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Abstract

Efficient Estimation of Signals via Non-Convex Approaches

Sheng Xu

2022

This dissertation aims to highlight the importance of methodological development and the need

for tailored algorithms in non-convex statistical problems. Specifically, we study three non-convex es-

timation problems with novel ideas and techniques in both statistical methodologies and algorithmic

designs.

Chapter 2 discusses my work with Zhou Fan on estimation of a piecewise-constant image, or a

gradient-sparse signal on a general graph, from noisy linear measurements. We propose and study an

iterative algorithm to minimize a penalized least-squares objective, with a penalty given by the “`0-

norm” of the signal’s discrete graph gradient. The method uses a non-convex variant of the proximal

gradient descent, applying the alpha-expansion procedure to approximate the proximal mapping in

each iteration and using a geometric decay of the penalty parameter across iterations to ensure

convergence. Under a cut-restricted isometry property for the measurement design, we prove global

recovery guarantees for the estimated signal. For standard Gaussian designs, the required number of

measurements is independent of the graph structure, and improves upon worst-case guarantees for

total-variation (TV) compressed sensing on the 1-D line and 2-D lattice graphs by polynomial and

logarithmic factors, respectively. The method empirically yields lower mean-squared recovery error

compared with TV regularization in the regimes of moderate undersampling and moderate to high

signal-to-noise, for several examples of changepoint signals and gradient-sparse phantom images.

Chapter 3 discusses my work with Zhou Fan and Sahand Negahban on a tree-projected gradient

descent for estimating gradient-sparse parameters. We consider estimating a gradient-sparse param-

eter θ∗ ∈ Rp, having strong gradient-sparsity s∗ := ‖∇Gθ∗‖0 on an underlying graph G. Given

observations Z1, . . . , Zn and a smooth, convex loss function L for which our parameter of interest

θ∗ minimizes the population risk E[L(θ;Z1, . . . , Zn)], we propose to estimate θ∗ by a projected

gradient descent algorithm that iteratively and approximately projects gradient steps onto spaces

of vectors having small gradient-sparsity over low-degree spanning trees of G. We show that, under

suitable restricted strong convexity and smoothness assumptions for the loss, the resulting estimator

achieves the squared-error risk s∗

n log(1 + p
s∗ ) up to a multiplicative constant that is independent of

G. In contrast, previous polynomial-time algorithms have only been shown to achieve this guarantee



in more specialized settings, or under additional assumptions for G and/or the sparsity pattern of

∇Gθ∗. As applications of our general framework, we apply our results to the examples of linear

models and generalized linear models with random designs.

Chapter 4 discusses my joint work with Zhou Fan, Roy R. Lederman, Yi Sun, and Tianhao

Wang on maximum likelihood for high-noise group orbit estimation. Motivated by applications

to single-particle cryo-electron microscopy (cryo-EM), we study several problems of function esti-

mation in a low SNR regime, where samples are observed under random rotations of the function

domain. In a general framework of group orbit estimation with linear projection, we describe a

stratification of the Fisher information eigenvalues according to a sequence of transcendence degrees

in the invariant algebra, and relate critical points of the log-likelihood landscape to a sequence of

method-of-moments optimization problems. This extends previous results for a discrete rotation

group without projection. We then compute these transcendence degrees and the forms of these

moment optimization problems for several examples of function estimation under SO(2) and SO(3)

rotations. For several of these examples, we affirmatively resolve numerical conjectures that 3rd-

order moments are sufficient to locally identify a generic signal up to its rotational orbit, and also

confirm the existence of spurious local optima for the landscape of the population log-likelihood. For

low-dimensional approximations of the electric potential maps of two small protein molecules, we

empirically verify that the noise-scalings of the Fisher information eigenvalues conform with these

theoretical predictions over a range of SNR, in a model of SO(3) rotations without projection.
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Chapter 1

Introduction

Modern scientific research often involves developing efficient statistical methods to extract actionable

knowledge from complex datasets. Implementing those methods naturally requires designing reliable,

scalable, and robust learning algorithms in high dimensions. With the rapid advances of modeling

tools and the proliferation of empirical success, non-convex optimization has received considerable

attention. Yet, a plethora of non-convex problems cannot be solved, or at least efficiently solved, by

convex relaxation or off-the-shelf first-order algorithms. As a consequence, more in-depth analyses

are crucial for methodological development in those complex problems and the resulting methods

should be tailored to achieve the desired efficiency.

Despite the large ambient dimensions in many applications, the structure of interest in the

data is often low-dimensional or sparse intrinsically. This idea of parsimony dates back to the

Ancient Greece. Philosopher and polymath Aristotle wrote “Nature operates in the shortest way

possible.”(Gibbs and Hiroshi, 1996) This remarkable heuristic rule of thumb still sheds light on the

imposition of structural constraints on the learning models in modern statistics. Such constraints,

which naturally involve non-convex formulations, not only reflect the scientific domain knowledge,

but are often critical to interpret statistical models and prevent the problems from being ill-posed.

Examples include compressed sensing (Donoho, 2006; Baraniuk, 2007; Candès and Wakin, 2008),

sparse regression (Fan and Li, 2001; Zhang, 2010), sparse PCA (d’Aspremont et al., 2004; Zou

et al., 2006; Cai et al., 2013), and low-rank matrix completion (Candès and Recht, 2009; Candès

and Tao, 2010; Davenport and Romberg, 2016). Because of computational barriers of non-convex

optimization, convex relaxation has been widely used. However, such modification has limitations.

For instance, in the absence of certain stability conditions, the popular LASSO method for sparse

1



regression may yield inconsistent estimators (Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006).

For compressed sensing, `1 or total variation relaxation suffers from poor scalability (Donoho and

Tanner, 2006; Needell and Ward, 2013b). These results suggest the tremendous value of studying

non-convex optimization directly.

In many other applications, the natural objective of the learning problem is non-convex. Notable

examples include Gaussian mixture models (Dasgupta, 1999), deep neural networks (LeCun et al.,

2015; Schmidhuber, 2015), and tensor decompositions (Kolda and Bader, 2009; Sidiropoulos et al.,

2017). While vanilla procedures such as gradient descent achieve statistical accuracy and computa-

tional efficiency simultaneously in certain non-convex estimation problems (Chen and Candès, 2015;

Candès et al., 2015; Ma et al., 2018; Du et al., 2019), the success relies on two key geometrical

properties of the associated non-convex objective functions: a reasonably large basin of attraction

around the global solution and/or benign global optimization landscape (Chi et al., 2019). However,

those benign structures amenable to computation do not necessarily carry over to other problems

and simple first-order methods may get stuck in suboptimal local minima. Dauphin et al. (2014)

further argue that the existence of saddle points is more notorious for learning tasks and often gives

the illusory impression of reaching a spurious local minimum. Therefore, delicate landscape analyses

are essential to developing efficient methods and designing scalable algorithms.

In my dissertation, I will investigate two main non-convex statistical estimation problems. In

Chapter 2 and Chapter 3, we study estimation of piecewise-constant or gradient-sparse signals. We

propose iterative, approximate, and polynomial-time algorithms to directly solve non-convex objec-

tives and improve estimation guarantees upon existing convex approaches under suitable conditions.

In Chapter 4, motivated by applications to single-particle cryo-electron microscopy, we study group

orbit estimation with potential linear projections. To understand both local and global behaviors

of maximum likelihood estimation procedures, we describe the geometry of the Fisher information

matrix and log-likelihood landscape and their relation to the algebraic structure of the underlying

rotational group.
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Chapter 2

Iterative Alpha Expansion for

Estimating Gradient-Sparse Signals

2.1 Introduction

Consider an unknown signal x∗ ∈ Rp observed via n noisy linear measurements

y = Ax∗ + e ∈ Rn.

We study the problem of estimating x∗, under the assumption that its coordinates correspond to

the p vertices of a given graph G = (V,E), and x∗ is gradient-sparse. By this, we mean that

‖∇x∗‖0 ≡
∑

(i,j)∈E

1{x∗,i 6= x∗,j} (2.1)

is much smaller than the total number of edges |E|. Special cases of interest include the 1-D line

graph, where variables have a sequential order and x∗ has a changepoint structure, and the 2-D

lattice graph, where coordinates of x∗ represent pixels of a piecewise-constant image.

This problem has been studied since early pioneering works in compressed sensing (Candès

et al., 2006a,b; Donoho, 2006). Among widely-used approaches for estimating x∗ are those based on

constraining or penalizing the total-variation (TV) semi-norm (Rudin et al., 1992), which may be
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defined (anisotropically) for a general graph as

‖∇x‖1 ≡
∑

(i,j)∈E

|xi − xj |.

These are examples of `1-analysis methods (Elad et al., 2007; Candès et al., 2011; Nam et al., 2013),

which regularize the `1-norm of a general linear transform of x rather than of its coefficients in

an orthonormal basis. Related fused-lasso methods have been studied for different applications of

regression and prediction in Tibshirani et al. (2005); Rinaldo (2009); Tibshirani (2011); Padilla et al.

(2017). Other graph-based regularization methods were studied in Krishnamuthy et al. (2013); Li

et al. (2018); Kim and Gao (2019), and generalizations to trend-filtering methods that regularize

higher-order discrete derivatives of x were studied in Kim et al. (2009); Wang et al. (2016).

The reconstruction error of TV-regularization depends on the structure of the graph (Needell and

Ward, 2013b,a; Cai and Xu, 2015). More generally, the error of `1-analysis methods with sparsifying

transform ∇ depends on sparse conditioning properties of the pseudo-inverse ∇† (Candès et al.,

2011). For direct measurements A = I, these and related issues were discussed in Hütter and

Rigollet (2016); Dalalyan et al. (2017); Fan and Guan (2018), which showed in particular that TV-

regularization may not achieve the same recovery guarantees as analogous `0-regularization methods

on certain graphs including the 1-D line. In this setting of A = I, different computational approaches

also exist to approximately minimize an `0-regularized objective on general graphs (Boykov et al.,

1999; Kleinberg and Tardos, 2002; Xu et al., 2011).

Motivated by this line of work, our current paper studies an alternative to TV-regularization in

the more difficult setting of indirect linear measurements, where A 6= I. Our procedure is based

similarly on the idea of minimizing a possibly non-convex objective

F (x) =
1

2
‖y −Ax‖22 + λ

∑
(i,j)∈E

c(xi, xj) (2.2)

for an edge-associated cost function c. We will focus attention in this work on the specific choice of

an `0-regularizer

c(xi, xj) = 1{xi 6= xj}, (2.3)

which matches (2.1), although the algorithm may be applied with more general choices of metric
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edge cost. For the above `0 edge cost, the resulting objective takes the form

F (x) =
1

2
‖y −Ax‖22 + λ‖∇x‖0.

For A = I, Fan and Guan (2018) analyzed the alpha-expansion algorithm of Boykov et al. (1999)

for minimizing this objective, and showed that it can achieve statistically rate-optimal estimation

guarantees. We review this method in Section 2.2. Its algorithmic idea is specific to A = I, where

the objective (2.2) decomposes as a sum of terms involving only individual variables xi and pairs

(xi, xj), and this idea does not easily extend to indirect linear measurements. In this work, we

instead study an approach of applying this method to minimize F (x) using a non-convex and non-

smooth variant of proximal gradient descent: For parameters γ ∈ (0, 1) and η > 0, we iteratively

compute xk+1 from xk via

ak+1 ← xk − ηAT(Axk − y)

xk+1“← ” argmin
x

1

2
‖x− ak+1‖22 + λk

∑
(i,j)∈E

c(xi, xj)

λk+1 ← λk · γ

The update for xk+1 is carried out approximately, using the alpha-expansion idea. We call this

algorithm ITALE, for ITerative ALpha Expansion.

There are two important differences between ITALE and standard proximal gradient methods

for convex problems (Beck and Teboulle, 2009; Parikh and Boyd, 2014). First, since the edge

cost c(xi, xj) is non-convex, the minimization problem for updating xk+1 is also non-convex. That

such an algorithm should converge is not as evident as for proximal gradient methods applied with

convex penalties. Second, to ensure that the algorithm indeed converges, we must start with a large

initialization for the penalty λmax and geometrically decay this penalty across iterations. This is

the case even if we were only interested in one final tuning parameter λ in the objective (2.2). This

type of penalty decay was studied previously in a convex setting by Xiao and Zhang (2013), but the

purpose there was to improve the convergence rate rather than to ensure convergence.

In practice, for γ sufficiently close to 1, we directly interpret the sequence of ITALE iterates xk

as approximate minimizers of the objective function (2.2) for penalty parameters λ = λk/η along

a regularization path. We comment more on this approach in Section 2.2. We select the iterate k

using cross-validation on the prediction error for y, and we use the final estimate x̂ITALE = xk.
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Despite F (x) being non-convex and non-smooth, we provide global recovery guarantees for

ITALE. For example, under exact gradient-sparsity ‖∇x∗‖0 = s∗, if A consists of

n & s∗ log(1 + |E|/s∗) (2.4)

linear measurements with i.i.d. N (0, 1/n) entries, then the ITALE iterate xk for the `0-regularizer

(2.3) and a penalty value λk � ‖e‖22/s∗ satisfies, with high probability,

‖xk − x∗‖2 . ‖e‖2. (2.5)

More generally, we provide recovery guarantees when A satisfies a certain cut-restricted isometry

property, described in Definition 2.3.1 below. Note that (2.5) is the optimal worst-case error guar-

antee for deterministic measurement errors e, which is the typical setting studied in the compressed

sensing literature (Candès et al., 2006b,a; Blumensath and Davies, 2009; Needell and Tropp, 2009)

and also the setting that we study in this work.

Even for i.i.d. Gaussian design, we are not aware of previous polynomial-time algorithms which

provably achieve this guarantee for either the 1-D line or the 2-D lattice. In particular, connecting

with the previous discussion, similar existing results for TV-regularization in noisy or noiseless

settings require n & s∗(log |E|)3 Gaussian measurements for the 2-D lattice and n &
√
|E|s∗ log |E|

measurements for the 1-D line (Needell and Ward, 2013b; Cai and Xu, 2015). Applying thresholding

or `1-regularization instead to a representation of x∗ in a spanning tree wavelet basis, as proposed

and studied in Padilla et al. (2017), would reduce this requirement for n to be optimal up to a

logarithmic factor. The requirement for n in ITALE is instead optimal up to a constant factor, for

any bounded-degree graph.

Figure 2.1 compares in simulation x̂ITALE using the `0-regularizer (2.3) with x̂TV (globally)

minimizing the TV-regularized objective

FTV(x) =
1

2
‖y −Ax‖22 + λ‖∇x‖1. (2.6)

The example depicts a synthetic image of a human chest slice, previously generated by Gong et al.

(2017) using the XCAT digital phantom (Segars et al., 2010). The design A is an undersampled

and reweighted Fourier matrix, using a sampling scheme described in Section 2.3 and similar to that

proposed in Krahmer and Ward (2014) for TV-regularized compressed sensing. In a low-noise setting,

a detailed comparison of the recovered images reveals that x̂ITALE provides a sharper reconstruction
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Figure 2.1: Left: Original image slice from the XCAT digital phantom. Top row: x̂ITALE from 20%
undersampled and reweighted Fourier measurements, in low noise (σ = 4, left) and medium noise
(σ = 16, right) settings. Bottom row: x̂TV for the same measurements. The iterate k in ITALE and
tuning parameter λ for TV were both selected using 5-fold cross-validation on the squared prediction
error for y.

than x̂TV. As noise increases, x̂TV becomes blotchy, while x̂ITALE begins to lose finer image details.

Quantitative comparisons of recovery error are provided in Section 2.4.2 and are favorable towards

ITALE in lower noise regimes.

ITALE is similar to some methods oriented towards `0-regularized sparse regression and signal

recovery (Tropp and Gilbert, 2007; Zhang, 2011; Bertsimas et al., 2016), including notably the

Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2009) and CoSaMP (Needell and Tropp,

2009) methods in compressed sensing. We highlight here several differences:

• For sparsity in an orthonormal basis, forward stepwise selection and orthogonal matching

pursuit provide greedy “`0” approaches to variable selection, also with provable guarantees

(Tropp and Gilbert, 2007; Zhang, 2011; Elenberg et al., 2018). However, such methods do

not have direct analogues for gradient-sparsity in graphs, as one cannot select a single edge

difference xi − xj to be nonzero without changing other edge differences.

• IHT and CoSaMP enforce sparsity of xk+1 in each iteration by projecting to the s largest

coordinates of ak+1, for user-specified s. In contrast, ITALE uses a Lagrangian form that

penalizes (rather than constrains) ‖∇xk+1‖0. This is partly for computational reasons, as we

are not aware of fast algorithms that can directly perform such a projection step onto the

(non-convex) set {x : ‖∇x‖0 ≤ s} for general graphs. This Lagrangian form complicates the

theoretical convergence analysis, as it requires establishing simultaneous control of the gradient
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sparsity ‖∇xk‖0 and the error ‖xk − x∗‖2 in each iteration.

• In contrast to general-purpose mixed-integer optimization procedures studied in Bertsimas

et al. (2016), each iterate of ITALE (and hence also the full algorithm, for a polynomial number

of iterations) is provably polynomial-time in the input size (n, p, |E|) (Fan and Guan, 2018).

On our personal computer, for the p = 360 × 270 = 97200 image of Figure 2.1, computing

the 60 iterates constituting a full ITALE solution path required about 20 minutes, using the

optimized alpha-expansion code of Boykov and Kolmogorov (2004).

While our theoretical focus is on `0-regularization, we expect that for certain regimes of under-

sampling and signal-to-noise, improved empirical recovery may be possible with edge costs c(xi, xj)

interpolating between the `0 and `1 penalties. These are applicable in the ITALE algorithm and

would be interesting to investigate in future work.

2.2 Model and algorithm

Let G = (V,E) be a given connected graph on the vertices V = {1, . . . , p}, with undirected edge set

E. We assume throughout that p ≥ 3. For a signal vector x∗ ∈ Rp, measurement matrix A ∈ Rn×p,

and measurement errors e ∈ Rn, we observe

y = Ax∗ + e ∈ Rn. (2.7)

Denote by ∇ ∈ {−1, 0, 1}|E|×p the discrete gradient matrix on the graph G, defined by

∇x =
(
xi − xj : (i, j) ∈ E

)
∈ R|E|.

Here, we may fix an arbitrary ordering of the vertex pair (i, j) for each edge. We study estimation of

x∗, assuming that x∗ has (or is well-approximated by a signal having) small exact gradient sparsity

‖∇x∗‖0.

Our proposed algorithm is an iterative approach called ITALE, presented as Algorithm 1. It

is based around the idea of minimizing the objective (2.2). In this objective, the cost function

c : R2 → R must satisfy the metric properties

c(x, y) = c(y, x) ≥ 0, c(x, x) = 0⇔ x = 0, c(x, z) ≤ c(x, y) + c(y, z), (2.8)
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but is otherwise general. Importantly, c may be non-smooth and non-convex. The algorithm alter-

nates between constructing a surrogate signal ak+1 in line 3, denoising this surrogate signal in line

4, and geometrically decaying the penalty parameter λk used for the denoiser in line 5. We discuss

these steps in more detail below.

The surrogate signal ak+1 that is computed in line 3 may be written as

ak+1 = xk − ηAT(Axk − y)

= x∗ + (I− ηATA)(xk − x∗) + ηATe.

This is a noisy version of the true signal x∗, with two sources of noise (I − ηATA)(xk − x∗) and

ηATe. Line 4 denoises this signal by applying the alpha-expansion graph cut procedure from Boykov

et al. (1999) to approximately solve the minimization problem

min
x∈Rp

1

2
‖x− ak+1‖22 + λk

∑
(i,j)∈E

c(xi, xj).

This sub-routine is denoted as AlphaExpansion(ak+1, λk, δ), and is described in Algorithm 2 for

completeness. At a high level, the alpha-expansion method encodes the above objective function in

the structure of an edge-weighted augmented graph, and iterates over global moves that swap the

signal value on a subset of vertices for a given new value, by finding a minimum graph cut. The

original alpha-expansion algorithm of Boykov et al. (1999) is in the setting of a discrete Potts model.

To apply this to a continuous signal domain, we restrict coordinate values of x to a discrete grid

δZ = {kδ : k ∈ Z}

for a small user-specified parameter δ > 0.

The geometric decay of λk in line 5 may be understood by examining the two sources of error

(I− ηATA)(xk−x∗) and ηATe in ak+1. Assuming that I− ηATA has a small operator norm when

restricted to gradient-sparse vectors, the first error term decays geometrically across iterations,

whereas the second error term is fixed in every iteration. When e 6= 0, this suggests choosing λk to

also decay geometrically up to a final positive constant λ∗ > 0, after which we may fix λk = λ∗ and

run the iterations to convergence. In this approach, the best choice for λ∗ would depend on the size

of ηATe, and this may be set in practice using cross-validation.

We do not directly use this approach, because this requires a separate run for each different value
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Algorithm 1 Iterative Alpha Expansion

Input: y ∈ Rn, A ∈ Rn×p, and parameters γ ∈ (0, 1), λmax > λmin > 0, and η, δ > 0.
1: Initialize x0 ← 0, λ0 ← λmax

2: for k = 0, 1, 2, . . . ,K until λK < λmin do
3: ak+1 ← xk − ηAT(Axk − y)
4: xk+1 ← AlphaExpansion(ak+1, λk, δ)
5: λk+1 ← λk · γ
6: end for

Output: x1, . . . ,xK

Algorithm 2 AlphaExpansion(a, λ, δ) subroutine

Input: a ∈ Rp, cost function c : R2 → R, parameters λ, δ > 0.
1: Let amin, amax be the minimum and maximum values of a. Initialize x ∈ Rp arbitrarily.
2: loop
3: for each z ∈ δZ ∩ [amin, amax] do
4: Construct the following edge-weighted augmentation Gz,x of the graph G:
5: Introduce a source vertex s and a sink vertex t, connect s to each i ∈ {1, . . . , p} with

weight 1
2 (ai − z)2, and connect t to each i ∈ {1, . . . , p} with weight 1

2 (ai − xi)2 if xi 6= z,
or weight ∞ if xi = z.

6: for each edge {i, j} ∈ E do
7: if xi = xj then
8: Assign weight λc(xi, z) to {i, j}.
9: else

10: Introduce a new vertex vi,j , and replace edge {i, j} by the three edges {i, vi,j},
{j, vi,j}, and {t, vi,j}, with weights λc(xi, z), λc(xj , z), and λc(xi, xj) respectively.

11: end if
12: end for
13: Find the minimum s-t cut (S, T ) of Gz,x such that s ∈ S and t ∈ T .
14: For each i ∈ {1, . . . , p}, update xi ← z if i ∈ T , and keep xi unchanged if i ∈ S.
15: end for
16: If x was unchanged for each z above, then return x.
17: end loop
Output: x

of λ∗ to perform the cross-validation. Instead, Algorithm 1 performs only a single proximal gradient

step for each λk, starting from a value λmax > λ∗ that oversmooths the surrogate signal and ending

at a value λmin < λ∗ that undersmooths the surrogate signal (when e 6= 0). For γ sufficiently close

to 1, we directly interpret each iterate xk as an approximate minimizer of the objective (2.2) for a

different penalty λ ≡ λk/η. We apply cross-validation to select the iterate xk that represents the

final estimate x̂ITALE, and this corresponds to selecting a penalty λ in (2.2). Thus, Algorithm 1

computes an estimate for each tuning parameter along a regularization path, in a single pass of the

proximal gradient descent. We find that this works well in practice and yields substantial savings in

computational cost, and our theoretical analysis will also be for the algorithm in this form.

We make a few additional remarks regarding parameter tuning in practice:

• Using conservative choices for λmax (large), γ (close to 1), and δ (small) increases the total
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runtime of the procedure, but does not degrade the quality of recovery. In our experiments, we

fix γ = 0.9 and set δ in each iteration to yield 300 grid values for δZ∩ [amin, amax] in Algorithm

2.

• We do not specify λmin. Instead, we monitor the gradient sparsity ‖∇xk‖0 across iterations,

and terminate the algorithm when ‖∇xK‖0 exceeds a certain fraction (e.g. 50%) of the total

number of edges |E|.

• The parameter η should be matched to the scaling and restricted isometry properties of the

design matrix A. For sub-Gaussian and Fourier designs scaled by 1/
√
n as in Propositions

2.3.2 and 2.3.3 below, we set η = 1.

• The most important tuning parameter is the iterate k for which we take the final estimate

x̂ITALE = xk. In our examples, we apply 5-fold cross-validation on the mean-squared prediction

error for y to select k. Note that η should be rescaled by the number of training samples in

each fold, i.e. for 5-fold cross-validation with training sample size 0.8n, we set η = 1/0.8 instead

of η = 1 in the cross-validation runs.

2.3 Recovery guarantees

We provide in this section theoretical guarantees on the recovery error ‖x̂ITALE − x∗‖2, where

x̂ITALE ≡ xk for a deterministic (non-adaptive) choice of iterate k. Throughout this section, ITALE

is assumed to be applied with the `0 edge cost c(xi, xj) = 1{xi 6= xj}.

2.3.1 cRIP condition

Our primary assumption on the measurement design A will be the following version of a restricted

isometry property.

Definition 2.3.1. Let κ > 0, and let ρ : [0,∞) → [0,∞) be any function satisfying ρ′(s) ≥ 0 and

ρ′′(s) ≤ 0 for all s > 0. A matrix A ∈ Rn×p satisfies the (κ, ρ)-cut-restricted isometry property

(cRIP) if, for every x ∈ Rp with ‖∇x‖0 ≥ 1, we have

(
1− κ−

√
ρ(‖∇x‖0)

)
‖x‖2 ≤ ‖Ax‖2 ≤

(
1 + κ+

√
ρ(‖∇x‖0)

)
‖x‖2.

This definition depends implicitly on the structure of the underlying graph G, via its discrete

gradient matrix ∇. Examples of the function ρ are given in the two propositions below.
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This condition is stronger than the usual RIP condition in compressed sensing (Candès et al.,

2006a,b) in two ways: First, Definition 2.3.1 requires quantitative control of ‖Ax‖2 for all vectors

x ∈ Rp, rather than only those with sparsity ‖∇x‖0 ≤ s for some specified s. We use this in our

analysis to handle regularization of ‖∇x‖0 in Lagrangian (rather than constrained) form. Second,

approximate isometry is required for signals with small gradient-sparsity ‖∇x‖0, rather than small

sparsity ‖x‖0. This requirement is similar to the D-RIP condition of Candès et al. (2011) for general

sparse analysis models, and is also related to the condition of Needell and Ward (2013b) that AH−1

satisfies the usual RIP condition, whereH−1 is the inverse Haar-wavelet transform on the 2-D lattice.

Despite this strengthening of the required RIP condition, the following shows that Definition 2.3.1

still holds for sub-Gaussian designs A. For a random vector a, we denote its sub-Gaussian norm as

‖a‖ψ2
= supu:‖u‖2=1 supk≥1 k−1/2E[|uTa|k]1/k, and say that a is sub-Gaussian if ‖a‖ψ2

≤ K for a

constant K > 0.

Proposition 2.3.2. Let A ∈ Rn×p have i.i.d. rows ai/
√
n, where Cov[ai] = Σ and ‖ai‖ψ2

≤ K.

Suppose that the largest and smallest eigenvalues of Σ satisfy σmax(Σ) ≤ (1 + κ)2 and σmin(Σ) ≥

(1− κ)2 for a constant κ ∈ (0, 1). Then for any k > 0 and some constant C > 0 depending only on

K,κ, k, with probability at least 1− |E|−k, the matrix A satisfies (κ, ρ)-cRIP for the function

ρ(s) =
Cs log(1 + |E|/s)

n
.

Here, κ depends on the condition number of the design covariance, and ρ(s) does not depend

on the structure of the graph other than its total number of edges. The proof is a standard union

bound argument, which we defer to Appendix A.2 of the online supplementary material.

For large 2-D images, using Fourier measurements with matrix multiplication implemented by

an FFT can significantly reduce the runtime of Algorithm 1. As previously discussed in Lustig et al.

(2007); Needell and Ward (2013b); Krahmer and Ward (2014), uniform random sampling of Fourier

coefficients may not be appropriate for reconstructing piecewise-constant images, as these typically

have larger coefficients in the lower Fourier frequencies. We instead study a non-uniform sampling

and reweighting scheme similar to that proposed in Krahmer and Ward (2014) for total-variation

compressed sensing, and show that Definition 2.3.1 also holds for this reweighted Fourier matrix.

For p = N1N2 and N1, N2 both powers of 2, let F ∈ Cp×p be the 2-D discrete Fourier matrix on

the lattice graph G of size N1×N2, normalized such that FF∗ = I. We define this as the Kronecker
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product F = F1 ⊗F2, where F1 ∈ CN1×N1 is the 1-D discrete Fourier matrix with entries

F1
jk =

1√
N1

· e2πi· (j−1)(k−1)
N1 ,

and F2 ∈ CN2×N2 is defined analogously. (Thus rows closer to N1/2 + 1 in F1 correspond to

higher frequency components.) Let F∗(i,j) denote row (i, j) of F , where we index by pairs (i, j) ∈

{1, . . . , N1} × {1, . . . , N2} corresponding to the Kronecker structure. We define a sampled Fourier

matrix as follows: Let ν1 be the probability mass function on {1, . . . , N1} given by

ν1(i) ∝ 1

C0 + min(i− 1, N1 − i+ 1)
, C0 ≥ 1. (2.9)

Define similarly ν2 on {1, . . . , N2}, and let ν = ν1 × ν2. For a given number of measurements n,

draw (i1, j1), . . . , (in, jn)
iid∼ ν, and set

Ã =
1√
n


F∗(i1,j1)/

√
ν(i1, j1)

...

F∗(in,jn)/
√
ν(in, jn)

 ∈ Cn×p. (2.10)

Proposition 2.3.3. Let G be the 2-D lattice graph of size N1 ×N2, where N1, N2 are powers of 2

and 1/K < N1/N2 < K for a constant K > 0. Set p = N1N2 and let Ã be the matrix defined in

(2.10). Then for some constants C, t0 > 0 depending only on K, and for any t > t0, with probability

at least 1− e−(logn)(log p)3 − p−t, Ã satisfies the (κ, ρ)-cRIP with κ = 0 and

ρ(s) = Cts
(log p)8 log n

n
.

The proof follows closely the ideas of (Rudelson and Vershynin, 2008, Theorem 3.3), and we defer

this to Appendix A.2 of the online supplementary material.

This proposition pertains to the complex analogue of Definition 2.3.1, where Ã,x are allowed

to be complex-valued, and ‖ · ‖2 denotes the complex `2-norm. For a real-valued signal x∗ ∈ Rp,

Algorithm 1 may be applied to ỹ = Ãx∗ + e ∈ Cn by separating real and imaginary parts of ỹ into

a real vector y ∈ R2n. The corresponding A ∈ R2n×p satisfies ‖Ax‖22 = ‖Ãx‖22, so the same cRIP

condition holds (in the real sense) for A.
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2.3.2 Recovery error bounds

To illustrate the idea of analysis, we first establish a result showing that ITALE can yield exact

recovery in a setting of no measurement noise. We require x∗ to be gradient-sparse with coordinates

belonging exactly to δZ, as the ITALE output has this latter property. Discretization error will be

addressed in our subsequent result.

Theorem 2.3.4. Suppose e = 0 and x∗ ∈ (δZ)p, and denote s∗ = max(‖∇x∗‖0, 1). Suppose
√
η ·A

satisfies (κ, ρ)-cRIP, where κ ∈ [0,
√

3/2 − 1). Set t(κ) = 1 − 4κ − 2κ2 ∈ (0, 1], and choose tuning

parameters

(1− t(κ)/4)2 < γ < 1, λmax > ‖x∗‖22.

For some constants C, c > 0 depending only on κ, if ρ(s∗) ≤ c, then each iterate xk of Algorithm 1

satisfies

‖xk − x∗‖2 ≤ C
√
λmaxs∗ · γk/2. (2.11)

In particular, xk = x∗ for all sufficiently large k.

Thus, in this noiseless setting, the iterates exhibit linear convergence to the true signal x∗. The

required condition ρ(s∗) ≤ c translates into a requirement of

n & s∗ log(1 + |E|/s∗)

measurements for A having i.i.d. N (0, 1/n) entries, by Proposition 2.3.2, or

n & s∗(log p)8 log log p

weighted Fourier measurements for the 2-D lattice graph, as defined in Proposition 2.3.3. For these

designs, (κ, ρ)-cRIP holds for
√
η ·A where κ = 0 and η = 1.

Proof of Theorem 2.3.4. Denote

sk = ‖∇xk‖0, rk = xk − x∗.

As shown in (Fan and Guan, 2018, Lemma S2.1) (see also (Boykov et al., 1999, Theorem 6.1)), the
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output xk+1 of the sub-routine AlphaExpansion(ak+1, λk, δ) has the deterministic guarantee

1

2
‖xk+1 − ak+1‖22 + λk‖∇xk+1‖0 ≤ min

x∈(δZ)p

(
1

2
‖x− ak+1‖22 + 2λk‖∇x‖0

)
. (2.12)

Applying this optimality condition (2.12) to compare xk+1 with x∗ = xk − rk, we obtain

‖xk+1 − ak+1‖22 + 2λksk+1 ≤ ‖xk − rk − ak+1‖22 + 4λks∗. (2.13)

Let Sk be the partition of {1, . . . , p} induced by the piecewise-constant structure of xk: Each

element of Sk corresponds to a connected subgraph of G on which xk takes a constant value. Let

Sk+1,S∗ similarly be the partitions induced by xk+1,x∗, and denote by S the common refinement

of Sk,Sk+1,S∗. Defining the boundary

∂S = {(i, j) ∈ E : i, j belong to different elements of S},

observe that each edge (i, j) ∈ ∂S must be such that at least one of xk, xk+1, or x∗ takes different

values at its two endpoints. Then

|∂S| ≤ s∗ + sk + sk+1. (2.14)

Let P : Rp → Rp be the orthogonal projection onto the subspace of signals taking a constant

value over each element of S, and let P⊥ = I −P. Then xk+1,xk, rk all belong to the range of P,

so an orthogonal decomposition yields

‖xk+1 − ak+1‖22 = ‖xk+1 −Pak+1‖22 + ‖P⊥ak+1‖22,

‖xk − rk − ak+1‖22 = ‖xk − rk −Pak+1‖22 + ‖P⊥ak+1‖22.

Applying this, the definition (in the noiseless setting e = 0)

ak+1 = xk − ηAT(Axk − y) = xk − ηATArk,

and the condition Pxk = xk to (2.13), we obtain

‖xk+1 − xk + ηPATArk‖22 ≤ ‖ηPATArk − rk‖22 + λk(4s∗ − 2sk+1).
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Applying the triangle inequality and xk+1 − xk = rk+1 − rk,

(
‖rk+1‖2 − ‖rk − ηPATArk‖2

)2
+
≤ ‖rk − ηPATArk‖22 + λk(4s∗ − 2sk+1). (2.15)

We derive from this two consequences: First, lower-bounding the left side by 0 and rearranging,

λksk+1 ≤
1

2
‖rk − ηPATArk‖22 + 2λks∗ ≤ ‖rk‖22 + ‖√ηAP‖2op · ‖

√
ηArk‖22 + 2λks∗. (2.16)

The condition (2.14) and definition of P imply, for any u ∈ Rp, that ‖∇(Pu)‖0 ≤ s∗ + sk + sk+1.

The definition of rk implies ‖∇rk‖0 ≤ s∗ + sk. Setting

τk = κ+
√
ρ(s∗ + sk + sk+1), ζk = κ+

√
ρ(s∗ + sk)

we deduce from the (κ, ρ)-cRIP condition for
√
η ·A that

‖√ηAP‖2op = sup
u∈Rp:‖u‖2=1

‖√ηAPu‖22 ≤ (1 + τk)2, ‖√ηArk‖22 ≤ (1 + ζk)2‖rk‖22. (2.17)

Note that since ρ(s) and
√
ρ(s) are both nonnegative and concave by Definition 2.3.1, we have

ρ′(s) ≤ (ρ(s)− ρ(0))/s ≤ ρ(s)/s,
d

ds
[
√
ρ(s)] ≤ (

√
ρ(s)−

√
ρ(0))/s ≤

√
ρ(s)/s.

The function

fk(s) =
(

1 + κ+
√
ρ(s∗ + sk + s)

)2

is also increasing and concave, and by the above, its derivative at s = 0 satisfies

f ′k(0) ≤ dk/(s∗ + sk), dk ≡ 2(1 + κ)
√
ρ(s∗ + sk) + ρ(s∗ + sk).

Thus

(1 + τk)2 = fk(sk+1) ≤ fk(0) + f ′k(0) · sk+1 ≤ (1 + ζk)2 + dksk+1/s∗. (2.18)

Applying this and (2.17) to (2.16), we get

λksk+1 ≤
(
1 + (1 + τk)2(1 + ζk)2

)
‖rk‖22 + 2λks∗

≤
(
1 + (1 + ζk)4 + (1 + ζk)2dksk+1/s∗)

)
‖rk‖22 + 2λks∗.
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Rearranging gives

(
λk − (1 + ζk)2dk‖rk‖22/s∗

)
· sk+1 ≤ (1 + (1 + ζk)4) · ‖rk‖22 + 2λks∗. (2.19)

Second, applying the (κ, ρ)-cRIP condition for
√
η ·A again, we have for every u ∈ Rp

∣∣∣uT(ηPATAP−P)u
∣∣∣ =

∣∣∣‖√ηAPu‖22 − ‖Pu‖22
∣∣∣

≤ max
(
|1− (1− τk)2|, |1− (1 + τk)2|

)
‖Pu‖22 = (2τk + τ2

k )‖Pu‖22,

So ‖ηPATAP−P‖op ≤ 2τk + τ2
k . Then, as rk = Prk, we get from (2.15) that

(
‖rk+1‖2 − (2τk + τ2

k )‖rk‖2
)2

+
≤ (2τk + τ2

k )2‖rk‖22 + λk(4s∗ − 2sk+1).

Taking the square-root and applying
√
x+ y ≤

√
x+
√
y,

‖rk+1‖2 ≤ (4τk + 2τ2
k )‖rk‖2 +

√
λk(4s∗ − 2sk+1)+

Applying the definitions of τk and t(κ),

4τk + 2τ2
k ≤ 1− t(κ) + 4(1 + κ)

√
ρ(s∗ + sk + sk+1) + 2ρ(s∗ + sk + sk+1).

Thus

‖rk+1‖2 ≤
[
1− t(κ) + 4(1 + κ)

√
ρ(s∗ + sk + sk+1) + 2ρ(s∗ + sk + sk+1)

]
· ‖rk‖2 +

√
4λks∗.

(2.20)

We now claim by induction on k that, if ρ(s∗) ≤ c0 for a sufficiently small constant c0 > 0, then

sk ≤
90

t(κ)2
s∗, ‖rk‖2 ≤

4
√
λks∗
t(κ)

(2.21)

for every k. For k = 0, these are satisfied as s0 = 0 and λ0 = λmax ≥ ‖r0‖22 = ‖x∗‖22. Assume

inductively that these hold for k. Note that for any t ≥ 1, nonnegativity and concavity yield

ρ(ts∗) ≤ tρ(s∗). In particular, assuming (2.21) and applying κ <
√

3/2 − 1 and ρ(s∗) ≤ c0, we

get for small enough c0 that (1 + ζk)2 < 2. Then applying (2.21) to (2.19), we get for a constant
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C ≡ C(κ) > 0 not depending on c0 that

(1− C
√
c0)λksk+1 ≤

(
80

t(κ)2
+ 2

)
λks∗.

Then for small enough c0,

sk+1 ≤ (1− C
√
c0)
−1 82

t(κ)2
s∗ <

90

t(κ)2
s∗.

Applying (2.21) and this bound to (2.20), for sufficiently small c0, we have

‖rk+1‖2 ≤
(

1− 3

4
t(κ)

)
‖rk‖2 +

√
4λks∗ ≤

(
4

t(κ)
− 1

)√
λks∗.

Applying
√
λk =

√
λk+1/γ ≤

√
λk+1(1− t(κ)/4)−1, we obtain from this

‖rk+1‖2 ≤ 4
√
λk+1s∗/t(κ).

This completes the induction and establishes (2.21) for every k.

The bound (2.11) follows from (2.21), the definition of rk, and λk = λmaxγ
k. Since xk,x∗ ∈ (δZ)p,

for k large enough such that the right side of (2.11) is less than δ2, we must have xk = x∗.

We now extend this result to a robust recovery guarantee in the presence of measurement and

discretization error. In this setting, ITALE is not guaranteed to converge to a global minimizer of

the non-convex objective (2.2). Instead, we provide a direct bound on the estimation error of a

suitably chosen ITALE iterate. The proof is an extension of the above argument, which we defer to

Appendix A.1 of the online supplementary material.

Theorem 2.3.5. Suppose
√
η · A satisfies (κ, ρ)-cRIP, where κ ∈ [0,

√
3/2 − 1). Choose tuning

parameters γ, λmax as in Theorem 2.3.4. Then for some constants C,C ′, c > 0 depending only on κ,

the following holds: Let x ∈ (δZ)p be any vector satisfying ρ(s) ≤ c where s ≡ max(‖∇x‖0, 1). Let

D be the maximum vertex degree of G, and define

E(x) =
(

1 +
√
Dρ(s)

)
·
(
‖x− x∗‖2 +

‖x− x∗‖1√
s

)
+
√
η · ‖e‖2.

Suppose λmax ≥ CE(x)2/s ≥ λmin, and let k∗ be the last iterate of Algorithm 1 where λk∗ ≥

CE(x)2/s. Then x̂ ≡ xk∗ satisfies

‖x̂− x∗‖2 ≤ C ′E(x).
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Here, x ∈ (δZ)p is any deterministic vector that approximates x∗ and satisfies ‖∇x‖0 ≤ s, and

the theorem should be interpreted for x being the best such approximation to x∗. The quantity

E(x) above is the combined measurement error and approximation error of x∗ by x. For any A

scaled such that it satisfies (κ, ρ)-cRIP with η = 1, and for G with maximum degree D . 1, we get

‖x̂− x∗‖2 . ‖x∗ − x‖2 +
‖x∗ − x‖1√

s
+ ‖e‖2. (2.22)

This guarantee is similar to those for compressed sensing of sparse signals in Candès et al. (2006b);

Needell and Tropp (2009); Blumensath and Davies (2009). Note that, as in these works, we are

assuming a setting of deterministic and possibly adversarial measurement error e.

If x∗ has exact gradient-sparsity ‖∇x∗‖0 ≤ s, then also x ∈ (δZ)p obtained by entrywise rounding

to δZ satisfies ‖∇x‖0 ≤ s. Hence, applying (2.22) with this x and choosing δ � ‖e‖2/p further

ensures

‖x̂− x∗‖2 . ‖e‖2

i.e. the discretization error is negligible in the above bound. It is clear that this is the rate-optimal

error bound for worst-case error e, as may be seen by taking e = A1 where 1 is the all-1’s vector.

The required number of measurements is the same as in Theorem 2.3.4 for the noiseless setting,

which is n & s∗ log(1 + |E|/s∗) for i.i.d. Gaussian designs. This is the claim (2.5) stated in the

introduction.

When x∗ is not exactly gradient-sparse, the error (2.22) depends also on the errors ‖x∗ − x‖2

and ‖x∗ − x‖1 of the approximation by a gradient-sparse vector x. This dependence is similar to

the guarantees of Needell and Ward (2013b) for TV-regularization, although we note that Needell

and Ward (2013b) provided bounds in terms of ∇x∗ −∇x rather than x∗ − x.

2.4 Simulations

We compare x̂ITALE using the `0 edge cost (2.3) to x̂TV minimizing the TV-regularized objective

(2.6), for several signals on the 1-D and 2-D lattice graphs. We used software developed by Boykov

and Kolmogorov (2004), to implement the alpha-expansion sub-routine of Algorithm 2. For conve-

nience, we further made an R package ITALE to realize Algorithm 1. To minimize the TV-regularized

objective (2.6), we used the generalized lasso path algorithm from Tibshirani (2011) in the 1-D exam-

ples and the FISTA algorithm from Beck and Teboulle (2009) in the 2-D examples. All parameters

were set as described in Section 2.2 for ITALE.
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Figure 2.2: Left: True spike signal x∗ (black) and a depiction of x∗ + ATe/n (red) under low noise
σ = 1 for i.i.d. measurements Aij ∼ N (0, 1) with 15% undersampling. Middle and right: True signal
(black), x̂ITALE (green), and x̂TV (blue) for one simulation.
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Figure 2.3: Same setting as Figure 2.2, for noise level σ = 6.

2.4.1 1-D changepoint signals

We tested ITALE on two simulated signals for the linear chain graph, with different changepoint

structures: the “spike” signal depicted in Figures 2.2 and 2.3, and the “wave” signal depicted in

Figure 2.4 and 2.5. The two signals both have p = 1000 vertices with s∗ = 9 break points. The

spike signal consists of short segments of length 10 with elevated mean, while the breaks of the wave

signal are equally-spaced.

We sampled i.i.d. random Gaussian measurements Aij ∼ N (0, 1). The measurement error e

was generated as i.i.d. Gaussian noise ek ∼ N (0, σ2). To provide an intuitive understanding of the

tested signal-to-noise, we plot x∗+ATe/n in red in Figures 2.2 to 2.5, corresponding to two different

tested noise levels. Recall that ITALE denoises ak+1 = x∗+ (I−ATA/n)(xk−x∗) +ATe/n in each

iteration (corresponding to η = 1/n for this normalization of A), so that x∗+ ATe/n represents the

noisy signal in an ideal setting if xk ≡ x∗ is a perfect estimate from the preceding iteration.

Tables 2.1 and 2.2 display the root-mean-squared estimation errors RMSE =
√
‖x̂− x∗‖22/p,

20
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Figure 2.4: Left: True wave signal x∗ (black) and a depiction of x∗ + ATe/n (red) under low noise
σ = 1 for i.i.d. measurements Aij ∼ N (0, 1) with 15% undersampling. Middle and right: True signal
(black), x̂ITALE (green), and x̂TV (blue) for one simulation.
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Figure 2.5: Same setting as Figure 2.4, for noise level σ = 6.
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Table 2.1: RMSE for the 1-D spike signal, averaged over 20 simulations.

n/p σ = 0 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7

10%
ITALE 0.000 0.014 0.060 0.090 0.144 0.173 0.199 0.216

TV 0.000 0.047 0.092 0.129 0.160 0.189 0.213 0.228

15%
ITALE 0.000 0.009 0.023 0.049 0.076 0.104 0.133 0.153

TV 0.000 0.030 0.060 0.088 0.114 0.136 0.158 0.175

20%
ITALE 0.000 0.007 0.015 0.032 0.056 0.076 0.099 0.123

TV 0.000 0.022 0.045 0.067 0.089 0.109 0.128 0.146

30%
ITALE 0.000 0.006 0.012 0.021 0.031 0.049 0.065 0.079

TV 0.000 0.017 0.035 0.052 0.070 0.087 0.104 0.120

40%
ITALE 0.000 0.005 0.010 0.015 0.025 0.041 0.051 0.063

TV 0.000 0.014 0.028 0.043 0.057 0.071 0.085 0.098

50%
ITALE 0.000 0.005 0.010 0.015 0.023 0.033 0.040 0.051

TV 0.000 0.013 0.026 0.038 0.051 0.064 0.075 0.088

for undersampling ratio n/p from 10% to 50%, and a range of noise levels σ that yielded RMSE

values between 0 and roughly 0.2. Each reported error value is an average across 20 independent

simulations. In these results, the iterate k in ITALE and penalty parameter λ in TV were both

selected using 5-fold cross-validation. Best-achieved errors over all k and λ are reported in Appendix

A.3 of the online supplementary material, and suggest the same qualitative conclusions. Standard

deviations of the best-achieved errors are also reported in Appendix A.3; those for cross-validation

are similar and omitted for brevity.

In the spike example, ITALE yielded lower RMSE in all of the above settings of undersampling

and signal-to-noise. Figures 2.2 and 2.3 display one instance each of the resulting estimates x̂ITALE

and x̂TV at 15% undersampling, illustrating some of their differences and typical features. Under

optimal tuning, x̂TV returns an undersmoothed estimate even in a low-noise setting where ITALE

can often correctly estimate the changepoint locations. With higher noise, ITALE begins to miss

changepoints and oversmooth.

In the wave example, with undersampling ranging between 15% and 50%, ITALE yielded lower

RMSE at most tested noise levels. Figures 2.4 and 2.5 depict two instances of the recovered signals at

15% undersampling. For 10% undersampling, the component (I−ATA/n)(xk −x∗) of the effective

noise was sufficiently high such that ITALE often did not estimate the true changepoint structure,

and TV usually outperformed ITALE in this case. The standard deviations of RMSE reported in

Appendix A.3 indicate that the ITALE estimates are a bit more variable than the TV estimates in

all tested settings, but particularly so in this 10% undersampling regime.
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Table 2.2: RMSE for the 1-D wave signal, averaged over 20 simulations.

n/p σ = 0 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7

10%
ITALE 0.036 0.040 0.118 0.150 0.198 0.236 0.262 0.315

TV 0.000 0.032 0.064 0.093 0.120 0.143 0.168 0.189

15%
ITALE 0.000 0.009 0.025 0.059 0.090 0.111 0.143 0.176

TV 0.000 0.023 0.046 0.068 0.089 0.109 0.127 0.144

20%
ITALE 0.000 0.007 0.017 0.039 0.061 0.079 0.103 0.121

TV 0.000 0.019 0.037 0.056 0.074 0.092 0.108 0.124

30%
ITALE 0.000 0.006 0.012 0.019 0.035 0.051 0.065 0.085

TV 0.000 0.014 0.028 0.042 0.056 0.070 0.084 0.097

40%
ITALE 0.000 0.005 0.011 0.018 0.027 0.037 0.052 0.064

TV 0.000 0.012 0.024 0.037 0.049 0.061 0.073 0.085

50%
ITALE 0.000 0.005 0.010 0.016 0.024 0.033 0.044 0.055

TV 0.000 0.011 0.022 0.033 0.043 0.054 0.065 0.075

Table 2.3: RMSE for the Shepp-Logan phantom, averaged over 20 simulations.

n/p σ = 0 σ = 4 σ = 8 σ = 12 σ = 16 σ = 20 σ = 24 σ = 28

10%
ITALE 0.001 0.006 0.012 0.018 0.028 0.036 0.051 0.071

TV 0.005 0.011 0.021 0.031 0.040 0.049 0.057 0.064

15%
ITALE 0.000 0.003 0.011 0.013 0.018 0.028 0.034 0.042

TV 0.001 0.009 0.016 0.024 0.031 0.038 0.046 0.053

20%
ITALE 0.000 0.002 0.009 0.012 0.014 0.024 0.028 0.034

TV 0.000 0.007 0.014 0.020 0.027 0.033 0.039 0.045

30%
ITALE 0.000 0.002 0.006 0.011 0.013 0.015 0.021 0.028

TV 0.000 0.006 0.012 0.017 0.022 0.027 0.032 0.036

40%
ITALE 0.000 0.001 0.005 0.010 0.012 0.013 0.015 0.021

TV 0.000 0.005 0.010 0.015 0.019 0.023 0.028 0.032

50%
ITALE 0.000 0.001 0.004 0.008 0.011 0.013 0.014 0.017

TV 0.000 0.005 0.009 0.013 0.018 0.022 0.025 0.028

2.4.2 2-D phantom images

Next, we tested ITALE on three 2-D image examples, corresponding to piecewise-constant digital

phantom images of varying complexity: the Shepp-Logan digital phantom depicted in Figure 2.6,

a digital brain phantom from Fessler and Hero (1994) depicted in Figure 2.7, and the XCAT chest

slice from Gong et al. (2017) as previously depicted in Figure 2.1.

Each image x∗ was normalized to have pixel value in [0, 1]. We sampled a random Fourier design

matrix as specified in (2.10), fixing the constant C0 = 10 in the weight distribution (2.9) for this

design. This value of C0 yielded the best recovery across several tested values for both ITALE and

TV. The measurement error e was generated as i.i.d. Gaussian noise ek ∼ N (0, σ2), applied to the

measurements F∗(i,j)x∗/
√
ν(i, j) before the 1/

√
n normalization. Tables 2.3, 2.4, and 2.5 display

the average RMSE of the estimates x̂ITALE and x̂TV across 20 independent simulations of e, with

tuning parameters selected by 5-fold cross-validation. Best-achieved errors and standard deviations

23



Table 2.4: RMSE for the brain phantom, averaged over 20 simulations.

n/p σ = 0 σ = 8 σ = 16 σ = 24 σ = 32 σ = 40 σ = 48 σ = 56

10%
ITALE 0.003 0.002 0.011 0.027 0.044 0.062 0.081 0.097

TV 0.002 0.014 0.028 0.041 0.054 0.066 0.078 0.088

15%
ITALE 0.000 0.001 0.007 0.018 0.030 0.044 0.059 0.073

TV 0.001 0.011 0.022 0.032 0.043 0.053 0.062 0.073

20%
ITALE 0.000 0.001 0.005 0.011 0.025 0.035 0.047 0.060

TV 0.000 0.010 0.019 0.028 0.038 0.047 0.055 0.062

30%
ITALE 0.000 0.001 0.003 0.008 0.015 0.026 0.033 0.043

TV 0.000 0.008 0.015 0.023 0.030 0.037 0.046 0.052

40%
ITALE 0.000 0.001 0.002 0.006 0.010 0.020 0.026 0.034

TV 0.000 0.007 0.013 0.020 0.026 0.032 0.038 0.044

50%
ITALE 0.000 0.000 0.002 0.004 0.008 0.014 0.022 0.028

TV 0.000 0.006 0.012 0.018 0.023 0.029 0.035 0.040

Table 2.5: RMSE for the XCAT chest slice phantom, averaged over 20 simulations.

n/p σ = 0 σ = 4 σ = 8 σ = 12 σ = 16 σ = 20 σ = 24 σ = 28

10%
ITALE 0.063 0.065 0.070 0.075 0.082 0.091 0.099 0.108

TV 0.009 0.019 0.032 0.043 0.053 0.061 0.068 0.073

15%
ITALE 0.002 0.007 0.024 0.036 0.055 0.070 0.079 0.088

TV 0.005 0.014 0.024 0.034 0.042 0.050 0.057 0.063

20%
ITALE 0.002 0.005 0.014 0.023 0.032 0.045 0.062 0.076

TV 0.002 0.011 0.020 0.028 0.036 0.043 0.050 0.055

30%
ITALE 0.002 0.004 0.011 0.018 0.025 0.031 0.041 0.050

TV 0.002 0.008 0.016 0.023 0.030 0.036 0.042 0.047

40%
ITALE 0.002 0.003 0.009 0.015 0.020 0.027 0.033 0.040

TV 0.001 0.007 0.014 0.020 0.026 0.031 0.036 0.042

50%
ITALE 0.002 0.003 0.008 0.013 0.018 0.023 0.028 0.033

TV 0.001 0.006 0.012 0.018 0.023 0.028 0.033 0.037
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Figure 2.6: Left: Original Shepp-Logan phantom. Top row: x̂ITALE from 15% undersampled and
reweighted Fourier measurements, in low noise (σ = 4, left) and medium noise (σ = 16, right)
settings. Bottom row: x̂TV for the same measurements.

are reported in Appendix A.3.

For the simpler Logan-Shepp and brain phantom images, which exhibit stronger gradient-sparsity,

ITALE yielded lower RMSE in nearly all tested undersampling and signal-to-noise regimes. For the

XCAT chest phantom, with undersampling ranging between 15% and 50%, ITALE yielded lower

RMSE at a range of tested noise levels, and in particular for those settings of higher signal-to-noise.

With 10% undersampling for the XCAT phantom, ITALE was not able to recover some details of

the XCAT image even with no measurement noise, and RMSE was higher than TV at all tested

noise levels. Results of Appendix A.3 indicate that this is partially due to sub-optimal selection of

the tuning parameter using 5-fold cross-validation, caused by the further reduction of undersampling

from 10% to 8% in the size of the training data in each fold.

Examples of recovered signals x̂ITALE and x̂TV are depicted for the Shepp-Logan and brain

phantoms in Figures 2.6 and 2.7, at 15% and 20% undersampling for two low-noise and medium-

noise settings. The qualitative comparisons are similar to those in the 1-D simulations, and to those

previously depicted for the XCAT chest slice in Figure 2.1: As measurement noise increases, ITALE

begins to lose finer details, while TV begins to yield an undersmoothed and blotchy image. These

observations are also similar to previous comparisons that have been made for algorithms oriented

towards `0 versus TV regularization for direct measurements A = I, in Xu et al. (2011); Fan and

Guan (2018); Kim and Gao (2019).
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Figure 2.7: Left: Original brain phantom. Top row: x̂ITALE from 20% undersampled reweighted
Fourier measurements, in low noise (σ = 16, left) and medium noise (σ = 40, right) settings. Bottom
row: x̂TV for the same measurements.

2.5 Conclusion

We have studied recovery of piecewise-constant signals over arbitrary graphs from noisy linear mea-

surements. We have proposed an iterative algorithm, ITALE, to minimize an `0-edge-penalized

least-squares objective. Under a cut-restricted isometry property for the measurement design, we

have established global recovery guarantees for the estimated signal, in noisy and noiseless settings.

In the field of compressed sensing, for signals exhibiting sparsity in an orthonormal basis, `1-

regularization (Donoho, 2006; Candès et al., 2006b,a) and discrete iterative algorithms (Tropp and

Gilbert, 2007; Needell and Tropp, 2009; Blumensath and Davies, 2009) constitute two major ap-

proaches for signal recovery. It has been observed that for recovering piecewise-constant signals,

regularizing the signal gradient in a sparse analysis framework can yield better empirical recovery

than regularizing signal coefficients in such a basis. Whereas `1-regularization extends naturally

to the sparse analysis setting, iterative algorithms have received less attention. By applying the

alpha-expansion idea for MAP estimation in discrete Markov random fields, ITALE provides a com-

putationally tractable approach for “iterative thresholding” recovery of gradient-sparse signals, with

provable recovery guarantees.

In contrast to sparse signal recovery over an orthonormal basis, the comparison of `1 versus `0

regularization for gradient-based sparsity is graph-dependent. Using an `0-based approach, we es-
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tablish signal recovery guarantees on the 1-D and 2-D lattice graphs with numbers of measurements

optimal up to a constant factor, which were not previously available for TV-regularization. This dif-

ference is closely connected to slow and fast rates of convergence for lasso and best-subset regression

for correlated regression designs (Bühlmann et al., 2013; Zhang et al., 2014; Dalalyan et al., 2017).

ITALE provides a polynomial-time approach for `0-regularization in a special graph-based setting,

and we believe it is an interesting question whether similar algorithmic ideas may be applicable to

other classes of sparse regression problems.
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Chapter 3

Tree-Projected Gradient Descent

for Estimating Gradient-Sparse

Parameters

3.1 Introduction

We study estimation of a piecewise-constant or gradient-sparse parameter vector on a given graph.

This problem may arise in statistical changepoint detection (Killick et al., 2012; Fryzlewicz, 2014),

where an unknown vector on a line graph has a sequential changepoint structure. In image denoising

(Rudin et al., 1992) and compressed sensing (Candès et al., 2006a; Donoho, 2006), this vector may

represent a gradient-sparse image on a 2D or 3D lattice graph, as arising in medical X-rays and CT

scans. For applications of epidemic tracking and anomaly detection on general graphs and networks,

this vector may indicate regions of infected or abnormal nodes (Arias-Castro et al., 2011).

We consider the following general framework: Given observations Zn1 := (Z1, . . . , Zn) ∈ Zn with

distribution P, we seek to estimate a parameter θ∗ ∈ Rp associated to P. The coordinates of θ∗ are

identified with the vertices of a known graph G = (V,E), where the number of vertices is |V | = p.

Denoting by ∇G : Rp → R|E| the discrete gradient operator

∇Gθ =
(
θi − θj : (i, j) ∈ E

)
, (3.1)

we assume that the gradient sparsity s∗ := ‖∇Gθ∗‖0 is small relative to the total number of edges
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in G. For example, when G is a line or lattice graph, s∗ measures the number of changepoints or the

total boundary size between the constant pieces of an image, respectively. For a given convex and

differentiable loss function L : Rp × Zn → R, we assume that θ∗ is related to the data distribution

P as the minimizer of the population risk,

θ∗ = argmin
θ∈Rp

EP
[
L(θ;Zn1 )

]
.

Important examples include linear and generalized linear models for Zi = (xi, yi), where θ∗ is the

vector of regression coefficients and L is the usual squared-error or negative log-likelihood loss.

Our main result implies that, under suitable restricted strong convexity and smoothness proper-

ties of the loss (Negahban et al., 2012) and subgaussian assumptions on the noise, a polynomial-time

projected gradient descent algorithm yields an estimate θ̂ which achieves the squared-error guarantee

‖θ̂ − θ∗‖22 ≤ C ·
s∗

n
log
(

1 +
p

s∗

)
(3.2)

with high probability. Here, C > 0 is a constant independent of the graph G, and depends only on

the loss L and distribution P via their convexity, smoothness, and subgaussian constants.

Despite the simplicity of the guarantee (3.2) and its similarity to results for estimating coordinate-

sparse parameters θ∗ ∈ Rp, to our knowledge, our work is the first to establish this guarantee in

polynomial time for estimating gradient-sparse parameters on general graphs, including the 1D line.

In particular, (3.2) is not necessarily achieved by convex approaches which constrain or regularize

the `1 (total-variation) relaxation ‖∇Gθ∗‖1, for the reason that an ill-conditioned discrete gradient

matrix ∇G ∈ R|E|×p contributes to the restricted convexity and smoothness properties of the re-

sulting convex problem (Hütter and Rigollet, 2016; Fan and Guan, 2018). We discuss this further

below, in the context of related literature.

Our work instead analyzes an algorithm that iteratively and approximately computes the pro-

jected gradient update

θt ≈ argmin
θ∈Rp:‖∇Ttθ‖0≤S

‖θ − θt−1 + η · ∇L(θt−1;Zn1 )‖2 (3.3)

over a sequence of low-degree spanning trees T1, T2, . . . ofG.1 To obtain a polynomial-time algorithm,

we approximate each projection onto the non-convex space {θ ∈ Rp : ‖∇Ttθ‖0 ≤ S} by discretizing

1. Here, ∇L(θt−1;Zn1 ) is the gradient of L(θ;Zn1 ) with respect to θ at θt−1, and ∇Ttθ is the discrete gradient
operator (3.1) over the edges in Tt instead of G.
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the signal domain Rp and applying a dynamic-programming recursion over Tt to compute the discrete

projection. For graphs G that do not admit spanning trees of low degree, we apply an idea of Padilla

et al. (2017) and construct Tt using a combination of edges in G and additional edges representing

backtracking paths along a depth-first-search traversal of G.

Our algorithm and analysis rely on an important insight from Jain et al. (2014), which is to

perform each projection using a target sparsity-level S that is larger than the true gradient-sparsity

s∗ by a constant factor. This idea was applied in Jain et al. (2014) to provide a statistical analysis

of iterative thresholding procedures such as IHT, CoSaMP, and HTP for estimating coordinate-

sparse parameters (Blumensath and Davies, 2009; Needell and Tropp, 2009; Foucart, 2011). A key

ingredient in our proof, Lemma 3.3.6 below, is a combinatorial argument which compares the errors

of approximating any vector u by vectors uS and u∗ that are gradient-sparse over a tree, with two

different sparsity levels S and s∗. This extends a central lemma of Jain et al. (2014) from the simpler

setting of coordinate-sparsity to a setting of gradient-sparsity on trees.

3.1.1 Related literature

Existing literature on this and related problems is extensive, and we provide here a necessarily

partial overview.

