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Abstract 

Uncovering Hidden Diversity In Plants 

Xing Wu 

2022 

 One of the greatest challenges to human civilization in the 21st century will be to provide global 

food security to a growing population while reducing the environmental footprint of agriculture. Despite 

increasing demand, the fundamental issue of limited genetic diversity in domesticated crops provides 

windows of opportunity for emerging pandemics and the insufficient ability of modern crops to respond 

to a changing global environment. The wild relatives of crop plants, with large reservoirs of untapped 

genetic diversity, offer great potential to improve the resilience of elite cultivars. Utilizing this diversity 

requires advanced technologies to comprehensively identify genetic diversity and understand the genetic 

architecture of beneficial traits. The primary focus of the dissertation is developing computational tools to 

facilitate variant discovery and trait mapping for plant genomics.  

           In Chapter 1, I benchmarked the performance of variant discovery algorithms based on simulated 

and diverse plant datasets. The comparison of sequence aligners found that BWA-MEM consistently 

aligned the most plant reads with high accuracy, whereas Bowtie2 had a slightly higher overall accuracy. 

Variant callers, such as GATK HaplotypCaller and SAMtools mpileup, were shown to significantly differ 

in their ability to minimize the frequency of false negatives and maximize the discovery of true positives. 

A cross-reference experiment of Solanum lycopersicum and Solanum pennellii reference genomes 

revealed significant limitations of using a single reference genome for variant discovery. Next, I 

demonstrated that a machine-learning-based variant filtering strategy outperformed the traditional hard-

cutoff filtering strategy, resulting in a significantly higher number of true positive and fewer false-positive 

variants. Finally, I developed a 2-step imputation method resulted in up to 60% higher accuracy than 

direct LD-based imputation methods.  
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           In Chapter 2, I focused on developing a trait mapping algorithm tailored for plants considering the 

high levels of diversity found in plant datasets. This novel trait mapping framework, HapFM, had the 

ability to incorporate biological priors into the mapping model to identify causal haplotypes for traits of 

interest. Compared to conventional GWAS analyses, the haplotype-based approach significantly reduced 

the number of variables while aggregating small effect SNPs to increase mapping power. HapFM could 

account for LD between haplotype segments to infer the causal haplotypes directly. Furthermore, HapFM 

could systemically incorporate biological priors into the probability function during the mapping process 

resulting in greater mapping resolution. Overall, HapFM achieves a balance between powerfulness, 

interpretability, and verifiability. 

           In Chapter 3, I developed a computational algorithm to select a pan-genome cohort to maximize 

the haplotype representativeness of the cohort. Increasing evidence suggest that a single reference genome 

is often inadequate for plant diversity studies due to extensive sequence and structural rearrangements 

found in many plant genomes. HapPS was developed to utilize local haplotype information to select the 

reference cohort. There are three steps in HapPS, including genome-wide block partition, representative 

haplotype identification, and genetic algorithm for reference cohort selection. The comparison of HapPS 

with global-distance-based selection showed that HapPS resulted in significantly higher block coverage in 

the highly diverse genic regions. The GO-term enrichment analysis of the highly diverse genic region 

identified by HapPS showed enrichment for genes involved in defense pathways and abiotic stress, which 

might identify genomic regions involved in local adaptation. In summary, HapPS provides a systemic and 

objective solution to pan-genome cohort selection.
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Introduction 

 One of the greatest challenges to human civilization in the 21st century is providing global food 

security to a growing population while mitigating crop losses and agriculture's environmental footprint. 

As the global population grows, there is an increased pressure on the agricultural industry. Environmental 

factors, such as plant pathogens and climate changes, pose a significant threat to global agricultural 

production. Ug99 wheat rust, for example, emerged in Uganda in 1999, then spread into East Africa and 

Central Asia, and caused nearly 100% of the wheat yield loss yearly (Figueroa et al., 2018). With no 

genetic resistance found in domesticated germplasms, the prospects of worldwide losses loomed. 

Fortunately, natural resistance to Ug99 was identified in wild wheat relatives, alleviating the pathogen's 

global impact (Saintenac et al., 2013). Solutions to other pandemics have not yet been realized. Citrus 

greening disease, for instance, is an incurable disease regarded as the most devastating pandemic to the 

worldwide production of citrus. In Florida alone, one of the country's largest orange-producing states, 

crop loss has reached 74% since the disease was first identified (Singerman and Rogers, 2020). 

Commercial banana production is also seriously threatened by Panama disease caused by the soil-borne 

fungus Fusarium oxysporum. Currently, the exclusion of the pathogen is the primary measure to protect 

banana production (Ordonez et al., 2015). These are just a few examples whereby natural resistance to the 

disease has not been identified in commercial gene pool, emphasizing the importance of identifying new 

sources of diversity for global food security. 

 Crop production is also vulnerable to environmental challenges due to climate change, such as 

availability of water supply, temperature change, and the occurrence of extreme weather events. For each 

degree of global temperature increase, wheat yield is predicted to decrease by 4-6%. Approximately 56% 

of the worldwide maize-producing areas may also experience yield declines due to climate change by the 

end of the century (Anderson et al., 2020) (Anderson et al., 2020) (Zhao et al., 2017). These crop losses 

are compounded by the emergence of plant diseases associated with changing environmental conditions 

emphasizing the increased importance of resilient crop varieties.   
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 Loss of genetic diversity is one of the underlying reasons why modern crops are vulnerable to 

emerging disease and environmental stress. Throughout the history of crop domestication, wild species 

were bred into modern varieties that represented a series of genetic bottlenecks that vastly reduced the 

genetic diversity base found in modern crop varieties (Gross and Olsen, 2010; Heslop-Harrison and 

Schwarzacher, 2012; Smith et al., 2015). Domesticated traits, such as yield, flowering time, and plant 

architecture were selected, leaving behind a reservoir of untapped genetic diversity in the wild relatives. 

This untapped diversity may contain a source of new diversity needed to provide resistance to emerging 

pathogens and environmental threats (Kofsky et al., 2018). For example, the wild soybean species Glycine 

soja has resistance to a severe pathogen, Asian Soybean Rust, and abiotic resistance to adapt to harsh 

environments (Kofsky et al., 2018). The infusion of this natural genetic resistance into modern breeding 

populations represent a source of untapped diversity that may offer protection from emerging threats to 

food security in the 21st-century and beyond.  

 Numbers of studies have shown landraces and wild relatives of our crops represent a source of 

genetic diversity that can be utilized for crop improvement. The resequencing of 1,143 indica rice 

accessions identified a new allele in OsNramp5 that can mitigate grain cadmium levels through hybrid 

breeding (Lv et al., 2020b). The resequencing study of 610 tomato accession, including 42 accessions of 

wild species and 568 accessions from the red-fruited clade, identified over 26 million SNPs in total. This 

multi-omics tomato flavor study provided a framework on how introgression from wild relatives could 

improve flavor and desirable metabolic changes (Zhu et al., 2018). In another study, resequencing 302 

wild and cultivated soybean accessions uncovered 13 previously uncharacterized loci for agronomic traits 

including oil content, plant height and pubescence form (Zhou et al., 2015). These large resequencing 

studies further underscore the importance of exploring the reservoir of useful genetic diversity found in 

wild accessions. 

 The first step of utilizing these resources is to catalog the diversity found in the gene pool 

accurately and comprehensively. Current genomic resources, especially wild species, are not systemically 

exploited. Lack of resources represent a significant barrier for plant breeders and molecular biologists. 
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The two main obstacles are 1) that existing variant identification workflows are not optimized for the vast 

diversity found in plant species but rather for the much less diverse human genome; and 2) a single 

reference genome is an incomplete tool to represent the extent of genetic diversity of a plant species 

(Computational Pan-Genomics, 2018; Paten et al., 2017).  

 The first step in identifying diversity is a genomic workflow for variant discovery that involves 

genome sequencing, read mapping, raw variant identification, variant filtering, and missing data 

imputation. Many of the programs available for this pipeline were established and optimized for human 

studies, but few were specifically tailored for plant datasets (Krishnan et al., 2021; Kumaran et al., 2019; 

Liang et al., 2019). As compared to the human genome, plant genomes are often of lower quality, much 

more diverse, contain genetic redundancy due to polyploidy, and contain a higher fraction of highly 

repetitive regions as compared to human genomes. For example, the repetitive sequence content in the 

soybean genome and maize genome is around 57% and 80%, respectively (Haberer et al., 2020; Schmutz 

et al., 2010). In contrast, the repetitive sequence content in the human genome is around 45% (Venter et 

al., 2001). These differences contribute to the lower performance of variant discovery algorithms when 

used on plant datasets compared to humans. Few benchmarking studies on variant discovery pipelines 

focused on closely related individuals or populations with small diversity (Highnam et al., 2015; Krishnan 

et al., 2021; Kumaran et al., 2019; Liang et al., 2019; Schilbert et al., 2020). There is an immediate need 

to understand the performance of programs in the variant discovery pipeline on distantly related 

individuals and diverse populations.  

 In Chapter 1, I performed a benchmarking study on various programs in the variant discovery 

pipeline to address the question: how do different bioinformatic programs handle diversity. The 

benchmark included programs in the sequence read alignment, variant calling, variant filtering, and 

imputation steps using both simulated and real plant genomic datasets. A comparison of sequence aligners 

showed significant differences in alignment accuracy and alignment percentage among different aligners 

in distantly related individuals. The levels of diversity, sequence coverage, and genome complexity 

significantly affected the false-negative and true-positive rates of different variant calling programs. In the 
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diversity population situations, the machine-learning-based variant filtering strategy outperformed the 

traditional hard-cutoff strategy resulting in a higher number of true positive variants and fewer false-

positive variants. Finally, the 2-step imputation method, which utilized a set of high-confidence SNPs as 

the reference panel, showed up to 60% higher accuracy than direct LD-based imputation when analyzing 

wild species. In conclusion, this study serves as a piece of important guiding information for plant 

biologists utilizing next-generation sequencing data for diversity characterization and crop improvement. 

 Diversity without trait association cannot solve specific food security challenges associated with 

emerging pandemics and climate mitigation. Centuries of breeding turning weeds into productive crops is 

a selective process by which undesirable variation is eliminated while desirable agronomic traits are fixed 

(Gross and Olsen, 2010; Heslop-Harrison and Schwarzacher, 2012). Nevertheless, as new diseases appear 

and our planet's climate changes, this selective process may not have proactively retained useful variation 

relevant to these emerging challenges. Therefore, associating novel variation with traits of interest is 

critical in utilizing genetic diversity for crop improvement.  

 This critical association process of trait identification represents the starting point for the 

functional characterization of diversity. Part of this process is to define the genetic architecture of a trait 

of interest. For instance, the trait gene discovery that defines the genetic architecture of agronomically 

useful genetic diversity may involve simple Mendelian traits or more complex quantitative traits 

involving several pathways (Holland, 2007). In the field of genome editing, trait architecture is a critical 

process in identifying editing targets for crop improvement (Chen et al., 2019c). Gene editing is only a 

practical solution to the extent that the genetic architecture of a desirable trait is well defined and 

understood. If the edited genes do not contribute to the trait's heritability, varietal improvement will not 

occur. Crop improvement by gene editing promises to incorporate beneficial genetic diversity in a single 

generation while avoiding the downfalls of linkage drag that may take years to remove by recurrent 

selection.  

 Accordingly, a significant portion of plant research is dedicated to characterizing the segregating 

trait and its underlying genetic architecture. In addition to being critical for gene discovery, trait mapping 
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is a foundational process for varietal improvement across the entire agricultural industry. As one would 

expect, plant researchers have applied considerable resources towards developing genomic resources and 

datasets surrounding the mapping and introgression of genetic diversity present in crop species, with a 

particular focus on the allelic diversity of trait genes. For example, a genome-wide association study 

(GWAS) of rice blast disease identified resistance loci and revealed a complex relationship between 

disease resistance and yield-related components (Wang et al., 2014a; Wang et al., 2015). The GWAS of 

seed protein and oil content in soybean identified 25 SNPs in 17 and 13 different genomic regions 

associated with seed protein and oil content, respectively (Hwang et al., 2014). Different from the diverse 

GWAS population, nested association mapping population (NAM) was used to study the genetic 

architecture of maize flowering time, and found numerous small-effect loci contributing to the phenotypic 

variation (Buckler et al., 2009). In many of these studies, especially those involving intricate population 

design or complex traits, there is emerging evidence that key genes are not being identified due to either 

insufficient mapping power or the lack of a suitable reference genome (Brachi et al., 2011; Cortes et al., 

2021; Huang and Han, 2014b; Ingvarsson and Street, 2011; Visscher et al., 2017; Xiao et al., 2017; Zhou 

and Huang, 2019). For instance, plant QTL mapping often relies on a relatively small mapping population 

presenting challenges to sufficient mapping power and resolution to identify the causal genes. Developing 

and maintaining a mapping population for each trait of interest can be time-consuming and labor-

intensive. On the other hand, when sufficient populations are available, GWAS is a commonly used 

method to define trait architecture as it provides higher power than QTL mapping, especially to polygenic 

traits. Nevertheless, GWAS was established and optimized using a human genomic dataset often 

encompassing tens of thousands of cohorts and extensive genomic datasets and has moved beyond just 

association in human genomic studies (Gallagher and Chen-Plotkin, 2018; Visscher et al., 2017). The 

small number of plant cohorts, limited data availability, high diversity, and large linkage-disequilibrium 

(LD) regions considerably reduces plant GWAS studies' efficacy. Therefore, it is necessary to develop a 

trait mapping algorithm suitable for the plant dataset, given its unique data structures.   
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 In Chapter 2, I develop a plant-focused mapping algorithm that delivers high mapping power and 

resolution designed to broadly accelerate crop improvement. The algorithm, HapFM, uses a haplotype-

based fine-mapping framework to address the issues in conventional plant GWAS studies. HapFM 

framework contains 4 steps: genome-wide block partition, unique haplotype counting, haplotype 

clustering, and genome-wide statistical fine-mapping with biological-informed priors. In the simulated 

datasets, I compared to the performance of different block partition and haplotype clustering algorithms. 

The results showed that BigLD, an LD-informed partitioning method, and X-means, a haplotype 

clustering algorithm, resulted in the highest mapping power and computational efficiency. The proof-of-

concept study showed biological-informed priors could further increase the mapping power of HapFM 

using the Arabidopsis GWAS dataset. I benchmarked HapFM against widely used GWAS programs that 

marginally associate SNPs or haplotypes with phenotypes. The results clearly showed the advantages of 

HapFM over conventional GWAS algorithms in both mapping power and resolution of complex traits. In 

summary, HapFM serves as an alternative mapping algorithm to better understand the genetic architecture 

of complex traits and has the great potential of accelerating crop improvement. 

 Switching from a single reference genome to a pan-genome reference will be the next step for a 

more comprehensive and accurate discovery of plant diversity from the wild relatives. Although the 

situation is improving, many plant species still have a single reference genome due to the historical cost 

of generating a high-quality reference genome. As sequencing cost continues to decrease, an increasing 

number of studies have shown that a single reference genome is often inadequate in many genomic 

analyses resulting in biased or inaccurate results (Bayer et al., 2020; Della Coletta et al., 2021). A single 

reference genome is often insufficient in two dimensions, 1) as the divergence of the subject genome from 

the reference increases, there is an increase bias for mapping reads and calling variants containing 

reference alleles; and 2) extensive structural variation found in plants, especially in the form of 

presence/absence or copy number variation may result in entire segments of the subject genome being 

excluded from variant identification using a single reference.    
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 A recent approach to overcome these limitations is to coalesce multiple divergent genomes into a 

composite pan-genome. Pan-genomes can incorporate major sequence and structural variation found in 

the species but absent in any single genome. This approach can alleviate the limitations associated with 

single reference (Bayer et al., 2020; Della Coletta et al., 2021; Golicz et al., 2016; Lei et al., 2021; Paten 

et al., 2017). For example, the tomato pan-genome uncovered the 4,873 new genes that were absent from 

the reference genome and identified a rare allele contributing to desirable tomato flavor (Gao et al., 

2019b). The soybean pan-genome contains the complete sequence information from 26 representative 

accessions and identified 49.9% of the genes only present in a small set of individuals (Liu et al., 2020). 

Therefore, an optimized plant variant discovery workflow using a pan-genome reference might be the key 

to identifying untapped diversity in the species to help alleviate global food insecurity.  

 In Chapter 3, I provide a computational approach to the selection of pan-genome cohort aiming to 

maximize the haplotype representativeness in the pan-genome reference. The algorithm uses local 

haplotype information instead of global distance to select individuals for the cohort. HapPS consists of 

genome-wide block partition, representative haplotype cluster identification, and cohort selection by the 

Genetic Algorithm. HapPS prioritizes the haplotype representative of regions of high interest during the 

Genetic Algorithm step. Examples are high-diversity gene-coding regions. The benchmark study showed 

HapPS outperformed the global-distance-based method in five evaluation metrics, especially the average 

coverage of the high-diversity gene-overlapping blocks. The GO term analysis found the genes in these 

regions are enriched for environmental responding genes.  

 Finally, human selection for more resilient and improved crop varieties have been a primary 

focus in agriculture over the past thousands of years. With the unparallel technologies and resources, the 

integration of beneficial genetic diversity from wild species may help us combat the food security 

challenges and drive the next revolution in agriculture.  
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Chapter 1. Benchmarking Variant Identification Tools for Plant Diversity Discovery 

Abstract 

 The ability to accurately and comprehensively identify genomic variations is critical for plant 

studies utilizing high-throughput sequencing. Most bioinformatics tools for processing next-generation 

sequencing data were originally developed and tested in human studies, raising questions as to their 

efficacy for plant research. A detailed evaluation of the entire variant calling pipeline, including 

alignment, variant calling, variant filtering, and imputation was performed on different programs using 

both simulated and real plant genomic datasets. A comparison of SOAP2, Bowtie2, and BWA-MEM 

found that BWA-MEM was consistently able to align the most reads with high accuracy, whereas 

Bowtie2 had the highest overall accuracy. Comparative results of GATK HaplotypCaller versus 

SAMtools mpileup indicated that the choice of variant caller affected precision and recall differentially 

depending on the levels of diversity, sequence coverage and genome complexity. A cross-reference 

experiment of S. lycopersicum and S. pennellii reference genomes revealed the inadequacy of single 

reference genome for variant discovery that includes distantly-related plant individuals. Machine-

learning-based variant filtering strategy outperformed the traditional hard-cutoff strategy resulting in 

higher number of true positive variants and fewer false positive variants. A 2-step imputation method, 

which utilized a set of high-confidence SNPs as the reference panel, showed up to 60% higher accuracy 

than direct LD-based imputation. Programs in the variant discovery pipeline have different performance 

on plant genomic dataset. Choice of the programs is subjected to the goal of the study and available 

resources. This study serves as an important guiding information for plant biologists utilizing next-

generation sequencing data for diversity characterization and crop improvement. 
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Introduction 

 Genomic technologies provide unprecedented opportunities to reveal the history of crop 

domestication, to discover novel genetic diversity, and to understand the genetic basis of economically 

important traits, collectively contributing to crop improvement and food security (Bevan et al., 2017). 

One of the most important steps in genomic analyses is the ability to accurately and comprehensively 

identify genetic variations. As sequencing cost continues to decrease, whole genome sequencing (WGS) 

strategies are increasingly employed for plant diversity and domestication studies. (Callaway, 2014; 

Hufford et al., 2012; Lin et al., 2014; Zhou et al., 2015). Accompanying improvements in sequencing 

technology is the need to not only improve but also better understand the algorithms that enable variant 

calling from sequencing data. Many of the algorithms used in the processing of sequencing data were 

originally developed and evaluated in human WGS studies yet are frequently used by plant genomic 

researchers (Chen et al., 2019b; Cheng et al., 2014; Li and Homer, 2010; Liu et al., 2013). The underlying 

assumption is that the performance of a given algorithm for human data will be similar for plant data, in 

spite of significant differences between the human and plant genomes. 

