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Abstract

On the Evolutionary Ecology of Microbial Metabolic Niche Construction

Jean Celestin Charles Vila

2022

All organisms construct the shared environment in which they live. This is especially
notable in micro-organisms as they secrete and uptake a diverse range of metabolites de-
pending on their genotype and environment. Over the past few decades, systems biol-
ogists have developed computational tools to predict the nutrient uptake and secretions
of microbes across environments, using metabolic networks inferred from whole-genome
sequencing. These tools provide an opportunity to quantify eco-evolutionary dynamics
at the genomic level, by combining genome-scale metabolic models mapping genotype
to phenotype, with consumer-resource models predicting population dynamics from phe-
notype. By leveraging these new computational approaches and combining them with
experiments using microbial communities in synthetic environments, this dissertation will
quantify the impact of metabolite production and consumption on the evolutionary and
ecological dynamics of multi-species microbial communities.

In Chapter 1, I present a published paper in which I address how niche construction
quantitatively determines evolutionary trajectories by deforming the fitness landscape of
evolving populations. The chapter uses a combination of genome-scale metabolic mod-
elling and experiments to systematically quantify the deformability of the E.coli metabolic
fitness landscape. It shows that the effects of niche construction are quantitatively modest
at short genomic scales but accumulate over longer evolutionary trajectories. These results
suggest that fitness landscapes can predict evolution over short mutational distances, but
that niche construction hampers predictability in the long term.

In Chapter 2 I present a published paper in which I ask whether communities as-
sembling in the same metabolic environment show similar ecological interactions. This
chapters leverages previously published 16s rRNA sequencing data from an experiment in
which complex-microbial communities were allowed to self assemble in laboratory envi-
ronments containing a single limiting resource. I benchmark a newly developed statistical
tool, Dissimilarity-Overlap Analysis, and use it to determine whether interaction parame-
ters are similar across communities assembled in the same metabolic environment. I find a
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negative relationship between dissimilarity and overlap which is what we expect if interac-
tions are strongly convergent. However, even in replicate, identical habitats, two different
communities may contain the same set of taxa at different abundances in equilibrium. The
formation of alternative states in community assembly is strongly associated with the pres-
ence of specific taxa suggesting that some taxa may differ in the niches they construct and
occupy even across replicate abiotic conditions.

In Chapter 3 I present a published paper which asks how different components of the
environment interact to collectively determine the taxonomic composition of microbial
communities. This paper tests whether the composition of communities assembled in a
pair of carbon sources could be predicted from those assembled in each single carbon
source alone. This paper develops a null-additive model and show that it can explain a
high variation of the relative abundance of families in communities assembled in pairs of
carbon sources. Deviation from this additive model reveal a characteristic pattern with sug-
ars ’dominating’ organic acids. Using consumer-resource modelling, I show that nutrient
dominance can be explained by experimentally validated asymmetries in the family level
specialisation on different resource types. Quantifying the asymmetric effect of metabo-
lites on community composition is a key step towards engineering microbial communities
by modulating nutrient composition.

In Chapter 4, I present a draft manuscript in which I ask whether one can predict the
composition of microbial communities assembling in different metabolic environments.
I first use a combination of enrichment experiments, metabolomics and phenotypic as-
says to show that the predictability of community assembly depends on the phylogenetic
distribution of quantitative metabolic traits selected for by different environments. This
includes traits determining both the ability to exploit the supplied resource and the ability
to grow on the constructed niches. I find that similarities in community composition across
environments reflect correlations in conserved metabolic traits, which are predictable us-
ing metabolic models.Finally I show how one can use metabolic models to quantitatively
predict the effect of novel environmental perturbations on microbial communities.

The work presented herein illustrates how genome-scale models can be combined
with analytical models of population dynamics to develop quantitative and predictive eco-
evolutionary theory. Whilst focusing on microbial communities, the concepts developed
are applicable to other cellular populations as well as to macro-organism engaging in
niche-constructing activities.By quantifying the effects of niche construction in an explicit
manner, the work I have presented moves beyond semantic arguments and descriptive
studies towards a predictive and mechanistic understanding of eco-evolutionary dynamics.
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1.1 Abstract
A fitness landscape is a map between the genotype and its reproductive success in a given
environment. The topography of fitness landscapes largely governs adaptive dynamics,
constraining evolutionary trajectories and the predictability of evolution. Theory suggests
that this topography can be deformed by mutations that produce substantial changes to the
environment. Despite its importance, the deformability of fitness landscapes has not been
systematically studied beyond abstract models, and little is known about its reach and
consequences in empirical systems. Here we have systematically characterized the de-
formability of the genome-wide metabolic fitness landscape of the bacterium Escherichia
coli. Deformability is quantified by the noncommutativity of epistatic interactions, which
we experimentally demonstrate in mutant strains on the path to an evolutionary innova-
tion. Our analysis shows that the deformation of fitness landscapes by metabolic mutations
rarely affects evolutionary trajectories in the short range. However, mutations with large
environmental effects produce long-range landscape deformations in distant regions of the
genotype space that affect the fitness of later descendants. Our results therefore suggest
that, even in situations in which mutations have strong environmental effects, fitness land-
scapes may retain their power to forecast evolution over small mutational distances despite
the potential attenuation of that power over longer evolutionary trajectories. Our methods
and results provide an avenue for integrating adaptive and eco-evolutionary dynamics with
complex genetics and genomics.

1.2 Introduction
When a new genotype appears in a population its reproductive success is largely gov-
erned by the environment. Although the environment is often thought of as an external
driver of natural selection, it can also be shaped by the evolving population itself, for
instance through its metabolic activity or through interactions with the abiotic habitat
or other species [Lewontin, 1983, John Odling-Smee et al., 2013, Laland et al., 2014].
These population-driven environmental changes can in turn modify the fitness effects of
future mutations, closing in an eco-evolutionary feedback loop [Post and Palkovacs, 2009]
. Eco-evolutionary feedbacks are well documented in natural [Hendry, 2016] and ex-
perimental [Jones et al., 2009] populations, and at all scales of biological organization:
from the cellular scale [e.g., in the evolution of cancer [Basanta and Anderson, 2017]
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and microbial populations [Sanchez and Gore, 2013]] to the organismal scale in animal
[Matthews et al., 2016] and plant evolution [terHorst and Zee, 2016]. Given the growing
evidence that evolutionary and ecological processes, including niche construction, occur
on similar timescales, there is a critical need to understand the genomic bases of these
eco-evolutionary feedbacks [Rudman et al., 2018].

The “map” between each genotype and its adaptive value in a given environment is
known as the “fitness landscape” [Wright, 1932]. Because populations actively modify
their environment, new mutations can, in principle, have environmental as well as fit-
ness effects. Thus, evolving populations may dynamically reshape (“deform”) the fitness
landscapes on which they are adapting [Kauffman and Johnsen, 1991, Watson and Ebner,
2014]. Although they are often used only metaphorically to depict or visualize adaptation,
fitness landscapes are a major determinant of evolution. In particular, the topography of
a fitness landscape (i.e., the location of fitness peaks and valleys and their connectivity)
plays a pivotal role, as it governs the accessibility of evolutionary trajectories [Weinre-
ich et al., 2006, Poelwijk et al., 2007, Hartl, 2014], the role of population structure on
evolution [Nahum et al., 2015], the degree of evolutionary convergence among popula-
tions [Van Cleve and Weissman, 2015], the expected role of drift, selection, and sex in
the evolutionary process [Rozen et al., 2008, Moradigaravand and Engelstädter, 2012], the
discovery of evolutionary innovations [Barve and Wagner, 2013], and the predictability of
evolution [de Visser and Krug, 2014], a subject of growing importance for the manage-
ment of pathogens and cancer treatment [Barber et al., 2015, Zhao et al., 2016, Luksza
and Lässig, 2014, Nourmohammad et al., 2013, Lässig et al., 2017]. Given the funda-
mental role that fitness landscapes play in adaptation, if populations do indeed change the
topography of their fitness landscapes as they evolve, it is imperative to understand pre-
cisely how. Do mutations that alter the environment generally also alter the fitness of all
subsequent mutations or only a subset of them? If the latter, where are those deformations
localized in the genotype space, and how strong are they? All these questions remain open,
as the deformability (or “rubberness”) of fitness landscapes has never been systematically
studied in empirical systems at the genomic scale.

Substantial experimental evidence suggests that microbial fitness landscapes are likely
to exhibit deformability [Paquin and Adams, 1983, Good et al., 2017, Le Gac and Doebeli,
2010, Rosenzweig et al., 1994, Friesen et al., 2004], making microbes an ideal system for
addressing this issue. Microbial metabolism leads to large-scale environmental construc-
tion through the uptake and release of metabolites [Good et al., 2017, Rosenzweig et al.,
1994]. Which nutrients are taken up, which byproducts are released, and in what amounts,
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are all governed by the structure of the metabolic network and therefore by the geno-
type [Quandt et al., 2015, Paczia et al., 2012] As a result, new mutations that change the
metabolic network can also change the patterns of metabolic uptake and secretion, altering
the environment and potentially also altering the fitness of future mutations [Rosenzweig
et al., 1994].

Microbial physiology and growth can be explicitly simulated using genome-scale metabolic
models [Orth et al., 2011, Lewis et al., 2010, O’Brien et al., 2015] Due to their excel-
lent predictive capabilities [Orth et al., 2011] and utility for easily and rapidly screening
millions of genotypes, these models have been successfully used to systematically ex-
plore the genotype space [Matias Rodrigues and Wagner, 2009]. Recent advances in dy-
namic metabolic modeling make it possible to explicitly simulate the growth of microbial
communities and their environmental feedbacks with evolution [Mahadevan et al., 2002,
Harcombe et al., 2014], making genome-wide dynamic metabolic modeling of microbial
genotypes a promising method to examine the deformability of fitness landscapes (Figure.
1.1A).

Here, we first use metabolic modeling to show that the environmental effect of new
mutations can make genetic interactions (or “epistasis”) noncommutative or dependent on
the order in which mutations occur. We then use evolved strains from one of the pop-
ulations in Lenski and coworkers’ [Lenski et al., 1991, Blount et al., 2008] Escherichia
coli Long-Term Evolution Experiment (LTEE) to experimentally demonstrate the pres-
ence of noncommutative epistasis and quantitatively validate the predictive capabilities
of our model. We then scale up our study to include tens of millions of genotypes from
the metabolic genotype space. By systematically screening the in silico metabolic fitness
landscape of E. coli, we are able to offer a precise view of how deformability by eco-
evolutionary feedbacks plays out over short and long mutational distances.

1.3 Results

1.3.1 Non-commutative Epistasis Characterizes Fitness Landscape De-
formability

To investigate the effect of metabolic secretions on the fitness landscape, we used dy-
namic flux balance analysis (dFBA) to determine the distribution of fitness and environ-
mental effects of new mutations in the local mutational neighborhood of a recently curated,
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genome-scale metabolic model of E. coli [Orth et al., 2011]. Our screen included all pos-
sible single-addition and deletion mutants (Materials and Methods), whose growth was
simulated on anaerobic glucose medium until saturation was reached. Of all nonessential
mutations, 147 (3.3%) affected growth rate either positively or negatively (Figure. 1.1B).
All these mutations also altered the chemical composition of the environment (Materials
and Methods; also see Figure. 1.1C for a representative subset and Supplementary Fig-
ure. 1.1 for the full set), and the magnitude of the environmental and fitness effects were
strongly correlated (Pearson’s ρ = 0.61, P < 10−6 ) (Supplementary Figure. 1.2).This
suggests that the extracellular environment will change as new mutations fix in the popu-
lation, which could in turn alter the fitness effects of new mutations, thus deforming the
fitness landscape

We explored the extent to which this fitness landscape may be deformed by the effect
of metabolic secretions using a dataset that consisted of ∼ 107 single and double mu-
tants, representing the entire second-order metabolic mutational neighborhood of E. coli.
The fitness of each mutant (M) was determined in competition with its immediate ances-
tor (A) as F (A)

M = log([X ′M/XM ]/[X ′A/XA]) [Lenski et al., 1991, Travisano and Lenski,
1996],where XA and XM represent the initial densities of ancestor and mutant and X ′A
and X ′M represent their final respective densities after 10 h of competition (Materials and
Methods). All competitions were performed at an initial mutant frequency of 0.01. Using
this measure, the fitness effects of two mutations are expected to combine additively when
they act independently (Figure. 1.1D). As shown in Figure. 1.1E, when two mutations
without an environmental effect interact with one another, epistasis (ε) will cause the fit-
ness of the double mutant to deviate from additivity. This is the usual definition of epistasis
in the literature, which is invariant as to the order in which mutations occur [Poelwijk et al.,
2007]. In contrast, when at least one of the single mutants has an environmental effect,
the double mutant experiences a different extracellular environment depending on which
of the two single mutants was its immediate ancestor. For example, a double mutant could
cross-feed on the byproducts of one of its possible single-mutant ancestors but not on the
byproducts of the other (Figure. 1.1F). The result is a gene-by-environment-by-gene (G x
E x G) interaction in which the magnitude of epistasis may depend on the order in which
mutations occur. In other words, epistasis becomes noncommutative. The value of that
noncommutative fitness shift (δ) characterizes the deformation of a two-step mutational
trajectory (Figure. 1.1F).

Noncommutative epistasis and fitness intransitivity are closely related but not identi-
cal concepts (Supplementary Figure. 1.3) [de Visser and Lenski, 2002]. In its simplest,
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qualitative formulation, “intransitivity” refers to situations in which the fitness of three
mutants (A, B, C) in pairwise competition are nonhierarchical (i.e., A invades B, B in-
vades C, and C invades A). A less stringent, quantitative definition of intransitivity has
been applied when the relative fitness between a mutant and its ancestor cannot be pre-
dicted by the sum of cumulative fitness gains along a mutational trajectory [de Visser and
Lenski, 2002]. This definition is close to but distinct from the concept of noncommuta-
tivity (Figure. 1). Noncommutativity quantifies the difference in cumulative fitness gains
along two different mutational trajectories without regard for the fitness of the final point
of the trajectory in competition with the original ancestor (Supplementary Figure. 1.3).
Interestingly, noncommutativity and intransitivity are mathematically related to one an-
other but must be estimated using independent experiments (Supplementary Figure. 1.3).
Genotypes along an evolutionary trajectory usually compete with their immediate muta-
tional ancestors rather than with their original ancestral strain [Paquin and Adams, 1983].
Therefore, noncommutativity is a suitable metric for characterizing fitness landscape de-
formability, while intransitivity can be more suitable for ecological questions, such as the
possibility of coexistence of different genotypes [Kerr et al., 2002, Rainey and Travisano,
1998]

1.3.2 Deformability in the Path to an Evolutionary Innovation in E.
coli

To experimentally validate and assess the potential relevance of noncommutative epistasis
as a metric of fitness landscape deformability, we studied two mutations on the path to the
evolutionary innovation of strong aerobic growth on citrate (Cit++) in the Ara-3 population
of the LTEE [Blount et al., 2008]. The two principal mutations underlying this phenotype
are known to have profound ecological consequences, suggesting that noncommutative
epistasis may be present (Figure. 1.2A). The first mutation is a tandem amplification
overlapping the citrate fermentation operon, cit, which occurred after 31,000 generations.
This amplification caused aerobic expression of the CitT transporter, producing a weak
citrate growth phenotype (Cit+) [Blount et al., 2012]. CitT is an antiporter that imports
citrate, present in large amounts in the LTEE DM25 growth medium, while exporting in-
tracellular C4-dicarboxylate TCA intermediates, e.g., succinate and malate [Quandt et al.,
2015], thereby increasing their concentration in the extracellular environment. A subse-
quent mutation causes high-level, constitutive expression of DctA, a proton-driven dicar-
boxylic acid transporter. This mutation refines the Cit+ trait to Cit++ by allowing recovery
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of the C4-dicarboxylates released into the medium by both the progenitor and the double
mutant itself during growth on citrate (Figure. 1.2A) [Quandt et al., 2015]. We reasoned
that these mutations together enable the exploitation of environments built by progenitor
strains, producing a stronger increase in fitness than expected in the absence of environ-
mental construction (Figure. 1.2B). In contrast, had the DctA mutation occurred before
the CitT-activating duplication, it would have conferred no fitness benefit and would not
have produced any changes in the environment relative to the ancestor (Figure. 1.2B).

We tested this prediction by performing competitive fitness assays with different com-
binations of a spontaneous Cit– mutant and dctA– knockout strains derived from ZDB89, a
35,000-generation Cit++ clone that possesses both the DctA-activating and CitT-activating
mutations (Materials and Methods). Competitions were carried out with equal volumes of
each combination of competitors, and relative fitness was determined using colony counts
obtained after 0 and 24 h of growth [Lenski et al., 1991]. In parallel, we used our dFBA
model to simulate these competitions, relying solely on known parameters from the exper-
iments and on published parameters pertaining to the physiology of E. coli [(Materials and
Methods) Harcombe et al. [2014], Gallet et al. [2017]]. Confirming our expectations, the
dFBA model predicts strong noncommutative epistasis (δ = 1.50) (Figure. 1.2C). This is
confirmed by the experimental results (δ = 1.78 ∓ 0.15) (Fig. Figure 1.2D). The agree-
ment between the empirically calibrated computational model and the experiments is not
only qualitative but also is quantitative: With no fitting parameters, dFBA is predictive of
the outcome of the experimental pairwise competitions, explaining 52% of the variance in
colony counts from all experiments (n = 120) (Supplementary Figure. 1.4).

1.3.3 Short-Range Deformability in E. coli Is Weak and Rare

Although the above examples demonstrate the potential presence of fitness landscape de-
formability, its pervasiveness in empirical fitness landscapes remains unclear. To address
this question, we screened the entire first- and second-order mutational neighborhood of
E. coli using our computational model (Figure. 1.3A). In Figure. 1.3B we represent all
pairs of mutations that exhibit deformability as nodes in a network that are connected if
their noncommutative fitness shift (δ) is larger than 1% of the fitness effects (FMAX ; also
see Supplementary Figure. 1.5). These represent only a small subset (203/3343, or 6.1%)
of all epistatic interactions, which for the most part are not altered by the environmental
effects of mutations.

Noncommutative interactions also tend to be unevenly distributed: Most mutations do
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not deform the fitness of any other mutation, and only 15 (0.3%) of them deform the fit-
ness of five or more other mutations (Figure. 1.3B and 1.3C). These few highly connected
hubs on the network tend to be the mutations with the strongest environmental effects
(Pearson’s ρ = 0.79, P < 10−6) (Supplementary Figure. 1.6). Noncommutative epista-
sis also tends to be small in magnitude (Figure. 1.3D); only 1.6% (55/3343) of epistatic
pairs have a noncommutative epistatic shift larger than 10% of the total fitness increase
(δ/FMAX > 0.1) (Figure. 1.3D). This reveals that the deformability of the local muta-
tional neighborhood of the E. coli metabolic landscape is generally weak, rare, and highly
anisotropic (i.e., nonhomogeneous), with deformations limited to localized directions in
genotype space.

1.3.4 Long-Range Deformability of the E. coli Metabolic Fitness Land-
scape

The low deformability of the local mutational neighborhood could be explained by the
strong genetic similarity between the mutants and the ancestral genotype: Genotypically
close descendants will rarely be able to use metabolites that are discarded by their imme-
diate ancestors. By the same logic, one may predict that over longer mutational distances
metabolic differences might accumulate that enable the use of extracellular metabolites
that are left as a “legacy” by previous mutations. Thus, we hypothesize that changes to the
extracellular environment produced by a given mutation will primarily deform the fitness
landscape at distant positions on the genotype space.

To test this hypothesis, we set out to introduce a mutation with a strong environmental
effect and measure the deformation it causes at different distances in the genotype space.
We chose the ACKr (acetate kinase) mutation (the deletion of the acetate kinase gene),
which as shown in Figure. 1.1C modifies the environment by releasing large amounts of
lactate at the expense of lower secretions of formate, acetate, and ethanol. To quantify
the deformation introduced by this mutation, we compared the fitness of thousands of
genotypes at increasing mutational distances from the ancestor in competition with either
the ancestor E. coli model (A) or the ACKr mutant (M) (Figure. 1.4A). The deformation
introduced by M at genotype G is thus quantified by the parameter ∆Fitness = |F (M)

G −
F

(A)
G − F

(A)
M | (Figure. 1.4B). Consistent with our hypothesis, and as shown in Figure.

1.4B and 1.4C, we found that the fitness landscape deformation ∆Fitness introduced by
the ACKr mutation is negligible at short genotypic distances from it (e.g., 16 mutations
or less), but it becomes stronger at longer distances. Fifteen other mutants in addition to
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ACKr were also tested, with similar results (Supplementary Figure. 1.7.). Furthermore, by
comparing the growth rate of thousands of genotypes in the environments constructed by A
and M (noted by EA and EM , respectively), we found that increasingly distant genotypes
become increasingly sensitive to the differences between the two environments (Figure.
1.4D and Supplementary Figure. 1.8). This provides an explanation for the observed
pattern of fitness landscape deformation as a function of genotypic distance.

What are the genetic mechanisms underlying the long-range environmental effects of
new mutations on growth rate? One possibility could be an increased probability of sam-
pling mutations that produce a difference in growth rate between EA and EM . Alterna-
tively, this effect could be caused by genetic interactions between two or more mutations
that allow distant genotypes to use differently the resources secreted by A and M. To dis-
criminate between these two possibilities, we compared the observed difference in growth
rates (Figure 1.4D, gray line) with the difference expected if mutations do not interact (Fig-
ure 1.4D, red line) (Materials and Methods). As shown in Figure 1.4D, the null model that
only incorporates increased sampling of mutations at growing mutational distances (while
assuming no interactions) vastly underestimates the observed growth difference between
EA andEM and thus is insufficient to explain our results. This suggests that, although both
mechanisms are present, interactions between mutations dominate the deformation of the
fitness landscape at large mutational distances (see also Supplementary Figure. 1.8).