Convex approaches: Estimating a piecewise-constant vector θ∗ in both the direct-measure-

ments model yi = θ∗i +ei and the indirect linear model yi = x>i θ
∗+ei has been of interest since early

work on the fused lasso (Tibshirani et al., 2005; Rinaldo, 2009) and compressed sensing (Candès

et al., 2006b,a; Donoho, 2006). A natural and commonly-used approach is to constrain or penalize

the total-variation semi-norm ‖∇Gθ∗‖1 (Rudin et al., 1992). Statistical properties of this approach

have been extensively studied, including estimation guarantees over signal classes of either bounded

variation or bounded exact gradient-sparsity (Mammen and van de Geer, 1997; Hütter and Rigollet,

2016; Sadhanala et al., 2016; Dalalyan et al., 2017; Lin et al., 2017; Ortelli and van de Geer, 2018);

exact or robust recovery guarantees in compressed sensing contexts (Needell and Ward, 2013a,b;

Cai and Xu, 2015); and correct identification of changepoints or of the discrete gradient support

(Harchaoui and Lévy-Leduc, 2010; Sharpnack et al., 2012). Extensions to higher-order trend-filtering

methods have been proposed and studied in (Kim et al., 2009; Wang et al., 2016; Sadhanala et al.,

2017; Guntuboyina et al., 2017). These works have collectively considered settings of both direct

and indirect linear measurements, for the 1D line, 2D and 3D lattices, and more general graphs.

In the above work, statistical guarantees analogous to (3.2) have only been obtained under

30



restrictions for either G or θ∗, which we are able to remove using a non-convex approach. Hütter and

Rigollet (2016) established a guarantee analogous to (3.2) when certain compatibility and inverse-

scaling factors of G are O(1); a sufficient condition is that G has constant maximum degree, and

the Moore-Penrose pseudo-inverse ∇†G has constant `1 → `2 operator norm. This notably does not

include the 1D line or 2D lattice. Dalalyan et al. (2017), Lin et al. (2017), and Guntuboyina et al.

(2017) developed complementary results, showing that (3.2) can hold for the 1D line provided that

the s∗ changepoints of θ∗ have minimum spacing & p/(s∗ + 1). An extension of this to tree graphs

was proven in Ortelli and van de Geer (2018). Roughly speaking, ∇†G is an effective design matrix for

an associated sparse regression problem, and the spacing condition ensures that the active variables

in the regression model are weakly correlated, even if the full design ∇†G has strong correlations.

Synthesis approach: A separate line of work focuses on the synthesis approach, which uses

a sparse representation of θ∗ in an orthonormal basis or more general dictionary. Such methods

include wavelet approaches in 1D (Daubechies, 1988; Donoho and Johnstone, 1994, 1995), curvelet

and ridgelet frames in 2D (Candès, 1998; Candès and Donoho, 2000, 2004), and tree-based wavelets

for more general graphs (Gavish et al., 2010; Sharpnack et al., 2013). Elad et al. (2007) and Nam

et al. (2013) compare and discuss differences between the synthesis and analysis approaches. Note

that in general, an s∗-gradient-sparse signal θ∗ may not admit a O(s∗)-sparse representation in an

orthonormal basis. For example, θ∗ having s∗ changepoints on the line may have up to s∗ log2 p

non-zero coefficients in the Haar wavelet basis, and (3.2) would be inflated by an additional log

factor using Haar wavelets.

3.1.2 Our contributions

In contrast to this first line of work on convex methods, our current work is most closely related

to a third line of literature on methods that penalize or constrain the exact non-convex gradient-

sparsity ‖∇Gθ∗‖0, rather than its convex `1 relaxation (Mumford and Shah, 1989; Boykov et al.,

1999; Boysen et al., 2009; Fan and Guan, 2018). This direct method enables theoretical guarantees

that remove the spectral conditions on the graph G as well as the minimum spacing requirements

of the work alluded to above.

Our results extend those of Fan and Guan (2018), which established similar guarantees to (3.2)

for direct measurements yi = θ∗i + ei. Our projected gradient algorithm is similar to the proximal-

gradient method recently studied in Xu and Fan (2021), which considered indirect linear measure-

ments yi = x>i θ
∗ + ei in a compressed sensing context. In contrast to Xu and Fan (2021), which
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considered deterministic measurement errors and a restrictive RIP-type condition on the measure-

ment design, we provide guarantees in the statistical setting of random noise, with much weaker

conditions for the regression design, and for a general convex loss. These statistical guarantees are

based on a novel tree-projection algorithm that approximates the graph at every iteration. The

analysis leverages a new bound that controls the approximation error of tree projections, which is

presented in Lemma 3.3.6.

3.2 Tree-projected gradient descent algorithm

Our proposed algorithm, tree-projected gradient descent (tree-PGD), consists of two main steps:

1. For a specified vertex degree dmax ≥ 2 and iteration count τ ≥ 1, we construct a sequence of

trees T1, . . . , Tτ on the same vertices as G, such that each tree Tt has maximum degree ≤ dmax,

and any gradient-sparse vector on G remains gradient-sparse on Tt.

2. For a specified step size η > 0 and sparsity level S > 0, we compute iterates θ1, . . . ,θτ where

each θt solves the projected gradient-descent step (3.3) over a discretized domain—see (3.5)

and (3.6) below.

For simplicity, we initialize the algorithm at θ0 = 0. The main tuning parameter is the projection

sparsity S, which controls the bias-variance trade-off and the gradient sparsity of the final estimate

θ̂ = θτ . The additional parameters of the algorithm are dmax, τ , η, and the discretization (3.5)

specified by (∆min,∆max, δ). We discuss these two steps in detail below.

For our theoretical guarantees, it is sufficient to choose dmax = 2 and to fix the same tree in every

iteration. However, we observe in Section 3.5 that using both larger values of dmax and a different

random tree in each iteration can yield substantially lower recovery error in practice, so we will state

our algorithm and theory to allow for these possibilities.

3.2.1 Tree construction

We construct a tree T on the vertices V = {1, . . . , p} by the following procedure.

1. Compute any spanning tree T̃ of G. If T̃ has maximum degree ≤ dmax, then set T = T̃ .

2. Otherwise, let ODFS be the ordering of unique vertices and edges visited in any depth-first-

search (DFS) traversal of T̃ . For each vertex v whose degree exceeds dmax in T̃ , keep its first
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Figure 3.1: An illustration of the tree construction method. Left: Original lattice graph G. Middle:
A spanning tree T̃ of G, with vertices numbered in DFS ordering. Right: The final tree T with
dmax = 3, which changes edge (2, 16) to (15, 16), and edge (10, 14) to (13, 14), thus replacing the two
edges adjacent to the degree-4 vertices of T .

dmax edges in this ordering, and delete its remaining edges from T̃ . Note that the deleted

edges are between v and its children.

3. For each such deleted edge (v, w) where w is a child of v, let w′ be the vertex preceding w in

the ordering ODFS , and add to T̃ the edge (w′, w). Let T be the final tree.

This procedure is illustrated in Figure 3.1. We repeat this construction to obtain each tree T1, . . . , Tτ .

If G itself has maximum degree ≤ dmax, then Steps 2 and 3 above are not necessary, and the

guarantee (3.4) below may be trivially strengthened to ‖∇Tθ‖0 ≤ ‖∇Gθ‖0. For graphs G of larger

maximum degree, the idea in Steps 2 and 3 above and the associated guarantee (3.4) are drawn from

Lemma 1 of Padilla et al. (2017), which considered the case of a line graph for T (where dmax = 2).

Lemma 3.2.1. Let G = (V,E) be any connected graph with p vertices, and let T be as constructed

above. Then T is a tree on V with maximum degree ≤ dmax. Furthermore, for any θ ∈ Rp,

‖∇Tθ‖0 ≤ 2‖∇Gθ‖0. (3.4)

The computational complexity for constructing T is O(|E|).

3.2.2 Projected gradient approximation

The exact minimizer of (3.3) is the projection of ut := θt−1 − η · ∇L(θt−1;Zn1 ) onto the space

of S-gradient-sparse vectors over Tt. This space is a union of
(
p−1
S

)
linear subspaces, and naively

iterating over these subspaces is intractable for large S. We instead propose to approximate the

projection by taking a discrete grid of values

∆ :=
{

∆min,∆min + δ,∆min + 2δ, . . . ,∆max − δ,∆max

}
(3.5)
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and performing the minimization over θ ∈ ∆p. Thus, our tree-PGD algorithm sets

θt = argmin
θ∈∆p:‖∇Ttθ‖0≤S

‖θ − θt−1 + η · ∇L(θt−1;Zn1 )‖2 (3.6)

Each θt may be computed by a dynamic-programming recursion over Tt.
2

In detail, fix any target vector u ∈ Rp and a tree T on the vertices {1, . . . , p}. To compute

argmin
θ∈∆p:‖∇T θ‖0≤S

‖θ − u‖2, (3.7)

pick any vertex o ∈ {1, . . . , p} with degree 1 in T as the root. For each vertex v of T , let Tv be the

sub-tree consisting of v and its descendants. Let |Tv| be the number of vertices in Tv and uTv ∈ R|Tv|

be the coordinates of u belonging to Tv. Define fv : ∆× {0, 1, . . . , S} → R by

fv(c, s) = min
{
‖θ − uTv‖22 : θ ∈ ∆|Tv|, ‖∇Tvθ‖0 ≤ s, θv = c

}
. (3.8)

This is the minimum over vectors θ on Tv that are s-gradient-sparse and take value c ∈ ∆ at v.

These values fv(c, s) may be computed recursively from the leaves to the root, as follows.

1. For each leaf vertex v of T and each (c, s) ∈ ∆× {0, 1, . . . , S}, set fv(c, s) = (c− uv)2.

2. For each vertex v of T with children (w1, . . . , wk), given fw(c, s) for all w ∈ {w1, . . . , wk} and

(c, s) ∈ ∆× {0, 1, . . . , S}:

(a) For each s ∈ {0, 1, . . . , S} and w ∈ {w1, . . . , wk}, compute mw(s) = minc∈∆ fw(c, s).

(b) For each (c, s) ∈ ∆×{0, 1, . . . , S} and w ∈ {w1, . . . , wk}, compute gw(c, s) = min{fw(c, s),

mw(s− 1)}, where this is taken to be fw(c, s) if s = 0.

(c) For each (c, s) ∈ ∆× {0, 1, . . . , S}, set

fv(c, s) = (c− uv)2 + min
s1,...,sk≥0
s1+...+sk=s

(
gw1

(c, s1) + . . .+ gwk(c, sk)
)
. (3.9)

The following then produces the vector θ which solves (3.7).

3. For the root vertex o, set θo = argminc∈∆ fo(c, S) and So = S.

2. For the case where Tt is a line graph, an alternative non-discretized algorithm with complexity O(p2S) is presented
in (Auger and Lawrence, 1989).
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4. For each other vertex v, given θv and Sv: Let w1, . . . , wk be the children of v and let s1, . . . , sk

be the choices which minimized (3.9) for fv(θv, Sv). For each i = 1, . . . , k, if gwi(θv, si) =

fwi(θv, si), then set θwi = θv and Swi = si. If gwi(θv, si) = mwi(si − 1), then set θwi =

argminc∈∆ fwi(c, si − 1) and Swi = si − 1.

The update θt in (3.6) is computed by applying this algorithm to u ≡ ut = θt−1− η ·∇L(θt−1;Zn1 ).

Lemma 3.2.2. This algorithm minimizes (3.7). Letting dmax be the maximum vertex degree of T

and |∆| be the cardinality of ∆, its computational complexity is O(dmaxp|∆|(S + dmax)dmax−1).

3.2.3 Total complexity for the linear model

Let us compute the total complexity of this tree-PGD algorithm, under parameter settings that yield

a rate-optimal statistical guarantee for the linear model discussed in Section 3.4.1. We set dmax as

a small integer and S as a constant multiple of s∗. Evaluating ∇L(θt−1;Zn1 ) in the linear model

requires two matrix-vector multiplications of complexity O(np), where n is the sample size. Let us

assume that the number of graph edges is |E| = O(p), and that the entries of θ∗ and the noise e are

both of constant order. Then Corollary 3.4.2 indicates that we may take ∆max − ∆min = O(
√
p),

δ = O(
√
s∗/np), and τ = O(log np). Under these settings, the total complexity of tree-PGD is

O
((
np + p2

√
n(s∗)dmax−3/2

)
log np

)
. Setting dmax = 2 (i.e. taking T1, . . . , Tτ to be line graphs)

yields the lowest complexity.

3.3 Main theorem

We introduce the following notation which identifies gradient-sparse vectors, partitions of the vertices

{1, . . . , p}, and subspaces of Rp.

Definition 3.3.1. Let T be a connected graph on the vertices V = {1, . . . , p}, and let θ ∈ Rp. The

partition induced by θ over T is the partition of V whose sets are the connected components of

{(i, j) ∈ T : θi = θj} in T . For such a partition P having k sets, the subspace associated to P

is the dimension-k subspace of vectors in Rp taking a constant value over each set. The boundary

of P over T , denoted by ∂TP, is the set of edges (i, j) ∈ T where i, j belong to different sets of P.

Thus, the sets of the partition P induced by θ over T are the “pieces” of the graph T where θ

takes a constant value. If P is induced by θ over T , and K is the associated subspace, then θ ∈ K.

Furthermore, ∂TP is exactly the edge set where ∇Tθ is non-zero, and ‖∇Tθ‖0 = |∂TP|.
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We introduce two properties for the loss, defined for pairs of connected graphs (T1, T2) on the

same vertices V . We will apply these to consecutive pairs of trees generated by tree-PGD.

Definition 3.3.2 (cRSC and cRSS). A differentiable function f : Rp → R satisfies cut-restricted

strong convexity (cRSC) and smoothness (cRSS) with respect to (T1, T2), at sparsity level S and with

convexity and smoothness constants α,L > 0, if the following holds: For any partitions P1,P2 of

{1, . . . , p} where |∂T1P1| ≤ S and |∂T2P2| ≤ S, and any θ1,θ2 ∈ K := K1 + K2 where K1,K2 are

the subspaces associated to P1,P2,

f(θ2) ≥ f(θ1) + 〈θ2 − θ1,∇f(θ1)〉+
α

2
‖θ2 − θ1‖22, (3.10)

f(θ2) ≤ f(θ1) + 〈θ2 − θ1,∇f(θ1)〉+
L

2
‖θ2 − θ1‖22. (3.11)

Definition 3.3.3 (cPGB). A differentiable function f : Rp → R has a cut-projected gradient bound

(cPGB) of Φ(S) with respect to (T1, T2), at a point θ∗ ∈ Rp and sparsity level S, if the following

holds: For any partitions P1,P2 of {1, . . . , p} where |∂T1
P1| ≤ S and |∂T2

P2| ≤ S, letting K1,K2 be

their associated subspaces and PK be the orthogonal projection onto K := K1 +K2,

‖PK∇f(θ∗)‖2 ≤ Φ(S). (3.12)

To provide some interpretation, the below lemma gives an example for this function Φ in the

important setting where wT∇L(θ∗;Zn1 ) is subgaussian for any w ∈ K.

Lemma 3.3.4. Let S ≥ 1, let T1, T2 be trees on {1, . . . , p}, and let θ∗ ∈ Rp. Suppose, for any

subspace K as defined in Definition 3.3.3 and any w ∈ K, that w>∇L(θ∗;Zn1 ) is σ2/n-subgaussian.3

Then for any k > 0 and a constant Ck > 0 depending only on k, with probability at least 1 − p−k,

the loss L(· ;Zn1 ) has the cPGB

Φ(S) = Ckσ
√

S
n log

(
1 + p

S

)
with respect to (T1, T2), at θ∗ and sparsity level S.

The following is our main result, which provides a deterministic estimation guarantee when tree-

PGB is applied with an appropriate choice of the projection sparsity S = κs∗. This result yields the

same type of guarantee for any choice of dmax ≥ 2 and any sequence of trees.

3. This means that for any t > 0, P[|w>∇L(θ∗;Zn1 )| > t] ≤ 2e−nt
2/(2σ2).

36



Theorem 3.3.5. Suppose ‖∇Gθ∗‖0 ≤ s∗, where s∗ > 0. Set S = κs∗ in tree-PGD for a constant

κ > 1. Let τ ≥ 1 and dmax ≥ 2, let T1, . . . , Tτ be the sequence of trees generated by tree-PGD, and

denote T0 = T1 and S′ = S + 2s∗ + max(
√
S, dmax). Suppose, for all 1 ≤ t ≤ τ , that

1. L(· ;Zn1 ) satisfies cRSC and cRSS with respect to (Tt−1, Tt), at sparsity level S′ and with

convexity and smoothness constants α,L > 0.

2. L(· ;Zn1 ) has the cPGB Φ(S′) with respect to (Tt−1, Tt), at the point θ∗ and sparsity level S′.

Define

γ =

√
(dmax−1)(2s∗+

√
S+1)+1

S−2s∗−
√
S

, Γ = (1 + γ)
√

1− α
L , Λ = 1

1−Γ

(
4(1+γ)
α · Φ(S′) + δ

√
p
)
,

and suppose κ is large enough such that S >
√
S + 2s∗ and Γ < 1. Take η = 1

L , θ0 = 0, and

−∆min,∆max ≥ 1
L‖∇L(θ∗;Zn1 )‖∞ + 3‖θ∗‖2 + 2Λ in tree-PGD. Then the τ th iterate θτ of tree-PGD

satisfies

‖θτ − θ∗‖2 ≤ Γτ · ‖θ∗‖2 + Λ.

Note that since γ → 0 as κ → ∞, for any value α/L ∈ (0, 1], there is a choice of constant

κ ≡ κ(α,L) sufficiently large to ensure Γ < 1.

3.3.1 Proof overview

The proof of Theorem 3.3.5 adopts an induction argument. For simplicity, let us suppose here that

θt exactly minimizes (3.3). Then for each iteration, we wish to prove

‖θt − θ∗‖2 ≤ Γ · ‖θt−1 − θ∗‖2 + 4(1+γ)
α · Φ(S′). (3.13)

The proof of (3.13) contains two main steps. First, we construct a subspace K which contains

θt and θ∗ and write ‖θt − θ∗‖2 ≤ ‖PKut − θt‖2 + ‖PKut − θ∗‖2. Using the following key lemma,

we show that there exists such a subspace K for which ‖PKut − θt‖2 ≤ γ‖PKut − θ∗‖2, and the

vectors in K have gradient-sparsity not much larger than S + s∗.

Lemma 3.3.6. Let T be a tree on the vertices {1, . . . , p} with maximum vertex degree dmax. Let

s∗ > 0 and S = κs∗, where κ > 1 and S >
√
S + s∗. Let u ∈ Rp be arbitrary, let u∗ ∈ Rp be any
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vector satisfying ‖∇Tu∗‖0 ≤ s∗, and set

uS = argmin
θ∈Rp:‖∇T θ‖0≤S

‖u− θ‖2.

Denote by (KS ,K∗) the subspaces associated to the partitions induced by (uS ,u∗) over T . Then

there exists a partition P of {1, . . . , p} with associated subspace K, such that K contains KS +K∗,

|∂TP| ≤ S + s∗ +
√
S, (3.14)

and the orthogonal projection PKu of u onto K satisfies

‖PKu− uS‖22 ≤
(dmax − 1)(s∗ +

√
S + 1) + 1

S − s∗ −
√
S

‖PKu− u∗‖22. (3.15)

Then, in the second step, we bound ‖PKut − θ∗‖2 by introducing v = argminθ∈K L(θ;Zn1 ).

Using a property of the gradient mapping (Lemma B.3.2) and the cRSC and cRSS conditions, we

show that ‖PKut − v‖2 ≤
√

1− α/L · ‖θt−1 − v‖2. Applying the triangle inequality, this implies

‖PKut−θ∗‖2 ≤
√

1− α/L·‖θt−1−θ∗‖2+2‖v−θ∗‖2. Finally, we show that ‖v−θ∗‖2 ≤ (2/α)Φ(S′)

using the cRSC and cPGB properties of the loss, and combining gives (3.13).

The use of Lemma 3.3.6 is inspired by an analogous argument of Jain et al. (2014) for coordinate-

sparse parameter estimation. However, the analysis for coordinate-sparsity is simpler, due to a key

structural property that if uS and u∗ are the best (coordinate-) S-sparse and s∗-sparse approxi-

mations of u, then the sparse subspace of u∗ is contained inside that of uS . This nested subspace

structure does not hold for gradient-sparsity, and thus our proofs of both Lemma 3.3.6 and Theorem

3.3.5 follow different arguments from those of Jain et al. (2014).

3.4 Examples

3.4.1 Gradient-sparse linear regression

Consider the example of Zi = (xi, yi) satisfying a linear model

yi = x>i θ
∗ + ei (3.16)

for independent design vectors xi ∈ Rp and mean-zero residual errors ei. Let us write this as

y = Xθ∗ + e where y = (y1, . . . , yn), e = (e1, . . . , en), and X ∈ Rn×p is the random design matrix
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with rows x>i . Then θ∗ is the minimizer of E[L(θ;Zn1 )] for the squared-error loss

L(θ;Zn1 ) =
1

2n
‖y −Xθ‖22.

The gradient of the loss is given by ∇L(θ;Zn1 ) = X>(Xθ − y)/n.

We assume that

Cov(xi) = Σ, λmax(Σ) = λ1, λmin(Σ) = λp, ‖xi‖2ψ2
≤ Dλp (3.17)

E[ei] = 0, ‖ei‖2ψ2
≤ σ2 (3.18)

for constants λ1, λp, D, σ
2 > 0, where ‖ · ‖ψ2 denotes the scalar or vector subgaussian norm. Then

the cRSC, cRSS, and cPGB conditions hold according to the following proposition.

Proposition 3.4.1. Suppose (3.17) and (3.18) hold, and let S′ ≥ 1. Define

g(S′) = S′ log(1 + p
S′ ). (3.19)

Let T1, . . . , Tτ be the trees generated by tree-PGD, and let T0 = T1. For any k > 0, and some

constants C1, C2, C3 > 0 depending only on k and D, if

n ≥ C1g(S′)

then with probability at least 1− τ · p−k, for every 1 ≤ t ≤ τ ,

1. L(· ;Zn1 ) satisfies cRSC and cRSS with respect to (Tt−1, Tt) at sparsity level S′ and with con-

vexity and smoothness constants α = λp/2 and L = 3λ1/2.

2. L(· ;Zn1 ) has the cPGB

Φ(S′) = C2σ
√
λ1g(S′)/n

with respect to (Tt−1, Tt), at θ∗ and sparsity level S′.

3. ‖∇L(θ∗;Zn1 )‖∞ ≤ C3σ
√

(λ1 log p)/n.

Applying this and Theorem 3.3.5, we obtain the following immediate corollary.

Corollary 3.4.2. Suppose (3.17) and (3.18) hold, and ‖∇Gθ∗‖0 ≤ s∗ and ‖θ∗‖2 ≤ c0
√
p for some

s∗ ≥ 1 and c0 > 0. Set S = c1(λ1/λp)
2s∗, η = 2/(3λ1), ω = σλ

3/2
1 /λ2

p, −∆min = ∆max =
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c2(
√
p+ω

√
(s∗ log p)/n), δ = ω

√
s∗/np, and τ = c3 log(np/ω2s∗) in tree-PGD, for sufficiently large

constants c1 > 0 depending on dmax, D and c2, c3 > 0 depending on dmax, D, c0.

Then for any k > 0 and some constants C1, C2 > 0 depending only on k, dmax, D, if n ≥

C1(λ1/λp)
2s∗ log(1 + p/s∗), then with probability at least 1− τ · p−k,

‖θτ − θ∗‖22 ≤ C2 ·
σ2λ3

1

λ4
p

· s
∗

n
log
(

1 +
p

s∗

)
.

3.4.2 Gradient-sparse GLM

Consider the example of Zi = (xi, yi) satisfying a generalized linear model (GLM)

P (yi|xi,θ∗, φ) = exp
{yixT

i θ
∗ − b(xT

i θ
∗)

φ

}
· h(yi, φ)

for independent design vectors xi ∈ Rp. Here φ > 0 is a constant scale parameter, and h and b

are the base measure and cumulant function of the exponential family, where E(yi|xi) = b′(x>i θ
∗).

Then θ∗ minimizes the population risk E[L(θ;Zn1 )] for the negative log-likelihood loss

L(θ;Zn1 ) =
1

n

n∑
i=1

(
b(x>i θ)− yix>i θ

)
.

The gradient of this loss is ∇L(θ;Zn1 ) = 1
n

∑n
i=1(b′(x>i θ)− yi)xi.

Let us assume that (3.17) holds for the design vectors xi. Setting ei = yi − b′(x>i θ∗), let us

assume also that for some constants αb, Lb, D1, D2 > 0 and β ∈ [1, 2],

αb
2

(x2 − x1)2 ≤ b(x2)− b(x1)− b′(x1)(x2 − x1) ≤ Lb
2

(x2 − x1)2 for all x1, x2 ∈ R, (3.20)

P(|ei| > ζ) ≤ D1 exp(−D2ζ
β) for all ζ > 0. (3.21)

Then the cRSC, cRSS, and cPGB conditions hold according to the following proposition.

Proposition 3.4.3. Suppose that (3.17), (3.20), and (3.21) hold. Let S′ ≥ 1 and g(S′) be as in

(3.19). Let T1, . . . , Tτ be the trees generated by tree-PGD, and let T0 = T1. For any k > 0 and some

constants C1, C2, C3 > 0 depending only on k,D,D1, D2, β, if n ≥ C1g(S′), then with probability at

least 1− τ · p−k, for every 1 ≤ t ≤ τ ,

1. L(· ;Zn1 ) satisfies cRSC and cRSS with respect to (Tt−1, Tt) at sparsity levels S′ with convexity

and smoothness constants α =
αbλp

2 and L = 3Lbλ1

2 .
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Noise std. dev. σ 1.0 1.5 2.0 2.5 3.0
Fixed line 0.0372 0.0373 0.0383 0.0388 0.0407
Random, dmax = 2 0.0005 0.0009 0.0020 0.0040 0.0058
Random, dmax = 3 0.0003 0.0008 0.0014 0.0028 0.0052
Random, dmax = 4 0.0003 0.0007 0.0013 0.0032 0.0055
Total variation 0.0006 0.0013 0.0023 0.0036 0.0052

Table 3.1: MSE 1
p‖θ̂ − θ

∗‖22 for recovering the image of Figure 3.2 (under best tuning of S), aver-
aged across 20 independent simulations. For tree-PGD, using a different random tree Tt per iteration
yields a sizeable improvement over using a fixed line graph across all iterations, and small improve-
ments are observed for increasing dmax. Average MSE for the total-variation penalized estimate is
provided for comparison (under best tuning of λ).

2. L(· ;Zn1 ) has the cPGB

Φ(S′) =


C2

√
λ1/n · g(S′)1/β if 1 < β ≤ 2

C2 log n
√
λ1/n · g(S′) if β = 1

with respect to (Tt−1, Tt), at θ∗ and sparsity level S′.

3. ‖∇L(θ∗;Zn1 )‖∞ ≤


C3(log p)1/β

√
λ1/n if 1 < β ≤ 2

C3(log n)(log p)
√
λ1/n if β = 1

Under suitable settings of the tree-PGD parameters, similar to Corollary 3.4.2 and which we

omit for brevity, when n ≥ C ′s∗ log(1 + p/s∗), this yields the estimation rate

‖θτ − θ∗‖22 ≤ C ·
(s∗ log(1 + p/s∗))2/β

n

in models where 1 < β ≤ 2, and this rate with an additional (log n)2 factor in models where β = 1.

(Here, these constants C,C ′ depend on λ1, λp, D,D1, D2, β.)

We note that this result may be established under a relaxed condition (3.20) that only holds

over a sufficiently large bounded region for x1, x2, following a more delicate analysis and ideas of

Negahban et al. (2012). For simplicity, we will not pursue this direction in this work.

3.5 Simulations

Theorem 3.3.5 applies for any choices of trees T1, . . . , Tτ in tree-PGD, with any maximum degree

dmax ≥ 2. We perform a small simulation study in the linear model (3.16) to compare the empirical

estimation accuracy of tree-PGD using different tree constructions.
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Figure 3.2: Top-left: True image θ∗, with values between −0.5 (blue) and 0.9 (red). Top-middle:
Noisy image 1

nX>y, for y = Xθ∗ + e with Gaussian design and noise standard deviation σ = 1.5.

Top-right: Best total-variation penalized estimate θ̂. Bottom row: Best tree-PGD estimate θ̂ for
a fixed line graph Tt in every iteration (zig-zagging vertically through G, bottom left), a different
random tree with dmax = 2 in each iteration (bottom middle), and a different random tree with
dmax = 4 in each iteration (bottom right).

We recover the image θ∗ depicted in Figure 3.2 on a 30 × 30 lattice graph G, using n = 500

linear measurements with xi ∼ N (0, I) and ei ∼ N (0, σ2). For σ = 1.5, a noisy image 1
nX>y =

θ∗ + ( 1
nX>X− I)θ∗ + 1

nX>e is also depicted.

Tree construction: We applied tree-PGD in two settings: First, we constructed Tt using a

deterministic DFS over G, fixed across all iterations. This resulted in Tt being a line graph that

zig-zags vertically through G. Second, we constructed Tt using a different spanning tree T̃t generated

by random DFS in each iteration. The DFS procedure started at a uniform random node and, at

each forward step, chose a uniform random unvisited neighbor. We tested restricting to dmax = 2 or

dmax = 3 for Tt, or letting Tt = T̃t (corresponding to dmax = 4). In all experiments, we used τ = 80,

η = 1/5, and (∆min,∆max, δ) = (−0.6, 1.0, 0.05).

Results for a single experiment at σ = 1.5 are depicted in Figure 3.2, and average MSE across

20 experiments for varying σ are reported in Table 3.1. These results correspond to the best choices

S = κs∗ across a range of tested values. Estimation accuracy is substantially better using different

and random trees than using the same fixed line graph. We observe small improvements using

dmax = 3 or dmax = 4 over random line graphs with dmax = 2, especially in the higher signal-to-

noise settings. For comparison, we display in Figure 3.2 and Table 3.1 also the total-variation (TV)

regularized estimate θ̂ = argminθ
1

2n‖y −Xθ‖22 + λ‖∇Gθ‖1 and its average MSE, corresponding to

the best choices of λ. We observe that tree-PGD, which targets the exact gradient-sparsity rather
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than a convex surrogate, is more accurate in high signal-to-noise settings, and becomes less accurate

in comparison with TV as signal strength decreases. This agrees with previous observations made

in similar contexts in Hastie et al. (2017); Mazumder et al. (2017); Fan and Guan (2018).

3.6 Discussion

We have shown linear convergence of gradient descent with projections onto the non-convex space

of gradient-sparse vectors on a graph. Our results show that this method achieves strong statistical

guarantees in regression models, without requiring a matching between the underlying graph and de-

sign matrix. We do this by introducing a careful comparison between gradient-sparse approximations

at different sparsity levels, which generalizes previous results for coordinate-sparse vectors.

Our theory is presented in such a way that allows the approximation trees to vary at each

iteration. However, this is not required and the tree can be fixed with dmax = 2 at the start of

the algorithm. Nevertheless, we observe experimentally that using a different random tree in each

iteration substantially improves the practical performance. Our intuition for the improvement with

random trees is that the gradient-sparsity of the signal on the original graph G may be better

captured by the average sparsity with respect to a randomly chosen sub-tree of G, than by the

sparsity with respect to any fixed sub-tree. By using a different random tree in each iteration, the

algorithm is better targeting this average sparsity. This observation will be studied in future work.

Another interesting direction for future work is to explore the connections between this work

and computationally tractable sparse linear regression problems with highly correlated designs. For

instance, some work (Bühlmann et al., 2013; Dalalyan et al., 2017) discuss various ways to over-

come correlated designs. In our setting, the tree projection step enables a computationally efficient

method, and it is of interest to understand more general settings where one may overcome the

correlated structure of the problem using a computationally efficient procedure.
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Chapter 4

Maximum Likelihood for

High-Noise Group Orbit

Estimation

4.1 Introduction

We study several problems of function estimation in low dimensions, where the function is observed

under random and unknown rotations of its domain. Let f : X → R be a function on the domain

X , and let G be a rotational group acting on X . Denote by fg(x) = f(g−1 · x) the rotation of f by

g ∈ G. We seek to estimate f from many independently rotated observations of the whole function

fg in white noise,

fg(x) dx+ σ dW (x),

which we will refer to as the “samples”. The rotations g are unknown, and we assume them to be

uniformly random across samples.1 Each rotated sample is observed in standard Gaussian white

noise dW (x) on X , scaled by the noise level σ > 0.

In classical settings of function estimation without rotations of the domain, many such samples

may first be averaged. Thus it is equivalent to study estimation from a single mean sample, commonly

assumed to have low noise σ2 � ‖f‖2L2
. In this work, we instead focus on a setting where each

1. When there is no projection, the case of non-uniform rotations can be reduced to our uniform case by applying
an additional uniformly random rotation to each sample. However, it is known in several settings that estimation can
become easier for non-uniform rotations Abbe et al. (2019); Sharon et al. (2020).
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individual sample has high noise σ2 & ‖f‖2L2
, so that the information from many rotated samples

must be combined to obtain an accurate estimate of f .

Our primary motivation is a formulation of this problem that models molecular reconstruction in

single-particle cryo-electron microscopy (cryo-EM) Dubochet et al. (1988); Henderson et al. (1990);

Frank (2006). In this application, f : R3 → R is the electric potential of an unknown molecular

structure. Tomographic projections of this potential are measured for many samples of the molecule,

each in a different and unknown rotated orientation, typically with a high level of measurement noise.

The molecular structure is determined by estimating this electric potential f from the rotated and

projected samples, and then fitting an atomic model Bendory et al. (2020a); Singer and Sigworth

(2020). A brief introduction to cryo-EM and a discussion of its relation to the problems studied in

this work are presented in Appendix C.6.

Among computational procedures for solving this reconstruction problem, regularized versions of

maximum likelihood estimation (MLE), as implemented via expectation-maximization or stochastic

gradient descent, are very commonly used Sigworth (1998); Scheres et al. (2007); Scheres (2012);

Punjani et al. (2017). However, theoretical properties of these approaches are not well-understood

for the cryo-EM application Bendory et al. (2020a).

In this work, we study the properties of maximum likelihood estimation for a basic model of

the cryo-EM reconstruction problem, as well as several simpler statistical models with qualitative

similarities, which may be of independent interest while building up to the complexity of cryo-EM:

• (Continuous multi-reference alignment, Section 4.3.) Estimating a function on the unit circle

X = S1, under SO(2) rotations of the circle Bandeira et al. (2020); Bendory et al. (2020b).

• (Spherical registration, Section 4.4.1.) Estimating a function on the unit sphere X = S2, under

SO(3) rotations of the sphere (Bandeira et al., 2017, Section 5.4).

• (Unprojected cryo-EM, Section 4.4.2.) Estimating a function on R3 under SO(3) rotations

about the origin, without tomographic projection (Bandeira et al., 2017, Appendix B). Such

a problem arises in a related application of cryo-ET, discussed in Appendix C.6.1.

• (Cryo-EM, Section 4.4.3.) Estimating a function on R3 under SO(3) rotations about the origin,

with tomographic projection (Bandeira et al., 2017, Section 5.5).
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4.1.1 Group orbit recovery and related literature

Classical work on function estimation has explored the rich interplay between the complexity of

infinite-dimensional function classes, the statistical difficulty of estimation, and the role of regular-

ization Ibragimov and Has’minskii (1981); Tsybakov (2008); Johnstone (2017).

In this paper, we instead study connections between the statistical and computational difficulty

of estimation and the algebraic structure of the underlying rotational group. We will focus attention

on several examples of finite-dimensional function spaces, and study the unregularized MLE that

marginalizes over the random rotations. Our main results describe the geometry of the Fisher infor-

mation matrix and log-likelihood landscape and their relation to the invariant polynomial algebra

of the group action.

Passing to a Gaussian sequence form by a choice of function basis, our problem may be restated

as an orbit recovery problem Bandeira et al. (2017); Abbe et al. (2018) of estimating an unknown

coefficient vector θ∗ ∈ Rd from noisy observations, rotated by elements of a subgroup G ⊂ O(d)

acting on the coefficients in this basis. A body of recent literature has studied both specific and

general instances of this orbit recovery problem Perry et al. (2019); Bandeira et al. (2020, 2017);

Abbe et al. (2018); Pumir et al. (2019); Brunel (2019); Fan et al. (2020); Sharon et al. (2020);

Romanov et al. (2021). When G is a discrete cyclic group acting by cyclic rotations of coordinates

(a.k.a. discrete multi-reference alignment), Perry et al. (2019) first proved that the optimal squared

error for estimating generic signals θ∗ ∈ Rd in high noise is significantly larger than that in the

model without latent rotations, scaling as σ6 rather than σ2. This analysis was extended to non-

generic signals for continuous multi-reference alignment in Bandeira et al. (2020) and to general

group actions in Abbe et al. (2018); Bandeira et al. (2017).

For a general subgroup G ⊆ O(d), Bandeira et al. (2017) obtained a number of results on

method-of-moments estimators that are inspirational for our current work. These results showed

that the squared error for estimating generic signals up to a finite list of group orbits scales as σ2K ,

where K is the smallest integer for which the transcendence degree trdeg(RG) of the algebra RG

of G-invariant polynomials on Rd coincides with the transcendence degree trdeg(RG
≤K) of only G-

invariant polynomials with degree ≤ K. Bandeira et al. (2017) placed cryo-EM and other examples

of function estimation in this context and stated a number of results and conjectures on the values

of K in these specific examples.

For discrete subgroups G, Fan et al. (2020) connected these results to the MLE and the Fisher

information, showing that for generic θ∗ and high noise σ2, the Fisher information matrix I(θ∗)
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has exactly trdeg(RG
≤k) − trdeg(RG

≤k−1) eigenvalues scaling as σ−2k for each k = 1, . . . ,K. Fan

et al. (2020) studied also the geometric properties of the global maximum likelihood optimization

landscape in different signal-to-noise regimes, in particular relating this landscape for high noise to

a sequence of moment optimization problems.

The results of Fan et al. (2020) were proven using a series expansion of the log-likelihood function

in powers of σ−1. An extension of this series expansion was obtained by Katsevich and Bandeira

in Katsevich and Bandeira (2020), for a more general class of high-noise Gaussian mixture models.

These results of Katsevich and Bandeira (2020) enable our current analyses of orbit recovery models

with a linear projection.

4.1.2 Contributions

The main contributions of our paper are three-fold:

1. We build upon the analyses in Fan et al. (2020); Katsevich and Bandeira (2020) to provide

a structural characterization of the Fisher information matrix and log-likelihood landscape,

in the high-noise regime, for orbit recovery problems with a possibly continuous group action

and/or a linear projection.

For generic θ∗ ∈ Rd, we show that the Fisher information matrix has rank trdeg(RG)

and eigenvalues described by a sequence of transcendence degrees trdeg(RG
≤k), analogously to

the unprojected discrete group setting of Fan et al. (2020). Under technical conditions, local

optima of the log-likelihood are in correspondence with local optima in a sequence of moment

optimization problems, whose properties relate to the forms of the subalgebras RG
≤k.

2. We analyze the forms of the terms of the log-likelihood expansion and derive the associated

transcendence degrees, for several examples of function estimation on the circle S1, the sphere

S2, and R3.

For each example, assuming that the bandlimit of the function basis exceeds a small con-

stant, we establish precise values of trdeg(RG
≤k) for k = 1, 2, 3 and prove that trdeg(RG

≤K) =

trdeg(RG) for K = 3. This implies, as in the simpler multi-reference alignment model of Perry

et al. (2019), that 3rd-order moments are sufficient to locally identify a generic signal up to its

rotational orbit, and the squared error of the MLE scales as σ6 in high noise. This provides

a positive resolution to (Bandeira et al., 2017, Conjectures 5.6 and B.1), and also (Bandeira
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et al., 2017, Conjecture 5.11) for the cryo-EM model under a mild additional assumption of

S ≥ 4 “shells”.

3. We empirically study the accuracy of this finite-dimensional theory for describing the noise-

scalings of the Fisher information matrices of two small proteins: a rotavirus VP6 trimer and

hemoglobin. We do this by computing the observed Fisher information matrices from simulated

samples in a SO(3)-rotational model without tomographic projection based on existing cryo-

EM maps of these proteins.

Our simulations suggest that the secondary structures of both proteins, up to a spatial

resolution of approximately 7-8 Angstroms, may be well-captured by a basis approximation of

dimension d ≈ 4000. At this resolution, the theoretically predicted σ−2, σ−4, and σ−6 scalings

of individual eigenvalues of the Fisher information matrices are empirically observed over a

range of SNR. However, we discuss also some limitations of this body of theory for capturing

higher-resolution phenomena at lower levels of noise.

Section 4.2 will introduce the orbit recovery model and describe our general results in this context.

Sections 4.3 and 4.4 will apply these results to examples of function estimation. Section 4.5 describes

our numerical simulations for the above two protein molecules.

Notation

We use the conventions 〈u, v〉 =
∑
i uivi for the complex inner product, ‖u‖ for the (real or complex)

`2-norm, ‖M‖ for the `2 → `2 operator norm for matrices, and i =
√
−1 for the imaginary unit.

For a measure space (X,µ), L2(X,C) is the L2-space of functions f : X → C with inner-product∫
X
f(x)g(x)µ(dx). We write L2(X) = L2(X,R) for the analogous L2-space of real-valued functions.

S1 and S2 are the unit circle and unit sphere.

For differentiable f : Rd → Rk, df(x) ∈ Rk×d is its derivative or Jacobian at x. For twice-

differentiable f : Rd → R, ∇f(x) = df(x)> ∈ Rd is its gradient, and ∇2f(x) ∈ Rd×d is its Hessian.

We will write dx,∇x,∇2
x to clarify that the variable of differentiation is x. For a subset of coordinates

y, we write ∇yf(x) and ∇2
yf(x) as the components of this gradient and Hessian in y.

For a smooth manifoldM and twice-differentiable f :M→ R, we write ∇f(x)|M and ∇2f(x)|M

for its gradient and Hessian evaluated in any choice of local chart at x ∈ M. We will often not
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make the choice of chart explicit when referring to properties of ∇f(x)|M and ∇2f(x)|M that do

not depend on the specific choice of chart.

4.2 The general orbit recovery model in high noise

4.2.1 Model and likelihood

Let θ∗ ∈ Rd be an unknown signal of interest. Let G ⊆ O(d) be a known compact subgroup of

the orthogonal group of dimension d. We denote by Λ the unique Haar probability measure on G,

satisfying

Λ(G) = 1, Λ(g · S) = Λ(S · g) = Λ(S) for all g ∈ G and S ⊆ G.

In the unprojected orbit recovery model, we observe n noisy and rotated samples of θ∗, given by

Yi = gi · θ∗ + σεi ∈ Rd, i = 1, . . . , n (4.1)

where g1, . . . , gn
iid∼ Λ are Haar-uniform random elements of G, and ε1, . . . , εn

iid∼ N (0, Idd×d) are

Gaussian noise vectors independent of g1, . . . , gn. The signal θ∗ is identifiable only up to an arbitrary

rotation in G, i.e. it is identifiable up to its orbit

Oθ∗ = {g · θ∗ : g ∈ G}.

Our goal is to estimate Oθ∗ from the observed rotated samples Y1, . . . , Yn.

In the projected orbit recovery model, we consider an additional known linear map2 Π : Rd → Rd̃.

We observe n samples

Yi = Π(gi · θ∗) + σεi ∈ Rd̃, i = 1, . . . , n (4.2)

where g1, . . . , gn
iid∼ Λ as before, and ε1, . . . , εn

iid∼ N (0, Idd̃×d̃) are Gaussian noise vectors in the

projected dimension d̃. Our goal is again to estimate Oθ∗ from Y1, . . . , Yn.

The unprojected and projected orbit recovery models are both Gaussian mixture models, where

the distribution of mixture centers is the law of g · θ∗ ∈ Rd or of Π(g · θ∗) ∈ Rd̃ induced by the

uniform law g ∼ Λ over G. This mixture distribution may be continuous if G ⊆ O(d) is a continuous

2. Here Π is a linear operator, typically not invertible, which may not necessarily be an orthogonal projection. The
terminology here is borrowed from the example of the tomographic projection in cryo-EM.
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subgroup. In both models, we denote the negative sample log-likelihood as

Rn(θ) = − 1

n

n∑
i=1

log pθ(Yi),

where pθ(Yi) is the Gaussian mixture density for Yi, marginalizing over the unknown rotation gi ∼ Λ.

This density is given in the projected setting by

pθ(y) =

∫
G

1

(2πσ2)d̃/2
exp

(
−‖y −Π(g · θ)‖2

2σ2

)
dΛ(g), (4.3)

and in the unprojected setting by the same expression with Π = Id and d̃ = d. The maximum like-

lihood estimator (MLE) of θ∗ is θ̂n = argminθ∈Rd Rn(θ). Since Rn satisfies the rotational invariance

Rn(θ) = Rn(g · θ) for all g ∈ G, the MLE is also only defined up to its orbit Oθ̂n .

Remark 4.2.1 (Identifiability of the orbit). The parameter θ∗ is identifiable up to the distribution

of the mixture centers g · θ∗ or Π(g · θ∗). In the unprojected model, the equality in law g · θ L
= g · θ′

over g ∼ Λ holds if and only if Oθ = Oθ′ , so θ∗ is identifiable exactly up to its orbit.

In projected models, there may be further non-identifiability. For instance, under the tomographic

projection arising in cryo-EM, we have Π(g · θ) L
= Π(g · θ′) when θ′ represents the mirror reflection

of θ Bendory et al. (2020a). Thus in this setting there may be two distinct orbits which cannot be

further identified, and θ∗ is recovered only up to chirality.

In general, the number of distinct orbits with the same image under Π depends on the interaction

between the structures of G and Π and can be infinite. For example, for the trivial group G = {Id}

and the projection Π : Rd → Rd−k that removes the last k coordinates of θ, Oθ = {θ} and Π(Oθ) =

Π(Oθ∗) for any θ sharing the same first d− k coordinates as θ∗.

We use the equivalence notation

Π(Oθ) ≡ Π(Oθ∗)

to mean that Π(Oθ) = Π(Oθ∗) as subsets of Rd̃, and in addition, Π(g · θ) L
= Π(g · θ∗) under the

Haar-uniform law g ∼ Λ. Thus θ∗ is identifiable up to this equivalence. We will restrict attention

to projected models where

there are a finite number of orbits Oθ such that Π(Oθ) ≡ Π(Oθ∗), for generic θ∗ ∈ Rd. (4.4)

An equivalent algebraic characterization is provided in Proposition 4.2.4(b) below.
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We denote the negative population log-likelihood function by

R(θ) = E[Rn(θ)] = −E[log pθ(Y )], (4.5)

where the expectation is taken under the true model Y ∼ pθ∗ .
3 This population log-likelihood is

minimized at θ ∈ Oθ∗ in the unprojected model, and at {θ : Π(Oθ) ≡ Π(Oθ∗)} in projected models.

4.2.2 Invariant polynomials and the high-noise expansion

For sufficiently high noise σ2, it is informative to study R(θ) via a series expansion of the Gaussian

density of (4.3) in powers of σ−1, as developed in Fan et al. (2020); Katsevich and Bandeira (2020).

We review this expansion in this section.

Let RG be the (real) algebra of all G-invariant polynomial functions p : Rd → R. These are the

polynomials that satisfy

p(θ) = p(g · θ) for all θ ∈ Rd and g ∈ G.

For each integer k ≥ 0, let RG
≤k be the subalgebra generated by the G-invariant polynomials having

total degree at most k. These are the polynomials p ∈ RG that may be expressed as p(θ) =

q(p1(θ), . . . , pj(θ)) for some polynomial q and some p1, . . . , pj ∈ RG each having degree ≤ k.

Examples of polynomials in RG
≤k include the entries of the symmetric moment tensors

Tk(θ) =

∫
G

(g · θ)⊗k dΛ(g) ∈ Rd×...×d,

which are the kth-order mixed moments of the distribution of Gaussian mixture centers g · θ. Con-

versely, all degree-k G-invariant polynomials are affine linear combinations of entries of T1, . . . , Tk,

so RG
≤k is generated by T1, . . . , Tk. The subalgebra RG

≤k may be intuitively understood as containing

all information in the moments of orders 1 to k for the Gaussian mixture defined by θ.

For the projected model with projection Π, we define analogously the projected moment tensors

T̃k(θ) =

∫
G

(Π · g · θ)⊗kdΛ(g) ∈ Rd̃×...×d̃,

which are again the mixed moments of the Gaussian mixture centers Π · g · θ. We then define

R̃G
≤k = subalgebra of RG generated by the entries of T̃1, . . . , T̃k.

3. R(θ) depends implicitly on θ∗, but we will omit this dependence in the notation.
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Since each entry of T̃k is a G-invariant polynomial of degree k, we have R̃G
≤k ⊆ RG

≤k, but equality

does not necessarily hold.

We denote by 〈·, ·〉 the Euclidean inner-product in the vectorization of these tensor spaces Rd×...×d

and Rd̃×...×d̃, and by ‖ · ‖2HS the corresponding squared Euclidean norm. We will use the following

general form of the large-σ series expansion of the population log-likelihood R(θ). We explain how

the results of Katsevich and Bandeira (2020) yield this form in Appendix C.1.

Theorem 4.2.1. Let G ⊆ O(d) be any compact subgroup. Fix any θ∗ ∈ Rd and any integer K ≥ 0.

(a) In the unprojected orbit recovery model, R(θ) admits an expansion

R(θ) = C0 +

K∑
k=1

1

σ2k

(
sk(θ) + qk(θ)

)
+ q(θ). (4.6)

Here C0 ∈ R, qk ∈ RG
≤k−1 is a polynomial of degree at most 2k, and sk ∈ RG

≤k is the polynomial

sk(θ) =
1

2(k!)
‖Tk(θ)− Tk(θ∗)‖2HS. (4.7)

The remainder q(θ) is G-invariant and satisfies, for all θ ∈ Rd with ‖θ‖ ≤ σ,

|q(θ)| ≤ CK(1 ∨ ‖θ‖)2K+2

σ2K+2
, ‖∇q(θ)‖ ≤ CK(1 ∨ ‖θ‖)2K+1

σ2K+2
, ‖∇2q(θ)‖ ≤ CK(1 ∨ ‖θ‖)2K

σ2K+2
.

(4.8)

(b) In the projected orbit recovery model, R(θ) admits an expansion

R(θ) = C0 +

K∑
k=1

1

σ2k

(
s̃k(θ) +

〈
T̃k(θ), Pk(θ)

〉
+ qk(θ)

)
+ q(θ). (4.9)

Here C0 ∈ R, qk ∈ R̃G
≤k−1 is a polynomial of degree at most 2k, all entries of Pk are polynomials

of degree at most k belonging to R̃G
≤k−1, Pk satisfies Pk(θ∗) = 0, and s̃k ∈ R̃G

≤k is the polynomial

s̃k(θ) =
1

2(k!)
‖T̃k(θ)− T̃k(θ∗)‖2HS. (4.10)

The remainder q(θ) is G-invariant and satisfies (4.8) for all θ ∈ Rd with ‖θ‖ ≤ σ.

The above constants C0, CK , the coefficients of the polynomials qk(θ) and Pk(θ), and the forms of

the functions q(θ) may all depend on θ∗,G, d, d̃, and the projection Π.

The exact forms of qk(θ) and Pk(θ) can be explicitly derived—see (Fan et al., 2020, Section 4.2)
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for these derivations in the unprojected setting—but we will not require them in what follows. Our

arguments will only require the forms of the “leading” terms sk(θ) and s̃k(θ) defined in (4.7) and

(4.10).

4.2.3 Fisher information in high noise

Consider the Fisher information matrix

I(θ∗) = ∇2R(θ)
∣∣
θ=θ∗

.

In this section, we characterize the scaling dependence of the eigenvalues of I(θ∗) on the noise level

σ2, for high noise and generic θ∗ ∈ Rd. This generalizes the analogous result (Fan et al., 2020,

Theorem 4.14) for the unprojected model and a discrete group.

Definition 4.2.2. A subset S ⊆ Rd is generic if Rd \S is contained in the zero set of some non-zero

analytic function ψ : Rd → Rk, for some k ≥ 1.

If S ⊆ Rd is generic, then Rd \ S has zero Lebesgue measure Mityagin (2020). We say that a

statement holds for generic θ∗ ∈ Rd if it holds for all θ∗ in some generic subset.

Our characterization of I(θ∗) is in terms of the number of distinct “degrees-of-freedom” captured

by the moments of the Gaussian mixture model up to each order k. This is formalized by the notion

of the transcendence degrees of the subalgebras RG
≤k and R̃G

≤k.

Definition 4.2.3. For any subalgebra A ⊆ RG, its transcendence degree trdeg(A) is the maximum

size of any algebraically independent (over R) subset S ⊆ A.

Geometrically, this coincides with the maximum number of linearly independent gradient vectors of

the polynomials in A, evaluated at any generic point θ ∈ Rd.

For the full invariant algebra RG, if G ⊆ O(d) is a discrete subgroup as studied in Fan et al.

(2020), then trdeg(RG) = d. More generally,

trdeg(RG) = d−max
θ∈Rd

dim(Oθ),

where maxθ∈Rd dim(Oθ) is the dimension4 of a generic orbit. We will mostly consider group actions

where this orbit dimension equals the group dimension dim(G), so that trdeg(RG) = d− dim(G). In

4. This is formally defined as dim(Oθ) = dim(G)−dim(Gθ) where Gθ = {g ∈ G : g ·θ = θ} is the stabilizer subgroup
of θ, and dim(G),dim(Gθ) are their dimensions as Lie subgroups of O(d).
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particular, for the function estimation examples to be discussed in Sections 4.3 and 4.4, we will have

trdeg(RG) = d− 1 for an action of G = SO(2), and trdeg(RG) = d− 3 for an action of G = SO(3).

It was shown in Bandeira et al. (2017) that the order of moments needed to locally identify the

orbit of a generic signal θ∗ ∈ Rd coincides with the order needed to capture all trdeg(RG) degrees-

of-freedom of the invariant algebra. We will denote this order as K in the unprojected model, and

K̃ in the projected model. These are defined formally by the following proposition, whose proof we

defer to Appendix C.1.

Proposition 4.2.4. For any compact subgroup G ⊆ O(d),

(a) There is a smallest integer K <∞ for which trdeg(RG
≤K) = trdeg(RG).

(b) Π satisfies (4.4) if and only if there is a smallest integer K̃ < ∞ for which trdeg(R̃G
≤K̃

) =

trdeg(RG).

In the unprojected model, let us now denote

d0 = max
θ∈Rd

dim(Oθ), dk = trdegRG
≤k − trdegRG

≤k−1 for k = 1, . . . ,K (4.11)

to decompose the total dimension of θ∗ as d = d0 + d1 + . . .+ dK . In the projected model, assuming

the condition (4.4), let us similarly denote

d̃0 = max
θ∈Rd

dim(Oθ), d̃k = trdeg R̃G
≤k − trdeg R̃G

≤k−1 for k = 1, . . . , K̃ (4.12)

to decompose the total dimension as d = d̃0 + d̃1 + . . . + d̃K̃ . The following result expresses the

spectral properties of the Fisher information matrix in terms of these decompositions.

Theorem 4.2.5. For any generic θ∗ ∈ Rd, some σ0 ≡ σ0(θ∗,G,Π), and all σ > σ0:

(a) In the unprojected orbit recovery model,

1. The Fisher information matrix I(θ∗) has rank exactly trdeg(RG) = d − d0. Defining K by

Proposition 4.2.4(a), for some (θ∗,G)-dependent constants C, c > 0 (independent of σ) and

each k = 1, . . . ,K,

exactly dk eigenvalues of I(θ∗) belong to [cσ−2k, Cσ−2k].

2. For any k = 1, . . . ,K, any polynomial p ∈ RG
≤k, and some (p, θ∗,G)-dependent constant
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C > 0, the gradient ∇p(θ∗) ∈ Rd is orthogonal to the null space of I(θ∗) and satisfies

∇p(θ∗)>I(θ∗)
†∇p(θ∗) ≤ Cσ2k

where I(θ∗)
† is the Moore-Penrose pseudo-inverse.

(b) In the projected orbit recovery model satisfying condition (4.4), the same statements hold with

RG
≤k, K, and dk replaced by R̃G

≤k, K̃, and d̃k, where K̃ is defined by Proposition 4.2.4(b).

Theorem 4.2.5(a1) implies that I(θ∗) has eigenvalues on differing scales of σ−2 in high-noise

settings, with dk such eigenvalues scaling as σ−2k, and d0 = dim(Oθ∗) eigenvalues of 0 representing

the non-identifiable degrees-of-freedom tangent to Oθ∗ . Thus there are dk degrees-of-freedom in θ∗

that are estimated with asymptotic variance O(σ2k/n) by the MLE. The largest such variance is

O(σ2K/n), which is in accordance with results about list-recovery of generic signals in Bandeira

et al. (2017).

Theorem 4.2.5(a2) describes also the associated spaces of eigenvectors. In the limit σ →∞, the

eigenspace of I(θ∗) corresponding to its eigenvalues of scales σ−2, . . . , σ−2k coincides with the linear

span of the gradients {∇p(θ∗) : p ∈ RG
≤k}. Thus, for large σ, the functional p(θ∗) for any p ∈ RG

≤k

is also estimated by the plug-in MLE p(θ̂n) with asymptotic variance O(σ2k/n). Similar statements

hold for projected models by Theorem 4.2.5(b).

The following result connects the above sequences of transcendence degrees and gradients {∇p(θ∗):

p ∈ RG
≤k} to the terms sk(θ) and s̃k(θ) in the series expansions of R(θ) in Theorem 4.2.1. We will

use this to deduce the values of these transcendence degrees for the function estimation examples of

Sections 4.3 and 4.4.

Lemma 4.2.6. (a) In the unprojected orbit recovery model, let sk(θ) be defined by (4.7). Then each

matrix ∇2sk(θ)|θ=θ∗ is positive semidefinite. For any k ≥ 1, at generic θ∗ ∈ Rd,

trdeg(RG
≤k) = rank

(
∇2s1(θ) + . . .+∇2sk(θ)

∣∣∣
θ=θ∗

)
,

and the linear span of {∇p(θ∗) : p ∈ RG
≤k} is the column span of ∇2s1(θ) + . . .+∇2sk(θ)|θ=θ∗ .

(b) In the projected orbit recovery model, the same holds for R̃G
≤k and s̃k(θ) as defined by (4.10).

Remark 4.2.2. We restrict attention to generic signals θ∗ ∈ Rd in this work. Different behavior

may be observed for non-generic signals: For G = {+ Id,− Id}, which has been studied in Xu et al.

(2016); Wu and Zhou (2019), the Fisher information I(θ∗) is singular at θ∗ = 0 (even though d0 = 0,
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as the group is discrete). This leads to a n−1/4 rate of estimation error near θ∗ = 0, instead of the

n−1/2 parametric rate. This n−1/4 rate holds more generally for any discrete group G at signals

θ∗ whose orbit points are not pairwise distinct, which are precisely those signals where the Fisher

information I(θ∗) is singular Brunel (2019).

A different distinction between generic and non-generic signals was highlighted in Perry et al.

(2019) when G is the group of cyclic rotations of coordinates in Rd. There, orbits of generic signals

are uniquely identified by moments up to the order K = 3, but identification of non-generic signals

having zero power in certain Fourier frequencies may require moments up to the order d − 1. For

such non-generic signals, we expect I(θ∗) to be non-singular and the MLE to attain the parametric

rate, but with asymptotic variance scaling as σ2(d−1)/n rather than σ2K/n = σ6/n. In the case of

(unprojected) continuous MRA, this was shown in Bandeira et al. (2020).

4.2.4 Global likelihood landscape

Theorem 4.2.1 also sheds light on the optimization trajectories of descent algorithms and the global

likelihood landscape in high noise. In this section, we describe the global and local minimizers of

the (negative) population log-likelihood R(θ), extending similar results of (Fan et al., 2020, Section

4.5) for the unprojected model and discrete groups.

We recall the following structural property for smooth non-convex optimization landscapes, under

which convergence to the global optimum from a random initialization is guaranteed for various

descent-based optimization algorithms Ge et al. (2015); Lee et al. (2016); Jin et al. (2017).

Definition 4.2.7. The problem of minimizing a twice-continuously differentiable function f : V → R

over a smooth manifold V is globally benign if each point x ∈ V where ∇f(x)|V = 0 is either a global

minimizer of f over V, or has a direction of strict negative curvature, λmin(∇2f(x)|V) < 0.

Here ∇f(x)|V and ∇2f(x)|V denote the gradient and Hessian of f on V, which may be taken in any

choice of a smooth local chart around x ∈ V.

Minimizing R(θ) in high noise may be viewed as successively solving a sequence of moment

optimizations defined by the terms of its expansion in Theorem 4.2.1. To ease notation, let us

collect the vectorized moment tensors up to order k as

Mk(θ) = vec
(
T1(θ), . . . , Tk(θ)

)
∈ Rd+d2+...+dk , (4.13)

M̃k(θ) = vec
(
T̃1(θ), . . . , T̃k(θ)

)
∈ Rd̃+d̃2+...+d̃k . (4.14)
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Fixing the true signal θ∗ ∈ Rd, we define the moment varieties

Vk(θ∗) =
{
θ ∈ Rd : Mk(θ) = Mk(θ∗)

}
, V0(θ∗) = Rd,

Ṽk(θ∗) =
{
θ ∈ Rd : M̃k(θ) = M̃k(θ∗)

}
, Ṽ0(θ∗) = Rd.

These are the points θ ∈ Rd for which the mixed moments of the Gaussian mixture model defined

by θ match those of the true signal θ∗ up to the order k.

We state a general result on the optimization landscape, assuming that the Jacobian matrices

dMk and dM̃k have constant rank over Vk(θ∗) and Ṽk(θ∗), so that Vk(θ∗) and Ṽk(θ∗) are smooth

manifolds of constant dimension. Then, recalling sk(θ) and s̃k(θ) from (4.7) and (4.10), we consider

the optimization problem

minimize sk(θ) over θ ∈ Vk−1(θ∗) (4.15)

in the unprojected setting, and

minimize s̃k(θ) over θ ∈ Ṽk−1(θ∗) (4.16)

in the projected setting. These are polynomial optimization problems in θ that are defined indepen-

dently of the noise level σ2.

Theorem 4.2.8. For any generic θ∗ ∈ Rd:

(a) In the unprojected model, define K by Proposition 4.2.4(a). Suppose that VK(θ∗) = Oθ∗ . Suppose

also that for each k = 1, . . . ,K, dMk(θ) has constant rank over Vk(θ∗), and the minimization

of sk(θ) over Vk−1(θ∗) is globally benign. Then for some σ0 ≡ σ0(θ∗,G,Π) and any σ > σ0, the

minimization of R(θ) is also globally benign.

(b) In the projected model satisfying (4.4), define K̃ by Proposition 4.2.4(b). Suppose that ṼK̃(θ∗) =

{θ : Π(Oθ) ≡ Π(Oθ∗)}. Suppose also that for each k = 1, . . . , K̃, dM̃k(θ) has constant rank over

Ṽk(θ∗) and the minimization of s̃k(θ) over Ṽk−1(θ∗) is globally benign. Then for any B > 0,

some σ0 ≡ σ0(θ∗,G,Π, B), and any σ > σ0, the minimization of R(θ) is globally benign over the

domain {θ ∈ Rd : ‖θ‖ < B(‖θ∗‖+ σ)}.

We illustrate part (a) of this result using a simple example of orthogonal Procrustes alignment at

the conclusion of this section.

In Theorem 4.2.8(b), we have restricted to {θ ∈ Rd : ‖θ‖ < B(‖θ∗‖ + σ)}, as the landscape of

R(θ) outside this ball may have a complicated dependence on the specific structures of (Π,G). In
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practice, such a bound for ‖θ‖ may be known a priori, so that optimization may indeed be restricted

to this ball. In the unprojected setting of Π = Id, the landscape of R(θ) outside this ball is easy to

understand, allowing us to remove such a restriction for part (a).

