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Abstract

Computational Studies of Packing and Jamming in Biological Systems

John D. Treado

2022

The application of coarse-grained computational models to the study of physical systems has ex-

ploded in recent years, in part due to the relative simplicity of such models compared to the drastic

complexity that can be found in the natural world. These models have been of particular use to the

study of biological systems, as living things are typically highly complex and live far from thermo-

dynamic equilibrium. In this thesis, I will present several coarse-grained computational models of

different biological systems with the aim of identifying the role played by the purely physical con-

straints of packing and jamming. In the first part of this thesis, I will describe a model of globular

protein cores based on jammed granular materials. I will show that this model displays the same

void structure as real globular protein cores, and that the inherent protocol-dependence of packing

generation yields insights into systematic differences between various experimental techniques used

to resolve protein structures. In the second part of this thesis, I will describe a computational

model of particles that can deform their shape in response to applied stress. I will first analyze how

the rigidity of single particles in this model affects the collective behavior of many co-interacting

deformable particles, as well as indicate how this model may be adapted for the study of tissue

fluidization. I end the thesis with an analysis of packing constraints across the development and

phylogeny of the spongy mesophyll tissue of leaves and flowers.
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Chapter 1

Introduction

The study of biological systems using theoretical physics has grown substantially over the last half

century, in part due to the relative simplicity of model physical systems compared to the dras-

tic complexity inherent in living things. As advanced computational resources and methods have

also increased during this same time frame, computational physics has become the tool of choice

for studying complex physical systems of all varieties, from complex materials to climate change.

Computational biological physics has therefore emerged as an important area of research, uniting

theoretical concepts in the areas of soft condensed matter and statistical physics to experimen-

tal observations of biological processes across scales, from individual biomolecules to the scale of

ecosystems. The ability of computational methods to capture relevant phenomena across such a

broad range of scales relies on the simple fact that computational models simplify biological systems

down to their barest.

For example, the Vicsek Model of collective migration [1] seeks to model the ability of individual

biological agents to move together collectively, yet in its simplest form its only relevant parameter is

the amount of error each agent makes in aligning their local velocities. Despite this incredibly simple

form, the model displays a novel phase transition that helps explain complex migration behavior

across a wide variety of biological systems, from bacterial colonies [2, 3] to the developing zebrafish

tailbud [4] to flocks of starling [5]. While the Vicsek Model itself has been heavily studied since

its inception, the fact of why it is successful has also garnered significant attention [6]. While this

remains an important direction of research in and of itself, the consensus as to why simple models

can be applied to complex biological phenomena is emerging that there must be some dominant

physical contribution that can explain at least a significant portion of data in any given biological

system. It therefore remains vital to construct simplified (even overly-simplified) physical models

of biological systems to seek out these dominant contributions. With such models in hand, we can

begin to build a fundamentally physical understanding of biological systems where the knowledge

of certain constraints allows one to predict and describe vastly different biological phenomena.

In this thesis, I will describe two separate research directions in this spirit that attempt to

boil down different biological down to their essentials in order to better understand problems of

biological diversity and universality. The first direction will focus on studying the arrangement
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of amino acids in the cores of folded proteins, and the second direction will focus on constructing

models of densely-packed cells in tissues. While these models are focused on phenomena separated

by orders of magnitude of length and time, they are united by the importance of packing in biological

phenomena. Packing, or the spatial arrangement of discrete objects into a confined space, plays a

vital role in many material and mathematical problems, but is an essential constraint across biology

for the simple reason that life often seeks to efficiently store lots of material in a small space. From

the packing of DNA in chromosomes to the packing of buildings in organized human settlement,

space remains an ever-important constraint to which Life must always adapt. When things become

packed too tightly, they become jammed, which can either aid or hinder biological processes. In

this thesis, I will describe the development and application of computational models meant for the

study of packing and jamming to protein cores and cells in tissues.

In Chapter 2, I will demonstrate how jamming can be used as a framework for understanding the

structure of protein cores in globular (i.e. folded) proteins. I will describe a computational model of

jammed packings of amino acid-shaped particles, and show that the distribution of void space and

local packing environments in our model system will be nearly identical to that observed in high-

resolution X-ray crystal structures of globular proteins. In Chapter 3, I will compare X-ray crystal

structures to protein structures obtained by nuclear magnetic resonance (NMR) spectroscopy, and

use protocol-dependence of packings of amino acid-shaped particles to help understand systematic

differences observed between the two classes of experimentally-observed protein structures. In

Chapter 4, I will turn my attention to the development and study of a model of deformable polygons

that can be used to study a host of soft matter systems composed of objects that can change shape

in response to stress. In particular, I will focus on how mechanical properties at the single-particle

level impact mechanical properties of the bulk. Finally, in Chapter 5, I will describe how to look

beyond jamming to how packing constraints across developmental stage and species affects the

spongy mesophyll, a porous tissue that provides stability and airflow to the interiors of leaves and

flowers. Chapter 2 will cover material published in Ref. [7], Chapter 3 will cover material published

in Ref. [8], and Chapter 4 will cover material published in Ref. [9].
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Chapter 2

Packing and voids in protein cores

2.1 Introduction

A significant driving force in protein folding is the sequestration of hydrophobic amino acids from

solvent. Moreover, these buried amino acids are densely packed in the protein core [10]. In fact,

the packing of core residues has been linked directly to protein stability [11]. For example, large-

to-small amino acid mutations, which can increase interior protein cavities, or voids, are known to

destabilize proteins when they are subjected to hydrostatic pressure [12–14] and chemical denat-

urants [15, 16]. Understanding the connection between dense core packing and voids is therefore

crucial to understanding the physical origins of protein stability and reliably designing new protein

structures that are stable [17]. However, no such quantitative understanding yet exists, and it is

currently difficult to distinguish computational protein designs that are not stable in experiments

from experimentally observed structures [18].

In previous studies [19–21], we found, using collective side chain repacking, that the side chain

conformations of residues in protein cores (from a collection of high-resolution protein crystal struc-

tures) are uniquely specified by hard-sphere, steric interactions. Moreover, we have shown that,

when considering hard-sphere optimized atomic radii, the core regions in proteins possess the same

packing fraction ϕ ≈ 0.56 as that found in simulations of dense, random packings of purely repul-

sive, amino acid-shaped particles. This result suggests that the packing fraction of protein cores is

determined by the bumpy and non-symmetric shape of amino acids, and not by the backbone or

local secondary structure.

However, materials that share the same packing fraction do not necessarily possess the same

internal structure. In this article, we characterize the void space in experimentally obtained and

computationally generated protein cores to further test the geometric similarities between these

two systems. We show below that dense random packings of amino acid-shaped particles have the

same local packing fraction, void distribution, and percolation of connected void space as protein

cores, which indicates structural equivalence.

Our results suggest that the computationally generated packings can be used as mechanical

analogs of protein cores to predict their collective mechanical response. Further, our results em-

3



(a) (b)

Figure 2.1: Visualization of (a) local and (b) connected voids from the same computationally
generated packing of N = 64 amino acid-shaped particles. Only the central Alanine (Ala) with
the neighboring Alanine, 2 Isoleucines (Ile), Leucine (Leu), and Valine (Val) are shown for clarity.
The neighboring amino acids share at least one common surface Voronoi cell face with the central
Ala. In (a), the central Ala is enclosed by its surface Voronoi cell. In (b), the connected void space
is visualized using points on a grid. For clarity only 75% of the points are shown, and the grid
spacing (g = 0.7Å) is large compared to values used in the text. In both (a) and (b), the atoms are
colored as follows: C (green), O (red), N (blue), and H (white). See Fig. 2.8 for visualizations of
the connected void space throughout the entire simulation domain.

phasize the connection between structurally arrested, yet thermally fluctuating, protein cores and

the jamming transition of highly nonspherical particles [22]. Although the similarity between struc-

tural glasses and proteins at low temperatures has been known for several decades [23–27], prior

computational studies have mainly focused on the transition from harmonic to anharmonic confor-

mational fluctuations on length scales spanning the full protein. In contrast, our studies identify

key structural similarities between jammed packings of amino acid shaped particles and the cores

of protein crystal structures.

This article is organized into four sections and three appendices. In Sec. 2.2, we describe the

database of high-resolution protein crystal structures that we use for our structural analyses and

the computational methods we use to generate jammed packings of amino acid-shaped particles.

We also outline two methods to measure the void distribution in the two systems: a local measure

of void space using surface Voronoi tessellation, and a non-local or “connected” measure of void

space similar to that used by Kertèsz [28] and Cuff and Martin [29]. In Sec. 2.3, we compare the

results of both the local and connected void measurements for jammed packings of amino acid-

shaped particles and protein cores and find that both void measurements are the same for both

systems. In Sec. 2.3.1, we show that the Voronoi cell volume distributions in both systems are

described by a k-gamma distribution with similar shape factors k. In addition, we find that the

distribution of the local porosity (η = 1 − ϕ) is the same for protein cores and jammed packings
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of amino acid-shaped particles. In Sec. 2.3.2, we identify the void percolation transition as a

function of the probe particle accessibility for the connected voids, and find that protein cores and

jammed packings of amino acid-shaped particles share the same critical probe size that separates

the percolating and non-percolating regimes. In Sec 2.3.3, we investigate the critical properties

of this percolation transition, and show that they are similar to void percolation of systems of

randomly placed spheres, but distinct from void percolation in jammed sphere packings. In Sec. 2.4,

we summarize our results, discuss their importance, and identify future research directions. We

include three appendices with additional details of our computational methods. In Appendix 2.5.1,

we provide details for the computational method we use to generate jammed packings of amino

acid-shaped particles. In Appendix 2.5.2, we discuss the differences between protein cores in the

Dunbrack 1.0 database, and the core replicas we generate from jammed packings of amino acid-

shaped particles. In Appendix 2.5.3, we discuss the differences between the connected void cluster

size distributions in the systems considered in Sec. 2.3.3.

2.2 Methods

To benchmark our studies of local and connected void regions, we use a subset of the Dunbrack

PISCES Protein Database (PDB) culling server [30, 31] of high-resolution protein crystal structures.

This dataset, which we will refer to as “Dunbrack 1.0”, contains 221 proteins with < 50% sequence

identity, resolution ≤ 1.0 Å, side chain B factors per residue ≤ 30 Å2 and R factor ≤ 0.2. We add

hydrogen atoms to each protein crystal structure using the Reduce software [32]. To determine

core amino acids, we calculate the solvent accessible surface area (SASA) for each residue using

the Naccess software [33] with a 1.4 Å water molecule-sized probe [34]. To compare the SASA

for residues with different sizes, we calculate the relative SASA (rSASA), which is the ratio of

the SASA of the residue in the protein context to that of the residue outside the protein context,

along with the Cα, C, and O atoms of the previous amino acid in the sequence and the N, H, and

Cα atoms of the next amino acid in the sequence. We define core residues as those with rSASA

≤ 10−3, and we define a protein core as a set of core residues that each share at least one Voronoi

cell face (defined below) with each other. We find similar results if the threshold for defining a core

residue is smaller, although there will be fewer “core” residues. We showed in previous work that

the local packing fraction decreases significantly for residues with rSASA > 0.05 [34]. See Fig. 2.2

(a) for an example core region in a protein from the Dunbrack 1.0 database, and Fig. 2.9 for the

size distribution of protein cores in the Dunbrack 1.0 database.

We will compare the structural properties of the cores of protein crystal structures and jammed

packings [35] of amino acid-shaped particles. In previous studies, we found that the packing fraction

of core regions in proteins is ϕ ≈ 0.56, which is the same as that of jammed packings of purely

repulsive amino acid-shaped particles without backbone constraints [20, 36]. Here, we will focus

exclusively on packing the hydrophobic residues: Ala, Leu, Ile, Met, Phe, and Val. The amino

acid-shaped particles will include the backbone atoms N, Cα, C, and O, as well as all of the side

chain atoms, with the atomic radii given in Ref. [20], which recapitulate the side chain dihedral

angles of residues in protein cores. The packings of amino acid-shaped particles contain mixtures

of Ala, Leu, Ile, Met, Phe, and Val residues, with each residue treated as a purely repulsive, rigid
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Figure 2.2: (a) Core residues in an example globular protein (PDB code: 3F1L). Non-core regions
are drawn using the ribbon representation, and the 11 core amino acids are drawn in all-atom
representation. (b) Jammed packing of the same 11 core residues in (a). (c) The surface Voronoi
cell volume V v distribution plotted as a function of x = (V v−V vmin,α)/(⟨V v⟩α−V vmin,α) and fit to a
k-gamma distribution (black line) with k = 6.06± 0.08 and 5.29± 0.27 for packings of amino acid-
shaped particles (circles) and protein cores (squares), respectively. ⟨V v⟩α is the average and V vmin,α

is the minimum SV cell volume of residue type α. The inset of (c) is the cumulative distribution
function F (x) for the data in the main panel.

body composed of a union of spherical atoms with fixed bond lengths, bond angles, and side-chain

and backbone dihedral angles taken from instances in the Dunbrack 1.0 database.

We choose which residues are included in each packing using two methods. For method 1 (M1),

we generate C = 20 jammed packings of the exact residues found in each distinct protein core in the

Dunbrack 1.0 database. For example, if protein X has a core with R residues, we produce C jammed

packings of those exact R residues. If r of these R residues are not one of the hydrophobic residues

we consider, these residues are removed and a jammed packing is generated with the remaining

R − r residues. This method seeks to mimic the core size and amino acid frequency distribution

found in the Dunbrack 1.0 database. Note that we do not remove r residues from the corresponding

protein core in the Dunbrack 1.0 database; non-hydrophobic residues are only excluded from the

initial conditions used to generate packings of amino acid-shaped particles. In method 2 (M2), we

randomly select hydrophobic residues from the Dunbrack 1.0 database with frequencies set by the

fraction of each amino acid type found in the Dunbrack 1.0 database. The frequencies are 0.29

(Ala), 0.19 (Leu), 0.17 (Ile), 0.05 (Met), 0.07 (Phe) and 0.23 (Val). In method 2, the identities of

the residues in the jammed packings only match those in protein cores on average.

We now briefly describe the computational method for generating jammed packings of amino

acid-shaped particles. We use a pairwise, purely repulsive linear spring potential to model inter-

residue interactions. Because the residues are rigid particles with each composed of a union of

spheres, we test for overlaps between residues µ and ν by checking for overlaps between all atoms i on

residue µ and all atoms j on residue ν, respectively. Note that this potential is isotropic and depends

only on the distances between atoms on different residues. (See Eq. (2.14) in Appendix 2.5.1.)

We place N residues with random initial positions and orientations at packing fraction ϕ0 = 0.40
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in a cubic simulation box with periodic boundary conditions and then increase the packing fraction

in small steps ∆ϕ to isotropically compress the system. After each compression step, we relax the

total potential energy using FIRE energy minimization [37]. This method is similar to a “fast”

thermal quench that finds the nearest local potential energy minimum. We use quaternions to

track the particle orientations for each residue, as described in Ref. [38]. If the total potential

energy per residue is zero after energy minimization, i.e. U/Nϵ < 10−8, where ϵ is the energy

scale of the atomic interactions, we continue to increase the packing fraction. If the total potential

energy per residue is nonzero, i.e. U/Nϵ ≥ 10−8 and residues have small overlaps, we decrease the

packing fraction. The packing fraction increment ∆ϕ is halved each time the algorithm switches

from compression to decompression and vice versa. We terminate the packing-generation protocol

when the residue packings satisfy 10−8 < U/Nϵ < 2× 10−8 and possess a vanishing kinetic energy

per residue (i.e. K/Nϵ < 10−20) [22]. (An example jammed packing of amino acid-shaped particles

is shown in Fig. 2.2 (b) and further computational details are included in Appendix 2.5.1.)

To measure the distribution of local voids in packings of amino acid-shaped particles and protein

cores, we use a Voronoi tessellation, which ascribes to each particle the region of space that is closer

to that particle than all other particles in the system. For residues, which are highly non-spherical

particles, we use a generalization of the standard Voronoi tessellation known as the surface- or

set-Voronoi (SV) tessellation [39]. This tessellation partitions the empty space in the system using

a bounding surface for each residue. An efficient algorithm to generate this tessellation is outlined

in Ref. [39] and implemented using Pomelo [40]. To construct the SV tessellation, consider a set

of N particles with bounding surfaces {∂Kµ} for µ = 1, ..., N . The software approximates ∂Kµ

by triangulating points on the particle surfaces, and uses the standard Voronoi tessellation of the

surface points to construct the SV cell for each residue µ. We find that using 400 surface points per

atom, or ≈ 6400 surface points per residue, gives an accurate representation of the SV cell, which

does not change significantly as more surface points are added. An example SV cell from a packing

of amino acid-shaped particles is shown in Fig. 2.1 (a). For an SV cell with volume V vµ surrounding

residue µ with volume vµ, the local porosity is given by:

ηµ =
V vµ − vµ

V vµ
= 1− ϕµ, (2.1)

where ϕµ = vµ/V
v
µ is the local packing fraction. This quantity measures the local void space

associated with each residue.

We also quantify the “connected” void space shared between residues in packings of amino acid-

shaped particles and protein cores. To do this, we implement a grid-based method similar to that

described by Kertèsz [28] and Cuff and Martin [29], where the “void space” is defined as the region

of a system accessible to a spherical probe particle with radius a. The geometry and distribution of

void space in a system is thus a function of a, the residue positions r⃗µ, and bounding surfaces ∂Kµ.

We define a cubic lattice with G points in each direction within the simulation domain, which gives

a lattice spacing g = L/G. For all lattice points p, we define the set of void points V to be all points

that can accommodate a spherical probe particle with radius a without causing overlaps with any

atoms. We label all void points with a 1, and all other points with a 0. After all grid points are
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labeled, we use the Newman-Ziff algorithm [41] to cluster adjacent, similarly-labeled grid points.

We consider all adjacent points on the nearest face, edge, and vertex of a cube of points surrounding

each lattice point (i.e. next-to-next-to-nearest neighbor counting with 26 possible adjacencies for

each point) when merging void clusters and implement periodic boundary conditions. A sketch of

connected void lattice points in a subset of a packing of amino acid-shaped particles is shown in

Fig. 2.1 (b).

When measuring void space in protein structures, we implement a similar procedure, but we only

consider voids in core residues. We construct a box of dimension Lx × Ly × Lz that circumscribes

each protein core, with the box just outside the radii of core residues near the box edges. We pick a

spherical probe particle of radius a, and label the void space as all points that are (a) not contained

inside an atom, and (b) contained only within the union of the SV cells of core residues. With these

constraints, we only consider connected void space specific to the core of the protein. We then

use the Newman-Ziff algorithm to merge void clusters, and repeat the procedure for 100 different

random protein orientations.

2.3 Results

2.3.1 Local Void Analysis

We begin with an analysis of local voids associated with each amino acid in jammed packings of

amino acid-shaped particles and protein cores. We measure the distribution of the SV cell volumes

and show that the distributions in both systems can be fit to a k-gamma distribution, which also

describes Voronoi cell distributions in jammed packings of spheres [42, 43], ellipsoids [44], attractive

emulsion droplets [45], wet granular materials [46], and model cell monolayers [47]. The k-gamma

distribution for the SV cell volume V vµ for each residue has the form:

P (x) =
kk

Γ(k)
xk−1 exp(−kx), (2.2)

where x =
(
V vµ − V vmin,α

)
/
(
⟨V vµ ⟩α − V vmin,α

)
, which sets the scale factor of the distribution to 1.

Here,

⟨V vµ ⟩α =
1

Nα

Nα∑
µ=1

V vµ (2.3)

is the average SV cell volume of residue type α. The sum involving µ is over all Nα residues of

type α in all packings, and V vmin,α is the minimum SV cell volume of residue type α. We consider

minima and averages for each residue type separately to account for the large differences in residue

volumes; that is, each residue type α, when considered individually, has a SV cell volume distribution

described by Eq. (2.2).

We measure the shape factor kα for each residue type α either by fitting the SV cell volume
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Figure 2.3: The shape parameter k for fits of the k-gamma distribution [Eq. (2.2)] to the SV cell
volume distributions P (x) for packings of amino acid-shaped particles (open circles), monodisperse
spheres (filled circles), and both core and surface residues in the Dunbrack 1.0 database (open
squares) as a function of packing fraction ϕ. The dashed horizontal line at k = 5.59 is the analyt-
ical value of the shape factor for the Voronoi cell volume distribution of a random Poisson point
process [48], and the dashed vertical line at ϕJ = 0.56 is the packing fraction for protein cores and
jammed packings of amino acid-shaped particles.

distribution to Eq. (2.2) using Maximum Likelihood Estimation (MLE), or by calculating

kα =

(
⟨V vµ ⟩α − V vmin,α

)2〈(
V vµ
)2〉

α
−
〈
V vµ
〉2
α

. (2.4)

We obtain similar k-values using both methods. Although the values of kα depend on the type of

amino acid α, when we average the values of kα we recover the value of k obtained from fitting

the combined distribution. We focus on the distributions of SV cell volumes averaged over all

hydrophobic residues.

In Fig. 2.2 (c), we show the SV cell volume distributions P (x) for packings of core amino acid-

shaped particles modeled after specific protein cores (method M1) and for all core residues in the

Dunbrack 1.0 database. We find that the distributions for these two systems are similar; both obey

a k-gamma distribution [Eq. (2.2)] with similar shape parameters, k = 6.06± 0.08 and k = 5.29±
0.27, for core residues in the Dunbrack 1.0 database and packings of amino acid-shaped particles,

respectively. As expected, the cumulative distributions F (x) of the SV cell volumes for residues in

protein cores and packings of amino acid-shaped particles are also nearly indistinguishable.

The strong similarity between the SV cell volume distributions indicates that jammed packings of

amino acid-shaped particles (at ϕJ ≈ 0.56) and protein cores possess the same underlying structure.

To better understand this result, in Fig. 2.3 we plot the shape parameter k that describes the form

of the Voronoi cell volume distributions for packings of N = 103 monodisperse spheres (with

ϕJ ≈ 0.64) and of N = 64 amino acid-shaped particles versus ϕ. When ϕ ≪ ϕJ , and the systems
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Figure 2.4: Distribution of the scaled local porosity y = (η− ηmin,α)/(⟨η⟩α − ηmin,α), where ⟨η⟩α is
the average and ηmin,α is the minimum porosity of residue type α, for packings of amino acid-shaped
particles (circles) and residues in protein cores in the Dunbrack 1.0 database (squares). The solid
line is a Weibull distribution with shape parameter b ≈ 3.2 [Eq. (2.7)]. The inset is the cumulative
distribution function F (y) of the data in the main panel.

are sufficiently dilute, the Voronoi cell volume distributions of the packings of monodisperse spheres

and amino acid-shaped particles resemble that for a random Poisson point process [48] with k ≈ 5.6.

In this regime, free volume is assigned randomly to each particle since the particle positions are

uncorrelated. However, as ϕ increases, the k-values for packings of monodisperse spheres and amino

acid-shaped particles begin to grow, but at different rates, since the particle geometry becomes

important in determining the local free volume. Near ϕ ≃ ϕJ , the shape parameter plateaus at

k ≈ 13 for packings of monodisperse spheres, but the shape parameter decreases strongly to k ≈ 6

for packings of amino acid-shaped particles. This decrease in k indicates a transition from having

the shape of the Voronoi cell volume distribution determined by spherical particles (for ϕ ≲ ϕJ) to

that determined by bumpy, asymmetric amino acid-shaped particles (for ϕ ≃ ϕJ). Note, however,

that the SV cell volume distribution of jammed packings of amino acid-shaped particles is similar

(in terms of k value) to that of randomly placed Poisson points. This suggests that the void

distribution of jammed packings of amino acid-shaped particles and protein cores share structural

properties with randomly placed points. We will expand on this similarity in Sec. 2.3.3.

In addition, we calculate k for the SV cell volume distributions for residues in the Dunbrack

1.0 database as a function of packing fraction. In previous studies, we have found a one-to-one

correlation between solvent accessibility and packing fraction [34]; residues with lower values of ϕ

in Fig. 2.3 are therefore more solvent-exposed, i.e. closer to the protein surface. For most of the

range in ϕ, k ≈ 2, whereas k ≳ 5.6 for packings of monodisperse spheres and amino acid-shaped

particles. In particular, k does not equal the value for a random Poisson point process (k = 5.6)

in the limit ϕ ≪ ϕJ for residues in protein cores. In protein cores, the backbone constraint gives

rise to correlations in the residue positions. However, as ϕ→ ϕJ , k increases, reaching k ≈ 6 when

ϕ = ϕJ . This result shows that there is a fundamental change in the SV cell distribution near
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Figure 2.5: (a) Percolation probability ρ(a) plotted versus the probe radius a for protein cores from
the Dunbrack 1.0 database (crosses) and clusters of core residues extracted from static packings
of N = 64 amino acid-shaped particles (circles). The horizontal and vertical dashed lines indicate
the critical probe radius ac = 0.48 Å that satisfies ρ(ac) = 0.5. (b) Cluster size distribution
ns with size s at the critical porosity ηc, which scales as ns(ηc) ∼ s−τ . The Fisher power-law
exponent τ = 1.95±0.06 and 1.85±0.05 for protein cores from the Dunbrack 1.0 database (crosses)
and representative clusters of core residues in packings of amino acid-shaped particles (circles),
respectively. The solid line has slope equal to -1.85.

the onset of jamming in protein cores. For ϕ ≲ ϕJ , the backbone determines the shape of the SV

cell volume distribution, whereas for ϕ→ ϕJ , the shapes of the amino acids determine the SV cell

volume distribution.

We also compare the local porosity distributions for protein cores and packings of amino acid-

shaped particles in Fig. 2.4. We scale the porosity (as in Eq. (2.2)) by defining

y =
ηµ − ηmin,α

⟨ηµ⟩α − ηmin,α
, (2.5)

where

⟨ηµ⟩α =
1

Nα

Nα∑
µ=1

ηµ, (2.6)

and ηmin,α is the minimum porosity over all Nα core residues of type α. Again, the porosity

distributions P (y) (and cumulative distributions F (y)) for residues in protein cores and packings

of amino acid-shaped particles are similar, but here P (y) has the shape of a Weibull distribution

with scale factor λ = 1,

P (y) = byb−1 exp
(
−yb

)
. (2.7)

where b is the shape parameter of the Weibull distribution.

The small differences in P (x) and P (y) between core residues in protein crystal structures and

packings of amino acid-shaped particles can be explained by the small differences between the
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Figure 2.6: Critical porosity ⟨ηc(G)⟩ using a lattice with G points along each dimension plotted
versus G−1 for jammed packings of N = 64 amino acid-shaped particles with Na = 1024 atoms
(open circles), N = 103 randomly placed spheres (open squares), andN = 103 monodisperse spheres
(filled circles). The dashed lines have vertical intercepts that indicate ηc(G→ ∞) ≈ 0.0345, 0.0318,
and 0.0305 for packings of amino acid-shaped particles, randomly placed spheres, and monodisperse
sphere packings, respectively.

volumes of core residues in crystal structures and in packings. The atoms on neighboring amino

acids interact differently for free amino acids in packings versus backbone atoms in protein cores,

which form covalent and hydrogen bonds. Thus, we find that the volumes of residues in protein

cores have larger variances and smaller means than those in packings of amino acid-shaped particles.

Also, the overlaps between covalently bonded backbone atoms that link adjacent residues slightly

decreases the mean SV cell volume, which gives rise to a larger population of small SV cells and a

small deviation between P (x) for residues in protein cores and in packings for small x in Fig. 2.2

(c).

2.3.2 Connected void analysis of protein cores

We next quantify the distribution of “connected” void space that is shared between residues. Using

a grid-based method, we calculate the volume of regions of connected void space as a function of

the radius a of a spherical probe particle. As we increase a, the connected void space transitions

from highly connected throughout the system to compact and localized with distinct void regions.

We measure the probability ρ(a) of finding a percolating void region, where we define percolation as

the appearance of a cluster that spans one of the system dimensions when the boundary is closed,

and a cluster that both spans, wraps around the boundary, and self-intersects when the boundaries

are periodic. We identify the critical probe radius ac by setting ρ(ac) = 0.5. Because the definition

of connected void regions depends on the boundary condition, the value of ac, especially in systems

as small as protein cores, is affected by the boundary conditions. Thus, to calculate ρ(a), we create

packings of amino acid-shaped particles with similar boundary conditions as those in protein cores.
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Figure 2.7: (a)-(d) Scaling behavior for jammed packings of amino acid-shaped particles (open
circles), bidisperse spheres (filled circles), and randomly placed spheres (open squares). In (a), we
show that the standard deviation in the critical porosity scales as ∆ηc(N) ∼ N−1/dν , where ν is
the correlation length exponent. The lines have slopes −0.33 (dotted line) and −0.31 (dot-dashed
line). In (b), we show that for randomly placed spheres and jammed packings of amino acids, the
distribution of connected void clusters of size s at the percolation threshold scales as ns(ηc) ∼ s−τ ,
with a Fisher exponent τ ≈ 1.25. In addition, we plot ns at criticality for standard site percolation
on a cubic lattice (red stars), which has an apparent τ ≈ 2.07. We also plot the same distribution for
the connected voids in jammed packings of bidisperse and monodisperse spheres (filled diamonds),
which do not display power-law scaling. In (c), we show that the maximum cluster size near the
percolation onset scales as smax(ηc, N) ∼ ND/d, were D is the fractal dimension. The lines have
slopes 0.83 (dotted line) and 0.82 (dot-dashed line). In (d), we show that the probability for a
given site to be in the percolating void cluster at ηc scales as P(ηc, N) ∼ N−β/dν , where β is the
percolation strength scaling exponent. The lines have slopes −0.14 (dotted line) and −0.19 (dot-
dashed line).
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From a packing of amino acid-shaped particles with periodic boundary conditions (N = 64, method

M2), we extract a representative protein core of R−r residues that all share at least one SV cell face.

We sample R−r from the distribution of core sizes P (R) found in the Dunbrack 1.0 database. (See

Fig. 2.9 in Appendix 2.5.1.) The resulting packings have boundary conditions similar to protein

cores in the Dunbrack 1.0 database. We then determine the connected void regions as a function of

a and identify the critical probe size ac as shown in Fig. 2.5 (a). We find the same critical probe size

ac = 0.48± 0.01 Å for both protein cores and packings of amino acid-shaped particles with similar

boundary conditions. Note that this value of the critical probe radius is smaller than that of a

water molecule, which is ≈ 1.4 Å, and thus the voids we consider here are not accessible by aqueous

solvents. However, as we discuss below, this value of the probe radius corresponds to a critical

point; we will exploit the behavior of the voids near this critical point to understand the geometric

properties of the connected voids, and to differentiate between the voids in various systems.

Thus, determining the connected void regions in protein cores is a type of percolation problem.

In lattice site percolation, sites on a lattice in d spatial dimensions are either occupied randomly

with probability p or not occupied with probability 1−p. At the percolation threshold pc, adjacent

occupied sites form a percolating cluster that spans the system and becomes infinite in the large-

system limit. Continuum percolation occurs in systems that are not confined to a lattice. Both

particle contact and void percolation have been studied in randomly placed overlapping spheres [28,

49, 50] and percolation of particle contacts [51, 52] has been studied in packings of repulsive [53]

and adhesive particles [54].

In this article, we consider percolation of the void space accessible to a spherical probe particle

with radius a in packings of spheres and amino acid-shaped particles, as well as systems composed

of randomly placed spheres [49, 50]. As the probe particle radius is increased, the amount of space

available to the probe is restricted and the number of void lattice sites decreases. We define an

effective porosity η as the ratio of the number of void lattice sites to the total number of lattice

sites Gd. We determine the percolation threshold using a bisection method, where we begin with

two initial guesses for the percolation transition, aH and aL with aH > aL, and iteratively check for

percolation of void sites at the probe radius a = (aH+aL)/2. We set aH = a if we find a percolated

cluster of void sites, and aL = a if we do not find a percolated cluster. We terminate the algorithm

when the difference between successive values for ac are within a small tolerance δa = 10−8 Å.

