
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Yale Graduate School of Arts and Sciences Dissertations 

Spring 2022 

Quilting Topological Phases of Matter with Quantum Thread: A Quilting Topological Phases of Matter with Quantum Thread: A 

Luttinger Liquid Love Letter Luttinger Liquid Love Letter 

Joseph McCabe Ulysses Sullivan 
Yale University Graduate School of Arts and Sciences, jmusullivan@gmail.com 

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations 

Recommended Citation Recommended Citation 
Sullivan, Joseph McCabe Ulysses, "Quilting Topological Phases of Matter with Quantum Thread: A 
Luttinger Liquid Love Letter" (2022). Yale Graduate School of Arts and Sciences Dissertations. 664. 
https://elischolar.library.yale.edu/gsas_dissertations/664 

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly 
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations 
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more 
information, please contact elischolar@yale.edu. 

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/664?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


Abstract

Quilting Topological Phases of Matter with Quantum Thread:

a Luttinger Liquid Love Letter

Joseph Sullivan

2022

Kicked off by the discovery of the quantum Hall effect in the early 1980s, the

study of topological phases of matter has captured the attention of the condensed

matter physics community for over four decades. With topologically ordered phases,

symmetry-protected topological phases and, most recently, fracton phases, examples

of states of matter beyond the Landau-Ginzburg symmetry breaking paradigm abound.

One approach for constructing these novel states of matter is to employ a layered

approach; 2-dimensional phases can be built by coupling together 1-dimensional

"wires", 3-dimensional phases can be built by coupling together 2-dimensional "layers"

and/or 1-dimensional "wires" and so on. Two major advantages of this approach are

its analytical tractability and its ability to describe chiral phases.

In this dissertation we will make use of these constructions to study several new

and exotic strongly coupled quantum phases of matter. These include necessarily

interacting fermionic symmetry-protected topological phases, chiral fracton phases

and stable compressible phases which lack any local order parameter.
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Chapter 1

Introduction

1.1 Topological phases of matter: a brief overview

The early 1980s marked the beginning of a new epoch for condensed matter physics.

In the previous era the classification scheme which organized all of the known states

of matter relied on the transformation properties of local order parameters under the

symmetries of the system. Liquid water, which looks homogeneous in all directions

can be differentiated from ice, which has a rigid lattice structure, signaling a reduction

in the spatial symmetry of the system. Under the Landau-Ginzburg [3, 4] paradigm,

local information was sufficient to distinguish distinct phases of matter.

This method of taxonomy was shown to be incomplete with the discovery of the

integer and fractional quantum Hall states [1, 5]. The defining feature of these states

is the famous quantized Hall resistances shown in Fig. 1.1 . On the boundary of

these systems one finds robust chiral edge modes and in the fractional case, the

emergent quasiparticles of the system possess fractionalized quantum numbers (eg
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electric charge of e/3). It was eventually realized, after efforts were made to fit the

quantum Hall states into the Landau-Ginzburg paradigm, that the novel physics just

described is incompatible with the existence of a local order parameter [6, 7, 8, 9].

In the subsequent decades myriad examples of phases of matter which elude the

symmetry breaking paradigm have been found. The rest of this section will be devoted

to providing a cursory introduction to the families relevant to this dissertation.

Figure 1.1: The famous plot of quantized hall resistance in the integer quantum hall effect
first measured by von Klitzing, Dorda, and Pepper [1]. One can see large regions in which
the resistance R is flat as the magnetic field B is increased. Sharp jumps connect these
qauntized flat regions, signaling a phase transition.

Topological Order (TO)

In 1990 Wen [9] proposed a description of quantum Hall fluids in terms of topological

order, the idea being that quantum states may be characterized by their ground
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states on different topological manifolds. Heuristically in a gapped system, quantized

invariants such as ground state degeneracy (GSD) should be insensitive to local

perturbations and provide a natural way to differentiate phases. This idea spurred

the search for other gapped states of matter with “topological” features. Soon more

examples were recognized in bosonic settings such as quantum spin liquids [10, 11].

