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Abstract 

The Formats of Spatial Representations 

Sami Ryan Yousif 

2022 

 

Mental representations are the essence of cognition. Yet, to understand how the 

mind works, we must understand not just the content of mental representations 

(i.e., what information is stored), but also the format of those representations (i.e., 

how that information is stored). If we want to understand how sensory information 

is translated into symbolic representations, if we want to know how the mind forms 

‘cognitive maps’, if we want to know how the firing of neurons can lead to the 

emergent phenomenon of human cognition — all of these things require us to 

understand how information is organized in the mind.   

In this thesis, I describe three ‘case studies’ of representational format in the 

domain of spatial cognition. I focus on spatial cognition for several reasons. First, 

spatial cognition is ubiquitous in the animal kingdom; thus, understanding spatial 

cognition in the human mind has the potential to reveal insights that generalize to 

all minds. Second, spatial cognition may be the single domain for which we know 

the most about the format of representations; indeed, the field was essentially 

founded on the premise that there exists a discernable ‘cognitive map’ within the 

mind. As such, it serves as an apt domain to study representational format. Finally, 

spatial representations (location representations in particular) may serve as the 

format of other higher-level information (e.g., numerical information, social 
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information, etc.). Understanding the formats of spatial representation, therefore, 

may shed light on how other kinds of information are represented and organized in 

the mind.   

The first case study I describe pertains to the format of location representations. 

I show that, using a simple ‘error correlation’ analysis, we can uncover from simple 

spatial tasks the coordinate systems underlying spatial behavior. Using this 

approach, I argue that locations are spontaneously represented in polar coordinates, 

but flexibly in other coordinate systems (e.g., Cartesian coordinates) as needed. 

The second case study I describe pertains to the format of size representations. 

It has been known for many decades that the perception of size is illusory; for 

example, larger objects are perceived as being relatively less large. However, these 

illusions are typically explained by vague, unfalsifiable theories of size perception. 

I offer a simpler (and falsifiable) explanation of size illusions: that perceived size is 

equal to the sum of an objects’ dimensions rather than the product. Here, I focus 

primarily on the perception of area in adults, but this phenomenon appears to be 

highly general: I briefly allude to similar illusions that children experience, as well 

as similar illusions of volume. 

The final case study I describe pertains to how spatial information is used as a 

format to represent other information. I show that task-irrelevant ‘spatial 

structure’ spontaneously improves working memory. This effect is specific to spatial 

information; color information and audio information produce no such benefit. I 

discuss how these findings relate to existing models of working memory, and help 

us to understand the relationship between space and memory more broadly.  

I conclude with some final remarks about how understanding spatial behavior 

in light of the formats of representations can help us to understand the building 

blocks of cognition.  
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Chapter 1 

  

Introduction 

 

This chapter contains text and/or materials from the following publications: 

 

Yousif, S. R. (In press). Redundancy and reducibility in the formats of spatial 

representations. Perspectives on Psychological Science.  
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The central goal of psychology, cognitive science, and cognitive neuroscience is to 

understand how complex thought and behavior arise from neural tissue. To unite 

these sometimes-siloed areas of study, we canonically think of three different levels 

of analysis at which we can understand the mind and brain: the computational 

level, the algorithmic level, and the implementation level (e.g., Marr, 1982). 

Psychology is often interested in describing the computational level — 

understanding what the mind is trying to compute in the first place. Cognitive 

neuroscience, in contrast, is interested more in the implementation level — 

understanding how computations can be implemented in neural tissue. This thesis 

addresses the intermediate algorithmic level — how spatial representations for 

properties like location and size are formatted in the human mind. Here, I describe 

several case studies on spatial behavior that provide insight into the underlying 

format and nature of spatial representations.  

 

1.1   What is ‘format’? 

For my purposes, to represent a piece of information means to store it symbolically, 

such that it can be accessed, retrieved, and updated (for extended discussions, see 

Brooks, 1991; Markman & Dietrich, 2000; Shea, 2018; Thelen & Smith, 1996). 

However, representations are not just shapeless bits of information stored in 

arbitrary units. Representations contain content, and that content must be 

formatted in some way. 

This notion of format should feel familiar, given that it shapes our daily digital 

interactions. For example, any given document could be formatted as a .doc file, 

or a .pdf file, or a .tex file. Each of these formats has advantages and disadvantages: 

A .doc file may be better for editing, while a .pdf file may be better for standardized 
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presentation. Ultimately, the entire computer architecture depends on the simple 

fact that certain programs process specific inputs and produce specific outputs. 

Those inputs and outputs are representations, and the operations that can be 

performed on those representations are constrained by their format.  

Another example of format is shown in Figure 1.1. Figure 1.1A compares the 

classic game of tic-tac-toe with the “fifteen game”. In the fifteen game, there are 9 

discs, each representing a digit 1-9. Players take turn selecting one disc from the 

set. The goal is to end up with a set of exactly three discs that adds up to 15. The 

first player to achieve that goal wins. If neither player achieves that goal, it is a 

draw. (I’ll assume readers are familiar with tic-tac-toe.) On their surfaces, these 

games seem entirely different: one involves a grid with x’s and o’s, and the other 

involves summing numbers to fifteen. Yet when those numbers are superimposed 

on the tic-tac-toe grid in a certain order (see Figure 1.1A), you can see their 

similarity. Just like tic-tac-toe, the “fifteen game” contains a finite number of 

solutions. Just like tic-tac-toe, there are exactly nine possible moves, and some are 

better than others: picking both “5” and the central square in the grid results in 

the maximum number of winning combinations (where the numbers “3”, “1”, “7”, 

and “2”, like the left, right, top, and bottom squares result in the fewer number of 

winning combinations). And, just like tic-tac-toe, participants take turns making 

selections, and a ‘winning’ combination requires exactly three selections. The 

difference between these two games could be understood as a difference in format: 

tic-tac-toe traffics in x’s and o’s, whereas the fifteen game traffics in numbered 

discs. Functionally, the inputs and outputs of the two games are equivalent, yet 

their different formats constrain how we interact with the information.  

The history of cognitive science has been shaped by questions of format. Many 

of the field’s most prominent debates have centered around this exact issue. For 
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example: is imagery depictive (see Kosslyn et al., 1995; Kosslyn, 1996) or 

propositional (see Pylyshyn, 1973; Pylyshyn, 2002)? What are the dimensions of 

‘face space’ underlying face perception (e.g., Chang & Tsao, 2017)? What latent 

structures form the basis of human language (e.g., Traxler & Gernsbacher, 2011)? 

In each of these cases, understanding the formats of these representations helps us 

understand how the mind solves these critical problems (of imagery, face 

perception, and language) in the first place. 

A full account of ‘format’ will not be provided in this thesis. Here, I will simply 

discuss 'format' in the broadest possible sense, as any kind of organization of 

information. We’ll also keep in mind Marr’s three levels of analysis as a reference 

point (Marr, 1982; see also Maley, 2021 for a useful and thoughtful discussion). 

The highest level, the computational level, describes what is being represented. The 

lowest level, the implementation level, describes the physical substrate on which 

that computation is implemented (e.g., in animals, neurons). And at every step in 

between the computational level and the implementation level — all the 

intermediate levels that may be collectively referred to as the 

representational/algorithmic level — information must be organized in some way. 

That organization, whatever it may be, is ‘format’.  

 

1.2   One format or many?  

It may be tempting to think that all representations must be reducible to a 

single, ultimate format — that, to format information in more than one way would 

be redundant.  However, this need not be the case. Indeed, one of the themes 

discussed throughout my work is the possibility that representations are formatted 
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redundantly. Let’s briefly consider a few reasons in principle why ‘redundant’ 

formats may be useful.  

First, think of the number ‘seven’. In base-10, the quantity ‘seven’ can be 

represented by the digit 7. However, in base-2, the quantity ‘seven’ is represented 

by the digits 111. In base-3, by the digits 21. We can think of these different bases 

as formats. It isn’t as though one base or another captures the quantity ‘seven’ any 

more precisely; they just represent the quantity in different ways. Each format may 

have its own merits: formatting information in base-10 is intuitive to most people, 

but formatting information in base-2 is a necessary feature of modern computers. 

Second, think about the game of chess. To most people, a chess board is nothing 

but an 8 by 8 grid. If you want to make a move — or explain a move — you must 

refer to that grid. Indeed, this is the most natural way to see and play the game of 

chess. But it is not the most natural way to talk about the game of chess. 

Experienced chess players and commentators use specific notation (in modern 

chess, ‘algebraic notation’) to talk about the movement of pieces (see Figure 1.1C). 

For example, if you have the white pieces and you want to move the pawn in front 

of your king two spaces forward, you could explain that in words, or you could 

simply say “e4”. Using this notation, it requires not even one full word to convey 

the same move that was just described using 23 words. The algebraic notation is 

useful: it simplifies communication about the game of chess. That said, it would be 

hard to learn the game of chess from the algebraic format alone. The (beautiful) 

geometry of the game is most apparent when viewed as an 8 by 8 grid.  

This is to say that both formats serve a different function; mastering chess 

requires understanding both formats. However, neither format is strictly necessary. 

The ‘Stockfish’ chess engine, for example, need not understand the game of chess 

as a grid at all. It must only represent the statistical value of a given move to a 
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given tile, regardless of where that tile is relative to the other tiles. Conversely, 

most casual players of the game never interact with the algebraic notation. But for 

veteran players of the game of chess, there is value in being able to translate 

seamlessly between formats as needed.  

This is why ‘redundant’ formats may be useful: Human minds are not machines 

designed to compute specific tasks optimally. The reason we have algebraic 

notation for chess in the first place is because it enables us to explain and describe 

the game (succinctly) in written form. Yet, it is not as if the development of chess 

notation forced chess players to abandon the board altogether; we still enjoy and 

appreciate the game in its physical, two-dimensional form. Unlike chess engines, it 

benefits the human mind to represent the chess board in multiple ways. Whereas 

simpler organisms (and chess engines) may benefit from having one highly 

specialized system for each of its (few) behaviors, more complex organisms may be 

better served by cognitive systems adapted to complete innumerable tasks flexibly. 

As such, it may benefit certain minds (in this case, chess experts) to represent 

information redundantly — in multiple formats, which may be called upon 

separately depending on the task at hand. 

Here, I have discussed examples where the two formats in question are 

functionally equivalent (in that they both contain the same amount of overall 

information). That need not always be the case. When thinking about the format 

of mental images (e.g., Kosslyn et al., 1995; Kosslyn, 1996; Pylyshyn, 1973; 

Pylyshyn, 2002), for example, we may imagine that pictorial formats contain rather 

different information (i.e., pixels) from propositional ones (i.e., symbolic 

structures). One could argue that one format contains more or better information 

than the other. In such cases, then, one could argue that one format ought to be 

preferred over another. My point here is that even in the extreme cases where two 
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formats are functionally equivalent, there may still be a benefit to relying on them 

both (for further discussion, see Yousif, 2022).   

This is to say that the search for the ‘format’ of representations is not the search 

for one thing; it is, potentially, the search for an infinite number of things. The 

goal of my work — and this thesis — has been to understand the mind in light of 

the possibilities that (a) the format of representations is readily discernable and 

(b) the mind may format information in a multitude of ways, such that 

understanding complex behavior may require an understanding of how many 

distinct formats are stored.  

 

1.3   The format frontier: Space 

Though I am broadly interested in the format of representations in all disciplines 

of cognitive science, this thesis focuses on the format of various kinds of spatial 

representation as ‘case studies’, for a few reasons. First, space is perhaps the single 

domain of cognition for which the most is known about the format of mental 

representations, and so serves as an apt case study of ‘mental representation’ more 

broadly. Second, spatial representations may themselves serve as the format for 

representing other higher-level information, whether that be numerical information 

or social information (for review, see Peer et al., 2020). As such, understanding the 

format of spatial representations may in turn reveal the format of other 

representations. Finally, spatial representation is ubiquitous in the animal 

kingdom: virtually all organisms depend on representations of space in one way or 

another (where far fewer may possess imagery, or sophisticated face perception, or 

speech perception; see, e.g., Müller & Wehner, 1988).  

 Here, I present three ‘case studies’ of spatial representation, all of which 

reveal something about the format of a representation.  
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First, I discuss the format of location representations. I ask, simply: How does 

the mind represent where things are in space? There are many possibilities. Prior 

work, for example, has considered whether locations are represented 

propositionally, such that we represent locations relative to one another (e.g., the 

coffee shop is past the grocery store but before the library). I consider a different 

possibility: that visuospatial representations are supported by different spatial 

coordinate systems. Using a novel analysis technique, I show that locations are 

formatted by default, but flexibly, in polar coordinates. I further show how this 

method can be used to address other questions about spatial representation.  

Second, I discuss the format of size representations. I ask: Is there some general 

rule that captures judgments of size? My work shows that both area and volume 

judgments can be captured by a simple heuristic — a tendency to ‘add’ rather than 

‘multiply’ the dimensions of space together (such that the perceived area of a square 

of length L and width W would be equal to L+W rather than L*W).  

Finally, I discuss how space itself may be the format of other representations. I 

ask: Does task-irrelevant spatial information spontaneously influence working 

memory? Using a novel paradigm that I developed, I show that task-irrelevant 

spatial information does indeed boost working memory, and that this effect is 

specific to spatial information. I discuss these findings in light of our tendency to 

spatialize other forms of information (e.g., social information, numerical 

information), and consider how large a role spatial information plays in human 

memory broadly.  

I conclude by offering some thoughts about how each of these case studies 

informs our understanding of the mind at large.  
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Figure 1.1. Examples of format. (A) A comparison between the classic game of tic-tac-toe and the 

lesser known ‘fifteen game’. One may say that these games differ in their ‘format’. (B) A comparison 

of a classic distinction between canonical spatial formats: Cartesian coordinates and polar 

coordinates. (C) Even the game of chess can be played in multiple ‘formats’. 
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Chapter 2 

  

The format of visuospatial 

representations 

 

This chapter contains text and/or materials from the following publications: 

 

Yousif, S. R. and Keil, F. C. (2021). The shape of space: Evidence for spontaneous 

but flexible use of polar coordinates in visuospatial 

representations. Psychological Science, 32, 573-586.  
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2.1   Abstract 

What is the format of spatial representation? In mathematics, we often conceive of 

two primary ways of representing two-dimensional space, Cartesian coordinates, 

which capture horizontal and vertical relations, and polar coordinates, which 

captures angle and distance relations. Do either of these two coordinate systems 

play a representational role in the human mind? Six experiments utilizing a simple 

‘visual matching’ paradigm show that (1) representational format is recoverable 

from the errors observers make in simple spatial tasks; (2) human-made errors 

spontaneously favor a polar coordinate system of representation; and (3) observers 

are capable of using other coordinate systems when acting in highly structured 

spaces (e.g., grids). We discuss these findings in relation to classic work on 

dimension independence, as well as work on spatial representation at other spatial 

scales.  
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2.2   Introduction 

A foundational question in the study of any mental process concerns the format of 

the underlying representation on which that process depends. In our daily use of 

computers, for example, 'file formats' shape our digital interactions: whether we 

use a .doc file or a .pdf file, affects how we interact with that information, what 

metadata is stored about that information, and what other processes (i.e., 

programs) can act on that information. Similarly, the format of mental 

representations informs where and how those representations are instantiated, 

whether they are domain-general or domain-specific, and what kinds of information 

the mind most naturally represents in the first place. Here, I address this question 

in the context of spatial representation: using a simple, novel approach, I reveal 

the latent format of our most basic visuospatial representations.  

Spatial representations are foundational to a diverse array of cognitive processes 

— important for aesthetics (Palmer et al., 2013), for representing numbers 

(Dehaene et al., 1993; Zorzi et al., 2002), for working memory (e.g., Pertzov & 

Husain, 2014), and even for reasoning about social relationships (Parkinson & 

Wheatley, 2013). Yet spatial behavior is not always precise: Observers invariably 

make errors even in straightforward spatial tasks (see Hubbard, 2018; see also 

McCloskey et al., 1995). For example, in simple spatial memory tasks, observers 

tend to remember things as having been closer to the quadrant in which they 

originated (Huttenlocher et al., 1991; Yousif et al., 2020). And when recalling and 

perceiving oriented lines, observers make larger errors with diagonal lines compared 

to horizontal or vertical lines (Appelle, 1972; Li et al., 2003; Olson, 2013). These 

effects are only a few of many spatial biases, ranging from illusions of 2D area (e.g., 

Coren & Girgus, 1978; Yousif & Keil, 2019), to navigation errors in 3D 
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environments (Warren et al., 2017; Yousif & Lourenco, 2017), to misperceptions of 

center caused by a conflation of 2D and 3D forms (Firestone & Keil, 2016). Many 

of these errors remain relatively mysterious, although they sometimes speak to the 

nature of underlying spatial representations (e.g., Ericson & McCloskey, 1996; 

Müller et al., 1998). Here, I exploit these spatial biases: I ask whether such mis-

localizations hint at the format of the underlying representation. 

2.2.1   Current Study 

In several experiments, observers complete a visual matching paradigm in which 

they see one image (comprised of arrangements of shapes, or dots within shapes) 

in a corner of the screen, and a corresponding image in the opposite corner of the 

screen (comprised of the same arrangement of shapes, but sometimes scaled up or 

down in size). Observers are then instructed to place a missing shape so that the 

relative locations of the objects in that image exactly match the relative locations 

of the objects in the other image (see Figures 2.1 and 2.2).  

The core conclusions of this chapter rest on an analysis of observers’ errors. In 

short, I measure the correlation between the errors in different dimensions of space 

(e.g., x vs. y for Cartesian coordinates; angle vs. distance for polar coordinates). If 

observers represent space via any two-dimensional coordinate system, and the 

system is efficient, those two dimensions should be orthogonal. I propose, therefore, 

that errors in those two dimensions should also be orthogonal (see Bays, Wu, & 

Husain, 2011 for an example of this kind of analysis). In other words, if observers 

represent space via Cartesian coordinates, I expect that their errors in this 

coordinate system would be independent, or uncorrelated. Similarly, if observers 

represent space via Cartesian coordinates, I expect that errors in other coordinate 

systems (e.g., polar coordinates) to be dependent, or correlated. 
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I first validate this kind of analysis by running a simulation in specific 

coordinate systems (see ‘Experiment 0’, supplementary materials of Yousif & Keil, 

2021). Here, I simulate the task — with parameters such as average accuracy set 

to match that of human participants — with models that operate in either 

Cartesian or polar coordinates. These simulations demonstrate how the analyses 

may succeed in principle. Following this, I present four experiments showing that 

human observers spontaneously use polar coordinates (Experiments 2.1a-c and 

Experiment 2.2a). I then show that, despite this default tendency, humans are 

capable of flexibly operating in other coordinate systems when various levels of 

spatial structure are imposed on the task environment (Experiments 2.2a-c). 

