 are perfectly correlated, then the marginal effect sizes �̂�1 and �̂�2 would 

be the same. This would cause the overcounting issue if no adjustment is applied.  

 

Pruning and thresholding (P+T) is the simplest method to adjust for LD, which 

randomly selecting one of highly correlated SNPs based on LD and p value for 

calculation of PRS [8, 11].  P+T is currently the most popular PRS method for its 

simplicity and computational efficiency, though its prediction accuracy can often be 

improved by advanced statistical methods.  Among these statistical methods, the most 

common way to adjust for LD is to introduce a LD matrix 𝑅 = 𝑋𝑇𝑋/𝑁 and link the 

marginal effect sizes �̂� with true effect sizes 𝛽 through the following multivariate 

normal distribution. 

�̂�|𝛽 ∼ 𝑁(𝑅𝛽, 𝑅/𝑁) (1.2) 

Similar to individual-level data-based methods, summary statistics-based 

methods also make assumptions about 𝛽 for estimation, which will be discussed in the 

next section.  We conclude this section with three remarks. First, because LD pattern is 

similar in a homogenous population, LD matrix 𝑅 can be approximately estimated using 

a public reference panel without requiring the knowledge about 𝑋. Second, equation 

(1.2) may be violated if the approximation of the reference panel is not well or summary 

statistics are obtained via meta-analysis of heterogenous cohorts. Such violation often 

leads to the loss of prediction accuracy or even completely failure of the algorithm. 
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Third, individual-level data-based methods usually perform slightly better than the 

summary statistics-based methods for the same GWAS data. However, summary 

statistics methods applied to large scale GWAS often outperform individual-level data-

based methods applied to small scale GWAS. 

 

1.4.3 Assumptions 

Most PRS methods differ in the assumptions made on the effect sizes. Here we review 

the assumptions for most commonly used methods and their connection with statistical 

literature. The list is by no means complete and we refer to the article by Ying and Xiang 

for a more compressive review [12]. 

One of the most successful statistical models applied in GWAS is the linear mixed 

model (LMM), which assumes that all SNPs are causal (non-zero) and their effect sizes 

follow a single normal distribution: 𝛽𝑗 ∼ 𝑁(0, 𝜎2). Paired with equation (1.1), LMM was 

first introduced to estimate the SNP heritability ℎ2 using the restricted maximal 

likelihood (REML) approach [13]. Subsequently, the estimated heritability can be used to 

calculate the posterior effect sizes for prediction. Effect sizes estimated by LMM is 

equivalent as ridge regression (L2 regularization): 

�̂� = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (1.3) 

where 𝜆 = 𝑀(
1

ℎ2 − 1) and 𝑀 is the number of SNPs. LMM can be easily extended to the 

use of summary statistics by replacing 𝑋𝑇𝑋 and 𝑋𝑇𝑦 with the corresponding terms of 

reference LD matrix 𝑅 and marginal effect sizes 𝛽. LMM is implemented in the GCTA 
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software and the summary statistics version is implemented in SBLUP and LDpred-inf 

[14-16].  In reality, not all SNPs have non-zero effect sizes, which violates the 

assumption of LMM. Although such violation does not affect the consistency of the 

estimation of heritability, the prediction accuracy can often be empirically improved 

with a sparse model assumption [17, 18]. Lasso is a classic frequentist method to 

perform variable selection and improve the prediction by imposing an L1 penalty on the 

effect sizes [19]. Lasso is implemented in the package snpnet, which is able to handle 

the computational challenge of individual-level data [20]. A summary statistics version is 

implemented in the lassosum package [21]. 

Another natural extension of LMM to incorporate sparsity is the point normal 

mixture model: 𝛽𝑗 ∼ 𝜋𝑁(0, 𝜎2) + (1 − 𝜋)𝛿0. It assumes that only a portion (with 

probability 𝜋) of SNPs have non-zero effect sizes and these effect sizes follow a single 

normal distribution 𝑁(0, 𝜎2). The remaining (with probability 1-𝜋) SNPs have exactly 

zero effect sizes. Point normal mixture model is also known as Bayesian variable 

selection in the statistical literature [22]. The fitting of point normal mixture model can 

be computationally challenging due to the slow mixing of the Markov chain. Point 

normal mixture model is implemented in the software GEMMA for individual-level data 

and RSS/LDpred/LDpred2 for summary statistics [16, 18, 23, 24].  

A limitation of the normal distribution is that its probability in the tail region 

quickly approaches zero and thus may over-shrink the large effect sizes. There are 

generally two ways to address this limitation. First, one may consider using a mixture of 

multiple normal distributions instead of a single one and thus allow multiple shrinkage 
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for estimation. For example, BSLMM and DBSLMM assumes that effect sizes come from 

a mixture of two normal distributions 𝛽𝑗 ∼ 𝜋𝑁(0, 𝜎1
2) + (1 − 𝜋)𝑁(0, 𝜎1

2 + 𝜎2
2), while 

BayesR and SBayesR assume that effect sizes follow a mixture of point mass and three 

normal distributions 𝛽𝑗 ∼ (1 − 𝜋1 − 𝜋2 − 𝜋3)𝛿0 + 𝜋1𝑁(0, 0.01𝜎2) + 𝜋2𝑁(0, 0.1𝜎2) +

𝜋3𝑁(0, 𝜎2) [25-27]. Second, another level of prior can be placed on the variance of 

normal distribution to induce a marginally heavy-tailed distribution. For example, 

BayesB places an inverse-gamma prior on the variance of normal distribution to induce 

a point t mixture distribution [28]. Motivated by the recent development of the 

horseshoe estimator for sparse signals, PRS-CS decomposes the variance of normal 

distribution as the product of a global scaling parameter and a Strawderman-Berger 

prior [29, 30].  

 

1.5 Application 

We conclude this chapter by a brief comment about the application of PRS. The arguably 

most important application of PRS is to predict the disease risk of individuals in a 

population. Although the prediction accuracy overall is low to moderate for most of 

diseases and quantitative traits, PRS is of great clinical interest due to its ability to 

identify individuals with high disease risk [31]. For example, Khera et al. demonstrated 

that PRS combined with sex and age was able to identify 1.5-8% of individuals in UK 

biobank with 3-fold increase risk of coronary artery disease, atrial fibrillation, type 2 

diabetes, inflammatory bowel disease and breast cancer [32]. Mavaddat et al. showed 
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that the lifetime risk of overall breast cancer in the top centile of the PRS was 32.6% 

[33]. Another application of PRS is to serve as the instrumental variable to investigate 

the causal relationship between genetic predisposition of disease and traits. If 

hypertension is caused by obesity, then genetic variants linked to obesity will also affect 

hypertension, and thus individuals with a high PRS for obesity will on average have a 

higher blood pressure than those with a low PRS [34]. With the increase of GWAS 

sample size and development of PRS methods, it can be foreseen that there will be 

more applications of PRS with improved prediction accuracy.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 13 

Chapter 2 

2.1 Introduction 

Results from large-scale genome-wide association studies (GWAS) offer valuable 

information to predict personal traits based on genetic markers through polygenic risk 

scores (PRS) calculated from different methods. For one individual, PRS is typically 

calculated as the linear sum of the number of the risk alleles weighted by the effect size 

for each marker, such as single nucleotide polymorphism (SNP) [8]. PRS has gained great 

interest recently due to its demonstrated ability to identify individuals with higher 

disease risk for more effective prevention and monitoring [32].      

Appropriate construction of PRS requires the development of statistical methods 

to jointly estimate the effect sizes of all genetic markers in an accurate and efficient 

way. Statistical challenges associated with the design of PRS methods largely reside in 

how to account for linkage disequilibrium (LD) among the markers and how to capture 

the genetic architecture of traits. Meanwhile, practical issues to be addressed include 

making use of summary statistics as input, as well as reducing the computational 

burden.  

One simple method to compute PRS is to use a subset of SNPs in GWAS summary 

statistics formed by pruning out SNPs in LD and selecting those below a p value 

threshold (P+T) [8]. P+T is computationally efficient, though the prediction accuracy can 

usually be improved by using more sophisticated methods [16]. At present, most of the 

existing methods that allow the use of summary statistics as input assume a prior 
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distribution on the effect sizes of the SNPs in the genome and fit the model under the 

Bayesian framework. Methods differ in the choice of the prior distribution. For example, 

LDpred and LDpred2 assume a point-normal mixture distribution or a single normal 

distribution [16, 18]. SBayesR assumes a mixture of three normal distributions with a 

point mass at zero [27]. PRS-CS proposes a conceptually different class of continuous 

shrinkage priors [30]. In reality, there is wide diversity in the distribution of effect sizes 

for complex traits [35]. Therefore, there may be model specification for choosing a 

specific parametric prior if the true genetic architecture cannot be captured by the 

assumed parametric distribution. A natural solution is to consider a generalizable 

nonparametric prior, such as the Dirichlet process [36]. Dirichlet process regression 

(DPR) was shown to be adaptive to different parametric assumptions and could achieve 

robust performance when applied to different traits [37]. However, DPR requires access 

to individual-level genotype and phenotype data and has expensive computational cost 

when applied to large-scale GWAS data.  

In this work, we derive a summary statistics-based method, called SDPR, which 

does not rely on specific parametric assumptions on the effect size distribution. SDPR 

connects the marginal coefficients in summary statistics with true effect sizes through 

Bayesian multiple Dirichlet process regression. We utilize the concept of approximately 

independent LD blocks and overparameterization to develop a parallel and fast-mixing 

Markov Chain Monte Carlo (MCMC) algorithm [38, 39]. Through simulations and real 

data applications, we demonstrate the advantages of our methods in terms of improved 
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computational efficiency and more robust performance in prediction without the need 

of using a validation dataset to select tuning parameters.   

 

2.2 Methods 

2.2.1 Robust design of the likelihood function 

Suppose GWAS summary statistics are derived based on 𝑁 individuals and 𝑝 genetic 

markers, the phenotypes and genotypes can be related through a multivariate linear 

model,  

𝑦 = 𝑋𝛽 + 𝜖   (2.1)  

where 𝑦 is an 𝑁 × 1 vector of phenotypes, 𝑋 is an 𝑁 × 𝑝 matrix of genotypes, and 𝛽 is 

an 𝑝 × 1 vector of effect sizes. We further assume, without loss of generality, that both 

𝑦 and columns of 𝑋 have been standardized. GWAS summary statistics usually contain 

the per SNP effect size �̂� directly obtained or well approximated through the marginal 

regression �̂� =
𝑋𝑇𝑦

𝑁
. From this approximation, one can derive the commonly used 

likelihood function, 

�̂�|𝛽 ∼ 𝑁(𝑅𝛽,
𝑅

𝑁
) (2.2) 

where 𝑅 =
𝑋𝑇𝑋

𝑁
 is the reference LD matrix.  

Unlike individual-level data based methods, summary statistics based methods 

typically rely on external reference panel to estimate the LD matrix 𝑅. Ideally, the same 
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set of individuals in the reference panel should be used to generate the summary 

statistics. However, due to the limited access to the individual level data of original 

GWAS studies, an external database with matched ancestry like the 1000 Genomes 

Project [40] or UK Biobank [41] is usually used instead to compute the reference LD 

matrix. It is possible that effect sizes of SNPs in summary statistics deviate from what 

are expected given the likelihood function and reference LD matrix, especially for SNPs 

in strong LD that are genotyped on different individuals (Table 2.1). This issue was also 

noted in the section 5.5 of the RSS paper [24]. Failure to account for such discrepancy 

can cause severe model misspecification problems for SDPR and possibly other 

methods. 

 

SNP A1 A2 beta se p N r2 
rs1206549 A G 0.0093 0.0065 0.15 197888 0.99 

rs712951 A G -0.0037 0.0041 0.41 252571  

Table 2.1. Illustration of the model misspecification issue using two SNPs in height 

GWAS summary statistics. In 1000G EUR samples, rs1206549 and rs712951 are in strong 

LD. However, their effect sizes in GWAS summary statistics were in the opposite 

direction, whereas the likelihood function �̂�|𝛽 ∼ 𝑁(𝑅𝛽,
𝑅

𝑁
) would expect these two 

SNPs to have similar effect sizes. The discrepancy observed here may be explained by 

the fact that the imputed sample sizes of the two SNPs were different.  

 

One can derive that, if SNPs are genotyped on different individuals, then the 

likelihood function (2.2) should be modified as  
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�̂�|𝛽 ∼ 𝑁(𝑅𝛽, R ° 𝐻) (2.3)  

where ° is the Hadamard product,  𝐻𝑖𝑖 =
1

𝑁𝑖
 , 𝐻𝑖𝑗 =

𝑁𝑠,𝑖𝑗

𝑁𝑖𝑁𝑗
 (𝑖 ≠ 𝑗), 𝑁𝑖 is the sample size of 

SNP i, 𝑁𝑗 is the sample size of SNP j, and 𝑁𝑠,𝑖𝑗 is the number of shared individuals 

genotyped for SNPs i and j (Appendix A). Evaluation of the likelihood function (2.3) 

requires the knowledge about the sample size and inclusion of each study for each SNP. 

For example, SNPs of GWAS summary statistics of lipid traits were genotyped on two 

arrays in two separate cohorts (GWAS chip: 𝑁1 ≈ 95,000; Metabochip: 𝑁2 ≈ 94,000) 

[43]. Based on this information, 𝑁𝑠,𝑖𝑗 is set to 0 if SNPs i and j were genotyped on 

different arrays, 𝑁1 if SNP i was genotyped on GWAS chip and SNP j was genotyped on 

both arrays, and 𝑁2 if SNP i was genotyped on Metabochip and SNP j was genotyped on 

both arrays.  

In reality, GWAS summary statistics are often obtained through meta-analysis, 

and information above is generally not available. Besides, double genomic control is 

applied to many summary statistics, which may lead to deflation of effect sizes [44, 45]. 

Therefore, we consider evaluating the likelihood function from the following 

distribution. 

𝛽

𝑐

̂
|𝛽 ∼ 𝑁 (𝑅𝛽,

𝑅 + 𝑁𝑎𝐼

𝑁
) (2.4)  

More specifically, the input is divided by a constant provided by SumHer if application of 

double genomic control significantly deflates the effect sizes [44]. Compared with 

equation (2.3), the correlation between two SNPs is 
𝑅𝑖𝑗

1+𝑁𝑎 
 rather than 

𝑅𝑖𝑗𝑁𝑠,𝑖𝑗

√𝑁𝑖𝑁𝑗
 . For 
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simulated data, 𝑐 was set to 1 and 𝑎 was set to 0 for Scenarios 1A-1C, 4 and 5, since 

there was no above-mentioned discrepancy in these scenarios. In real data application, 

𝑁𝑎 was set to 0.1 except for lipid traits, and 𝑐 was set to 1 except for BMI (BMI 𝑐 = 0.74 

given by SumHer).   

 

2.2.2 Dirichlet process prior 

Like many Bayesian methods, we assume that the effect size of ith SNP 𝛽𝑖, follows a 

normal distribution with mean 0 and variance 𝜎𝛽
2. In contrast to methods assuming one 

particular parametric distribution, we consider placing a Dirichlet process prior on 𝜎𝛽
2, 

i.e. 