In applications where the conditions of the above theorem do not hold, and R(θ) in fact has spu-

rious local minimizers in high noise, Theorem 4.2.1 can be used to further establish a correspondence

between the local minimizers of R(θ) and those of the above moment optimizations. We formalize

one such result—not fully general, but sufficient to study many examples of interest—as follows.

Definition 4.2.9. Suppose VK−1(θ∗) is a smooth manifold with constant dimension dim(VK−1(θ∗)).

A critical point θ of sK(θ)|VK−1(θ∗) is non-degenerate up to orbit if Oθ is a smooth manifold of

dimension d0 in a local neighborhood of θ, and

rank
(
∇2sK(θ)|VK−1(θ∗)

)
= dim(VK−1(θ∗))− d0.

Note that ∇2sK(θ)|VK−1(θ∗) is a symmetric matrix of dimension dim(VK−1(θ∗)). For any critical

point θ of sK |VK−1(θ∗), the null space of this Hessian must contain the tangent space to Oθ, so the

definition is a “Morseness condition” ensuring that this Hessian has no further rank degeneracy.

Theorem 4.2.10. For any generic θ∗ ∈ Rd, any B > 0, some σ0 ≡ σ0(θ∗,G,Π, B) and (θ∗,G,Π, B)-

dependent function ε(σ) satisfying ε(σ)→ 0 as σ →∞, and all σ > σ0:

(a) In the unprojected model, suppose that for each k = 1, . . . ,K−1, dMk(θ) has constant rank over

Vk(θ∗) and the minimization of sk(θ) over Vk−1(θ∗) is globally benign.

1. Let θ be any local minimizer of sK(θ) over VK−1(θ∗) that is non-degenerate up to orbit. Then

there exists a local minimizer θ′ of R(θ) where ‖θ − θ′‖ < ε(σ).

2. Conversely, suppose that all critical points of sK(θ) over VK−1(θ∗) are non-degenerate up to

orbit. Let θ be any local minimizer of R(θ) satisfying ‖θ‖ < B(‖θ∗‖ + σ). Then there is a

local minimizer θ′ of sK(θ) over VK−1(θ∗) where ‖θ − θ′‖ < ε(σ).

(b) In the projected model satisfying (4.4), the same statements hold with K, dK , Mk, Vk, and sk

replaced by K̃, d̃K̃ , M̃k, Ṽk, and s̃k.

The guarantees of Theorems 4.2.8 and 4.2.10 may be translated to the sample log-likelihood

Rn(θ) by establishing concentration of ∇Rn(θ) and ∇2Rn(θ) around ∇R(θ) and ∇2R(θ) Mei et al.

(2018). We omit these finite-sample statements here, and refer readers to Fan et al. (2020) for details

of establishing the requisite concentration bounds in these types of orbit recovery problems.
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Example 4.2.11 (Landscape of orthogonal Procrustes alignment). We illustrate Theorems 4.2.8

and 4.2.10 using the simple example of orthogonal Procrustes alignment Gower (1975); Goodall

(1991); Pumir et al. (2019).

In this problem, samples of an object consisting of m ≥ 3 atoms in R3 are observed under random

orthogonal rotations and reflections. We represent the object as θ∗ ∈ R3×m ∼= Rd where d = 3m.

The rotational group is G = O(3)⊗ Idm ⊂ O(d), where a common orthogonal matrix in 3-dimensions

is applied to all m atoms. Assuming the generic condition rank(θ∗) = 3, i.e. these m atoms do not

lie on a common 2-dimensional subspace, we study the likelihood landscape for estimating θ∗ from

many independently rotated samples.

In this model, we check in Appendix C.2 that K = 2, (d0, d1, d2) = (3, 0, d − 3), V1(θ∗) = Rd,

and V2(θ∗) = {g · θ∗ : g ∈ G} = Oθ∗ . The terms s1(θ) and s2(θ) in (4.6) are given by s1(θ) = 0 and

s2(θ) =
1

12
‖θ>θ − θ>∗ θ∗‖2HS,

where θ>θ, θ>∗ θ∗ ∈ Rm×m. The minimization of s1(θ) over V0(θ∗) = Rd is trivially globally benign.

We show in Appendix C.2 that the minimization of s2(θ) over V1(θ∗) = Rd is also globally benign,

with minimizers given exactly by V2(θ∗) = Oθ∗ . Thus, Theorem 4.2.8(a) implies that the landscape

of R(θ) is also globally benign for sufficiently high noise: The only local minimizers of R(θ) are the

orbit points Oθ∗ , constituting the rotations and reflections of the true object.

A commonly-arising variation of this problem is the rotation-only variant, where we observe

3-dimensional rotations (but not reflections) of the object. Then the rotational group is instead

G = SO(3) ⊗ Idm ⊂ O(d). We show in Appendix C.2 that still K = 2, (d0, d1, d2) = (3, 0, d − 3),

and the forms of V1(θ∗),V2(θ∗), s1(θ), s2(θ) are identical to the above (even though the full log-

likelihood R(θ) is not). Thus the minimization of s2(θ) over V1(θ∗) = Rd is still globally benign,

with minimizers V2(θ∗). However, this set of minimizers is now written as

V2(θ∗) = {g · θ∗ : g ∈ G} ∪ {−g · θ∗ : g ∈ G} = Oθ∗ ∪ O−θ∗

constituting two distinct orbits under this more restrictive group action. The first orbit Oθ∗ are the

global minimizers of R(θ). The second orbit corresponds to the mirror reflection −θ∗, which does

not globally minimize R(θ), but the difference between R(θ∗) and R(−θ∗) lies in the remainder term

of the expansion (4.6). Theorem 4.2.10(a) shows that for high noise, R(θ) will have spurious local

minimizers near (but not exactly equal to) this second orbit O−θ∗ .
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4.3 Continuous multi-reference alignment

We now specialize the preceding general results to an example of estimating a periodic function on

the circle, observed under SO(2) rotations of its domain. We will refer to this as the continuous

multi-reference alignment (MRA) model. We study the unprojected model in Section 4.3.1, and a

version with a two-fold projection in Section 4.3.2. These provide simpler 1-dimensional analogues

of the 2-dimensional and 3-dimensional problems that we will discuss in Section 4.4.

Our main results are the following:

1. We show that 3rd-order moments are sufficient to locally identify θ∗ up to orbit by showing that

trdeg(RG
≤K) = trdeg(RG) and trdeg(R̃G

≤K̃
) = trdeg(RG) for K = K̃ = 3. We also characterize

the spectral structure of the Fisher information in Theorem 4.2.5 by establishing the values of

(d0, d1, d2, d3) and (d̃0, d̃1, d̃2, d̃3).

2. We describe more explicitly the moment optimization problems (4.15) and (4.16), by expressing

sk(θ) and s̃k(θ) in terms of the Fourier power spectrum and bispectrum of the underlying signal

θ∗.

3. Using Theorem 4.2.10, we exhibit the possible existence of spurious local minimizers of the

likelihood landscape, even for generic signals. For simplicity, we do this only in the unprojected

setting.

4.3.1 Unprojected continuous MRA

Let S1 ∼= [0, 1) be the unit circle, and f : S1 → R a periodic function. We consider observations of f

in white noise, observed under uniform random rotations of its domain. We represent such a rotation

as g−1 · t := t+g mod 1 where g ∼ Unif([0, 1)), and denote f rotated by g as fg(t) = f(t+g mod 1).

Then each sample is an observation of the whole function

fg(t)dt+ σ dW (t) over t ∈ S1

where dW (t) is standard white noise on the circle S1.

To write this in the form of our preceding orbit recovery model, we pass to a Gaussian sequence

form using the real Fourier basis on S1, given by

h0(t) = 1, hl1(t) =
√

2 cos 2πlt, hl2(t) =
√

2 sin 2πlt for l = 1, 2, 3, . . . . (4.17)
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We assume that f : S1 → R has a finite bandlimit L ≥ 1 in this basis, i.e. f admits a representation

f(t) = θ(0)h0(t) +

L∑
l=1

θ
(l)
1 hl1(t) +

L∑
l=1

θ
(l)
2 hl2(t). (4.18)

Importantly, the space of such bandlimited functions is closed under rotations of S1. Writing

θ = (θ(0), θ
(1)
1 , θ

(1)
2 , . . . , θ

(L)
1 , θ

(L)
2 ) ∈ Rd, d = 2L+ 1

for the vector of Fourier coefficients, the rotation f 7→ fg corresponds to θ 7→ g · θ, where g belongs

to the block-diagonal representation

G =

diag

1,

 cos 2πg sin 2πg

− sin 2πg cos 2πg

 , . . . ,

 cos 2πLg sin 2πLg

− sin 2πLg cos 2πLg


 : g ∈ [0, 1)

 ⊂ O(d).

(4.19)

Uniform sampling of rotations g ∼ Unif([0, 1)) induces the Haar-uniform distribution Λ over G. The

Fourier basis (4.18) is orthonormal over S1, so white noise dW (t) exhibits as Gaussian noise in the

sequence domain. Thus our observation model in Fourier sequence space takes the form of (4.1).

The Fourier map f 7→ θ is an L2-isometry, so the squared error for estimating θ ∈ Rd equates with

the squared error for estimating f ∈ L2(S1).

The following Theorem 4.3.1 characterizes, for this application, the decomposition of total dimen-

sion described in Theorem 4.2.5(a). In Corollary 4.3.2, we summarize its statistical consequences.

Theorem 4.3.1. For any L ≥ 1, we have

trdeg(RG
≤1) = 1, trdeg(RG

≤2) = L+ 1, trdeg(RG
≤3) = trdeg(RG) = 2L.

Corollary 4.3.2. A generic signal θ∗ ∈ Rd in the unprojected continuous MRA model has the

following properties:

(a) θ∗ may be identified up to a finite list of orbits by its first K = 3 moments if L ≥ 2 and its

first K = 2 moments if L = 1.

(b) For (θ∗,G)-dependent constants C, c > 0 independent of σ and k = 1, 2, 3, the Fisher informa-

tion I(θ∗) has d0 = 1 eigenvalue of 0 and dk eigenvalues in [cσ−2k, Cσ−2k] for (d1, d2, d3) =

(1, L, L− 1).

Proof. For (a), Theorem 4.3.1 shows trdeg(RG
≤K) = trdeg(RG) for K = 3 if L ≥ 2, and K = 2 if
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L = 1. The claim follows by direct application of (Bandeira et al., 2017, Theorem 4.9).

For (b), the claim is an application of Theorem 4.2.5(a), using the transcendence degrees com-

puted in Theorem 4.3.1.

To describe the forms of the moment optimizations (4.15), denote the true function by f∗ : S1 →

R and its Fourier coefficients by θ∗ ∈ Rd. Define the complex Fourier coefficients

u(0)(θ) = θ(0) ∈ R, u(l)(θ) = θ
(l)
1 + iθ

(l)
2 = rl(θ)e

iλl(θ) ∈ C,

where (rl(θ), λl(θ)) for l ≥ 1 are the magnitude and phase of u(l)(θ). Write as shorthand

rl,l′,l′′(θ) = rl(θ)rl′(θ)rl′′(θ), λl,l′,l′′(θ) = λl(θ)− λl′(θ)− λl′′(θ).

Here λl,l′,l′′(θ) are the elements of the Fourier bispectrum of θ.

Theorem 4.3.3. For any L ≥ 1,

s1(θ) =
1

2

(
θ(0) − θ(0)

∗

)2

s2(θ) =
1

4

(
(θ(0))2 − (θ

(0)
∗ )2

)2

+
1

8

L∑
l=1

(
rl(θ)

2 − rl(θ∗)2
)2

s3(θ) =
1

48

(
(u(0)(θ))3 − (u(0)(θ∗))

3
)2

+
1

16

L∑
l,l′,l′′=0

l=l′+l′′

∣∣∣u(l)(θ)u(l′)(θ)u(l′′)(θ)− u(l)(θ∗)u(l′)(θ∗)u(l′′)(θ∗)
∣∣∣2

=
1

12

(
(θ(0))3 − (θ

(0)
∗ )3

)2

+
1

8

L∑
l=1

(
θ(0) · rl(θ)2 − θ(0)

∗ · rl(θ∗)2
)2

+
1

16

L∑
l,l′,l′′=1

l=l′+l′′

(
rl,l′,l′′(θ)

2 + rl,l′,l′′(θ∗)
2 − 2rl,l′,l′′(θ)rl,l′,l′′(θ∗) cos

(
λl,l′,l′′(θ∗)− λl,l′,l′′(θ)

))
.

The moment varieties of (4.15) for this example are

V0(θ∗) = Rd, V1(θ∗) = {θ : θ(0) = θ
(0)
∗ },

V2(θ∗) = {θ : θ(0) = θ
(0)
∗ and rl(θ) = rl(θ∗) for each l = 1, . . . , L}.

Thus the minimization of s1(θ) on V0(θ∗) is over the global function mean θ(0), the minimization of

s2(θ) on V1(θ∗) is over the Fourier power spectrum {rl(θ) : l = 1, . . . , L}, and the minimization of

s3(θ) on V2(θ∗) is over the Fourier bispectrum {λl,l′,l′′(θ) : l = l′+ l′′}. The following result describes

62



the nature of these three optimization landscapes.

Theorem 4.3.4. For any L ≥ 1 and generic θ∗ ∈ Rd, the minimizations of s1(θ) over V0(θ∗) and

of s2(θ) over V1(θ∗) are globally benign. However, for any L ≥ 30, there exists a non-empty open

subset U ⊂ Rd such that for any θ∗ ∈ U , the minimization of s3(θ) over V2(θ∗) has a local minimizer

outside Oθ∗ that is non-degenerate up to orbit.

For this class of signals θ∗ ∈ U , Theorem 4.2.10(a) then implies that the landscape of the

population log-likelihood R(θ) also has spurious local minimizers. The particular local minimizers

that we exhibit in the proof of Theorem 4.3.4 correspond to certain Fourier phase shifts of the

true signal. This example is somewhat analogous to the spurious local minimizers discovered in

dimensions d ≥ 53 for the log-likelihood landscape of discrete MRA in (Fan et al., 2020, Section

4.6).

We conjecture that similar examples of spurious local minimizers may appear in the 2-dimensional

and 3-dimensional applications to be discussed in Section 4.4, and we leave this as an open question.

4.3.2 Projected continuous MRA

We consider now a projected version of the preceding model. Again writing S1 ∼= [0, 1) for the

unit circle and fg(t) for the periodic function f : S1 → R rotated by g ∈ [0, 1), we consider the

observations

(Π · fg)(t)dt+ σ dW (t) over t ∈ (0, 1/2),

where

(Π · fg)(t) = fg(t) + fg(1− t)

and dW (t) is standard white noise on the observation domain (0, 1/2). The map Π represents a

two-fold projection of the circle S1 onto the interval (0, 1/2).

To represent this projected model in a Gaussian sequence space, observe that for the Fourier basis

(4.17), we have Π · hl2 = 0 for all l ≥ 1, while (Π · h0)/
√

2 and (Π · hl1)/
√

2 form an orthonormal

basis over (0, 1/2). Thus, expressing Π · f in this projected basis, Π may be represented as a linear

map Π : Rd → Rd̃ for d̃ = L+ 1, where

Π(θ) =
√

2(θ(0), θ
(1)
1 , . . . , θ

(L)
1 ). (4.20)

In this projected basis, the observations correspond to (4.2) where g ∈ G is a random rotation from
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the same group G as in (4.19).

The following result shows that the decomposition of total dimension in Theorem 4.2.5 is the

same as in the unprojected setting. In particular, trdeg R̃G
≤K̃

= trdegRG for K̃ = 3. This model is a

continuous analogue of the projected discrete MRA model studied in (Bandeira et al., 2017, Section

5.3.1), where an analogous conclusion was described as (Bandeira et al., 2017, Conjecture 5.3).

Theorem 4.3.5. For any L ≥ 1, we have

trdeg(R̃G
≤1) = 1, trdeg(R̃G

≤2) = L+ 1, trdeg(R̃G
≤3) = trdeg(RG) = 2L,

which match the values of trdeg(RG
≤1), trdeg(RG

≤2), and trdeg(RG
≤3) in the unprojected setting of

Theorem 4.3.1.

Corollary 4.3.6. A generic signal θ∗ ∈ Rd in this projected continuous MRA model has the following

properties:

(a) θ∗ may be identified up to a finite list of orbits by its first K̃ = 3 moments if L ≥ 2 and its

first K̃ = 2 moments if L = 1.

(b) For (θ∗,G)-dependent constants C, c > 0 independent of σ and k = 1, 2, 3, the Fisher informa-

tion I(θ∗) has d̃0 = 1 eigenvalue of 0 and d̃k eigenvalues in [cσ−2k, Cσ−2k] for (d̃1, d̃2, d̃3) =

(1, L, L− 1).

Proof. This follows from Theorem 4.3.5 by applying (Bandeira et al., 2017, Theorem 4.9) and The-

orem 4.2.5(b).

The following result describes the forms of s̃k(θ) for k = 1, 2, 3, which are similar to those in

the unprojected setting. In particular, the minimizations of s̃1(θ), s̃2(θ), and s̃3(θ) in (4.16) are

also optimization problems over the signal mean, Fourier power spectrum, and Fourier bispectrum

respectively, although the specific forms are different from the unprojected counterparts.
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Theorem 4.3.7. For any L ≥ 1,

s̃1(θ) =
(
θ(0) − θ(0)

∗

)2

s̃2(θ) =
(

(θ(0))2 − (θ
(0)
∗ )2

)2

+
1

4

L∑
l=1

(
rl(θ)

2 − rl(θ∗)2
)2

s̃3(θ) =
2

3

(
(θ(0))3 − (θ

(0)
∗ )3

)2

+
1

2

L∑
l=1

(
θ(0)rl(θ)

2 − θ(0)
∗ rl(θ∗)

2
)2

+
1

16

L∑
l,l′,l′′=1

l=l′+l′′

(
rl,l′,l′′(θ)

2 + rl,l′,l′′(θ∗)
2 − 2rl,l′,l′′(θ)rl,l′,l′′(θ∗) cos

(
λl,l′,l′′(θ∗)− λl,l′,l′′(θ)

)

+ rl,l′,l′′(θ)
2 cos

(
2λl,l′,l′′(θ)

)
+ rl,l′,l′′(θ∗)

2 cos
(
2λl,l′,l′′(θ∗)

)
− 2rl,l′,l′′(θ)rl,l′,l′′(θ∗) cos

(
λl,l′,l′′(θ∗) + λl,l′,l′′(θ∗)

))
.

4.4 Spherical registration and cryo-EM

We now describe examples of estimating a function in 2 or 3 dimensions, observed under SO(3) rota-

tions of its domain. Section 4.4.1 studies estimation on the sphere, Section 4.4.2 studies estimation

in R3, and Section 4.4.3 studies a simplified “cryo-EM model” of estimation in R3 with a tomo-

graphic projection onto a 2-dimensional plane. Related analyses of method-of-moments estimators

were performed for these examples in Bandeira et al. (2017).

We show in all three examples that 3rd-order moments are sufficient to locally identify the

signal once the bandlimits exceed small constants by showing that trdeg(RG
≤K) = trdeg(RG) and

trdeg(R̃G
≤K̃

) = trdeg(RG) for K = K̃ = 3. We further characterize the scales of eigenvalues of the

Fisher information by computing (d0, d1, d2, d3) or (d̃0, d̃1, d̃2, d̃3) corresponding to the decomposition

of total dimension in Theorem 4.2.5. Finally, we provide the forms of sk(θ) or s̃k(θ) that describe

the moment optimizations (4.15–4.16). These results resolve several conjectures of Bandeira et al.

(2017).

4.4.1 Spherical registration

Let S2 ⊂ R3 be the unit sphere, and let f : S2 → R be a function on this sphere. We parametrize

S2 by the latitude φ1 ∈ [0, π] and longitude φ2 ∈ [0, 2π). Writing fg(φ1, φ2) = f(g−1 · (φ1, φ2)) for

the rotation of the function f , we consider the observations

fg(φ1, φ2) d(φ1, φ2) + σ dW (φ1, φ2) over (φ1, φ2) ∈ S2,
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where g ∈ SO(3) is a uniform random rotation for each sample, d(φ1, φ2) = sinφ1 dφ1 dφ2 denotes

the surface area measure on S2, and dW (φ1, φ2) is standard white noise on S2.

As in (Bandeira et al., 2017, Section 5.4), we translate this model to a Gaussian sequence form

using the basis of real spherical harmonics

hlm(φ1, φ2) for l = 0, 1, 2, . . . and m = −l,−l + 1, . . . , l − 1, l.

This basis is reviewed in Appendix C.4.2. We assume that f : S2 → R has a finite bandlimit L ≥ 1

in this basis, i.e. it takes the form

f(φ1, φ2) =

L∑
l=0

l∑
m=−l

θ(l)
m hlm(φ1, φ2). (4.21)

We may then represent f by its vector of real spherical harmonic coefficients

θ = (θ(l)
m : l = 0, . . . , L and m = −l, . . . , l) ∈ Rd, d = (L+ 1)2,

or equivalently, by its complex spherical harmonic coefficients u ∈ Cd defined as

u(l)
m =



(−1)m√
2

(θ
(l)
|m| − iθ

(l)
−|m|) if m > 0

θ
(l)
0 if m = 0

1√
2
(θ

(l)
|m| + iθ

(l)
−|m|) if m < 0.

(4.22)

This relation (4.22) represents a linear map u = V ∗θ for a unitary matrix V ∈ Cd×d. For vectors

θ ∈ Rd taking real values, we have the sign symmetry of the complex coefficients

u(l)
m = (−1)mu

(l)
−m. (4.23)

The space of bandlimited functions (4.21) is closed under the action of SO(3), and the rotation

f 7→ fg is represented by the following subgroup G ⊂ O(d) acting on θ ∈ Rd.

Lemma 4.4.1. The action of SO(3) on the real spherical harmonic coefficients θ ∈ Rd admits the

representation

G =
{
V ·D(g) · V ∗ : g ∈ SO(3)

}
⊂ O(d),

where V ∈ Cd×d is the unitary transform describing the map u = V ∗θ in (4.22), and D(g) is the
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block-diagonal matrix

D(g) =

L⊕
l=0

D(l)(g) ∈ Cd×d (4.24)

with diagonal blocks D(l)(g) ∈ C(2l+1)×(2l+1) given by the complex Wigner D-matrices at frequencies

l = 0, . . . , L (defined in Appendix C.4.1).

The uniform distribution for g ∈ SO(3) induces the Haar-uniform distribution Λ over G. Since the

basis {hlm} is orthonormal on S2, white noise dW (φ1, φ2) exhibits as standard Gaussian noise in

the sequence domain. Thus observations in this model take the form (4.1) in sequence space.

The following results describe the decomposition of total dimension in Theorem 4.2.5(a) for

bandlimits L ≥ 10 and summarize its statistical consequences.

Theorem 4.4.2. For any L ≥ 10, we have

trdeg(RG
≤1) = 1, trdeg(RG

≤2) = L+ 1, trdeg(RG
≤3) = trdeg(RG) = d− 3.

Corollary 4.4.3. A generic signal θ∗ ∈ Rd in the spherical registration model for L ≥ 10 has the

following properties:

(a) θ∗ may be identified up to a finite list of orbits by its first K = 3 moments.

(b) For (θ∗,G)-dependent constants C, c > 0 independent of σ and k = 1, 2, 3, the Fisher informa-

tion I(θ∗) has d0 = 3 eigenvalues of 0 and dk eigenvalues in [cσ−2k, Cσ−2k] for

(d1, d2, d3) = (1, L, L(L+ 1)− 3).

Proof. This follows from Theorem 4.4.2 by applying (Bandeira et al., 2017, Theorem 4.9) and The-

orem 4.2.5(a).

Remark 4.4.1. Theorem 4.4.2 was conjectured for all bandlimits L ≥ 10 in (Bandeira et al.,

2017, Conjecture 5.6) and verified numerically in exact-precision arithmetic for L ∈ {10, . . . , 16}

in (Bandeira et al., 2017, Theorem 5.5). Our result resolves this conjecture for all L ≥ 10 by an

induction which uses L = 10 as a base case. Conversely, for L ≤ 9, it was shown in (Bandeira

et al., 2017, Section 5.4) that K > 3 strictly, meaning that moments up to 3rd order are insufficient

to locally identify θ∗ up to its orbit for low bandlimits.

Turning to the forms of sk(θ) in (4.15), let us fix the true function f∗ : S2 → R, and denote its
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real spherical harmonic coefficients by θ∗ ∈ Rd. We write as shorthand

u(l)(θ) = (u(l)
m (θ) : m = −l, . . . , l) ∈ C2l+1

for the complex spherical harmonic coefficients at frequency l, defined by (4.22). We denote

Bl,l′,l′′(θ) =

l∑
m=−l

l′∑
m′=−l′

l′′∑
m′′=−l′′

m′′=m+m′

〈l,m; l′,m′|l′′,m′′〉u(l)
m (θ)u

(l′)
m′ (θ)u

(l′′)
m′′ (θ), (4.25)

where 〈l,m; l′,m′|l′′,m′′〉 ∈ R is the Clebsch-Gordan coefficient, reviewed in Appendix C.4.1. These

quantities Bl,l′,l′′(θ) are analogous to the scaled components rl,l′,l′′(θ)λl,l′,l′′(θ) of the Fourier bispec-

trum that appeared in the 1-dimensional MRA example of Section 4.3. The minimizations of s1(θ),

s2(θ), and s3(θ) may be analogously understood as minimizations of the global function mean, the

power in each spherical harmonic frequency, and certain “bispectrum” variables for each frequency.

Theorem 4.4.4. For any L ≥ 1,

s1(θ) =
1

2

(
u(0)(θ)− u(0)(θ∗)

)2

s2(θ) =
1

4

L∑
l=0

1

2l + 1

(
‖u(l)(θ)‖2 − ‖u(l)(θ∗)‖2

)2

s3(θ) =
1

6

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1

∣∣∣Bl,l′,l′′(θ)−Bl,l′,l′′(θ∗)∣∣∣2.

4.4.2 Unprojected cryo-EM

Consider now a function f : R3 → R, and the action of SO(3) on R3 given by rotation about the

origin. Write fg(x) = f(g−1 · x) for the rotated function. We observe samples

fg(x) dx+ σ dW (x) over x ∈ R3,

where g ∈ SO(3) is uniformly random for each sample, and dW (x) is white noise on R3. This serves

as a simplified unprojected model of the single-particle reconstruction problem in cryo-EM, to which

we will add a tomographic projection in the next section. This model may be of independent interest

for applications to cryo-ET, described in Appendix C.6.1.

We model f in a function basis over R3 by a construction that is similar to the approach of

(Bandeira et al., 2017, Section 5.5 and Appendix A.1)—we describe this briefly here, and provide
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more details in Appendix C.4.3. Let f̂ : R3 → C be the Fourier transform of f . We parametrize

the Fourier domain by spherical coordinates (ρ, φ1, φ2), and decompose f̂(ρ, φ1, φ2) in a basis {ĵlsm}

given by the product of the complex spherical harmonics ylm(φ1, φ2) with radial functions zs(ρ):

ĵlsm(ρ, φ1, φ2) = zs(ρ)ylm(φ1, φ2) for s ≥ 1, l ≥ 0, m ∈ {−l, . . . , l}. (4.26)

Here {zs : s ≥ 1} may be any system of radial basis functions zs : [0,∞) → R satisfying the

orthogonality relation ∫ ∞
0

ρ2zs(ρ)zs′(ρ)dρ = 1{s = s′}, (4.27)

so that {ĵlsm} are orthonormal. The inverse Fourier transforms {jlsm} of {ĵlsm} then provide a

complex orthonormal basis in the original signal domain of f .

Fixing integer bandlimits L ≥ 1 and S0, . . . , SL ≥ 1, we define the index set

I =
{

(l, s,m) : 0 ≤ l ≤ L, 1 ≤ s ≤ Sl, −l ≤ m ≤ l
}
, d = |I| =

L∑
l=0

(2l + 1)Sl (4.28)

and assume that f is (L, S0, . . . , SL)-bandlimited in the sense of admitting the finite basis represen-

tation

f =
∑

(l,s,m)∈I

u(ls)
m · jlsm, u =

(
u(ls)
m : (l, s,m) ∈ I

)
∈ Cd. (4.29)

This corresponds to modeling the Fourier transform f̂ up to the spherical frequency L, and up to the

radial frequency Sl for each spherical component l = 0, 1, . . . , L.5 For real-valued functions f , these

coefficients u
(ls)
m ∈ C will satisfy a sign symmetry (154). Writing u = V̂ ∗θ for a unitary transform

V̂ ∈ Cd×d defined explicitly in (156), we then obtain a real sequence representation

f =
∑

(l,s,m)∈I

θ(ls)
m · hlsm, θ =

(
θ(ls)
m : (l, s,m) ∈ I

)
∈ Rd (4.30)

for certain basis functions hlsm : R3 → R that are real-valued and orthonormal.

This class of (L, S0, . . . , SL)-bandlimited functions (4.30) is closed under rotations by SO(3). The

rotations admit the following representation by a subgroup G ⊂ O(d) acting on the basis coefficients

θ ∈ Rd.

Lemma 4.4.5. The action of SO(3) on the space of real-valued (L, S0, . . . , SL)-bandlimited functions

5. For example, one may wish to use larger radial bandlimits Sl for lower spherical frequencies l.
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is given by

G =
{
V̂ ·D(g) · V̂ ∗ : g ∈ SO(3)

}
⊂ O(d) (4.31)

where V̂ ∈ Cd×d is the unitary transform defined in (156) for which u = V̂ ∗θ, and D(g) is the

block-diagonal matrix

D(g) =

L⊕
l=0

Sl⊕
s=1

D(l)(g) (4.32)

with diagonal blocks D(l)(g) ∈ C(2l+1)×(2l+1) given by the complex Wigner D-matrices.

The following result describes the decomposition of total dimension in Theorem 4.2.5(a) under

the mild assumption that the spherical bandlimit satisfies L ≥ 2 and the radial bandlimits satisfy

Sl ≥ 2 for each l = 0, . . . , L.6 In particular, this verifies that trdegRG
≤K = trdegRG for K = 3; we

then summarize the statistical consequences in Corollary 4.4.7.

Theorem 4.4.6. For any L ≥ 1 and S0, . . . , SL ≥ 2, we have

trdeg(RG
≤1) = S0

trdeg(RG
≤2) =

L∑
l=0

d(Sl), d(Sl) ≡


Sl(Sl+1)

2 for Sl < 2l + 1

(2l + 1)(Sl − l) for Sl ≥ 2l + 1

trdeg(RG
≤3) = trdeg(RG) = d− 3.

Corollary 4.4.7. A generic signal θ∗ ∈ Rd in this unprojected cryo-EM model for L ≥ 1 and

S0, . . . , SL ≥ 2 has the following properties:

(a) θ∗ may be identified up to a finite list of orbits by its first K = 3 moments if L ≥ 2 and its

first K = 2 moments if L = 1.

(b) For (θ∗,G)-dependent constants C, c > 0 independent of σ and k = 1, 2, 3, the Fisher informa-

tion I(θ∗) has d0 = 3 eigenvalues of 0 and dk eigenvalues in [cσ−2k, Cσ−2k] for

(d1, d2, d3) =
(
S0,

L∑
l=1

d(Sl), d−
L∑
l=0

d(Sl)− 3
)
.

Proof. This follows from Theorem 4.4.6 by applying (Bandeira et al., 2017, Theorem 4.9) and The-

orem 4.2.5(a).

6. Note that the case of S0 = . . . = SL = 1 would be similar to the spherical registration example of Section 4.4.1,
and a lower bound of L ≥ 10 would be needed in this case to ensure K = 3.
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Remark 4.4.2. In (Bandeira et al., 2017, Conjecture B.1), the authors conjectured that a generic

signal θ∗ ∈ Rd may be identified by moments of degree at most 3 up to a single orbit for L ≥ 1

and S0 = · · · = SL ≥ 3. They verified their conjecture using computer algebra and a “frequency-

marching” technique for L ∈ {1, . . . , 15}. Our Corollary 4.4.7(a) is complementary to this conjecture,

showing that θ∗ may be identified up to a finite list of orbits, but requiring only 2 rather than 3 shells.

Turning to the forms of sk(θ) that define the moment optimization (4.15), write θ∗ ∈ Rd for the

true coefficients in the above real basis {hlsm}. Let

u(ls)(θ) = (u(ls)
m (θ) : m = −l, . . . , l) ∈ C2l+1 (4.33)

be the components of the complex coefficients u = V̂ ∗θ for the frequency pair (l, s), and define

analogously to (4.25)

B(l,s),(l′,s′),(l′′,s′′)(θ) =

l∑
m=−l

l′∑
m′=−l′

l′′∑
m′′=−l′′

m′′=m+m′

〈l,m; l′,m′|l′′,m′′〉u(ls)
m (θ)u

(l′s′)
m′ (θ)u

(l′′s′′)
m′′ (θ). (4.34)

When the original function f : R3 → R is real-valued, we verify in the proof of Theorem 4.4.8 below

that each B(l,s),(l′,s′),(l′′,s′′)(θ) is also real-valued.

Theorem 4.4.8. For any L ≥ 1 and S0, . . . , SL ≥ 1,

s1(θ) =
1

2

S0∑
s=1

(
u(0s)(θ)− u(0s)(θ∗)

)2

s2(θ) =
1

4

L∑
l=0

1

2l + 1

Sl∑
s,s′=1

(
〈u(ls)(θ), u(ls′)(θ)〉 − 〈u(ls)(θ∗), u

(ls′)(θ∗)〉
)2

s3(θ) =
1

12

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1

Sl∑
s=1

Sl′∑
s′=1

Sl′′∑
s′′=1

(
B(l,s),(l′,s′),(l′′,s′′)(θ)−B(l,s),(l′,s′),(l′′,s′′)(θ∗)

)2

.

In this case, the optimization of s2(θ) depends not just on the power ‖u(ls)(θ)‖2 within each

frequency pair (l, s), but also on the cross-correlations between u(ls) and u(ls′) for different radial

frequencies s and s′.
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4.4.3 Projected cryo-EM

We now add a tomographic projection to the previous example. Writing as before f : R3 → R and

fg for its rotation by g ∈ SO(3), we observe samples

(Π · fg)(x)dx+ σ dW (x) over x ∈ R2,

where, for x = (x1, x2) ∈ R2,

(Π · fg)(x1, x2) =

∫ ∞
−∞

fg(x1, x2, x3)dx3 (4.35)

and dW (x) is white noise on the projected signal domain R2.

We construct basis functions for both the signal domain R3 and projected signal domain R2

using an approach similar to that of the preceding section, and also similar to (Bandeira et al., 2017,

Appendix A)—we defer details to Appendix C.4.4. In 3-D Fourier space parametrized by spherical

coordinates (ρ, φ1, φ2), we again take a product basis

ĵlsm(ρ, φ1, φ2) = z̃s(ρ)ylm(φ1, φ2) for s ≥ 1, l ≥ 0 m ∈ {−l, . . . , l}. (4.36)

In 2-D Fourier space parametrized by polar coordinates (ρ, φ2), we introduce bm(φ2) = (2π)−1/2eimφ2

and take a corresponding product basis

ĵsm(ρ, φ2) = z̃s(ρ)bm(φ2) for s ≥ 1, m ∈ Z. (4.37)

This will be an orthonormal basis under the orthogonality relation for {z̃s} in (4.41) below. We

write {jlsm} for the 3-D inverse Fourier transform of {ĵlsm}, and {jsm} for the 2-D inverse Fourier

transform of {ĵsm}.

Recalling the index set (4.28), we again assume that f is (L, S0, . . . , SL)-bandlimited, so it admits

the representations

f =
∑

(l,s,m)∈I

u(ls)
m · jlsm =

∑
(l,s,m)∈I

θ(ls)
m · hlsm (4.38)

for complex coefficients u ∈ Cd satisfying a sign symmetry (154), or equivalently for real coefficients

θ ∈ Rd related to u via the unitary transform u = V̂ ∗θ in (156). The action of the rotation f 7→ fg

on θ ∈ Rd has been described in Lemma 4.4.5. Letting S = max(S0, . . . , SL), by the Fourier slice

theorem, any such (L, S0, . . . , SL)-bandlimited function f has projection Π · f bandlimited to the
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indices

Ĩ =
{

(s,m) : 1 ≤ s ≤ S, −L ≤ m ≤ L
}
, d̃ = |Ĩ| = S(2L+ 1)

of the projected basis, i.e.

Π · f =
∑

(s,m)∈Ĩ

ũ(s)
m jsm =

∑
(s,m)∈Ĩ

θ̃(s)
m hsm (4.39)

for some complex coefficients ũ ∈ Cd̃ satisfying a sign symmetry (175), or real coefficients θ̃ ∈ Rd̃

related to ũ via a unitary transform ũ = Ṽ ∗θ̃ defined in (174). The projection Π is then an explicit

linear map of θ ∈ Rd (representing f) to θ̃ ∈ Rd̃ (representing Π · f), given by

Π = Ṽ ·ΠC · V̂ ∗ ∈ Rd̃×d, ΠC
(s′,m′),(l,s,m) = 1{s = s′} · 1{m = m′} · plm (4.40)

for constants plm that are defined in (172).

Finally, we choose the radial basis functions {z̃s : s ≥ 1} in (4.36) and (4.37) to satisfy a modified

orthogonality relation ∫ ∞
0

ρ z̃s(ρ)z̃s′(ρ)dρ = 1{s = s′} (4.41)

with weight ρ instead of ρ2, which ensures that the projected basis {hsm} is orthonormal over R2.

Then white noise dW (x) on R2 exhibits as standard Gaussian noise in the projected sequence domain

Rd̃, and our observation model takes the form (4.2).

Remark 4.4.3. Note that if {z̃s : s = 1, . . . , S} has the same linear span as {zs : s = 1, . . . , S} of the

preceding section, then the two spaces of bandlimited functions (4.38) and (4.30) coincide. However,

we caution that here under the orthogonality relation (4.41), the unprojected basis {hlsm} is not

orthonormal for this function space, so f 7→ θ is not an isometric parametrization of f ∈ L2(R3).

The following Theorem 4.4.9 verifies that, under the mild assumption L ≥ 1 and Sl ≥ 4 for

each l = 0, . . . , L, we have also trdeg R̃G
≤K̃

= trdegRG for K̃ = 3. We summarize its statistical

consequences in Corollary 4.4.10.
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Theorem 4.4.9. For any L ≥ 1 and S0, . . . , SL ≥ 4, we have

trdeg(R̃G
≤1) = S0

trdeg(R̃G
≤2) =

L∑
l=0

d(Sl), d(Sl) ≡


Sl(Sl+1)

2 for Sl < 2l + 1

(2l + 1)(Sl − l) for Sl ≥ 2l + 1

trdeg(R̃G
≤3) = trdeg(RG) = d− 3,

which matches the values of trdeg(RG
≤1), trdeg(RG

≤2), and trdeg(RG
≤3) in the unprojected setting of

Theorem 4.4.6.

Corollary 4.4.10. A generic signal θ∗ ∈ Rd in this projected cryo-EM model for L ≥ 1 and

S0, . . . , SL ≥ 4 has the following properties:

(a) θ∗ may be identified up to a finite list of orbits by its first K̃ = 3 moments if L ≥ 2 and its

first K̃ = 2 moments if L = 1.

(b) For (θ∗,G)-dependent constants C, c > 0 independent of σ and k = 1, 2, 3, the Fisher informa-

tion I(θ∗) has d̃0 = 3 eigenvalues of 0 and d̃k eigenvalues in [cσ−2k, Cσ−2k] for

(d̃1, d̃2, d̃3) =
(
S0,

L∑
l=1

d(Sl), d−
L∑
l=0

d(Sl)− 3
)
.

Proof. This follows from Theorem 4.4.9 by applying (Bandeira et al., 2017, Theorem 4.9) and The-

orem 4.2.5(b).

Remark 4.4.4. Taking S0 = . . . = SL = S specializes our results to the case of (projected) cryo-EM

with S spherical shells in (Bandeira et al., 2017, Section 5.5). In (Bandeira et al., 2017, Conjecture

5.11), the authors conjectured that a generic θ∗ may be identified up to a finite list of orbits by

moments up to degree 3 if S ≥ 2. Corollary 4.4.10(a) thus resolves this conjecture positively when

S ≥ 4. The constraint S ≥ 4 is technical, and we believe that the conjecture holds as stated for

S ∈ {2, 3} as well, but we do not pursue these cases in this work.

The following provides the explicit forms for s̃k(θ) in the optimization problem (4.16). Recalling
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the entries plm of ΠC in (4.40), define

Qkl =
(−1)k+l

(2k + 1)(2l + 1)

k∧l∑
q=−(k∧l)

p2
kqp

2
lq, (4.42)

Mk,k′,k′′,l,l′,l′′ =
(−1)k

′′+l′′

(2k′′ + 1)(2l′′ + 1)

k∧l∑
q=−(k∧l)

k′∧l′∑
q′=−(k′∧l′)

k′′∧l′′∑
q′′=−(k′′∧l′′)

q′′=q+q′

〈k, q; k′, q′|k′′, q′′〉〈l, q; l′, q′|l′′, q′′〉pkqpk′q′pk′′q′′plqpl′q′pl′′q′′ . (4.43)

Recall also u(ls)(θ) and B(l,s),(l′,s′),(l′′,s′′)(θ) from (4.33) and (4.34).

Theorem 4.4.11. For any L ≥ 1 and S0, . . . , SL ≥ 1,

s̃1(θ) =
p2

00

2

S0∑
s=1

(
u(0s)(θ)− u(0s)(θ∗)

)2

s̃2(θ) =
1

4

L∑
k,l=0

Qkl

Sk∧Sl∑
s,s′=1

(
〈u(ks)(θ), u(ks′)(θ)〉 − 〈u(ks)(θ∗), u

(ks′)(θ∗)〉
)

×
(
〈u(ls)(θ), u(ls′)(θ)〉 − 〈u(ls)(θ∗), u

(ls′)(θ∗)〉
)

s̃3(θ) =
1

12

L∑
k,k′,k′′,l,l′,l′′=0

|k−k′|≤k′′≤k+k′ and |l−l′|≤l′′≤l+l′

Mk,k′,k′′,l,l′,l′′

Sk∧Sl∑
s=1

Sk′∧Sl′∑
s′=1

Sk′′∧Sl′′∑
s′′=1

(
B(k,s),(k′,s′),(k′′,s′′)(θ)−B(k,s),(k′,s′),(k′′,s′′)(θ∗)

)(
B(l,s),(l′,s′),(l′′,s′′)(θ)−B(l,s),(l′,s′),(l′′,s′′)(θ∗)

)
.

4.5 Numerical evaluations of the Fisher information

We conclude with an empirical investigation of the accuracy of this theory for describing the spectrum

of the Fisher information matrix in two simulated examples of the unprojected SO(3)-rotations model

described in Section 4.4.2.

In each example, we begin with a near-atomic-resolution electric potential map estimated from a

cryo-EM experiment. We obtain a lower-resolution finite-dimensional approximation to this map by

applying a low-pass filter to its Fourier transform, followed by a basis approximation for the filtered

map. We simulate noisy and rotated samples from the unprojected cryo-EM model of Section 4.4.2

using this finite-dimensional approximation as the underlying true signal, for various inverse-SNR

parameters

α ≡ σ2/‖θ∗‖2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1: (a) 3.8�A-resolution cryo-EM map of the rotavirus VP6 trimer, overlaid with the atomic
structure. (b) A finite-dimensional approximation using 405 basis functions at 24.6�A-resolution
(displayed in a rotated orientation for clarity). (c) An approximation using 4410 basis functions at
8.2�A-resolution. (d–f) We stratify the eigenvalues of the 405-dimensional observed Fisher information
corresponding to (b) into three “eigenvalue tiers” according to Theorem 4.4.6, and plot the scalings
of the 10th, 30th, 50th, 70th, and 90th percentiles of eigenvalues in each tier against 1/α ∝ σ−2,
1/α2 ∝ σ−4, and 1/α3 ∝ σ−6. (These quantiles nearly overlap for Tier 1.) Linear trends fitted using
least squares are shown as dashed lines. (g–i) The same for the 4410-dimensional Fisher information
matrix corresponding to (c).

76



We then study the dependence of eigenvalues of the observed Fisher information on α. Note that

to simplify these experiments, we are simulating a setting without tomographic projection, and in

an idealized model that ignores complications of real cryo-EM such as the contrast transfer function

and deviations from uniform viewing angles.

Rotavirus VP6 trimer. We consider a map of the VP6 trimer in bovine rotavirus, reported in

Zhang et al. (2008) (EMDB:1461). A contour plot of this map is overlaid with the atomic structure

previously obtained by Mathieu et al. (2001) (PDB:1QHD), in Figure 4.1(a). We applied low-pass

filters to this map in the Fourier domain at two different frequencies: a low-resolution filter with

cutoff frequency (24.6�A)−1, and a medium-resolution filter with cutoff frequency (8.2�A)−1. The

corresponding smoothed maps in the spatial domain are depicted in Figure C.1 of Appendix C.5.

We approximated each smoothed map using a function basis constructed as a product of radial

functions {zs : s = 1 . . . , S} with spherical harmonics {ylm : 1 ≤ l ≤ L, −l ≤ m ≤ l}, as described in

Section 4.4.2. To minimize the number of basis functions needed, we used an adaptive construction

of the radial basis {zs} so as to maximize the power captured by each successive component. Details

of this construction and of our numerical integration procedures are described in Appendix C.5.

Choosing bandlimits (S,L) = (5, 8), yielding a basis of dimension d = 5 × (8 + 1)2 = 405,

gave an accurate approximation to the 24.6�A-resolution map, as depicted in Figure 4.1(b). This

approximation reveals the trimer composition of the VP6 complex and the shape of its hexagonal

head, but loses more detailed information about the molecular structure. For the 8.2�A-resolution

map, we chose a basis with bandlimits (S,L) = (10, 20) and total dimension d = 4410, as shown in

Figure 4.1(c). This approximation captures more interesting aspects of the tertiary and secondary

structure, including the bundle of α-helices forming the base of the complex and the β-sheets forming

the head. We denote the basis coefficients of these approximated maps as θ∗ ∈ Rd.

We computed the empirical Hessians ∇2Rn(θ∗) from n = 500,000 samples simulated according to

the model of Section 4.4.2, with inverse-SNRs α = σ2/‖θ∗‖2 ∈ [0.04, 0.10]. To mitigate discretization

effects of our numerical quadrature over SO(3), we simulated rotations also using this discretization,

as detailed in Appendix C.5. For each tested α, we sorted the largest d − 3 eigenvalues of the

Hessian ∇2Rn(θ∗) and stratified these eigenvalues into three “tiers” of sizes (d1, d2, d3), as described

by Theorem 4.4.6. Figure 4.1(d–f) depicts representative eigenvalues in each tier, plotted against

1/α ∝ 1/σ2, 1/α2 ∝ 1/σ4, and 1/α3 ∝ 1/σ6 respectively. A linear trend is observed across the bulk

of the tested range for α in all settings, in agreement with the prediction of Theorem 4.2.5. This
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(a) (b)

(c) (d) (e)

Figure 4.2: (a) 3.4�A-resolution cryo-EM map of hemoglobin, overlaid with the atomic structure.
(b) A finite-dimensional approximation using 3528 basis functions at 7.0�A-resolution. (c–e) The
10th, 30th, 50th, 70th, and 90th percentiles of eigenvalues within each “eigenvalue tier” of the 3528-
dimensional observed Fisher information, plotted against 1/α ∝ σ−2, 1/α2 ∝ σ−4, 1/α3 ∝ σ−6 as
in Figure 4.1.

may be contrasted with Figure C.2 in Appendix C.5, which instead plots eigenvalues in all three

tiers against 1/α ∝ 1/σ2, and where non-linearity of the scaling is visually apparent for Tiers 2 and 3.

Hemoglobin. As a second example, we consider the more recent cryo-EM map of hemoglobin

reported in Khoshouei et al. (2017) (EMDB:3650, PDB:5NI1). A contour plot overlaid with the

atomic structure is presented in Figure 4.2(a). We applied a low-pass filter with cutoff frequency

(7.0�A)−1 in the Fourier domain, depicted in Figure C.1. We then applied a basis approximation,

again with an adaptively defined radial basis using the procedure of Appendix C.5, with bandlimits

(S,L) = (8, 20) and total basis dimension d = 3528. The approximated map is shown in Figure

4.2(b), and captures much of the α-helix structure and the locations of the embedded prosthetic

heme groups that carry out the molecule’s oxygen-binding function. We denote the basis coefficients

of this approximation as θ∗.

Figure 4.2(c–e) again depicts the leading d−3 eigenvalues of ∇2Rn(θ∗) from n = 500,000 samples
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simulated according to the model of Section 4.4.2, stratified into the three tiers of sizes (d1, d2, d3).

Linear trends with 1/α ∝ 1/σ2, 1/α2 ∝ 1/σ4, and 1/α3 ∝ 1/σ6 are again observed across the bulk

of the tested inverse-SNR range α ∈ [0.04, 0.10], in agreement with Theorem 4.2.5. This may be

contrasted against the non-linear scalings of Tiers 2 and 3 with 1/α, as depicted in Figure C.2.

In the above two examples, we do see some deviations from the predicted linear trends at the

higher and lower ends of tested SNR: For the higher dimensions d = 4410 and d = 3528, deviations

occur in Tier 2 at larger noise α ≈ 0.1 (corresponding to 1/α2 ≈ 100), which are likely finite-

sample effects due to high dimensionality. Concentration of ∇2Rn(θ∗) around the (population)

Fisher information I(θ∗) worsens with increasing σ2 Fan et al. (2020), so these finite-sample effects

will first be observed for larger noise. We observe also deviations from linearity near smaller noise

α ≈ 0.04 in Tiers 2 and 3, in particular in the upper quantiles of eigenvalues in these tiers. This may

reflect true behavior of the (population) Fisher information I(θ∗). We note that due to variation

in the power captured by differing radial frequencies s ∈ {1, . . . , S}, the eigenvalues span a large

range within each of Tiers 2 and 3, and there is not a clear boundary between these tiers for any

fixed inverse-SNR α.7 In these examples, α = 0.04 still represents a high level of noise compared to

cryo-EM applications, as the spectral SNR (average power of signal / average power of noise at a

fixed Fourier radius) reaches only 0.2–0.4 at the smallest Fourier radii. This is a limitation of the

simplifying large-σ regime in which we have conducted our analysis.

4.6 Conclusion

In this work, we have provided a theoretical characterization of the Fisher information matrix and

log-likelihood landscape for continuous group orbit estimation problems with a sufficiently high level

of observational noise σ2. This assumption of high noise facilitates a simplified analysis of the log-

likelihood function, via a series expansion in 1/σ2. Such an analysis reveals a connection between

properties of the Fisher information matrix and of the log-likelihood landscape with the graded

structure of the invariant algebra of the underlying rotational group.

We studied several specific examples of group orbit estimation that correspond to function esti-

mation in finite-dimensional function spaces, establishing the values of the relevant transcendence

degrees that were previously conjectured for these examples. In particular, in a simplified model

7. We do observe clear gaps between these three tiers of eigenvalues in settings of sufficiently high noise and lower
dimension d ≤ 100.
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of cryo-EM with tomographic projection, our results combine with the analyses of Bandeira et al.

(2017) to show that 3rd-order moments are sufficient to locally identify a generic signal up to its

orbit.

In many interesting applications including single-particle cryo-EM, the target function at full

spatial resolution may not admit an accurate low-dimensional approximation. In such settings, our

theoretical results may have relevance to estimating lower-dimensional smoothed approximations

of the function. We demonstrated in simulation that this theory can accurately predict the noise

scalings of the Fisher information eigenvalues, for two small protein molecules, over a certain range

of SNR. We highlight extensions of this theory to high-dimensional and infinite-dimensional settings

and to a broader range of SNR as important directions for future work.
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A Appendix for Chapter 2

A.1 Proof of robust recovery guarantee

In this appendix, we prove Theorem 2.3.5 providing the estimation guarantee under approximate

gradient-sparsity and discretization and measurement error.

Lemma A.1.1. Suppose G has maximum vertex degree D, and A ∈ Rn×p satisfies (κ, ρ)-cRIP.

Then for any u ∈ Rp and s ≥ 1,

‖Au‖2 ≤
(

1 + κ+
√
Dρ(s)

)
·
(
‖u‖2 +

‖u‖1√
s

)
.

Proof. Let T1 ⊆ {1, . . . , p} be the s indices corresponding to the s entries of u with largest magnitude

(breaking ties arbitrarily). Let T2 ⊆ {1, . . . , p} \ T1 be the s indices corresponding to the next s

entries of u with largest magnitude, and define sequentially T3, T4, . . . , Tm for m = dp/se in this

way. Denote by uTi ∈ Rp the vector with jth entry equal to uj if j ∈ Ti, or 0 otherwise. Then

‖∇uTi‖0 ≤ Ds for each i. Applying the triangle inequality and cRIP condition for A,

‖Au‖2 ≤
m∑
i=1

‖AuTi‖2 ≤
(

1 + κ+
√
ρ(Ds)

)
·
m∑
i=1

‖uTi‖2.

For i ≥ 2, we have ‖uTi+1
‖∞ ≤ ‖uTi‖1/s by construction, so

‖uTi+1‖2 ≤
√
s · ‖uTi‖1

s
=
‖uTi‖1√

s
.

Applying this for i ≥ 2, and the bound ‖uT1‖2 ≤ ‖u‖2 for i = 1,

‖Au‖2 ≤
(

1 + κ+
√
ρ(Ds)

)
·

(
‖u‖2 +

∑m−1
i=1 ‖uTi‖1√

s

)
≤
(

1 + κ+
√
ρ(Ds)

)(
‖u‖2 +

‖u‖1√
s

)
.

Finally, we have (ρ(Ds)−ρ(0))/Ds ≤ (ρ(s)−ρ(0))/s by the concavity of ρ, and hence ρ(Ds) ≤ Dρ(s)
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since ρ(0) ≥ 0.

Proof of Theorem 2.3.5. Write y = Ax + ẽ where ẽ = A(x∗ − x) + e. Denote

s = max(‖∇x‖0, 1), sk = ‖∇xk‖0, rk = xk − x.

As in the proof of Theorem 2.3.4, consider the partitions of {1, . . . , p} induced by the piecewise-

constant structures of xk, xk+1, and x, let S be their common refinement, and let P be the orthogonal

projection onto the subspace of signals taking constant value over each set in S. Applying

ak+1 = xk − ηAT(Axk − y) = xk − ηATArk + ηATẽ,

the same arguments as leading to (2.15) yield

(
‖rk+1‖2 − ‖rk − ηPATArk + ηPATẽ‖2

)2
+
≤ ‖rk − ηPATArk + ηPATẽ‖22 + λk(4s− 2sk+1). (44)

Set Sk = s+ sk + sk+1, Tk = s+ sk, and

τk = κ+
√
ρ(Sk), ζk = κ+

√
ρ(Tk), dk = 2(1 + κ)

√
ρ(Tk) + ρ(Tk).

Then we obtain analogously to (2.16) and (2.19) that

λksk+1 ≤ ‖rk‖22 + 2‖√ηAP‖2op · ‖
√
ηArk‖22 + 2‖ηPATẽ‖22 + 2λks,

and hence

(
λk − 2(1 + ζk)2dk‖rk‖22/s

)
· sk+1 ≤ (1 + 2(1 + ζk)4) · ‖rk‖22 + 2‖ηPATẽ‖22 + 2λks. (45)

Similarly, taking the square-root in (44), we obtain analogously to (2.20) that

‖rk+1‖2 ≤
[
1− t(κ) + 4

√
ρ(Sk) + 2ρ(Sk)

]
· ‖rk‖2 + 2‖ηPATẽ‖2 +

√
4λks. (46)

Recalling the bound ‖√ηAP‖op ≤ 1 + τk from (2.17), we have

‖ηPATẽ‖2 ≤ (1 + τk)(‖√ηA(x∗ − x)‖2 + ‖√η · e‖2).
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Bounding ‖√ηA(x∗ − x)‖2 using the given cRIP condition and Lemma A.1.1 with the choice s =

max(‖∇x‖0, 1) as above, we get for a constant c1 > 0 that

‖ηPATẽ‖2 ≤ (1 + τk)c1E(x).

Applying this and the bound (1 + τk)2 ≤ (1 + ζk)2 + dksk+1/s from (2.18) to (45), we get

(λk − 2ekdk/s) · sk+1 ≤ ‖rk‖22 + 2ek(1 + ζk)2 + 2λks (47)

for the quantity

ek = (1 + ζk)2‖rk‖22 + c21E(x)2.

Also, applying this to (46), we get

‖rk+1‖2 ≤
[
1− t(κ) + 4

√
ρ(Sk) + 2ρ(Sk)

]
· ‖rk‖2 + 2(1 + τk)c1E(x) +

√
4λks. (48)

We now claim by induction on k that if ρ(s) ≤ c0 and λk ≥ C0E(x)2/s for every k ≤ k∗, where

C0 > 0 is sufficiently large and c0 > 0 is sufficiently small, then for every k ≤ k∗ we have

sk ≤
200

t(κ)2
s, ‖rk‖2 ≤

4
√
λks

t(κ)
. (49)

For k = 0, these are satisfied as s0 = 0 and λ0 = λmax ≥ ‖r0‖22. Assume inductively that these hold

for k, where k ≤ k∗ − 1. Then for small enough c0, we have (1 + ζk)2 < 2 and hence

ek ≤
32λks

t(κ)2
+ c21E(x)2.

Also, dk ≤ C
√
c0 for a constant C ≡ C(κ) > 0 independent of c0. Then for C0 large enough and c0

small enough, we obtain from (47) and the condition λk ≥ C0E(x)2/s that

3

4
λksk+1 ≤ ‖rk‖22 + 4ek + 2λks ≤

146λks

t(κ)2
+ 4c21E(x)2 <

150λks

t(κ)2
.

This gives the bound

sk+1 ≤
200

t(κ)2
s.

Then applying (49) and this bound to (48), again for ρ(s) ≤ c0 and λks ≥ C0E(x)2 with C0
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sufficiently large and c0 sufficiently small, we get

‖rk+1‖2 ≤
(

1− 4

5
t(κ)

)
‖rk‖2 + 6c1E(x) +

√
4λks <

(
4

t(κ)
− 1

)√
λks.

Applying
√
λk =

√
λk+1/γ ≤

√
λk+1(1− t(κ)/4)−1, we obtain

‖rk+1‖2 ≤
4
√
λk+1s

t(κ)
,

completing the induction. This establishes (49) for every k ≤ k∗, provided λk∗ ≥ C0E(x)2/s. In

particular, at the iterate k∗, we have λk∗s � E(x)2 and hence ‖rk∗‖2 . E(x).

A.2 Proofs of cut-restricted isometry property

In this appendix, we prove Propositions 2.3.2 and 2.3.3 establishing cRIP for the sub-Gaussian and

weighted 2D-Fourier designs.

Proof of Proposition 2.3.2. First fix s ∈ {1, . . . , |E|}. For each partition S of V = {1, . . . , p} with

|∂S| = s, let PS : Rp → KS be the associated orthogonal projection onto the subspace KS of signals

which are constant on each set in S. Note that the dimension of KS is the number of sets in S, which

is at most s + 1 because G is a connected graph. Write PS = QSQ
T
S , where QS has orthonormal

columns spanning KS . Then AQS still has independent rows aT
i QS/

√
n, where ‖aT

i QS‖ψ2
≤ K and

Cov[aT
i QS ] = QT

SΣQS . Applying (Vershynin, 2010, Eq. (5.25)) to AQS , for any t > 0 and some

constants C, c > 0 depending only on K,

P
[
‖QT
SA

TAQS −QT
SΣQS‖op ≥ max(δ, δ2)

]
≤ 2e−ct

2

, δ ≡ C
√
s+ t√
n

.

Let g(s) = s log(1+ |E|/s), and note that there are at most
(|E|
s

)
≤ eg(s) partitions S where |∂S| = s.

Taking a union bound over S, and noting that any u with ‖∇u‖0 = s may be represented as u = QSv

for some such S, this yields

P

[
sup

u∈Rp:‖u‖2=1,‖∇u‖0=s

|uTATAu− uTΣu| ≥ max(δ, δ2)

]
≤ 2eg(s)−ct

2

.

When ‖u‖2 = 1 and |uTATAu− uTΣu| ≤ max(δ, δ2), we have

‖Au‖2 ≤
√

uTΣu + max(δ, δ2) ≤
√

(1 + κ)2 + max(δ, δ2) ≤ 1 + κ+ δ.
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We also have

‖Au‖2 ≥
√

(uTΣu−max(δ, δ2))+ ≥
√

((1− κ)2 −max(δ, δ2))+ ≥ 1− κ− δ

1− κ
,

where the last inequality is trivial for δ ≥ (1− κ)2 and may be checked for δ ≤ (1− κ)2 by squaring

both sides and applying max(δ, δ2) = δ in this case. Then, for any k and some constants C0, C1 > 0

depending on k, setting t =
√
C0g(s) and applying g(s) ≥ g(1) = log(1 + |E|), we get

P

[
sup

u∈Rp:‖u‖2=1,‖∇u‖0=s

∣∣∣‖Au‖2 − 1
∣∣∣ ≤ κ+

√
C1g(s)

n

]
≤ |E|−k−1.

Taking a union bound over s = 1, . . . , |E| and applying scale invariance of the cRIP condition to

‖u‖2 concludes the proof.

Next, we establish Proposition 2.3.3 on the weighted Fourier design. Its proof follows closely

that of (Rudelson and Vershynin, 2008, Theorem 3.3): For each sparsity level s ≥ 1, we define

κs = supx∈Ks |x
∗(A∗A− I)x| where Ks is the set of complex unit vectors with gradient-sparsity at

most s. It suffices to show with high probability that κs ≤ 2
√
ρ(s) + ρ(s) for all s = 1, . . . , |E|. We

first control E[κs] using a metric entropy argument, and then establish concentration of κs around

E[κs] following the same proof as (Rudelson and Vershynin, 2008, Theorem 3.9).

The main additional steps in our proof lie in bounding the covering number of Ks in the pseudo-

norm ‖x‖A =
√

2‖Ax‖∞, which is used to control E[κs]. In the argument of Rudelson and Vershynin

(2008), the analogue of Ks is the set of unit vectors which are s-sparse. This set is contained in the

`1-ball {x : ‖x‖1 ≤
√
s}, and Rudelson and Vershynin (2008) uses Maurey’s probabilistic method

and a bound on ‖Av‖∞ for standard basis vectors v to control the covering number of this `1 ball.

In our setting, the condition ‖∇x‖0 ≤ s gives only a bound on ‖∇x‖1, and not on ‖x‖1. We instead

use a decay of the coefficients of x in the Haar wavelet basis, proven in Needell and Ward (2013b)

and restated as Lemma A.2.2 below, to bound the `1-norm of x in the Haar basis. We then bound

‖Av‖∞ for Haar basis vectors v using Lemma A.2.1 below, and finally apply this together with

Maurey’s argument as in Rudelson and Vershynin (2008) to control the covering number of Ks. The

additional logarithmic factor in Proposition 2.3.3 over the results of Rudelson and Vershynin (2008)

and Cheraghchi et al. (2013) are due to this approach: The `1-norm of x in the Haar basis is inflated

by a factor of log p, and the bound for ‖Av‖∞ is also inflated by log p because of our reweighting

for the Fourier matrix. (We only use the connection to the Haar basis here, and do not incur this

logarithmic inflation in our analysis of the sub-Gaussian design in Proposition 2.3.2.)
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In the remainder of this section, we provide the details of this argument.