 

2.3   Experiment 2.1a-c: Spontaneous use of polar 

coordinates 

What is the format of human spatial representation? In three experiments, 

observers complete the same kind of visual matching task that I simulated in 

‘Experiment 0’. In opposite corners of the screen, there were matched sets of three 

shapes, each containing a blue circle, a red square, and a green triangle. At first, 

one of the sets contained between zero and one of the three original shapes 

(depending on the experiment; see below). Observers had to then place the missing 

shapes such that the relative spatial relationships matched that of the set in the 

opposite corner.  
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2.3.1   M ethod: Experiment 2.1a 

 

2.3.1.1   Participants 

Sixteen naïve observers from the Yale community completed the experiment in 

exchange for course credit.  This preregistered sample size was chosen before data 

collection began based and was fixed to be identical for each of the in-lab 

experiments reported here. Pre-registrations for this experiment and the following 

experiment are available at the following. This study was approved by the relevant 

Institutional Review Board. 

 

2.3.1.2   Apparatus 

The experiment was conducted with custom software written in Python with the 

PsychoPy libraries (Peirce et al., 2019). Observers sat without restraint 

approximately 60cm from a 43° × 25° display, with all spatial extents reported 

below computed based on this distance. 

 

2.3.1.3   Stimuli 

The display on each trial consisted of two sets of shapes, each containing three 

unique shapes (a blue circle, a red square, and a green triangle; each with a thin 

black border) on a grey (50% white, 50% black) background.  The two sets 

appeared in opposite corners of the display (counterbalanced so that both sets 

appeared in each corner an equal number of times). The ‘center’ of each set of 

shapes was set to be 5.60° horizontally and vertically from the center of the display. 

The position of each shape within the set was randomly determined so that, for 

the smaller set, a point could appear within 2.24° horizontally and 2.24° degrees 

vertically of that set’s ‘center’. For the larger set, the locations were matched so 
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that they were exactly twice the distance from their respective center (meaning 

points could appear anywhere within 4.48° horizontally and vertically of the set’s 

center). Random generation of locations was constrained so that no two shapes 

could appear within 1.25° of one another (from one object’s center to another) for 

the smaller set, and double that distance for the larger set. The smaller shapes were 

set to have a radius of .36° and the larger shapes were set to have a radius of .72° 

(here, radius means the distance from the center of the shape to the point along its 

edge farthest from that center). A different set of randomly generated locations was 

used for each observer. One set of shapes (the smaller set on half of trials; the larger 

set on the other half; blocked with order counterbalanced across observers as 

described below), was initially missing two of the three shapes (counterbalanced 

across trials such that each shape was missing an equal number of times in each 

block). No other information was visible on the screen at any point. A caricature 

of a representative trial can be seen in Figure 2.1 (see also Figure 2.2a). 

 

2.3.1.4   Procedure 

On each trial, observers simply had to place the missing shapes to match the 

relative location of their corresponding shapes, by moving and then clicking the 

mouse.  The missing shape appeared upon mouse-click, at which point observers 

could click additional times or drag and drop the dot to change its location.  Once 

observers were satisfied with the missing object’s location, they pressed a key to 

submit their response. If a response was recorded, then the display was replaced 

with a blank screen for a randomly chosen interval of 0.5-1.5s, after which the next 

trial began.  If no response was recorded within 14s, then a warning to respond 

more quickly appeared for 5s before the next trial began, and that trial was 

randomly shuffled back into the trial sequence. When that trial was reached, it 
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would utilize the same set positions (i.e., the quadrants where the sets were located) 

but a different set of random locations would be generated for the objects 

themselves (i.e., the shapes would appear in different locations relative to one 

another). 

 

2.3.1.5   Design 

Each observer completed 192 trials, divided into two equal blocks: 96 small-to-large 

trials (i.e., with the initially missing object in the larger set), and 96 large-to-small 

trials (i.e., with the initially missing object in the smaller set). Between the two 

blocks, a message appeared encouraging observers to rest briefly before continuing. 

Observers completed four representative practice trials (the data from which were 

not recorded) before beginning the task. 

 

2.3.2   Results: Experiment 2.1a 

To assess representational format, I first calculated the absolute error (i.e., ignoring 

the direction of the error) for each subject and each trial in each of the four relevant 

dimensions (x, y, angle, and radial distance) relative to where the point should have 

been. For example, if the original point was at [2,2], but the second set of shapes 

was scaled up by in size by a factor of 2, I would calculate error relative to the 

point [4,4]. (This is an example of scaling in Cartesian coordinates, but the same 

logic would apply to polar coordinates as well.) I then correlated the dimensions of 

each coordinate system with each other. Then I took the absolute value of these 

correlations (because only the relationship, not the direction of that relationship 

matters). I then average those correlations across individuals and ask whether that 

average is significantly different from zero.  
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The ‘coordinate system’ was always imputed relative to the initially present 

object. For these analyses, therefore, I calculate a correlation for each person for 

each point (the first one placed vs. the second one placed), then average those 

correlations together before asking if they significantly differ from zero. Note, 

however, that all of the results below replicate if I analyze only the first point 

observers placed, or only the second point. 

The results from this experiment can be seen in Figure 2.3 and Table 2.1. As 

shown in the table, Cartesian errors were reliably correlated (M=.19, CI: [.12,.27]; 

t(15)=5.68, p<.001, d=1.42, CId=[.71,2.11]), and polar errors were reliably 

uncorrelated (M=.02, CI: [-.02,.05]; t(15)=1.11, p=.28, d=.28, CId=[-.23,.77]). The 

difference between these two values was also significant (t(15)=6.47, p<.001, 

d=1.62, CId=[.85,2.36]). I can also analyze whether non-canonical dimensions are 

correlated as I should expect them to be. And, indeed, for all of the non-canonical 

coordinate systems I tested, there was a positive correlation (ps<.001; see Table 

2.1).  

Four factors strengthen the meaningfulness of this null result. First, I always 

pair a predicted null result in one dimension with a predicted positive result in 

another; in other words, I are more confident that a null result for polar coordinates 

is meaningful because Cartesian coordinates yield a positive result. Second, I have 

demonstrated via simulation (in ‘Experiment 0’) that this analysis functions 

correctly under known conditions. While I cannot perfectly simulate human 

behavior, these simulations were conducted in a way that mimicked human 

behavior (e.g., by matching average error along multiple dimensions). Third, I can 

ask about other predictions this view must make. For example, if polar coordinates 

are implemented in the human mind, then I should expect that any coordinate 

system not in use should have correlated errors. While Cartesian makes for an 
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obvious comparison, there are an infinite number of non-canonical dimensions I can 

assess. Most straightforwardly, errors in the ‘angle’ and ‘x’ dimensions should be 

correlated with one another, as well as ‘radial distance’ and ‘y’ dimensions, and so 

on. These correlations are presented along with the other relevant correlations in 

Table 2.1; as you can see from the table, these non-canonical dimensions are 

correlated as I would expect (ps<.05). (As with the analyses above, these p-values 

are derived from a one-sample t-test conducted on the correlation values for each 

participant; I are asking whether on average these correlations differ from zero.) 

Fourth, I can ask about other non-existent dimensions. For example, it is possible 

in theory to represent 2D space in a Cartesian-esque format that is rotated, e.g., 5 

degrees clockwise, 15 degrees clockwise, and so on. In other words, I imagined a 

Cartesian space that was rotated, e.g., 5 degrees; I then recalculated the coordinates 

for every error as if they existed in this non-existent space. Then I ask whether 

these non-existent dimensions properly yield positive correlations — and, indeed, 

they do (ps<.001). The p-values of these average correlations are also plotted in 

Table 2.1 (as ‘rotated Cartesian dimensions’). Therefore, polar representations 

seem to underlie human errors, as errors in polar coordinates seem to be uniquely 

uncorrelated — compared not only to Cartesian coordinates, but also to other non-

canonical 2D spaces. 

 

2.3.3   M ethod: Experiment 2.1b  

This experiment was identical to Experiment 2.1a, except as noted.  Sixteen new 

observers participated, with this preregistered sample size chosen to match that of 

Experiment 1a. In this experiment, three shapes (as opposed to two) were initially 

absent from one of the sets (see Figure 2.2b). Observers had to place all three 

shapes back on each trial. To guide them, a single black dot appeared in the center 
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of the three shapes (for both sets of shapes). Observers did not know which object 

would appear first when they clicked for the first time (though the objects always 

appeared in the same order: blue circle, green triangle, then red square). After they 

clicked, they could see the object and then adjust as needed. Observers could press 

spacebar to ‘lock-in’ the location of the first object, at which point clicking again 

would cause another shape to appear. They could then adjust the location of that 

object in the same way. This continued until all three objects were placed and the 

observer locked in their final response.  

 

2.3.4   Results: Experiment 2.1b  

The analyses for this experiment are identical to the analyses of Experiment 2.1a, 

except that there were more points to analyze, because observers placed three 

objects on each trial instead of two. To simplify these analyses, I will present the 

average values for all three points. However, the results are qualitatively identical 

for each of the three points (as is readily apparent in Figure 2.4). The placement 

error for each object on each trial was always analyzed relative to the central 

anchor dot. Otherwise, the analyses are identical to those in the prior experiment. 

The results of this experiment can be seen in Figure 2.4 and Table 2.1. As 

shown in the table, Cartesian errors were reliably correlated (M=.12, CI: [.07,.16]; 

t(15)=5.44, p<.001, d=1.36, CId=[.66,2.04]), and polar errors were reliably 

uncorrelated (M=-.01, CI: [-.03,.02]; t(15)=.38, p=.71, d=.10, CId=[-.59,.40]). The 

difference between these two values was also significant (t(15)=4.55, p<.001, 

d=1.14, CId=[.49,1.76]). As with the previous experiment, I can also analyze 

whether non-canonical dimensions are correlated as I should expect them to be. 

And, indeed, all the non-canonical coordinate systems tested were positively 
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correlated (ts>5.40, ps<.001, ds>1.30; see Table 2.1). While this task serves mostly 

as a replication of Experiment 1a, the experience of completing the task was quite 

different. The presence of only a central anchor point may have altered observers’ 

strategies and suggests that the results of Experiment 2.1a cannot be explained by 

appeal to some idiosyncratic task demand (and that, on the contrary, this pattern 

of results may be far more general).  

 

2.3.5   M ethod: Experiment 2.1c  

This experiment was identical to Experiment 2.1a, except as noted.  Sixteen new 

observers participated, with this preregistered sample size chosen to match that of 

Experiment 1a. In both prior experiments, one of the sets was ‘scaled up’ to be 

larger than the other. Such scaling does not affect Cartesian and polar coordinates 

equally. When spaces are scaled in size, both the dimensions of Cartesian space will 

change (unless a point lies directly along an axis). However, only one of the 

dimensions of polar space will change; the angle remains constant. Therefore, these 

results might occur because polar coordinates are simply a more convenient format 

for spatial translation. Here, I use an identical task but without the size-translation 

component: observers will be forced to match two identical sets of shapes. The two 

different sets of shapes were not scaled in size; instead, they were spatially identical. 

I used exactly the same parameters as Experiment 2.1a, except that the sizes of 

both sets was ‘scaled up’ to be equal to the size of the larger set in Experiment 

2.1a (see Figure 2.2c).  

2.3.6   Results: Experiment 2.1c 

The analyses for this experiment are identical to the analyses of Experiment 2.1a. 

Again, to simplify these analyses, I will present the average values for the two 
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placed points. However, the results are qualitatively identical for each of the points 

(as is readily apparent in Figure 2.5).  

The results from this experiment can be seen in Figure 2.5 and Table 2.1. As 

you can see from the table, Cartesian errors were reliably correlated (M=.20, CI: 

[.15,.25]; t(15)=8.63, p<.001, d=2.16, CId=[1.24,3.06]), and polar errors also 

exhibited small correlations (M=.08, CI: [.03,.13]; t(15)=3.22, p=.006, d=.81, 

CId=[.23,1.36]). Despite the small polar correlations, the difference between these 

two values was significant (t(15)=7.40, p<.001, d=1.85, CId=[1.02,2.66]). As with 

the previous experiment, I can also analyze whether non-canonical dimensions are 

correlated as I should expect them to be. And, indeed, for all the non-canonical 

coordinate systems I tested, there was a positive correlation (ts>4.40, ps<.001, 

ds>1.05; see Table 2.1). The observed correlation for polar errors was driven largely 

by a single subject who was an outlier in terms of overall accuracy. However, I did 

not pre-register any exclusion criteria for accuracy for the in-lab experiments. 

Despite this anomaly, I note that each of the observers still exhibited a higher 

Cartesian correlation than polar correlation. Therefore, these results once again 

reveal evidence of spontaneous use of polar coordinates to represent visual space. 

Here, crucially, I demonstrate small correlation in polar dimensions even when 

observers completed no size translation task at all. This suggests that the prior 

results are not fully explained by an advantage of one coordinate system during 

spatial translation; however, the slight polar correlations observed here may suggest 

that the translations do impact behavior. This possibility will be further explored 

in Experiment 2.2a.  

2.3.7   Discussion: Experiments 2.1a-c 

Experiments 2.1a-c demonstrate that even small errors made by observers in a 

maximally simple task contain a wealth of information; indeed, these errors may 
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reveal the canonical format of the spatial representations. Experiments 2.1a and 

2.1b demonstrate that observers use polar coordinates when scaling spaces up or 

down in size, whether they are placing them relative to one another or to a single, 

central landmark. Experiment 2.1c demonstrates that observers use polar 

coordinates even when matching two spatially identical displays. Together, these 

three experiments provide evidence that observers spontaneously use polar 

coordinates to represent visual space. 

 

2.4   Experiment 2.2a-c: Flexibility of representation 

In tasks with minimal intervening spatial structure (Experiments 2.1a-c), observers 

automatically operate in polar coordinates. But how flexibly do people engage 

different coordinate systems across different layouts and reference frames? People’s 

use of polar coordinates might be highly inflexible; i.e., regardless of the surrounding 

spatial environment, people will use only polar coordinates. Or, people might 

spontaneously use polar coordinates as a default representation but may flexibly 

represent space in other coordinate systems if the surrounding spatial environment 

strongly suggests a particular system. Here, I use the same spatial matching task 

as before, but in environments with varying degrees of spatial structure. In 

Experiment 2.2a, I replicate the findings of Experiment 2.1; in Experiment 2.2b, I 

impose moderate structure in the form of a bounding square; and in Experiment 

2.2c, I impose strong structure in the form of a grid.  
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2.4.1   M ethod: Experiment 2a —  Online Replication, 

M inimal Structure 

This experiment was identical to Experiment 2.1c, except as noted.  Fifty new 

observers participated. Of the original sample of 50, 3 were excluded for failing to 

complete the task, and a further 4 were excluded due to being an outlier for overall 

accuracy; this resulted in a final sample of 43 observers. Unlike the previous 

experiments, this experiment was conducted online via Amazon Mechanical Turk. 

(This is because these data were collected in response to a revision request that I 

received at around the onset of the COVID-19 pandemic. Because I was no longer 

able to collect data in-lab, I opted to convert the experiments to operate online. 

This is also why I took care to first replicate the original findings on this new 

platform before attempting to extend them further.) This experiment was run using 

custom software written in javascript.  

As much as possible, I tried to match the design of the original experiments 

online. However, due to uncertainty about the viewing conditions of the observers 

(given differences in web browsers, etc.), I cannot know for sure the exact stimulus 

dimensions, etc. Here, observers placed three points relative to a single, central 

anchor point (identical to Experiment 2.1b; see Figure 2.2d). The only other 

substantive change I made to the task was that I had subjects complete only 48 

trials compared to the original 192. Note that even though I collected fewer trials 

per participant, the sample size was also many times larger. Observers had 20 

seconds to make a response before that trial was skipped and replaced; data from 

these missed trials were discarded. (The pre-registration for this experiment states 

that observers would have 7 seconds to respond before a trial was skipped. 

However, this was an error. To be consistent with all the other experiments, this 
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should have said that observers were given roughly 7 seconds per shape they had 

to place. Because they were placing three shapes, they had 20 seconds, rounded 

down from 21.) To account for increased noise in online data collection, I added 

exclusion criteria both at the trial-level and subject-level. Any trial with an overall 

accuracy greater than 2.5 standard deviations from that subjects’ mean was 

discarded; any subject with an overall accuracy greater than 2.5 standard 

deviations away from the group mean was discarded.  

 

2.4.2   Results: Experiment 2.2a —  Online Replication, 

M inimal Structure 

The results from this experiment can be seen in Figure 2.6a. The analyses for this 

experiment are identical to the analyses of Experiment 2.1b. Again, to simplify 

these analyses, I will present the average values for all three points. However, the 

results are qualitatively identical for each of the three points. As you can see from 

the table, Cartesian errors were reliably correlated (M=.13, CI: [.09,.18]; 

t(42)=6.69, p<.001, d=1.02, CId=[.65,1.39]), and polar errors were reliably 

uncorrelated (M=.02, CI: [-.02,.06]; t(42)=1.03, p=.31, d=.16, CId=[-.15,.46]). The 

difference between these two values was also significant (t(42)=6.03, p<.001, 

d=.92, CId=[.56,1.27]). These results replicate the findings of Experiment 2.1a, 

suggesting that the pattern of results I observed in prior experiments generalizes 

across testing environments. Further, these results show that the lack of polar 

correlation is not dependent on the size translation task.  
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2.4.3   M ethod: Experiment 2.2b —  Bounding Square, 

M oderate Structure  

This experiment was identical to Experiment 2.2a, except as noted.  Fifty new 

observers participated, with this preregistered sample size chosen to be identical to 

Experiment 2.2a. Of the original sample of 50, 1 was excluded for failing to 

complete the task, and a further 6 were excluded due to being an outlier for overall 

accuracy; this resulted in a final sample of 43 observers.  