𝛽𝑖 ∼ 𝑁(0, 𝜎𝛽
2), 𝜎𝛽

2 ∼ 𝐷𝑃(𝐻𝛽, 𝛼) (2.5)  

where 𝐻𝛽 is the base distribution and 𝛼 is the concentration parameter controlling the 

shrinkage of the distribution on 𝜎2 toward 𝐻. To improve the mixing of MCMC and 

avoid the informativeness issue of inverse gamma distribution, we expand the 

parameter 𝛽𝑖 = 𝜂𝛾𝑖  and assign the following prior [46]: 

𝜂 ∼ 𝑁(0, 𝐴),

𝛾𝑖 ∼ 𝑁(0, 𝜎2),

𝜎2 ∼ 𝐷𝑃(𝐻, 𝛼)

𝐻 =  𝐼𝐺(𝑎0𝑘 , 𝑏0𝑘) (2.6)

 

We note that the product 𝜂𝛾𝑖 in (2.6) corresponds to 𝛽𝑖 in (2.5), and |𝜂|𝜎 in (2.6) 

corresponds to 𝜎𝛽 in (2.5). We set 𝐴 = 106, 𝑎0𝑘 = 0.5, 𝑏0𝑘 = 0.5 so that marginally the 
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base distribution 𝐻𝛽 in equation (2.5) is approximately the square of uniform 

distribution on [0, +∞). (If 𝜂 ∼ 𝑁(0, 𝐴), 𝜎2 ∼ 𝐼𝐺(0.5, 0.5), then 
𝜂

√𝐴
𝜎 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

and 𝑝(|𝜂|𝜎) ∝ 1 as 𝐴 → ∞ ).   

Under the truncated stick-breaking representation of Dirichlet process, the full model 

can be rewritten as:  

�̂�|𝛾, 𝜂 ∼ 𝑁 (𝑅𝜂𝛾,
𝑅 + 𝑎𝑁𝐼

𝑁
)   

𝜂 ∼ 𝑁(0, 106)  

𝛾𝑗|𝜎𝑘
2, 𝑝𝑘 ∼ ∑ 𝑝𝑘𝑁(0, 𝜎𝑘

2)

𝑀

𝑘=1

, 𝑘 = 1, … , 𝑀, 𝑗 = 1, … , 𝑝 

𝑝𝑘 = 𝑉𝑘 ∏(1 − 𝑉𝑚)

𝑘−1

𝑚=1

,   𝑉𝑘|𝛼 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼), 

 𝜎𝑘
2 ∼ 𝐼𝐺(0,5, 0.5), 𝛼 ∼ 𝐺𝑎𝑚𝑚𝑎(0.1,0.1) (2.7)  

We set 𝑀 to 1000 as default for our methods. To assess whether our choice of 𝑀 was a 

good approximation to the infinite stick-breaking process model, we counted the 

number of variance components to which SNPs were assigned. It turned out that SNPs 

were assigned to only 600 to 800 components in simulations and real data applications. 

After all, if the number of variance components is infinite, then some variance 

components will have no assignments of SNPs. Therefore, we believe that our choice of 

𝑀 was sufficient to approximate the Dirichlet process.  
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2.2.3 construction and partition of the reference LD matrix 

We used an empirical Bayes shrinkage estimator to construct the LD matrix since the 

external reference panel like 1000G contains a limited number of individuals [47]. LD 

matrix can be divided into small “independent” blocks to allow for efficient update of 

posterior effect sizes using the blocked Gibbs sampler [30]. At present, ldetect is widely 

used for performing such tasks [38]. Ldetect works by computing the antidiagonal sum 

of the covariance matrix and applying the signal filtering approach to find the local 

minima in order to set the breakpoint. Originally developed to facilitate the 

interpretation of GWAS association signals, ldetect is not optimized for providing a 

precise partition for computation of PRS. 

We used simulation data (Scenario 4) to assess the accuracy of LD blocks 

provided by ldetect. We generated marginal effect sizes and plotted them against the 

theoretical ones assuming the likelihood function �̂�|𝛽 ∼ 𝑁 (𝑅𝛽,
𝑅

𝑁
). Unexpectedly, we 

found that the marginal effect sizes of some SNPs did not agree with the likelihood 

function (Figure 2.1). These SNPs were from a region (Chr10: 33 Mb) where ldetect cut 

the entire block into two independent ones (bottom left and upper right as separated by 

the cross). The cut was incorrect as SNPs in the second block had significant amount of 

correlation with SNPs in the first block. Therefore, some SNPs in the second blocks 

would have non-zero marginal effect sizes if they were in LD with the causal SNP in the 

first block, whereas theoretically they would have zero effect sizes assuming two blocks 

were independent.  
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To solve this issue, we designed a simple algorithm to ensure that each SNP in 

one LD block does not have nonignorable correlation (r2 > 0.1) with SNPs in other blocks. 

Assuming SNPs are sorted based on their physical locations on the chromosome, for 

each SNP we recorded the index of the rightmost SNP with the nonignorable correlation 

using a sliding window. We then computed the cumulative maximum of the index along 

the list. We set the breakpoint at the SNP whose cumulative maximum index equals its 

original index. When applied to the example mentioned above, our algorithm did not 

cut the block and the marginal effect sizes were consistent with the theoretical ones 

(Figure 2.1). Compared with ldetect, overall our algorithm produced similar number of 

blocks. However, the number of the blocks containing more than 1000 SNPs was larger 

for our algorithm.   
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Figure 2.1. Comparison of Independent LD blocks defined by ldetect and SDPR. (A) 

Comparison of theoretical (using the partition by ldetect) and marginal effect sizes in 

GWAS summary statistics. (B) Correlation matrix of SNPs in the Chr10:33 Mb region of 

UK Biobank genotype data. Ldetect divided these SNPs into two independent blocks as 

separated by the red cross. The upper-left dots indicated that SNPs in two blocks had 

nonignorable correlation and some SNPs in block 2 were in LD with the marked causal 
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SNP. (C) Comparison of theoretical (using the partition by our method is correct) and 

marginal effect sizes in GWAS summary statistics. (D) Correlation matrix of SNPs in the 

Chr10:33 Mb region of UKB genotype data. Our method did not divide SNPs into two 

blocks. 

 

2.2.4 MCMC algorithm 

Here we describe our MCMC algorithm to obtain the posterior samples to estimate the 

effect sizes. We introduce a vector 𝑧 indicating the assignment of variance component 

for each SNP.   

Compute 𝐴, 𝐵:  (𝑅/𝑁 + 𝑎𝐼)𝐴 = 𝑅 or (𝑅 °𝐻)𝐴 = 𝑅, 𝐵 = 𝑅𝐴. If 𝑅 °𝐻 is not positive 

definite, we add −1.1 × its minimum eigenvalue to the diagonal to make it positive 

definite.  

Sampling 𝑧𝑗: For each LD block, we first integrate out the effect size 𝛾 to derive the full 

conditional likelihood of 𝑃(𝑧𝑗 = 𝑘 |.  ): 

𝑃(𝑧𝑗 = 𝑘|. ) ∝  ∫ 𝑝(�̂�|𝛾, 𝜂)𝑝(𝛾𝑗|𝑧𝑗 = 𝑘) 𝑑𝛾𝑗  ×  𝑃(𝑧𝑗 = 𝑘) 

∝ ∫ exp {−
1

2
(�̂� − 𝜂𝑅𝛾)

𝑇
(

𝑅

𝑁
+ 𝑎𝐼)

−1

(�̂� − 𝜂𝑅𝛾)}
1

𝜎𝑘
exp {−

𝛾𝑗
2

2𝜎𝑘
2} 𝑑𝛾𝑗 × 𝑝𝑘  

∝ ∫ exp {−
1

2
𝜂2𝛾𝑇𝐵𝛾 + 𝜂�̂�𝑇𝐴𝛾}

1

𝜎𝑘
exp {−

𝛾𝑗
2

2𝜎𝑘
2} 𝑑𝛾𝑗 × 𝑝𝑘    

∝  ∫ exp {−
1

2
𝜂2𝐵𝑗𝑗𝛾𝑗

2 − 𝜂2 ∑ 𝐵𝑖𝑗𝛾𝑖𝛾𝑗

𝑖≠𝑗

+ 𝜂 ∑ 𝐴𝑖𝑗�̂�𝑖𝛾𝑗

𝑖

  }
1

𝜎𝑘
exp {−

𝛾𝑗
2

2𝜎𝑘
2} 𝑑𝛾𝑗 × 𝑝𝑘  
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∝  ∫ exp {−
1

2
(𝜂2𝐵𝑗𝑗 +

1

𝜎𝑘
2) 𝛾𝑗

2 + 𝑏𝑗𝛾𝑗} 𝑑𝛾𝑗  ×
𝑝𝑘

𝜎𝑘
  

∝
1

√𝜂2𝐵𝑗𝑗𝜎𝑘
2 + 1  

exp {
𝑏𝑗

2

2(𝜂2𝐵𝑗𝑗 + 𝜎𝑘
−2)

} 𝑝𝑘   

(2.8) 

where 𝑏𝑗 =  𝜂 ∑ 𝐴𝑖𝑗�̂�𝑖𝑖 −  𝜂2 ∑ 𝐵𝑖𝑗𝛾𝑖𝑖≠𝑗 . We set the first variance component to 0 in 

analogous to Bayesian variable selection, and we have 𝑃(𝑧𝑗 = 1|. ) ∝ 𝑝1 as the 

integration equals 1 when 𝛾𝑗  is degenerated at 0. We use log-exp-sum trick to avoid 

numerical overflow. Note that because SNPs in different LD blocks are approximately 

independent, we can sample their assignments in parallel.  

Sampling 𝛽: We jointly sample the effect size of causal SNPs 𝛾𝜃  in one independent LD 

block. The full conditional likelihood of 𝛾𝜃  is 

𝑝(𝛾𝜃|𝑧𝑗 ≠ 1, . ) ∝ exp {−
1

2
𝜂2𝛾𝑇𝐵𝛾 + 𝜂�̂�𝑇𝐴𝛾} exp {−

1

2
𝛾𝜃

𝑇Σ0
−1𝛾𝜃} 

∝ exp {−
1

2
𝜂2𝛾𝜃

𝑇𝐵𝜃𝛾𝜃 + 𝜂�̂�𝑇𝐴𝜃𝛾𝜃} exp {−
1

2
𝛾𝜃

𝑇Σ0
−1𝛾𝜃} 

= 𝑀𝑉𝑁(𝜂Σ𝐴𝜃
𝑇 �̂�,  Σ) 

(2.9) 

where Σ = ( 𝜂2𝐵𝜃 + Σ0
−1)−1, Σ0 = 𝑑𝑖𝑎𝑔 (𝜎𝑧1

2 , … , 𝜎𝑧𝑝
2 ) for causal SNPs (𝑧𝑗 ≠ 1). 𝐴𝜃 , 𝐵𝜃 

are the submatrices by selecting columns corresponding to SNPs with non-zero effect 

sizes from matrices 𝐴, 𝐵. For SNPs whose variance components are 0 (𝑧𝑗 = 1), we simply 

set the posterior effect sizes to 0 as  𝑝(𝛾𝑗|𝑧𝑗 = 1, . ) = 0.    
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Sampling 𝜂: The full conditional likelihood is  

𝑝(𝜂|. ) ∝ exp {−
1

2
𝜂2∑𝛾𝜃

𝑇𝐵𝜃𝛾𝜃 + 𝜂∑�̂�𝑇𝐴𝜃𝛾𝜃} exp {−
𝜂2

2 × 10−6
}  

= 𝑁 (
∑�̂�𝑇𝐴𝜃𝛾𝜃

∑ 𝛾𝜃
𝑇𝐵𝜃𝛾𝜃 + 10−6

,  
1

∑ 𝛾𝜃
𝑇𝐵𝜃𝛾𝜃 + 10−6

) 

(2.10) 

Sampling 𝜎𝑘
2: The first variance component is always 0. The full conditional likelihood is   

𝑝(𝜎𝑘
2|. ) ∝ ∏

1

𝜎𝑘
exp {−

𝛾𝑗
2

2𝜎𝑘
2}

𝑗:𝑧𝑗=𝑘

𝜎𝑘
−2(𝑎0𝑘−1)

exp {−
𝑏0𝑘

𝜎𝑘
2 } 

= 𝐼𝐺(
𝑀𝑘

2
+ .5,

∑ 𝛾𝑗
2

𝑗:𝑧𝑗=𝑘 

2
+ .5) 

(2.11) 

where 𝑀𝑘 = ∑ 𝐼(𝑧𝑗 = 𝑘)𝑗  and 𝐼 is the indicator function. 

Sampling 𝑉𝑘: The full conditional likelihood is 

𝑝(𝑉𝑘|. ) ∝ 𝑝𝑘
𝑀𝑘 … 𝑝𝑀−1

𝑀𝑀−1 
𝑝𝑀

𝑀𝑀𝑉𝑘
1−1(1 − 𝑉𝑘)𝛼−1 

∝ 𝑉𝑘
𝑀𝑘(1 − 𝑉𝑘)𝑀𝑘+1+⋯+𝑀𝑀+𝛼−1  

= 𝐵𝑒𝑡𝑎(1 + 𝑀𝑘 , 𝛼 + ∑ 𝑀𝑙

𝑀

𝑙=𝑘+1

 ) 

(2.12) 

for k = 1, …, M – 1. 𝑉𝑀 equals 1 according to the definition of the truncated stick-

breaking process. 
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Computing 𝑝𝑘: The prior probability can be computed as 

𝑝1 = 𝑉1  

𝑝𝑘 = ∏(1 − 𝑉𝑙)

𝑘−1

𝑙=1

𝑉𝑘   (𝑘 ≥ 2)  

Sampling 𝛼: The full conditional probability is  

𝑝(𝛼|. ) ∝  ∏ 𝛼(1 − 𝑉𝑙)
𝛼−1𝛼 .1−1 exp{−.1 × 𝛼} 

𝑀−1

𝑙=1

 

= 𝐺𝑎𝑚𝑚𝑎(0.1 + 𝑀 − 1, 0.1 − ∑ log (1 − 𝑉𝑘)

𝑀−1

𝑘=1

) 

(2.13) 

We record the effect size 𝛽 = 𝜂𝛾 and heritability ℎ2 = 𝛽𝑇𝑅𝛽 for each iteration and 

compute the average of all posterior samples as the final estimator.  

 

2.2.5 Other methods 

We compared the performance of SDPR with seven other methods: (1) PRS-CS as 

implemented in the PRS-CS software; (2) SBayesR as implemented in the GCTB software 

(version 2.02); (3) LDpred as implemented in the LDpred software (version 1.0.6); (4) 

P+T as implemented in the PLINK software (version 1.90) [48]; (5) LDpred2 as 

implemented in the bigsnpr package (version 1.6.1); (6) Lassosum as implemented in the 

lassosum package (version 0.4.5) [21]; and (7) DBSLMM as implemented in the DBSLMM 
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package (version 0.21) [49]. We used the default parameter setting for all methods. For 

PRS-CS, the global shrinkage parameter was specified as {1e-6, 1e-4, 1e-2, 1, auto}. For 

SBayesR, gamma was specified as {0, 0.01, 0.1, 1} and pi was specified as {0.95, 0.02, 

0.02, 0.01}. For LDpred, the polygenicity parameter was specified as {1e-5, 3e-5, 1e-4, 

3e-4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 ,1, LDpred-Inf}. For P+T, SNPs in GWAS summary 

statistics were clumped for r2 iterated over {0.2, 0.4, 0.6, 0.8}, and for p value threshold 

iterated over {5e-8, 5e-6, 1e-5, 1e-4, 5e-4, 1e-3, 1e-2, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1}. For LDpred2, we ran LDpred2-inf, LDpred2-auto and LDpred2-grid, 

and reported the best performance of three options. The grid of hyperparameters was 

set as non-sparse, p in a sequence of 21 values from 10-5 to 1 on a log-scale, and h2 

within {0.7, 1, 1.4} of h2
LDSC. For lassosum, lambda was set in a sequence of 20 values 

from 0.001 to 0.1 on a log-scale, and s within {0.2, 0.5, 0.9, 1}. For DBSLMM, p value 

threshold was iterated within {10-5, 10-6, 10-7, 10-8}, r2 was iterated within {0.05, 0.1, 

0.15, 0.2, 0.25}, and h2 was set as h2
LDSC. We tuned the parameters for PRS-CS, LDpred, 

P+T, LDpred2, lassosum, and DBSLMM using the validation dataset.   