To mechanistically illustrate the role of complex genetic interactions in long-range
landscape deformation, in Figure 1.4E we show an adaptive trajectory in which a first
mutation (lactate dehydrogenase; LDH) causes the release of lactate to the extracellular
space. A complex metabolic innovation involving several reaction additions [ATP synthase
(ATPS), pyruvate formate lyase (PFL), and ACKr] [Pál and Papp, 2017] is subsequently
required to confer the ability to metabolize this lactate (Figure 1.4E; see also Supplemen-
tary Figure. 1.8). Notably, lactate becomes metabolized only by the final genotype, which
contains all three required mutations.

1.4 Discussion
Darwin [Darwin, 1892] was perhaps the first to recognize that the environment experi-
enced by an evolving population can also be shaped by the population itself. Long ne-
glected, this concept was revived by Lewontin [Lewontin, 1978, 1983], and has gained
added momentum in recent years as the important role played by eco-evolutionary feed-
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backs in both ecology and evolution has become better appreciated [Laland et al., 2014,
Post and Palkovacs, 2009, Rudman et al., 2018]. Due to technical limitations, experimen-
tal studies of eco-evolutionary feedbacks and the adaptive dynamics models that seek to
explain them often lack explicit, genome-wide representations of the adaptive landscape,
in particular with regard to complex traits and gene–gene interactions [Rudman et al.,
2018]. The exact state of the environment, which is intrinsically complex and multidimen-
sional, is also rarely measured experimentally or explicitly included in eco-evolutionary
models. In return, genome-wide genotype fitness maps have largely ignored the effects of
eco-evolutionary feedbacks, despite early abstract models of species coevolution, which
introduced the idea of fitness landscape deformability (also referred to as ”rubberness,”
refs. Kauffman and Johnsen [1991] and Solé and Sardanyés [2014]), and the many ex-
amples of their importance in coevolutionary arms races and other forms of coevolution
[Morran et al., 2011]. This is particularly important in light of the argument, made by
many authors, that the deformability of fitness landscapes (or its consequences, in the
form of frequency-dependent selection) would erode their practical and conceptual utility
[Schuster, 2012, Doebeli et al., 2017, Moran, 1964]

Our work empirically addresses this latter argument. Encouragingly, our results show
that fitness landscapes may retain their local properties in the presence of mutations that
significantly alter the environment. By systematically mapping an empirical fitness land-
scape, we have found that ignoring deformability and assuming a rigid landscape is a good
approximation over short genotypic distances. This is because closely related genotypes
are unlikely to differ from one another in their physiological response to the built envi-
ronment. In contrast, over longer mutational distances, fitness landscapes are likely to
be affected by environmental construction, an effect that is shaped by complex genetic
interactions. This suggests an ecologically mediated mechanism by which historical con-
tingency may shape downstream evolution even in clonal populations. In summary, our
work suggests that, depending on the scale at which they are examined, fitness landscapes
can either behave as a fixed externally determined topography on which adaptation pro-
ceeds, or become a dynamic property of the populations adapting on them [Doebeli et al.,
2017, Moran, 1964].

One limitation of our study is the inability of our model to predict changes in the sign
of the fitness effect of a new mutation. This is a common limitation of most FBA-based
models (but see refs. Mori et al. [2016] and Beg et al. [2007]), as they do not consider
the potential costs of adding a new biochemical reaction, or of maintaining a flux through
it. These costs can arise in microbial cells either through the cost of increasing genome
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size [Giovannoni et al., 2014] or through the cost of expressing the enzymes required for
the new reaction. Given the absence of such costs in our FBA model, a deletion can never
provide any advantage, and an addition will never be detrimental. Costs have already been
incorporated in nondynamic FBA models [Mori et al., 2016, Beg et al., 2007], allowing
the prediction of phenomena such as overflow metabolism. One can certainly imagine
situations in which an addition that is detrimental due to its maintenance cost could be-
come beneficial in the presence of the metabolic byproducts of its ancestor, leading to an
ecologically mediated inversion of fitness effect (or “sign-δ”). Incorporating costs into a
dynamic genome-scale modeling framework represents a promising future direction.

The idea that under frequency-dependent selection fitness landscapes change as popu-
lations move on them has been conceptually discussed and studied within the theoretical
framework of adaptive dynamics [Kauffman and Johnsen, 1991, Watson and Ebner, 2014,
Waxman and Gavrilets, 2005]. A solution to the problem of fitness landscape deformabil-
ity was found in the formulation of the invasion fitness landscape, i.e., the map between
the relative fitness S(x,y) of an invader with phenotype y against a resident phenotype x
[Waxman and Gavrilets, 2005]. In principle our results and methods might allow one to
map an empirical invasion fitness landscape, at least locally. However, one would need to
identify a scalar phenotype that can be mapped to the invasion success against a resident
genotype in the environment this resident constructs. Under what conditions this is possi-
ble is an open question that lies beyond the scope of this study, but it poses an interesting
future challenge.

In line with this discussion, our results indicate that simulating cellular adaptive dy-
namics with an explicit and biologically realistic genome-wide representation of the geno-
type–phenotype map is within reach. Such an approach will shed light into the role played
by dynamic niche construction in cellular evolution. We believe that it will also create
multiple opportunities to incorporate genomics into the study of eco-evolutionary dynam-
ics and thus reveal the genetic, biochemical, and environmental constraints that simulta-
neously govern the ecology and evolution of cellular populations.
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Figure 1.1: Measuring deformability in the E. coli metabolic fitness landscape.
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Figure 1.1: (A) Schematic depiction of dFBA simulations. Given an input in the form of
nutrients, metabolic fluxes through an explicit and empirically curated metabolic model
are optimized to maximize the biomass growth yield. The optimal metabolic fluxes pro-
duce metabolic byproducts that are released to the external environment, becoming part of
future inputs. (B) A subset of genotypes differing from our E. coli metabolic model by a
single mutation (an added or deleted reaction), colored according to their effect on fitness
in competition with the ancestor (A). (C) Environmental effects of a subset of mutants
expressed as the variation in the profile of secreted metabolites compared with the ances-
tral E. coli genotype (computed as log-modulus transformed difference in the amount of
a given secreted molecule; Materials and Methods). Mutant labels are given in Biochem-
ical Genetic and Genomic (BiGG) database notation. (D) Two loci fitness landscapes in
the absence of gene-gene interactions in which the fitness effect of each mutation is the
same in all genetic backgrounds. The fitness of each genotype was calculated in direct
competition with its immediate ancestor. Mutations A and B correspond to the addition
of GLYCL 2 (glycine cleavage system) and AIRCr (phosphoribosylaminoimidazole car-
boxylase), respectively. (E) Two-loci fitness landscapes with gene–gene interactions giv-
ing rise to epistasis (ε). Mutations A and B were SO3R (sulfite reductase) and PAPSSH
(phosphoadenylylsulfatase), respectively, simulated in a constant environment. (F) Two-
loci fitness landscapes in which one of the mutants transforms the environment, leading
to cross-feeding toward the double mutant. Mutations A and B correspond to the addition
of PAPSSH and HADPCOADH (3-hydroxyadipyl-CoA dehydrogenase). In addition to
regular epistasis, this led to a noncommutative epistatic shift (δ = εA,B − εB,A).
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netic interactions in a long-range deformation. The addition of LDH leads to the release of
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1.6 Supplementary Material

1.6.1 Reconstruction of a prokaryotic genotype space

All in silico explorations of genotype [King et al., 2016] space in this work took as a refer-
ence the E. coli model iJO1366 and consisted of both gene additions and deletions. Gene
deletions were performed by constraining both upper and lower bounds of the reaction
to zero. Gene additions were performed from a set of all known prokaryotic reactions.
We used the BiGG database [King et al., 2016] to compile a dataset of all known reac-
tions found across prokaryotic species. Conflicts in reaction directionality were resolved
as follows i) if a reactions is found in the well benchmark E. coli iJO1366 model, use
the properties given by this model, ii) if a reaction conflicts in directionality, only accept
directions found across all models (e.g. if there is one model where a given reaction is ir-
reversible, we set it as irreversible). We used this dataset to create a “universal” metabolic
model that included all reactions found in E. coli iJO1366 as well as a set of all potential
novel reactions. We removed reactions that would lead to erroneous energy-generating
cycles using the GlobalFit algorithm [Fritzemeier et al., 2017]. The algorithm was con-
strained to conserve reactions present in the original E. coli model. Removing any futile
cycles from this “universal” model ensures that there will not be any futile cycles in any
subset. The resulting network contains 4999 metabolic reactions and 585 nutrient uptake
or sink reactions, of which 2758 and 255 were not found in the original E. coli model.

1.6.2 In silico simulation of growth through metabolic modeling

Dynamic Flux Balance Analysis simulations were performed using the COMETS pack-
age (“Computation of Microbial Ecosystems in Time and Space”, [Harcombe et al., 2013])
and the gurobi optimizer software. For computationally intensive simulations, we used the
High Performance Facility at Yale University. For standard (non dynamic) FBA simula-
tions, we used the COBRApy python package [Ebrahim et al., 2013a]. Both Dynamic and
Standard FBA optimizations were done using the parsimonious algorithm, in which a first
optimization is done to maximize biomass yield, and a second one fixes this yield and min-
imizes total fluxes throughout the network [Lewis et al., 2010]. Unless otherwise stated,
the default Vmax was set in dynamic FBA simulations to −10mmol× gr−1 × hr−1 for all
uptake reactions. Inorganic ions and gases where kept at high concentrations and where
kept undepleted throughout the simulation (i.e lower bound : −1000mmol× gr−1× hr−1
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, amount of metabolite: 1000 mmol). This was done to constrain our analysis to situations
where growth is limited only by uptake of carbon sources. The unbounded nutrients are:
ca2 e, cbl1 e, cl e, co2 e, cobalt2 e, cu2 e, fe2 e, fe3 e, h e, h2o e, k e, mg2 e, mn2 e,
mobd e, na1 e, nh4 e, ni2 e, pi e, sel e, slnt e, so4 e, tungs e, zn2 e. For the citrate simu-
lation to avoid oxygen, nitrogen or proton limitation uptake was unconstrained by setting
the Vmax to 1000mmol × gr−1 × hr−1 . Analysis of results was performed using GNU R
language [R Core Team, 2021].

1.6.3 Fitness, environmental effects and deformability measurements

To measure fitness, we use here (in both experiments and simulations) the Malthusian
fitness measure that allows for a quantitative comparison across environments [Wagner,
2010]. Fitness of mutant M relative to ancestor A is therefore given as
F

(A)
M = log([X ′M/XM ]/[X ′A/XA]) where X and X’ represent initial and final densities.

For a pair of mutations, deformability can be then measured as: δij = F
(i)
ij + F

(A)
i −

F
(j)
ij + F

(A)
j where F (y)

x represents the fitness of genotype x in competition with genotype
y. To compute environmental effects of mutations, the difference in secretion profile of
mutants (as shown in Figure. 1.1C and Supplementary Figure. 1.1) is computed for a
given released molecule as sign(D) × (log(D) + 1) where D is the amount released by
the mutant minus that secreted by Ancestral E. coli. This log-modulus transformation
[John and Draper, 1980] is applied to help visualization of the generally small differences
in released amount, which can be either positive or negative. To measure environmental
effect of a mutation (as used in Supplementary Figure. 1.2 and Supplementary Figure.
1.5), we use the Euclidean distance in the profile of released metabolic byproducts between
a mutant and the E. coli ancestor using standard Flux Balance Analysis [Ebrahim et al.,
2013a].

1.6.4 Simulation of the fitness landscape of aerobic growth on citrate
by E.coli

Starting with E.coli model iJO1366 we constructed metabolic models of the four mutants
necessary to predict the fitness landscape involved in the evolution of aerobic citrate uti-
lization in the Ara3 population of the LTEE. Unlike the LTEE ancestral strain REL606
(and E. coli generally), which possess the necessary genes for citrate utilization but do not
express them in aerobic conditions, iJO1366 is able utilize both citrate and succinate if
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these reactions are unbounded (as FBA optimizes precisely regulation). Thus, the ances-
tral phenotype was recreated by knocking out three reactions CITt7pp ( citT), SUCCt2 2pp
(dctA) and SUCCt2 3pp ( dcuA or dcuB). The reactions encoded by the first two genes
(citT and dctA) are known to be involved in the evolution of aerobic growth on citrate in
the LTEE whereas dcuA and dcuB are involved in dicarboxylate uptake in anaerobic con-
ditions and are inactive in aerobiosis [Six et al., 1994]. This triple knockout represents the
pre-citrate E. coli ancestor strain. The addition of CITt7pp simulates the promoter cap-
ture and consequent aerobic expression of CitT. Similarly, the addition of SUCCt2 2pp
is equivalent to the first mutation (aerobic expression of dctA). We used dynamic FBA
to predict the fitness landscape of these two mutations, calibrating the simulations to re-
flect the the experimental conditions. This involved i) setting the in silico media to reflect
DM25 minimal glucose media (0.139mM glucose, 1.7mM citrate). Aerobic condition was
simulated by keeping oxygen (o2 e) undepleted. ii) using published parameters pertaining
to the physiology of E. coli (3) and iii) estimating the initial biomasses of each mutant
prior to competition. Initial biomass for citrate simulations was determined using initial
plate counts from pairwise competitions experiments (see also Supplementary Figure. 1.4.
). We assume that average cell dry mass is 3.9×10−13g which is the empirically measured
cell dry mass of REL606 the ancestral strain used in the LTEE [Gallet et al., 2017]

1.6.5 E. coli Long-Term Evolution Experiment

Briefly, twelve populations of E. coli B were founded in 1988 from clone REL606. The
populations were initially identical, save for half having a mutation that permitted growth
on arabinose. (See below.) These have since been evolved in DM25 minimal glucose
medium under conditions of daily, 100-fold serial transfer, and incubation at 37◦ with
120 rpm orbital shaking. Samples of each population are frozen every 500 generations
38 . DM25 is Davis-Mingioli broth supplemented with 25 mg/L glucose. (Per liter: 7g
potassium phosphate dibasic trihydrate, 2g potassium phosphate monobasic anhydrous,
1g ammonium sulfate, 0.5g sodium citrate, 1mL 10% magnesium sulfate, and 1mL 0.2%

thiamine.)

1.6.6 Isolation and Preparation of Test Strains

ZDB89 is a Cit++ clone isolated from the Ara-3 population sample frozen for genera-
tion 35,000 during the LTEE. Cit– revertants arise spontaneously from Cit+ and Cit++
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clones due to recombination-mediated collapse of the tandem cit amplification to the an-
cestral genotype at that locus. We isolated a Cit– revertant, ZDB757, by first passaging
ZDB89 in a glucose-only medium for five days. This passaging does not constitute a se-
lection, but nonetheless enriches for Cit– revertants by eliminating the selective penalty
for losing the ability to grow on citrate. Passage cultures were spread on LB plates, and
Cit – mutants screened for by patching colonies to LB and Minimal Citrate (MC) plates
to identify clones that no longer grew on citrate. The Cit– phenotype was confirmed by
streaking on Christensen’s Citrate Agar. Recombineering with the pKO3 suicide plasmid
[Link et al., 1997] was used to delete the dctA gene from ZDB89 and ZDB757, producing
the Cit+ dctA– and Cit– dctA– constructs, ZDB912 and ZDB904, respectively. To permit
differentiation of competitors during fitness assays, we isolated Ara+ revertants of each
of the aforementioned clones and constructs. Briefly, Ara– strains lack the ability to use
arabinose, and form red colonies on Tetrazolium Arabinose (TA) plates, while Ara+ rever-
tants are mutants with restored ability to grow on arabinose, and form white colonies on
TA. The ancestral strain of the Ara-3 population and its descendants are Ara– . We iso-
lated Ara+ revertants by plating clone or construct cultures on Minimal Arabinose (MA)
plates. Revertants were competed against their Ara– parents to verify marker state neu-
trality. Clones, constructs, and revertants are listed in Supplementary Table 1. Derivation
of constructs and revertants are shown in Supplementary Figure. 1.10 .

1.6.7 Experimental fitness Assays

Fitness was assayed in pairwise competitions. Competitors with opposite Ara marker
states were inoculated from frozen stocks into 10 mL LB broth, and incubated overnight
at 37◦ with 120 rpm orbital shaking to permit revival and elimination of traces of glyc-
erol cryoprotectant. To precondition the competitors, each competitor revival culture was
then diluted 100-fold in 0.85% saline, and 100 L of the diluted culture used to inoculate
9.9 mL DM25 with ten-fold replication. These culture were grown for 24 hours at 37◦

with 120 rpm orbital shaking, after which they were transferred via 100-fold dilution into
9.9 mL volumes of fresh DM25, and grown for another 24 hours under the same condi-
tions. Ten competition cultures were prepared for each competitor pairing by inoculating
each 9.9 mL DM25 with 50 L of each preconditioned competitor. A single replicate pre-
conditioning culture of each competitor for each competition was inoculated so that each
competition was inoculated from a single preconditioned culture of the competitors. Upon
inoculation with the competitors, 100 L of a 100-fold dilution of each was spread on TA
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to permit enumeration of the initial frequency of each competitor. 100 L of a 1000-fold
dilution was also plated for each competition including at least one Cit+ or Cit++ com-
petitor. Colonies were counted following 48 hours of plate incubation at 37◦. Following
24 hours incubation under the same conditions used for preconditioning, 100 L of 10,000-
fold dilutions of each competition were plated on TA to permit final enumeration of the
competitors. 100,000-fold dilutions were also plated for competitions including at least
one Cit+ or Cit++ competitor.

1.6.8 Exploration of deformability in the local mutational neighbor-
hood of E. coli

To systematically analyze the local mutational neighborhood of E.coli we construct a set
of metabolic models consisting of every viable single and double mutation, considering
both additions and deletions from our universal reaction set and using as a reference the E.
coli iJO1366 model (4389 and 9636050 genotypes, respectively). We removed from this
analysis and all subsequent analysis essential genes, sink reactions, diffusion reactions, as
well as those genes leading to artifacts (H2 or CO2 limitation). We used dynamic flux bal-
ance analysis to simulate competition assays of each mutant with its immediate ancestor.
We chose to perform our in-silico competitions in anaerobic conditions because in under
aerobic conditions FBA incorrectly predicts complete oxidation of glucose at saturating
level. The simulations started with an initial glucose concentration of 0.0001mM and as-
sayed co-culture growth during 10hr, a period during which glucose was never exhausted,
i.e. growth remained exponential. All simulations were done with the mutant starting at
low frequency (1%, 1.0 × 10−10gr. dry cell weight, for 9.9 × 10−9 gr. for the ancestor)
in anaerobic glucose minimal media (unless otherwise stated, see detailed parameters in
supplement and Supplementary Table 2).

1.6.9 Simulation of long-range fitness landscape deformation

In order to explore the long-range effects of landscape deformation, we started from a one-
step mutation from ancestor E. coli model and performed random walks in genotype space
by sampling 1024 mutations (without replacement) among both deletions and additions.
In addition to previously mentioned artifacts we excluded from this analysis reactions that
had led to CO2 or H2 limitation in a unique pair, even if they did not have this effect with
other reactions . The pairs are: SHSL2 and SHSL2r ,DHORD NAD and DHORDi, ENO
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and HADPCOADH, LEUTA and LLEUDr, P5CRx and PRO1y, in BIGG database nota-
tion (1). To prevent irreversible loss of viability, the sampling procedure also ignored all
reactions that were essential in a minimal model capable of growing on glucose in anaer-
obic conditions. The minimal model was built by sequentially removing reactions while
possible, following [Pál et al., 2006]). At regular intervals along the random walk, fit-
ness was measured as before in competition with the mutant and the ancestor (wild-type)
using dynamic flux balance analysis (COMETS [Harcombe et al., 2014]). To determine
the growth rates of genotype in ancestral vs mutant environments we repeated this pro-
cedure except at each step, growth rate was measured in the environment provided by
the mutant and the ancestor using standard flux balance analysis (COBRApy (4)). These
environments were simulated by setting uptake rates for each secreted metabolites to the
excretion rate of the respective ancestor.