Whereas in the previous experiment observers placed three points relative to a 

central anchor point, observers in this experiment matched the location of only one 

point within a square frame (see Figure 2.2e). The goal of this experiment was to 

provide observers with a moderate level of spatial structure. Because observers were 

placing only a single shape (as opposed to three shapes), they only had 7 seconds 

to respond before a trial was skipped. Analyses in this experiment must be 

conducted relative to the center of the square. 

 

2.4.4   Results: Experiment 2.2b —  Bounding Square, 

M oderate Structure 

The results from this experiment can be seen in Figure 2.6b. The analyses for this 

experiment are identical to the analyses of Experiment 2.2a, except that observers 

placed only a single point on each trial. As you can see from the table, I observed 

for the first time a case where Cartesian errors were uncorrelated (M=.04, CI: [-

.03,.11]; t(42)=1.24, p=.22, d=.19, CId=[-.11,.49]), and polar errors were correlated 

(M=.16, CI: [.10,.21]; t(42)=6.23, p<.001, d=.95, CId=[.59,1.31]). The difference 

between these values was significant (t(42)=2.98, p=.005, d=.46, CId=[.14,.77]). 

This unique pattern of results suggests that spatial structure may affect observers’ 
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strategies. For the first time, I have observed uncorrelated Cartesian errors but 

correlated polar errors.  

 

2.4.5   M ethod: Experiment 2.2c —  Grid, M aximal Structure 

This experiment was identical to Experiment 2.2b, except as noted.  Fifty new 

observers participated, with this preregistered sample size chosen to be identical to 

Experiment 2.2a. Of the original sample of 50, 1 was excluded for failing to 

complete the task, and a further 3 were excluded due to being an outlier for overall 

accuracy; this resulted in a final sample of 46 observers.  

Whereas in the previous experiment observers placed one point within a 

bounding square, observers here placed one point on top of a grid (see Figure 2.2f). 

The goal here was to provide observers with a high level of spatial structure (here 

meaning that, unlike the prior experiments, observers have enough spatial 

information to make very exact estimates of the object’s position; this is why I 

imposed a time limit on responses; although observers could in theory respond with 

almost perfect accuracy, this imposed time limit is meant to force small errors).  

 

2.4.6   Results: Experiment 2.2c —  Grid, M aximal Structure 

The results from this experiment can be seen in Figure 2.6c. The analyses for this 

experiment are identical to the analyses of Experiment 2.2b. As you can see from 

the figure, I once again observed that Cartesian errors were uncorrelated (M=.00, 

CI: [-.05,.06]; t(45)=.14, p=.89, d=.02, CId=[-.27,.31]), and polar errors were 

correlated (M=.32, CI: [.27,.37]; t(45)=12.84, p<.001, d=1.89, CId=[1.40,2.37]). 

The difference between these two values was significant (t(45)=7.61, p<.001, 

d=1.12, CId=[.75,1.49]). This reversal is significant for two reasons: (1) it validates 
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the analysis in the first place, demonstrating that this way of analyzing errors is 

capable of revealing different strategies that observers may take, and (2) it suggests 

that while may spontaneously use polar coordinates in environments with minimal 

spatial structure, they are capable of flexibly using different spatial representations 

when the environment strongly implies such representations.  

 

2.4.7   Discussion: Experiment 2.2a-c 

In a series of three experiments, I have shown how varying levels of spatial structure 

influence the kind of coordinate systems observers use to localize objects. In 

Experiment 2.2a, I replicated the findings of Experiments 2.1a-c, demonstrating 

that in the absence of strong spatial cues observers will spontaneously use polar 

coordinates. But in Experiments 2.2b and 2.2c with increasing levels of spatial 

structure — and, in particular, structure that may lend itself to Cartesian-esque 

representations — observers’ patterns of errors revealed an increasing shift towards 

Cartesian coordinates. These results validate the previous analyses while revealing 

the ‘boundary conditions’ of the use of polar coordinates.  

Another way of thinking about the results of Experiments 2.2b and 2.2c is with 

respect to references frames (see e.g., Farah et al., 1990). In Experiments 2.1a-c 

and 2.2a, the only possible referents (or reference frame) observers can use to 

situate the placement of new objects are single points in space (i.e., the already 

visible objects). In Experiments 2.2b and 2.2c, by contrast, observers have an entire 

bounded region (i.e., the square/grid) with which to situate the new object. Note 

here that this work does not imply that observers do or should only use one 

coordinate system, or one reference frame. Quite the opposite, this approach is 

meant to be flexible: in principle, these analyses can be conducted relative to any 
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point in space and with respect to any reference frame. And, in practice, this is 

clearly the case: the fact that I observe a qualitatively different pattern of results 

in Experiments 2.2b and 2.2c suggests that observers are clearly capable 

representing space within different frames of reference.  

 

2.5   General Discussion 

I first demonstrated that analyses of errors have the potential to reveal 

representational format when that representational format is known (‘Experiment 

0’). I then applied this insight to six experiments with humans. In Experiments 1a 

and 1b I found converging evidence of polar coordinates in a simple visual matching 

paradigm in which no representational format was implied. In Experiment 2.1c, I 

showed that these prior results cannot be explained by the size translation task 

itself. In the following three experiments (Experiments 2.2a-c), I explored whether 

observers flexibly use different coordinate systems depending on the spatial context. 

With high levels of spatial structure (i.e., imposing the spatial matching task upon 

a grid), observers’ pattern of errors suggested the use of Cartesian rather than polar 

coordinates. Collectively, these results demonstrate spontaneous, but flexible, use 

of polar coordinates. 

These results are far from obvious: all dimensions could have been consistently 

correlated, or none; or, contrary to what I found, Cartesian coordinates could have 

been uniquely uncorrelated. Yet, the same pattern held across many variations of 

experiments (namely Experiments 2.1a-c and Experiment 2.2a), suggesting a robust 

set of findings. That said, any one of these results in isolation should be interpreted 

cautiously. I am comfortable interpreting the lack of correlation for polar 

dimensions as speaking to representational format only because (1) this result is 
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highly replicable across many observers and several unique experiments, (2) I was 

able to conduct simulations indicating that this analysis could work in principle, 

(3) I showed data (in Experiment 2.2c) where this analysis revealed a change in 

representation in practice, and (4) I assessed a number of other dimensions that 

also could have been uncorrelated (yet never were).  

Nevertheless, the present work depends on a single paradigm. While this 

paradigm is revealing, future work may still fruitfully seek converging evidence to 

support this view. For example, I now know that observers are capable of flexibly 

swapping between coordinate systems depending on the context. Yet further 

investigation may be able to address what specific context information may be 

sufficient to induce a change in representational format, as well as the interface 

between small-scale and large-scale representations (e.g., could I use this analysis 

to measure representational format in navigable environments?). I see the present 

work as a first step — one that opens the door to many other lines of inquiry. 

 

2.5.1   Relation to prior work 

These findings relate to prior studies on spatial (mis)-localization (Huttenlocher et 

al., 1991; Langlois et al., 2021; Wedell, et al., 2007; Yousif et al., 2020), some of 

which specifically address polar coordinates as a candidate for visuospatial 

representation (Huttenlocher et al., 1991; Yousif et al., 2020; see also Yang & 

Flombaum, 2018). Most notably, Huttenlocher and colleagues (1991) relied on 

similar correlation analyses to make claims about representational format. 

However, those results were indecisive for a few reasons: (1) the primary aim of the 

paper was to understand the origin of spatial biases, not to document the format 

of visuospatial representations; (2) their conclusions depend solely on a null result, 
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without making predictions about or assessing other dimensions or other spatial 

contexts (whereas the present work tests many positive predictions and also tests 

many different spatial contexts); (3) they assess dimension independence only in 

circular spaces (whereas I specifically sought to test unbounded spaces); and (4) 

they assess errors in memory whereas all of these tasks intentionally minimize 

memory demands. 

These results may also bear on spatial representation on larger scales or in 

three-dimensional environments (e.g., for purposes of navigation; see Moser et al., 

2008; Moser et al., 2014). One relevant proposal suggests I use a ‘network-like’ 

cognitive graph for large scale spatial systems. These graphs especially prioritize 

angle and distance information between known locations (Ericson & Warren, 2020; 

Warren et al., 2017; but see also Gallistel, 1990; Kuipers et al., 2003; O’Keefe & 

Nadel, 1978). Of course, this resembles polar coordinates, which are nothing more 

than angle and distance vectors.  Could the same highly general representational 

format be employed in both small-scale (i.e., visual) and large-scale (i.e., navigable) 

environments? Future work may shed light on the continuity of these 

representations across scales, or on the translation of information between small-

scale and large-scale layouts (e.g., as when reading maps).  

The approach here also relates to classic work on integral vs. separable 

dimensions (Garner & Felfoldy, 1970; for review, see Algom & Fitousi, 2016). 

Traditionally, studies investigate integrality/separability in one of two ways: either 

via Stroop effects or via speeded classification. Dimensions that interfere with one 

another would be considered integral; dimensions that do not would be considered 

separable. The error-independence analyses I use here might provide a novel 

method for assessing integrality vs. separability (see also Bays et al., 2011); in 
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principle, all three analyses should yield converging results. That said, these classic 

paradigms would have been insufficient to address the key questions here. Space is 

not like other dimensions in that any point in space could be simultaneously 

represented in an infinite number of 2D spaces. Because this task provides a blank 

slate with which I can simultaneously analyze all possible dimensions at once, it 

provides a unique advantage over earlier tasks. Stroop and speeded classification 

paradigms, in contrast, require pre-commitment to the relevant dimensions. 

Nevertheless, future work may link this approach to the integrality vs. separability 

approach. 

 

2.5.2   On ‘format’ 

Throughout this chapter I have focused primarily on a contrast between polar 

coordinates and Cartesian coordinates (and, briefly, other non-canonical coordinate 

systems). However, this work also speaks to a possible contrast between the use of 

some coordinate system and no coordinate system at all. Indeed, it is possible that 

space could be represented only in coarse spatial terms (e.g., “that point was 

generally up and to the left”; see Huttenlocher et al., 1991). Both sets of 

experiments reported here, by contrast, suggest a reliance on a specific coordinate 

system. Even if participants flexibly rely on multiple coordinate systems, their 

patterns of errors have still revealed a fundamental regularity: locations in the mind 

are represented as variables in a two-dimensional vector. In some ways, these 

insights were presaged by the study of patient AH, who exhibited profound 

localization deficits that often involved ‘mirror flipping’ points in space (McCloskey 

et al., 1995; McCloskey & Palmer, 1996). E.g., if AH was instructed to recreate the 

location of a point offset to the left, they might place a point in the same relative 
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location but offset to the right instead. Such errors suggest that space is being 

represented in some precise format, but one that can be manipulated (akin to 

flipping the sign of a variable). This work also suggests that space is represented 

via independent dimensions (or else it would be impossible to make an error in one 

dimension while acting precisely in another). The present work builds on the study 

of patient AH by offering — for the first time — evidence that the precise 

coordinate systems underlying visuospatial representations are readily recoverable, 

even in simple psychophysical tasks.  

 

2.5.3   Conclusion 

We depend on our ability to accurately perceive and represent space; yet, naturally, 

our percepts and our representations are imprecise. Here, I show how errors in the 

simplest possible spatial tasks contain significant clues to the underlying format of 

our most primitive visuospatial representations. The present work lays the 

groundwork for considering domain-general mechanisms that may underlie many 

kinds of spatial biases (e.g., those pertaining to location vs. those pertaining to 

orientation) across many different spatial scales (e.g., small-scale visual 

environments vs. large-scale navigable environments). More consequentially, the 

present work demonstrates that the format of spatial representations is readily 

accessible to empirical investigation. 
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Figure 2.1. (A) A caricature of the method. In this example, observers must place a 

triangle and a square (which are initially absent from the display) in the bottom-right 

to match the spatial relationships of the three shapes in the top left. Here, the relative 

spatial relations of the set in the bottom-right are ‘scaled up’ by a factor of two. (B) 

A caricature of the analyses. Here, we are analyzing correlations between errors in 

Cartesian vs. polar coordinates. Each subject therefore has a unique correlation value 

that is used for subsequent analyses. 
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Figure 2.2. Schematic of each of the 6 experiments. Items presented here are 

approximately but not exactly to scale.  
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Figure 2.3. Results from Experiment 2.1a. (A) A depiction of the average correlation 

for Cartesian and polar errors broken down by point. (The faded bars correspond to 

individual points; the darker bars correspond to the average of those values.) Cartesian 

correlations are depicted in blue; polar correlations are depicted in red. Error bars 

represent +/- 1 SE. (B) The difference in correlation (Cartesian minus polar) for each 

observer. Bars to the right of the y-axis indicate a greater correlation for Cartesian 

dimensions than polar dimensions. See also Table 2.1 for additional 

information/statistics about these correlation values.  
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Figure 2.4. Results from Experiment 2.1b. (A) A depiction of the average correlation 

for Cartesian and polar errors broken down by point. (The faded bars correspond to 

individual points; the darker bars correspond to the average of those values.) Cartesian 

correlations are depicted in blue; polar correlations are depicted in red. Error bars 

represent +/- 1 SE. (B) The difference in correlation (Cartesian minus polar) for each 

observer. Bars to the right of the y-axis indicate a greater correlation for Cartesian 

dimensions than polar dimensions. See also Table 2.1 for additional 

information/statistics about these correlation values.  
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Figure 2.5. Results from Experiment 2.1c. (A) A depiction of the average correlation 

for Cartesian and polar errors broken down by point. (The faded bars correspond to 

individual points; the darker bars correspond to the average of those values.) Cartesian 

correlations are depicted in blue; polar correlations are depicted in red. Error bars 

represent +/- 1 SE. (B) The difference in correlation (Cartesian minus polar) for each 

observer. Bars to the right of the y-axis indicate a greater correlation for Cartesian 

dimensions than polar dimensions. See also Table 2.1 for additional 

information/statistics about these correlation values.  
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Figure 2.6. Results from Experiments 2.2a-c. On the left side are the average 

correlation values. Cartesian correlations are depicted in blue; polar correlations are 

depicted in red. Error bars represent +/- 1 SE. On the right side are the differences in 

correlations (Cartesian minus polar) for each observer. Bars to the right of the y-axis 

indicate a greater correlation for Cartesian dimensions than polar dimensions.  
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Table 2.1. p-values and r values from Experiments 2.1a-c. Each row corresponds to 

a separate experiment. The three most important values are the first three columns, 

which represent the p and r values for Cartesian errors, for polar errors, and for the 

difference between the two. (The 'Diff' column is the actual numerical difference in the 

correlation; the p-value corresponds to the output of the one-sample t-test conducted 

on those difference scores.) The following four columns ('Other dimensions') are 

correlations between various existing dimensions. The final five columns ('Rotated 

Cartesian Dimensions') are unique coordinate spaces that we created for purposes of 

these analyses. Here we took ordinary Cartesian space and rotated it by 5, 15, 25, 35, 

or 45 degrees to create new coordinate systems. The aim here is to demonstrate that 

the lack of correlation for polar coordinates is special — as all other combinations of 

dimensions yield positive correlations. Highlighted in light blue are any cells that 

correspond to a positive correlation; highlighted in red are any cells that correspond to 

the absence of a correlation. The key takeaway from this table is that the only red cells 

are for polar errors.   
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Chapter 3  

  

The format of size representations 

 

This chapter contains text and/or materials from the following publications: 

 

Yousif, S. R., Alexandrov, E.*, Bennette, E.*, Aslin, R. N., and Keil, F. C. (2022). 

Children estimate area using an 'Additive-Area Heuristic'. Developmental 

Science. 

Yousif, S. R. and Keil, F. C. (2021). How we see area and why it matters. Trends 

in Cognitive Sciences, 25, 554-557. 

Yousif, S. R., Aslin, R. N., and Keil, F. C. (2020). Judgments of spatial extent are 

fundamentally illusory: ‘Additive-area’ provides the best 

explanation. Cognition, 205, 104439. 

Yousif, S. R. and Keil, F. C. (2020). Area, not number, dominates estimates of 

visual quantities. Scientific Reports, 10, 1-13. 

Yousif, S. R. and Keil, F. C. (2019). The ‘Additive-Area Heuristic’: An efficient 

but illusory means of visual area approximation. Psychological Science, 

30, 495–503. 
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3.1   Abstract 

How does the visual system determine ‘how much’ of something is present? A large 

body of research has investigated the mechanisms and consequences of number 

estimation, yet surprisingly little work has investigated area estimation. Indeed, 

area is often treated as a pesky confound in the study of number. Here, I describe 

the ‘additive area heuristic’: a means of rapidly estimating visual area that results 

in substantial distortions of perceived area in many contexts, visible even in simple 

demonstrations. I show that when controlling for additive area, observers are unable 

to discriminate on the basis of true area per se, and that these results cannot be 

explained by other spatial dimensions. These findings reflect a powerful perceptual 

illusion in their own right, but also have implications for other work — namely 

that which relies on area controls to make claims about number estimation. I 

discuss several extensions of these findings, as well as several areas of research 

impacted by these findings.  
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3.2   Introduction 

When you look at a basket of oranges, or a glass of water, or a piece of cake, how 

do you know how much is there? A great deal of research has investigated the 

shared capacity of adults, infants, and nonhuman animals to estimate the number 

of objects in a set (Barth et al., 2003; Brannon & Terrace, 1998; Gordon, 2004; 

Nieder & Miller, 2004; Pica et al., 2004). This propensity to estimate large 

numerosities without counting is said to rely on an evolutionarily ancient system: 

the Approximate Number System (ANS; Halberda et al., 2008). Yet, to our 

evolutionary ancestors, estimates of number may not have been the best assessment 

of amount.  

Imagine foraging for food. Would you select to forage from the bush with twice 

as many berries, or the one with berries three times in volume? In many natural 

settings, size estimation rather than number estimation might be most critical for 

survival – though only a few studies have investigated approximate area perception 

conjointly with approximate number (Brannon et al., 2006; Lourenco et al., 2012; 

Odic et al., 2013). In fact, most studies have discussed area only in an attempt to 

rule out continuous spatial dimensions (e.g., area, contour length, density) as 

explanations for approximate number estimation (Barth, 2008; Mix et al., 2002). 