 The variant discovery pipeline for WGS dataset can be roughly divided into four steps: read 

mapping, variant calling, variant filtering, and imputation. Sequence aligners for the read mapping step 

can be grouped according to their indexing methodologies (Li and Homer, 2010). Programs such as 

Novoalign (http://www.novocraft.com) and GSNAP (Wu and Nacu, 2010) use hash tables indexing 

methods; whereas BWA (Li and Durbin, 2010), SOAP2 (Li et al., 2009b) and Bowtie2 (Langmead and 

Salzberg, 2012) use Burrows-Wheeler Transformation indexing algorithms. Variant calling programs can 

be categorized into alignment-based programs such as SAMtools (Li et al., 2009a) and FreeBayes 

(Garrison and Marth, 2012), and assembly-based programs, such as GATK HaplotypeCaller (Poplin et al., 

2017) and FermiKit (Li, 2015). Variant filtering steps remove low-quality variants based on various 

quality metrics such as base quality, read depth, and mapping quality. The purpose of this step is to 

remove false positive variants while minimizing false negative variants, a source of "hidden diversity". 
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The basic filtering strategy, termed "hard-filtering" (De Summa et al., 2017), sets empirical cutoffs on 

quality metrics to eliminate false positive variants.  

 Over the past decade, extensive progress in human genomic studies has developed and applied 

machine-learning based variant filtering methods (Poplin et al., 2017) which uses adaptive cutoffs that 

adapt to a specific dataset, often by finding variants within the dataset that were previously identified with 

high confidence. The final step in variant discovery often employs imputation methods by leveraging 

external information to infer missing genotypes due to technical limitations. The standard way of 

imputation in human genomic studies utilizes a reference panel (Browning and Browning, 2016; Howie et 

al., 2009), where a previously identified set of haplotypes link missing variants with successfully 

genotyped variants. Many of these advanced methods have yet to be readily adopted by plant researchers. 

In some instances, there are clear obstacles to implementation, such as the lack of extensive plant 

haplotype panels of similar quality to the 1000 Genomes Project (Genomes Project et al., 2012) or 

HapMap (International HapMap et al., 2007). Though some species, such as maize (Bukowski et al., 

2018) and rice (project, 2014), are rapidly building these resources. Even though both plants and human 

genomics share a similar computational workflow, the structure and composition of plant genomes pose 

unique challenges that are not present in humans. As a result, the evaluation of these emerging 

computational genomics technologies is urgently needed in agriculture.  

 A major challenge for crop genomics is the ability to accurately and comprehensively 

characterize genetic diversity in domesticated crops, diverse landraces, and wild crop relatives. Genetic 

diversity in plants can be much greater than that found human genomes. These sources of diversity, 

especially in the wild species, provide a reservoir of genetic variation for future crop improvement (Jacob 

et al., 2018; Migicovsky and Myles, 2017; Wulff and Moscou, 2014). For example, introgression from 

related wild species into domesticated tomato has been used to improve agronomic performance such as 

abiotic tolerance (Krause et al., 2018; Rambla et al., 2017; Zhang et al., 2018; Zhu et al., 2018). For 

example, a gene from a wild relative of bread wheat has been shown to confer resistance to one of the 

most destructive stem rust pathogen races, Ug99 (Periyannan et al., 2013). Characterizing these rich pools 
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of diversity is an important challenge facing plant genomics because the regions containing this diversity 

may pose the most challenges for algorithms designed and optimized for human studies. 

 The second challenge for variant discovery in plant genomics is the quality of available reference 

genomes. The human reference genome has been in a constant state of improvement for decades 

(https://www.ncbi.nlm.nih.gov/grc/human). Once released, however, most plant reference genomes see 

little improvement, resulting in references that are less accurate and less complete than that found in 

humans. Other key challenges are the large amounts of repetitive sequences, structural variation and, in 

some crops, complex polyploid genomes (Michael and VanBuren, 2015; Schatz et al., 2012). Diversity 

may be underestimated because of presence-absence variations (PAV) that are common to most plant 

genomes (Wang et al., 2018b). The diverse nature of plant genomes together with low quality or 

incomplete reference assemblies can negatively affect read alignment and variant calling steps, leading to 

inaccurate genotypes and missing variants (Bevan et al., 2017; Huang and Han, 2014a; Morrell et al., 

2011). 

 Here, we benchmarked the performance of programs that are commonly used for variant 

discovery in plant studies. The comparison included three highly-cited sequence aligners, BWA-MEM, 

Bowtie2 and SOAP2, and two popular variant callers, GATK HaplotypeCaller (GATK-HC) and 

SAMtools mpileup (SAMtools-mpileup) using domesticated tomatoes, wild relatives and simulated 

genomic datasets. We show that as diversity and genome complexity increased, the ability of these 

algorithms to identify variants varied. In addition, the inadequacy of a single reference genome was 

uncovered after a cross-reference comparison was performed. Finally, we evaluated the performance of 

machine learning based variant filtering method and reference panel assisted imputation methods on the 

high diversity plant datasets.  
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Results 

Alignment program evaluation 

 The performance of three different aligners, BWA-MEM, Bowtie2, and SOAP2, was evaluated 

using Illumina paired-end read datasets from 52 domesticated tomato, 30 related wild relatives 

(Supplemental Table 1.1) (Tomato Genome Sequencing et al., 2014), and simulated genomic sequences 

from different crops. Mapping percentage, alignment accuracy, and processing time for each aligner were 

evaluated. 

 The ability to align reads to a domesticated tomato reference genome, Solanum lycopersicum 

(Tomato Genome, 2012), was assessed using default and tuned parameters on Bowtie2 (Bowtie2 and 

Bowtie2-tuned), SOAP2 (SOAP2 and SOAP2-tuned), and default parameters for BWA-MEM. Parameter 

tuning (see details in Methods) for Bowtie2 and SOAP2 was necessary to attempt to match the mapping 

percentage to the default used by BWA-MEM. BWA-MEM showed the highest alignment percentage, 

99.54% and 95.95% in domesticated and wild relatives, respectively, while SOAP2 showed the lowest 

alignment percentage, 91.25% and 40.58%, respectively (Supplemental Table 1.2). In the domesticated 

tomato datasets, all of the five alignment settings resulted in more than 90% mapping percentage with 

standard deviation ranging from 0.34% to 3.77% (Figure 1.1A). Greater variation in mapping percentage 

existed when analyzing the sequences from wild species with standard deviation ranging from 1.91% to 

24.25%. The mapping percentage in the wild tomato samples displayed a bimodal distribution (Figure 

1.1A). The distribution of the group with higher alignment percentage contained wild species that were 

closely related to domesticated tomatoes, whereas the lower group contained distantly related wild species 

based on previous domestication and diversity studies (Lin et al., 2014; Strickler et al., 2015). Alignment 

percentage was found to be negatively correlated with the IBS distance of each sample to the S. 

lycopersicum reference genome (Figure 1.1B). When the sample was distantly related to the reference 

genome, BWA-MEM resulted in the highest mapping percentage and SOAP2 resulted in the lowest 

mapping percentage. In terms of processing time, SOAP2 was the fastest aligner in both domesticated and 
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wild tomato datasets, and it was up to five times faster than the slowest alignment setting, Bowtie2-tuned 

(Supplemental Figure 1.1A).  

 

Figure 1.1. Aligner performance comparison using real and simulated plant genomic dataset 

(A) Alignment percentage of five different aligner settings: SOAP2, SOAP2-tuned, Bowtie2, 

Bowtie2-tuned and BWA-MEM calculated for domesticated tomatoes and wild relatives. The 

width of violin plot is proportional to the density of the data. Boxplots inside violin plot indicate 

quantiles and outliers.  

(B)  Mapping percentage of each sample is shown relative to the IBS distance to the reference 

genome. 

(C) Alignment accuracy of five aligner settings using simulated dataset with different number of 

SNPs per read and fixed 600 nt fragment size. Each axis represents the number of SNPs in the 
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corresponding simulation. The blue color represents percentage of true positive (TP) alignments, 

pink color represents the percentage of false positive alignment (FP) and gold color represents the 

percentage of false negative (FN) alignments  

(D) Alignment accuracy of five aligner settings using simulated dataset with different size of indels 

per read and fixed 600 nt fragment size. Each axis represents the size of indels in the 

corresponding simulation.  

(E) Alignment accuracy of BWA-MEM on different crop species. Each axis represents different 

mutation rate which includes both SNP and INDEL mutations.  

 

We next determined whether greater alignment percentage or shorter alignment time could result 

in tradeoffs on accuracy and sensitivity by using simulated datasets and calculating the ratio of true 

positive (TP), false positive (FP) and false negative (FN) alignments. Simulated datasets were derived 

from the reference genome by permuting fragment sizes, and number of SNPs or size of small indels per 

read. For all alignment methods, the ratio of FP alignment increased as more SNPs or indels were 

introduced per read (Figure 1.1C-D) when the fragment size was fixed at 600 nt. When the number of 

introduced SNPs was equal or less than 2, the average percent of FP alignments BWA-MEM, Bowtie2-

tuned and SOAP2-tuned was 0.94%, 1.15% and 0.88%, respectively (Figure 1.1C). When the number of 

introduced SNPs was greater or equal to 4, the average FP alignment rate of BWA-MEM, Bowtie2-tuned 

increased to 6.41% and 2.54%, respectively, while SOAP2, and SOAP2-tuned were no longer able to find 

alignments. BWA-MEM was the only aligner that was capable of finding TP alignments with 15 SNPs 

per read with FP alignment rate of 18.26%. Similar results were also observed in the indel simulation 

experiment (Figure 1.1D). Only BWA-MEM was able to find TP alignments of reads with INDELs up to 

40 nt in size at the cost of 26% false alignments. While differences in alignment percentages were 

observed, alignment length distributions were not found to differ for each aligner (Supplemental Figure 

1.1B).  
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To indirectly determine the true vs false positive rates of BWA-MEM and Bowtie2 in real data, 

one million randomly selected reads from six samples (2 S. lycopersicum, 2 S. pennellii and 2 other wild 

relatives) were aligned to both S. lycopersicum and Solanum pennellii reference genomes (Bolger et al., 

2014a). The positions of alignments with mapping quality (MQ) ³40 were compared against the synteny 

map of the genome generated by nucmer (Kurtz et al., 2004). When the alignment position of read 

matched to the nucmer conversion of the S. lycopersicum coordinate to the S. pennellii coordinate, the 

read was considered to be syntenic. If the positions did not match, the read was considered non-syntenic. 

BWA-MEM was able to align approximately 4.22 times more reads per sample than Bowtie2 

(Supplemental Table 1.3), but only 65.71% (SD ± 2.68%) of these alignments were considered as 

syntenic compared to 88.17% (SD ± 1.59%) of Bowtie2 alignments. 

To extend the study to other crop species, simulated sequencing datasets were generated from 

rice, soybean, maize and wheat reference genomes by varying the mutation rate from 0.001 to 0.2 (Figure 

1.1E). In these studies, both SNP and INDEL were included in the simulation. When the mutation rate is 

equal to or lower than 0.04, BWA-MEM was able to align at least 92% of the sequences correctly for rice, 

tomato and soybean, whereas it was only able to correctly align 81.5% and 82% of the sequences for 

maize and wheat, respectively. As mutation rate increased, difference in both true positive and false 

positive alignment was seen among different crops. On average, BWA-MEM was able to find 18.1%, 

20.2% and 17.0% more true positive alignments in rice, tomato and soybean than in wheat and maize at 

mutation rate 0.08, 0.1, and 0.15, respectively. On the other hand, BWA-MEM was able to generate 

18.8%, 22.5%, and 24.5% less false positive alignments in rice, tomato and soybean than in wheat and 

maize at mutation rate 0.08, 0.1, and 0.15, respectively. 

 

Variant Calling Program Comparison  

 Four variant datasets were produced from the permutation of the aligners, Bowtie2-tuned, and 

BWA-MEM, and the variant callers SAMtools-mpileup and GATK-HC using 52 domesticated and 30 
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wild tomatoes. Results showed nearly a two-fold difference in the number of unfiltered SNPs ranging 

from 69.2M to 133.7M. A greater difference in the variant count in wild species was observed than that 

found in domesticated ones (Table 1.1). In domesticated species, dataset sizes ranged from 11.8M to 

17.8M unfiltered SNPs, while in wild species it ranged from 66.4M to 128.3M. The primary determinant 

of variant count between datasets was whether Bowtie-2 or BWA-MEM was used. In domesticated 

species, 10.7M SNPs were commonly identified by different aligners and variant callers, and when BWA-

MEM was used as the aligner, about 83% (14.7M) SNPs were identified by both GATK-HC and 

SAMtools-mpileup (Supplemental Figure 1.2A). In wild species, 59M SNPs were commonly identified 

by different aligners and variant callers, and when BWA-MEM was used as the aligners, about 84% 

(109.8M) SNPs were identified by both GATK-HC and SAMtools-mpileup (Supplemental Figure 2.1B). 

The inbreeding coefficient was calculated for each tomato individual, no significant difference (Wilcoxon 

rank sum test, p-value 0.47) was found between GATK-HC and SAMtools-mpileup identified SNP 

variants.  
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Table 1.1. Summary of SNPs identified by combinations of aligners and variant calling program 
 

Unfiltered SNPs Filtered SNPs 
 

Total Domesticated 

tomatoes 

Wild 

tomatoes 

Common  Total Domesticated 

tomatoes 

Wild 

tomatoes 

Common 

BWA-MEM + 

GATK-HC 

131,449,946 17,771,072 128,294,973 14,616,099 93,739,759 13,628,974 91,482,115 11,371,330 

Bowtie2-tuned + 

GATK-HC 

73,393,338 11,813,500 70,453,383 8,873,545 30,307,811 8,261,729 28,243,136 6,197,054 

BWA-MEM + 

SAMtools-

mpileup 

133,734,683 17,268,821 130,886,221 14,420,359 80,709,232 10,366,835 78,727,565 8,385,168 

Bowtie2-tuned + 

SAMtools-

mpileup 

69,219,499 12,390,916 66,416,422 9,587,839 46,436,709 8,832,598 44,626,459 7,022,348 

 

To further evaluate the differences in the ability of identifying variants, both individual-level and 

population-level simulated datasets were generated with varied mutation rates, sequencing coverage and 

population size.  In the simulated population-level datasets, evaluation was performed on both raw and 

filtered variants. In the comparison of raw variants, GATK-HC was able to identify more true SNPs at the 

cost of accuracy as sequencing coverage increased in diversity populations. At 5x and 10x coverages, 

SAMtools-mpileup was able to identify similar recall ratio with higher precision ratio than GATK in the 

low diversity population. When dealing with high diversity populations, GATK-HC always outperformed 

SAMtools-mpileup in both precision and recall aspects (Supplemental Figure 1.2C). When functional 

annotation was applied to each identified coding SNP, nearly identical percentages of missense, nonsense 

and silent SNPs were found between GATK-HC and SAMtools-mpileup (Supplemental Table 4). In the 

comparison of raw INDELs, GATK-HC always outperformed SAMtools-mpileup in terms of precision 

and recall in the low diversity population. In the high diversity populations, GATK-HC was able to 
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identify greater number of true INDELs at the cost of accuracy (Supplemental Figure 1.2D). The true size 

of simulated INDELs ranged from -6 bp to 6 bp. The size of the raw INDELs identified by GATK ranged 

from -170 bp to 241bp, and size of the raw INDELs identified by SAMtools-mpileup ranged from -5 bp 

to 7 bp. 

In the filtered SNP results, when the sequencing coverage is at 5x and 10x, GATK-HC provided a 

higher precision ratio in all coverage and diversity permutations without compensating the recall ratio 

(Figure 1.2A). In the 1x coverage simulation dataset, even though SAMtools-mpileup identified variants 

with lower precision ratio, it generated a higher recall ratio in the dataset. In the filtered INDEL results, 

GATK-HC always outperformed SAMtools-mpileup in terms of precision and recall ratio in the low 

diversity population. In the high diversity population, SAMtools-mpileup resulted in a higher precision 

ratio at the cost of a much lower recall ratio (Figure 1.2B). Noticeably, SAMtools-mpileup was only able 

to result in 3.08% and 1.61% recall ratio in the high diversity populations for SNPs and INDELs, 

respectively.  

 In the individual-level simulated dataset, a consistent pattern of trade-off between precision and 

recall was observed. SAMtools-mpileup was able to generate higher precision ratio for both SNPs and 

INDELs, however, GATK-HC was able to result in a higher recall ratio for both SNPs and INDELs as 

coverage and mutation rate increased in most case (Supplemental Figure 1.3A-D). Among four different 

crop species, rice, tomato and soybean has similar results in both variant calling programs. Nevertheless, 

results from simulated maize datasets showed lower precision and recall ratios. Noticeably, when the 

mutation rate is at 0.1 and 0.15, both variant calling programs resulted lower precision ratio for SNP 

detection as coverage increased. Maize datasets had the largest magnitude of reduction in precision 

whereas other crop species resulted similar reduction. 
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Figure 1.2. Evaluation of variant calling programs using simulated plant genomic datasets 

(A) The comparison of the performance of GATK-HC and SAMtools-mpileup on filtered SNPs at 

different coverages, population diversity and population size.  

(B)  The comparison of the performance of GATK-HC and SAMtools-mpileup on filtered INDELs at 

different coverages, population diversity and population size. 

 

Wild reference genome alignment and variant calling 

 The large increase in the number of SNPs in wild samples was expected due to both greater 

distance from the domesticated reference genome and increased diversity relative to the domesticated 

samples. Expectedly, as the distance from the reference genome increased, a greater proportion of reads 

was unmapped. The variants in these unmapped reads, especially in the wild species, could represent 

Variant Caller GATK SAMtools Population Diversity High Low

90.0

92.5

95.0

97.5

100.0

25 50 75 10
0

size

pr
ec

is
io

n

0

25

50

75

100

25 50 75 10
0

size

re
ca

ll

90.0

92.5

95.0

97.5

100.0

25 50 75 10
0

size

pr
ec

is
io

n

0

25

50

75

100

25 50 75 10
0

size

re
ca

ll

90.0

92.5

95.0

97.5

100.0

25 50 75 10
0

size

pr
ec

is
io

n

0

25

50

75

100

25 50 75 10
0

size

re
ca

ll

Coverage: 1x Coverage: 5x Coverage: 10x

40

60

80

100

25 50 75 10
0

size

pr
ec

is
io

n

0

25

50

75

100

25 50 75 10
0

size

re
ca

ll

40

60

80

100

25 50 75 10
0

size

pr
ec

is
io

n

0

25

50

75

100

25 50 75 10
0

size

re
ca

ll
40

60

80

100

25 50 75 10
0

size

pr
ec

is
io

n

0

25

50

75

100

25 50 75 10
0

size

re
ca

ll

Coverage: 1x Coverage: 5x Coverage: 10x

A

B



 22 

“missing diversity”. To test this hypothesis, we evaluated how variants discovery in these 82 tomato 

samples were changed by mapping reads to a wild reference genome (S. pennellii) (Bolger et al., 2014a). 

 The read alignment to the S. pennellii reference was performed under identical settings as above. 

As previously seen, BWA-MEM showed the highest mapping percentage and SOAP2 showed the lowest 

(Figure 1.3A). In general, mapping percentage in domesticated and wild tomato groups were similar 

regardless of aligner settings used (Figure 1.3A). The single outlier with high alignment percentage was a 

S. pennellii sample with an alignment of 95.13% (or 99.69%) as opposed to 34.22% (or 94.87%) against 

the S. lycopersicum reference using SOAP2-tuned (or BWA-MEM). Interestingly, the 82 samples, except 

for the S. pennellii sample, had similar IBS distances to the reference genome. As with the S. 

lycopersicum reference, alignment percentage to the S. pennellii reference was inversely proportional to 

IBS distance to the reference genome (Figure 1.3B), suggesting this relationship was independent of 

reference genome used.  

 To investigate how diversity estimation varied by reference genome, reads from randomly 

selected eight domesticated tomatoes and eight wild relative accessions were aligned to the S. pennellii 

reference. Alignment to the S. pennellii reference genome generated a total of 96,712,749 unfiltered SNPs 

and 59,944,499 filtered SNPs, while a total of 77,718,102 raw SNPs and 53,036,666 filtered SNPs were 

identified using the S. lycopersicum reference genome. Compared to using the S. lycopersicum reference 

genome, significantly more SNPs (Two-sample T-test, p-value = 2.3*10-10) were identified from 8 

domesticated tomato samples when S. pennellii reference genome was used for variant discovery 

(Supplemental Figure 1.4A).  