1.6.10 Computation of null models for growth in the absence of epis-
tasis

We built a null model for the expected growth rates of mutants, under the assumption that
the effect of each mutation on the growth rate is independent. We denote the growth rate
of the ancestral genotype M by gM , and that of each single mutant i by gi = wigM , where
i can represent any of all N possible mutations (in our case N=4181). Here we introduced
the parameter wi = gi/gM representing the relative effect of mutation i on the growth
rate. If two mutations i and j do not interact with one another, their effects on growth rate
are multiplicative: wij = wiwj . For a mutant that contains Q mutations relative to the
ancestor M, we can thus calculate its growth rate relative to the ancestor as:

gQ =

(
P∏
i=1

wi

)
gM (1.1)

1.6.11 Long range deformation in an adaptive trajectory

To provide a mechanistic example of an adaptive long-range deformation with epistasis,
we sequentially removed reactions that i) had a detrimental effect, and ii) affected lactate
secretion. We reached a 6 step mutant genotype that was unable to use lactate. The
subsequent addition of 4 of these removed reactions to this mutant led first to the secretion
of lactate (upon addition of LDH, lactate dehydrogenase), and then to the consumption of
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this lactate only after 3 additional mutational steps (ACKr - acetate kinase, PFL - pyruvate-
formate lyase, ATPs - cytosolic ATP synthase). For each mutation along the trajectory
(LDH -ATPs-PFL-ACKr,) we measured fitness as before, by simulating the competition
of each mutant with its immediate ancestor. The effect of lactate cross-feeding on fitness
was assessed by repeating this analysis, albeit with lactate removed from the environment
at each step (Supplementary Figure. 1.8).
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1.6.12 Supplementary Figures

Supplementary Figure 1.1: Variation in
the secretion profile of single mutants
(see Figure 1.1C)., full set of mutants
with environmental effect
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Supplementary Figure 1.2: Fitness and environmental effects are correlated. We plot the
environmental effects of each single mutant (calculated as discussed in the methods) as a
function of the fitness effect of that mutation. Both metrics are strongly correlated (Pear-
son’s /rho = 0.61, P < 10−6).
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Supplementary Figure 1.3: Relation between non-commutativity (/delta) and intransitiv-
ity (I) in a hypothetical two mutation genotype space. We denote the fitness of mutant
X in competition at low frequency with mutant Y by FX (Y) . As shown in the dia-
gram,noncommutativity (/delta) is the sum of the intransitivities in both trajectories (IAB
and IBA). However, to compute intransitivity, we need to perform a competition of the
double mutant (AB) versus the original ancestor (O).
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Supplementary Figure 1.4: Prediction of competition assay outcomes in the path to strong
aerobic growth on citrate in E. coli was compared to the measured colony counts for each
competition assay. All 120 competition assays were simulated using dynamic FBA (see
Methods), and the experiments were performed as explained in the main text (Methods)
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Supplementary Figure 1.5: Same network shown in Figure. 1.3B showing all reaction
labels.
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Supplementary Figure 1.6: Environmental effect and deformability are correlated in the
local genotype space of E. coli. Here, the degree (i.e. number of interactions) in the
network presented in Figure 1.3C (main text) is used as a proxy for deformability.
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Supplementary Figure 1.7: Additional examples of long range deformation similar to Fig-
ure 1.4C (main text) using the 16 non-essential mutations M with largest environmental
effect (shown as subpanel titles) other than ACKr (which is shown in Figure. 1.4C in the
main text). We show average fitness differences (∆F ) in competition with A vs. in com-
petition with M. ∆F always increases with mutational distance. Error bars represent SEM
(N=100)
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Supplementary Figure 1.8: Average difference (absolute value) in growth rate between en-
vironments EM and EA (in grams of dry cell weight xhr−1) at varying genotype distances
(gray line, shading represents SEM; N=100). Additional examples are shown, similar to
Figure. 1.4D (main text), using the environments generated by the 16 non-essential muta-
tions with largest environmental effect. Average difference in growth across environments
alway increases with mutational distance. Gray shading is SEM (N=100).
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Supplementary Figure 1.9: Breakdown of the example of long range effects in an adaptive
trajectory given in Figure. 1.4. In the top panel we show the incremental fitness increase of
each mutant as predicted by competition with it’s immediate ancestor. The dotted red line
shows the fitness predicted when excreted lactate is removed from the environment. Whilst
lactate production only requires a single mutation, this environmental change does not
affect the fitness of immediate descendants and instead leaves a ‘legacy’ (shaded region)
that persists and requires multiple interacting mutations to be ‘felt’. In the bottom panel
we show the FBA predicted output flux of secondary metabolites when glucose is in excess
(i.e uptake rate = 10mmol × gr−1 × hr−1).
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Supplementary Figure 1.10: Derivation of Ara-3 strains used in competition experiments
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1.6.13 Supplementary Tables

Supplementary Table 1.1: Ara-3 strains used in competition experiments.

Supplementary Table 1.2: Parameters used in dFBA simulations.
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2.1 Abstract
The taxonomic composition of microbial communities can vary substantially across habi-
tats and within the same habitat over time. Efforts to build quantitative and predictive
models of microbial population dynamics are underway, but fundamental questions re-
main. How different are population dynamics in different environments? Do communities
that share the same taxa also exhibit identical dynamics? In vitro communities can help
establish baseline expectations that are critical towards resolving these questions in natural
communities. Here, we applied a recently developed tool, Dissimilarity–Overlap Analysis
(DOA), to a set of experimental in vitro communities that differed in nutrient composition.
The Dissimilarity and Overlap of these communities are negatively correlated in replicate
habitats, as one would expect if microbial population dynamics were on average strongly
convergent (or “universal”) across these replicate habitats. However, the existence of such
a negative correlation does not necessarily imply that population dynamics are always uni-
versal in all communities. Even in replicate, identical habitats, two different communities
may contain the same set of taxa at different abundances in equilibrium. The formation of
alternative states in community assembly is strongly associated with the presence of spe-
cific taxa in the communities. Our results benchmark DOA, providing support for some
of its core assumptions, and suggest that communities sharing the same taxa and external
abiotic factors generally (but not necessarily) have a negative correlation between Dissim-
ilarity and Overlap.

2.2 Introduction
Microorganisms grow and thrive in all habitats throughout the biosphere [Locey and Lennon,
2016, Hunter, 2016, Louca et al., 2016a, Blaser et al., 2016]. This includes the human
body, where they form rich ecological communities made of large numbers of interacting
species [Ley et al., 2006, Falony et al., 2016, Shafquat et al., 2014, Lloyd-Price et al.,
2017]. The taxonomic composition of these communities can vary substantially between
body sites, reflecting their different ecological, physical, and biochemical conditions [Hu-
man Microbiome Project Consortium, 2012]. Even for the same body site, community
composition may vary widely between individuals, as well as within the same individual
over time [David et al., 2014a,b]. In order to understand how microbiomes change longitu-
dinally and over the lifespan of an organism, and to design effective strategies that enable
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us to manipulate microbiomes towards desirable states, it is critical to develop predictive
quantitative models of microbial population dynamics [Faust and Raes, 2012].

Models of dynamic ecosystems vary in their level of description, which is typically
chosen to capture the specific phenomena under study. A detailed population dynamics
model of microbial communities would have to include mechanistic microbial interactions
(due to cross-feeding [Goldford et al., 2018, Machado et al., 2021], direct secretion of sub-
stances such as bacteriocins, antibiotics, or extracellular enzymes [Sanchez-Gorostiaga
et al., 2019, Cornforth and Foster, 2013], or competition for the same nutrient), spatial
structure of the particular habitat [Harcombe et al., 2014], and environment–microbiome
or host–microbiome interactions. Building such detailed models can be daunting due to
(i) a huge number of model parameters which need to be inferred from experimental data;
and (ii) many environmental variables (such as the concentrations of bacteriocins and nu-
trients) which are hard to measure in real time.

To avoid those difficulties, an alternative modeling framework focuses on exploring the
impact that any given microbial species has on the abundance of other microbial species
[Bashan et al., 2016]. In this phenomenological modeling framework, one only needs
to consider a simple population dynamics model written as a set of ordinary differential
equations: dX(t)/dt = f(X(t),Θ). Here, f is a nonlinear function characterizing the
population dynamics of the microbial community, X(t) = (x1(t), . . . , xi(t), . . . , xN(t)) is
an N-dimensional vector with xi(t) denoting the abundance of the i-th microbial species
at time t, and Θ captures all the ecological parameters (such as intrinsic growth rates,
intra- and inter-species interaction strengths, etc.). Note that those ecological parameters
depend on environment- or host-independent factors, such as biochemical processes and
microbial metabolic pathways; as well as environment- or host-specific ones, such as pH,
temperature, nutrient intake, host genetic make-up, etc. Hence, environmental or host
factors are not explicitly considered in this modeling framework but are absorbed in the
ecological parameters [Bashan et al., 2016].

Generally, the ecological parameters estimated from a given habitat with certain char-
acteristic environmental conditions do not necessarily map to other habitats with differ-
ent environmental conditions. One can ask, however, whether those parameters (Θ) are
strongly similar (“universal”) for microbiomes that assemble in similar habitats. Address-
ing this fundamental question has important consequences for the applicability and pre-
dictive power of quantitative models of microbial community dynamics. If the interaction
parameters were highly similar across habitats of a certain type, such as the guts of dif-
ferent human subjects, this will facilitate the development of generic microbiome-based
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therapeutics. By contrast, if the ecological parameters and microbial dynamics are strongly
host-specific, we must design truly personalized interventions, which need to consider not
only the highly personalized microbial composition of each individual but also the unique
dynamics of the underlying microbial ecosystem.

Directly addressing the above question would require one to infer all of the ecologi-
cal parameters and fit the population dynamics f(X(t),Θ) from the microbiome data of
each local community or host. Doing this for a large collection of communities is both
logistically and computationally challenging. Recently, an indirect method called Dissim-
ilarity–Overlap Analysis (DOA) was proposed [Bashan et al., 2016]. DOA relies on two
mathematically independent measures between any two local communities: Overlap (O),
which is defined as half of the sum of relative abundances of the shared species; and Dis-
similarity (D), which is defined as the divergence between the renormalized abundance
profiles of the shared species (Methods) [18]. DOA is based on the following two as-
sumptions. First, the abundance profiles of the microbiome samples represent the steady
states X∗ of the microbial ecosystem and hence the fixed points of the underlying pop-
ulation dynamics that satisfy f(X∗,Θ) = 0. Second, if any two local communities that
have the same species collection also have the same abundance profile (steady state), i.e.,
O = 1 and D = 0, then the two communities should share universal microbial dynamics
f(X,Θ) characterized by the same set of ecological parameters Θ. Mathematically, this
means that if X∗ satisfies both f(X∗,Θ(1)) = 0 and f(X∗,Θ(2)) = 0, given the large
number of species and all the other levels of complexity in their interactions (encoded in
the highly nonlinear function f), we conclude that generically Θ(1) = Θ(2). In general,
since D is mathematically not constrained by any value of O > 0, any constraints of D by
O observed from real data deserve ecological interpretations. In particular, even if we do
not have any steady state pair satisfying O = 1 and D = 0 (which is the typical case for
host-associated microbial communities, such as the human gut microbiome, due to highly
personalized microbial compositions), as long as steady state pairs with higher O tend to
have lower D, i.e., there is a negative slope in the high-Overlap region of the Dissimi-
larity–Overlap Curve (DOC). This particular statistical constraint of D by O is consistent
with the hypothesis of universal dynamics across all habitats in the sample, and it is a
foundation of DOA [18]. It is also consistent with alternative hypotheses, such as com-
munities assembling in environmental gradients, or situations when only a small fraction
of the habitats have highly similar interaction parameters [Kalyuzhny and Shnerb, 2017].
The former is a particularly important scenario, and was recognized in the original study
by Bashan et al. In many instances enough is known about the habitats to exclude from
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the analysis factors that can lead to environmental heterogeneity [Bashan et al., 2016].
A negative slope in the high-Overlap region of the DOC has been found in the gut mi-

crobiome samples collected from different healthy individuals [Bashan et al., 2016]. Yet,
the complete set of selective pressures experienced by microorganisms in the same habitat
(e.g., the same body site of different individuals), and their variation across a host group
cannot be known exactly. Hence, one cannot account for all the potential factors that may
conceivably influence the microbial communities assembled in the same habitat, and so
cannot provide an entirely conclusive answer regarding the universality of the underlying
microbial dynamics. In other words, we cannot unambiguously attribute the negative slope
of the DOC to universal dynamics and completely rule out the alternative explanation of
environment or host factors. A more definitive demonstration would require a compari-
son between experimental communities assembled in well-controlled replicate habitats to
those assembled in nonidentical habitats.

Benchmarking DOA against well-controlled in vitro communities, ideally assembled
in multiple replicates of habitats that are either identical to each other, or different from
each other in well-understood ways, would be necessary to understand the limitations and
potential of DOA for its application to natural communities [Verbruggen et al., 2018].
To address this need, here we perform DOA for a large set of in vitro communities that
meet these requirements: close to 300 independent enrichment communities assembled
in multiple, replicate synthetic habitats on three different limiting nutrient conditions, and
assembled to equilibrium under periodic serial dilution cycles [Goldford et al., 2018].

2.3 Results

2.3.1 Data Set

In a recent study [Goldford et al., 2018], we reported the assembly of a total of 276 enrich-
ment communities in three different synthetic environments: M9 minimal medium with
either glucose, citrate, or leucine as the only carbon source. These enrichment communi-
ties were assembled from twelve different environmental sources (including various soil
samples and plant matter collected near Yale University in New Haven, CT). Seven or
eight biological replicates of each inoculum were propagated in each of the three nutrient
environments, under serial dilution with transfers every 48h with a dilution factor of 125×.
A diagrammatic summary of the experiment is presented in Figure. 2.1A. As reported in
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[13], communities were initially very diverse (N = 110 = 1290 unique Exact Sequence
Variants, or ESVs). They typically converged to an approximately stable composition
(containing N = 2−22 ESVs) after 50-60 generations, suggesting that communities were
close to a steady state. Metabolic cross-feeding was found to be widespread and critical for
the coexistence of multiple species on a single limiting resource [Goldford et al., 2018].

2.3.2 Communities assembled in identical environments exhibit a neg-
ative correlation between Dissimilarity and Overlap

We first addressed the question of whether communities assembled in identical environ-
ments do indeed give rise to a negatively sloped DOC at high Overlap. To test this predic-
tion, we took all pairs of communities that had been assembled in the same nutrient-limited
habitats, by pooling together every possible pair of glucose communities, as well as every
pair of citrate (and of leucine) assembled communities. We then measured the Dissimilar-
ity and Overlap for each pair. Applying the same type of statistical analysis used in the
original study by Bashan et al. (Robust LOWESS regression; see “Methods” for details
[Bashan et al., 2016]), we find that the DOC (but not the controls; Supplementary Figure.
2.1) does indeed exhibit a negative slope at high values of Overlap (Figure. 2.1B), and this
is also confirmed by a standard linear regression (D = D0+m∗O;m = −0.56, p < 0.002

by Bootstrapping; Methods) applied to the points with higher than median O (Figure.
2.1B, inset; Methods). The same is true when we analyze each of the three nutrient envi-
ronments separately (Figure. 2.1C), and it also holds when we separate those communi-
ties assembled from either the same or different inoculum (Figure. 2.1D, E). In contrast,
a statistically significant negative correlation between Dissimilarity and Overlap is not
observed for community pairs that are assembled in different environments (e.g., one in
citrate medium, one in glucose medium) (Supplementary Figure. 2).

An expectation of DOA is that communities that contain the same taxa in identical
habitats should have them at highly similar equilibrium abundances, as the underlying
population dynamics would be strongly similar. By contrast, communities assembled in
different nutrient habitats are not expected to have similar species abundances even when
they happen to share a large proportion of common species (high Overlap), as we do not
necessarily expect their dynamical equations to be similar. Consistent with the first hy-
pothesis, we find that, in identical nutrient conditions, the majority of our high-Overlap
(O > 0.98) communities have low Dissimilarity (Figure. 2.1F, see Supplementary Figure.
2.1 for comparison to null) (Mean = 0.188, Median = 0.132, IQR = 0.23). To test
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the second hypothesis, we considered “mixed” pairs of communities, where each com-
munity in the pair was assembled in a different environment. For instance, we find that
glucose–citrate pairs (which exhibit no correlation between D and O (Supplemntary Fig-
ure 2.2 and 2.3)) have a similar Overlap distribution to glucose–glucose and citrate–citrate
pairs (Figure . 2.1G). Yet, the distribution of Dissimilarities for these high-Overlap pairs
(O > 0.98) is shifted up compared to glucose–glucose pairs (t = −12.79, p < 0.002 by
Bootstrapping; Methods) and citrate–citrate pairs (t = −11.965, p < 0.002, by Bootstrap-
ping; Methods) (Figure. 2.1H). This shift persists even if we only consider communities
assembled from the same inoculum (Supplementary Figure. 2.4) and is robust to the Over-
lap threshold chosen (Supplementary Figure. 2.5)).

This last finding is consistent with the idea that population dynamics and equilibria
are strongly convergent when the environments are identical, but not necessarily when the
environments are different. This lends support to the null assumption that species inter-
actions with the environment and with each other are different in different environments,
but strongly convergent in identical environments. Our results support the prediction that
identical environments will generate a negative statistical correlation between D and O,
whereas different environments will not.

2.3.3 Specific taxa can be strongly associated with high Dissimilarity
in replicate habitats

As can be visually appreciated in Figure. 2.1, when environments are identical and Overlap
is high the Dissimilarity in our experimental communities is generally small. However
there are numerous deviations from this rule, and we find multiple community pairs with
high Overlap that still show high levels of Dissimilarity. Considering only communities
with an Overlap > 0.98, we find that 12% of glucose pairs, 9% of citrate pairs, and 17% of
leucine pairs have Dissimilarity >

√
log(2)/2 (which is half of the maximum possible

Dissimilarity, calculated through the root Jensen–Shannon divergence) (Figure. 2.1F).
Similar values are also obtained if we only consider communities assembled from the same
inoculum, (14% of glucose pairs, 9% citrate pairs, 8% of leucine pairs) (Supplementary
Figure. 2.4A). In sum, we find that communities can be dominated by the same set of
ESVs in identical habitats, yet these ESVs, may exist at very different abundances.

We set out to investigate whether communities that deviate from the average trend
captured by the DOC could be associated with the presence of specific taxa. To that end,
we first selected pairs of glucose communities with high Overlap (higher than the median
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of 0.98) that were assembled from the same initial pool of species (for a similar analysis
in citrate or leucine, see Supplementary Table 2.1 and 2.2). We then tested whether any
of the ten most commonly observed ESVs (corresponding to ESVs found in at least 18 of
the 92 glucose communities), were statistically associated with high Dissimilarity. Four of
these ESVs had higher Dissimilarity than expected by chance (p < 0.05, by Bootstrapping,
Methods). Of these, an ESV of the genus Citrobacter had the largest effect (Table 2.1).

To further investigate this point, we split all pairs of communities by whether both
contain this Citrobacter ESV (group I), only one contains it (group II), or none does (group
III) (Figure. 2.2a). The mean Dissimilarity is higher for group I than group II (0.427 vs
0.175, p < 0.003, by Bootstrapping; Methods), and for group II than group III (0.175 vs
0.088, p = 0.06 by Bootstrapping; Methods) Figure. 2.2B. As shown in Supplementary
Figure 2.6, our results are robust to our choice of a “High-Overlap” threshold of 0.98. If
Citrobacter ESV was indeed associated with alternative dynamical states (either through
multistability, or through their contribution to alternative dynamical equations when they
are part of the community), we would also expect the DOC to flatten for glucose–glucose
communities that contain it, relative to those that do not. That is indeed the case, as shown
in Figure. 2.2C, 2.2D, see Supplementary Figure 2.7 for controls).

Similar results were found for citrate communities and leucine communities, where
we found a Raoultella ESV and a Pseudomonas ESV associated with higher Dissimilarity
respectively (Supplementary Tables 2.1 and 2.2, Supplementary Figures. 2.8 and 2.9).
Our results thus reveal that the presence of a single ESV in a community may be strongly
associated with alternative states in community assembly, even amongst communities that
are assembled in the same environment from the same regional pool and contain highly
overlapping sets of taxa.

2.4 Discussion
The first part of this paper tests two fundamental predictions of DOA. First, using publicly
available data from a recent experiment we show that community assembly in identical
environments does lead to a negative correlation between Dissimilarity and Overlap and
a negatively sloped DOC. Second, we show that, as expected, communities assembled
in identical environments that also contain highly overlapping sets of taxa have them at
strongly convergent abundances. This is consistent with what one would expect if their
dynamics were describable by the same equations. Likewise, we would not expect iden-
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tical dynamical equations in different nutrient habitats. Consistent with this expectation,
we found that communities assembled in different nutrient habitats do not have conver-
gent species abundances, even when they happen to share a high number of taxa. This is
reflected in the data by a shift in the Dissimilarity to higher values for those communities
with very large Overlap.

Our results also indicate the existence of specific taxa that are associated with high
Dissimilarity in replicate habitats. In glucose communities, we find an ESV of the genus
Citrobacter, which not only predicts high Dissimilarity between community pairs when it
is present in at least one of the communities, but it also flattens the DOC. Intriguingly,
these results are in line with one of the main findings of the Bashan study, which was
that microbiomes disrupted by C. difficile infection did not exhibit a negative correlation
between Dissimilarity and Overlap, and Dissimilarity remained constant even as Overlap
increased [Bashan et al., 2016]. The negative slope was recovered after a fecal microbiota
transplantation, which restored a healthy microbiota and cured the disease. Although the
reasons for this finding may be very different from the similar result found in our commu-
nities, our results indicate that a tight association between specific taxa and the flattening
of the DOC may be seen even in the absence of an immune system or a complex host.

The publicly available data of Goldford et al. [Goldford et al., 2018] includes the mea-
surement of the complete population dynamics for one glucose pair with high-Overlap
and high Dissimilarity (highlighted in Figure. 2.2A). Both communities in the pair con-
tain the Citrobacter ESV. For this pair, we find that the population dynamics are initially
strongly convergent between the two communities, but bifurcate after 20 generations and
subsequently diverge into alternative compositions (Figure. 2.2E, 2.2F), suggesting the
potential presence of true multistability (i.e., multiple stable steady states are associated
with the same set of species).

Of course, other possibilities exist. For example, the population dynamics may just not
be identical even in replicate habitats due to the violation of the first assumption of DOA
(that the communities are at equilibrium steady state). Communities may either have not
reached equilibrium after 12 transfers, or they may be at a non-equilibrium steady state,
undergoing oscillatory or cyclical dynamics. Neutral population dynamics and stochastic
population dynamics can also lead to variation in community composition that may lead
to increased Dissimilarity [Kalyuzhny and Shnerb, 2017, Hubbell, 2011]. These dynamics
would be observed if communities are moving on a shallow attractor where selection is
weak, or if non-accounted environmental fluctuations shift the position of the fixed points
in the community. The high overlap of the two communities at the ESV level might also
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reflect their differences at the strain level due to rapid evolution. Citrobacter may also
have more sensitive interactions with the rarer members of the community. It is important
to consider that environments do not just passively select for species and determine their
interactions, but rather they are dynamically shaped by the taxa growing in them [Bajić
et al., 2018, Callahan et al., 2014, Laland et al., 2015, Lewontin, 1983]. Therefore, it is
possible that although the supplied nutrients are the same in two communities, the envi-
ronment experienced by the members of our communities is actually different, through the
different effects that species have on it [22].

One limitation of our study is that the communities investigated are species-poor, and
many of our community pairs will only share a few species in common. This can be po-
tentially problematic because it may affect the Dissimilarity measurement [Bashan et al.,
2016]. Despite this caveat, the overall good agreement between our findings and the ex-
pectations of DOA suggests that species richness is not necessarily an impediment for the
application of DOA to taxonomically poor natural communities. Further research would
be needed to establish the precise conditions under which this would be true. More gener-
ally, others have argued that communities assembled along an environmental gradient may
also give rise to negative correlations between Dissimilarity and Overlap [Kalyuzhny and
Shnerb, 2017]. It would be important to test this prediction experimentally (for instance
by establishing mixed nutrient habitats with varying concentrations of glucose and citrate
in between the two “pure” habitats studied by Goldford et al.) but this falls beyond the
scope of this paper.