Along with a GSD dependent upon the topology of space, a hallmark of TO states

are emergent quasiparticles (anyons) with fractionalized quantum numbers (charge,

spin etc). Another characteristic is a long-range entangled (LRE) ground state wave

function. This means that the ground state cannot be converted via a finite-depth

local unitary circuit1 into a product state. LRE can be diagnosed by calculating the

entanglement entropy of subsystems [12, 13]. It turns out that these three properties

(GSD, fractionalization and LRE) are not independent of one another and are different

manifestations of the non-local nature of TO states. In a sense, TO states can be

fit into the symmetry breaking paradigm if one allows for the use of non-local order

parameters [14, 7, 6].

One potential practical application of TO is to the field of quantum computing.

For a given TO state the braiding of anyons is equivalent to acting with a unitary

matrix on the degenerate ground state subspace. The idea then is to encode topologically

protected qubits in the ground state subspace and use braiding to perform quantum

operations. After the theoretical discovery of TOs realizing non-Abelian anyon theories

[15] the idea of a topological quantum computer capable of performing the full
1Quantum information theory terminology meaning a finite sequence of local unitary

transformations. In other words are LRE state cannot be adiabatically evolved into a product
state.
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set of gates necessary for quantum computation emerged [16]. Tunneling between

degenerate ground states necessarily requires a non-local operator in a TO state

(see Fig. 1.3 (c)), also making them promising candidates for robust quantum

memories[17].

In the infra-red (IR) TO phases are described by quantum field theories which

only contain “topological” terms which are independent of the space-time metric. In

the case of ν = 1
m

Laughlin state for example, the corresponding topological quantum

field theory is just level m U(1) Chern-Simons theory [8]. As a rudimentary exercise

we will see how exactly this works:

We have at our disposal a compact U(1) gauge field aµ as well as a background field

Aµ, which we can use to probe properties of the system. The idea is to write down an

effective action which i) does not depend on any space-time metric ii) couples Aµ to

some conserved current Jµ iii) reproduces the interesting phenomenology associated

with the Laughlin state 2. Using natural units (e = ℏ = 1) consider the action

Seff [a;A] =

∫
dtdx2

−m
4π

ϵµνλaµ∂νaλ +
1

2π
Aµϵ

µνλ∂νaλ . (1.1)

Note we have built a conserved current out of the exterior derivative of au: Jµ =

1
2π
ϵµνλ∂νaλ. Looking at the µ = 0 term, 1

2π
A0ϵ

0ij∂iaj, we can interpret a 2π gauge

flux of a as carrying a unit of electric charge (charged under A). The action in Eq.

1.1 is quadratic in a so we can integrate it out to get a new effective action purely in

terms of the background field A :

2eg fractional quantized Hall conductance, fractional charge, fractional braiding statistics.
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Seff [A] =
1

4πm

∫
dtdx2 ϵµνλAµ∂νAλ . (1.2)

From here we can extract the Hall conductivity σxy

⟨J i⟩ = δSeff [A]

δAi
=

1

2πm
ϵiνλ∂νAλ =

1

2πm
Ej =⇒ σxy =

1

2πm
. (1.3)

Comfortingly, the effective theory in Eq. 1.1 successfully reproduces the quantized

Hall conductance of the Laughlin state.