 23 

 

Figure 1.3. Alignment and variant calling using a wild reference S. pennellii genome  

(A) Alignment percentage of five different aligner settings: SOAP2, SOAP2-tuned, Bowtie2, 

Bowtie2-tuned and BWA-MEM calculated for domesticated tomatoes and wild relatives using 

the S. pennellii reference genome. The width of violin plot is proportional to the density of the 

data, and boxplot is plotted inside violin plot showing quantiles and outliers. 

(B) Mapping percentage of samples for different aligner setting. The mapping percentages are 

relative to the IBS distance to the reference genome 

(C) SNP identification of four tomato samples was performed in chromosome 1 in S. pennellii 

reference genome. The corresponding physical positions of SNPs in the S. lycopersicum reference 

was plotted. The grey dots represented the SNPs that were able to be located at the corresponding 

positions in S. lycopersicum genome, red dots represented the SNPs that were unable to be 

located to corresponding positions in S. lycopersicum genome. The percentage of corresponding 

SNPs are written next to the species name.  
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 To further investigate the source of this additional variation, a cross-reference comparison was 

performed between SNPs identified using S. pennellii and S. lycopersicum reference genomes. One 

hundred nucleotides of DNA sequence flanking each filtered SNP identified using one reference genome 

was aligned to the other reference. Results in the Figure 1.3C showed that majority of the filtered SNPs 

identified in the S. pennellii located on the synteny path of S. lycopersicum genome. In the S. 

lycopersicum sample, and similarly, majority filtered SNPs identified using S. pennellii reference were 

located on the synteny path of S. lycopersicum genome. This result indicated that using S. pennellii 

reference genome, we were able to identify SNPs that were fixed in the S. lycopersicum domesticated 

varieties.  

Since these SNPs were fixed in S. lycopersicum, they would not have been identified from 

alignment to the S. lycopersicum reference. Outside of these fixed SNPs in the domesticated species, 

4.55% of flanking sequences of SNPs identified using S. pennellii genome in chromosome 1 could not be 

mapped to the S. lycopersicum reference. Similarly, 11.15 % of the flanking sequences of SNPs identified 

in the S. pennellii sample using the S. pennellii genome were not found in the S. lycopersicum genome 

(Figure 1.3C). Switching to the domesticated reference genome, 7.13% of the downstream sequences of 

SNPs identified in a S. lycopersicum sample using S. lycopersicum genome could not be found in the S. 

pennellii genome (Supplemental Figure 1.4B). These results indicated that a great portion of variation in 

the wild species would be missed if a single domesticated genome was used as the reference, and vice 

versa.  

 

Hard-filtering and machine-learning based variant filtering  

 Variant filtering is required to minimize both false positive and negative genotype calls. 

Comparisons were made between three variant filtering methods: setting empirical hard-cutoffs (HARD) 

on metrics such as read depth, strand bias, and variant quality and so on, a newly implemented machine-

learning based (ML) variant filtering (Poplin et al., 2017), and a combination between HARD and ML 

(COMBINED) filtering. Filtered datasets generated from the 602 WGS tomato datasets, including a wide 
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range of domesticated and wild tomato samples (Zhu et al., 2018), were analyzed. A training dataset of 

8401 markers from SolCap was used for the training phase of ML (Sim et al., 2012). The SolCap is a high 

confidence dataset consisting of verified markers previously used in genetic studies. In the COMBINED 

method, the HARD filters were first applied to SolCap to remove low-confidence markers and yield a 

training set of 7,633 variants. Results indicated that the HARD-filtered method retained the fewest SNPs 

(94.2M), which was 26.3% and 7.1% fewer than ML-filtered (127.8M) and COMBINED-filtered 

(101.4M) datasets, respectively (Supplemental Table 1.5). SNPs in the first 10 million bases in 

Chromosome 1 (Supplemental Table 1.5) were cross-compared between the three datasets. 70% of SNPs 

in this segment were shared among all three filtered datasets (Supplemental Figure 1.5A), while each 

dataset had a subset of unique variants. 

 Two methods were used to indirectly infer the quality of filtered datasets: recapitulation of 

diversity estimates generated by a “gold standard” set of 22,336,965 SNPs (See details in Methods) in the 

form of PCA (Supplemental Figure 1.5B) and IBS analyses (Supplemental Figure 1.5C), and calculation 

of LD decay distance for each filtered dataset. SNPs identified by all three filtering methods were 

removed for this analysis so that the efficacy of each method could be evaluated independently. The 

underlying assumption of these analyses is that true diversity would recapitulate the known population 

structure, whereas the population structure would begin to break down as the number of artifacts 

increased. Using the “gold standard” variant dataset, samples were grouped into four clusters based on 

PCA and IBS results. All three filtering methods were able to resolve Cluster 1 and Cluster 4, whereas the 

HARD and ML filtering methods were not able to clearly resolve Cluster 2 from Cluster 3 (Figure 1.4A-

B). In contrast, the COMBINED filtering method was able to identify all four original clusters to 

reconstruct the population structure of 82 Solanum genomes (Figure 1.4C).  

 Next, the contribution of false positive SNPs in each filtered dataset was evaluated by calculating 

the rate of LD decay. The assumption was that false positive SNPs were random noise that would be 

found not in LD with nearby SNPs. Therefore, the apparent rate of LD decay in a dataset would increase 

as the number of false positives increased. As predicted, a greater rate of LD decay was found in all three 
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filtered datasets than that found in the high-confidence dataset. Of the three filtered datasets, the 

COMBINED method, however, had the lowest rate of LD decay (Figure 1.4D) approximating the rate of 

LD decay seen in the high-confidence SNP dataset. 

 To quantitively measure the difference between hard filtering and machine-learning based 

filtering, simulated datasets with varied population size, mutation rate and sequencing coverage were 

generated (Supplemental Figure 1.6A-B). In the simulation analysis, 30% of the simulated gold standard 

variants were used as the training dataset, and no hard-filtering was performed on the training dataset. In 

the low diversity population datasets, machine-learning based SNP filtering always outperformed hard 

SNP filtering by 7.38% and 14.14% on average for precision and recall ratio, respectively. In terms of 

INDEL filtering in the low diversity dataset, machine learning based filtering and hard filtering resulted 

comparable precision results, however, machine learning based filtering was able to result 12.49% higher 

recall ratio than hard filtering. In the high diversity population, SNP and INDEL had similar results from 

different filtering methods. Minor difference was observed in the recall ratio between machine-learning 

based and hard filtering. No difference was found in the precision ratio between machine-learning based 

and hard filtering in the high diversity population.  
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Figure 1.4. Comparison between three variant filtering methods using PCA and LD decay to estimate 

false positive and false negative ratios.  

(A) Unshared hard-filtered SNPs were not able to clearly separate cluster 2 and 3 

(B) Unshared machine learning SNPs were not able to clearly separate cluster 2 and 3 

(C) Unshared combined SNPs were able to clearly separate 4 clusters. 

(D) Comparison of LD decay among four sets of SNPs 

 

Two-step imputation method 

 Missing genotypes, possibly due technical limitations, are commonly resolved via imputation. In 

human studies, standard imputation methods leverage linkage disequilibrium (LD) and reference panels 

(Das et al., 2016). Beagle 4.1 is a commonly used imputation algorithm in plant studies that can function 
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with or without a reference panel. To determine the importance of a reference panel for SNP imputation, 

both LD-based and reference panel-assisted imputation were applied to several datasets. A reference 

panel of 22,336,965 high-confidence, phased SNPs was generated from 82 high coverage (30x) WGS 

tomato datasets. Imputation results were compared between the two methods. In the first method, missing 

SNPs were imputed without a reference panel. In the second method, imputation was performed in two 

steps: in the first step a reference panel was used to impute missing calls only for missing reference 

variants; and then a second step was employed to impute the remaining missing, non-reference SNPs. 

Samples were placed in four groups and varying percentages of high confidence genotypes were masked 

to act as “missing” data (See details in Methods). The concordance (r-squared) between the original 

masked and imputed genotypes was calculated to estimate imputation accuracy.  

 Results showed that no difference between LD-based and 2-step imputation was observed in 100 

domesticated (DOM) tomato samples (Figure 1.5A) or the 50 Solanum pimpinellifolium (PIM) samples 

(Supplemental Figure 1.7A) datasets. In the dataset of 200 randomly selected tomato samples 

(RANDOM), at 47% missing data, a 4% difference was observed (Supplemental Figure 1.7B). When the 

parameter of missing percentage was set at 72%, 2-step imputation methods showed 60% higher accuracy 

than LD-based imputation in the dataset of 36 wild tomato species (WILD) (Figure 1.5B). High LD 

between SNPs may reduce the need for a reference panel in imputation. The calculated LD decay for each 

dataset showed that DOM had the slowest LD decay and WILD had the fastest LD decay (Supplemental 

Figure 1.7C). Due to the fact that limited samples of wild tomato were available, the number of samples 

we used in the simulation in DOM (100) was also considerably higher than that in WILD (36). As such, 

considerably more information was present in the DOM dataset for imputation, as opposed to the WILD 

dataset which not only had a smaller number of samples but also contained multiple species. To 

determine if LD continued to be sufficient for imputation in small domesticated panels when the amount 

of missing data was considerable, 15 randomly selected domesticated tomato samples that were also 

included in the reference panel (15-DOM-REF) had up to 85% of their genotypes masked. Both methods 
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were applied to the 15-DOM-REF dataset. The results showed two-step imputation was 9.25 times more 

accurate than Beagle v4.1 direct imputation by when the missing percentage was 85% (Figure 1.5C). 

 

Figure 1.5. Comparison of imputation accuracy using direct imputation and 2-step imputation methods 

(A) Imputation accuracy using direct imputation and 2-step imputation relative to missing SNPs in 

100 domesticated tomato samples 

(B) Imputation accuracy using direct imputation and 2-step imputation relative to missing SNPs using 

36 wild samples 

(C) Imputation accuracy using direct imputation and 2-step imputation relative to missing SNPs using 

15 domesticated samples used in reference panel  
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Discussion 

 The ability to accurately and comprehensively identify genetic variation is a critical step for 

studying diversity, trait mapping and breeding in plant genomics. Many plant studies involve high levels 

of genetic diversity and, in some instances, incorporating distantly related varieties and wild relatives. 

Neither of these conditions are common in human studies, and as such pipelines designed and evaluated 

on humans may perform differently than expected. Therefore, we evaluated programs that are commonly 

used by plant genomic studies on SNP discovery steps including read alignment, variant calling, variant 

filtering and missing data imputation in the context of plant diversity discovery 

 One of the first computational steps in the variant discovery pipeline is the alignment of reads to a 

suitable reference genome. Previous aligner evaluation studies have been performed using either human 

or microbial genomic datasets (Shang et al., 2014; Thankaswamy-Kosalai et al., 2017), which may not 

represent the levels or types of diversity expected in plant studies. We performed alignment using both 

real and simulated tomato datasets and found that different aligners were very different in their tolerance 

of sequence variation in paired-end reads. BWA-MEM outperformed four other alignment settings in 

mapping percentage while still being able to maintain high mapping accuracy. Neither SOAP2 nor 

Bowtie2 was able to align as many reads, even after optimizing their settings to account for increased 

variation. In this study, we chose not to tuned BWA-MEM mostly because the mapping percentage was 

high with the default settings and there is no obvious parameter such as numbers of mismatches allowed, 

or fragment size as found in Bowtie2 or SOAP2. Besides, many program users, especially non-experts in 

bioinformatics, may stay with the default settings of programs.  

 BWA-MEM’s increased sensitivity may come at a cost in that, as the number of SNPs or size of 

INDELs per read increased, the false positive rate also became slightly higher than that of Bowtie2-tuned 

(Figure 1.1C-D). The increased number of false positive alignments may, in turn, result in erroneous 

variant identifications. Nevertheless, given the relatively high sensitivity and accuracy of BWA-MEM, 

our results indicate that under most circumstances it is probably the most suitable algorithm for read 

mapping for plant datasets, especially when distantly related samples are included in the analysis. If high 
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accuracy at the cost of less sensitivity is desired, Bowtie2 may be the better choice. Although SOAP2 was 

the fastest aligner tested, its difficulty in aligning reads with high variance from the reference genome 

make it unsuitable for studies where significant levels of genomic diversity may be present. 

 The next step in an analysis pipeline is variant calling. Comparisons between aligner-variant 

caller combinations indicated that the alignment algorithm had a greater impact on the number of variants 

discovered than the variant caller used. For a given aligner, SAMtools-mpileup and GATK-HC had 

similar results in the total number of SNP identified in the real tomato genomic dataset. This further 

emphasizes the importance of selecting an aligner appropriate to the goals of the experiment, especially 

when high diversity samples such as wild relatives and related species are included in the study. 

According to the simulation results, GATK-HC was able to identify more true positive variants at higher 

precision ratio in most population-based variant discovery cases. Especially in the high diversity 

population simulation, GATK-HC was more preferred than SAMtools-mpileup because SAMtools-

mpileup resulted very low recall ratio in both SNP and INDEL detection. In the simulation analysis, the 

size of INDELs identified by GATK-HC had larger range than those identified by SAMtools-mpileup and 

ground truth INDELs, which partially explained why GATK-HC had lower precision in the INDEL 

identification than SAMtools-mpileup. One of the possible explanations is that GATK-HC performs 

local-assembly to identify the haplotypes whereas SAMtools-mpileup only utilizes read alignments. Plant 

genomes, in general, are rich in repetitive sequences which are difficult to assemble correctly using short 

reads. Therefore, the local assembly strategy taken by GATK-HC will not only identify true variants, but 

also generate false positive variants, INDELs especially. Consistent with a previous research (Clevenger 

et al., 2015), SAMtools-mpileup resulted higher precision value than GATK-HC for variant identification 

in the individual-based genotyping. However, the high precision of SAMtools-mpileup is at the trade-off 

of low recall value.  

 In general, we recommend GATK-HC for variant calling and filtering for several reasons. First of 

all, GATK-HC outperformed SAMtools-mpileup in most of our situation tests resulting a higher precision 

and recall ratio for SNP and INDEL detection. Second, GATK-HC allows rapid incorporation of multiple 
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samples into a dataset without needing to recall genotypes for all samples, even previously genotyped 

ones, from aligned reads by using the GVCF system. This saves considerable time and computational 

expense when adding samples to a dataset. The third reason to recommend GATK-HC is that it supports 

multi-thread processing which is not available in the SAMtools-mpileup. Taking the advantage of high-

performance clusters, multi-thread feature can significantly save processing time especially for large 

studies. Finally, the GATK package supports sophisticated machine learning based variant filtering 

(VQSR) which showed superior performance than empirical hard cutoffs. We did, however, find 

situations that SAMtools-mpileup is more preferable depending on the goal of the study. For example, for 

a low diversity population with very low sequencing coverage (1x), SAMtools-mpileup was able to 

identify more true SNPs than GATK-HC but at the cost of lower precision. If the purpose of the 

experiment is to identify as many true positive SNP as possible, then SAMtools-mpileup could be used in 

this particular situation. Another situation that SAMtools-mpileup may be preferable is identifying SNP 

from a closely related sample. According to the simulation results from single samples, SAMtools-

mpileup resulted slightly higher precision and recall values than GATK-HC results when the mutation 

rate was lower than 0.05. If the experiment aims at charactering SNPs in a line that is closely related to 

the reference genome, SAMtools-mpileup could be used in this particular situation.  

 Variant filtering is the third step in a diversity assessment pipeline. Three approaches to this were 

evaluated: hard filters of various quality metrics, machine learning as implemented in GATK (VQSR), 

and a combined approach. The combined approach which utilized hard filtered SolCap markers as the 

training dataset showed significant improvements over other variant filtering methods. According to the 

PCA plots (Figure 1.3A-C) and LD decay figure (Figure 1.3D), the combined method was able to 

generate more true positives, with fewer false negative SNPs and fewer false positive SNPs when an 

appropriate training dataset was used. This indicates that machine-based learning methods may be better 

suited at identifying true positives and eliminating false positive SNPs than empirical hard-filtering. The 

difference in the results of combined and VQSR suggested the importance of the training dataset. The 

machine learning model will learn from errors in the training dataset that might contribute to false 
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positive variants. The downside of machine-learning-based filtering is that its implementation is 

complicated and requires experimentally validated (high-confidence) training set. In human studies, this 

information can be obtained from numerous genomic resources such as HapMap, the 1000 Genomes 

Project and omni SNP array datasets. Only in few major crops, such as maize (Bukowski et al., 2018), 

rice (Thomson et al., 2017) and soybean (Song et al., 2013) are these resources available. Similar 

conclusions were found from the simulation tests. According to the simulation results, VQSR 

outperformed hard filtering in general. Nevertheless, only minor difference was found when the simulated 

population had high diversity for both SNP and INDEL filtering suggesting the quality metrics used by 

VQSR may not be sophisticated enough to differentiate true variants from false positive variants. This 

also indicates new quality metrics may be necessary, especially for the genomic regions that can be 

hyper-variable.  

 The final step in the variant discovery pipeline is imputation. Reference panels are routinely 

employed in human studies, but these have not been routinely employed in plant genomics. To evaluate 

the importance of a reference panel for imputation, Beagle v4.1 (Browning and Browning, 2016) was 

used to impute masked genotypes in four sample group without the use of a reference panel and with a 

reference panel in a two-step process where SNPs contained in a reference panel were first imputed, and 

then imputation was extended to the entire dataset. Our results showed that the two-step imputation 

method was able to utilize a de novo reference panel of SNPs generated from high coverage sequencing 

data to assist imputation in the low coverage samples. Results from these studies indicated that the two-

step imputation method was superior to the LD-based imputation method in sample groups that contained 

wild species. In addition, even for closely related samples, a certain number of samples must be present 

for LD-based imputation to produce valid results. Further, if there are insufficient samples, a reference 

panel may be required (Figure 1.4C). The tradeoff was that 2-step imputation doubled the running time 

and would incorrectly impute missing SNPs which were not due to technical issues but because of 

structural variations. Therefore, care must be taken not to introduce false positive since presence-absence 
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variations are common in plants. These genomic regions could be identified prior to imputation to avoid 

this pitfall. 

 The effect of presence-absence variation on identifying missing genetic diversity is a special 

concern in studies that include high diversity samples. This issue can be seen from the results of the cross-

reference experiment. Up to 11.15% of the variations identified using the wild reference could not be 

mapped back to the domesticated S. lycopersicum genome, and vice versa. These results indicated the 

inadequacy of single reference genome for comprehensive variant discovery. It also indicated that 

employing multiple reference genomes could identify additional sources of diversity that went undetected 

when using a single reference. These results have implications for the utility of pan-genomes. Multiple 

references or pan genomes would likely increase the detection of “missing diversity” that is due primarily 

to PAV between samples. Moreover, using a distantly related reference genome may allow the detection 

of SNPs that would be undetected using a closely related reference genome. These species-specific, fixed 

variants have implications in the evolutionary history of plant species such as domestication events. To 

date, several crop pan-genomes have been reported (Gao et al., 2019a; Hubner et al., 2019; Yu et al., 

2019) that show significant amount of structural variations in the genome. Pan-genomes resources should 

be included into the diversity discovery pipeline in the future. Yet, one of the potential issues that will 

need to be addressed is that pan-genome assembled from diverse individuals may introduce more 

assembly errors than a single reference assembly. The quality of the reference genome will impact variant 

discovery because bioinformatic tools assume the reference genome is correct and only identify 

differences accordingly. Moreover, the level of heterozygosity of the reference introduced by the 

pangenome may require additional fine-tuned parameters (Kim et al., 2014). The most effective approach 

of utilizing a pan-genome reference will be a subject of future investigation.  
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Conclusion 

In conclusion, we found that BWA-MEM was better overall at detecting more true-positive 

alignments, especially in distantly related samples, while Bowtie2 was better at minimizing the incorrect 

alignments. Incorporating multiple reference genomes gave a more complete picture of variations, 

especially when the samples showed considerable presence-absence variation. For filtering, the optimal 

approach found in our test was to incorporate a combination of machine learning and hard filtering, in 

which a set of “known” SNPs was used as the training set for machine learning. This requires a panel of 

known, high-quality SNPs however, which may be unavailable for many plant species. Finally, the 

importance of high-quality reference panels was emphasized during the imputation step especially when 

genotype imputation was challenging due to small LD blocks or not enough samples. Above all, the 

computational pipeline to discover variation from plant sequencing data will depend upon the diversity of 

the datasets, whether the goals of the experiment benefit from higher sensitivity or accuracy, the depth of 

sequence coverage, and the availability of external resources such as reference panels and gold-standard 

SNPs. 