It is thus important to remark that although sets of communities assembled in identical
habitats present a negatively sloped DOC, the reverse statement is not necessarily true:
the presence of a negatively sloped DOC does not necessarily mean that the habitats are
identical to each other. In fact, grouping together all communities in the experiment,
including those assembled in identical and different environments and projecting them
all into the same Dissimilarity–Overlap plot, we find a negative correlation between D
and O and a negatively sloped DOC (Fig. S10). The reason is that the strong effect of
identical habitats overpowers the effect of nonidentical ones. In our case, we know the
environmental factor that was critically different among these habitats (the single limiting
nutrient), but this is not something that is trivial to identify in any given natural habitat,
even if we remove any known factors of variation across habitats.

Notwithstanding these important caveats, our results confirm in a controlled set of
experiments that microbial dynamics in replicate habitats are strongly convergent on av-
erage and lead to a negatively sloped DOC. In recent years, negatively sloped DOC has

45



been detected for the microbial communities assembled in some (but not all) human body
sites [Bashan et al., 2016], as well as for mycorrhizal fungal communities [Verbruggen
et al., 2018]. In order to correctly interpret these results, it is critical to benchmark the
technique not only against simulations, but also against experimental communities whose
assembly is well understood. Our results have provided a first empirical benchmark using
well-controlled communities. We hope that these findings will contribute to grounding
the expectations and intuitions behind DOA, and contribute to its application to microbial
communities assembled in natural environments. More generally we hope that these re-
sults will encourage other researchers to benchmark novel statistical methods in microbial
ecology using well-controlled in vitro communities.
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2.5 Figures

Figure 2.1: Communities assembled in the same environment show a negative correlation
between Dissimilarity and Overlap
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Figure 2.1: (A) Schematic description of the experiments in ref. [13]. (B) DOC of all mi-
crobial community pairs that have been assembled in the same environment (n=276 Sam-
ples). Shaded regions indicate the 95% confidence interval (Methods). The vertical dotted
red line represents the median Overlap (0.543). The inset shows a linear regression for
communities above the median Overlap. We repeat this regression over the same region,
subsetting the data to consider (C) each nutrient environment separately; (D) subsets of
pairs that have been assembled from the same inoculum (E); subsets of the pairs that have
been assembled different inoculum. For each regression, we report m (slope of the linear
regression) and a p value calculated as the fraction of bootstrap realization in which this
slope is negative (see Methods). (F) Distributions for community pairs assembled in the
same environment (both in glucose, both in citrate, or both in leucine) with high Overlap
(O > 0.98). The dotted red line is at half the maximum possible dissimilarity

√
log(2)/2.

(G) Histogram showing distributions of Overlaps for community pairs where one has been
assembled on glucose and the other on citrate. The dotted lines give the frequency poly-
gon for glucose–glucose community pairs and citrate–citrate community pairs (blue and
yellow, respectively). We use the same binwidth (0.04) for both histograms and frequency
polygons so the two are comparable. h Glucose–citrate communities with high-Overlap
(O > 0.98) have significantly higher mean dissimilarity than glucose–glucose communi-
ties or citrate–citrate communities in the same Overlap range (O > 0.98). Displayed p
values are computed by bootstrapping (see Methods)
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Figure 2.2: A Citrobacter ESV is associated with dynamical dissimilarity in communities
assembled in replicate environments
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Figure 2.2: (A) Dissimilarity and Overlap of microbial community pairs assembled from
the same regional pool on M9+glucose with above-median Overlap (O > 0.98). (B) Dis-
similarity of the same set of communities. For (A) and (B) we label communities by
whether Citrobacter ESV is found in both communities (dark blue), only in one commu-
nity (light blue) or in neither community (yellow). (C) DOC of all pairs of microbial
communities assembled on glucose that contain Citrobacter ESV (n = 25). (D) DOC of
all pairs of microbial communities assembled on glucose that do not contain Citrobacter
(n = 67). (E) Population dynamics for one pair of glucose communities with high Over-
lap (O = 0.98) and high Dissimilarity (D = 0.56) (highlighted in (a) with the red circle).
Structure of the two communities at the ESVl evel at every transfer. (F) Phase portraits
illustrate the dynamics of the most abundant Enterobacteriaceae and Pseudomonadaceae
ESV within those two communities. That black line corresponds to the top community in
(E) and the red line corresponds to the bottom community in (E). FC and FP2 represent
the fraction of the Citrobacter and Psuedomonas.2 ESVs in the population, whereas FEnt
and FPseud represent the fractions of the Enterobacteriaceae and Psuedomonoadacea fam-
ilies. Dynamics are highly convergent until the third transfer, after which the communities
diverge to alternative states.
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2.6 Tables

Table 2.1: For each of the ten most commonly observed ESVs on Glucose we per-
formed one-tailed t-tests to determine whether pairs of highly overlapping communities
(O > 0.98) both containing that ESV had higher Dissimilarity than pairs where at least
one community did not contain the ESV. In this table, we report the identity of the ESV,
the number of communities in which that ESV is found (N) the difference in mean Dis-
similarity, the T-statistic and the p value (obtained by bootstrapping, see Methods). See
Supplementary Tables 2.1 and 2.2 for a similar analysis applied to leucine and citrate com-
munities.

2.7 Material and Methods

2.7.1 Community Assembly Experiment

We analyzed publicly available data from a recent set of in vitro microcosms experiments
[Goldford et al., 2018]. Briefly, diverse microbial communities were isolated from natural
ecosystems and used as the inoculum for a batch culture containing M9 + one of three
carbon sources (Glucose, Citrate, Leucine). Cultures were passaged every 48h with a
dilution factor of 125× and after each transfer, a sample was taken and stored for 16S
community sequencing (Figure. 2.1A). The experiment was conducted for 12 transfers
by which point communities appear to have reached a stable population equilibrium. In
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total, 276 communities were allowed to self assemble (7–8 replicates per Inoculum and
12 Inoculum per carbon source). Community structure was determined at the end of the
12th growth period for all communities using 16s rRNA amplicon sequencing. A subset of
communities was sequenced at each transfer allowing community structure to be tracked
through time.

2.7.2 Calculating Dissimilarity and Overlap for community pairs

To account for differences in the sequencing depth of different communities we first nor-
malize all communities so that each community is represented by the same number of
sequences. Briefly, for each community we create a sample community of N reads sam-
pled from the original read pool without replacement. Here N=4397 was used as this is the
minimum number of reads for all communities analyzed. We then calculated the relative
abundance of each ESV in each community. For each pair of communities, we follow
Bashan et al. [Bashan et al., 2016] and calculate Overlap and Dissimilarity between rela-
tive abundance vectors x and y. The Overlap is given by

O (x, y) =
∑
i∈S

(
xi + yi

2

)
(2.1)

where S is the set of ESVs found in both communities. For the calculation of Dissim-
ilarity only the shared ESVs are considered, and the relative abundance of shared taxa is
renormalized to add up to 1. The Dissimilarity between renormalized vectors X and Y can
be calculated as root Jensen–Shannon divergence

(x, y) =

√√√√1

2

(∑
i

Xilog
Xi

Mi

+
∑
i

Yi log
Yi
Mi

)
, (2.2)

where Mi = Xi+Yi
2

We calculated the Overlap and Dissimilarity for every pair of our 276 communities
at transfer 12 (a total of 37,950 pairwise comparisons). From this dataset, any pairwise
comparison in which the communities shared fewer than two taxa in common is excluded.
These were removed as for these pairs D(x, y) is always 0. In total this gave us a dataset
consisting of 23592 pairwise comparisons.
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2.7.3 Fitting DOCs

In Bashan et al. [Bashan et al., 2016] estimated using the Robust LOWESS a nonpara-
metric scatterplot smoothing method. When analyzing all pairs of communities (Figure.
2.1B, Supplementary Figure 2.2A, Figure 2.2C,D), we implement the same method using
the LOESS function from R default stats package with the following parameters span=0.2,
family=“symmetric”, iterations=5). To compare slopes across different subsets of pairs
(Insets Figure. 2.1B, Figure. 2.1C-E, Supplemntary Figure. 2B-D, Insets Figures. 2.2C,
2.2D) we use a simple OLS regression on data points with above-median Overlap as was
also done by Bashan et al. [Bashan et al., 2016] and later by Kalyuzhny and Shnerb [Ka-
lyuzhny and Shnerb, 2017].

2.7.4 Estimating confidence intervals and P value for DOC

We implemented the same bootstrapping algorithm used by Bashan et al. [Bashan et al.,
2016]. We repeat this bootstrap algorithm 500 times and repeated all our analysis on every
bootstrap realization. Confidence intervals in Figure. 2.1 and Figure. 2.2 represent 95%

percentiles of the curves fitted to the bootstrapped data. The reported p values for the
regression slopes (m) represent the fraction of bootstrap realization for which the OLS
slope is positive (main text and Figure. 2.1, Figure. 2.2, Supplementary Figure. 2.3).

2.7.5 Bootstrapped Welch-tests

To account for the nonindependence of groups of sample pairs, all t-tests were performed
on every bootstrap realization. The reported p values represent the fraction of bootstrap
realizations in which the t-statistic has a different sign to the one calculated from the orig-
inal dataset. When calculating this fraction we excluded bootstrap realizations in which
some groups of sample pairs were unrepresented and so no t-statistic could be obtained.

2.7.6 Randomized data

Each time a DOC is shown, we repeat the analysis on a randomized dataset in which
species assemblage and abundance distribution are kept but the abundance of each taxon
is randomized following Bashan et al. [Bashan et al., 2016]. The randomized results are
shown in Supplementary Figure. 2.1, 2.3 and 2.7.
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2.8 Supplementary Material

2.8.1 Supplementary Figures

Supplementary Figure 2.1: A statistically significant negative correlation between Dissim-
ilarity and Overlap is not observed for randomized samples (see Methods). Panel A is a
randomized version of Fig. 2.1B. Panel B is a randomized version of Fig. 2.1C. Panel D
is a randomized version of panel Fig. 2.1E. Panel E is a randomized version of Fig. 2.1F,
Panel F is a randomized version of Fig. 2.1G. Panel G is a randomized version of Fig.
2.1H.
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Supplementary Figure 2.2: A statistically significant negative correlation between Dis-
similarity and Overlap is not observed for community pairs that are assembled in different
environments (e.g. one in citrate medium, one in glucose medium). This holds true regard-
less of whether we consider: (A) all pairs in different environments; (B) Each contrasting
environment separately. (C) Community pairs assembled from the same inoculum; or (D)
Community pairs assembled from different inocula
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Supplementary Figure 2.3: Randomized Controls for Figure S2.2 also do not show a
negative correlation. Panel A ,B C and D show the randomized controls for Figure S2.2
A,B,C and D respectivel
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Supplementary Figure 2.4: Reproduction of Figure 2.1 F-H considering communities that
come from the same inoculum. (A) Distributions for community pairs assembled in the
same environment from the same inoculum (both in glucose, both in citrate, or both in
leucine) with high overlap (O > 0.98). The dotted red-line is at half the maximum possi-
ble dissimilarity . (B) Histogram showing distributions of Overlaps for community pairs
assembled from the same inoculum where one has been assembled on glucose and the
other on citrate. The dotted lines give the frequency polygon for Glucose-Glucose Com-
munity pairs and Citrate-Citrate community pairs (Blue and yellow respectively). We use
the same binwidth (.04) for both histograms and frequency polygons so the two are com-
parable. (C) Glucose-Citrate Communitie from the same Inoculum with high-Overlap
(O > 0.98) have significantly higher mean Dissimilarity than Glucose-Glucose commu-
nities or Citrate-Citrate communities in the same Overlap range (O > 0.98) (P values
computed using bootstrapping (see methods)).
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Supplementary Figure 2.5: The results plotted in Figure 2.1H are robust to the exact choice
of threshold Overlap (t). In the main text, we show the result for t = 0.98, whereas here
we give the results for a wide range of thresholds (t)
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Supplementary Figure 2.6: The results plotted in Figure 2.2B are robust to the exact choice
of threshold Overlap (t). In the figure, we show the result for the median overlap, whereas
here we give the results for a wide range of thresholds (t)
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Supplementary Figure 2.7: Randomized Controls for Figure 2.C and 2.2D

Supplementary Figure 2.8: A Raoultella ESV is associated with dynamical dissimilarity
in community assembled on Citrate from the same inoculum. Dissimilarity and Overlap of
microbial community pairs assembled from the same regional pool on M9 + Citrate with
above-median Overlap (O > 0.93) (B) Dissimilarity of the same set of communities. For
(A) and (B) we label communities by whether Raoultella ESV is found in both communi-
ties (dark blue), only in one community (light blue) or in neither community (yellow).
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Supplementary Figure 2.9: A Pseudomonas ESV is associated with dynamical dissimi-
larity in community assembled on Leucine from the same inoculum. Dissimilarity and
Overlap of microbial community pairs assembled from the same regional pool on M9 +
Leucine with above-median Overlap (O¿0.89) (B) Dissimilarity of the same set of commu-
nities. For (A) and (B) we label communities by whether Pseudomonas ESV is found in
both communities (dark blue), only in one community (light blue) or in neither community
(yellow)
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Supplementary Figure 2.10: DOC of all microbial community pairs analyzed in this study.
(n = 276 Samples). Shaded regions indicate the 95% confidence interval (Methods). We
do observe a negative DOC but this is largely driven by community pairs assembled in the
same environment. (Panel C and D).
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2.8.2 Supplementary Tables

Supplementary Table 2.1: Repeat of analysis in Table 2.1 for Citrate communities

Supplementary Table 2.2: Repeat of analysis in Table 2.1 for Leucine communities
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3.1 Abstract
A major open question in microbial community ecology is whether we can predict how
the components of a diet collectively determine the taxonomic composition of microbial
communities. Motivated by this challenge, we investigate whether communities assem-
bled in pairs of nutrients can be predicted from those assembled in every single nutrient
alone. We find that although the null, naturally additive model generally predicts well the
family-level community composition, there exist systematic deviations from the additive
predictions that reflect generic patterns of nutrient dominance at the family level. Pairs of
more-similar nutrients (e.g. two sugars) are on average more additive than pairs of more
dissimilar nutrients (one sugar–one organic acid). Furthermore, sugar–acid communities
are generally more similar to the sugar than the acid community, which may be explained
by family-level asymmetries in nutrient benefits. Overall, our results suggest that regular-
ities in how nutrients interact may help predict community responses to dietary changes.

3.2 Introduction
Understanding how the components of a complex biological system combine to produce
the system’s properties and functions is a fundamental question in biology. Answering
this question is central to solving many fundamental and applied problems, such as how
multiple genes combine to give rise to complex traits [Phillips, 2008, Mackay, 2014], how
multiple drugs affect the evolution of resistance in bacteria and cancer cells[Michel et al.,
2008, Woods et al., 2006], how multiple environmental stressors affect bacterial physi-
ology [Cruz-Loya et al., 2019], or how multiple species affect the function of a micro-
bial consortium [Sanchez-Gorostiaga et al., 2019, Gould et al., 2018, Guo and Boedicker,
2016].

In microbial population biology, a major related open question is whether we can pre-
dict how the components of a diet collectively determine the taxonomic and functional
composition of microbial communities. Faith and co-workers tackled this question us-
ing a defined gut microbial community and a host diet with varying combinations of four
macronutrients [Faith et al., 2011]. This study found that community composition in com-
binatorial diets could be predicted from communities assembled in separate nutrients using
an additive linear model. Given the presence of a host and its own possible interactions
with the nutrients and resident species, it is not immediately clear whether such additivity
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is directly mediated by interactions between the community members and the supplied nu-
trients or whether it is mediated by the host, for instance by producing additional nutrients,
or through potential interactions between its immune system and the community members.
More recently, Enke et al., 2019 found evidence that marine communities assembled in
mixes of two different polysaccharides could be explained as a linear combination of the
communities assembled in each polysaccharide in isolation.

Despite the important insights provided by both of these studies, we do not yet have
a general quantitative understanding of how specific nutrients combine together to shape
the composition of self-assembled communities [Pacheco et al., 2021]. Motivated by this
challenge, here we use an enrichment community approach (i.e. where natural microbial
communities are grown in a defined growth medium under well-controlled lab conditions)
to systematically investigate whether the assembly of enrichment microbial communities
in a collection of defined nutrient mixes could be predicted from the communities that
assembled in each of the single nutrients in isolation.

3.3 Results

3.3.1 A null expectation for community assembly in mixed nutrient
environments

To investigate whether communities assembled in pairs of nutrients can be predicted from
those assembled in every single nutrient alone, we must first develop a quantitative null
model that predicts community composition in a mixed nutrient environment in the case
where each nutrient recruits species independently. Any deviation between the null model
prediction and the observed (measured) composition reveals that nutrients are not acting
independently, but rather ‘interact’ to shape community composition. This definition of an
interaction as a deviation from a null model that assumes independent effects is common-
place in systems-level biology[Sanchez, 2019, Tekin et al., 2018].

In order to formulate the null expectation for independently acting nutrients, let us
consider a simple environment consisting of two unconnected demes where two bacterial
species, A and B, can grow together. The first deme contains a single growth limiting
nutrient (nutrient 1), while the second deme contains a different single limiting nutrient
(nutrient 2) (Figure 3.1A). In this scenario, each nutrient influences the abundance of
species A and B independently: the microbes growing on nutrient one do not have ac-
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cess to nutrient two and vice versa. Let’s denote the abundance of species A in demes 1
and 2 by nA,1 and nA,2, and the abundance of species B as nB,1 and nB,2, respectively.
If we now consider the two-deme environment as a whole, the abundance of species A
is the sum of its abundance in each deme nA,12 = nA,1 + nA,2 (likewise, for species B
nB,12 = nB,1 + nB,2). This example illustrates that in the scenario when two limiting
nutrients act independently, each of them recruits species just as if the other nutrient were
not there. In such case, the abundance of each species in a nutrient mix is the sum of what
we would find in the single-nutrient habitats.

Under the null model, the relative abundance of species i in a mix of nutrients 1 and
2 can be written as fi,12(null) = w1fi,1 + w2fi,2 where fi,1 and fi,2 are the relative abun-
dances of i in nutrients 1 and 2, respectively, and w1 and w2 are the relative number of
cells in nutrients 1 and 2 (Materials and methods). Any quantitative difference between
the null model prediction and the observed composition quantifies an ‘interaction’ between
nutrients. Accounting for the presence of such interactions, the model can be re-written as
fi,12 = fi,12(null) + εi,12 where εi,12 represents the interaction between nutrients 1 and 2
(Figure 3.1B).

3.3.2 Experimental system

Equipped with this null model, we can now ask to what extent the nutrients recruit species
independently in mixed environments. To address this question, we followed a similar
enrichment community approach to the one we have used in previous work for studying
the self-assembly of replicate microbial communities in a single carbon source [Goldford
et al., 2018, Estrela et al., 2022] (Materials and methods, Figure 3.2A). Briefly, habitats
were initially inoculated from two different soil inocula. Communities were then grown
in synthetic (M9) minimal media supplemented with either a single carbon source or a
mixture of two carbon sources, and serially passaged to fresh medium every 48 hr for
a total of 10 transfers (dilution factor = 125× ) (Figure 3.2A). The carbon source pairs
consisted of a focal carbon source mixed at equal C-molar concentrations with one of eight
additional carbon sources. We previously found that stable multi-species communities
routinely assemble in a single carbon source (which is limiting under our conditions), and
they converge at the family level in a manner that is largely governed by the carbon source
supplied, while the genus or lower level composition is highly variable (Goldford et al.,
2018). We chose glucose as the focal carbon source because we have previously carried out
multiple assembly experiments in this nutrient [Goldford et al., 2018, Estrela et al., 2022].

67



As the additional carbon sources, we chose nutrients that are simple and metabolically
diverse (sugar vs acid, that contain a different number of atoms of carbon, and that enter
metabolism at different points), namely ribose, fructose, cellobiose, and glycerol (i.e. a
pentose, a hexose, a disaccharide, and a sugar alcohol) and fumarate, benzoate, glutamine,
and glycine (two organic acids and two amino acids). All carbon sources were also used
in single carbon source cultures.

Communities assembled in single sugars contained 5–24 exact sequence variants (ESVs),
mainly belonging to the Enterobacteriaceae family (mean relative abundance ± SD of
≈ 00.98± 0.03), a sugar specialist (Supplementary Figure 3.1). In contrast, communities
assembled in organic acids exhibited a higher richness (12–36 ESVs), and unlike in sugars,
Enterobacteriaceae were generally rare (mean±SD≈ 0.06± 0.06). Instead, communities
were dominated by respirative bacteria mainly belonging to the Pseudomonadaceae (mean
± SD ≈ 0.51 ± 0.25), Moraxellaceae (mean ± SD ≈ 0.18 ± 0.21), and Rhizobiaceae
(mean ± SD ≈ 0.11 ± 0.13) families (Supplementary Figure 3.1). Because of the ob-
served family-level convergence across carbon sources, which is consistent with previous
studies[Goldford et al., 2018, Estrela et al., 2022, Diaz-Colunga et al., 2022], we focus our
analysis below on family-level abundance.

3.3.3 The null model of independently acting nutrients explains a high
fraction of the variation observed

To investigate the predictive power of the null (additive) model, we compare the predicted
and observed relative abundances of each family for each carbon source pair across all
experiments. Our results show that the null model predicts reasonably well the family-
level abundances on average (Pearson’s R = 0.95 and p < 0.001; RMSE = 0.073, N = 223)
(Figure 3.2B,Supplementary Figure 3.2 and 3.3). To confirm that the strong predictive
power of the null model is not an idiosyncrasy of using glucose as the focal carbon source
in the pairs, we repeated the same experiment with succinate (an organic acid) as the focal
carbon source. Although the correlation between observed and predicted abundance is
lower than for glucose, the null additive model is still predictive (Pearson’s R = 0.87 and
p<0.001; RMSE = 0.094; N = 257) (Figure 3.2B).