Lemma A.2.1. Let p = N1N2, let S × T ⊂ {1, . . . , N1} × {1, . . . , N2} be any connected rectangle,

and let F ∈ Cp×p be the 2-D discrete Fourier matrix defined in Section 2.3.1. Then for any (i, j) ∈

{1, . . . , N1} × {1, . . . , N2},

∣∣∣∣∣∣
∑

(i′,j′)∈S×T

F(i,j),(i′,j′)

∣∣∣∣∣∣ ≤
√

|S|
1 + min(i− 1, N1 − i+ 1)

· |T |
1 + min(j − 1, N2 − j + 1)

.

Proof. Since ∣∣∣∣∣∣
∑

(i′,j′)∈S×T

F(i,j),(i′,j′)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i′∈S
F1
i,i′ ·

∑
j′∈T
F2
j,j′

∣∣∣∣∣∣
for the 1-D Fourier matrices F1 ∈ CN1×N1 and F2 ∈ CN2×N2 , it suffices to show

∣∣∣∣∣∑
k∈S

F1
ik

∣∣∣∣∣ ≤
√

|S|
1 + min(i− 1, N1 − i+ 1)

.

For this, denote the elements of S as {k1 + 1, . . . , k1 + |S|}, and write

∣∣∣∣∣∑
k∈S

F1
ik

∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
N1

|S|−1∑
t=0

e2πi· (i−1)k1
N1 · e2πi· (i−1)t

N1

∣∣∣∣∣∣ =
1√
N1

∣∣∣∣∣∣
|S|−1∑
t=0

e2πi· (i−1)t
N1

∣∣∣∣∣∣ .
This is at most |S|/

√
N1, which implies the bound for i = 1. For i ≥ 2, apply further

|1− e2πit| ≥ 4 min(t, 1− t)

for t ∈ [0, 1]. Then summing the geometric series, we also have

∣∣∣∣∣∑
k∈S

F1
ik

∣∣∣∣∣ =
1√
N1

∣∣∣1− e2πi
(i−1)|S|
N1

∣∣∣ · ∣∣∣1− e2πi
(i−1)
N1

∣∣∣−1

≤
√
N1

2 min(i− 1, N1 − i+ 1)
≤

√
N1

1 + min(i− 1, N1 − i+ 1)
.

The result follows from combining this with the previous upper bound bound |S|/
√
N1, using

min(a, b) ≤
√
ab.

Lemma A.2.2. Let p = N1N2, where N1, N2 are powers of 2 and 1/K ≤ N1/N2 ≤ K for a constant

K > 0. Let G be the 2-D lattice graph of size N1 ×N2. For x ∈ Cp, let |c(1)(x)| ≥ . . . ≥ |c(p)(x)| be

the ordered magnitudes of the coefficients of x in the bivariate Haar wavelet basis. If x is centered
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to have mean entry 0, then for a constant C ≡ C(K) > 0 and each k = 1, . . . , p,

|c(k)(x)| ≤ C · ‖∇x‖1
k

where ∇ is the discrete gradient operator on G.

Proof. See (Needell and Ward, 2013b, Proposition 8) for the case N1 = N2. For N1 < N2, we

may apply this result to the “stretched” image where each original vertex value is copied to N2/N1

consecutive values in a vertical strip. This stretching changes ‖∇x‖1 and each original bivariate

Haar wavelet coefficient by at most a constant factor, and introduces N2
2 −N1N2 new Haar wavelet

coefficients which are identically 0. Thus the result still holds in this case, and similarly for N1 >

N2.

Proof of Proposition 2.3.3. For each partition S = (S1, . . . , Sk) of G into k connected pieces, let

KS ⊂ Cp be the k-dimensional subspace of vectors which take a constant value over each set of S.

For each sparsity level s ≥ 1, define

Ks =
⋃

S:|∂S|≤s

{x ∈ KS : ‖x‖2 ≤ 1}, κs = sup
x∈Ks

|x∗(A∗A− I)x|.

It suffices to show, with the stated probability and form of ρ, that

κs ≤ 2
√
ρ(s) + ρ(s)

holds simultaneously for all s = 1, . . . , |E|.

We first control E[κs] using a metric entropy argument: Letting A∗r be row r of A,

n · E[ArA
∗
r ] = E

[F(ir,jr)F∗(ir,jr)

ν(ir, jr)

]
=
∑
(i,j)

F(i,j)F∗(i,j) = I.

So

κs = sup
x∈Ks

·

∣∣∣∣∣
n∑
r=1

(
|A∗rx|2 − E|A∗rx|2

)∣∣∣∣∣ .
Applying Gaussian symmetrization,

E[κs] ≤ C E sup
x∈Ks

∣∣∣∣∣
n∑
r=1

gr|A∗rx|2
∣∣∣∣∣

for a constant C > 0 and g1, . . . , gn
iid∼ N (0, 1) independent of A.
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Condition on A, and define by E(A) the right side above with the expectation taken only over

g1, . . . , gn. Introducing the pseudo-metric

d(x,y) =

√√√√ n∑
r=1

(|A∗rx|2 − |A∗ry|2)2,

Dudley’s inequality yields

E(A) ≤ C
∫ ∞

0

√
logN(Ks, d, u) du

where N(Ks, d, u) is the covering number of Ks by balls of radius u in the metric d. For x,y ∈ Ks,

d(x,y) ≤

√√√√ n∑
r=1

|A∗rx + A∗ry|2|A∗rx−A∗ry|2

≤

√√√√2 sup
z∈Ks

n∑
r=1

|A∗rz|2 ·
n

max
r=1
|A∗rx−A∗ry| = R(A) · ‖x− y‖A,

where

R(A)2 = sup
z∈Ks

z∗A∗Az, ‖x‖A =
√

2 · n
max
r=1
|A∗rx|.

Applying this bound and a change-of-variables v = u/R(A),

E(A) ≤ CR(A)

∫ ∞
0

√
logN(Ks, ‖ · ‖A, v) dv. (50)

The pseudo-norm ‖ · ‖A has the following property: For any x ∈ Ks,

‖∇x‖1 ≤
√
s‖∇x‖2 ≤

√
8s‖x‖2 ≤

√
8s (51)

where the middle inequality applies (x−y)2 ≤ 2x2 +2y2 and the fact that the maximal vertex degree

in G is 4. Let v1, . . . ,vp be the bivariate Haar wavelet basis, and write the orthogonal decomposition

x =
∑
k ckvk. Then, as ‖x‖2 ≤ 1, ‖∇x‖1 ≤

√
8s, and

∑p
k=1 1/k ≤ C log p, Lemma A.2.2 implies

p∑
k=1

|ck| ≤ C
√
s log p. (52)

Each Haar vector vk is supported on a number α ∈ {1, 2, 4} of rectangular pieces of some size
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|S|×|T |, with a constant value ±1/
√
α|ST | on each piece. Then Lemma A.2.1 implies for each (i, j)

|F∗(i,j)vk| ≤ C

√
1

1 + min(i− 1, N1 − i+ 1)
· 1

1 + min(j − 1, N2 − j + 1)
.

From the definition of ν and the bound
∑p
k=1 1/k ≤ C log p,

ν(j) ≥ c

(log p)2
· 1

C0 + min(i− 1, N1 − i+ 1)
· 1

C0 + min(j − 1, N2 − j + 1)

for a constant c > 0. Then from the definitions of A and ‖ · ‖A, the bound (52), and the condition

1/K < N1/N2 < K, we obtain

‖vk‖A ≤ C(log p)/
√
n, ‖x‖A ≤ B ≡ C(log p)2

√
s/n. (53)

As in (Rudelson and Vershynin, 2008, Theorem 3.3), we bound the covering number N(Ks, ‖ ·

‖A, v) in two ways: First, fix any x ∈ Ks and write now its Haar decomposition as

x =

p∑
k=1

(ak + ibk)vk

where ak, bk ∈ R. Then for some universal constant L > 0, we obtain from (52)

p∑
k=1

|ak|+ |bk| ≤ L
√
s log p.

Applying Maurey’s argument, define a discrete distribution over a random vector z ∈ Cp by

P
[
z = L

√
s log p · sign(ak)vk

]
=

|ak|
L
√
s log p

,

P
[
z = L

√
s log p · sign(bk)ivk

]
=

|bk|
L
√
s log p

,

P
[
z = 0

]
= 1−

p∑
k=1

|ak|+ |bk|
L
√
s log p

.

Then by construction, E[z] = x. Letting z1, . . . , zm be independent copies of z, for a value m to be

chosen later, Gaussian symmetrization yields (with all expectations conditional on A)

E

∥∥∥∥∥∥x− 1

m

m∑
j=1

zj

∥∥∥∥∥∥
A

= E n
max
r=1

∣∣∣∣∣∣ 1

m

m∑
j=1

A∗rzj − EA∗rzj

∣∣∣∣∣∣ ≤ C

m
E n

max
r=1

∣∣∣∣∣∣
m∑
j=1

gjA
∗
rzj

∣∣∣∣∣∣ (54)
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for g1, . . . , gm
iid∼ N (0, 1). The bound (53) yields for every r

m∑
j=1

|A∗rzj |2 ≤
Csm(log p)4

n
.

Applying this to (54) with a Gaussian tail bound and union bound,

E

∥∥∥∥∥∥x− 1

m

m∑
j=1

zj

∥∥∥∥∥∥
A

≤ C
√

log n · (log p)2

√
s

mn
.

For any v > 0, choosing m = C(log n)(log p)4s/(nv2) ensures this bound is at most v. Then by

the probabilistic method, x belongs to the ‖ · ‖A-ball of radius v around some vector of the form

m−1
∑m
j=1 zj . The support of the distribution of zj has cardinality at most 2p+ 1, and this support

is the same for all x ∈ Ks. Then there are at most (2p+ 1)m such vectors, so we obtain

√
logN(Ks, ‖ · ‖A, v) ≤

√
m log(2p+ 1) ≤ C

√
s(log n)(log p)5/n · 1/v. (55)

We obtain a second covering bound by a union bound over S: For any S = (S1, . . . , Sk) with

|∂S| ≤ s, note that k ≤ s + 1. Define US ∈ Rp×k such that its ith column is eSi/
√
|Si| where

eSi ∈ {0, 1}p is the indicator of Si. Then USU
∗
S is the projection onto KS , and

KS = {USy : ‖y‖2 ≤ 1}.

As max{‖USy‖A : y ∈ Ck, ‖y‖2 ≤ 1} ≤ B by (53), a standard volume argument yields for v ≤ B

N(KS , ‖ · ‖A, v) ≤ (CB/v)k.

The number of partitions S with |∂S| ≤ s is at most
∑s
j=0

(|E|
j

)
≤ (Cp)s+1. Applying k ≤ s+ 1 and

summing over S, √
logN(Ks, ‖ · ‖A, v) ≤ C

√
s log(CBp/v). (56)

Returning to the entropy integral in (50), note that (53) implies N(Ks, ‖ · ‖A, v) = 1 for v > B,

so the integral may be restricted to v ∈ [0, B]. Setting t = 1/
√
n, applying (56) for v ∈ [0, t], and
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also applying Cauchy-Schwarz and log(B/t) ≤ C log p, we get

∫ t

0

√
logN(Ks, ‖ · ‖A, v) dv ≤

√
t ·

√∫ t

0

logN(Ks, ‖ · ‖A, v)dv

≤ Ct

√
s

(
1 + log

CBp

t

)
≤ C

√
s log p

n
.

Applying (55) for v ∈ [t, B], we get

∫ B

t

√
logN(Ks, ‖ · ‖A, v) dv ≤ C

√
s(log n)(log p)7/n.

Applying these bounds to (50) gives

E(A) ≤ C
√
s(log n)(log p)7/n ·R(A).

Taking now the expectation over A and applying Cauchy-Schwarz and the triangle inequality,

E[κs] ≤ E[E(A)] ≤ C
√
s(log n)(log p)7/n

√
E[R(A)2]

≤ C
√
s(log n)(log p)7/n

√
E[κs] + 1.

This yields

E[κs] ≤ E(p, n, s) ≡ C max
(√

s(log n)(log p)7/n, s(log n)(log p)7/n
)
.

We now show concentration of each quantity κs around its mean. The argument is similar to

(Rudelson and Vershynin, 2008, Theorem 3.9), and we omit some details. Write

κs =

∥∥∥∥∥
n∑
r=1

ArA
∗
r − I

∥∥∥∥∥
Ks

where ‖M‖Ks = supx∈Ks |x
∗Mx|. Let A′ be an independent copy of A and define

γs =

∥∥∥∥∥
n∑
r=1

ArA
∗
r − (A′r)(A

′
r)
∗

∥∥∥∥∥
Ks

.

Then by the same arguments as (Rudelson and Vershynin, 2008, Theorem 3.9), for any t > 0,

P[κs ≥ 2E[κs] + t] ≤ 2P[γs ≥ t], E[γs] ≤ 2E[κs] ≤ 2E(p, n, s). (57)
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From (53), we have

‖ArA
∗
r‖Ks ≤ B2

for every r. Then applying (Rudelson and Vershynin, 2008, Theorem 3.8), for any integers l ≥ q,

any r > 0, and some constants C1, C2 > 0,

P[γs ≥ 8qE[γs] + 2B2l + r] ≤ (C1/q)
l + 2 exp

(
− r2

C2qE[γs]2

)
.

Let us assume without loss of generality C1 ≥ 1/e and set l = [2eC1(log n)(log p)3], q = [eC1], and

r = 2
√
C2q · 2E(p, n, s) · t

√
log p, where [·] denotes the integer part. Then combining this with (57),

we get for some constants C, t0 > 0 and all t > t0 that

P[κs ≥ C
√
t · E(p, n, s)

√
log p] ≤ e−2(logn)(log p)3 + 2e−4t(log p).

Setting ρ(s) = Cst(log p)8(log n)/n for a sufficiently large constant C > 0, this yields

P[κs ≥ 2
√
ρ(s) + ρ(s)] ≤ e−2(logn)(log p)3 + 2e−4t(log p).

The result follows from taking a union bound over s = 1, . . . , |E|, and noting |E| ≤ 2p and

2p
(
e−2(logn)(log p)3 + 2e−4t(log p)

)
≤ e−(logn)(log p)3 + p−t

for all t > t0 and sufficiently large t0 > 0.

A.3 RMSE for optimal parameter tuning

We report here the best-achieved RMSE, rather than RMSE for cross-validated selection of tuning

parameters, corresponding to Tables 2.1, 2.2, 2.3, 2.4, and 2.5. We repeated each experiment 20

times with different random noise vectors, and we report also the standard deviations across these

20 simulations.
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Table A.1: Mean and standard deviation of best-achieved RMSE for the 1-D spike signal across 20
simulations.

n/p σ = 0 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7

10%

ITALE 0.000 0.011 0.050 0.081 0.115 0.138 0.177 0.198
(0.000) (0.004) (0.024) (0.023) (0.033) (0.034) (0.031) (0.025)

TV 0.000 0.045 0.086 0.122 0.152 0.176 0.193 0.206
(0.000) (0.011) (0.017) (0.018) (0.017) (0.016) (0.017) (0.015)

15%

ITALE 0.000 0.008 0.019 0.042 0.069 0.091 0.114 0.133
(0.000) (0.002) (0.007) (0.016) (0.023) (0.029) (0.028) (0.029)

TV 0.000 0.029 0.057 0.085 0.109 0.130 0.149 0.165
(0.000) (0.006) (0.011) (0.016) (0.020) (0.020) (0.020) (0.020)

20%

ITALE 0.000 0.007 0.013 0.028 0.049 0.070 0.090 0.102
(0.000) (0.002) (0.003) (0.012) (0.019) (0.019) (0.017) (0.020)

TV 0.000 0.022 0.044 0.066 0.087 0.107 0.126 0.143
(0.000) (0.002) (0.004) (0.006) (0.008) (0.009) (0.010) (0.010)

30%

ITALE 0.000 0.006 0.012 0.019 0.029 0.045 0.061 0.075
(0.000) (0.001) (0.003) (0.006) (0.009) (0.014) (0.011) (0.013)

TV 0.000 0.017 0.034 0.051 0.068 0.085 0.101 0.116
(0.000) (0.001) (0.003) (0.004) (0.006) (0.007) (0.008) (0.009)

40%

ITALE 0.000 0.005 0.010 0.015 0.024 0.038 0.048 0.062
(0.000) (0.001) (0.002) (0.003) (0.007) (0.012) (0.015) (0.016)

TV 0.000 0.014 0.028 0.042 0.056 0.070 0.084 0.097
(0.000) (0.001) (0.003) (0.004) (0.006) (0.007) (0.008) (0.010)

50%

ITALE 0.000 0.005 0.009 0.014 0.021 0.029 0.036 0.047
(0.000) (0.001) (0.002) (0.003) (0.006) (0.011) (0.013) (0.013)

TV 0.000 0.013 0.025 0.038 0.050 0.063 0.074 0.086
(0.000) (0.002) (0.003) (0.005) (0.006) (0.008) (0.008) (0.009)
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Table A.2: Mean and standard deviation of best-achieved RMSE for the 1-D wave signal across 20
simulations.

n/p σ = 0 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7

10%

ITALE 0.019 0.030 0.075 0.126 0.155 0.203 0.233 0.256
(0.081) (0.066) (0.055) (0.057) (0.064) (0.059) (0.070) (0.068)

TV 0.000 0.031 0.062 0.090 0.114 0.137 0.157 0.176
(0.000) (0.005) (0.011) (0.016) (0.018) (0.021) (0.022) (0.024)

15%

ITALE 0.000 0.008 0.022 0.052 0.083 0.105 0.134 0.154
(0.000) (0.002) (0.011) (0.023) (0.027) (0.030) (0.027) (0.035)

TV 0.000 0.022 0.044 0.066 0.087 0.106 0.124 0.141
(0.000) (0.003) (0.006) (0.009) (0.011) (0.013) (0.014) (0.016)

20%

ITALE 0.000 0.006 0.015 0.032 0.050 0.072 0.093 0.109
(0.000) (0.001) (0.006) (0.011) (0.016) (0.023) (0.027) (0.027)

TV 0.000 0.018 0.036 0.054 0.071 0.088 0.104 0.118
(0.000) (0.002) (0.004) (0.007) (0.009) (0.011) (0.012) (0.013)

30%

ITALE 0.000 0.006 0.011 0.017 0.032 0.046 0.062 0.077
(0.000) (0.001) (0.002) (0.004) (0.010) (0.012) (0.015) (0.015)

TV 0.000 0.014 0.027 0.041 0.055 0.068 0.082 0.095
(0.000) (0.001) (0.003) (0.004) (0.005) (0.007) (0.008) (0.010)

40%

ITALE 0.000 0.005 0.010 0.016 0.024 0.033 0.046 0.057
(0.000) (0.001) (0.002) (0.004) (0.009) (0.012) (0.014) (0.017)

TV 0.000 0.012 0.024 0.036 0.048 0.060 0.072 0.083
(0.000) (0.001) (0.002) (0.003) (0.005) (0.006) (0.007) (0.008)

50%

ITALE 0.000 0.004 0.009 0.015 0.022 0.030 0.038 0.049
(0.000) (0.001) (0.002) (0.005) (0.009) (0.011) (0.012) (0.018)

TV 0.000 0.011 0.021 0.032 0.042 0.053 0.063 0.073
(0.000) (0.001) (0.003) (0.004) (0.005) (0.007) (0.008) (0.009)
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Table A.3: Mean and standard deviation of best-achieved RMSE for the Shepp-Logan phantom
across 20 simulations.

n/p σ = 0 σ = 4 σ = 8 σ = 12 σ = 16 σ = 20 σ = 24 σ = 28

10%

ITALE 0.000 0.005 0.011 0.016 0.027 0.035 0.047 0.062
(0.000) (0.000) (0.000) (0.001) (0.001) (0.002) (0.002) (0.003)

TV 0.002 0.011 0.021 0.030 0.039 0.048 0.056 0.064
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

15%

ITALE 0.000 0.003 0.010 0.013 0.017 0.026 0.033 0.041
(0.000) (0.000) (0.000) (0.000) (0.001) (0.002) (0.001) (0.002)

TV 0.001 0.008 0.016 0.024 0.031 0.038 0.044 0.052
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

20%

ITALE 0.000 0.002 0.008 0.012 0.014 0.020 0.028 0.034
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002)

TV 0.001 0.007 0.014 0.020 0.027 0.033 0.039 0.045
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

30%

ITALE 0.000 0.002 0.006 0.010 0.012 0.015 0.018 0.026
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

TV 0.002 0.006 0.011 0.017 0.022 0.027 0.032 0.036
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

40%

ITALE 0.000 0.001 0.005 0.009 0.011 0.013 0.015 0.018
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

TV 0.001 0.005 0.010 0.014 0.019 0.023 0.027 0.031
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

50%

ITALE 0.000 0.001 0.004 0.008 0.011 0.012 0.014 0.016
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

TV 0.001 0.004 0.009 0.013 0.017 0.021 0.025 0.028
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
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Table A.4: Mean and standard deviation of best-achieved RMSE for the brain phantom across 20
simulations.

n/p σ = 0 σ = 8 σ = 16 σ = 24 σ = 32 σ = 40 σ = 48 σ = 56

10%

ITALE 0.000 0.002 0.010 0.026 0.042 0.060 0.079 0.095
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

TV 0.002 0.014 0.028 0.041 0.053 0.065 0.077 0.087
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

15%

ITALE 0.000 0.001 0.006 0.016 0.030 0.043 0.057 0.071
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

TV 0.001 0.011 0.022 0.032 0.043 0.053 0.062 0.072
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

20%

ITALE 0.000 0.001 0.004 0.011 0.024 0.034 0.046 0.057
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002) (0.002)

TV 0.001 0.009 0.019 0.028 0.037 0.045 0.054 0.062
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

30%

ITALE 0.000 0.001 0.003 0.007 0.014 0.025 0.032 0.042
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001)

TV 0.001 0.008 0.015 0.023 0.030 0.037 0.044 0.052
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

40%

ITALE 0.000 0.001 0.002 0.005 0.010 0.018 0.025 0.033
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

TV 0.001 0.006 0.013 0.020 0.026 0.032 0.038 0.044
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

50%

ITALE 0.000 0.000 0.002 0.004 0.008 0.013 0.020 0.027
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

TV 0.001 0.006 0.012 0.017 0.023 0.029 0.034 0.040
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
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Table A.5: Mean and standard deviation of best-achieved RMSE for the XCAT chest slice phantom
across 20 simulations.

n/p σ = 0 σ = 4 σ = 8 σ = 12 σ = 16 σ = 20 σ = 24 σ = 28

10%

ITALE 0.002 0.029 0.050 0.063 0.077 0.086 0.095 0.104
(0.000) (0.007) (0.006) (0.005) (0.001) (0.002) (0.001) (0.002)

TV 0.006 0.019 0.032 0.043 0.053 0.061 0.067 0.073
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

15%

ITALE 0.002 0.007 0.017 0.029 0.043 0.061 0.076 0.085
(0.000) (0.000) (0.000) (0.001) (0.002) (0.003) (0.001) (0.001)

TV 0.003 0.014 0.024 0.034 0.042 0.050 0.057 0.063
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

20%

ITALE 0.002 0.005 0.014 0.022 0.031 0.042 0.054 0.069
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002) (0.003)

TV 0.002 0.011 0.020 0.028 0.036 0.043 0.049 0.055
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

30%

ITALE 0.002 0.004 0.010 0.017 0.024 0.031 0.039 0.048
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

TV 0.002 0.008 0.016 0.023 0.029 0.035 0.041 0.047
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

40%

ITALE 0.002 0.003 0.008 0.015 0.020 0.026 0.032 0.039
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

TV 0.001 0.007 0.014 0.020 0.026 0.031 0.036 0.041
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

50%

ITALE 0.001 0.003 0.007 0.013 0.018 0.022 0.027 0.033
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

TV 0.001 0.006 0.012 0.018 0.023 0.028 0.032 0.037
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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B Appendix for Chapter 3

B.1 Correctness and complexity of algorithm

We prove Lemmas 3.2.1 and 3.2.2 on basic guarantees for the two steps of the tree-PGD algorithm.

Proof of Lemma 3.2.1. For the first statement, since dmax ≥ 2, the vertex w corresponding to each

deleted edge (v, w) must be a child of v which is not its first child in the ordering ODFS . Then its

preceding vertex w′ must be a leaf vertex of T̃ . Each such w corresponds to a different such leaf

w′, so deleting these edges (v, w) and adding (w′, w) preserves the connectedness and tree structure.

By construction, each non-leaf vertex of T̃ has degree at most dmax in T . Each leaf vertex of T̃ has

degree at most 2 ≤ dmax in T , so T has maximum degree ≤ dmax.

For the second statement, since the edges of T̃ are a subset of those of G,

‖∇T̃θ‖0 ≤ ‖∇Gθ‖0.

Let the root vertex of T be 1. For each other vertex i ≥ 2, denote its parent in T by p(i). Then

‖∇Tθ‖0 =

p∑
i=2

1{θi 6= θp(i)}. (58)

Now consider two cases: If the edge (i, p(i)) exists in T̃ , then it is a forward edge in the DFS of T̃ ,

and 1{θi 6= θp(i)} contributes to ‖∇T̃θ‖0. If (i, p(i)) is not an edge of T̃ , then p(i) is a leaf node in

T̃ , and there is path of backward edges (p1, p2, . . . , pr) in the DFS of T̃ where p1 = p(i) and pr = i.

The triangle inequality then implies

1{θi 6= θp(i)} ≤
r−1∑
j=1

1{θpj 6= θpj+1
},

where each term on the right contributes to ‖∇T̃θ‖0. Applying this to each term on the right of
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(58), and invoking the fundamental property that DFS visits each edge of T̃ exactly twice, we get

‖∇Tθ‖0 ≤ 2‖∇T̃θ‖0 ≤ 2‖∇Gθ‖0.

Proof of Lemma 3.2.2. It is clear that Step 1 computes (3.8) at the leaf vertices v. For Step 2, assume

inductively that fw(c, s) is the value (3.8) for all children w of v. The value gw(c, s) represents the

minimum value of ‖θ − uTw‖22, if θv = c and the gradient-sparsity of θ on Tw and the additional

edge (v, w) is at most s—we have either θw = c and gw(c, s) = fw(c, s), or θw 6= c, in which case

θw = argminc∈∆ fw(c, s−1) and gw(c, s) = mw(s−1). Then (3.9) computes (3.8) at v by partitioning

the gradient-sparsity s across its k children, and summing the costs gwi(c, si) and the additional

cost (c−uv)2 for the best such partition. Thus Step 2 correctly computes (3.8) for each vertex v. In

particular, the minimum value for (3.7) is given by minc∈∆ fo(c, S). The minimizer θ is obtained by

examining the minimizing choices in Steps 1 and 2, which is carried out in Steps 3 and 4: Each θv is

the value of θ at v, and each Sv is (an upper-bound for) the value of ‖∇Tvθ‖0 at the minimizer θ.

For each vertex v, Step 1 has complexity (S + 1)|∆|, Steps 2(a) and 2(b) both have complexity

(S + 1)k|∆|, and Step 2(c) has complexity (S + 1)|∆|k
(
S+k−1
k−1

)
, as there are

(
s+k−1
k−1

)
≤
(
S+k−1
k−1

)
partitions of s into s1, . . . , sk. Note that k ≤ dmax − 1, where this holds also for the root vertex

o because we chose it to have degree 1 in T . Then
(
S+k−1
k−1

)
= O((S + dmax)dmax−2). Storing the

relevant minimizers in Steps 1 and 2, the complexity of Steps 3 and 4 is O(1) per vertex. So the

total complexity is O(dmaxp|∆|(S + dmax)dmax−1).

B.2 Proof of Lemma 3.3.6

Proof. Let PS be the partition of {1, . . . , p} induced by uS over T . We have |∂TPS | ≤ S. If

|∂TPS | < S, then let us arbitrarily split some vertex sets in PS along edges of T , until |∂TPS | = S.

Thus, we may assume henceforth that |∂TPS | = S.

We construct another partition P ′ of {1, . . . , p} into the (disjoint) vertex sets (V1, . . . , VB , R),

such that each set of P ′ is connected over T , and P ′ satisfies the following properties:

1. For each b = 1, . . . , B, the number of edges (i, j) in T where both i, j ∈ Vb, but i and j do not

belong to the same set of PS , is greater than or equal to s∗ +
√
κs∗.
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2. B has the upper and lower bounds

S − s∗ −
√
S

(dmax − 1)(s∗ +
√
S + 1) + 1

≤ B ≤
√
S (59)

We construct this partition P ′ in the following way: Initialize T̃ = T and pick any degree-1 vertex

of T as its root. Assign to each edge (i, j) of T̃ a “score” of 1 if i and j belong to the same set of PS ,

and 0 otherwise. Repeat the following steps for all vertices i of T , in reverse-breadth-first-search

order (starting from a vertex i farthest from the root):

• Let T̃i be the sub-tree of T̃ rooted at i and consisting of the descendants of i in T̃ .

• If the total score of edges in T̃i is at least s∗ +
√
κs∗, then add the vertices of T̃i as a set Vb to

the partition P ′, and remove T̃i (including the edge from i to its parent) from T̃ .

This terminates when the remaining tree T̃ has total score less than s∗ +
√
κs∗. Take the last set R

of P ′ to be the vertices of this remaining tree.

By construction, each set V1, . . . , VB , R is connected on T , and property 1 above holds. To verify

the bounds in property 2, note that the total score of the starting tree T̃ = T is S, and the total

score of the final tree belongs to the range [0, s∗ +
√
κs∗). Each time we remove a sub-tree T̃i,

the score of T̃ decreases by at least s∗ +
√
κs∗. We claim that the score also decreases by at most

(dmax − 1)(s∗ +
√
κs∗ + 1) + 1: This is because i has at most dmax − 1 children, and if T̃i has total

score ≥ (dmax − 1)(s∗ +
√
κs∗ + 1), then some sub-tree rooted at one of its children j would have

total score ≥ s∗ +
√
κs∗. (The additional +1 accounts for a possible +1 score on the edge (i, j).)

This sub-tree T̃j would have been removed under the above reverse-breadth-first-search ordering, so

this is not possible. Thus, T̃i has total score < (dmax− 1)(s∗+
√
κs∗+ 1), verifying our claim. Then

the total number B of sub-trees removed must satisfy

S − (s∗ +
√
κs∗)

(dmax − 1)(s∗ +
√
κs∗ + 1) + 1

≤ B ≤ S

s∗ +
√
κs∗

.

Recalling S = κs∗, this implies (59) as desired.

Now let P∗ be the partition of {1, . . . , p} induced by u∗ over T , and let P be the common

refinement of PS , P∗, and P ′ constructed above: Each edge of T which connects two different sets

of P must connect two different sets of at least one of PS , P∗, and P ′. Then the subspace K
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associated to P contains KS and K∗, and furthermore

|∂TP| ≤ |∂TPS |+ |∂TP∗|+ |∂TP ′| ≤ S + s∗ +B ≤ S + s∗ +
√
S.

Here, we have used |∂TP ′| = B because P ′ consists of B + 1 connected sets over T .

For each b = 1, . . . , B, recall the set Vb of P ′, and construct a vector vb ∈ Rp whose coordinates

are

(vb)i =


(u∗)i if i ∈ Vb

(PKu)i if i /∈ Vb.

That is, vb is equal to u∗ on Vb and equal to PKu outside Vb. Then

‖PKu− u∗‖22 ≥
B∑
b=1

∑
i∈Vb

|(PKu)i − (u∗)i|2 =

B∑
b=1

‖PKu− vb‖22. (60)

We claim that ‖∇Tvb‖0 ≤ S: Indeed, the edges (i, j) of T where (vb)i 6= (vb)j are contained in

the union of ∂TP∗, ∂TP ′, and the edges of ∂TPS whose endpoints both belong to the complement

of Vb. Since |∂TPS | = S, and of these S edges, at least s∗ +
√
κs∗ have both endpoints in Vb by

property 1 of our construction of P ′, this implies ‖∇Tvb‖0 ≤ s∗ +B + (S − s∗ −
√
κs∗) ≤ S.

Finally, we use this to lower-bound the right side of (60): Observe that by construction, uS and

all of the vectors vb for b = 1, . . . , B belong to the subspace K associated to P. Note that

‖u− vb‖22 ≥ ‖u− uS‖22 (61)

by optimality of uS and the condition ‖∇Tvb‖0 ≤ S shown above. So, applying the Pythagorean

identity for the projection PK and its orthogonal projection P⊥K ,

‖PKu− vb‖22 = ‖u− vb‖22 − ‖P⊥Ku‖22 ≥ ‖u− uS‖22 − ‖P⊥Ku‖22 = ‖PKu− uS‖22.

Applying this to (60), we get

‖PKu− u∗‖22 ≥ B · ‖PKu− uS‖22.

Combining this with the lower-bound on B in (59) yields the lemma.
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B.3 Proof of Theorem 3.3.5

We first extend the result of Lemma 3.3.6 to address the discretization error in our approximate

projection step (3.6).

Lemma B.3.1. In the setting of Lemma 3.3.6, suppose that u and u∗ are as defined in Lemma

3.3.6, but

uS = argmin
θ∈∆p:‖∇T θ‖0≤S

‖u− θ‖2 (62)

where the minimization is over the discrete lattice ∆ = (∆min,∆min + δ, . . . ,∆max − δ,∆max). If

[−‖u‖∞, ‖u‖∞] ⊆ [∆min,∆max], then the result of Lemma 3.3.6 still holds, with (3.15) replaced by

‖PKu− uS‖22 ≤
(dmax − 1)(s∗ +

√
S + 1) + 1

S − s∗ −
√
S

‖PKu− u∗‖22 + pδ2. (63)

Proof. The proof is the same as Lemma 3.3.6, up until (61) where we used optimality of uS : We

define PS and construct P as in Lemma 3.3.6, using this discrete vector uS . Now let us denote by ǔS

the minimizer of (62) over Rp rather than over ∆p. Note that we do not necessarily have ǔS ∈ KS ,

i.e. ǔS may have a different gradient-sparsity pattern from uS . However, since ‖∇Tvb‖0 ≤ S, we

still have the bound ‖u− vb‖22 ≥ ‖u− ǔS‖22 in place of (61), by optimality of ǔS .

Let ǔS∆ be the vector ǔS with each entry rounded to the closest value in ∆. Note that the value

of ǔS on each set of its induced partition over T is the average of the entries of u over this set:

This implies that ‖ǔS‖∞ ≤ ‖u‖∞, and also that the residual u− ǔS is orthogonal to ǔS − ǔS∆. By

the given condition on ∆min and ∆max, we have the entrywise bound ‖ǔS∆ − ǔS‖∞ ≤ δ from the

rounding. Then

‖u− vb‖22 ≥ ‖u− ǔS‖22 = ‖u− ǔS∆‖22 − ‖ǔS∆ − ǔS‖22 ≥ ‖u− ǔS∆‖22 − pδ2.

Since ǔS∆ ∈ ∆p also satisfies ‖∇T ǔS∆‖0 ≤ S, optimality of uS implies ‖u − ǔS∆‖22 ≥ ‖u − uS‖22.

Substituting above and continuing the proof as in Lemma 3.3.6, we get the bound

‖PKu− u∗‖22 ≥ B · (‖PKu− uS‖22 − pδ2),

and rearranging and applying the lower-bound for B concludes the proof as before.

The second step of the proof is carried out by the following lemma, establishing a key property

of the gradient mapping following ideas of Theorem 2.2.7 in (Nesterov, 2013).
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Lemma B.3.2. Let (T1, T2) be two trees on {1, . . . , p}. Let (P1,P2) be two partitions of {1, . . . , p},

with associated subspaces (K1,K2), such that |∂T1
P1| ≤ s and |∂T2

P2| ≤ s for some sparsity level

s > 0. Let K = K1 +K2, and let PK be the orthogonal projection onto K.

Let L be a loss function satisfying cRSC and cRSS with respect to (T1, T2), at sparsity level s

and with convexity and smoothness constants α,L > 0. Fix θ1 ∈ K1 and define

u = PK(θ1 −∇L(θ1)/L), v = argmin
θ∈K

L(θ).

Then

(a) ‖u− v‖2 ≤
√

1− α/L · ‖θ1 − v‖2, and

(b) ‖θ1 − v‖2 ≤ (2/α) · ‖PK∇L(θ1)‖2.

Proof. Denote

g = PK∇L(θ1).

Since θ1 ∈ K, we have u = θ1 − g/L. Then

‖u− v‖22 = ‖θ1 − v − g/L‖22 = ‖θ1 − v‖22 +
1

L2
‖g‖22 −

2

L
〈g,θ1 − v〉.

So part (a) will follow from

〈g,θ1 − v〉 ≥ 1

2L
‖g‖22 +

α

2
‖θ1 − v‖22. (64)

To show (64), observe that v ∈ K = K1 + K2, so we may apply the cRSC condition to θ1 and

v. This gives

L(v) ≥ L(θ1) + 〈∇L(θ1),v − θ1〉+
α

2
‖v − θ1‖22. (65)

Then, introducing

Q(θ) = L(θ1) + 〈∇L(θ1),θ − θ1〉+
L

2
‖θ − θ1‖22,

we get

L(v) ≥ Q(u)− L

2
‖u− θ1‖22 + 〈∇L(θ1),v − u〉+

α

2
‖v − θ1‖22.
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Applying u− θ1 = −g/L and v − u ∈ K, this gives

L(v) ≥ Q(u)− 1

2L
‖g‖22 + 〈g,v − u〉+

α

2
‖v − θ1‖22

= Q(u) +
1

2L
‖g‖22 + 〈g,v − θ1〉+

α

2
‖v − θ1‖22.

Next, observe that u ∈ K = K1 + K2, so we may apply the cRSS condition to θ1 and u. This

yields L(u) ≤ Q(u). Since L(v) ≤ L(u) by optimality of v, combining these observations gives

0 ≥ 1

2L
‖g‖22 + 〈g,v − θ1〉+

α

2
‖v − θ1‖22.

Rearranging yields (64), which establishes part (a).

For part (b), let us again apply (65) and the optimality condition L(v) ≤ L(θ1) to get

0 ≥ 〈∇L(θ1),v − θ1〉+
α

2
‖v − θ1‖22

= 〈g,v − θ1〉+
α

2
‖v − θ1‖22

≥ −‖g‖2 · ‖v − θ1‖2 +
α

2
‖v − θ1‖22.

Rearranging yields part (b).

Proof of Theorem 3.3.5. Let ut = θt−1 − 1
L∇L(θt−1;Zn1 ). We claim by induction that

[−‖ut‖∞, ‖ut‖∞] ⊆ [∆min,∆max] (66)

and

‖θt − θ∗‖2 ≤ Γ · ‖θt−1 − θ∗‖2 +
4(1 + γ)

α
· Φ(S′) + δ

√
p (67)

for each t = 1, . . . , τ .

To start the induction, first observe that for every t ∈ {1, . . . , τ}, the following holds: Fix any

i ∈ {1, . . . , p} and let K = Kt−1 + K∗ + span(ei) where (Kt−1,K
∗) are the subspaces associated

to the partitions induced by (θt−1,θ
∗) over Tt−1, and span(ei) is the 1-dimensional span of the ith

standard basis vector ei. If P is the partition associated to K, then |∂Tt−1
P| ≤ S + 2s∗+ dmax ≤ S′

because ‖∇Tt−1
θt−1‖0 ≤ S, ‖∇Tt−1

θ∗‖0 ≤ 2s∗ by Lemma 3.2.1, and ‖∇Tt−1
ei‖0 ≤ dmax. Applying

the cRSS property for L with respect to (Tt−1, Tt), we get that the loss L(· ;Zn1 ) is L-strongly-smooth
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restricted to K, meaning for all u,v ∈ K,

L(u;Zn1 ) ≤ L(v;Zn1 ) + 〈∇L(v),u− v〉+
L

2
‖u− v‖22.

Then applying Eq. (2.1.8) of (Nesterov, 2013) to the loss L(· ;Zn1 ) restricted to K, we have for all

u,v ∈ K that

‖PK∇L(u;Zn1 )−PK∇L(v;Zn1 )‖2 ≤ L‖u− v‖2,

where PK is the orthogonal projection onto K. In particular,

∣∣〈ei,∇L(θt−1;Zn1 )−∇L(θ∗;Zn1 )〉
∣∣ ≤ L‖θt−1 − θ∗‖2.

This holds for each standard basis vector ei, so

1

L
‖∇L(θt−1;Zn1 )‖∞ ≤

1

L
‖∇L(θ∗;Zn1 )‖∞ + ‖θt−1 − θ∗‖2. (68)

Then (66) holds for t = 1 by the initialization θ0 = 0 and the given conditions for ∆min,∆max.

Suppose by induction that (66) holds for t. We apply Lemma B.3.1 to T = Tt, u∗ = θ∗, and

u = ut. Note that by Lemma 3.2.1, ‖∇Tθ∗‖0 ≤ 2s∗. Then by the definition of the update (3.6),

we have uS = θt in Lemma B.3.1. Denote by P2 the partition guaranteed by Lemma B.3.1, with

associated subspace K2. Then the lemma guarantees that

|∂TtP2| ≤ S + 2s∗ +
√
S ≤ S′,

and furthermore

‖PK2
ut − θt‖2 ≤ γ · ‖PK2

ut − θ∗‖2 + δ
√
p.

This bound implies

‖θt − θ∗‖2 ≤ ‖θt −PK2ut‖2 + ‖PK2ut − θ∗‖2 ≤ (1 + γ)‖PK2ut − θ∗‖2 + δ
√
p. (69)

Next, let us apply Lemma B.3.2: Take (T1, T2) in Lemma B.3.2 to be (Tt−1, Tt). Take P1 to be

the common refinement of the partitions induced by θt−1 and θ∗ over Tt−1, and let P2 be as above.

Then |∂Tt−1
P1| ≤ S + 2s∗ < S′ and |∂TtP2| ≤ S′, so the cRSC and cRSS conditions required in
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Lemma B.3.2 are satisfied. Let K1,K2 be the associated subspaces, and set K = K1 +K2 and

v = argmin
θ∈K

L(θ;Zn1 ).

First, we take θ1 to be θt−1, and apply Lemma B.3.2(a) with u = PKut. This gives

‖PKut − v‖2 ≤
√

1− α

L
· ‖θt−1 − v‖2. (70)

Note that ‖PK2
ut − θ∗‖2 ≤ ‖PKut − θ∗‖2 because θ∗ ∈ K2 ⊆ K. Applying this and (70) to (69),

‖θt − θ∗‖2 ≤ (1 + γ)‖PKut − θ∗‖2 + δ
√
p

≤ (1 + γ)

(√
1− α

L
· ‖θt−1 − v‖2 + ‖v − θ∗‖2

)
+ δ
√
p

≤ (1 + γ)

(√
1− α

L
· ‖θt−1 − θ∗‖2 + 2‖v − θ∗‖2

)
+ δ
√
p. (71)

Now, let us apply Lemma B.3.2(b) with θ1 being θ∗. This gives

‖v − θ∗‖2 ≤ (2/α)‖PK∇L(θ∗;Zn1 )‖2 ≤ (2/α)Φ(S′),

the second bound holding by the cPGB assumption. Applying this to (71) establishes (67) at the

iterate t.

We may apply (67) recursively for 1, . . . , t, using θ0 = 0 and 1 + Γ + Γ2 + . . . = 1/(1−Γ), to get

‖θt − θ∗‖2 ≤ Γt · ‖θ∗‖2 +
1

1− Γ

(
4(1 + γ)

α
· Φ(S′) + δ

√
p

)
= Γt · ‖θ∗‖2 + Λ. (72)

In particular,

‖θt‖2 ≤ 2‖θ∗‖2 + Λ.

Then, applying also (68),

‖ut+1‖∞ ≤ ‖θt‖∞ +
1

L
‖∇L(θ∗;Zn1 )‖∞ + ‖θt − θ∗‖∞

≤ 1

L
‖∇L(θ∗;Zn1 )‖∞ + 3‖θ∗‖2 + 2Λ.

Then the given condition for ∆min,∆max implies that (66) holds for iteration t+ 1, completing the

induction. Finally, the theorem follows by applying (72) at t = τ .
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B.4 Proofs for cRSC, cRSS, and cPGB

Proof of Lemma 3.3.4. Note that there are
(
p−1
S

)
different partitions P1 of V = {1, . . . , p} with

|∂T1
P1| = S, and similarly for P2, because each such partition corresponds to cutting S of the p− 1

edges of T1. Let g(S) = S log(1 + p/S). Then there are at most
(
p−1
S

)
·
(
p−1
S

)
≤ e2g(S) different

combinations of (K1,K2), and hence at most this many subspaces K. Taking a union bound over

all such K gives, for any ζ > 0,

P(max
K
‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ) ≤ e2g(S) ·max

K
P(‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ).

Note that the dimension of K is less than the sum of dimensions of K1 and K2, which is at most

2(S+1). Applying a covering net argument, we may find a 1/2-net N1/2 for the set {v ∈ K : ‖v‖2 =

1} of cardinality at most 52S+2. Thus,

P(‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ) ≤ P(2 max
v∈N1/2

|v>∇L(θ∗;Zn1 )| ≥ ζ)

≤ 52S+2 · max
v∈N1/2

P(2|v>∇L(θ∗;Zn1 )| ≥ ζ).

Applying the subgaussian assumption on v>∇L(θ∗;Zn1 ), we get

P(max
K
‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ) ≤ e2g(S) · 52S+2 · 2e−nζ

2/8σ2

.

Then for any k > 0 and some constant Ck > 0 depending only on k, setting ζ =
√
Ckσ2g(S)/n and

applying g(S) ≥ log(1 + p), we get

P(max
K
‖PK∇L(θ∗;Zn1 )‖2 ≥

√
Ckσ2g(S)/n) ≤ p−k.

Proof of Proposition 3.4.1. We will consider a fixed t, and then apply a union bound over 1 ≤ t ≤ τ .

For cRSC and cRSS, note that L(θ;Zn1 ) = 1
2n‖y − Xθ‖22 for the linear model, which gives

L(θ2;Zn1 ) − L(θ1;Zn1 ) − 〈θ2 − θ1,∇L(θ1;Zn1 )〉 = 1
2n‖X(θ1 − θ2)‖22. Then the cRSC and cRSS

bounds will hold as long as

sup
K

sup
u∈K:‖u‖2=1

1

n
‖Xu‖22 ≤ 3λ1/2 and inf

K
inf

u∈K:‖u‖2=1

1

n
‖Xu‖22 ≥ λp/2, (73)
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where the supremum and infimum are over all subspaces K = K1 +K2 as in Definition 3.3.2. This

property (73) is invariant under a common rescaling of X>X, λ1, and λp, so we may assume that

λp = 1.

Fixing any such subspace K, note that the dimension of K is upper bounded by 2S′ + 2. Let

PK be the orthogonal projection onto K, and write PK = QKQ>K , where QK has orthonormal

columns spanning K. Then XQK also has independent rows x>i QK , where ‖Q>Kxi‖2ψ2
≤ D and

Cov[Q>Kxi] = QT
KΣQK . Applying Eq. (5.25) of (Vershynin, 2010) to XQK , for any ζ > 0 and some

constants C3, C4 > 0 depending only on D,

P

[∥∥∥∥ 1

n
Q>KX>XQK −Q>KΣQK

∥∥∥∥
op

≥ max(ω, ω2)

]
≤ 2e−C3ζ

2

, ω ≡ C4

√
S′ + ζ√
n

.

Recall g(S′) = S′ log(1 + p
S′ ). Note that there are at most

(
p−1
S′

)
·
(
p−1
S′

)
≤ e2g(S′) different subspaces

K. Taking a union bound over K, and noting that any u ∈ K may be represented as u = QKv for

such K, this yields

P

[
sup
K

sup
u∈K:‖u‖2=1

∣∣∣∣ 1nuTXTXu− uTΣu

∣∣∣∣ ≥ max(ω, ω2)

]
≤ 2e2g(S′)−C3ζ

2

When ‖u‖2 = 1, uTΣu ∈ [λp, λ1]. It follows, with probability at least 1 − 2e2g(S′)−C3ζ
2

and under

our scaling λp = 1, that

sup
K

sup
u∈K:‖u‖2=1

1

n
‖Xu‖22 ≤ λ1 + max(ω, ω2),

and

inf
K

inf
u∈K:‖u‖2=1

1

n
‖Xu‖22 ≥ (1−max(ω, ω2))+.

Then, for any k > 0 and some constants C1, C5 > 0 depending only on k,D, assuming n ≥ C1g(S′)

and setting ζ =
√
C5g(S′), (73) holds with probability at least 1−2e−kg(S′). Applying g(S′) ≥ log p,

this probability is at least 1− 2p−k.

For cPGB, it follows from the first part of the proof that with probability at least 1 − 2p−k,

‖Xu‖22/n2 ≤ 3λ1/2n for every such subspace K and every u ∈ K. Applying Lemma 5.9 of (Ver-

shynin, 2010) and the assumption ‖ei‖2ψ2
≤ σ2, conditional on X and this event, uTX>e/n is a

subgaussian random variable with subgaussian parameter C6λ1σ
2/n, where C6 > 0 is some abso-

lute constant. Noting that ∇L(θ∗;Zn1 ) = −X>e/n and applying Lemma 3.3.4, L has the cPGB
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Φ(S′) = C2σ
√
λ1g(S′)/n with probability at least 1− 3p−k.

The bound for ‖∇L(θ∗;Zn1 )‖∞ = ‖X>e/n‖∞ follows from similarly noting that with probability

at least 1 − 2p−k, ‖Xu‖22/n2 ≤ 3λ1/2n for each standard basis vector u ∈ Rp. Conditional on X

and this event, uTX>e/n is subgaussian with parameter C6λ1σ
2/n for every standard basis vector

u. Then the bound for ‖X>e/n‖∞ follows from the subgaussian tail bound and a union bound over

all such u. Finally, applying a union bound over 1 ≤ t ≤ τ completes the proof.

Proof of Proposition 3.4.3. Similar to the proof of Proposition 3.4.1, we consider fixed t and then

apply a union bound over 1 ≤ t ≤ τ .

For cRSC and cRSS, note that L(θ;Zn1 ) = 1
n

∑n
i=1(b(x>i θ)− yix>i θ), which gives

L(θ2;Zn1 )− L(θ1;Zn1 )− 〈θ2 − θ1,∇L(θ1;Zn1 )〉

=
1

n

n∑
i=1

(b(xT
i θ2)− b(xT

i θ1)− b′(xT
i θ1)xTi (θ2 − θ1)).

Applying the assumption on b,

αb
2n
‖X(θ2 − θ1)‖22 ≤ L(θ2;Zn1 )− L(θ1;Zn1 )− 〈θ2 − θ1,∇L(θ1;Zn1 )〉 ≤ Lb

2n
‖X(θ2 − θ1)‖22.

Then cRSC and cRSS hold for (Tt−1, Tt) with probability 1− 2p−k, by (73) and the same argument

as Proposition 3.4.1.

For cPGB, note that ∇L(θ∗;Zn1 ) = − 1
n

∑n
i=1 xiei = −XTe/n where e = (e1, . . . , en). Similar

to the proof of Proposition 3.4.1, we condition on X and the probability 1− 2e−kg(S′) event E that

1
n‖Xu‖22 ≤ 3λ1/2 for every K = K1 + K2 and every u ∈ K. Then similar to the proof of Lemma

3.3.4, we get for any ζ > 0

P(sup
K
‖PKXTe‖2/

√
n > ζ)

≤ e2g(S′) · 52S′+2 ·
(

sup
w:‖w‖2=1

P({2|wTXTe|/
√
n ≥ ζ} ∩ E) + 2e−kg(S′)

)
.

Note that (3.21) implies Var(ei) ≤ C3 where C3 > 0 is some constant depending only on D1, D2, β.

If 1 < β ≤ 2, applying Lemma B.5.1,

P(sup
K
‖PKXTe‖2/

√
n > ζ) ≤ e2g(S′) · 52S′+2 ·

(
2e−ζ

β/(C4

√
λ1)β + 2e−kg(S′)

)
,

where C4 > 0 is some constant depending only on D1, D2, β. Then for any k > 0 and some constant
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C2 > 0 depending only on k,D,D1, D2, β, setting ζ = C2

√
λ1 · g(S′)1/β and applying g(S′) ≥ log p,

we have

P(sup
K
‖PKXTe‖2/n > C2

√
λ1/n · g(S′)1/β) ≤ p−k.

If β = 1, applying Lemma B.5.1, we get

P(sup
K
‖PKXTe‖2/n > C2

√
λ1/n log n · g(S′)) ≤ p−k.

The bound for ‖∇L(θ∗;Zn1 )‖∞ = ‖X>e/n‖∞ is similar to the proof of Proposition 3.4.1. Note

that with probability at least 1 − 2p−k, ‖Xui‖22/n ≤ 3λ1/2 for each standard basis vector ui ∈ Rp

with 1 ≤ i ≤ p. We condition on X and this event E ′ and get for any ζ > 0

P( max
1≤i≤p

|uiXTe|/
√
n > ζ) ≤ p ·

(
max

1≤i≤p
P({|uiXTe|/

√
n > ζ} ∩ E ′) + 2p−k

)
.

Similarly, if 1 < β ≤ 2, applying Lemma B.5.1, for any k > 0 and some constant C3 depending only

on k,D,D1, D2, β, we get

P( max
1≤i≤p

|uiXTe|/n > C3(log p)1/β
√
λ1/n) ≤ p−k.

If β = 1, applying Lemma B.5.1, we get

P( max
1≤i≤p

|uiXTe|/n > C3(log n)(log p)
√
λ1/n) ≤ p−k.

Finally, applying the union bound over 1 ≤ t ≤ τ completes the proof.

B.5 Auxilliary lemmas

The following lemma comes from (Huang et al., 2008, Lemma 1).

Lemma B.5.1. Suppose X1, . . . , Xn are i.i.d. random variables with EXi = 0 and Var(Xi) = σ2.

Further suppose, for 1 ≤ d ≤ 2 and certain constants C1, C2 > 0, their tail probabilities satisfy

P(|Xi| ≥ ζ) ≤ C1 exp(−C2ζ
d),

for all ζ > 0. Let c1, . . . , cn be constants satisfying
∑n
i=1 ci ≤ M2 and W =

∑n
i=1 ciXi. Then we

122



have

‖W‖ψd ≤

 KdM{σ + C3}, 1 < d ≤ 2

K1M{σ + C4 log n}, d = 1

where Kd is a positive constant depending only on d, C3 is some positive constant depending only

on C1, C2, d and C4 is some positive constant depending only on C1, C2. Consequently,

P(|W | > ζ) ≤

 2 exp{−(ζ/(KdM(σ + C3)))d}, 1 < d ≤ 2,

2 exp{−ζ/(K1M(σ + C4 log n))}, d = 1.
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C Appendix for Chapter 4

C.1 Proofs for general results on the orbit recovery model

C.1.1 High-noise expansion

We first provide a form for sk(θ) and s̃k(θ) that will be more convenient for later computations. We

then prove Theorem 4.2.1.

Lemma C.1.1. The expressions sk(θ) and s̃k(θ) from (4.7) and (4.10) have the equivalent forms

sk(θ) =
1

2(k!)
Eg[〈θ, g · θ〉k − 2〈θ, g · θ∗〉k + 〈θ∗, g · θ∗〉k]

s̃k(θ) =
1

2(k!)
Eg,h[〈Π · g · θ,Π · h · θ〉k − 2〈Π · g · θ,Π · h · θ∗〉k + 〈Π · g · θ∗,Π · h · θ∗〉k].

Proof. For the first statement, expanding the square in the definition of sk from (4.7), we have

sk(θ) =
1

2(k!)
‖Tk(θ)− Tk(θ∗)‖2HS

=
1

2(k!)

∥∥Eg[(g · θ)⊗k]− Eg[(g · θ∗)⊗k]
∥∥2

HS

=
1

2(k!)
Eg,h

[〈
(g · θ)⊗k, (h · θ)⊗k

〉
− 2
〈
(g · θ)⊗k, (h · θ∗)⊗k

〉
+
〈
(g · θ∗)⊗k, (h · θ∗)⊗k

〉]
=

1

2(k!)
Eg,h

[
〈g · θ, h · θ〉k − 2〈g · θ, h · θ∗〉k + 〈g · θ∗, h · θ∗〉k

]
=

1

2(k!)
Eg
[
〈θ, g · θ〉k − 2〈θ, g · θ∗〉k + 〈θ∗, g · θ∗〉k

]
.

The last step above applies 〈g ·u, h · v〉 = 〈u, (g>h) · v〉 and the equality in law g>h
L
= g. The second

statement follows similarly from (4.10), omitting this last step.

Proof of Theorem 4.2.1. Part (a) follows from specializing part (b) to d̃ = d and Π = Id, and

observing that in this case, the term 〈T̃k(θ), Pk(θ)〉 in (4.9) also belongs to RG
≤k−1 and hence may
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be absorbed into qk(θ)—see (Katsevich and Bandeira, 2020, Proposition 2.3) or (Fan et al., 2020,

Lemma 4.8).

Most of the claims in part (b) follow directly from (Katsevich and Bandeira, 2020, Lemma 2.2):

Specializing to our setting (where ρ and ρ∗ in Katsevich and Bandeira (2020) are the distributions

of Π ·g ·θ and Π ·h ·θ∗ for g, h ∼ Λ, and where δ in (Katsevich and Bandeira, 2020, Eqs. (2.12–2.13))

is bounded as δ ≤ C(1 ∨ ‖θ‖) for all θ ∈ Rd), this result guarantees that the expansion (4.9) holds

for s̃k, T̃k, Pk, and qk having all of the stated properties, and for a remainder q(θ) that satisfies

|q(θ)| ≤ CK(1 ∨ ‖θ‖)2K+2

σ2K+2
(74)

when ‖θ‖ ≤ σ. This remainder q(θ) must also be G-invariant, as all of the other terms in (4.9) are

G-invariant.

It remains to verify the bounds for ‖∇q(θ)‖ and ‖∇2q(θ)‖ in (4.8). These types of bounds

were shown in the unprojected setting of Π = Id in (Fan et al., 2020, Lemma 4.7). They were not

stated explicitly in Katsevich and Bandeira (2020), but may be deduced from a small extension of the

analysis: Denote by Eg,Eh the expectations over g, h ∼ Λ, and by Eε,Eε′ those over ε, ε′ ∼ N (0, Id).

Write

t = 1/σ, Y = Π · h · θ∗ + t−1ε, w = Π · g · θ −Π · h · θ∗ ∈ Rd̃,

and define

f(t) = − logM(t), M(t) = Eg
[
exp

(
− t

2‖w‖2

2
+ tw>ε

)]
Comparing with (4.3), this function f(t) is the negative log-likelihood for the single sample Y , up

to a θ-independent constant and viewed as a function of t = 1/σ. Applying a Taylor expansion of

f(t) around t = 0, and then taking expectations over (h, ε) that define Y , we have

R(θ) = constant +

2K+1∑
p=1

tp

p!
Eh,ε[f (p)(0)] +

t2K+2

(2K + 2)!
Eh,ε[f (2K+2)(ξ(h, ε))] (75)

for a random point ξ(h, ε) between 0 and t = 1/σ. This is a rewriting of the Taylor expansion in

(Katsevich and Bandeira, 2020, Eq. (5.7)). It is shown in Katsevich and Bandeira (2020) that the

leading terms in (75) of orders t1, . . . , t2K+1 give exactly the leading terms of (4.9), and the last

term of (75) is the remainder q(θ) in (4.9). The bound (74) for q(θ) follows from (Katsevich and

Bandeira, 2020, Eq. (5.22)).

To bound ∂θaq(θ) for any index a ∈ {1, . . . , d}, we may apply a similar Taylor expansion for
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∂θaR(θ), and write

∂θaR(θ) =

2K+1∑
p=1

tp

p!
Eh,ε[∂pt ∂θaf(0)] +

t2K+2

(2K + 2)!
Eh,ε[∂2K+2

t ∂θaf(ξ(h, ε))]

for a possibly different point ξ(h, ε) ∈ (0, t) depending on the index a. Then

∂θaq(θ) =
t2K+2

(2K + 2)!
Eh,ε[∂2K+2

t ∂θaf(ξ(h, ε))] (76)

and we wish to bound this term for each a ∈ {1, . . . , d}. The function ∂θaf(t) is the θa-derivative of

f , given by

∂θaf(t) = −∂θaM(t)

M(t)
.

Then differentiating 2K + 2 times in t, we see that ∂2K+2
t ∂θaf(t) is a sum of at most CK terms of

the form

C`0,...,`j ·
∂`0t ∂θaM(t)

M(t)
· ∂

`1
t M(t)

M(t)
· . . . · ∂

`j
t M(t)

M(t)

for some integers j ≥ 0 and `0, . . . , `j ≥ 0 such that `0 + . . .+ `j = 2K + 2, and for some universal

constants C`0,...,`j depending only on `0, . . . , `j .

From (Katsevich and Bandeira, 2020, Eq. (5.20)), we have

∣∣∣∣∂`tM(ξ)

M(ξ)

∣∣∣∣ ≤ δ`Eε′[(‖W‖+ |ξ|δ)`
]
, W = ε+ iε′, δ = sup

g,h∈G
‖Π · g · θ −Π · h · θ∗‖

where ε′ ∼ N (0, Idd̃×d̃) is an independent copy of ε. Applying this to any ξ ∈ (0, t), and applying

δ ≤ C(1 ∨ ‖θ‖) ≤ Cσ = Ct−1, we obtain

∣∣∣∣∂`tM(ξ)

M(ξ)

∣∣∣∣ ≤ C`δ`(1 + ‖ε‖)`. (77)

We may bound the t-derivatives of ∂θaM(t) using a similar argument: Introducing the ath standard

basis vector ea ∈ Rd, observe that

∂θaM(t) = Eg
[
e>a g

>Π>(tε− t2w) · exp

(
− t

2‖w‖2

2
+ tw>ε

)]
= Eg

[
e>a g

>Π>(tε− t2w) · Eε′ [etw
>W ]

]
, where W = ε+ iε′.

Then applying Leibniz’ rule and the same argument as (Katsevich and Bandeira, 2020, Eqs. (5.18–
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5.19)) to differentiate in t, we obtain

∂`t∂θaM(t) = Eg
[
e>a g

>Π>(tε− t2w) · Eε′ [etw
>W ] · Eε′ [(w>(W − tw))`]

]
+ ` · Eg

[
e>a g

>Π>(ε− 2tw) · Eε′ [etw
>W ] · Eε′ [(w>(W − tw))`−1]

]
+

(
`

2

)
· Eg

[
e>a g

>Π>(−2w) · Eε′ [etw
>W ] · Eε′ [(w>(W − tw))`−2]

]
.

Applying also M(t) = Eg[Eε′ [etw
>W ]], so that Eg[(·)Eε′ [etw

>W ]]/M(t) is a reweighted average over

g ∈ G, this yields analogously to (Katsevich and Bandeira, 2020, Eq. (5.20)) that

∣∣∣∣∂`t∂θaM(ξ)

M(ξ)

∣∣∣∣ ≤ C`[(|ξ|‖ε‖+ ξ2δ) · δ`Eε′ [(‖W‖+ |ξ|δ)`]

+ (‖ε‖+ |ξ|δ) · δ`−1Eε′ [(‖W‖+ |ξ|δ)`−1] + δ · δ`−2Eε′ [(‖W‖+ |ξ|δ)`−2]
]

where we have absorbed ‖e>a g>Π‖ into the constant C`. Applying this with ξ ∈ (0, t) and δ ≤

C(1 ∨ ‖θ‖) ≤ Ct−1, we get ∣∣∣∣∂`t∂θaM(ξ)

M(ξ)

∣∣∣∣ ≤ C`δ`−1(1 + ‖ε‖)`+1. (78)

Then combining with (77) and applying to the previously stated form of ∂2K+2
t ∂θaf ,

|∂2K+2
t ∂θaf(ξ)| ≤ CK

∑
`0,...,`j≥0

`0+...+`j=2K+2

δ`0+...+`j−1(1+‖ε‖)`0+...+`j+1 ≤ C ′K(1∨‖θ‖)2K+1(1+‖ε‖)2K+3.