 

  



 36 

Materials & Methods 

Simulated multi-species genomic dataset and real tomato genomic dataset 

 We used publicly available 602 WGS datasets representing 514 domesticated and 88 related wild 

species of tomato. The data were retrieved from the NCBI BioProjects under accession PRJNA259308, 

PRJNA353161 and PRJEB5235. The raw sequence data was quality trimmed using Trimmomatic 

(version 0.36) (Bolger et al., 2014b) with the options ILLUMINACLIP:TruSeq3-PE-

2.fa:2:30:10:8:TRUE SLIDINGWINDOW:4:20 LEADING:5 TRAILING:5 MINLEN:36. PCR 

duplicates were removed using Picard MarkDuplicates (version 2.14.1) ) 

(http://broadinstitute.github.io/picard/). Simulated tomato sequencing reads were generated from the S. 

lycopersicum using a custom Python script was used to introduce from 0-20 SNPs per read, fragment 

sizes ranging from 200-10000 nt, and INDELs ranging from 0-40 nt. In order to evaluate the performance 

of BWA-MEM on multiple crop species, simulation of the Illumina sequencing reads was also performed 

on rice, soybean, tomato, maize and wheat using mason (version 2.0.9) (Reinert et al., 2017). The 

mutation rate including SNPs and INDELs was simulated at 0.001, 0.005, 0.02, 0.04, 0.08, 0.1, and 0.15. 

The proportion of the SNPs and INDELs were 0.85 and 0.15, respectively. Sequencing error was modeled 

as the default settings.  

 

Evaluation of read alignment programs 

 Different aligners were evaluated using high-coverage datasets from PRJEB5235 and simulated 

datasets. BWA-MEM (version 0.7.17-r1188), SOAP2 (version 2.21), SOAP2-tuned, Bowtie2 (version 

2.3.3.1) and Bowtie2-tuned were tested. SOAP2-tuned was used with the following options: -m 100 -x 

888 -s 35 -l 32 -v 3 (Zhu et al., 2018). Bowtie2-tuned was used with the following options: --very-

sensitive -N 1 -I 100 -X 888. To determine mapping percentages, these five aligner settings were used to 

align one million reads that were randomly selected from high coverage genomes from 52 domesticated 

and 30 wild relative samples. The IBS (Identity-By-State) distance was calculated using SNPrelate 

(version 1.16.0)  (Zheng et al., 2012). The true positive alignments ratio was calculated by comparing the 
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known ground truth location and aligned location. BWA-MEM was also evaluated on multiple crop 

species with a mixture of SNPs and INDELs in the simulated datasets.  

 

SNP discovery comparison 

Eighty-two high-coverage datasets from PRJEB5235 was used for SNP discovery comparisons. 

SNPs were called with SAMtools-mpileup (version 1.9) and GATK-HC (version 3.8-0-ge9d806836) 

using BWA-MEM and Bowtie2-tuned alignments. In GATK, variants were firstly identified by 

HaplotypeCaller using the option --emitRefConfidence GVCF, and then joint genotyping was performed 

using GenotypeGVCFs. In SAMtools-mpileup, genotyping was done in one step and the option -C 50 was 

used as recommended in the manual. Only polymorphic SNPs were used as data for the Venn diagram. 

Simulated datasets with known variants were generated for tomato, rice, soybean, maize using mason. 

Each crop species was simulated at different coverages (5x, 15x, 30x, and 50x) and mutation rates (0.001, 

0.01, 0.05, 0.1, 0.15). In addition to individual simulated datasets, population-level simulated datasets 

were also generated with varied diversity (low diversity: 0.001 mutation rate and high diversity: 0.1), 

population size (25, 50, 75, and 100) and sequencing coverage (1x, 5x, and 10x). SAMtools-mpileup and 

GATK-HC were evaluated on both individual and population simulated datasets by comparing the 

precision and recall ratios. The functional annotations of the variants were predicted by snpEff (version 

4.3) (Cingolani et al., 2012).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Imputation algorithm comparison 

 Beagle v4.1 (Browning and Browning, 2016) direct imputation and 2-step imputation method 

were compared using 602 tomato genomes. The raw SNPs were called using BWA-MEM and GATK-HC 

pipeline, and then hard filtered using GATK recommended options: “QD <2.0 || FS > 60.0 || MQ < 40.0 || 

SOR > 3.0”. The high-confidence set of SNPs for the 2-step imputation was identified from 82 high-

coverage dataset using BWA-MEM and GATK-HC. GATK hard-filtering and VCFtools (Danecek et al., 

2011) with options: --missing 1 and --mac 2. SNPs with heterozygosity above 20% were removed. Beagle 

v4.1 was used to phase the high-confidence set of SNPs. The comparison was performed on four groups 

of samples: Two hundred random tomato and wild samples (RANDOM), 100 domesticated tomato 

samples (DOM), 50 Solanum pimpinellifolium samples (PIM), and 36 distantly related wild species 

(WILD). The one hundred domesticated samples from PRJNA353161 only, 15 DOM-REF samples from 

PRJEB5235 only, 50 PIM samples and 36 WILD samples were randomly selected for generating 

simulated datasets. Polymorphic SNPs in each dataset were randomly masked using a custom Python 

script if there were more than 7 reads supporting the genotypes. Both Beagle v4.1 and 2-step imputation 

methods were used to impute missing genotypes in five simulated datasets. The concordance R2 ratio 

between genotyped and imputed values were calculated as imputation accuracy using BCFtools (Danecek 

and McCarthy, 2017). 

 

Variant filtering algorithms comparison 

 The 602 tomato datasets were used to generate raw SNPs using BWA-MEM and GATK-HC 

pipeline. Hard-filtered, machine-learning based and combined filtering methods were individually applied 

to the raw dataset. The parameters used for hard-filtering included QualByDepth (QD < 2), FisherStrand 

(FS > 60), RMSMappingQuality (MQ < 40) and StrandOddsRatio (SOR > 3.0), which was suggested by 

the GATK hard filtering tutorial (https://gatkforums.broadinstitute.org/gatk/discussion/2806/howto-apply-

hard-filters-to-a-call-set ). For INDELs, hard filtering was performed using “QD <2 || FS > 200 || 

ReadPosRankSum < -20”, as suggested by the GATK tutorial. The machine learning based methods, for 
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both SNPs and INDELs, followed the GATK Best Practice Workflow 

(https://software.broadinstitute.org/gatk/documentation/article.php?id=2805). To summarize, the first step 

was to build a variant recalibration model using the program VariantRecalibrator. In the real tomato 

genomic dataset, SolCap and filtered SolCap markers were used as the training dataset with prior 

likelihood set to 90% and 95%, respectively. In the simulated dataset, 30% of the simulated gold standard 

variants were used as the training dataset with the prior likelihood set to 95%. All the annotations 

generated by GATK-HC including coverage, coverage by depth, FisherStrand, StrandOddsRatio, 

MappingQualityRankSumTest, ReadPosRankSumTest, RMSMappingQuality and InbreedingCoeff, were 

used to build the recalibration model. The second step is to apply the recalibration model to variants using 

the program ApplyRecalibration with the option --ts_filter_level 99.9. Polymorphic SNPs in the first 10 

million base pairs of Chromosome 1 were selected to test the performance of different filtering methods. 

PCA was performed using SNPrelate after LD pruning (R2 > 0.2). LD decay was calculated using the 

PopLDdecay package (Zhang et al., 2019) with default parameters.  
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Chapter 2. Causal Haplotype Block Identification in  

Plant Genome-Wide Association Studies 

 

Abstract 

 Genome wide association studies (GWAS) can play an essential role in understanding genetic 

basis of complex traits in plants and animals. Conventional SNP-based linear mixed models (LMM) used 

in many GWAS that marginally test single nucleotide polymorphisms (SNPs) have successfully identified 

many loci with major and minor effects. In plants, the relatively small population size in GWAS and the 

high genetic diversity found many plant species can impede mapping efforts on complex traits. Here we 

present a novel haplotype-based trait fine-mapping framework, HapFM, to supplement current GWAS 

methods. HapFM uses genotype data to partition the genome into haplotype blocks, identifies haplotype 

clusters within each block, and then performs genome-wide haplotype fine-mapping to infer the causal 

haplotype blocks of trait. We benchmarked HapFM, GEMMA, BSLMM, and GMMAT in both 

simulation and real plant GWAS datasets. HapFM consistently resulted in higher mapping power than the 

other GWAS methods in simulations with high polygenicity. Moreover, it resulted in higher mapping 

resolution, especially in regions of high LD, by identifying small causal blocks in the larger haplotype 

block. In the Arabidopsis flowering time (FT10) datasets, HapFM identified four novel loci compared to 

GEMMA’s results, and its average mapping interval of HapFM was 9.6 times smaller than that of 

GEMMA. In conclusion, HapFM is tailored for plant GWAS to result in high mapping power on complex 

traits and improved mapping resolution to facilitate crop improvement.   
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Introduction 

 Genome-wide association study (GWAS) presents a powerful tool to link genetic variations with 

phenotypic traits. In human studies, GWAS has been extensively employed to associate numerous genetic 

variants with candidate genes responsible for human diseases, some of which have become targets for 

medical interventions (Visscher et al., 2017). For example, the identification of an androgen receptor 

(AR) gene through GWAS led to the development of therapeutic drugs for patients with prostate cancer 

(Farashi et al., 2019). GWAS methods have also been used in plant studies to identify the genetic basis of 

certain agronomic traits (reviewed by (Cortes et al., 2021)). There have been many successful 

applications including the identification of OsSPY for plant architecture in rice (Yano et al., 2019), 

metabolic genes for tomato flavor (Tieman et al., 2017), and ZmFBL41 for blight resistance in maize (Li 

et al., 2019). Although genetic associations in plants have been revealed through GWAS, serious 

limitations still exist in the current best practices, including insufficient power and poor biological 

interpretation (Cortes et al., 2021; Huang and Han, 2014b) (Xiao et al., 2017; Zhou and Huang, 2019).  

For the most part, these limitations are due to the relatively small population size in plant studies, usually 

in the hundreds, reducing mapping power as compared to human GWAS analyses that may involve tens 

of thousands of individuals. 

 Mapping power is critical for understanding the genetic architecture of complex traits in GWAS. 

Many agronomic traits, such as yield, flowering time and disease resistance, are complex in nature 

involving many loci with variable effect sizes, some of which are difficult to be identified due to systemic 

issues in most plant GWAS datasets: small population size, existing confounding factors such as 

population structure and kinship between individuals, and a high levels of genetic diversity common to 

plant genomes (Cortes et al., 2021; Zhou and Huang, 2019).  Conventional SNP-based GWAS methods 

use linear mixed models (LMM) to account for population structure and kinship and then marginally 

regress individual variants to test for significance. A few variations of the LMM-based methods such as 

MLMM (Segura et al., 2012), SUPER (Wang et al., 2014b) and FarmCPU (Liu et al., 2016) have been 

proposed to increase mapping power. These GWAS models, however, still have insufficient power 
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because true causal variants may have small effects, and the models lack power to detect minor effect loci 

because of the small population size. Moreover, a large number of variants causes multiple testing burden 

further reducing detection power (Cortes et al., 2021). In human GWAS studies, SNP-set based GWAS 

method, SMMAT (Chen et al., 2019a) has been proposed to increase the mapping power by grouping 

nearby variants to aggregate small effects to reduce the number of tests. This method has yet to be 

evaluated in plant mapping studies. In the recent years, haplotype-based GWAS methods, such as 

RAINBOW (Hamazaki and Iwata, 2020) and FH-GWAS (Liu et al., 2019), were developed which 

showed improvements in mapping power over SNP-based methods in plant datasets. These studies have 

demonstrated the feasibility of using haplotypes as variables to overcome issues in plant GWAS.  

In addition to mapping power, mapping resolution is another critical aspect of GWAS with small 

mapping intervals benefitting downstream experimental validation. Many plant species, especially those 

propagated via self-pollinating or vegetative cloning, have extensive LD block structures (Badouin et al., 

2017; Lin et al., 2014; Zhou et al., 2015). For a significant locus in the high LD region, conventional 

GWAS methods identify variants with significant p-values without differentiating causal from proximal 

variants. This can result in a large mapping interval spanning over dozens or hundreds of genes (Cortes et 

al., 2021) (Ingvarsson and Street, 2011), greatly increasing the difficulty of downstream validations.  

A typical approach to increasing mapping resolution in plant mapping studies is to generate fine-

mapping populations to enhance recombination in the targeted region (Li et al., 2020; Wang et al., 2018a; 

Wang et al., 2016). This approach, however, is an escalation in time, sometimes years, and effort and an 

option that is not always feasible. Post GWAS analyses such as statistical fine-mapping models have been 

proposed in human genetics, which can leverage biological annotations to identify potential causal 

variants among linked genetic variants (Schaid et al., 2018). These methods, however, restrict fine-

mapping analyses to significant GWAS loci only, which limits their utility in plant studies. Similar to 

SNP-set based association methods, statistical fine-mapping methods have not been adequately evaluated 

in plant studies yet. 
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As a result of the rapid growth in sequence-based resources, many plant species now, or in the 

near future, have extensive genomic resources available to complement the study of genetic basis of 

complex traits. In plants, complex variations, such as structural variation (SVs), are often the drivers of 

many quantitative traits, and genome-wide catalogs of SVs are fast becoming available for many plant 

species, including Arabidopsis (Goktay et al., 2021), rice (Fuentes et al., 2019), tomato (Alonge et al., 

2020), soybean (Anderson et al., 2014), maize (Yang et al., 2019) to name a few. Similarly, the 

availability of transcriptomic datasets can be utilized to identify gene expression changes that result in 

phenotypic alteration in plants (Kawakatsu et al., 2016). Yet, in the past, conventional plant GWAS 

methods have not been capable of incorporating these resources into the trait mapping pipeline. 

Therefore, a novel trait mapping framework that can systemically incorporate informative genomic, 

transcriptomic and other meta-datasets to increase mapping power would represent a significant 

improvement over current methodologies. 

 In this paper, we present a novel haplotype-based trait fine mapping framework, HapFM, that 

addresses limitations in plant GWAS methodologies. Unlike previous haplotype-based mapping 

algorithms, HapFM incorporates the use of unique haplotypes clusters based on historical recombination, 

rather than individual SNPs or uniform block partitioning of SNPs, to fit a genome-wide statistical fine-

mapping model. Furthermore, HapFM was designed to permit the systemically incorporate biological 

annotations such as SV and other biological elements to facilitate causal inference and biological 

interpretation of the mapping results. Compared to previous GWAS methods, HapFM resulted greater 

mapping power and smaller mapping intervals for complex traits with both simulated and real plant 

datasets. In addition, we demonstrated that it is possible to incorporate SV and functional annotation 

datasets into HapFM to further increase mapping power. Overall, HapFM achieves a balance between 

statistical power interpretability, and downstream experimental verifiability.  
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Results 

Overview of HapFM workflow  

 In this paper, we present a novel haplotype-based trait fine-mapping framework, HapFM, to serve 

as a powerful strategy for mapping complex traits(Figure 2.1). There are four steps in the HapFM 

framework: block partition, unique haplotype identification, haplotype clustering, and statistical fine 

mapping. In the block partition step, HapFM identifies genome-wide haplotype blocks based on LD 

information. In order to increase computation efficiency, HapFM utilizes a 2-step partitioning strategy. It 

first identifies large independent blocks which are defined as a set of adjacent SNPs with minimum 

pairwise LD (r2) greater than a pre-defined threshold (r2 = 0.1 by default). Next, HapFM partitions each 

independent block into sub-blocks using available block partition programs. The block partition step 

outputs non-overlapping SNP sets representing haplotype blocks in the genome.  

In the haplotype identification step, HapFM enumerates a set of unique haplotypes in each block 

based on phased SNP genotypes. If the number of unique haplotypes exceeds the user-defined threshold 

(n = 10 by default), HapFM will cluster unique haplotypes to reduce the number of variables in the 

mapping step. After the haplotype clustering step, HapFM outputs a haplotype design matrix which will 

be used for statistical fine mapping. The haplotype design matrix also has the same format as the 

conventional SNP genotype matrix, therefore it is compatible to current GWAS methods as well.  
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Figure 2.1. The workflow of haplotype-based trait fine mapping (HapFM). HapFM consists of four 

steps: genome-wide haplotype block partition, unique haplotype identification, haplotype clustering, 

and causal haplotype identification. Biological features, such as structural variations, functional 

annotations, signals of selection, etc. can be incorporated into the fine mapping model. The y-axis of 

Manhattan plot generated by HapFM is block pip, indicating causal probability. The size of the dots 

indicates the effect size of the block.  

  

 In the genome-wide statistical fine mapping step, HapFM follows a linear mixed model (LMM) 

and a hierarchical Bayes inference framework to infer the causal relationship between haplotype blocks 

and the phenotype. Upon availability, HapFM can also incorporate existing biological evidence to model 

the prior probability of causality for each haplotype block. The fine-mapping model accounts for the LD 
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between haplotype blocks, and therefore the result suggests the causal instead of association relationship 

with the phenotype. 

 

Block partition and haplotype clustering algorithms  

 Various algorithms were benchmarked to assess the robustness of block partitioning and 

haplotype clustering steps used in HapFM.  Four clustering methods: affinity propagation (Frey and 

Dueck, 2007), X-means (Pelleg and Moore, 2000), KNN-spectral clustering and local-spectral clustering 

(Von Luxburg, 2007), were first benchmarked for the clustering step. A high haplotype diversity dataset 

was simulated to contain, on average, 500 blocks and 15 unique haplotypes derived from three founder 

haplotypes in each block.  Both low and high polygenicity trait datasets were tested for comparative 

purposes. Comparable mapping power was found for the low polygenicity simulations and none of the 

clustering methods consistently outperformed the others (Figure 2.2a, Supplemental Figure 2.1a). In the 

high polygenicity datasets, affinity propagation and X-means clustering methods consistently resulted in 

higher mapping power than KNN-spectral and local-spectral clustering (Supplemental Figure 2.1b). 

Different clustering algorithms resulted in similar true positive rate in both low and high polygenicity 

simulations (Supplemental Figure 2.2). Affinity propagation gave 2.7 times more clusters than X-means 

in real data analyses, which costs longer computational time in the mapping step. Overall, considering 

user-friendliness, mapping power, and computational time, X-means was found to be more favorable than 

the other three cluster methods tested.   

 Next, we compared three different block partition algorithms -- BigLD, Plink, and a uniform 

partition method -- with the simulated ground truth for block partition accuracy. BigLD and Plink 

generated outputs closer to the true partitions in the low haplotype diversity setting while BigLD 

outperformed Plink when analyzing high diversity simulations, whose genome partitions were numerous 

small blocks that failed to capture local LD structures (Supplemental Figure 2.3). Uniform partitioning 

underperformed in both datasets suggesting that the fixed size of blocks was a poor reflection of the 

underlying LD structure.  
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We then compared the trait mapping power using haplotype blocks identified by each method in 

simulated datasets. The simulated datasets covered both low and high haplotype diversity and trait 

polygenicity, and four types of QTL architectures which represented different numbers of major and 

minor effect alleles in each locus (Figure 2.2a). Minor mapping power differences were found between 

BigLD and Plink blocks in the low haplotype diversity simulations. BigLD blocks consistently resulted in 

higher or comparable mapping power than that of Plink blocks in all four QTL architectures in both low 

and high polygenicity simulations (Figure 2.2b, Supplemental Figure 2.4a). The mapping power of 

BigLD blocks was similar to ground truth blocks, and uniformed partition blocks had the lowest mapping 

power consistently.  