This result seems to indicate that, at the family level, a simple model that assumes that
nutrients act independently can predict community composition in a pair of nutrients (for
an analysis of this point at the genus and ESV level, see Supplementary Figure 3.4). How-
ever, when we looked at this more closely and broke down our results by carbon source and
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family, we found consistent and systematic deviations from the null model (Figure 3.2C).
For example, across all succinate–sugar pairs, Enterobacteriaceae are significantly more
abundant than predicted by the null model (one-tailed paired t-test, N = 8, p<0.05 based
on 1000 permutations; see Materials and methods), while both Rhizobiaceae and Moraxel-
laceae are less abundant than predicted (one-tailed paired t-test, N = 8, p<0.05 based on
1000 permutations; see Materials and methods) (Figure 3.2C). The null ‘interaction-free’
model also predicts species abundance better in certain carbon source combinations (e.g.
glucose + ribose) than in others (e.g. glucose + glutamine) (Figure 3.2C). The existence of
systematic deviations from the null prediction reveals that some nutrient pairs do not re-
cruit families independently, but instead ‘interact’ with each other to affect the abundance
of specific families.

3.3.4 A simple dominance rule in mixed nutrient environments: sug-
ars generally dominate organic acids

To map the regularities in nutrient interactions observed, we next sought to characterize
the nature of these interactions for each carbon source pair and every family. One helpful
way of visualizing nutrient interactions is to draw the pairwise abundance landscape for
each species and carbon source pair (Figure 3.3A). For instance, a species could be either
more abundant in a pair of nutrients than it is in any of them independently (synergy). Or
it could be less abundant than it is in any of the two (antagonism). Dominance is a less
extreme interaction that can be visualized by the pushing of a species abundance toward
the value observed in one of the two nutrients and away from the average, thus overriding
the effect of the second available nutrient (Figure 3.3A).

When the interaction is positive (ε > 0), the dominant nutrient is the one where the
family grew to a higher abundance. When the interaction is negative (ε < 0), the dom-
inant nutrient is the one where the species grew less well. Mathematically, dominance
occurs when |ε| > 0 and min(fi,1, fi,2) ≤ fi,12 ≤ max(fi,1, fi,2) while synergy and an-
tagonism (forms of super-dominance) occur when |ε| > 0 and fi,12 > max(fi,1, fi,2) and
fi,12 < min(fi,1, fi,2), respectively (Materials and methods). Figure 3.3B shows repre-
sentative examples of dominant carbon source interactions. For instance, Moraxellaceae
and Rhizobiaceae grow strongly on succinate, but they are not found in fructose. When
fructose is mixed with succinate, both families drop dramatically in abundance, despite
their high fitness in succinate alone. Interestingly, however, the dominance of fructose
over succinate is not observed for all families: those two nutrients do not interact on Pseu-
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domonadaceae, whose abundance is well predicted by the null model. Using this frame-
work, we then systematically quantified the prevalence of dominance, antagonism, and
synergy between nutrients for each family (Supplementary Figure 3.6). While 66%of the
nutrient pair combinations exhibited no significant interaction, dominance was by far the
most common interaction amongst those that interacted (75%, Figure 3.3—Supplementary
Figure 3.6A). It occurred predominantly in the sugar–acid pairs, and to a lesser extent in
the acid–acid pairs, and only rarely in the sugar–sugar pairs (Figure 3.3—Supplementary
Figure 3.6B). This result strongly suggests that nutrient interactions are not random but do
have a specific structure that is conserved at the family level (Figure 3.3—Supplementary
Figure 3.6C).

To systematically characterize and quantify nutrient dominance, we developed a domi-
nance index (δ) (Materials and methods). For visualization purposes, the dominance index
for the sugar–acid pairs (we will discuss the aci-acid pairs later) is written as δi = −|ε12|
when the sugar dominates and as δi = |ε12| when the acid dominates. If ε12 = 0, then
δi = 0. That is, in the absence of interaction between nutrients, there is no dominance.
By plotting the dominance index for each pair of nutrients and each family, we observe a
generic pattern of dominance of sugars over acids (Figure 3.3C). The families Moraxel-
laceae or Rhizobiaceae are recruited to the community by most organic acids in isolation,
but they are not found in most sugar communities. When sugars and organic acids are
mixed together, the sugar dominates and both families are at much lower abundances (by
≈ 6-fold in the case of Moraxellaceae and ≈ 114-fold in Rhizobiaceae) than expected by
the null model, even though the organic acid where they thrived is present in the environ-
ment. Consistent with this pattern, we found that pairs of more-similar nutrients (a pair
of sugars or a pair of organic acids) were significantly better predicted by the null model
than mixed organic acid–sugar pairs (Figure 3.3D). No generic pattern of dominance was
observed in the acid–acid mixtures (Supplementary Figure 3.7). When we examine in-
teractions and dominance at the genus level, we find that sugars do not exhibit the same
dominance for all genera within the same family (Supplementary Figure 3.9). This result
is consistent with the convergence of community structure at the family level (despite sub-
stantial variation at lower levels of taxonomy), which we have reported for communities
assembled in a single nutrient [Goldford et al., 2018, Estrela et al., 2022]. Together, these
results indicate that interactions between nutrients are not universal, but rather they are
conserved at the family-level.
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3.3.5 An extension of the null consumer-resource model with an asym-
metry in nutrient benefits recapitulates the dominance pattern
observed

Our findings pose intriguing questions about the mechanisms behind the nutrient interac-
tion patterns we have observed. For instance, is it reasonable to expect that the additive
null model should have worked as well as it did, and better at the family than at the species
level? Why are pairs of more-similar nutrients better explained by the null model than
pairs of more dissimilar nutrients? What may explain why nutrients dominate over oth-
ers at the family level? And why do sugars generally dominate organic acids for most
families?

We have previously shown that many of the properties of our experimental enrichment
communities reflect the generic emergent behavior of consumer-resource models [Gold-
ford et al., 2018, Marsland et al., 2019], and subsequent work extended this finding to
complex natural communities ([Marsland et al., 2020a]). We thus sought to ask whether
our observations regarding the assembly of communities in pairs of resources are simi-
larly reflecting a generic emergent property of consumer-resource models. To address this
question, we followed the same procedure as we and others have done in previous work
[Goldford et al., 2018, Marsland et al., 2020a,b, Serván and Allesina, 2021] and simulated
the top-down assembly of microbial communities in pairs vs single nutrients using a re-
cently developed Microbial Consumer Resource Model (MiCRM) [Goldford et al., 2018,
Marsland et al., 2019, 2020b](see Materials and methods). The MiCRM differs from the
classical MacArthur-Levins model (MacArthur, 1970) in that it includes metabolic cross-
feeding in a manner that preserves thermodynamic balance. The model and the details of
the simulations are described in the Materials and methods section. In brief, 200 species
are seeded into each habitat at the start of a simulation. Each of these is represented by a
different vector of resource uptake rates. These vectors are randomly sampled in a man-
ner that captures the existence of two functional guilds, each of which specializes in a
different group of resources (e.g. sugars vs organic acids) (Figure 3.4A). Members of
the family specializing on sugars (i.e. the Enterobacteriaceae) have on average a higher
uptake rate on each sugar whereas members of the family specializing on acids (i.e. the
Pseudomonadaceae) have on average a higher uptake rate on each acid. The magnitude of
specialization by each family on its preferred resource type is tuned by two parameters,
qA and qS, which modulate the mean and variance of the probability distribution from
which the uptake rates are sampled (see Materials and methods for more details). We
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note that this specialization is quantitative rather than discrete, as all species are assumed
to be able to consume all of the resources (a point that is in general consistent with our
experimental findings [Supplementary Figure 3.10]). Communities are allowed to find a
dynamical equilibrium, at which point we stop the simulation. In total, and in order to
get to generic behavior, we generated 100 simulations each with a different random set of
species (Materials and methods).

A generic property of these simulations is that the species-level community composi-
tion on mixtures of two limiting nutrients is reasonably well described by the additive null
model (Pearson’s R = 0.7 and p<0.001; RMSE = 0.097; N = 2440) (Figure 3.4B; Mate-
rials and methods), which is consistent with previous consumer-resource modelling work
[Marsland et al., 2020a]. In addition, when we group species by the functional groups
they belong to (i.e. family), the predictive ability of the additive null model improves
(Pearson’s R = 0.99 and p<0.001; RMSE = 0.03; N = 414) (Figure 3.4B), a point that is
consistent with our experimental findings (Supplementary Figure 3.4). This family-level
additivity holds when communities are randomly colonized by a different set of species
(Supplementary Figure 3.11), suggesting that family-level additivity is robust to species-
level taxonomic variability. The predictive accuracy of our null model is, however, influ-
enced by the level of resource specialization. The less specialized (i.e. more generalist)
the families are, the lower the predictive power of the null additive model (Supplementary
Figure 3.12).

By contrast, the simulated communities do not exhibit any systematic dominance, nei-
ther at the species nor at the family level (Figure 3.4B). What feature of the MiCRM
might be causing us to miss this experimental behavior? One assumption of the model,
which we had made for the sake of simplicity and for consistency with previous work, is
that all nutrients are equally valuable for the microbes that specialize on them. In other
words, the benefits of growing in each type of nutrient are symmetric. Yet, this assumption
is not really consistent with the empirical reality that glucose specialists, such as Enter-
obacteriaceae, grow more strongly in sugars than organic acid specialists do on organic
acids. This is illustrated in Figure 3.4C, where we plot the growth advantage for seven En-
terobacteriaceae isolates in sugar media vs the growth advantage of Pseudomonadaceae,
Rhizobiaceae, and Moraxellaceae isolates in organic acids.

We postulated that including this asymmetry may unbalance the competition for re-
sources and give rise to nutrient dominance at the family level, as the family that lies on
the winning side of that asymmetry may leverage its enhanced competitive ability in the
most valuable nutrient to displace the losing family from its lower-value nutrient niche. To
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test this intuition, we relaxed the symmetry in resource value that was imposed by default
in the model, and repeated our simulations for different levels of nutrient value asymmetry
(the simulations still include facilitation via metabolite secretion, as we had done in all
prior simulations) (Figure 3.4A, Supplementary Figure 3.13). As we show in Figure 3.4D,
and consistent with our intuition, nutrient dominance at the family level may emerge as a
generic property of microbial consumer-resource models when a nutrient is substantially
more valuable than the other. Reassuringly, our experiments indicate that dominance is
generally favorable to the taxa that benefits from growth asymmetry for example to Enter-
obacteriaceae in sugar–acid mixes, and unfavorable to families in the losing end of growth
asymmetry (Pseudomonadaceae, Rhizobiaceae, and Moraxellaceae) in those same envi-
ronments. This observation is consistent with the behavior of the model (Figure 3.4D).

Our consumer-resource model shows that dominance is a general outcome of consumer-
resource interactions when there exists an asymmetry in nutrient benefit (an asymmetry
that is indeed observed for the families in our communities), but other mechanisms of
dominance may be at play too. For instance, one plausible mechanism that could lead
to dominance is oxygen limitation, in particular if different carbon sources were to have
different oxygen requirements [Hempfling and Mainzer, 1975, Skrinde and Bhagat, 1982].
To explore this idea of asymmetric oxygen demands, we used flux-balance analysis (FBA)
to determine the oxygen demands of growth on each of the single-carbon sources. We
found that, except for benzoate, all carbon sources have similar oxygen demands (Sup-
plementary Figure 3.14). This does not rule out, however, the possibility that kinetics of
growth and oxygen uptake may still contribute to oxygen depletion in a manner that may
further stimulate dominance (in addition to the asymmetric resource benefits we report in
Figure 3.4).

3.4 Discussion
Our analysis indicates that our empirical observations regarding the assembly of microbial
communities in nutrient mixes are consistent with generic behavior of consumer-resource
models. Based on this finding, we cautiously suggest that family-level asymmetries in
nutrient uptake rates may be a possible mechanism for the general nutrient dominance
patterns we have observed, and that a null additive model is in general a good first ap-
proximation for the assembly of microbial communities in simple nutrient mixtures (a
pattern that is consistent with previous work [Faith et al., 2011, Enke et al., 2019]). It is
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important to recognize, however, that other explanations and mechanisms of dominance
may be at play too. Generally, these can be split into two main categories: asymmetries
in how species respond to the provided nutrient and asymmetries that emerge as a result
of the constructed environment. Below, we discuss several specific mechanisms that may
contribute to each of these.

Our null model (and consumer-resource simulations) assumes, by definition, that the
growth of a single species on a mixture of nutrients (in terms of growth rate and yield)
will be the aggregate sum of the growth on each nutrient alone. Multiple mechanisms,
however, could lead to violations of this assumption. Firstly, a species might not consume
both nutrients simultaneously but may instead consume them sequentially, or diauxically,
resulting in fluctuations in the effective resource specialization of each species [Monod,
1942, Lendenmann et al., 2000, Erickson et al., 2017, Pacciani-Mori et al., 2020]. Sec-
ondly, even if a species is co-utilizing both nutrients, the biomass yields may not be addi-
tive, due to synergistic effects of using different nutrients for different cellular functions
(such as energy versus biomass or for synthesis of different biomass precursors) [Lenden-
mann et al., 1996, Pacheco et al., 2019, Wang et al., 2019]. Thirdly, a molecule that can
be used as a nutrient by one species may have an inhibitory effect on another species, for
example benzoate is known to have antimicrobial activities against some bacteria (which
may explain why benzoate dominates sugars for some families in Figure 3C; [Stanojevic
et al., 2009]). The growth dynamics on mixtures of carbon sources have been extensively
characterized in simple sugars for a few model organisms (such as Escherichia coli, Bacil-
lus subtilis, and Pseudomonas aeruginosa), but we still lack a systematic understanding of
mixed-substrate growth across taxa and environment [Harder and Dijkhuizen, 1982, Görke
and Stülke, 2008, Bajic and Sanchez, 2020] . Systematically mapping mixed-resource uti-
lization strategies represents an exciting direction for future work and would allow us to
better predict the effects of environmental complexity on the emergent properties of com-
plex microbial communities.

Importantly, even if species respond to the supplied pair of nutrients in an additive
manner, niche construction (and thus the interactions between species) may not be addi-
tive. For example, species may secrete secondary metabolites or antimicrobial agents on
nutrient mixtures, which may interact with each other [Sánchez et al., 2010, Mendonca
et al., 2020, Fujiwara et al., 2020]. Moreover, cellular growth can change other physico-
chemical properties of the environment aside from carbon source availability, such as by
changing the pH, the accessibility of non-carbon source nutrients leading to co-limitation,
or oxygen availability [Harpole et al., 2011, Cremer et al., 2017, Sánchez-Clemente et al.,
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2020].
The wealth of independent mechanisms that may contribute to nutrient dominance

illustrates the potential importance of this phenomenon. Quantitatively elucidating the
specific mechanisms that may explain the individual patterns of nutrient interactions (or
lack thereof) for each family and in each pair of nutrients would require us to measure the
amounts of all nutrients secreted by every species in each environment over time (i.e. in
each nutrient and in each pair) and then characterize the growth curves of all species in
those nutrients. Although such monumental effort is beyond the scope of this paper, we
hope that our findings and methodology will be a stepping stone towards elucidating how
microbial communities assemble in complex nutrient mixtures and that they will stimulate
further theoretical and empirical work. We propose that top-down community assembly
in combinatorially reconstructed nutrient environments can be a helpful approach not only
to understand the origins of microbial biodiversity, but also to learn how to manipulate
existing microbiomes by rationally modulating nutrient availability.
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3.5 Figures

Figure 3.1: Predicting community composition in mixed nutrient environments:(A) Com-
munity composition in a single nutrient (nutrient 1 or nutrient 2) vs a mixture of nutrients
(nutrient 1 nutrient 2). Assuming that nutrients act independently, the null model pre-
dicts that the abundance of each species in the mixture is the sum of its abundance in the
single nutrients (i.e. additive). (B) Plotting the experimentally measured (observed) rela-
tive abundance in the mixed carbon sources against its predicted (from null model) relative
abundance reveals the presence or absence of interactions. Any deviation from the identity
line (predicted = observed) is the interaction effect (ε). When ε = 0, there is no interaction
between nutrients. When ε is non-zero, community composition is affected by nutrient
interactions. If ε > 0, the null model underestimates the abundance. If ε < 0, the model
overestimates the abundance.
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Figure 3.2: Systematic deviations from the null prediction reveals that some nutrients
interact to shape community assembly : (A) Schematic of experimental design. Two dif-
ferent soil samples were inoculated in minimal M9 medium supplemented with either a
single carbon source (CS1 or CS2) or a mixture of two carbon sources (CS1 + CS2) (three
to four replicates each). Communities were propagated into fresh media every 48 hr for
10 transfers and then sequenced to assess community composition. Carbon source mix-
tures consisted of a focal carbon source (CS1; glucose or succinate) mixed with a second
carbon source (CS2). (B, C) For each pair of carbon sources, we show the experimentally
observed and predicted (by the null additive model) relative abundance of each family in
the mixture. Any deviation from the identity line (predicted = observed) reveals an inter-
action effect. Only the four most abundant families are shown. Error bars represent mean
± SE.
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Figure 3.3: Sugars generally dominate over organic acids
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Figure 3.3: (A) Detecting interactions and hierarchies of dominance between nutrients
on microbial community composition. Drawing the single and pairwise abundance land-
scapes for each species allows us to visualise interactions between nutrients. Multiple
types of interactions are possible, including dominance, synergy, and antagonism. Interac-
tions occur when ε is significantly different from 0 (Materials and methods). Synergy (an-
tagonism) occurs when the abundance in the mixture is greater (lower) than the abundances
in any of the single nutrients independently (Materials and methods). Dominance occurs
when the abundance in the mixture is closer or similar to the abundance in one of the sin-
gles. The landscape also allows us to identify which carbon source has a dominating effect
within the pair. When ε > 0, the growth-promoting nutrient dominates and has an overrid-
ing effect in the community composition. In contrast, when ε < 0, the growth-repressing
nutrient dominates. (B) Two examples of nutrient interactions (succinate + fructose and
glucose + glutamine) exhibiting sugar dominance. Barplots show a representative replicate
from one of the inocula (Figure 2—figure supplements 1–2). For instance, the landscape
for succinate-fructose shows that fructose overrides the effect of succinate by promoting
Enterobacteriaceae (E), and repressing Moraxellaceae (M) and Rhizobiaceae (R) (purple
arrows), whereas no interaction effect is observed for Pseudomonadaceae (P). Error bars
represent mean± SD of the four replicates. (C) Dominance index for the eight sugar–acid
pairs and the four dominant families. Filled circles show the mean± SD of the two inocula
× four replicates for each pair of nutrients, and open symbols show all eight independent
replicates (different shapes for different inocula), except for glycine pairs where N = 6.
Purple indicates that the sugar dominates while orange indicates that the acid dominates.
Lighter purple and orange indicate dominance, while darker purple and orange indicate
super-dominance (synergy or antagonism). An interaction occurs when the abundance is
greater (ε > 0) or lower (ε < 0) in the carbon source mixture than predicted by the null
model (one-tailed paired t-test, p < 0.05, N = 8, based on 1000 permutations; Materials
and methods). In gray are shown cases where there is no interaction, or when dominance
is undefined because the two inocula exhibit opposite dominant nutrient (in which case δ
is shown as both−δ and +δ). (D) Predicted vs observed family-level abundance. For each
pair of carbon sources (CS), shown is the experimentally observed and predicted (by the
null model) relative abundance of each family in the mixed carbon sources. Any devia-
tion from the identity line (predicted = observed) is the interaction effect. The colors show
whether the carbon source pairs are sugar–sugar (SS), acid–acid (AA), or sugar–acid (SA).
Error bars represent mean ± SE. Table shows RMSE for each carbon source pair type.
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Figure 3.4: Family-level asymmetry in nutrient benefits can lead to dominance
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Figure 3.4: (A) Schematic illustrating different scenarios of nutrient preference. There
are two families (FS and FA) and two resource classes (RS and RA). Without resource
specialization, FS and FA have equal access to RS and RA. With symmetric specializa-
tion, each family prefers its own resource class with the same strength. With asymmetric
specialization, one family (FS) has better access to its own resource class (RS) relative
to that of the other family (FA) on its own resource class (RA). (B) A mechanistically
explicit consumer-resource model that incorporates resource competition, resource spe-
cialization and nonspecific cross-feeding (Materials and methods) recovers the predicted
additivity pattern at both the species (left) and family (right) level of taxonomic organi-
zation. The observed relative abundance of each species or family in 300 communities
grown on a different pair of nutrients (100 AA, 100 SS, and 100 SA) is plotted against
the abundance predicted from the same communities grown on each of the relevant single
nutrients (S, A). Each family specializes equally on its preferred nutrient (qS = qA = 0.9)
as in previous work [Marsland et al., 2020b]. In Figure 4—figure supplement 4, we il-
lustrate representative consumption matrices for different choices of qA and qS . (C) 22
strains were isolated from the assembled communities and their growth rates on minimal
M9 media supplemented with one the 10 carbon sources were measured. qS represents
the growth rate advantage of Enterobacteriaceae on sugars relative to the other dominant
family (colored), while qA represents the growth rate advantage of the other family on the
acids relative to Enterobacteriaceae (Materials and methods). When qS is positive, Enter-
obacteriaceae grow faster on the sugar than the other family, while when qS is negative,
Enterobacteriaceae grow more slowly on the sugar than the other family. When qA is pos-
itive, the other family grows faster on the acid than Enterobacteriaceae, while when qA is
negative, the other family grows more slowly on the acid than Enterobacteriaceae. Each
dot corresponds to a sugar-acid pair for a Enterobacteriaceae-other family pair (n = 24).
The growth rate advantage of Enterobacteriaceae on sugars is significantly greater than the
growth rate advantage of the other families on acids (i.e. qS > qA, mean of differences =
0.069, paired t-test, n = 24, p-value¡0.0001). (D) Here we repeat the same simulation as
shown in (B), this time using different combinations of qAandqS (0.05, 0.15, 0.25, 0.35,
0.45, 0.55, 0.65, 0.75, 0.85, 0.95). Heatmap shows the mean dominance level (δ) for dif-
ferent combinations of qA and qS . When δ < 0, the sugar dominates (purple); when δ > 0,
the acid dominates (orange).
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3.6 Material and Methods

3.6.1 Null model for relative abundance

Let us consider a simple scenario of two co-cultures of species A and B growing together
in two separate demes, each containing a single nutrient (labeled 1 and 2). The fractions
of A and B in nutrient/deme one are fA,1 = nA,1/(nA,1 + nB,1) and fB,1 = nB,1/(nA,1 +

nB,1), respectively, and similarly, the fractions of A and B in nutrient/deme two are fA,2 =

nA,2/(nA,2 + nB,2) and fB,2 = nB,2/(nA,2 + nB,2) (where n is the total number of cells of
species A or B). If we consider the two-deme system as a whole (i.e. if we pool together
the amount of species in each nutrient/deme), the fractions of A and B in the mixture
are given by: fA,12 = (nA,1 + nA,2)/(nA,1 + nB,1 + nA,2 + nB,2) and fB,12 = (nB,1 +

nB,2)/(nA,1 + nB,1 + nA,2 + nB,2).
We can define nt,1 = nA,1 + nB,1 and nt,2 = nA,2 + nB,2 as the total number of

cells in the nutrient demes 1 and 2, respectively. We can thus write fA,12 = (nA,1 +

nA,2)/(nt,1 + nt,2). Defining w1 = nt,1/(nt,1 + nt,2) and w2 = nt,2/(nt,1 + nt,2), it is
straightforward to show that: fA,12 = w1fA,1 + w2fA,2. By the same reasoning, we find
that fB,12 = w1fB,1 + w2fB,2.