 

2.2.6 Genome-wide simulations 

We used genotypes from UK Biobank to perform simulations. UK Biobank’s database 

contains extensive phenotypic and genotypic data of over 500,000 individuals in the 

United Kingdom [41]. We selected 276,732 unrelated individuals of European ancestry 

based on data field 22021 and 22006. A subset of these individuals was randomly 
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selected to form the training, validation and test datasets. Training datasets contained 

10,000, 50,000, and 100,000 individuals, while validation and test datasets contained 

10,000 individuals. We applied quality control (MAF > 0.05, genotype missing rate < 

0.01, INFO > 0.3, pHWE > 1e-5) to select 4,458,556 SNPs from the original ~96 million 

SNPs. We then intersected these SNPs with 1000G HM3 SNPs (MAF > 0.05) and removed 

those in the MHC region (Chr6: 28-34 Mb) to form a set of 681,828 SNPs for simulation.  

To cover a range of genetic architectures, we simulated effect sizes of SNPs 

under four scenarios: (1)-(3) 𝛽𝑗 ∼ 𝜋𝑁 (0,
ℎ2

𝑀𝜋
) + (1 − 𝜋)𝛿0, where ℎ2 = 0.5, 𝑀 =

681828, 𝜋 equaled 10-4 (scenario 1A), 10-3 (scenario 1B) and 10-2 (scenario 1C); (4) 𝛽𝑗 ∼

 ∑ 𝜋𝑖𝑁(0, 𝑐𝑖𝜎
2)3

𝑖=1 + (1 − ∑ 𝜋𝑖
3
𝑖=1 )𝛿0 where 𝑐 = (1, 0.1, 0.01), 𝜋 = (10−4, 10−4, 10−2) 

with 𝜎2 calculated so that the total heritability equaled 0.5; (5) 𝛽𝑗 ∼ 𝑁(0,
ℎ2

𝑀
). 

Importantly, scenario 1A-1C satisfied the assumption of LDpred/LDpred2, scenario 5 

satisfied the assumption of LDpred-inf/LDpred2-inf, whereas scenario 4 satisfied the 

assumption of SBayesR. Phenotypes were generated from simulated effect sizes using 

GCTA-sim, and marginal linear regression was performed on the training data to obtain 

summary statistics using PLINK2 [14, 50]. In each scenario, we performed 10 simulation 

replicates.  

We applied different methods on the training data, and used the 10,000 

individuals in the validation dataset to estimate the LD matrix. Parameters for LDpred, 

P+T, PRS-CS, LDpred2, lassosum, and DBSLMM were also tuned using the validation 
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data. We then evaluated the prediction performance on the test data by computing the 

square of Pearson correlation of PRS with simulated phenotypes. 

 

2.2.7 Real data application using public summary statistics and UK biobank data 

We obtained public GWAS summary statistics for 12 traits and evaluated the prediction 

performance of each method using the UK Biobank data. Individuals in GWAS do not 

overlap with individuals in UK Biobank. For this reason, we did not use the latest 

summary statistics of height and BMI [51]. To standardize the input summary statistics, 

we generally followed the guideline of LDHub to perform quality control on the GWAS 

summary statistics [52]. We removed strand ambiguous (A/T and G/C) SNPs, insertions 

and deletions (INDELs), SNPs with an effective sample size less than 0.67 times the 90th 

percentile of sample size. SNPs within the MHC region were removed except for IBD, 

since MHC region plays an important role in autoimmune diseases. The remaining SNPs 

were then intersected with 1000G HM3 SNPs provided in the PRS-CS reference panel.  

For UK Biobank, we first selected unrelated European individuals as we did in 

simulations. We then applied quality control (MAF > 0.01, genotype missing rate < 0.05, 

INFO > 0.8, pHWE > 1e-10) to obtain a total of 1,114,176 HM3 SNPs. UK Biobank 

participants with six quantitative traits-height, body mass index (BMI), high-density 

lipoproteins (HDL), low-density lipoproteins (LDL), total cholesterol, and triglycerides-

were selected based on relevant data fields (50 for height, 21001 for BMI, 30780 for 

LDL, 20760 for HDL, 20690 for total cholesterol, and 30870 for triglyceride). Selected 
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participants were randomly assigned to form validation and test datasets, each 

composing half of the individuals. We used the first instance if multiple measurements 

were available.  

 

For six diseases, cases were selected based on ICD code in the EHR and self-

reported questionnaire (data field 20002). For coronary artery disease, cases were 

selected based on ICD-9 codes of 410.X, 411.0, 412.X, or 429.79 or ICD-10 codes of 

I21.X, I22.X, I23.X, I25.2, or self-reported myocardial infarction [32]. For breast cancer, 

cases were selected among female participants based on ICD-9 codes 174 or 174.9, or 

ICD-10 codes C50.X, or self-report history of breast cancer. For inflammatory bowel 

disease, cases were selected based on ICD-10 codes of K50.X, or ICD-9 codes of 555.X, or 

self-reported history of Crohn’s disease, ulcerative colitis, and inflammatory bowel 

disease. Participants with self-reported history of immunological/system disorders were 

excluded from controls. For type 2 diabetes, cases were selected based on ICD-10 codes 

of E11.X, or ICD-9 codes of K51.X, or self-reported history of type 2 diabetes. 

Participants with self-reported history of diabetes were excluded from controls. For 

schizophrenia, cases were selected based on ICD-10 codes of F20.X, or ICD-9 codes of 

295.X, or self-reported history of schizophrenia. Participants with self-reported history 

of neurobiology/eye/psychiatry disorders were excluded from controls. For bipolar, 

cases were selected based on ICD-10 codes of F31.X, or ICD-9 codes of 296.X, or self-

reported history of type I and type II bipolar disorder. Participants with self-reported 

history of neurobiology/eye/psychiatry disorders were excluded from controls. 
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Validation dataset consisted of an equal number of cases and controls, the rest of which 

were assigned to the test dataset. Random assignments of individuals to validation and 

test datasets were repeated for 10 times.  

 

For six quantitative traits, we reported the prediction 𝑅2 of PRS (variance 

explained by PRS) defined as 𝑅2 = 1 −
𝑆𝑆1

𝑆𝑆0
, where 𝑆𝑆0 is the sum of squares of the 

residuals of the restricted linear regression model with covariates (an intercept, age, 

sex, top 10 PCs of the genotype data), and 𝑆𝑆1 is the sum of squares of the residuals of 

the full linear regression model (covariates above and PRS). For six diseases, we 

reported the AUC of PRS only for better comparison of different methods.  

 

2.2.8 Code availability 

SDPR is available on https://github.com/eldronzhou/SDPR under the GPLv3 license. The 

scripts used for analysis in this paper are available on 

https://github.com/eldronzhou/SDPR_paper. 

 

https://github.com/eldronzhou/SDPR
https://github.com/eldronzhou/SDPR_paper
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2.3 Results 

2.3.1 Adaptiveness of Dirichlet Process prior 

Theoretically, Dirichlet process as an infinite Gaussian mixture model is able to 

approximate any continuous parametric distribution, thus including other published 

parametric distributions as special cases [53]. For example, the density of Dirichlet 

process prior adapts well to the density of normal distribution (LDpred-inf), point 

normal mixture distribution (LDpred/LDpred2), and three-point normal mixture 

distribution (SBayesR) (Figure 2.2). Compared with SBayesR, Dirichlet process prior does 

not constrain the relationship between three non-zero normal variance components. 

We also explicitly incorporate Bayesian variable selection by setting the first variance 

component as 0, which is different from PRS-CS. The adaptiveness of Dirichlet process 

prior potentially makes it more robust to the distribution of effect sizes of real traits.  
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Figure 2.2. Adaptiveness of Dirichlet process prior to different parametric assumptions. 

A: 2000 data were simulated from 𝑁(0,1) satisfying the assumption of LDpred-inf. 

B:2000 data were simulated from 0.1𝑁(0,1) + 0.9𝛿0 satisfying the assumption of 

LDpred. C: 2000 data were simulated from 0.1𝑁(0, 0.01) + 0.2𝑁(0, 0.1) + 0.3𝑁(0,1) +

0.4𝛿0 satisfying the assumption of SBayesR. Theoretical and Dirichlet process fitted 

density was shown in the plot. 

 

2.3.2 Simulations 

We first compared the performance and computational time of SDPR with DPR in a 

small-scale simulation setting using 10,000 individuals and 58,432 SNPs on chromosome 
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1. The effect sizes were generated under the mixture of Dirichlet delta and three normal 

distributions with total heritability fixed as 0.3. We fitted DPR model with four 

components and 5000 MCMC iterations, and SDPR model with the input of summary 

statistics. The average R2 of DPR was 0.227, and the average R2 of SDPR was 0.204 

(Figure 2.3). DPR took about 3.5 hours and consumed 10.4 Gb of memory to finish 

MCMC, while SDPR took only 10 minutes and used 1.1 Gb of memory. This 

demonstrated the improved computational efficiency of SDPR over DPR without loss of 

much prediction accuracy.  

 

Figure 2.3. Performance and Computational time of SDPR with DPR under a small-scale 

simulation. Effect sizes were generated as 𝛽𝑗 ∼  ∑ 𝜋𝑖𝑁(0, 𝑐𝑖𝜎
2)3

𝑖=1 + (1 − ∑ 𝜋𝑖
3
𝑖=1 )𝛿0 

where 𝑐 = (1, 0.1, 0.01), 𝜋 = (10−4, 10−4, 10−2) with 𝜎2 calculated so that the total 
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heritability equaled 0.3. DPR was fit with 4 normal components, 2000 burnin and 4000 

sampling iterations. SDPR was fit with 1000 maximum components and 1000 iterations. 

Simulation in each scenario was repeated for 10 times. 

 

We then compared the performance of SDPR with several other summary 

statistics-based methods via genome-wide simulations across different genetic 

architectures and training sample sizes. Effect sizes of SNPs were simulated under a 

point-normal mixture model with increasing number of causal variants, a point-three-

normal mixture model satisfying SBayesR’s assumption, and a normal model satisfying 

LDpred-inf’s assumption (details in methods). The heritability was fixed as 0.5 and 10 

replicates were performed in each simulation setting. Tuning parameters of PRS-CS, 

LDpred, P+T, LDpred2, lassosum, and DBSLMM were selected using a validation dataset 

(N = 10,000). 10,000 individuals in the validation dataset were used to construct the LD 

matrix. We evaluated the prediction performance on the independent test data (N = 

10,000) using the squared Pearson correlation coefficient (R2).  

The prediction accuracy of all methods generally increased along the sample size 

of training data (Figure 2.4; Table 2.2-2.6). Similarly, all methods performed better when 

the number of causal variants was small. Since the standard error of the regression 

coefficient estimator in GWAS summary statistics is roughly reciprocal to the square 

root of the sample size of the training cohort, the dominance of noise over signal poses 
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significant challenges for accurate estimation of effect sizes when the training sample 

size or per SNP effect size is small.  

 

Figure 2.4. Prediction performance of different methods on simulated data with varying 

samples sizes of the training cohort. Scenarios 1A-1C: mixture of Dirichlet delta and 
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normal distribution (spike and slab) with number of causal SNPs increasing from 100, 

1000 to 10000. Scenario 4: mixture of Dirichlet delta and three normal distributions. 

Scenario 5: single normal distribution. The total heritability in all scenarios was fixed to 

0.5. Simulation in each scenario was repeated for 10 times. For each boxplot, the central 

mark is the median and the lower and upper edges represents the 25th and 75th 

percentiles. The median is recorded in the Table 2.2-2.6. 

 

Sample 
size 

SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

10K 0.461 0.393 0.459 0.448 0.405 0.458 0.410 0.423 

50K 0.493 0.428 0.495 0.337 0.421 0.489 0.446 0.412 

100K 0.494 0.424 0.497 0.328 0.384 0.495 0.423 0.397 

Table 2.2. The median of square of Pearson correlation across 10 simulations for 

Scenario 1A. 

 

 

Sample 
size 

SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

10K 0.200 0.137 0.209 0.209 0.168 0.217 0.186 0.168 

50K 0.426 0.354 0.424 0.332 0.358 0.426 0.381 0.364 

100K 0.462 0.405 0.459 0.289 0.378 0.463 0.425 0.386 

Table 2.3. The median of square of Pearson correlation across 10 simulations for 

Scenario 1B. 

 

 

Sample 
size 

SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

10K 0.056 0.052 0.053 0.056 0.043 0.056 0.050 0.052 
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50K 0.198 0.179 0.2 0.179 0.147 0.208 0.181 0.170 
100K 0.293 0.254 0.289 0.278 0.209 0.305 0.270 0.259 

Table 2.4. The median of square of Pearson correlation across 10 simulations for 

Scenario 1C. 

 

 

Sample 
size 

SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

10K 0.385 0.335 0.386 0.375 0.345 0.383 0.348 0.355 

50K 0.449 0.386 0.447 0.343 0.376 0.449 0.396 0.382 

100K 0.462 0.389 0.461 0.311 0.363 0.463 0.399 0.375 

Table 2.5. The median of square of Pearson correlation across 10 simulations for 

Scenario 4. 

 

 

Sample 
size 

SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

10K 0.050 0.046 0.048 0.054 0.042 0.054 0.050 0.053 

50K 0.157 0.146 0.146 0.157 0.133 0.159 0.151 0.150 

100K 0.215 0.204 0.197 0.210 0.177 0.216 0.207 0.205 

Table 2.6. The median of square of Pearson correlation across 10 simulations for 

Scenario 5. 

 

SDPR, LDpred2, and SBayesR performed better than other methods in the sparse 

setting (Figure 2.4 Scenarios 1A-1C, 4; Table 2.2-2.5). Consistent with others’ findings, 

we observed that when the genetic architecture was sparse, the performance of LDpred 

decreased as the training sample size increased [30]. In contrast, LDpred2 performed 
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significantly better than LDpred. Meanwhile, PRS-CS performed worse when the training 

sample size was small. In the polygenic setting, SDPR and LDpred-inf/LDpred2-inf 

performed better than other methods (Figure 2.4 Scenario 5; Table 2.6). Overall, SDPR 

and LDpred2 performed well across a range of simulated sparse and polygenic genetic 

architectures. LDpred2 is expected to perform well in Scenarios 1A-1C and 5 since it 

satisfied the assumption of LDpred2/LDpred2-inf. The robust performance of SDPR 

demonstrates the advantage of using Dirichlet process prior to model the genetic 

architecture.   