Note that our use of a lattice of points to measure the connected void region does not imply that

our model is a lattice model. The lattice is simply a tool to calculate the connected void space

volume [28]. Furthermore, in the continuum limit (i.e. G → ∞), we recover the critical porosity

ηc ≈ 0.03 measured using Kerstein’s method [49, 50] on systems of randomly placed spheres [55].

(See Fig. 2.6.) Since there is a one-to-one mapping between a and η, we will use η as the order

parameter for continuum void percolation.
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System ν τ D β d− β
ν

residue packings (full) 0.90± 0.24 1.29± 0.06 2.58± 0.18 0.37± 0.19 2.58± 0.33
residue packings (rep.) − 1.85± 0.05 − − −

Protein cores, Dunbrack 1.0 − 1.95± 0.06 − − −
Mono. Spheres (jammed) 1.05± 0.12 − 2.46± 0.09 0.60± 0.07 2.43± 0.15
Bidis. Spheres (jammed) 0.93± 0.10 − 2.40± 0.08 0.56± 0.07 2.40± 0.14

Cubic Lattice [56] 0.91± 0.04 (0.88) 2.07± 0.01 (2.18) 2.49± 0.03 (2.53) 0.48± 0.02 (0.42) 2.47± 0.04
Poisson Spheres

(Kertèsz’s method [28]) 1.10± 0.06 1.22± 0.05 2.51± 0.03 0.44± 0.03 2.60± 0.05
Poisson Spheres

(Kerstein’s method [49, 50]) 0.99± 0.05 (0.902± 0.005 [50]) − 2.44± 0.03 0.48± 0.02 (0.45± 0.2[49]) 2.52± 0.05

Table 2.1: Table of critical exponents ν, τ , D, and β for several models of void percolation. In the last column, we provide the value for the hyperscaling
relation, d− β

ν , which matches the fractal dimension D if hyperscaling is satisfied. In the first four rows, we report the critical exponents for packings of amino
acid-shaped particles with periodic boundary conditions (full) and boundary conditions representative of protein cores (rep.). We also report the critical
exponents for void percolation in jammed packings of monondisperse (Mono.) and bidisperse (Bidis.) spheres. In the last four rows, we compare these results
to those for void percolation in several systems that were studied previously. We report our measurements of the critical exponents for site percolation on
a cubic lattice, where only nearest-neighbors are counted as adjacent sites. We also report the critical exponents for void percolation and Voronoi vertex
percolation in systems composed of randomly placed spheres. Previously reported values of the exponents are given in parentheses. Throughout the table,
error bars are obtained from the bootstrap method, where we randomly, independently sample 20% of the data over 200 trials, and fit the exponents over
each individual trial. Values for the exponents are the average over trials, and the error bars are standard deviations.
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(a) (b) (c)

Figure 2.8: Visualization of the surface of a connected void region (light domain) at the percolation
threshold ηc ≈ 0.03. The dark domains are the “inside” of the void region, which connects across
the periodic boundaries. These three systems are (a) a jammed packing of N = 16 amino acid-
shaped particles, with 298 atoms in total, (b) N = 300 randomly placed spheres, and (c) a jammed
packing of 300 bidisperse spheres.

2.3.3 Connected void analysis of packings

We now focus on the statistical properties of the connected void regions in packings of spheres and

amino acid-shaped particles prepared in systems with cubic, periodic boundaries. In Fig. 2.7 and

Table 2.1, we summarize the results of this analysis, and we show visualizations of the percolating

connected voids in jammed packings of spheres and amino acid-shaped particles in Fig. 2.8. We

first measure the correlation length exponent ν, where the correlation length ξ is defined as the

average distance between two points in the largest connected void cluster. Near ηc, ξ diverges as

|η − ηc|−ν . Using finite-size scaling [56], we can write

ηc(N)− ηc(∞) ∼ N−1/dν , (2.8)

where ηc(∞) is the percolation threshold in the large-system limit and N ∼ Ld. ηc(N) is a random

variable with standard deviation ∆ηc(N), which will approach ηc(∞) as N → ∞. Thus, we make

the ansatz that

∆ηc(N) ∼ N−1/dν , (2.9)

which can be used to measure ν. (See Fig. 2.7 (a).) We also measure the Fisher exponent τ , defined

by

ns(ηc) ∼ s−τ , (2.10)

where ns is the number of void clusters containing s sites. While we measure this exponent for

protein cores and random packings with representative boundary conditions in Fig. 2.5 (b), in

Fig 2.7 (b) we measure this exponent in systems with cubic, periodic boundary conditions.

We also measure the fractal dimension and percolation strength of the percolating void clusters.

The fractal dimension is defined by

smax(ηc, N) ∼ ND/d, (2.11)
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where smax(ηc, N) is the number of sites contained in the largest void cluster in the system at

percolation onset. If D = d, the largest void cluster is a compact, non-fractal object. However, if

D < d, the void cluster is fractal [57]. (See Fig. 2.7 (c).) The percolation strength is the probability

P(η) that a given lattice site is part of the percolating void cluster at a given porosity. Near ηc,

the probability scales as P(η) ∼ |η − ηc|β . The probability obeys finite size scaling,

P(ηc, N) ∼ N−β/dν . (2.12)

Once we determine ν using Eq. (2.9), we can determine β from Eq. (2.12). (See Fig. 2.7 (d).) We

also expect β, ν and D to satisfy the hyperscaling relation,

D = d− β

ν
. (2.13)

In Table 2.1, we report our measurements for the critical exponents ν, τ , D, and β for void

percolation (using a spherical probe particle), as well as for d = 3 lattice site percolation on

a cubic lattice and void percolation in systems of randomly placed spheres using two methods:

the connected void method described previously and the Voronoi vertex method introduced by

Kerstein [49] and implemented by Rintoul [50]. Note that protein cores and representative subsets

of jammed packings of amino acid-shaped particles (denoted “rep.”) are small systems with N < 30,

and thus we cannot use finite-size scaling to measure the critical exponents. We can, however,

measure the critical exponents for full packings of amino acid-shaped particles (denoted “full”),

which mimic the geometric properties of void clusters in protein cores.

We observe that across all models and methods studied, the correlation length exponent ν ≈ 0.9-

1.0 for void percolation. In particular, ν ≈ 0.90 for packings of amino acid-shaped particles is similar

to that (0.90) for randomly placed spheres [50], as well as for standard site percolation [56]. In

addition, the fractal dimension D ≈ 2.4-2.6 is similar for all models and methods for calculating

void percolation. We find that the percolation strength exponent β < 0.5 for randomly placed

spheres and packings of amino acid-shaped particles when using the connected void method, but

β > 0.5 for packings of monodisperse and bidisperse spheres. (The bidisperse systems include N/2

large and N/2 small spheres with diameter ratio d = 1.4.)

However, because of the limited range of system sizes studied here, it is difficult to determine the

critical exponents with high precision. Thus, given the results for the ν, D, and β exponents alone,

it is difficult to distinguish the statistical properties of the void content of packings of jammed

spheres, randomly placed spheres, and jammed amino acid-shaped particles from each other, or

from void percolation on a cubic lattice, for that matter.

We do see a strong distinction in the Fisher exponent τ [Eq. (2.10)] between void percolation on

a cubic lattice and in packings of amino acid-shaped particles. For these two systems, τ = 2.07±0.01

and τ = 1.29± 0.06, respectively. For packings of randomly placed spheres, we find that the Fisher

exponent is τ = 1.22 ± 0.05, which is similar to our result for packings of amino acid shaped

particles. (See Table 1.) These values for τ were obtained from a cubic lattice with G = 100 sites

per box length, packings of amino acid-shaped packings with N = 128 particles and, on average,

Na = 2048 atoms, and systems of N = 2000 randomly placed spheres. These results suggest
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that the properties of connected voids are similar in packings of amino acid-shaped particles and

randomly placed spheres, and in general that connected voids in these systems are distinct from

those for void regions in cubic lattices near percolation onset.

We do not report values of τ for jammed packings of monodisperse and bidisperse spheres,

since we observe non-power-law behavior in the cluster size distributions for these systems. As

discussed in Appendix 2.5.3, this behavior is most likely due to a residual finite length scale at the

percolation threshold. We also observe non-power-law behavior in the cluster size distribution for

void percolation in randomly placed spheres using Kerstein’s method, and do not report a value for

τ in Table 2.1. As shown in Appendix 2.5.3, this non-power-law behavior is most likely due to the

sparsity of the Voronoi vertex network, which truncates the cluster size distribution.

Our results suggest that the critical exponent τ is able to distinguish the geometries of connected

void regions in different systems. In particular, the connected void regions in packings of amino

acid-shaped particles and systems of randomly placed spheres are similar, but distinct from that

for jammed sphere packings. In Fig. 2.8, we show examples of the connected void surface in

packings of (a) amino acid-shaped particles, (b) randomly placed spheres, and (c) bidisperse spheres.

Qualitatively, the connected void surfaces in systems of randomly placed spheres and amino acid-

shaped particles look similar, while the connected void surface in jammed packings of bidisperse

spheres looks different, with a characteristic void size.

2.4 Conclusions

In this article, we analyzed local and connected void regions in protein cores and in jammed pack-

ings of purely repulsive amino acid-shaped particles and showed that these two systems share the

same void structure. We first investigated the surface-Voronoi (SV) cell volume distributions and

found that in both systems these distributions are well-described by a k-gamma distribution with

k ≈ 6. This k-value is much smaller than that (k ≈ 13) obtained for jammed sphere packings,

which indicates that packings of amino acid-shaped particles have a broader distribution of Voronoi

volumes. We also studied the SV cell volume distribution as a function of the packing fraction, and

found that only near the onset of jamming do the SV cell distributions in protein cores and packings

of amino acid-shaped particles match. In the dilute case ϕ≪ ϕJ , the local packing environment in

protein cores is determined by the backbone, whereas the local packing environment of packings of

free residues resembles a Poisson point process. At jamming onset, the local packing environment

is determined by the “bumpy”, asymmetric shape of amino acids, not the backbone constraints.

Using a grid-based method, we also measured the distribution of non-local, connected voids

in protein cores and jammed packings of amino acid-shaped particles. We found that when we

consider similar boundary conditions in protein cores and jammed packings of amino acid-shaped

particles, the two systems also have the same critical probe size ac (at which the accessible, con-

nected void region spans the system) and Fisher exponent τ (which characterizes the scaling of

the size of the void clusters near percolation onset). We also compare the finite-size scaling results

for void percolation in packings of amino acid-shaped particles, in packings of monodisperse and

bidisperse spheres, and systems of randomly placed spheres. We find that the void percolation crit-

ical exponents in packings of amino acid-shaped particles are similar to those in randomly placed

18



spheres. Specifically, the Fisher exponent τ takes a similar value for these two systems (≈ 1.2 and

≈ 1.3, respectively), while this exponent is significantly different for void percolation in cubic lat-

tices (≈ 2.1). This result may explain why the distribution of SV cell volumes is similar for jammed

packings of amino acid-shaped particles and randomly placed Poisson points with ϕ = 0, as seen

in the horizontal line Fig. 2.3. Interestingly, these results echo similar observations by Liang and

Dill, where the authors recognize the similarity between the void distribution of randomly-placed

spheres and of protein crystal structures, although they did not connect packing in protein cores

with random close packing of nonspherical particles [11].

In future work, we will use jammed packings of amino acid-shaped particles to understand

the structural and mechanical response of protein cores to amino acid mutations. We can assess

the response in two ways. First, we can prepare jammed packings of amino acid-shaped particles

that represent wildtype protein cores, substitute one or more of the wildtype residues with other

hydrophobic residues, relax the “mutant” packing using potential energy minimization, and measure

the changes in void structure. We can also measure the vibrational density of states (VDOS) in

jammed packings that represent the wildtype and mutant cores. The VDOS and the associated

eigenmodes can provide detailed information on how the low-energy collective motions change in

response to mutations. There are several advantages for calculating the VDOS in jammed packings

of amino acid-shaped particles. For example, in jammed packings, only hard-sphere-like steric

interactions are included. In contrast, molecular dynamics force fields for proteins typically include

many terms in addition to those that enforce protein stereochemistry, which makes it difficult to

determine the interactions that control the collective motions. Studying jammed packings of amino

acid-shaped particles also decouples the motions of core versus surface residues.

Studies of the VDOS in jammed packings of amino acid-shaped particles will also shed light on

the protein “glass” transition, where the root-mean-square (rms) deviations in the atomic positions

switch from harmonic to anharmonic behavior [58] in globular proteins near Tg ≈ 200 K [27]. We will

investigate the vibrational response of jammed packings of amino acid-shaped particles to thermal

fluctuations. In particular, we will measure the Fourier transform of the position fluctuations and

determine the onset of anharmonic response. Additionally, in this work we did not include backbone

connectivity between amino acids in our packings, nor did we treat the side chain dihedral angles as

“soft” degrees of freedom with harmonic constraints. In future work, to more accurately model the

geometrical and topological properties of dynamically fluctuating protein cores, we will incorporate

harmonic bond length, bond angle and dihedral angle interactions (for both backbone and side

chain atoms), with stiffnesses taken from bond length, bond angle and dihedral angle distributions

observed in high-resolution protein crystal structures.

In addition, our analysis of void distributions in protein cores will provide new methods for

identifying protein decoys, which are computationally generated protein structures that are not

observed experimentally. However, it is currently difficult to distinguish between real structures

and decoys. For example, in the most recent Critical Assessment of Protein Structure Prediction

(CASP12), researchers were given a set of target sequences, and were tasked with predicting the

structures of those sequences using a variety of methods [59]. Each group was allowed to submit 5

structures per target sequence; when tasked with assessing which of their submissions were the most

accurate, only 3 groups out of 31 had > 50% success at identifying the most accurate structure [60].
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The average success rate was 30%, just slightly better than guessing at random. Thus, assessing

the viability of computationally-designed structures is an incredibly difficult task.

Since the structure of void regions in the cores of protein crystal structures is the same as that

found in packings of amino acid-shaped particles, the properties of void regions can serve as a

benchmark for ranking computationally designed protein structures. Recent studies have suggested

that protein decoys [17] possess local packing fraction inhomogeneities that are not present in protein

crystal structures. In addition, the void-based analyses presented here can be used to evaluate the

conformational dynamics of proteins sampled in all-atom molecular dynamics simulations. An

understanding of the expected void properties from high-resolution protein crystal structures can

improve our ability to identify unphysical conformational fluctuations that occur during molecular

dynamics trajectories. We propose that detailed characterizations of the void space, using the

methods described here, will be a sensitive metric than can be used to assess a variety of protein

designs.

2.5 Appendix

2.5.1 Packing-generation Protocol

As described in Sec. 2.2, we generate jammed packings of amino acid-shaped particles using suc-

cessive small steps of isotropic compression or decompression with each step followed by potential

energy minimization. Each residue was modeled as a rigid union of spheres with fixed bond lengths,

bond angles, and dihedral angles. Forces between atoms i and j on distinct residues µ and ν were

calculated using F⃗µνij = −∇⃗U
(
rµνij
)
, with the pairwise, purely repulsive linear spring potential

energy,

U
(
rµνij
)
=
ϵ

2

(
1−

rµνij
σµνij

)2

Θ

(
1−

rµνij
σµνij

)
. (2.14)

In Eq. (2.14), ϵ is the characteristic energy scale of the repulsive interactions and σµνij = (σµi +σ
ν
j )/2,

where σµi is the diameter of atom i on residue µ. The quantity rµνij = |r⃗µj − r⃗νi | is the separation

distance between atoms i and j on distinct residues µ and ν, and Θ is the Heaviside step function

that sets the potential energy to zero when atoms i and j are not in contact. We consider each

residue as a rigid body. Forces between pairs of atoms on contacting residues generate torques. The

torque on residue µ arising from a force on atom i on residue µ from atom j on residue ν is h⃗µi ×F⃗
µν
ij ,

where h⃗µi is the position of atom i relative to the center of mass of residue µ. Note that this pair

potential reduces to a hard-sphere-like interaction in the limit of small atomic overlaps [36]. The

total potential energy U is given by

U =
∑
ν<µ

∑
i,j

U
(
rµνij
)
. (2.15)

We use the velocity-Verlet algorithm to integrate the translational equations of motion for each

particle’s center of mass, and a quaternion-based variant of the velocity-Verlet method described

in Ref. [38] to integrate the rotational equations of motions for each residue.
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Figure 2.9: Distribution of the number of core residues P (R) in the Dunbrack 1.0 database, before
(circles) and after (squares) pruning non-hydrophobic residues from the core replicas as described
in Sec. 2.3.1. The mean number of residues before pruning is ⟨R⟩ ≈ 16, and after pruning is
⟨R− r⟩ ≈ 12.

To simulate isotropic compression, we scale all lengths in the system (except the box edges) at

each iteration m by the scale factor

α =

(
ϕm +∆ϕm

ϕm

)1/3

, (2.16)

where ϕm is the packing fraction and ∆ϕm is the packing fraction increment at iteration m. This

process uniformly grows or shrinks all atoms, and thus the packing fraction satisfies ϕm+1 = ϕm +

∆ϕm. After each compression or decompression step, we use the FIRE algorithm [37] to minimize

the potential energy in the packing. The packing fraction increment is halved each time the total

poential energy switches from zero (i.e. U/Nϵ < 10−8) to nonzero or vice versa. We terminate the

packing-generation algorithm when the total potential energy per residue satisfies 10−8 < U/Nϵ <

2× 10−8 and the kinetic energy per residue is below a small threshold, K/Nϵ < 10−20. We set the

initial values of the packing fraction and packing fraction increment to be ϕ0 = 0.4 and ∆ϕ0 = 10−3,

but our results do not depend sensitively on these values.

2.5.2 Protein core size distribution

In this Appendix, we show the distributions of the number of core residues in protein crystal

structures from the Dunbrack 1.0 database. (See Fig. 2.9.) As described in Sec. 2.2, we define

protein cores as clusters of residues that all share at least one SV cell face with other residues in the

cores, and every atom in each residue has an rSASA ≤ 10−3. In Method M1 for generating jammed

packings of amino acid-shaped particles, we create C replicas of each protein core with the specific

R− r residues found in that core, where R is the number of core residues and R− r is the number

of Ala, Ile, Leu, Met, Phe, and Val core residues. Before pruning non-hydrophobic residues, the
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Figure 2.10: Plot of the average Fisher exponent ⟨τ⟩ as a function of the number of lattice points
along a given direction G for void percolation on a cubic lattice (stars), in packings of jammed amino
acid-shaped particles (open circles), and packings of randomly placed spheres (open squares). Error
bars are calculated by the bootstrap method, where τ is fit to 200 separate trials of independent,
random subsets of the cluster size data. The average Fisher exponent ⟨τ⟩ is the mean of these fits,
and the error bars are the standard deviations.

average core size is ⟨R⟩ ≈ 16 residues, and ⟨R− r⟩ ≈ 12 after pruning.

2.5.3 Measurement of Fisher Exponent

In this Appendix, we explain the differences we observe in the Fisher exponent τ for different

systems. In void percolation in cubic lattices, systems of randomly placed spheres and jammed

packings of amino acid-shaped particles, the distribution of void cluster sizes at percolation onset

ns(ηc) has a well defined power-law decay, as shown in Fig. 2.7 (b). We demonstrate this difference

further in Fig. 2.10, where we plot the average Fisher exponent ⟨τ⟩ with error bars as a function

of the number of void grid points G measured along the box length. Error bars are estimated by

the bootstrap method (described above). We find that the value of τ for randomly placed spheres

and jammed packings of amino acid-shaped particles are similar, while markedly different from τ

measured for void percolation on cubic lattices.

Non-power-law decay in the void cluster size distribution, as displayed in Fig. 2.7 (b) for jammed

sphere packings, may be due to the existence of competing length scales in the system. The typical

form of Eq. (2.10) at any porosity η is [56]

ns = s−τ exp(−s/sξ), (2.17)

where sξ is the number of sites in a cluster with correlation length ξ. In systems where ξ is the only

length scale, sξ → ∞ as η → ηc and Eq. (2.17) reduces to Eq. (2.10). However, if there is another

intrinsic length scale in the system that is still relevant at the void percolation transition, it is not

necessarily true that sξ → ∞. sξ can remain finite, and add an exponential tail to ns(ηc). Indeed,
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Figure 2.11: Cluster size distribution at percolation ns(ηc) versus s/⟨s⟩, normalized such that
each curve has unit area, for void percolation though randomly placed spheres using Kerstein’s
method with N = 300 (dots), 103 (squares), and 104 (open circles). We also show the normalized
ns(ηc) calculated using the connected void method for N = 7× 103 randomly placed sphere (filled
diamonds).

this behavior is what we find for the connected void size distribution in jammed sphere packings.

The “kink” in ns(ηc) in Fig. 2.7 (b) indicates that sξ ≈ 20. However, the end of the ns distribution

for void percolation in jammed packings of spheres seems to gain a power-law tail which matches

that of void percolation on cubic lattices. Studies of larger systems would be required to confirm

this similarity, but the data in Fig. 2.7 (b) suggests that void percolation in jammed packings of

spheres resembles that in systems composed solely of a cubic lattice.

This second length scale is most likely set by the nearest-neighbor distances between particles.

Qualitatively, if the nearest-neighbor distance between particles is a δ-function (or a set of δ-

functions, in the case of polydisperse spheres), there are a limited number of local cavities in

the system. In particular, there can be small, particle-scale voids that persist even even at the

percolation threshold. However, in packings of amino acid-shaped particles and in systems of

randomly placed spheres, there are a wide range of inter-particle distances, and a continuous range

of local cavity sizes that can form. In Fig. 2.8, we show that the void regions are well-connected

for jammed packings of amino acid-shaped particles and randomly placed spheres, while the void

regions have a characteristic cavity size for jammed sphere packings at percolation onset. Thus,

there is a well-defined Fisher exponent τ in jammed packings of amino acid-shaped particles and

randomly placed spheres, but not in jammed monodisperse and bidisperse sphere packings.
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Chapter 3

Packing in NMR and X-ray crystal

structures

3.1 Introduction

It is generally acknowledged that protein structures determined by x-ray crystallography versus

NMR exhibit small but significant differences. It is by no means resolved, however, whether these

differences stem from differences in the experimental methods themselves, or if they reflect physical

differences in proteins under the different conditions in which the measurements are made [61–68].

To begin to answer this question, one must directly compare high-quality structures of the same

protein solved by both methods. Choosing x-ray crystal structures based on their resolution is a

straightforward way to identify well-specified structures. In our database of structures solved by

both x-ray crystallography and NMR, we only include structures that have been solved by x-ray

crystallography at a resolution of 2.1Å or less. We also show that our results do not depend on this

resolution threshold as long as it is 3Å or less.

There is, however, no universally accepted metric to assess the quality of NMR structures.

We therefore defined one; we determined the number of NMR restraints per residue beyond which

structures do not change significantly with the addition of more restraints, and only used structures

with at least this number of restraints per residue on average. (See Fig. 3.1.) Applying these

selection criteria, we created a data set of 21 proteins whose structures have been determined by both

x-ray crystallography and NMR. We created an additional dataset of 51 high-quality NMR protein

structures (defined in the same way), for which there is no companion x-ray crystal structure, in an

attempt to exclude any influence of ‘crystallizability’ on the NMR protein structures. In addition,

as a reference set of high-resolution protein structures solved by x-ray crystallography, we use a

dataset of 221 high-resolution protein structures collected by Wang and Dunbrack [30]. Finally,

we created a dataset of structures that have been solved multiple times by x-ray crystallography,

with resolution of 2.0Å or less and the same crystal forms and space groups, to allow us to assess

structural variations that arise from thermal fluctuations.
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Figure 3.1: Average root-mean-square deviations (RMSD) in the Cα positions ⟨∆(i, j)⟩ (in Å) of
all residues in the larger database of NMR structures without x-ray crystal structure pairs, plotted
as a function of the number of restraints on each residue Nr. The average is taken over the multiple
structures (∼ 20) in each bundle.

We find that the root-mean-square deviations (RMSD) of the positions of core Cα atoms within

an NMR ‘bundle’ is greater than the RMSD of core Cα atoms of the set of protein crystal structures

that have been solved multiple times, a result found by researchers in prior work [61]. Also, the

difference between an x-ray crystal structure and each structure in the NMR ‘bundle’ is greater than

the spread within the NMR bundle. To gain deeper insight into these differences, we performed

side chain repacking studies on core residues in both x-ray crystal and NMR structures using the

hard-sphere plus stereochemical constraint model developed in our previous work [19, 34]. We find

that the hard-sphere plus stereochemical constraint model can predict the side chain dihedral angle

conformations of core residues equally well in both NMR and x-ray crystal structures, predicting

∆χ values to within 30◦ of the experimental structures. In our previous work, we found that the

predictability of side chain conformations is strongly correlated with the local packing fraction ϕ,

i.e. where we obtain almost 100% prediction accuracy of side chain conformations for core residues

with packing fraction ϕ ≥ 0.55. We therefore also calculate the core packing fractions in NMR and

x-ray crystal structures, and find that the cores of NMR structures are more tightly packed than

the cores of x-ray crystal structures [61].

To further explore the physical basis for these observations, we generated jammed packings of

amino-acid-shaped particles computationally, and determined whether we can tune their packing

fraction using protocols with different degrees of thermalization. We find that depending on the

thermalization protocol we use, we can match the packing fraction to that which we observe in

the cores of structures determined by x-ray crystallography and NMR. Specifically, the packing

fraction of amino acid-shaped particles in the athermal limit corresponds to that in the cores of

protein crystal structures, whereas the packing fraction we observe in cores of NMR structures is

higher, but less than that achieved in the limit of strong thermalization. Thus, the core packing

fraction for protein structures determined by x-ray crystallography and NMR are both physically
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reasonable, and we speculate that the higher packing fraction for NMR structures reflects the

different conditions under which NMR structures are determined.

3.2 Methods

3.2.1 Protein structure datasets

All experimental proteins used in this study were culled from the RCSB Protein Data Bank (PDB).

We used datasets of (a) high resolution crystal structures, (b) x-ray crystal-NMR structure pairs,

(c) duplicate crystal structures, (d) high-quality, non-paired NMR structures, (e) mutated crys-

tal structures, and (f) structural prediction decoys from the 12th Critical Assessment of Protein

Structure Prediction (CASP12). We show the full PDB id’s in the Supplementary Information (SI)

for all datasets except the high-resolution crystal structures and the CASP12 decoys and targets.

Detailed descriptions of the datasets are provided in the Supplementary Information.

3.2.2 NMR structural quality

There is no universally accepted metric to assess the quality of NMR structures [62]. To define

one, we determined the number of NMR restraints per residue beyond which the structures do

not change significantly with the addition of more restraints. We measured the root-mean-square

deviation (RMSD) of the Cα positions of a given set of residues defined by their sequence location

on two models i and j within an NMR bundle:

∆(i, j) =

√√√√ 1

NS

Ns∑
µ=1

(c⃗µ,j − c⃗µ,i)
2
, (3.1)

where c⃗µ,i is the position of the Cα atom on residue µ in model i, and NS is the number of residues

being compared. We can calculate the average RMSD ⟨∆(i, j)⟩ by averaging over all pairs of models

i and j. As shown in Fig. 3.1, ∆ plateaus to a value near 1.5 Å when the average number of restraints

per residue reaches Nr ≳ 15. Thus, we restrict our NMR datasets (Tables S1 and S3 in the SI) to

proteins for which the NMR structures possess on average ≥ 15 restraints per residue.

3.2.3 Relative solvent accessible surface area (rSASA)

We define core residues based on their solvent-accessible surface area (SASA). To calculate the

SASA, we use the Naccess software package [33] that implements an algorithm originally proposed

by Lee and Richards [69]. The algorithm takes z-slices of the protein, determines the solvent

accessibility of the sets of contours using a probe molecule of a given radius, and integrates the

SASA over the slices. We use a water-molecule-sized probe with radius 1.4 Å and z-slices with

thickness ∆z = 10−3 Å, which were used in previous work [34]. We calculate the SASA for a

given residue µ in both the context of the surrounding protein (SASAcontext
µ ) and for the residue

“extracted” from the protein and modeled as a dipeptide mimetic (SASAdipeptide
µ ), with all bond
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lengths, bond angles, and dihedral angles preserved. We define the relative SASA (rSASA) for

residue µ as the ratio

rSASAµ =
SASAcontext

µ

SASAdipeptide
µ

. (3.2)

We define core residues as those with rSASA < 10−3, which was found in previous work [34] to be

the largest value of rSASA such that the packing fraction and side chain repacking predictability

no longer depend on the value of the rSASA cutoff when it is decreased.

3.2.4 Packing fraction

The most direct way to characterize packing in protein cores is to measure the dimensionless volume

fraction, or packing fraction ϕ. The packing fraction ϕµ of a single residue µ in a protein core is

defined as

ϕµ =
vµ
V vµ

, (3.3)

where vµ is the volume of residue µ, and V vµ is the volume of the Voronoi cell surrounding residue

µ. To calculate the Voronoi tessellation for a given protein core, we employ surface Voronoi tessel-

lation [39], which defines a Voronoi cell as the region of space in a given system that is closer to the

bounding surface of residue µ than to the bounding surface of any other residue in the system. We

calculate the surface Voronoi tessellations using the Pomelo software package [40]. This software

approximates the bounding surfaces of each residue by triangulating points on the residue surfaces.

We find that using ∼ 400 points per atom, or ∼ 6400 surface points per residue, gives an accurate

representation of the surface Voronoi cells and the results do not change if more surface points are

included. Note that to calculate the average packing fraction of a protein core, we define

⟨ϕ⟩ =
∑
µ vµ∑
µ V

v
µ

, (3.4)

where the sum over µ includes only core residues. In this work, we define a protein core as the set

of residues with rSASA< 10−3 that all share at least one surface Voronoi cell face with each other.

3.2.5 Side chain repacking

To better understand the dominant forces determining the side chain conformations in protein

cores, we have developed a protocol that can repack the side chains of core residues assuming that

the non-bonded atomic interactions are hard-sphere-like, and that bond lengths and angles are

tightly constrained around experimentally-observed values. The hard-sphere plus stereochemical

constraint model has been used extensively in previous work (e.g. Refs. [19, 34] and references

therein) to accurately place hydrophobic residue side chains in the cores of the crystal structures

of globular proteins, transmembrane proteins, and protein-protein interfaces. In this model, we

sample all possible combinations of the side chain dihedral angles of the core residues, and calculate

the purely repulsive Lennard-Jones interaction energy (Eq. (3.6)) between non-bonded atoms for

each combination. The backbone dihedral angles of each core residue are fixed to their experimental
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values, as well as the side chain and backbone dihedral angles of the rest of the protein. We obtain

a probability distribution for the side chain dihedral angle combinations of each core residue using

Boltzmann weighting, and repeat this procedure over an ensemble of structures with core residues

given different bond-length and bond-angle variants constrained around the experimental values.

We then average the probability distributions over this ensemble and identify the side chain dihedral

angle combination with the highest probability. We employ this model to study residue packing

and side chain placement in the cores of both x-ray and NMR structures. Additional details of the

method are given in the SI.