Finally, taking the expectation over ε and applying this to (76) for each a ∈ {1, . . . , d}, we obtain

the desired bound

‖∇q(θ)‖ ≤ CK(1 ∨ ‖θ‖)2K+1

σ2K+2
.

The argument to bound ‖∇2q(θ)‖ is similar: For any a, b ∈ {1, . . . , d}, applying a Taylor expan-

sion of ∂2
θa,θb

R(θ), we wish to bound

∂2
θa,θb

q(θ) =
t2K+2

(2K + 2)!
Eh,ε[∂2K+2

t ∂2
θa,θb

f(ξ(h, ε))]

for some ξ(h, ε) ∈ (0, t) depending on a, b. We may compute

∂2
θa,θb

f(t) = −
∂2
θa,θb

M(t)

M(t)
+
∂θaM(t)

M(t)

∂θbM(t)

M(t)
,
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differentiate this 2K + 2 times in t, and apply (77), (78), and the analogous bound

∣∣∣∣∣∂`t∂2
θa,θb

M(ξ)

M(ξ)

∣∣∣∣∣ ≤ C`δ`−2(1 + ‖ε‖)`+2

which is derived similarly. This yields |∂2K+2
t ∂θaf(ξ)| ≤ CK(1 ∨ ‖θ‖)2K(1 + ‖ε‖)2K+4, and taking

the expectation over ε gives the desired bound for ‖∇2q(θ)‖.

C.1.2 Identifiability and transcendence degree

Proof of Proposition 4.2.4. Since trdegRG < ∞ (see (Bandeira et al., 2017, Proposition 4.11)), we

may take any transcendence basis ϕ of RG, and let k be the maximum degree of the polynomials

constituting ϕ. Then trdegRG
≤k = |ϕ| = trdegRG, and (a) follows.

Part (b) is similar to the statement of (Bandeira et al., 2017, Theorem 4.9): Π(Oθ) is a continuous

image of the compact group G, and hence is also compact. Then the distribution of Π·g ·θ is uniquely

determined by its sequence of mixed moments. Thus

{
θ : Π(Oθ) ≡ Π(Oθ∗)

}
=
{
θ : T̃k(θ) = T̃k(θ∗) for all k ≥ 1

}
. (79)

Suppose that trdeg R̃G
≤k = trdegRG for some integer k. Let Uk be the linear subspace of RG spanned

by 1 and all entries of T̃1, . . . , T̃k. Since Uk generates R̃G
≤k, we have trdegUk = trdeg R̃G

≤k, where

trdegUk is the maximum number of algebraically independent elements in Uk (Lang, 2002, Chapter

8, Theorem 1.1). Then (Bandeira et al., 2017, Theorem 4.9) shows that for generic θ∗ ∈ Rd, there

are only finitely many orbits Oθ such that P (θ) = P (θ∗) for all P ∈ Uk. This condition must hold

for all θ belonging to (79), so (79) also consists of finitely many orbits.

Conversely, suppose trdeg R̃G
≤k < trdegRG for all k ≥ 1. Consider R̃G =

⋃
k≥1 R̃G

≤k (the

subalgebra generated by entries of T̃k for all k ≥ 1). By the argument of (a), trdeg R̃G = trdeg R̃G
≤k

for some integer k, so also trdeg R̃G < trdegRG. We now apply an extension of the argument in

(Bandeira et al., 2017, Section 8.3): Fix any transcendence basis ϕ0 of R̃G. Then the gradient vectors

of ϕ0 are linearly independent at generic θ∗ ∈ Rd (see (Bandeira et al., 2017, Corollary 4.19)). Fix

any such θ∗. In a sufficiently small open neighborhood O of θ∗, we claim that

{
θ ∈ O : T̃k(θ) = T̃k(θ∗) for all k ≥ 1

}
=
{
θ ∈ O : ϕ0(θ) = ϕ0(θ∗)

}
. (80)

To see this, choose any d − |ϕ0| additional functions ϕ̄ for which ϕ = (ϕ0, ϕ̄) has non-singular
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derivative at θ∗, and hence forms an invertible local reparametrization over a sufficiently small such

neighborhood O, by the inverse function theorem. Let p(θ) be any entry of T̃k for any k ≥ 1, and

write q(ϕ) = p(θ(ϕ)) for its reparametrization by the local coordinates ϕ on O. By the chain rule,

∇p(θ) = dθϕ(θ)>∇ϕq(ϕ(θ)).

Since p ∈ R̃G, and ϕ0 is a transcendence basis for R̃G, we have that (p, ϕ0) is algebraically dependent.

Then the gradients of p and of ϕ0 are linearly dependent at every θ ∈ O (see (Bandeira et al., 2017,

Corollary 4.19)), so ∇p(θ) belongs to the span of columns of dθϕ(θ)> corresponding to only the

coordinates of ϕ0. Then ∇ϕq(ϕ(θ)) must be 0 in the remaining coordinates ϕ̄. This holds for all

θ ∈ O, so q(ϕ) is a function only of ϕ0 in this local parametrization over O. This shows our claim

(80). The set (80) forms a manifold of dimension d − |ϕ0| = d − trdeg R̃G. On the other hand,

(Bandeira et al., 2017, Section 8.3) shows that for generic θ∗, each orbit Oθ ∩ O is a manifold of

dimension d−trdegRG, which is strictly smaller when trdeg R̃G < trdegRG. Thus (79) must contain

infinitely many orbits corresponding to θ ∈ O.

C.1.3 Fisher information and transcendence degree

We prove Theorem 4.2.5 and Lemma 4.2.6, following ideas similar to (Fan et al., 2020, Section 4).

Throughout, we assume that (4.4) holds in the projected setting, and we denote by K and K̃ the

(smallest) integers satisfying Proposition 4.2.4. Recall dk and d̃k from (4.11–4.12), and the combined

moment functions Mk(θ) and M̃k(θ) from (4.13–4.14).

Lemma C.1.2. In the unprojected model, for generic θ ∈ Rd and every k = 1, . . . ,K, the rank of

dMk(θ) equals d1 + . . .+ dk.

Furthermore, for any k ∈ {1, . . . ,K} and any θ ∈ Rd where rank dMk(θ) = d1 + . . . + dk, there

exist functions ϕj : Rd → Rdj for each j = 1, . . . , k and ϕ̄ : Rd → Rd−d1−...−dk , such that:

(a) For each j = 1, . . . , k, the dj coordinates of ϕj are entries of the moment tensor Tj.

(b) The combined map ϕ = (ϕ1, . . . , ϕk, ϕ̄) : Rd → Rd has non-singular derivative dϕ(θ) ∈ Rd×d at

this point θ, and hence an analytic inverse function θ(ϕ) over a neighborhood U of θ.

(c) For any j = 1, . . . , k, any polynomial p ∈ RG
≤j, and sufficiently small such neighborhood U ,

ϕ 7→ p(θ(ϕ)) is a function only of the d1 + . . .+ dj coordinates ϕ1, . . . , ϕj, over ϕ(U).

(d) Suppose k = K. Then for any G-invariant continuous function f : Rd → R and sufficiently
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small such neighborhood U , ϕ 7→ f(θ(ϕ)) is a function only of the d1 + . . . + dK coordinates

ϕ1, . . . , ϕK , over ϕ(U). Also,

{
θ′ ∈ U : (ϕ1(θ′), . . . , ϕK(θ′)) = (ϕ1(θ), . . . , ϕK(θ))

}
= U ∩ Oθ. (81)

In the projected model, the same statements hold with K̃, M̃j, T̃j, d̃j, and R̃G
≤j in place of K, Mj,

Tj, dj, and RG
≤j.

Proof. In the unprojected model, RG
≤k is generated by the entries of T1, . . . , Tk, and trdegRG

≤k =

d1 + . . . + dk. Thus there are exactly d1 + . . . + dk algebraically independent entries of T1, . . . , Tk

(Lang, 2002, Chapter 8, Theorem 1.1). Then dMk(θ) has rank d1 + . . .+ dk at generic θ ∈ Rd, and

rank at most d1 + . . .+ dk at every θ ∈ Rd, see e.g. (Bandeira et al., 2017, Corollary 4.19).

If θ ∈ Rd has rank dMk(θ) = d1 + . . .+dk, then this implies that also rank dMj(θ) = d1 + . . .+dj

for each j = 1, . . . , k. Then for each j = 1, . . . , k, we may pick dj entries of Tj to be ϕj , such that

(ϕ1, . . . , ϕk) have linearly independent gradients at θ. We may arbitrarily pick d − d1 − . . . − dk

additional analytic functions to be ϕ̄, so that ϕ = (ϕ1, . . . , ϕk, ϕ̄) has non-singular derivative dϕ(θ).

This shows properties (a) and (b), where the existence of an analytic inverse θ(ϕ) on U follows from

the inverse function theorem.

Part (c) follows from the same argument as (80): Denote q(ϕ) = p(θ(ϕ)). Applying the chain

rule, for any x ∈ U ,

∇p(x) = dxϕ(x)>∇ϕq(ϕ(x)).

Since p is a function of T1, . . . , Tj , its gradient is a linear combination of the gradients of the entries

of T1, . . . , Tj , and hence linearly dependent with the gradients of ϕ1, . . . , ϕj . Thus ∇p(x) belongs

to the span of the columns of dxϕ(x)> corresponding to ϕ1, . . . , ϕj , implying that ∇ϕq(ϕ(x)) is 0

in the remaining coordinates ϕj+1, . . . , ϕk, ϕ̄. This holds at every x ∈ U , so q is a function only of

ϕ1, . . . , ϕj .

For (d), denote h(ϕ) = f(θ(ϕ)). Suppose first that f ∈ RG is a G-invariant polynomial. Since

d1 + . . . + dK = trdegRG, we must have that (ϕ1, . . . , ϕK , f) are algebraically dependent. Then

their gradients are linearly dependent at every x ∈ U . Then the same argument as in (c) shows

that h(ϕ) depends only on ϕ1, . . . , ϕK . For a general G-invariant continuous function f , let r > 0

be large enough such that U ⊂ Br = {x ∈ Rd : ‖x‖ ≤ r}. For any ε > 0, by the Stone-Weierstrass

theorem, there is a polynomial p such that |p(x)− f(x)| < ε for all x ∈ Br. Applying the Reynolds
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operator p̄(x) =
∫
p(g · x)dΛ(g), we then have p̄ ∈ RG, and also

|p̄(x)− f(x)| =
∣∣∣∣ ∫ (p(g · x)− f(g · x)

)
dΛ(g)

∣∣∣∣ < ε for all x ∈ Br

because g·x ∈ Br for any orthogonal matrix g. Writing q̄(ϕ) = p̄(θ(ϕ)), we have shown that q̄ depends

only on ϕ1, . . . , ϕK . So for any ϕ,ϕ′ ∈ Rd differing in only the coordinates of ϕ̄, |h(ϕ) − h(ϕ′)| ≤

|h(ϕ)− q̄(ϕ)|+ |h(ϕ′)− q̄(ϕ′)| < 2ε. Here ε > 0 is arbitrary, so in fact h(ϕ) = h(ϕ′). Thus h depends

only on ϕ1, . . . , ϕK .

To show (81), clearly if Oθ′ = Oθ, then (ϕ1(θ′), . . . , ϕK(θ′)) = (ϕ1(θ), . . . , ϕK(θ)). For the

converse direction, if Oθ′ and Oθ are distinct, then they are disjoint compact subsets of Rd. Then

there is a continuous function f : Rd → R taking value 1 on Oθ′ and 0 on Oθ. Then f̄(x) =∫
f(g ·x)dΛ(g) is a G-invariant continuous function with the same property. Thus f̄ depends only on

ϕ1, . . . , ϕK , implying that (ϕ1(θ′), . . . , ϕK(θ′)) 6= (ϕ1(θ), . . . , ϕK(θ)). This shows (81), and concludes

the proof in the unprojected setting.

The proof in the projected setting is the same, where the condition (4.4) and Proposition 4.2.4

are needed in part (d) to argue that (ϕ1, . . . , ϕK̃ , f) are algebraically dependent for any f ∈ RG.

Lemma C.1.3. In the unprojected model, fix any θ∗ ∈ Rd and any k ∈ {1, . . . ,K}. Let θ̃ ∈ Vk(θ∗)

be such that rank dMk(θ̃) = d1 + . . .+ dk, and let ϕ = (ϕ1, . . . , ϕk, ϕ̄) be the map defined by Lemma

C.1.2 with inverse θ(ϕ) in a neighborhood of θ̃. Let sk(θ) be as defined in (4.7). Then in the

parametrization by ϕ,

∇2
ϕksk(θ(ϕ))

∣∣∣
ϕ=ϕ(θ̃)

has full rank dk and is positive definite.

In the projected model, the same statements hold for Ṽk, M̃k, d̃k, and s̃k in place of Vk, Mk, dk,

and sk.

Proof. We focus on the unprojected model, as the proof in the projected model is the same.

Since sk is globally minimized at all points of Vk(θ∗), we must have ∇2
ϕksk(θ(ϕ))|ϕ=ϕ(θ̃) � 0.

To show this has full rank dk, observe that ϕk consists of a subset of entries of Tk. Thus the

corresponding dk×dk submatrix of dϕkTk is the identity, so dϕkTk has full column rank dk. Applying

the chain rule and the observation Tk(θ̃)− Tk(θ∗) = 0, we may differentiate sk(θ(ϕ)) twice in ϕk to

obtain

∇2
ϕksk(θ(ϕ))

∣∣∣
ϕ=ϕ(θ̃)

=
1

k!
· dϕkTk(θ(ϕ))>dϕkTk(θ(ϕ))

∣∣∣
ϕ=ϕ(θ̃)

.
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Thus this matrix has full rank dk.

Proof of Theorem 4.2.5. Consider the unprojected setting of part (a). For generic θ∗ ∈ Rd, we have

rank dMK(θ∗) = d1 + . . .+ dK . Let ϕ = (ϕ1, . . . , ϕK , ϕ̄) be the map defined by Lemma C.1.2, with

inverse θ(ϕ) in a neighborhood U of θ∗. We denote ϕ∗ = ϕ(θ∗). With slight abuse of notation,

we write as shorthand f(ϕ) for f(θ(ϕ)). In particular, recalling the expansion (4.6), we denote by

qk(ϕ), sk(ϕ), q(ϕ) the terms of this expansion parametrized by ϕ ∈ ϕ(U).

For (a1), observe that by Lemma C.1.2(c–d) and the characterizations of sk, qk, q in Theorem

4.2.1, sk(ϕ) depends only on ϕ1, . . . , ϕk, qk(ϕ) depends only on ϕ1, . . . , ϕk−1, and q(ϕ) depends only

on ϕ1, . . . , ϕK . Let us decompose ∇2
ϕR(ϕ∗) into (K+ 1)× (K+ 1) blocks according to the partition

(ϕ1, . . . , ϕK , ϕ̄), of sizes (d1, . . . , dK , d0). Differentiating the expansion (4.6) term-by-term, it then

follows that the entries of ∇2
ϕR(ϕ∗) are non-zero only in the upper-left K×K blocks, and that these

blocks have a “graded block structure” as defined in (Fan et al., 2020, Definition 4.14): There is a

constant C > 0 (independent of σ) for which

‖∇2
ϕj ,ϕkR(ϕ∗)‖ ≤ Cσ−2 max(j,k) for all j, k = 1, . . . ,K, (82)

where ∇2
ϕj ,ϕk denotes the (ϕj , ϕk) block of the Hessian in ϕ. Furthermore, as ∇2

ϕkqk(ϕ) = 0 and

∇2
ϕksk(ϕ∗) is strictly positive definite by Lemma C.1.3 (applied with θ̃ = θ∗), there are constants

c, σ0 > 0 such that for all σ > σ0,

λmin

(
∇2
ϕkR(ϕ∗)

)
≥ cσ−2k > 0 for all k = 1, . . . ,K. (83)

For the Hessian in θ rather than in ϕ, since ∇θR(θ∗) = 0, we have by the chain rule

I(θ∗) = ∇2
θR(θ∗) = A> · ∇2

ϕR(ϕ∗) ·A, A = dϕ(θ∗). (84)

By the QR decomposition, there is a non-singular lower-triangular matrix L for which Q = A−1L is

orthogonal. Direct calculation shows that for any L which is lower-triangular, L> ·∇2
ϕR(ϕ∗) ·L also

has a graded block structure as characterized by (82–83) in its upper-left K ×K blocks, and equals

zero elsewhere, where the constants C, c > 0 in (82–83) depend on L but remain independent of σ.

Then, by the linear-algebraic result of (Fan et al., 2020, Lemma 4.17), Q>I(θ∗)Q = LT ·∇2
ϕR(ϕ∗) ·L

has d0 zero eigenvalues and dk eigenvalues in [cσ−2k, Cσ−2K ] for each k = 1, . . . ,K. Since Q is

orthogonal, these are the same as the eigenvalues of I(θ∗). This shows (a1).
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For (a2), observe that ∇θp(θ∗) = A>∇ϕp(ϕ∗) by the chain rule. Combining with (84),

∇θp(θ∗)>I(θ∗)
†∇θp(θ∗) = ∇ϕp(ϕ∗)>∇2

ϕR(ϕ∗)
†∇ϕp(ϕ∗)

Lemma C.1.2(d) shows that p depends only on ϕ1, . . . , ϕk in the parametrization by ϕ, so ∇ϕp(ϕ∗)

is non-zero only in its first k blocks with respect to the partition (ϕ1, . . . , ϕK , ϕ̄). Then

∇θp(θ∗)>I(θ∗)
†∇θp(θ∗) ≤ Cσ2k

by the characterization of the maximum eigenvalue of the upper-left k × k blocks of ∇2
ϕR(ϕ∗)

†

established also in (Fan et al., 2020, Lemma 4.17). If w is in the null space of I(θ∗), then Aw is

in the null space of ∇2
ϕR(ϕ∗), i.e. Aw is non-zero only in the last block corresponding to ϕ̄. Then

∇θp(θ∗)>w = ∇ϕp(ϕ∗)>Aw = 0, so ∇θp(θ∗) is orthogonal to the null space of I(θ∗). This shows

(a2).

The proof of part (b) in the projected setting is similar: When computing the Hessian of

(4.9) in the parametrization by ϕ term-by-term, there is an additional contribution from the term

〈T̃k(ϕ), Pk(ϕ)〉. This depends only on ϕ1, . . . , ϕk. Furthermore, its Hessian is the sum of three

terms, corresponding to differentiating twice T̃k(ϕ), twice Pk(ϕ), or once each T̃k(ϕ) and Pk(ϕ).

The first term vanishes upon evaluating at ϕ = ϕ∗, because Pk(ϕ∗) = 0 by its characterization in

Theorem 4.2.1. The remaining two terms are 0 on the (k, k) block, because Pk(ϕ) depends only on

ϕ1, . . . , ϕk−1. Thus, ∇2
ϕR(ϕ∗) still has the graded block structure described by (82–83), and the

remainder of the proof is the same as in the unprojected setting of part (a).

Proof of Lemma 4.2.6. We focus on the unprojected setting, as the proof in the projected setting is

the same.

Note that θ∗ is a global minimizer of sk(θ), so ∇θsk(θ∗) = 0 and ∇2
θsk(θ∗) � 0. For generic θ∗,

we have rank dMK(θ∗) = d1 + . . . + dK . Let ϕ = (ϕ1, . . . , ϕK , ϕ̄) be the map defined by Lemma

C.1.2, with inverse θ(ϕ) in a neighborhood U of θ∗. Let ϕ∗ = ϕ(θ∗). Then by the chain rule,

∇2
ϕsk(θ(ϕ))

∣∣
ϕ=ϕ∗

= dϕθ(ϕ∗)
> · ∇2

θsk(θ∗) · dϕθ(ϕ∗). (85)

Since dϕθ(ϕ∗) is non-singular, this yields

rank
(
∇2
θs1(θ∗) + . . .+∇2

θsk(θ∗)
)

= rank
(
∇2
ϕs1(θ(ϕ)) + . . .+∇2

ϕsk(θ(ϕ))
∣∣∣
ϕ=ϕ∗

)
.
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Lemma C.1.2(c) ensures that s1(θ(ϕ)), . . . , sk(θ(ϕ)) depend only on ϕ1, . . . , ϕk, so

rank
(
∇2
ϕs1(θ(ϕ)) + . . .+∇2

ϕsk(θ(ϕ))
∣∣∣
ϕ=ϕ∗

)
≤ d1 + . . .+ dk = trdeg(RG

≤k).

Lemma C.1.3 applied with θ̃ = θ∗ shows that ∇2
ϕjsj(θ(ϕ))|ϕ=ϕ∗ � 0 for each j = 1, . . . , k. Then,

since each matrix ∇2
ϕsj(θ(ϕ)) is also positive semidefinite, this implies v>[∇2

ϕs1(θ(ϕ)) + . . . +

∇2
ϕsk(θ(ϕ))|ϕ=ϕ∗ ]v > 0 strictly, for any v supported on the coordinates of ϕ1, . . . , ϕk. So in fact

rank
(
∇2
ϕs1(θ(ϕ)) + . . .+∇2

ϕsk(θ(ϕ))
∣∣∣
ϕ=ϕ∗

)
= d1 + . . .+ dk = trdeg(RG

≤k).

This shows also that the column span of ∇2
ϕs1(θ(ϕ)) + . . . + ∇2

ϕsk(θ(ϕ))|ϕ=ϕ∗ is exactly the

space of vectors v supported on the coordinates of ϕ1, . . . , ϕk. Then by (85), the column span of

∇2
θs1(θ∗) + . . .+∇2

θsk(θ∗) is the span of the first d1 + . . .+ dK rows of dϕθ(ϕ∗)
−1 = dθϕ(θ∗), which

are the gradients ∇ϕ1(θ∗), . . . ,∇ϕk(θ∗). By Lemma C.1.2, the span of these gradients is exactly the

span of {∇p(θ∗) : p ∈ RG
≤k}, concluding the proof.

C.1.4 Global landscape

We prove Theorems 4.2.8 and 4.2.10 using ideas similar to (Fan et al., 2020, Sections 4.5–4.6).

Lemma C.1.4. In the unprojected model, for some constants M, c, σ0 > 0 depending on θ∗,G and

for all σ > σ0,

‖∇R(θ)‖ ≥ cσ−4 for all θ satisfying ‖θ‖ > M.

In the projected model with projection Π, for any B > 0, some constants M, c, σ0 > 0 depending on

θ∗,G,Π, B, and all σ > σ0,

‖∇R(θ)‖ ≥ cσ−4 for all θ satisfying B(‖θ∗‖+ σ) > ‖θ‖ > M.

Proof. The argument is an extension of (Fan et al., 2020, Lemmas 2.10 and 4.19).

Step 1: Forms of ∇R(θ). We first consider the projected model, which will reduce to the

unprojected model when Π = Id. Write Eg and Eg,g′ for expectations over independent group

elements g, g′ ∼ Λ, and EY for that over the sample Y ∼ pθ∗ . Introduce the weight

p(g, Y ) =
exp

(
− 1

2σ2 ‖Y −Πgθ‖2
)

Eg′
[
exp

(
− 1

2σ2 ‖Y −Πg′θ‖2
)] =

exp
(

1
σ2Y

>Πgθ − 1
2σ2 ‖Πgθ‖2

)
Eg′
[
exp

(
1
σ2Y >Πg′θ − 1

2σ2 ‖Πg′θ‖2
)] .
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Then

σ2∇R(θ) = σ2∇θEY [− log pθ(Y )] = −EY
[
Eg
[
p(g, Y )g>Π>(Y −Πgθ)

]]
. (86)

We derive a second alternative form for σ2∇R(θ) using Gaussian integration by parts. Let us

represent Y = Πhθ∗ + σε, where h ∼ Λ and ε ∼ N (0, Id), and write EY = Eh,ε. Applying the

integration by parts identity Eξ∼N (0,1)[ξf(ξ)] = Eξ∼N (0,1)[f
′(ξ)] to each coordinate of ε, we have

Eε
[
Eg
[
p(g, Y )g>Π>(σε)

]]
= σ Eε

[
Eg
[
g>Π>∇εp(g, Y )

]]
= Eε

[
Eg
[
p(g, Y )g>Π>Πgθ

]
− Eg,g′

[
p(g, Y )p(g′, Y )g>Π>Πg′θ

]]
where the second line explicitly differentiates p(g, Y ) = p(g,Πhθ∗+σε) in ε. Then, substituting this

for the g>Π>(σε) component of g>Π>Y in (86),

σ2∇R(θ) = Eh,ε
[
Eg,g′

[
p(g, Y )p(g′, Y )g>Π>Πg′θ

]
− Eg

[
p(g, Y )g>Π>Πhθ∗

]]
. (87)

The expressions (86) and (87) hold also in the unprojected model upon substituting Π = Id.

Step 2: Gradient bound for ‖θ‖ ≥ B(‖θ∗‖+σ). In the unprojected model, fixing a sufficiently

large constant B > 0, let us first derive a bound ‖∇R(θ)‖ ≥ cσ−1 for ‖θ‖ ≥ B(‖θ∗‖+σ). Restricting

to Π = Id and taking the inner-product of (86) with θ,

σ2‖θ‖ · ‖∇R(θ)‖ ≥ σ2θ>∇R(θ) = ‖θ‖2 − EY
[
Eg
[
p(g, Y )θ>g>Y

]]
≥ ‖θ‖2 − C(‖θ∗‖+ σ)‖θ‖

for a constant C = C(θ∗,G) > 0. Then for sufficiently large B > 0 and large σ, this shows

‖∇R(θ)‖ ≥ cσ−1 as claimed.

Step 3: Gradient bound for ‖θ‖ ≥ C0σ
2/3. We now show, in both the projected and

unprojected models, the lower bound ‖∇R(θ)‖ ≥ cσ−2 when B(‖θ∗‖ + σ) ≥ ‖θ‖ ≥ C0σ
2/3, for a

large enough constant C0 > 0 and σ > σ0(θ∗,G,Π, B). The result for the unprojected model follows

from specializing the below to Π = Id.
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Define unit vectors θ̄ = θ/‖θ‖ and Ȳ = Y/‖Y ‖. Now taking the inner-product of (87) with θ̄,

σ2‖∇R(θ)‖ ≥ σ2 · θ̄>∇R(θ)

= ‖θ‖ · Eh,ε
[∥∥Eg [p(g, Y )Πgθ̄

]∥∥2
]
− θ̄>Eh,ε

[
Eg
[
p(g, Y )g>Π>Πh

]]
· θ∗

≥ ‖θ‖ · Eh,ε
[(
Ȳ >Eg

[
p(g, Y )Πgθ̄

])2]− ‖Π‖2 · ‖θ∗‖.
For fixed θ and Y , define

K(t) = logEg
[
exp

(
tȲ >Πgθ̄ − 1

2σ2
‖Πgθ‖2

)]
, t(Y, θ) =

‖Y ‖ · ‖θ‖
σ2

.

Then Ȳ >Eg[p(g, Y )Πgθ̄] = Eg[p(g, Y )Ȳ >Πgθ̄] = K ′(t(Y, θ)), so

σ2‖∇R(θ)‖ ≥ ‖θ‖ · Eh,ε
[
K ′(t(Y, θ))2

]
− ‖Π‖2 · ‖θ∗‖. (88)

Define a tilted probability distribution Λ̄ for g ∈ G, having density dΛ̄(g) ∝ exp(−‖Πgθ‖
2

2σ2 )dΛ(g)

with respect to the Haar measure Λ. Note that for ‖θ‖ < B(‖θ∗‖+ σ), this tilting satisfies

dΛ̄

dΛ
(g) ∈ [c, C] (89)

for some (θ∗,G,Π, B)-dependent constants C, c > 0. Observe that K(t) − K(0) is the cumulant

generating function for the law of Ȳ >Πgθ̄ (fixing Ȳ ) that is induced by g ∼ Λ̄. This random variable

Ȳ >Πgθ̄ is bounded as |Ȳ >Πgθ̄| ≤ ‖Π‖, so for |t| < 1/(‖Π‖e), K(t)−K(0) is defined equivalently by

the convergent cumulant series

K(t)−K(0) =
∑
`≥1

κ`(Ȳ
>Πgθ̄)

t`

`!

where κ` = κ`(Ȳ
>Πgθ̄) is the `th cumulant of Ȳ >Πgθ̄ under this law—see (Fan et al., 2020, Lemma

A.1). Then for any 0 < t < 1/(‖Π‖e), applying |κ`| ≤ (‖Π‖`)` from (Fan et al., 2020, Lemma A.1),

`! ≥ (`/e)`, and convexity of the cumulant generating function K(t),

K ′(t) ≥ K(t)−K(0)

t
=
∑
`≥1

κ`
t`−1

`!
≥ κ1 +

t

2
κ2 −

∑
`≥3

(‖Π‖e)`t`−1. (90)

We now lower-bound the mean and variance κ1, κ2 when Ȳ belongs to some “good” subset U

of the unit sphere: First note that for any non-zero θ ∈ Rd, Πgθ cannot be identically 0 over all
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g ∈ G. This is because otherwise, Π(Oθ∗) ≡ Π(Oθ∗+cθ) for any θ∗ ∈ Rd and any c ∈ R, where

{Oθ∗+cθ : c ∈ R} is an infinite family of distinct orbits, violating (4.4). Thus,

sup
ȳ:‖ȳ‖=1

sup
g∈G

ȳ>Πgθ̄ > 0 for all unit vectors θ̄

By continuity of the left side as a function of θ̄ and by compactness of the unit sphere, there is then

a constant c = c(Π,G) > 0 such that

sup
ȳ:‖ȳ‖=1

sup
g∈G

ȳ>Πgθ̄ > c for all unit vectors θ̄.

Let Γ denote the uniform probability measure on the unit sphere. Then the above implies

Γ× Λ
(

(ȳ, g) : ȳ>Πgθ̄ > c
)
> 0 for all unit vectors θ̄.

Again by continuity of the left side as a function of θ̄ and by compactness of the unit sphere, there

is a constant δ = δ(Π,G) > 0 such that

Γ× Λ
(

(ȳ, g) : ȳ>Πgθ̄ > c
)
> δ for all unit vectors θ̄.

Then by (89), for a constant δ′ = δ′(θ∗,Π,G, B), we get Γ× Λ̄((ȳ, g) : ȳ>Πgθ̄ > c) > δ′. Define the

θ̄-dependent subset of the unit sphere

U ′ =
{
ȳ : Λ̄(g ∈ G : ȳ>Πgθ̄ > c) > δ′/2

}
.

Then the above implies Γ(U ′) + (δ′/2)(1 − Γ(U ′)) > δ′, so Γ(U ′) > δ′/2. If any random variable

X ∈ R satisfies P[X > c] > δ′/2, then max(E[X],Var[X]) > c′ for a constant c′ = c′(c, δ′) > 0, and

furthermore either E[X] ≥ 0 or E[−X] ≥ 0. Thus, defining U from U ′ by multiplying each element

ȳ ∈ U ′ by an appropriate choice of ± sign, we obtain Γ(U) > δ′/4 and

max
(
κ1(Ȳ >Πgθ̄), κ2(Ȳ >Πgθ̄)

)
> c′ and κ1(Ȳ >Πgθ̄), κ2(Ȳ >Πgθ̄) ≥ 0 whenever Ȳ ∈ U. (91)

Recalling that Y = Πhθ∗ + σε and Ȳ = Y/‖Y ‖, the law of Ȳ converges to the uniform measure

Γ on the sphere as σ →∞. Thus, for σ > σ0(Π,G, θ∗, B), we have P[Ȳ ∈ U ] ≥ Γ(U)/2 > δ′/8. For

C0 = C0(Π,G, θ∗, B) > 0 large enough, if ‖θ‖ ≥ C0σ
2/3, then t(Y, θ) ≥ σ−1/3 with probability at

least 1 − δ′/16. Then, on an event of probability at least δ′/16 where Ȳ ∈ U and t(Y, θ) ≥ σ−1/3,
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and for σ > σ0(Π,G, θ∗, B), we have

K ′(t(Y, θ)) ≥ K ′(σ−1/3) ≥ (c′/3)σ−1/3,

the first inequality applying convexity of K(t) and the second applying (90) with the bound (91).

Then, applying this to (88),

σ2‖∇R(θ)‖2 ≥ C0σ
2/3 · (δ′/16) · (c′/3)2σ−2/3 − ‖Π‖2 · ‖θ∗‖.

Here, the constants c′, δ′ > 0 are as defined in the argument leading to (91), and do not depend on

C0. Thus, for C0 = C0(Π,G, θ∗, B) large enough, we have ‖∇R(θ)‖2 ≥ cσ−2 as desired.

Step 4: Gradient bound for ‖θ‖ > M . Finally, we show ‖∇R(θ)‖ ≥ cσ−4 for C0σ
2/3 ≥ ‖θ‖ >

M and a sufficiently large constant M > 0. Define v = (θ − θ∗)/‖θ − θ∗‖, and suppose first that

‖Eg[Πgv]‖ ≥ c0 for a constant c0 > 0 to be determined. We apply Theorem 4.2.1(b) with K = 1.

Noting that P1(θ) = 0 (because it is a constant that is 0 at θ = θ∗) and q1(θ) is a constant,

∇R(θ) =
1

σ2
∇s̃1(θ) +∇q(θ), ‖∇q(θ)‖ ≤ C‖θ‖3

σ4
.

Applying the form of s̃1(θ) in Lemma C.1.1,

∇R(θ) =
1

σ2
Eg,h[g>Π>Πh](θ − θ∗) +∇q(θ).

Then

σ2‖∇R(θ)‖ ≥ σ2 v>∇R(θ) ≥ ‖θ − θ∗‖ · ‖Eg[Πgv]‖2 − C‖θ‖3/σ2.

When C0σ
2/3 ≥ ‖θ‖ > M and M = M(C0, c0,Π, θ∗) is large enough, this is lower-bounded by a

positive constant, so ‖∇R(θ)‖ ≥ cσ−2.

Now suppose ‖Eg[Πgθ̄]‖ < c0. We apply Theorem 4.2.1(b) with K = 2. Then similarly,

σ4‖∇R(θ)‖ ≥ σ4 v>∇R(θ) ≥ v>∇s̃2(θ) + v>∇[〈T̃2(θ), P2(θ)〉] + v>∇q2(θ)− C‖θ‖5/σ2,

where we have applied v>∇s̃1(θ) ≥ 0 as shown above to drop the contribution from the k = 1 term.
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We bound each expression on the right side: First, applying the form of s̃2(θ) in Lemma C.1.1,

v>∇s̃2(θ) = v>Eg,h
[
g>Π>Πhθ · θ>g>Π>Πhθ − g>Π>Πhθ∗ · θ>g>Π>Πhθ∗

]
≥ ‖θ − θ∗‖3 · Eg,h[(v>g>Π>Πhv)2]− C‖θ‖2,

where the second line is obtained by writing each θ as (θ − θ∗) + θ∗ and absorbing all but the term

with cubic dependence on (θ− θ∗) into the C‖θ‖2 remainder. As noted in Step 2 above, Πgv is not

identically 0 over g ∈ G, for any unit vector v. Then (v>g>Π>Πhv)2 is the squared-inner product

between two i.i.d. non-zero vectors, and hence is strictly positive with positive probability. So

Eg,h[(v>g>Π>Πhv)2] > 0. Then by compactness of the unit sphere, Eg,h[(v>g>Π>Πhv)2] > c > 0

for every unit vector v and some constant c = c(Π,G) > 0. So for ‖θ‖ > M and large enough

M = M(Π, G, θ∗), this shows

v>∇s̃2(θ) ≥ (c/2)‖θ‖3.

Next, consider v>∇q2(θ). Since q2 ∈ R̃G
≤1 which is generated by T̃1(θ) = Eg[Πgθ], q2(θ) is a quartic

polynomial of the entries of Eg[Πgθ], whose specific form depends only on Π,G, θ∗. Then by the

chain rule,

∣∣v>∇q2(θ)
∣∣ ≤ ‖∇q2(θ)‖ ≤ C(‖Eg[Πgθ]‖3 + 1) ≤ C((c0‖θ − θ∗‖+ ‖Π‖‖θ∗‖)3 + 1) ≤ C ′(c30‖θ‖3 + 1)

for constants C = C(Π,G, θ∗) and C ′ = C ′(Π,G, θ∗). Similarly, consider v>∇[〈T̃2(θ), P2(θ)〉]. Each

entry of P2(θ) is a quadratic polynomial of Eg[Πgθ]. Noting that T̃2(θ) is also quadratic in θ, again

by the chain rule,

∣∣v>∇[〈T̃2(θ), P2(θ)〉]
∣∣ ≤ C(‖Eg[Πgθ]‖ · ‖θ‖2 + ‖Eg[Πgθ]‖2 · ‖θ‖+ ‖θ‖2) ≤ C ′(c0‖θ‖3 + ‖θ‖2).

Finally, we may bound ‖θ‖5/σ2 ≤ ‖θ‖3 ·C2
0σ
−2/3. Combining all of the above, for sufficiently small

c0 > 0, sufficiently large M = M(Π, G, θ∗) > 0, and sufficiently large σ > σ0, we obtain that

σ4‖∇R(θ)‖ is lower-bounded by a constant, so ‖∇R(θ)‖ ≥ cσ−4 as desired.

Proof of Theorem 4.2.8. Consider the unprojected setting of part (a). Fixing a generic point θ∗ ∈

Rd, Lemma C.1.2 shows that for any k = 1, . . . ,K, the rank of dMk(θ∗) is d1 + . . . + dk. Then by

the assumption that dMk(θ) has constant rank over Vk(θ∗), since θ∗ ∈ Vk(θ∗), this constant rank

must be d1 + . . .+ dk.
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We now consider two cases for a (possibly non-generic) point θ̃ ∈ Rd:

• θ̃ ∈ Vk−1(θ∗) ⊆ . . . ⊆ V0(θ∗) = Rd, but θ̃ /∈ Vk(θ∗), for some k ∈ {1, . . . ,K}. By the

constant rank assumption, dMk−1(θ̃) has rank d1 + . . . + dk−1. Let ϕ = (ϕ1, . . . , ϕk−1, ϕ̄) be

the map of Lemma C.1.2, with inverse θ(ϕ) in a neighborhood Uθ̃ of θ̃. (If k = 1, we take

ϕ = ϕ̄ : Rd → Rd to be an arbitrary invertible map, say the identity map.) We write f(ϕ) as

shorthand for f(θ(ϕ)).

In the parametrization by ϕ, each entry of T1, . . . , Tk−1 depends only on the coordinates

ϕ1, . . . , ϕk−1, by Lemma C.1.2(c). Thus

Vk−1(θ∗) ∩ Uθ̃ =
{
θ ∈ Uθ̃ : ϕ1(θ) = ϕ1(θ∗), . . . , ϕ

k−1(θ) = ϕk−1(θ∗)
}
,

and the remaining coordinates ϕ̄ form a local chart for the manifold Vk−1(θ∗) over Uθ̃. This

holds trivially also for k = 1.

Consider now the minimization of sk over Vk−1(θ∗). By the form of sk in (4.7), its

global minimizers over Vk−1(θ∗) are exactly the points of Vk(θ∗). Since θ̃ /∈ Vk(θ∗), and the

minimization of sk over Vk−1(θ∗) is globally benign by assumption, this implies that

either ∇ϕ̄sk(ϕ(θ̃)) 6= 0 or λmin

(
∇2
ϕ̄sk(ϕ(θ̃))

)
< 0.

Applying continuity of sk and its derivatives, and reducing the size of Uθ̃ as necessary, we may

then ensure

either ‖∇ϕ̄sk(ϕ)‖ > c or λmin

(
∇2
ϕ̄sk(ϕ)

)
< −c for all ϕ ∈ ϕ(Uθ̃).

Here, the size of the neighborhood Uθ̃ and the constant c > 0 are independent of σ, as sk

does not depend on σ. Now differentiating (4.6) term-by-term in ϕ = (ϕ1, . . . , ϕk−1, ϕ̄), and

observing that {sj : j ≤ k − 1} and {qj : j ≤ k} depend only on (ϕ1, . . . , ϕk−1) and not on ϕ̄,

we obtain that for some constant σ0 = σ0(θ̃) > 0, all σ > σ0, and all ϕ ∈ ϕ(Uθ̃),

either ‖∇ϕR(ϕ)‖ > (c/2)σ−2k or λmin

(
∇2
ϕR(ϕ)

)
< −(c/2)σ−2k. (92)
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Finally, changing variables back to θ by the chain rule, this implies

either ∇θR(θ) 6= 0 or λmin

(
∇2
θR(θ)

)
< 0 for all θ ∈ Uθ̃. (93)

• θ̃ ∈ VK(θ∗). By the constant rank assumption, dMK(θ̃) = d1+. . .+dK . Let ϕ = (ϕ1, . . . , ϕK , ϕ̄)

be the map of Lemma C.1.2 in a neighborhood Uθ̃ of θ̃, with inverse θ(ϕ). We again write as

shorthand f(ϕ) = f(θ(ϕ)).

Let us write ∇2
ϕR(ϕ) in the (K + 1) × (K + 1) block decomposition corresponding to

(ϕ1, . . . , ϕK , ϕ̄). In (4.6), each sk(ϕ) depends only on ϕ1, . . . , ϕk, each qk(ϕ) depends only

on ϕ1, . . . , ϕk−1, and q(ϕ) and R(ϕ) depend only on ϕ1, . . . , ϕK . Furthermore, Lemma C.1.3

shows ∇2
ϕksk(ϕ(θ̃)) � 0 strictly for each k = 1, . . . ,K, so ∇2

ϕksk(ϕ) � c Id for all ϕ ∈ ϕ(Uθ̃) by

continuity, for a sufficiently small neighborhood Uθ̃ and constant c > 0. Then differentiating

(4.6) term-by-term, ∇2
ϕR(ϕ) is zero outside the upper-left K × K blocks, and these K × K

blocks have the graded block structure

‖∇2
ϕj ,ϕk

R(ϕ)‖ ≤ Cσ−2 max(j,k) for all j, k = 1, . . . ,K,

λmin

(
∇2
ϕk
R(ϕ)

)
≥ cσ−2k > 0 for all k = 1, . . . ,K (94)

at every point ϕ ∈ ϕ(Uθ̃) and for some constants C, c > 0 and all σ > σ0 = σ0(θ̃). Then,

applying (Fan et al., 2020, Lemma 4.17), the upper-left K×K blocks of ∇2
ϕR(ϕ) form a strictly

positive-definite matrix. Recalling that R(ϕ) depends only on ϕ1, . . . , ϕK and not on ϕ̄, let us

write R̄(ϕ1, . . . , ϕK) = R(ϕ), and also reduce to a smaller neighborhood Uθ̃ such that ϕ(Uθ̃)

has a product form V ×W , where V ⊂ Rd1+...+dK and W ⊂ Rd0 . Then this shows that

R̄(ϕ1, . . . , ϕK) is strictly convex on V. (95)

Now applying the assumption that VK(θ∗) = Oθ∗ , we have that θ̃ ∈ Oθ∗ is a global

minimizer of R(θ). Thus (ϕ1(θ̃), . . . , ϕK(θ̃)) is the global minimizer and unique critical point

of R̄ on V . Changing coordinates back to θ by the chain rule, the critical points of R(θ) on

Uθ̃ are then given exactly by

{
θ ∈ Uθ̃ : (ϕ1(θ), . . . , ϕK(θ)) = (ϕ1(θ̃), . . . , ϕK(θ̃))

}
.
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Applying (81), this shows

{
θ ∈ Uθ̃ : ∇R(θ) = 0

}
= Uθ̃ ∩ Oθ̃ = Uθ̃ ∩ Oθ∗ (96)

Finally, we combine these two cases using a compactness argument: By Lemma C.1.4, there are

no critical points of R(θ) outside a sufficiently large ball BM = {θ : ‖θ‖ ≤ M}. For each point

θ̃ ∈ BM , construct the neighborhood Uθ̃ as above, and take a finite set S of such points θ̃ for which⋃
θ̃∈S Uθ̃ covers BM . Set σ0 = maxθ̃∈S σ0(θ̃), where σ0(θ̃) is as defined in the two cases above.

Then for any σ > σ0, the conditions (93) and (96) combine to show that any critical point of R(θ)

inside BM either belongs to the locus Oθ∗ of global minimizers, or has λmin(∇2R(θ)) < 0. Thus the

minimization of R(θ) is globally benign, concluding the proof of part (a).

The proof in the projected model in part (b) is similar, with the following minor modifications:

For the first case where θ̃ ∈ Ṽk−1(θ∗) ⊆ . . . ⊆ Ṽ0(θ∗) = Rd but θ̃ /∈ Ṽk(θ∗), Lemma C.1.2 still yields a

local parametrization ϕ = (ϕ1, . . . , ϕk−1, ϕ̄) where ϕ̄ forms a local chart for Ṽk−1(θ∗). Differentiating

(4.9) instead of (4.6) term-by-term in ϕ = (ϕ1, . . . , ϕk−1, ϕ̄), the gradient and Hessian of R(ϕ) in ϕ̄

have an additional O(σ−2k) contribution from 〈T̃k(ϕ), Pk(ϕ)〉. Since Pk depends only on ϕ1, . . . , ϕk−1

and not on ϕ̄, the gradient and Hessian in ϕ̄ are obtained by differentiating only T̃k. Then both

∇ϕ̄[〈T̃k(ϕ), Pk(ϕ)〉]|ϕ=ϕ(θ̃) = 0 and ∇2
ϕ̄[〈T̃k(ϕ), Pk(ϕ)〉]|ϕ=ϕ(θ̃) = 0, because Pk(θ̃) = Pk(θ∗) = 0 for

any θ̃ ∈ Vk−1(θ∗). Then by continuity, for a sufficiently small neighborhood Uθ̃, we still obtain (92)

for all ϕ ∈ ϕ(Uθ̃), and hence (93) still holds.

For the second case where θ̃ ∈ ṼK̃(θ∗), similarly when computing the Hessian of (4.9) in ϕ =

(ϕ1, . . . , ϕK̃ , ϕ̄) term-by-term, each kth row block and column block of the Hessian, corresponding

to the variables ϕk, has an additional O(σ−2k) contribution from differentiating 〈T̃k(ϕ), Pk(ϕ)〉.

For the (k, k) block corresponding to ∇2
ϕkR(ϕ), we again have ∇2

ϕk [〈T̃k(ϕ), Pk(ϕ)〉]|ϕ=ϕ(θ̃) = 0,

because only T̃k depends on ϕk whereas Pk(θ̃) = Pk(θ∗) = 0. Then again by continuity, we still

obtain (94) and hence (95) over a sufficiently small neighborhood Uθ̃ of θ̃. Now by the assumption

given in part (b) of the theorem, we have Π(Oθ̃) ≡ Π(Oθ∗) for θ̃ ∈ ṼK̃(θ∗). Then θ̃ is a global

minimizer of R(θ). As in the analysis of the unprojected case, the convexity of (95) then implies

{θ ∈ Uθ̃ : ∇R(θ) = 0} = Uθ̃ ∩ Oθ̃. Over the given domain {θ : ‖θ‖ < B(‖θ∗‖ + σ)}, Lemma

C.1.4 ensures that there are no critical points of R(θ) outside the smaller ball {θ : ‖θ‖ ≤ M},

which is independent of σ. We conclude the proof by applying the same compactness argument over

{θ : ‖θ‖ ≤M} as in the unprojected case.
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Proof of Theorem 4.2.10. Consider the unprojected setting of part (a). Fix a generic point θ∗ ∈ Rd.

Lemma C.1.2 shows that rank dMk(θ∗) = d1+. . .+dk for each k = 1, . . . ,K. Then the given constant

rank assumption ensures that rank dMk(θ) = d1 + . . .+ dk for all θ ∈ Vk(θ∗) and k = 1, . . . ,K − 1.

Statement (a2) is established by a small extension of the argument in Theorem 4.2.8: Lemma

C.1.4 ensures that all critical points of R(θ) in the given domain {θ : ‖θ‖ < B(‖θ∗‖ + σ)} belong

to the ball BM = {θ : ‖θ‖ ≤ M}. Fix any constant ε > 0, and let Nε,M be the points in BM at

distance ≥ ε from all critical points of sK(θ)|VK−1(θ∗). We consider two cases for a point θ̃ ∈ Nε,M :

• θ̃ ∈ Vk−1(θ∗) ⊆ . . . ⊆ V0(θ∗), but θ̃ /∈ Vk(θ∗), for some k ∈ {1, . . . ,K − 1}. Then we have

either ∇θR(θ) 6= 0 or λmin

(
∇2
θR(θ)

)
< 0 for all θ ∈ Uθ̃

by the same argument as leading to (93) in Theorem 4.2.8.

• θ̃ ∈ VK−1(θ∗). Then Lemma C.1.2 provides a local reparametrization ϕ = (ϕ1, . . . , ϕK−1, ϕ̄)

on a neighborhood Uθ̃ of θ̃, where ϕj : Rd → Rdj and Tj depends only on (ϕ1, . . . , ϕj) for each

j = 1, . . . ,K − 1. Then ϕ̄ forms a local chart for VK−1(θ∗) at θ̃. Let ϕ̃ = ϕ(θ̃).

If ∇ϕ̄sK(ϕ̃) = 0, then θ̃ is a critical point of sK |VK−1(θ∗), which by the given assumption must

be non-degenerate up to orbit. Hence Oθ̃ is locally a manifold of dimension d0 at θ̃, so we may

choose the parametrization ϕ̄ above to have a decomposition ϕ̄ = (ϕK , ϕ0), where ϕ0 has d0

coordinates forming a local chart for Oθ̃, and ϕK has dK remaining coordinates. Since sK is

constant over Oθ̃, we must have ∇ϕ0sK = 0, so sK depends only on ϕK and not on ϕ0 in this

chart ϕ̄ = (ϕK , ϕ0) for VK−1(θ∗). Then non-degeneracy of θ̃ up to orbit further implies that

∇2
ϕKsK(ϕ̃) is a dK × dK matrix of full rank dK . If this were positive definite, then θ̃ would be

a local minimizer of sK on VK−1(θ∗), but we have assumed θ̃ ∈ Nε,M which does not include

such local minimizers. Therefore ∇2
ϕKsK(ϕ̃) must have a negative eigenvalue. This shows that

either ∇ϕ̄sK(ϕ̃) 6= 0 or λmin

(
∇2
ϕ̄sK(ϕ̃)

)
< 0.

Thus, differentiating (4.6) term-by-term in ϕ = (ϕ1, . . . , ϕK−1, ϕ̄), also in this case

either ∇θR(θ) 6= 0 or λmin

(
∇2
θR(θ)

)
< 0 for all θ ∈ Uθ̃.

Taking a finite cover of Nε,M by such neighborhoods Uθ̃, this shows that for any ε > 0 and all

σ > σ0(ε), all local minimizers of R(θ) must be ε-close to some local minimizer of sK(θ) on VK−1(θ∗).
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Then there exists a slowly decreasing sequence ε(σ) → 0 as σ → ∞, for which all local minimizers

of R(θ) are ε(σ)-close to a local minimizer of sK(θ), for all σ. This establishes (a2). The proof of

(b2) in the projected setting is the same, with the modifications as described at the end of the proof

of Theorem 4.2.8.

We now show the converse direction (a1). Let θ̃ be a local minimizer of sK |VK−1(θ∗) that is

non-degenerate up to orbit. By Lemma C.1.2 and the same argument as above, there is a local

reparametrization ϕ = (ϕ1, . . . , ϕK−1, ϕK , ϕ0) on a neighborhood Uθ̃ of θ̃ such that Tk(ϕ) depends

only on ϕ1, . . . , ϕk for each k = 1, . . . ,K − 1, and sK(ϕ) and R(ϕ) depend only on ϕ1, . . . , ϕK . Let

ϕ̃ = ϕ(θ̃). For k = 1, . . . ,K − 1, some constant c > 0, and all ϕ ∈ ϕ(Uθ̃),

λmin

(
∇2
ϕksk(ϕ)

)
> c (97)

by Lemma C.1.3 and continuity of this Hessian. This holds also for k = K, by the non-degeneracy

of θ̃ up to orbit. Then, writing the Hessian ∇2
ϕR(ϕ) in the (K + 1) × (K + 1) block structure

corresponding to (ϕ1, . . . , ϕK , ϕ0), we obtain as in Theorem 4.2.8 that the upper-left K ×K blocks

have a graded block structure, in a sufficiently small neighborhood Uθ̃ where ϕ(Uθ̃) = V ×W has a

product form. So, defining R̄(ϕ1, . . . , ϕK) = R(ϕ), R̄ is strictly convex over V .

However, in contrast to Theorem 4.2.8, θ̃ is not necessarily a global (or local) minimizer of R(θ),

so the existence of a local minimizer of R̄(ϕ1, . . . , ϕK) in V is less immediate. This existence is

guaranteed by the argument of (Fan et al., 2020, Lemma 4.15), which for readers’ convenience we

reproduce here: By further reducing Uθ̃, we may assume V takes a product form V = V1× . . .× VK

where Vk corresponds to the coordinates of ϕk. Let V̄ , V̄k be the closures of V, Vk, which are compact.

Let ϕ̂ = (ϕ̂1, . . . , ϕ̂K) be a point which minimizes R̄ over V̄ . We aim to show that ϕ̂ in fact belongs

to the interior of V̄ , and hence is a critical point and local minimizer of R̄.

Let us write sk(ϕ1, . . . , ϕk) = sk(ϕ), as this does not depend on the remaining coordinates of ϕ.

Because θ̃ ∈ V1(θ∗), θ̃ is a global minimizer of s1 over V̄1. Then, applying (97) for k = 1, we get

s1(ϕ̂1)− s1(ϕ̃1) ≥ c‖ϕ̂1 − ϕ̃1‖2.

Applying this to the series expansion (4.6), and noting that q1 ∈ RG
≤0 must be a constant, we obtain

R̄(ϕ̂1, . . . , ϕ̂K)− R̄(ϕ̃1, . . . , ϕ̃K) ≥ cσ−2‖ϕ̂1 − ϕ̃1‖2 − Cσ−4, (98)

for all σ > σ0 and large enough σ0. Since ϕ̂ minimizes R̄(ϕ) over V̄ , the left side is non-positive, so
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we obtain cσ−2‖ϕ̂1 − ϕ̃1‖2 − Cσ−4 ≤ 0. This shows

‖ϕ̂1 − ϕ̃1‖ ≤ σ−η (99)

for, say, η = 0.1.

Now consider the functions h̃(ϕ2) = s2(ϕ̃1, ϕ2) and ĥ(ϕ2) = s2(ϕ̂1, ϕ2) on V̄2. Since s2 is a

polynomial function of its arguments, applying (99), we have

sup
ϕ2∈V̄2

|h̃(ϕ2)− ĥ(ϕ2)| < Cσ−η, sup
ϕ2∈V̄2

‖∇2h̃(ϕ2)−∇2ĥ(ϕ2)‖ < Cσ−η (100)

for a constant C > 0 depending on the neighborhood V̄ and the function s2, but not on σ. Both h̃

and ĥ are strongly convex over V̄2, by (97). Since θ̃ ∈ V2(θ∗), we know that ϕ̃2 is a global minimizer

of h̃. Then (100) guarantees that the global minimizer ϕ̄2 of ĥ over V̄2 satisfies

‖ϕ̄2 − ϕ̃2‖ < C ′σ−η (101)

for a different constant C ′ > 0, see e.g. (Fan et al., 2020, Lemma 2.8). In particular, ϕ̄2 must be in

the interior of V̄2 and is a critical point of ĥ, for sufficiently large σ0. So (97) implies

s2(ϕ̂1, ϕ̂2)− s2(ϕ̂1, ϕ̄2) ≥ c‖ϕ̂2 − ϕ̄2‖2.

Applying this to the series expansion (4.6), and recalling that q2 depends only on ϕ1, we get

R̄(ϕ̂1, . . . , ϕ̂K)− R̄(ϕ̂1, ϕ̄2, ϕ̃3, . . . , ϕ̃K) ≥ cσ−4‖ϕ̂2 − ϕ̄2‖2 − Cσ−6. (102)

This is again non-positive because ϕ̂ minimizes R̄ over V̄ . So ‖ϕ̂2 − ϕ̄2‖ ≤ σ−η. Combining with

(101) we obtain

‖ϕ̂2 − ϕ̃2‖ ≤ Cσ−η. (103)

Now define h̃(ϕ3) = s3(ϕ̃1, ϕ̃2, ϕ3) and ĥ(ϕ3) = s3(ϕ̂1, ϕ̂2, ϕ3) on V̄3. We may repeat this

argument to show ‖ϕ̂3 − ϕ̃3‖ ≤ Cσ−η, etc., until we arrive at ‖ϕ̂K − ϕ̃K‖ ≤ Cσ−η. (In the last

step for k = K, ϕ̃K is the minimizer of h̃ over V̄K not because θ̃ ∈ VK(θ∗), but instead because θ̃ is

assumed to be a local minimizer of sK over VK−1(θ∗).) Finally, for a large enough constant σ0 > 0

and any σ > σ0, this ensures that ϕ̂ belongs to the interior of V̄ , and hence is a critical point and

local minimizer of R̄. Then the point θ(ϕ̂1, . . . , ϕ̂K , ϕ̃0) is a local minimizer of R(θ) on Rd, which is
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ε(σ)-close to θ̃ for ε(σ) = C ′σ−η. This shows (a1).

The proof of (b1) in the projected setting is similar, applying (4.9) in place of (4.6). In the first

step for k = 1 we observe, in addition to q1 ∈ RG
≤0 being constant, that P1 = 0 because it is also

constant and equals 0 at θ∗. Thus we obtain (98) and (99) without modification. In the second step

for k = 2, in place of (102), we have

R̄(ϕ̂1, . . . , ϕ̂K)− R̄(ϕ̂1, ϕ̄2, ϕ̃3, . . . , ϕ̃K)

≥ σ−4
(
c‖ϕ̂2 − ϕ̄2‖2 +

〈
T̃2(ϕ̂1, ϕ̂2)− T̃2(ϕ̂1, ϕ̄2), P2(ϕ̂1)

〉)
− Cσ−6.

We may bound

‖T̃2(ϕ̂1, ϕ̂2)− T̃2(ϕ̂1, ϕ̄2)‖HS ≤ C‖ϕ̂2 − ϕ̄2‖

and

‖P2(ϕ̂1)‖HS = ‖P2(ϕ̂1)− P2(ϕ̃1)‖HS ≤ C‖ϕ̂1 − ϕ̃1‖ ≤ C ′σ−η,

because θ̃ ∈ V1(θ∗) so P2(ϕ̃1) = P2(ϕ1
∗) = 0. This yields

0 ≥ R̄(ϕ̂1, . . . , ϕ̂K)− R̄(ϕ̂1, ϕ̄2, ϕ̃3, . . . , ϕ̃K) ≥ σ−4
(
c‖ϕ̂2 − ϕ̄2‖2 − Cσ−η‖ϕ̂2 − ϕ̄2‖

)
− Cσ−6.

Viewing the right side as a quadratic function in ‖ϕ̂2−ϕ̄2‖, this implies that ‖ϕ̂2−ϕ̄2‖ is at most the

larger of the two roots of this quadratic function, which still gives (103). Applying this modification

to each step k = 1, . . . ,K, we obtain ‖ϕ̂k − ϕ̃k‖ ≤ Cσ−η for each k = 1, . . . ,K, and the proof is

concluded as in the unprojected setting of (a1).

C.2 Analysis of orthogonal procrustes alignment

We provide the details for Example 4.2.11 on the Procrustes alignment model, either with or without

reflections. Recall that the group is either G = O(3)⊗Idm or G = SO(3)⊗Idm, acting on R3×m ∼= Rd.

We represent an element of this group as g ⊗ Idm, where g ∈ O(3) or g ∈ SO(3) is a 3 × 3 matrix.

For the Haar-uniform law on both O(3) and SO(3), we have the moment identities

Eg[gij ] = 0, Eg[gijgi′j′ ] =
1

3
· 1{(i, j) = (i′, j′)}. (104)

The first identity and the second for (i, j) 6= (i′, j′) follow from the fact that g is invariant in law

under negation of any two rows or two columns. The second identity for (i, j) = (i′, j′) follows from
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Tr g>g =
∑3
i,j=1 g

2
ij = 3, and the equality in law of the entries gij . The action of this element

g ⊗ Idm on θ ∈ R3×m is given by the matrix product

θ 7→ gθ,

and the Euclidean inner-product may be written as 〈θ, θ′〉 = Tr θ>θ′ = Tr θ′θ>.

Let us first compute d0 = maxθ dim(Oθ) = dim(G)−minθ dim(Gθ), where Gθ = {g ∈ G : gθ = θ}

is the stabilizer of θ. For both G = O(3)⊗ Idm and G = SO(3)⊗ Idm, we have dim(G) = 3. For any

θ ∈ R3×m having full rank 3, there is a right inverse θ† ∈ Rm×3 for which θθ† = Id. Thus gθ = θ

requires g = Id, so that dim(Gθ) = 0. Thus, we obtain

d0 = 3, trdegRG = d− d0 = d− 3.

We now verify the values of d1, d2 and the forms of V1(θ∗), V2(θ∗), s1(θ), and s2(θ) as stated in

Example 4.2.11. For s1(θ), by the first identity of (104), T1(θ) = Eg[gθ] = 0. So by the definitions

of s1(θ) and V1(θ∗) and Lemma 4.2.6,

s1(θ) = 0, d1 = 0, V1(θ∗) = Rd.

For s2(θ), applying Lemma C.1.1, we have

s2(θ) =
1

4
Eg
[
〈θ, gθ〉2 − 2〈θ, gθ∗〉2 + 〈θ∗, gθ∗〉2

]
=

1

4
Eg
[
(Tr gθθ>)2 − 2(Tr gθ∗θ

>)2 + (Tr gθ∗θ
>
∗ )2
]
.

For any A ∈ R3×3, we may apply the second identity of (104) to get

Eg[(Tr gA>)2] =

3∑
i,j,i′,j′=1

Eg[gijgi′j′ ]AijAi′j′ =
1

3
TrA>A.

So

s2(θ) =
1

12
Tr
(
θθ>θθ> − 2θ∗θ

>θθ>∗ + θ∗θ
>
∗ θ∗θ

>
∗

)
=

1

12
‖θ>θ − θ>∗ θ∗‖2HS.

We have V2(θ∗) = {θ : s2(θ) = 0} = {θ : θ>θ = θ>∗ θ∗}. For such θ, the row span of θ coincides with

that of θ∗. Assuming rank(θ∗) = 3, this implies θ = Aθ∗ for some invertible matrix A ∈ R3×3. Then

θ>θ = θ>∗ θ∗ requires 0 = θ>∗ (A>A− Id)θ∗, so A>A− Id = 0. Then A is orthogonal, and we obtain
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that θ ∈ {gθ∗ : g ∈ O(3)}. This verifies

V2(θ∗) = {gθ∗ : g ∈ O(3)},

which is exactly Oθ∗ if G = O(3)⊗ Idm, and Oθ∗ ∪ O−θ∗ if G = SO(3)⊗ Idm.

To compute d2, we apply Lemma 4.2.6. Differentiating twice at θ = θ∗ by the chain rule,

∇2s2(θ∗) =
1

6
dθ[θ

>θ]> · dθ[θ>θ]
∣∣∣
θ=θ∗

where dθ[θ
>θ] denotes the Jacobian of the vectorization of θ>θ as a function of θ. For generic θ∗ ∈

R3×m, specializing Lemma C.4.4 to follow with l = 1 and S = m ≥ 3, we then get rank[∇2s2(θ∗)] =

rank(dθ[θ
>θ]|θ=θ∗) = 3(m− 1) = d− 3. Thus, recalling d1 = 0, Lemma 4.2.6 shows

d2 = trdegRG
≤2 = d− 3.

This coincides with trdegRG, so also K = 2 is the smallest integer satisfying Proposition 4.2.4.