Major mapping power differences were found between BigLD and Plink blocks in the high 

haplotype diversity simulations. BigLD blocks consistently resulted in higher mapping power than that of 

Plink blocks in all four QTL scenarios in both low and high polygenicity simulations (Figure 2.2c, 

Supplemental Figure 2.4b). Plink blocks resulted in similar mapping power as that of uniform partitions. 
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Figure 2.2. Simulation schemes and mapping power comparison of different block partition 

algorithms.  

(a) Four types of QTLs simulated in the datasets. The effect of QTL1 is contributed by one large 

effect SNP. The effect of QTL2 is contributed by several minor effect SNPs which are not on the 

same haplotypes. The effect of QTL3 is contributed by two modest effect SNPs which are not on the 

same haplotype. The effect of QTL4 is contributed by a mixture of modest and small effect SNPs 

that are not on the same haplotypes. (b) Mapping power comparison (FDR < 0.05) of block partition 

algorithms in the low haplotype diversity and low polygenicity simulations. The x-axis indicates the 

per-locus heritability. (c) Mapping power comparison (FDR < 0.05) of block partition algorithms in 

the high haplotype diversity and low polygenicity simulations. The x-axis indicates the per-locus 

heritability. 
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GWAS algorithms on simulated datasets 

 Four GWAS algorithms: GEMMA, HapFM, BSLMM, and GMMAT, were studied for true 

positive rate, mapping power, and interval length in simulated datasets. When the trait polygenicity and 

haplotype diversity were both low, GEMMA consistently gave the highest mapping power and smallest 

standard deviation in the low haplotype diversity simulations. HapFM and GMMAT provided comparable 

mapping power to GEMMA in QTL architecture 2, and both HapFM and GMMAT displayed similar 

mapping power in all four QTL architectures. BSLMM consistently resulted in the lowest mapping power 

(Supplemental Figure 2.5a). GEMMA, HapFM, and GMMAT resulted in similar true positive rates, 

which were significantly higher than that of BSLMM (Supplemental Figure 2.6a).  

 When the trait polygenicity was low and haplotype diversity was high, GEMMA resulted in the 

highest mapping power and smallest standard deviation in QTL architectures 1, 3, and 4. HapFM resulted 

in similar mapping power to GEMMA in QTL architecture 2 and HapFM consistently resulted in higher 

or similar mapping power than GMMAT in four QTL scenarios. BSLMM consistently resulted in the 

lowest mapping power, but its mapping power was increased in the high diversity simulations compared 

to the low haplotype diversity simulations (Supplemental Figure 2.5b). HapFM resulted in higher true 

positive rate than GEMMA and GMMAT in QTL architecture 1, and the true positive rates of the three 

were comparable in QTL architectures 2, 3, and 4.  

 When the trait polygenicity was high, HapFM consistently resulted in the highest mapping power 

in all four QTL architectures in both low and high haplotype diversity simulations (Figure 2.3). As 

expected, the mapping power of HapFM decreased in the low diversity simulations. The true positive rate 

of HapFM was consistently higher than or similar to those of GEMMA, GMMAT, and BSLMM 

(Supplemental Figure 2.7).  



 50 

 

Figure 2.3. Mapping power comparisons of different GWAS algorithms in the high polygenicity 

simulations. The x-axis indicates the per-locus heritability.  

(a) Mapping power comparisons (FDR < 0.05) of different GWAS algorithms in the low haplotype 

diversity and high polygenicity simulations. (b) Mapping power comparisons (FDR < 0.05) of different 

GWAS algorithms in the high haplotype diversity and high polygenicity simulations.  

  

The mapping interval length of significant loci of GEMMA resulted in higher variation than those of 

HapFM, BSLMM, and GMMAT in all trait polygenicity and haplotype diversity simulations. When the 

trait polygenicity was low, the average interval length of GEMMA significant loci was 29.53 times higher 

than that of HapFM in the low haplotype diversity simulation. Similarly, the average interval length of 

GEMMA significant loci was 23.32 times higher than that of HapFM (Figure 2.4a) in the high haplotype 

diversity simulation. When the trait polygenicity was high, the average interval length of GEMMA 

(a) QTL architecture 1 QTL architecture 2 QTL architecture 3 QTL architecture 4 

(b) QTL architecture 1 QTL architecture 2 QTL architecture 3 QTL architecture 4 
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significant loci was 15.19 times higher than that of HapFM in the low haplotype diversity simulations. 

The average interval length of GEMMA significant loci was 13.32 times higher than that of HapFM in the 

high haplotype diversity simulations (Figure 2.4b). The median interval length of GEMMA was not 

significantly different from that of HapFM (median test, p-value 0.37). In addition, the variance of the 

interval length of significant loci of GEMMA was significantly higher than those of the other three 

GWAS algorithms in all the simulations (Supplemental Table 2.1).  

 

 

Figure 2.4. Mapping interval comparisons of different GWAS algorithms in the simulations. The 

interval length ratio was calculated by normalizing to the average HapFM’s interval length. The red 

dash line indicates the average interval length of significant signals identified by HapFM.  
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(a). Interval length of significant loci (FDR < 0.05) identified by different GWAS algorithms in the low 

polygenicity simulations. (b). Interval length of significant loci (FDR < 0.05) identified by different 

GWAS algorithms in the high polygenicity simulations 

 

GWAS algorithms on actual plant datasets 

 Five plant GWAS datasets -- Arabidopsis flower time, rice heading time, cassava HCN content, 

tomato metabolite concentration, and maize height -- were used to benchmark the performance of HapFM 

as compared to the other GWAS algorithms (Table 2.1). HapFM identified the most significant loci 

compared to the other GWAS algorithms in the Arabidopsis flowering time (FT10) dataset (Figure 2.5). 

HapFM first partitioned genome into 48,171 haplotype blocks, out of which it identified 82,431 haplotype 

clusters. The average and median of block length were 2,803 nt and 457 nt, respectively. In the haplotype 

fine mapping step, HapFM identified seven significant loci (FDR < 0.05). GEMMA identified five 

significant loci (FDR < 0.05), out of which three loci were shared with HapFM results. The locus on Chr5 

(most significant SNP: 5@3161477) was also detected by HapFM but slightly missed the significant FDR 

cutoff (FDR = 0.07). GMMAT identified two significant loci and both of them were identified as 

significant by HapFM and GEMMA. BSLMM identified one significant locus also discovered by HapFM 

and GEMMA. HapFM identified four loci: Chr3@7598564-7598957, Chr4@405136-406621, 

Chr5@14063228-14197451, and Chr5@16141604-16146257 that were unique to HapFM algorithm. In 

these unique intervals, flowering time related candidate genes were identified in or near those loci. In the 

Chr3@7598564-7598957 locus, there is no gene in the interval but an adjacent proximal gene 

AT3G21570 located 1.3kb away, was previously shown to be exclusively expressed in the developing 

flowers with transcriptomic changes during pollen germination and tube growth in Arabidopsis (Wang et 

al., 2008). The Chr4@405136-40662 interval overlaps with AT4G00950 (MEE47), a gene that is highly 

expressed in mature flowers and required for female gametophyte development and function in 

Arabidopsis (Jakoby et al., 2008) (Pagnussat et al., 2005). In the Chr5@14063228-14197451 interval, 

there are 30 protein-coding genes. Multiple candidate genes in the interval, such as AT5G36110, 
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AT5G35926, AT5G35995, have been shown to be highly expressed in different flower stages and tissues 

(Klepikova et al., 2016). The Chr5@16141604-16146257 locus overlaps with AT5G40360 (MYB115), a 

gene was shown to be highly expressed during flowering stages and mature flowers and its 

overexpression promotes vegetative-to-embryonic transition in Arabidopsis (Wang et al., 2009).  

In addition to having the highest mapping power, HapFM also mapped significant loci to the smallest 

genomic intervals in most cases. For example, HapFM, GEMMA, and BSLMM all identified the same 

significant locus, FT locus, on Chromosome 1 (Figure 2.5). The interval length of the locus identified by 

GEMMA and BSLMM are both 21.9kb while the interval length of the locus identified by HapFM is 

2.7kb. On average, the average interval length of significant loci identified by HapFM and GEMMA was 

24.8kb and 237.8kb, respectively (Table 2.1). The average number of SNPs per significant locus 

identified by HapFM and GEMMA was 28 and 105, respectively. Similar results were found in the other 

four real plant GWAS datasets (Table 2.1). HapFM consistently resulted in similar or higher number of 

significant loci compared to GEMMA, BSLMM, and GMMAT. In addition, the mapping interval of 

HapFM is considerably smaller than GEMMA in all the comparisons.  

 Using the Arabidopsis flowering time dataset, a proof-of-concept study demonstrated that 

biological annotations could be incorporated (HapFM-anno) and potentially increase mapping power. The 

biological-informed prior probability for each haplotype block was calculated using eight biological 

annotations. In this example, the biological annotations were the number of CNV, INDEL, rare variants, 

high effect variants, moderate effect variants, low effect variants, and modifier variants in each block. The 

estimated effect size of biological annotations suggested the number of CNV in each block significantly 

affected the prior probability of each haplotype block (Figure 2.6a). HapFM-anno identified nine 

significant loci in total using biological-informed priors (Figure 2.6b,c). Five out of nine were also 

identified previously without biological annotation incorporated. HapFM-anno identified four novel loci: 

Chr1@7884994-7886542, Chr1@11474330-11475120, Chr1@25408933-25429985, and 

Chr5@23204856-23205070 (Figure 2.6b). The interval Chr1@7884994-7886542 is at the upstream 

region of gene AT1G22330 that is highly expressed in mature flowers (Klepikova et al., 2016). The 
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interval Chr1@11474330-11475120 is at the upstream of the gene AT1G31940 that is highly expressed in 

mature flowers (Klepikova et al., 2016) and involved in seed germination (Narsai et al., 2011). The locus 

Chr1@25408933-25429985 overlaps with ten genes. Multiple candidate genes in the interval, such as 

AT1G67780 and AT1G67790, have been shown to be highly expressed during petal differentiation and 

expansion stage (Klepikova et al., 2016). The locus Chr5@23204856-23205070 overlaps with the gene 

AT5G57280 that has been shown to be highly expressed in different flower tissues (Klepikova et al., 

2016) and pre-meristematic cell-mound formation during shoot regeneration (Shinohara et al., 2014). 

Two HapFM identified loci: Chr5@14063228-14197451 and Chr5@16141604-16146257, were not 

significant after incorporating biological annotations. 
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Figure 2.5. Manhattan plots of different GWAS methods on the Arabidopsis flowering time (FT10) 

dataset. The red dash line indicates the FDR 0.05 threshold. In the HapFM’s plot, the size of the dots 

indicates the estimated effect size of the block.  

 

 

 

 

Table 2.1. Summary of GWAS results on the five real plant datasets. 

 

  

Phenotype Dataset
Block 

number
GWAS 

algorithms
# of significant 

loci (FDR < 0.05)
Avg. significant 
locus length (nt)

Avg. # of snps per locus

HapFM 7 24,780 28
GEMMA 4 237,772 105
BSLMM 1 21,863 80
GMMAT 2 10,110 27

HapFM 10 166,031 792

GEMMA 1 1,981,206 2473
BSLMM 3 1,753,229 1868
GMMAT 5 414,951 5908
HapFM 3 62,018 7
GEMMA 4 1,068,992 20
BSLMM 0 NA NA
GMMAT 2 1,166,404 46

HapFM 10 398,161 5068

GEMMA 0 NA NA
BSLMM 0 NA NA
GMMAT NA NA NA

Arabidopsis 
Flowering

1003 individuals  
1.12M SNPs 

48,171

Rice Heading 
Time

529 individuals     
1.43M SNPs

14,301

Cassava HCN
1134 individuals  

24.75K SNPs
9,112

Maize Height
263 individuals  

23.09M SNPs
98,723
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Figure2.6. Arabidopsis flowering time GWAS results using biological-informed priors (HapFM-anno). 

(a) The estimated effect sizes of different biological annotations for the Arabidopsis flowering time 

dataset. (b) The comparison of significant loci identified with and without incorporating biological 

annotations. (c) Manhattan plots HapFM-anno on Arabidopsis flowering time (FT10) dataset. The red 

dash line indicates the FDR 0.05 threshold. The size of the dots indicates the estimated effect size of 

the block.  
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Discussion 

 GWAS has emerged as a critical approach to understanding the genetic architecture of complex 

traits and diseases especially in medical studies. Its utility in plant studies has been limited by a dearth of 

suitable genomic datasets. Yet, as the volume of plant genomic and phenotypic datasets increase, GWAS 

will begin to take on a more significant role as it does in human studies. SNP-based LMM and its variants 

are commonly used but often underpowered in plant GWAS studies due to limitations in the study 

designs and the high complexity nature of agronomic traits (Cortes et al., 2021; Korte and Farlow, 2013). 

Conventional GWAS methods use LMM to identify significant SNPs by marginally testing one SNP at a 

time without considering LD between proximal SNPs.  

 There may be reasons why a conventional GWAS approaches may not be the most suitable model 

for plant GWAS. Plant GWAS generally have a small population size, a magnitude or two smaller than 

most human GWAS. In these circumstances, when an individual SNP has a large effect size, marginal 

regression can successfully identify it together with its in-LD SNPs and results in a significant peak in the 

Manhattan plot even in small GWAS populations. For instance, conventional GWAS methods have been 

used in small populations to map traits contributed by large-effect loci, such as qualitative resistance 

(Tran et al., 2019), plant architecture (Yano et al., 2019), metabolic pathways (Tieman et al., 2017). On 

the other hand, conventional GWAS methods often struggle to map traits contributed by numerous small-

effect loci in populations of limited size. For example, significant SNPs identified by an LMM-based 

GWAS method, FarmCPU, only explained 15% of the phenotypic variation in a Sclerotinia resistance in 

soybean(Wei et al., 2017). This result is consistent with our simulation results that GEMMA, a 

representative of conventional LMM-based GWAS method, that correctly identified large-effect loci in 

low-polygenicity traits while failing to identify small-effect loci in high polygenicity traits. One way of 

increasing mapping power is to increase sample size in GWAS. For example, in human height GWAS, 

253,288 individuals were analyzed identifying 423 loci, with the majority loci contributing less than 1% 

of the total heritability (Chan et al., 2015).  
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Aggregating SNP effects is another way of increasing mapping power, such as SNP-set based 

method. This assumes that there may exist more than one causal SNPs in the SNP-set. HapFM follows a 

similar strategy by projecting SNPs on haplotypes and then testing the effect sizes of haplotypes rather 

than individual SNPs. In addition, using haplotypes as variables also includes cis-interaction between 

SNPs, which is generally missing in SNP-based LMM models.  

The second reason conventional GWAS models are underpowered is that a large number of SNPs 

cause multiple testing burdens in the marginal regression. As sequencing cost continues to decrease, 

however, genotyping a GWAS cohort by whole genome sequencing has become more affordable than 

ever before. When WGS datasets are used in plants, the high levels of genetic diversity of many plant 

species create datasets whereby millions of SNPs / INDELs can be identified in individuals, especially 

when including wild relatives (Wu et al., 2019). This excessively large number of SNPs can affect the 

power of conventional SNP-based LMM methods because significance is tested on individual SNPs with 

overall significance calculated with cutoffs to control type I error. The overall significance cutoff will be 

more stringent as the number of SNPs increases in the analysis, significantly reducing the power of 

conventional SNP-based GWAS methods, such as GEMMA, GAPIT, and FarmCPU. A common solution 

to the multiple testing issue is to select a subset of representative SNPs for each LD block, also known as 

“tag SNPs”, to reduce the number of tests in the analysis.  This method assumes, however, that the causal 

SNPs are in LD with the tag SNPs (Wang et al., 2017) (Ding and Kullo, 2007).  This can be problematic 

since the selection of the representative SNP is arbitrary involving choosing parameters for LD cutoff and 

physical distance. Moreover, information about other SNPs is lost with this method, such as the number 

of causal SNPs, LD structure between nearby SNPs. As discussed below, HapFM solves the multiple 

testing problem by combining SNPs into haplotypes, which greatly reduced the total number of variables 

in the model.  

 Another limitation of conventional GWAS methods is the interpretability of mapping results, 

including mapping interval and relevant biological information. Domestication and modern breeding 

result in large LD blocks in many crop genomes (Doebley et al., 2006) and most conventional GWAS 
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methods marginally test each SNP marker without considering the LD between nearby SNPs. Therefore, a 

bundle of proximal SNPs may pass the significance threshold simply due to strong regional LD, resulting 

in a large significant peak in the Manhattan plot. This is especially problematic when the mapping 

interval of the locus is defined as the boundary where LD decays below a threshold (r2 < 0.1). In a region 

with high LD, the mapping interval could span hundreds of genes and compounding the difficulty 

downstream experimental validation (Cortes et al., 2021; Schaid et al., 2018; Zhou and Huang, 2019). A 

common practice to increase mapping resolution in the high LD region in many plants is to generate a 

fine-mapping population to further reduce LD by introducing recombination into the region (Jaganathan 

et al., 2020). Nevertheless, developing a fine-mapping population is labor-intensive and at a high cost, 

which largely limits its application. Mapping resolution can also be improved by performing statistical 

fine-mapping in the region to identify a credible set of SNPs with a high probability containing the true 

causal SNPs. Statistical fine-mapping methods has been successfully used in human genetic studies to 

narrow down the list of causal SNPs (Westra et al., 2018) (Ferreiro-Iglesias et al., 2018). One limitation 

of this method, however, is that it is locus-specific rather than genome-wide due to high computation 

intensity. Also, biological interpretation of the SNPs in the credible set may be ambiguous because they 

may not be obvious functional variants. 

 HapFM leverages the combination of genome-wide haplotype block fine-mapping with statistical 

fine-mapping to identify causal haplotype blocks. When possible, HapFM partitions large independent 

blocks into smaller and correlated blocks to further increase mapping resolution. LD information between 

small blocks is then used to identify the causal blocks. The causal block identified provides a reduced 

interval for the identification of functional variants. One limitation of this method, however, is that 

structural rearrangements, such as inversion, may result in the location of functional variants outside of 

the identified causal blocks.  

Comparison with other GWAS methods in the simulation and real datasets showed that HapFM 

could greatly increase mapping resolution and achieve higher mapping power with complex traits.  This 

indicates that HapFM may greatly improve current mapping efforts and perhaps serve as an alternative 
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GWAS strategy in plant studies. Our results show that HapFM generated smaller mapping intervals than 

GEMMA, especially in regions of high LD in the simulation studies. HapFM consistently mapped traits 

to a smaller interval with fewer candidate genes than GEMMA. These results suggest that HapFM is 

capable of addressing the previously mentioned limitations found in many plant GWAS studies. In low 

polygenitcity simulations, GEMMA showed higher mapping power than HapFM, suggesting GEMMA, 

or SNP-based LMM models in general, would provide a powerful method for mapping simple traits 

contributed by major effect loci. Therefore, the choice of the mapping algorithms may be determined by 

the genetic architecture of the traits. Other methods, such as GMMAT and BSLMM, consistently 

underperformed in both the simulation and actual plant datasets. Therefore, optimization of the models is 

necessary for better plant applications. 

 A similar haplotype-based method, FH-GWAS (Liu et al., 2019), has been developed which 

demonstrates an advantage of using haplotypes over SNP as variables by aggregating local epistatic 

effects. In our study, FH-GWAS and HapFM identified more significant loci than conventional SNP-

based methods on the same Arabidopsis FT10 GWAS dataset (Supplemental Table 2). Overall, HapFM 

identified two more significant loci than FH-GWAS in the Arabidopsis FT10 GWAS dataset. The 

improved mapping power may be due to the following reasons. HapFM has benchmarked different block 

partitioning algorithms and showed the advantages of non-uniform LD-based partitioned using BigLD 

over uniform partitioning and PLINK partitions. HapFM goes further by performing haplotype clustering 

instead of using unique haplotypes, reducing the number of variables in the final model, and increasing 

the power of low-frequency haplotypes. Finally, HapFM uses the full model instead of marginal 

regressing haplotypes methods used in most haplotype-based GWAS methods, such as FH-GWAS and 

RAINBOW (Hamazaki and Iwata, 2020). The full model doesn’t need to estimate the kinship between 

individuals, and the output results from HapFM indicate causal signals. Last but not least, HapFM can use 

biological-informed priors for different genomic regions, which could further improve its mapping power. 