3.2.6 Jammed packings of amino-acid-shaped particles

In previous work [7], we found that the packing fraction and void distribution of protein cores

is well-modeled by computer simulations of jammed packings of purely repulsive, rigid, and non-

backbone-connected particles shaped like hydrophobic residues. The amino-acid-shaped particles

include the backbone N, Cα, C, and O atoms, as well as all side chain atoms and hydrogens placed

using theReduce software [32]. Atomic radii are listed in Table S6 in the SI. To prepare the jammed

packings, we first place N amino-acid-shaped particles with random positions and orientations in a

cubic box with periodic boundary conditions at an initially dilute packing fraction ϕ0 = 0.1. The

packing fraction is increased by small steps ∆ϕ, with each followed by energy minimization, to mimic

athermal isotropic compression of the system. We also carry out thermalized compression protocols,

where we thermalize the amino-acid shaped particles between compression steps. In this method,

we run molecular dynamics trajectories at constant temperature T for a fixed amount of time

tMD, and then minimize the total potential energy of the system U using the FIRE minimization

method [37] prior to the next compression step. We terminate the packing generation protocols

when the minimized potential energy per particle satisfies 10−16 < U/Nϵ ≤ 2 × 10−16, where

ϵ is the energy scale of the non-bonded atomic interactions, and the kinetic energy per particle

K/Nϵ < 10−30. Further details of the packing-generation protocols are given in the SI.

3.3 Results

We first compare pairs of structures determined by x-ray crystallography and NMR spectroscopy

by quantifying the root-mean-square deviation (RMSD, Eq. (3.1)) of the Cα positions of a given

set of residues defined by their sequence location on two structures i and j. For the NMR datasets,

i and j represent each model within a bundle, and, for the x-ray crystal duplicate dataset, i and j

represent each of the duplicates. As mentioned in Sec 3.2.3, we define core residues as residues with

small (< 10−3) relative solvent-accessible surface area (rSASA), as defined in Eq. (3.2) in Sec. 3.2.3.

In Fig. 3.2 (a), we compare the distributions P (∆core) of RMSD values of core residues in x-ray

crystal structure duplicates and RMSD values of core residues in NMR bundles. We show that the

fluctuations among x-ray crystal structure duplicates are consistent with B-factor fluctuations of

the Cα positions of core residues, B, which are given by ∆ =
√

3B/8π2. We also compare x-ray

crystal and NMR structures for the same proteins by calculating the RMSD between Cα atoms of

core residues.
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Figure 3.2: (a) Probability distributions P (∆core) of the root-mean-square deviations (RMSD) in
the positions of the Cα atoms (in Å) for core residues in duplicate x-ray crystal structures (solid black
line), in the NMR model ensemble for each structure (solid red line), and in paired x-ray crystal and
NMR structures (dot-dashed blue line). We also plot the distribution for ∆ =

√
3B/8π2 from the

B-factor for core Cα atoms in the duplicate x-ray crystal structures (dashed black line). The inset
shows an example of one of the proteins in the paired x-ray crystal and NMR structure dataset,
with the x-ray crystal structure on the left and the bundle of 20 NMR structures on the right
(PDB codes 3K0M and 1OCA, respectively). The α-helices are colored purple, the β-sheets are
yellow, and the loops are gray. (b) The fraction of core amino acids F (∆χ) with root-mean-square
deviations of the side chain dihedral angles less than ∆χ (in degrees) for the pairwise comparisons
in (a). The inset is a schematic in two dimensions of the high-dimensional volume in configuration
space that the Cα atoms in core residues in x-ray crystal structures and NMR ensembles sample.
X-ray crystal structures sample a smaller region than NMR ensembles, but the distance between
these regions of configuration space is larger than the fluctuations of both the x-ray crystal and
NMR structures. The relative lengths of the arrows are drawn to scale, with ⟨∆core⟩ ≈ 0.1, 0.5,
and 0.8 Å for the x-ray duplicates, NMR models, and pairs of x-ray crystal and NMR structures,
respectively.

To quantify differences between each RMSD distribution, we compute the Jensen-Shannon (JS)

divergence [70] for each distribution in Fig. 3.2 (a). The JS divergence between the x-ray duplicate

RMSD distribution and the B-factor distribution is 0.5, while the JS divergence between the NMR

intrabundle RMSD and the NMR-x-ray RMSD is 1.1, which demonstrates that the RMSD between

NMR and x-ray structures is greater than the RMSD differences within a bundle of NMR structures,

or between duplicate x-ray structures of the same protein. Because x-ray duplicate RMSD values are

similar to B-factor RMSD values, the relatively low JS divergence indicates that fluctuations across

duplicate crystal structures is dominated by the uncertainty in atomic positions arising from thermal

motion. Whereas the larger JS divergence between NMR intrabundle RMSD and NMR-x-ray RMSD

values, as well as the broad tail in the NMR-x-ray RMSD distribution, suggests that differences

between structures solved by both NMR and crystallography are larger than those expected in both

the ensemble of x-ray structures and in NMR bundles individually. That is, while the fluctuations

in the ensemble of observed NMR structures is larger than those in the observed ensemble of crystal
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Figure 3.3: (a) Fraction of side chain conformations of core residues with predictions from the
hard-sphere plus stereochemical constraint model that deviate from the experimentally observed
values by less than ∆χ (in degrees) in the dataset of x-ray crystal (solid black line) and NMR
(solid red line) structure pairs, and the Dunbrack 1.0 dataset of 221 high resolution x-ray crystal
structures (dashed black line) [30, 31]. (b) Fraction of core hydrophobic side chains, grouped by
residue type, that can be predicted to within 30◦ of the corresponding experimental structure using
the hard-sphere plus stereochemical constraint model for x-ray (black bars) and NMR structures
(red bars). (c) Distribution of the overlap potential energy URLJ/ϵ, calculated using Eq. (3.6) for
core residues in the x-ray crystal (black line) and NMR structures (red line) in the paired dataset.

structures, these two ensembles typically occupy distinct, non-overlapping regions of configuration

space.

We also calculate the side chain dihedral angle fluctuations ∆χ for the same pairs of structures;

we define ∆χ(µ|i, j) as the distance between the side chain conformations of residue µ within

structures i and j, i.e.

∆χ(µ|i, j) =
√

(χ⃗µ,j − χ⃗µ,i)
2
. (3.5)

where χ⃗µ,i is the set of side chain dihedral angles (χ1, . . . , χm) for residue µ on structure i. Note

that in Fig. 3.2 (b), we measure ∆χ between two experimental structures of the same protein,

whereas in Fig. 3.3 (a) and (b) we measure ∆χ between an experimental structure and a prediction

using the hard-sphere plus stereochemical constraint model.

In Fig. 3.2, we show that the conformations of both the backbone and side chains of core residues

fluctuate less in x-ray crystal structures compared to the conformations within an NMR bundle, but

that the fluctuations within an NMR bundle are smaller than those between the x-ray crystal and

NMR structure pairs [61, 67, 68]. The inset to Fig. 3.2 (b) illustrates the proportion of configuration

space sampled for structures solved by both NMR and x-ray crystallography. Structures determined

by x-ray crystallography sample states in a relatively small volume of configuration space compared

to that sampled by structures in an NMR bundle. Moreover, these two ensembles are separated by

a characteristic distance that is larger than the scale of fluctuations in either ensemble.

To put these structural differences in context, we also analyze fluctuations in a database of

pairs of x-ray crystal structures of wild-type proteins and the same protein with a single core

mutation and also high-scoring submissions from a recent Critical Assessment of Protein Structure

Prediction (CASP) competition [59]. In the SI (see Fig. S3), we show that the fluctuations of
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Figure 3.4: Distribution P (ϕ) of the packing fraction of core residues in the Dunbrack 1.0 dataset
of high-resolution x-ray crystal structures (black dashed line), the dataset of high-resolution NMR
structures for which there is not a corresponding x-ray crystal structure (red dashed line), and x-ray
crystal structures (black solid line) and NMR structures (red solid) from the paired dataset.

single-site core mutants relative to wildtype structures is similar to that in x-ray crystal structure

duplicates. In contrast, submissions to CASP12 exhibit much larger fluctuations. Because CASP12

submissions are computational predictions, not experimentally determined structures, one might

expect larger fluctuations. The fluctuations among CASP12 submissions is also larger than those

between structures of the same protein determined by x-ray crystallography or NMR. In the SI,

we report additional measures of structural fluctuations, such as fluctuations in identities of core

residues (Fig. S2). We also show in Figs. S4 and S5 that the global and core RMSD of the Cα
positions do not depend on the resolution of the x-ray crystal structures, as long as the resolution

is less than 3Å.

To understand the origin of differences between x-ray crystal and NMR structures, we investi-

gated if these differences are due to physical forces governing sidechain placement of core residues.

In previous work, we showed that the hard-sphere plus stereochemical constraint model uniquely

specifies the sidechain dihedral angles of core residues in protein crystal structures [34]. One po-

tential source of differences in fluctuations in NMR and crystal structure cores could be that the

cores in NMR structures are less well-resolved, and the sidechains are poorly placed due to insuf-

ficient information to uniquely define their conformations. Such methodological inaccuracies have

been suggested by previous studies, where computational refinement moves NMR backbone and

sidechain dihedral angles towards those of x-ray crystal structures [61–64]. However, as shown in

Fig. 3.3 (a) and (b), we find that we can repack sidechains of core residues in NMR structures just

as accurately as we can repack the same sidechains in high-resolution x-ray crystal structures. The

side chain repacking protocol is described in Sec. 3.2.5 and in further detail in the SI. For side chain

repacking, we calculate the repulsive Lennard-Jones potential energy of overlap URLJ between side

chains of core residues in the pairs of structures. The potential energy of a single residue µ with
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side chain confirmation χ⃗µ is defined by

URLJ(χ⃗µ) =

N∑
ν=1

∑
i,j

ϵ

72

1−(σµνij
rµνij

)6
2

Θ
(
σµνij − rµνij

)
, (3.6)

where the potential energy is evaluated as a sum over all non-bonded atomic interactions. rµνij is the

distance between atoms i and j on residues µ and ν, σµνij =
(
σµi + σνj

)
/2, and σµi is the diameter of

atom i on residue µ. The Heaviside step function Θ enforces the potential to be purely-repulsive.

We find that the distribution of repulsive Lennard-Jones energies between core side chains are

almost identical when comparing x-ray crystal and NMR structures, which indicates that the NMR

and crystal structure cores are statistically at the same energies. (See Fig. 3.3 (c).)

However, when we investigate the packing fraction ϕ of core residues for x-ray crystal and NMR

structures, we find important differences. In Fig. 3.4, we plot the probability distribution P (ϕ) of

the packing fraction for core residues in x-ray crystal and NMR structures. The average packing

fraction of core residues in the protein structures in the datasets determined by x-ray crystallography

is ⟨ϕ⟩ = 0.55± 0.01, a value that is consistent with our previous results for the packing fraction of

core residues in globular and transmembrane protein cores and the cores of protein-protein interfaces

solved by x-ray crystallography [34, 7]. For core residues of protein structures in the NMR database,

the average packing fraction is higher with ⟨ϕ⟩ = 0.59± 0.02. We believe that this is the first time

that such a difference in the packing fraction of core residues in high-quality protein structures

determined by both x-ray crystallography and NMR has been reported.

We were concerned that the higher packing fraction of core residues in protein structures deter-

mined by NMR could be an artifact of improperly-placed side chains that overlap with neighboring

residues, which would artificially increase the observed packing fraction. However, comparison of

the distribution of overlap energies measured by URLJ (Eq. (3.6)) in Fig. 3.3 (c) demonstrates that

the two methods result in almost identical energies, and therefore almost identical atomic over-

laps. The difference in the packing fraction of core residues was at first surprising, because our

previous studies showed that the cores of x-ray crystal structures pack as densely as jammed pack-

ings of purely-repulsive amino-acid-shaped particles without backbone constraints generated using

a protocol of successive compressions followed by energy minimization [20, 7].

We therefore revisited the protocol with which we prepared jammed packings of amino-acid-

shaped particles [7]. In our previous work, packings were prepared using an “athermal” protocol,

where kinetic energy was drained rapidly from the system during the packing preparation. For the

athermal protocol, amino acids were initialized in a cubic simulation box at a small initial packing

fraction ϕ0 and compressed by small increments ∆ϕ with each followed by energy minimization

(see Sec. 3.2.6 and SI for additional details.) Because the amino-acid-shaped particles were not

allowed to translate and rotate significantly between each compression step, the jammed packings

at ⟨ϕ⟩ ≈ 0.55 were obtained at the first metastable jammed state that the protocol encounters.

However, the packing fractions that can be achieved in packings of amino-acid-shaped particles are

protocol-dependent; we next investigated more thermalized protocols to see how different protocols

lead to different jammed packing fractions.
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Figure 3.5: Ensemble-averaged packing fraction ⟨ϕJ⟩ of jammed packings of amino acid-shaped
particles versus the dimensionless timescale τ for N = 16 particles. The colors represent simulations
with different temperatures kBT/ϵ, logarithmically spaced from 10−7 (blue) to 1 (red). The dashed
black line at ⟨ϕJ⟩ = 0.55 is the average packing fraction of core residues in x-ray crystal structures,
and the dashed red line at ⟨ϕJ⟩ = 0.59 is the average packing fraction of core residues in NMR
structures.

We chose a family of annealing packing-generation protocols. We initialize the system in a

dilute configuration, and compress the system in small increments ∆ϕ between periods of molecular

dynamics simulations of purely repuslive amino acids-shaped particles in the canonical ensemble

for a time period tMD at thermal energy kBT . (See SI for details.) We find that temperature

only acts to renormalize tMD, i.e. a longer simulation at a lower temperature will yield the same

results as a shorter simulation at higher temperatures. Thus, there is another time scale associated

with the annealing protocol, tQA = c(T )t∗, where c(T ) is a dimensionless quantity that depends on

temperature, t∗ =
√
mRσ2

R/ϵ, and mR and σR are the mass and diameter of the smallest residue.

We find that plotting the ensemble-averaged packing fraction ⟨ϕJ⟩ of jammed packings of amino

acid-shaped particles versus τ = tMD/tQA = n
(
kBT
ϵ

)α
, collapses the data for different temperatures

and time periods onto a single curve (Fig. 3.5). The exponent α = 0.4± 0.01 and n is the number

of time steps between compression increments.

Two limits of packing fractions emerge over the range of annealing protocols we tested; an

athermal limit, which corresponds to packing fractions in cores of x-ray crystal structures [34], and

the thermalized limit with ⟨ϕ⟩ ≈ 0.62. The packing fraction in the cores of protein structures solved

by NMR fall between these two extremes with ⟨ϕ⟩ = 0.59. The states at exceedingly high packing

fractions exist only in the limit of extremely long annealing times. The results of simulations using

different protocols are consistent with the differences observed in cores of protein structures solved

by x-ray crystallography and NMR. The fact that thermalized packing protocols yield NMR-like

packing fractions, and that athermal protocols generate x-ray crystal-like packing fractions, suggests
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that fluctuations are distinct for these two methods.

3.4 Conclusions

In this work, we compare the fluctuations of protein structures characterized by both NMR and

x-ray crystallography, and find several key results: first, we found that RMSD values between core

residues in duplicated x-ray crystal structures are smaller than RMSD values between core residues

across multiple structures in NMR bundles, but these RMSD values are still smaller than the RMSD

values between core residues in NMR and x-ray crystal structure pairs. These findings suggest

that NMR and x-ray crystal structures occupy distinct regions in configuration space. However,

we also showed that the hard-sphere plus stereochemical constraint model is extremely accurate

in side chain conformation prediction for core residues in both x-ray crystal and NMR protein

structures. Measurements of the core packing fraction show that NMR structures possess denser

cores, even though the cores in x-ray crystal and NMR structures possess the same overlap energy.

To resolve this apparent discrepancy, we prepare jammed packings of amino-acid-shaped particles

both athermally and with thermal agitation, and find that packings produced in the athermal limit

resemble the cores of x-ray crystal structures, while thermalized packings resemble cores in NMR

structures. This result suggests that there are subtle yet real differences in the fluctuations between

structures characterized by x-ray crystallography and NMR spectroscopy. The fluctuations are

larger in NMR structures than in x-ray crystal structures, and these fluctuations lead to slightly

denser packing in the core.

A previous study that also compared protein structures determined by x-ray crystallography and

NMR suggested that the crystal environment restricts dynamical fluctuations, whereas bundles of

NMR structures in solution contain the full dynamics one would expect from elastic network models

for proteins [66]. The work we present here provides further evidence to support this conclusion, but

whether the differences are due to crystalline contacts [66, 67, 71] or the different temperatures at

which the protein structures are characterized [72] remains to be determined. Interestingly, several

structures used in our dataset of duplicate crystal structures were resolved at room temperature

(∼ 300 K), as opposed to the cryogenic temperatures typically used in x-ray crystallography. We

found that core RMSD values do not change significantly when considering duplicate x-ray crystal

pairs solved at different temperatures, which suggests that the crystal environment is the dominant

cause of the differences between structures solved by NMR and x-ray crystallography. To fully

resolve this question, however, further characterization of protein structure fluctuations at different

temperatures is required.

3.5 Appendix

This section includes six Appendices that provide important details about the studies described

in the main text. In Appendix 3.5.1, we summarize the six datasets of protein structures that

we analyzed. In Appendix 3.5.2, we show that the higher packing fraction of core residues in

NMR structures is not an artifact of hydrogen placement. In Appendix 3.5.3, we show the fraction
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of common core residues and the root-mean-square deviations (RMSD) of the core Cα positions

among structures in several of the datasets. In Appendix 3.5.4, we describe the method to perform

sidechain repacking using the hard-sphere plus stereochemical constraint model. In Appendix 3.5.5,

we present data on the extent to which the RMSD of the Cα positions of core residues in x-ray

crystal structure and NMR structure pairs depends on the resolution of the x-ray crystal structure.

In Appendix 3.5.6, we provide additional details concerning the protocols that we use to generate

packings of amino-acid-shaped particles in the numerical simulations.

3.5.1 Protein structure datasets

In this Appendix, we describe the six datasets of protein structures used in this work: the Dunbrack

1.0 dataset, the NMR-x-ray dataset, the x-ray duplicate dataset, the NMR dataset, the mutant-WT

dataset, and the CASP12 dataset.

Dunbrack 1.0 dataset

The Dunbrack 1.0 dataset [30, 31] is a collection of 221 high-resolution x-ray crystal structures with

resolution ≤ 1.0 Å, R-factor ≤ 0.2, side-chain B-factor per residue ≤ 30 Å2, and sequence identity

between proteins in the dataset ≤ 50%.

Dataset of protein structures solved by both x-ray crystallography and NMR (NMR-

xray dataset)

We constructed a protein structure dataset (NMR-x-ray) from the Protein Data Bank (PDB)

that contains 21 structures that have been solved by both x-ray crystallography and NMR. (See

Table 3.1.) The numbers of models and restraints per residue for the NMR data were obtained

from the Biological Magnetic Resonance Data Bank (BMRB). The sequence identity between each

NMR and x-ray structure pair is ≥ 95%, and the sequence identity between different proteins in the

dataset is ≤ 50%. The sequence identity cutoff for paired structures is chosen to be 95% because

NMR structures can have modified residues near the N- or C-terminus to improve the quality of

the NMR spectra, and these small changes in sequence generally do not alter the overall structure.

The x-ray crystal structures have resolution ≤ 2.1 Å. If an x-ray crystal structure contained two

identical chains, only one of the chains was included in all analyses to avoid double-counting. Each

NMR structure bundle contains ≥ 20 models and on average ≥ 15 restraints per residue.

Dataset of proteins solved multiple times by x-ray crystallography (x-ray duplicate

dataset)

We constructed an x-ray duplicate dataset of 39 proteins from the PDB for which there are at least

two independently generated x-ray crystal structures. (See Table 3.2.) All x-ray crystal structures

in this dataset satisfy the following conditions: (1) the resolution < 2.0 Å, (2) the structures contain

no ligands or modified residues, and (3) the biological assembly and asymmetric unit of the crystal

structure contain only a single chain.
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NMR PDB ID # models # restraints/residue X-ray PDB ID Resolution (Å) R-factor
1jbh 25 21.0 1crb 2.1 0.18
1bu9 21 20.3 1ibh 2.00 0.20
1z2d 20 26.2 1jl3 1.60 0.22
2aas 32 16.1 1kf5 1.10 0.18
1t3v 22 17.9 1o13 1.83 0.28
1b4m 24 24.4 1opa 1.90 0.20
2kl2 20 24.4 1vkb 1.90 0.13
2ka0 20 20.9 1zx8 1.90 0.16
2msn 20 24.4 2go7 2.10 0.17
2y4w 20 16.2 2yb6 1.50 0.16
1oca 20 27.2 3k0m 1.25 0.13
1zgg 20 33.0 4kk3 1.79 0.18
1g7o 21 19.8 4kx4 1.60 0.16
2mpb 20 19.0 4oa3 1.39 0.17
1ael 20 25.2 1ifc 1.19 0.17
1wfr 20 18.2 2cx7 1.75 0.21
2l59 20 17.6 2i1u 1.30 0.21
2nln 20 20.5 1rro 1.30 0.18
2lsu 20 16.2 4cgq 2.00 0.16
2i9h 20 22.8 3f3q 1.76 0.19
1f16 20 18.1 4s0o 1.90 0.20

Table 3.1: Protein Data Bank (PDB) identifiers, number of models in each bundle and number
of restraints per residue for the NMR structures, and the resolution and R-factor for x-ray crystal
structures in the NMR-x-ray dataset.
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PDB ID 1 Resolution (Å) R-factor PDB ID 2 Resolution (Å) R-factor
1ihg 1.80 0.18 1iip 2.00 0.24
1kf3 1.05 0.10 2e3w 1.05 0.19
3d8s 2.00 0.20 3d8r 2.00 0.18
3irz 1.70 0.19 3is0 1.75 0.18
3sn2 1.48 0.19 2yh5 1.90 0.20
4grz 1.37 0.17 4gry 1.69 0.19
5y98 1.36 0.10 4lwq 1.38 0.13
1aa2 2.00 0.21 1bkr 1.10 0.19
1b7d 1.73 0.18 1npi 1.16 0.08
1bpi 1.09 0.19 5pti 1.00 0.19
1ftg 2.00 0.18 1qhe 2.00 0.18
1ixh 0.98 0.14 2abh 1.70 0.18
1krn 1.67 0.15 1pk4 1.60 0.14
1kth 0.95 0.14 2knt 1.20 0.21
1l42 1.80 0.16 1l43 1.80 0.16
1lds 1.80 0.19 2d4f 1.70 0.21
1qke 1.50 0.17 5ebx 1.80 0.14
1qy6 1.90 0.20 2o8l 1.50 0.19
1s8h 1.80 0.19 1s8i 1.61 0.19
1xvo 0.84 0.11 2g51 1.84 0.16
1ymk 1.70 0.18 1ys0 1.15 0.14
1ixg 1.05 0.14 1pbp 1.90 0.15
2bwl 1.62 0.18 2bwk 1.50 0.18
2g1h 1.86 0.21 2g2o 1.76 0.22
2w4f 1.30 0.17 5vwc 1.91 0.20
2xxd 1.89 0.26 4aep 1.80 0.19
3dyi 1.72 0.18 3dyv 1.81 0.20
3vhg 1.00 0.16 3vjq 1.00 0.11
4jl7 1.16 0.19 4n6x 1.05 0.15
4wg1 1.70 0.23 4wg7 1.70 0.20
4wob 1.90 0.19 4woc 1.60 0.17
4y9m 1.60 0.18 4y9o 1.81 0.18
5cnw 1.65 0.17 5co3 1.65 0.19
5dsr 1.30 0.12 5dsp 1.4 0.12
5f68 1.23 0.18 5f69 1.37 0.37
5kjo 1.47 0.14 3x2n 1.20 0.11
5nlu 1.20 0.18 5nlw 1.50 0.20
5pg1 1.49 0.21 5pfm 1.54 0.18

Table 3.2: PDB indentifiers, resolution, and R-factor for the pairs of protein structures in the x-ray
duplicate dataset.
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PDB ID # models # restraints/residue
2msk 25 21.1
1g7o 21 19.8
2k3f 20 26.4
1xn6 20 24.5
1z9v 20 16.9
2grg 20 25.0
2k3a 20 16.1
2mpb 20 19
2msn 20 24.4
1n3k 20 22.6
2luo 20 29
2hna 21 33.5
2f3i 21 20.1
2jsy 21 37.7
2kc5 20 26.2
1k0s 20 15.8
2mui 20 15.9
2kcw 21 38.0
1fzt 21 16.2
1jbh 20 21.0
1z2d 20 26.2
5z4e 20 20.0
2mzb 20 17.6
1bu9 21 20.3
1t17 20 15.3

PDB ID # models # restraints/residue
1q8g 20 20.7
1b4m 24 24.4
2kl2 20 24.2
2mlw 20 24.4
2ka7 20 15.4
2k4k 20 22.0
2kz8 20 30.4
2kmg 20 18.7
2mtb 20 32.3
1jaj 25 17.9
1t3v 22 17.9
2jr0 20 24.2
2ka0 20 20.9
2i8l 20 45.4
1xo8 20 23.8
2if1 29 17.6
1wki 30 18.4
2ai6 21 29.8
1oca 20 27.1
1qkl 22 15.0
2y4w 20 16.2
2gqb 20 17.9
1ni7 20 19.6
1f16 20 18.1
2mph 20 18.3
1pux 20 16.1

Table 3.3: PDB identifiers, number of models in the bundle, and number of restraints per residue
in our dataset of NMR structures without companion x-ray crystal structures.

Dataset of NMR structures for which their is no x-ray crystal structure companion

(NMR dataset)

We also generated a (NMR) dataset of NMR structures containing 51 proteins that have ≥ 20

models per bundle and on average ≥ 15 restraints per residue, but do not have a corresponding

structure solved by x-ray crystallography. (See Table 3.3.) The sequence identity among proteins

in this dataset is ≤ 50%.

Dataset of wildtype proteins and mutants with single amino acid mutations solved by

x-ray crystallography (mutant-WT dataset)

We generated a mutant-WT dataset of 32 pairs of wildtype and corresponding single amino acid

mutant x-ray crystal structures. The mutations were limited to amino acids (in both the wildtype

and mutant) with low relative solvent accessible surface area (rSASA < 10−1) and mutations were

38



Figure 3.6: Packing fraction of core residues in protein structures solved by NMR with the original
hydrogen placement in the PDB file (red dotted) and hydrogen placement obtained using REDUCE
(black).

made only between the following residues: Ala, Gly, Ile, Leu, Met, Phe, Ser, Thr, Trp, Tyr, and

Val. These choices ensure that we focus on fluctuations in the positions of core residues in the

mutant-WT dataset. All of the x-ray crystal structures in this dataset have resolution ≤ 2.1Å.

Dataset of CASP models and their associated targets (CASP12 dataset)

The Critical Assessment of protein Structure Prediction (CASP) is a computational protein design

competition organized every two years by the Protein Structure Prediction Center. The Center

collects protein structures that have been solved experimentally, but have not yet been publicly

released, and uses these structures as targets for computational protein design competitions. We

will focus on high-scoring predictions made in the free modeling category in CASP12, in which

groups generate predictions using only the primary sequence of the target. Note that CASP collects

targets that were solved by different methods. In the CASP12 dataset, we chose targets that were

solved via x-ray crystallography to a resolution ≤ 2.0 Å. Out of CASP12’s 117 targets, 12 targets

satisfied this constraint on resolution. In CASP12, each group that competes was allowed to submit

up to five predicted structures for each target. CASP12 ranks structures by combining the z-scores

of several structural quantities. In our analysis, we selected the top 25% of the ranked structures for

each target. Our CASP12 dataset includes 1059 decoy structures for 12 different protein targets.

3.5.2 Placement of hydrogen atoms in protein structures determined

using NMR

In this Appendix, we compare core packing as a function of the placement of hydrogen atoms. We

compare the distribution of packing fractions P (ϕ) for protein structures solved by NMR, where

the hydrogen placement is the same as that in the PDB file and the hydrogen placement is given by
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WT PDB Resolution (Å) R-factor MT PDB Resolution (Å) R-factor Mutation
4p9i 1.34 0.14 4p9l 1.43 0.15 A1107M
1tyv 1.8 0.18 1qa3 2.00 0.18 A334I
1tyv 1.8 0.18 1qa2 2.00 0.18 A334V
2rn2 1.48 0.19 3aa5 2.10 0.19 A52F
2rn2 1.48 0.19 3aa2 1.90 0.20 A52I
2rn2 1.48 0.19 3aa4 1.79 0.19 A52V
2rn2 1.48 0.19 1law 1.80 0.19 V74I
2rn2 1.48 0.19 1lav 1.90 0.18 V74L
1r2d 1.94 0.20 1r2i 2.00 0.20 F146L
1kf5 1.15 0.10 1izr 1.5 0.19 F46A
1kf5 1.15 0.10 1izp 1.50 0.20 F46L
1kf5 1.15 0.10 1izq 1.80 0.19 F46V
1goa 1.90 0.19 1gob 2.00 0.19 G77A
2lzm 1.70 0.19 1l23 1.60 0.16 G77A
2lzm 1.70 0.19 256l 1.60 0.16 M6I
2lzm 1.70 0.19 1l52 1.70 0.16 T152S
1hel 1.70 0.15 1heo 1.80 0.16 I55V
1hel 1.70 0.15 1hem 1.80 0.14 S91T
1hel 1.70 0.15 1her 1.80 0.16 T40S
4axt 1.10 0.16 1ir8 1.63 0.16 I58M
4axt 1.10 0.16 1ir9 1.90 0.17 I98M
4axt 1.10 0.16 1ios 1.76 0.17 M12F
4axt 1.10 0.16 1iot 1.75 0.17 M12L
1agy 1.15 0.18 1cux 1.75 0.16 L114Y
3pzf 1.75 0.17 4roa 1.90 0.17 S358W
3k0m 1.25 0.13 3k0o 1.55 0.10 S99T
1ey0 1.60 0.20 1ey7 1.88 0.15 S128A
1ey0 1.60 0.20 1ey6 1.75 0.20 T41I
1dua 2.00 0.21 1due 2.00 0.21 S195A
2nwd 1.04 0.13 1ckh 2.00 0.18 T70V
2wry 1.58 0.18 3nj5 1.67 0.18 Y157F
4pti 1.50 0.16 8pti 1.80 0.16 Y35G

Table 3.4: PDB identifiers, resolution, and R-factor for the 32 pairs of wildtype and corresponding
mutant x-ray crystal structures in the mutant-WT dataset. The sequence location and amino acid
identities before and after the mutation are provided in the seventh column.
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Dataset ⟨∆core⟩ (Å)
CASP12 4.98
x-ray duplicate 0.12
NMR 0.48
NMR-x-ray 0.83
mutant-WT 0.12
B-factor 0.16

Table 3.5: Average root-mean-square deviations in the Cα positions ⟨∆core⟩ in several of the
datasets.

Figure 3.7: Average fraction of identical core residues fcc as a function of the rSASA cutoff that
determines whether an amino acid is labelled as core for pairs of structures in the x-ray duplicate
dataset (black solid line), for NMR models within each bundle in the NMR-x-ray dataset (red solid
line), for wildtype and single amino acid mutant pairs in the mutant-WT dataset (black dotted line),
among predictions for each target in the CASP 12 dataset (green solid line), and pairs of NMR
models and their corresponding x-ray crystal structures in the NMR-xray dataset (blue dotted line).

the REDUCE software package [32]. As shown in Fig. 3.6, P (ϕ) is the same for both sets of NMR

structures. In particular, both distributions possess a peak near ϕ ∼ 0.58-0.59. Thus, the high

packing fraction for core residues in NMR structures is not an artifact of the hydrogen placement.