Yet, area/size perception is also an autonomous area of study: models of area 

perception have been proposed in the context of development (e.g., Anderson & 

Cuneo, 1978; Gigerenzer & Richter, 1990), ensemble perception (e.g., Marchant et 

al., 2013; Solomon et al., 2011), perception research more broadly (e.g., Carbon, 

2016; Ekman & Junge, 1961; Nacmhias, 2008; Nachmias, 2011; Teghtsoonian, 

1965), and even consumer decision-making (e.g., Krider et al., 2001). Here, 

similarly, we demonstrate that area estimation itself reveals powerful and 
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counterintuitive effects. Yet, unlike much of the prior work, we assess area 

perception a) in a context of numerous objects, and b) using displays akin to those 

commonly used to assess approximate number perception (e.g., Halberda et al., 

2008; Odic et al., 2013). We show that, even in such displays, area estimation 

employs a simple heuristic that results in substantial distortions of perceived area. 

These distortions are not only important to understand in their own right; they 

also raise questions about attempts to control for area in number estimation tasks. 

In particular, controlling for true area, insofar as it dissociates from perceived area, 

may amplify a confound with numerosity in many studies. 

 

3.2.1   The ‘Additive Area Heuristic’ 

We propose that visual area estimation in simple visual displays is best captured 

by a single, simple heuristic: the ‘Additive Area (AA) Heuristic’. Consider Figure 

3.1A. Which panel looks like it has more: the left, or the right? Although the left 

may look like it has more than the right, the two are equal in cumulative area. 

However, they differ in one important way: additive area (i.e., the sum of a shape’s 

dimensions rather than the product) is greater for the image on the left.  

Five experiments were designed with the aim of manipulating either true area 

or additive area while holding the other constant. We find that a) humans use a 

simple heuristic to calculate area, b) humans often fail to perceive true area when 

accounting for this heuristic, c) this heuristic cannot be explained by appeal to 

other dimensions, and d) differences between true area and perceived area may 

have serious consequences for studies that rely on area as a manipulation or as a 

control.  
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3.3   Experiment 3.1: ‘Additive Area’ vs. True area 

In a first test of the AA heuristic, observers completed an approximate area task 

on displays of circular discs (see Figure 3.1A). Critically, we varied these displays 

not only in their cumulative true area, but also in their cumulative additive area. 

We predicted that observers would be both slower to respond and less accurate 

when true area differed, and that they would be faster to respond and more 

accurate when AA differed. 

 

3.3.1   M ethod 

This experiment (as well as each subsequent experiment) was pre-registered. In 

addition to pre-registering the sample size and the basic methodology, we also pre-

registered some details about how the stimuli were created (which we will reiterate 

here). 

 

3.3.1.1   Participants  

100 observers were recruited via Amazon’s Mechanical Turk, though 3 observers 

were excluded because they did not complete a single trial (i.e., they accepted the 

HIT, but never started the task). All observers consented prior to participation, 

and these studies were approved by the IRB at Yale University.  

 

3.3.1.2   Materials  

All of the stimuli were generated via custom software written in Python with the 

PsychoPy libraries (Peirce, 2007). The aim was to create pairs of stimuli that varied 

in either AA or true area while the other was equated. For each stimulus pair, we 

randomly generated an initial set of discs (ranging from 20 pixels to 100 pixels in 
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diameter, with a buffer of at least 10 pixels between any two discs), then pseudo-

randomly generated a second set of objects based on a given AA ratio. The initial 

set of objects always had 7 discs. Stimulus pairs were generated randomly until a 

pair met both the AA criterion and the true area criterion, at which point that pair 

would be rendered another time and saved. The second stimulus (i.e., not the set 

with 7 discs) always had more area (whether AA or true area) than the initial 

stimulus. Number was unconstrained in the stimulus generation process, meaning 

that the number ratio is not equated across all possible AA and true area ratios 

(1.5 on average for AA trials; .8 on average for true area trials). All discs were 

rendered with a thin, black border (4-pixel stroke width). The images depicted in 

Figure 3.1 are representative, as they were actual images used in this experiment.  

In this initial experiment, there were only two constraints: AA and true area. 

There were pairs where both true area was equated (to serve as a baseline), cases 

where true area varied while AA was controlled, and cases where AA varied while 

true area was controlled. While AA was controlled, area could vary in either a 1.00, 

1.10, 1.20, or 1.30 ratio (and vice versa for AA while true area was controlled). As 

there are mathematic constraints on how much AA and true area can differ, these 

ratios were selected to maximize the differences between them. Because of the 

pseudo-random nature of stimuli creation and the mathematical constraints 

involved in creation such stimuli, true area was never perfectly matched with the 

stated ratio; it could vary +/- 1%. That is, if the true area ratio for a given trial 

was 1.10, then we allowed the difference in true area to fluctuate between 1.09 and 

1.11.  

 

 

3.3.1.3   Procedure  
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The task itself was administered online via Amazon Mechanical Turk, using custom 

software. On each trial, observers saw two spatially separated sets of lavender-

colored dots, presented side-by-side in the center of the screen, with 50 pixels of 

space in between. Each stimulus was 400 pixels by 400 pixels. The side that 

contained the set with more area was counterbalanced such that half the time the 

left side had more cumulative area and half the time the right side had more 

cumulative area. Observers were instructed to press ‘q’ if the image on the left had 

more cumulative area, and ‘p’ if the image on the right had more cumulative area. 

Observers were told the following: “Your task is simply to indicate which set of 

circles has more cumulative area. In other words: if you printed the images out 

on a sheet of paper, which would require more total ink?” Later, they were told: 

“The sets of dots will sometimes vary in number, but the number of dots does not 

matter. Instead, you should answer only which has more area, regardless of 

number.” The stimuli stayed on the screen until the observer made a response, and 

there was no time limit on responses. Between each trial, there was a 1000ms ITI. 

Observers completed 84 trials, 12 of each of 7 trial types (true area varying in a 

1.10, 1.20, or 1.30 ratio while AA was held constant; AA varying in a 1.10, 1.20, 

or 1.30 ratio while true area was held constant; and trials where both were 

equated). All trials were presented in a unique random order for each participant. 

Observers completed two representative practice trials before beginning the actual 

task. Because over half of the trials had no objectively correct answer (because true 

area did not vary), we measured accuracy as a propensity to choose ‘more’ – 

whether that be more AA or more true area.  
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3.3.2   Results 

The results are shown in Figure 3.2. Observers were indeed faster and more 

accurate in making discriminations on the basis of AA rather than true area. A 

repeated-measures ANOVA conducted on accuracy with two factors (condition: 

AA vs. true area; ratio: 1.10, 1.20, and 1.30) revealed main effects of both condition 

(F[1,96]=17.80; p<.001) and ratio (F[2,95]=24.43; p<.001), as well an interaction 

between the two (F[2,95]=9.94; p<.001). Post-hoc tests revealed that overall 

performance was above chance in the AA condition (t[96]=10.88, p<.001; d=1.11). 

However, surprisingly, observers were unable to make discriminations on the basis 

of true area alone (t[96]=1.70, p=.09; d=.17). Even in the trials with the biggest 

difference in area (1.30 ratio), observers were not above-chance in their area 

discriminations (t[96]=1.93, p=.06; d=.20). A separate ANOVA conducted on 

response times revealed a similar pattern, and post-hoc tests confirmed that 

individuals were over 120ms faster for the AA trials compared to the true area 

trials (t[96]=4.88, p<.001; d=.50).  

Because we did not explicitly manipulate number, we tested whether number 

could potentially explain these results. A linear regression with AA, true area, and 

number as covariates revealed that AA did predict observer responses (p<.001) but 

that neither true area (p=.86) nor number (p=.23) did.  

 

3.3.3   Discussion 

AA can explain variance in area estimation and, surprisingly, observers seem 

unable to make area discriminations using true area when AA is controlled.  
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3.4   Experiment 3.2: Time-limited approximations 

To ensure that all participants spent roughly the same amount of time assessing 

the displays — and to ensure that these judgments are, in fact, rapid 

approximations — I replicated Experiment 3.1, except that observers had only 

700ms to view the stimuli.  

 

3.4.1   M ethod 

100 observers were recruited via Amazon’s Mechanical Turk, though 3 observers 

were excluded because they did not complete a single trial (i.e., they accepted the 

HIT, but never started the task). All observers consented prior to participation, 

and these studies were approved by the IRB at Yale University. This experiment, 

like the previous experiment, was pre-registered. All of the details of this 

experiment were exactly identical to Experiment 3.1, except that the stimuli 

appeared for only 700ms before disappearing. Observers still had an unlimited 

amount of time to make their responses.  

 

3.4.2   Results 

Results from this manipulation can be seen in Figure 3.3A. Observers were more 

accurate in the AA condition than the true area condition (t[96]=6.40, p<.001; 

d=.65), though there were no differences in response times (which is to be expected, 

because participants were rushed; t[96]=1.60, p=.112; d=.50). Observers were 

unable to make discriminations on the basis of true area alone (t[96]=1.26, p=.21; 

d=.13). 

Once again, linear regression revealed that AA significantly predicted observer 

responses (p<.005), whereas number did not (p=.51). True area was also a 
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significant predictor in this model (p=.035), though in the opposite direction (i.e., 

participants were less likely to choose the option with more area). This latter result 

is likely driven by all the ratios where true area was zero and additive area varied, 

and thus should not be over-interpreted. Note that overall performance for the true 

area trials did not significantly differ from chance (p=.21). 

 

3.4.3   Discussion 

Experiment 3.2 further supports the ‘heuristic’ nature of this phenomenon: in 

addition to replicating Experiment 3.1, these results show that AA is used for rapid 

approximation of visual displays.  

 

3.5   Experiment 3.3: Rectangles 

Most studies on the ANS have relied on displays of discs. However, to ensure that 

the AA heuristic was not specific to such displays, we replicated the results of the 

prior experiment, but with rectangles instead of discs (see Figure 3.1B).  

 

3.5.1   M ethod 

100 observers were recruited via Amazon’s Mechanical Turk, though 1 observer 

excluded because they did not complete a single trial (i.e., they accepted the HIT, 

but never started the task). All observers consented prior to participation, and 

these studies were approved by the IRB at Yale University. This experiment, like 

the previous experiments, was pre-registered. All of the details of this experiment 

were exactly identical to Experiment 3.2, except that the stimuli were rectangles 

instead of discs. The aspect ratio of the rectangles varied from 1.0 to 5.0 (the 

minimum dimension length was 20 pixels; the maximum was 100). (And, to rule 
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out minor differences caused by how those borders are rendered, we rendered these 

rectangles without borders.) 

 

3.5.2   Results 

Once again (see Figure 3.3b), observers were more accurate in making 

discriminations on the basis of AA rather than true area (t[98]=2.61, p=.01; d=.26). 

Observers were above chance at making true area discriminations (t[98]=4.88, 

p<.001; d=.49), though they only made the correct selection 57% of the time. A 

linear regression revealed that while both AA (p<.005) and true area (p<.05) 

significantly predicted observer responses, number did not (p=.61). 

 

3.5.3   Discussion 

In general, observers had more trouble making area discriminations with rectangles 

– both in AA and true area trials. We suspect this is due to one dimension being 

over-weighted relative to the other, meaning that a slightly more complex model 

might best explain area approximations in such cases. Although the effects in this 

experiment are weaker than those in prior experiments, AA still outperforms true 

area as a model of area approximation.  

 

3.6   Experiment 3.4: Number control 

Might these results be explained by a confound with number? The creation of the 

stimuli in Experiments 3.1-3 was constrained in such a way that number was 

partially confounded with AA. In all three cases, differences in AA predicted 

accuracy, while differences in number did not. In a stronger test, we constructed 

stimuli for which we could independently manipulate number.  
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3.6.1   M ethod 

100 observers were recruited via Amazon’s Mechanical Turk, though 2 observers 

were excluded because they did not complete a single trial (i.e., they accepted the 

HIT, but never started the task). All observers consented prior to participation, 

and these studies were approved by the IRB at Yale University. This experiment, 

like the previous experiments, was pre-registered. All of the details of this 

experiment were exactly identical to Experiment 3.1, except as otherwise noted. 

There were stimuli 60 pairs, 4 of each of 15 types (5 AA/true area ratios x 3 

numerosities each). Additionally, it should be noted that it is not possible to use 

the exact same number ratios across of the AA/true area ratios. The goal, instead, 

was merely to have three different levels of numerosity at each AA/true area ratio. 

This way we could independently assess the role of number at each level. To 

determine what numbers ought to be chosen in the first place, we ran an initial 

simulation to see how number would naturally vary (if unconstrained) for each 

AA/true area ratio. From these initial simulations, we picked three of the possible 

numerosities. We purposefully chose numerosities that would maximally overlap 

across conditions (to minimize the impact of any unforeseen confound). The default 

number of items in each display was set to 10.  

 

3.6.2   Results 

The results from this experiment can be seen in Figure 3.4. Replicating previous 

results, observers were both faster and more accurate in the AA trials compared to 

the true area trials (accuracy: t[97]=5.02, p<.001, d=.51; response time: t[97]=3.31, 

p=.001, d=.33). Regression once again revealed that AA (p<.001) but not true 
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area (p=.14) significantly predicted observers’ responses. The same regression 

revealed that number did significantly predict responses (p=.004), such that greater 

numerosity resulted in a decreased likelihood to indicate an item had more area. 

However, this effect was specific to the true area trials (p=.004). If we analyze only 

the trials in which AA varied, there is no effect of number (p=.92). In other words, 

although number may be used as a cue in certain contexts, it has no apparent effect 

on area judgments when perceived area does differ. 

 

3.6.3   Discussion 

These results once again reveal the use of an AA heuristic. However, there was an 

effect of numerosity whereby the presence of additional discs in the display 

decreased the likelihood that an observer would indicate that display had more 

area. This is in contrast to previous results that suggest correspondences between 

number and continuous magnitudes such as area (Hurewitz et al., 2006). Thus, it 

seems that many past studies reporting influences of numerosity in these sorts of 

tasks may have been detecting variation caused by AA instead. Importantly, when 

perceived area does vary, observers do not rely on number as a cue. 

 

3.7   Experiment 3.5: Perimeter control 

More than most continuous spatial dimensions, perimeter has been a dimension of 

interest in these sorts of displays (e.g., DeWind et al., 2015; McCrink & Wynn, 

2007), and there is some evidence that perimeter may actually explain number 

approximation (see DeWind et al., 2015; Mix et al., 2002). While perimeter-based 

approximations may not serve as feasible models of area perception (see ‘coastline 
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paradox’; Mandlebrot, 1967), they should be addressed. In a final experiment, we 

used a new stimulus to fully dissociate perimeter from perceived area: ellipses.  

 

3.7.1   M ethod 

100 observers were recruited via Amazon’s Mechanical Turk. 1 observer was 

excluded for failing to complete the task. All observers consented prior to 

participation, and these studies were approved by the IRB at Yale University. This 

experiment, like the prior experiments, was pre-registered. All of the details of this 

experiment were exactly identical to Experiment 3.2, except substituting perimeter 

for true area. To do this, ellipses were used in place of discs (see Figure 3.1C). In 

other words, AA varied while perimeter was held constant, and perimeter varied 

while additive area was held constant (and both varied in 1.0, 1.1, 1.2, and 1.3 

ratios). No specific limits were imposed on area or numerosity (meaning that, in 

practice, they varied much more than either AA or perimeter). The default number 

of stimuli was 15. These stimuli were rendered without borders. The aspect ratio 

of the discs ranged from 1.0 to 2.20. 

 

3.7.2   Results 

Overall, observers were better at making discriminations on the basis of AA rather 

than perimeter (t[98]=10.31, p<.001; d=1.04). Observers were unable to make 

discriminations on the basis of perimeter alone (t[98]=.99, p=.33; d=.10).  

 

3.7.3   Discussion 

Cumulative perimeter seems unable to explain the approximation of area while AA 

alone is able to do so.  
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3.8   General Discussion  

Not only does the AA heuristic account for a high proportion of the variance in 

area judgments, but, also, observers seem to be insensitive to differences in true 

area under certain conditions. These results have implications for many different 

research programs in cognitive science. We highlight four areas of active research 

likely to be influenced by these findings. 

 

3.8.1   Visual perception  

Many papers have addressed the question of size perception (Ekman & Junge, 1961; 

Teghtsoonian, 1965). Some have addressed illusions of visual size (Coren & Girgus, 

1978). Others have discussed the continuous dimensions of space that influence not 

only the perception of size, but also the perception of density, numerosity, and 

texture (e.g., Anobile et al., 2014; Anobile et al., 2016; Durgin, 1995). In all of these 

cases, the additive area heuristic offers a simple, powerful, low-dimensional means 

of area estimation. This finding may clarify and unify various prior studies on the 

perception of area (e.g., Carbon, 2016), while also raising questions about links 

between the perception of size (of a single object), area (of a set of objects), density, 

and texture.  

 

3.8.2   Approximate Area 

The study of approximate area is not nearly as pervasive as the study of 

approximate number, yet several prominent papers have studied the two in tandem 

(Lourenco et al., 2012; Odic et al., 2013). Both approximate number estimation 

and approximate area estimation are proposed to independently contribute unique 
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variance to mathematical competence (Lourenco et al., 2012). However, this work 

involved manipulation of mathematical area rather than perceived area. Thus, 

number discrimination could have been influenced by AA, even though 

mathematical area was controlled. 

 

3.8.3   Approximate Number 

The subject of hundreds of papers and cumulatively tens of thousands of citations, 

the ANS has dominated the field of numerical cognition for the past decade (Barth 

et al., 2003; Halberda et al., 2008; Lourenco et al., 2012; Lourenco & Bonny, 2017). 

Much attention has been given to the continuous spatial dimensions that are 

confounded with numerosity (e.g., Barth, 2008; DeWind et al., 2015; Mix et al., 

2002). Of these, area is by far the most common control (e.g., Halberda et al., 2008; 

Lourenco et al., 2012; Xu & Spelke, 2000). Yet, if true area is different from 

perceived area, variance in perceived area might well explain performance on these 

tasks.  

 

3.8.4   General M agnitude 

Several studies have investigated the link between number and other magnitudes. 