 One limitation of HapFM is its high computational time. This computational cost is determined 

by factors including the number of blocks in the genome, the sensitivity of haplotype clustering, and the 
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number of MCMC iterations. HapFM uses the full model rather than marginal regression to infer the 

causality of each block. The more blocks partitioned, the more variables will be included in the fine-

mapping model, which essentially increases resolution at the expense of computational intensity. 

Similarly, failing to cluster haplotypes will also increase the number of variables in the model. HapFM 

uses MCMC for parameter inference, and the number of iterations for MCMC to reach convergence is 

random and highly variable. In addition, a large number of iterations is necessary to reduce the standard 

error of the estimates. These factors all contribute to the high computational time of HapFM. 

 Future improvements on HapFM include, but are not limited to, optimization in block partition 

and haplotype clustering algorithms and reducing computation time in the MCMC step. Moreover, as 

more and more plant species now have a pan-genome reference showing complex structural variations in 

different individuals (Lei et al., 2021), a pan-genome compatible trait mapping algorithm will be in high 

demand in the near future. The conventional SNP-based marginal regression models may struggle to be 

applied to the pan-genome reference because different reference genomes will output different sets of 

SNP genotypes as well as structural variations. HapFM has an advantage in pan-genome-based trait 

mapping because it uses haplotype as variables, defined by SNPs and structural variations. In addition, 

different reference genomes increase the accuracy and resolution of haplotype identification by providing 

extra information. The application of HapFM on pan-genome references is still under development. 

 In conclusion, we have developed a novel GWAS algorithm, HapFM, to address specific issues in 

plant studies. We demonstrated that HapFM showed advantages in shorter mapping intervals and higher 

mapping power than conventional GWAS methods in simulation and actual plant datasets. These results 

suggested that HapFM is a reliable alternative GWAS algorithm, and it supplements the current GWAS 

methods to facilitate the understanding of genetic architecture of traits.   
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Material and Methods 

Genome-wide haplotype block partition 

HapFM first performs genome-wide block partitioning, outputting sets of non-overlapping SNPs 

using LD between SNPs as the partitioning metric. Previous studies have demonstrated that given the 

genotype data of a population, the linear reference genome can be divided into blocks with limited 

haplotype diversity, also known as haplotype blocks (Gabriel et al., 2002). HapFM utilizes a 2-step 

partitioning strategy to achieve high computation efficiency. The first step identifies large independent 

blocks which are defined as a proximal set of SNPs with minimum pairwise LD (r2) that are larger than a 

pre-defined threshold (r2=0.1 by default). A maximum distance threshold between SNP pairs is also set to 

avoid unrealistically large blocks caused by randomness. The second step in the partitioning process 

identifies sub-block structures within the large independent block by using existing block partition 

algorithms. The current version of HapFM has the choice of three block partition algorithms -- Uniform 

partition, PLINK (Purcell et al., 2007) and BigLD (Kim et al., 2018). Users can also input their own block 

partitions.  

 

Haplotype clustering 

After the block partition step, HapFM performs haplotype clustering on the unique haplotypes 

present in each haplotype block. In this clustering step, HapFM first enumerates all of the unique 

haplotypes in the block. When the number of unique haplotypes exceeds the user-defined threshold (n = 

10 by default), HapFM will perform haplotype clustering to reduce the number of variables in the 

mapping step. For a block containing h unique haplotypes characterized by s SNPs, HapFM uses the SNP 

indicator matrix (ℎ × 𝑠) as input for the clustering algorithms. HapFM currently has implemented four 

clustering methods: affinity propagation, X-means, local scaling (LS)-spectral clustering and K-nearest 

neighbor (KNN)-spectral clustering. Affinity propagation was implemented using 

sklearn.cluster.AffinityPropagation function from the scikit-learn package (0.23.2). X-means was 
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implemented using the X-Means function from the Pyclustering library (Novikov, 2019). LS-Spectral 

clustering and KNN-Spectral clustering were implemented using in-house python scripts.  

 

Genome-Wide Haplotype Fine Mapping Model 

The genome-wide haplotype fine mapping model follows a linear mixed model (LMM) and a hierarchical 

Bayes inference framework: 

𝑦	 = 	C𝛼	 + 	H𝛽	 + 	𝜖, 

where y is a length 𝑛	vector of phenotypic values; C is an 𝑛 × 𝑐 matrix of covariates, 𝛼 is a length c 

vector containing the fixed effects of covariates; H is an 𝑛 ×𝑚 design matrix indicating the counts of 

haplotype (clusters); 𝛽 is a length 𝑚 vector of random effects of haplotype (clusters); 𝜖 is a length n 

vector of random residual effects. The prior distribution for effect size 𝛽 is shown as below: 

𝛽	~(1 − 𝜋)𝑁(0, 𝛿!") + 	𝜋𝑁(0, 𝛿#"), 

𝛽$ 	|	𝛾$ ∼	L
𝑁(0, 𝛿!")							if	𝛾$ = 0
𝑁(0, 𝛿#")							if	𝛾$ = 1

, 

𝛾$ 	~	Bernoulli(𝜋), 

𝛿#%"	~	Gamma(a, b), 

𝛽&'& = 	Ε(	𝛾	|	y, H) 

 As shown in the model, the haplotype effect sizes follow a mixture of normal density with mean 0 

and variance 𝜎#" and a normal density with variance 𝜎!" pre-specified close to 0. The latent variable 𝛾 

encodes the components whose corresponding effect size come from 𝑁(0, 𝜎#") . The inference was 

performed using an in-house Gibbs sampler, and the posterior inclusion probability (PIP) of each 

𝛽	indicates the inferred probability of the haplotype block being causal.   

 The parameter 𝜋 suggests the prior probability of causality for each haplotype block. If 

annotation is not provided, the model assumes every haplotype block has the same prior probability for 
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causality. If biological annotations are provided, the causal probability of each haplotype block will be 

inferred by fitting it into the following Probit model: 

Φ%#	[𝑃(𝛾$ = 1)] = A( 	𝜃, 

where Φ%#is the inverse of cumulative distribution function of a standard normal distribution, A is the 

matrix containing the annotation features, and 𝜃 is the vector of effect size corresponding to each 

biological annotation. The inference of 𝜃 follows the data augmentation method from (Albert and Chib, 

1993).  

 

Simulation analyses 

 Simulation datasets were generated to compare different block partition and haplotype clustering 

algorithms implemented in the HapFM framework and to benchmark the mapping performance of 

HapFM against conventional GWAS methods.  

In genotype simulation, populations with 500 individuals were simulated to contain 100 large 

independent blocks in the genome. In each large independent block, the number and the size of sub-

blocks, s, was sampled from the Uniform (1, 10) distribution and Uniform (10, 100) distribution, 

respectively. The number of haplotype clusters, hc, in each sub-block was randomly sampled from a 

Uniform (2, 4) distribution. Haplotype diversity, d, is a parameter to simulated different diversity of the 

simulated population. The total number of unique haplotypes, h, was calculated as ℎ) × 𝑑.	Random 

mutations were then introduced to haplotype clusters to generate unique haplotypes. The unique 

haplotype matrix 𝑍*×, encompassed the SNP features of all the haplotypes in the block. The haplotype 

frequencies, 𝑓*, were calculated by solving the linear equation:   

𝑓, = 𝑍𝑓* 

whereby the 𝑓,	is a vector of the minor allele frequencies in the block randomly sampled from a Uniform 

(0.05, 0.95) distribution. The haplotypes were then sampled from a Multinomial (2, 𝑓*) to generate the 

genotype of the block for each individual.  
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 The phenotype of the population was simulated using the following equation: 

𝑦	 = 	𝐶𝛼	 + 	𝑋𝜂	 + 	𝜖, 

whereby the coefficients 𝛼 were sampled from a Uniform (-1, 1) distribution, and the entries in the 

covariate matrix C were sampled from a Uniform (-5, 5) distribution. 𝑋 represents the simulated SNP 

genotype matrix. 𝜂 represents the SNP effect sizes which was simulated in a hierarchical manner: causal 

blocks and causal SNPs in the block. At the block level, the probability, 𝜋- , of a block containing true 

causal SNPs was simulated at 0.005 and 0.05. and the block effect size 𝜂-! were simulated ranging from 

0.5 to 3. Under each true causal block, four types of architectures of true causal SNPs (𝜆$ = 1) were 

simulated (Figure 2.1a): 

(1) Architecture No.1: one large effect causal SNP; 

(2) Architecture No.2: Five or six small effect causal SNPs randomly assigned to haplotypes;  

(3) Architecture No.3: two moderate effect causal SNPs assigned to different haplotypes;  

(4) Architecture No.4: mixture of large and small effect causal SNPs randomly assigned to 

haplotypes; 

For each architecture, SNP-level effect size, 𝜂$ , was assigned to each individual causal SNP based on the 

equation 𝛽-! =	∑ 𝛽$	Ι(𝜆$ = 1)/0&"	∈	-! , where Ι is the indicator function. The effect sizes of non-causal 

SNPs were randomly sampled from the Normal (0, 0.0001) distribution.  

 

Processing of real datasets 

 In real data analyses, five existing datasets were used to demonstrate the performance of HapFM 

on various types of genetic architectures and LD structures, and benchmark it with other GWAS method.  

These datasets were an Arabidopsis flowering time dataset (FT10) (Seren et al., 2017), tomato metabolite 

(Zhu et al., 2018), rice yield (Xie et al., 2015), maize height (Peiffer et al., 2014) and a cassava HCN 

content (Ogbonna et al., 2021). The Arabidopsis flowering time GWAS dataset included genotype 

information from two previously published datasets: Arabidopsis Regmap (Horton et al., 2012) and 1001 
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Arabidopsis genome (Genomes Consortium. Electronic address and Genomes, 2016). In the 1001 

Arabidopsis genotype dataset, non-biallelic SNPs and SNPs with missing percentage greater than 20% 

were filtered out giving a total of 8,231,757 remaining SNPs. In the Regmap genotype dataset, SNPs that 

are not in LD (R2 < 0.1) with nearby 20 SNPs we filtered out leaving 202,339 remaining SNPs, 170,977 

of which were also included in the filtered 1001 Arabidopsis genotype dataset.  The overlapping SNPs 

were used as the reference panel for imputation using Beagle 4.1 (Browning and Browning, 2007) to 

impute missing data and phased genotypes by following a 2-step imputation procedure (Wu et al., 2019). 

After imputation and phasing, SNPs with a minor allele frequency (MAF) < 0.05 and those that were not 

in LD with nearby 20 SNPs were removed resulting in a 1,013,248 final SNPs dataset. Next, genome-

wide LD pruning was performed on the filtered genotypes using PLINK with parameter set as --indep-

pairwise 1000 100 0.1 (Borile et al.). Finally, principal component analysis (PCA) was performed on LD-

pruned SNPs and the first five PCs were used as covariates to adjust for population structure.  

 The tomato fruit metabolic GWAS dataset was downloaded from published data (Zhu et al., 

2018). The genotype data of the 441 tomato accessions were processed according to Wu et al. published 

workflow (Wu et al., 2019). A total of 3,281,705 SNPs were kept after filtering out SNPs with MAF < 

0.05 and SNPs that were not in LD (r2 < 0.1) with nearby 20 SNPs. Genome-wide LD pruning was then 

performed using PLINK with parameter set as --indep-pairwise 1000 100 0.1 and remained 7,747 LD-

pruned SNPs. The first two PCs were used as covariates to adjust for population structure. The 

concentration of SlFM0969 metabolite, Apigenin 7-O-glucoside, was used for the phenotype in the 

analysis.  

 The genotype and yield phenotype datasets of 295 rice individuals were downloaded from Rice 

Variation Map ( http://ricevarmap.ncpgr.cn/ ) (Zhao et al., 2015). Beagle 4.1 was used to impute missing 

data and to phase genotypes. A total of 1,017,380 SNPs were used for GWAS analysis after removing 

SNPs with MAF < 0.05 and SNPs that were not in LD (r2 < 0.1) with nearby 20 SNPs. Genome-wide LD 

pruning was then performed on the filtered rice genotypes using PLINK with parameter set as --indep-
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pairwise 1000 100 0.1 and remained 12367 LD-pruned SNPs. PCA was performed on LD-pruned SNPs 

and the first two PCs were used as covariates to adjust for population structure. 

 The genotype information and HCN content of 1239 cassava accessions were obtained from a 

published dataset (Ogbonna et al., 2021). A total of 16596 SNPs were kept for GWAS analysis after 

filtering out SNPs with MAF < 0.05 and SNPs that were not in LD (r2 < 0.1) with nearby 20 SNPs. 

Genome-wide LD pruning was then performed using PLINK with parameter set as --indep-pairwise 1000 

100 0.1 and remained 826 LD-pruned SNPs. PCA was performed on LD-pruned SNPs and the first 10 

PCs were used as covariates to adjust for population structure. 

 The maize HapMapV3.2.1 genotypes and 263 plant height phenotypes were downloaded from 

Panzea ( https://www.panzea.org/ ). Beagle 4.1 was used to impute missing data and to phase genotypes. 

A total of 23,093,292 SNPs were used for GWAS analysis after removing SNPs with MAF < 0.05 and 

SNPs that were not in LD (r2 < 0.1) with nearby 20 SNPs. Genome-wide LD pruning was then performed 

on the filtered rice genotypes using PLINK with parameter set as --indep-pairwise 1000 100 0.1 and 

remained 148,961 LD-pruned SNPs. PCA was performed on LD-pruned SNPs and the first three PCs 

were used as covariates to adjust for population structure. 

 

Benchmark different GWAS methods on simulated and real datasets 

 In both simulation and real data analyses, HapFM was compared with three GWAS methods: 

traditional LMM-based univariate association mapping GEMMA v0.98.1 (Zhou and Stephens, 2012), 

Bayesian Sparse LMM BSLMM v0.98.1 (Zhou et al., 2013), and SNP-set based association method 

SMMAT v1.3.1 (Chen et al., 2019a). The kinship matrix, if needed, was calculated by GEMMA with 

parameter -gk 1. To fit a univariate linear mixed model in GEMMA, corresponding covariates were used 

with default settings for the other parameters. To fit the BSLMM model, the -bslmm 1 option was used 

with default settings for the other parameters. No covariate was included in the BSLMM model. To fit the 

SMMAT model, SNP sets based on the haplotype blocks identified by HapFM used including the 

corresponding covariates and default settings all parameters.  
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 In both simulation and real data analyses, the mapping power and mapping interval of different 

GWAS methods was compared with FDR set at < 0.05. HapFM and GMMAT identify significant 

haplotype blocks whereas BSLMM and GEMMA identify significant SNPs. Therefore, the FDR values 

for BSLMM and GEMMA results need to be adjusted to achieve a fair comparison. To do this, the most 

significant SNP in each HapFM block partition was selected as the representative SNP and the adjusted 

FDR values were calculated using the formular (Brzyski et al., 2017):  

|/|3
4

, 

whereby |𝑆| represents the number of representative SNPs, 𝑞 represents the desired FDR level, and M 

represents the total number of SNPs. The mapping intervals of significant loci (FDR < 0.05) of each 

GWAS method were then calculated. The mapping intervals of HapFM and GMMAT were the length of 

their corresponding blocks. The mapping interval of GEMMA and PLINK were calculated by clumping 

SNPs based on their pairwise LD using PLINK with the parameter set as --clump-r2 0.2. In addition, the 

mapping accuracy in the simulated study was calculated as the percentage of true positive blocks (FDR < 

0.05) from each GWAS method. The blocks contained significant SNPs identified by GEMMA and 

BSLMM were used to calculate the accuracy of GEMMA and BSLMM, respectively. 
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Chapter 3. A haplotype-based algorithm for pan-genome cohort selection and evaluation 

 

Abstract 

 As sequencing cost continues to decrease, an increasing number of studies have shown that a 

single reference genome is often inadequate in many in genomic analyses resulting in biased or inaccurate 

results. A pan-genome reference that combines the sequence information of multiple individuals can 

mitigate the bias caused by a single reference. The premises of building a pan-genome reference is to 

more comprehensively representing the diversity of the species. Importantly, pan-genome cohort selection 

is a major factor in the level of diversity representativeness. A novel haplotype-based pan-genome cohort 

selection algorithm is presented that uses haplotype information to guide cohort selection to maximize 

local diversity. The workflow of HapPS consists of genome-wide block partition, representative 

haplotype cluster identification, and cohort selection by the Genetic Algorithm. The benchmark study 

between HapPS and a global-distance-based method showed that HapPS outperformed in five evaluation 

metrics including the average coverage of the high-diversity gene-overlapping blocks. The GO term 

enrichment analysis of the genes in the most diverse blocks showed significant enrichment of 

environmentally responding genes. HapPS also provides a quantitative evaluation of the pan-genome 

cohort selection. The evaluation metrics focuses on genome-wide and priority block coverages. In 

conclusion, HapPS is a robust and customizable algorithm that provides systemic solutions to select and 

evaluate diverse representatives a pan-genome cohort. 
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Introduction 

 A high-quality reference genome has become an essential tool for many biological studies in a 

multitude of bacterial, fungal, plant, and animal organisms. High-quality reference genomes provide the 

genomic sequence and location about the regions of interest, which are key to bioinformatic analyses, 

including read mapping and sequence annotations and molecular experiments such as gene cloning and 

genome editing. Reference genomes are also the foundation for population and evolution genomic 

research, such as studying human migration and admixture and understanding crop domestication. 

 Often, assembling a reference genome is the starting point for further investigations into the 

genomic aspect of the species. In the early 21st century, the completion of draft genomes for several 

model species, including human (Venter et al., 2001), drosophila (Adams et al., 2000), Arabidopsis 

(Arabidopsis Genome, 2000), rice (Goff et al., 2002; Yu et al., 2002), maize (Schnable et al., 2009) is a 

major milestone in genomics. These genomes were expensive and time-consuming to generate and 

sometimes involved multi-national collaborations primarily due to the relatively short read length of 

Sanger and Illumina sequencing technologies and inefficient short-read genome assembly algorithm 

(Metzker, 2010; Nagarajan and Pop, 2013; Pop and Salzberg, 2008; Treangen and Salzberg, 2011). 

Therefore, only one genome would be generated to represent the reference genome of that species. 

Arabidopsis, for example, was the Col-0 ecotype chosen as the reference genome because it had the most 

extensive genetic resources available at that time. The soybean cultivar Williams 82 was chosen for the 

reference genome because of its yield performance (Schmutz et al., 2010). Many other organisms 

followed suit such as cotton (Li et al., 2015), octopus (Albertin et al., 2015) and zebrafish (Howe et al., 

2013).  

 Using a single reference poses significant limitations to study population diversity. Sequence 

polymorphisms alone can account for millions of sequence differences between even closely related 

individuals (Genomes Consortium. Electronic address and Genomes, 2016; Lin et al., 2014; Lv et al., 

2020a). Rare variations found in the population can be even more difficult to identify since the inherent 
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inaccuracy of short-read sequencing with the accuracy of polymorphism discovery decreases significantly 

as the genetic distance to the reference genotype increases (Wu et al., 2019).  

 Single reference genome limitations are even more prominent in plant studies due to extensive 

structural complexity and the repetitive nature of plant genomes. This can often make the identification of 

regions and genes of interest challenging. For example, Rhg-1 locus that is responsible for soybean-cyst 

nematode susceptibility is present as a cluster of four genes in the reference Willams2 genome. The 

resistant allele of Rhg-1 in the genotype, PI88788, has ten copies of the same genes, indicating a role for 

copy number variation (CNV) in determining the resistance to soybean cyst nematode (Cook et al., 2012). 