3.5.3 Fraction of identical core residues and the distribution of root-

mean-square deviations in atomic positions

In this Appendix, we show results for calculations of the fraction fcc of core residues that are shared

among a group of protein structures as a function of the threshold rSASA that defines whether

a residue is considered as a core residue and the root-mean-square deviations of the Cα atomic

positions among groups of protein structures. In Fig. 3.7, we show the results for the fraction

of common core residues. We find that for three groups of protein structures (x-ray duplicates,

NMR models for a given protein, and mutant-WT pairs) the core regions of the proteins are well-
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Figure 3.8: Probability distribution P (∆core) of the root-mean-square deviations (RMSD) ∆core in
the Cα positions of corresponding core residues (with rSASA ≤ 10−3) between structures in the
x-ray duplicate dataset (black solid line), in the NMR dataset (red solid line), in the mutant-WT
dataset (blue circles), in the x-ray-NMR dataset (blue dotted line), and the RMSD obtained from
the B-factors in the Dunbrack 1.0 dataset (black dotted line).

defined and fcc ≳ 0.8 of the core residues are shared among structures for a small rSASA threshold

rSASA ≲ 0.1. In contrast, in the dataset of corresponding x-ray crystal structures and NMR

models, as well as the high-score CASP12 predictions and their targets, the protein structures do

not share a large fraction of core residues for a threshold rSASA ≲ 0.1.

In Fig. 3.8, we show the results for the root-mean-square deviations (RMSD) ∆core in the Cα
positions of core residues between structures in several of the datasets. The x-ray duplicates and

mutant-wildtype pairs have the smallest RMSD, with peaks in the distribution P (∆core) that are

below 0.5 Å. The RMSD distribution among NMR models is wider than that for x-ray crystal

structures, but narrower than the distribution for corresponding x-ray crystal and NMR structures.

A summary of the average RMSD values ⟨∆core⟩ is provided in Table 3.5. Note that ⟨∆core⟩ for the
CASP12 dataset is approximately five times larger than the average for the other datasets.

3.5.4 Single residue sidechain repacking using the hard-sphere plus stere-

ochemical constraint model

In this Appendix, we show the effect of repacking protocols using the hard-sphere plus stereochemi-

cal constraint model on the different protein datasets. In previous work [73, 19, 34], we showed that

the conformations of the sidechains of core residues in globular proteins, as well as in transmembrane
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Atom Radius (Å)
H 1.1
N 1.3

Csp3/CAromatic 1.5
CO 1.3
O 1.4
S 1.7

Table 3.6: The atomic radii in Å used to perform the sidechain repacking studies in this work.

domains and core residues at protein-protein interfaces, can be predicted using a hard-sphere plus

stereochemical constraint model. We briefly describe the computational method for single residue

sidechain repacking here. To mimic hard-sphere interactions between atoms i and j on residues µ

and ν, we use the purely repulsive Lennard-Jones potential,

URLJ

(
rµνij
)
=

ϵ

72

1−(σµνij
rµνij

)6
2

Θ
(
σµνij − rµνij

)
, (3.7)

where ϵ is the characteristic energy scale of the interaction potential, rµνij is the separation between

the centers of spherical atoms i and j on residues µ and ν, σµνij =
(
σµi + σνj

)
/2, and σµi is the

diameter of atom i on residue µ. The Heaviside step function Θ enforces the constraint that the

interaction is only non-zero when two atoms overlap. The probability that the sidechain for residue

µ adopts conformation χ⃗µ = χµ1 , . . . , χ
µ
m is given by

P (χ⃗µ) ∝ exp[−βURLJ(χ⃗µ)], (3.8)

where β is the inverse temperature (with Boltzmann constant kB = 1) and URLJ(χ⃗µ) is the total

repulsive Lennard-Jones energy for residue µ,

URLJ(χ⃗µ) =

N∑
ν=1

∑
i,j

URLJ

(
rµνij
)
, (3.9)

summing over non-bonded pairs of atoms i and j for all neighboring residues ν. We chose βϵ = 102

to penalize atomic overlaps and we enforce the following normalization condition:∫
dmχ⃗µP (χ⃗µ) = 1. (3.10)

We repeat this procedure for 300 independent sets of bond-length and bond-angle combinations,

which are taken from the Dunbrack 1.0 dataset. The predicted sidechain conformation for residue

µ is the one that maximizes P (χ⃗µ).

The atomic radii are important model parameters in the sidechain repacking studies. As de-

scribed in Ref. [20], we chose atomic radii to minimize atomic overlaps in protein cores. The
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Figure 3.9: (a) Root-mean-square deviations (RMSD) of the Cα positions (∆core) between a given
core residue defined in an x-ray crystal structure at a given resolution and the corresponding residue
in an NMR bundle. Each data point corresponds to an average over the ∼ 20 structures in each
NMR bundle. (b) Probability distribution P (∆core) of the RMSD between core residues in an x-ray
crystal structure and the corresponding NMR structure for different resolution cutoffs. We consider
x-ray crystal structures with resolutions < 1.5 Å (blue), < 1.7Å (green), < 1.9Å (magenta), and
< 2.1 Å (black). For reference, P (∆core) between core residues in a given NMR bundle for the
NMR structures is also plotted (red).

positions of Hydrogen atoms are determined using the Reduce software package [32]. The atomic

radii that are used in the sidechain repacking studies are listed in Table 3.6.

3.5.5 Resolution dependence of RMSD between x-ray crystal structure

and NMR structure pairs

In this Appendix, we show that the RMSD of the core Cα positions between paired x-ray crystal

and NMR structures does not depend strongly on the resolution of the x-ray crystal structure.

In Fig. 3.9 (a), we plot the average RMSD (∆core) of core Cα atoms between paired x-ray and

NMR structures, averaged over the > 20 structures in a given NMR bundle, as a function of the

x-ray crystal structure resolution. We find no strong correlation between the resolution of the

x-ray crystal structure and the RMSD. In Fig. 3.9 (b), we show the same data, but plotted as a

distribution of the RMSD P (∆core) for each x-ray crystal structure resolution. Again, there is no

correlation between the RMSD and the x-ray crystal structure resolution. In addition, it is clear

that the average of the RMSD distribution between the x-ray crystal structure and NMR structure

pairs is larger than the average of the RMSD distribution between structures within NMR bundles.

We also show that the global RMSD of the Cα positions between x-ray crystal structure and

NMR structure pairs is not strongly correlated with the resolution of the x-ray crystal structures.

In Fig 3.10 (a), we plot the global RMSD of the Cα positions between all residues in the paired high-

resolution x-ray crystal structure and high-quality NMR structure dataset (with 21 pairs). Again,
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Figure 3.10: (a) Root-mean-square deviations (RMSD, ∆global) of the Cα positions between all
residues in the x-ray crystal structure at a given resolution and the corresponding residue in an
NMR bundle for the same protein for the dataset of paired high-resolution x-ray crystal structure
and high-quality NMR structure pairs. (b) Similar plot as that shown in panel (a), except we report
the global Cα RMSD for all x-ray crystal structure and NMR structure pairs from the CoDNaS
database [74].

we do not find a strong correlation between the RMSD values and the x-ray crystal structure

resolution. This result is not restricted to the dataset of 21 high-resolution x-ray crystal structure

and high-quality NMR structure pairs. In Fig. 3.10 (b), we plot the global RMSD of Cα positions

versus x-ray crystal structure resolution for all x-ray crystal structure and NMR structure pairs

found in the CoDNaS database [74] (with 2384 pairs). We find no correlation between the global Cα
RMSD and the x-ray crystal structure resolution until ∼ 3.0 Å, which indicates that the resolution

cutoff used in the main text (i.e. 2.1 Å) does not affect our results.

3.5.6 Protocol dependence of packings of amino-acid-shaped particles

In this Appendix, we describe the simulation techniques used to prepare jammed packings of amino-

acid-shaped particles as described in the main text. We model each amino-acid-shaped particle as

a rigid union of spheres with fixed bond lengths, bond angles, and dihedral angles. Each particle

has sidechain atoms as well as the backbone N, Cα, C, and O atoms. The atomic radii are given in

Table 3.6. The packings include N residues using a representative sample of core residues from the

cores of x-ray crystal structures in the Dunbrack 1.0 dataset. We restrict the amino-acid-shaped

particles in our packings to the six hydrophobic amino acids most frequently encountered in protein

cores, i.e. Alanine (Ala), Isoleucine (Ile), Leucine (Leu), Methionine (Met), Phenylalanine (Phe),

and Valine (Val). To generate the packings, we randomly sample N amino acids of the six types

from the protein cores in the Dunbrack 1.0 dataset such that the frequency of the amino acid types

in the packings matches that in protein cores in the Dunbrack 1.0 dataset, which are 0.29 for Ala,

0.19 for Leu, 0.17 for Ile, 0.05 for Met, 0.07 for Phe, and 0.23 for Val. The packings for fixed N
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thus differ in amino-acid content, and only match the residue identities of Dunbrack 1.0 cores on

average. Also note that because the amino-acid-shaped particles are sampled from different cores

for each initial condition, the amino-acid-shaped particles possess different bond length, bond angle,

and dihedral angle combinations across the packings, even though the individual amino-acid-shaped

particles are treated as rigid bodies.

To prepare jammed packings, we start with an initial configuration of amino-acid-shaped par-

ticles with random positions and orientations in a three-dimensional cubic domain with periodic

boundary conditions at packing fraction ϕ0 = 0.1. The particles interact via the pairwise, purely

repulsive harmonic spring potential,

Us(r
µν
ij ) =

ϵ

2

(
1−

rµνij
σµνij

)2

Θ

(
1−

rµνij
σµνij

)
. (3.11)

Here, ϵ is the characteristic energy scale of the interaction potential, rµνij is the inter-atomic separa-

tion between atoms i and j on distinct residues µ and ν, and σµνij is the distance between the atomic

centers at contact. The Heaviside Θ(.) function enforces that the interaction is purely repuslive,

i.e. that the interaction potential Us(r
µν
ij ) = 0 when rµνij ≥ σµνij . Note that the purely repulsive

Lennard-Jones interaction potential in Eq. (3.7) reduces to Eq. (3.11) in the limit of small particle

overlaps. Pairwise forces between atoms i and j are then defined by F⃗µνij = −∇⃗Us(rµνij ), and we in-

tegrate Newton’s equations of motion to update the positions and velocities of the residue’s centers

of mass using the velocity-Verlet algorithm [75]. Since the amino-acid shaped particles are treated

as rigid bodies, the forces will also generate torques on the particles. The torque on residue µ arising

from the pairwise force F⃗µνij is h⃗µi × F⃗µνij , where h⃗µi is the position of atom i relative to the center

of mass of residue µ. We integrate the rotational equations of motion using a quaternion-based

variant of the velocity-Verlet algorithm [38].

As described in the main text, we generate jammed packings of amino-acid-shaped particles

using several protocols. We first use an athermal compression protocol that has been used to study

jammed packings of granular materials [76]. The process begins with an initially dilute configuration

with ϕ0 ≪ ϕJ . To simulate isotropic compression, we grow the particles in small packing fraction

increments ∆ϕ and use the FIRE algorithm [37] to minimize the total potential energy of the

packing U =
∑N
µ<ν

∑
i,j Us(r

µν
ij ) after each compression step. The packing fraction increment is

halved each time the total potential energy per particle switches from zero (i.e. U/Nϵ < 10−16)

to nonzero or vice versa. We terminate the packing algorithm when the total potential energy per

residue satisfies 10−16 < U/Nϵ < 2×10−16 and the kinetic energy per residue is below a very small

threshold of K/Nϵ < 10−30. We set the initial packing fraction to be ϕ0 = 0.1 and ∆ϕ = 10−3,

although our results do not depend sensitively on these values.

We also implemented a quasi-annealing (QA) protocol, where we perform athermal isotropic

compression between periods of thermalization. The protocol is similar to what is described above,

but we run constant-temperature molecular dynamics (i.e. in an NVT ensemble) for n simulation

steps at a dimensionless temperature T̃ = kBT/ϵ. We use velocity-rescaling to maintain constant

temperature, where the velocities v⃗i and angular velocities ω⃗i are rescaled every time step by a factor√
T̃ /T0, where T0 = K/ϵ is the dimensionless kinetic energy of the system before rescaling. After n
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Figure 3.11: (a) Ensemble-averaged packing fraction ⟨ϕJ⟩ at jamming onset plotted versus the
number of simulation steps n per compression increment using the quasi-annealing protocol. Each
color represents a different value of the dimensionless temperature T̃ = kBT/ϵ that is logarithmically
spaced from 10−8 (blue) to 1 (red). (b) The number of steps n∗ at which the curves in (a) cross
⟨ϕj⟩ = 0.57 is plotted as a function of T̃ . The dashed line has slope −0.4 on a logarithmic scale.

time steps in the NVT ensemble simulation, we rapidly quench the system to T = 0 by minimizing

the total potential energy. If the total minimized potential energy per particle U/Nϵ > 10−16, the

protocol searches for the nearest jammed state at packing fraction ϕJ using the athermal protocol

described above; otherwise, the system is reheated to temperature T and the protocol continues.

More than 150 independent configurations were generated for each parameter set considered.

The ensemble-averaged ⟨ϕJ⟩ found from the QA protocol is plotted for several n and T̃ values

in Fig. 3.11. Each curve has a similar shape, and is shifted from one another along the horizontal

axis. We confirm this by plotting n∗, the value of n such that ϕJ(n
∗) = 0.57, as a function of T̃ .

As we expect, n∗ decays as a power law n∗ ∼ T̃−α with α = 0.4 ± 0.01. Thus, we can define the

scaling function, ⟨ϕJ⟩ ∝ F(nT̃α), which is confirmed by the collapse of the data in Fig. 4 in the

main text.

We rationalize this collapse by the fact that the temperature scale T̃ provides a time scale

tQA that can be compared to the annealing time, tMD = n
√
m2
Rσ

2
R/ϵ. We can then define the

dimensionless time scale τ = tMD/tQA = nT̃α. Note that by dimensional analysis one could expect

that the thermal time scale is

t′QA =

√
mRσ2

R

kBT
, (3.12)

which would allow us to define a dimensionless time scale τ ′ = tMD/t
′
QA = n

√
T̃ . Thus, the time

scale τ that gives the best collapse of the packing fraction data contains an anomalous exponent

α ≈ 0.4, not the square-root dependence in Eq. (3.12).
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Chapter 4

Jamming and response of packings

of deformable polygons

4.1 Introduction

All soft, athermal solids deform in response to applied stress, yet much of our understanding of

these systems relies on computational models using particles with fixed shapes [77, 78]. While

extensive work has focused on the effect of varying soft interparticle interactions, less attention

has been placed on how intraparticle degrees of freedom affect collective behavior. Foams [79, 80],

emulsions [81, 82], and a wide array of living tissues [83–99] are composed of deformable objects.

The complexity and variety of the shape degrees of freedom across these systems emphasizes the

importance of investigating how single-particle deformability affects collective properties of soft

solids, such as rigidity and linear response.

Athermal systems composed of soft particles form rigid solids at the jamming transition when

all non-trivial deformations cost energy [35]. If the particles are spherical, frictionless, and purely

repulsive, it is well known that jamming occurs at an isostatic point; mechanically stable con-

figurations at jamming onset in periodic boundary conditions with Ndof degrees of freedom and

Nc interparticle contacts satisfy Ndof − Nc = d − 1 [100]. This observation, a consequence of

Maxwell-Calladine constraint counting [101], has been used to rationalize the many anomalous

mechanical and vibrational properties of jammed solids [102, 103]. However, particles with non-

spherical shapes typically jam with more degrees of freedom than interparticle contacts. These

hypostatic packings gain mechanical stability from higher-order terms in the Taylor expansion of

the potential energy [104–106, 22, 107]. Higher-order stability has been observed in jammed pack-

ings of a variety of non-spherical particles [22, 107] and even in packings of “breathing” particles

that contain size degrees of freedom [108]. Higher-order constraints directly impact the vibrational

spectrum [106, 108], shear response [102], and the glass transition at finite temperature [109].

Recent work [110, 111] has proposed that such higher-order rigidity is a generic feature of

hypostatic systems with sufficient pre-stress. This phenomenon has been used to explain the rigidity
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Figure 4.1: Eigenvalues of the single-particle dynamical matrix λm for truly deformable particles
(DP, top) and deformable particles with bending constraints (DPb, bottom) with n = 24 vertices.
Symbols correspond to values of the preferred shape parameter A0, and An = n tan(π/n)/π is the
shape parameter of a regular n-gon. The vertical line at index i = 24 (i = 4) in the top (bottom)
panel correspond to the crossover between zero and non-zero eigenvalues. Energy-minimized shapes
are drawn in the insets, with A0 increasing from left to right, and the curvature vectors κ⃗i defined
in Eq. (4.3) are drawn on the buckled DPb particle. In both panels, Kl = 1, and Kb = 10−2 in the
bottom panel.

transition in Vertex models of confluent tissues [112, 113], which can be viewed as dense packings of

deformable polygonal cells that are constrained to be confluent. These results suggest that jammed

packings of deformable particles might behave similarly, i.e. possess higher-order stability and

mechanical and vibrational properties that diverge from those for jammed packings of frictionless,

spherical particles. However, are jammed packings of deformable particles identical to those of non-

spherical particles such as ellipses? Or does particle deformability lead to fundamentally different

mechanical and vibrational response? And how do the properties of jammed packings change as

the particles vary from highly deformable to completely rigid?

In this chapter, we study the collective vibrational and mechanical properties of jammed solids

composed of particles with varying degrees of deformability. In Sec. 4.2, we introduce a model

of deformable polygons. We define deformability through the single-particle vibrational spectra

and show that the model can describe truly deformable and rigid-shape particles, as well as quasi -

deformable particles with characteristics between the two extremes. In Sec. 4.3, we investigate the

rigidity, vibrational modes, and shear response in jammed solids composed of deformable particles.

Our results emphasize that (a) packings of deformable particles in the rigid-shape-particle limit

recover the properties found for jammed packings of soft spherical particles, but that (b) packings
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of truly deformable particles do not possess the same vibrational and mechanical properties as those

for jammed packings of soft spherical particles. In Sec. 4.4, we conclude with a discussion of the ap-

plicability of our results to glassy solids at finite temperature and to several experimental systems.

We also include seven appendices, which detail the exact expressions for the forces in the model

(Appendix 4.5.1) and for the pressure and shear stress in jammed packings (Appendix 4.5.2), the

elements of the dynamical matrix (Appendix 4.5.3), counting effective constraints using the dynam-

ical matrix (Appendix 4.5.4), buckling in single particles with bending energy (Appendix 4.5.5),

system-size dependence of the dynamical matrix and shear modulus (Appendix 4.5.6), and identi-

fication of the collective shape degrees of freedom (Appendix 4.5.7).

4.2 Methods

Systems of deformable particles in two dimensions are modeled by N distinct polygons, each with

nµ vertices with positions r⃗iµ for i = 1, ..., nµ and µ = 1, ..., N . Each polygon has an area aµ and

perimeter pµ =
∑nµ

i=1 liµ, where liµ is the edge joining vertex i and i+1 on polygon µ. In previous

work [47], we studied the deformable polygon (DP) energy,

UDP =
ϵa
2

N∑
µ=1

(
aµ
a0µ

− 1

)2

+
ϵl
2

N∑
µ=1

nµ∑
i=1

(
liµ
l0µ

− 1

)2

+ Uint, (4.1)

where Uint is the potential energy between interacting particles, and ϵa and ϵl are energies controlling

area and perimeter fluctuations about the preferred areas a0µ and edge lengths l0µ, respectively.

Interactions between vertices i and j on cells µ and ν are governed by the pair potential v, which

we assume depends only on the distance between two vertices, rµνij = |r⃗iµ − r⃗jν |. We treat each

vertex as a repulsive soft disk, where

v
(
rµνij
)
=
ϵc
2

(
1−

rµνij
σµν

)2

Θ

(
1−

rµνij
σµν

)
, (4.2)

σµν = (l0µ + l0ν)/2, each vertex has diameter l0µ, ϵc controls the strength of the interaction, and Θ

is the Heaviside step function to enforce purely repulsive interactions. The total interaction energy

is therefore Uint =
∑
ν,µ

∑nµ

i=1

∑nν

j=1 v
(
rµνij
)
, though we do not track overlaps between vertices i

and i + 1 and i and i − 1 on the same particle. We measure lengths in units of the square root

of the minimum preferred area,
√
a0, energies in units of ϵa, and times in units of τ =

√
a0/ϵa,

where all vertex masses have been set to 1. The dimensionless preferred shape parameter A0µ =

(nµl0µ)
2
/(4πa0µ) measures the amount of excess perimeter above a regular polygon with area a0µ

and thus controls particle deformability [47]. For the DP model, particle shapes depend only on

Kl = ϵl/ϵa, Kc = ϵc/ϵa, and A0µ.

In Eq. (4.1), we see that the shape of a single DP particle is constrained by n + 1 terms given

n vertices, but each particle contains 2n degrees of freedom. By constraint counting, we expect

2n − (n + 1) = n − 1 zero energy modes. While each particle contains two translational and

one rotational degree of freedom that cannot be constrained by internal forces, DP particles still
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Figure 4.2: (a) Number of missing contacts per particle m/N in packings of N = 64 DP particles
with nS = 16 (inset, nS = 24) vs. number of quartic modes per particle Nq/N . Black solid line gives
m = Nq, and colors represent shape parameter values from A0 = 1.0001 to 1.24, sorted from low
(blue) to high (red) values. (b) Missing contacts per particle m/N , where now m = 3N ′ − 1−Nvv

for a system with N ′ non-rattler particles, in packings of DPb particles plotted vs. δA0/(A∗
0 − 1).

A∗
0 is the particular buckling shape parameter for a given set of parameters, and δA0 = A0 − 1.

Colors represent Kb (sorted from blue to green), spanning Kb = 0.005 to 0.05. The filled symbols
are for nS = 16, while white symbols are for nS = 24, and shapes represent different system sizes:
N = 16 (circles), 32 (squares), and 64 (stars). The inset shows m = 4N ′ − 1 − Nvv for jammed
packings of N = 64 buckled DPb particles with N ′ non-rattler particles, and Ñq is the number of
apparent higher-order modes inferred by the heuristic counting described in the main text. Shape
parameters from A0 = 1.04 to 1.12 are shown, and darker color signifies probability density as
denoted by the colorbar. The black line gives m = Ñq.

contain n − 4 non-trivial zero modes. In this sense, DP particles are truly deformable and can

change shape with zero energy cost. Example energy-minimized DP particles are shown in the top

inset to Fig. 4.1.

To rigidify single DP particles, we add n bending constraints along the particle perimeter [47],

Ub = UDP +
kb
2

n∑
i=1

κ⃗2i , κ⃗i =
l⃗i − l⃗i−1

l20
. (4.3)

Eq. (4.3) has the additional parameter Kb = kb/(ϵal
2
0), which determines the energy cost of bending

the particle perimeter. We refer to particles with this additional bending energy term as DPb par-

ticles. In addition to single-particle properties, we also study configurations of multiple deformable

particles near the onset of jamming. We prepare jammed packings of N bidisperse (50:50 by num-

ber) deformable particles in square cells with side length L and periodic boundary conditions. Small

(large) particles are given nµ = nS (nL) vertices with segment lengths l0µ chosen such that A0µ/An

is identical for each particle, where An is the shape parameter of a regular n-gon. Therefore, when

referring to the shape parameter chosen for a configuration of deformable particles, we will use A0
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to mean the ratio of A0/An for a particle with a given number of vertices. We choose nL to be the

nearest integer to 1.4nS to enforce an approximate 1.4 large-to-small size ratio to avoid crystalliza-

tion and phase separation [114]. Likewise, large particles are given preferred areas a0µ = (1.4)2a0.

To create jammed packings, we randomly place particles in the simulation cell at low packing frac-

tion ϕ and isotropically compress the system by increasing the particle size. Compression steps are

followed by minimization of the total potential energy U using FIRE. We take configurations as

sufficiently near an energy minimum when the total root-mean-square force < 10−12. We define the

onset of jamming, with packing fraction ϕJ , when the pressure P satisfies 10−7 < P < 2 × 10−7.

Pressure is defined as P = −dU/dA, i.e. the total derivative of the potential energy with respect

to the area of the simulation domain A, and in Appendix 4.5.2 we derive a formula for the pressure

using only the vertex coordinates and domain size. We have confirmed that the results presented

below do not depend on the pressure threshold as long as it is sufficiently small. Throughout this

work, we will use Kl = Kc = 1 unless otherwise stated.

4.3 Results

4.3.1 Rigidity

We first investigate the rigidity of single DP and DPb particles by normal mode analysis. Single-

particle normal modes are eigenvectors of the dynamical matrix M, with block elements defined by

Mij = ∂2U
/
∂r⃗i∂r⃗j . In Fig. 4.1, we plot the normal mode eigenvalues λm for DP and DPb particles

with n = 24 vertices and varying preferred shape parameters A0. We find DP particles have n− 1

near-zero modes (≲ 10−15) when A0 > 1, as expected from constraint counting. Interestingly,

the DP particle with A0 = 1 possess n − 3 low frequency modes significantly above the noise

floor. Although the particle shape is underconstrained, particles with A0 = 1 cannot deform

without increasing their perimeter-to-area ratio. These DP particles therefore are stabilized by

prestress, a phenomenon found in underconstrained tensegrity structures [101] and disordered spring

networks [110].

As DPb particles contain n additional constraints, we expect them to behave as rigid-shape

particles (such as frictionless soft disks or ellipses) where any shape deformation costs energy. In

Fig. 4.1, we find that there are only 3 near-zero modes, corresponding to the trivial zero modes,

for DPb particles with sufficiently small preferred shape parameter and that the particles energy-

minimize to regular polygons. However, when A0 = 1.1, the DP particle is “buckled” with an

elliptical shape and an additional low-frequency mode λm,4 ≈ 10−10.

In Appendix 4.5.5, we show that the DPb model contains a buckling transition where energy-

minimized shapes elongate from regular polygons and the first non-trivial normal mode eigenvalue

λm,4 drops from ∼ Kb to near zero. The transition point, A∗
0, varies for different Kb, but the

behavior after buckling is similar: λm,4 rises from the noise floor with increasing A0, and particles

increasingly elongate. The small value of λm,4 after buckling suggests that buckled DPb particles

gain an extra degree of freedom even though the number of constraints remains constant, a feature
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reminiscent of the rigidity transition in vertex models of confluent tissues [112, 110] and topological

metamaterials [115, 116].

We then investigate rigidity in jammed packings of DP and DPb particles by calculating the

collective vibrational response. In a jammed packing of N ′ non-rattler DP particles with n vertices

per particle on average, there are 2N ′n degrees of freedom, N ′(n + 1) shape constraints and Nvv

vertex-vertex contacts to constrain the shape degrees of freedom. Isostaticity would dictate Nvv =

N ′(n− 1) − 1, but in Fig. 4.2 (a) we show that DP particles at jamming onset are hypostatic

and seemingly missing the requisite number of interparticle contacts for jamming. The number of

missing contacts for jammed DP particles is m = N ′(n− 1)− 1−Nvv.

Hypostaticity at jamming onset is often observed in packings of non-spherical particles [22].

Recent work has shown that these systems are stabilized by higher-order quartic modes of the

potential energy [104, 22, 108]. In Appendix 4.5.4, we show that quartic modes can be identified by

decomposing the dynamical matrix M into the stiffness H and stress S matrices [105, 106, 113]. As

shown in Fig. 4.2 (a), we find that the number of missing contacts in jammed DP packings always

matches the number of quartic modes Nq across a wide range of shape parameters.

As DPb particles with n vertices contain n additional constraints, we expect them to behave

similarly to packings of rigid-shape bumpy particles that are known to be isostatic at jamming [117].

Indeed, when the particles are regular polygons, i.e. A0 < A∗
0, we show in Fig. 4.2 (b) that

these packings are isostatic and the number of contacts Nvv equals 3N ′ − 1, the total number of

contacts expected for an isostatic packing of N ′ non-rattler particles, each with 3 degrees of freedom.

However, in Fig. 4.2 (b) we show that near the buckling transition A∗
0, packings gain contacts and

appear to be hyperstatic at jamming onset. Hyperstaticity at jamming onset is extremely rare when

using athermal protocols [118, 119], so it seems the “buckling mode” with low eigenvalue effectively

gives the DPb particles an extra degree of freedom, making these packings actually hypostatic with

Nvv < 4N ′ − 1.

One might expect to be able to count missing contacts for packings of DPb particles by decom-

posing the dynamical matrix M into H and S as we did for packings of DP particles. However, we

show in Appendix 4.5.4 that all non-trivial eigenvalues of the stiffness matrix H are nonzero for DPb

packings and several orders of magnitude larger than the eigenvalues of the dynamical matrix M.

As discussed in Ref. [110], the presence of positive eigenvalues of the stress matrix S make counting

missing constraints via the dynamical matrix indeterminate. Despite this, we find some evidence of

missing contacts in DPb packings using a heuristic approach detailed in Appendix 4.5.4. Briefly, if

a packing of DPb particles is missing m = 4N ′ − 1−Nvv contacts, we check (i) whether there is a

gap between the mth non-trivial eigenvalue λm of M and λm+1, or (ii) if there is no apparent gap,

wherether the mth non-trivial mode has a significantly larger participation ratio than mode m+1.

We show in the inset of Fig. 4.2 (b) that the heuristic counting largely identifies correctly the Ñq
higher-order modes that stabilize the missing contacts. However, there are several cases where the

counting fails, highlighting the difficulty in determining rigidity in packings of DPb particles with

negative pre-stress. Notably, most cases in which the correct number of missing contacts could not

be identified in the dynamical matrix eigenvalue spectra or mode structure (i.e., when m ̸= Ñq)

occur at Ñq = 0. That is, whenever there is a notable gap or change in eigenmode participation

ratio, we correctly count the number of missing contacts. We reserve a more in-depth analysis of
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Figure 4.3: Vibrational density of states D(ω) at jamming onset for the DP and DPb models and
a range of shape parameters. (a) D(ω) for N = 64 jammed, bidisperse DP particles (nS = 16) with
shape parameter 1.0001 ≤ A0 ≤ 1.20. (b) D(ω) for jammed packings of DPb particles (nS = 24)
with Kb = 10−2 and shape parameters 1.001 ≤ A0 ≤ 1.12. In both (a) and (b), curves are offset for
clarity, the perimeter spring constant Kl = 1, and the curve colors shown in the colorbar represent
δA0 = A0 − 1. (c), (d) Characteristic frequencies ω0 (black), ω1 (blue), and ω2 (red) as a function
of δA0 for DP (left) and DPb particles (right). The black and blue lines in (c) represent the

scalings ∼ δA−1/3
0 and ∼ δA1/2

0 , respectively. Dots in (a) and (b) represent the location of each
characteristic frequency in D(ω).

the edge cases where missing contacts were not identified by M, as well as a predictive theory for

the missing contacts as a function of shape parameter, for future work0.
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Figure 4.4: Magnitude of mode projection onto the shape degrees of freedom (S) versus the eigen-
mode frequency ω of the dynamical matrix for N = 256 DP packings with nS = 16 and A0 = 1.02
(circles), 1.06 (triangles), 1.1 (squares), 1.14 (diamonds), and 1.18 (asterisks). Inset: S(ω) for DP
packings with A0 = 1.02 at several packing fractions from ϕ = ϕJ (blue circles) to 0.98 (red circles)
in increments of 2× 10−2.