3.6.2 Sample collection

Soil samples were collected from two different natural sites in West Haven (CT, USA),
with sterilized equipment, and placed into sterile bottles. Once in the lab, 5 g of each
soil sample were then transferred to 250 mL flasks and soaked into 50 mL of sterile 1×
phosphate buffer saline supplemented with 200 µ g/mL cycloheximide (Sigma, C7698) to
inhibit eukaryotic growth. The soil suspension was well mixed and allowed to sit for 48
hr at room temperature. After 48 hr, samples of the supernatant solution containing the
‘source’ soil microbiome were used as inocula for the experiment or stored at−80◦C with
40% glycerol.

3.6.3 Preparation of media plates

Carbon source (CS) stock solutions (Supplementary file 1a) were prepared at 0.7 C-mol/L
(10×) and sterilized through 0.22 µM filters (Millipore). Carbon sources were aliquoted
into 96 deep-well plates (VWR) as single CS or mixed in pairs at 1:1 (vol:vol) and stored at
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-20C. The carbon sources were adjusted to equal C-molar concentrations because carbon is
the main limiting factor. To keep the total amount of carbon constant across all treatments,
pairs contained half the amount of each carbon source compared to their respective single
CS. Synthetic minimal growth media was prepared from concentrated stocks of M9 salts,
MgSO4, CaCl2, and 0.07 C-mol/L (final concentration) of single or pairs of CS. The final
pH of all growth media is shown in Supplementary table 3.1.

3.6.4 Community assembly experiment

Starting inocula were obtained directly from the ‘source’ soil microbiome solution by
inoculating 40 µL into 500 µL culture media prepared as indicated above. For each sample
and carbon source, 4µL of the culture medium was dispensed into fresh media plates
containing the different single or pairs of CS in quadruplicate. Bacterial cultures were
allowed to grow for 48 hr at 30C in static broth in 96 deep-well plates (VWR). After 48
hr, each culture was homogenized by pipetting up and down 10 times before transferring
4 µL into 500 µL of fresh media, and cells were allowed to grow again. Cultures were
passaged 10 times (˜70 generations). OD620 was measured after 48 hr growth. Samples
were frozen at −80◦C with 40% glycerol.

3.6.5 DNA extraction, library preparation, and sequencing

Samples were centrifuged for 40 min at 3500 rpm, and the pellet was stored at −80◦C

until DNA extraction. DNA extraction was performed with the DNeasy 96 Blood and
Tissue kit for animal tissues (QIAGEN), as described in the kit protocol, including the
pre-treatment step for Gram-positive bacteria. DNA concentration was quantified us-
ing the Quan-iTPicoGreen dsDNA Assay kit (Molecular Probes, Inc), and the samples
were normalized to 5ng/µL before sequencing. The 16S rRNA gene amplicon library
preparation and sequencing were performed by Microbiome Insights, Vancouver, Canada
(https://microbiomeinsights.com/). For the library preparation, PCR was done with dual-
barcoded primers [Kozich et al., 2013], targeting the 16S V4 region, and the PCR were
cleaned up and normalized using the high-throughput SequalPrep 96-well Plate Kit. Sam-
ples were sequenced on the Illumina MiSeq using the 300 bp paired-end kit v3.chemistry.
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3.6.6 Taxonomy assignment

The taxonomy assignment was performed as described in previous work (Estrela et al.,
2020). Following sequencing, the raw sequencing reads were processed, including de-
multiplexing and removing the barcodes, indexes, and primers, using QIIME (version1.9,
[Caporaso et al., 2010]), generating fastq files with the forward and reverse reads. DADA2
(version 1.6.0) was then used to infer ESVs [Callahan et al., 2016]. Briefly, the forward
and reverse reads were trimmed at position 240 and 160, respectively, and then merged
with a minimum overlap of 100 bp. All other parameters were set to the DADA2 default
values. Chimeras were removed using the ‘consensus’ method in DADA2. The taxon-
omy of each ESV was then assigned using the naı̈ve Bayesian classifier method [Wang
et al., 2007] and the Silva reference database version [Quast et al., 2013] as described in
DADA2. The analysis was performed on samples rarefied to 10,779 reads.

3.6.7 Quantification of total abundances, interactions, and dominance

We used OD620 after the 48 hr growth cycle as a proxy for total population size (commu-
nity biomass) (Supplementary Figure 3.5). The predicted relative abundance of species
i in a mix of nutrients 1 and 2 was then calculated as fi,12(null) = w1fi,1 + w2fi,2
where fi,1 and fi,2 are the relative abundances of i in nutrients 1 and 2, respectively, and
w1 = (OD6201/(OD6201 + OD6202)) and w2 = (OD6202/(OD6201 + OD6202)). In
Figures 3.2 and 3.3D,Supplementary Figures 3.3 and 3.4, fi,12(null) is calculated as the
mean of the two single carbon source-replicate pairwise combinations (N = 16). Pearson’s
R was calculated using the R function ‘cor.test’ from the ‘stats’ package, and the RMSE
was calculated using the ‘rmse’ function from the ‘Metrics’ package.

To determine whether an interaction between nutrients exists (i.e. ε 6= fi,12−fi,12(null)),
we assess whether the abundance observed in the carbon source mixture is significantly
greater or lower than the abundance predicted by the null additive model (i.e. ε > 0 or
ε < 0, respectively) (one-tailed paired t-test). More specifically, considering the two inoc-
ula and four replicates per carbon source, the family-level analysis was done as follow. For
each carbon source pair and inoculum, four predicted pairs are formed by randomly pair-
ing one replicate of each carbon source. Four unique observed vs predicted pairs are then
randomly formed from the 64 possible combinations (i.e. from the four single nutrient 1×
four single nutrient 2 × four mixed nutrient 12). Up to this point, the pairs are formed for
each inoculum separately, in other words, there is no cross-inocula pairing. Once all N=8
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pairs are formed (i.e. N = 4 pairs per inoculum), they are pooled to perform the one-tailed
paired t-test. The N = 8 pairs are then randomly permuted 1000 times, determining the
t-statistic for each permutation. We establish a 95% confidence threshold for the t-statistic.
The effect observed is statistically significant (i.e. an interaction exists) if a significant dif-
ference is found in more than 95% of the permuted pairs. At the genus level, the analysis
was performed in a similar way, except that the two inocula were kept separately. This is
because, compared to families, the likelihood that genera that are sampled in one of the
inocula are sampled in the other inoculum is much lower.

Once an interaction has been identified (i.e. |ε| > 0), we can determine the type of
interaction formed (Figure 3.3A). Synergy and antagonism (which are forms of super-
dominance) occur when fi,12 > max(fi,1, fi,2) and fi,12 < min(fi,1, fi,2), respectively,
while dominance occurs when min(fi,1, fi,2) <= fi,12 <= max(fi,1, fi,2) (Welch two
sample t-test, p < 0.05). When ε > 0, the nutrient with greater abundance dominates;
when ε < 0, the nutrient with lower abundance dominates. For visualization purposes, we
developed a dominance index (ε). The dominance index for the sugar–acid pairs is written
as δi = −|ε12| when the sugar dominates and as δi = |ε12| when the acid dominates.
The dominance index for the sugar–sugar and acid–acid pairs is written as δi = −|ε12|
when the focal carbon source (glucose or succinate) dominates and as δi = |ε12| when the
additional carbon source dominates.

3.6.8 Isolation of Strains

Several communities (transfer 10) from different inocula and carbon sources were plated
on chromogenic agar (HiCrome Universal differential Medium, Sigma) and grown for 48
hr at 30◦C. Single colonies exhibiting distinct morphologies and/or colours were picked,
streaked a second time on fresh chromogenic agar plates for purity, and grown for 48 hr
at 30◦C. A single colony was then picked from each plate and grown into Tryptic Soy
Broth (TSB) for 48 hr at 30◦C. The single-strain cultures were stored with 40% glycerol
at −80◦C. The isolated strains were sent for full-length 16S rRNA Sanger sequencing
(Genewiz), and their taxonomy was assigned using the online RDP naı̈ve Bayesian rRNA
classifier version 2.11.
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3.6.9 Growth rate estimation

Twenty-two isolated strains belonging to the four dominant families, namely Enterobac-
teriaceae (7), Pseudomonadaceae (5), Moraxellaceae (6), and Rhizobiaceae (4) (Supple-
mentary table 3.2), were streaked from frozen stock on chromogenic agar plates and grown
for 48 hr at 30◦C. For each strain, a single colony was pre-cultured in 500 µL TSB in a
deepwell plate for 24 hr at 30◦C. Each strain was then acclimated into the 10 single car-
bon sources (glucose, fructose, cellobiose, ribose, glycerol, succinate, fumarate, benzoate,
glutamine, and glycine). For this, 2 µL of the grown pre-culture was inoculated into 500
µL of fresh minimal media with each carbon source at a concentration of 0.07 C-mol/l and
grown for 48 hr at 30◦C. The growth curve assay was then performed in a 384-well plate
by inoculating 1 µL of the grown isolate culture on 100 µL of fresh media of the same
carbon source as for the acclimation step (three to four replicates each). OD620 was read
every 10 min for 40 hr at 30◦C. The average growth rate of each strain in each carbon
source was calculated as ravg = log2(Nf/Ni)/(tf − ti) where Nf is the OD at 16 hr (ie.
tf ) and Ni is the OD at 0.5 hr (i.e. ti).

3.6.10 Growth rate asymmetry calculation

The growth rate asymmetry on sugars (qS) is calculated as qS = ravg(E, S) − ravg(O, S)

where ravg(E, S) is the mean average growth rate of Enterobacteriaceae on the sugar S,
and ravg(O, S) is the mean average growth rate of one of the other dominant families (i.e.
Pseudomonadaceae, Moraxellaceae, or Rhizobiaceae) on S. The growth rate asymmetry
on organic acids (qA) is calculated as qA = ravg(E, S)−ravg(O, S) where ravg(O,A) is the
mean average growth rate of one of the other dominant families (i.e. Pseudomonadaceae,
Moraxellaceae, or Rhizobiaceae) on the organic acid A, and ravg(E,A) is the mean aver-
age growth rate of Enterobacteriaceae on A.

3.6.11 Microbial consumer-resource model

Microbial community assembly is modeled using the Microbial Consumer Resource Model
(MiCRM), with simulations implemented using Community Simulator, a freely available
Python package [Marsland et al., 2020b]. This model has been outlined extensively in
previous work and has been shown to qualitatively reproduce ecological patterns across
both natural [Goldford et al., 2018] and laboratory [Marsland et al., 2020a] microbiomes.
Here we describe the exact equations simulated and parameters used in this paper. A more
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general description of this model is given elsewhere [Marsland et al., 2019, 2020b]. Our
MiCRM simulations model the abundance Ni of n species and the abundance Rα of M
resources in a well-mixed chemostat-like ecosystem with continuous resource flow. We
focus on continuous resource flow for simplicity and because previous work has shown
that the major qualitative features of the MiCRM are unaffected by periodic resource sup-
ply (as was the case in our experiments) [Marsland et al., 2020a]. Species interact by
uptake and release of resources into their environment. The dynamics of the system are
governed by the following set of ordinary differential equations:

dNi

dt
= Ni

∑
α

(1− l)Rαciα −m (3.1)

dRα

dt
=
R0
α −Rα

τ
−
∑
j

NjRαCjα +
∑
j,β

NjDα,βRβcjβl (3.2)

Here ciα is the uptake rate of resource α by species i, m is the minimal energy require-
ment for maintenance of species i, τ is the timescale for supply of external resources, R0

α

is the abundance of resource α supplied (i.e. the abundance in the media), l is the fraction
of resource secreted as by-product, and Dα,β is the fraction of resource α secreted as by-
product of β. In line with previous work, the following parameters are kept constant for
all simulations τ = 1, m = 1, and l = 0.5 [Goldford et al., 2018, Marsland et al., 2020a].

In the MiCRM, by-product production is encoded in the metabolic matrix D where
each element Dα,β specifies the fraction of resource α secreted as by-product β. As in
previous work, each column β in Dα,β is sampled from a Dirichlet distribution with con-
centration parameter Dα,β = 1/(sM) where s = 0.3 is a parameter that tunes the sparsity
of the underlying metabolic network. The Dirichlet distribution ensures that each column
sums to one so that the total secretion flux does not exceed the input flux. For simplicity
we used a fixed concentration parameter and so are not assuming any underlying metabolic
structure. The MiCRM also assumes that all species have the same D matrix, that is when
growing on the same resource each species releases the same metabolic by-products.

In our simulations, species differ solely in the uptake rate for different resources ci,α
where i is the species and α is the resource. Taxonomic specialization is introduced in
the form of two families FA and FS that each have a preference for one of two resource
classes A and S, respectively. Each ciα is sampled from a gamma distribution (to ensure
positivity) whose mean < ciα > and variance var(ciα)) depends on the family of i and the
resource class of α. This means that all species are capable of metabolizing all resources.
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Specifically:

and

µc = 10 determines the overall mean uptake rate and σ2
c = 3 determines overall

variance in uptake rate (these parameters are the default value in the Community Simulator
package). Parameters qA and qS tune the relative advantage each specialist family has on
its preferred resource. When qA = 1, only FA consumes resources in A whereas when
qA = 0 both families have equal access to resources in A. Conversely, when qS = 1, only
FS consumes resources in S whereas when qS = 0 both families have equal access to
resources in S.

For each simulation we consider 200 species (100 per family). Each community in
one simulation is seeded with all 200 species. This means that there is no stochasticity
in colonization (though see Supplementary Figure 3.11 where this assumption is relaxed).
We choose 200 species as this is within the range of the number of ESVs in a typical
inoculum for our experiments (110-1290 ESVs, reported in Goldford et al., 2018). The
initial abundances are all set to 1 for simplicity. In line with our experiments, either one
or two resources are supplied in the media and the rest are generated as metabolic by-
products. For simulations with a single supplied resource, Rα

0 = 1000 if α is the supplied
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resource and 0 otherwise. For simulations with two supplied resources, Rα
0 = 500 for

each supplied resource and 0 otherwise. This ensures that the total amount of resources is
kept constant as in our experiments. In total, we consider 20 resources in each simulation
(with 10 resources in each resource class [A or S]) as this gives us communities with
7 ± 2 species (mean ± SD) at equilibrium, which is comparable to the diversity of our
experimental communities.

In line with our experiments, each simulation consisted of three types of mixed-resource
environments (one with two supplied resources in class RA, one with two supplied re-
sources in class RS and one with one resource in class RA and one resource in class RS).
We also included all four single resource environments needed to predict the mixes (i.e.
two with the resources in class RA and two with the resources in class RS). Therefore,
each simulation consisted of seven communities each in a different environment and all
seeded with the same initial set of 200 species. The equilibrium for all seven communi-
ties was found using the SteadyState function in Community Simulator [Marsland et al.,
2020b]. Failed runs where the SteadyState function returned an error were removed from
our analysis. In addition, for each simulation we tested that the SteadyState algorithm had
truly converged to an equilibrium using the same approach as in Marsland et al., 2020a
and removed all non-convergent runs (defined as a run for which |dln(Ni/dt)| > 10−5).
Including these runs would not have qualitatively changed our results.

In the raw numerical output of the run, all species have non-zero abundances due to
limits in numerical precision. A species was considered extinct if its abundance was less
than 10−6, which was set by looking at a histogram of the raw output of our simula-
tions. Once the extinct species were removed, we predicted the relative abundance of each
species i in the mixture of nutrients using the same approach that had been used for the
experimental data. To obtain a statistically robust sample size, we repeated this proce-
dure for 100 replicate simulations, resampling all randomly generated parameters in each
simulation (i.e. resampling all ciα and Dα,β as described above).

3.6.12 Flux balance analysis

We use FBA to estimate whether the different carbon sources were likely to result in large
differences in oxygen demand. FBA is a widely used constraint-based modelling approach
that allows us to predict metabolic fluxes through a stoichiometric metabolic network (as-
suming optimal growth and that cells are in a steady state) [Orth et al., 2010]. For this
analysis, we used a modified version of iJO1366 (see below), a high-quality genome scale-
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metabolic network of E. coli [Orth et al., 2011]. FBA simulations were performed using
the COBRApy Package [Ebrahim et al., 2013b]. We simulated the growth of E. coli on
minimal synthetic media in aerobic conditions containing one of the 10 carbon sources
used in our experiments (Figure 3.2A). These simulations were used to estimate the num-
ber of O2 molecules that would be consumed per carbon atom when growing on each of
the 10 carbon sources (Supplementary Figure 3.14). Except for benzoate, we found that all
of the carbon sources exhibited similar predicted oxygen demands (0.25–0.34 O2/C). This
does not rule out the possibility that the kinetics of growth and O2 uptake may contribute
to increased O2 depletion in one carbon source compared to another, nor that the different
taxa selected for by the different carbon sources might display differences in O2 uptake.
Nonetheless, they do suggest that differences in oxygen stoichiometry are unlikely to be
the main mechanism for dominance across all carbon sources.

For these simulations, all inorganic compounds were assumed to be in excess and their
exchange fluxes were unbounded by setting to an arbitrarily large negative value (-1000
mmol/gDWh). These compounds are as follows: ca2 e, cbl1 e, cl e, co2 e, cobalt2 e,
cu2 e, fe2 e, fe3 e, h e, h2o e, k e, mg2 e, mn2 e, mobd e, na1 e, nh4 e, ni2 e, pi e,
sel e, slnt e, so4 e, tungs e, zn2 e, and o2 e. To estimate the optimal oxygen consumption
per mole of carbon consumed, the exchange flux for each of the 10 carbon sources was set
to -1 cmol/gDWh. We set the lower bound on ATPM maintenance to 0 as we wanted to
estimate the O2/C when resources were in excess and so the effects of growth independent
maintenance would be negligible. Similar results can be obtained using the default ATPM
lower bound in the published model and setting a higher lower bound on the carbon up-
take flux (such as the -60 cmol/gDWh typically used for E. coli on glucose) [Harcombe
et al., 2014]. The biomass reaction (BIOMASS Ec iJO1366 core 53p95M) was used as
the objective function.

90



3.7 Supplementary Material

3.7.1 Supplementary Figures

Supplementary Figure 3.1: Community assembly in a single carbon source: Two soil sam-
ples were inoculated in minimal M9 medium supplemented with a single carbon source
(three or four replicates each) and propagated into fresh media every 48 hr for 10 transfers
(Materials and methods). Shown is the family-level taxonomic composition at Transfer 10
for inoculum 1 (top) and inoculum 2 (bottom). Families with a relative abundance lower
than 0.01 are shown as ‘Other’.
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Supplementary Figure 3.2: Community assembly in a mixture of two carbon sources:
Two soil samples were inoculated in minimal M9 medium supplemented with two carbon
sources (glucose or succinate + another carbon source), and propagated into fresh media
every 48 hr for 10 transfers (Materials and methods). There are three/four replicates per
carbon source pair. Shown is the family-level taxonomic composition at Transfer 10 for
the two inocula. Families with a relative abundance lower than 0.01 are shown as ‘Other’.
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Supplementary Figure 3.3: Systematic deviations from the null (additive) prediction reveal
interactions between nutrients: Shown is the same data as in Figure 3.2B (A) and Figure
3.2C (B) but displayed on a log–log scale so the datapoints at lower relative abundance are
easier to visualize.
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Supplementary Figure 3.4: Comparison of the observed relative abundance and abundance
predicted by the null model. Shown is the observed vs predicted abundance for different
taxonomic levels and focal carbon source (CS) (mean± SE). Table shows the Pearson’s R
and RMSE for each family-focal carbon source combination.
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Supplementary Figure 3.5: Community yield in each single carbon source:Total commu-
nity biomass (OD620) at the end of the 48 hr incubation period at Transfer 10. There are
four biological replicates per carbon source per inoculum, except for glycine with three
replicates.
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Supplementary Figure 3.6: Dominance is the most common type of nutrient interaction,
especially in the sugar–acid mixtures: (A) Interaction type for each pair of carbon source
and family. An interaction between nutrients occurs when the abundance in the mixture is
significantly greater or lower than predicted by the null additive model (one-tailed paired
t-test, p¡0.05 based on 1000 permutations; only cases where N ≥ 6 unique pairs are con-
sidered) (Materials and methods). Multiple types of nutrient interaction are possible: dom-
inance, synergy, and antagonism. Synergy (antagonism) occurs when the abundance in the
mixture is greater (lower) than the abundances in any of the single nutrients independently
(Welch two sample t-test, p < 0.05) (Materials and methods). Dominance occurs when
the abundance in the mixture is closer or similar to the abundance in one of the singles.
(B) Interaction type by carbon source pair type. AA: mixture of two acids; SS: mixture
of two sugars; and SA: mixture of a sugar and an acid. (C) Interaction type shown for the
four most abundant families and ‘other’ families grouped together.