The next thing to consider is the symmetry fractionalization associated with the

Laughlin state. We should expect to see emergent quasiparticles with 1
m

the charge of

an electron and similarly fractionalized exchange statistics. In order to capture this

physics we introduce a current jµ which couples to the dynamical gauge field a. We

need to add

δS =

∫
dtdx2aµj

µ (1.4)

to Eq. 1.1. To see the effect of this we can turn off the background field: A = 0. The

equation of motion for a gives

1

2π
(∂µaν − ∂νaµ) =

1

m
ϵµνλj

λ =⇒ b =
2π

m
j0 (1.5)

where b = ϵ0ij∂iaj is the magnetic field for a. Again we have a relationship between

fluxes and charges. This is a generic feature of the Chern-Simons theory, the Chern-
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Simons term a∧da encodes “flux attachment.” Getting more specific, suppose a static

a quasiparticle of unit charge is placed at the origin. The corresponding current is

j0 = δ(x), j1/2 = 0 and Eq. 1.5 tells us that b = 2π
m
δ(x) or that each gauge charge

of a also carries gauge 2π
m

flux of a. Furthermore, we have already seen that a gauge

flux of a carries electric charge:

J0 =
1

2π
b =

1

m
j0 =

1

m
δ(x) . (1.6)

Thus we can conclude that the anyon corresponding to a unit gauge charge of a also

carries 1
m

fractional electric charge.

In order to determine the braiding statistics of the theory let us suppose that

our system hosts N anyons with gauge charges ql and at positions rl. Consider the

following scenarios i) the anyons are static for all time ii) the anyon q1 moves around

a closed loop ∂C bounding a region C over some long time interval T , after which all

the anyons remain static for all time. The currents in these scenarios are given by

Scenario i): j0(r) =
N∑
l=1

qlδ(r − rl), ji(r) = 0

Scenario ii): j0(r) = q1δ(r − r1(t)) +
N∑
l=2

qlδ(r − rl), ji(r) = q1ṙ
i
1(t)δ(r − r1(t)) .

(1.7)

Working in the Coulomb gauge (a0 = 0, ∂iai = 0) there is the following relation

between the actions of the two scenarios
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Sii)[a]− Si)[a] = ∆S[a] =

∫
d2rdt ai(r, t) ji(r, t)︸ ︷︷ ︸

current of ii)

= q1

∫
dt ṙi1(t)ai(r1(t))

= q1

∮
∂C

dn⃗ · a⃗ = q1

∫
C

dA ϵij∂iaj

= q1 × (total flux contained in C)

(1.8)

As we have already seen in Eq. 1.5, an anyon of gauge charge q carries gauge

flux 2πq
m

. Eq. 1.8 tells us then that moving an anyon of charge q1 around a region

C which contains another anyon of charge q2 results in an additional phase factor of

e
2πq1q2

m in the partition function. Therefore we get the quantized 2π
m

fractional braiding

statistics we expected.

The Chern-Simons theory in Eq. 1.1 was very effective at capturing the essential

features of the Laughlin state. By adding more gauge fields into the mix we can study

more sophisticated quantum Hall systems. For example,

Seff [a(1), a(2);A] =

∫
dtdx2

1

2π
Aµϵ

µνλ∂νa(1),λ +
−m1

4π
ϵµνλa(1),µ∂νa(1),λ

+
1

2π
ϵµνλa(1),µ∂νa(2),λ +

−m2

4π
ϵµνλa(2),µ∂νa(2),λ

(1.9)

corresponds to a quantum Hall state with rational filling ν = 1
m1− 1

m2

. Using this

approach we can build up the hierarchy states [18, 19, 20]. More generally if we have

n dynamical gauge fields {a(q)}nq=1 we can work with
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Seff [a(q);A] =

∫
dtdx2

Kij

4π
ϵµνλa(i),µ∂νa(j),λ +

tj

2π
Aµϵ

µνλ∂νa(j),λ (1.10)

where K is an integer symmetric matrix and t is an integer vector. To describe a

gapped phase of matter, such as the quantum Hall states or some other topologically

ordered state, K must be non-degenerate. In this case we can get a great deal of

information from K and t. For example, the hall conductivity is σxy = 1
2π

(K−1)
ij
titj,

the electric charge of the quasiparticle coupled to gauge field a(i) is given by (K−1)
ij
tj

and the statistical phase from braiding anyon i around anyon j is given by 2π (K−1)
ij.