It is important to note that while SBayesR and SDPR do not need a validation 

dataset to tune parameters, they may be more susceptible to heterogeneity and errors 

in the summary statistics. Therefore, we tested whether our modified likelihood 

function (2.4) makes SDPR more robust when dealing with discrepancies between 

summary statistics and reference panel. We generated summary statistics from 50,000 

individuals under the same setting as scenario 1B. For half of the SNPs (340,914), linear 

regression was performed on 40,000 individuals to obtain the marginal effect sizes. 

According to equation (2.3), the correlation of effect sizes of these SNPs would be 80% 

of what was expected from the reference panel. Such discrepancy indeed caused the 

divergence of SBayesR, while SDPR with modified likelihood function (2.4) converged 

and performed well (N = 50,000, Na = 0.25, R2 = 0.422).  
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2.3.3 Real data applications 

We compared the performance of SDPR with other methods in real datasets to predict 

six quantitative traits (height, body mass index, high-density lipoproteins, low-density 

lipoproteins, total cholesterol, and triglycerides) and six diseases (coronary artery 

diseases, breast cancer, inflammatory bowel disease, type 2 diabetes, bipolar, and 

schizophrenia) in UK Biobank. We obtained public GWAS summary statistics of these 

traits and performed quality control to standardize the input (details in Methods; Table 

2.7). A total of 503 1000G EUR individuals were used to construct the reference LD 

matrix for SDPR, PRS-CS, LDpred, P+T, LDpred2, lassosum, and DBSLMM. For SBayesR, 

we used 5000 EUR individuals in UK Biobank to create the LD matrix (shrunken and 

sparse) instead, as it was reported to have suboptimal prediction accuracy when using  

1000G samples [27].  
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Table 2.7. Summary information about the sample size and SNPs in GWAS summary 

statistics and UK Biobank datasets. For binary traits, effective sample size was used 

(
4∗𝑁𝑐𝑎𝑠𝑒∗𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑁𝑐𝑎𝑠𝑒+𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) and the validation datasets consisted of equal numbers of cases and 

controls. If the summary statistics included sample sizes for individual SNPs, the median 

of all SNPs passing QC was reported. For binary traits, the number of cases and controls 

were reported in the parenthesis.  

 

For six continuous traits, the prediction performance was measured by variance 

of phenotype explained by PRS (Figure 2.5; Table 2.8). Overall, SDPR, PRS-CS and 

LDpred2 performed better than other methods, and there was minimal difference of 

these three methods. In terms of ranking, SDPR and PRS-CS performed best for height. 

Trait GWAS sample size  GWAS 
ref 

1KG HM3 & UKB 
& GWAS SNPs 

UKB validation 
Sample size 

UKB testing 
sample size 

Height 252,230 [42] 885,791 138,066 138,066 

BMI 233,766 [54] 886,654 137,921 137,920 

HDL 94,288 [43] 868,645 37,774 37,774 
LDL 89,866 [43] 868,179 40,807 40,807 

Total 
Cholesterol 

94,571 [43] 868,167 40,898 40,898 

Triglycerides 90,989 [43] 86,8243 40,858 40,857 

Coronary 
artery 

disease 

61,294 
(22,233/64,762) 

[55] 814,337 4475/4475 4475/258,345 

Breast Cancer 227,688 
(122,977/105,974) 

[56] 927,706 4539/4539 4539/133,649 

Inflammatory 
bowel 

disease 

32,372 
(12,882/21770) 

[57] 918,369 1840/1840 1839/198,815 

Type 2 
diabetes 

156,109 
(26,676/132,532) 

[58] 974,907 7240/7240 7239/182,292 

Bipolar 41,606 
(20,129/21,524) 

[59] 928,032 832/832 832/176,069 

Schizophrenia 65,955 
(33,426/32541) 

[59] 941,216 223/223 223/203,471 
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SDPR and LDpred2 performed best for BMI. SDPR performed best for HDL, LDL and total 

cholesterol, while PRS-CS performed best for triglycerides. We observed convergence 

issues when running SBayesR on these traits, and followed its manual to filter SNPs 

based on GWAS P-values and LD R-squared (--p-value 0.4 --rsq 0.9). The filtering 

approach improved the prediction performance of SBayesR, but it still failed to achieve 

the top tier performance. We suspect that the convergence issue of SBayesR was also 

caused by the violation of the likelihood assumption, similar to what we observed in the 

simulation. To address this issue, our approach of modifying the likelihood function 

might be better than the simple filtering approach used in SBayesR and P+T as it 

retained all SNPs for prediction.  
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Figure 2.5. Prediction performance of different methods for six quantitative traits in the 

UK Biobank. Selected participants with corresponding phenotypes were randomly assigned to 

form validation and test dataset, each composing half of individuals. For PRS-CS, LDpred, P+T, 

LDpred2, lassosum, and DBSLMM, parameters were tuned based on the performance on the 
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validation dataset. We repeated the split and tuning process 10 times. The mean of variance of 

phenotypes explained by PRS across 10 random splits was reported in the Table 2.8.   

Traits SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

Height 0.271 0.271 0.226 0.23 0.210 0.267 0.269 0.261 
BMI 0.093 0.089 0.082 0.088 0.076 0.093 0.092 0.082 

HDL 0.116 0.114 0.033 0.096 0.079 0.114 0.106 0.104 
LDL 0.147 0.141 0.026 0.133 0.105 0.143 0.142 0.120 

Total 
cholesterol 

0.146 0.144 0.032 0.139 0.111 0.145 0.141 0.129 

Triglycerides 0.075 0.082 0.021 0.071 0.057 0.081 0.076 0.072 

Table 2.8. The mean of variance of phenotypes explained by PRS across 10 random splits 

for six quantitative traits.  

 

For six disease traits, the prediction performance was measured by AUC of PRS 

only (Figure 2.6; Table 2.9). Overall, SDPR achieved top tier performance (within 0.003 

difference of AUC of the best method) for five out of six diseases. In terms of ranking, 

LDpred and LDpred2 performed best for coronary artery disease. SDPR and PRS-CS 

performed best for breast cancer. LDpred2 performed best for IBD. For schizophrenia 

and type 2 diabetes, SBayesR performed best. LDpred, SDPR, LDpred2 and SBayesR 

performed best for bipolar.  
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Figure 2.6. Prediction performance of different methods for 6 diseases in the UK 

biobank. Selected participants with corresponding diseases were randomly assigned to 

form validation and test dataset (Table 2.7).  For PRS-CS, LDpred , P+T, LDpred2, 

lassosum and DBSLMM, parameters were tuned based on the performance on the 
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validation dataset. We repeated the split and tuning process for 10 times. The mean 

AUC across 10 random splits was reported in the Table 2.9.   

Traits SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

CAD 0.591 0.596 0.579 0.604 0.584 0.604 0.594 0.592 

BC 0.654 0.654 0.644 0.644 0.630 0.653 0.649 0.649 
IBD 0.662 0.654 0.658 0.662 0.636 0.665 0.654 0.651 

T2D 0.624 0.619 0.626 0.624 0.592 0.625 0.612 0.620 

SCZ 0.684 0.673 0.686 0.679 0.664 0.681 0.680 0.672 
BP 0.612 0.607 0.613 0.612 0.604 0.612 0.609 0.608 

Table 2.9. The mean of AUC across 10 random splits for six diseases. 

 

Consistent with simulations, SBayesR performed similarly to SDPR when there 

was no convergence issue (IBD, type 2 diabetes, schizophrenia, bipolar vs height, lipid 

traits). In general, PRS-CS performed better when the training sample size was large 

(height and breast cancer vs IBD and type 2 diabetes) and LDpred performed better 

when the training sample size was small (coronary artery disease, IBD vs height, breast 

cancer). LDpred2 performed significantly better than LDpred, achieving highly 

competitive performance. SDPR performed best among methods (PRS-CS auto, SBayesR, 

LDpred2 auto) without the need of parameter tuning (Table 2.10 and 2.11). Taken 

together, our design of the likelihood function and usage of Dirichlet process prior 

empowers SDPR with generally robust performance across different genetic 

architectures and training sample sizes. 

Traits SDPR PRS-CS auto SBayesR LDpred2 
auto 

Height 0.271 0.271 0.226 0.224 
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BMI 0.093 0.089 0.082 0.070 
HDL 0.116 0.114 0.033 0.063 

LDL 0.147 0.141 0.026 0.113 

Total cholesterol 0.146 0.144 0.032 0.074 

Triglycerides 0.075 0.082 0.021 0.055 

Table 2.10. The mean of variance of phenotypes explained by PRS across 10 random 

splits for six quantitative traits for methods without the need of parameter tuning. 

 

Traits SDPR PRS-CS auto SBayesR LDpred2 
auto 

CAD 0.591 0.594 0.579 0.585 

BC 0.654 0.652 0.644 0.617 

IBD 0.662 0.652 0.658 0.616 
T2D 0.624 0.619 0.626 0.602 

SCZ 0.684 0.677 0.686 0.677 
BP 0.612 0.610 0.613 0.610 

Table 2.11. The mean of AUC across 10 random splits for six diseases for methods 

without the need of parameter tuning. 

 

2.3.4 Computational time 

SDPR is implemented in C++ to best utilize the resources of high-performance 

computing facilities. SDPR optimizes the speed of the computational bottleneck by using 

SIMD programming, parallelization over independent LD blocks, and high-performance 

linear algebra library. Besides, SDPR by default runs analysis on each chromosome in 

parallel because the genetic architecture may be different across chromosomes. We 

benchmarked the computational time and memory usage of each method on an Intel 

Xeon Gold 6240 processor (2.60 GHZ). For SDPR and PRS-CS, we paralleled computation 
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over 22 chromosomes and used three threads per chromosome for the linear algebra 

library (22 ×3 = 66 threads in total). Time and memory usage were reported for the 

longest chromosome, which was the rate limiting step. For LDpred, SBayesR and P+T, no 

parallelization was used. LDpred2 was run in the genome-wide mode with 10 threads 

for parallel computation. DBSLMM and lassosum were run with 3 threads for parallel 

computation. The evaluation was based on a fixed number of MCMC iterations-1000 for 

SDPR and PRS-CS (default), 4000 for SBayesR (non-default but achieved generally good 

performance in simulations and real data application), 100 for LDpred (default), 1000 for 

LDpred2 (default). One should keep in mind that the number of MCMC iterations and 

threads for parallel computation affects the computation time significantly, though we 

did not explore it in this paper since each method also has different convergence and 

computational properties. 

Table 2.12 shows that SDPR was able to finish the analysis in 15 minutes for most 

traits and required no more than 3 Gb of memory for each chromosome. SBayesR was 

also fast but the memory usage was significant for five diseases as no SNPs were 

removed to improve the convergence. The speed of PRS-CS, LDpred, P+T, LDpred2, 

lassosum, and DBSLMM was impeded by the need of iterating over tuning parameters. 

PRS-CS used less memory because the largest size of LD blocks output by ldetect was 

smaller compared with SDPR.  

Trait SDPR PRS-
CS 

SBayesR LDpred P+T LDpred2 Lassosum DBSLMM 

Height 0.20 
(2.4) 

2.5 
(0.7) 

0.92 
(12.6) 

5.0 
(15.5) 

0.6 
(1.1) 

5.5 
(31.2) 

0.50 
(2.6) 

1.7 
(1.1) 
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BMI 0.18 
(2.4) 

2.8 
(0.7) 

0.50 
(7.6) 

4.9 
(15.1) 

0.5 
 

(1.1) 

5.4 
(30.8) 

0.45 
(2.6) 

0.60 
(1.1) 

HDL 0.20 
(2.4) 

1.6 
(0.7) 

0.68 
(8.5) 

5.1 
(15.6) 

0.5 
(1.1) 

3.9 
(31.7) 

0.41 
(2.2) 

0.44 
(1.1) 

LDL 0.22 
(2.4) 

2.2 
(0.7) 

0.67 
(8.7) 

5.1 
(15.6) 

0.6 
(1.1) 

5.5 
(31.6) 

0.42 
(2.2) 

0.61 
(1.1) 

Total 
cholesterol 

0.25 
(2.4) 

2.2 
(0.7) 

0.48 
(8.7) 

5.1 
(15.4) 

0.5 
(1.1) 

4.1 
(31.7) 

0.40 
(2.6) 

0.60 
(1.1) 

Triglycerides 0.21 
(2.4) 

2.2 
(0.7) 

0.50 
(8.3) 

5.1 
(15.5) 

0.5 
(1.1) 

3.5 
(31.6) 

0.42 
(2.6) 

0.62 
(1.1) 

Coronary 
artery 

disease 

0.23 
(2.3) 

1.9 
(0.7) 

0.39 
(7.0) 

4.7 
(14.0) 

0.3 
(1.1) 

3.5 
(27.1) 

0.33 
(2.2) 

0.77 
(1.1) 

Breast cancer 0.20 
(2.9) 

2.7 
(0.7) 

0.63 
(42.3) 

5.5 
(16.4) 

0.5 
(1.1) 

4.6 
(37.1) 

0.42 
(2.7) 

0.65 
(1.1) 

IBD 0.28 
(2.8) 

2.2 
(0.7) 

0.78 
(39.5) 

5.1 
(16.0) 

0.6 
(1.1) 

3.7 
(33.4) 

0.45 
(2.7) 

0.68 
(1.1) 

Type 2 
diabetes 

0.31 
(2.9) 

2.4 
(0.7) 

0.87 
(47.4) 

5.5 
(17.4) 

0.5 
(1.1) 

4.5 
(37.2) 

0.51 
(2.8) 

0.63 
(1.2) 

Schizophrenia 0.28 
(2.7) 

2.3 
(0.7) 

2.6 
(42.1) 

5.3 
(16.4) 

0.5 
(1.1) 

4.4 
(36.8) 

0.43 
(2.3) 

0.64 
(1.1) 

Bipolar 0.28 
(2.8) 

2.2 
(0.7) 

1.7 
(43.8) 

5.3 
(16.3) 

0.5 
(1.1) 

4.4 
(36.8) 

0.45 
(2.6) 

0.64 
(1.1) 

Table 2.12. Computational time and memory usage of different methods for 12 traits. 

The computational time is in hours. Memory usage of each method, as listed in the 

parenthesis, is measured in the unit of Gigabytes (Gb). We did not include the time of 

computing PRS in the validation and test datasets except for P+T, lassosum, LDpred2, 

and DBSLMM, because such computation was non-trivial for methods with a large grid 

of tuning parameters.  
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2.4 Discussion 

Building on the success of genome wide association studies, polygenic prediction of 

complex traits has shown great promise with both public health and clinical relevance. 

Recently, there is growing interest in developing non-parametric or semi-parametric 

approaches that make minimal assumptions about the distribution of effect sizes to 

improve genetic risk prediction [37, 60, 61]. However, these methods either require 

access to individual-level data (DPR) [37], external training datasets (NPS) [60], or do no 

account for LD (So’s method) [61]. Other widely used methods usually make specific 

parametric assumptions, and require external validation or pseudo-validation datasets 

to optimize the prediction performance [16, 21, 30]. To address the limitations of the 

existing methods, we have proposed a non-parametric method SDPR that is adaptive to 

different genetic architectures, statistically robust, and computationally efficient. 

Through simulations and real data applications, we have illustrated that SDPR is 

practically simple, fast yet effective to achieve competitive performance.  