4.3.2 Vibrational response

We next study the density of vibrational states D(ω) for non-trivial vibrational modes with fre-

quency ωi =
√
λm,i. In packings of DP particles, we observe three distinct bands of vibrational

response in Fig. 4.3 (a) due to quartic modes (with mean frequency ω0), mid-frequency collective

modes (consistently the first N − 1 quadratic modes, with mean frequency ω1), and high-frequency

shape modes (with mean frequency ω2). As shown in Appendix 4.5.6, D(ω) and the characteristic

frequencies do not vary significantly with system size. A similar three-band structure is found in the

vibrational response of jammed packings of rigid-shape non-spherical particles [22], although for the

DP packings, the second band of modes corresponds to shape fluctuations at particle-particle inter-

faces rather than particle rotations. Additionally, as shown in Fig 4.3 (c), we find the characteristic

scaling ω0 ∼ δA−1/3
0 , indicating collective motion becomes less costly as particles become more

deformable. We note this behavior differs from jamming of frictionless non-spherical particles with

rigid shape [106, 108], where ω0 ∼ A1/2
0 . We find approximate 1/2 scaling with shape parameter in

the mid-frequency band ω1, although this exponent is ∼ 1 in packings of rigid-shape non-spherical

particles. The stiff shape mode band with mean frequency ω2 does not vary with particle shape.

Previous studies have argued that driven and jammed amorphous solids can be described using

spherical particles with soft interparticle potentials [77], where particle deformability is modelled by

large interparticle overlaps. However, the deviation in D(ω) for packings of DP particles from that

for soft non-spherical particles suggests that explicit shape change plays an important role in deter-

mining the vibrational response of soft particles. We further investigate the effect of shape change

in the vibrational response by computing the projection of each eigenmode onto collective particle
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Figure 4.5: (a) Shape degrees of freedom per eigenmode, sorted from smallest to largest, in a packing
of N = 16 DPb particles (shown in inset) with nS = 24, Kl = 1, Kb = 10−2, and A0 = 1.04, which
is above the buckling transition A∗

0 = 1.03. Curves show changing the interaction parameter Kc

from Kc = 1 (blue circles) to Kc = 10−5 (magenta left triangles) with intermediate values spaced
by a factor of 10. (b) Same as (a), but now A0 = 1 and particles are regular polygons when energy
minimized (as shown in inset). Kc is now varied from Kc = 1 (blue circles) to Kc = 10−4 (black
asterisks). The symbols for intermediate values of Kc are the same as in (a).

translations (T ), rotations (S), and shape degrees of freedom (S), as described in Appendix 4.5.7.

In Fig. 4.4, we show that even the low-frequency modes of jammed DP particles have a significant

collective shape projection S across a wide range of shape parameters (1.02 ≤ A0 ≤ 1.18). We

find that S(ω) remains > 0 at the lowest frequencies even when the compression is increased well

above jamming onset. Explicit shape change is therefore necessary to capture important features

of driven soft materials, such as flows of bubbles [80], droplets [120] and emulsions [121, 122].

We also computed D(ω) for jammed DPb particles as shown in Fig. 4.3 (b). These systems

no longer have a distinct band structure in D(ω), as there are no obvious quartic modes. Here,

we define ω1 as the mean of the first N − 1 modes after the trivial zeros in analogy with the DP

packings, and ω2 is the mean of all other modes. For systems with A0 < A∗
0, D(ω) is relatively

unchanged as a function of A0. For packings with buckled DPb particles (A0 > A∗
0), we observe

a higher density of low-frequency modes near the buckling transition and a cusp in ω1 at A∗
0 as

shown in Fig. 4.3 (d). The abundance of low-frequency modes is likely due to the sudden decrease

in the magnitude of the single-particle λm,4 mode at the buckling transition (see Appendix 4.5.5),

and the appearance of modes that can stabilize more than one degree of freedom.

The large density of low frequency modes at the buckling transition for DPb particles raises an

important question. Is there a regime where DPb particles will behave as particles with rigid shapes?

Or are DPb particles quasi -deformable with persistent non-rigid-shape behavior? To address this

question, we compute the collective shape degrees of freedom S in individual jammed packings

of DPb particles in the rigid-shape limit (Kc → 0). We show in Fig. 4.5 (b) that non-buckled
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Figure 4.6: (a) Static shear modulus G versus pressure P for N = 256 DP packings (nS = 16)
with A0 = 1.02 (circles), 1.06 (triangles), 1.1 (squares), 1.14 (diamonds), and 1.18 (asterisks), and
N = 256 DPb packings (nS = 16) with A0 = 1 (downward triangles). The dashed lines are best
fits to Eq. (4.4). The dash-dotted line follows the scaling G ∼ P 1/2. (b) Exponents α (triangles)
and β (circles) from Eq. (4.4) for the DP packings in (a) versus shape parameter A0. Horizontal
lines indicate α = 1.0 and β = 0.75.

DPb particles (A0 < A∗
0) eventually reach the rigid-shape limit (Kc ≲ 10−4), where the first 3N

eigenmodes correspond to purely translational and rotational degrees of freedom and the rest of

the spectrum contains only shape degrees of freedom. However, when particles buckle (i.e. A > A∗
0

in Fig. 4.5 (a)), S is non-zero for the first 3N eigenmodes for all values of Kc. We conclude that

DPb particles that remain regular polygons are effectively rigid-shape particles, whereas buckled

DPb particles are quasi-deformable, and thus the shape degrees of freedom play a key role in their

vibrational response.

4.3.3 Shear response

To investigate the effect of particle deformability on bulk mechanical properties, we computed

the static shear modulus G for jammed packings of DP and DPb particles. Packings were com-

pressed to a given pressure P , subjected to small, successive simple shear strain steps of size ∆γ

with Lees-Edwards boundary conditions [75], and the system was energy-minimized after each

step. We measure G = −dΣ/dγ, where Σ is the shear stress and defined in Appendix 4.5.2. We

report G averaged over an ensemble of at least 500 configurations. In Fig. 4.6, we show that,

although DP packings contain collective low-frequency quartic modes, they possess G > 0 at low

pressure [104, 47]. In Appendix 4.5.6, we also show characteristic N−1 scaling of G in the P → 0

limit [123]. We find in Fig. 4.6 (a) that G(P ) for DP packings over of wide range of A0 is well-

approximated by the double-power-law functional form [124] used to describe the shear response of
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packings of soft frictionless spheres:

G = G0 +
aPα

1 + cPα−β
, (4.4)

where a and c are constants. G0 is the value in the P → 0 limit, the exponent α controls the low

P response, and the exponent β controls the high P response.

Values of α ≈ 1 and β ≈ 0.5 have been reported in previous studies of jammed packings of

frictionless spherical particles [35, 123], frictional spherical particles [125], and bumpy particles [117].

However, in Fig. 4.6 (b), we find that the large pressure scaling exponent β ≈ 0.75 for DP packings.

In Fig. 4.6 (a), we show that β ≈ 0.5 for unbuckled DPb particles with Kb = 10−2 and A0 = 1.04,

although we do not observe a plateau at low pressures. This result indicates that the mechanical

response for unbuckled DPb particles (with A0 < A∗
0) is similar to that for rigid-shape spherical

particles.

Note also that G(P ) for packings of DPb particles possesses an even smaller scaling exponent

at high pressures (P ∼ 10−2). At these pressures, particles are likely starting to deform from

their energy-minimized states to fill in their surrounding Voronoi cell as the packing approaches

confluence. However, to fully understand the root cause of these scaling exponents, future work is

needed to connect the behavior of single packings to the ensemble average. Prior work on friction-

less disks [124] showed that G decreases with P for individual packings with fixed contact networks.

Only when the contact network changes does the shear modulus increase, leading to a scaling of

P 1/2 when averaging over an ensemble of many configurations with many different contact changes.

Understanding the power-law scaling of the ensemble-averaged G(P ) for deformable particles re-

quires an analysis of how deformable particles break contacts in response to compression, as well

as how the shear modulus varies with pressure when the interparticle contact network does not

change [126].

4.3.4 Preliminary studies on non-linear behavior

While measurements of the shear modulus and vibrational density of states have been shown to

depend heavily on single-particle mechanical properties, like shape parameter or bending energy,

these features only reflect the linear response regime. However, biological systems like dense tissues

are inherently out-of-equilibrium and deeply non-linear in almost any context [128, 129]. Therefore,

it remains to be seen whether inherently non-linear behavior, like glassy dynamics over long time

scales, are affected by single-cell parameters.

To investigate this, we can take a densely-packed configuration of deformable particles and simu-

late a ”crawling” motility strategy that resembles that of single cells on two-dimensional substrates.

Each cell µ will be given a preferred crawling director n̂µ = (cosψµ, sinψµ), with dynamics of the

crawling angle given by so-called active brownian dynamics [130]

∂ψµ
∂t

= 2Drηµ(t) (4.5)

where is Gaussian white noise with zero mean and delta-function spatial and temporal correlations
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Figure 4.7: (A) Description of the active brownian crawler (ABC) model; each cell µ is given a
preferred direction ψµ, but each vertex i is given a speed νiµ according to Eq. (4.6), which depends on
the angular position ψiµ of each vertex. The inset cells with different colors shown a representative
time course of a crawling cell, with increasingly warm colors corresponding to later times. (B)
Nearly-confluent configurations of either DP (left column) or DPb (right column) polygons, each
crawling with ABC dynamics. Rows correspond to preferred shape parameter A0 = 1.1 (top, blue
outline) and A0 = 1.18 (bottom, red outline). Cell color corresponds to reduced perimeter values
p̄ ≡ p/

√
a =

√
4πA; note that the vertex model of confluent tissues [112, 127] predicts fluid-like

cells to always have a reduced perimeter of p̄ > 3.81. Each system has the same crawling speed ν0
and persistence Dr. (C) Mean-square displacements ∆2 at lag-time τ for the four systems shown
in (B). Circles (squares) correspond to DP (DPb) systems, and blue (red) curves correspond to
A0 = 1.1 (A0 = 1.18). The inset shows the trajectories of cell centers over time, with the position
of each inset matching the position of a given snapshot in panel (B). (D) Stationary probability
distribution of shape fluctuations P (p̄), which the curve style matching the border of snapshots in
(B). The vertical line is drawn at the vertex model prediction for fluid-like cell shapes, p̄ = 3.81.

⟨ηµ(t)ηρ(t′)⟩ = δµρδ(t− t′). Cells will crawl by adding a force to each vertex f⃗iµ = νiµn̂µ along the
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crawling director, with the forcing magnitude νiµ given by

νiµ = ν0 exp

[
− (ψiµ − ψµ)

2

2D2
ψ

]
(4.6)

where ν0 sets the maximum crawling speed, and νiµ decays with a Gaussian profile (width set by

Dψ) from the vertex with angular position ψiµ = arctan(yiµ/xiµ) that is closest to the preferred

direction of motion ψµ. As shown in Fig. 4.7 (A), this drives the cell to crawl through shape change,

with the direction motion aligning with the “leading edge” of cell shape deformation. Because cells

move similarly to active brownian particles but through a shape-deforming, crawling strategy, we

term this model the “Active Brownian Crawling” (ABC) model.

Placing ABC cells together in a dense mixture then allows us to probe the non-equilibrium

dynamics of dense cellular configurations. In Fig. 4.7 (B), we show snapshots of small, nearly-

confluent systems filled with actively crawling cells. We vary cell preferred shape parameter (either

A0 = 1.1 or 1.18) across the confluence transition of jammed DP particles [47], as well as whether

cells have or do not have additional bending constraints to their shape (i.e. DPb or DP, respectively).

We track their apparent solid-like or fluid-like behavior by plotting the mean-square displacement

∆2 of the cell centers (Fig. 4.7 (C)).

We find that, as shown in previous work [131], single-cell mechanical properties play an impor-

tant role in the non-linear behavior of the system. With no bending energy (i.e. the DP model),

preferred shape determines how long it takes for the cells to rearrange their local environment, hop

between cages formed by their neighbors, and behave like an equilibrium liquid with ∆2 ∼ τ . When

cells are given bending constraints (i.e. the DPb model), however, ∆ ∼ τ1/3 across a broad range

of time-scales, indicating the system behaves more like a out-of-equilibrium glass [109]. Here, the

preferred shape parameter A0 plays less of a role in determining the dynamics. However, actual

shape of the ABC cells during dynamics varies significantly, as shown in Fig. 4.7 (D). In particular,

note that the red-dashed line in panel (D); this system has a large preferred shape parameter A0

and bending energy. We find that the actual shape of ABC particles during the simulation are

significantly non-spherical even though ∆2 behaves like that of a glassy solid. Work on the vertex

model of confluent tissues [112, 127, 132] has shown that tissue fluidity correlates strongly with

cell asphericity. If the mean reduced perimeter of a tissue p̄ > 3.81 (where p̄ =
√
4πA), then the

vertex model would predict the tissue to be totally fluid with zero barriers to cell rearrangements.

Here, we show a system of strongly-non-spherical deformable particles that can behave solid-like

even with apparently fluid-like cell shapes.

Recent work on developing embryos [133] has demonstrated that while the vertex model pre-

dictions can capture some behavior of confluent tissues, notable exceptions exist where cells can

take on fluid-like shapes yet display little-to-no cellular rearrangements (see e.g. the bnt mutant of

Drosophila in Ref. [133], or the cadherin mutants in Ref. [134]). With ABC deformable particles as

model cells, we show that changes to cell rigidity can help explain the complex relationship between

cell shape and tissue mechanics. These observations are consistent with what we have seen in the

linear response regime (i.e. in vibrational and shear response), reinforcing that studies of the linear

response regime still impact non-linear, non-equilibrium properties [135]. However, to understand
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these more complex properties in real tissues, much work needs to be done to extend the DP and

DPb models to real cells. In particular, cell adhesion and shape change are a fundamentally non-

equilibrium processes [88, 94], and the extent to which a purely potential-based model can fully

capture the behavior of tissues remains to be seen. However, a purely mechanical model shown

in this chapter allows to probe the extent to which these non-equilibrium, fundamentally biologi-

cal processes affect tissue mechanics, and the extent to which an simpler, effective model can still

capture the relevant phenomena.

4.4 Conclusions

In this work, we have studied rigidity, the vibrational density of states, and the mechanical response

in athermal, jammed solids composed of particles that can explicitly change shape to varying

degrees. We can vary particle deformability by studying the Deformable Polygon (DP) model,

where each particle has as many shape degrees of freedom as it has vertices, and the effectively

rigid-shape DPb model, which includes bending energy. We also showed that DPb particles can

buckle by increasing the preferred shape parameter A0 above a characteristic value (A∗
0), which

effectively provides DPb particles with an additional degree of freedom. When studying the rigidity

of jammed packings of these particles, we find that DP and DPb particles typically do not jam at a

standard isostatic point. Packings of DP particles have too few contacts for collective rigidity, but

we find that there are higher-order terms in the potential energy expansion (i.e. quartic modes)

that stabilize the packings. Packings of DPb particles below the buckling threshold jam at the

expected isostatic point for rigid-shape bumpy particles, but buckled DPb particles jam with more

contacts than expected and seem to be hyperstatic. If we assume that buckled DPb particles have an

extra degree of freedom, however, these packings are hypostatic just as in packings of DP particles.

Although we cannot reliably count missing contacts from the vibrational spectra for buckled DPb

packings, we show that a heuristic counting criterion roughly validates the observation that buckled

DPb particles have higher-order rigidity.

Analyzing the vibrational spectra in more detail, we show that the vibrational density of states

D(ω) depends strongly on particle deformability. In particular, we show that the characteristic

frequency of quartic modes for jammed DP particles scales inversely with particle shape parameter,

i.e. ω0 ∼ δA−1/3
0 . This result differs from other systems with three vibrational bands, in particular

jammed packings of ellipsoids [106] and breathing particles with size degrees of freedom [108]. We

also find that collective shape degrees of freedom S play an important role in the low-frequency

vibrational response of DP particles across different shapes and with increasing compression. We

show that packings of regular-polygon DPb particles in the rigid-shape-particle limit Kc → 0 do

not possess low-frequency collective shape degrees of freedom, whereas S(ω) > 0 for all Kc for

packings with buckled DPb particles. We further show that G ∼ P 3/4 over a wide range of pressure

for packings of DP particles for all shape parameters studied, which deviates from the power-law

scaling for packings of rigid-shape spherical particles. In contrast, packings of regular-polygon DPb

particles possess G ∼ P 1/2 scaling.

In all, our results show that explicit particle deformability qualitatively changes the linear re-

sponse of soft solids. The bulk of these findings can be tested in experiments, either in non-
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Figure 4.8: Geometry of regions near individual vertices on model cells. Segment vectors l⃗k =
r⃗k+1 − r⃗k drawn in blue define segment lengths lk = |⃗lk|. The curvature at vertex κk is defined by

the modulus of the vector κ⃗k = l−2
0 (⃗lk − l⃗k−1), which always points normal to the cell boundary.

contractile 2D monoloyers of epithelial cells (i.e. DP particles) or in soft, quasi-2D packings of

hydrogel particles (i.e. regular-polygon DPb particles). The buckling phenomenon observed for

DPb particles cannot easily be tested in an experiment, but we plan to carry out further theoret-

ical studies of DPb buckling to gain a deeper understanding of quasi-deformability. Nevertheless,

this work lays the foundation for understanding the vibrational and mechanical response in glassy

systems of deformable particles, such as hopper flows of emulsion droplets [121, 122] and motile

tissues [129].

4.5 Appendices

This section is divided into seven Appendices. In Appendix 4.5.1, we derive the explicit form of the

force on each vertex due to the different shape and interaction potential energies. In Appendix 4.5.2,

we derive the form of the bulk pressure and shear stress in a given packing of deformable particles

as a function of vertex coordinates. In Appendix 4.5.3, we derive the elements of the dynamical

matrix as a function of vertex coordinates, and in Appendix 4.5.4 we describe how the dynamical

matrix can be used (or how it fails) to count higher-order constraints in jammed packings. In

Appendix 4.5.5, we decribe buckling of single DPb particles in further detail. In Appendix 4.5.6,

we show the effect of finite system size on the vibrational density of states and the static shear

modulus. Finally, in Appendix 4.5.7, we demonstrate how normal modes can be decomposed into

translational, rotational, and shape contributions.

4.5.1 Force definitions

In this Appendix, we derive the analytical forms of the forces on each vertex k on deformable

polygon µ. In general, vertices are acted upon by both shape and interactions forces due to the
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area, perimeter, bending and vertex-vertex overlap terms in Eqs. (4.1) and (4.3). We denote the

potential of each interaction by Ua, Ul, Ub and Uint, respectively. The force on residue i on cell µ

is the vector derivative of all potential terms with respect to the coordinate r⃗kµ = xkµêx + ykµêy,

i.e.

F⃗kµ = − ∂U

∂r⃗kµ
≡ − ∂U

∂xkµ
êx −

∂U

∂ykµ
êy. (4.7)

All potential terms

For reference, the four contributions to the total potential energy U for a configuration of N cells,

labeled by µ = 1, ..., N , each with nµ vertices labeled i = 1, ..., nµ, are reproduced below:

Ua =

N∑
µ=1

ϵa
2

(
aµ
a0

− 1

)2

Ul =

N∑
µ=1

nµ∑
i=1

ϵl
2

(
liµ
l0

− 1

)2

Ub =

N∑
µ=1

nµ∑
i=1

kb
2
κ2iµ

Uint =

N∑
µ=1

∑
ν>µ

nµ∑
i=1

nν∑
j=1

ϵc
2

(
1−

rµνij
σµνij

)2

Θ

(
1−

rµνij
σµνij

)
(4.8)

where all geometric quantities are defined in Sec. 4.2.

Area force

The force on vertex k of cell µ due to deviations in the preferred area is given by F⃗ a
k = − ∂Ua/∂r⃗kµ .

For convenience, we will neglect the index µ when describing purely shape forces, as only vertices

on cell µ will be involved. The force is defined as

F⃗ a
k = −∂Ua

∂r⃗k
= − ϵa

a0

(
a

a0
− 1

)
∂a

∂r⃗k
. (4.9)

The polygonal area a is given by Gauss’s “shoelace” formula

a =
1

2

n∑
i=1

xiyi+1 − xi+1yi, (4.10)

where we take the index n+ 1 in the summation to be 1, and the index 0 to be n. Therefore, the

derivatives in the x and y directions are not symmetric, rather ∂a/∂xk = (yk+1 − yk−1)/2 and

∂a/∂yk = (xk−1 − xk+1)/2. Therefore, this gives the force

F⃗ a
k =

ϵa
2a0

(
a

a0
− 1

)
[(yk−1 − yk+1)êx + (xk+1 − xk−1)êy]. (4.11)
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Perimeter force

The force on vertex k due to deviations in the segment length lk (see Fig. 4.8) from its preferred

value l0 is

F⃗ l
k = −∂Ul

∂r⃗k
= − ϵl

l0

[(
lk
l0

− 1

)
∂lk
∂r⃗k

+

(
lk−1

l0k−1
− 1

)
∂lk−1

∂r⃗k

]
. (4.12)

Only derivatives of lk with respect to r⃗k and r⃗k+1 are non-zero. Using the definition of the segment

length as lk = (l2kx + l2ky)
1/2, the derivatives of lk and lk−1 with respect to r⃗k are

∂lk
∂r⃗k

=
1

2lk

∂

∂r⃗k

(
l2kx + l2ky

)
= −l̂k

∂lk−1

∂r⃗k
=

1

2lk−1

∂

∂r⃗k

(
l2k−1x + l2k−1y

)
= l̂k−1,

(4.13)

where l̂k ≡ l⃗k/lk, and the derivatives follow from the definition Therefore, the force on vertex k due

to the perimeter potential is

F⃗ l
k =

ϵl
l0

[(
lk
l0k

− 1

)
l̂k −

(
lk−1

l0k−1
− 1

)
l̂k−1

]
. (4.14)

Bending force

The force on vertex k due to deviations in the local curvature κk from 0 is given by

F⃗ b
k = −∂Ub

∂r⃗k
= kb

n∑
i=1

∂κ2i
∂r⃗k

. (4.15)

In Ref. [47], it was suggested to define the curvature as

κk =
2
∣∣∣l̂k − l̂k−1

∣∣∣
lk + lk+1

. (4.16)

which derives from a discretized expression from the curvature of a continuous worm-like chain [136].

In the limit that all segment lengths are their respective rest lengths, this expression reduces to

κk =

∣∣∣⃗lk − l⃗k−1

∣∣∣
l20

(4.17)

which is the magnitude of the vector κ⃗k drawn in Figs. 4.1 and 4.8.

To compute the force due to bending, we need ∂κ2i
/
∂r⃗k for Eq. (4.15). Given the definition

of curvature in Eq. (4.17), this derivative is non-zero only when i = k − 1, k or k + 1. Since
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κ2k = l−4
0 (⃗lk − l⃗k−1)

2, we obtain

∂κ2k
∂r⃗k

=
4

l40

(
l⃗k−1 − l⃗k

)
∂κ2k−1

∂r⃗k
=

2

l40

(
l⃗k−1 − l⃗k−2

)
∂κ2k+1

∂r⃗k
=

2

l40

(
l⃗k+1 − l⃗k

) (4.18)

which ultimately leads to the force

F⃗ b
k =

kb
l40

[
3
(
l⃗k − l⃗k−1

)
+ l⃗k−2 − l⃗k+1

]
. (4.19)

Interaction forces

The force between two overlapping vertices is defined as

F⃗ int
k =

∑
j>i

∂v

∂rij

∂rij
∂r⃗k

(4.20)

where v(rij) is the potential between two overlapping vertices separated by a distance rij defined

in Eq. (4.2). We use a simplified notation here where i and j refer to any vertex on any cell, i.e.

we drop the cell-level indices µ and ν, and the sum runs over all pairs of vertices once. Since rij
only depends on the position of vertex k when i = k or j = k, we only need the derivative

∂rkj
∂r⃗k

= −r̂kj (4.21)

where r̂kj is a unit vector that points from particle k to any other particle j. Therefore, the

interaction force is

F⃗ int
k = −

∑
j ̸=k

ϵc
σkj

(
1− rkj

σkj

)
Θ

(
1− rkj

σkj

)
r̂kj . (4.22)

Here, σkj is the contact distance, or average distance between two vertices at contact. Throughout

this chapter, we assumed each vertex has a diameter equal to the preferred length of each seg-

ment spring, so throughout σkj = l0. The Θ step function enforces a purely-repulsive interaction

potential, as it returns 1 when its argument is positive, and 0 otherwise.

4.5.2 Stress definitions

In this Appendix, we derive the form of the pressure P and shear stress Σ as a function of particle

coordinates. Each form of the stress is generally the total derivative of the energy E with respect

to a given strain, e.g. volumetric or shear. In this chapter and the subsequent chapter, we will

only consider systems in mechanical equilibrium where the kinetic energy is zero, and the only
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contribution to E is the potential energy U .

Pressure

For the pressure P , we need to compute the total derivative of the potential energy U with respect

to volumetric strains, i.e. to the domain boundary area A. To do this, first note that, for a square

boundary with fixed box length L, the pressure can be written P = −dU/dA = −(2L)−1dU/dL.

The total derivative then becomes

P = − 1

2L

∂U
∂L

+

Nv∑
i=1

∑
ξ=x,y

∂U

∂xiξ

∂xiξ
∂L

 (4.23)

where we sum over all Nv vertices in the system across all cells, and the ξ indicates where xiξ is

either the ξ = x or ξ = y coordinate of vertex i. To measure the pressure, we perform a small

deformation to the boundary where L → L + ∆L, and an affine transformation to the vertex

coordinates xiξ → xiξ(L + ∆L/L). In the limit ∆L → 0, we have ∂xiξ/∂L = xiξ/L, and the

pressure becomes

P =
1

2L2

Nv∑
i=1

F⃗i · r⃗i −
1

2L

∂U

∂L
. (4.24)

The first term is referred to as the system’s virial, which captures pressure in thermal systems [75].

The second term captures the purely potential contribution to the pressure, and needs to be derived

more explicitly to be computed. We first note that

∂U

∂L
=

N∑
µ=1

∂Ua

∂aµ

∂aµ
∂L

+

nµ∑
i=1

 ∂Ul

∂liµ

∂liµ
∂L

+
∂Ub

∂κiµ

∂κiµ
∂L

+
∑
ν ̸=µ

nν∑
j=1

∂Uint

∂rijµν

∂rijµν
∂L

. (4.25)

The derivatives of potentials with respect to geometric parameters have already been found in order

to compute forces. We then simply need to find how each geometric parameter changes with respect

to deformation of the box size L. For lengths, i.e. liµ and rijµν , these objects behave identically to

coordinates, therefore
∂liµ
∂L

=
liµ
L

,
∂rijµν
∂L

=
rijµν
L

. (4.26)

For the curvature κiµ, the definition κ2iµ = (⃗li+1µ − l⃗iµ)
2 makes it more convenient to directly

compute the derivative ∂Ub/∂L . We obtain

∂Ub

∂L
=
kb
l40

N∑
µ=1

nµ∑
i=1

∑
ξ=x,y

(li+1µ,ξ − liµ,ξ)

(
∂li+1µ,ξ

∂L
− ∂liµ,ξ

∂L

)
=

kb
l40L

N∑
µ=1

nµ∑
i=1

κ2iµ (4.27)

where the final expression results from ∂liµ,ξ/∂L = liµ,ξ/L. We therefore obtain

∂Ub

∂L
=

2Ub

L
(4.28)
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for the bending energy contribution to the pressure.

To obtain the change in cell area with respect to box area, we note that the asphericity A
of any given particle will also remain unchanged if the box area is uniformly grown, so therefore

∂A/∂L = 0. However, using the chain rule, we can show that a cell with area a and perimeter p

must obey ∂a/∂L = (2a/p) ∂p/∂L . Because ∂p/∂L = p/L given that p is composed of affinely

deforming segment lengths, we must have that

∂aµ
∂L

=
2aµ
L
. (4.29)

Using Eqs. (4.26), (4.28) and (4.29) into Eq. (4.25), we have

∂U

∂L
=

2Ub

L
+

N∑
µ=1

 2aµ
a0µL

(
aµ
a0µ

− 1

)
+

nµ∑
i=1

 ϵlliµ
l0iµL

(
liµ
l0iµ

− 1

)
−
∑
ν ̸=µ

nν∑
j=1

ϵijµνrijµν
σijµνL

(
1− rijµν

σijµν

) .

(4.30)

Combining this expression with the virial term in Eq. (4.24) gives a way to compute the instanta-

neous pressure in a packing given only the vertex coordinates, preferred geometric parameters and

the box size.

Shear stress

The shear stress Σ of a packing in mechanical equilibrium is given by the total derivative of the

potential energy with respect to a shear strain γ. We can impose the simple shear strain through

the deformation

xi → xi + γyi (4.31)

applied to all vertices i = 1, ..., Nv. We then need to compute the total derivative

Σ = −dU
dγ

= −∂U
∂γ

−
Nv∑
i=1

∂U

∂xi
yi. (4.32)

In mechanical equilibrium, the second term is zero and we are left solely with the partial derivative

of U for our computational of Σ, similarly to the case with computing the pressure above.

Like in the case of pressure, we can rewrite the shear stress equation as

∂U

∂γ
=

N∑
µ=1

∂Ua

∂aµ

∂aµ
∂γ

+

nµ∑
i=1

 ∂Ul

∂liµ

∂liµ
∂γ

+
∂Ub

∂κiµ

∂κiµ
∂γ

+
∑
ν ̸=µ

nν∑
j=1

∂Uint

∂rijµν

∂rijµν
∂L

. (4.33)

First, note that the simple shear strain imposed in Eq. (4.31) is area-conserving, i.e. the area of any

rectangular boundary is conserved if it is deformed into a simply-sheared parallelogram. Therefore,

the individual cell areas aµ also must be preserved under simple shear, i.e. ∂aµ/∂γ = 0.

To determine the contributions from other terms, we need to do how general lengths will deform

under shear strain, which will impact the interaction, perimeter and bending energy contributions.
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As a test case, we will compute ∂liµ/∂γ in detail. We have

∂liµ
∂γ

=
liµ,x
liµ

∂liµ,x
∂γ

. (4.34)

Note that the y-component of the segment vector liµ,y does note change under simple shear defor-

mation, and therefore ∂liµ,y/∂γ = 0. Imposing the simple shear deformation on all coordinates,

we must have

liµ,x(γ) = liµ,x(0) + γliµ,y (4.35)

as the affine deformation of the x-component of the segment length vectors under simple shear.

Note that this logic can be applied to any length between two coordinates. We therefore have

∂liµ,x
∂γ

= liµ,y (4.36)

and
∂liµ
∂γ

=
liµ,xliµ,y
liµ

. (4.37)

For the inter-vertex distance rijµν we similarly can write

∂rijµν
∂γ

=
xijµνyijµν
rijµν

. (4.38)

For the contribution of the bending energy to the shear stress, it is again more convenient to take

the derivative of Ub directly. Using Eq. (4.36) and the chain rule, we obtain

∂Ub

∂γ
=
kb
l40

N∑
µ=1

nµ∑
i=1

(li+1µ,x − liµ,x)(l̂i+1µ,y − l̂iµ,y) (4.39)

where l̂iµ,y is the y-component of the unit vector pointing along the direction of l⃗iµ. Combining

everything, we have

∂U

∂γ
=

N∑
µ=1

nµ∑
i=1

ϵlliµ,xliµ,y
liµl0µ

(
liµ
l0µ

− 1

)
+
kb(li+1µ,x − liµ,x)

l40µ
(l̂i+1µ,y−l̂iµ,y)−

∑
ν ̸=µ

nν∑
j=1

ϵcx
µν
ij y

µν
ij

σµνij r
µν
ij

(
1−

rµνij
σµνij

)
.

(4.40)

As in the case of the pressure, we can therefore evaluate the shear stress Σ for any configuration

by using the result of Eq. (4.40) in Eq. (4.32).
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4.5.3 Dynamical matrix elements

In this Appendix, we derive the elements of the dynamical matrix for packings of DP and DPb

particles. Throughout this subsection, we drop the cell-level indices µ and ν for clarity, and consider

all vertices i directly for i = 1, ..., Nv, where Nv is the total number of vertices in the configuration.