One prominent theory suggests that representations of time, space, quantity, and 

other magnitudes rely on similar cortical processes (Lourenco & Longo, 2010; 

Sokolowski et al., 2017; Walsh, 2003). In support of this theory, many have pointed 

to Stroop-like errors between area and number (Brannon et al., 2004; Hurewitz et 

al., 2006; Rousselle et al., 2004). Though the present results do not bear on all 

facets of this extensive literature, they do relate to the tendency to use number as 

a cue to approximate area and vice versa (e.g., Hurewitz et al., 2006). This could 
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be the result of shared mechanisms, but it might also be the result of a simple 

confound. The bias to select the set with more number might instead be a bias to 

select the set with more perceived area. These findings suggest either a) that 

number has an adverse effect on area estimation – exactly the opposite the general 

magnitude account– or b) observers are using some other heuristic to make their 

responses in these cases (e.g., choosing the display with the single largest object). 

 

3.8.5   Extensions of these findings  

In subsequent work, I have shown that this illusion of area is robust in several 

ways. First, these illusions cannot be explained by variation in number; when sets 

of items are perfectly equated in terms of number, this illusion persists (Yousif, 

Aslin, & Keil, 2020). Second, an ‘additive heuristic’ appears to capture volume 

judgments as well as area judgments (Bennette, Keil, & Yousif, 2021). Third, 

children appear to (at least sometimes) rely on an ‘additive heuristic’ to make 2D 

area judgments (Yousif et al., 2022). Fourth, these illusions are significant in that 

they meaningfully influence and are related to the perception of number (Yousif & 

Keil, 2020). And, finally, despite objections that these effects arise from statistical 

anomalies across the stimuli, these illusions manifest even when observers witness 

only a single trial (as in Yousif & Keil, 2021c, as well as Bennette, Keil, & Yousif, 

2021). 

 

3.8.6   The illusion of approximate area 

There have been many careful attempts to capture approximate number acuity by 

modeling a nearly exhaustive list of continuous dimensions of the stimuli (DeWind 

et al., 2015), concluding that continuous dimensions of space influence the 
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approximation of number. What does this approach reveal that is not already 

captured by existing models? Consider the Ebbinghaus illusion, whereby one disc, 

surrounded by many smaller discs, appears greater in size than an equal-sized disc 

surrounded by many larger discs. Modeling ANS performance by exhaustively 

characterizing every continuous dimension of a display is akin to explaining the 

Ebbinghaus illusion by measuring every continuous dimension of the two discs 

being compared. No measurements collected on the relevant discs could explain the 

Ebbinghaus illusion because they are exactly the same; it can be explained only by 

appeal to perception. 

By contrast, we make an explicit prediction about what drives area 

approximation and manipulate that specific dimension in order to eliminate 

differences in perceived area. This does not mean that AA fully explains area 

perception: there may be context- or task-dependent interactions among many 

continuous variables (e.g., density, convex hull, average element size) that 

contribute to the perception of size. Yet, controlling AA eliminated the ability to 

distinguish displays in most cases, providing strong evidence that this factor is 

directly linked to area perception. Further, this heuristic offers a simple solution 

that may be easily implemented in ANS studies.  

 

3.8.7   Conclusion 

This chapter documents the ‘additive area heuristic’: a simple, low-dimensional 

heuristic that accounts for substantial variability in area approximation. The 

explanatory power of this heuristic persists despite variance in other salient 

dimensions (e.g., true area, perimeter, and number), and may bear on the 

interpretation of many seminal papers in the field of numerical cognition, as well 
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as work on area estimation, general magnitude, and various aspects of visual 

perception. The notion of perceived area helps explain other findings in many 

diverse fields of cognitive science, while advancing those fields both theoretically 

and methodologically.  
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Figure 3.1. Depiction of example displays from Experiments 3.1, 3.2, and 3.4 (A), 

Experiment 3.3 (B), and Experiment 3.5 (C). True area is equated for each pair in (A) 

and (B). However, additive area is 30% greater in the left panel of (A), and 30% greater 

in the right panel of (B). Perimeter is equated for each pair in (C). However, additive area 

is 30% greater in the left panel of (C). The stimuli appear here exactly as they would have 

to observers in the task. Additive area in each case is equal to the sum of the objects’ 

cumulative heights and widths. For circles, additive area for each shape is equal to twice 

the diameter (which can be simplified to just diameter). For the rectangles, additive area 

for each shape is equal to height + width. For ellipses, additive area for each shape is equal 

to height + width (also the sums of the lengths of the major and minor axes). 
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Figure 3.2. Results from Experiment 3.1: (A) The proportion of trials for which observers 

select the option with ‘more’ – whether that was more true area or more additive area – 

for each of the seven additive area/true area ratios tested. The dashed lined represents at-

chance performance. (B) Response times for each of the seven ratios tested. In both graphs, 

the x-axis represents the ratio. While additive area varied, true area remained constant. 

While true area varied, additive area remained constant. Thus, green bars correspond to 

additive area trials, red bars correspond to true area trials, and the blue bar represents 

trials where both were equated. Error bars represent +/- 1 SE.  
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Figure 3.3. Results from Experiment 3.2 (A) and Experiment 3.3 (B). The proportion of 

trials for which observers select the option with ‘more’ – whether that was more true area 

or more additive area – for each of the seven additive area/true area ratios tested. The 

dashed lined represents at-chance performance. The x-axis represents the ratio. While 

additive area varied, true area remained constant. While true area varied, additive area 

remained constant. Thus, green bars correspond to additive area trials, red bars correspond 

to true area trials, and the blue bar represents trials where both were equated. Error bars 

represent +/- 1 SE.  
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Figure 3.4. Results from Experiment 3.4: (A) The proportion of trials for which observers 

select the option with ‘more’ – whether that was more true area or more additive area – 

for each of the seven additive area/true area ratios tested. The dashed lined represents at-

chance performance. (B) Response times for each of the seven ratios tested. In both graphs, 

the x-axis represents the ratio. While additive area varied, true area remained constant. 

While true area varied, additive area remained constant. Thus, green bars correspond to 

additive area trials, red bars correspond to true area trials, and the blue bar represents 

trials where both were equated. Three different numerosities were tested for each area 

ratio; lighter bars correspond to lower numerosities within each set. Error bars represent 

+/- 1 SE.  
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Chapter 4 

  

Spatial information as format: A ‘case 

study’ from working memory  

 

This chapter contains text and/or materials from the following publications: 

 

Yousif, S. R., Rosenberg, M. D., and Keil, F. C. (2021). Using space to remember: 

Short-term spatial structure spontaneously improves working 

memory. Cognition, 214, 104748. 
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4.1   Abstract 

Spatial information plays an important role in how we remember. In general, there 

are two (non mutually exclusive) views regarding the role that space plays in 

memory. One view is that objects overlapping in space interfere with each other in 

memory. For example, objects presented in the same location (at different points 

in time) are more frequently confused with one another than objects that are not. 

Another view is that spatial information can ‘bootstrap’ other kinds of information. 

For example, remembering a phone number is easier when one can see the 

arrangement of a keypad. Here, building on both perspectives, I test the hypothesis 

that task-irrelevant spatial structure (i.e., objects appearing in stable locations over 

repeated iterations) improves working memory. Across 7 experiments, I 

demonstrate that (1) irrelevant spatial structure improves memory for sequences 

of objects; (2) this effect does not depend on long-term spatial associations; (3) this 

effect is unique to space (as opposed to features like color); and (4) spatial structure 

can be teased apart from spatial interference, and the former drives memory 

improvement. I discuss how these findings relate to and challenge ‘spatial 

interference’ accounts as well as ‘visuospatial bootstrapping’. More broadly, these 

findings speak to how spatial information may be leveraged as the format of higher-

level representations.  
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4.2   Introduction 

Spatial representations are implicated in a diverse array of cognitive processes — 

from aesthetics (Palmer et al., 2013), to numerical cognition (Dehaene et al., 1993; 

Zorzi et al., 2002), to social cognition (Parkinson & Wheatley, 2013). For millennia, 

there has also been a notion that space plays some pivotal role in how we remember, 

or else can be used to improve memory (as in the ‘method of loci’). Here, I 

investigate the role of space in working memory to better understand the flexibility 

of spatial representations in memory and to address the ways in which spatial 

representations influence memory in the first place.  

Here, I focus on working memory, which refers to the short-term maintenance 

and manipulation of information in the mind (Baddeley, 1992). I consider two 

distinct possibilities regarding the relationship between space and working memory. 

The first I call ‘spatial interference’. This view suggests that items appearing in the 

same location in space interfere with one another (e.g., Treisman & Zhang, 2006). 

The second is ‘visuospatial bootstrapping’. Work on visuospatial bootstrapping 

suggests that items presented with stable spatial mappings (e.g., as in the digits 

on a keypad) are better remembered than items without such mappings (for review, 

see Darling et al., 2017). While these views are not mutually exclusive, they stem 

from different approaches. I will briefly highlight typical ‘spatial interference’ and 

‘visuospatial bootstrapping’ effects.  

 

4.2.1   Spatial interference 

One theory is that space supports the binding of features to objects, and therefore 

that objects overlapping in space interfere with one another (e.g., Treisman & 

Zhang, 2006). That is, if you see a blue circle and a green triangle in the same 
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location, you will be more likely to experience a feature binding error, 

misremembering having seen either a green circle or a blue triangle. Similar effects 

are observed across a wide range of paradigms (cf. Jiang et al., 2000; Rajsic & 

Wilson, 2014; Woodman et al., 2012). For example, participants tasked with 

remembering the orientation of a line perform worse when multiple lines appeared 

in the same location (Pertzov & Husain, 2014). Such effects are also specific to 

space: lines with overlapping colors do not result in the same kind of interference 

(see also Rajsic & Wilson, 2014).  

 

4.2.2   Visuospatial bootstrapping 

Suppose you are memorizing a phone number; perhaps you would try to visualize 

where each number is located on a keypad. Indeed, people are better at 

remembering verbal information when it is mapped onto consistent spatial 

locations: digits are better remembered when they are presented in a keypad 

formation, as opposed to being presented in a single location, or even in a line 

(Darling & Havelka, 2010; Race et al., 2015). However, other work suggests this is 

only true when those mappings exist in long-term memory; people do not better 

remember digits that are displayed in a rearranged keypad formation (Darling et 

al., 2012). This phenomenon of ‘visuospatial bootstrapping’ is said to speak to 

communication between verbal and visual information systems in working memory 

(for review, Darling et al., 2017).  

A related body of work suggests that items in working memory are 

automatically spatialized (Abrahamse et al., 2014; Aulet et al., 2017; Guida & 

Campitelli, 2019; Guida et al., 2016; Guida et al., 2018; van Dijck & Fias, 2011; 

van Dijck et al., 2014). In other words, imagine a task in which individuals must 

remember a sequence of objects: ‘orange’, ‘apple’, ‘pear’, ‘banana’, ‘cherry’; after 
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memorizing this sequence, individuals respond relatively faster to earlier items with 

their left hand compared to their right hand, and relatively faster to later items 

with their right hand compared to their left hand. Such lateralization suggests that 

the sequence had been mapped onto space in some way, and perhaps that this 

mapping was functionally involved in the maintenance of that information in 

working memory. This is known as the Spatial–Positional Association of Response 

Codes (‘SPoARC’). 

So far, I have discussed working memory broadly as a system for maintaining 

and manipulating information online. However, there are many distinct models of 

the working memory system. For example, earlier working memory models 

differentiated discrete subsystems of working memory: a visuospatial sketchpad, 

which manipulates visual information, a phonological loop, which manipulates 

verbal information, and a central executive (Baddeley & Hitch, 1974). Later, a 

fourth subsystem was proposed, the episodic buffer, to explain the interactions of 

information across modality and across memory systems (i.e., short-term and long-

term memory; Baddeley, 2000). Other views characterize working memory more 

continuously and do not segregate visual and verbal working memory (and thus 

have no need for a fourth system to moderate between them; e.g., Cowan, 1998). 

The exact nature of working memory remains a topic of ongoing debate.  

Note, however, that visuospatial bootstrapping and related phenomena such as 

the ‘SPoARC’ effect address interactions between short-term and long-term 

memory (e.g., Darling et al., 2012; Race et al., 2015) as well as interactions between 

verbal and visuospatial information in working memory (see also Alloway et al., 

2006). As such, this body of work speaks not only to how spatial information 

influences memory, but also to the organization of our memory systems in the first 

place (in that information in long-term memory influences the retention of 
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information in short-term memory, and in that visuospatial information influences 

the retention of verbal information). In this way, the present results may bear on 

debates regarding the extent to which working memory is modality specific (see, 

e.g., Allen et al., 2015; Morey, 2018).  

 

4.2.3   Current Study 

Here, I test the hypothesis that short-term spatial structure supports working 

memory maintenance, even in tasks that pose no explicit spatial requirements. 

Spatial structure could take many forms, and here I operationalize it as a consistent 

mapping between objects and space (as in ‘visuospatial bootstrapping’; Darling et 

al., 2017). For example, shopping in a grocery store whose aisles are rearranged 

every time you visited would be an experience with low spatial structure, whereas 

attending a meeting in which participants always sat in the same seats would be 

an experience with high spatial structure. In the current set of studies, I ask 

whether objects repeatedly appearing in the same location (although on a shorter 

time scale) are better remembered than objects repeatedly appearing in different 

locations.  

Based on prior work suggesting a role of spatial representations in a broad range 

of cognitive processes (both in the domain of working memory, e.g., Darling et al., 

2017; Pertzov & Husain, 2014; and beyond the domain of working memory; e.g., 

Dehaene et al., 1993; Parkinson & Wheatley, 2013; Zorzi et al., 2002), I hypothesize 

that task-irrelevant spatial information will benefit visual working memory more 

than matched non-spatial visual information (i.e., color) and non-visual information 

(i.e., audio information). I will also further probe how space is special, specifically 
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contrasting the idea of ‘spatial structure’ with both ‘spatial interference’ and 

‘visuospatial bootstrapping’ effects.  

These broad goals can be broken down into a few specific aims. First, I asked 

about the interaction of space, long-term memory, and working memory. Prior 

work has suggested that spatial mappings facilitate memory only when those 

spatial mappings are held in long-term memory (Darling et al., 2012). However, 

another possibility is that visuospatial bootstrapping does not depend on mappings 

in long-term memory, but that mappings in long-term memory interfere with short-

term mappings. Here, I test short-term spatial mappings (i.e., established over a 

span of 6-10 seconds) in a case where there are no long-term mappings. Second, I 

asked how spatial information influenced working memory (assuming an effect of 

space in the first place). For example, what if objects are mapped onto stable 

locations, but other objects are mapped onto those same locations? Work on neither 

‘spatial interference’ nor ‘visuospatial bootstrapping’ makes clear predictions about 

such cases. Finally, I want to understand how spatial structure and verbal rehearsal 

compete when participants can rely on both. The task used here allowed for both 

visual rehearsal (see Awh et al., 1998) and verbal rehearsal of the relevant 

information through memorizing sequences of common shapes (i.e., circles, 

pentagons, and diamonds). Those shapes appeared in different locations and in 

different colors, but participants were specifically instructed to remember only (a) 

what shapes they saw and (b) what order they saw them in. Participants were free 

to verbally rehearse the sequences (which they frequently did) — but this was not 

a requirement. Therefore, akin to visuospatial bootstrapping tasks (Darling et al., 

2017), the task here may speak to interactions between verbal and visual working 

memory. 
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To address these questions, I present seven experiments, all with the same 

essential components. (1) Participants always remembered sequences of shapes that 

they were free to verbally rehearse, and (2) the sequences were often structured 

such that either location information or color information (and in one case audio 

information) covaried with the different shapes. E.g., in a ‘space-structured’ 

condition, any shape that appeared multiple times in a sequence always appeared 

in the same location, but the colors of those shapes are random (and vice-versa for 

a ‘colored-structured’ condition). Combined, these features allow us to probe when 

and how we use space to remember and how these effects inform current research 

on working memory. 

 

4.3   Experiments 4.1a and 4.1b: Space vs. Color  

In a first set of experiments, participants completed the simplest version of this 

paradigm: they saw a series of 5-7 shapes (comprised of three unique shapes 

appearing at least once each, and in a random order) and had to recall (a) what 

those shapes were and (b) the order that they saw them in. Crucially, participants 

completed two blocks of trials, each of which was structured in a unique way. In 

the ‘space-structured’ block, any shape appearing multiple times appeared in the 

same location; no other shapes appeared in that location, and the colors of all 

shapes were randomized. In the ‘color-structured’ block, any shape appearing 

multiple times appeared in the same color; no other shapes appeared in that color, 

and the locations of all shapes were randomized. There were two key questions: (1) 

Does either location-based or color-based structure uniquely influence working 

memory, and (2) If so, does structure influence working memory even when 

participants report verbal rehearsal strategies?  
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4.3.1   M ethod 

This experiment, and all subsequent experiments, were pre-registered. Experiments 

1a and 1b were identical, except for their sample sizes and one change to the 

instructions (as noted below).  

 

4.3.1.1   Participants  

24 undergraduate students participated in Experiment 4.1a and 16 undergraduate 

students participated in Experiment 4.1b in exchange for course credit. The sample 

sizes were chosen in advance based on pilot data and were pre-registered. The 

sample size of Experiment 4.1b was chosen based on repeatedly sub-sampling data 

from Experiment 4.1a and finding that 16 participants were sufficient to 

demonstrate the primary effect. This study was approved by the relevant 

Institutional Review Board.  

 

4.3.1.2   Apparatus 

The experiment was conducted with custom software written in Python with the 

PsychoPy libraries (Peirce et al., 2019).  Participants sat without restraint 

approximately 60cm from a 49° × 29° display, with all spatial extents reported 

below computed based on this distance. 

 

4.3.1.3   Stimuli  

The display consisted of four black squares (5.10° × 5.10°) on a grey (50% black; 

50% white) background (Figure 4.1). The squares were located in each of the four 

quadrants of the screen, each 7.66° horizontally and 7.66° vertically displaced from 

the center of the screen. The shapes themselves (a circle, a pentagon, and a 

diamond) were all just shorter than 5.10° in height and appeared centered within 
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one of the four black squares. They appeared in one of four colors (the default ‘red’, 

‘green’, ‘blue’, or ‘yellow’ in PsychoPy).  

 

4.3.1.4   Procedure & Design 

On each trial, participants watched as shapes appeared one at a time in different 

locations and in different colors. The shapes appeared for 1000ms, with 500ms 

between presentations. Any given trial had either 5, 6, or 7 shapes (see more on 

how the sequences were constructed below). After all shapes were presented, the 

three shapes appeared in white side-by-side in the center of the screen, in a random 

order. The four black squares in each quadrant remained on the screen during this 

time. Participants then had to click on the shapes in the order that they saw them. 