96



Supplementary Figure 3.7: Family-level dominance for mixtures of acid–acid and
sugar–sugar: For each carbon source pair, the filled circles show the mean ± SD of N
= 8 unique replicates (two inocula x four replicates each), and the open symbols show all
eight replicates individually (except for glycine pairs where N = 6). The different shapes
correspond to different inocula. When δ < 0, the focal carbon source (succinate or glu-
cose) dominates. When δ > 0, the additional carbon source dominates (Materials and
methods). Orange or purple corresponds to cases where nutrients interact, in which case
there is dominance (or super-dominance). An interaction occurs when the abundance ob-
served in the mixture is significantly greater (ε > 0) or lower (ε < 0) than predicted by
the null additive model (one-tailed paired t-test, p < 0.05, based on 1000 permutations;
see Materials and methods). Gray corresponds to cases where nutrients do not interact or
dominance is undefined because one carbon source dominates in one of the inocula and
the paired carbon source dominates in the other inocula (in which case δ is shown as both
−δ and +δ). Lighter orange or purple indicates dominance while darker orange or purple
indicates super-dominance (synergy or antagonism) (Materials and methods). Only the
four most dominant families are shown.

97



Supplementary Figure 3.8: Patterns of nutrient interaction at the genus level: (A) Multiple
types of nutrient interactions are possible, including dominance, synergy, and antagonism
(Figure 3A). An interaction occurs when ε is significantly greater or lower than 0 (one-
sided paired t-test, p < 0.05 based on 1000 permutations, Materials and methods). Inoc-
ula are considered separately, and only cases where N ≥ 3 unique pairs are considered.
Synergy (antagonism) occurs when the abundance in the mixture is greater (lower) than
the abundances in any of the singles separately. Dominance occurs when the abundance
in the mixture is closer or similar to one of the single abundances but not above or be-
low any of the single abundances independently (Materials and methods). (B) Interaction
type by carbon source pair type. AA: mixture of two acids; SS: mixture of two sugars;
and SA: mixture of a sugar and an acid. (C) Interaction type is broken down by the 10
most abundant genera spanning the Enterobacteriaceae family (blue), Pseudomonadaceae
(light purple), Moraxellaceae (dark purple), and Rhizobiaceae (orange) families. Note that
Enterobacteriaceae.8 is a non-identified genus belonging to the Enterobacteriaceae family.
The other genera are grouped together and shown as ‘other’.
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Supplementary Figure 3.9: The systematic dominance of sugars observed at the family
level does not apply to the genus level: To determine the genus-level dominance, the two
inocula are considered separately (different shapes) as the genera that are sampled in one
inocula may not be sampled in the other inocula. Purple indicates that the sugar dominates
while orange indicates that the acid dominates. Lighter purple and orange indicate domi-
nance, while darker purple and orange indicate super-dominance (synergy or antagonism)
(Materials and methods). No interaction is shown in gray. An interaction occurs when ε
is significantly greater or lower than 0 (one-sided paired t-test, p < 0.05 based on 1000
permutations, Materials and methods). Shown are the 10 most abundant genera (mean ±
SD). Note that Enterobacteriaceae.8 is a non-identified genus of the Enterobacteriaceae
family.
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Supplementary Figure 3.10: Enterobacteriaceae generally have a strong growth advantage
in sugars :Twenty-two strains belonging to the four dominant families, namely Enterobac-
teriaceae (7), Pseudomonadaceae (5), Moraxellaceae (6), and Rhizobiaceae (4) were iso-
lated from the self-assembled communities and their growth rate on the 10 carbon sources
was measured (Materials and methods, Supplementary file 3.1b). The average growth
rate is measured as the mean cell divisions from 0.5 hr to 16 hr of growth (three or four
replicates each) (Materials and methods). Thus, this approach takes into account both
lag and growth rate, two growth traits that are important in determining the competitive
ability of a strain. We use the first 16 hr of growth rather than a longer time window
to better assess growth rate on the supplied nutrient and avoid potential artifacts from
growth on secretions. Significance level (p-value) is measured by comparing the average
growth rate between Enterobacteriaceae (reference) and each other family (paired t-test,
∗ ∗ ∗ ∗ p < 0.0001; ∗ ∗ ∗p < 0.001; ∗ ∗ p < 0.01; ∗p < 0.1).
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Supplementary Figure 3.11: Stochastic colonization has no qualitative effect on the pattern
of additivity found using a Microbial Consumer Resource Model: Relative abundance of
each species (A) or species grouped by family (B) in simulated communities grown in a
mixture of nutrients plotted against the predicted relative abundance from simulated com-
munities grown in single nutrients assuming that nutrients act independently (Materials
and methods). Communities are colonized with n species, randomly sampled from a re-
gional pool of 200 species, while keeping the number of families constant. When n = 200,
all species are sampled. Decreasing n reduces the initial species variability of the com-
munity and also introduces stochastic colonization through the random sampling of the
regional species pool. For each n, the result of 100 simulations for communities grown in
three carbon source pairs is shown (1 SS pair, 1 AA pair, and 1 SA pair).
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Supplementary Figure 3.12: The predictive accuracy of the null model decreases
with lower levels of resource specialization. In Figure 3.4B (right-hand panel), we
performed consumer-resource model simulations and plotted the observed and pre-
dicted relative abundance of each family in 300 communities grown on a different
pair of nutrients (100 AA, 100 SS, and 100 SA). In those simulations, each fam-
ily is specialized on its preferred nutrient (qS = qA = 0.9). Here, we repeat
these exact simulations for different degrees of resource specialization (qS = qA ∈
[0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]). When qS = qA = 0.05, the two
families are largely unspecialized whereas when qS = qA = 0.95 both families are largely
specialized (Figure Supplementary Figure. 3.13). The predictive accuracy of the null
model is quantified using the RMSE calculated across n = 100 communities.
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Supplementary Figure 3.13: Consumption matrices for different patterns of nutrient pref-
erence between families used in the consumer-resource model simulations
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Supplementary Figure 3.13: (A) The schematics illustrate different scenarios of nutrient
preference for two families (FS and FA) and two resource classes (RS and RA). With-
out resource specialization, FS and FA have equal access to RS and RA. With symmetric
specialization, each family prefers its own resource class with the same strength. With
asymmetric specialization, one family (FS) has better access to its own resource class (RS)
relative to that of the other family (FA) on its own resource class (RA). (B) Consumption
matrices for two families (FA and FS coloured in orange and purple respectively) in two
resource classes (RS and RA). Each row corresponds to a different species (for visualiza-
tion purposes we show 30 species per family) and each column corresponds to a different
nutrient within a resource class (10 nutrients per resource class). The value ciα corre-
sponds to the uptake rate of species i in nutrient α. Four nutrient preference patterns are
illustrated. Without family-level nutrient preference (specialization), species from the two
families have equal access to resources in A (qA = 0) and resources in S (qS = 0). When
each family has a strong and quantitatively similar preference for its own resource class,
there is symmetric specialization (qA = qS > 0). When family FA has a strong preference
for its own resource class A but both families have equal access to resources in S, then
qA > 0 and qS = 0. When family FS has a strong preference for its own resource class S
but both families have equal access to resources in A, then qS > 0 and qA = 0.

Supplementary Figure 3.14: Oxygen demands are similar across the different carbon
sources: We carried out flux-balance analysis using a genome-scale metabolic model of
E. coli to determine if different carbon sources are likely to exhibit large differences in
oxygen demand (Materials and methods). On the y-axis, we plot the oxygen exchange
flux/carbon flux for each of the 10 carbon sources used in this study.
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3.7.2 Supplementary Tables

Carbon source Supplier Reference pH (in M9) Final concentration (mM)
D-Glucose VWR 0188-500 6.83 11.67
D-Cellobiose Sigma 22150-10G 6.84 5.83
D-Fructose Acros Organics 161355000 6.79 11.67
D-Ribose Acros Organics AC132361000 6.81 13.99
Glycerol (80%, w/v) Teknova G8797 6.81 23.33
Sodium Succinate hexahydrate Alfa Aesar 419A3 6.84 17.50
Sodium hydrogen fumarate Alfa Aesar B24683 6.11 17.50
Sodium benzoate Alfa Aesar A15946 6.80 10.0
L-Glutamine 200mM (29.23 mg/mL) Sigma G7513-100ML 6.80 14.0
Glycine Sigma G7126-100G 6.82 35.0

Supplementary Table 3.1: Carbon sources used in this study
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Family Genus Transfer CarbonSource Inoculum Replicate
Enterobacteriaceae Raoultella T10 glucose I1 R2
Enterobacteriaceae Citrobacter T10 glucose-cellobiose I1 R1
Enterobacteriaceae Klebsiella T10 glucose-cellobiose I1 R1
Enterobacteriaceae Citrobacter T10 succinate I2 R1
Enterobacteriaceae Enterobacter T10 succinate I2 R1
Enterobacteriaceae Klebsiella T10 succinate I2 R4
Enterobacteriaceae Raoultella T10 glutamine I2 R2
Moraxellaceae Acinetobacter T10 succinate I2 R1
Moraxellaceae Acinetobacter T10 succinate I2 R1
Moraxellaceae Acinetobacter T10 succinate I2 R4
Moraxellaceae Acinetobacter T10 succinate I2 R4
Moraxellaceae Acinetobacter T10 glutamine I2 R2
Moraxellaceae Acinetobacter T10 glutamine I2 R2
Pseudomonadaceae Pseudomonas T10 glutamine I2 R3
Pseudomonadaceae Pseudomonas T10 ribose I1 R1
Pseudomonadaceae Pseudomonas T10 benzoate I1 R3
Pseudomonadaceae Pseudomonas T10 fumarate I2 R2
Pseudomonadaceae Pseudomonas T10 benzoate I2 R3
Rhizobiaceae Rhizobium T10 succinate I2 R1
Rhizobiaceae Rhizobium T10 succinate I2 R1
Rhizobiaceae Rhizobium T10 succinate I2 R4
Rhizobiaceae Rhizobium T10 glutamine I2 R2

Supplementary Table 3.2: Taxonomy of strains used in the growth rate assay and commu-
nity they were isolated from.
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Chapter 4

Predicting Microbial Community
Assembly across Environments

4.1 Abstract
Predicting the effects of the metabolic environment on the taxonomic composition of mi-
crobial communities is a major goal for microbiome research. Here we combine an enrich-
ment community approach with consumer resource modelling to show that the composi-
tions of microbial communities assembled in different metabolic environments is predicted
by the taxonomic distributions of the metabolic traits under selection. We hypothesize that
environments selecting for correlated traits will select for quantitatively similar commu-
nities, a hypothesis we confirm experimentally. Correlations in metabolic traits across
environments can be predicted using genome-scale metabolic models, allowing us to pre-
dict microbial community assembly in novel environments. Our results reveal that despite
the combinatorial complexity of diverse communities, the effects of selection can be pre-
dicted if we can identify conserved metabolic structures determining trait values across
environments.

4.2 Introduction
A major challenge in ecology and evolution is to quantitatively predict shifts in the ge-
netic and phenotypic composition of diverse communities in response to environmental
change. This extends across scales of ecological complexity; from predicting allele fre-
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quency changes within a single species to predicting changes in the functional and taxo-
nomic composition of multi-species communities [Lässig et al., 2017, McGill et al., 2006].
In microbes there is widespread interest in predicting: the abundance of resistance alleles
when populations are exposed to antibiotics [Martı́nez et al., 2007, Suzuki et al., 2014,
Pinheiro et al., 2021] ; the prevalence of viral escape mutants in response to neutralizing
antibodies [Hie et al., 2021]; and the effects of diet on gut microbiome composition [Wu
et al., 2011, Faith et al., 2011, David et al., 2014a].

A large body of microbiome research has shown that the composition of natural mi-
crobial communities is strongly influenced by the metabolites present in the environment
[Faith et al., 2011, David et al., 2014b,a]. Recent studies; both in natural habitats [Burke
et al., 2011, Human Microbiome Project Consortium, 2012, Louca et al., 2016a,b] and
in well-controlled laboratory ecosystems [Goldford et al., 2018, Bittleston et al., 2020,
Estrela et al., 2022, de Jesús Astacioa et al., 2021], have shown that microbial commu-
nities subject to identical metabolic environments typically converge to taxonomic attrac-
tors at coarse phylogenetic levels despite variability in species composition. Nonetheless,
quantitative rules that can predict the taxonomic compositions of communities in different
metabolic environments remain elusive [Costello et al., 2012, Koskella et al., 2017]. At-
tempts to quantitatively predict the response of communities to well defined environmental
change has only been possible in communities that involve a small number of taxa (≤ 3),
and where the phenotypic properties of each community member have been extensively
characterized [Harcombe et al., 2014]. Extending these predictions to even moderately di-
verse communities is intractable due to combinatorial explosion in the number of possible
interactions, both between pairs and groups of cells.

Intriguingly similar combinatorial challenges have been encountered when trying to
model other complex self assembly processes in biology, notably protein folding [Jumper
et al., 2021]. Predicting the stable 3D structure of a protein from chemical interactions
between amino acid residues alone has proven impossible because of the vast conforma-
tional space that needs to be explored. Despite this, predictions of protein structure have
been conducted using comparative approaches that leverage the shared evolutionary his-
tory of proteins[Shindyalov et al., 1994, Marks et al., 2011]. Using homology modeling,
one can predict the three dimensional structure of an unknown protein, by identifying con-
served structural motifs from homologous sequences [Roy et al., 2010]. Inspired by this
approach, we set out to explore whether the response of complex communities to differ-
ent environments could be predicted using a comparative approach leveraging the shared
evolutionary history of microbial metabolism.
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4.3 Results

4.3.1 Community composition in a given environments depends on
the taxonomic distributions of quantitative metabolic traits

In order to address this question one would need to study the assembly of replicate di-
verse multi-species communities in many different environment whose biochemical com-
positions was known and well-defined. To that end, we have turned to our experimen-
tal enrichment community system, where diverse microbiomes taken from natural habi-
tats are repeatedly passaged into fresh minimal media containing a single limiting carbon
source (Figure 4.1A). Following our previously established protocol (see methods) com-
munities from 11 different starting inoculum were serially passaged and allowed to self-
assembled in 7 different carbon sources ) each entering central metabolism using different
metabolic pathways (Figure 4.1A)(D-Glucose, Pyruvate, Citrate, Acetate, L-Glutamine,
L-Phenylalanine and L-Leucine). In line with our previous work communities assem-
bling in different environments formed diverse multi-species communities (containing 6-
49 ESVs) with coarse-grain family-level compositions that where highly reproducible in
each environment (Figure 4.1B). Family-level community dissimilarity (Bray-Curtis) for
communities assembling in the same carbon source is significantly lower (median: 0.23)
than for communities assembling in different carbon sources (median, 0.45, one-tailed
Kolmogorov-Smirnov, p < 1e-06 , Supplementary Figure 4.1) and differences in the sup-
plied carbon source accounts for a significant fraction of the variation in the the abundance
of the most cosmopolitan families (84% for the Enterobacteriaceae and 47% for the Pseu-
domonadaceae (see Supplementary Figure 4.2 for other families)).

In previous work we have examined communities assembling in glucose limited habi-
tats and shown that that the family level convergence reflects an emergent metabolic-self
organisation arising from the phylogenetic conservation of the metabolic traits under selec-
tion [Estrela et al., 2022]. Specifically members of the Enterobacteriacia are selected for
their ability to uptake and generate quantitatively similar levels of biomass from glucose
whilst secreting quantitatively similar levels of the metabolic by-product acetate. Con-
versely Pseudomonadaceae are selected for the ability to uptake and generate quantita-
tively similar levels of biomass from acetate. These family level differences in growth on
glucose stem from differences in homologous metabolic pathways conserved at a coarse-
phylogenetic level: Enterobacteriacia (and the closely related Aeromonadaceae) metabo-
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lize glucose using the Embden-Meyerhof-Parnas (EMP) pathway which generates a higher
ATP yield than the Entner-Doudoroff Pathway (ED) on which Pseudomonadaceae (and the
closely related Moraxellaceae) rely [Stettner and Segrè, 2013].

Does the family-level conservation of quantitative metabolic traits extend to the non-
glucose carbon sources metabolized using different metabolic pathways? Other carbon
sources used in our community assembly experiment are known be metabolized using al-
ternative metabolic pathways which show varied taxonomic distributions. For example
acetate can be metabolized using either the ACS pathway or the more inefficient PtA-
AckA pathway [Enjalbert et al., 2017]. Moreover in the inferred metagenomes of com-
munities assembled in different carbon sources we observed highers levels of enzymes in-
volved in metabolizing the corresponding resource (Supplementary Figure 4.3). Given that
the core metabolic pathways associated with carbohydrate, organic acid and amino acid
metabolism are often conserved [Peregrı́n-Alvarez et al., 2009] we hypothesized that the
metabolic traits under selection would generically show family-level conservation leading
family-level convergence during in community assembly .

To test this hypothesis we studied a library of Gammaproteobacteria strains that we
had isolated with unique full-length 16s sequences (N = 54) (see methods). These strains
covered six of the eight most common families found in our communities including Enter-
obacteriacia (n=34), Pseudomonadaceae (n=16), Aeromonadacae(n=1), Moraxellaceae(n=1),
Comamonadaceae(n=1), and Alcaligenaceae(n=1). The reconstructed phylogenetic tree
for these isolates is shown in Figure 4.1C) (see methods). We quantified the growth rate
of our isolates in all 7 supplied carbon sources (methods) (Figure 4.1C) and mapped the
empirical growth rates onto the phylogeny (7 CS growth rates). We observed significant
family level conservation of growth rates across environments, which we quantified us-
ing a phylogenetic imputation approach (methods). This quantified how well one could
predict the growth rate of an isolate in a given carbon source from it’s relative position
on the 16s rRNA phylogenetic tree (Supplementary Figure 4.4). The growth rates on all
carbon source showed some degree of predictability though this varied by carbon source
(i.e Pearson’s R = 0.89 for Glucose vs R = 0.4 for Acetate). ESVs belonging to families
displaying a faster growth rate on the supplied carbon sources were consistently found
out at higher abundances in the self-assembled communities (Figure 4.1D).Moreover on
all 7 carbon sources the most abundant family was the one containing the fastest growing
strains (Supplementary Figure 4.5) This confirms our hypothesis that differences in com-
munity composition across environments predictably arise from differences in metabolic
traits conserved at the family level.
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4.3.2 Convergent community assembly depends on the conservation
of by-product production and nutrient uptake capabilities

The precise abundance of a family in a community at equilibrium depends not just on its
growth rate on the supplied carbon source but also on cross-feeding interactions which we
have previously shown to play a major role in structuring communities assembling in min-
imal Glucose [Estrela et al., 2022, Goldford et al., 2018]. If the family level conservation
of growth on different carbon sources (shown in Figure 4.1C) stems from the evolutionary
conservation of the underlying metabolic pathways, than we should expect member of the
same family to secrete similar by-products resulting in conserved cross-feeding interac-
tions Giri et al. [2021], Oña et al. [2021].

To determine whether this was indeed the case for our isolates we systematically quan-
tified metabolic by-product production and nutrient uptake of all 54 isolates when growing
on minimal glucose. In previous work we had measured the amount of the metabolic by-
products: acetate, succinate and d-lactate (methods) secreted after 16 hrs of growth for a
subset of our 54 strains Estrela et al. [2022]. Here we filled any gaps in these measurements
and extended them to include the amounts of secreted gluconate, and 2-ketogluconate (see
methods) as these metabolites are known to be major by-products of glucose metabolism
for the Pseudomonadaceae [del Castillo et al., 2007] (Supplementary Figure 4.6A-B). We
find that members of the same family tend to have highly similar by-product profiles (Fig-
ure 4.2A). To explore whether similar patterns of by-product secretion would be observed
for other carbon sources we used liquid-chromatography mass spectrometry (LC-MS) and
analyzed the byproducts of growth of a pair of enterobacteriaceae strains and a pair of
Pseudomonadaceae strains (Methods) on 5 different carbon sources over a 48hr period.
On all 5 carbon sources members of the same family produced more similar metabolic-
by-products than members of different families (Supplementary Figure 4.7).

Does the predictability of family level composition depend on the conservation of
metabolic niche construction? To explore this question we turned to a microbial consumer
resource model (MiCRM) (section 3.6.11) which we have previously shown can repro-
duce quantitative ecological patterns in self assembled laboratory communities Marsland
et al. [2020b], Goldford et al. [2018]. We paramaterized the model using the empirically
measured trait values for the 54 isolates grown on minimal glucose i.e using by product
quantification and growth rate quantification on the secreted by-products (Figure 4.2A-B,
Supplementary Figure 4.6). Using this model we simulated 100 communities on minimal
glucose each composed of a randomly chosen subset of the 54 isolates (Figure 4.2C). The
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relative abundance of the families in the simulated communities is reproducible across
replicates and is quantitatively similar to that observed experimental glucose communities
shown in Figure 4.1. When we repeated these simulations randomizing either metabolic-
by-production across families or nutrient uptake and yield across families communities
no longer converge to similar family-level compositions. These simulations thus confirm
our intuition that convergent community assembly in our experimental system depends on
the conservation of both by-product production and of nutrient uptake capabilities (Figure
4.2C).