Finally, we analyze the optimization landscape of s2(θ) over V1(θ∗) = Rd, and show that its only

critical points are strict saddles or the global minimizers V2(θ∗). Computing the gradient, we have

∇s2(θ) =
1

3
θ
(
θ>θ − θ>∗ θ∗

)
∈ R3×m.

The row span of θθ>θ is the same as that of θ (regardless of the rank of θ), while the row span of

θθ>∗ θ∗ is contained in the row span of θ∗. Thus, at any critical point θ satisfying ∇s2(θ) = 0, the

row span of θ is contained in that of θ∗, i.e. we have

θ = Aθ∗

for some (possibly singular) matrix A ∈ R3×3. Then 0 = ∇s2(θ) implies

0 = Aθ∗θ
>
∗ A
>Aθ∗ −Aθ∗θ>∗ θ∗ = Aθ∗θ

>
∗ (A>A− Id)θ∗.

When rank(θ∗) = 3, the rows of θ∗ are linearly independent, so this implies

0 = Aθ∗θ
>
∗ (A>A− Id).
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We now consider two cases for a critical point θ of s2(θ):

Case 1: θ has full rank 3. Then A must be nonsingular. Multiplying by (θ∗θ
>
∗ )−1A−1, we get

0 = A>A − Id, so A>A = Id. Thus, A is an orthogonal matrix, so θ ∈ V2(θ∗), and this is a global

minimizer of s2(θ).

Case 2: θ has some rank k ≤ 2. Then also rank(A) = rank(A>A) = k. Then P = Id−A>A

has 3 − k eigenvalues equal to 1, and in particular, rankP ≥ 3 − k. On the other hand, since

rank(Aθ∗θ
>
∗ ) = k and 0 = Aθ∗θ

>
∗ P , the kernel of P has dimension at least k. Then also rankP ≤

3 − k, so rankP = 3 − k exactly. Then P has 3 − k eigenvalues 1 and k eigenvalues 0, so it is an

orthogonal projection onto a subspace of dimension 3− k in R3.

Using this observation, we now exhibit a direction of negative curvature in ∇2s2(θ): Let ∆ =

uv> ∈ R3×m be any rank-one non-zero matrix where A>u = 0 and Pθ∗v 6= 0. Such vectors u and v

exist because rankA < 3 and rankP > 0. Consider

θt = θ + t∆ = Aθ∗ + t∆,

and the Hessian ∇2s2(θ) in the direction of ∆, given by ∂2
t s2(θt)|t=0. Applying A>∆ = A>uv> = 0

by the condition A>u = 0, observe that θ>t θt = θ>∗ A
>Aθ∗ + t2∆>∆, so

s2(θt) =
1

12

∥∥∥θ>t θt − θ>∗ θ∗‖2HS =
1

12

∥∥∥t2∆>∆− θ>∗ Pθ∗
∥∥∥2

HS
.

This is a polynomial in t, whose quadratic term is

[t2]s2(θt) = −1

6
Tr θ>∗ Pθ∗∆

>∆.

So

∂2
t s2(θt)

∣∣∣
t=0

= −1

3
Tr θ>∗ Pθ∗∆

>∆ = −1

3
‖Pθ∗∆>‖2HS.

Finally, note that Pθ∗∆
> = (Pθ∗v)u> 6= 0 because Pθ∗v 6= 0 and u 6= 0. Then this is strictly

negative, so λmin(∇2s2(θ)) < 0.

Combining these two cases, this verifies the claim in Example 4.2.11 that for generic θ∗, the

minimization of s2(θ) over V1(θ∗) = Rd is globally benign. For the claims about the landscape

of R(θ), observe that for any θ = gθ∗ where g ∈ O(3), we have s2(θ) = 0, so T2(θ) = T2(θ∗).
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Then applying the chain rule to differentiate twice s2(θ) = ‖T2(θ)− T2(θ∗)‖2HS/4, and applying also

s1(θ) = 0, we obtain rank∇2s2(θ) = rank dT2(θ) = rank dM2(θ). On the other hand, for any such θ,

the preceding computation shows also rank∇2s2(θ) = rank dθ[θ
>θ] = d− 3, as this rank is the same

at θ = gθ∗ as at θ∗. Therefore rank dM2(θ) = d− 3. Thus dM2(θ) has constant rank on V2(θ∗), and

the minimizers V2(θ∗) = {gθ∗ : g ∈ O(3)} of s2(θ∗) are non-degenerate up to orbit. Then the claims

about the landscape of R(θ) for large σ follow from Theorems 4.2.8 and 4.2.10.

C.3 Analysis of continuous multi-reference alignment

C.3.1 Unprojected continuous MRA

In this section we prove Theorems 4.3.1 and 4.3.3.

Proof of Theorem 4.3.3. Recall by Lemma C.1.1 that

sk(θ) =
1

2(k!)
Eg
[
〈θ, g · θ〉k − 2 〈θ, g · θ∗〉k + 〈θ∗, g · θ∗〉k

]
. (105)

Let θ, ϑ ∈ Rd. Computing the form of Eg[〈θ, g · ϑ〉k] will give the form of sk(θ).

Case k = 1: By (4.19), Eg[g] = diag(1, 0, . . . , 0). It follows from (105) that

s1(θ) =
1

2

(
(θ(0))2 − 2θ(0)θ

(0)
∗ + (θ

(0)
∗ )2

)
=

1

2

(
θ(0) − θ(0)

∗

)2

.

Case k = 2: Recall u(0)(θ) = θ(0) and u(l)(θ) = θ
(l)
1 + iθ

(l)
2 for l = 1, . . . , L. From (4.19), we may

check that

u(l)(g · θ) = e−i2πlgu(l)(θ). (106)

Then, applying the identity Re a = (a+ ā)/2,

〈θ, g · ϑ〉 =

L∑
l=0

Re
[
u(l)(θ) · u(l)(g · ϑ)

]
=

1

2

L∑
l=0

[
u(l)(θ)u(l)(ϑ)ei2πlg + u(l)(θ)u(l)(ϑ)e−i2πlg

]
. (107)
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Taking the expected square on both sides gives

Eg[〈θ, g · ϑ〉2] =
1

4
Eg

 L∑
l1,l2=0

u(l1)(θ)u(l2)(θ)u(l1)(ϑ)u(l2)(ϑ)ei2π(l1+l2)g


+

1

4
Eg

 L∑
l1,l2=0

u(l1)(θ)u(l2)(θ)u(l1)(ϑ)u(l2)(ϑ)e−i2π(l1+l2)g


+

1

4
Eg

 L∑
l1,l2=0

u(l1)(θ)u(l2)(θ)u(l1)(ϑ)u(l2)(ϑ)ei2π(l1−l2)g


+

1

4
Eg

 L∑
l1,l2=0

u(l1)(θ)u(l2)(θ)u(l1)(ϑ)u(l2)(ϑ)e−i2π(l1−l2)g

 ,
where g is uniformly distributed over [0, 1). Applying the property

Eg[ei2πlg] =


1 for l = 0,

0 for l 6= 0,

(108)

gives

Eg[〈θ, g · ϑ〉2] = (u(0)(θ))2(u(0)(ϑ))2+
1

4

L∑
l=1

[
u(l)(θ)u(l)(θ)u(l)(ϑ)u(l)(ϑ)+u(l)(θ)u(l)(θ)u(l)(ϑ)u(l)(ϑ)

]
= (θ(0))2(ϑ(0))2 +

1

2

L∑
l=1

rl(θ)
2rl(ϑ)2.

Then from (105),

s2(θ) =
1

4

(
(θ(0))2 − (θ

(0)
∗ )2

)2

+
1

8

L∑
l=1

(
rl(θ)

2 − rl(θ∗)2
)2

.

Case k = 3: We now take the expected cube on both sides of (107). Applying (108),

Eg[〈θ, g · ϑ〉3] =
1

4
(u(0)(θ))3(u(0)(ϑ))3 +

3

8

L∑
l,l′,l′′=0

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ)

+
3

8

L∑
l,l′,l′′=0

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ).

Let us write as shorthand u(l) = u(l)(θ), u
(l)
∗ = u(l)(θ∗), and similarly for rl, λl, rl,l′,l′′ , λl,l′,l′′ and
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r∗,l, λ∗,l, r∗,l,l′,l′′ , λ∗,l,l′,l′′ . Then from (105),

s3(θ) =
1

12
Eg
[
〈θ, g · θ〉3 − 2 〈θ, g · θ∗〉3 + 〈θ∗, g · θ∗〉3

]
=

1

48

(
(u(0))3 − (u

(0)
∗ )3

)2

+
1

16

L∑
l,l′,l′′=0

l=l′+l′′

∣∣∣u(l)u(l′)u(l′′)
∣∣∣2 +

∣∣∣u(l)
∗ u

(l′)
∗ u

(l′′)
∗

∣∣∣2

− 1

16

L∑
l,l′,l′′=0

l=l′+l′′

u(l)u(l′)u(l′′)u
(l)
∗ u

(l′)
∗ u

(l′′)
∗ + u(l)u(l′)u(l′′)u

(l)
∗ u

(l′)
∗ u

(l′′)
∗

=
1

48

(
(u(0))3 − (u

(0)
∗ )3

)2

+
1

16

L∑
l,l′,l′′=0

l=l′+l′′

∣∣∣u(l)u(l′)u(l′′) − u(l)
∗ u

(l′)
∗ u

(l′′)
∗

∣∣∣2 . (109)

This verifies the first expression for s3(θ). For the second expression, we split the second sum of

(109) into the cases l = l′ = l′′ = 0, only l′ = 0 and l = l′′ ≥ 1, only l′′ = 0 and l = l′ ≥ 1, and all

l, l′, l′′ ≥ 1. The first three cases are easily rewritten in terms of u(0), rl, u
(0)
∗ , r∗,l. Each term of the

last case l, l′, l′′ ≥ 1 may be written as

∣∣∣u(l)u(l′)u(l′′) − u(l)
∗ u

(l′)
∗ u

(l′′)
∗

∣∣∣2 = r2
l,l′,l′′ + r2

∗,l,l′,l′′ − 2rl,l′,l′′r∗,l,l′,l′′ cos
(
λ∗,l,l′,l′′ − λl,l′,l′′

)
,

and this yields the second expression for s3(θ).

Proof of Theorem 4.3.1. Note that for generic θ ∈ Rd, for example having (θ
(1)
1 , θ

(1)
2 ) 6= (0, 0), its

stabilizer Gθ = {g ∈ G : g ·θ = θ} = {Id} is trivial. Thus dimOθ = dimG = 1, so trdegRG = d−1 =

2L.

We compute trdeg(RG
≤k) for k = 1, 2, 3 by applying Lemma 4.2.6 at any generic point θ∗ ∈ Rd

where rl(θ∗) > 0 for each l = 1, . . . , L. Write as shorthand u(l)(θ) = rle
iλl , u(l)(θ∗) = r∗,le

iλ∗,l , and

define tl = λl − λ∗,l ∈ [−π, π) for each l = 1, . . . , L. Setting

ζ(θ) = (θ0, r1, . . . , rL, t1, . . . , tL),

this map ζ(θ) has non-singular derivative at θ∗. Then by the inverse function theorem, the coor-

dinates ζ ∈ R2L+1 provide an invertible reparametrization of θ in a local neighborhood of θ∗, with

some inverse function θ(ζ). Let ζ∗ = ζ(θ∗). Note that θ∗ is a global minimizer and hence critical

point of sk(θ) for each k ≥ 1. Then by the chain rule,

∇2
ζsk(θ(ζ))

∣∣
ζ=ζ∗

= dζθ(ζ∗)
> · ∇2

θsk(θ∗) · dζθ(ζ∗).
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Applying Lemma 4.2.6 and the fact that dζθ(ζ∗) is non-singular, this gives

rank
(
∇2
θs1(θ∗) + . . .+∇2

θsk(θ∗)
)

= rank
(
∇2
ζs1(θ(ζ)) + . . .+∇2

ζsk(θ(ζ))
∣∣∣
ζ=ζ∗

)
.

For k = 1 and k = 2, by Theorem 4.3.3,

s1(θ(ζ)) =
1

2
(θ0 − θ∗,0)2, s2(θ(ζ)) =

1

4
(θ2

0 − θ2
∗,0)2 +

1

8

L∑
l=1

(r2
l − r2

∗,l)
2.

Then taking the Hessians yields

trdeg(RG
≤1) = rank

(
∇2
ζs1(θ(ζ))

∣∣∣
ζ=ζ∗

)
= rank

(
diag(1, 0, . . . , 0)

)
= 1,

and

trdeg(RG
≤2) = rank

(
∇2
ζs1(θ(ζ)) +∇2

ζs2(θ(ζ))
∣∣∣
ζ=ζ∗

)
= rank

(
diag(1, 0, . . . , 0) + diag(2θ2

∗,0, r
2
∗,1, . . . , r

2
∗,L)

)
= L+ 1.

For k = 3, noting that trdeg(RG
≤3) ≤ trdeg(RG) = 2L, it remains to show trdeg(RG

≤3) ≥ 2L.

Denote

H(ζ∗) = ∇2
ζs1(θ(ζ)) +∇2

ζs2(θ(ζ)) +∇2
ζs3(θ(ζ))

∣∣∣
ζ=ζ∗

,

so that trdeg(RG
≤3) = rank(H(ζ∗)). Group the coordinates of ζ as r = (θ0, r1, . . . , rL) ∈ RL+1 and

t = (t1, . . . , tL) ∈ RL, and define the corresponding block decomposition

H(ζ∗) =

Hrr(ζ∗) Hrt(ζ∗)

Htr(ζ∗) Htt(ζ∗)

 .
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Since s1(θ(ζ)) and s2(θ(ζ)) are functions only of r and not of t, we have

Hrr(ζ∗) = ∇2
rs1(θ(ζ)) +∇2

rs2(θ(ζ)) +∇2
rs3(θ(ζ))

∣∣∣
ζ=ζ∗

,

Hrt(ζ∗) = ∇2
rts3(θ(ζ))

∣∣∣
ζ=ζ∗

,

Htr(ζ∗) = ∇2
trs3(θ(ζ))

∣∣∣
ζ=ζ∗

,

Htt(ζ∗) = ∇2
t s3(θ(ζ))

∣∣∣
ζ=ζ∗

.

For the upper-left block Hrr(ζ∗) of size (L+ 1)× (L+ 1), Lemma 4.2.6 ensures that each matrix

∇2
ζsk(θ(ζ)) is positive semidefinite, and hence so is each submatrix ∇2

rsk(θ(ζ)). Then from the

analysis for trdeg(RG
≤2),

rank(Hrr(ζ∗)) = rank
(
∇2
rs1(θ(ζ)) +∇2

rs2(θ(ζ))
∣∣∣
ζ=ζ∗

)
= L+ 1. (110)

For the blocks Hrt(ζ∗) and Htr(ζ∗), recall from the form of s3(θ) in Theorem 4.3.3 that

s3(θ(ζ)) = f(r)− 1

8

L∑
l,l′,l′′=1

l=l′+l′′

rl,l′,l′′r∗,l,l′,l′′ cos(tl − tl′ − tl′′),

where f(r) is a function depending only on r and not on t. Then, noting that tl = 0 for all

l = 1, . . . , L at ζ = ζ∗, we get

∇2
rλs3(θ(ζ))

∣∣∣
ζ=ζ∗

= 0 and ∇2
λrs3(θ(ζ))

∣∣∣
ζ=ζ∗

= 0,

which further implies

Hrt(ζ∗) = 0 and Htr(ζ∗) = 0. (111)

Finally, the lower-right block Htt(ζ∗) of size L× L is given explicitly by

Htt(ζ∗) = −1

8

L∑
l,l′,l′′=1

l=l′+l′′

r2
∗,l,l′,l′′ · ∇2

t

[
cos(tl − tl′ − tl′′)

]∣∣∣
t=0

.

To show that its rank is at least L− 1 for generic θ∗ ∈ Rd, it suffices to exhibit a single such point

θ∗. For simplicity, we pick θ∗ such that θ
(0)
∗ = 1 and r∗,l = 1 for all l = 1, . . . , L. Let el be the lth
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standard basis vector, and define the vector

wl,l′,l′′ = ∇t[tl − tl′ − tl′′ ] = el − el′ − el′′ ∈ RL. (112)

By the chain rule,

∇2
t

[
cos(tl − tl′ − tl′′)

]∣∣∣
t=0

= − cos(tl − tl′ − tl′′)
∣∣∣
t=0
· wl,l′,l′′w>l,l′,l′′ = −wl,l′,l′′w>l,l′,l′′ .

Define the index set L = {l, l′, l′′ ∈ {1, . . . , L} : l = l′ + l′′}, and let W ∈ RL×|L| be the matrix with

the vectors wl,l′,l′′ as columns. Then

Htt(ζ∗) =
1

8
WW>.

Note that, in particular, W has a subset of L−1 columns corresponding to l′ = 1, l′′ ∈ {1, . . . , L−1},

and l = 1 + l′′. These columns (in RL) are given by



2

−1

0

0

...

0

0



,



1

1

−1

0

...

0

0



,



1

0

1

−1

...

0

0



, . . . ,



1

0

0

0

...

1

−1



.

The bottom L − 1 rows of these columns form an upper-triangular matrix with non-zero diagonal,

and hence these columns are linearly independent. Thus rank(W ) ≥ L− 1, so also

rank(Htt(ζ∗)) ≥ L− 1. (113)

Combining (110), (111), and (113), we obtain trdegRG
≤3 = rank(H(ζ∗)) ≥ 2L. Hence trdegRG

≤3 =

2L, as desired.

The statement (d0, d1, d2, d3) = (1, 1, L, L − 1) now follows from these transcendence degrees.

The smallest K for which trdegRG
≤K = trdegRG = 2L is K = 3, except in the case L = 1 where it

is instead K = 2.
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C.3.2 Projected continuous MRA

In this section we prove Theorems 4.3.5 and 4.3.7.

Proof of Theorem 4.3.7. Recall by Lemma C.1.1 that

s̃k(θ) =
1

2(k!)
Eg,h[〈Π · g · θ,Π · h · θ〉k − 2〈Π · g · θ,Π · h · θ∗〉k + 〈Π · g · θ∗,Π · h · θ∗〉k]. (114)

We compute Eg,h[〈Π · g · θ,Π · h · ϑ〉k] for θ, ϑ ∈ Rd.

Case k = 1: Recall u(0)(θ) = θ(0) and u(l)(θ) = θ
(l)
1 + iθ

(l)
2 for l = 1, . . . , L. Write g, h ∈ G

corresponding to the rotations g, h ∈ [0, 1). Then, applying (106) and the identity Re a · Re b =

(ab+ āb̄+ ab̄+ āb)/4, we have

〈Π · g · θ,Π · h · ϑ〉 = 2

L∑
l=0

Reu(l)(g · θ) · Reu(l)(h · ϑ) =
1

2
M1 +

1

2
M2 (115)

where

M1 :=

L∑
l=0

u(l)(θ)u(l)(ϑ)e−2iπl(g+h) + u(l)(θ)u(l)(ϑ)e2iπl(g+h),

M2 :=

L∑
l=0

u(l)(θ)u(l)(ϑ)e−2iπl(g−h) + u(l)(θ)u(l)(ϑ)e2iπl(g−h).

For independent and uniformly random g, h ∈ [0, 1), taking the expected value on both sides using

(108) gives Eg,h[〈Π · g · θ,Π · h · ϑ〉] = 2u(0)(θ)u(0)(ϑ). Then from (114), we obtain

s̃1(θ) =
(
u(0)(θ)− u(0)(θ∗)

)2

=
(
θ(0) − θ(0)

∗

)2

. (116)

Case k = 2: Taking the expected square on both sides of (115), we have

Eg,h[〈Π · g · θ,Π · h · ϑ〉2] =
1

4

{
Eg,h[M2

1 ] + 2Eg,h[M1M2] + Eg,h[M2
2 ]
}
.
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Applying (108) and an argument similar to the k = 2 computation in the proof of Theorem 4.3.3,

Eg,h[M2
1 ] = 2(u(0)(θ))2(u(0)(ϑ))2 + 2

L∑
l=0

|u(l)(θ)|2|u(l)(ϑ)|2,

Eg,h[M1M2] = 4(u(0)(θ))2(u(0)(ϑ))2,

Eg,h[M2
2 ] = 2(u(0)(θ))2(u(0)(ϑ))2 + 2

L∑
l=0

|u(l)(θ)|2|u(l)(ϑ)|2.

Then, separating the l = 0 terms from these sums, Eg,h[〈Π · g · θ,Π · h · ϑ〉2] = 4(θ(0))2(ϑ(0))2 +∑L
l=1 rl(θ)

2rl(ϑ)2, so by (114),

s̃2(θ) =
(

(θ(0))2 − (θ
(0)
∗ )2

)2

+
1

4

L∑
l=1

(
rl(θ)

2 − rl(θ∗)2
)2

. (117)

Case k = 3: Taking the expected cube on both sides of (115), we have

Eg,h[〈Π · g · θ,Π · h · ϑ〉3] =
1

8

{
Eg,h[M3

1 ] + 3Eg,h[M2
1M2] + 3Eg,h[M1M

2
2 ] + Eg,h[M3

2 ]
}
.

Applying (108) and an argument similar to the k = 3 computation in the proof of Theorem 4.3.3,

Eg,h[M3
1 ] = 2(u(0)(θ))3(u(0)(ϑ))3 + 3

L∑
l,l′,l′′=0

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ)

+ 3

L∑
l,l′,l′′=0

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ),

Eg,h[M2
1M2] = Eg,h[M1M

2
2 ] = 8(u(0)(θ))3(u(0)(ϑ))3 + 4u(0)(θ)u(0)(ϑ) ·

L∑
l=1

|u(l)(θ)|2|u(l)(ϑ)|2,

Eg,h[M3
2 ] = 2(u(0)(θ))3(u(0)(ϑ))3 + 3

L∑
l,l′,l′′=0

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ)

+ 3

L∑
l,l′,l′′=0

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ).

In these expressions for Eg,h[M3
1 ] and Eg,h[M3

2 ], separating out the three cases of l = l′ = l′′ = 0,
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only l′ = 0 and l = l′′ ≥ 1, and only l′′ = 0 and l = l′ ≥ 1 , this gives

Eg,h[〈Π · g · θ,Π · h · ϑ〉3]

= 8(u(0)(θ))3(u(0)(ϑ))3 + 6u(0)(θ)u(0)(ϑ) ·
L∑
l=1

|u(l)(θ)|2|u(l)(ϑ)|2

+
3

8

L∑
l,l′,l′′=1

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ) + u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ)

+
3

8

L∑
l,l′,l′′=1

l=l′+l′′

u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ) + u(l)(θ)u(l′)(θ)u(l′′)(θ)u(l)(ϑ)u(l′)(ϑ)u(l′′)(ϑ).

Applying this to (114) using (x2+x̄2)−2(xx∗+x̄x̄∗)+(x2
∗+x̄

2
∗) = (x−x∗)2+(x̄−x̄∗)2 = 2 Re[(x−x∗)2],

and writing as shorthand u(l) = u(l)(θ), u
(l)
∗ = u(l)(θ∗) and similarly for rl, λl, rl,l′,l′′ , λl,l′,l′′ ,

s̃3(θ) =
2

3

(
(u(0))3 − (u

(0)
∗ )3

)2

+
1

2

L∑
l=1

(
u(0)|u(l)|2 − u(0)

∗ |u(l)
∗ |2

)2

+
1

16

L∑
l,l′,l′′=1

l=l′+l′′

∣∣∣u(l)u(l′)u(l′′) − u(l)
∗ u

(l′)
∗ u

(l′′)
∗

∣∣∣2 + Re
[(
u(l)u(l′)u(l′′) − u(l)

∗ u
(l′)
∗ u

(l′′)
∗

)2]

=
2

3

(
(θ(0))3 − (θ

(0)
∗ )3

)2

+
1

2

L∑
l=1

(
θ(0)r2

l − θ
(0)
∗ r2
∗,l

)2

+
1

16

L∑
l,l′,l′′=1

l=l′+l′′

r2
l,l′,l′′ + r2

∗,l,l′,l′′ − 2rl,l′,l′′r∗,l,l′,l′′ cos(λ∗,l,l′,l′′ − λl,l′,l′′)

+ r2
l,l′,l′′ cos(2λl,l′,l′′) + r2

∗,l,l′,l′′ cos(2λ∗,l,l′,l′′)− 2rl,l′,l′′r∗,l,l′,l′′ cos(λ∗,l,l′,l′′ + λl,l′,l′′).

Lemma C.3.1. Let H ∈ Rn×n and n = n1 + n2 with n1, n2 ≥ 1. Suppose H can be decomposed as

the sum of two positive semidefinite matrices A and B with

A =

A11 0

0 0

 and B =

B11 B12

B21 B22

 ,

where A11, B11 ∈ Rn1×n1 , B12 ∈ Rn1×n2 , B21 ∈ Rn2×n1 , and B22 ∈ Rn2×n2 . Then

rank(H) ≥ rank(A11) + rank(B22).
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Proof. Since A and B are positive semidefinite, so are A11, B11, B22. There are rank(A11) linearly

independent vectors v ∈ Rn1 where v>A11v > 0 strictly. Then (v, 0)>H(v, 0) > 0 strictly for each

such vector v. There are also rank(B22) linearly independent vectors w ∈ Rn2 where w>B22w > 0

strictly. Then (0, w)>H(0, w) > 0 strictly for each such vector w. Thus u>Hu > 0 for rank(A11) +

rank(B22) linearly independent vectors u ∈ Rn, so rank(H) ≥ rank(A11) + rank(B22).

Proof of Theorem 4.3.5. As in Theorem 4.3.1, we have d̃0 = 1 and trdegRG = 2L. We compute

trdeg(R̃G
≤k) for k = 1, 2, 3 by applying Lemma 4.2.6 at a generic point θ∗ ∈ Rd with rl(θ∗) > 0 for

each l = 1, . . . , L. Recall from the proof of Theorem 4.3.1 the map

ζ(θ) = (θ0, r1, . . . , rL, t1, . . . , tL), ζ∗ = ζ(θ∗),

with inverse function θ(ζ) in a local neighborhood of θ∗. Then the same arguments as in the proof

of Theorem 4.3.1 show

trdeg(R̃G
≤1) = rank

(
∇2
ζ s̃1(θ(ζ))

∣∣∣
ζ=ζ∗

)
= 1,

trdeg(R̃G
≤2) = rank

(
∇2
ζ s̃1(θ(ζ)) +∇2

ζ s̃2(θ(ζ))
∣∣∣
ζ=ζ∗

)
= L+ 1,

and trdeg(R̃G
≤3) = rank(H̃(ζ∗)) for the Hessian

H̃(ζ∗) = ∇2
ζ s̃1(θ(ζ)) +∇2

ζ s̃2(θ(ζ)) +∇2
ζ s̃3(θ(ζ))

∣∣∣
ζ=ζ∗

.

Writing this Hessian in the block decomposition according to (r, t), and noting that s̃1, s̃2 depend

only on r and not on t, we have the decomposition

H̃(ζ∗) =

∇2
r s̃1(θ(ζ)) +∇2

r s̃2(θ(ζ))
∣∣
ζ=ζ∗

0

0 0

+

∇2
r s̃3(θ(ζ))

∣∣
ζ=ζ∗

∇2
rts̃3(θ(ζ))

∣∣
ζ=ζ∗

∇2
tr s̃3(θ(ζ))

∣∣
ζ=ζ∗

∇2
t s̃3(θ(ζ))

∣∣
ζ=ζ∗


The second matrix is positive semidefinite by Lemma 4.2.6, and the first matrix has ∇2

r s̃1(θ(ζ)) +

∇2
r s̃2(θ(ζ))|ζ=ζ∗ � 0 strictly by the analysis of trdeg(R̃G

≤2), with rank exactly L+1. Then by Lemma

C.3.1,

rank(H̃(ζ∗)) ≥ L+ 1 + rank(∇2
t s̃3(θ(ζ))|ζ=ζ∗). (118)

As in the proof of Theorem 4.3.1, let us show rank(∇2
t s̃3(θ(ζ))|ζ=ζ∗) ≥ L− 1 for generic θ∗ ∈ Rd by

159



exhibiting a single point θ∗ where this holds.

We may write the expression for s̃3(θ) in Theorem 4.3.7 as

s̃3(θ(ζ)) = f(r) +
1

16

L∑
l,l′,l′′=1

l=l′+l′′

−2rl,l′,l′′r∗,l,l′,l′′ cos(λl,l′,l′′ − λ∗,l,l′,l′′) + r2
l,l′,l′′ cos(2λl,l′,l′′)

− 2rl,l′,l′′r∗,l,l′,l′′ cos(λl,l′,l′′ + λ∗,l,l′,l′′),

for a function f(r) depending only on r and not t. We pick θ∗ such that θ
(0)
∗ = 1 and r∗,l = 1 for all

l = 1, . . . , L. Then, recalling tl = λl − λ∗,l and λl,l′,l′′ = λl − λl′ − λl′′ , and differentiating twice in t

at (r, t) = (r∗, t∗) = (r∗, 0),

∇2
t s̃3(θ(ζ))

∣∣∣
ζ=ζ∗

=
1

16
∇2
t

(
L∑

l,l′,l′′=1

l=l′+l′′

−2 cos(tl − tl′ − tl′′) + cos(2tl − 2tl′ − 2tl′′ + 2λ∗,l − 2λ∗,l′ − 2λ∗,l′′)

− 2 cos(tl − tl′ − tl′′ + 2λ∗,l − 2λ∗,l′ − 2λ∗,l′′)

)∣∣∣∣∣
t=0

=
1

16

L∑
l,l′,l′′=1

l=l′+l′′

(
2− 4 cos(2λ∗,l,l′,l′′) + 2 cos(2λ∗,l,l′,l′′)

)
· wl,l′,l′′w>l,l′,l′′

=
1

8

L∑
l,l′,l′′=1

l=l′+l′′

(
1− cos(2λ∗,l,l′,l′′)

)
· wl,l′,l′′w>l,l′,l′′ ,

where wl,l′,l′′ is defined as (112). Stacking wl,l′,l′′ as the columns of W ∈ RL×|L| as in the proof of

Theorem 4.3.1, and defining the diagonal matrix D = diag(1− cos(2λ∗,l,l′,l′′)) ∈ R|L|×|L|, this shows

∇2
t s̃3(θ(ζ))

∣∣∣
ζ=ζ∗

=
1

8
WDW>.

Note that, for generic λ∗ = (λ∗,1, . . . , λ∗,L), we have

2− 2 cos(2λ∗,l − 2λ∗,l′ − 2λ∗,l′′) > 0

for each fixed tuple (l, l′, l′′) ∈ L. Hence we may pick λ∗ so that this holds simultaneously for all

tuples (l, l′, l′′) ∈ L. Then rank(WDW>) = rank(WW>) ≥ L − 1 as shown in Theorem 4.3.1.

Applying this back to (118), we have shown trdeg R̃G
≤3 = rank(H̃(ζ∗)) ≥ 2L. We must have also

trdeg R̃G
≤3 ≤ trdegRG = 2L, so trdeg R̃G

≤3 = 2L. Then the statements about (d̃0, d̃1, d̃2, d̃3) and K̃

follow.
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C.3.3 Spurious local minimizers for continuous MRA

In this section, we prove Theorem 4.3.4 establishing the possible existence of spurious local mini-

mizers for continuous MRA, when L ≥ 30.

Proof of Theorem 4.3.4. Recall the forms of s1(θ), s2(θ), and s3(θ) from Theorem 4.3.3. By defi-

nition of sk(θ) in (4.7), each moment variety Vk(θ∗) is the intersection of the global minimizers of

s1(θ), . . . , sk(θ). Then

V1(θ∗) = {θ : θ(0) = θ
(0)
∗ }, V2(θ∗) = {θ : θ(0) = θ

(0)
∗ , rl(θ) = rl(θ∗) for each l = 1, . . . , L}.

On V0(θ∗) = Rd, we have ∇s1(θ)|V0(θ∗) = θ(0) − θ(0)
∗ , and this vanishes exactly when θ ∈ V1(θ∗).

Differentiating in the coordinates {(θ(l)
1 , θ

(l)
2 ) : l = 1, . . . , L} that parametrize V1(θ∗), and applying

rl(θ)
2 = (θ

(l)
1 )2 + (θ

(l)
2 )2, we have

∇s2(θ)|V1(θ∗) =
1

2

(
(rl(θ)

2 − rl(θ∗)2) · (θ(l)
1 , θ

(l)
2 ) : l = 1, . . . , L

)
.

Suppose θ∗ satisfies the generic condition rl(θ∗) > 0 for each l = 1, . . . , L. Then ∇s2(θ)|V1(θ∗) = 0

if and only if, for each l = 1, . . . , L, either rl(θ) = rl(θ∗) or (θ
(l)
1 , θ

(l)
2 ) = (0, 0). If the latter holds

for any l = 1, . . . , L, then differentiating in (θ
(l)
1 , θ

(l)
2 ) a second time shows that the Hessian of s2(θ)

in (θ
(l)
1 , θ

(l)
2 ) is negative-definite at (θ

(l)
1 , θ

(l)
2 ) = (0, 0), and hence λmin(∇2s2(θ)|V1(θ∗)) < 0. On the

other hand, if rl(θ) = rl(θ∗) for every l = 1, . . . , L, then θ ∈ V2(θ∗) and θ is a global minimizer of

s2(θ). Thus, the minimizations of s1(θ) and s2(θ) on V0(θ∗) and V1(θ∗) are globally benign.

We now take L ≥ 30, and construct the example of θ∗ where s3(θ) has a spurious local minimizer

in V2(θ∗) that is nondegenerate up to orbit. Consider θ∗ such that r∗,l := rl(θ∗) > 0 for each

l = 1, . . . , L. Then V2(θ∗) may be smoothly parametrized by the coordinates t = (t1, . . . , tL) where

tl = λl(θ)− λl(θ∗). The function 8s3(θ) restricted to V2(θ∗) is given as a function of t by

s(t) = −
L∑

l,l′,l′′=1

l=l′+l′′

r2
∗,lr

2
∗,l′r

2
∗,l′′ cos(tl − tl′ − tl′′) + constant.

The orbit Oθ∗ ∩ V2(θ∗) is defined by

{
(t1, . . . , tL) : tl ≡ τ · l mod 2π for all l = 1, . . . , L and some τ ∈ R

}
, (119)
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where τ = 0 corresponds to the point θ∗ itself. Thus, our goal is to exhibit a point θ∗ for which

∇s(t̂) = 0, ∇2s(t̂) � 0, and rank(∇2s(t̂)) = L− 1 (120)

at some t̂ not belonging to this orbit (119). Then the corresponding point θ ∈ Rd where θ(0) = θ
(0)
∗ ,

rl(θ) = r∗,l, and tl(θ) = t̂l for each l = 1, . . . , L is our desired spurious local minimizer for s3(θ).

Note that the condition (120) depends on θ∗ only via r∗ = (r∗,1, . . . , r∗,L), so equivalently, our goal

is to construct an appropriate such vector r∗.

We split the construction into two steps: First, we construct r̃∗ for which t̂ = (π, 0, . . . , 0) satisfies

∇s(t̂) = 0, ∇2s(t̂) � 0, rank(∇2s(t̂)) = L− 2.

This Hessian ∇2s(t̂) will have a dimension-2 null space spanned by the vectors e3 = (0, 0, 1, 0, . . . , 0)

and e = (1, 2, . . . , L). Second, we make a small perturbation of the third coordinate of r̃∗, to elimi-

nate the null vector e3 while preserving ∇s(t̂) = 0 and ∇2s(t̂) � 0. This yields r∗ satisfying (120).

Step I. Clearly t̂ = (π, 0, . . . , 0) satisfies ∇s(t̂) = 0 for any choice of r∗, because sin(kπ) = 0 for

any integer k. The Hessian of s(t) is given by

∇2s(t) =

L∑
l,l′,l′′=1
l=l′+l′′

r2
∗,lr

2
∗,l′r

2
∗,l′′ cos(tl − tl′ − tl′′)(el − el′ − el′′)(el − el′ − el′′)>,

where el is the lth standard basis vector. Then for the above choice of t̂ and for any vector v ∈ RL,

v>∇2s(t̂)v =

L∑
l,l′,l′′=1
l=l′+l′′

r2
∗,lr

2
∗,l′r

2
∗,l′′(vl − vl′ − vl′′)2 ×


−1 if exactly one of l′, l′′ equals 1,

1 otherwise.

(121)

Consider r̃∗ = (r̃∗,1, r̃∗,2, r̃∗,3, r̃∗,4, . . . , r̃∗,L) = (1, Lκ/2, 0, 1, . . . , 1) where r̃∗,` = 1 for all ` ≥ 4,

and for a constant κ > 0 to be determined later. Then from (121) applied with v = e3 and

v = e = (1, 2, . . . , L), it is immediate that these two vectors belong to the null space of ∇2s(t̂).

We now check that for any other unit vector v ∈ RL orthogonal to both e3 and e, we have
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v>∇2s(t̂)v > 0 strictly. Observe from (121) that for r∗ = r̃∗,

v>∇2s(t̂)v =

L∑
l,l′,l′′=4
l=l′+l′′

(vl − vl′ − vl′′)2 + Lκ(v2 − 2v1)2 + L2κ(v4 − 2v2)2

+ 2Lκ
L−2∑
l=4

(vl+2 − vl − v2)2 − 2

L−1∑
l=4

(vl+1 − vl − v1)2. (122)

Note that only the last term is negative. Denote ε =
√

6L
1−κ
2 . We consider two cases:

Case 1: Any one of |v2 − 2v1|, |v4 − 2v2|, {|vl+2 − vl − v2| : l ≥ 4} is larger than ε. Then let us

upper bound the last term of (122) by

2

L−1∑
l=4

(vl+1 − vl − v1)2 ≤ 6

L−1∑
l=4

(v2
l+1 + v2

l + v2
1) ≤ 6L,

where the last inequality follows from ‖v‖22 = 1. Then

v>∇2s(t̂)v > Lκε2 − 2

L−1∑
l=4

(vl+1 − vl − v1)2 ≥ 0.

Case 2: We have instead

|v2 − 2v1| ≤ ε, |v4 − 2v2| ≤ ε, |vl+2 − vl − v2| ≤ ε for l ≥ 4. (123)

In this case, we aim to show that the first term in (122) is large enough to compensate for the

negative last term of (122).

For all m ≥ 1, the second and third inequalities of (123) imply |v2m−mv2| ≤ (m−1)ε. Similarly,

for allm ≥ 0, the last inequality implies |v2m+5−v5−mv2| ≤ mε. Combining with |mv2−2mv1| ≤ mε

by the first inequality of (123), we obtain

|v2m−2mv1| ≤ Lε for 1 ≤ m ≤ L/2, |v2m+5−v5−2mv1| ≤ Lε for 0 ≤ m ≤ (L−5)/2. (124)

For the summands of the first term in (122), if l′ = 2m′ + 5 and l′′ = 2m′′ + 5 are both odd

where m′,m′ ≥ 0, then l = 2m+ 10 for m = m′ +m′′, and we have

|vl − vl′ − vl′′ | ≥ |10v1 − 2v5| − 3Lε
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by (124) and the triangle inequality

|vl − vl′ − vl′′ |+ |−vl + (2m+ 10)v1|+ |vl′ − v5 − 2m′v1|+ |vl′′ − v5 − 2m′′v1| ≥ |10v1 − 2v5|.

For any even l = 2m+ 10 with m ≥ 0, the number of odd pairs l′, l′′ ≥ 5 where l′ + l′′ = 2m+ 10 is

m+ 1. Then the total number of tuples (l, l′, l′′) in the first term of (122) where l′, l′′ are odd is

bL/2c−5∑
m=0

(m+ 1) =
1

2
(bL/2c − 3)(bL/2c − 4) ≥ 1

8
(L− 8)(L− 10).

Hence, we may lower bound the first term in (122) by

L∑
l,l′,l′′=4
l=l′+l′′

(vl − vl′ − vl′′)2 ≥ 1

8
(L− 8)(L− 10)

(
|10v1 − 2v5| − 3Lε

)2

+
. (125)

Similarly, the summands of the last term in (122) for l ≥ 4 are upper bounded as

|vl+1 − vl − v1| ≤ |5v1 − v5|+ 2Lε (126)

again by (124) and the triangle inequality. (This may be checked separately in the cases where l is

odd and even.) The number of summands in this last term is L − 4. Then, combining (125) and

(126) gives

v>∇2s(t̂)v ≥ 1

8
(L− 8)(L− 10)

(
|10v1 − 2v5| − 3Lε

)2

+
− 2(L− 4)

(
|5v1 − v5|+ 2Lε

)2

(127)

We now claim that for sufficiently large κ > 0, we must have

|5v1 − v5| > 5Lε. (128)

To show this claim, since v ⊥ e3 and v ⊥ e,

0 = −3v3 =

L∑
l=1
l 6=3

l vl = v1 + 5v5 +

bL/2c∑
m=1

2m · v2m +

b(L−5)/2c∑
m=1

(2m+ 5) · v2m+5.

Denote a2m = v2m − 2m · v1 and a2m+5 = v2m+5 − v5 − 2m · v1 for m ≥ 1, where these satisfy
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|al| ≤ Lε by (124). Let us define

M1 = 1 +

bL/2c∑
m=1

4m2 +

b(L−5)/2c∑
m=1

2m(2m+ 5), M5 = 5 +

b(L−5)/2c∑
m=1

(2m+ 5).

Then we may write the above as

0 = v1 + 5v5 +

bL/2c∑
m=1

2m · (a2m + 2m · v1) +

b(L−5)/2c∑
m=1

(2m+ 5) · (a2m+5 + v5 + 2m · v1)

= M1v1 +M5v5 +

L∑
l=1

l 6=1,3,5

l al.

This may be rearranged as

v1 =
M5(5v1 − v5)−

∑
l:l 6=1,3,5 l al

M1 + 5M5
.

Now suppose by contradiction that |5v1 − v5| ≤ 5Lε. Then this implies

|v1| ≤
5M5L+ L2(L+ 1)/2

M1 + 5M5
ε < Cε,

where the second inequality holds for a universal constant C > 0 and any L ≥ 1. Then |v5| ≤

|5v1|+ 5Lε < 5(L+ C)ε, and combining with (124) gives

|vl| ≤ C ′Lε for all l ∈ {1, . . . , L} \ {3}

and a different universal constant C ′ > 0. Recalling v3 = 0 and ε =
√

6L
1−κ
2 , this contradicts that

‖v‖2 = 1 for sufficiently large κ > 0. Thus, (128) holds.

Finally, this bound (128) implies |10v1 − 2v5| − 3Lε > |5v1 − v5|+ 2Lε > 0. For L ≥ 30, we have

(L− 8)(L− 10)/8 ≥ 2(L− 4). Applying these to (127) yields v>s(t̂)v > 0 as desired.

Step II. We now show that making a small positive perturbation to r̃∗,3 yields a point r∗ which

satisfies (120) at t̂ = (π, 0, . . . , 0). Denote q∗ = r2
∗,3 and set q̃∗ = r̃2

∗,3 = 0. Let Π ∈ RL×(L−1) have

orthonormal columns spanning the orthogonal complement of e = (1, 2, . . . , L), and consider the

projected Hessian

H(q∗) = Π>∇2s(t̂)Π ∈ R(L−1)×(L−1)
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now as a function of q∗. By the result of Step I, H(q̃∗) � 0, and H(q̃∗) has a simple eigenvalue

µ = 0 with eigenvector v = Π>e3/‖Π>e3‖. Then this eigenvalue µ = µ(q∗) is differentiable in q∗,

with derivative given by ∂q∗µ(q∗) = v>∂q∗H(q∗)v. Applying Π · Π> = Id−ee>/‖e‖2 and the fact

that e = (1, 2, . . . , L) belongs to the null space of ∇2
t s(t̂) for any q∗, this is

∂q∗µ(q∗) =
e>3 (Id−ee>/‖e‖2) · ∂q∗∇2

t s(t̂) · (Id−ee>/‖e‖2)e3

e>3 (Id−ee>/‖e‖2)e3
=

e>3 · ∂q∗∇2
t s(t̂) · e3

e>3 (Id−ee>/‖e‖2)e3
.

By (121) applied with v = e3, for general r∗, we have

e>3 ∇2
t s(t̂)e3 = −2r2

∗,1r
2
∗,2r

2
∗,3 − 2r2

∗,1r
2
∗,3r

2
∗,4 + 2

L−3∑
l=2

r2
∗,3r

2
∗,lr

2
∗,l+3(1 + 1{l = 3}).

Then differentiating in q∗ = r2
∗,3 and evaluating at r̃∗ = (1, Lκ, 0, 1, . . . , 1),

e>3 · ∂q∗∇2
t s(t̂) · e3

∣∣∣
q∗=q̃∗

= −2L2κ − 2 + 2L2κ + 2(L− 6) > 0.

Thus, for some sufficiently small δ > 0, setting q∗ = δ yields µ(δ) > 0, and hence H(δ) � 0 strictly.

Then at the point r∗ = (1, Lκ, δ, 1, . . . , 1), we obtain that (120) holds.

Combining Steps I and II, we have shown that θ∗ given by (r1(θ∗), . . . , rL(θ∗)) = (1, Lκ, δ, 1, . . . , 1)

and (say) θ
(0)
∗ = 0 and (λ1(θ∗), . . . , λL(θ∗)) = 0 satisfies (120). Then (120) holds also in a sufficiently

small open neighborhood U of θ∗, by continuity. For any θ∗ ∈ U , the function s3(θ) has a spurious

local minimizer θ ∈ V2(θ∗) that is non-degenerate up to orbit, where θ(0) = θ
(0)
∗ , rl(θ) = rl(θ∗) for

all l ≥ 1, λ1(θ) = λ1(θ∗) + π, and λl(θ) = λl(θ∗) for all l ≥ 2. This concludes the proof.

C.4 Analyses of function estimation under an SO(3) rotation

This appendix collects the proofs of the results in Section 4.4, on estimating a function in 2 or 3

dimensions under an SO(3) rotation of its domain.

Appendix C.4.1 first reviews the complex spherical harmonic basis, and the associated calculus

of Wigner D-matrices and Clebsch-Gordan coefficients. Appendix C.4.2 proves the results of Section

4.4.1 on spherical registration. Appendix C.4.3 provides the details of the basis construction and

proves the results of Section 4.4.2 for the unprojected cryo-EM model. Appendix C.4.3 contains the

analogous details and proofs for the projected cryo-EM model of Section 4.4.3.
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C.4.1 Calculus of spherical harmonics

We first fix notations for some special functions related to the action of SO(3) and present some

identities between them which will appear in the proofs.

Complex spherical harmonics

Let Plm(x) denote the associated Legendre polynomials (without Cordon-Shortley phase)

Plm(x) =
1

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l for m = −l,−l + 1, . . . , l − 1, l. (129)

Let S2 ⊂ R3 be the unit sphere, parametrized by the latitude φ1 ∈ [0, π] and longitude φ2 ∈ [0, 2π).

The complex spherical harmonics basis on S2 is given by (see (Rose, 1995, Eq. (III.20)))

ylm(φ1, φ2) = (−1)m

√
2l + 1

4π
· (l −m)!

(l +m)!
· Plm(cosφ1)eimφ2 for l ≥ 0 and m = −l, . . . , l. (130)

The index l is the frequency, and there are 2l+1 basis functions at each frequency l. These functions

are orthonormal in L2(S2,C) with respect to the surface area measure sinφ1 dφ1 dφ2, and satisfy

the conjugation symmetry (see (Rose, 1995, Eq. (III.23)))

ylm(φ1, φ2) = (−1)myl,−m(φ1, φ2). (131)

Lemma C.4.1. For all m, the associated Legendre polynomials in (129) satisfy

Plm(0) = 1{l +m is even} · (−1)(l−m)/2

2ll!

(
l

(l +m)/2

)
(l +m)!

Proof. This follows from applying a binomial expansion of (x2 − 1)l, and then differentiating in

x—see also (Bandeira et al., 2017, Eq. (14)).

Wigner D-matrices

Let f ∈ L2(S2,C). Then f may be decomposed in the complex spherical harmonics basis (130) as

f =

∞∑
l=0

l∑
m=−l

u(l)
m ylm.
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Writing u(l) = {u(l)
m : −l ≤ m ≤ l}, the rotation f 7→ fg given by fg(φ1, φ2) = f(g−1 · (φ1, φ2)) is

described by the map of spherical harmonic coefficients (see (Rose, 1995, Eq. (4.28a)))

u(l) 7→ D(l)(g)u(l) for each l = 0, 1, 2, . . . ,

where D(l)(g) ∈ C(2l+1)×(2l+1) is the complex Wigner D-matrix at frequency l corresponding to g.

Our computations will not require the explicit forms of D(l)(g), but only the following moment

identities when g ∈ SO(3) is a Haar-uniform random rotation (see (Rose, 1995, Section 16) and

(Bandeira et al., 2017, Appendix A.3)):

(1) Mean identity:

D(0)(g) = 1, Eg[D(l)(g)] = 0 for all l ≥ 1. (132)

(2) Orthogonality: for any l, l′ ≥ 0 and −l ≤ q,m ≤ l and −l′ ≤ q′,m′ ≤ l′,

Eg

[
D(l)
qm(g)D

(l′)
q′m′(g)

]
=

(−1)m+q

2l + 1
1{l = l′, q = −q′,m = −m′}. (133)

(3) Third order identity: for any l, l′, l′′ ≥ 0 and −l ≤ q,m ≤ l and −l′ ≤ q′,m′ ≤ l′ and −l′′ ≤

q′′,m′′ ≤ l′′,

Eg

[
D(l)
qm(g)D

(l′)
q′m′(g)D

(l′′)
q′′m′′(g)

]
= 1{q + q′ = −q′′}·1{m+m′ = −m′′}·1{|l − l′| ≤ l′′ ≤ l + l′}

· (−1)m
′′+q′′

2l′′ + 1
〈l, q; l′, q′|l′′,−q′′〉〈l,m; l′,m′|l′′,−m′′〉, (134)

where 〈l,m; l′,m′|l′′,m′′〉 is a Clebsch-Gordan coefficient, defined in the following section.

Clebsch-Gordan coefficients

The Clebsch-Gordan coefficients 〈l,m; l′,m′|l′′,m′′〉 are defined for integer arguments l, l′, l′′,m,m′,m′′

where

|m| ≤ l, |m′| ≤ l′, |m′′| ≤ l′′ and |l − l′| ≤ l′′ ≤ l + l′. (135)

The latter condition |l − l′| ≤ l′′ ≤ l + l′ is equivalent to the three symmetric triangle inequality

conditions l + l′ ≥ l′′, l + l′′ ≥ l′, and l′ + l′′ ≥ l. For such arguments, 〈l,m; l′,m′|l′′,m′′〉 is given
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explicitly by (see (Böhm, 2013, Eq. (2.41)) and (Bandeira et al., 2017, Appendix A.2))

〈l,m; l′,m′|l′′,m′′〉

= 1{m′′ = m+m′} ×

√
(2l′′ + 1)(l + l′ − l′′)!(l + l′′ − l′)!(l′ + l′′ − l)!

(l + l′ + l′′ + 1)!

×
√

(l −m)!(l +m)!(l′ −m′)!(l′ +m′)!(l′′ −m′′)!(l′′ +m′′)!

×
∑
k

(−1)k

k!(l + l′ − l′′ − k)!(l −m− k)!(l′ +m′ − k)!(l′′ − l′ +m+ k)!(l′′ − l −m′ + k)!
(136)

where the summation is over all integers k for which the argument of every factorial is nonnegative.

We extend the definition to all integer arguments by

〈l,m; l′,m′|l′′,m′〉 = 0 if (135) does not hold. (137)

We will use the notational shorthand

Cl,l
′,l′′

m,m′,m′′ = 〈l,m; l′,m′|l′′,m′′〉.

These coefficients satisfy the sign symmetry (see (Rose, 1995, Eq. (3.16a)) and (Böhm, 2013, Eq.

(2.47)))

Cl,l
′,l′′

m,m′,m′′ = (−1)l+l
′+l′′Cl,l

′,l′′

−m,−m′,−m′′ . (138)

Note that we may have Cl,l
′,l′′

m,m′,m′′ = 0 even if (135) holds and m′′ = m+m′. For example, C3,2,2
2,−1,1 = 0.

In our later proofs, we will require that certain Clebsch-Gordan coefficients are non-zero, and the

following lemma provides a sufficient condition for this to hold.

Lemma C.4.2. Let l, l′, l′′,m,m′,m′′ satisfy (135), where m′′ = m+m′. In addition, suppose the

following conditions all hold:

• l ≥ l′ and l ≥ l′′ + 1.

• |m′| ∈ {l′ − 1, l′} and |m′′| ∈ {l′′ − 1, l′′}.

• We do not have |m| = l − 1, |m′| = l′ − 1, |m′′| = l′′ − 1, and l′ = l′′.

Then

Cl,l
′,l′′

m,m′,m′′ 6= 0.
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Proof. Applying the sign symmetry (138), we may assume m′ ∈ {−l′,−l′ + 1}. We consider sepa-

rately these cases.

Case I: m′ = −l′. Then m = m′′ − m′ = m′′ + l′. The condition that k and l′ + m′ − k

are both nonnegative in (136) requires k = 0, so the sum in (136) consists of just this single

term. The remaining factorials in (136) are also nonnegative, because l + l′ − l′′ ≥ 0, l −m ≥ 0,

l′′ − l′ +m = l′′ +m′′ ≥ 0, and l′′ − l −m′ = l′′ + l′ − l ≥ 0. Thus (136) is non-zero.

Case II: m′ = −l′ + 1. Then m = m′′ + l′ − 1. The condition that k and l′ +m′ − k are both

nonnegative then requires k ∈ {0, 1}. Substituting m′ = −l′ + 1 and m = m′′ + l′ − 1, these two

terms in (136) for k ∈ {0, 1} are

1
(l+l′−l′′)!(l−m)!(l′′+m′′−1)!(l′+l′′−l−1)! −

1
(l+l′−l′′−1)!(l−m−1)!(l′′+m′′)!(l′+l′′−l)!

where each term is understood as 0 if an argument to one of its factorials is negative. Here l+l′−l′′ ≥

l + l′ − l′′ − 1 ≥ 0 always, because l ≥ l′′ + 1.

• If m = l, then the second term is 0. Also l′′ + m′′ − 1 = l′′ + (m + m′) − 1 = l′′ + l − l′ ≥ 0

and l′ + l′′ − l − 1 = (m−m′′ + 1) + l′′ − l − 1 = l′′ −m′′ ≥ 0, so the first term is non-zero.

• If m < l but m′′ = −l′′ or l = l′ + l′′, then the first term is 0, but the second term is non-zero.

It remains to consider m < l, m′′ ∈ {−l′′ + 1, l′′ − 1, l′′}, and l < l′ + l′′. Then both terms are

non-zero, and their sum is

1
(l+l′−l′′)!(l−m)!(l′′+m′′)!(l′+l′′−l)! ((l′′ +m′′)(l′ + l′′ − l)− (l + l′ − l′′)(l −m)) .

We now consider the three cases of m′′:

• m′′ = l′′ is not possible, because this would imply m = l′ + l′′ − 1 ≥ l, contradicting m < l.

• If m′′ = l′′ − 1, then m = l′ + l′′ − 2 ≥ l− 1. Hence we must have the equalities m = l− 1 and

l′ + l′′ − 1 = l. Then

(l′′ +m′′)(l′ + l′′ − l)− (l + l′ − l′′)(l −m) = (2l′′ − 1)− (2l′ − 1),

which is non-zero because our third given condition implies l′ 6= l′′ when |m| = l − 1, |m′| =

l′ − 1, and |m′′| = l′′ − 1.
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• If m′′ = −l′′ + 1, then

(l′′ +m′′)(l′ + l′′ − l)− (l + l′ − l′′)(l −m) = (l′ + l′′ − l)− (l + l′ − l′′)(l −m).

This is non-zero because l −m ≥ 1 and l + l′ − l′′ > l′ + l′′ − l strictly.

Thus we obtain that (136) is non-zero in all cases.

C.4.2 Spherical registration

In this section, we give proofs of our results relating to spherical registration.

Function basis

We describe the real spherical harmonic basis in this example, and prove Lemma 4.4.1.

The real spherical harmonic basis {hlm : l ≥ 0, m ∈ {−l, . . . , l}} used in Section 4.4.1 is related

to the complex spherical harmonic basis (130) by

hlm =



1√
2

(
yl,−m + (−1)mylm

)
if m > 0

yl0 if m = 0

i√
2

(
ylm − (−1)myl,−m

)
if m < 0.

It may be checked from (131) that these functions {hlm} are real-valued and form an orthonormal

basis for L2(S2,R). For any function f ∈ L2(S2,C), writing its orthogonal decompositions in the

bases {ylm} and {hlm} as

f =

∞∑
l=0

l∑
m=−l

u(l)
m ylm =

∞∑
l=0

l∑
m=−l

θ(l)
m hlm,

the coefficients {u(l)
m } and {θ(l)

m } are then related by the unitary transformation (4.22). If f is

real-valued, then {θ(l)
m } are real, and hence {u(l)

m } satisfy the sign symmetry (4.23).

Proof of Lemma 4.4.1. As described in Appendix C.4.1, the rotation by g ∈ SO(3) acts on the

complex spherical harmonic coefficients u ∈ Cd by

u 7→ D(g)u,
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where D(g) is the block-diagonal matrix defined in (4.24). Since u and θ are related by the unitary

transformations u = V ∗θ and θ = V u, the action on θ is then given by θ 7→ V ·D(g) · V ∗θ.

Terms of the high-noise series expansion

We prove Theorem 4.4.4 on the forms of s1(θ), s2(θ), and s3(θ).

Proof of Theorem 4.4.4. Recall by Lemma C.1.1 that

sk(θ) =
1

2(k!)
Eg
[
〈θ, g · θ〉k − 2〈θ, g · θ∗〉k + 〈θ∗, g · θ∗〉k

]
. (139)

Consider two different real spherical harmonic coefficient vectors θ, ϑ ∈ Rd, and the corresponding

complex coefficients u = V ∗θ ∈ Cd and v = V ∗ϑ ∈ Cd. We compute Eg[〈θ, g · ϑ〉k] for k = 1, 2, 3.

Case k = 1: By Lemma 4.4.1, for any g ∈ G,

〈θ, g · ϑ〉 = 〈θ, V D(g)V ∗ϑ〉 = 〈u,D(g)v〉.

From the block-diagonal form for D(g) in (4.24), we obtain

〈θ, g · ϑ〉 =

L∑
l=0

〈u(l), D(l)(g)v(l)〉 =

L∑
l=0

l∑
q,m=−l

u
(l)
q D

(l)
qm(g)v(l)

m . (140)

Applying the identities (132) yields

Eg[〈θ, g · ϑ〉] = u
(0)
0 v

(0)
0 .

Write the shorthands u(0) = u
(0)
0 and v(0) = v

(0)
0 , and recall from (4.23) that u(0), v(0) are real. Then

applying this to (139),

s1(θ) =
1

2
Eg[〈θ, g · θ〉]− Eg[〈θ∗, g · θ〉] +

1

2
Eg[〈θ∗, g · θ∗〉] =

1

2

(
u(0)(θ)− u(0)(θ∗)

)2

.

Case k = 2: We take the expected square on both sides of (140), applying (4.23) and the relation
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(133). Then

Eg[〈θ, g · ϑ〉2] =

L∑
l=0

l∑
q,m=−l

(−1)m+q

2l + 1
u

(l)
q u

(l)
−qv

(l)
m v

(l)
−m

=

L∑
l=0

l∑
q,m=−l

1

2l + 1
u

(l)
q u

(l)
q v

(l)
m v

(l)
m =

L∑
l=0

1

2l + 1
‖u(l)‖2 · ‖v(l)‖2.

Applying this to (139),

s2(θ) =
1

4
Eg[〈θ, g · θ〉2]− 1

2
Eg[〈θ∗, g · θ〉2] +

1

4
Eg[〈θ∗, g · θ∗〉2]

=

L∑
l=0

1

4(2l + 1)

(
‖u(l)(θ)‖2 − ‖u(l)(θ∗)‖2

)2

.

Case k = 3: We now take the expected cube on both sides of (140), applying the relation (134).

Recall the convention (137). Then

Eg[〈θ, g · ϑ〉3]

=

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

l∑
q,m=−l

l′∑
q′,m′=−l′

(−1)m+m′+q+q′

2l′′ + 1
· Cl,l

′,l′′

q,q′,q+q′C
l,l′,l′′

m,m′,m+m′u
(l)
q u

(l′)
q′ u

(l′′)
−q−q′v

(l)
m v

(l′)
m′ v

(l′′)
−m−m′

=

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

l∑
q,m=−l

l′∑
q′,m′=−l′

1

2l′′ + 1
· Cl,l

′,l′′

q,q′,q+q′C
l,l′,l′′

m,m′,m+m′u
(l)
q u

(l′)
q′ u

(l′′)
q+q′v

(l)
m v

(l′)
m′ v

(l′′)
m+m′ .

Recall that

Bl,l′,l′′(θ) =

l∑
m=−l

l′∑
m′=−l′

Cl,l
′,l′′

m,m′,m+m′u
(l)
m u

(l′)
m′ u

(l′′)
m+m′ , u = V ∗θ.

Then the above may be written as

Eg[〈θ, g · ϑ〉3] =

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1
Bl,l′,l′′(θ)Bl,l′,l′′(ϑ).
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Changing indices (m,m′) 7→ (−m,−m′) and applying the symmetries (138) and (4.23), we have

Bl,l′,l′′(θ) =

l∑
m=−l

l′∑
m′=−l′

Cl,l
′,l′′

−m,−m′,−m−m′u
(l)
−mu

(l′)
−m′u

(l′′)
−m−m′

=

l∑
m=−l

l′∑
m′=−l′

(−1)l+l
′+l′′Cl,l

′,l′′

m,m′,m+m′ · (−1)m+m′+(m+m′)u(l)
m u

(l′)
m′ u

(l′′)
m+m′

= (−1)l+l
′+l′′Bl,l′,l′′(θ).

Thus Bl,l′,l′′(θ) is real-valued if l + l′ + l′′ is even and pure imaginary if l + l′ + l′′ is odd. Applying

this to (139),

s3(θ) =
1

12
Eg[〈θ, g · θ〉3]− 1

6
Eg[〈θ∗, g · θ〉3] +

1

12
Eg[〈θ∗, g · θ∗〉3]

=
1

12

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1
(Bl,l′,l′′(θ)−Bl,l′,l′′(θ∗))

(
Bl,l′,l′′(θ)−Bl,l′,l′′(θ∗)

)

=
1

12

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1

∣∣∣Bl,l′,l′′(θ)−Bl,l′,l′′(θ∗)∣∣∣2.

Transcendence degrees

We now prove Theorem 4.4.2 on the sequences of transcendence degrees.

Proof of Theorem 4.4.2. For generic values (θ
(1)
−1, θ

(1)
0 , θ

(1)
1 ) ∈ R3 of the coefficients of θ at spherical

frequency l = 1, the action of {D(1)(g) : g ∈ SO(3)} on (θ
(1)
−1, θ

(1)
0 , θ

(1)
1 ) has trivial stabilizer {Id}.

Thus for any L ≥ 1, the full action of G on θ ∈ Rd also has trivial stabilizer, so trdegRG =

d− dim(G) = d− dim(SO(3)) = d− 3, and d0 = 3.

We compute trdeg(RG
≤k) for k = 1, 2, 3 using Lemma 4.2.6. Recall the forms of s1(θ) and s2(θ)

in Theorem 4.4.4, where u(0)(θ) = θ
(0)
0 and ‖u(l)(θ)‖2 = ‖θ(l)‖2 for θ(l) = (θ

(l)
m : m = −l, . . . , l).

Then we obtain directly that for generic θ∗ ∈ Rd,

trdeg(RG
≤1) = rank

(
∇2s1(θ∗)

)
= 1

trdeg(RG
≤2) = rank

(
∇2s1(θ∗) +∇2s2(θ∗)

)
= L+ 1.