Even though the shapes varied in color and location, participants knew that they 

would only have to report what shapes they saw and what order they saw them in. 

They were specifically told that they could only click one time for each shape that 

they saw (e.g., if they saw seven shapes, they were instructed to click seven times; 

they were allowed to click the same shape multiple times), and that the next trial 

would automatically start when they had pressed the correct number of shapes. 

The purpose of this was to ensure that for each trial there were a number of 

responses equal to the number of items in the sequence, thus simplifying the 

measure of performance. There was no counter or any other indicator reminding 

them how many shapes they had seen. Each time a shape was selected, it briefly 

flashed yellow (as a form of visual feedback, so that participants would know their 

response was recorded). Once a certain number of shapes were selected (equal to 

the number of items that had been in the previous sequence), the experiment 

automatically moved onto the next trial (after a 1.5s delay).  
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 The sequences of shapes were constructed in a few important ways. First, 

there were two distinct trial types, divided into two unique blocks. In the ‘space-

structured’ block, any shape appearing multiple times appeared in the same 

location; no other shapes appeared in that location, and the colors of all shapes 

were randomized. In the ‘color-structured’ block, any shape appearing multiple 

times appeared in the same color; no other shapes appeared in that color, and the 

locations of all shapes were randomized. The number of colors and locations were 

matched (4). The first three shapes of each sequence were always unique; in other 

words, participants always saw all three shapes within the first three. The 

remaining two to four shapes were random in every respect (except that they 

adhered to the relevant structure, depending on the block).  

 Each participant completed 48 trials, divided into two equal, 

counterbalanced blocks: a space-structured block, and a color-structured block. In 

each of these blocks, participants completed 24 trials (3 difficulties [5, 6, or 7 

shapes] × 8 unique trials). Between the two blocks, a message appeared encouraging 

participants to rest briefly before continuing.  Participants completed one 

representative practice trial (the data from which were not recorded) before 

beginning the task. Including instructions and practice trials, the total task 

duration was about 25 minutes. 

 In Experiment 4.1a, but not in Experiment 4.1b or subsequent experiments, 

participants were explicitly cued to the relevant structure. They were specifically 

told that, although both color and location information were irrelevant to their 

task, they were free to use this information if it benefited them. The instructions 

explained the way that color and location would be structured, in general, and told 

them that the two blocks of trials would be distinct in this way. However, 



75 

 

participants were also reminded that they could disregard or ignore this 

information as they wished.  

 

4.3.2   Results & Discussion 

Results from Experiment 4.1a can be seen in Figure 4.2 (panels A & B). Accuracy 

was generally higher for space-structured trials (M=.84, SD=.08) compared to 

color-structured trials (M=.79, SD=.11), and this effect was most pronounced at 

higher set sizes. Indeed, a repeated measures ANOVA revealed a main effect of set 

size (F[2,46]=20.30, p<.001, ηp2=.47), a main effect of trial type (F[1,23]=13.10, 

p=.001, ηp2=.36), and an interaction between the two (F[2,46]=7.87, p=.001, 

ηp2=.26). Post-hoc tests confirmed that accuracy was higher for space-structured 

trials than color-structured trials (t[23]=3.62, p=.001, d=.74), and that accuracy 

was higher for set size 5 than 6 (p=.003), and higher for set size 6 than 7 (p=.002).  

For all experiments, I calculated Bayes factors for the key experimental 

contrasts (i.e., between the space-structured and color-structured trials) to assess 

null effects. I report Bayes factors for significant results (such as ones here) for 

consistency. Bayes factors are reported as measure of relative evidence for an 

alternative hypothesis (here, a difference in accuracy between experimental 

conditions) relative to a null hypothesis (no difference between conditions). 

Whereas Bayes factors greater than 3 are considered substantial evidence in favor 

of the alternative hypothesis, Bayes factors less than 1/3 are considered substantial 

evidence in favor of the null hypothesis (see Wetzels et al., 2011). Bayes factors for 

the space-structured vs. unstructured comparison provided substantial evidence for 

the alternative hypothesis (BF=25.47).  
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I also coded participants’ responses during debriefing to identify whether they 

spontaneously identified either a verbal rehearsal (e.g., “I said the shapes in the 

order in my head”) or spatial (e.g., “If I forgot the pattern, I would try to remember 

the locations”) strategy. Of the 24 participants, 15 explicitly indicated the use of a 

verbal rehearsal strategy, whereas only 2 participants indicated the use of a spatial 

strategy. Therefore, these results are unlikely to results from an explicit spatial 

strategy.  

Results from Experiment 4.1b can be seen in Figure 4.2 (panels C & D). As is 

evident from the figure, accuracy was generally higher for space-structured trials 

(M=.86, SD=.07) compared to color-structured trials (M=.78, SD=.10), and this 

effect was equally pronounced at all set sizes. Indeed, a repeated measures ANOVA 

revealed a main effect of set size (F[2,30]=18.71, p<.001, ηp2=.56), a main effect 

of trial type (F[1,15]=13.82, p=.002, ηp2=.48), and no interaction between the two 

(F[2,30]=.45, p=.64, ηp2=.03). Post-hoc tests confirmed that accuracy was higher 

for space-structured trials than color-structured trials (t[15]=3.75, p=.002, d=.94, 

BF=21.83), and that accuracy was higher for set size 5 than 6 (p=.01), and higher 

for set size 6 than 7 (p=.005).  

Once again, I coded participants’ responses during debriefing to identify 

whether they spontaneously identified either a verbal rehearsal or spatial strategy. 

Of the 16 participants, 16 explicitly indicated the use of a rehearsal strategy 

(though one of these 16 reported rehearsing musical notes rather than verbal 

information), whereas only 1 participant indicated the use of a spatial strategy.  

These experiments provide converging evidence that spatial structure benefits 

working memory even compared to another, matched type of structure (in that the 

color-structured condition, like the space-structured condition, had four options). 

Experiment 4.1b demonstrates that this is true even when participants are not 
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cued to think about the structure at all. In fact, only 7 of the 16 participants 

reported noticing anything about the structure of the sequences during debriefing, 

and only 3 of those 7 believed that structure had anything to do with what was 

being tested (while 14/16 participants in the experiment showed an effect of spatial 

structure). 

Notably, this task allows participants to verbally rehearse. Although from some 

perspectives this could defeat the point of studying visual working memory (but 

see ‘visuospatial bootstrapping’; Darling et al., 2017), this is a strength of the 

present task. Given that participants could rehearse verbally (and they clearly did), 

an effect of spatial structure is especially notable. This spatial information is 

affecting visual working memory in spite of its irrelevance and in spite of 

participants’ explicit engagement with verbal working memory, theorized to be a 

different sub-system (see, e.g., Allen et al., 2015; Morey, 2018). This pattern of 

results suggests one of two things: (1) our minds are capable of recruiting visual 

and verbal working memory simultaneously, as needed, or (2) visual working 

memory is automatically engaged (at least when there is salient, even if task-

irrelevant, spatial information), and spatial structure boosts working memory even 

when participants are not explicitly relying on this information.  

Like ‘visuospatial bootstrapping’, the results here speak to communication 

between verbal and visual information systems; however, unlike visuospatial 

bootstrapping, here there are effects of short-term spatial mappings that are not 

stored in long-term memory (in contrast with ‘bootstrapping’ effects; see Darling 

et al., 2012). The relation between this these effects and visuospatial bootstrapping 

will be explored further in the following experiments. 
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4.4   Experiments 4.2a and 4.2b: Space vs. Color vs. 

Unstructured 

The previous results may be understood in one of several ways. For example, the 

results could be explained as a benefit of spatial structure or as a decrement of 

color structure for shape working memory. Alternatively, it could be that both 

spatial and color structure benefit working memory for shapes, but that spatial 

structure benefits working memory more. Here, I tested space and color structure 

vs. an unstructured baseline where both location and color were randomized.  

 

4.4.1   M ethod 

These experiments were identical to Experiment 4.1 except as noted. 12 

participants completed Experiment 4.2a in exchange for course credit; this sample 

size was chosen based on sub-sampling of data from Experiments 4.1a and 4.1b 

and was pre-registered. However, anonymous reviewers raised concerns about the 

small sample size of Experiment 4.2a. As such, in Experiment 4.2b, I collected 

usable data from 158 participants via Amazon Mechanical Turk to reach the 

desired pre-registered sample size of 120 participants who met all of the inclusion 

criteria; an additional 19 participants were excluded for failing an attention check 

or failing to complete the correct number of trials (see below). Unlike Experiments 

4.1a and 4.1b, these experiments included a third condition, in which both space 

and color were unstructured. As a result, Experiment 4.2a had 54 trials, 18 trials 

(3 difficulties [5, 6, or 7 shapes] × 6 unique trials) in each block. Experiment 4.2b 

had exactly half that many trials, to accommodate constraints imposed by the 

online format of the task. In Experiment 4.2b, the shapes appeared for 500ms, with 

1000ms between presentations. 
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For the online experiment (4.2b), filters and checks were included to ensure 

high-quality data. At the outset, participants were eligible to complete the task if 

they (a) had an approval rate on Mechanical Turk greater than 98%, (b) lived in 

the United States, and (c) had completed at least 500 tasks. Participants were 

excluded prior to data analysis based on an attention check at the end of the task, 

in which participants were asked which shapes they saw (of 6 options). They had 

to select all that applied. Participants were excluded if they missed two or more 

items. Participants were also excluded if they failed to complete the task correctly 

(i.e., if they did not finish, or if they restarted partway through). The pre-registered 

analysis plan also stated that I would analyze the data before and after excluding 

participants with at least 50% accuracy overall; this was to ensure that there was 

a high-powered sample with performance comparable to what was observed in a 

laboratory setting.  

 

4.4.2   Results & Discussion 

Results from Experiment 4.2a can be seen in Figure 4.3 (panels A & B). Accuracy 

was generally higher for space-structured trials (M=.88, SD=.09) compared to 

color-structured trials (M=.80, SD=.14) and unstructured trials (M=.77, SD=.15). 

Indeed, a repeated measures ANOVA revealed a main effect of set size 

(F[2,22]=4.60, p=.02, ηp2=.30), a main effect of trial type (F[2,22]=8.15, p=.002, 

ηp2=.43), and no interaction between the two (F[4,44]=1.80, p=.15, ηp2=.14). Post-

hoc tests confirmed that accuracy was higher for space-structured trials than both 

color-structured trials (t[11]=2.40, p=.04, d=.69, BF=2.16) and unstructured trials 

(t[11]=3.93, p=.002, d=1.13, BF=19.43), whereas color-structured trials and 

unstructured trials did not differ (t[11]=1.43, p=.18, d=.41, BF=.65). Of the 12 
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participants, 11 explicitly indicated the use of a verbal rehearsal strategy, whereas 

only 1 observer indicated the use of a spatial strategy. 

Results from Experiment 4.2b can be seen in Figure 4.3 (panels C & D; results 

shown are from the final sample of 120 participants, after exclusion based on 

accuracy). Per the pre-registered analysis plan, I separately analyzed the data 

including and excluding participants with overall task accuracy greater than 50%; 

this was to account for the fact that Amazon Mechanical Turk pilot data revealed 

worse overall performance than the in-lab sample. First, I report analyses on the 

set of 158 participants who passed the attention checks, prior to the accuracy 

exclusion. Accuracy was generally higher for space-structured trials (M=.70, 

SD=.21) compared to color-structured trials (M=.66, SD=.21) and unstructured 

trials (M=.67, SD=.20). A repeated measures ANOVA revealed a main effect of 

set size (F[2,314]=45.00, p<.001, ηp
2=.22), a main effect of trial type 

(F[2,314]=6.64, p=.002, ηp2=.04), and no interaction between the two 

(F[4,628]=2.34, p=.05, ηp2=.02). Replicating Experiment 4.2a, post-hoc tests 

confirmed that accuracy was higher for space-structured trials than both color-

structured trials (t[157]=3.80, p<.001, d=.30, BF=77.66) and unstructured trials 

(t[157]=2.43, p=.016, d=.19, BF=1.55), whereas color-structured trials and 

unstructured trials did not differ (t[157]=.89, p=.38, d=.07, BF=.13).  

Next, I report analyses for the final set of 120 participants who met the accuracy 

inclusion criteria (>50%). Accuracy was generally higher for space-structured trials 

(M=.80, SD=.14) compared to color-structured trials (M=.76, SD=.15) and 

unstructured trials (M=.76, SD=.14). A repeated measures ANOVA revealed a 

main effect of set size (F[2,238]=68.91, p<.001, ηp2=.37), a main effect of trial type 

(F[2,238]=6.58, p=.002, ηp2=.05), and no interaction between the two 

(F[4,476]=1.37, p=.24, ηp2=.011). Again, post-hoc tests confirmed that accuracy 
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was higher for space-structured trials than both color-structured trials (t[119]=3.53, 

p<.001, d=.32, BF=33.13) and unstructured trials (t[119]=2.79, p=.006, d=.25, 

BF=4.02), whereas color-structured trials and unstructured trials did not differ 

(t[119]=.39, p=.70, d=.04, BF=.11). Online participants were not asked about their 

strategies in the task. 

These experiments provide converging evidence with Experiment 4.1 that 

spatial structure benefits working memory. Here, these results clarify what kinds 

of structure matter. For example, it could have been the case that both space-

structure and color-structure improve shape working memory but that space-

structure does so to a larger extent. Alternatively, it could have been that space-

structure does not benefit shape working memory, but that color-structure 

somehow interferes with shape working memory. However, it seems that neither of 

these accounts are true. Instead, spatial structure benefits working memory whereas 

there is no evidence of a color-structure benefit: although performance in the color-

structure condition was numerically higher than the unstructured condition in 

Experiment 4.2a, it was actually lower in Experiment 4.2b (which had a sample 

size 10 times greater). This coheres with other working suggesting a privileged 

status of spatial information in working memory (e.g., Pertzov & Husain, 2014). 

 

4.5   Experiment 4.3: Space vs. Sound vs. 

Unstructured 

The previous results establish that spatial structure benefits working memory — 

but is space special? One possibility is that many kinds of structure (i.e., repetition) 

benefit working memory, and that color simply isn’t a salient or valuable kind of 

structure. Here, I compared spatial structure to audio structure. In other words, 
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the relevant block featured ‘audio-structured’ trials in which any repeating shape 

was paired with the same tone each time. Is there still a greater benefit to spatial 

structure? 

 

4.5.1   M ethod 

This experiment was identical to Experiment 4.2 except as noted. 18 participants 

completed this experiment in exchange for course credit. This sample size was pre-

registered and was chosen to be approximately identical to Experiment 4.1b (but 

rounded to a different number to account for a difference in the number of 

conditions). Instead of a color-structured condition, there was an audio-structure 

condition in which each shape was paired with a tone of a specific note. To match 

the number of locations, there were four possible notes: ‘A’, ‘C’, ‘E’, or ‘G’. 

Matching Experiment 4.2a, there were 54 trials, 18 trials (3 difficulties [5, 6, or 7 

shapes] × 6 unique trials) in each block. Due to the difficulty of administering audio 

experiments online (e.g., an inability to ensure that participants have their audio 

turned on, etc.), an online replication was not conducted. 

 

4.5.2   Results & Discussion 

Results from Experiment 4.3 can be seen in Figure 4.3 (panels E & F). As is evident 

from the figure, accuracy was generally higher for space-structured trials (M=.84, 

SD=.08) compared to audio-structured trials (M=.79, SD=.12) and unstructured 

trials (M=.80, SD=.12). Indeed, a repeated measures ANOVA revealed a main 

effect of set size (F[2,34]=18.89, p<.001, ηp2=.53), a main effect of trial type 

(F[2,34]=3.47, p=.04, ηp2=.17), and no interaction between the two (F[4,68]=2.46, 

p=.05, ηp2=.13). Post-hoc tests confirmed that accuracy was higher for space-
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structured trials than both audio-structured trials (t[17]=2.81, p=.01, d=.66, 

BF=4.49) and unstructured trials (t[17]=2.28, p=.04, d=.54, BF=1.89), whereas 

audio-structured trials and unstructured trials did not differ (t[17]=.35, p=.73, 

d=.08, BF=.26). I also coded participants’ responses during debriefing to identify 

whether they spontaneously identified either a verbal rehearsal or spatial strategy. 

Of the 18 participants, 16 explicitly indicated the use of a verbal rehearsal strategy, 

whereas none indicated the use of a spatial strategy.  

This experiment provides converging evidence with Experiments 4.1 and 4.2 

that spatial structure selectively benefits spatial working memory and further 

demonstrates that this benefit of structure is unique: neither equivalent color 

structure nor audio structure yielded similar benefits. Note that some other 

paradigms, such as those used in ‘visuospatial bootstrapping’ experiments (see 

Darling et al., 2017), are not readily adaptable to comparing spatial structure with 

other kinds of structure. In this way, the present set of studies are an extension of 

that research program. For example, this clarifies that the ‘visuospatial’ aspect of 

visuospatial bootstrapping is uniquely important because there seems to be no 

evidence for an effect of ‘audio’ bootstrapping. Prior work supporting the ‘spatial 

interference’ view also employed primarily visual controls; in this way, the audio 

control of this experiment extends that research program, as well, by showing that 

spatial information is uniquely beneficial in working memory, not just compared to 

other visual cues, but compared to information in other modalities. Finally, this 

control is an especially strong one. Prior work has shown that tones can themselves 

be spatialized (Lidji et al., 2007); therefore, one may have expected audio structure 

to be more useful than color structure. Nevertheless, spatial structure is unique: 

audio structure did not improve retention in working memory. 
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4.6   Experiment 4.4: What structure matters? 

Experiments 4.1-3 demonstrate a benefit of short-term spatial, but not color or 

audio, structure on working memory. But why? In previous work investigating the 

role of space in working memory, spatial overlap often results in memory 

interference (Pertzov & Husain, 2014; Treisman & Zhang, 2006). In other words, 

items appearing in the same location were remembered worse than items that 

appeared in different locations (but had some other overlapping feature, like color). 

However, many previous paradigms were unable to decouple spatial interference 

from spatial structure. The present paradigm has several features that enable 

decoupling. (1) Participants remember sequences comprised of a small set of 

recurring items, and (2) These items belong to distinct categories (as opposed to 

something like oriented lines). So, here I asked: is the effect of spatial structure 

caused by the presence of structure (i.e., the fact that any given object appears in 

a consistent location) or the absence of overlap (i.e., the fact that no two objects 

appear in the same location)?  