Therefore, the dynamical matrix M of this configuration is defined as

Miαjβ =
∂2U

∂ξiα∂ξjβ
(4.41)

where ξiα corresponds to the coordinate of vertex i in the α = x or y direction. The dynamical

matrix M is therefore a symmetric, 2Nv × 2Nv matrix. The total potential energy U takes contri-

butions from individual potentials, i.e. Ua, Ul, Ub and Uint. Therefore, the dynamical matrix is the

sum of dynamical matrices associated to each term, i.e.

Miαjβ =Ma
iαjβ +M l

iαjβ +Mb
iαjβ +M int

iαjβ (4.42)

where each dynamical matrix is the matrix of second derivatives of each potential energy terms,

i.e. Ma
iαjβ = ∂2Ua

/
∂ξiα∂ξjβ .

To compute each matrix, note that each potential term depends on the degrees of freedom ξiα
through geometric factors, e.g. the area or particular segment lengths. For example, suppose some

term in the potential energy V depends on geometric factor ∆i, associated to each vertex i, which

in turn is a function of an arbitrary number of degrees of freedom. The vector of first derivatives

of this potential (i.e. −1 times the vector of all net forces) would be

∂V

∂ξkα
=

Nv∑
i=1

∂V

∂∆i

∂∆i

∂ξkα
. (4.43)

Using the chain rule, the second derivatives of this potential can be written

∂2V

∂ξkα∂ξlβ
=

Nv∑
i=1

[
∂2V

∂∆2
i

∂∆i

∂ξkα

∂∆i

∂ξlβ
+
∂V

∂∆i

∂2∆i

∂ξkα∂ξlβ

]
. (4.44)

While this simplifies our derivative, it also demonstrates two fundamental contributions to the

dynamical matrix elements. If the potential V is quadratic in ∆, as all of our potentials are,

the first term in Eq. (4.44) must be a constant. Therefore, all contributions from configuration

geometry are associated with the first term, and contributions from stress (through the force-like

term ∂V /∂∆i ) are associated with the second term. Thus, these terms are called the “stiffness”
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matrix H and “stress” matrix S [105, 106], which are typically defined as

Hkαlβ =

Nv∑
i=1

∂2U

∂∆2
i

∂∆i

∂ξkα

∂∆i

∂ξlβ

Skαlβ = −
Nv∑
i=1

∂U

∂∆i

∂2∆i

∂ξkα∂ξlβ

(4.45)

such that the the total dynamical matrix M = H − S. Prior work has shown that higher-order

stability, like that found in systems with quartic modes, derives from dynamical matrices with

significant contribution from the stress matrix [110]. We will sketch out the effect of the stiffness

and stress matrices in the subsection 4.5.4.

Area term

For the area potential Ua, the relevant geometric quantity is the area strain ∆a = (a/a0 − 1). We

therefore need to compute

Ha
kαlβ =

∂2U

∂∆2
a

∂∆a

∂ξkα

∂∆a

∂ξlβ

Sa
kαlβ = − ∂U

∂∆a

∂2∆a

∂ξkα∂ξlβ
.

(4.46)

As a cell’s area only depends on the positions of the vertices associated with that cell, note that we

must restrict the elements k and l to be those associated to a particular cell with a given area a.

Given the definition of cell area in Eq. (4.10), the first derivatives of ∆a w.r.t. positions are given

by
∂∆a

∂ξkα
=

1

2a0

{
yk+1 − yk−1 for α = x

xk−1 − xk+1 for α = y
(4.47)

where k only runs amongst the vertex indices associated with the given cell with area strain ∆a.

This yields the second derivatives

∂2∆a

∂ξkα∂ξlβ
=

1

2a0



1 for α = x, l = k + 1, β = y

−1 for α = x, l = k − 1, β = y

−1 for α = y, l = k + 1, β = x

1 for α = y, l = k − 1, β = x

0 otherwise.

(4.48)

As vertices defined in polygonal rings, also note that k + 1 = 1 if k = n, and k − 1 = n if k = 1.

For simplicity, we define the vector gkα ≡ 2a0 ∂∆a/∂ξkα and matrix Gkαlβ = 2a0 ∂
2∆a

/
∂ξkα∂ξlβ
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using equations Eqs. (4.47) and (4.48). Our matrix elements become

Ha
kαlβ =

ϵa
2a20

gkαglβ

Sa
kαlβ = −ϵa∆a

2a20
Giαjβ

(4.49)

which give the full dynamical matrix for this term upon computing Ma = Ha − Sa.

Segment length term

For the area potential Ul, the relevant geometric quantity is the strain on the length of segment i,

i.e. ∆li = (li/l0 − 1). We therefore need to compute

Hl
kαlβ =

Nv∑
i=1

∂2U

∂∆2
li

∂∆li

∂ξkα

∂∆li

∂ξlβ

S l
kαlβ = −

Nv∑
i=1

∂U

∂∆li

∂2∆li

∂ξkα∂ξlβ
.

(4.50)

Note that the strain ∆li only depends on ξkα when i = k or i = k−1. The stiffness matrix elements

in Eq. (4.50) are therefore

Hl
kαlβ =


∂2U

∂∆2
lk−1

∂∆lk−1

∂ξkα

∂∆lk−1

∂ξkβ
+ ∂2U

∂∆2
lk

∂∆lk

∂ξkα

∂∆lk

∂ξkβ
for l = k

∂2U
∂∆2

lk−1

∂∆lk−1

∂ξkα

∂∆lk−1

∂ξk−1β
for l = k − 1

0 otherwise,

(4.51)

and the stress matrix elements are therefore

S l
kαlβ =


− ∂U
∂∆lk−1

∂2∆lk−1

∂ξkα∂ξkβ
− ∂U

∂∆lk

∂2∆lk

∂ξkα∂ξkβ
for l = k

− ∂U
∂∆lk−1

∂2∆lk−1

∂ξkα∂ξk−1β
for l = k − 1

0 otherwise.

(4.52)

Note that non-zero derivatives also exist when l = k + 1, but these derivatives are simply the

symmetric pairs of elements in the upper triangle. We will therefore only compute derivatives when

l = k−1, and fill the lower triangle of the matrix by enforcement of symmetry. The first derivatives

we need for Eq. (4.51) above are

∂∆lk

∂ξkα
=

1

l0

∂lk
∂ξkα

= − l̂kα
l0

∂∆lk−1

∂ξkα
=

1

l0

∂lk−1

∂ξkα
=
l̂k−1α

l0

(4.53)
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where l̂kα is the α component of the unit vector pointing along the kth segment vector l⃗k. As our

second derivative matrices in Eq. (4.52) come from differentiating this result again, we require the

derivative of a unit vector component l̂kα with respect to a degree of freedom ξjβ , where j must be

either k or k + 1, but β need not be α. When j = k and α = β, we have

∂l̂kα
∂ξkα

=
lk(∂lkα/∂ξkα )− lkα(∂lk/∂ξkα )

l2k
=
l̂2kα − 1

lk
= − l̂

2
kα′

lk
(4.54)

where α′ ̸= α explicitly in this case, and the final equality comes from the fact that l̂2kx + l̂2ky = 1

by definition. When α ̸= β we obtain

∂l̂kα
∂ξkβ

= − lkα(∂lk/∂ξkβ )
l2k

=
l̂kα l̂kβ
lk

. (4.55)

Similar expressions can be found easily for the case where l = k+1. Therefore, our non-zero second

derivatives are

∂2∆lk−1

∂ξ2kα
=
l̂2k−1α′

l0lk−1
, α′ ̸= α

∂2∆lk−1

∂ξkα∂ξkβ
= − l̂k−1α l̂k−1β

l0lk−1
, β ̸= α

∂2∆lk

∂ξ2kα
= − l̂2kα′

l0lk−1
, α′ ̸= α

∂2∆lk

∂ξkα∂ξkβ
=
l̂kα l̂kβ
l0lk

, β ̸= α.

(4.56)

Combining Eqs. (4.53) and (4.56), we obtain

Hl
kαlβ =

ϵl
l20


l̂k−1α l̂k−1β + l̂kα l̂kβ for l = k

−l̂kα l̂kβ for l = k + 1

0 otherwise,

S l
kαlβ =

ϵl
l0



∆lk
l̂2
kα′
lk

−∆lk−1
l̂2
k−1α′

lk−1
for l = k β = α

∆lk−1
l̂k−1α l̂k−1β

lk−1
−∆lk

l̂kα l̂kβ

lk
for l = k β ̸= α

−∆lk
l̂2
kα′
lk

for l = k + 1 β = α

∆lk
l̂kα l̂kβ

lk
for l = k + 1 β ̸= α

0 otherwise.

(4.57)

In the above expressions, α′ ̸= α always. Note that the stress matrix elements are all proportional

to linear strain terms, i.e. ∆lk, and therefore these terms are only non-zero in the presence of

pre-stress (i.e. energy minima that do not fully satisfy all geometric constraints). As we discuss in

Sec. 4.5.4, these terms will lead to higher-order rigidity.
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Interaction term

To compute the dynamical matrix elements for the interaction term, note that the interaction

potential between vertices k and l depends on their mutual overlap ∆kl = (1 − rkl/σkl), where

σkl is the contact distance between the two circular vertices. Note we have dropped the µ and ν

indices for convenience from the expression given in Eq. (4.8). Therefore, we can proceed similarly

for interaction terms as we did for perimeter terms with few changes. In general, the associated

stiffness and stress matrices are given by

Hint
kαlβ =

Nv∑
i=1

Nv∑
j>i

∂2U

∂∆2
ij

∂∆ij

∂ξkα

∂∆ij

∂ξlβ

S int
kαlβ =

Nv∑
i=1

Nv∑
j>i

∂U

∂∆ij

∂2∆ij

∂ξkα∂ξlβ
.

(4.58)

Note that, as the interaction potential Uint in Eq. (4.8) depends on the step function Θ(∆ij), all

derivatives of U with respect to ∆ij of non-overlapping particles are 0. To simplify our work further,

note that ∂Vij/∂ξiα = − ∂Vij/∂ξjα by reciprocity of forces, where Vij = (ϵc/2)∆
2
ijΘ(∆ij) is the

interaction potential between two vertices. Therefore, ∂2Vij
/
∂ξiα∂ξjβ = − ∂2Vij

/
∂ξiα∂ξiβ . As

Uint =
∑
j>i Vij , we must have

∂2U

∂ξiα∂ξiβ
=
∑
j>i

∂2U

∂ξiα∂ξjβ
. (4.59)

That is, the 2 × 2 block-diagonal elements of M int are the negative sum of the block-off-diagonal

elements purely by reciprocity of force. As M int = Hint −S int, and due to symmetry, we need only

compute the terms Hint
kαlβ and S int

kαlβ for the case when l > k. Note this holds for any potential

described in this Section; the off-diagonal elements also balance the diagonal elements in all matrices

shown in Eqs. (4.49), (4.57),and (4.70).

In the case where l > k, the first derivatives of ∆kl with respect to relevant coordinates are

∂∆kl

∂ξkα
=
r̂kl,α
σkl

∂∆kl

∂ξlα
= − r̂kl,α

σkl

(4.60)

where r̂kl,α is the α component of the unit vector that points from vertex k toward vertex l, which

follows from similar logic used to obtain Eq. (4.13). Using the result from Eq. (4.56), our second

derivatives are

∂2∆kl

∂ξkα∂ξlα
=

r̂2kl,α′

σklrkl
, α′ ̸= α

∂2∆kl

∂ξkα∂ξlβ
= − r̂kl,αr̂kl,β

σklrkl
, β ̸= α.

(4.61)
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The stiffness and stress matrices associated to the interaction potential are therefore

Hint
kαlβ = −ϵc

r̂kl,αr̂kl,β
σ2
kl

S int
kαlβ = ϵc

{
−(∆klr̂

2
kl,α′)/(rklσkl) for α = β, α′ ̸= α

(∆klr̂kl,αr̂kl,β)/(rklσkl) for α ̸= β

(4.62)

for l > k. For the entries where l = k, we can use reciprocity, and for l < k, we can use symmetry

to determine the other elements. Of course, to obtain the contribution to the full dynamical matrix

due to the vertex-vertex interaction terms, we need simply compute M int = Hint − S int.

Bending term

Now we compute the contribution to the dynamical matrix elements due to bending rigidity. For

convenience, let sk = |⃗lk − l⃗k−1| such that we can rewrite the total bending energy

Ub =
kb
2l40

Nv∑
i=1

s2i . (4.63)

The stiffness and stress matrices due to bending are then

Hb
kαlβ =

Nv∑
i=1

∂2Ub

∂κ2i

∂si
∂ξkα

∂si
∂ξlβ

Sb
kαlβ = −

Nv∑
i=1

∂Ub

∂si

∂2si
∂ξkα∂ξlβ

.

(4.64)

Notice that ∂si/∂ξkα is only non-zero when i = k − 1, k, or k + 1. Therefore, the stiffness and

stress matrices can be written

Hb
kαlβ =



∂2Ub

∂s2k−1

∂sk−1

∂ξkα

∂sk−1

∂ξkβ
+ ∂2Ub

∂s2k

∂sk
∂ξkα

∂sk
∂ξkβ

+ ∂2Ub

∂s2k+1

∂sk+1

∂ξkα

∂sk+1

∂ξkβ
for l = k

∂2Ub

∂s2k

∂sk
∂ξkα

∂sk
∂ξk+1β

+ ∂2Ub

∂s2k+1

∂sk+1

∂ξkα

∂sk+1

∂ξk+1β
for l = k + 1

∂2Ub

∂s2k+1

∂sk+1

∂ξkα

∂sk+1

∂ξk+2β
for l = k + 2

0 otherwise.

Sb
kαlβ =


∂Ub

∂sk−1

∂2sk−1

∂ξkα∂ξkβ
+ ∂Ub

∂sk
∂2sk

∂ξkα∂ξkβ
+ ∂Ub

∂sk+1

∂2sk+1

∂ξkα∂ξkβ
for l = k

∂Ub

∂sk
∂2sk

∂ξkα∂ξk+1β
+ ∂Ub

∂sk+1

∂2sk+1

∂ξkα∂ξk+1β
for l = k + 1

∂Ub

∂sk+1

∂2sk+1

∂ξkα∂ξk+2β
for l = k + 2

0 otherwise.

(4.65)
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The first derivatives we need are given by

∂sk−1

∂ξkα
=
lk−1α − lk−2α

sk−1
= ŝk−1α

∂sk
∂ξkα

= −2
lkα − lk−1α

sk
= −2ŝkα

∂sk+1

∂ξkα
=
lk+1α − lkα

sk+1
= ŝk+1α,

(4.66)

where ŝkα is the α-component of the unit vector pointing in the direction of s⃗k = l⃗k − l⃗k−1. As

each first derivative is proportional to a unit vector, the second derivatives take on similar forms

to those in Eq. (4.56). We have

∂2sk
∂ξ2kα

= −2
∂ŝkα
∂ξkα

= −2
sk(∂skα/∂ξkα )− skα(∂sk/∂ξkα )

s2k
=

4− 4ŝ2kα
sk

= 4
ŝ2kα′

sk
(4.67)

where, as in Eq. (4.54), α′ ̸= α. When β ̸= α

∂2sk
∂ξkα∂ξkβ

= −2
∂ŝkα
∂ξkβ

= −2
sk(∂skα/∂ξkβ )− skα(∂sk/∂ξkβ )

s2k
= −4

ŝkαŝkβ
sk

. (4.68)

Similarly, we also have

∂2sk−1

∂ξ2kα
=
∂ŝk−1α

∂ξkα
=
ŝ2k−1α′

sk−1

∂2sk−1

∂ξkα∂ξkβ
=
∂ŝk−1α

∂ξkβ
= − ŝk−1αŝk−1β

sk−1

∂2sk+1

∂ξ2kα
=
∂ŝk+1α

∂ξkα
=
ŝ2k+1α′

sk+1

∂2sk+1

∂ξkα∂ξkβ
=
∂ŝk+1α

∂ξkβ
= − ŝk+1αŝk+1β

sk+1

(4.69)
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where, again, α′ ̸= α. The stiffness and stress matrix elements are therefore

Hb
kαlβ =

kb
l40


ŝk−1αŝk−1β + 4ŝkαŝkβ + ŝk+1αŝk+1β for l = k

−2ŝkαŝkβ − 2ŝk+1αŝk+1β for l = k + 1

ŝk+1αŝk+1β for l = k + 2

0 otherwise.

Sb
kαlβ =

kb
l40



−ŝ2k−1α′ − 4ŝ2kα′ − ŝ2k+1α′ for l = k β = α (α′ ̸= α)

ŝk−1αŝk−1β + 4ŝkαŝkβ + ŝk+1αŝk+1β for l = k β ̸= α

2ŝ2kα′ + 2ŝ2k+1α′ for l = k + 1 β = α (α′ ̸= α)

−2ŝkαŝkβ − 2ŝk+1αŝk+1β for l = k + 1 β ̸= α

−ŝ2k+1α′ for l = k + 2 β = α (α′ ̸= α)

ŝk+1αŝk+1β for l = k + 2 β ̸= α

0 otherwise.

(4.70)

As H and S are very similar, we can compute the dynamical matrix elements easily:

Mb
kαlβ =

kb
l40


6 for l = k β = α

−4 for l = k + 1 β = α

1 for l = k + 2 β = α

0 otherwise.

(4.71)

This much simpler expression could have been obtained by taking the Jacobian of the bending force

in Eq. (4.19), but as we will see in the next section, decomposing the dynamical matrix into stiffness

and stress matrices does aid in rationalizing the presence of non-isostatic jammed packings.

4.5.4 Counting degrees of freedom from vibrational modes

In this Appendix, we demonstrate how to count degrees of freedom and identify higher-order rigid-

ity using the vibrational modes gleaned from the dynamical matrix. Prior work has shown that

hypostatic systems like jammed non-spherical particles [105, 22, 107] and underconstrained spring

networks [110] gain rigidity from higher-order terms in the potential energy that can stabilize mul-

tiple degrees of freedom. As noted in prior work [106], these higher-order constraints can be seen

as zero modes of the stiffness matrix H, but non-zero modes of the dynamical matrix M. In

Fig. 4.9 (a), we find that the number of missing contacts exactly equals the number of stiffness

matrix eigenvalues λh that are significantly smaller than dynamical matrix eigenvalues λm. Since

M = H− S, we expect that small stiffness contribution means that M is dominated by the stress

matrix for these eigenvalues. Indeed, in Fig. 4.9 (a) we also show that we can tune the magnitude of

λm by maintaining a fixed contact network but increasing the pressure. This pressure dependence

of the low frequency eigenvalues of the dynamical matrix is also observed in packings of frictionless

non-spherical particles [22].

In hypostatic DP packings, we find that the extra degrees of freedom are constrained by so-called

“quartic modes”. Consider an energy-minimized configuration such that the particle coordinates

satisfy R⃗ = R⃗0. Perturbations of order δ are then written as R⃗ = R⃗0 + δu⃗, where u⃗ is the direction
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Figure 4.9: (a) Eigenvalues of the dynamical (λm,i, circles) and stiffness (λh,i, crosses) matrices as
a function of eigenvalue index i for a configuration of N = 16 DP particles with A0 = 1.02. λh,i
do not depend on pressure, whereas λm,i do. We show λm,i for pressures from P = 10−8 (blue)
to 10−3 (green) separated by factors of 10. The vertical line is placed at 2 + m. (b) Change in
potential energy ∆U = U −U0 for a system starting at an energy minimum U0 for perturbations of
size δ along the eigenmodes of the dynamical matrix for the systems in (a). Color indicates mode
frequency, from blue (lowest) to red (highest). The dot-dashed line represents ∆U ∼ δ4, whereas
the dashed line represents ∆U ∼ δ2. There is a one-to-one correspondence between the number of
modes with quartic δ-dependence in (b) and the pressure-dependent modes that are much larger
than the stiffness matrix eigenvalues in (a).

of the perturbation. The potential energy expanded about R⃗0 to fourth order in the perturbation

is

U
(
R⃗
)
= U

(
R⃗0

)
+ δ

∂U

∂Ri
ui +

δ2

2

∂2U

∂Ri∂Rj
uiuj +

δ3

6

∂3U

∂Ri∂Rj∂Rk
uiujuk

+
δ4

24

∂4U

∂Ri∂Rj∂Rk∂Rl
uiujukul + · · · ,

(4.72)

where we sum over repeated indices, and all derivatives are evaluated at R⃗0. The term linear in δ

is 0 when the system is at a potential energy minimum. If we choose u⃗ to be the kth orthonormal

eigenvector of the dynamical matrix M, the potential energy to second order in δ is U = U0 +
1
2λm,kδ

2. However, in Fig. 4.9 (b), we find that the potential energy scales as U ∼ δ4, which

is consistent with the observation that λm,k are small, but the quartic terms are non-negligible.

Similar behavior is observed in jammed packings of non-spherical particles [104, 106, 22].

While we can easily identify the number of higher-order contacts from the dynamical matrix

eigenspectra for packings of DP particles, the same is not true for packings of DPb particles. In

Fig. 4.10, we show that the stiffness matrix eigenvalues λh are larger than the dynamical matrix

eigenvalues λm for packings of buckled DPb particles. Given that buckled DPb particles have an

extra degree of freedom, we investigate whether there is a signature in the eigenmodes with indexes

below m = 4N ′ − 1−Nvv, which corresponds to the number of missing contacts in packings of N ′

non-rattler particles.
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Figure 4.10: (a) The first 50 eigenvalues of the dynamical matrix (λm, black circles) and stiffness
matrix (λh, blue squares) for the jammed packings of N = 64 DPb particles (A0 = 1.08 > A∗

0,
Kb = 10−2) shown in the inset. In the inset, small particles with nS = 24 vertices are drawn in red,
and large particles with nL = 34 vertices are drawn in blue. Open blue squares (closed black circles)
represent negative stiffness (dynamical) matrix eigenvalues. The vertical line drawn at index i = 6,
which for this system was 2 +m. Note that all systems considered here have no rattler particles,
so there are only 2 trivial zero modes. (b) The participation ratio ρi from Eq. (4.73) for each
eigenmode of the packing in (a). The vertical line is also drawn at i = 6. (c) - (f) Same as (a) and
(b), but for different jammed packings. Throughout, the vertical line is drawn at 2 +m.

We develop the following heuristic for packings of DPb particles: first we check if there is a gap

of at least a factor of 10 between the mth non-trivial eigenmode of the dynamical matrix and the

next mode, since there is a gap between quartic and quadratic modes for packings of DP particles.

If a gap in the eigenspectra of the dynamical matrix is not present, we calculate the participation
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Figure 4.11: (a) The first non-trivial mode λm,4, scaled by the bending spring constant Kb, for
DPb particles with n = 24 vertices as a function of the deviatoric preferred shape parameter
δA0 = (A0 −An)/An and different Kb. Closed symbols indicate λm,4 > 0, and open symbols
indicate λm,4 < 0. Blue colors represent smaller Kb, starting at Kb = 10−3, and green colors
represent larger Kb, ending with Kb = 2 × 10−1. In both (a) and (b), the x-axis is scaled by
δA∗

0 = (A∗
0 −An)/An. The inset shows δA∗

0 vs. Kb; A∗
0 is defined as the preferred shape parameter

when λm,4 < 10−8. (b) The true deviatoric shape parameter A = p2/4πa (i.e. δA = (A−An)/An)
of the buckled DPb particles as a function of δA0. Colors are the same as in (a). The inset shows
several representative particle shapes for δA = 0, 0.01, 0.1, 0.3, and 0.6. These shapes are the same
for any Kb regardless of δA.

ratio of each normal mode k,

ρk =

(∑N
µ=1

∑nµ

i=1

∣∣∣V⃗iµ,k∣∣∣2)2

N
∑N
µ=1

∑nµ

i=1

∣∣∣V⃗iµ,k∣∣∣4 , (4.73)

where V⃗iµ,k is the displacement direction of the ith vertex on the µth particle in mode k. If we

observe a gap in the participation ratio of at least a factor of 10 between the mth non-trivial mode

and the next mode, we assume that we have identified the m higher-order modes correctly. We

use the participation ratio gap because, in general, the participation ratio decreases with increasing

eigenmode frequency. However, for DP particles, the highest-frequency quartic mode is usually

localized whereas the lowest-frequency quadratic mode is delocalized. If neither of these two con-

ditions is satisfied, we assume that there are no higher-order modes and no missing contacts. We

emphasize that these thresholds are ad hoc, as the root cause of higher-order stability in jammed

packings of buckled DPb particles is still an active area of research.

In Fig. 4.10, we show the outcome of this heuristic counting for several example configurations

of N = 64 buckled DPb particles at jamming onset. For example, in Fig. 4.10 (a) and (b), we find
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Figure 4.12: (a) Vibrational density of states D(ω) versus eigenmode frequency ω for jammed
packings of bidisperse DP particles with A0 = 1.08 from N = 16 to N = 512 with nS = 16. (b)
Static shear modulus G versus pressure P for the same systems in (a). The inset shows G0 (i.e.
G(P → 0)) versus system size N . The black solid line has the form G0 ∼ N−1.

that a gap at the mth non-trivial mode appears, allowing us to identify these modes as higher-order

constraints in analogy with packings of DP particles. We also can correctly identify higher-order

constraints using the participation ratio as shown in Fig. 4.10 (c) and (d). However, we show in

Fig. 4.2 (b) and in Fig. 4.10 (e) and (f) that there are several cases with missing contacts m > 0,

but we cannot identify the missing contacts by analyzing the eigenvalue spectra or participation

ratios. The fact that missing contacts cannot be counted consistently underscores the difficulty in

identifying higher-order constraints in these jammed systems.

4.5.5 Particle buckling with bending energy

In this Appendix, we demonstrate buckling of DPb particles by increasing the preferred shape

parameter A0. In Fig. 4.11 (a), we show that the first non-trivial mode of the single-particle vibra-

tional spectrum of DPb particles decreases by several orders of magnitude at A∗
0, which depends on

Kb. In Fig. 4.11 (b), we show that buckled particles transition from regular polygons with the true

shape parameter A = An to elongated, ellipsoidal particles with A > An when A0 > A∗
0. Note that

occasionally, when sufficiently close to buckling, λm,4 < 0, but |λm,4| is close to numerical precision.

These results suggest that, sufficiently close to buckling, DPb particles gain a degree of freedom

and λm,4 ≈ 0. However, increasing A0 further causes the eigenvalue to grow in magnitude. While

λm,4 remains significantly smaller than Kb, it is unclear whether DPb particles lose this degree of

freedom at higher A0.

4.5.6 System size dependence of the vibrational density of states and

shear modulus
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In this Appendix, we investigate the system size dependence in the vibrational density of states

D(ω) and static shear modulus G of jammed packings of DP particles. In Fig. 4.12 (a), we show

D(ω) for multiple system sizes spanning N = 16 to N = 512 with nS = 16 for the preferred shape

parameter A0 = 1.08. We see little change in the structure of D(ω) except for more low-frequency

quartic modes for larger system sizes, though this does not seem to change the peaks in D(ω). We

do however see system-size dependence in the static shear modulus as shown in Fig. 4.12 (b) in the

low-pressure limit. At high pressures, G collapses across all system sizes studied, but as P → 0 we

show in the Fig. 4.12 (b) inset that G(P → 0) ∼ N−1, which has been observed in previous work

on deformable particles [47].

4.5.7 Mode decomposition

In this Appendix, we will show in detail how to decompose the eigenmodes of the dynamical

matrix into contributions from particle translation, rotation, and shape degrees of freedom. We

consider a packing of N deformable particles, where each particle µ has a center of mass located at

c⃗µ = n−1
µ

∑nµ

i=1 r⃗iµ. Let V⃗
j be the unit vector corresponding to the jth eigenmode of the dynamical

matrix M in Cartesian coordinates. Individual components of V⃗ j are arranged such that the

components from 2nµ−1 to 2nµ are the nµ x-coordinates followed by the nµ y-coordinates for the

µth deformable particle. We can write three unit vectors to describe translation (ûµ,x, ûµ,y) and

rotation (ûµ,r) about the center of mass of the µth particle as follows:

ûµ,x =
u⃗µ,x
|u⃗µ,x|

, u⃗µ,x = ( 0, . . . , 0︸ ︷︷ ︸
1 to (µ− 1)

, 1, . . . , 1︸ ︷︷ ︸
µth particle x

, 0, . . . , 0︸ ︷︷ ︸
µth particle y

, 0, . . . , 0︸ ︷︷ ︸
(µ+1) to N

) (4.74)

ûµ,y =
u⃗µ,y
|u⃗µ,y|

, u⃗µ,y = ( 0, . . . , 0︸ ︷︷ ︸
1 to (µ− 1)

, 0, . . . , 0︸ ︷︷ ︸
µth particle x

, 1, . . . , 1︸ ︷︷ ︸
µth particle y

, 0, . . . , 0︸ ︷︷ ︸
(µ+ 1) to N

) (4.75)

ûµ,r =
u⃗µ,r
|u⃗µ,r|

, u⃗µ,r = ( 0, . . . , 0︸ ︷︷ ︸
1 to (µ− 1)

,−(y1µ − cµ,y), . . . ,−(ynµµ − cµ,y)︸ ︷︷ ︸
µth particle x

,

x1µ − cµ,x, . . . , xnµµ − cµ,x︸ ︷︷ ︸
µth particle y

, 0, . . . , 0︸ ︷︷ ︸
(µ+ 1) to N

).
(4.76)

By defining the coefficients,

pjµ,x = V⃗ j · ûµ,x (4.77)

pjµ,y = V⃗ j · ûµ,y (4.78)

pjµ,r = V⃗ j · ûµ,r, (4.79)
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Figure 4.13: (a) Example of an eigenmode of the dynamical matrix (upper left) with frequency
ω ≈ 1.2 × 10−4 for a packing of N = 16 DP particles (nS = 24) with preferred shape parameter
A0 = 1.04, and its decomposition into translation (upper right), rotation (lower left), and shape
(lower right) degrees of freedom. The vectors are rescaled for clarity. (b) Contributions from
translation T (blue circles), rotation R (red triangles), and shape S (black squares) degrees of
freedom for each eigenmode as a function of the eigenmode frequency ω for the DP particle packing
in (a).

we can rewrite the eigenvector V⃗ j as

V⃗ j =
N∑
µ=1

pjµ,xûµ,x +

N∑
µ=1

pjµ,yûµ,y +

N∑
µ=1

pjµ,rûµ,r + V⃗ js , (4.80)

where V⃗ js is the vector that remains after subtracting the particle translations and rotation out of V⃗j .

By applying this decomposition, we can express each eigenmode as the sum of particle translations,

rotation, and shape deformations. We show an example of an eigenmode decomposition in Fig. 4.13

(a) for a packing of DP particles.