Hence, it would be difficult to determine the resistance mechanism without a de novo genomic assembly 

of this region subject to CNV because reads collapse from missing copies in the reference. Present-

Absence variation (PAV) that is frequently encountered in many plant genomes (Huang et al., 2021; Lam 

et al., 2010; Wang et al., 2018b) can be even more problematic. PAV contributes to significant read 

alignment inaccuracy caused by misalignment to other homologous regions in the genome.  

 Multiple reference genomes for a species can provide robust solutions to many limitations 

associated with a single reference genome. As the accuracy and affordability of long-read sequencing 

technology increase, de novo reference-quality assemblies can be done at a reasonable cost. Accordingly, 

an increasing number of high-quality assemblies of non-reference genotypes have been published in 

recent years (Choi et al., 2020; Du et al., 2017; Hufford et al., 2021; Kim et al., 2021; Lin et al., 2021; 

Valliyodan et al., 2019). Their utility has underscored the importance of having more multiple reference 

genomes. This concept of multiple assemblies, referred to as pan-genomes, incorporates genome 

information from multiple individuals to mitigate the issues associated with single reference bias. Many 

plant pan-genomes have been constructed to facilitate population and functional genomics analyses (Della 

Coletta et al., 2021; Lei et al., 2021). One example is a recent soybean pan-genome assembled from 26 de 

novo genome assemblies using PacBio long-reads (Liu et al., 2020). This pan-genome encapsulates 

information about large structural variations and gene fusion events, which will help associate complex 

structural variations to agronomic traits. 
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 Building a pan-genome reference consists of a series of optimization problems, starting from pan-

genome cohort selection to choosing a suitable data structure for the pan-genome reference. This paper 

focuses on the problem of cohort selection. The conventional selection algorithms rely on global distance 

to select one individual for each group. In this paper, we proposed an alternative approach aiming to 

maximize haplotype representativeness in the pan-genome cohort. The algorithm, HapPS, focuses on 

representing haplotype diversity in haplotype blocks, especially regions of high diversity and functionally 

importance. In comparative studies, HapPS significantly outperformed the global-distance-based method 

in representing high-diversity regions and resulted in higher average genome-wide coverage. The results 

showed that HapPS provided better quantitative representativeness of the pan-genome cohort than global-

distance-based methods. Finally, HapPS can be employed sequentially to update existing pan-genomes by 

selecting additional individuals with representative haplotypes previously absent. Overall, HapPS 

provides an alternative view of pan-genome references by prioritizing regions of interest and maximizing 

haplotype diversity in the cohort.  
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Results 

Overview of HapPS workflow 

 We present a novel haplotype-based pan-genome cohort selection algorithm, HapPS, to serve as 

an alternative pan-genome cohort selection algorithm to global-distance-based methods. There are mainly 

three steps in the HapPS workflow: genome-wide haplotype block partition, block-wise representative 

haplotype identification, and pan-genome cohort selection by Genetic Algorithm (Figure 3.1). HapPS 

takes genotype information of a population as data input and then partitions the linear genome into non-

overlapping segments of SNPs that reflect adjacent LD structures among SNPs. The default partitioning 

parameters are designed to reduce the number of single-SNP blocks. Users can adjust the size of 

haplotype blocks by choosing different r2 cutoffs. Each haplotype block is then treated as an independent 

unit for the subsequent analyses. Next, representative haplotypes of each block are identified by clustering 

unique haplotypes in the block. This step aims to avoid selecting genetically similar haplotypes more than 

once and maximize the represented diversity in each block. Each haplotype cluster is considered a 

representative. The individual and representative haplotype relationship is encoded into a haplotype 

design matrix containing the count information of each representative haplotype. Finally, HapPS 

separates genome-wide blocks into priority and secondary blocks according to the user’s input and then 

uses Genetic Algorithm to select the pan-genome cohort prioritizing maximizing haplotype 

representativeness of priority blocks. The overall representativeness is quantified using a weighted sum of 

different metrics (see Material and Methods section). Once the Genetic Algorithm has finished, HapPS 

outputs a list of selected individuals for the pan-genome cohort and the selection evaluations.   
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Figure 3.1. The workflow of haplotype-based trait fine mapping (HapPS). HapFM consists of three 

steps: genome-wide haplotype block partition, unique haplotype clustering, and cohort selection by 

Genetic Algorithm  

 

Proof-of-concept using Arabidopsis data 

We performed a proof-of-concept study using an Arabidopsis dataset with 2021 Arabidopsis individuals 

and 170,977 bi-allelic SNP markers. The HapPS identified 19,130 haplotype blocks in total, 8049 of 

which were treated as priority blocks because they overlapped with at least one gene. The average block 

size was 7640 nt, the size of which increased in the centromeric regions because of high LD in this region 

of the genome (Figure 3.2).  
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Figure 3.2. Block length distribution across the genome 

 

The average haplotype clusters found in the priority blocks was 5.14 (±2.44 standard deviation), and the 

average haplotype clusters found in the secondary blocks was 2.44 (± 0.93 standard deviation). The 

diversity of the ith block was defined as  

𝐷𝑖𝑣$ = 	𝑐	 ×
∑ *#$"

6
∑ &$"
' 7

#
×)
	  

Where c is the number of haplotype clusters in the ith block, 𝐻$ is the ith haplotype cluster in the block, h is 

the count of unique haplotypes in 𝐻$. Significant differences were found between the block diversity of 

priority blocks and secondary blocks (Figure 3.3, Kruskal-Wallis rank sum test, p-value < 2.2e-16).  
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Figure 3.3. Haplotype cluster comparison between priority and secondary blocks.  

 

A total of 6400 genes overlapped with the high-diversity priority blocks (top 5% quantile of priority block 

diversity). In total, 97 GO terms were found to be significantly enriched in the high-diversity priority 

blocks (Supplemental Table 3.1), 26 of which were enriched for at least 1.5 folds (Table 3.1). Bonferroni 

correction was used to adjust for the multiple comparisons. 
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GO biological process complete Fold 
Enrichment 

Adjusted    
p-value 

cellular polysaccharide metabolic process 1.88 8.72E-03 
cellular carbohydrate metabolic process 1.76 3.77E-03 

polysaccharide metabolic process 1.71 4.85E-03 
cellular amino acid metabolic process 1.76 2.64E-03 

carboxylic acid metabolic process 1.59 1.75E-05 
oxoacid metabolic process 1.54 2.64E-05 

organic acid metabolic process 1.56 5.82E-06 
small molecule metabolic process 1.57 1.43E-10 

cell cycle process 1.75 2.10E-03 
cell cycle 1.75 6.47E-04 

response to light stimulus 1.73 3.15E-07 
response to radiation 1.7 1.10E-06 

response to abiotic stimulus 1.5 9.44E-12 
carboxylic acid biosynthetic process 1.67 1.51E-02 

organic acid biosynthetic process 1.69 3.52E-03 
small molecule biosynthetic process 1.83 1.25E-07 
cell wall organization or biogenesis 1.64 4.02E-03 

carbohydrate derivative metabolic process 1.6 1.12E-04 
embryo development ending in seed dormancy 1.59 1.26E-02 

seed development 1.55 1.43E-03 
fruit development 1.54 1.35E-03 

post-embryonic development 1.54 1.89E-09 
embryo development 1.57 1.56E-02 

response to temperature stimulus 1.54 1.59E-02 
organonitrogen compound biosynthetic process 1.51 4.06E-07 

shoot system development 1.5 1.39E-02 
 

Table 3.1. GO terms with at least a 1.5-fold of enrichment in the genes in high-diversity priority blocks 

 

Benchmark HapPS against the global-distance algorithm 

 Benchmark analyses of HapPS and a global-distance-based selection algorithm were performed 

using the Arabidopsis dataset. There were five evaluating metrics: the average coverage of genome-wide 

blocks, the percentage of genome-wide blocks with coverage greater than 80%, the average coverage of 

priority blocks, the percentage of priority blocks with coverage greater than 80%, and the average 
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coverage of high-diversity priority blocks (top 5% quantile of priority block diversity). HapPS was 

repeated 30 times for each selection, and average values were used for the comparison analyses due to the 

heuristic nature of the Genetic Algorithm. The comparison results showed that HapPS consistently 

outperformed the conventional global-distance-based selection algorithm in all five metrics (Figure 3.4). 

The largest difference between the two algorithms was found in the coverage of the high-diversity priority 

blocks. In these high-diversity priority blocks, HapPS, on average, was able to result in 1.51 (standard 

deviation 0.26) times coverage of that of the global-distance-based algorithm. Moreover, HapPS was able 

to reach similar evaluation metrics by selecting fewer individuals. For example, HapPS needed to select 

ten individuals, whereas a global-distance-based algorithm needed 20 individuals to achieve the average 

70% coverage of the high-diversity priority blocks. 

Figure 3.4. Comparison of HapPS and a global-distance-based algorithm on five different metrics.  
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Conclusions and Discussions 

 One primary reason for building a pan-genome reference is to mitigate the bias associated with 

single reference genomes. Pan-genome consists of a core part of the genome containing sequences shared 

between most individuals of the species and a dispensable part of the genome containing regions found in 

only a subset of the population. The genes in the core genome are often highly conserved genes with 

essential functions. In contrast, the genes in the dispensable genome are often found to be enriched for 

environmental responsive genes (Bayer et al., 2020; Della Coletta et al., 2021; Hufford et al., 2021; Lei et 

al., 2021; Liu et al., 2020). Therefore, it would be beneficial to represent these more variable sequences to 

maximize the pan-genome reference's representativeness. The presence-absence and copy number 

variations can also introduce significant biases when analyzing non-reference genotypes. The gene 

enrichment results of the high-diversity gene-overlapping regions suggested that this bias may be 

significant for the genetic studies of environmental adaptation. For that reason, it is essential that the pan-

genome reference should maximize representation of the highly diverse regions of the genome. A pan-

genome reference should balance the complexity of the pan-genome and the representativeness of the 

species.  

 Cohort selection is the first step to building a pan-genome reference, as this determines the level 

of representativeness. HapPS represents a novel haplotype-based pan-genome cohort selection algorithm 

that maximizes the local haplotypes diversity in the cohort. Unlike the conventional global-distance-based 

selection algorithms, HapPS partitions the linear genome into non-overlapping blocks and prioritizes the 

cohort selection providing better coverage of regions of high interest. To the best of our knowledge, this 

is the first algorithmic and systemic approach designed for selecting a pan-genome cohort.  

 HapPS has other advantages over global-distance-based selection methods besides maximizing 

representativeness. First, the algorithm can be customized to set parameters optimized for different 

species and research interests. These parameters include the LD cutoff for block partitions, the list of 

priority blocks, and the weights for selection criteria. Another advantage of HapPS is prioritizing regions 

of interest, which is difficult to achieve by global-distance-based algorithms. In any pan-genome cohort, 
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the number of individuals is limited by resources. Hence, the pan-genome cohort is unlikely to represent 

the whole genome complexity found in a species. HapPS was designed to maximize the diversity 

coverage of priority regions with a trade-off on the coverage of secondary regions. In the proof-of-

concept study, HapPS was shown to provide greater coverage to high-diversity blocks than the global-

distance-based method. Accordingly, these blocks were shown to be significantly enriched for genes 

associated with environmental GO terms (Table 1). These results indicated that HapPS provided higher 

coverage of the genetic diversity in these regions than the conventional global-distance-based methods.  

 In summary, HapPS provides a customizable method of pan-genome cohort selection that 

maximizes local haplotype representativeness for the cohort. One future improvement will be 

incorporating complex structural variations into the cohort selection process. The inclusion of structural 

variations will likely increase the accuracy of haplotype clustering to represent genetic diversity within 

the species better.    
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Material and Methods 

Details of the HapPS workflow 

 The HapPS workflow includes genome-wide haplotype block partition, unique haplotype 

clustering, and Genetic Algorithm selection of the cohort panel. The details of each step are described 

below.  

 Initially, genome-wide haplotype block partition takes place in the HapPS workflow to ouput a 

non-overlapping set of SNPs that represent the haplotype block structure in the genome. This is done 

using a 2-step algorithm to accelerate the block partition process. The first step partitions the whole 

genome into the large independent blocks by setting minimum pairwise SNP LD cutoff at r2 > 0.1. The 

second step then partitions each independent block into correlated haplotype blocks using BigLD (Kim et 

al., 2018). HapPS changes the default parameters of BigLD to “CLQmode = maximal, CLQcut = 0.5” to 

avoid numerous single-SNP blocks. Users can also input their own haplotype block partitions.  

 In the next step, for each haplotype block identified in the previous step, a set of unique 

haplotypes are enumerated and clustered based on their genetic similarity. Manhattan distances between 

pairs of unique haplotypes are calculated. The affinity matrix is calculated next using the formular, 𝑊$8 =

𝑒
()"!

#

#*"*!		, where 𝑊$8 is the affinity between haplotype i and haplotype j, 𝑑$8 is the Manhattan distance 

between haplotype i and haplotype j, 𝜎$ is the standard deviation of Manhattan distance of haplotype i to 

all the other haplotypes. The K-nearest neighbor graph is then built based on the calculated affinity 

matrix. If not specified by the user, HapPS determines k using the formular max(5, 𝑐/50), where c is the 

total number of unique haplotypes. HapPS then applies Louvain’s method (Blondel et al., 2008) to group 

similar haplotypes by maximizing the modularity of the clusters. Each cluster is then treated as a 

representative haplotype, and a design matrix is constructed to indicate the number of occurrences of each 

representative haplotype in each individual.  

 The last step in the HapPS workflow is performing cohort selection using Genetic Algorithm 

(Mitchell, 1996). Block coverage is defined as the sum of the frequency of existing representative 
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haplotypes in the block of the selected cohort. The objective is to maximize the coverage of more 

essential blocks if maximizing every block is not feasible given the number of individuals selected. 

Therefore, HapPS requires the user to input a list of priority blocks, for example, blocks that overlap with 

genes, to give greater weight to the selection toward these regions. The rest of the blocks are then treated 

as secondary blocks.  HapPS uses six metrics to guide the selection, and the objective function for the 

Genetic Algorithm is to maximize the weighted sum of all the metrics. The metrics and weights are 

described in Table 2, and users can customize the weights. Simple Genetic Algorithm is used for cohort 

selection, and the initial population size, crossover rate, and mutation rate are set to 100, 0.2, 0.2 by 

default.  

Metric Weights 

average coverage of top 5% most diverse priority blocks 20 

percentage of all priority blocks that has over 80% coverage 10 

average coverage of all the priority blocks 5 

the average coverage of top 5% most diverse secondary blocks 10 

percentage of all the secondary blocks that has over 80% coverage 5 

average coverage of all secondary blocks 3 

 

Table 3.2. The selection metric and weights for the Genetic Algorithm 

 

Generating an ad hoc Arabidopsis population for pan-genome selection 

 Two Arabidopsis SNP datasets, the 1001 Arabidopsis and Regmap genotype datasets, were 

combined to generate an ad hoc population for pan-genome cohort selection. In the 1001 Arabidopsis 

genotype dataset, non-biallelic SNPs and SNPs with missing data percentage greater than 20% were 

omitted yielding a total of 8,231,757 remaining SNPs. In the Regmap genotype dataset, SNPs that were 

not in LD (r2 < 0.1) with nearby 20 SNPs were filtered out leaving 202,339 remaining SNPs, 170,977 of 
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which were also included in the filtered 1001 Arabidopsis genotype dataset. Next, the two filtered 

datasets were combined to generate a new dataset of 2021 individuals with 170,977 SNPs. The missing 

data in the combined dataset was imputed by Beagle with default parameters (Browning and Browning, 

2016). 

 

Benchmark different pan-genome cohort selection methods 

 HapPS was benchmarked against a global-distance-based cohort selection method using the 

combined Arabidopsis SNP dataset. In the global-distance-based cohort selection method, pairwise IBS 

distances were first calculated using PLINK 1.9 (Purcell et al., 2007). The individuals were then 

hierarchically clustered according to their IBS distance, and the tree was pruned to a certain height to 

result in m groups corresponding to the number of individuals in the pan-genome cohort. The algorithm 

then randomly selected one individual from each group. HapPS used the default settings. The priority 

blocks were defined as blocks that overlapped with Arabidopsis genes (version TAIR10.49). BEDtools 

(Purcell et al., 2007) was used to identify the gene-overlapping blocks. Each algorithm selected the same 

number of individuals [4, 6, 8, 10, 12, 16, 20] and repeated 30 times. 

           The performance of the two selection algorithms was evaluated using five metrics: the average 

coverage of genome-wide blocks, percentage of the genome-wide blocks with over 80% coverage, the 

average coverage of priority blocks, percentage of the priority blocks with over 80% coverage, and the 

average coverage of top 5% diverse priority blocks.  

 

Annotations of genes in the top 5% diverse priority blocks 

 Gene ontology enrichment analysis was performed on the genes in the top 5% diverse priority 

blocks using PANTHER 16.0. Bonferroni correction was applied to calculate adjusted p-values.  
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Conclusion and Future Direction 

           Powerful and robust computational algorithms are keys to uncovering hidden diversity in wild and 

unrelated individuals for crop improvement. The bioinformatic pipeline can be categorized into reference 

genome construction, variant discovery, and trait mapping steps. Many algorithms have been developed 

and optimized for each task using human genomic studies. However, their efficacies are largely 

depreciated due to fundamental differences between human and plant genomic datasets. In this 

dissertation, I have presented three chapters of studies to optimize and develop novel computational 

algorithms for plant diversity discovery. The focuses of these chapters are variant discovery pipeline, 

plant trait mapping, and pan-genome cohort selection algorithms. 

           In Chapter 1, I performed a detailed evaluation of each step in the variant calling pipeline. I found 

that BWA-MEM was better at detecting more true-positive alignments, especially in distantly related 

samples, while Bowtie2 was better at minimizing the incorrect alignments. Incorporating multiple 

reference genomes gave a complete picture of variations, especially when the samples showed 

considerable presence-absence variations. For variant filtering, the optimal approach found in our test was 

to incorporate a combination of machine learning and hard filtering, in which a set of “known” SNPs was 

used as the training set for machine learning. This requires a panel of known, high-quality SNPs, 

however, which may be unavailable for many plant species. Finally, the importance of high-quality 

reference panels was emphasized during the imputation step especially when genotype imputation was 

challenging due to small LD blocks or not enough samples. Above all, the computational pipeline to 

discover variations from plant sequencing data will depend upon the diversity of the datasets, the depth of 

sequence coverage, and the availability of external resources such as reference panels and gold-standard 

SNPs. 

 In Chapter 2, I developed a novel haplotype-based trait fine-mapping algorithm, HapFM, to 

address specific trait mapping issues in plant studies. HapFM is a comprehensive and powerful mapping 

algorithm that includes genome-wide block partition, haplotype clustering, genome-wide statistical fine-

mapping, and incorporating biological annotations. We demonstrated that HapFM resulted in shorter 



 86 

mapping intervals and higher mapping power than conventional GWAS methods in simulation and actual 

plant datasets. These results suggested that HapFM is a reliable alternative GWAS algorithm, and it 

supplements the current GWAS methods to facilitate the understanding of the genetic architecture of 

traits.              

 In Chapter 3, I developed a haplotype-based pan-genome cohort selection algorithm, HapPS to 

maximize the haplotype representativeness in the pan-genome reference. Similar to HapFM, the workflow 

of HapPS includes genome-wide block partition, representative haplotype cluster identification, and 

cohort selection by the Genetic Algorithm. In contrast to the global-distance-based selection algorithm, 

HapPS uses local haplotype information to guide the selection. It prioritizes regions of interest to the 

purpose of the study and customizes parameters to fit the scope of the study. One of the goals for pan-

genome is to capture environmental genes that are unique to a subset of the species. In the proof-of-

concept study, the high-diversity priority regions are enriched in genes responding to environmental 

changes. HapPS resulted in significantly higher representativeness of these regions than the global-

distance-based selection.  