One of the biggest challenges of summary statistics-based method is how to deal 

with mismatch between summary statistics and reference panel. Based on our 

experience, misspecification of correlation of marginal effect sizes for SNPs in high LD 

can sometimes cause severe convergence issues of MCMC, especially for methods not 

relying on parameter tuning. Our investigation revealed that even when estimating LD 

from a perfectly matched reference panel, if SNPs were genotyped on different 

individuals, the correlation/covariance of marginal effect sizes in the summary statistics 

can be different from what is expected from the reference panel. We proposed a 
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modified likelihood function to deal with this issue and observed improved convergence 

of MCMC. Our approach may be applied in a broader setting given that many summary 

statistics-based methods assume �̂�𝛽 ∼ 𝑁 (𝑅𝛽,
𝑅

𝑁
) or 𝑧|𝛽 ∼ 𝑁(𝑅√𝑁𝛽, 𝑅). When the 

sample size is small, the noise and heterogeneity of GWAS summary statistics poses 

more challenge for methods trying to learn every parameter from data (PRS-CS auto, 

LDpred2-auto, SBayesR, and SDPR). Under such circumstances, it is advantageous for 

methods like LDpred/LDpred2 to use an independent validation dataset to select the 

optimal parameters. 

Although we have focused on the polygenic prediction of SDPR in this paper, it 

can provide estimation of heritability, genetic architecture, and posterior inclusion 

probability (PIP) for fine mapping. These issues will be fully explored in our future 

studies. SDPR can also be extended as a summary statistics-based tool to predict gene 

expression level for transcriptome wide association studies since a previous study has 

shown that individual level data based Dirichlet process model improves transcriptomic 

data imputation [62]. 

Although our method has robust performance in comparison with other 

methods, we caution that currently for most traits the prediction accuracy is still limited 

for direct application in clinical settings. From our perspective, there are three factors 

that affect the prediction accuracy. First, how much heritability is explained by common 

SNPs for diseases and complex traits? Second, if diseases or complex traits have 

relatively moderate heritability, is the GWAS sample size large enough to allow accurate 
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estimation of effect sizes? Third, if the above two conditions are met, is a method able 

to have good prediction performance? The first two questions have been discussed in 

the literatures [10, 35, 63]. As for method development, we have focused on addressing 

the third question in this paper, and think SDPR represents a solid step in polygenic risk 

prediction.   

Finally, we provide two technical directions for further development of SDPR. 

First, SDPR may have better performance after incorporating functional annotation as 

methods utilizing functional annotation generally perform better [64]. Second, studies 

have shown that PRS developed using EUR GWAS summary statistics does not transfer 

well to other populations [65, 66]. We can further modify the likelihood function to 

account for different LD patterns across populations to improve the performance of 

trans-ethnic PRS.  
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Chapter 3 

3.1 Introduction 

Polygenic risk score (PRS) of a complex trait for a given individual is constructed by 

combining the estimated effect sizes of genetic markers across the genome for this 

individual. PRS has received great interest recently due to its ability to identify 

individuals with higher disease risk for more effective population screening, diagnosis, 

and monitoring [32]. However, PRSs for most diseases to date have been primarily 

developed for Europeans as most well-powered genome wide association studies 

(GWAS) have been performed in cohorts of European ancestry. There can be substantial 

reduction in prediction accuracy when the PRSs derived from European samples are 

directly applied to non-European populations, leading to possible health disparities [65, 

66].   

The limited generalizability of PRS across different populations may be attributed 

but not limited to a number of factors. First, there is a lack of well-powered GWAS for 

training PRS models in the non-European populations. Second, the pattern of linkage 

disequilibrium (LD) and the tagging of causal variants can be different across 

populations. Third, the allele frequencies of variants vary between populations and 

some variants can even be population specific. As a general rule, the effect sizes of rarer 

variants are harder to estimate and GWAS with larger sample size are required in order 

to provide accurate estimates. Fourth, the effect sizes of one variant can be null (i.e. no 

effect), population specific (non-zero in one population) or correlated in two 
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populations [67, 68]. Therefore, the effect sizes estimated from European GWAS may or 

may not be directly transferable to other populations.  

Great efforts have been made in recent years to improve the genetic diversity of 

GWAS [69, 70]. Increased availability of GWAS summary statistics and biobank data 

from non-European ancestries creates an opportunity for developing novel methods to 

improve the accuracy of PRS in different populations. One general approach is to first 

estimate effect sizes in each population separately, and then derive a linear 

combination of the estimated effect sizes from a validation dataset of the target 

population [71]. Other approaches include jointly modeling GWAS summary statistics 

from multiple populations under the assumption that the causal variants are largely 

shared across populations [72, 73].  

Here we propose SDPRX, an extension of SDPR [74], that integrates GWAS 

summary statistics and LD matrices from two populations with effect sizes under a 

hierarchical Bayesian model. SDPRX characterizes the joint distribution of the effect 

sizes of a SNP (single nucleotide polymorphism) in two populations to be both null, 

population specific or shared with correlation. We compared the performance of SDPRX 

with existing methods through extensive simulations and applications to seven traits in 

the East Asian (EAS) and African (AFR) individuals from the UK Biobank (UKB) [41]. We 

show that SDPRX improves the prediction accuracy in non-European populations over 

the existing methods.  
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3.2 Methods 

3.2.1 Model of SDPRX 

The relationship between marginal effect sizes in the summary statistics and true effect 

sizes can be modeled as 

�̂�1 | 𝜂, 𝛽1  ∼ 𝑁(𝑅1 𝜂𝛽1, 𝑅1/𝑁1 + 𝑎𝐼) 

�̂�2 | 𝜂, 𝛽2  ∼ 𝑁(𝑅2 𝜂𝛽2, 𝑅2/𝑁2 + 𝑎𝐼) (3.1) 

where �̂�1 and �̂�2 are the marginal effect sizes, 𝑅1 and 𝑅2 are the LD matrices, and 𝑁1 

and 𝑁2 are GWAS sample sizes for populations 1 and 2, respectively. Compared with the 

commonly used assumption �̂�|𝛽 ∼ 𝑁(𝑅𝛽, 𝑅/𝑁), the function above has two variations 

[74]. First, it shrinks the off-diagonal covariance by a constant identity matrix 𝑎𝐼 to avoid 

the “blow up” of effect sizes of SNPs in high LD due to the mismatch between GWAS 

summary statistics and reference panel. Second, it introduces a redundant parameter 𝜂 

so that the choice of hyperparameters of the prior on the variance components does 

not constrain the posterior inference [46].   

We specify the following joint distribution as the prior on the effect sizes (𝛽𝑗1, 

𝛽𝑗2) of each SNP j in the two populations:   

(
𝛽𝑗1

𝛽𝑗2
) ∼ 𝑝0 (

𝛿0

𝛿0
) + 𝑝1  ∑ 𝜋1𝑘

1000

𝑘=1

(
𝑁(0, 𝜎1𝑘

2 )

𝛿0
) +

𝑝2  ∑ 𝜋2𝑘

1000

𝑘=1

(
𝛿0

𝑁(0, 𝜎2𝑘
2 )

) +

𝑝3  ∑ 𝜋3𝑘

1000

𝑘=1

𝑁 ((
0

0
) , 𝜎3𝑘

2 (
1 𝜌

𝜌 1
)) (3.2)
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This prior characterizes the genetic architecture of one trait in two populations by a 

mixture of four mutually exclusive components. The first term describes the effect sizes 

of one SNP as zero in both populations. The second, third and fourth terms represent 

the effect sizes of one SNP as non-zero in population 1 only, non-zero in population 2 

only, or non-zero and correlated in both populations. We note that if a SNP is only 

present in one population, it will be assigned to the first term (null), or one of the 

second and third terms (population specific). 

We further assigned a Dirichlet distribution prior on the probability of each SNP 

to be null (𝑝0), population 1 specific (𝑝1), population 2 specific (𝑝2) and shared with 

correlation (𝑝3).  

(𝑝0, 𝑝1, 𝑝2, 𝑝3) ∼ 𝐷𝑖𝑟(1) (3.3) 

For the second (population 1 specific), third (population 2 specific) and fourth terms 

(shared with correlation), we used the truncated stick-breaking process to represent the 

variance components and probability of assignments [75]. For example, for the second 

term (population 1 specific) we had:  

𝑉1𝑘 ∼  𝐵𝑒𝑡𝑎(1, 𝛼1), 𝑘 = 1, … ,1000 

𝜋11  =  𝑉11  

𝜋1𝑘 =  ∏(1 − 𝑉1𝑚)𝑉1𝑘

𝑘−1

𝑚=1

, 𝑘 = 2, … 1000  

𝜎1𝑘
2 ∼  𝐼𝐺(.5, .5)  

𝛼1 ∼  𝐺𝑎𝑚𝑚𝑎(0.1, 0.1). (3.4) 
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Finally, we set 𝑁1𝑎 = 𝑁2𝑎 = 1 and let 𝜂 ∼ 𝑁(0,106) [74]. The cross-population genetic 

correlation 𝜌 can be obtained from software like Popcorn [76]. In simulations, we set 𝜌 

to be the true value. To reduce the computational burden, SDPRX partitioned the LD 

matrix (element-wise maximum of LD matrices from two populations) into 

approximately independent LD blocks [74]. A MCMC algorithm was designed to fit the 

model (Section 3.2.2). In practice, we used 1000 MCMC iterations and the first 200 

iterations as the burn-in. The computational time for the longest chromosome was 

around 5 hours. The mean of posterior effect sizes 𝜂𝛽1 and 𝜂𝛽2 were outputted as the 

adjust weights for two populations. When an independent validation dataset is 

available, one can also perform a convex combination of the output weights (𝛼 

increased from 0 to 1 by a step of 0.05) and select the best 𝛼 to further optimize the 

performance. 

𝛽𝑡𝑎𝑟𝑔𝑒𝑡 = 𝛼𝛽1 + (1 − 𝛼)𝛽2 (3.5) 

 

3.2.2 MCMC algorithm 

Here we describe our MCMC algorithm based on Gibbs sampling to obtain the posterior 

samples. For each SNP 𝑗, we introduce a vector 𝑧𝑗 = (𝑚, 𝑘), 𝑚 ∈ {0,1,2,3}, 𝑘 ∈

{1,2, … ,1000} indicating whether effect sizes are population specific and which variance 

component it is assigned to. For example, 𝑧𝑗 equals (1,4) if the effect sizes of SNP 𝑗 are 

population 1 specific and it is assigned to the fourth variance component.  
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Compute 𝐴1, 𝐵1, 𝐴2, 𝐵2:  𝐴1 = (𝑅1 + 𝑁1𝑎𝐼)−1𝑅1, 𝐵1 = 𝑅1𝐴1. 𝐴2 = (𝑅2 + 𝑁2𝑎𝐼)−1𝑅2, 

𝐵2 = 𝑅2𝐴2. 

 

Sampling 𝑧𝑗: For each LD block, we first integrate out 𝛽1 and 𝛽2 to derive the conditional 

probability of SNP 𝑗  whose effect sizes are correlated in two populations and assigned 

to the kth variance component:  

𝑃(𝑧𝑗 = (3, 𝑘)|. )

∝ ∫ ∫ 𝑝(�̂�1|𝛽1𝑗 , 𝜂) 𝑝(�̂�2|𝛽2𝑗 , 𝜂) 𝑝(𝛽1𝑗 , 𝛽2𝑗|𝑧𝑗 = (3, 𝑘), 𝜎3𝑘
2 ) 𝑑𝛽1𝑗𝑑𝛽2𝑗  

×  𝑃(𝑧𝑗 = (3, 𝑘)) 

∝ ∫ ∫ exp {−
1

2
(�̂�1 − 𝜂𝑅1𝛽1)

𝑇
(𝑅1/𝑁1 + 𝑎𝐼)−1(�̂�1 − 𝜂𝑅1𝛽1)} exp {−

1

2
(�̂�2

− 𝜂𝑅2𝛽2)
𝑇

(𝑅2/𝑁2 + 𝑎𝐼)−1(�̂�2

− 𝜂𝑅2𝛽2)}
1

2𝜋𝜎3𝑘
2 √1 − 𝜌2

exp {−
1

2(1 − 𝜌2)
[
𝛽1𝑗

2 + 𝛽2𝑗
2 − 2𝜌𝛽1𝑗𝛽2𝑗

𝜎3𝑘
2 ]} 𝑑𝛽1𝑗𝑑𝛽2𝑗

× 𝜋3𝑘𝑝3 

∝ ∫ ∫ exp {−
𝑁1

2
𝜂2𝛽1

𝑇𝐵1𝛽1 + 𝑁1𝜂�̂�1
𝑇

𝐴1𝛽1} exp {−
𝑁2

2
𝜂2𝛽2

𝑇𝐵2𝛽2

+ 𝑁2𝜂�̂�2
𝑇

𝐴2𝛽12}
1

2𝜋𝜎3𝑘
2 √1 − 𝜌2

exp {−
1

2(1 − 𝜌2)
[
𝛽1𝑗

2 + 𝛽2𝑗
2 − 2𝜌𝛽1𝑗𝛽2𝑗

𝜎3𝑘
2 ]} 𝑑𝛽1𝑗𝑑𝛽2𝑗

× 𝜋3𝑘𝑝3  
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∝ ∫ ∫ exp {−
𝑁1

2
𝜂2𝐵1,𝑗𝑗𝛽1𝑗

2 − 𝑁1𝜂2 ∑ 𝐵1,𝑖𝑗𝛽1𝑖𝛽1𝑗

𝑖≠𝑗

+ 𝑁1𝜂 ∑ 𝐴1,𝑖𝑗�̂�1𝑖𝛽1𝑗

𝑖

  } exp {−
𝑁2

2
𝜂2𝐵2,𝑗𝑗𝛽2𝑗

2 − 𝑁2𝜂2 ∑ 𝐵2,𝑖𝑗𝛽2𝑖𝛽2𝑗

𝑖≠𝑗

+ 𝑁2𝜂 ∑ 𝐴2,𝑖𝑗�̂�2𝑖𝛽2𝑗

𝑖

  }
1

2𝜋𝜎3𝑘
2 √1 − 𝜌2

exp {−
1

2(1 − 𝜌2)
[
𝛽1𝑗

2 + 𝛽2𝑗
2 − 2𝜌𝛽1𝑗𝛽2𝑗

𝜎3𝑘
2 ]} 𝑑𝛽1𝑗𝑑𝛽2𝑗

× 𝜋3𝑘𝑝3 

∝  ∫ ∫ exp{−𝑎𝑗𝑘1𝛽1𝑗
2 −𝑎𝑗𝑘2𝛽2𝑗

2 + 𝑁1𝑏1𝑗 + 𝑁2𝑏2𝑗 + 𝑐𝑘𝛽1𝑗𝛽2𝑗 } 
1

2𝜋𝜎3𝑘
2 √1 − 𝜌2

𝑑𝛽1𝑗𝑑𝛽2𝑗

× 𝜋3𝑘𝑝3 

∝
1

(4𝑎𝑗𝑘1𝑎𝑗𝑘2 − 𝑐𝑘
2)

1
2𝜎3𝑘

2

 exp{𝑎𝑗𝑘1𝜇𝑗𝑘1
2 + 𝑎𝑗𝑘2𝜇𝑗𝑘2

2 − 𝑐𝑘𝜇𝑗𝑘1𝜇𝑗𝑘2 } ×
𝜋3𝑘𝑝3

√1 − 𝜌2
 

(3.6) 

where  

𝑏1𝑗 =  𝜂 ∑ 𝐴1,𝑖𝑗�̂�1𝑖

𝑖

−  𝜂2 ∑ 𝐵1,𝑖𝑗𝛽1𝑖

𝑖≠𝑗

 

𝑏2𝑗 =  𝜂 ∑ 𝐴2,𝑖𝑗�̂�2𝑖

𝑖

−  𝜂2 ∑ 𝐵2,𝑖𝑗𝛽2𝑖

𝑖≠𝑗

  

𝑎𝑗𝑘1  =
𝑁1

2
𝜂2𝐵1,𝑗𝑗 +

1

2𝜎3𝑘
2 (1 − 𝜌2)

 

𝑎𝑗𝑘2  =
𝑁2

2
𝜂2𝐵2,𝑗𝑗 +

1

2𝜎3𝑘
2 (1 − 𝜌2)

 

𝜇𝑗𝑘1 =
2𝑎𝑗𝑘2𝑁1𝑏1𝑗 + 𝑐𝑘𝑁2𝑏2𝑗

4𝑎𝑗𝑘1𝑎𝑗𝑘2 − 𝑐𝑘
2  
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𝜇𝑗𝑘2 =
2𝑎𝑗𝑘1𝑁2𝑏2𝑗 + 𝑐𝑘𝑁1𝑏1𝑗

4𝑎𝑗𝑘1𝑎𝑗𝑘2 − 𝑐𝑘
2  

𝑐𝑘 =
𝜌

(1 − 𝜌2)𝜎3𝑘
2  

We next derive the conditional probability of SNP 𝑗  whose effect sizes are population 

specific or null. It can be viewed as the special case to evaluate the last integrand by 

setting 𝜌 = 0, 𝛽2𝑗 = 0 (population 1 specific),  𝜌 = 0, 𝛽1𝑗 = 0 (population 2 specific), 

and 𝛽1𝑗 = 𝛽2𝑗 = 0 (both null).  