It remains to show trdeg(RG
≤3) = d − 3. Note that trdeg(RG

≤3) ≤ trdeg(RG) = d − 3, so it suffices

to show the lower bound trdeg(RG
≤3) ≥ d− 3.
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By Lemma 4.2.6 and the fact that each Hessian ∇2sk(θ∗) is positive semidefinite,

trdeg(RG
≤3) ≥ rank

(
∇2s3(θ∗)

)
.

Writing the index set

J =
{

(l, l′, l′′) : 0 ≤ l, l′, l′′ ≤ L, |l − l′| ≤ l′′ ≤ l + l′
}
, (141)

we have by Theorem 4.4.4

s3(θ) =
1

12

∑
(l,l′,l′′)∈J

1

2l′′ + 1

(
Bl,l′,l′′(θ)−Bl,l′,l′′(θ∗)

)(
Bl,l′,l′′(θ)−Bl,l′,l′′(θ∗)

)
.

Let us denote

B(θ) =
(
Bl,l′,l′′(θ) : (l, l′, l′′) ∈ J

)
, B : Rd → C|J |,

and write dB(θ) ∈ C|J |×d for its the derivative in θ. Then, applying the chain rule to differentiate

s3(θ) twice at θ = θ∗, we obtain

∇2s3(θ∗) = dB(θ∗)
> · diag

(
1

6(2l′′ + 1)
: (l, l′, l′′) ∈ J

)
· dB(θ∗).

The diagonal matrix in the middle has full rank, so

rank
(
∇2s3(θ∗)

)
= rank

(
dB(θ∗)

)
. (142)

To analyze this rank, recall the complex parametrization u = V ∗θ ∈ Cd from (4.22), satisfying

the symmetry (4.23). Let us write the real and imaginary parts of u as

u(l)
m = v(l)

m + iw(l)
m

so that this symmetry (4.23) is equivalent to

v
(l)
−m = (−1)mv(l)

m , w
(l)
−m = (−1)m+1w(l)

m . (143)
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Note that for m = 0, this implies w
(l)
0 = 0. Then, setting

η(l)(θ) = (v
(l)
0 , v

(l)
1 , w

(l)
1 , v

(l)
2 , w

(l)
2 , . . . , v

(l)
l , w

(l)
l ),

these coordinates η(l) ∈ R2l+1 provide a (linear) invertible reparametrization of θ(l). This defines a

reparametrization

η(θ) =
(
η(l)(θ) : 0 ≤ l ≤ L

)
∈ Rd

with inverse function θ(η). Writing as shorthand η∗ = η(θ∗) and B(η) ≡ B(θ(η)), and denoting by

dηB(η) the derivative of B in the new variables η, (142) is equivalent to

rank
(
∇2s3(θ∗)

)
= rank

(
dηB(η∗)

)
.

Denote

B̃(η) =
(
Bl,l′,l′′(η) : (l, l′, l′′) ∈ J , max(l, l′, l′′) ≤ 10

)
.

Let us group the columns and rows of dηB into blocks indexed by {∼, 11, 12, . . . , L} as follows: The

column block ∼ corresponds to dη(0),...,η(10) . The row block ∼ corresponds to B̃(η). For l ≥ 11, the

column block l corresponds to dη(l) , and the row block l corresponds to B(l) as defined below in

Lemma C.4.3. (These blocks B̃ and B(l) for l ≥ 11 are disjoint by definition, and we may discard the

remaining rows of dηB not corresponding to any such block to produce a lower bound for its rank.)

Ordering the blocks by ∼, 11, 12, . . . , L, the resulting matrix dηB is block lower-triangular, because

each B(l) does not depend on the variables η(l+1), . . . , η(L). Thus rank(dηB) is lower-bounded by

the sum of ranks of all diagonal blocks, i.e.

rank(dηB(η∗)) ≥ rank
(

dη(0),...,η(10)B̃(η∗)
)

+

L∑
l=11

rank(dη(l)B
(l)(η∗)).

A direct numerical evaluation of the matrix dη(0),...,η(10)B̃(η∗) verifies that for η∗ ∈ Rd with all

entries of η
(0)
∗ , . . . , η

(10)
∗ equal to 1, we have8

rank
(

dη(0),...,η(10)B̃(η∗)
)

=

10∑
l=0

(2l + 1)− 3 = 118.

8. An equivalent statement was verified in (Bandeira et al., 2017, Theorem 5.5) corresponding to the case F = 10,
using exact-precision numerical arithmetic.
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Then also for generic η∗ ∈ Rd, by lower-semicontinuity of rank,

rank
(

dη(0),...,η(10)B̃(η∗)
)
≥

10∑
l=0

(2l + 1)− 3 = 118.

In particular, this establishes the desired result that rank(∇2s3(θ∗)) = rank(dηB(η∗)) ≥ d − 3 for

L = 10. If L ≥ 11, then by Lemma C.4.3 below, we also have for generic η∗ ∈ Rd,

L∑
l=11

rank(dη(l)B
(l)(η∗)) =

L∑
l=11

(2l + 1).

Combining these above,

rank(∇2s3(θ∗)) = rank(dηB(η∗)) ≥
10∑
l=0

(2l + 1)− 3 +

L∑
l=11

(2l + 1) = d− 3,

which completes the proof that trdeg(RG
≤3) = d−3. The remaining statements about (d0, d1, d2, d3)

and K directly follow.

Lemma C.4.3. Suppose L ≥ 11. For each l ∈ {11, . . . , L}, let J (l) be the set of tuples (l, l′, l′′) ∈ J

where l takes this fixed value, and where l′ ≤ l and l′′ ≤ l. Denote

B(l)(η) =
(
Bl,l′,l′′(η) : (l, l′, l′′) ∈ J (l)

)
∈ C|J

(l)|

and let dη(l)B
(l) ∈ C|J (l)|×(2l+1) be the submatrix of dηB corresponding to the derivative of B(l) in

η(l). Then for all generic η∗ ∈ Rd,

rank
(

dη(l)B
(l)(η∗)

)
= 2l + 1.

Proof. It suffices to show rank(dη(l)B
(l)(η∗)) = 2l + 1 for a single point η∗ ∈ Rd. Our strategy is to

choose η∗ with many coordinates equal to 0, such that dη(l)B
(l)(η∗) has a sparse structure and its

rank may be explicitly analyzed. Specifically, we choose η∗ so that

For l′ ∈ {l − 1, l} : v
(l′)
∗,m′ , w

(l′)
∗,m′ = 0 unless m′ = l − 1

For l′ ∈ {0, 1, 4, 5, . . . , l − 2} : v
(l′)
∗,m′ , w

(l′)
∗,m′ = 0 unless m′ = l′ (144)

For l′ ∈ {2, 3} : v
(l′)
∗,m′ , w

(l′)
∗,m′ = 0 unless m′ ∈ {l′, l′ − 1}.

We choose the values of the non-zero coordinates of η∗ to be generic. The rest of this proof checks

177



that rank(dη(l)B
(l)(η∗)) = 2l + 1 holds under this choice.

Recall the form of Bl,l′,l′′ from (4.25). We first compute dη(l)Bl,l′,l′′ in the two cases: (i) l′, l′′ < l

and (ii) l′ = l and l′′ < l.

Case I: l′, l′′ < l. For each k = 0, . . . , l, the derivatives ∂
v
(l)
k

, ∂
w

(l)
k

apply only to the terms u
(l)
m in

(4.25) for m ∈ {+k,−k}. We have u
(l)
m = v

(l)
m + iw

(l)
m = (−1)mv

(l)
−m− i · (−1)mw

(l)
−m where the second

equality applies the sign symmetry (160). Thus (relabeling k by m), for m > 0 strictly,

∂
v
(l)
m
Bl,l′,l′′ =

l′∑
m′=−l′

Cl,l
′,l′′

m,m′,m+m′u
(l′)
m′ u

(l′′)
m+m′ + (−1)mCl,l

′,l′′

−m,m′,−m+m′u
(l′)
m′ u

(l′′)
−m+m′

∂
w

(l)
m
Bl,l′,l′′ =

l′∑
m′=−l′

−i · Cl,l
′,l′′

m,m′,m+m′u
(l′)
m′ u

(l′′)
m+m′ + (−1)m · i · Cl,l

′,l′′

−m,m′,−m+m′u
(l′)
m′ u

(l′′)
−m+m′ .

Re-indexing m′ 7→ −m′ for the summations of the second terms, and applying the symmetries (138)

and (4.23), we obtain

∂
v
(l)
m
Bl,l′,l′′ =

l′∑
m′=−l′

2Cl,l
′,l′′

m,m′,m+m′ ×


Reu

(l′)
m′ u

(l′′)
m+m′ if l + l′ + l′′ is even

i · Imu
(l′)
m′ u

(l′′)
m+m′ if l + l′ + l′′ is odd,

(145)

∂
w

(l)
m
Bl,l′,l′′ =

l′∑
m′=−l′

2Cl,l
′,l′′

m,m′,m+m′ ×


Imu

(l′)
m′ u

(l′′)
m+m′ if l + l′ + l′′ is even

(−i) · Reu
(l′)
m′ u

(l′′)
m+m′ if l + l′ + l′′ is odd.

(146)

For m = 0, we have similarly

∂
v
(l)
0
Bl,l′,l′′ =

l′∑
m′=−l′

Cl,l
′,l′′

0,m′,m′u
(l′)
m′ u

(l′′)
m′ . (147)

Case II: l′ = l and l′′ < l. An additional contribution to each derivative ∂
v
(l)
k

, ∂
w

(l)
k

arises from

differentiating u
(l′)
m′ in (4.25). By symmetry of (4.25) with respect to interchanging l and l′, this has

the effect of doubling each of the above expressions. So for m > 0, we have

∂
v
(l)
m
Bl,l,l′′ =

l∑
m′=−l

4Cl,l,l
′′

m,m′,m+m′ ×


Reu

(l)
m′u

(l′′)
m+m′ if l′′ is even

i · Imu
(l)
m′u

(l′′)
m+m′ if l′′ is odd,

(148)

∂
w

(l)
m
Bl,l,l′′ =

l∑
m′=−l

4Cl,l,l
′′

m,m′,m+m′ ×


Imu

(l)
m′u

(l′′)
m+m′ if l′′ is even

(−i) · Reu
(l)
m′u

(l′′)
m+m′ if l′′ is odd.

(149)
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For m = 0 we have

∂
v
(l)
0
Bl,l,l′′ =

l∑
m′=−l

2Cl,l,l
′′

0,m′,m′u
(l)
m′u

(l′′)
m′ . (150)

Now specializing these derivatives to η∗ of the form (144), we observe for example the following:

If l′ ∈ {l − 1, l} and l′′ ∈ {4, . . . , l − 2}, then ∂
v
(l)
m
Bl,l′,l′′ , ∂w(l)

m
Bl,l′,l′′ are 0 unless |m + m′| = l′′

for either m′ = l − 1 or m′ = −(l − 1). Since 0 ≤ m ≤ l, this occurs for only the single index

m = (l − 1) − l′′. Thus, only two entries in the row dη(l)Bl,l′,l′′ are non-zero, corresponding to

∂
v
(l)
m
, ∂
w

(l)
m

for this m. More generally, let us write the condition (144) succinctly as

Type(0),Type(1),Type(4), . . . ,Type(l − 2),Type(l − 1) = 0, Type(l) = 1, Type(2, 3) = {0, 1}

where Type(l′) = i means that v
(l′)
∗,m′ , w

(l′)
∗,m′ = 0 except for m′∈ l′−i. Then for ∂

v
(l)
m
Bl,l′,l′′ , ∂w(l)

m
Bl,l′,l′′

to be non-zero, we require |m+m′| ∈ l′′−Type(l′′) for some m′ satisfying |m′| ∈ l′−Type(l′). This

occurs for the indices

m ∈
{∣∣(l′ − Type(l′))− (l′′ − Type(l′′))

∣∣, (l′ − Type(l′)) + (l′′ − Type(l′′))
}
∩ {0, . . . , l} (151)

where we use the set notations |A| = {|a| : a ∈ A}, A − B = {a − b : a ∈ A, b ∈ B}, and

A+B = {a+ b : a ∈ A, b ∈ B}.

For the given value of l, note that

J (l) =
{

(l, l′, l′′) : 0 ≤ l′ ≤ l, 0 ≤ l′′ ≤ l, l′ + l′′ ≥ l
}
.

We label rows of dη(l)B
(l)(η∗) by the pairs (l′, l′′) where (l, l′, l′′) ∈ J (l). We now choose 2l+ 1 such

rows (l′, l′′) and check that the corresponding square (2l + 1) × (2l + 1) submatrix is non-singular.

These rows are indicated in the left column of the below table. The right column displays all values

of m satisfying (151), i.e. for which ∂
v
(l)
m
, ∂
w

(l)
m

are non-zero in that row.

(l′, l′′) Values of m

(l − 1, l − 1) if l is even or (l, l − 1) if l is odd 0

(l, l − 2) 1

(l − 1, l − 2) 1

(l, l − 3) 2

(l − 1, l − 3) 2
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...
...

(l, 4) l − 5

(l − 1, 4) l − 5

(l − 5, 5) l − 10 and l

(l − 4, 4) l − 8 and l

(l, 1) l and l − 2

(l − 1, 1) l and l − 2

(l, 2) l, l − 2, and l − 3

(l − 1, 2) l, l − 2, and l − 3

(l, 3) l − 3 and l − 4

(l − 1, 3) l − 3 and l − 4

(l − 3, 3) l − 6, l − 5, l, and l − 1

(l − 2, 2) l − 4, l − 3, l, and l − 1

To verify that this selected (2l + 1) × (2l + 1) submatrix of dη(l)B
(l)(η∗) is non-singular, let us

order its rows in the order of the above table, and its columns according to the ordering of variables

v
(l)
0 , v

(l)
1 , w

(l)
1 , . . . , v

(l)
l−5, w

(l)
l−5, v

(l)
l , w

(l)
l , v

(l)
l−2, w

(l)
l−2, v

(l)
l−3, w

(l)
l−3, v

(l)
l−4, w

(l)
l−4, v

(l)
l−1, w

(l)
l−1

as they appear in the right column above. Then the table implies that this (2l+1)×(2l+1) submatrix

has a block lower-triangular structure with respect to 2l+ 1 = 1 + 2 + . . .+ 2. So it suffices to check

that each 1× 1 and 2× 2 diagonal block is non-singular. It is tedious but straightforward to verify

this explicitly, by computing their forms:

Block corresponding to v
(l)
0 : For even l, we have that l + (l − 1) + (l − 1) is even. Then

applying (147) and the symmetries (138) and (4.23), this 1× 1 matrix is

∂
v
(l)
0
Bl,l−1,l−1(η∗) =

(
Cl,l−1,l−1

0,l−1,l−1 + Cl,l−1,l−1
0,−(l−1),−(l−1)

)
|u(l−1)
∗,l−1|

2 = 2Cl,l−1,l−1
0,l−1,l−1|u

(l−1)
∗,l−1|

2.

For odd l, we have that l + l + (l − 1) is even. Then applying instead (150), this 1× 1 matrix is

∂
v
(l)
0
Bl,l,l−1(η∗) = 2Cl,l,l−1

0,l−1,l−1u
(l)
∗,l−1u

(l−1)
∗,l−1 + 2Cl,l,l−1

0,−(l−1),−(l−1)u
(l)
∗,l−1u

(l−1)
∗,l−1

= 4Cl,l,l−1
0,l−1,l−1 Reu

(l)
∗,l−1u

(l−1)
∗,l−1.
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These two coefficients Cl,l−1,l−1
0,l−1,l−1 and Cl,l,l−1

0,l−1,l−1 are non-zero by Lemma C.4.2, so this block is non-

zero for generic values of the non-zero coordinates v
(l−1)
∗,l−1, w

(l−1)
∗,l−1, v

(l)
∗,l−1, w

(l)
∗,l−1 of η∗.

Blocks corresponding to (v
(l)
1 , w

(l)
1 ), . . . , (v

(l)
l−2, w

(l)
l−2): The calculations for all these blocks are

similar. We demonstrate the case v
(l)
l−3, w

(l)
l−3: Applying (145–146) and (148–149), this 2× 2 block is

∂
v
(l)
l−3,w

(l)
l−3

(
Bl,l,2, Bl,l−1,2

)
(η∗)

=

 4Cl,l,2l−3,−(l−1),−2 · Reu
(l)
∗,−(l−1)u

(2)
∗,−2 4Cl,l,2l−3,−(l−1),−2 · Imu

(l)
∗,−(l−1)u

(2)
∗,−2

2iCl,l−1,2
l−3,−(l−1),−2 · Imu

(l−1)
∗,−(l−1)u

(2)
∗,−2 −2iCl,l−1,2

l−3,−(l−1),−2 · Reu
(l−1)
∗,−(l−1)u

(2)
∗,−2


=

4Cl,l,2l−3,−(l−1),−2 0

0 2iCl,l−1,2
l−3,−(l−1),−2


Reu

(l)
∗,−(l−1)u

(2)
∗,−2 Imu

(l)
∗,−(l−1)u

(2)
∗,−2

Imu
(l−1)
∗,−(l−1)u

(2)
∗,−2 −Reu

(l−1)
∗,−(l−1)u

(2)
∗,−2


The coefficients Cl,l,2l−3,−(l−1),−2 and Cl,l−1,2

l−3,−(l−1),−2 are both non-zero by Lemma C.4.2, so the first

matrix of this product is non-singular. It is direct to check that the determinant of the second matrix

is a non-zero polynomial of the six non-zero coordinates v
(l)
∗,l−1, w

(l)
∗,l−1, v

(l−1)
∗,l−1, w

(l−1)
∗,l−1, v

(2)
∗,2, w

(2)
∗,2 of η∗.

Then for generic values of these six coordinates, the determinant is non-zero, and this matrix is also

non-singular.

Blocks corresponding to (v
(l)
l−1, w

(l)
l−1), (v

(l)
l , w

(l)
l ): Applying (145–146), these 2 × 2 matrices

are

∂
v
(l)
l−1,w

(l)
l−1

(
Bl,l−3,3, Bl,l−2,2

)
(η∗)

=

2Cl,l−3,3
l−1,−(l−3),2 · Reu

(l−3)
∗,−(l−3)u

(3)
∗,2 2Cl,l−3,3

l−1,−(l−3),2 · Imu
(l−3)
∗,−(l−3)u

(3)
∗,2

2Cl,l−2,2
l−1,−(l−2),1 · Reu

(l−2)
∗,−(l−2)u

(2)
∗,1 2Cl,l−2,2

l−1,−(l−2),1 · Imu
(l−2)
∗,−(l−2)u

(2)
∗,1

 ,

∂
v
(l)
l ,w

(l)
l

(
Bl,l−5,5, Bl,l−4,4

)
(η∗)

=

2Cl,l−5,5
l,−(l−5),5 · Reu

(l−5)
∗,−(l−5)u

(5)
∗,5 2Cl,l−5,5

l,−(l−5),5 · Imu
(l−5)
∗,−(l−5)u

(5)
∗,5

2Cl,l−4,4
l,−(l−4),4 · Reu

(l−4)
∗,−(l−4)u

(4)
∗,4 2Cl,l−4,4

l,−(l−4),4 · Imu
(l−4)
∗,−(l−4)u

(4)
∗,4

 .

The coefficients Cl,l−3,3
l−1,−(l−3),2,C

l,l−2,2
l−1,−(l−2),1,C

l,l−5,5
l,−(l−5),5,C

l,l−4,4
l,−(l−4),4 are non-zero by Lemma C.4.2. Then

the determinant of the first matrix is a non-zero polynomial of the eight coordinates

v
(l−3)
∗,l−3, w

(l−3)
∗,l−3, v

(l−2)
∗,l−2, w

(l−2)
∗,l−2, v

(2)
∗,1, w

(2)
∗,1, v

(3)
∗,2, w

(3)
∗,2,
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and that of the second matrix is a non-zero polynomial of the eight coordinates

v
(l−5)
∗,l−5, w

(l−5)
∗,l−5, v

(l−4)
∗,l−4, w

(l−4)
∗,l−4, v

(5)
∗,5, w

(5)
∗,5, v

(4)
∗,4, w

(4)
∗,4.

(Note that these eight coordinates are distinct when l ≥ 11.) Thus for generic values of these

coordinates, these matrices are non-singular.

Combining these cases, we have shown that each 1× 1 and 2× 2 diagonal block of this (2l+ 1)×

(2l + 1) submatrix is nonsingular for generic choices of the non-zero coordinates of η∗. Then they

are also simultaneously nonsingular for generic choices of these coordinates, so in particular there

exists η∗ ∈ Rd where dη(l)B
(l)(η∗) has full column rank 2l + 1. Then dη(l)B

(l)(η∗) must also have

full column rank 2l + 1 for all generic η∗ ∈ Rd, concluding the proof.

C.4.3 Unprojected cryo-EM

In this section, we give proofs of our results relating to unprojected cryo-EM.

Function basis

We describe the choice of function basis for this example, and prove Lemma 4.4.5.

For f ∈ L2(R3,C), denote its Fourier transform

f̂(k1, k2, k3) =

∫
R3

e−2πi(k1x1+k2x2+k3x3)f(x1, x2, x3)dx1 dx2 dx3. (152)

We reparametrize k = (k1, k2, k3) ∈ R3 in the Fourier domain by spherical coordinates (ρ, φ1, φ2),

and write with a slight abuse of notation f̂(ρ, φ1, φ2) for this parametrization.

Let ĵlsm be as defined in (4.26), where ylm are the complex spherical harmonics in (130) and

{zs : s ≥ 1} are any functions zs : [0,∞) → R satisfying the orthogonality relation (4.27). By

the spherical change-of-coordinates dk1 dk2 dk3 = ρ2 sinφ1 dρ dφ1 dφ2, these functions {ĵlsm} are

orthonormal in L2(R3,C). Then so are their inverse Fourier transforms {jlsm}, by the Parseval

relation.

Recall the space of (L, S0, . . . , SL)-bandlimited functions (4.29). By linearity of the Fourier

transform, the basis representation (4.29) is equivalent to

f̂ =
∑

(l,s,m)∈I

u(ls)
m ĵlsm (153)
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in the Fourier domain. A function f ∈ L2(R3,C) is real-valued if and only if

f̂(ρ, φ1, φ2) = f̂(ρ, π − φ1, π + φ2),

where (ρ, π − φ1, π + φ2) are the coordinates for the reflection of (ρ, φ1, φ2) about the origin. Ap-

plying Plm(x) = (−1)l+mPlm(−x) by (129) and hence ylm(π − φ1, π + φ2) = (−1)lylm(φ1, φ2) =

(−1)l+myl,−m(φ1, φ2) by (130) and (131), it may be checked that this condition is equivalent to the

sign symmetry

u(ls)
m = (−1)l+mu

(ls)
−m (154)

in the basis representations (4.29) and (153). We may then define a real basis {hlsm} by

hlsm =



1√
2

(
jls,−m + (−1)l+mjlsm

)
if m > 0

il · jls0 if m = 0

i√
2

(
jlsm − (−1)l+mjls,−m

)
if m < 0.

(155)

Note that by this definition, hlsm satisfies (154) for its coefficients u
(ls)
m in the basis {jlsm}, and

hence is real-valued. Thus {hlsm} forms an orthonormal basis for L2(R3,R). For any function

f ∈ L2(R3,R), writing its orthogonal decompositions

f =
∑

(l,s,m)∈I

u(ls)
m · jlsm =

∑
(l,s,m)∈I

θ(ls)
m · hlsm,

the coefficients {u(ls)
m } and {θ(ls)

m } are then related by a unitary transform u = V̂ ∗θ defined as

u(ls)
m =



(−1)l+m√
2

(θ
(ls)
|m| − iθ

(ls)
−|m|) if m > 0

il · θ(ls)
0 if m = 0

1√
2
(θ

(ls)
|m| + iθ

(ls)
−|m|) if m < 0.

(156)

Here, the sign symmetry (154) and transform V̂ are different from (4.23) and the transform V defined

by (4.22) in the example of spherical registration, because we are modeling the Fourier transform f̂

rather than f in the spherical harmonics basis, but we assume that f rather than f̂ is real-valued.

Proof of Lemma 4.4.5. Note that if fg(x) = f(g · x), then its Fourier transform undergoes the same
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rotation f̂g(k) = f̂(g · k), by (152). Writing

f̂(ρ, φ1, φ2) =

L∑
l=0

Sl∑
s=1

zs(ρ) · f̂ls(φ1, φ2), f̂ls(φ1, φ2) =

l∑
m=−l

u(ls)
m ylm(φ1, φ2),

each function f̂ls is defined on the unit sphere, and the rotation by g acts separately on each such

function f̂ls via the map u(ls) 7→ D(l)(g)u(ls) described in Appendix C.4.1. Thus rotation by g

induces the transformation u 7→ D(g)u on the complex coefficient vector u, for D(g) as defined

in (4.32). Applying the unitary relations u = V̂ ∗θ and θ = V̂ u, this rotation then induces the

transformation θ 7→ V̂ ·D(g) · V̂ ∗θ on the real coefficients θ.

Terms of the high-noise series expansion

We prove Theorem 4.4.8 on the forms of s1(θ), s2(θ), and s3(θ).

Proof of Theorem 4.4.8. Similar to the proof of Theorem 4.4.4, consider two different real coeffi-

cient vectors θ, ϑ ∈ Rd, with corresponding complex coefficients u = V̂ ∗θ and v = V̂ ∗ϑ. We compute

Eg[〈θ, g · ϑ〉k] for k = 1, 2, 3.

Case k = 1: By Lemma 4.4.5, for any g ∈ G,

〈θ, g · ϑ〉 = 〈θ, V̂ D(g)V̂ ∗ϑ〉 = 〈u,D(g)v〉.

From the block-diagonal form of D(g) in (4.32), we obtain

〈θ, g · ϑ〉 =

L∑
l=0

Sl∑
s=1

〈u(ls), D(l)(g)v(ls)〉 =

L∑
l=0

Sl∑
s=1

l∑
q,m=−l

u
(ls)
q D(l)

qm(g)v(ls)
m . (157)

Applying the identities (132) yields

Eg[〈θ, g · ϑ〉] =

S0∑
s=1

u
(0s)
0 v(0s).

Write as shorthand u(0s) = u
(0s)
0 , v(0s) = v

(0s)
0 , and observe from (154) that these are real-valued.

Then applying this to (139), we have

s1(θ) =
1

2
Eg[〈θ, g · θ〉]− Eg[〈θ∗, g · θ〉] +

1

2
Eg[〈θ∗, g · θ∗〉] =

1

2

S0∑
s=1

(
u(0s)(θ)− u(0s)(θ∗)

)2

.

184



Case k = 2: We take the expected square on both sides of (157), applying (154) and the relation

(133). Then

Eg[〈θ, g · ϑ〉2] =

L∑
l=0

Sl∑
s,s′=1

l∑
q,m=−l

(−1)m+q

2l + 1
u

(ls)
q u

(ls′)
−q v(ls)

m v
(ls′)
−m

=

L∑
l=0

Sl∑
s,s′=1

l∑
q,m=−l

1

2l + 1
u

(ls)
q u(ls′)

q v(ls)
m v

(ls′)
m

=

L∑
l=0

1

2l + 1

Sl∑
s,s′=1

〈u(ls), u(ls′)〉 · 〈v(ls), v(ls′)〉.

Note that from the isometry 〈u(ls), u(ls′)〉 = 〈θ(ls), θ(ls′)〉, the inner-products on the last line are real.

Then applying this to (139),

s2(θ) =
1

4
Eg[〈θ, g · θ〉2]− 1

2
Eg[〈θ∗, g · θ〉2] +

1

4
Eg[〈θ∗, g · θ∗〉2]

=

L∑
l=0

1

4(2l + 1)

Sl∑
s,s′=1

(
〈u(ls)(θ), u(ls′)(θ)〉 − 〈u(ls)(θ∗), u

(ls′)(θ∗)〉
)2

.

Case k = 3: We now take the expected cube on both sides of (157) and apply the relations (134)

and (154). Then

Eg[〈θ, g · ϑ〉3] =

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

Sl∑
s=1

Sl′∑
s′=1

Sl′′∑
s′′=1

l∑
q,m=−l

l′∑
q′,m′=−l′

1

2l′′ + 1

· Cl,l
′,l′′

q,q′,q+q′C
l,l′,l′′

m,m′,m+m′u
(ls)
q u

(l′s′)
q′ u

(l′′s′′)
q+q′ v

(ls)
m v

(l′s′)
m′ v

(l′′s′′)
m+m′ .

Recall that

B(l,s),(l′,s′),(l′′,s′′)(θ) =

l∑
m=−l

l′∑
m′=−l′

Cl,l
′,l′′

m,m′,m+m′u
(ls)
m u

(l′s′)
m′ u

(l′′s′′)
m+m′ , u = V̂ ∗θ

with the convention (137). Changing indices (m,m′) 7→ (−m,−m′) and applying the symmetries
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(138) and (154), we have

B(l,s),(l′,s′),(l′′,s′′)(θ) =

l∑
m=−l

l′∑
m′=−l′

Cl,l
′,l′′

−m,−m′,−m−m′u
(ls)
−mu

(l′s′)
−m′ u

(l′′s′′)
−m−m′

=

l∑
m=−l

l′∑
m′=−l′

(−1)l+l
′+l′′Cl,l

′,l′′

m,m′,m+m′ ·(−1)l+l
′+l′′+m+m′+(m+m′)u(ls)

m u
(l′s′)
m′ u

(l′′s′′)
m+m′

= B(l,s),(l′,s′),(l′′,s′′)(θ).

Thus (in contrast to spherical registration in Section 4.4.1 and Appendix C.4.2) B(l,s),(l′,s′),(l′′,s′′)(θ)

is always real-valued. Then the above may be written as

Eg[〈θ, g · ϑ〉3] =

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1

Sl∑
s=1

Sl′∑
s′=1

Sl′′∑
s′′=1

B(l,s),(l′,s′),(l′′,s′′)(θ)B(l,s),(l′,s′),(l′′,s′′)(ϑ).

Then applying this to (139),

s3(θ) =
1

12
Eg[〈θ, g · θ〉3]− 1

6
Eg[〈θ∗, g · θ〉3] +

1

12
Eg[〈θ∗, g · θ∗〉3]

=
1

12

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1

Sl∑
s=1

Sl′∑
s′=1

Sl′′∑
s′′=1

(
B(l,s),(l′,s′),(l′′,s′′)(θ)−B(l,s),(l′,s′),(l′′,s′′)(θ∗)

)2
. (158)

Transcendence degrees

We now prove Theorem 4.4.6 on the sequences of transcendence degrees.

Proof of Theorem 4.4.6. As in Theorem 4.4.2, considering the frequencies (l, s) = (1, 1), for generic

(θ
(11)
−1 , θ

(11)
0 , θ

(11)
1 ) ∈ R3 the action of {D(1)(g) : g ∈ SO(3)} on (θ

(11)
−1 , θ

(11)
0 , θ

(11)
1 ) has trivial stabilizer.

Then trdegRG = d− dim(G) = d− 3, and d0 = 3.

We now compute trdeg(RG
≤k) for k = 1, 2, 3 using Lemma 4.2.6. Recall the forms of s1(θ) and

s2(θ) in Theorem 4.4.8. For k = 1, differentiating twice at θ = θ∗ yields

∇2s1(θ∗) =

S0∑
s=1

∇u(0s)(θ∗)∇u(0s)(θ∗)
>.
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Recalling u(0s)(θ) = θ
(0s)
0 , these vectors {∇u(0s)(θ∗)}S0

s=1 are S0 different standard basis vectors, so

trdeg(RG
≤1) = rank

(
∇2s1(θ∗)

)
= S0.

For k = 2, differentiating twice at θ = θ∗ yields

∇2s1(θ∗) +∇2s2(θ∗) =

S0∑
s=1

∇u(0s)(θ∗)∇u(0s)(θ∗)
>

+

L∑
l=0

1

2(2l + 1)

Sl∑
s,s′=1

∇[〈u(ls)(θ), u(ls′)(θ)〉]∇[〈u(ls)(θ), u(ls′)(θ)〉]>
∣∣∣
θ=θ∗

.

Defining matrices G0 and G with the columns

G0
s := ∇u(0s)(θ∗) for 1 ≤ s ≤ S0

Glss′ :=
1√

2(2l + 1)
∇[〈u(ls)(θ), u(ls′)(θ)〉]

∣∣∣
θ=θ∗

for 0 ≤ l ≤ L, 1 ≤ s, s′ ≤ Sl,

this may be written as

∇2s1(θ∗) +∇2s2(θ∗) = G0(G0)> +GG> = [G | G0][G | G0]>.

For generic θ∗, the column span of G0 coincides with the span of columns {G0ss : s = 1, . . . , S0} of

G. Thus

trdeg(RG
≤2) = rank(∇2s1(θ∗) +∇2s2(θ∗)) = rank([G | G0]) = rank(G).

Applying the isometry 〈u(ls)(θ), u(ls′)(θ)〉 = 〈θ(ls), θ(ls′)〉, Lemma C.4.4 below shows that

rank(G) =

L∑
l=0


Sl(Sl+1)

2 if Sl < 2l + 1,

(2l + 1)(Sl − l) if Sl ≥ 2l + 1,

establishing the desired form for k = 2.

For k = 3, we have trdeg(RG
≤3) ≤ trdeg(RG) = d−3, so it suffices to show rank(∇2s3(θ∗)) ≥ d−3.

Writing the index set

K =
{

((l,s),(l′,s′),(l′′,s′′)) : 0≤ l, l′, l′′≤L, |l−l′| ≤ l′′≤ l+l′, 1 ≤ s ≤ Sl, 1 ≤ s′ ≤ Sl′ , 1 ≤ s′′ ≤ Sl′′
}
,
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by Theorem 4.4.8 we have

s3(θ) =
∑

((l,s),(l′,s′),(l′′,s′′))∈K

1

12
· 1

2l′′ + 1
·
(
B(l,s),(l′,s′),(l′′,s′′)(θ)−B(l,s),(l′,s′),(l′′,s′′)(θ∗)

)2
for the function B(l,s),(l′,s′),(l′′,s′′)(θ) defined in (4.34). Recall from the proof of Theorem 4.4.8 that

B(l,s),(l′,s′),(l′′,s′′)(θ) is real-valued. Let us denote

B(θ) =
(
B(l,s),(l′,s′),(l′′,s′′)(θ) : ((l, s), (l′, s′), (l′′, s′′)) ∈ K

)
, B : Rd → R|K|,

and write dB(θ) ∈ R|K|×d for its the derivative in θ. Then, applying the chain rule to differentiate

s3(θ) twice at θ = θ∗, we obtain

∇2s3(θ∗) = dB(θ∗)
> · diag

(
1

6(2l′′ + 1)
: ((l, s), (l′, s′), (l′′, s′′)) ∈ K

)
· dB(θ∗).

The diagonal matrix in the middle has full rank, so

rank
(
∇2s3(θ∗)

)
= rank (dB(θ∗)) . (159)

To analyze this rank, recall the complex parametrization u = V̂ ∗θ ∈ Cd from (156), where u

satisfies the symmetry (154). Let us write the real and imaginary parts of u as

u(ls)
m = v(ls)

m + iw(ls)
m

so that this symmetry (154) is equivalent to

v
(ls)
−m = (−1)l+mv(ls)

m , w
(ls)
−m = (−1)l+m+1w(ls)

m . (160)

Note that for m = 0, this implies v
(ls)
0 = 0 when l is odd and w

(ls)
0 = 0 when l is even. Then, setting

η(ls)(θ) =


(v

(ls)
0 , v

(ls)
1 , w

(ls)
1 , . . . , v

(ls)
l , w

(ls)
l ) if l is even

(w
(ls)
0 , v

(ls)
1 , w

(ls)
1 , . . . , v

(ls)
l , w

(ls)
l ) if l is odd,

(161)

these coordinates η(ls) ∈ R2l+1 provide a (linear) invertible reparametrization of θ(ls). This defines

a reparametrization

η(θ) =
(
η(ls)(θ) : 0 ≤ l ≤ L, 1 ≤ s ≤ Sl

)
∈ Rd (162)
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with inverse function θ(η). Writing as shorthand η∗ = η(θ∗) and B(η) ≡ B(θ(η)), and denoting by

dηB(η) the derivative of B in the new variables η, (159) is equivalent to

rank
(
∇2s3(θ∗)

)
= rank(dηB(η∗)). (163)

Let us group the columns and rows of dηB into blocks indexed by (l, s), where the (l, s) column

block corresponds to dη(ls) and the (l, s) row block corresponds to B(ls) as defined below in Lemma

C.4.5. (These blocks B(ls) are disjoint by definition, and we may discard the remaining rows of dηB

not belonging to any such block to produce a lower bound for its rank.) Ordering the pairs (l, s) as

in Lemma C.4.5, the resulting matrix dηB is block lower-triangular. Thus its rank is lower-bounded

by the total rank of all blocks along the diagonal, i.e.

rank(dηB(η∗)) ≥
L∑
l=0

Sl∑
s=1

rank(dη(ls)B
(ls)(η∗)).

Lemma C.4.5 shows that for generic η∗ ∈ Rd,

L∑
l=2

Sl∑
s=1

rank(dη(ls)B
(ls)(η∗)) =

L∑
l=2

Sl∑
s=1

(2l + 1) =

L∑
l=2

(2l + 1)Sl,

S1∑
s=1

rank(dη(1s)B
(1s)(η∗)) ≥ 1 + 2 +

S1∑
s=3

3 = 3S1 − 3

S0∑
s=1

rank(dη(0s)B
(0s)(η∗)) = S0.

Combining these,

trdegRG
≤3 = rank(∇2s3(θ∗)) = rank(dηB(η∗)) ≥

(
L∑
l=0

(2l + 1)Sl

)
− 3 = d− 3.

Thus trdegRG
≤3 = d − 3. The values of (d0, d1, d2, d3) directly follow. We may check that when

L = 1, we have trdegRG
≤2 = d − 3 and hence K = 2. For all other L, we have trdegRG

≤2 < d − 3

strictly, so K = 3.

Lemma C.4.4. For any l ≥ 0 and S ≥ 2, consider θ(1), . . . , θ(S) ∈ R2l+1 and the Jacobian matrix

of all their pairwise inner-products with respect to θ = (θ(1), . . . , θ(S)) ∈ R(2l+1)S,

dθ[〈θ(s), θ(s′)〉 : 1 ≤ s ≤ s′ ≤ S] ∈ R
S(S+1)

2 ×(2l+1)S .
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At generic θ∗ ∈ R(2l+1)S, this matrix has rank

rank
(

dθ[〈θ(s), θ(s′)〉 : 1 ≤ s ≤ s′ ≤ S]
∣∣∣
θ=θ∗

)
=


S(S+1)

2 S < 2l + 1

(2l + 1)(S − l) S ≥ 2l + 1.

Proof. Let q = min(2l + 1, S) and consider the rows of the Jacobian for pairs (s, s′) given by

(1, 1), (1, 2), . . . , (1, S), (2, 2), (2, 3), . . . , (2, S), . . . (q, q), . . . , (q, S).

It may be checked that the number of such rows is exactly the desired formula for the rank. Consider

θ∗ where θ
(1)
∗,1 = θ

(2)
∗,2 = · · · = θ

(q)
∗,q = 1, and all other coordinates are 0. For this θ∗, the entries of the

Jacobian are given by

∂
θ
(p)
m

[〈θ(s), θ(s′)〉]
∣∣∣
θ=θ∗

= 1{p = s} · θ(s′)
∗,m + 1{p = s′} · θ(s)

∗,m = 1{p = s,m = s′}+ 1{p = s′,m = s}.

Thus for each row (s, s′) above where s ≤ q ≤ 2l + 1 and s′ ≤ S, there are either 1 or 2 non-zero

entries, in the column ∂
θ
(s′)
s

and also in the column ∂
θ
(s)

s′
if s′ ≤ 2l + 1. These columns are distinct

for different rows (s, s′), so the submatrix of these columns has full row rank. This shows

rank
(

dθ[〈θ(s), θ(s′)〉 : 1 ≤ s ≤ s′ ≤ S]
∣∣∣
θ=θ∗

)
≥


S(S+1)

2 S < 2l + 1

(2l + 1)(S − l) S ≥ 2l + 1

for this choice of θ∗, and hence also at any generic θ∗.

For the corresponding upper bound, for S < 2l + 1 this follows because the Jacobian has only

S(S + 1)/2 rows. For S ≥ 2l + 1, consider the action of SO(2l + 1) on θ by simultaneous rotation

of the vectors θ(1), . . . , θ(S). At generic θ∗ and for S ≥ 2l + 1, this action is injective. Hence θ∗ has

trivial stabilizer, and dim(Oθ∗) = dim(SO(2l + 1)) = (2l + 1)l where Oθ∗ is the orbit of θ∗ under

this action. Since 〈θ(s), θ(s′)〉 is constant on Oθ∗ , for each vector v in the dimension-(2l+ 1)l tangent

space to Oθ∗ , we have

dθ[〈θ(s), θ(s′)〉 : 1 ≤ s ≤ s′ ≤ S]
∣∣
θ=θ∗

· v = 0.

Thus the column rank of the Jacobian is at most (2l+1)S−(2l+1)l = (2l+1)(S− l), as desired.

Lemma C.4.5. Suppose L ≥ 1 and S0, . . . , SL ≥ 2. Order the pairs (l, s) by (l, s) < (l′, s′) if l < l′

or if l = l′ and s < s′. Fix any l ∈ {1, . . . , L} and s ∈ {1, . . . , Sl}, and let K(ls) be the set of tuples
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((l, s), (l′, s′), (l′′, s′′)) ∈ K where (l, s) take these fixed values, and (l′, s′) ≤ (l, s) and (l′′, s′′) ≤ (l, s).

Denote

B(ls)(η) =
(
B(l,s),(l′,s′),(l′′,s′′)(η) : ((l, s), (l′, s′), (l′′, s′′)) ∈ K(ls)

)
∈ R|K

(ls)|

and let dη(ls)B
(ls) ∈ R|K(ls)|×(2l+1) be its Jacobian in η(ls). Then for any generic η∗ ∈ Rd:

(a) If l ≥ 2, then rank(dη(ls)B
(ls)(η∗)) = 2l + 1.

(b) If l ≥ 1 and s ≥ 3, then also rank(dη(ls)B
(ls)(η∗)) = 2l+1 = 3. Furthermore for s = 2, removing

w
(12)
0 from η(12), we have rank(d

v
(12)
1 ,w

(12)
1

B(12)(η∗)) = 2. For s = 1, removing w
(11)
0 , w

(11)
1 from

η(11), we have rank(d
v
(11)
1

B(11)(η∗)) = 1.

(c) If l = 0, then rank(dη(0s)B
(0s)(η∗)) = 1.

Proof. The strategy is similar to the proof of Lemma C.4.3. For each statement, it suffices to exhibit

a single point η∗ ∈ Rd where the rank equality holds. We choose η∗ having most coordinates 0, to

allow an explicit computation of the rank.

Recall the form of B(l,s),(l′,s′),(l′′,s′′) from (4.34). We first compute dη(ls)B(l,s),(l′,s′),(l′′,s′′): If

(l′, s′), (l′′, s′′) < (l, s) strictly, then the derivative dη(ls) applies to only the term u
(ls)
m in (4.34). A

computation analogous to (145–146) using the sign symmetry (154) shows, for m > 0 strictly,

∂
v
(ls)
m
B(l,s),(l′,s′),(l′′,s′′) =

l′∑
m′=−l′

2Cl,l
′,l′′

m,m′,m+m′ · Reu
(l′s′)
m′ u

(l′′s′′)
m+m′ (164)

∂
w

(ls)
m
B(l,s),(l′,s′),(l′′,s′′) =

l′∑
m′=−l′

2Cl,l
′,l′′

m,m′,m+m′ · Imu
(l′s′)
m′ u

(l′′s′′)
m+m′ . (165)

For m = 0, recalling that η
(ls)
0 = v

(ls)
0 if l is even and η

(ls)
0 = w

(ls)
0 if l is odd, we also have

∂
η
(ls)
0
B(l,s),(l′,s′),(l′′,s′′) =

l′∑
m′=−l′

Cl,l
′,l′′

0,m′,m′u
(l′s′)
m′ u

(l′′s′′)
m′ ×


1 if l is even

−i if l is odd.

(166)

If (l′, s′) = (l, s) and (l′′, s′′) < (l, s) strictly, an additional contribution to the derivatives arise
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from differentiating u
(l′s′)
m′ . This doubles the above expressions, and we have

∂
v
(ls)
m
B(l,s),(l,s),(l′′,s′′) =

l∑
m′=−l

4Cl,l,l
′′

m,m′,m+m′ · Reu
(ls)
m′ u

(l′′s′′)
m+m′ (167)

∂
w

(ls)
m
B(l,s),(l,s),(l′′,s′′) =

l∑
m′=−l

4Cl,l,l
′′

m,m′,m+m′ · Imu
(ls)
m′ u

(l′′s′′)
m+m′ (168)

∂
η
(ls)
0
B(l,s),(l,s),(l′′,s′′) =

l∑
m′=−l

2Cl,l,l
′′

0,m′,m′u
(ls)
m′ u

(l′′s′′)
m′ ×


1 if l is even

−i if l is odd.

(169)

We now use a different construction of η∗ for different values of (l, s):

Part (a), l ≥ 4: Let us fix two radial frequencies (A,B) = (1, 2). (We use here the condition

S0, . . . , SL ≥ 2, so that these frequencies exist for each l = 0, . . . , L.) We choose η∗ such that for all

l′ ∈ {1, . . . , l − 1} and m′ ∈ {0, . . . , l′},

v
(l′A)
∗,m′ = w

(l′A)
∗,m′ = 0 unless m′ = l′, v

(l′B)
∗,m′ = w

(l′B)
∗,m′ = 0 unless m′ = l′ − 1.

We choose the non-zero coordinates of η∗ to be generic. Using similar notation as in Lemma C.4.3,

we write this as

Type(l′, A) = 0, Type(l′, B) = 1 for all l′ = 1, . . . , l − 1,

where Type(l′, s′) = i indicates that v
(l′s′)
∗,m , w

(l′s′)
∗,m = 0 unless m = l′−i. (In contrast to Lemma C.4.3,

here Type(·) is a single integer rather than a set.) For ∂
v
(ls)
m
B(l,s),(l′,s′),(l′′,s′′), ∂w(ls)

m
B(l,s),(l′,s′),(l′′,s′′)

to be non-zero, we require |m + m′| = l′′ − Type(l′′, s′′) and |m′| = l′ − Type(l′, s′). This requires

analogously to (151)

m ∈
{∣∣(l′ − Type(l′, s′))− (l′′ − Type(l′′, s′′))

∣∣, (l′ − Type(l′, s′)) + (l′′ − Type(l′′, s′′))
}
. (170)

Rows of dη(ls)B
(ls)(η∗) may be indexed by (l′, s′), (l′′, s′′) for which ((l, s), (l′, s′), (l′′, s′′)) ∈ K(ls).

We select 2l + 1 such rows, given by the left column of the following table. Note that when l ≥ 4,

these rows satisfy the requirement l′ + l′′ ≥ l in the definition of K. For each row, the right column

indicates the values of m satisfying (170), for which ∂
v
(ls)
m
, ∂
w

(ls)
m

are non-zero.
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(l′, s′) and (l′′, s′′) Values of m

(l − 1, A) and (l − 1, A) if l is even; (l − 2, A) and (l − 1, B) if l is odd 0

(l − 1, B) and (l − 1, A) 1

(l − 2, A) and (l − 1, A) 1

(l − 2, B) and (l − 1, A) 2

(l − 3, A) and (l − 1, A) 2

...
...

(3, B) and (l − 1, A) l − 3

(2, A) and (l − 1, A) l − 3

(3, B) and (l − 1, B) l − 4 and l

(2, A) and (l − 1, B) l − 4 and l

(2, B) and (l − 1, B) l − 3 and l − 1

(1, A) and (l − 1, B) l − 3 and l − 1

(2, B) and (l − 1, A) l and l − 2

(1, A) and (l − 1, A) l and l − 2

To verify that this selected (2l + 1)× (2l + 1) submatrix of dη(ls)B
(ls)(η∗) is non-singular, we order

its rows as in the above table, and its columns by the ordering of variables

η
(ls)
0 , v

(ls)
1 , w

(ls)
1 , . . . , v

(ls)
l−3, w

(ls)
l−3, v

(ls)
l , w

(ls)
l , v

(ls)
l−1, w

(ls)
l−1, v

(ls)
l−2, w

(ls)
l−2

as they appear in the right column above. Then this (2l + 1) × (2l + 1) submatrix is block lower-

triangular in the decomposition 2l+ 1 = 1 + 2 + 2 + . . .+ 2. It suffices to check that each 1× 1 and

2× 2 diagonal block is non-singular.

Block corresponding to η
(l)
0 : Applying (166) and the symmetries (138) and (154), the first

1× 1 diagonal block is

∂(ls)
η0 B(l,s),(l−1,A),(l−1,A)(η∗) = 2Cl,l−1,l−1

0,l−1,l−1 ·
∣∣u(l−1,A)
∗,l−1

∣∣2 for even l

∂(ls)
η0 B(l,s),(l−2,A),(l−1,B)(η∗) = 2Cl,l−2,l−1

0,l−2,l−2 · Imu
(l−2,A)
∗,l−2 u

(l−1,B)
∗,l−2 for odd l.

By Lemma C.4.2, these Clebsch-Gordan coefficients are non-zero, so this block is generically non-

zero.

Blocks corresponding to (v
(ls)
1 , w

(ls)
1 ), . . . , (v

(ls)
l−3, w

(ls)
l−3): The arguments for these blocks are
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similar, so we consider only v
(ls)
l−3, w

(ls)
l−3. Applying (164–165), this 2× 2 block is

∂
v
(ls)
l−3,w

(ls)
l−3

(
B(l,s),(3,B),(l−1,A), B(l,s),(2,A),(l−1,A)

)
(η∗)

=

2Cl,3,l−1
l−3,2,l−1 · Reu

(3,B)
∗,2 u

(l−1,A)
∗,l−1 2Cl,3,l−1

l−3,2,l−1 · Imu
(3,B)
∗,2 u

(l−1,A)
∗,l−1

2Cl,2,l−1
l−3,2,l−1 · Reu

(2,A)
∗,2 u

(l−1,A)
∗,l−1 2Cl,2,l−1

l−3,2,l−1 · Imu
(2,A)
∗,2 u

(l−1,A)
∗,l−1


These Clebsch-Gordan coefficients are again non-zero by Lemma C.4.2, so the determinant of this

matrix is a non-zero polynomial in the six coefficients of η∗

v
(3,B)
∗,2 , w

(3,B)
∗,2 , v

(2,A)
∗,2 , w

(2,A)
∗,2 , v

(l−1,A)
∗,l−1 , w

(l−1,A)
∗,l−1 .

(These coefficients are distinct for l ≥ 4.) Hence this determinant is generically non-zero.

Blocks corresponding to (v
(ls)
l , w

(ls)
l ), (v

(ls)
l−1, w

(ls)
l−1), (v

(ls)
l−2, w

(ls)
l−2): Applying (164–165), these

2× 2 blocks are

∂
v
(ls)
l ,w

(ls)
l

(
B(l,s),(3,B),(l−1,B), B(l,s),(2,A),(l−1,B)

)
(η∗)

=

2Cl,3,l−1
l,−2,l−2 · Reu

(3,B)
∗,−2 u

(l−1,B)
∗,l−2 2Cl,3,l−1

l,−2,l−2 · Imu
(3,B)
∗,−2 u

(l−1,B)
∗,l−2

2Cl,2,l−1
l,−2,l−2 · Reu

(2,A)
∗,−2 u

(l−1,B)
∗,l−2 2Cl,2,l−1

l,−2,l−2 · Imu
(2,A)
∗,−2 u

(l−1,B)
∗,l−2


∂
v
(ls)
l−1,w

(ls)
l−1

(
B(l,s),(2,B),(l−1,B), B(l,s),(1,A),(l−1,B)

)
(η∗)

=

2Cl,2,l−1
l−1,−1,l−2 · Reu

(2,B)
∗,−1 u

(l−1,B)
∗,l−2 2Cl,2,l−1

l−1,−1,l−2 · Imu
(2,B)
∗,−1 u

(l−1,B)
∗,l−2

2Cl,1,l−1
l−1,−1,l−2 · Reu

(1,A)
∗,−1 u

(l−1,B)
∗,l−2 2Cl,1,l−1

l−1,−1,l−2 · Imu
(1,A)
∗,−1 u

(l−1,B)
∗,l−2


∂
v
(ls)
l−2,w

(ls)
l−2

(
B(l,s),(2,B),(l−1,A), B(l,s),(1,A),(l−1,A)

)
(η∗)

=

2Cl,2,l−1
l−2,1,l−1 · Reu

(2,B)
∗,1 u

(l−1,A)
∗,l−1 2Cl,2,l−1

l−2,1,l−1 · Imu
(2,B)
∗,1 u

(l−1,A)
∗,l−1

2Cl,1,l−1
l−2,1,l−1 · Reu

(1,A)
∗,1 u

(l−1,A)
∗,l−1 2Cl,1,l−1

l−2,1,l−1 · Imu
(1,A)
∗,1 u

(l−1,A)
∗,l−1


The Clebsch-Gordan coefficients here are non-zero by Lemma C.4.2 (for the term Cl,2,l−1

l−1,−1,l−2 of the

second matrix, this uses the condition 2 6= l − 1 when l ≥ 4). Then the determinants of all three

matrices are non-zero polynomials of six distinct coordinates of η∗, except in the case of the first

matrix for l = 4. In this case, u
(3,B)
2 and u

(l−1,B)
l−2 coincide, and the determinant may be checked to

be a non-zero polynomial of the four distinct coordinates v
(3,B)
∗,2 , w

(3,B)
∗,2 , v

(2,A)
∗,2 , w

(2,A)
∗,2 .

Combining these cases shows that dη(ls)B
(ls)(η∗) has full column rank 2l + 1 as desired.
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Part (a), l = 3: We again fix (A,B) = (1, 2), and specialize to a point η∗ such that

Type(3, A),Type(2, A),Type(1, A) = 0, Type(2, B),Type(1, B) = 1.

We then pick 7 rows of dη(3s)B
(3s)(η∗), indicated by the left column of the below table. Applying

(170), the derivatives in (v
(3s)
m , w

(3s)
m ) are non-zero for only the values of m in the right column.

(l′, s′) and (l′′, s′′) Values of m

(1, B) and (2, B) 1

(3, A) and (2, A) 1

(1, B) and (2, A) 2

(3, A) and (1, A) 2

(1, A) and (2, A) 1 and 3

(2, B) and (2, A) 1 and 3

(1, A) and (2, B) 2 and 0

Ordering the columns by v
(3s)
1 , w

(3s)
1 , v

(3s)
2 , w

(3s)
2 , v

(3s)
3 , w

(3s)
3 , w

(3s)
0 , this 7× 7 submatrix has a block

lower-triangular structure in the decomposition 7 = 2 + 2 + 2 + 1. If s 6= A, then applying (164–166)

and (167–168), its diagonal blocks are given explicitly by

∂
v
(3s)
1 ,w

(3s)
1

(
B(3,s),(1,B),(2,B), B(3,s),(3,A),(2,A)

)
(η∗) =

(
2C3,1,2

1,0,1 ·Reu
(1B)
∗,0 u

(2B)
∗,1 2C3,1,2

1,0,1 ·Imu
(1B)
∗,0 u

(2B)
∗,1

2C3,3,2
1,−3,−2·Reu

(3A)
∗,−3u

(2A)
∗,−2 2C3,3,2

1,−3,−2·Imu
(3A)
∗,−3u

(2A)
∗,−2

)
∂
v
(3s)
2 ,w

(3s)
2

(
B(3,s),(1,B),(2,A), B(3,s),(3,A),(1,A)

)
(η∗) =

(
2C3,1,2

2,0,2 ·Reu
(1B)
∗,0 u

(2A)
∗,2 2C3,1,2

2,0,2 ·Imu
(1B)
∗,0 u

(2A)
∗,2

2C3,3,1
2,−3,−1·Reu

(3A)
∗,−3u

(1A)
∗,−1 2C3,3,1

2,−3,−1·Imu
(3A)
∗,−3u

(1A)
∗,−1

)
∂
v
(3s)
3 ,w

(3s)
3

(
B(3,s),(1,A),(2,A), B(3,s),(2,B),(2,A)

)
(η∗) =

(
2C3,1,2

3,−1,2·Reu
(1A)
∗,−1u

(2A)
∗,2 2C3,1,2

3,−1,2·Imu
(1A)
∗,−1u

(2A)
∗,2

2C3,2,2
3,−1,2·Reu

(2B)
∗,−1u

(2A)
∗,2 2C3,2,2

3,−1,2·Imu
(2B)
∗,−1u

(2A)
∗,2

)
∂
w

(3s)
0

B(3,s),(1,A),(2,B)(η∗) = 2C3,1,2
0,1,1 · Imu1A

∗,1u
2B
∗,1

Here u
(1B)
∗,0 = iw

(1B)
∗,0 depends on only one rather than two non-zero coordinate of η∗; nonetheless,

one may still check that the determinants of the above three matrices are generically non-zero. If

s = A, then the second rows of the first two matrices above have coefficients 4 instead of 2, from

applying (167–168) in place of (164–165), but this does not affect their ranks. Thus these blocks are

generically non-singular, so dη(3s)B
(3s)(η∗) has full column rank 7.
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Part (a), l = 2: We specialize to a point η∗ such that

Type(2, A),Type(1, A),Type(0, A) = 0, Type(2, B),Type(1, B) = 1.

(Here Type(0, A) = 0 means simply that v
(0A)
∗,0 is non-zero.) We pick the following 5 rows of

dη(2s)B
(2s)(η∗), for which the derivatives in (v

(2s)
m , w

(2s)
m ) are non-zero for only the following corre-

sponding values of m.

(l′, s′) and (l′′, s′′) Values of m

(1, B) and (1, B) 0

(1, B) and (1, A) 1

(2, B) and (0, A) 1

(2, A) and (0, A) 2

(1, A) and (1, A) 0 and 2

Ordering the columns by v
(2s)
0 , v

(2s)
1 , w

(2s)
1 , v

(2s)
2 , w

(2s)
2 , this 5 × 5 submatrix has a block lower-

triangular structure in the decomposition 5 = 1 + 2 + 2. If s /∈ {A,B}, these blocks are

∂
v
(2s)
0

B(2,s),(1,B),(1,B)(η∗) = C2,1,1
0,0,0 ·

∣∣∣u(1B)
∗,0

∣∣∣2
∂
v
(2s)
1 ,w

(2s)
1

(
B(2,s),(1,B),(1,A), B(2,s),(2,B),(0,A)

)
(η∗) =

(
2C2,1,1

1,0,1 ·Reu
(1B)
∗,0 u

(1A)
∗,1 2C2,1,1

1,0,1 ·Imu
(1B)
∗,0 u

(1A)
∗,1

2C2,2,0
1,−1,0·Reu

(2B)
∗,−1u

(0A)
∗,0 2C2,2,0

1,−1,0·Imu
(2B)
∗,−1u

(0A)
∗,0

)
∂
v
(2s)
2 ,w

(2s)
2

(
B(2,s),(2,A),(0,A), B(2,s),(1,A),(1,A)

)
(η∗) =

(
2C2,2,0

2,−2,0·Reu
(2A)
∗,−2u

(0A)
∗,0 2C2,2,0

2,−2,0·Imu
(2A)
∗,−2u

(0A)
∗,0

2C2,1,1
2,−1,1·Reu

(1A)
∗,−1u

(1A)
∗,1 2C2,1,1

2,−1,1·Imu
(1A)
∗,−1u

(1A)
∗,1

)

If s = A or s = B, then the first row of the third matrix or second row of the second matrix should

have coefficient 4 in place of 2, but this does not affect their ranks. These blocks are generically

non-singular, so dη(2s)B
(2s)(η∗) has full column rank 5.

Part (b), l = 1, s ≥ 3: Note that (A,B, s) = (1, 2, s) are distinct indices because s ≥ 3. We

specialize to a point η∗ such that

Type(1, s),Type(1, A),Type(0, A),Type(0, B) = 0, Type(1, B) = 1.

We pick the following 3 rows of dη(1s)B
(1s)(η∗), for which the derivatives in (v

(1s)
m , w

(1s)
m ) are non-zero

for only the following corresponding values of m.
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(l′, s′) and (l′′, s′′) Values of m

(1, s) and (0, A) 1

(1, A) and (0, B) 1

(1, B) and (0, B) 0

Ordering the columns by v
(1s)
1 , w

(1s)
1 , w

(1s)
0 , this 3×3 submatrix has a block lower-triangular structure

in the decomposition 3 = 2 + 1, with diagonal blocks

∂
v
(1s)
1 ,w

(1s)
1

(
B(1,s),(1,s),(0,A), B(1,s),(1,A),(0,B)

)
(η∗) =

(
4C1,1,0

1,−1,0·Reu
(1s)
∗,−1u

(0A)
∗,0 4C1,1,0

1,−1,0·Imu
(1s)
∗,−1u

(0A)
∗,0

2C1,1,0
1,−1,0·Reu

(1A)
∗,−1u

(0B)
∗,0 2C1,1,0

1,−1,0·Imu
(1A)
∗,−1u

(0B)
∗,0

)
∂
w

(1s)
0

B(1,s),(1,B),(0,B)(η∗) = −iC1,1,0
0,0,0 · u

(1B)
∗,0 u

(0A)
∗,0

These blocks are generically non-singular (where we use that s and A are distinct for the first block),

so dη(1s)B
(1s)(η∗) has full column rank 3.

Part (b), l = 1, s = 2: Consider the two columns of dη(12)B
(12) corresponding to ∂

v
(12)
1 ,w

(12)
1

and the two rows corresponding to B(1,2),(1,1),(0,1), B(1,2),(1,2),(0,1). This 2× 2 submatrix is (for any

η∗)

∂
v
(12)
1 ,w

(12)
1

(
B(1,2),(1,1),(0,1), B(1,2),(1,2),(0,1)

)
(η∗) =

(
2C1,1,0

1,−1,0·Reu
(11)
∗,−1u

(01)
∗,0 2C1,1,0

1,−1,0·Imu
(11)
∗,−1u

(01)
∗,0

4C1,1,0
1,−1,0·Reu

(12)
∗,−1u

(01)
∗,0 4C1,1,0

1,−1,0·Imu
(12)
∗,−1u

(01)
∗,0

)

This is generically non-singular, so d
v
(12)
1 ,w

(12)
1

B(12)(η∗) has full column rank 2.

Part (b), l = 1, s = 1: Consider the column and row of dη(11)B
(11) corresponding to

∂
v
(11)
1

B(1,1),(1,1),(0,1)(η∗) = 4C1,1,0
1,−1,0 Reu

(11)
∗,−1u

(01)
∗,0 .

This is generically non-zero, so d
v
(11)
1

B(11)(η∗) has full column rank 1.

Part (c), l = 0: For any s ∈ {1, . . . , S0}, η(0s) = v
(0s)
0 is a single real variable. Applying

〈0, 0; 0, 0|0, 0〉 = 1, we have from (4.34) that

∂η(0s)B(0,s),(0,s),(0,s)(η∗) = ∂
v
(0s)
0

(v
(0s)
∗,0 )3 = 3(v

(0s)
∗,0 )2,

which is generically non-zero. Thus dη(0s)B
(0s)(η∗) has full column rank 1.
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C.4.4 Projected cryo-EM

In this section, we give proofs of our results relating to projected cryo-EM.

Function basis

We describe the choices of function bases and the associated projection operator.