K even gives the topological ground state degeneracy; on a manifold with genus g we

have GSD = | detK|g.

The construction we have just seen is quite powerful. It turns out that any Abelian

TO in 2d can be described in this way [21, 22]. In Chapter 5 we will explore some

novel 3d phases by associating each gauge field a(q) with a spatial layer and consider

the implications of degenerate K−matrices in this context.

Symmetry-protected topological phases (SPT)

Entanglement provides a powerful diagnostic for distinguishing phases of matter. As

we have just discussed, TO states are LRE, meaning they cannot be evolved into

a product state using a finite-depth local unitary circuit. This definition naturally

motivates another. We say a state is short-range entangled (SRE) if it can be evolved

into a product state using a finite-depth local unitary circuit. The family of states
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classified by the symmetry breaking paradigm of Landau and Ginzburg are SRE,

for example. It is natural to ask whether this is the full story; are all states of

matter either classified by TO or according to the symmetry breaking of a local order

parameter? A number of historical examples in bosonic [23] and fermionic [24, 25, 26]

settings hint at this not being the full story.

To illustrate this, consider the open chain of spin 1
2

particles shown in Fig. 1.2.

The chain, which has 2N sites, is partitioned into sub-lattices A and B, each of size

N . We will work with the Hamiltonian

H = −J1
∑
i

(
S⃗Ai + S⃗Bi

)2
− J2

∑
i

(
S⃗Ai+1 + S⃗Bi

)2
, J1, J2 > 0. (1.11)

Note that this Hamiltonian has SO(3) rotation symmetry as well as time reversal

symmetry. The J1 term is designed to project the A and B spins in each unit cell i

into the triplet state:
{∣∣↑Ai ↑Bi 〉 , 1√

2

(∣∣↑Ai ↓Bi 〉+ ∣∣↓Ai ↑Bi 〉) , ∣∣↓Ai ↓Bi 〉}. The J2 term does

the same thing but to the A and B spins in neighboring unit cells. In Fig. 1.2 we

have shown the gapped ground state of the Hamiltonian in two different regimes.

In the case J1
J2
≫ 1 the spins in a given unit cell will form a singlet state and

the unique ground state will proportional to
∏L

i=1

(∣∣↑Ai ↓Bi 〉− ∣∣↓Ai ↑Bi 〉). The other

regime, J1
J2
≪ 1, is more interesting. In this situation the B spin from site i and

the A spin in site i + 1 are forced into the singlet state, leaving the leftmost A

and rightmost B spins unconstrained. The result is a fourfold degenerate ground

state
∣∣σA1 〉 (∏L−1

i=1

(∣∣↑Ai+1↓Bi
〉
−
∣∣↓Ai+1↑Bi

〉)) ∣∣σBL 〉, where σA1 and σBL can independently

9



be either spin up or down.

Figure 1.2: Here we depict the ground states of the Hamiltonian in Eq. 1.11 in two
separate regimes. Top: when J1 dominates the spins A and B in the same unit cell form a
singlet state. The result is a unique gapped ground state. Bottom: when J2 dominates the
spins A and B from neighboring unit cells form a singlet state, leaving behind a dangling
qubit on each end of the chain. In this case the GSD is equal to four. Note that the edge
states transform protectively under the symmetries of the Hamiltonian.

The bulk order of these 3 two SRE states is exactly the same yet one has a GSD

of four resulting from robust edge modes while the other has a unique ground state.

When trying to differentiate these states knowledge of the bulk is insufficient. For

the state with dangling edge modes we can lift the degeneracy by adding some local

Pauli operator (turning on a magnetic field) but by doing so we are breaking the

rotational and time-reversal symmetries. Observe though that if we stack two of

these systems on top of one another we can symmetrically pair up the dangling edge

modes on the end points of the two chains into the singlet state and end up back in

the less interesting phase with a unique ground state. With symmetry imposed as a

constraint we can think of these states as being classified by the group Z2, where the
3What we capturing here is the physics of the AKLT chain. Technically to obtain the same state

studied in [23] we also need to project the A and B spins in each unit cell into the triplet state. Our
interest here is the novel boundary physics (and also brevity) so we have not taken this extra step.
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group multiplication corresponds to stacking the chains.