           The future of plant genomics will transit into a pan-genomic era. A pan-genome reference will 

primarily benefit the diversity discovery and trait mapping in principle. One of the biggest obstacles is the 

availability of bioinformatic programs for pan-genomics. In my dissertation, I have shown the advantages 

of using haplotypes for mapping and pan-genome cohort selection. I want to explore the possibility of 

using haplotypes as units in pan-genomic studies. The pan-genomic pipeline starts from the haplotype-

based pan-genome cohort selection. The block partition and representative haplotype can be used to 

construct the pan-genome graph. Next is to align reads to the closest haplotype and call haplotypes from 

the pan-genome. The haplotype information can be directly inputted into HapFM for trait mapping. I will 

be interested in realizing this haplotype-based pan-genome diversity discovery pipeline.   
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Supplemental Material 

 

 
 

Supplemental Figure 1.1. Alignment time comparison of different aligners 

(A) Alignment percentage of five different aligner settings: SOAP2, SOAP2-tuned, Bowtie2, 

Bowtie2-tuned and BWA-MEM calculated for domesticated tomatoes and wild relatives. The 

width of violin plot is proportional to the density of the data. Boxplots inside violin plot indicate 

quantiles and outliers. 

(B) The alignment length distribution of different aligners. Only alignment shorter than 96 nt was 

plotted for better visualization.  
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Supplemental Figure 1.2. Evaluation of variant calling programs using simulated plant genomic datasets 

(C) The Venn diagram of SNPs identified from domesticated tomato dataset using different aligner 

and variant caller combinations. 

(D) The Venn diagram of SNPs identified from wild tomato dataset using different aligner and variant 

caller combinations. 

(E) The comparison of the performance of GATK-HC and SAMtools-mpileup on raw SNPs at 

different coverages, population diversity and population size.  

(F)  The comparison of the performance of GATK-HC and SAMtools-mpileup on raw INDELs at 

different coverages, population diversity and population size. 
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Supplemental Figure 1.3. Evaluation of different variant calling programs on single genomic dataset 

(A) SNP precision results of GATK-HC and SAMtools-mpileup on single simulated dataset with 

varied coverages, mutation rates and crop species 

(B) SNP recall results of GATK-HC and SAMtools-mpileup on single simulated dataset with varied 

coverages, mutation rates and crop species 

(C) INDEL precision results of GATK-HC and SAMtools- on single simulated dataset with varied 

coverages, mutation rate sand crop species 

(D) INDEL recall results of GATK-HC and SAMtools-mpileup on single simulated dataset with 

varied coverages, mutation rates and crop species 
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Supplemental Figure 1.4. Cross-reference comparison on SNP identification  

(A) Number of SNPs identified using S. lycopersicum or S. pennellii genome assembly as the 

reference 

(B) SNP identification of four tomato samples was performed in chromosome 1 in S. lycopersicum 

reference genome. The corresponding physical positions of SNPs in the S. pennellii reference was 

plotted. The grey dots represented the SNPs that were able to be located at the corresponding 

positions in S. pennellii genome, red dots represented the SNPs that were unable to be located to 

corresponding positions in S. pennellii genome. The percentage of corresponding SNPs are 

written next to the species name.  
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Supplemental Figure 1.5. Machine-learning based variant filtering 

(A) Venn diagram of SNPs in the 10M region of Chromosome 1 using HARD, ML and COMBINED 

filtering methods  

(B) Population structure of 82 tomato genomes using high-confidence SNPs  

(C) IBS distance of 82 tomato genomes using high-confidence SNPs 
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Supplemental Figure 1.6. Comparison between VQSR and hard-filtering 

(A) The comparison of the performance of VQSR and hard-filtering on SNPs at different coverages, 

population diversity and population size.  

(B)  The comparison of the performance of VQSR and hard-filtering on INDELs at different 

coverages, population diversity and population size. 
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Supplemental Figure 1.7. Comparison between direct and two-step imputation 

(A) Imputation accuracy using direct imputation and 2-step imputation relative to missing SNPs in 

200 random tomato samples 

(B) Imputation accuracy using direct imputation and 2-step imputation relative to missing SNPs in 50 

S. pimpinellifolium tomato samples 

(C) Comparison of LD decay of SNPs from different populations.  
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Supplemental Table 1.1. Summary of 82 tomato accession 

id species source sample_name BioSample_sSRA_Sample_sSequencing depth
ERR418039 Solanum lycopersicum domesticated S.lycLA2706_1 SAMEA2340764ERS398435 33.25
ERR418040 Solanum lycopersicum domesticated S.lycLA2838A_1 SAMEA2340765ERS398436 29.31
ERR418041 Solanum lycopersicum domesticated S.lycPI406760_1 SAMEA2340766ERS398437 32.21
ERR418042 Solanum lycopersicum domesticated S.lycLA1090_1 SAMEA2340767ERS398438 33.74
ERR418043 Solanum lycopersicum domesticated S.lycEA00325_1 SAMEA2340768ERS398439 32.42
ERR418044 Solanum lycopersicum domesticated S.lycEA00488_1 SAMEA2340769ERS398440 31.43
ERR418045 Solanum lycopersicum domesticated S.lycEA00375_1 SAMEA2340770ERS398441 33.25
ERR418046 Solanum lycopersicum domesticated S.lycEA00371_1 SAMEA2340771ERS398442 33.80
ERR418047 Solanum lycopersicum domesticated S.lycLA2463_1 SAMEA2340772ERS398443 36.22
ERR418048 Solanum lycopersicum domesticated S.lycLYC1969_1 SAMEA2340773ERS398444 34.49
ERR418049 Solanum lycopersicum domesticated S.lycLYC1738_1 SAMEA2340774ERS398445 35.98
ERR418050 Solanum lycopersicum domesticated S.lycLYC3476_1 SAMEA2340775ERS398446 31.14
ERR418051 Solanum lycopersicum domesticated S.lycTR00003_1 SAMEA2340776ERS398447 35.24
ERR418052 Solanum lycopersicum domesticated S.lycLYC1343_1 SAMEA2340777ERS398448 37.76
ERR418053 Solanum lycopersicum domesticated S.lycLYC3306_1 SAMEA2340778ERS398449 38.45
ERR418054 Solanum lycopersicum domesticated S.lycEA01155_1 SAMEA2340779ERS398450 33.93
ERR418055 Solanum lycopersicum domesticated S.lycEA01049_1 SAMEA2340780ERS398451 37.27
ERR418056 Solanum lycopersicum domesticated S.lycLYC3153_1 SAMEA2340781ERS398452 36.10
ERR418058 Solanum lycopersicum domesticated S.lycPI129097_1 SAMEA2340783ERS398454 34.14
ERR418059 Solanum lycopersicum domesticated S.lycPI272654_1 SAMEA2340784ERS398455 36.99
ERR418060 Solanum lycopersicum domesticated S.lycEA00990_1 SAMEA2340785ERS398456 32.65
ERR418061 Solanum corneliomuelleri wild S.corLA0118_1 SAMEA2340786ERS398457 34.46
ERR418062 Solanum lycopersicum domesticated S.lycEA00157_1 SAMEA2340787ERS398458 36.19
ERR418063 Solanum lycopersicum domesticated S.lycEA02054_1 SAMEA2340788ERS398459 37.09
ERR418064 Solanum lycopersicum domesticated S.lycPI303721_1 SAMEA2340789ERS398460 34.48
ERR418065 Solanum lycopersicum domesticated S.lycLA4451_1 SAMEA2340790ERS398461 30.87
ERR418066 Solanum lycopersicum domesticated S.lycV710029_1 SAMEA2340791ERS398462 35.92
ERR418067 Solanum lycopersicum domesticated S.lycPC11029_1 SAMEA2340792ERS398463 36.25
ERR418068 Solanum lycopersicum domesticated S.lycPI93302_1 SAMEA2340793ERS398464 37.73
ERR418069 Solanum lycopersicum domesticated S.lycSG16_1 SAMEA2340794ERS398465 38.33
ERR418070 Solanum lycopersicum domesticated S.lycEA01088_1 SAMEA2340795ERS398466 37.19
ERR418071 Solanum lycopersicum domesticated S.lycPI203232_1 SAMEA2340796ERS398467 38.78
ERR418072 Solanum lycopersicum domesticated S.lycPI311117_1 SAMEA2340797ERS398468 37.67
ERR418073 Solanum lycopersicum domesticated S.lycLA1324_1 SAMEA2340798ERS398469 32.97
ERR418074 Solanum lycopersicum domesticated S.lycPI158760_1 SAMEA2340799ERS398470 38.03
ERR418075 Solanum lycopersicum domesticated S.lycLA0113_1 SAMEA2340800ERS398471 33.94
ERR418076 Solanum lycopersicum domesticated S.lycLYC1410_1 SAMEA2340801ERS398472 34.87
ERR418077 Solanum lycopersicum domesticated S.lycPI169588_1 SAMEA2340802ERS398473 37.16
ERR418078 Solanum lycopersicum domesticated S.lycLYC2962_1 SAMEA2340803ERS398474 37.10
ERR418079 Solanum lycopersicum domesticated S.lycLYC2910_1 SAMEA2340804ERS398475 37.61
ERR418080 Solanum pimpinellifolium wild S.pimLYC2798_1 SAMEA2340805ERS398476 35.30
ERR418081 Solanum pimpinellifolium wild S.pimLYC2740_1 SAMEA2340806ERS398477 37.16
ERR418082 Solanum pimpinellifolium wild S.pimLA1584_1 SAMEA2340807ERS398478 32.23
ERR418083 Solanum pimpinellifolium wild S.pimLA1578_1 SAMEA2340808ERS398479 36.69
ERR418084 Solanum peruvianum wild S.perLA1278_1 SAMEA2340809ERS398480 36.15
ERR418085 Solanum chmielewskii wild S.chmLA2663_1 SAMEA2340810ERS398481 35.54
ERR418086 Solanum chmielewskii wild S.chmLA2695_1 SAMEA2340811ERS398482 36.50
ERR418087 Solanum cheesmaniae wild S.cheLA0483_1 SAMEA2340812ERS398483 34.95
ERR418088 Solanum lycopersicum domesticated S.lycCGN15820_1 SAMEA2340813ERS398484 36.59
ERR418089 Solanum cheesmaniae wild S.cheLA1401_1 SAMEA2340814ERS398485 37.75
ERR418090 Solanum neorickii wild S.neoLA2133_1 SAMEA2340815ERS398486 37.71
ERR418091 Solanum neorickii wild S.neoLA0735_1 SAMEA2340816ERS398487 37.11
ERR418092 Solanum arcanum wild S.arcLA2157_1 SAMEA2340817ERS398488 33.90
ERR418093 Solanum arcanum wild S.arcLA2172_1 SAMEA2340818ERS398489 36.29
ERR418094 Solanum peruvianum wild S.perLA1954_1 SAMEA2340819ERS398490 37.51
ERR418095 Solanum huaylasense wild S.huaLA1983_1 SAMEA2340820ERS398491 37.67
ERR418096 Solanum huaylasense wild S.huaLA1365_1 SAMEA2340821ERS398492 33.44
ERR418097 Solanum chilense wild S.chiCGN15532_1 SAMEA2340822ERS398493 33.85
ERR418098 Solanum chilense wild S.chiCGN15530_1 SAMEA2340823ERS398494 34.74
ERR418099 Solanum habrochaites wild S.habCGN157591_1 SAMEA2340824ERS398495 35.68
ERR418100 Solanum habrochaites wild S.habPI134418_1 SAMEA2340825ERS398496 35.97
ERR418101 Solanum habrochaites wild S.habCGN157592_1 SAMEA2340826ERS398497 35.46
ERR418102 Solanum habrochaites wild S.habLA1718_1 SAMEA2340827ERS398498 35.24
ERR418103 Solanum habrochaites wild S.habLA1777_1 SAMEA2340828ERS398499 29.39
ERR418104 Solanum habrochaites wild S.habLA0407_1 SAMEA2340829ERS398500 37.76
ERR418105 Solanum habrochaites wild S.habLYC4_1 SAMEA2340830ERS398501 33.68
ERR418106 Solanum pennellii wild S.penLA1272_1 SAMEA2340831ERS398502 35.66
ERR418107 Solanum pennellii wild S.penLA0716_1 SAMEA2340832ERS398503 26.43
ERR418108 Solanum huaylasense wild S.huaLA1364_1 SAMEA2340833ERS398504 36.00
ERR418110 Solanum lycopersicum domesticated S.lycEA00940_1 SAMEA2340835ERS398506 35.76
ERR418111 Solanum lycopersicum domesticated S.lycTR00019_1 SAMEA2340836ERS398507 32.74
ERR418112 Solanum lycopersicum domesticated S.lycEA01019_1 SAMEA2340837ERS398508 33.30
ERR418113 Solanum lycopersicum domesticated S.lycTR00020_1 SAMEA2340838ERS398509 37.99
ERR418114 Solanum lycopersicum domesticated S.lycEA01037_1 SAMEA2340839ERS398510 34.76
ERR418115 Solanum lycopersicum domesticated S.lycTR00021_1 SAMEA2340840ERS398511 35.69
ERR418116 Solanum lycopersicum domesticated S.lycTR00022_1 SAMEA2340841ERS398512 32.15
ERR418117 Solanum lycopersicum domesticated S.lycTR00023_1 SAMEA2340842ERS398513 35.82
ERR418118 Solanum lycopersicum domesticated S.lycEA01640_1 SAMEA2340843ERS398514 34.62
ERR418119 Solanum lycopersicum domesticated S.lycLA4133_1 SAMEA2340844ERS398515 31.60
ERR418120 Solanum lycopersicum domesticated S.lycLA1421_1 SAMEA2340845ERS398516 35.80
ERR418121 Solanum galapagense wild S.galLA1044_1 SAMEA2340846ERS398517 32.75
ERR418122 Solanum lycopersicum domesticated S.lycLA1479_1 SAMEA2340847ERS398518 35.83
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Supplemental Table 1.2. Summary of alignment time 

 

 

  

Avg. Percentage Std. PercentageAvg. Time Std. Time Avg. Percentage Std. PercentageAvg. Time Std. Time
SOAP2 91.24634615 3.776018771 2.488141154 0.444223415 40.577 24.25057044 4.35389 0.539576886
SOAP2-tuned 93.62365385 2.732785714 3.8355775 3.162446692 50.52066667 21.69383687 11.32610833 3.162446692
Bowtie2 97.9325 1.067468831 16.06570769 1.789843112 79.16666667 10.08325732 17.49555 1.213827365
Bowtie2-tuned 98.26 0.928536694 23.55064423 1.840175376 83.32566667 7.972755195 27.93500333 2.60995463
BWA-MEM 99.54384615 0.342597654 10.27083308 1.561096856 95.946 1.907017169 23.75333333 6.542826671

Domesticated tomatoes Wild relatives
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Supplemental Table 1.3. Summary of synteny analysis  

 

  

Total Syntentic - Under Size Syntenic - Over Size 10kb- Under Size 10kb - Over Size >10kb - Under Size > 10kb - Over SizeDiffChr - Under SizeDiffChr - Over Size
ERR418070_bowtie2 27074 12660 10818 0 0 55 6 1757 1778
ERR418070_bwa 104996 39944 29646 1 0 4331 907 17495 12672
ERR418095_bowtie2 19848 9579 8152 0 0 26 2 1082 1007
ERR418095_bwa 77146 30796 21998 0 0 2769 888 11985 8710
ERR418105_bowtie2 14435 7173 5849 0 0 48 0 724 641
ERR418105_bwa 73111 28898 19284 2 0 3191 1331 12274 8131
ERR418106_bowtie2 17251 8350 7034 0 0 36 1 994 836
ERR418106_bwa 73781 28144 21015 0 0 2920 1149 11795 8758
ERR418107_bowtie2 17686 8462 6920 0 0 80 1 1162 1061
ERR418107_bwa 85534 30804 20964 1 0 5174 2391 15346 10854
ERR418118_bowtie2 26988 12532 10835 0 0 60 5 1833 1723
ERR418118_bwa 106180 40855 29759 0 0 4339 766 17735 12726
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Supplemental Table 1.4. Functional annotation summary of variants identified by different variant calling 
programs 
 
 

  

HIGH LOW MODERATE MODIFIER MISSENSE NONSENSE SILENT
SAMtools-mpileup 0.29% 1.28% 3.10% 95.33% 73.31% 4.69% 22.00%
GATK-HC 0.74% 1.08% 2.84% 95.34% 73.31% 4.69% 22.00%

Effects by impact Effects by functional class
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Supplemental Table 1.5. Summary of different variant filtering results 

  

Hard-filtering Machine learning using Raw SopCap Machine learning using filtered SolCap
Total Filtered (602 tomato) 94,237,244 127,756,430 101,407,419
SNPs 10M in Chromosome 1 (82 high-
coverage tomato) 466,784 574,630 483,297
Non-shared SNPs in 10M in Chromosome 1 
(82 high-coverage tomato) 55,668 163,514 72,181
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Supplemental Figure 2.1. Mapping power comparison of different haplotype clustering algorithms.  

(a) Mapping power (FDR < 0.05) of affinity propagation, KNN-spectral clustering, local-spectral 

clustering and X-means in the low polygenicity simulation 

(b) Mapping power (FDR < 0.05) of affinity propagation, KNN-spectral clustering, local-spectral 

clustering and X-means in the high polygenicity simulation 
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Supplemental Figure 2.2. True positive rate (TPR) comparison of different haplotype clustering 

algorithms.  

(a) TPR (FDR < 0.05) of affinity propagation, KNN-spectral clustering, local-spectral clustering 

and X-means in the low polygenicity simulation 

(b) TPR (FDR < 0.05) of affinity propagation, KNN-spectral clustering, local-spectral clustering 

and X-means in the high polygenicity simulation 
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Supplemental Figure 2.3. Comparison of Block partition algorithms on simulated datasets. Each block 

partition algorithm was tested on low haplotype diversity and high haplotype diversity simulations. The 

redness indicates the strength of LD between SNP pairs, and the blue line indicates the block partition 

generated by the method.  
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Supplemental Figure 2.4. Mapping power comparison of different block partition algorithms in the low 

polygenicity simulations. The x-axis indicates the per-locus heritability. 

 (b). Mapping power comparison (FDR < 0.05) of block partition algorithms in the low haplotype 

diversity and low polygenicity simulations.  

 (c). Mapping power comparison (FDR < 0.05) of block partition algorithms in the high haplotype 

diversity and low polygenicity simulations.  
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Supplemental Figure 2.5. Mapping power comparison of different GWAS algorithms in the low 

polygenicity simulations. The x-axis indicates the per-locus heritability. 

 (a). Mapping power comparison (FDR < 0.05) of different GWAS algorithms in the low 

haplotype diversity and low polygenicity simulations.  

 (b). Mapping power comparison (FDR < 0.05) of different GWAS algorithms  in the high 

haplotype diversity and low polygenicity simulations.  
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Supplemental Figure 2.6. True positive rate different GWAS algorithms in the low polygenicity 

simulations. The x-axis indicates the per-locus heritability. 

 (a). True positive rate (FDR < 0.05) of different GWAS algorithms in the low haplotype diversity 

and low polygenicity simulations.  

 (b). True positive rate (FDR < 0.05) of different GWAS algorithms in the high haplotype 

diversity and low polygenicity simulations.  
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Supplemental Figure 2.7. True positive rate different GWAS algorithms in the high polygenicity 

simulations. The x-axis indicates the per-locus heritability. 

 (a). True positive rate (FDR < 0.05) of different GWAS algorithms in the low haplotype diversity 

and low polygenicity simulations.  

 (b). True positive rate (FDR < 0.05) of different GWAS algorithms in the high haplotype 

diversity and low polygenicity simulations.  
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Supplemental Table 2.1. Fligner-Killeen test of the variance of mapping interval length between 

GEMMA and other GWAS methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low Diversity High Diveristy
Low Polygenicity 4.13E-09 3.31E-05
High Polygenicity 5.40E-03 4.82E-04

Fligner-Killeen test of homogeneity of variances
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Supplemental Table 2.2. Comparison of GWAS methods using Arabidopsis FT10 dataset 

  

HapFM FH-GWAS GEMMA GMMAT BSLMM

FT Y Y Y N Y
FLC N Y Y N N

DOG1 Y Y Y Y N
VIN3 Y Y Y Y N

Chr3@7598564-7598957 Y N N N N
Chr4@405136-406621 Y Y N N N

Chr5@14063228-14197451 Y N N N N
Chr5@16141604-16146257 Y N N N N

Previously identified loci (genes)

Novel loci
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