𝑃(𝑧𝑗 = (1, 𝑘)|. ) ∝
1

√𝑁1𝜂2𝐵1,𝑗𝑗𝜎1𝑘
2 + 1

exp {
𝑁1

2𝑏1𝑗
2

𝑁1𝜂2𝐵1,𝑗𝑗 + 𝜎1𝑘
−2} × 𝜋1𝑘𝑝1 

𝑃(𝑧𝑗 = (2, 𝑘)|. ) ∝
1

√𝑁2𝜂2𝐵2,𝑗𝑗𝜎2𝑘
2 + 1

exp {
𝑁2

2𝑏2𝑗
2

𝑁2𝜂2𝐵2,𝑗𝑗 + 𝜎2𝑘
−2} × 𝜋2𝑘𝑝2 

𝑃(𝑧𝑗 = (0,0)|. ) ∝ 𝑝0 

We use log-exp-sum trick to avoid numerical overflow. Note that because SNPs in 

different LD blocks are approximately independent, we can sample their assignments in 

parallel. For population 1 specific SNPs, we only need to evaluate 𝑃(𝑧𝑗 = (1, 𝑘)|. ) and 

𝑃(𝑧𝑗 = (0,0)|. ).  

 

Sampling 𝛽1, 𝛽2: For SNPs that are non-causal in any populations, we simply set the 

corresponding entries of 𝛽1 and 𝛽2 as zero. We then jointly sample the effect sizes of 

causal SNPs in one independent LD block. We introduce two indexes 𝛾1 and  𝛾2 such 

that 𝛽1,𝛾1
 and 𝛽2,𝛾2  are non-zero. We combine 𝛽1,𝛾1

 and 𝛽2,𝛾2  into one vector 𝛽𝛾, which 

follows a bivariate normal distribution with mean 0 and variance-covariance matrix Σ0. 
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The jth diagonal entry of Σ0 is 𝜎𝑧𝑗
2 . If effect sizes of one SNP are non-zero with 

correlation in two populations, then Σ0,𝑖𝑗 = Σ0,ji = 𝜌𝜎𝑧𝑗

2 . Other entries of Σ0 are zero. 

Note that the special structure of Σ0 allows an analytical solution of Σ0
−1. We next derive 

the conditional likelihood as: 

𝑝(𝛽1,𝛾1
, 𝛽2,𝛾2

| . )

∝ exp {−
𝑁1

2
𝜂2𝛽1

𝑇𝐵1𝛽1

+ 𝜂�̂�1
𝑇

𝐴1𝛽1} exp {−
𝑁2

2
𝜂2𝛽2

𝑇𝐵2𝛽2 + 𝜂�̂�2
𝑇

𝐴2𝛽2} exp {−
1

2
 (𝛽1,𝛾1

 𝛽2,𝛾2
)

𝑇
Σ0

−1(𝛽1,𝛾1
 𝛽2,𝛾2

)} 

∝ exp {−
1

2
𝜂2(𝛽1,𝛾1

 𝛽2,𝛾2 )
𝑇

(
𝑁1𝐵1,𝛾1

0

0 𝑁2𝐵2,𝛾2

) (𝛽1,𝛾1
 𝛽2,𝛾2 )

+ 𝜂(𝑁1�̂�1
𝑇𝐴1,𝛾1

𝑁2�̂�2
𝑇𝐴2,𝛾2

)} exp {−
1

2
 (𝛽1,𝛾1

 𝛽2,𝛾2
)

𝑇
Σ0

−1(𝛽1,𝛾1
 𝛽2,𝛾2

)} 

∝ exp {−
1

2
𝜂2𝛽𝛾

𝑇𝐵𝛾𝛽𝛾 + 𝜂�̂�𝑇𝐴𝛾𝛽𝛾} exp {−
1

2
𝛽𝛾

𝑇Σ0
−1𝛽𝛾} 

= 𝑀𝑉𝑁(𝜂Σ𝐴𝛾
𝑇�̂�𝛾,  Σ) 

(3.7)

where Σ = ( 𝜂2𝐵𝛾 + Σ0
−1)

−1
, 𝐴𝛾 = (𝑁1�̂�1

𝑇𝐴1,𝛾1
𝑁2�̂�2

𝑇𝐴2,𝛾2
), 𝐵𝛾 = (

𝑁1𝐵1,𝛾1
0

0 𝑁2𝐵2,𝛾2

). 

𝐴1,𝛾1
 is the submatrix by selecting columns from matrices 𝐴1 based on the index 𝛾1.  

𝐵1,𝛾1
 is the submatrix by selecting rows and columns from matrices 𝐵1 based on the 

index 𝛾1.    

  

Sampling 𝜂: The full conditional likelihood is  
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𝑝(𝜂|. )

∝ exp {−
1

2
𝑁1𝜂2 ∑ 𝛽1

𝑇𝐵1𝛽1

+ 𝑁1𝜂 ∑ �̂�1
𝑇𝐴1𝛽1  } exp {−

1

2
𝑁2𝜂2 ∑ 𝛽2

𝑇𝐵2𝛽2 + 𝑁2𝜂 ∑ �̂�2
𝑇𝐴2𝛽2  } exp {−

𝜂2

2 × 10−6
}  

= 𝑁 (
𝑁1(∑ �̂�1

𝑇𝐴1𝛽1) + 𝑁2(∑ �̂�2
𝑇𝐴2𝛽2)

𝑁1(∑ 𝛽1
𝑇𝐵1𝛽1) + 𝑁2(∑ 𝛽2

𝑇𝐵2𝛽2) + 10−6
,  

1

𝑁1(∑ 𝛽1
𝑇𝐵1𝛽1) + 𝑁2(∑ 𝛽2

𝑇𝐵2𝛽2) + 10−6
) 

(3.8) 

 

Sampling 𝜎1𝑘
2 , 𝜎2𝑘

2 , 𝜎3𝑘
2 : The full conditional likelihood is   

𝑝(𝜎1𝑘
2 |. ) ∝ ∏

1

𝜎1𝑘
exp {−

𝛽1𝑗
2

2𝜎1𝑘
2 }

𝑗:𝑧𝑗=(1,𝑘)

𝜎1𝑘
−2(.5−1)

exp {−
. 5

𝜎1𝑘
2 } 

= 𝐼𝐺(
𝑀1𝑘

2
+ .5,

∑ 𝛽1𝑗
2

𝑗:𝑧𝑗=(1,𝑘) 

2
+ .5) 

𝑝(𝜎2𝑘
2 |. ) ∝ ∏

1

𝜎2𝑘
exp {−

𝛽2𝑗
2

2𝜎2𝑘
2 }

𝑗:𝑧𝑗=(2,𝑘)

𝜎2𝑘
−2(.5−1)

exp {−
. 5

𝜎2𝑘
2 } 

= 𝐼𝐺(
𝑀2𝑘

2
+ .5,

∑ 𝛽2𝑗
2

𝑗:𝑧𝑗=(2,𝑘) 

2
+ .5) 

𝑝(𝜎3𝑘
2 |. ) ∝ ∏

1

𝜎3𝑘
exp {−

𝛽1𝑗
2 + 𝛽2𝑗

2 − 2𝜌𝛽1𝑗𝛽2𝑗

2(1 − 𝜌2)𝜎3𝑘
2 }

𝑗:𝑧𝑗=(3,𝑘)

𝜎3𝑘
−2(.5−1)

exp {−
. 5

𝜎3𝑘
2 } 

= 𝐼𝐺(
𝑀3𝑘

2
+ .5,

∑ 𝛽1𝑗
2 + 𝛽2𝑗

2 − 2𝜌𝛽1𝑗𝛽2𝑗𝑗:𝑧𝑗=(3,𝑘) 

2(1 − 𝜌2)
+ .5) 

(3.9) 
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where 𝑀1𝑘 = ∑ 𝐼 (𝑧𝑗 = (1, 𝑘)) , 𝑀2𝑘 = ∑ 𝐼 (𝑧𝑗 = (2, 𝑘))𝑗 , 𝑀3𝑘 = ∑ 𝐼 (𝑧𝑗 = (3, 𝑘))𝑗𝑗  

and 𝐼 is the indicator function. 

 

Sampling 𝑉𝑚𝑘 , 𝑚 ∈ {1,2,3}, 𝑘 ∈ {1,2, … ,1000}: The full conditional likelihood is 

𝑝(𝑉𝑚𝑘|. ) ∝ 𝑉𝑘
𝑀𝑚𝑘(1 − 𝑉𝑘)𝑀𝑚(𝑘+1)+⋯+𝑀1000+𝛼𝑀−1  

= 𝐵𝑒𝑡𝑎(1 + 𝑀𝑚𝑘 , 𝛼 + ∑ 𝑀𝑚𝑙

1000

𝑙=𝑘+1

 ) 

(3.10) 

for j=1,2,3 and k = 1, …, 999. 𝑉𝑚1000 equals 1 according to the definition of the 

truncated stick-breaking process. 

 

Computing 𝜋𝑚𝑘 , 𝑚 ∈ {1,2,3}: The prior probability can be computed as 

𝜋𝑚1 = 𝑉𝑚1  

𝜋𝑚𝑘 = ∏(1 − 𝑉𝑚𝑙)

𝑘−1

𝑙=1

𝑉𝑚𝑘   (𝑘 ≥ 2)  

 

Sampling 𝑝0, 𝑝1, 𝑝2, 𝑝3:  The conditional distribution is: 

𝑝0, 𝑝1, 𝑝2, 𝑝3|. ∼ 𝐷𝑖𝑟(𝑀0 + 1, 𝑀1 + 1, 𝑀2 + 1, 𝑀3 + 1) 

(3.11) 

where 𝑀0 = ∑ 𝐼 (𝑧𝑗 = (0,0)) ,𝑗 𝑀1 = ∑ 𝐼 (𝑧𝑗 = (1, . )) , 𝑀2 = ∑ 𝐼 (𝑧𝑗 = (2, . ))𝑗 , 𝑀3𝑘 =𝑗

∑ 𝐼 (𝑧𝑗 = (3, . ))𝑗 . Note that we exclude population specific variants when computing 

𝑀0, 𝑀1, 𝑀2, 𝑀3. 



 64 

 

Sampling 𝛼𝑚 , 𝑚 ∈ {1,2,3}: The full conditional likelihood is  

𝑝(𝛼𝑚|. ) ∝  ∏ 𝛼𝑚(1 − 𝑉𝑚𝑙)𝛼𝑚−1𝛼𝑚
.1−1 exp{−.1 × 𝛼𝑚} 

1000−1

𝑙=1

 

= 𝐺𝑎𝑚𝑚𝑎(0.1 + 1000 − 1, 0.1 −  ∑ log (1 − 𝑉𝑚𝑘)

1000−1

𝑘=1

) 

(3.12) 

We record the effect sizes 𝜂𝛽1 and 𝜂𝛽2 together with the heritability ℎ1
2 = 𝛽1

𝑇𝑅1𝛽1 and 

ℎ2
2 = 𝛽2

𝑇𝑅2𝛽2 for each iteration and compute the average of all posterior samples as the 

final estimator. We note that ℎ1
2 and ℎ2

2 together with the maximum of effect sizes can 

be used to assess whether the algorithm converges. 

 

3.2.3 Existing methods 

We compared the performance of SDPRX with three other methods: (1) PRS-CSx as 

implemented in the PRS-CSx software; (2) LDpred2 as implemented in the bigsnpr 

package; (3) XPASS as implemented in the XPASS package. For PRS-CSx, the global 

shrinkage parameter was specified as {1e-6, 1e-4, 1e-2, 1, auto}. For LDpred2, we ran 

LDpred2-inf, LDpred2-auto and LDpred2-grid, and reported the best performance of 

three options. The grid of hyperparameters was set as non-sparse, p in a sequence of 21 

values from 10-5 to 1 on a log-scale, and h2 within {0.7, 1, 1.4} of h2
LDSC. For XPASS, 

population specific effects were included in both populations (p < 10-10, clump_r2 = 0.1, 
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clump_kb = 1000). In real data analysis, we also performed a linear regression on the 

validation dataset to learn the weights for combination of effect sizes.  

 

3.2.4 Simulations 

We first evaluated the prediction performance of each method via simulations across 

different genetic architectures and training sample sizes. We focused on four methods—

SDPRX, PRS-CSx [73], LDpred2 [18] and XPASS [72]. To simulate individual-level 

genotypes from the 1000 Genomes Phase 3 haplotype, we first randomly selected 3,000 

SNPs from the first 30,000 common SNPs (MAF > 0.05 in EAS, EUR and AFR) on 

chromosomes 1 to 10. The curated haplotypes reduced the computational burden of 

Hapgen2, while still provided a good representation of the real population structure. We 

then used Hapgen2 to simulate individual-level genotypes from the curated haplotypes. 

The simulated genotypes all passed the quality control (MAF > 0.05, genotype missing 

rate < 0.1, pHWE > 10-6).  The training cohort consisted of 40K EUR individuals and 

varying sample sizes (10K, 20K, 40K) of EAS and AFR individuals. The reduced sample 

size of non-EUR populations aligns with the fact that the sample size of most non-EUR 

GWAS is smaller than EUR GWAS. The validation and test datasets consisted of 5K 

individuals of each population. 