To test this difference, I created two opposing conditions — an ‘overlapping’ 

condition in which different items (e.g., circle and pentagon) always appear in 

consistent locations but may overlap with each other, and a ‘separate’ condition in 

which different items may appear in multiple locations but will never overlap with 

each other (see Figure 4.4, panels A & B). According to interference accounts, 

memory performance should be higher in the separate condition; although shapes 

appear in many unique locations, no two shapes ever overlap with one another (and 

thus never interfere with each other). Alternatively, the opposite might be true: 

the presence of structure might drive memory performance, and what matters is 

not whether items overlap with each other, but whether they are consistent with 

themselves (i.e., whether the circles always appear in one location, regardless of 
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where the other shapes appear). This pattern of results may would be more 

consistent with visuospatial bootstrapping, although such studies have never tested 

different items overlapping in one location.  

 

4.6.1   M ethod 

This experiment was identical to Experiment 4.2 except as noted. 18 participants 

completed this experiment in exchange for course credit. The color-structured and 

space-structured conditions were replaced with two new conditions. In a ‘separate’ 

condition, shapes could appear in any location, but no two unique shapes ever 

appeared in the same location (on a given trial). Although the locations were 

partially constrained by the shapes, there was no ‘spatial structure’ because the 

shapes did not appear in stable locations across presentations. Conversely, in an 

‘overlapping’ condition, each shape always appeared in the same location, and two 

of the three shapes always overlapped with each other. To maximize the difference 

between the ‘separate’ and ‘overlapping’ conditions, the display was altered so that 

there were 6 locations (black squares) instead of 4. They were arranged in a 

hexagonal structure, all roughly 10.23° from the center of the screen. To account 

for the two new locations, there were two new colors: the default ‘purple’ and 

‘orange’ in PsychoPy.  

 

4.6.2   Results & Discussion 

Results from Experiment 4.4 can be seen in Figure 4.4. As is evident from the 

figure, accuracy was generally slightly higher for ‘overlapping’ trials (M=.85, 

SD=.06) compared to both ‘separate’ trials (M=.80, SD=.10) and unstructured 

trials (M=.80, SD=.10). A repeated measures ANOVA revealed a main effect of 
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set size (F[2,34]=22.56, p<.001, ηp2=.57), a main effect of trial type (F[2,34]=4.46, 

p=.02, ηp2=.21), and no interaction between the two (F[4,68]=.04, p=.99, 

ηp2=.003). Post-hoc tests confirmed that accuracy was higher for ‘overlapping’ 

trials than both ‘separate’ trials (t[17]=2.25, p=.038, d=.53, BF=1.80) and 

unstructured trials (t[17]=3.11, p=.006, d=.73, BF=7.73), but no difference 

between ‘separate’ and unstructured trials (t[17]=.22, p=.83, d=.05, BF=.25). 

Similar to the previous experiments, most of the participants (15/18) explicitly 

reported a verbal rehearsal strategy, and no participants explicitly reported a 

spatial strategy.  

In the previous experiments, there was a robust effect of spatial structure (as 

compared to color structure, audio structure, and no structure). Here, I asked what 

kind of structure matters. Specifically, I asked whether the effects of spatial 

structure were caused by the presence of structure (as in the ‘overlapping’ 

condition) or the absence of overlap (as in the ‘separate’ condition). I found that 

performance was better in the ‘overlapping’ condition, suggesting that the benefit 

seen in prior experiments may have been due to the presence of structure rather 

than the absence of overlap. 

The findings in this experiment are different from both ‘spatial interference’ 

and ‘visuospatial bootstrapping’ effects. For example, the spatial interference 

account predicts that objects overlapping in space should lead to memory 

impairments; however, this is not what was observed. Exactly the opposite, these 

results show that the condition in which shapes overlapped had the best memory 

performance. Similarly, visuospatial bootstrapping makes no specific predictions 

about what should be expected in the overlapping vs. separate conditions. The 

predictions of this view depend on what is being bootstrapped, and what it is being 

bootstrapped to. One possible prediction could have been that each shape needs to 
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be bootstrapped to a single, unique location. In this case, one may have predicted 

equal performance across all three conditions (because in the overlapping condition, 

multiple shapes are bound to the same location, and in the separate condition, 

individual shapes are bound to multiple locations). However, this is not what is 

observed. Instead, the present results clarify the process of visuospatial 

bootstrapping: memory benefits from binding information to specific locations, but 

not necessarily to unique locations. 

However, the key difference in this experiment (between the overlapping vs. 

separate conditions) could be explained by a difference in the number of locations 

used across conditions. Notably, the ‘overlapping’ condition only ever utilized 2 of 

the 6 locations, whereas the ‘separate’ condition could have utilized up to 6 

locations. Thus, the effect of spatial structure could be explained by attention to 

that structure (i.e., participants can focus on a subset of locations in the 

‘overlapping’ condition, thus reducing attentional demands), rather than the 

underlying structure per se. Regardless of the underlying mechanism, these results 

run counter to predictions of interference accounts (e.g., Pertzov & Husain, 2014) 

and are unexplained by accounts that emphasize long-term spatial associations (as 

in visuospatial bootstrapping, e.g., Darling et al., 2017; see also Darling et al., 

2020). Future work could adopt a similar approach to the one taken here so as to 

further probe the inference account and better understand the scope of visuospatial 

bootstrapping.  

 

 

 



88 

 

4.7   Exp 4.5: How robust is the effect of spatial 

structure? 

Experiment 4.4 address two different kinds of spatial structure. However, one key 

difference between conditions was the number of locations participants had to 

attend to: in the ‘overlapping’ condition, in which accuracy was highest, 

participants had to attend to only 2 of the 6 locations, whereas in the ‘separate’ 

condition, they had to attend to all of the possible locations. The same is true, 

though to a lesser degree, of the previous experiments. Given the nature of the 

spatial structure manipulation, participants noticing the structure could realize 

they need only to attend to 3 of the 4 locations. It is possible that this enhanced 

attention to 3 of the 4 locations explains the effect of spatial structure observed so 

far. Here, I address this possibility (as well as other methodological details) to 

provide a stronger test of the ‘spatial structure’ account. I make three key changes 

to the task: (1) the number of locations and colors was reduced to 3, to match the 

number of shapes; (2) the first three items on each trial always had a unique color, 

unique location, and a unique shape (previously, only the shapes had to be unique, 

except in the space-structured and color-structured conditions in which location 

and color would also be unique); and (3) the locations were arranged in a line, 

rather than in a grid format (to account for the fact that spatial information 

contained two dimensions, perhaps providing an advantage over the other 

information types).  

If the previously observed effects in the space-structured conditions were caused 

by one or more of these three factors, then we should not expect to observe an 

effect of spatial structure here. Similarly, if the lack of effects in the color structure 

conditions were caused by the lack of these advantages (i.e., the predictability of 
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the first few items, or the fewer locations one needed to attend to), then we should 

expect to observe an effect of color structure.  

 

4.7.1   M ethod 

This experiment was identical to Experiment 4.2b except as noted. Usable data 

was collected from 158 participants via Amazon Mechanical Turk (to reach the 

desired pre-registered sample size of 120 participants who met all of the inclusion 

criteria); another 63 participants were excluded for failing an attention check or 

failing to complete correct number of task trials. Note: the majority of these 

exclusions came from participants who completed extra trials, ostensibly because 

they refreshed the task halfway through. Because there is not a way to know why 

they refreshed the task, all such participants are excluded. There were three key 

changes to the task, detailed below. All three of these changes were made to better 

equate the information presented across conditions.  

First, the number of locations and colors was reduced to 3, to match the number 

of shapes. This means that, across all three conditions, participants would now only 

have to attend to 3 locations. Previously this was not the case. In the space-

structured conditions, participants would have to attend to only 3 locations, 

whereas in the color-structured and unstructured conditions, participants would 

have to attend to up to 4 locations.  

Second, the first three items on each trial always had a unique color, unique 

location, and a unique shape. Previously this was not the case. In Experiments 4.2a 

and 4.2b, the first three shapes were always unique, but the first three 

colors/locations differed across conditions. In the space-structured condition, for 

example, the first three locations would be unique, but the first three colors would 

be random (and could include repeats). The opposite was true for the color-
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structured condition. However, this meant that certain items appeared in slightly 

more predictable locations. Consider a trial in the space-structured condition. If a 

shape appeared in Location #1, the participant would then know that they need 

only to attend to Locations #2, #3, and #4 to see where the next shape will 

appear. If the second shape appeared in Location #2, then the participant would 

know that they need only to attend to Locations #3 and #4 to see where the third 

shape will appear. By contrast, in the color-structured condition, any object could 

appear at any location at any time. By ensuring that shape, location, and color 

were unique for the first three items, the location of each shape was equally 

predictable across conditions. However, this also means that space and color 

structure were partially confounded (because the first three items are always 

‘structured’), meaning that we may expect reduced effects overall.  

Third, the three targets were arranged in a line, rather than in a grid format. 

This is to account for the fact that the spatial information contained two-

dimensions, whereas the color information did not.  

 

4.7.2   Results & Discussion 

Results from Experiment 4.5 can be seen in Figure 4.5 (results shown are from the 

final sample of 120 participants, after exclusion based on accuracy). Per the pre-

registered analysis plan, I separately analyzed the data including and excluding 

participants with accuracy greater than 50%; this was to address the fact that 

Amazon Mechanical Turk pilot data revealed worse overall performance than the 

in-lab sample. First, I report analyses on the set of 158 participants who passed 

the attention checks and completed the correct number of trials prior to the 

accuracy exclusion. Accuracy was generally higher for space-structured trials 
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(M=.69, SD=.21) compared to color-structured trials (M=.67, SD=.21) and 

unstructured trials (M=.65, SD=.22). A repeated measures ANOVA revealed a 

main effect of set size (F[2,314]=41.99, p<.001, ηp2=.02), a main effect of trial type 

(F[2,314]=5.00, p=.007, ηp2=.003), and no interaction between the two 

(F[4,628]=.54, p=.71, ηp2<.001). Post-hoc tests confirmed that accuracy was higher 

for space-structured trials than unstructured trials (t[157]=3.14, p=.002, d=.25, 

BF=9.70). However, space-structured trials and color-structured trials 

(t[157]=1.51, p=.13, d=.12, BF=.27) as well as color-structured trials and 

unstructured trials (t[157]=1.67, p=.10, d=.13, BF=.34) did not differ.  

Next, I report analyses for the final set of 120 participants who met the accuracy 

inclusion criteria (>50%). Accuracy was generally higher for space-structured trials 

(M=.78, SD=.14) compared to color-structured trials (M=.76, SD=.14) and 

unstructured trials (M=.74, SD=.17). A repeated measures ANOVA revealed a 

main effect of set size (F[2,238]=42.98, p<.001, ηp2=.27), a main effect of trial type 

(F[2,238]=3.76, p=.025, ηp2=.03), and no interaction between the two 

(F[4,476]=.59, p=.67, ηp2=.005). Post-hoc tests confirmed that accuracy was higher 

for space-structured trials than unstructured trials (t[119]=2.76, p=.007, d=.25, 

BF=3.78), however space-structured trials and color-structured trials (t[119]=1.07, 

p=.29, d=.10, BF=.18) as well as color-structured trials and unstructured trials 

(t[119]=1.63, p=.11, d=.15, BF=.37) did not differ. Thus, Bayes factors provided 

substantial evidence in favor of the alternative hypothesis for the space-structured 

vs. unstructured contrast, substantial evidence in favor of the null hypothesis for 

the space-structured vs. color-structured contrast, and moderate evidence in favor 

of the null hypothesis for the color-structured vs. unstructured contrast. Online 

participants were not asked about their strategies. 
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This experiment was designed to provide a strong test of the spatial structure 

account, by equating the information presented across conditions as much as 

possible. Despite this, there is nevertheless a robust effect of spatial structure, but 

no corresponding effect of color structure. 

Interestingly, the spatial-structure and color-structure conditions did not differ 

from one another. There are two ways to interpret this null effect. First, color 

structure does benefit working memory performance, despite the null effect in 

Experiments 4.2a, 4.2b, and here, and that this study underpowered to detect such 

an effect. Yet this experiment and Experiment 4.2b have a combined 316 

participants, and there was no reliable effect. This would be extremely unlikely if 

color-structure had a true effect. Second, color structure does not benefit working 

memory performance, but performance in the Experiment 4.5 color-structured 

condition benefits from the spatial structure of the first three items. One of the key 

changes made in this experiment, in contrast with Experiments 4.2a and 4.2b, was 

the fact that the first three items always have a unique color and location. In this 

way, there will be a non-trivial number of trials in the color-structured condition, 

which have spatial structure (because, by random chance, shapes later in the 

sequence may appear in their initial locations; this will be more likely for the lower 

set sizes).  This could cause smaller differences between conditions overall 

(compared to Experiment 4.2b). Note, however, that Experiments 4.2a and 4.2b 

were explicitly designed to better de-confound these conditions. In those cases, 

effects between conditions were much larger. Looking ahead, future work can 

independently test the effect of each factor (the number of spatial dimensions, the 

number of possible locations, the predictability of each item’s location) on working 

memory maintenance.   
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4.8   General Discussion 

These experiments investigated the interactions between spatial and verbal 

information in working memory, as well as the specific role of spatial information 

in working memory. Across all seven experiments, ‘spatial structure’ improved 

memory. This enhancement was true both when participants were cued to this 

structure (Experiment 4.1a) and when they were not (Experiment 4.1b, 4.2a, 4.2b, 

and 4.5). The benefit of space is unique (compared to other visual features, like 

color, and also auditory features, like tones; Experiment 4.3). Further, these effects 

may be best understood as caused by the presence of structure, rather than an 

absence of overlap (Experiment 4.4). Finally, these effects are generally robust to 

various changes in the experimental design (Experiment 4.5).  

All told, these data inform several aspects of working memory. First, these 

experiments illustrate that although people seem to have the default tendency to 

explicitly engage in verbal rehearsal (i.e., 83% of participants who were queried 

reported a rehearsal strategy), they nevertheless benefit from spatial structure; this 

may be seen as broadly consistent with the fact that visuospatial bootstrapping 

also does not depend on ‘executive resources’ (Calia et al., 2019). Second, these 

experiments support the view that visuospatial and verbal information interact to 

facilitate memory. Despite the irrelevance of spatial information, it influenced 

memory (as in visuospatial bootstrapping; Darling et al., 2017). In this way, these 

findings also constrain working memory models. For example, they are potentially 

at odds with the view that working memory is supported by two independent 

subsystems for verbal and visual working memory (e.g., Baddeley, 1992). Third, 

these experiments show that space is special compared to seemingly equivalent 

visual features, like color (see also Pertzov & Husain, 2014), and also compared to 
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equivalent non-visual features, like auditory tones. Fourth, these experiments shed 

light on how space influences memory. Whereas previous work emphasized either 

‘spatial interference’ and the role that space plays in binding features to objects 

(Pertzov & Husain, 2014; Treisman & Zhang, 2006), or ‘visuospatial bootstrapping’ 

and the way that spatial information facilitates memory (Darling et al., 2017), the 

present work asks specifically about spatial structure. Here, the presence of spatial 

structure, not the absence of overlap, influences working memory (seemingly in 

contrast with prior accounts). The results presented here are not mutually exclusive 

with either spatial interference accounts or visuospatial bootstrapping, but they do 

present some conflicting results. For example, an interference account should 

predict that memory performance in the two key conditions in Experiment 4.4 

(separate vs. overlapping) was equal, yet that is not what was observed; clearly the 

absence of overlap alone is not all that influences memory. In contrast, the data 

here imply that stability (or, structure) benefits working memory, regardless of 

overlap. Furthermore, visuospatial bootstrapping has been said to depend on 

associations in long-term memory (Darling et al., 2012; but see Darling et al., 2020); 

however, the present effects could be seen as effects of visuospatial bootstrapping 

that do not depend on long-term spatial associations. The findings in prior work 

may not be because bootstrapping depends on long-term associations, but rather 

than long-term associations interfered with the ability to make new associations 

over that same configuration (as when rearranging a keypad, for instance; Darling 

et al., 2012).  

There is one key difference between this account and a spatial interference 

account. In Experiment 4.4, items overlapping with one another (in the 

‘overlapping’ condition) are better remembered than items that never overlap (in 

the ‘separate’ condition). At first blush, these results seem directly at odds with a 
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spatial interference account.   Consider, for example, the view that features are 

bound to objects via space (e.g., Treisman & Zhang, 2006). What should be made 

of better memory for overlapping objects? Perhaps both accounts are correct and 

the ‘interference’ predicted in this task does not involve the shapes themselves but 

instead involves the binding of color and shape. For example, if there had been a 

separate measure of color memory performance, participants would have worse 

color memory (but better shape memory) in the overlapping condition. Yet even if 

that were true, a spatial interference account would not necessarily predict better 

memory for shapes in the overlapping condition. In this way, some of the results 

presented here highlight gaps in our understanding of classic location binding 

results (see also Pertzov & Husain, 2014; Rajsic & Wilson, 2014) — raising 

questions about the underlying mechanisms of feature binding and motivating 

future work.  

Another possibility is that these results do not contradict the basic idea of 

spatial interference, but instead speak to many different kinds of possible 

interference. Various types of interference have been conceptualized, each with 

unique consequences. For example, interference by feature overwriting predicts that 

similar items are more likely to interfere with one another, whereas interference by 

superposition predicts that different items are more likely to interfere with one 

another (Oberauer et al., 2016). In other words, it is possible that the seemingly 

different patterns of results observed in these studies compared to previous 

interference studies may come down to the details of the stimuli themselves. For 

example, maybe “circle” and “pentagon” are more similar to the mind than “blue” 

and “green”, resulting in less interference for shape than color. This highly 

speculative possibility can be addressed by future work quantifying the relative 

similarity of different stimuli.   
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These results are generally more consistent with the idea of visuospatial 

bootstrapping (Darling & Havelka, 2010), although with a few key differences. 