With these coefficients, we can define the fraction of the translational (T j) and rotational (Rj)
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content in the jth eigenmode of the dynamical matrix as:

T j =

N∑
µ=1

[(
pjµ,x

)2
+
(
pjµ,y

)2]
(4.81)

Rj =

N∑
µ=1

(
pjµ,r

)2
. (4.82)

Since we obtain pjµ,x, p
j
µ,y, and p

j
µ,r from unit vectors, Sj = 1 − T j − Rj gives the contribution of

the shape degrees of freedom to the jth eigenmode. We show T j , Rj , and Sj for a jammed packing

of N = 16 DP particles with preferred shape parameter A0 = 1.04 in Fig. 4.13 (b) as a function of

frequency ω, as well as just the S modes in Figs. 4.4 and 4.5. We find that for the quartic modes

(ω < 10−2), the shape contribution S increases with ω, while T and R decrease. For the quadratic

modes (ω > 10−2), the contribution from S is large, since higher frequency modes tend to deform

the particle shape rather than give rise to translation or rotation.
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Chapter 5

Beyond packing and jamming:

diversity and development of

spongy mesophyll

5.1 Introduction

The spongy mesophyll, or the tissue found in the interiors of leaves and flowers, plays a vital role in

the life of plants and the health of terrestrial ecosystems (see Fig. 5.1). In leaves, this tissue provides

a porous, rigid network of cells that allows carbon dioxide molecules from the atmosphere to diffuse

to leaf cell chloroplasts for photosynthesis. As this tissue facilitates the diffusion of carbon dioxide

and photosynthetic byproducts, i.e. oxygen, the leaf spongy mesophyll provides key infrastructure

for the production of Earth’s atmosphere and carbon sequestration. While the leaf spongy mesophyll

has played a vital role in forming our atmosphere, the spongy mesophyll in flower petals has also

revolutionized the surface of the Earth. Flowering plants, or the angiosperms, are ecologically

dominant in almost every terrestrial ecosystem, and are the most diverse group of vascular plants

on the planet [137]. While the causes of the diversity and dominance of angiosperms has been a

point of debate since the time of Darwin [138], an emerging consensus is that innovations in tissue

organization is responsible for enabling heightened rates of metabolism [139] and the development

of novel floral structures that are physiologically cheap and rapidly evolvable [140–143].

As flowers evolved from leaves, there is much to be learned in comparing the microstructural

features of leaf and flower physiology [139]. However, studying these features is no easy task. In

particular, spongy mesophyll is both porous and disordered in both leaves and flowers in ways

that vary from species to species. High tissue porosity presents a developmental mystery, as the

progenitor tissues of leaves and flowers begin their development as confluent packings of polyhedral

cells [144, 145]. But this porosity varies drastically from species-to-species [146] (see also Fig. 5.1),

begging the question of how cells with closely-related genomes can build such vastly different tissue

architectures. In particular, data from microcomputed X-ray tomography (i.e. microCT, courtesy
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Figure 5.1: (A) Mesophyll tissue in a mature leaf of Arabidopsis thaliana via microCT (courtesy
of L. Fletcher and C. Brodersen). Cell material is shown as light grey, and background is dark
grey. Each perspective (transverse, longitudinal or paradermal) is color-coded as yellow, red and
purple, as shown on the schematic leaf. Perspectives lie in one plane of the Dorsal-Ventral (DV,
top-bottom), Medial-Lateral (ML, middle-side), Basal-Apical (BA, stem-tip) axes. Mesophyll cells
are split into either the palisade or spongy layer; the paradermal slice shows spongy cells taken from
a slice located at the dashed-line in the transverse slice. (B) Transverse (paradermal) perspective
of the spongy mesophyll of a Illicium floridanum (Cornus florida) flower petal from the transverse
(paradermal) perspective. Here, veins are false-colored in blue, and grey (green) signifies the spongy
mesophyll cells. (C) Phylogenetic tree with structural traits for six representative species. From
top to bottom, the species are Illicium floridanum, Calycanthus floridus, Toxicoscordion fremontii,
Eschscholzia californica, Philadelphus lewisii, and Rhododendron cilipense. Here, box outline color
represents species clade, i.e. basal angiosperms (blue), magnoliids (orange), monocots (green) and
eudicots (red). Panel (C) courtesy of A. Roddy.

of A. Roddy) show that flower petal spongy mesophyll can vary from highly porous networks that

resemble the microstructure of gels [147–150] to dense particulate solids and jammed emulsions [45].

This structural variation spans nearly the entire range of packing fraction accessible to most soft

matter systems (e.g. gels, emulsion droplets, and foams) despite having similar developmental

starting points, i.e. densely packed confluent tissue.

One hypothesis for how such diversity could emerge is that encoded in different genomes are

distinct blueprints for how each tissue should be constructed, with plans for tissue porosity, cell
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shape, cell connectivity, and mechanical response explicitly stored in genetic information. How-

ever, early lineages of flowering plants underwent a period of genome downsizing compared to the

non-flowering plant species (e.g. gymnosperms and ferns) [139] at the same time that angiosperm

diversity was increasing [151], which suggests that the loss of information stored in the genome is

unrelated to floral morphological diversity. An alternative viewpoint is that these diverse pheno-

types are not strictly encoded in the genome, but rather self-assembled. In this hypothesis, only a

few key biophysical parameters are stored in genomic information and the tissue naturally arises

as a result of tunable parameters that control the self-assembly process. For example, in flower

petal mesophyll, variation in cell stiffness, cell deformability, cell-cell adhesion, and the difference

between cell growth rate and tissue boundary growth rate could lead to a wide variety of structures.

This is a highly efficient way to store developmental information in a genome, as opposed to the

“genetic blueprint” idea where nearly all features of the developing tissue, such as cell connectiv-

ity and tissue porosity are stored and checked during development. While a combination of some

genetic blueprinting and self-assembly is likely needed to understand the totality of decisions made

during mesophyll development and evolution, studies of how biological components self-assemble

using only a few physical mechanisms will yield insight into the design and synthesis of a new

generation of smart, biologically-inspired materials [152].

Self-assembly has been studied in a host of diverse systems, particularly in colloidal solu-

tions [153–157], liquid crystals [158], gels [159–162], and active matter [163–166, 3], as well in

nanostructures with desirable electronic and mechanical properties [167, 168]. Self-assembly typi-

cally gives rise to stable structures [169, 150] with a high degree of tunability [170, 159, 171, 172].

Models of self-assembly have been previously applied to plant development, including the pattern-

ing of epidermal cells in leaves [173], the structure of spore wall complexes [174, 175], and pollen

grain surfaces [176].

In order to understand the emergence of mesophyll throught the lens of self-assembly, however,

one must determine how parameters might be tuned to allow for differences of form to occur. That

is, one must ask how does a given developmental trajectory change over time to give rise to an

entirely new phenotype [177, 176]. The focus of this chapter will be to apply a framework of self-

assembly to the development of diversity of spongy mesophyll tissue in order to determine how

mesophyll microstructure might have been tuned over the course of evolution. In Sec. 5.2, we will

evaluate the diversity of mesophyll three-dimensional microstructure across the angiosperm clade

and determine how variable this tissue really is. Using structural correlations in Sec. 5.2.2, we will

focus on tissue porosity, anisotropy and heterogeneity as key features that allow us to completely

describe each tissue. In Sec. 5.2.2 we will compare observed microstructure to computational models

of phase-separating liquids, and discuss how quantitative similarities and differences indicate the

possible rules guiding mesophyll development. In Sec. 5.3, we discuss more involved computational

modelling using deformable particles to simulate the development of spongy mesophyll tissue in

two spatial dimensions. As this closely resembles planar spongy mesophyll expansion in developing

leaves, we compare our model predictions to the developmental trajectory observed in developing

Arabidopsis thaliana leaves. This work concludes with some indications to the biophysical origins

of the diversity observed in the three-dimensional spongy mesophyll microstructure.
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Figure 5.2: MicroCT samples (green) and corresponding I(q⃗) plots (blue-red panels) for six repre-
sentative species. Each sample is oriented according to the axes shown at the top-left (A = apical,
D = dorsal, and L = lateral). To the right of each microCT sample, we plot the intensity of both
the microCT scan ϕ(x⃗) and correlation function I(q⃗) averaged over a particular direction, leaving
a 2D planar slice. See Fig. 5.1 for axis orientation. The flat white bar in each paradermal microCT
slice corresponds to 100 µm; note that the 3D microCT scans are not drawn to scale. In the 2D
I(q⃗) plots, red (blue) corresponds to larger (smaller) intensity in arbitrary units. For all I(q⃗) plots,
the origin q⃗ = 0 is located in the plot’s center.

5.2 Spongy mesophyll in flowers

In Fig. 5.1C, we see that the diversity in flower spongy mesophyll microstructure spans a broad

range, from tissues denser than the densest packing of spheres, i.e. face-centered cubic packings of

spheres (which have a packing fraction ϕ = π(3
√
2)−1 ≈ 0.741), to tissues with nearly the porosity

of hydrogels [149], i.e. ϕ < 0.3. Interestingly enough, it would appear that flowers that have lower

packing fractions, i.e. that are more porous, belong to more recent branches of the angiosperm

phylogenetic tree. The flowers of Calycanthus floridus, a basal angiosperm more closely related

to the angiosperm common ancestor, have mesophyll with packing fractions of nearly ϕ = 0.8.
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Whereas more recently-diverged groups like the eudicots (e.g. Philadelphus or Rhododendron)

typically contain mesophyll at the opposite end of the density spectrum. Moreover, it appears

that some species (i.e. Illicium and Escholzia) contain cells that predominantly align with the

Basal-Apical axis, whereas the porous Rhododendron sample does not. These observations raise

the question, do some phenotypes typically correlate with others? And do they also correlate with

phylogeny?

5.2.1 Microstructural analysis

To address these questions, we analyze microCT scans of petal spongy mesophyll from nearly 50

angiosperm species, courtesy of A. Roddy and J. Schreel. Each scan is a binary three-dimensional

image of the tissue, where voxels labeled as 1 represent regions in the interiors or on the surfaces

of cells, whereas voxels labeled 0 represent regions of non-cell void space (i.e. gaseous atmosphere,

which fills void space in living plant tissue). Let each image be defined as a function ϕ(x⃗) that

reports either 1 or 0 at every voxel location x⃗ = (x, y, z). We define the two-point autocorrelation

function

C(x⃗) = ⟨ϕ(x⃗0)ϕ(x⃗0 + x⃗)⟩ (5.1)

where ⟨⟩ denotes an average over the origin x⃗0. If we assume that the image is statistically isotropic,

then S measures the probability that two voxels separated by x⃗ both contain cell material [178].

This function thus contains a wealth of information about how a given microstructure varies in

space. In particular, it is useful to consider the Fourier transform I(q⃗), which takes the form

I(q⃗) =
ϕ̃(−q⃗)ϕ̃(q⃗)

V
(5.2)

where V is the image volume, ϕ̃ is the Fourier transform of the image, and q⃗ is a wavevector. We

can also consider the spherically-averaged spectral correlation

I(q) =
1

4πq2

∫
V

dq⃗ I(q⃗)δ(q⃗ − |q⃗|) (5.3)

which measures the correlation of voxels in the Fourier-transformed image separated only by the

wavevector distance q. Note that this quantity is typically measured in x-ray scattering experi-

ments [179].

The spectra correlation function I allows us to identify samples with either isotropic or anisotropic

microstructures. For example, in Fig. 5.2, we plot the two-dimensional cross-sections of I(q⃗) in the

paradermal, longitudinal and transverse planes for different mesophyll samples. Some samples,

e.g. Magnolia Maudiae, have a nearly spherical spectral correlation function, reflecting the fact

that spatial correlations within the sample have no preferred directionality. Others, such as the

Philadelphus and Eschscholzia samples, have anisotropic I and therefore anisotropic structures.

For example, in Eschscholzia, the paradermal plane (averaging over the dorsal-ventral axis) shows

highly-aligned cells along a near-horizontal direction. The projection of Iq⃗ in this plane there shows

correlation intensity perpendicular to the alignment direction, as correlations closer to the q-space
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Figure 5.3: (A) Anisotropy κ2, packing fraction ϕ and mean cell diameter σmean plotted for all
spongy mesophyll tissues analyzed. Each point represents a given species, with intraspecies variation
given by the errorbars. Species clade are given by marker shape and color. We also show two
representative species, Magnolia Maudiae and Lilium hansonii which demarcate the lower- and
upper-bounds of anisotropy in our data set despite having similar densities (ϕ = 0.33 and ϕ = 0.29,
respectively). (B) The same plot as in (A), just shown as three separate two-dimensional planes.

origin reflect correlations on longer scales in real (i.e. x⃗) space. Similar results can be found in

non-living soft matter, such as nematic liquid crystals [179], and, interesting, copolymer melts that

are uniaxially strained after undergoing microphase separation and arrest [180]. Such correlations

are even more pronounced in the Lilium sample, which reflects the almost tubular structures taken

by cells that lie in the basal-apical direction. Looking in the transverse plane, we see a completely

different structure, which in the real-space projection looks like crystalline particles. Comparing the

extreme anisotropy of the Lilium sample with the near-perfect isotropy of the Magnolia sample re-

inforces that the spongy mesophyll of flower petals is a highly tunable tissue that can take on a wide

variety of structures. However, note also that several distantly related species like Illicium, Lilium

and Philadelphus (which belong to the basal angiosperm, monocot and eudicot clades, respectively)
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all have strong cell alignment along the apical-basal direction. That flower spongy mesophyll varies

widely, yet can be similar across distantly-related groups, warrants a more detailed look at spongy

mesophyll anisotropy across a broader diversity of angiosperms.

In order to quantify anisotropy in the spectral correlation function I(q⃗), we can define the

gyration tensor

Gαβ =

∫
dq⃗ qαqβI(q⃗)∫

dq⃗ I(q⃗)
(5.4)

which is simply the matrix of second moments of I, and is typically used (given a density field in

real space) to study structure and fluctuations of polymers [181]. We can use the eigenvalues gk to

define the dimensionless anisotropy

κ2 =
3

2

g41 + g42 + g43

(g21 + g22 + g23)
2 − 1

2
(5.5)

which can be understood as follows: if all gk are equal, i.e. g1 = g2 = g3 = g, then no

particular direction has a larger variance of correlation than another, and Eq. (5.5) reduces to

κ2 = (3/2)(3/9)− (1/2) = 0. If only one eigenvalue dominates, i.e. if all correlation is only directed

along a single axis, then Eq. (5.5) reduces to κ2 = 1. If all correlation is directed in only two

directions, i.e. there is a single zero-eigenvalye, κ2 = 1/4. In effect, the eigenvalues of G define an

ellipsoid that fits the shape of dominant correlations in I, and κ2 measures the balance between

the three ellipse axes.

In Fig. 5.3, we plot the anisotropy parameter κ2 for each microCT sample of spongy mesophyll,

as well as each sample’s packing fraction ϕ and mean particle diameter σmean. Particle sizes were

provided courtest of A. Roddy and J. Schreel, and were obtained by (a rather laborious) manual

analysis of each microCT scan. This plot demonstrates several interesting features. First, there

seems to be positive correlation between packing fraction and anisotropy, which suggests that

preferred cell geometry in denser samples tends to lead to a higher degree of cell alignment. While

this correlation is not perfect, and different degrees of anisotropy coexist at intermediate values of

ϕ, this hints that there may be physical constraints on anisotropy given a certain packing fraction.

Even more surprising, ϕ seems to be well-correlated with mean cell size. Cell size would only a

priori dictate packing density if flower petal size as a whole is well-conserved. Even so, cell sizes

(∼ 100 µm) are of course much, much smaller than petals (≥ 10 cm), which makes this result even

more surprising. This raises the question, does cell size dictate packing density in the mesophyll?

Or does cell size diversity reflect a different evolutionary innovation that is more important for

changing packing density?

Interestingly, cell size and anisotropy seem poorly correlated, with samples varying by an order

of magnitude in anisotropy containing cells of nearly the same size. Somehow, different mesophyll

tissues can construct microstructures of widely varying anisotropy with cells of the same size,

yet the cannot typically do so for tissues of varying porosity. Given that angiosperm cell size

typically correlates with genome size, and that the angiosperms experienced a period of genome

downsizing during their rise to dominance [139], the correlation in between tissue porosity and cell

size may reflect evolutionary progress more porous, more resource-efficient tissues. Early-divergent
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Figure 5.4: (A) Comparing the microstructure of Triteleia laxa with that of randomly placed
Poisson spheres and the CH model with strain (Eq. (5.6). (B) The spherically-averaged correlation
function I(q) for the CH model with strain shown in panel (A) over time (colored curves, sorted
in time from blue to green) compared to I(q) from Tritelelia laxa. We scale q by the first moment
q̄ =

∫
dq qI(q)/

∫
dq I(q), and I(q) by q̄3 as predicted by scaling theory [182]. In the inset, we

show the anisotropy of the CH model over the course of a single simulation. The dotted line is
the long-time anisotropy of the CH model without strain, and the dashed line is the anisotropy of
Triteleia laxa. (C) I(q) for spongy mesophyll samples averaged over individuals of a given species
and sorted by clade, with curve color denoting the species-averaged κ2 and given by the colorbar
on the right.

tissues like the Illicium and Calycanthus (see Fig. 5.1) are typically dense and anisotropic, whereas

more recently-diverged eudicot samples like Viburnum (see Fig. 5.2) are more porous and isotropic.

However, important exceptions can be found in both cases, and the relationship between anisotropy,

packing and evolutionary trajectories still remains unclear.

5.2.2 Computational modelling of anisotropic mesophyll

In order to contextualize these results, and to better understand if there are certain natural con-

straints on microstructural features, like anisotropy given a certain packing fraction for example,

we turn to some simple computational models of complex microstructures. The simplest model for
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a porous material is a collection spheres placed by a Poisson point process, which has a trivial (i.e.

ideal gas) structure. In Fig. 5.4, we show that this model yields a structure with totally isotropic

correlations. To build a model with more structural correlation and tunable anisotropy, we turn to

simple dynamical models of phase-separating fluids. For instance, the Cahn-Hilliard (CH) model

of phase separation [183] provides a mathematically simple mechanism to generate complex phase-

separated domains. To implement this model, we consider a cubic L3 grid with an initially random

field ψ(x⃗) defined at each grid point x⃗. We then evolve this mixture in time using the CH equation

∂ψ

∂t
=

1

2
∇2
(
ψ3 − ψ −∇2ψ

)
. (5.6)

However, this model is by nature isotropic, and we expect κ2 to remain small without some broken

symmetry. To induce anisotropy, we perform a uniaxial extensional strain on the simulation domain

at fixed time intervals τ and fix the boundary volume between strain steps. Strain is imposed in

such a way as to preserve the shape of the function ϕ in the direction of strain as much as possible

while still conserving the total mass ψ̄ = L−3
∫
dx⃗ ψ(x⃗). The addition of an effective strain rate (i.e.

the inverse of the strain interval γ = τ−1) means we have a single tunable parameter with which to

vary the microstructural details of the simulated phase separation. Note that without strain, the

CH model is completely parameter-free, which leads to scale-invariant structure during the course

of phase separation. It has been shown [182] that the spherical correlation function I(q) has an

invariant structure when the wavenumber q is scaled by the normalized first moment of I, i.e.

q̄ =

∫
dq I(q)q∫
dq I(q)

(5.7)

and the correlations are scaled by q̄d. In Fig. 5.4B, we show that adding a non-zero strain rate leads

to slight breakdown of the scaling collapse, as well as emergent anisotropy during phase-separation.

We also show that the increase in anisotropy (from κ2 ∼ 10−4 to nearly 10−2) that occurs during

straining becomes on the order of the high degree of most flower mesophyll samples, e.g. Triteleia

laxa, also shown in Fig. 5.4.

The qualitative agreement between this simple computational model and experimental spongy

mesophyll samples (e.g. the sample of Triteleia laxa shown in Fig. 5.4) suggests that similar

mechanisms may be at play during development of these complex tissues. While mesophyll is

certainly not a phase-separating fluid, consider the high concentration phase (shown in blue in

Fig. 5.4) as broadly cell material, while the low concetration phase is void space. Early stages

of development in young flower petals are akin to well-mixed initial conditions where there is no

well-defined void phase. As development progresses, small void domains begin to form and slowly

grow until there is clear separation between void and cell in the porous mature state. As we will see

in the next section, this mechanism is at play in leaf development, and suggests why the CH model

captures some qualitative features of mesophyll structure. Similarly, strain-induced anisotropy may

be present in developing flower petals as well. As strain is known to induce alignment and anisotropy

in phase-separated materials [180], flower petal growth might provide an effective uniaxial strain

to drive mesophyll cells toward aligned states. For example, if flower petal expansion in the lateral

direction was somehow stiffer than expansion in the apical direction, cell and boundary growth
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could cooperate in positive feedback cycles to drive more elongated, aligned cells.

However, there still exist clear differences between the CH with strain model and mesophyll sam-

ples. In particular, in Fig. 5.4B we see that model systems have well-peaked I(q) curves throughout

the entire simulation, reflecting consistent domain sizes even in the presence of anisotropic strain.

This likely derives from the fact that the CH model has no free parameters to tune the compe-

tition between interface surface tension and diffusion. In constrast, almost all mesophyll samples

across the angiosperm clades (Fig. 5.4C) have broadly-peaked I(q) curves, indicating cell-rich do-

mains with widely varying sizes. How, then, can these models be adapted to better reflect the

complex microstructures observed in experiments? Recent work on randomly end-linked copolymer

networks [184] demonstrated that similar broadening of the peak in I(q) occurs in samples with

copolymers of larger molecular weights and reflects networks with more structural heterogeneity.

While the exact physical remains unknown, it could be that network heterogeneity results from

the presence of microscopic disorder, i.e. chain-length disorder in the case of copolymer melts,

or cell-size or shape disorder in the case of spongy mesophyll. However, work on explicit inclu-

sion of quenched disorder into the dynamical CH equations [185] has shown that broad classes of

quenched disorder merely delays the kinetic of ripening, rather than altering the structure of the

phase-separated domains. An alternative origin of network heterogeneity could be the presence of

viscoelastic forces during phase-separation. Computational studies of an extension of the CH model

with elastic stresses [148] have demonstrated I(q) peak-broadening and other structural effects when

phase-separation kinetics are frustrated by elasticity. The inclusion of viscoelastic stresses makes

physiological sense, as cell-cell interactions in the spongy mesophyll would certainly deter purely

viscous flow of cells during development. After all, the mature mesophyll tissue is undoubtedly

more solid-like than liquid-like. The extent to which models of viscoelastic phase-separation cap-

ture specific structural features of floral spongy mesophyll samples, let alone features of mesophyll

development or diversity, require further study.

Comparisons of computational models to real spongy mesophyll samples in flower petals suggests

potential origins for some of their microstructural features, but not all. In particular, the failure of

CH models to describe heterogeneity of domain sizes indicates that such a simple model contains

too few parameters to fully describe the diverse range of flower petal mesophylls. That is, the

effective model that drives spongy mesophyll development in flower petals seems to have multiple

intrinsic parameters. Though we have identified that external strain may play a role in driving

tissue anisotropy, a more accurate model should be able to capture both domain-size heterogeneity

the complex relationship between anisotropy and porosity. An important feature of these tissues,

however, is not just their complex structural properties, but more importantly that these diverse

structures are formed by the collective actions of individual cells. Whether encoded in the genome or

a result of purely physical consequences, cells have to make decisions in order to properly sculpt these

microstructures during development. Therefore, we will also explore the ability of computational

models of discrete cells to capture mesophyll structural properties. In the next section, we will

describe an application of the deformable polygon model described in the previous chapter to

studying how dynamics at the single-cell level drive the emergence of complex phenotypes in model

spongy mesophyll tissues.
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Figure 5.5: (A-C) Confocal microscopy images of the developing spongy mesophyll in Arabidopsis
thaliana taken at (A) 0, (B) 24, and (C) 72 hours of development (courtesy of C. Ambrose, see
Ref. [187] for experimental details). Cells walls are fluorescently labeled. Symbols and black lines
are placed to highlight development of void shape from predominantly triangular (A), to rectangular
(B) to varying polygonal order (C).

5.3 Spongy mesophyll in leaves

In order to understand the complex microstructure found in the spongy mesophyll, we can turn

our attention from analyzing the bulk structural details in mesophyll found in different species

to analyzing the cellular-level details of specific developmental trajectories. This perspective is

complementary to our previous analyses of mature tissue diversity, as observing which single cell

properties most influence tissue morphology is vital to understanding the biophysical origins of

tissue tunability. That is, because cells make tissues, understanding tissues require understanding

cells. As microCT technology cannot easily resolve borders between cells, technology like confocal

microscopy is better suited to analyzing how cells change over the course of development. However,

confocal microscopy require more time and perturbation to the tissue under study, making it dif-

ficult to study the variation of mesophyll across many different species. It is therefore paramount

to utilize data from both experimental paradigms when informing and developing theoretical mod-

els. In this section, we will develop a model using deformaple polygons to complement confocal

microscopy experiments that can resolve the shapes of cells over the course of development. Cur-

rent state-of-the-art experiments are restricted to observations in the leaves of the model plant

Arabidopsis thaliana. While leaves have typically distinct mesophyll microstructures from flowers,

they also are known to take on quasi-two-dimensional microstructures in maturity [99]. Therefore,

we will use leaf development to guide a two-dimensional deformable polygon model to begin to try

to study this complex process. In future work, we will use three-dimensional deformable polyhe-

dra [186] to develop more complex three-dimensional developmental processes to mimic flower petal

development.

Recent experimental advances in three-dimensional live-cell imaging have shed light on the

development of complex cell shapes in both young and mature leaves [95, 96, 187]. As shown in

Fig. 5.5, early mesophyll tissue is densely packed and nearly confluent, with each cell taking a convex
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polygonal shape when seen in cross-section. However, as the tissue grows, airspaces between cells

begin to form and the tissue transitions from confluent to porous. In the mature stage, cells in the

spongy mesophyll form tortuous, quasi-two-dimensional (quasi-2D) networks. These pore spaces

likely open up due to both cell separation and cell expansion [144], forces known to play a role

in the pore space patterning in roots [188]. Precisely how these forces are coordinated, however,

remains unclear. While it is known that rearrangement of microtubules near plant cell walls are

often correlated with shape change and stress rearrangement during development [189, 190, 187], it

is not known whether cells actively coordinate to pattern the pore spaces, or if these cell networks

emerge from simple rules of growth and shape change [Cite new pore space rev]. Computational

models of discrete, interacting cells can shed light on this question by allowing for the study of

growth with few adjustable parameters, while simultaneously providing details on how growth and

mechanics at the single cell level impact the microstructure of developing tissues.

To model the development of the spongy mesophyll in two spatial dimensions (2D), we employ

numerical simulations of deformable polygons. Similarly to the previous chapter, our simulations

contain a collection of N polygons with n vertices each. The dynamics of the polygons, which

we will refer to as cells, are governed by forces due to change in shape and forces due to cell-cell

interactions. The potential energy of the shape of a cell µ with nµ vertices is given by

Uµ,shape =
ϵa
2

(
aµ
a0µ

− 1

)2

+

nµ∑
i=1

[
ϵl
2

(
liµ
l0iµ

− 1

)2

+
ϵb
2
(θiµ − θ0iµ)

2

]
, (5.8)

where ϵa, ϵl and ϵb control the extent to which geometric parameters can deviate from their preferred

values. As there are nµ vertices on each cell µ, we label each segment length liµ and bending angle

θiµ with i = 1, ..., nµ. Note that Eq. (5.8) is similar to the shape energy in the previous chapter,

with the notable exception of the new definition of the bending angle θ. As described below,

the preferred bending angle θ0 will play an integral role in mesophyll development, and the new

bending angle definition provides a more convenient way to tune spontaneous curvature. A graphical

representation of these quantities are provided in Appendix 5.5.1 as well as derivations of forces due

to the new bending potential. The total potential energy U is then given by the shape potential

energies plus the contribution from interactions, namely

U =

N∑
µ=1

Uµ,shape +∑
ν>µ

nµ∑
i=1

nν∑
j=1

ϵijµν
2

(
1− rijµν

σijµν

)2
. (5.9)

Here, we treat each vertex i on cell µ as a soft disk with diameter σiµ. The parameter ϵijµν
controls the energy required for vertex i on cell µ to change the distance rijµν to vertex j on cell

µ. The contact distance σijµν = (σiµ + σjν)/2 is the distance at which vertex i is just in contact

with vertex j; if rijµν < σijµν , the vertices overlap, and vice versa. Note that, if ϵijµν > 0, the

interacting vertices can either repel or attract. The interaction parameter ϵijµν is on the order of

the energy constant ϵc which controls the stiffness of vertex-vertex interactions. We then vary ϵijµν
according to if two vertices are interacting via short-range repulsion due to excluded volume (i.e.

rijµν < σijµν), or if two vertices are bonded in order to adhere two cells together. Throughout this
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chapter, as in the previous chapter, energies are measured in units of ϵa, lengths are measured in

units of the smallest square-root of cell area, i.e. minµ
√
a0µ, all vertex masses are 1, and time is

measured in units of a0µ,minϵ
−1/2
a .

In order to simulate the emergence of cell networks during development, we need to model how

intrinsic cell parameters (the individual l0, a0, etc) vary over time to drive changes to the resultant

morphology. Recent experimental work [187] has demonstrated that mesophyll cell shape change

during development is primarily driven by changes to the length of void -facing cell surfaces. In

contrast, cell surfaces in contact with other cells remain nearly the same length during early stages of

development. This localized growth of void-facing cell surfaces coincides with increased fluctuations

and alignment of microtubules organized in parallel to cell edges near voids. Microtubules are known

to play a vital role in driving cell shape in nearby tissues, e.g. the cells on the leaf epidermis [97],

which indicates that they are playing a similar role in mesophyll tissue. Therefore, we hypothesize

that localized changes to cell shape near perimeter is sufficient to drive the emergence of complex

networks observed in mature mesophyll.

While this hypothesis is consistent with key observations of in vivo mesophyll development,

an important question remains: how does the mesophyll tissue gain pores? As shown in both

Figs. 5.5 and 5.6, Arabidopsis tissue becomes increasingly porous during development. As reported

by Ref. [187], the first 120 hours of development from the primordial leaf sees a decrease in packing

fraction ϕ from nearly unity to ∼ 0.85. The decrease in density coincides with transition in cell

shapes, from initially polygonal at confluence (with A ≈ 1.15) to nearly circular (with A ≈ 1.08)

to increasingly non-spherical (A ≥ 1.15). Note the observed asphericity at confluence A = 1.15 is

consistent with shapes observed in confluent packings of deformable polygons and polyhedra [47,

186]. As shown in Fig. 5.5, cell boundaries becomes increasing concave as porosity develops. In

Fig. 5.6, we also show microCT scans of spongy mesophyll in more mature tissues with increasingly

concave and complex shapes. Hand-segmentation of microCT scans demonstrates these cells have

asphericity values that are consistent with trends observed earlier in development (see Fig. 5.6 (B)

and (C)). Therefore, any model we develop to model this system needs to consistently increase the

porosity 1− ϕ in the system throughout development.

One way to ensure that mesophyll density constantly decreases during the course of development

would be to grow the box size at a constant rate. However, plant cells are known to maintain a

constant, positive turgor pressure during development and into maturity [191], and constant strain

rate would likely impose a negative pressure on the boundary on ultimately on the cells themselves.

Therefore, instead of growth by constant strain rate, we impose a constant stress on the box and

perform a growth simulation at minimum enthalpy rather than energy. We relax the total enthalpy

H = U + P0A for simulation domain area A at constant pressure P0 and potential energy U .

That is, the box area becomes a new degree of freedom that fluctuates in order to maintain that

area is grown at a constant rate. In Appendix 5.5.2, we describe a modification of the FIRE

algorithm [37, 192] that incorporates the treats the box size dynamically during the minimization

protocol. This protocol ensures that we can always dictate the pressure of our mesophyll cell system

for a given set of geometric parameters, i.e. a0, l0i, θ0i, etc. In order to grow both the cells and

the amount of void space in the tissue over time, we then modify the shape parameters of each cell

that are localized near void space between enthalpy minimization steps. As void-facing surfaces
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Figure 5.6: (A) Mesophyll cell shape asphericity A over the course of development. Black symbols
are taken from Ref. [187], while symbols with color are taken from microCT scans in panel (D).
(B) Distribution of cell A values from the microCT scans in panel (D). (C) Workflow of hand-
segmenting individual mesophyll cell shapes from microCT scans. Using ImageJ, microCT data is
binarized and initial cell boundaries are found using a watershed algorithm. Boundaries are then
modified to better fit the assumed cell shapes from the microCT data using visual inspection. The
microCT scans in (A) and (B) are shown at the right, courtesy of C. Brodersen, A. Roddy and G.
Theroux-Rancourt.

grow longer and more concave during development, we grow all perimeter segments i on cells µ

that border void space by a fraction δl0, and also drive the spontaneous curvature θ0i of void-facing

vertices toward a negative minimum value θ0,min.