 The genetic architecture was simulated for two populations (EUR + EAS or EUR + 

AFR) as follows.  
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(
𝛽𝑗1

𝛽𝑗2
) ∼ (1 − 𝑝1 − 𝑝2 − 𝑝3) (

𝛿0

𝛿0
) + 𝑝1  (

𝑁 (0,
0.2ℎ2

𝑀𝑝1
)

𝛿0

) +

𝑝2  (
𝛿0

𝑁 (0,
0.2ℎ2

𝑀𝑝2
)

) +

𝑝3 𝑁 ((
0

0
) ,

0.8ℎ2

𝑀𝑝3
(

1 𝜌

𝜌 1
)) ,

 

where ℎ2 = 0.3, 𝑀 = 30,000. Effect sizes of one SNP in two populations can be both 

zero, population specific (non-zero in population 1 or population 2) or correlated with 

the cross-population genetic correlation. We fixed the total heritability to be 0.3 and 

assumed that 80% of the total heritability was explained by SNPs with correlated effect 

sizes between the two populations.  We considered three scenarios by increasing the 

proportions of population-specific and shared causal variates: (1) 𝑝1 = 𝑝2 = 𝑝3 =

0.0005, (2) 𝑝1 = 𝑝2 = 𝑝3 = 0.005, (3) 𝑝1 = 𝑝2 = 𝑝3 = 0.05. We also varied the cross-

population genetic correlation 𝜌 in {0.4, 0.6, 0.8}.  Phenotypes were then generated 

from simulated effect sizes using GCTA-sim, and marginal linear regression analysis was 

performed on the training data to obtain summary statistics using PLINK2 [14, 50]. Each 

simulation setting was repeated 10 times. The validation dataset was used to estimate 

LD matrix for each method and tune parameters for LDpred2 and PRS-CSx. The 

prediction performance was assessed by the square of Pearson correlation of PRS and 

simulated phenotype in the independent test dataset. 
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3.2.5 UK Biobank analysis 

We downloaded GWAS summary statistics from GIANT, DIAGRAM, GLGC, BBJ, and PAGE 

consortia [42, 54, 58, 69, 70, 77-79]. We followed the guideline of LDHub to perform 

quality control on the GWAS summary statistics for each population [52]. We removed 

strand ambiguous (A/T and G/C) SNPs, insertions and deletions (INDELs), and SNPs with 

an effective sample size less than 0.67 times the 90th percentile of sample size. We did 

not restrict to SNPs present in two GWAS summary statistics so that population specific 

SNPs would be retained. Table 3.1 shows the number of SNPs present in the summary 

statistics for each trait after intersecting with reference panel and test dataset. The 

number of SNPs may not be optimal to achieve the best performance for each trait, but 

it did allow a fair comparison of different methods. We used the 1000 Genomes EUR, 

EAS and AFR samples as the LD reference panel for EUR, EAS and AFR (admixed 

populations for PAGE study) summary statistics respectively. For UK Biobank, we first 

performed principal component analysis (PCA) together with 1000 Genomes samples. 

We then trained a random forest classifier to assign UK Biobank samples to one of five 

super populations (EUR, EAS, AFR, SAS, AMR) based on top 10 PCs (Figure 3.1). We 

retained 2091 unrelated EAS and 6829 unrelated AFR samples with a predicted 

probability greater than 0.9 to form the validation and test datasets. We finally 

performed quality control (MAF > 0.01, genotype missing rate < 0.05, INFO > 0.8, 

pHWE > 1e-10) to obtain a total of 802,212 Hapmap3 (HM3) SNPs for EAS and 753,052 

HM3 SNPs for AFR.  

 



 68 

 GWAS sample size 

(EUR/EAS/AFR) 

1KG HM3 

&GWAS & UKB 

SNPs (EAS) 

1KG HM3 & 

GWAS & UKB 

SNPs (AFR) 

UKB EAS 

sample size 

(EAS) 

UKB AFR 

sample size 

(AFR) 

Height 252,230/159,095/49,781 523,930 433,973 2,081 6,727 

BMI 233,766/158,284/49,335 536,830 433,973 2,078 6,715 

HDL 885,540/116,404/90,804 515,898 433,846 398 1,610 

LDL 840,006/79,693/87,559 545,790 433,967 440 1,710 

TC 929,732/144,579/92,554 335,414 433,844 440 1,714 

TG 860,547/81,071/89,467 545,812 433,858 440 1,714 

T2D 156,109/191,764/14,480 538,716 433,973 1,263 4,809 

Table 3.1. Summary of sample size and SNPs in GWAS summary statistics and UK 

Biobank datasets. The union of SNPs in GWAS summary statistics of two populations 

passing the quality control were intersected with the 1000 Genomes Hapmap3 

reference panel and UK Biobank to form the final SNP list.  
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Figure 3.1. Principal component analysis of UK Biobank individuals. A random forest 

classifier was trained to assign each individual to one of five super populations 

(European, East Asian, African, Admixed American, South Asian) by a random forest 

classifier. We retained 2091 unrelated EAS and 6829 unrelated AFR samples with a 

predicted probability greater than 0.9 to form the validation and test dataset.  

 

Phenotypes were selected based on the relevant data fields (50 for height, 21001 for 

BMI, 30780 for LDL, 20760 for HDL, 20690 for TC, 30870 for TG, and ICD-10 codes of 

E11.X, or ICD-9 codes of K51.X, or self-reported history of type 2 diabetes). For six 

quantitative traits, we reported the prediction R2 of PRS (variance explained by PRS) 

defined as 𝑅2 = 1 −
𝑆𝑆1

𝑆𝑆0
, where 𝑆𝑆0 is the sum of squares of the residuals of the 

restricted linear regression model with covariates (an intercept, age, sex, top 10 PCs of 
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the genotype data), and SS1 is the sum of squares of the residuals of the full linear 

regression model (covariates above and PRS). For one binary trait, we reported the AUC 

of PRS only for better comparison of different methods. 

 

3.2.6 Code availability 

SDPRX is available at https://github.com/eldronzhou/SDPRX. The code used in this 

paper is available at https://github.com/eldronzhou/SDPRX_paper. 

 

3.3 Results 

3.3.1 Simulations 

We focused on the results in EAS and AFR since our main purpose is to jointly utilize EUR 

GWAS data to improve the performance of PRS in non-EUR populations. Overall, all 

methods performed better as the proportion of causal SNPs decreased (Figure 3.2 and 

Table 3.2). Under a highly sparse genetic architecture (Scenario 1), the increase of 

sample size provided minimal benefits since the effect size per causal SNP was large 

enough for accurate estimation. In contrast, the improvement with an increasing sample 

size became apparent when the genetic architecture was polygenic (Scenario 3). Among 

all methods, XPASS did not perform well as the simulated data violated its assumption 

that all SNPs are causal. LDpred2 had descent accuracy when the genetic architecture 

was sparse or the sample size was large. However, there was clear advantage of cross 

https://github.com/eldronzhou/SDPRX
https://github.com/eldronzhou/SDPRX_paper
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population methods (SDPRX and PRS-CSx) over LDpred2 when the genetic architecture 

was polygenic (Scenario 3) and the sample size was small (10K and 20K). Results were 

similar for lower genetic correlation (Figure 3.3 and 3.4; Table 3.3 and 3.4). These results 

suggest that jointly modeling EUR and non-EUR GWAS can improve the prediction 

accuracy in non-EUR populations if non-EUR GWAS alone was not well powered. We can 

see that SDPRX outperformed the other methods in most cases.  

 

Figure 3.2. Prediction performance of different methods on simulated data with high 

cross-population genetic correlation. The proportion of SNPs with population 1 specific, 
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population 2 specific and correlated effect sizes was equally set to be 0.05% (Scenario 

1), 0.5% (Scenario 2) and 5% (Scenario 3). The cross-population genetic correlation was 

set to be 0.8 and the heritability was 0.3. Simulation in each scenario was repeated for 

10 times. For each boxplot, the central mark is the median and the lower and upper 

edges represent the 25th and 75th percentiles.  

 

  EAS AFR 

  10K 20K 40K 10K 20K 40K 

Scene 1 

SDPRX 0.290 0.293 0.294 0.291 0.295 0.293 

PRS-CSx 0.268 0.274 0.274 0.263 0.268 0.261 
LDpred2 0.290 0.293 0.296 0.292 0.292 0.294 

XPASS 0.224 0.231 0.233 0.225 0.231 0.231 

Scene 2 

SDPRX 0.230 0.256 0.270 0.229 0.257 0.274 

PRS-CSx 0.219 0.240 0.255 0.210 0.236 0.253 
LDpred2 0.222 0.257 0.269 0.219 0.252 0.273 

XPASS 0.156 0.199 0.221 0.140 0.182 0.213 

Scene 3 

SDPRX 0.150 0.188 0.216 0.136 0.172 0.208 
PRS-CSx 0.153 0.183 0.209 0.136 0.166 0.196 

LDpred2 0.127 0.171 0.207 0.108 0.154 0.200 
XPASS 0.135 0.164 0.193 0.111 0.140 0.173 

Table 3.2. The median of square of Pearson correlation across 10 replications when the 

cross-population genetic correlation was 0.8. 
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Figure 3.3. Prediction performance of different methods on simulated data with 

moderate cross-population genetic correlation. The proportion of SNPs with population 

1 specific, population 2 specific and correlated effect sizes was equally set to be 0.05% 

(Scenario 1), 0.5% (Scenario 2) and 5% (Scenario 3). The cross-population genetic 

correlation was set to be 0.6 and the heritability was 0.3. Simulation in each scenario 

was repeated for 10 times. For each boxplot, the central mark is the median and the 

lower and upper edges represents the 25th and 75th percentiles.  
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  EAS AFR 

  10K 20K 40K 10K 20K 40K 

Scene 1 

SDPRX 0.296 0.299 0.300 0.293 0.296 0.299 

PRS-CSx 0.274 0.278 0.276 0.265 0.269 0.262 
LDpred2 0.297 0.299 0.302 0.297 0.300 0.302 

XPASS 0.222 0.236 0.226 0.226 0.228 0.223 

Scene 2 

SDPRX 0.233 0.257 0.272 0.229 0.259 0.276 

PRS-CSx 0.217 0.242 0.259 0.208 0.237 0.255 

LDpred2 0.225 0.254 0.276 0.217 0.258 0.278 
XPASS 0.158 0.196 0.221 0.146 0.191 0.215 

Scene 3 

SDPRX 0.146 0.186 0.213 0.121 0.159 0.196 

PRS-CSx 0.145 0.180 0.210 0.119 0.156 0.185 

LDpred2 0.134 0.178 0.211 0.106 0.150 0.195 

XPASS 0.130 0.163 0.194 0.096 0.127 0.169 

Table 3.3. The median of square of Pearson correlation across 10 replications when the 

cross-population genetic correlation was 0.6. 
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Figure 3.4. Prediction performance of different methods on simulated data with low 

cross-population genetic correlation. The proportion of SNPs with population 1 specific, 

population 2 specific and correlated effect sizes was equally set to be 0.05% (Scenario 

1), 0.5% (Scenario 2) and 5% (Scenario 3). The cross-population genetic correlation was 

set to be 0.4 and the heritability was 0.3. Simulation in each scenario was repeated for 

10 times. For each boxplot, the central mark is the median and the lower and upper 

edges represents the 25th and 75th percentiles.  
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  EAS AFR 

  10K 20K 40K 10K 20K 40K 

Scene 1 

SDPRX 0.294 0.300 0.300 0.287 0.291 0.294 

PRS-CSx 0.275 0.279 0.274 0.260 0.265 0.257 
LDpred2 0.292 0.298 0.300 0.286 0.290 0.294 

XPASS 0.216 0.221 0.228 0.215 0.222 0.224 

Scene 2 

SDPRX 0.230 0.257 0.271 0.229 0.256 0.274 

PRS-CSx 0.213 0.244 0.260 0.208 0.236 0.256 

LDpred2 0.222 0.260 0.273 0.212 0.250 0.271 
XPASS 0.154 0.199 0.222 0.140 0.184 0.205 

Scene 3 

SDPRX 0.134 0.177 0.210 0.114 0.159 0.202 

PRS-CSx 0.132 0.170 0.205 0.115 0.154 0.195 

LDpred2 0.123 0.169 0.211 0.109 0.154 0.197 

XPASS 0.122 0.155 0.190 0.095 0.135 0.176 

Table 3.4. The median of square of Pearson correlation across 10 replications when the 

cross-population genetic correlation was 0.4. 

 

3.3.2 Prediction performance for UK Biobank traits 

We next compared the performance of SDPRX with other methods in predicting six 

quantitative traits (height, body mass index, high-density lipoproteins, low-density 

lipoproteins, total cholesterol, and triglycerides) and one binary trait (type 2 diabetes) 

for EAS and AFR individuals in UK Biobank. We first investigated the prediction accuracy 

of each method in EAS (Figure 3.5 and Table 3.5) without learning the linear 

combination of effect sizes. Consistent with simulations, SDPRX achieved the highest 

prediction accuracy in all but one trait and an average of 20% increase in R2 compared 

with the second-best method. The average improvement of SDPRX over LDpred2 was 

22%, suggesting that jointly modeling EUR and EAS GWAS summary statistics indeed 
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provided benefits compared with using EAS GWAS summary statistics alone. We then 

linearly combined EUR and EAS effect sizes for each method by weights learned on the 

validation dataset. SDPRX remained the best method except for LDL with an average of 

12% improvement over the second-best method (Figure 3.6 and Table 3.6).   

 

Figure 3.5. Prediction performance of different methods for six quantitative traits and 

one binary trait in EAS samples from UK Biobank without the linear combination of 

effect sizes. Selected participants with corresponding phenotypes were randomly split 
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to form the validation (1/3) and test datasets (2/3). The mean and standard deviation of 

R2 (quantitative trait) and AUC (binary trait) across 20 random splits are showed on the 

bar plot.  

Traits SDPRX PRS-CSx LDpred2 XPASS 

Height 0.213 0.203 0.202 0.175 

BMI 0.084 0.059 0.081 0.052 

HDL 0.136 0.104 0.108 0.127 

LDL 0.059 0.036 0.028 0.061 
Total 

cholesterol 
0.063 0.039 0.032 0.033 

Log 
triglycerides 

0.116 0.102 0.114 0.071 

Type 2 
diabetes 

0.591 0.571 0.548 0.586 

Table 3.5. The mean of variance of phenotypes explained by PRS for six quantitative trait 

and AUC for one binary trait in EAS across 20 random splits with the linear combination 

of effect sizes. 
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Figure 3.6. Prediction performance of different methods for six quantitative traits and 

one binary trait in EAS samples from UK Biobank with the linear combination of effect 

sizes. Selected participants with corresponding phenotypes were randomly split to form 

the validation (1/3) and test datasets (2/3). The mean and standard deviation of R2 

(quantitative trait) and AUC (binary trait) across 20 random splits are showed on the bar 

plot. 
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Traits SDPRX PRS-CSx LDpred2 XPASS 

Height 0.067 0.059 0.055 0.049 

BMI 0.028 0.021 0.020 0.019 

HDL 0.097 0.083 0.085 0.077 
LDL 0.139 0.131 0.129 0.085 

Total 
cholesterol 

0.125 0.102 0.123 0.074 

Log 
triglycerides 

0.041 0.036 0.038 0.032 

Type 2 
diabetes 

0.560 0.550 0.545 0.541 

Table 3.6. The mean of variance of phenotypes explained by PRS for six quantitative trait 

and AUC for one binary trait in AFR across 20 random splits without the linear 

combination of effect sizes. 