4.3.3 Substrates that use overlapping metabolic pathways select for
similar communities

We have shown that predictability of community assembly in a given environments de-
pends on the taxonomic conservation of quantitative metabolic traits. Related taxa when
grown in the same carbon source tend to have similar growth rates and produce similar
by-products because they use the same conserved metabolic pathways (Figure 4.2). By
the same logic we reasoned that the same taxa grown in different carbon sources would
show more similar uptake rates,yields and by-products if the carbon source are metabo-
lized using the same metabolic pathway. To test this hypothesis we expanded the list of
environments in which grew our isolates to include 12 additional carbon sources and quan-
tified the growth of all 54 isolates in these carbon sources (Figure 4.3A). Across all isolates
some pairs of carbon sources rates showed significant positive correlations in growth rate
and some pairs carbon source displayed significant negative correlations in growth rate
(Figure 4.3B). Hierarchical clustering on these correlations identified two clear substrate
classes, ’Glycolytic’ substrate which include all the sugars and enter metabolism through
Glycolysis and ’Gluconeogenic’ resources which include most organic acids and which
enter metabolism directly through the TCA Cycle (Figure 4.3C) Buffing et al. [2018]. To
determine whether these resource classes also lead to similar by-products we performed
untargeted metabolomics on the spent media of an Enterobacter and a Pseudomonas strain
after 24hrs of grow in the different minimal media (4.3D). We find that the spent me-
dia on different carbon sources clustered by whether the carbon source was Glycolytic or
Gluconeogenic.

Given the similarity in metabolic trait across these two substrate classes we hypothe-
sized that communities assembling in Gluconeogenic substrate should be more similar to
one another than communities assembling in Glycolytic Substrates. To test this hypothesis
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we took a single community and allowed it assemble in a library of carbon sources , 21
of which were Glycolytic and 20 of which were Gluconeogenic (Figure 4.3F). Glycolytic
Carbon Sources selected for communities dominated by Enterobacteriaceae whereas Glu-
coneogenic Carbon Sources selected for communites dominated by Pseudomonadaceae.
To test whether the similarities in community composition across pairs of ’metabolically
similar’ carbon sources was quantitative as well as qualitative, we turned to flux balance
analysis and for each carbon source calculated the optimal metabolic fluxes through a uni-
versal gram-negative bacterial model. Carbon sources that used overlapping metabolic
pathways (quantified by the Euclidean distance in Metabolic Flux) selected for similar
family level community compositions (Figure 4.3F). Using this quantification of metabolic
similarity we turned to a machine learning approach and trained a Lasso regularized linear
Model to predict the family level abundance in communities assembled on a novel carbon
source from the fba flux vector alone (Method). We obtained a high cross-validation accu-
racy and a significant correlation between the predicted and observed relative abundance
of the most abundant families (Figure 4.3G).

4.4 Discussion
Previously we have shown that microbial communities will converge to similar family
level compositions when assembling on minimal glucose reflecting the taxonomic parti-
tioning of metabolic function [Estrela et al., 2022]. By extending this work to non-glucose
environments here we demonstrate that family level community composition is generically
predicted by the taxonomic distribution of metabolic traits (Figure 4.1). At first glance the
fact that community assembly shows this predictability appears to be in conflict with a
large body of work that has found that metabolic traits are often conserved at shallow phy-
logenetic depths Martiny et al. [2013, 2015]. For example, the ability to grow on a given
substrate can be highly variable even at a strain level [Sabarly et al., 2011]. Our works
helps to resolve this conflict as we show that convergence during community assembly
depends not simply on the ability to grow, but on the quantitative traits selected for by
both the supplied and constructed environment (Figure 4.2).

Moving beyond binary classifications of metabolic function and explicitly measuring
quantitative metabolic traits led to the identification of conserved correlations that held
across environments. Specifically substrates metabolized using overlapping metabolic
pathways displayed similar growth rates and resulted in similar by-products, irrespective
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of taxonomy (Figure 4.3A-D). Due to these similarities, carbon sources metabolized using
overlapping pathways selected for quantitatively similar community compositions (Figure
4.3E-G). By taking of advantage of genome-scale metabolic modelling we can quantify
the overlap in metabolic pathway utilization between pairs of substrates. One can leverage
this quantification to predict the compositions of a novel set of communities assembling
in a novel set of carbon sources (Figure 4.3G).

Just as the 3D structure of a proteins can be predicted by identifying conserved struc-
tural motifs, we propose that the taxonomic structure of complex communities can be pre-
dicted by identifying conserved functional motifs. Here we have shown that these types of
predictions are possible in the context of self-assembled enrichment communities subject
to different metabolic environment. Future work will be needed to explore whether other
types of selective pressure can similarly be predicted in other types of communities.
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4.5 Figures
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Figure 4.1: Community composition in different environments depends on the taxonomic
distribution of quantitative metabolic traits: (A) Diagram of experimental scheme. Com-
munities from 12 different inoculum were allowed to self-assemble in M9 minimal me-
dia containing one of 7 different carbon sources. These 7 carbon sources enter central
metabolism through different metabolic pathways (B) Communities assembling on differ-
ent carbon sources selected for distinct yet highly reproducible family level community
compositions (n=84). Boxplot shows the relative Abundance of the two dominant families
(Enterobacteriaceae and Pseudomonadaceae) in all the communities assembled on differ-
ent carbon sources (See supplementary Figure 4.1 for other families (C) Phylogenetic tree
and normalized growth rates on the 7 different carbon sources for n=54 isolates. Growth
rates showed different phylogenetic distributions on the different carbon sources (D) For
each carbon source the average growth rate of isolates belonging to each family is cor-
related with the Abundance of ESVs of that family in the self-assembled communities
(Pearsons R =0.88, P < 0.01).
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Figure 4.2: Predictability of community assembly depends on the conservation of by-
product production and nutrient uptake capabilities: (A) Similarities in metabolic by-
product profile (DX,Glc) for all isolates after 16hr of growth on glucose. Barplots show
metabolic by-product profile for a represantive pair of Pseudomonadaceae (left barplot)
and Enterobacteriacea (right barplot). Heatmap shows euclidean distance in secretion pro-
file for every pair of strains. Strains are grouped by phylogenetic similarity (with colours
on the edge of the plot corresponding to the different families as in Figure 4.1. (B) Corre-
lated growth on metabolic by-product (Ri,α) of all isolates after 16hr. Scatter plots show
metabolic by-product profile for a Representative pair of Pseudomonadaceae (left plot) and
Enterobacteriacea (right plot). Heatmap shows pearsons correlation coefficent for every
pair of strains. (C) Using these measured trait values we paramaterize a consumer resource
model and simulate 100 random communities assembling on minimal glucose. Simulated
communities (top Right) are similar in composition to the experimental communities (top
left). This no longer holds true when we either byproduct production (bottom left) or the
nutrient uptake capabilities are no longer conserved at the family level (bottom right)
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Figure 4.3: Substrates metabolized using overlapping metabolic pathways display similar
metabolic traits resulting in similar communities: (A) We measured the growth rate of 54
isolates on 19 different carbon sources (B) Scatter plot shows three representative pairs
of substrate. Isolates display significant positive correlations in growth rates (Pearsons
R > 0, P < 0.01) across some pairs of substrate and significant negative correlations in
growth rate (Pearsons R < 0, P < 0.01) across other pairs of bustrates. (C) Hierarchi-
cal clustering of correlation coeficients between the growth rates on a pair of substrate.
The two clusters that emerge directly correspond to Glycolytic and Gluconeogenic car-
bon sources (D) For a single Enterobacter and single Pseudomonas strain we performed
untarged metabolomics on the spent media after 24hr of growth for a library of different
carbon sources. Carbon sources belonging to the same resource class lead to more similar
by-products. (E) Communities were assembled in a library of 41 different carbon sources.
Each bar corresponds to a different carbon source (grouped by whether the carbon source
is glycolytic or Gluconegeonic (F) Metabolically similar carbon sources (quantified using
FBA) select for similar communities at the family level (quantified using bray-curtis dis-
similarity) (G) Predicted vs observed relative abundance for communities assembling in a
novel carbon source (see section 4.6.9).
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4.6 Methods

4.6.1 Community assembly experiments

In the first community assembly experiment (data shown in Figure 4.1) communities taken
from 12 different soil inoculum where serially transferred in M9 minimal media sup-
plemented with one of seven possible carbon source (D-Glucose, Pyruvate, Citrate, L-
Glutamine, Acetate, L-Leucine and L-Phenylalanine). All carbon sources were added at
equal c-molar concentrations (0.07 C-mol/L). Communities where initialized by inoculat-
ing 4µl of the source community into 500µl (as in Goldford et al 2018) of fresh minimal
media. The communities where grown in 96 deep well plates(VWR) at 30C without shak-
ing for 48hr. At the end of the 48hr growth cycle 4µl was transferred to 500µl of fresh
media. This was repeated for a total of 12 transfers ( 84 generations).

In the second community assembly experiment (data shown in figure 4.3) 2 com-
munities each taken from a different soil inoculum where first grown in Tryptic Soy
Broth (TSB). Each enriched community was used as inoculum for M9 minimal media
supplemented with equal c-molar concentrations (0.07 C-mol/L) of one of 41 different
possible carbon sources .These carbon sources were: Benzoate, Methanol, Ethanol, 1-
Propanol, Butanol, Glycolate, Galactitol, Propionate, Acetate, Formate, L-tartrate, Hex-
anoate, Ribitol, Myo-Inositol, D-Mannitol, Pyruvate, Melibiose, D-Glucose, D-Fructose,
D-Galactose, L-Lactate, D-Sorbitol, Salicin, Cellobiose, D-Arabinose, L-Arabinose, Lac-
tose, 2-Oxoglutarate, Trehalose, Sucrose, Glycerol, Raffinose, L-Rhamnose, D-Ribose,
Maltose, Citrate, Fumarate, Succinate, L-Malate, Butyrate and Glyoxylate. The commu-
nities where grown under the same conditions as in the first community assembly

After the final transfer culture samples were stored at-80C after mixing with 40% Glyc-
erol. Sequencing and Taxonomic Assignment was conducted as described in 3.6.5 and
3.6.6. For the first community assembly experiments samples were rarefied to a maximum
sequencing depth of 19969 read. For second community assembly experiment samples
were rarefied to a maximum sequencing depth of 17582 reads

4.6.2 Phylogenetic Tree Reconstruction

We started with a library of 100 Gammaproteobacteria isolates for which we had se-
quenced the full-length 16S rRNA gene [Estrela et al., 2022]. Low quality bases were
removed from the start and end of the forward and reverse reads using the biopython
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implementation of the motts motified trimming algorithm [Cock et al., 2009]. After merg-
ing the forward and reverse reads we eliminated every potentially duplicate sequence by
aligning every pair of sequences using the NeedleCommandline function in biopython and
counting the mismatches between all pairs of sequences. We conservatively only consid-
ered mismatches as a pair of non-identical bases which had phred quality score > 10 and
that were less than 20 bp from the end of our sequences. Removing any potentially du-
plicate sequences(i.e any sequence with more than 1 mismatch) gave us 54 full-length 16s
rRNA sequences. Multiple sequence alignemnt was then conducted using clustalw ver-
sion 2.0 [Larkin et al., 2007]. We inferred a Maximum Likelihood Phylogenetic tree using
IQTREE2 version 2.1.2 with 1000 boostrap replicates (iqtree -s alignment.fa -bb 1000)
[Minh et al., 2013, Kalyaanamoorthy et al., 2017, Minh et al., 2020]. All subsequent
analysis was performed on the consensus tree.

4.6.3 Growth trait quantification

Isolates were streaked from glycerol onto chromogenic agar and grown at 30C for 24hr
(HiCrome Universal differential Medium from Sigma). Single colonies of each isolate
were used to inoculate 500uL LB(Lennox) in a 96 deep-well plate. These pre-cultures
were incubated at 30C shaking at 200rpm for 24hr. After 24hr 100uL of each sample was
collected to measure Optical density (OD) 620 (which had reached between 0.2 and 1.5).
Pre-Cultures were then diluted 1:100000 in M9 supplemented with one of 19 possible car-
bon sources (D-Glucose, D-Fructose,D-Galactose, D-Ribose, L-Arabinose, Glycerol, Glu-
conate ,2-Ketogluconate,Pyruvate, D-Lactate ,Citrate , 2-Oxoglutarate,Succinate,Fumarate,L-
Malate,L-Glutamine,L-Leucien,Acetate,L-Phenylalanine).

The final volume for the growth assays was 100uL in 96 well plates. OD620 mea-
surements were performed at 30 minute intervals over a 48hr period with an Epoch 2
microplate spectrophotometer (BioTek). Between readings culture plates were stored with
lids on in a Microplate Stacker (Bioplate) at 30C without shaking.

From the growth curve of each isolate (i) on each carbon source (α) we estimated the
yield (wiα = Nf ), average growth rate (riα = log(Nf/N0)/(tf ) and nutrient uptake rate
(ciα = riα/wiα). In these equations tf is the time at which the supplied resource has been
fully consumed, Nf is the OD620 at this time point and N0 is the OD at the start of the
growth curve (calculated using the OD of the inoculating pre-cultures).

Different strains on different carbon sources will consume the supplied resource on
different timescales (i.e will have different tf ). Because it would be practically infeasible
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to measure the supplied resource concentration of all isolates we assumed that the supplied
resource had been fully consumed when growth curves reached either a diauxic shift or
approached carrying capacity. To obtain a robust estimate of tf across all growth curves
we deployed a heuristic approach. We first eliminated any noise arising from the lag
phase by only considered time-points after the OD had reached half-carrying capacity
tmid (estimated using the growth-curver package [Sprouffske and Wagner, 2016]). Only
considering timepoints after tmid we took as our tf the minimum of the following three
time-point i) first time at which a negative first derivative is observed ii) time at which
the minimum first derivative is observed and iii) first time at which a drop in average
growth rate was observed. Visual inspection of our growth curves confirmed that this
combinations of criteria, avoided unreliable growth rates estimates due to noisy stationary
phase dynamics (i.e due to biofilm formation). On glucose this heuristic gave us a mean
(tf ) for the Enterobacteriaceae of 13.7hr and for the Pseudomonadaceae of 28hr which is
in line with estimates obtained from glucose concentration curves [Goldford et al., 2018].

4.6.4 By-product measurements on glucose

Isolates were preconditions to growth on glucose minimal media (500µL) for 48hr. 4µL

of the preconditioned cultures were inoculated into 500uL fresh glucose media. 100µl

samples were collected after 16h and their OD620 was measured. The remaining sample
was centrifuged at 3000rpm for 25 min to separate cells from supernantant. Supernatants
were transferred to a 96 well plate 0.2µm AcroPrep filter plate on top of a 96 well NUNC
plate fitted with the metal collar adaptor and centrifuged at 3000 rpm for 10 min. The
supernatant was immediately frozen at -80C until processing.

Additional glucose,acetate,lactate and succinate measurements were conducted as de-
scribed previously [Estrela et al., 2022].Gluconate concentrations were measured using a
D-Gluconate assay kit (ab204703). 2-Ketogluconate concentrations were measured as de-
scribed in Molina et al. [2019]. Briefly 50ul of o-phenylenediamine dihydrochloride was
combined with 100ul of diluted filtered culture supernatant and heated at 100C for 30 min-
utes. The absorbance of the reaction mixture was measured at 330mm and 2-ketogluconate
concentration were estimated by comparing the diluted supernatant to a standard curve.

122



4.6.5 Phylogenetic Imputation of Quantitative Metabolic Traits

In order to quantify the extent to which strain-level metabolic traits could be predicted from
the relative position on the 16s rRNA phylogenetic tree we combined phylogenetic impu-
tation using a brownian motion evolutionary model with leave-one-out cross-validation.
For each isolate all measurements of its traits were removed and the value was imputed
using the phylopars.predict function in the Rphylopars package[Bruggeman et al., 2009].
We repeated this predictions for all isolates and trait measurements independently. The
degree of phylogenetic predictability is quantified as the correlation between the observed
and predicted trait values across the complete cross-validation dataset.

4.6.6 Targeted LCMS of E.coli, Enterobacter, Pseudomonas and P.putida
supernatant across carbon sources

E. coli MG1655, P.putida KT2440, an Enterobacter and a Pseudomonas isolate from the
glucose communities in Goldford et al. [2018]) were revived on LB Agar. For each strain
we picked two replicate colonies and inoculated them into 50ml falcon tubes containing
5ml of LB(Lennox). Falcon tubes were incubated at 30C (shaking) for 16hrs. After this
all 8 populations were brought into balanced exponential phase by diluting (1:5) 3 times
into fresh LB. The first three dilutions were performed at 1hr intervals after which cultures
were allowed to grow for an 1hr and 30min. At this point cells were centrifuged and
washed three times in M9 minimal media containing no carbon source to remove any left-
over LB before being resuspended in M9 Minimal media. Cells were normalized to a
pre-innoculation OD of 0.1.

All 8 samples were used to innoculate 3 replicates and grown at 30C in 500ul of M9
media containing one of 5 possible carbon sources (D-Glucose, D-Fructose, Glycerol,
Pyruvate and L-Malate). Each replicate was used for a different timepoint ( 16hr,28hr and
48hr). At each timepoint OD readings were taken and the supernatant was extracted as
described in subsection 4.6.4. Metabolite quantification in samples was conducted using
liquid-chromatography mass spectrometry as described in Estrela et al. [2022]
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4.6.7 Untargeted LCMS of Enterobacter and Pseudomonas super-
natant across carbon sources

An Enterobacter and a Pseudomonas isolate from Estrela et al. [2022] were revived on
chromogenic agar. Three replicates of each isolate were preconditions for 48hr on mini-
mal media containing one of the following 15 carbon sources: D-Glucose ,D-Fructose ,D-
Galactose ,D-Ribose ,L-Arabinose ,Glycerol ,Gluconate , 2-Ketoglucoante ,Pyruvate , D-
Lactate ,Citrate ,Fumarate ,L-Malate ,Acetate, L-Glutamine,L-Leucine or L-Phenylalanine.
After preconditioning 4ul of culture was transferred to fresh media which was grown for
24hr before spent media extraction. Growth conditions and spend media extraction were
carried out as described in subsection 4.6.6. 50ul samples were submitted for untargeted
metabolomics analysis via LCMS.

4.6.8 Genome-Scale Metabolic Modelling using Flux Balance Analy-
sis

For every carbon source in the experiment shown in Figure 4.3 we used Flux Balance
Analysis to obtain a vector of fluxes through a typical microbial metabolic network. For
this analysis we used a previously published universal gram-negative bacterial model
[Machado et al., 2018] that was capable of growing on every carbon source studied in
this paper. For these simulations we followed the same procedure as described in subsec-
tion 3.6.12. All carbon sources were supplied to the model at equimolar concentrations
by setting the exchange flux to -1 cmol/gDWh. Each carbon source could thus be associ-
ated with a unique vector of metabolic fluxes. All simulations were conducted using the
cobrapy package [Ebrahim et al., 2013b].

4.6.9 LASSO prediction of community composition in a novel carbon
source

We used leave-one-out cross-validation to determine whether we could predict the com-
position of communities assembling in a novel carbon source. Linear regressions were
trained on the 40 of the Carbon Source in the Community Assembly experiment shown
in Figure 4.3 and used to predict the composition of communities assembled on the 41st
carbon source. We repeated this for all 41 carbon source in that experiment. The FBA flux
vectors for each carbon sources (subsection 4.6.8) were used as the independent variable
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for the model, while the dependent variable was the family-level community composition.
Linear regressions were regularized using a LASSO regularizer.

4.7 Supplementary Material

4.7.1 Supplementary Figures
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Supplementary Figure 4.1: Communities assembled in the same environment have more
similar family-levels community composition than communities assembled in different
environments (one-tailed Kolmogorov-Smirnov, p < 1e-06). Heatmap show Family-level
Bray–Curtis dissimilarity for every pair of 84 communities assembled as part of the exper-
iment shown in figure 4.1A.
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Supplementary Figure 4.2: Family level community composition is convergent across en-
vironments. Boxplots show the relative abundance for all families found in at least 10 of
the 84 communities assembled as part of the experiment shown in figure 4.1A
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Supplementary Figure 4.3: Metagenomes were inferred using Picrust2. Each point corre-
sponds to a community assembled in one of 7 carbon sources. The y axis shows the frac-
tions of genes in the inferred metagenome that are involved in Glycolysis (A), The TCA
Cycle (B) or Amino Acid Degradation (C). Communities assembled in different carbon
sources showed significant differences in the relative abundance of genes involved these
pathways (one-way anova).A post hoc Tukey test confirmed that communities assembled
on D-Glucose and Pyruvate had significantly (P¡0.01) higher fraction of genes involved in
Glycolysis, Communities assembled on Citrate,L-Glutamine and Acetate had higher lev-
els of genes involved in the TCA Cycle and communities assembled on L-Leucine and
L-Phenylanine had higher levels of genes involved in Amino acid degradation
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Supplementary Figure 4.4: Predicted versus observed Growth Rate for n= 54 Gammapro-
teobacteria strains on each of the 7 carbon sources shown in Figure 4.1. Predictions where
made by combining leave-one cross-validation and phylogenetic imputation as outlined
in Section 4.6.5. Points along the identity line (dotted black line where predicted = ob-
served),correspond to perfect predictions. On all 7 carbon sources we find a significant
positive correlation between predicted and observed growth rate (Pearson’s R > 0 and
p < 0.001).
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Supplementary Figure 4.5: On all seven carbon sources the family containing fastest grow-
ing strains in monoculture (X axis = 1) had the highest average abundance in the self-
assembled communities (Y axis = 1). On 6 of the seven carbon the second fastest growing
’family’ (X axis = 2) was the second most abundant in the community (Y axis = 2).
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Supplementary Figure 4.6: Phylogenetic conservation of cross feeding traits. (A) Experi-
mentally measured Metabolite secretion profile (DX,glc) for 54 isolates grown for 16 hours
on M9 minimal glucose (B) Experimentally measured growth rates on secreted metabolite
by-products of glucose metabolism. As in Supplementary Figure 4.7 we used phyloge-
netic imputation to quantify the predicted versus observed by-product secretions (C) and
growth Rate (D) . For all measured substrate we find a significant positive correlation both
between predicted and observed secretions and betweem growth rate (Pearson’s R > 0
and p < 0.001). 131



Supplementary Figure 4.7: Members of the same family produce more similar by-products
when grown on the same carbon source. We used Targeted LCMS to quantify the Concen-
tration of metabolites secreted by E. coli, Enterobacter P.putida and Pseudomonas after
16,28 and 48 hours of growth. Heatmap shows the euclidean distance in metabolic by-
products production for each carbon source at each timepoint . Blue squares show more
similar secretions
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