One additional feature that is required of any model we construct is the behavior seen in Fig. 5.6,

where cells become more circular during early stages of development before increasing in A. This

is actually indicates the presence of constant volumetric (in 2D, areal) growth of the cells in these

early stages. When cells are densely-packed, there is very little void-facing perimeter for the cell
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to grow. If cells are constantly growing their areas, however, the ratio A = p2/4πa is therefore

only decreasing in this stage, which drives cells to take on more circular shapes. Polygons can

tile the plane, but circles cannot; this geometric incompatibility would then naturally increase the

pressure and drive boundary growth until the cells form a tissue reminiscent of jammed circular

particles. Once in this state, the circular cells have more void-facing perimeter, and the growth

mechanism can kick in to drive the cells back toward more non-circular shapes. Therefore, between

each enthalpy minimization step, we modify each preferred cell area a0µ, preferred segment length

l0iµ and preferred curvature θ0iµ using

a0µ → a0µ(1 + cδl0)
2

l0iµ → l0iµ(1 + δl0) for i void-facing

θ0iµ → θ0iµ − δθ0 for i void-facing.

(5.10)

We choose a form of the areal growth rate such that c = 1 corresponds to a constant shape parameter

A if all perimeter segments are grown in a given step, and the preferred angle does not change.

In Fig. 5.7, we show the results of a small simulation of four mesophyll cells growing in a small

square boundary with rigid walls. Vertices interact both with their initial contact point on the wall

and with each other via fixed, bonded spring potential given by the interaction term in Eq. (5.9).

Bonds are modeled to have a fractional fracture length λ; if the distance rij between two vertices

i and j grows to be larger than λσij , where σij is the mean of the radii of the two vertices, we

disengage the bond. We set λ = 1.1 here to ensure that bonds can be maintain some extensional

stress, but not so much that all bonds remain. We set all bond energies ϵijµν = ϵc, and ϵc = ϵl = 1,

as ϵa sets the unit of energy for our model. We set ϵb = 10−1, which is small enough to allow

for deviations in the bending angle from the preferred curvature, but large enough to drive the

system to more porous states. For growth rates, we set δl0 = δθ0 = 10−2 and c = 0.4, and we set

a net pressure of P0 = 10−4 at the boundary, where P0 is in units of ϵa/a0, and cells initially have

preferred areas set to 1. We set the minimum bending angle θ0,min = −π/8.
We find that our simple model of cell growth at constant pressure is sufficient to generate a

qualitatively similar developmental trajectory to that which has been observed in experiments .

Cells initially begin as convex polygons due to packing constraints, but quickly gain more circular

shapes due to the constant increase in cell area without the presence of void-facing perimeter.

These shapes eventually bottom out, however, and once there exists sufficient void-facing perimeter

the cells begin to grow their asphericity. As shown in Fig. 5.7, the drive toward negative curvature

pushes circular cells toward increasingly non-circular shapes as the bending energy stabilizes bending

fluctuations and push out on the confining boundary. Note that cell sizes do not decrease during

this, rather the cell sizes are grown larger given the positive value of the area scaling constant c.

Therefore, the boundary grows in response to local changes to cell shape, effectively decreasing the

packing fraction and increasing the amount of void space.
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Figure 5.7: (A)-(D) progression of cell shape and contacts during the simulated developmental
model described in the text. Vertex color corresponds to the local preferred bending angle θ0iµ,
where warmer colors correspond to larger values. Vertices outlined with dotted lines correspond
to values of θ0iµ < θ0,min = −π/8. Black lines correspond to unbroken bonds between vertices or
between a vertex and a pinned location on the wall. Each simulation is scaled to show an equal-sized
boundary.

5.4 Conclusion

The development of mesophyll tissue in leaves and flowers is a complex process involving changes

to cell shape and tissue density, variables which have been rarely studied together in biological

contexts. In this chapter, we first analyzed the consequences of development (i.e maturity) across

a wide range of mesophyll samples taken from flower petals. This demonstrated that whatever

developmental process exists to form these tissues, it is tunable. Biophysical parameters at the

single-cell level somehow can vary from species to species in order to generate variable tissue mor-

phologies. We found a key morphological feature that can be tuned is tissue anisotropy. Each

sample we analyzed are generally anisotropic, but that anisotropy varies greatly both across clades,

and within the species members of a certain clade. Additionally, we found that tissue density was

well-correlated with anisotropy and mean cell size, but that there are many tissues with the same

size cells with differing anisotropies. This indicates that the biophysical mechanisms that generate

these morphologies in development are potentially constrained in some ways, i.e. only larger cells

typically make dense, anisotropic tissues, but are free to vary in others. Are these mechanisms

constrained by the physical constraints of development? Or do these structures represent distinct

pockets of fitness optima, and the developmental process can in principle generate a far greater

diversity of structures with lower fitness? While the analyses shown here begin to shed light on

these questions, more detailed knowledge of the developmental process is required in order to fully

understand them.

Therefore, we introduced computational models that sought to understand the diversity and

formation of these structures. We first introduced the strained Cahn-Hilliard model, which we

showed was sufficient to generate structural anisotropy, but not domain-size heterogeneity. This

indicates that boundary-driven stress is likely the origin of tissue anisotropy, but there must be

additional free parameters to generate heterogenous structures. Seeing as these additional parame-

ters are likely variable mechanical properties and active processes that occur at the single-cell level,

we also introduced a computational model of mesophyll development using deformable polygons
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in two spatial dimensions. While this two-dimensional model is insufficient to describe the full

complexity of three-dimensional flower mesophylls, it provides both a simpler model in which we

can develop intuition, and, fortuitously, a model of the quasi-two-dimensional development of leaf

spongy mesophyll in the paradermal plane. We show that we can qualitatively capture develop-

mental dynamics with deformable polygons that (a) grow at minimum enthalpy and (b) balance

the rates of areal and local perimeter growth. This model helps explain the microscopic origins of

pore space development in leaf spongy mesophyll, which until now have been a mystery [193].

Even more, the hypothesis that mesophyll tissues drive the development of pore spaces by

localized growth opens up a new frontier in studying how individual cells can modify developmental

trajectories to build different tissues. The next step for this work is to better understand the space

of parameters described here in larger systems with more complex boundaries, i.e. in periodic

boundaries to simulate a large bulk system, or with a deformable boundary mimicking a two-

dimensional epidermis. But once the two-dimensional case is fully understood, the main test of

this model would be to extend it to fully three-dimensional deformable polyhedra [186]. One

could then study how changes to biophysical parameters (like shape growth rates, mechanical

constants, and confining pressure) leads to anisotropy and domain-size heterogeneity. Are domains

heteorgenous simply because of cell size polydispersity, or is there mechanical heterogeneity that

leads to heterotypic branches in the mature cell network? Additionally, one potential origin of

tissue anisotropy may anisotropic boundary stiffness, i.e. some domain boundaries are easier to

move than others. For example, in the example posed above, what if both the x and y boundaries

were free to move independent of one another? Even more, one could set different effective masses

for each of the confining boundary directiojns, making one more difficult to grow than the other.

Would this be sufficient to generate anisotropic cell networks? Addressing these questions will allow

us to understand how the space of possible single-cell biophysical parameters maps to the space

of possible tissue morphologies. Such understanding broadens our ability to span broad scales of

lengths and time and understanding the biophysical origins of complex biological phenomena like

the robustness of certain developmental phenomena or even processes like evolution itself.

5.5 Appendices

5.5.1 Mesophyll bending force

The force on vertex k due to deviations in the local bending angle θk from its preferred value, i.e.

δθk = θk − θ0k, is given by

F⃗ b
k = −∂Ub

∂r⃗k
= −ϵb

[
δθk−1

∂θk−1

∂r⃗k
+ δθk

∂θk
∂r⃗k

+ δθk+1
∂θk+1

∂r⃗k

]
. (5.11)

As shown in Fig. 5.8, we define the local bending angle at vertex k to be the angle between

the vectors l⃗k−1 and l⃗k. This angle can be calculated using the definitions sin θk =
∣∣∣l̂k−1 × l̂k

∣∣∣,
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cos θk = l̂k · l̂k−1, and θk = tan−1 (sin θk/ cos θk), i.e.

θk = tan−1

(
lk−1,xlk,y − lk,xlk−1,y

lk−1,xlk−1,x + lk,xlk,y

)
, (5.12)

where lk,ξ is the ξ = x or y component of the segment vector l⃗k. We define the temporary variables

sk = lk−1,xlk,y − lk,xlk−1,y; ck = lk−1,xlk−1,x + lk,xlk,y, (5.13)

which gives

∂θk
∂r⃗k

=
ck
∂sk
∂r⃗k

− sk
∂ck
∂r⃗k

c2k + s2k
(5.14)

where we have used ∂ tan−1(x)
/
∂x = (1 + x2)−1. The derivatives in the numerator of Eq. (5.14)

are

∂sk
∂r⃗k

= (lk,y + lk−1,y)êx − (lk,x + lk−1,x)êy

∂ck
∂r⃗k

= (lk,y − lk−1,y)êx + (lk,y − lk−1,y)êy,

(5.15)

and we note that c2k + s2k = l2kl
2
k−1, given the definition of ck and sk in Eq. (5.13). Incorporating

Eq. (5.15) into Eq. (5.14) yields
∂θk
∂r⃗k

=
n̂k
lk

+
n̂k−1

lk−1
, (5.16)

where n⃗k = lk,y êx − lk,xêy is the vector normal to l⃗k, and is drawn in red as the unit vector

n̂k = n⃗k/lk in Fig. 5.8.

Because each polygonal cell forms a closed loop, it always true that
∑n
i=1 θi = 2π, and thus

θk = 2π −
∑
i ̸=k θi. Therefore,

∂θk
∂r⃗k

= −∂θk−1

∂r⃗k
− ∂θk+1

∂r⃗k
, (5.17)

as θk only depends on r⃗k−1, r⃗k and r⃗k+1. Comparing coefficients with Eq. (5.16), we then have the

derivatives of the other two angles with respect to r⃗k:

∂θk−1

∂r⃗k
= − n̂k−1

lk−1
;

∂θk+1

∂r⃗k
= − n̂k

lk
. (5.18)

Note this can also be obtained by taking each derivative directly. We can then substitute the forms

of the derivatives of each angle with respect to r⃗k into Eq. (5.11) to obtain

F⃗ b
k = ϵb

[(
δθk−1 − δθk

lk−1

)
n̂k−1 +

(
δθk+1 − δθk

lk

)
n̂k

]
. (5.19)

Bending forces therefore typically point normal to the cell surface.
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Figure 5.8: Geometry of regions near individual vertices on model cells. The bending angle θk is
defined to be the angle between l⃗k−1 and l⃗k. The unit vectors n̂k and n̂k−1 drawn in red are normal

to l⃗k and l⃗k−1, respectively.

5.5.2 Derivation of enthalpy minimization

Our simulations will minimize a particular configuration’s enthalpy H = U + P0LxLy, where U is

the total potential energy described in Eq. (5.9), P0 is the constant constraint pressure, and Lx and

Ly are the side lengths of our simulation domain in the horizontal (x) and vertical (y) directions of

our simulation, respectively. By configuration, we mean the set of coordinates r⃗iµ for all vertices

i = 1, ..., nµ on all cells µ = 1, ..., N . In this work, we only consider a square domain that can

change size isotropically, i.e. Lx = Ly = L. However, this protocol can be extended to domains

where Lx and Ly may vary independently.

To minimize a given configuration’s enthalpy H, we combine dynamics in the isoenthalpic-

isobaric ensemble first described by Andersen [194] with the minimization dynamics of the FIRE

algorithm [37]. Isoenthalpic-isobaric dynamics (or NPH dynamics, as opposed to classical NVE

dynamics with constant particle number, domain volume, and total internal energy) are obtained

by treating the total domain size A = L2 as an additional dynamical quantity with inertial mass

M . In addition to momenta p⃗iµ and masses miµ for all vertices i on cells µ, we define the domain

“momentum” Π = M ∂A/∂t . As described by Andersen, one obtains the following equations of
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motion for NPH dynamics in two spatial dimensions:

∂r⃗iµ
∂t

=
p⃗iµ
miµ

+
Π

2MA
r⃗iµ

∂A

∂t
=

Π

M
∂p⃗iµ
∂t

= − ∂U

∂r⃗iµ
− Π

2MA
p⃗iµ

∂Π

∂t
= P (t)− P0

(5.20)

where P (t) is the instantaneous pressure at a given time t. If truly simulating a dynamical system

at constant enthalpy and pressure, the pressure P must take into account both kinetic and potential

contributions [75]. However, as our growth simulations are athermal and quasistaic, we only consider

the potential contribution to the pressure and define P = −dU/dA, or the total derivative of the

potential energy with respect to the domain area. We use the form of the pressure described

in Eq. (4.24) in the previous chapter, except note that in this chapter, we must compute the

partial derivative ∂θk/∂L . Because θk is non-dimensional and does not change with change of the

simulation domain area, there is no bending energy contribution to the pressure.

While the dynamics in Eq. (5.20) lead to dynamic sampling of the NPH ensemble, we require that

each step in our mesophyll development simulation be at a local minimum of enthalpy. Therefore, we

adapt these NPH dynamics into the dynamics of the FIRE algorithm. Standard FIRE minimization

amounts to standard NVE dynamics, where conservative forces F⃗iµ = − ∂U/∂r⃗iµ drive the system

to minimize the potential energy, along with a force that increases momentum if the net force is

decreasing in magnitude, but decreases momentum is the force magnitude increases. The dynamical

equations for systems in domains of fixed size are

∂r⃗iµ
∂t

=
p⃗iµ
miµ

∂p⃗iµ
∂t

= F⃗iµ − γ(t)
(
p⃗iµ − π

Φ
F⃗iµ

)
,

(5.21)

where π and Φ are the magnitudes of π⃗ and Φ⃗, which are the vectors

π⃗ =
(
p11,x p11,y p21,x · · · pnNN,x pnNN,y

)
Φ⃗ =

(
F11,x F11,y F21,x · · · FnNN,x FnNN,y

)
,

(5.22)

i.e. the vectors of all momenta and net forces for all degrees of freedom, respectively. The variable

γ(t) is updated at each time to tune whether the direction of π⃗ increases Φ (i.e. γ > 0) or decreases

Φ (i.e. γ < 0).

To introduce dynamics that minimize the enthalpy, we include the domain size momentum Π

into the definition π⃗, and the domain boundary force P (t) − P0 into the definition of Φ⃗. We also

use the domain-adjusted forces F⃗ ′
iµ = − ∂U/∂r⃗iµ − (Π/2MA)p⃗iµ in the global force vector Φ⃗. Our

103



final dynamical equations are then

∂r⃗iµ
∂t

=
p⃗iµ
miµ

+
Π

2MA
r⃗iµ

∂A

∂t
=

Π

M
∂p⃗iµ
∂t

= F⃗ ′
iµ − γ(t)

(
p⃗iµ − π

Φ
F⃗ ′
iµ

)
∂Π

∂t
= P (t)− P0 − γ(t)

[
Π− π

Φ
(P (t)− P0)

]
.

(5.23)

To solve these equations, we use an implementation and associated parameter values described in a

recent assessment of FIRE [192] using a two-step velocity-Verlet algorithm [75]. We terminate the

enthalpy-minimization process when Φ⃗ reaches a sufficiently small magnitude, which corresponds

to both small magnitudes for all net forces between degrees of freedom, as well as a small difference

between P (t) and P0. Throughout our simulations, we set the mass of each vertex and the domain

boundary mass to be equal to 1.
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Chapter 6

Conclusions

6.1 Thesis summary

In this thesis, I have outlined several computational models that have been inspired by the physics

of glassy and jammed materials to systems of biological relevance. In Chapters 2 and 3, I outline

how jammed packings of amino acid-shaped particles can aid our understanding of core packing

of well-folded protein molecules. I showed that the cores of protein structures resolved by X-ray

crystallography (xtal) pack almost identically, in both bulk packing fraction and distribution of

void space and local particle volumes, to packings of amino acid-shaped particles with purely rigid

shapes and purely repulsive interaction potentials. Proteins resolved by nuclear magnetic resonance

(NMR) imaging, however, were shown to pack slightly more densely than crystal structures, which

was rationalized by the presence a difference in preparation protocol with greater thermalization.

Given that NMR structures are resolved in dilute aqueous environments, whereas xtal structures

are resolved in densely-packed crystals, the fact that thermalized packing protocols better match

NMR structures may suggest that the crystallization process “traps” protein cores in less well-

packed configurations. NMR structures, on the other hand, may allow for more thermalization

during folding, allowing more well-packed protein cores.

In Chapter 4, I introduced a different computational model, now of deformable polygons that

can change shape in response to applied stress. This model provides a natural starting point for sim-

ulating and studying a host of materials composed of deformable constituents like foams, emulsions,

and, perhaps most importantly in the context of this thesis, cells. However, before describing pos-

sible applications to biological systems, I addressed a purely physical question; how can deformable

objects collectively create rigid, solid-like materials? That is, a packing of infinitely-deformable

objects presumably never forms solids that can resist applied load, as any external driving will

result in particles sliding past each other as if in a fluid. Therefore, deformable particles must form

solids when they particles are driven to their limit of deformability, but to what extent? And does

jamming under this scenario differ from more familiar situations like, for example, jamming of hard

granular materials?

To address this question, I introduced the deformable polygon (DP) model and first addressed

105



rigidity of individual particles using constraint counting and the dynamical matrix. The simplest DP

model was found to produce particles with an abundance of floppy modes, and in jammed packings

were found to rigidify through the use of quartic modes. Though quartic modes have been observed

in other jammed packings of non-spherical particles, we find distinct differences in jammed packings

of truly deformable particles. In particular, soft modes with characteristic vibrational frequency

ω0 scale as ∼ A−1/3 with particle asphericity, whereas only ∼ A1/2 has been previously observed

in packings of other non-spherical particles. In addition, I showed that the static shear modulus

G = −d2U/dγ2 had an anomalous scaling with pressure, satisfying G ∼ P 3/4 in the high-pressure

limit. As spherical particles have a scaling exponent ∼ P 1/2, and other non-spherical particles

typically have a scaling exponent of G ∼ P , the vibrational and mechanical response of jammed

packings of deformable particles indicate that these jammed materials may be members of new

universality class.

This thesis concludes with the discussion of two different potential applications of the DP model

to biological systems. At the end of Chapter 4, I demonstrate that actively crawling deformable

polygons can display complex glassy behavior that can vary significantly depending on the me-

chanical properties of individual cells. In particular, I showed that the addition of bending energy

along the cell’s exterior can lead to solid-like arrested states even though cell shapes are highly

non-spherical and similar to those found typically in flowing states. This result may help explain

recent, puzzling observations that some epithelial tissues resist flow even with highly-deformed

cells [133]. In Chapter 4, I then described the spongy mesophyll tissue in leaves and flowers, a

biological system where packing constraints drive both development and diversity of the tissue. I

first described mechanisms to quantitatively describe the microstructure of these complex tissues,

in particular how to quantify mesophyll anisotropy across a wide variety of microCT scans of flower

petals. Preliminary computational modelling suggests that anisotropy is driven by boundary-driven

stress, but I showed that it is difficult to coax simple models to adopt the complex microstructures

of real spongy mesophylls. I then motivated the need for more complex models that may be able

to capture this microstructural complexity in future work, and described a simple test case for

how deformable polygons may provide the foundation for such models. In particular, this model

focuses specifically on how local growth and shape change coupled to a constant-stress boundary

condition can drive the development of porous networks of highly non-spherical cells. While this

model requires additional work to allow for more comprehensive study of mesophyll morphogenesis,

it provides additional insight into how cell packing in early developmental stages helps pattern the

ultimate microstructure in the mature tissue.

Throughout this thesis, a primary concern has been how physical constraints of packing and

jamming affect biological systems. However, the biology in question have been purely structural,

e.g. the packing fraction of protein cores, or the typical cell shape during mesophyll development.

Future work can and should broaden the focus of these studies to not just structural, but functional

aspects of biological systems. That is, future studies should ask, how do physical constraints inform

the important biological functions that regulate living systems, lead to disease, and ultimately drive

diversity and evolution of species? These questions yet lay beyond the reach of biological physics,

but in the next section I lay out several directions that begin to address these questions.
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6.2 Future Directions

As mentioned in Chapter 5, future work must continue to adapt the deformable polygon model for

the simulation of spongy mesophyll development. This work can progress in several ways. First,

larger systems deformable polygons in either (a) periodic boundary conditions or (b) deformable

boundaries with enthalpy minimization in order to simulate physiologically-relevant system sizes

and boundaries. In either of these boundary conditions, an important study will be to understand

the parameter space of the model. While the coarse-grained model described in this thesis has

considerably fewer adjustable parameters than the actual biological system, the various mechanisms

of cell growth and adhesion provide a substantive parameter space. Future studies should seek to

understand how parameters might be combined to reduce the size of the space in order to compute a

minimal ”phase diagram” that incorporates the most structural variability with the fewest number

of parameters. By reducing parameters and fully exploring space, we will learn what physical

mechanisms most sensitively affect development. In addition, three-dimensional computational

modelling suggests that development in flower petals is driven in part by anisotropic boundary-

driven stress. We will test the origins of this anisotropy by imposing anisotropic pressure on

network-forming deformable polygons. For example, if the x-direction is be easier to expand (with

a lower imposed stress Px) than the y-direction (with a larger imposed stress Py > Px), is this

sufficient to generate anisotropic cell networks? Addressing this question is an important future

direction, which I will do in both two- and three-dimensional [186] systems of deformable particles.

At the end of Chapter 4, I demonstrated that the dynamical behavior of densely-packed de-

formable polygons depends heavily on the mechanical properties of individual particles. Under-

standing how single-cell mechanics impact tissue solidification and fluidization is vital for our

understanding of a host of biological functions such as morphogenesis, homeostasis or tumor in-

vasion [132, 131, 134]. Therefore, another important future direction of this work is to further

develop the DP model for the study of flowing and developing tissues. In particular, the addition

of biologically-relevant adhesion mechanisms are of the utmost importance. While adhesion was

incorporated into the simple DP model in Chapter 5, adhesion (particularly in developing epithelia)

is inherently a non-equilbrium process [88, 94]. Incoporating processes like active tension fluctua-

tions, binding kinetics of cadherin molecules and cytoskeletal-cadherin coupling into the DP model

will allow for more realistic models of multicellular systems. However, the addition of biological

detail comes at the cost of specificity and an increased number of parameters. Therefore, future

work must strive to develop minimal models that incorporate these effects. Recent work on active

foam-like particles [94] provides an excellent starting point for minimal models with biological rel-

evance. Future work will then address how rigidity and adhesion at the single-cell level can sculpt

and steer the function of tissues.

These future directions will investigate how physical constraints, such as dense cell packing, im-

pact the function of specific biological systems, such as developing multicellular systems in animals

and plants. However, a key future direction for biological physics in general is to seek out universal

physical principles that form the foundation of many, if not all, biological phenomena. That is,

rather than looking at a particular biological phenomenon and asking what physical features are

at play, can we begin to derive and predict biological behavior purely from physical principles? It
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Figure 6.1: (A) The growth of a monolayer proceeds from the division of a single cell (color shows
relative cell size). When the monolayer reaches a certain population, growth slows and the mono-
layer interface (with perimeter p, shown in red) becomes a trait under selection. (B) Schematic
fitness function Φ of the monolayer’s surface-to-area ratio A = p2/4πa for a monolayer of total
area a. Possible landscape classes include smooth (top), rough (middle) and funnelled (bottom).
(C) Evolution through a walk across the fitness landscape. A “parent” ensemble of n cell mono-
layers is generated, with each monolayer k obtained via a certain set of biophysical parameters Λk.
“Offspring” (m ≤ n) are selected with a probability ∼ exp(−Φ) and are given genetic noise η each
generation.

seems a daunting task, but coarse-grained computational models might aid in the establishment

of the “Rules of Life” that are present at any length scale, at any time, and in any region in the

phylogenetic Tree of Life.

For example, in Fig. 6.1, a schematic evolutionary simulation is described that can model dy-

namics of cellular traits on a fitness landscape in a model multicellular system. Consider the

developmental growth of a two-dimensional, multicellular “organism” composed of deformable

polygons governed by a set of coarse-grained biophysical parameters Λ. These parameters, e.g.

adhesion strength, division rates, etc., combine to influence the overall monolayer shape parameter

A = p2/4πa for a monolayer with perimeter p and area a. We could then study the coupling be-

tween evolutionary and developmental dynamics given the fitness Φ granted by the “mature” A of

a particular configuration. For example, given a particular Φ (Fig. 6.1B), one could track dynamics

in Λ-space and monitor the emergence of stable points and limit cycles (niches and tradeoffs [177]),

or diffusion (neutral speciation [195]).

One key benefit of this approach is that the coarse-grained parameters Λ may be drawn randomly

from any initial distribution, but will naturally evolve toward steady states according to the selected

fitness landscape. Therefore, this approach facilitates the study of purely evolutionary parameters

(i.e. Φ and η); that is, evolution itself. This work can lend insight to fundamental problems

to the dynamics of evolution, such as if stable phenotypes can emerge without strong pressure

from the environment. For example, smooth circular interfaces are natural in systems with high

surface tension, and if the fitness landscape Φ does not have clear optima (such as the “smooth” and

“funnelled” cases in Fig. 6.1B), large genetic drift η might naturally create more circular phenotypes

(A → 1) if a larger number of possible configurations simply possess a high interfacial tension. In

this case, a purely physical principle, that interfacial tension drives bulk morphology, could drive
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evolutionary forces absent of clear selective pressure. Although this “neutral” form of evolution has

been suggested as an explanation for several observed evolutionary trends [196], the computational

approach described here can systematically study and control how this evolutionary dynamic can

lead to the emergence of complexity and diversity.

Such a simulation scheme would aid our understanding of the coupling between evolutionary

dynamics and physical constraints, as well as how the evolution of subcellular components impact

multicellular behavior. A key challenge to studying evolutionary dynamics is precisely the nearly

impossible separation of scales at play; evolution occurs at the level of genes and proteins, yet we

observe its effects over generations at the scale of organisms and species. The approach outlined

above therefore allows the interrogation of evolutionary dynamics at biology’s mesoscale, i.e. cells

and tissues, which might help bridge the gap between molecules and populations. However, the

proposed research direction leaves several key questions unanswered prima facie. For example,

what sets the fitness landscape? Are there ways of generating Φ, or methodologies systematically

studying all possible Φ? Also, how will this approach be experimentally validated? Although it

would be possible to validate the effect of a local set of parameters on global tissue morphology

(i.e. of a given Λ on the monolayer A), measurement of evolution or even the properties of the

fitness landscape would be considerably more difficult. Nevertheless, I believe that coarse-grained

computational models inspired by biological systems are uniquely suited to bridge the gap between

biological phenomena and physical principles. Only with concerted combination of computational

modelling, theoretical exploration and experimental validation can we find what unites the disparate

arms of biology and begin to understand Life as a purely physical phenomenon.
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110



Cavities determine the pressure unfolding of proteins. Proceedings of the National Academy
of Sciences, 109(18):6945–6950, 2012.

[13] Nathaniel V. Nucci, Brian Fuglestad, Evangelia A. Athanasoula, and A. Joshua Wand. Role
of cavities and hydration in the pressure unfolding of t4 lysozyme. Proceedings of the National
Academy of Sciences, 111(38):13846–13851, 2014.
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CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state.
Database, 2016, 2016.

[75] Michael P. Allen and Dominic J. Tildesley. Computer Simulation of Liquids. Oxford University
Press, 2nd edition, 2017.

[76] Ning Xu, Jerzy Blawzdziewicz, and Corey S. O’Hern. Random close packing revisited: Ways
to pack frictionless disks. Phys. Rev. E, 71:061306, 2005.

[77] D. J. Durian. Foam mechanics at the bubble scale. Phys. Rev. Lett., 75:4780–4783, 1995.

[78] M van Hecke. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J.
Phys.: Condens. Matter, 22(3):033101, 2009.

[79] F. Bolton and D. Weaire. Rigidity loss transition in a disordered 2d froth. Phys. Rev. Lett.,
65:3449–3451, 1990.

[80] Yann Bertho, Christophe Becco, and Nicolas Vandewalle. Dense bubble flow in a silo: An
unusual flow of a dispersed medium. Phys. Rev. E, 73:056309, 2006.

[81] H.M Princen. Rheology of foams and highly concentrated emulsions: I. elastic properties and
yield stress of a cylindrical model system. J. Colloid. Interf Sci., 91(1):160 – 175, 1983.

[82] Arman Boromand, Alexandra Signoriello, Janna Lowensohn, Carlos S. Orellana, Eric R.
Weeks, Fangfu Ye, Mark D. Shattuck, and Corey S. O’Hern. The role of deformability in
determining the structural and mechanical properties of bubbles and emulsions. Soft Matter,
15:5854–5865, 2019.

[83] William P. J. Smith, Yohan Davit, James M. Osborne, Wook Kim, Kevin R. Foster, and
Joe M. Pitt-Francis. Cell morphology drives spatial patterning in microbial communities.
Proc. Natl. Acad. Sci. USA, 114(3):E280–E286, 2017.

115



[84] Farzan Beroz, Jing Yan, Yigal Meir, Benedikt Sabass, Howard A. Stone, Bonnie L. Bassler,
and Ned S. Wingreen. Verticalization of bacterial biofilms. Nat. Phys., 14(9):954–960, 2018.

[85] Jin-Ah Park, Jae Hun Kim, Dapeng Bi, Jennifer A. Mitchel, Nader Taheri Qazvini, Kelan
Tantisira, Chan Young Park, Maureen McGill, Sae-Hoon Kim, Bomi Gweon, Jacob Notbohm,
Robert Steward Jr, Stephanie Burger, Scott H. Randell, Alvin T. Kho, Dhananjay T. Tambe,
Corey Hardin, Stephanie A. Shore, Elliot Israel, David A. Weitz, Daniel J. Tschumperlin,
Elizabeth P. Henske, Scott T. Weiss, M. Lisa Manning, James P. Butler, Jeffrey M. Drazen,
and Jeffrey J. Fredberg. Unjamming and cell shape in the asthmatic airway epithelium. Nat.
Mater., 14(10):1040–1048, 2015.

[86] Xavier Trepat and Erik Sahai. Mesoscale physical principles of collective cell organization.
Nat. Phys., 14(7):671–682, 2018.

[87] Thomas Lecuit and Pierre-François Lenne. Cell surface mechanics and the control of cell
shape, tissue patterns and morphogenesis. Nature Reviews Molecular Cell Biology, 8(8):633–
644, 2007.

[88] Michael Murrell, Patrick W. Oakes, Martin Lenz, and Margaret L. Gardel. Forcing cells into
shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Bio., 16(8):486–498,
2015.

[89] Mohit Kumar Jolly, Marcelo Boareto, Bin Huang, Dongya Jia, Mingyang Lu, Eshel
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onic tissues as active foams. Nature Physics, 17(7):859–866, 2021.

[95] Nathalie Wuyts, Jean-Christophe Palauqui, Geneviève Conejero, Jean-Luc Verdeil, Christine
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