 

Results for AFR were similar to results for EAS (Figure 3.7 and Table 3.7). SDPRX 

performed the best in all traits regardless of learning the linear combination of effect 

sizes. The average improvement of SDPRX over the second-best method was 11% before 

the linear combination, and 14% after the linear combination (Figure 3.8 and Table 3.8). 
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Figure 3.7. Prediction performance of different methods for six quantitative traits and 

one binary trait in AFR samples from UK Biobank without the linear combination of 

effect sizes. Selected participants with corresponding phenotypes were randomly split 

to form the validation (1/3) and test datasets (2/3). The mean and standard deviation of 

R2 (quantitative trait) and AUC (binary trait) across 20 random splits are showed on the 

bar plot. 
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Traits SDPRX PRS-CSx LDpred2 XPASS 
Height 0.067 0.059 0.055 0.049 

BMI 0.028 0.021 0.020 0.019 

HDL 0.097 0.083 0.085 0.077 

LDL 0.139 0.131 0.129 0.085 

Total 
cholesterol 

0.125 0.102 0.123 0.074 

Log 
triglycerides 

0.041 0.036 0.038 0.032 

Type 2 
diabetes 

0.560 0.550 0.545 0.541 

Table 3.7. The mean of variance of phenotypes explained by PRS for six quantitative trait 

and AUC for one binary trait in AFR across 20 random splits without the linear 

combination of effect sizes. 
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Figure 3.8. Prediction performance of different methods for six quantitative traits and 

one binary trait in EAS samples from UK Biobank with the linear combination of effect 

sizes. Selected participants with corresponding phenotypes were randomly split to form 

the validation (1/3) and test dataset (2/3). The mean and standard deviation of R2 

(quantitative trait) and AUC (binary trait) across 20 random splits are showed on the bar 

plot. 
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Traits SDPRX PRS-CSx LDpred2 XPASS 

Height 0.081 0.079 0.068 0.056 

BMI 0.033 0.033 0.030 0.022 

HDL 0.097 0.079 0.062 0.079 
LDL 0.136 0.125 0.103 0.076 

Total 
cholesterol 

0.124 0.101 0.090 0.074 

Log 
triglycerides 

0.044 0.031 0.028 0.031 

Type 2 
diabetes 

0.562 0.555 0.549 0.544 

Table 3.8. The mean of variance of phenotypes explained by PRS for six quantitative trait 

and AUC for one binary trait in AFR across 20 random splits with the linear combination 

of effect sizes. 

 

We next compared the prediction accuracy of the same trait between EAS and AFR. For 

height, BMI and T2D, the prediction was better in EAS than AFR because AFR GWAS 

summary statistics were largely derived from an admixed population with a lower 

sample size. Among four lipid traits, the performance of LDL and TC was lower in EAS 

while the performance of HDL and TG was lower in AFR. A glimpse into the number of 

SNPs with relatively large posterior effect sizes in EAS and AFR (absolute value greater 

than 0.01) may explain the discrepancy above (Figure 3.10). There were more SNPs with 

AFR specific effect sizes for LDL and TC, and more SNPs had EAS specific effect sizes for 

HDL and TG. Hence, both sample size and genetic architecture of two populations affect 

the transferability of PRS.  
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Figure 3.9. Venn diagram showing the number of SNPs with relatively large posterior 

effect sizes (absolute value greater than 0.01) output by SDPRX in EAS and AFR. 

 

3.4 Discussion 

SDPRX takes GWAS summary statistics from two populations as input, and thus is able 

to leverage shared information from two populations to better estimate the effect sizes 

of SNPs compared with single population method like LDpred2. The prior assumption 

made by SDPRX is more general than XPASS and PRS-CSx. Unlike SDPRX, XPASS assumes 

that the genetic architecture is polygenic and all SNPs have non-zero effect sizes, while 

empirically methods assuming only part of SNPs having non-zero effect sizes often have 
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better performance [18]. SDPRX differs with PRS-CSx in two aspects. First, it explicitly 

allows SNPs to have both population specific and shared effect sizes whereas PRS-CSx 

assumes all SNPs are shared. Second, SDPRX directly incorporates the cross-population 

genetic correlation into the model for better estimation of shared effect sizes. These 

points, taken together, may explain why SDPRX outperformed the other methods in 

both simulation and real data analyses.  

Although SDPRX improves the prediction accuracy in non-EUR populations, it is 

far from overcoming the gap between performance of PRS in EUR and non-EUR 

populations. We think developing computational methods alone will not be able to 

solve this issue, and there are two points that may explain the gap based on the results 

presented in this paper. First, the sample sizes of non-EUR GWAS are limited. Results in 

EAS were overall better than results in AFR due to the larger sample size of EAS GWAS. 

Second, other factors like genetic architecture may be different for some traits in two 

populations. For example, the performance of HDL, LDL, TC and TG was different in EAS 

and AFR in spite of similar GWAS sample sizes. We also note that social, environmental 

and familial factors were not considered in this study since we primarily focused on 

comparison of methods, though they may play an important role in the transferability of 

PRS [66]. 

Lastly, we note three limitations of our current work that we will address in the 

future. First, we restricted to HM3 SNPs for an easy comparison of different methods, 

which is not optimal as it might not include some informative SNPs. Second, SDPRX is 

currently not designed for admixed populations, which is challenging as the LD pattern 
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would be heterogenous and difficult to capture using a single LD matrix. To our 

knowledge, how to connect the marginal effect sizes in the GWAS summary statistics 

derived from admixed populations with true effect sizes is also less clear, which may 

deal with the adjustment of local ancestry and covariates [80, 81]. Third, methods 

utilizing functional annotation have shown to improve the performance in both single 

and cross population settings [64, 82]. Incorporating functional annotation may further 

improve the performance of SDPRX.  
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Appendix A 

In this appendix, we derive the likelihood function when SNPs are typed on different 

individuals, motivated by the observation in the Table 2.1. 

Claim: If each SNP j is genotyped on 𝑁𝑗 individuals, define the matrix 𝐻 whose elements 

are 𝐻𝑖𝑖 =
1

𝑁𝑖
 and 𝐻𝑖𝑗 =

𝑁𝑠,𝑖𝑗

𝑁𝑖𝑁𝑗
 (𝑖 ≠ 𝑗), where 𝑁𝑠,𝑖𝑗 is the number of shared individuals 

genotyped for SNPs i and j. Then the likelihood function can be evaluated as  

�̂�|𝛽 ∼ 𝑁(𝑅𝛽, 𝑅 ° 𝐻)     

where ° is the Hadamard product.  

Proof: Let 𝑆𝑗be the set of individuals on which SNP j is genotyped (𝑁𝑗 = |𝑆𝑗|), then 

𝐸[𝛽�̂�|𝛽] = 𝐸 [
𝑋𝑗

𝑇𝑦
𝑁𝑗 |𝛽] 

= ∑
𝑋𝑗𝑖

𝑁𝑗
(∑ 𝑋𝑖𝑘𝛽𝑘

𝑘

)

𝑖∈𝑆𝑗

 

= ∑ (∑
𝑋𝑗𝑖𝑋𝑖𝑘

𝑁𝑗
𝑖∈𝑆𝑗

) 𝛽𝑘

𝑘

 

= ∑ 𝑅𝑗𝑘𝛽𝑘

𝑘

 

(𝐴. 1) 

 

For 𝑖 ≠ 𝑗, we have 

𝑐𝑜𝑣[�̂�𝑖 , �̂�𝑗 |𝛽] = 𝐸 [
𝑋𝑖

𝑇𝜖𝑖𝑋𝑗
𝑇𝜖𝑗

𝑁𝑖𝑁𝑗
|𝛽] 
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=
1

𝑁𝑖𝑁𝑗
𝐸[𝑋𝑖

𝑇𝜖𝑖𝜖𝑗
𝑇𝑋𝑗] 

=
1

𝑁𝑖𝑁𝑗
𝑋𝑖

𝑇𝐸[𝜖𝑖𝜖𝑗
𝑇]𝑋𝑗 

=
1

𝑁𝑖𝑁𝑗
∑ 𝑋𝑖𝑘𝑋𝑗𝑘

𝑘∈𝑆𝑖∩𝑆𝑗

 

=
𝑅𝑖𝑗𝑁𝑠,𝑖𝑗

𝑁𝑖𝑁𝑗
 

(𝐴. 2) 

It is trivial to check that when the sample size of all SNPs is same, the derived likelihood 

function is the same as equation (2.2). Furthermore, the correlation of marginal effect 

sizes in the GWAS summary statistics will be less than the correlation in the reference 

panel, depending on how many individuals are overlapped (𝑁𝑠,𝑖𝑗) for two SNPs (𝑐𝑜𝑟 =

𝑅𝑖𝑗𝑁𝑠,𝑖𝑗

√𝑁𝑖𝑁𝑗
≤

𝑅𝑖𝑗 min(𝑁𝑖,𝑁𝑗)

√𝑁𝑖𝑁𝑗
≤ 𝑅𝑖𝑗). As an extreme example, for two SNPs that are in perfect 

LD (𝑅𝑖𝑗 = 1), if they are genotyped on completely nonoverlapped individuals (𝑁𝑠 = 0), 

the correlation of their effect sizes in the summary statistics would be zero.  
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Appendix B 

This appendix provides overview of key properties of Dirichlet process, which is useful to 

understand the development of the model in chapter 2 and 3. The writing style is casual 

and we refer to Kevin Murphy’s textbook for a more rigorous treatment [83]. 

 

B.1 Abstract definition of Dirichlet process 

Dirichlet process (DP) is parameterized by a concentration parameter 𝛼 > 0 and a base 

distribution 𝐻 over a space Θ [84]. DP can be viewed as a distribution over distribution. 

When a distribution 𝐺 is drawn from a DP, we denote 𝐺 ∼ 𝐷𝑃(𝐻, 𝛼). For any finite 

partition (𝑇1, … , 𝑇𝑘) of Θ, it satisfies the requirement that 

(𝐺(𝑇1), … , 𝐺(𝑇𝑘)) ∼ 𝐷𝑖𝑟(𝛼𝐻(𝑇1), … , 𝛼𝐻(𝑇𝑘)) (𝐵. 1) 

The definition is abstract and requires some explanation. For example, suppose base 

distribution 𝐻 is 𝑁(0,1), we first draw countably infinite 𝜃𝑘  (𝑘 = 1, … , ∞) from 𝑁(0,1). 

The drawn distribution 𝐺 from 𝐷𝑃(𝐻, 𝛼) is discrete such that 𝑃(𝐺(𝜃) = 𝜃𝑘) = 𝜋𝑘  and 

∑ 𝜋𝑘
∞
𝑘=1 = 1. If we divide the real line (Θ = ℝ) into 𝑘 disjoint partitions {𝑇1 =

(−∞, 𝑎1], 𝑇2 = (𝑎2, 𝑎3], … , 𝑇𝑘 = (𝑎𝑘 , ∞)}, then (∑ 𝜋𝑘𝜃𝑘∈𝑇1
, … , ∑ 𝜋𝑘𝜃𝑘∈𝑇𝑘

) has a joint 

Dirichlet distribution 𝐷𝑖𝑟(𝛼Φ(𝑎1), … , 𝛼(1 − Φ(ak)) where Φ is the cumulative 

distribution function of standard normal distribution. In practice, most application of 

Dirichlet process does not directly deal with this abstract definition (B.1). Instead, it 

deals with two equivalent constructive representation of DP:  Chinese restaurant 

process (CRP) and stick-breaking process. 



 91 

 

B.2 Chinese restaurant process 

There are many ways to derive the CRP. One intuitive way is to start with the finite 

Gaussian mixture model and let the number of clusters approaches to infinity. Such 

infinite Gaussian mixture model converges to DP and has CRP property in the cluster 

assignment [85].  

Given 𝐺 ∼ 𝐷𝑃(𝐻, 𝛼), 𝑥1, … , 𝑥𝑁−1 are 𝑁 − 1 iid observations drawn from the 

distribution 𝐺 which take 𝐾 distinct values 𝜃1, . . . , 𝜃𝐾. The Chinese restaurant process 

(CRP) asserts that the predictive distribution of next observation 𝑥𝑁 given 𝑥1, . . . , 𝑥𝑁−1 

is: 

𝑝(𝑥𝑁 = 𝜃|𝑥1, … , 𝑥𝑁−1, 𝛼) =
1

𝛼 + 𝑁 − 1
(𝛼𝐻(𝜃) + ∑ 𝑁𝑘𝛿𝜃𝑘

(𝜃)

𝐾

𝑘=1

) (𝐵. 2) 

where 𝑁𝑘  is the number of previous observations equal to 𝜃𝑘. 

This is called Polya urn or Blackwell-MacQueen sampling scheme. Equivalently, 

this asserts that 𝑥1, … , 𝑥𝑁−1 has the clustering property: 

𝑃(𝑧𝑁 = 𝑘|𝑧1, … , 𝑧𝑁−1, 𝛼) = {

𝑁𝑘

𝑁 − 1 + 𝛼
 if k is an old cluster

𝛼

𝑁 − 1 + 𝛼
  if k is a new cluster 

 

where 𝑧𝑖  is the cluster assignment of 𝑥𝑖, 𝑁𝑘  is the number of previous observations 

assigned to cluster 𝑘. The analogy of Chinese restaurant process follows that when a 

person enters the restaurant, he may choose to join an existing table with probability 

proportional to the number of people already sitting at this table (𝑁𝑘); otherwise, with a 
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probability that diminishes as more people enter the room (due to the 1/(𝑁 −  1 +  𝛼)  

term), he may choose to sit at a new table. If he joins an existing table, he takes the 

parameter of that table; if he sits at a new table, he draws a new parameter from the 

base distribution. Although deriving the Gibbs sample to fit the model is relatively 

straightforward, the dependency structure of the CRP makes it time-consuming when 

applied to large-scale data.  

 

B.3 Stick-breaking process 

Let {𝜋𝑘}𝑘=1
∞  be an infinite sequence of mixture weights which is derived from 

process below: 

𝑉𝑘 ∼ Beta(1, 𝛼) 

𝜋𝑘 = 𝑉𝑘 ∏ 𝑉𝑙

𝑘−1

𝑙=1

= 𝑉𝑘 (1 − ∑ 𝜋𝑙

𝑘−1

𝑙=1

) (𝐵. 3) 

Now define 𝐺(𝜃) = ∑ 𝛿𝜃𝑘
(𝜃)∞

𝑘=1  where 𝛿(. ) is the Kronecker delta function and𝜃𝑘 ∼ 𝐻. 

It can be shown that this construction of G satisfies equation (B.1) [86]. In practice, it is 

impossible to draw infinite many 𝜃𝑘  and one has to specify an upper bound 𝐾 on the 

number of 𝜃𝑘  drawn from the base distribution, such that 𝐺(𝜃) = ∑ 𝛿𝜃𝑘
(𝜃)𝐾

𝑘=1 . This is a 

reasonable approximation because as 𝑘 increases, 𝜋𝑘  converges to 0 and only first few 

𝜋𝑘  would actually matter. We chose 𝐾 = 1000 for SDPR and SDPRX and found the 

approximation worked well. Compared with CRP, stick-breaking process has the 

advantage that 𝜃𝑘  is drawn independently of 𝜃1, … , 𝜃𝑘−1, which allows the design of a 
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parallel algorithm for efficient sampling when applied to large-scale data. For this 

reason, we used stick-breaking process rather than CRP when designing SDPR and 

SDPRX.  
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