Let ĵlsm and ĵsm be defined by (4.36) and (4.37), where ylm are the complex spherical harmonics

(130),

bm(φ2) = (2π)−1/2eimφ2 ,

and {z̃s : s ≥ 1} are any functions z̃s : [0,∞)→ R satisfying the orthogonality (4.41). Let jlsm and

jsm be their inverse Fourier transforms. The polar change-of-coordinates dk1dk2 = ρ sinφ2 dρdφ2

shows that {ĵsm} are orthonormal in L2(R2,C), and hence so are {jsm}.

For f ∈ L2(R3,C), let (152) be its Fourier transform, and let

Π̂ · f(k1, k2) =

∫
R2

e−2πi(k1x1+k2x2)(Π · f)(x1, x2)dx1dx2

be the 2-D Fourier transform of its tomographic projection. By the Fourier-slice relation,

Π̂ · f(k1, k2) = f̂(k1, k2, 0). (171)

We reparametrize k = (k1, k2, k3) ∈ R3 by spherical coordinates (ρ, φ1, φ2), and k̃ = (k1, k2) ∈ R2

by polar coordinates (ρ, φ2). Then (171) corresponds to the restriction φ1 = π/2. This restriction

of each complex spherical harmonic ylm in (130) is given by

ylm(π/2, φ2) = plm · bm(φ2)

where bm is the function defined above, and

plm = (−1)m

√
(2l + 1)

2

(l −m)!

(l +m)!
· Plm(0)

= 1{l +m is even} ×
(−1)(l+m)/2

√
(2l + 1)/2

2ll!

(
l

(l +m)/2

)√
(l −m)!(l +m)! (172)

the second equality applying Lemma C.4.1. Note that these coefficients plm satisfy a sign symmetry

plm = (−1)mpl,−m. (173)
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For any (L, S0, . . . , SL)-bandlimited function f as in (4.38), its projection is then defined by (4.39)

where

ũ(s)
m =

∑
l:Sl≥s

plm · u(ls)
m .

This may be written as ũ = ΠCu for the map ΠC in (4.40).

We pass from the complex basis {jlsm} for L2(R3,C) to a real basis {hlsm} via (155), and recall

that the coefficients u
(ls)
m for the former and θ

(ls)
m for the latter are related by u = V̂ ∗θ defined in

(156). Similarly, we pass from the complex basis {jsm} for L2(R2,C) to a real basis

hsm =



1√
2

(
js,−m + (−1)mjsm

)
if m > 0

js0 if m = 0

i√
2

(
jsm − (−1)mjs,−m

)
if m < 0.

The two basis representations (4.39) are related by a unitary transform ũ = Ṽ ∗θ̃ defined as

ũ(s)
m =



(−1)m√
2

(θ̃
(s)
|m| − iθ̃

(s)
−|m|) if m > 0

θ̃
(s)
0 if m = 0

1√
2
(θ̃

(s)
|m| + iθ̃

(s)
|m|) if m < 0.

(174)

The projection θ 7→ θ̃ then takes the form of a linear map Π = Ṽ ·ΠC · V̂ ∗ as described in (4.40).

Since Π · f is real-valued, its Fourier transform satisfies

Π̂ · f(ρ, φ2) = Π̂ · f(ρ, π + φ2)

where (ρ, π + φ2) is the reflection of (ρ, φ2) about the origin. Then the coefficients ũ
(s)
m of Π̂ · f in

the basis {ĵsm} must satisfy the sign symmetry, analogously to (154),

ũ(s)
m = (−1)mũ

(s)
−m. (175)

If S1 = . . . = SL = S, these actions of rotation and projection on the basis coefficients θ and θ̃ are

the same as described in (Bandeira et al., 2017, Appendix A.4) in the context of S “spherical shells”.

Terms of the high noise series expansion

We prove Theorem 4.4.11 on the forms of s̃1(θ), s̃2(θ), and s̃3(θ).
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Proof of Theorem 4.4.11. Recall from Lemma C.1.1 that

s̃k(θ) =
1

2(k!)
Eg,h

[
〈Πgθ,Πhθ〉k − 2〈Πgθ,Πhθ∗〉k + 〈Πgθ∗,Πhθ∗〉k

]
. (176)

Consider two different real coefficient vectors θ, ϑ ∈ Rd, with corresponding complex coefficients

u = V̂ ∗θ and v = V̂ ∗ϑ.

Case k = 1: Notice that

〈Πgθ,Πhϑ〉 =
〈

(Ṽ ∗ΠV̂ )(V̂ ∗gV̂ )u, (Ṽ ∗ΠV̂ )(V̂ ∗hV̂ )v
〉

= 〈D(g)u, (ΠC)∗ΠCD(h)v〉,

where D(g), D(h) are the block-diagonal matrices in (4.32). The form of ΠC from (4.40) yields

(ΠC∗ΠC)lsm,l′s′m′ = 1{s = s′} · 1{m = m′}plmpl′m′

so that

〈Πgθ,Πhϑ〉 =

L∑
k,l=0

Sk∧Sl∑
s=1

k∑
m,q=−k

l∑
n,r=−l

D
(k)
qm(g)u

(ks)
m · 1{q = r}pkqplr ·D(l)

rn(h)v(ls)
n . (177)

Applying (132) to take the expectation, we preserve only the terms for k = l = m = q = n = r = 0,

yielding

Eg,h[〈Πgθ,Πhϑ〉] =

S0∑
s=1

p2
00u

(0s)
0 v

(0s)
0 .

Recalling that u(0s) = u
(0s)
0 and v(0s) = v

(0s)
0 are real-valued by (156), and substituting into (176),

we obtain

s̃1(θ) =
p2

00

2

S0∑
s=1

(
u(0s)(θ)− u(0s)(θ∗)

)2

.
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Case k = 2: We square both sides of (177) and apply the relations (133), (154), and (173) to get

Eg,h[〈Πgθ,Πhϑ〉2]

=

L∑
k,l=0

Sk∧Sl∑
s,s′=1

k∑
m,q=−k

l∑
n,r=−l

(−1)m+q+n+r

(2k + 1)(2l + 1)
u

(ks)
m u

(ks′)
−m · 1{q = r}pkqpk,−qplrpl,−r · v(ls)

n v
(ls′)
−n

=

L∑
k,l=0

Sk∧Sl∑
s,s′=1

k∑
m,q=−k

l∑
n,r=−l

(−1)k+l

(2k + 1)(2l + 1)
u

(ks)
m u(ks′)

m · 1{q = r}p2
kqp

2
lr · v(ls)

n v
(ls′)
n

=

L∑
k,l=0

(−1)k+l

(2k + 1)(2l + 1)

Sk∧Sl∑
s,s′=1

〈u(ks), u(ks′)〉 · 〈v(ls), v(ls′)〉
k∧l∑

q=−(k∧l)

p2
kqp

2
lq

=

L∑
k,l=0

Qkl

Sk∧Sl∑
s,s′=1

〈u(ks), u(ks′)〉 · 〈v(ls), v(ls′)〉.

By the isometry 〈u(ks), u(ks′)〉 = 〈θ(ks), θ(ks′)〉, both inner products on the last line are real. Then

applying this to (176),

s̃2(θ) =
1

4

L∑
k,l=0

Qkl

Sk∧Sl∑
s,s′=1

(
〈u(ks)(θ), u(ks′)(θ)〉 − 〈u(ks)(θ∗), u

(ks′)(θ∗)〉
)

×
(
〈u(ls)(θ), u(ls′)(θ)〉 − 〈u(ls)(θ∗), u

(ls′)(θ∗)〉
)
.

Case k = 3: We cube both sides of (177) and apply the relation (134) to obtain

Eg,h[〈Πgθ,Πhϑ〉3]

=

L∑
k,k′,k′′,l,l′,l′′=0

|k−k′|≤k′′≤k+k′, |l−l′|≤l′′≤l+l′

Sk∧Sl∑
s=1

Sk′∧Sl′∑
s′=1

Sk′′∧Sl′′∑
s′′=1

k∑
m,q=−k

k′∑
m′,q′=−k′

l∑
n,r=−l

l′∑
n′,r′=−l′

(−1)m+m′+q+q′+n+n′+r+r′

(2k′′ + 1)(2l′′ + 1)
Ck,k

′,k′′

q,q′,q+q′C
k,k′,k′′

m,m′,m+m′C
l,l′,l′′

r,r′,r+r′C
l,l′,l′′

n,n′,n+n′1{q = r}1{q′ = r′}

× u(ks)
m u

(k′s′)
m′ u

(k′′s′′)
−m−m′v

(ls)
n v

(l′s′)
n′ v

(l′′s′′)
−n−n′pkqpk′q′pk′′,−q−q′plrpl′r′pl′′,−r−r′ .

Let us apply, by (154) and (173),

u
(k′′s′′)
−m−m′ = (−1)m+m′+k′′u

(k′′s′′)
m+m′ , v

(l′′s′′)
−n−n′ = (−1)n+n′+l′′v

(l′′s′′)
n+n′ ,

pk′′,−q−q′ = (−1)q+q
′
pk′′,q+q′ , pl′′,−r−r′ = (−1)r+r

′
pl′′,r+r′ .

Recalling B(l,s),(l′,s′),(l′′,s′′)(θ) from (4.34), which is real-valued, the above may be written succinctly
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as

Eg,h[〈Πgθ,Πhϑ〉3] =

L∑
k,k′,k′′,l,l′,l′′=0

|k−k′|≤k′′≤k+k′, |l−l′|≤l′′≤l+l′

Mk,k′,k′′,l,l′,l′′

·
Sk∧Sl∑
s=1

Sk′∧Sl′∑
s′=1

Sk′′∧Sl′′∑
s′′=1

B(k,s),(k′,s′),(k′′,s′′)(θ)B(l,s),(l′,s′),(l′′,s′′)(ϑ).

Then by (176), we find

s̃3(θ) =
1

12

L∑
k,k′,k′′,l,l′,l′′=0

|k−k′|≤k′′≤k+k′, |l−l′|≤l′′≤l+l′

Mk,k′,k′′,l,l′,l′′

Sk∧Sl∑
s=1

Sk′∧Sl′∑
s′=1

Sk′′∧Sl′′∑
s′′=1

(
B(k,s),(k′,s′),(k′′,s′′)(θ)−B(k,s),(k′,s′),(k′′,s′′)(θ∗)

)(
B(l,s),(l′,s′),(l′′,s′′)(θ)−B(l,s),(l′,s′),(l′′,s′′)(θ∗)

)
.

Transcendence degrees

We now prove Theorem 4.4.9 on the sequences of transcendence degrees.

Proof of Theorem 4.4.9. We compute trdeg(R̃G
≤m) for m = 1, 2, 3 using Lemma 4.2.6. For m = 1,

∇2s̃1(θ∗) = p2
00

S0∑
s=1

∇u(0s)(θ∗)∇u(0s)(θ∗)
>.

Since p00 6= 0, this shows trdeg(R̃G
≤1) = rank(∇2s̃1(θ∗)) = S0 as in Theorem 4.4.6.

For m = 2,

∇2s̃1(θ∗) +∇2s̃2(θ∗) = p2
00

S0∑
s=1

∇u(0s)(θ∗)∇u(0s)(θ∗)
>

+
1

2

L∑
k,l=0

Qkl

Sk∧Sl∑
s,s′=1

∇[〈u(ks)(θ), u(ks′)(θ)〉]∇[〈u(ls)(θ), u(ls′)(θ)〉]>
∣∣∣
θ=θ∗

.

Recall the form of Qkl from (4.42). Then, defining matrices G0 and G with the columns

G0
s := p00∇u(0s)(θ∗) for 1 ≤ s ≤ S0

Gkrr′ := ∇[〈u(kr)(θ), u(kr′)(θ)〉]
∣∣∣
θ=θ∗

for 0 ≤ k ≤ L, 1 ≤ r, r′ ≤ Sk
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and defining a square matrix D with the entries

Dkrr′,qss′ :=
(−1)k

2k + 1

p2
kq√

21q=0 + 1q>0

1s=r1s′=r′1q≤k for 0 ≤ q ≤ L, 0 ≤ k ≤ L, 1 ≤ s, s′, r, r′ ≤ Sk,

we have

∇2s̃1(θ∗) +∇2s̃2(θ∗)

= G0(G0)> +

L∑
k=0

Sk∑
r,r′=1

L∑
l=0

Sl∑
s,s′=1

1

2
Qkl1{r = r′}1{s = s′}Gkrr′G>lss′

= G0(G0)> +

L∑
k=0

Sk∑
r,r′=1

L∑
l=0

Sl∑
s,s′=1

(−1)k

2k + 1

(−1)l

2l + 1

(
1

2
p2
k0p

2
l0 +

k∧l∑
q=1

p2
kqp

2
lq

)
1{r=r′}1{s=s′}Gkrr′G>lss′

= [GD | G0][GD | G0]T.

Here D is lower triangular with non-zero diagonal because pkk 6= 0 for any k = 0, . . . , L. Then, since

the column span of G0 is contained in that of G for generic θ∗, we conclude that

trdeg(R̃G
≤2) = rank(∇2s̃1(θ∗) +∇2s̃2(θ∗)) = rank

(
[GD | G0]

)
= rank(G).

Then trdeg(R̃G
≤2) = trdeg(RG

≤2) as in Theorem 4.4.6.

For m = 3, we have trdeg(RG
≤3) ≤ trdeg(RG) = d − 3, so it suffices to show rank(∇2s̃3(θ∗)) ≥

d − 3. For this, we first write a more convenient form for s̃3(θ) and its Hessian at θ = θ∗. Recall

S = maxLl=0 Sl and define the index sets

Q =
{

((q, r), (q′, r′), (q′′, r′′)) : −L ≤ q, q′, q′′ ≤ L, q + q′ + q′′ = 0, 1 ≤ r, r′, r′′ ≤ S
}

H =
{

((l, s), (l′, s′), (l′′, s′′)) : 0≤ l, l′, l′′≤L, |l − l′| ≤ l′′ ≤ l + l′, 1≤s≤Sl, 1≤s′≤Sl′ , 1≤s′′≤Sl′′
}
.

Define a matrix N ∈ R|Q|×|H| entrywise by

N
(l,s),(l′,s′),(l′′,s′′)
(q,r),(q′,r′),(q′′,r′′) = 1{r = s, r′ = s′, r′′ = s′′} · 1{|q| ≤ l, |q′| ≤ l′, |q′′| ≤ l′′}

· (−1)l
′′+q′′

2l′′ + 1
· 〈l, q; l′, q′|l′′,−q′′〉plqpl′q′pl′′q′′ , (178)

where the subscript is the row index in Q and the superscript is the column index in H. In the
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expression (4.43) for Mk,k′,k′′,l,l′,l′′ , let us flip the sign of q′′ and apply (173) to write this as

Mk,k′,k′′,l,l′,l′′ =
(−1)k

′′+q′′

2k′′ + 1

(−1)l
′′+q′′

2l′′ + 1

∑
|q|≤k∧l

∑
|q′|≤k′∧l′

∑
|q′′|≤k′′∧l′′

q+q′+q′′=0

〈k, q; k′, q′|k′′,−q′′〉〈l, q; l′, q′|l′′,−q′′〉pkqpk′q′pk′′q′′plqpl′q′pl′′q′′ .

Then

s̃3(θ) =
1

12

(
B(θ)−B(θ∗)

)>
N>N

(
B(θ)−B(θ∗)

)
Applying the chain rule to differentiate this twice at θ = θ∗, we obtain

∇2s̃3(θ∗) =
1

6
dB(θ∗)

>N>NdB(θ∗),

so rank
(
∇2s̃3(θ∗)

)
= rank

(
N · dB(θ∗)

)
.

Recall the linear reparametrization by the coordinates η(θ) in (161) and (162). Then equivalently

rank
(
∇2s̃3(θ∗)

)
= rank

(
N · dηB(η∗)

)
The proof of Theorem 4.4.6 verified that rank(dηB(η∗)) = d− 3 for generic η∗ ∈ Rd. In fact, let

D(η∗) = submatrix of dηB(η∗) with columns ∂
w

(12)
0

, ∂
w

(11)
1

, ∂
w

(11)
0

removed.

Then Lemma C.4.5 shows that D(η∗) has full column rank d− 3 for generic η∗ ∈ Rd. Applying

rank(N · dηB(η∗)) ≥ rank(N ·D(η∗)),

it then suffices to show that N ·D(η∗) also has full column rank d− 3 for generic η∗ ∈ Rd.

For this, we define the following submatrices of N and D(η∗). For each k ∈ {0, 1, . . . , L}, define
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the index sets

H(k) =
{

((l, s), (l′, s′), (l′′, s′′)) ∈ H : max(l, l′, l′′) = k
}
,

Q(k) =
{

((q, r), (q′, r′), (q′′, r′′)) ∈ Q : max(|q|, |q′|, |q′′|) = k
}
,

V(k) =
{

coordinates v(ls)
m , w(ls)

m of η : l = k
}

if k 6= 1,

V(1) =
{

coordinates v(1s)
m , w(1s)

m of η
}∖{

w
(12)
0 , w

(11)
1 , w

(11)
0

}
.

Let Nk ∈ R|Q(k)|×|H(k)| be the submatrix of N containing the rows in Q(k) and columns in H(k),

and let Dk(η∗) ∈ R|H(k)|×|V(k)| be the submatrix of D(η∗) containing the rows in H(k) and columns

in V(k). Similarly, define N≤k and D≤k(η∗) to contain rows and columns of Q(l),H(l),V(l) for l ≤ k.

Note that Dk(η∗) and D≤k(η∗) depend only on the coordinates of v
(ls)
m and w

(ls)
m where l ≤ k, by

the definition of H(k) and the form of each function B(l,s),(l′,s′),(l′′,s′′).

We prove by induction on L the claim that N ·D(η∗) has full column rank for generic η∗ ∈ Rd.

Lemma C.4.6(a) below shows that for L = 1, there exists some η∗ where N ·D(η∗) has full column

rank. Then N ·D(η∗) has full column rank also for generic η∗, establishing the base case L = 1.

For the inductive step, we establish a block structure on N and D(η∗). Block the rows and

columns of N by (Q\Q(L),Q(L)) and (H\H(L),H(L)), and those of D(η∗) by (H\H(L),H(L)) and

(η \ V(L),V(L)). Note that N
(l,s),(l′,s′),(l′′,s′′)
(q,r),(q′,r′),(q′′,r′′) = 0 unless max(|q|, |q′|, |q′′|) ≤ max(l, l′, l′′), and also

B(l,s),(l′,s′),(l′′,s′′) does not depend on any variable v
(ks)
m or w

(ks)
m where k > max(l, l′, l′′). Thus N

and D(η∗) have the block structures

N =

A B

0 NL

 , D(η∗) =

X(η∗) 0

Y (η∗) DL(η∗)


for some matrices A,B,X(η∗), Y (η∗).

Let us now specialize to η∗ ∈ Rd where

v
(Ls)
∗,m = w

(Ls)
∗,m = 0 for all s = 1, . . . , SL and m = −L, . . . , L. (179)

The above matrix Y (η∗) contains the derivatives in variables {v(ks)
m , w

(ks)
m : k < L} of the functions

B(l,s),(l′,s′),(l′′,s′′) where max(l, l′, l′′) = L. By the form of B(l,s),(l′,s′),(l′′,s′′), any such derivative
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vanishes for η∗ satisfying (179), so Y (η∗) = 0 and

N ·D(η∗) =

A ·X(η∗) B ·DL(η∗)

0 NL ·DL(η∗)

 .

The induction hypothesis for L− 1 is exactly the statement that the upper-left block A ·X(η∗) has

full column rank for all generic values of the coordinates {v(ks)
∗,m , w

(ks)
∗,m : k ≤ L−1}. Applying Lemma

C.4.6(b) below, also for generic values of {v(ks)
∗,m , w

(ks)
∗,m : k ≤ L−1}, the lower-right block NL ·DL(η∗)

has full column rank. Then there exists a point η∗ ∈ Rd satisfying (179) where N ·D(η∗) has full

column rank. Then N ·D(η∗) has full column rank also for generic η∗ ∈ Rd, completing the induction

and the proof.

Lemma C.4.6. If Sl ≥ 4 for 0 ≤ l ≤ L, then we have the following.

(a) There exists a point η∗ ∈ Rd such that N≤1 ·D≤1(η∗) has full column rank.

(b) For each k ≥ 2, there exists a point η∗ ∈ Rd such that v
(ks)
∗,m = w

(ks)
∗,m = 0 for all s ∈ {1, . . . , Sk}

and m ∈ {−k, . . . , k}, and Nk ·Dk(η∗) has full column rank.

Proof of Lemma C.4.6. Part (a): Recall from the form of plm in (172) that plm = 0 if l + m is

odd and plm 6= 0 if l+m is even. Then, for max{l, l′, l′′} ≤ 1, the non-vanishing of Clebsch-Gordon

coefficients in Lemma C.4.2 and the definition of N in (178) imply that

N
(l,s),(l′,s′),(l′′,s′′)
(q,r),(q′,r′),(q′′,r′′) 6= 0 if and only if l = |q|, l′ = |q′|, l′′ = |q′′|, r = s, r′ = s′, r′′ = s′′. (180)

For each ((l, s), (l′, s′), (l′′, s′′)) ∈ H(0)∪H(1) where l = l′+l′′, take the row ((−l, s), (l′, s′), (l′′, s′′)) ∈

Q(0) ∪ Q(1) of N≤1. It suffices to exhibit η∗ such that the submatrix of corresponding rows of

N≤1 · D≤1(η∗) has full column rank. Observation (180) implies that each such row of N≤1 has

exactly one non-zero entry, which is given by N
(l,s),(l′,s′),(l′′,s′′)
(−l,s),(l′,s′),(l′′,s′′). Then it suffices to show that the

submatrix of D≤1(η∗) consisting of the rows ((l, s), (l′, s′), (l′′, s′′)) ∈ H(0) ∪ H(1) where l = l′ + l′′

has full column rank. But this has been exhibited already in Lemma C.4.5, because the proof of

Lemma C.4.5(b–c) in fact only used rows of dη(0s)B
(0s) and dη(1s)B

(1s) for which (l, l′, l′′) = (0, 0, 0)

or (1, 1, 0), both satisfying l = l′ + l′′. This completes the proof of (a).

Part (b), k = 2 and k = 3. The argument is similar to part (a). Observe first that when η∗

satisfies v
(ks)
∗,m = w

(ks)
∗,m = 0 for all s andm, the rows ofDk(η∗) indexed by ((l, s), (l′, s′), (l′′, s′′)) ∈ H(k)
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having more than one index l, l′, l′′ equal to k are identically 0. Let Dk(η∗)
′ be the submatrix of

Dk(η∗) with these rows removed, and let N ′k be the submatrix of Nk with the corresponding columns

removed. Then Nk ·Dk(η∗) = N ′k ·Dk(η∗)
′.

For each remaining tuple ((l, s), (l′, s′), (l′′, s′′)) ∈ H(k) where l = l′ + l′′, consider the row

((−l, s), (l′, s′), (l′′, s′′)) ∈ Q(k) of N ′k. Note that we must have (l, l′, l′′) = (2, 1, 1) if k = 2, and

(l, l′, l′′) = (3, 1, 2) or (3, 2, 1) if k = 3. Each such row has the non-zero entry N
(l,s),(l′,s′),(l′′,s′′)
(−l,s),(l′,s′),(l′′,s′′) as

above, and this is the only non-zero entry in the row: Indeed, if ((j, r), (j′, r′), (j′′, r′′)) is a column of

N ′k whereN
(j,r),(j′,r′),(j′′,r′′)
(−l,s),(l′,s′),(l′′,s′′) 6= 0, then by definition ofN in (178) we must have (s, s′, s′′) = (r, r′, r′′),

j ≥ l, j′ ≥ l′, j′′ ≥ l′′, and each of j − l, j′ − l′, j′′ − l′′ is even. Columns of N ′k must satisfy

(j, j′, j′′) ∈ {(2, 1, 1), (3, 1, 2), (3, 2, 1)}, and this forces (j, j′, j′′) = (l, l′, l′′). So the non-zero entry in

this row of N ′k is unique, as claimed.

Then it suffices to check that the submatrix of rows of Dk(η∗) indexed by ((l, s), (l′, s′), (l′′, s′′)) ∈

H(k) where l′, l′′ < k and k = l = l′ + l′′ has full column rank. This was not exhibited in the proof

of Lemma C.4.5 (which used rows where l′ + l′′ > l strictly) but we may show this here by a similar

argument, assuming now the availability of 4 different spherical frequencies: Fix spherical frequencies

(A,B,C,D) = (1, 2, 3, 4), and consider η∗ satisfying

Type(l′, A),Type(l′, B) = 0, Type(l′, C),Type(l′, D) = 1 for all l′ ∈ {1, . . . , k − 1}.

Recall that this means v
(l′A)
∗,m , w

(l′A)
∗,m , v

(l′B)
∗,m , w

(l′B)
∗,m = 0 unless m = l′, and v

(l′C)
∗,m , w

(l′C)
∗,m , v

(l′D)
∗,m , w

(l′D)
∗,m =

0 unless m = l′ − 1. Then, for ∂
v
(ls)
m
B(l,s),(l′,s′),(l′′,s′′), ∂w(ls)

m
B(l,s),(l′,s′),(l′′,s′′) to be non-zero, this

requires as in (170)

m ∈
{∣∣(l′ − Type(l′, s′))− (l′′ − Type(l′′, s′′))

∣∣, (l′ − Type(l′, s′)) + (l′′ − Type(l′′, s′′))
}
. (181)

For k = 2, we choose the following 5 rows of Dk(η∗), with the following corresponding values of

m satisfying (181):

(l′, s′) and (l′′, s′′) Values of m

(1, C) and (1, C) 0

(1, A) and (1, A) 0, 2

(1, B) and (1, B) 0, 2

(1, A) and (1, C) 1

(1, B) and (1, D) 1
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Ordering the columns by v
(2s)
0 , v

(2s)
2 , w

(2s)
2 , v

(2s)
1 , w

(2s)
1 , the resulting 5× 5 submatrix is block lower-

triangular with diagonal blocks

∂
v
(2s)
0

B(2,s),(1,C),(1,C)(η∗) = C2,1,1
0,0,0 ·

∣∣∣u(1C)
∗,0

∣∣∣2
∂
v
(2s)
2 ,w

(2s)
2

(
B(2,s),(1,A),(1,A), B(2,s),(1,B),(1,B)

)
(η∗) =

(
2C2,1,1

2,−1,1·Reu
(1A)
∗,−1u

(1A)
∗,1 2C2,1,1

2,−1,1·Imu
(1A)
∗,−1u

(1A)
∗,1

2C2,1,1
2,−1,1·Reu

(1B)
∗,−1u

(1B)
∗,1 2C2,1,1

2,−1,1·Imu
(1B)
∗,−1u

(1B)
∗,1

)
∂
v
(2s)
1 ,w

(2s)
1

(
B(2,s),(1,A),(1,C), B(2,s),(1,B),(1,D)

)
(η∗) =

(
2C2,1,1

1,−1,0·Reu
(1A)
∗,−1u

(1C)
∗,0 2C2,1,1

1,−1,0·Imu
(1A)
∗,−1u

(1C)
∗,0

2C2,1,1
1,−1,0·Reu

(1B)
∗,−1u

(1D)
∗,0 2C2,1,1

1,−1,0·Imu
(1B)
∗,−1u

(1D)
∗,0

)

These blocks are generically non-singular, so this submatrix of D2(η∗) has full column rank.

For k = 3, we choose the following 7 rows of Dk(η∗), with the following corresponding values of

m satisfying (181):

(l′, s′) and (l′′, s′′) values of m

(1, D) and (2, B) 2

(1, C) and (2, A) 2

(1, C) and (2, C) 1

(1, D) and (2, D) 1

(1, A) and (2, A) 1, 3

(1, B) and (2, B) 1, 3

(1, A) and (2, C) 2, 0

Ordering the columns by v
(3s)
2 , w

(3s)
2 , v

(3s)
1 , w

(3s)
1 , v

(3s)
3 , w

(3s)
3 , w

(3s)
0 , the resulting 7 × 7 submatrix is

block lower-triangular with diagonal blocks

∂
v
(3s)
2 ,w

(3s)
2

(
B(3,s),(1,D),(2,B), B(3,s),(1,C),(2,A)

)
(η∗) =

(
2C3,1,2

2,0,2 ·Reu
(1D)
∗,0 u

(2B)
∗,2 2C3,1,2

2,0,2 ·Imu
(1D)
∗,0 u

(2B)
∗,2

2C3,1,2
2,0,2 ·Reu

(1C)
∗,0 u

(2A)
∗,2 2C3,1,2

2,0,2 ·Imu
(1C)
∗,0 u

(2A)
∗,2

)
∂
v
(3s)
1 ,w

(3s)
1

(
B(3,s),(1,C),(2,C), B(3,s),(1,D),(2,D)

)
(η∗) =

(
2C3,1,2

1,0,1 ·Reu
(1C)
∗,0 u

(2C)
∗,1 2C3,1,2

1,0,1 ·Imu
(1C)
∗,0 u

(2C)
∗,1

2C3,1,2
1,0,1 ·Reu

(1D)
∗,0 u

(2D)
∗,1 2C3,1,2

1,0,1 ·Imu
(1D)
∗,0 u

(2D)
∗,1

)
∂
v
(3s)
3 ,w

(3s)
3

(
B(3,s),(1,A),(2,A), B(3,s),(1,B),(2,B)

)
(η∗) =

(
2C3,1,2

3,−1,2·Reu
(1A)
∗,−1u

(2A)
∗,2 2C3,1,2

3,−1,2·Imu
(1A)
∗,−1u

(2A)
∗,2

2C3,1,2
3,−1,2·Reu

(1B)
∗,−1u

(2B)
∗,2 2C3,1,2

3,−1,2·Imu
(1B)
∗,−1u

(2B)
∗,2

)
∂
w

(3s)
0

B(3,s),(1,A),(2,C)(η∗) = 2C3,1,2
0,1,1 · Imu

(1A)
∗,1 u2C

∗,1

These blocks are again generically non-singular, so this submatrix of D3(η∗) has full column rank.

This verifies that Nk ·Dk(η∗) has full column rank for k = 2, 3.

Part (b), k ≥ 4. As above, we fix (A,B,C,D) = (1, 2, 3, 4) and consider η∗ satisfying both
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v
(ks)
∗,m , w

(ks)
∗,m = 0 for all m, s and

Type(l′, A),Type(l′, B) = 0, Type(l′, C),Type(l′, D) = 1 for all l′ ∈ {1, . . . , k − 1}. (182)

Columns of Dk(η∗) correspond to derivatives in the coordinates V(k). We partition these coordinates

into blocks s = 1, . . . , Sk and write

Dk(η∗) = [D
(s)
k (η∗) : s = 1, . . . , Sk],

where columns of each D
(s)
k (η∗) are indexed by η

(ks)
0 , v

(ks)
1 , w

(ks)
1 , . . . , v

(ks)
k , w

(ks)
k . It suffices to show

that Nk ·D(s)
k (η∗) has full column rank 2k+ 1 for generic η∗ satisfying (182), for each fixed s. We do

this by choosing 2k + 1 rows of Nk—call this submatrix N ′k—and verifying that the corresponding

(2k + 1)× (2k + 1) submatrix N ′k ·D
(s)
k (η∗) is non-singular.

The argument for verifying non-singularity is different from our preceding approaches in Lemmas

C.4.3 and C.4.5. Let us first explain the high-level idea: Rather than exhibiting a sparse structure

for N ′k ·D
(s)
k (η∗) where the rank may be explicitly checked, we study the determinant

P (η∗) = det[N ′k ·D
(s)
k (η∗)] (183)

and show that this is not identically 0 as a polynomial of the non-zero coordinates of η∗. We

introduce a special degree-(2k + 1) monomial

M=
(
w

(1C)
0 w

(1D)
0 v

(1A)
1 v

(1B)
1

)2

bk/2c−1∏
j=2

v
(jA)
j v

(jB)
j v

(jC)
j−1 v

(jD)
j−1

 v
(bk/2cC)
bk/2c−1

(
v

(bk/2cA)
bk/2c v

(bk/2cD)
bk/2c−1

)1{k odd}
,

(184)

where all variables appearing in M are coordinates of η∗ which are not fixed to be zero. We then

write

P = (P/M) ·M +Q (185)

where Q are the terms of P not divisible by M , (P/M) ·M are the terms which are divisible by M ,

and P/M denotes their quotient by M . It suffices to show that P/M is not identically 0.

We now describe the choice of 2k + 1 rows of N ′k that allows us to verify this claim P/M 6= 0.

We restrict to rows ((−k, s), (q′, s′), (q′′, s′′)) ∈ Q(k) of Nk where the first pair is fixed to be (−k, s),

and where q′ ∈ {1, . . . , bk/2c}. This requires −k + q′ + q′′ = 0, so q′′ = k − q′ ∈ {k − 1, . . . , dk/2e}.

We index such rows by (q′, s′), (q′′, s′′). For any such row (q′, s′), (q′′, s′′), we apply the following two
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observations:

• By definition of N in (178), each non-zero entry in this row of Nk belongs to a column

((k, s), (l′, s′), (l′′, s′′)) ∈ H(k) where l′, l′′ ∈ {1, . . . , k − 1} and

l′ ≥ q′, l′′ ≥ q′′, l′ − q′, l′′ − q′′ are even. (186)

• As in (170), for this row ((k, s), (l′, s′), (l′′, s′′)) ∈ H(k) of D
(s)
k (η∗), the entries in the columns

∂
v
(ks)
m

, ∂
w

(ks)
m

can be non-zero only when

m ∈
{∣∣(l′−Type(l′, s′))− (l′′−Type(l′′, s′′))

∣∣, (l′−Type(l′, s′)) + (l′′−Type(l′′, s′′))
}
. (187)

Combined, these yield the important observation that, fixing a row (q′, s′), (q′′, s′′) of Nk ·D(s)
k (η∗)

and a pair of columns ∂
v
(ks)
m

, ∂
w

(ks)
m

(or a single column in the case m = 0) for a specific index

m ∈ {0, . . . , k}, these two entries (or one entry) ofNk·D(s)
k (η∗) are homogenous degree-2 polynomials,

whose degree-2 monomials are each a product of some variable vl
′·
· , w

l′·
· and some variable vl

′′·
· , wl

′′·
·

where l′, l′′ satisfy both conditions (186) and (187).

The following table now explicitly chooses 2k + 1 rows (q′, s′), (q′′, s′′) of Nk to form N ′k, and

indicates which columns ∂
v
(ks)
m

, ∂
w

(ks)
m

of each corresponding row of Nk · D(s)
k (η∗) can depend on

some variable vq
′·
· , w

q′·
· with the same spherical frequency as the first row index q′. For example:

If (s′, s′′, q′, q′′) = (A,A, 1, k − 1), then (186) forces l′′ = k − 1. In order for a term of this row

to depend on v1·
· , w

1·
· , we must then have l′ = 1. Then Type(l′, s′) = 1 and Type(l′′, s′′) = k − 1,

so the condition (187) implies that only columns corresponding to m ∈ {k, k − 2} can depend on

such variables v1·
· , w

1·
· . This yields the first row of the table. If (s′, s′′, q′, q′′) = (C,C, 3, k − 3),

then (186) forces l′′ ∈ {k − 3, k − 1}. For this row to depend on v3·
· , w

3·
· , we must have l′ = 3.

Then Type(l′, s′) = 2 and Type(l′′, s′′) ∈ {k − 4, k − 2}, so m ∈ {k − 6, k − 4, k − 2, k}, and this

yields the 13th row of the table. The remaining rows are deduced by the same type of reasoning.

(The sequences (2, 4, . . .), (3, 5, . . .), etc. below denote some sequences of consecutive even and odd

integers, whose exact last elements will not be important for our later arguments.)
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s′ s′′ q′ q′′ m s.t. ∂
v
(ks)
m

, ∂
w

(ks)
m

can depend on vq
′·
· , w

q′·
·

A A 1 k − 1 k, k − 2

B B 1 k − 1 k, k − 2

C C 1 k − 1 k − 2

D D 1 k − 1 k − 2

A C 1 k − 1 k − 1, k − 3

B D 1 k − 1 k − 1, k − 3

C A 1 k − 1 k − 1

D B 1 k − 1 k − 1

C C 2 k − 2 k − 4 and k − 2

D D 2 k − 2 k − 4 and k − 2

A C 2 k − 2 k − 5 and k − 1

B D 2 k − 2 k − 5 and k − 1

C C 3 k − 3 k − 6, k − 4, k − 2 and k

D D 3 k − 3 k − 6, k − 4, k − 2 and k

A C 3 k − 3 k − 7, k − 5 and k − 1

B D 3 k − 3 k − 7, k − 5 and k − 1

...
...

...

C C bk/2c − 1 dk/2e+ 1 2, 4, . . . and k − 2, k if k even; 3, 5, . . . and k − 2, k if k odd

D D bk/2c − 1 dk/2e+ 1 2, 4, . . . and k − 2, k if k even; 3, 5, . . . and k − 2, k if k odd

A C bk/2c − 1 dk/2e+ 1 1, 3, . . . and k − 1 if k even; 2, 4, . . . and k − 1 if k odd

B D bk/2c − 1 dk/2e+ 1 1, 3, . . . and k − 1 if k even; 2, 4, . . . and k − 1 if k odd

C C bk/2c dk/2e 0, 2, . . . and k − 2, k if k even; 1, 3, . . . and k − 2, k if k odd

(if k odd) D D bk/2c dk/2e 1, 3, . . . and k − 2, k

(if k odd) A C bk/2c dk/2e 0, 2, . . . and k − 1

Order the rows of N ′k ·D
(s)
k (η∗) as above, and the columns in the ordering of decreasing m

v
(ks)
k , w

(ks)
k , v

(ks)
k−1, w

(ks)
k−1, v

(ks)
k−2, w

(ks)
k−2 . . . , v

(ks)
1 , w

(ks)
1 , η

(ks)
0 .
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Consider the block decomposition for both rows and columns of N ′k ·D
(s)
k (η∗) with respect to

2k + 1 = 8 + 4 + 4 + . . .+ 4 +


1 if k even

3 if k odd.

Let P = det(N ′k ·D
(s)
k (η∗)) as defined in (183), and let P1, P2, . . . , Pbk/2c be the determinants of the

diagonal blocks in this decomposition. Recall that we wish to show P/M 6= 0. Let us factor M in

(184) correspondingly as M = M1M2 . . .Mbk/2c where

M1 = (w
(1C)
0 w

(1D)
0 v

(1A)
1 v

(1B)
1 )2

Mj = v
(jA)
j v

(jB)
j v

(jC)
j−1 v

(jD)
j−1 for j = 2, . . . , bk/2c − 1

Mbk/2c = v
(bk/2cC)
bk/2c−1

(
v

(bk/2cA)
bk/2c v

(bk/2cD)
bk/2c−1

)1{k odd}
.

The degrees of M1,M2,M3, . . . coincide with the above block sizes 8, 4, 4, . . .. Furthermore, each Mj

depends on only variables vj·· , w
j·
· having spherical frequency j.

Observe now that:

• Only the 8 × 8 upper-left diagonal block of N ′k · D
(s)
k (η∗) has entries depending on variables

v1·
· , w

1·
· . This is because all monomials in rows 9 onwards are a product of some vl

′·
· , w

l′·
· with

some vl
′′·
· , wl

′′·
· where l′ ≥ q′ ≥ 2 and l′′ ≥ q′′ ≥ 2. In the first 8 rows, the table indicates that

only the first 8 columns (corresponding to m = k, k − 1, k − 2, k − 3) can depend on v1·
· , w

1·
· .

• Furthermore, any degree-2 monomial in this 8× 8 block that depends on v1·
· , w

1·
· must have as

its second variable vl
′′·
· , wl

′′·
· for some l′′ ≥ k − 1 > bk/2c strictly.

• Removing this first row block and column block of size 8, only the 4×4 upper-left diagonal block

of the remaining matrix has entries depending on v2·
· , w

2·
· , by the same reasoning. Furthermore,

any degree-2 monomial in this 4 × 4 block that depends on v2·
· , w

2·
· must have as its second

variable vl
′′·
· , wl

′′·
· for some l′′ ≥ k − 2 > bk/2c strictly.

• Removing also this second row block and column block of size 4, only the 4× 4 upper-left re-

maining diagonal block has entries depending on v3·
· , w

3·
· , etc. This argument can be continued

inductively until the last block.
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These observations imply that the terms of P divisible by M must have the factorization

P/M = (P1/M1)(P2/M2) . . . (Pbk/2c/Mbk/2c), (188)

where, analogously to (185), each factor Pj/Mj is the polynomial that is the quotient by Mj of those

terms of Pj which are exactly divisible by Mj .

To complete the proof, we check by direct computation that each polynomial Pj/Mj on the right

side of (188) is non-zero.

Verification that P1/M1 6= 0: Consider, as an example, the entry in the first row (A,A, 1, k−1)

and first column ∂
v
(ks)
k

of N ′k ·D
(s)
k (η∗). This entry is the inner product

(
N(−k,s),(1,A),(k−1,A)

)>(
∂
v
(ks)
k

B(η∗)
)

=
∑

((k,s),(l′,s′),(l′′,s′′))∈H(k)

N
(k,s),(l′,s′),(l′′,s′′)
(−k,s),(1,A),(k−1,A) · ∂v(ks)k

B(k,s),(l′,s′),(l′′,s′′)(η∗).

Importantly, only the single term indexed by ((k, s), (l′, s′), (l′′, s′′)) = ((k, s), (1, A), (k−1, A)) of this

sum depends on any variable appearing in the monomial M1. This is because, from the definition of

N in (178), all other non-zero entries N
(k,s),(l′,s′),(l′′,s′′)
(−k,s),(1,A),(k−1,A) of this row of N have l′ ≥ 3 and l′′ = k−1.

We introduce the shorthand

Yq = N
(k,s),(q,s′),(k−q,s′′)
(−k,s),(q,s′),(k−q,s′′),

where this notation fixes k and uses that this value does not actually depend on (s, s′, s′′). Note that

by (178) and the non-vanishing of Clebsch-Gordan coefficients in Lemma C.4.2, Yq 6= 0 for every

q = 0, 1, . . . , k. Then, applying (164), (182), and the sign symmetry (154), the above single term is

N
(k,s),(1,A),(k−1,A)
(−k,s),(1,A),(k−1,A) · ∂v(ks)k

B(k,s),(1,A),(k−1,A)(η∗) = Y1 · 2Ck,1,k−1
k,−1,k−1 Reu

(1A)
−1 u

(k−1,A)
k−1

= 2Y1C
k,1,k−1
k,−1,k−1

(
v

(1A)
1 v

(k−1,A)
k−1 − w(1A)

1 w
(k−1,A)
k−1

)
.

Only the first of these two summands depends on a variable in M1, namely v
(1A)
1 . We write its

quotient by this variable v
(1A)
1 in the upper-left entry of the first table below.

As a second example, consider the entry in row (C,C, 1, k−1) and column ∂
v
(ks)
k−2

of N ′k ·D
(s)
k (η∗).
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By the same reasoning as above, the only term of this entry which depends on a variable in M1 is

N
(k,s),(1,C),(k−1,C)
(−k,s),(1,C),(k−1,C) · ∂

(ks)
vk−2

B(k,s),(1,C),(k−1,C) = Y1 · 2Ck,1,k−1
k−2,0,k−2 · Reu

(1C)
0 u

(k−1,C)
k−2

= 2Y1C
k,1,k−1
k−2,0,k−2 · w

(1C)
0 w

(k−1,C)
k−2 .

Its quotient by the variable w
(1C)
0 appearing in M1 is the (3, 3) entry of the first table below.

The entries of the 8× 8 block for P1 which depend on some variable in M1 are contained within

two 4 × 4 submatrices, corresponding to the below two tables. Similar to the above computations,

each entry of each submatrix has at most 1 term depending on some variable in M1. We indicate

the quotient of this term by the corresponding variable of M1 in the two tables below. For entries

that have no dependence on variables of M1, we write this quotient as 0.

vksk wksk vk,sk−2 wk,sk−2

A,A, 1, k − 1 2Y1C
k,1,k−1
k,−1,k−1v

k−1,A
k−1 2Y1C

k,1,k−1
k,−1,k−1w

k−1,A
k−1 2Y1C

k,1,k−1
k−2,1,k−1v

k−1,A
k−1 2Y1C

k,1,k−1
k−2,1,k−1w

k−1,A
k−1

B,B, 1, k − 1 2Y1C
k,1,k−1
k,−1,k−1v

k−1,B
k−1 2Y1C

k,1,k−1
k,−1,k−1w

k−1,B
k−1 2Y1C

k,1,k−1
k−2,1,k−1v

k−1,B
k−1 2Y1C

k,1,k−1
k−2,1,k−1w

k−1,B
k−1

C,C, 1, k − 1 0 0 2Y1C
k,1,k−1
k−2,0,k−2w

k−1,C
k−2 −2Y1C

k,1,k−1
k−2,0,k−2v

k−1,C
k−2

D,D, 1, k − 1 0 0 2Y1C
k,1,k−1
k−2,0,k−2w

k−1,D
k−2 −2Y1C

k,1,k−1
k−2,0,k−2v

k−1,D
k−2

vk,sk−1 wk,sk−1 vk,sk−3 wk,sk−3

A,C, 1, k − 1 2Y1C
k,1,k−1
k−1,−1,k−2v

k−1,C
k−2 2Y1C

k,1,k−1
k−1,−1,k−2w

k−1,C
k−2 2Y1C

k,1,k−1
k−3,1,k−2v

k−1,C
k−2 2Y1C

k,1,k−1
k−3,1,k−2w

k−1,C
k−2

B,D, 1, k − 1 2Y1C
k,1,k−1
k−1,−1,k−2v

k−1,D
k−2 2Y1C

k,1,k−1
k−1,−1,k−2w

k−1,D
k−2 2Y1C

k,1,k−1
k−3,1,k−2v

k−1,D
k−2 2Y1C

k,1,k−1
k−3,1,k−2w

k−1,D
k−2

C,A, 1, k − 1 2Y1C
k,1,k−1
k−1,0,k−1w

k−1,A
k−1 −2Y1C

k,1,k−1
k−1,0,k−1v

k−1,A
k−1 0 0

D,B, 1, k − 1 2Y1C
k,1,k−1
k−1,0,k−1w

k−1,B
k−1 −2Y1C

k,1,k−1
k−1,0,k−1v

k−1,B
k−1 0 0

Now P1/M1 is the product of determinants of the above two 4 × 4 matrices. By Lemma C.4.2,

each Clebsch-Gordan coefficient here is non-zero. Then the determinant of each 4× 4 matrix is the

product of two 2× 2 determinants, each of which is a non-vanishing quadratic, so P1/M1 6= 0.

Verification that Pj/Mj 6= 0 for j = 2, . . . , bk/2c − 1: Consider, as an example, the entry of

row (C,C, 3, k − 3) and column ∂
(ks)
wk−6 . This entry is the inner product

(
N(−k,s),(3,C),(k−3,C)

)>(
∂
w

(ks)
k−6

B(η∗)
)
.

The non-zero entries N
(k,s),(l′,C),(l′′,C)
(−k,s),(3,C),(k−3,C) of this row of N must have l′ ≥ 3 odd and l′′ ∈ {k−1, k−3}.

We must then have l′ = 3 in order for the corresponding entry ∂
w

(ks)
k−6

B(k,s),(l′,C),(l′′,C)(η∗) to depend

on some variable of M3, which would be v
(3C)
2 . Recalling the form of this derivative in (165), this

forces |m′| = 2 for the summation index of (165) corresponding to any term depends on v
(3C)
2 . Then
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m+m′ ∈ {k− 8, k− 4}, since m = k− 6. Applying our specialization (187) to the derivative (165),

this requires l′′ ∈ {k − 7, k − 3} in order for this term to be non-zero. Combining with the above

condition l′′ ∈ {k−1, k−3}, we must have l′′ = k−3. Thus, to summarize, again only a single term

of the sum constituting the above inner-product depends on the variable v
(3C)
2 of M3. This term is

N
(k,s),(3,C),(k−3,C)
(−k,s),(3,C),(k−3,C) · ∂w(ks)

k−6

B(k,s),(3,C),(k−3,C)(η∗) = Y3 · 2Ck,3,k−3
k−6,2,k−4 Imu

(3C)
2 u

(k−3,C)
k−4

= 2Y3C
k,3,k−3
k−6,2,k−4

(
v

(3C)
2 w

(k−3,C)
k−4 − w(3C)

2 v
(k−3,C)
k−4

)
.

Only the first summand depends on v
(3C)
2 , and its quotient by v

(3C)
2 is recorded in row 1 and column

2 of the table below, corresponding to j = 3.

By the same reasoning, a similar simplification occurs for every j = 2, . . . , bk/2c − 1 and every

entry of Pj/Mj . For general j, we may compute each entry of this 4 × 4 block that depends on a

variable of Mj , and the table records the quotient of this entry by the corresponding variable of Mj .

vk,sk−2j wk,sk−2j vk,sk−2j−1 wk,sk−2j−1

C,C, j, k − j 2YjC
k,j,k−j
k−2j,j−1,k−j−1v

k−j,C
k−j−1 2YjC

k,j,k−j
k−2j,j−1,k−j−1w

k−j,C
k−j−1 0 0

D,D, j, k − j 2YjC
k,j,k−j
k−2j,j−1,k−j−1v

k−j,D
k−j−1 2YjC

k,j,k−j
k−2j,j−1,k−j−1w

k−j,D
k−j−1 0 0

A,C, j, k − j 0 0 2YjC
k,j,k−j
k−2j−1,j,k−j−1v

k−j,C
k−j−1 2YjC

k,j,k−j
k−2j−1,j,k−j−1w

k−j,C
k−j−1

B,D, j, k − j 0 0 2YjC
k,j,k−j
k−2j−1,j,k−j−1v

k−j,D
k−j−1 2YjC

k,j,k−j
k−2j−1,j,k−j−1w

k−j,D
k−j−1

Then Pj/Mj is the determinant of this 4× 4 matrix, which is a product of two 2× 2 determinants.

By Lemma C.4.2, these Clebsch-Gordan coefficients are non-zero, so each 2 × 2 determinant is a

non-vanishing quadratic, and Pj/Mj 6= 0.

Verification that Pbk/2c/Mbk/2c 6= 0: If k is even, we have η
(ks)
0 = v

(ks)
0 , and

Pk/2(η∗) =
(
N(−k,s),(k/2,C),(k/2,C)

)>(
∂
v
(ks)
0

B(η∗)
)
.

The non-zero elements N
(k,s),(l′,C),(l′′,C)
(−k,s),(k/2,C),(k/2,C) have l′ ≥ k/2 and l′′ ≥ k/2 with l′ − k/2 and l′ − k/2

both even. From (166) and the specialization (187), the only term of this inner-product depending

on Mk/2 = v
(k/2)C
(k/2)−1 arises from l′ = l′′ = k/2, and this term is

N
(k,s),(k/2,C),(k/2,C)
(−k,s),(k/2,C),(k/2,C) · ∂v(ks)0

B(k,s),(k/2,C),(k/2,C)(η∗)

= Yk/2C
k,k/2,k/2
0,k/2−1,k/2−1

∣∣∣u(k/2)C
k/2−1

∣∣∣2 = Yk/2C
k,k/2,k/2
0,k/2−1,k/2−1

(
(v

(k/2)C
k/2−1 )2 + (w

(k/2)C
k/2−1 )2

)
.

So Pk/2/Mk/2 = Yk/2C
k,k/2,k/2
0,k/2−1,k/2−1 · v

(k/2)C
k/2−1 , which is non-zero.
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(a) (b) (c)

Figure C.1: (a) 24.6�A-resolution and (b) 8.2�A-resolution low-pass filtered maps for the rotavirus
VP6 trimer, prior to performing basis approximation as depicted in Figure 4.1. (c) 7.0�A-resolution
low-pass filtered map for hemoglobin, prior to performing basis approximation as depicted in Figure
4.2.

(a) (b) (c)

Figure C.2: Leading d − 3 eigenvalues of the observed Fisher information matrices depicted in
Figures 4.1 and 4.2, plotted against a common scaling 1/α ∝ σ−2, for (a) the 405-dimensional
approximation for rotavirus VP6, (b) the 4410-dimensional approximation for rotavirus VP6, and
(c) the 3528-dimensional approximation for hemoglobin. Lines depict the median within each of the
three tiers, and bands depict the 10th to 90th percentiles.

If k is odd, then η
(ks)
0 = w

(ks)
0 . In the 3× 3 submatrix corresponding to Pbk/2c, again each entry

has at most 1 term depending on some variable of Mbk/2c. The below table records the quotient of

this term by the corresponding variable.

vk,s1 wk,s1 wk,s0

C,C, bk/2c, dk/2e 2Ybk/2cC
k,bk/2c,dk/2e
1,bk/2c−1,dk/2e−1

v
dk/2e,C
dk/2e−1

2Ybk/2cC
k,bk/2c,dk/2e
1,bk/2c−1,dk/2e−1

w
dk/2e,C
dk/2e−1

0

D,D, bk/2c, dk/2e 2Ybk/2cC
k,bk/2c,dk/2e
1,bk/2c−1,dk/2e−1

v
dk/2e,D
dk/2e−1

2Ybk/2cC
k,bk/2c,dk/2e
1,bk/2c−1,dk/2e−1

w
dk/2e,D
dk/2e−1

0

A,C, bk/2c, dk/2e 0 0 2Ybk/2cC
k,bk/2c,dk/2e
0,bk/2c,bk/2cw

dk/2e,C
dk/2e−1

Then Pbk/2c/Mbk/2c is the determinant of this 3× 3 matrix, which is non-zero.

Combining the above, we have shown P/M 6= 0 as desired. This completes the proof of part (b)

also for k ≥ 4.
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C.5 Details of the numerical simulations

We used rotavirus VP6 and hemoglobin maps publicly available on EMDB (EMDB-1461 and EMDB-

3650). We recentered the rotavirus map EMDB-1461 to have center-of-mass at the origin, and zero-

padded it into a cubical volume of dimensions 141×141×141. The hemoglobin volume EMDB-3650

is already cubical. We centered the values of both maps to have mean value 0.

Fourier quadrature. We computed the Fourier transform f̂ of both maps over a spherical grid

in the Fourier domain, using the FINUFFT library developed in Barnett et al. (2019). Parametriz-

ing Fourier space by spherical coordinates (ρ, φ1, φ2), we computed f̂ on a linearly spaced grid of

150× 250× 250 points (ρ, φ1, φ2) ∈ [0, 1/R]× [0, π]× [0, 2π), where R is the spatial-domain distance

from the origin to the boundary of the cubical volume. All integrals in the Fourier domain were

computed using the weighted quadrature defined by this discrete grid with weight proportional to

ρ2 sinφ1.

Low-pass filter and basis approximation. For each frequency threshold v, we performed low-

pass filtering by simple truncation of the Fourier transform to radii ρ ∈ [0, v]. We then iteratively

defined radial functions z1, . . . , zS : [0, v] → R satisfying the orthogonality (4.27), so that for each

s = 1, . . . , S, the partial basis {z1, . . . , zs} maximizes the total power of the projection of the Fourier

transform f̂ onto the function space

{
z1(ρ)h1(φ1, φ2) + . . .+ zs(ρ)hs(φ1, φ2) : h1, . . . , hs ∈ L2(S2,C)

}
.

In detail, let us denote u = (φ1, φ2), and du = sinφ1 dφ1 dφ2 as the surface area measure on S2.

Then the projection of f̂ onto the above space is defined explicitly by

hi(u) =

∫ v

0

f̂(ρ, u)zi(ρ) · ρ2dρ for each i = 1, . . . , s.
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The projected power is then

Power =

∫
S2

∫ v

0

∣∣∣∣∣
s∑
i=1

zi(ρ)hi(u)

∣∣∣∣∣
2

· ρ2 dρdu =

∫
S2

s∑
i=1

|hi(u)|2 du

=

∫ v

0

∫ v

0

s∑
i=1

zi(ρ)C(ρ, ρ′)zi(ρ
′) · ρ2 dρ · ρ′2 dρ′

where we have defined the cross-covariance of f̂(ρ, ·) and f̂(ρ′, ·) as

C(ρ, ρ′) =

∫
S2

f̂(ρ, u)f̂(ρ′, u)du.

From the orthogonality (4.27), the maximizing functions z1,. . ., zS are such that {ρ z1(ρ), . . . , ρ zS(ρ)}

are the S leading eigenfunctions (orthogonal with respect to the standard unweighted L2-inner-

product) of the weighted cross-covariance kernel

K(g, h) =

∫ v

0

∫ v

0

g(ρ)C(ρ, ρ′)h(ρ) · ρdρ · ρ′dρ′.

We approximated this kernel K by its M ×M matrix discretization Kmat = (C(ρ, ρ′)ρ ρ′)ρ,ρ′ where

M is the number of radial quadrature points ρ ∈ [0, v]. We approximated its eigenfunctions by the

eigenvectors of Kmat, and divided these eigenvectors by ρ to obtain the values of the radial basis

functions z1, . . . , zS along the above radial quadrature.

The final function basis over R3 was obtained as a product of {zs : s = 1, . . . , S} with the

spherical harmonics as described in Section 4.4.2. We used the implementation of the spherical

harmonics provided by the sph harm function in scipy. Finally, basis coefficients θ∗ were computed

by integration in the Fourier domain using the above Fourier quadrature.

SO(3) quadrature. We computed the empirical Hessian ∇2Rn(θ∗) by approximating the integral

over SO(3) in the definition of the log-likelihood using a weighted discrete quadrature on SO(3).

Parametrizing SO(3) by the Euler angles (α, β, γ), we used a discrete grid of 40 × 40 × 40 values

(α, β, γ) ∈ [0, 2π)× [0, π]× [0, 2π), with linearly-spaced grid points and equal weights for (α, γ). For

β we also used linearly-spaced points β1, . . . , β40, with weights w1, . . . , w40 computed by numerically

solving the equations

40∑
i=1

wiD
(l)
0,0 ((0, βi, 0)) =


1, if l = 0

0, otherwise

(189)
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for 0 ≤ l < 40. Here D
(l)
0,0 ((0, βi, 0)) is the middle element of the Wigner-D matrix D(l)(g), evaluated

at g ∈ SO(3) having Euler angles (0, βi, 0). With proper normalization, this yields an approximate

quadrature for band-limited functions over SO(3).

We note that computing∇2Rn(θ∗) for many samples is quite computationally intensive, scaling as

O(nd2 · |quad|) where |quad| is the number of quadrature points, and we were consequently limited

in the size of this quadrature. Since this quadrature may provide an imperfect approximation

to integration over true Haar measure on SO(3), to mitigate some of the discretization effects,

we generated samples y1, . . . , yn using random rotations also drawn from the weighted discrete

distribution over SO(3) defined by this quadrature, rather than from the Haar measure. This does

not fully address the numerical inaccuracy, but at least ensures that the true rotation for each sample

yi belongs to our discretization of SO(3).

We translated this rotational grid in SO(3) to rotational elements in O(d) via the Wigner-D rep-

resentation described in Lemma 4.4.1. We used the implementation of Wigner-D matrices provided

by the third-party quaternion and spherical functions Python libraries. Finally, these rota-

tional elements in O(d) were applied to θ∗ to generate the samples y1, . . . , yn, and also to compute

the empirical Hessian ∇2Rn(θ∗).

Visualizations. The molecular graphics in Figures 4.1 and 4.2 were rendered using the UCSF

ChimeraX software Pettersen et al. (2021). We used atomic structures publicly available on PDB

(PDB:1QHD and PDB:5NI1). We aligned the rotavirus VP6 structure PDB:1QHD to the 8.2�A-

resolution map depicted in Figure C.1(a) using the ChimeraX “Fit in Map” tool. The hemoglobin

structure PDB:5NI1 is already pre-aligned to the analyzed map.

C.6 Cryogenic Electron Microscopy (Cryo-EM)

Cryo-EM is a technology for determining the spatial structure of macromolecules. In recent years,

cryo-EM has become increasingly popular in structural biology. Thanks to technological advance-

ment in hardware and algorithms in the last decade, cryo-EM now allows scientists to routinely

recover structures at near-atomic resolutions. Unlike popular X-ray crystallography techniques for

structure determination, cryo-EM does not require the samples to be crystallized. This gives cryo-

EM an advantage, in particular, for molecules that are difficult to crystallize, and in heterogeneous

samples.
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In a typical cryo-EM study, a solution with the molecule of interest is flash-frozen in a thin layer

of ice. The particles are sufficiently sparse and the layer sufficiently thin so that when viewed from

above, the molecules rarely overlap. Each particle is trapped in the ice at an unknown random

orientation. The sample is then inserted into the microscope; an electron beam is transmitted

through the sample and then recorded by a camera. A detailed description of the procedure can be

found, inter alia, in Glaeser et al. (2021).

The procedure produces a 2D tomographic projection of each particle. For simplicity, in this

work we have omitted some effects such as the filters applied in the process (i.e. the contrast transfer

function) and the problem of centering the particles, which is less crucial at lower resolutions.

In addition, we assume the experimental distribution of viewing directions is uniform. A more

comprehensive description can be found in Glaeser et al. (2021), and a more detailed mathematical

description can be found in Bendory et al. (2020a). The simplified imaging model is summarized by

the equation

I(r1, r2) =

∫
R
f(g−1r)dr3 =

∫
R

(g · f) ((r1, r2, r3)) dr3, (190)

where r = (r1, r2, r3), the function f : R3 → R is the electric potential, and g ∈ SO(3) is a rotation.

We have expressed this equivalently in the main text as (4.35). In other words, the image is obtained

by integrating the z axis of the volume rotated to viewing direction g (which is not known to us).

The interactions of the electrons with the sample lead to rapid deterioration in the quality of the

sample, and very few electrons can be used to record the images before the sample becomes unusable.

Therefore, the measurements are characterized by low signal-to-noise ratios.

Taking the Fourier transform of Eq. (190) with appropriate normalization yields

Î(ω1, ω2) =
(
g · f̂

)
((ω1, ω2, 0)) , (191)

where Î is the Fourier transform of the image and f̂ is the Fourier transform of the density map.

In other words, in the Fourier domain, the tomographic projection can be conveniently described as

taking a slice of the Fourier transform of the volume, at the plane that passes through the origin

and is perpendicular to the viewing direction. We have expressed this relation in our analysis as

(171), which is characterized in our specific function bases by the projection operator ΠC in (4.40).
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C.6.1 Cryo-Electron Tomography (Cryo-ET, “Unprojected Cryo-EM”)

Cryo-ET is based on the same technology as cryo-EM. However, in cryo-ET several images are taken

of each particle, with the sample tilted in a different direction for every image. As in the classic

cryo-EM problem above, the relative rotation angles of the different particles are unknown. However,

the relative tilt angles of images of the same particle are known. By the Fourier-slice relation (191),

each image is a slice of the Fourier domain, and thus a dense set of slices from different viewing

directions of the same particle can be used to reconstruct an entire 3D volume. Unfortunately, due

to physical limitations, the tilt angles cannot cover all viewing directions, and a series of cryo-ET

tilt images is typically noisier than a cryo-EM image. Thus cryo-ET provides a method of obtaining

noisy 3D maps of individual particles, whose relative rotations across different particles are unknown

as in the cryo-EM problem. Cryo-ET is more commonly used to study larger samples (e.g. entire

cells), but is also used in the study of smaller particles. For additional information, see Eisenstein

et al. (2019); Turk and Baumeister (2020). In the main text, we have referred to this problem of

reconstructing a map from unprojected and rotated 3D volumes also as the “unprojected cryo-EM”

model.

A simplified model of cryo-ET, after the tilt series has been reassembled to a 3D function, has

the form:

fg(ω) = (g · f) (ω) = f(g−1 · ω), (192)

or, in the Fourier domain:

f̂g(ω) =
(
g · f̂

)
(ω) = f̂(g−1 · ω). (193)

The (projected) cryo-EM model, is related to the cryo-ET model (“unprojected cryo-EM”) through

the tomographic projection operator Π; in the Fourier domain, Π has the form

(
Πf̂
)

(ω1, ω2) = f̂(ω1, ω2, 0). (194)
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