First, unlike classic bootstrapping designs, the patterns here do not depend on long-

term spatial mappings; the ‘spatial structure’ defined here is confined to, at most, 

a ~10s trial (but see Darling et al., 2020). Second, here there are test cases where 

items not only possess stable spatial mappings, but also share stable spatial 

mappings with other objects (Experiment 4.4). While these results are not 

necessarily at odds with visuospatial bootstrapping, they provide unique insight 

not obvious in the canonical bootstrapping designs. Third, whereas visuospatial 

bootstrapping studies often focus on a contrast between spatial structure vs. no 

structure, these studies compare spatial structure to two other forms of structure 

(color structure and audio structure). In so doing, it is clear that the effect of 

spatial structure is highly specific. Concretely, this means that the term 

‘visuospatial bootstrapping’ may be an apt name; these results demonstrate, e.g., 

that visual information alone (in the form of color information) does not result in 

the same form of bootstrapping. Finally, the results show that the notion of ‘spatial 

structure’ (whether in the form of visuospatial bootstrapping, or otherwise) is 

highly robust: the key effect is replicated seven separate times, after numerous 

critical manipulations to the basic paradigm. 

 

 

4.8.1   Possible Explanations 

Three possible explanations for these data come to mind. The first is simplicity: 

perhaps performance in the space-structured condition was better than 

performance in the unstructured and color-structured condition because the task 
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was easier. One may note, for example, that in Experiments 4.1-3, all four of the 

locations were never used in a single space-structured trial (because there were 

fewer shapes than locations), whereas all four locations could potentially be engaged 

in a single color-structured or unstructured trial (because no constraints were 

imposed on spatial location). However, Experiment 4.5 rules out this possibility: 

when the number of shapes and locations was equated, such that it all three 

conditions participants would always have to attend to all of the visible locations, 

there was nevertheless a benefit of spatial structure relative to no structure. 

Although questions remain about how exactly spatial structure benefits working 

memory, Experiment 4.5 demonstrates that the primary result reported here (a 

difference between spatial structure and no structure) cannot be explained solely 

by a difference in the number of locations. 

The second possible explanation is predictability: could these results be 

explained by some difference in the predictability of the sequences? One may note, 

for example, that the location of the second and third shapes in the space-

structured conditions were partially predictable; if spatial information is structured, 

and participants are aware of that structure, then they know that the second and 

third shapes cannot appear where the prior shapes had. Although this possibility 

cannot be ruled out for the earlier experiments, Experiment 4.5 was specifically 

designed to equate predictability. There, the second and third items were equally 

predictable across conditions; nevertheless, there is a benefit of spatial structure 

relative to no structure.  

The third possible explanation is eye movements. In this task, participants are 

free to move their eyes around the screen as they wish. Spatial location per se 

might not influence working memory but instead eye movements may lead directly 

to differential encoding. Indeed, eye movements do influence working memory, at 
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least at retrieval (e.g., Awh et al., 1998; Theeuwes et al., 2009). Yet, even 

controlling eye gaze (and thus overt shifts of attention) by having subjects fixate 

would not rule out the possibility that covert shifts of spatial attention nevertheless 

could explain the present results. Thus, future work might characterize the effect 

of eye movements on the benefits of spatial structure for working memory 

maintenance.  

 

4.8.2   Conclusion 

Space may be foundational to working memory: not only does spatial structure 

benefit working memory, it does so even when that information is task-irrelevant, 

and even when participants rely on distinctly non-spatial strategies (e.g., verbal 

rehearsal). Further, spatial structure seems unique in its influence; neither non-

spatial visual structure (color) nor non-visual auditory structure benefitted 

memory, even compared to an unstructured baseline. These results raise questions 

about the nature of working memory, its subsystems, and their interactions, whilst 

emphasizing the importance of spatial structure in working memory. 
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Figure 4.1. Schematic of the trial structure and three unique trial types. Shapes appeared 

one at a time with a brief ISI between shapes. (A) An example of a ‘space-structured’ trial. 

In this example, circles always appear in the top right corner, but their color is random. 

This condition was used for Experiments 4.1-3 and Experiment 4.5. (B) An example of a 

‘color-structured’ trial. In this example, circles always appear in blue, but their location is 

random. This condition was used for Experiments 4.1-3 and Experiment 4.5. (C) An 

example of an unstructured trial. In this example, both colors and locations are random. 

This condition was used in Experiments 4.2-3 and Experiment 4.5.  
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Figure 4.2. Results from Experiment 4.1a (A & B) and 4.1b (C & D). On the left (A & 

C) average accuracy is broken down set size and by condition. On the right (B & D), 

difference scores are shown between the space-structured and color-structured condition 

for each participant. The number of participants showing the predicted effect are shown 

within each figure. Error bars represent +/- 1 standard error. 
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Figure 4.3. Results from Experiment 4.2a (A & B), Experiment 4.2b (C & D), and 

Experiment 4.3 (E & F). On the left (A & C & E) average accuracy is broken down by 

set size and by condition. On the right (B & D & F), difference scores are shown between 

the two most relevant conditions. The number of participants showing the predicted effect 

are shown within each figure. Error bars represent +/- 1 standard error. 
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Figure 4.4. Schematic and results from Experiment 4.4. (A) A depiction of a ‘separate’ 

trial. In this example, each shape appears in different locations, but no two shapes ever 

overlap with one another. (B) A depiction of an overlapping trial. In this example, all 

shapes appear in the same locations each time they appear, but the circle and pentagon 

appear in the same location. (C) Average accuracy is broken down by set size and by 

condition. (D) Difference scores are shown between the two most relevant conditions. The 

number of participants showing the predicted effect are shown within the figure. Error 

bars represent +/- 1 standard error. 
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Figure 4.5. Schematic and results from Experiment 4.5. (A) A depiction of a space-

structured trial. (B) A depiction of a color-structured trial. Here, unlike previous 

experiments, there were only three locations, and those three locations appeared in a line. 

Note that locations are randomized in the color-structured condition and colors in the 

space-structured condition are randomized, such that it is possible for items to repeat in 

the same location/color. (C) Average accuracy is broken down by set size and by condition. 

(D) Difference scores are shown between the space and unstructured conditions. The 

number of participants showing the predicted effect are shown within the figure. Error 

bars represent +/- 1 standard error. 
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Chapter 5 

  

Discussion 

 

This chapter contains text and/or materials from the following publications: 

 

Yousif, S. R. (In press). Redundancy and reducibility in the formats of spatial 

representations. Perspectives on Psychological Science.  
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5.1   What does format buy us?  

In this thesis, I have emphasized the notion of ‘format’. But what do we need this 

notion for? Perhaps our goal should only be to describe behavior, without worrying 

about these ephemeral, theoretical constructs.  

Discovering ‘format’, however, is not just a minor curiosity. Fundamentally, as 

cognitive scientists, our goal is to understand how the activity of neurons in the 

brain could possibly lead to complex behavior. No matter what models of the mind 

one favors, there is a simple fact that at some point between brain and behavior 

information must be represented in a specific way. If we want to understand that 

link, we must understand how that information is being represented. That is why 

we must think explicitly about format.  

Concretely, we also need to understand spatial representation across modalities 

and domains. Often, those who study the format of visuospatial representations are 

siloed from those who study the format of motor representations, for example. 

Sometimes, however, we may want to understand whether the mind solves spatial 

tasks like these in general ways or not. Do we rely on similar coordinates across 

modalities, for example? Thinking about ‘format’ can help us to understand how 

the pieces of the mind interact; we can test whether similar ‘formats’ underlie 

behavior in different modalities.  

We must also acknowledge that we are in the midst of a revolution: neuroscience 

is the future of our field. The answers to many of the questions we most care about 

at the end of the day are, ultimately, only going to be answered through 

neuroscience. But this does not mean that we should throw our hands in the air 

and become neuroscientists. Quite the opposite: I’d argue that the neuroscientists 

are going to need a lot of help knowing what they ought to look for in the first 

place.  
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Some of the greatest advancements in neuroscience in the past two decades 

have actually been about the very topic of this dissertation: spatial representations. 

Grid cells and place cells and head directions cells offer a glimpse at how complex 

behavior can be implemented at the level of neurons. The description of these cells 

is a triumph of human discovery — quite literally a Nobel-prize-winning 

achievement. Yet understanding grid cells and place cells alone will not bridge the 

brain-behavior gap. We know, from much of the work presented and discussed in 

this thesis, that there are other forms of spatial representations in the mind that 

are not straightforwardly captured by grid and place cells; they may be part of the 

answer, but they are not the answer.  

The same is true when we think of other spatial properties like size and shape. 

Surely we want to understand how these properties are represented in the brain, 

but it may be vital that we first understand how they are formatted in the mind. 

If we went off searching for representations of ‘true area’ only to later find that 

‘true area’ is not represented in the mind at all — well, that would be a bit 

disappointing. Instead, by thinking about format, by searching for format first, we 

may have a better chance at discovering the truth.   

I will briefly comment on a few other matters relevant to this discussion of 

‘format’. 

   

5.2   Other spatial formats 

In this thesis, I have discussed the ‘formats’ of two spatial properties: location and 

size. However, these are not the only spatial properties for which we may think 

about ‘format’. The notion that the mind represents information in discernible 

formats — and may utilize multiple, ‘redundant’ formats — applies as well to 

spatial properties like shape orientation.  
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For example, work in vision science has tried to identify the format of shape 

representations that support object recognition (e.g., Biederman, 1987; Biederman 

& Bar, 1999, Kanizsa, 1976; Leyton, 1989). Inspired by work in computer vision 

(e.g., Liu & Gieger, 1999; Shokoufandeh et al., 2005; see also Blum, 1973), it has 

been suggested that shapes in the human mind are represented as ‘shape skeletons’ 

via the medial axis (which describes the set of all points within an object having 

two or more closest points along the perimeter of that object; see Psotka, 1978). 

Given the convergence of behavioral and neuroscientific evidence (see also 

Ayzenberg & Lourenco, 2019; Lowet et al., 2018), shape skeletons — and the medial 

axis in particular — provide one of the most robust examples of format in human 

cognition. 

Shape skeletons like medial axes are often compared to other models of shape 

representation, like principal axes (as in Ayzenberg et al., 2019; Firestone & Scholl, 

2014); indeed, medial axes often out-perform other possible formats. However, here 

we might fruitfully apply this notion that representations need not be reduced to 

a single format. There is, after all, work supporting the role of principal axes (Marr 

& Nishihara, 1978; Sturz, Boyer, Magnotti, & Bodily, 2017). As with location 

representations, it may be that the mind utilizes distinct formats in different ways 

depending on the task. For instance, it may be that the medial axis is used for 

object recognition, but that the principal axis is used to evaluate rough size (e.g., 

whether a certain piece of furniture will fit in a certain space).  

These same notion of redundant formats can be applied to the study of other 

spatial properties, like area (see Corbett & Oriet, 2011; Marchant et al., 2013; 

Raidvee et al., 2020; Solomon et al., 2011; Yousif, Aslin, & Keil, 2020; Yousif & 

Keil, 2019; Yousif & Keil, 2021a), volume (Bennette, Keil, & Yousif, 2021; Ekman 

& Junge, 1961; Teghtsoonian, 1965), and orientation (see Appelle, 1972; Li et al., 
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2003; Girschick et al., 2011; Henderson & Serences, 2021; Sadalla & Montello, 1989; 

Yousif, Chen, & Scholl, 2020). We can also think about how format translates 

across reference frames, or how reference frames themselves are formatted (see, e.g., 

Farah et al., 1990). In other words, there are lessons to be learned in this thesis 

about spatial representation in general that can be applied to other areas of study. 

 

5.3   Space as format 

The examples in this thesis so far fail to capture the full extent to which we depend 

on spatial representations. For example, our representations of number (e.g., Aulet 

et al., 2021; Dehaene et al., 1993) and time (e.g., Núñez & Cooperrider, 2013), and 

even social relations (e.g., Parkinson & Wheatley, 2013) may be fundamentally 

spatial. For that matter, virtually all information represented in working memory 

may be retained in a spatial way (e.g., van Dijck et al., 2014; van Dijck & Fias, 

2011; Yousif, Rosenberg, & Keil, 2021). Thus, we might say that the format of 

numerical representations (or social representations, or representations maintained 

in working memory) is (are) spatial, at least to some extent. And in each of these 

instances, a question arises about the format of the underlying spatial 

representations. Do we represent numbers in a Cartesian space? Do we represent 

social relationships in a polar-esque cognitive graph? Given that non-spatial 

knowledge may be represented in a spatial way, understanding the format — or 

formats — of spatial representation may help us to understand not only spatial 

representation, but all representation. 

 This point was recently articulated by Peer and colleagues (2020) who 

described how non-spatial information could be represented using either Euclidean 

or graph-like cognitive maps. They write, “...we may represent the people we know 

in terms of continuous variables such as various abilities that are naturally encoded 
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as a map-like attribute space... or we may represent them in terms of discrete 

relationships between individuals that are naturally encoded in graph-like formats 

(e.g., social networks or family trees)” (p. 48). Indeed, some work has shown that 

hippocampal cells responsible for spatial representation in rodents do encode other 

dimensions like time (e.g., MacDonald et al., 2011). Perhaps more interestingly, 

fMRI has revealed Cartesian-like structures for the representation of numerous 

stimulus dimensions, including some concrete features like visual size and opacity 

(Theves et al., 2019), as well as more abstract features like popularity and 

competence (Park et al., 2020). Nevertheless, there is no clear example of any 

abstract form of knowledge being represented in a graph-like or polar-esque way. 

 

5.4   On Euclid’s shoulders 

I do not know my earliest memory, but I do know my earliest dream. While taking 

a nap at my preschool, I had a dream that was nothing but numbers — large digits 

floating in an empty void. It started with the number “1”. Then, like a scroll wheel, 

the number “1” moved ‘up’ and the number “2” took its place. Then “3”, then “4”, 

and so on. When it got to “9”, that’s when things got tricky. What happens after 

“9”? (You’ll have to forgive me, I was three-, maybe four-years-old at the time.) In 

this dream, suddenly, something clicked: When the “9” ticks upwards, we start 

again: “10” is just a “0” with a “1” in front of it; “11” just a “1” plus something new. 

I realized, in this empty void of my mind, this most basic fact of our number 

system. It felt exhilarating. I do remember afterwards trying to explain to my 

mother what I had just discovered, but she was uninterested. I had, after all, 

previously known that “10” came after “9”. Although I had the capacity to come to 

understand the base-10 system on my own, I lacked the capacity to explain this 

realization. I must have sounded crazy. 
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In middle school and high school, I competed in dozens of math tournaments 

each year. I loved them. Competitive math tournaments in those early years are 

mostly geometry, or at least most problems can be solved with geometric solutions 

one way or another. That is where I thrived. The spatial nature of it all just clicked 

for me. It felt natural to me. Geometric solutions always felt unassailably true — 

simply elegant, elegantly simple.  

In 9th grade I took my first ‘formal’ geometry class, and I found it a bit 

disappointing. In our class, we were meant to spend the whole year on a geometry 

curriculum that students of competitive math tournaments would have mostly 

figured out on their own by that point. I explained to my teacher that the 

curriculum should be greatly accelerated, but she was unamused.  

Then my second year of college, a guest lecturer came to discuss her work on 

the ‘mental number lines’ of non-human primates. She described SNARC effects 

(e.g., Dehaene et al., 1993) to us, and how mental number lines differed across 

cultures, and how they were applying these paradigms to gorillas and orangutans 

(Gazes et al., 2017). And in that ordinary guest lecture, in some random class that 

I do not even remember, I felt the same extraordinary delight that I had when 

dreaming about numbers. This idea that numbers in my mind were spatial — an 

idea I had always believed — was real. Perhaps more importantly: the idea that 

the numbers in my mind were spatial was discernable. It is quite simple, actually. 

The basic design of a parity judgment task is cognitive science as its very best: 

straightforward, easy-to-understand, and powerful. (These days, in addition to 

numbers, I dream of making a contribution as significant as this one.) 

This lightbulb moment jumpstarted my academic career. I reached out to the 

lecturer expressing interest in these the idea of a mental number line, and I found 

a lab that studied exactly this. In the 2.5 years after that, I conducted multiple 
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projects on mental number lines, and, later, on other aspects of spatial 

representation. Namely, I studied how children use different geometric cues to 

navigate, and also ‘shape skeletons’ as the format of human shape representations. 

The vast majority of my work since then — the work reflected here in this thesis 

— has been inspired by simply reflecting on the ways in which my own mind 

perceives and uses space, then trying to turn those vague intuitions into 

experiments.  

When I think about my work is trying to accomplish, I do not think of any 

psychologist or biologist or cognitive scientist. I think of Euclid. Euclid is 

considered to be the founder of geometry not because he discovered things that 

were unknown before, but because he invented a systematic, logical framework to 

explain them. Euclid perceived the beauty of the external, spatial world, and 

distilled that beauty down into discernable axioms. 

In this era, obviously much more is known about the axioms supporting the 

external geometric world. But we are only at the very beginning of understanding 

the axioms supporting our internal geometric world. Cognitive science has 

succeeded in telling us that spatial information is integral to the mind but has 

fallen short of providing stable axioms and principles — so far. That is what I hope 

I have begun to do. 

This thesis follows humbly in Euclid’s footsteps. Hopefully the work here 

represents even just one very small step in helping us to understand the nature of 

the geometry of our minds. 

 

5.5 Conclusion 

The ‘format’ of many mental representations can be surprisingly accessible: 

whether studying ants in the Tunisian desert or human visual localization in the 
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lab, ‘format’ often reveals itself in ordinary behavior. Even tiny, almost-

imperceptible errors provide valuable insight into how the mind works.  

As I emphasized at the beginning of this thesis, space is an ideal domain to 

deepen our understanding of representation in general. Spatial cognition is 

foundational in the sense that it may serve as a building block for other forms of 

representation; it is ubiquitous in the sense that virtually animals rely on spatial 

representation to some extent, and tractable in the sense that research on spatial 

representation has made steady progress for the last seven decades (which may 

seem unremarkable, until you consider how few areas of study can say the same). 

As much as spatial cognition had been central to the cognitive revolution, it will 

be central to the ongoing neuroscientific revolution. And understanding format in 

the ways that I have described in this dissertation will be a critical part of the path 

forward: If there’s any hope of meaningfully bridging the gap between brain and 

behavior this century, we will surely have to know what it is in the brain we are 

hoping to find. 

 If we can use insights gleaned in this domain to guide our study of other 

domains, we can deepen our understanding of not just spatial representation but 

all mental representation. 
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