Belaboring the point a bit, it is clear that symmetry considerations are key when

coming up with notions of a “phase” capable of differentiating the two qualitatively

distinct SRE states above. This motivates the following definition: given the ground

state of a local Hamiltonian with symmetry group G, we say the state is a symmetry-

protected topological (SPT) phase if i.) it is distinct from and cannot be converted

into a trivial product state using a G-symmetric finite-depth local unitary circuit

and ii.) it does not possess any TO 4. Because of the correspondence between ground

states and Hamiltonians we may also think of defining SPTs in terms of interpolations

between Hamiltonians; given two G−symmetric Hamiltonians HA and HB we say HA

and HB describe distinct SPT phases if we cannot find a symmetric path through

parameter space which interpolates from HA → HB without closing the spectral gap.

As we have already, the seen caveat that the interpolation be symmetry preserving

is key to the definition of SPT phases. Symmetry violating interpolations between

SRE states A and B which preserve the gap are is generically possible, so it is the

symmetry constraint which refines the otherwise trivial classification.

Unsurprisingly, the boundary between distinct SPT states hosts novel physics.

More specifically, a nontrivial SPT in n-dimensions will host a n-1 dimensional edge

theory which is not realizable in a true n-1 dimensional setting. The protecting

symmetries act anomalously on these boundary theories preventing the existence of

a symmetric and non-degenerate ground state. Generically then, at the boundary
4So the lack of convertibility into a trivial product state in condition i) is not due to some

underlying topological order.
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of an SPT state one finds gaplessness or in the gapped case, spontaneous symmetry

breaking or topological order (when the bulk dimension is 3d or higher). These

anomalous edge states characterize the SPT.

A large body of work exists on both fermionic and bosonic SPTs. The first

systematic understanding to be established in this area was for non-interacting fermionic

SPTs [27, 28]. Group cohomolgy theory provides a complete classification of bosonics

SPTs in one and two dimensions [29, 30, 31]. 5. Applying this to 1d is equivalent to

classifying the projective representations of the protecting symmetry group G. The

group SO(3), for instance, has two inequivalent classes of projective representations6

agreeing with the Z2 classification we found in our above example. This makes quite

a lot of sense; the inequivalent classes of SO(3) projective representations correspond

to half-integer spin (eg the edge spin 1
2

particles in the bottom configuration in Fig

1.2) and integer spins (eg the edge spin 0 particles in the top configuration in Fig

1.2). Similar progress has been made in classifying general fermionic SPTs using

generalizations of the group-cohomology constructions [32, 33, 34], and classifications

based on TQFTs [35, 36, 37, 38]. In Chapter 2 we will discuss an example of an

intrinsically interacting fermionic SPT state which cannot actually exist without

interactions.

Fracton Topological Order

In the last decade examples of 3d LRE states which do not fit within the framework

of TQFT have emerged. So called fracton topological orders (FTO) possess emergent
5See Appendices D and J of [30] for an introduction to this subject.
6H2[SO(3), U(1)] = Z2
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quasiparticles which are mobility restricted in certain (sometimes all) directions. Like

TO phases, fracton phases can possess emergent quasiparticles with fractionalized

quantum numbers. However, in the fracton case the ground state degeneracy is no

longer a topological invariant but instead scales sub-extensively with system size.

Where TO phases only care about the topology of space, fracton phases know about

the geometry 7. The history of fracton phases dates back to 2005 in work by Chamon

[39] on quantum glassiness. Later Haah discovered the now famous Haah’s Code

[40], a commuting projector model with completely immobile elementary excitations.

Broad interest in the nascent field of fracton physics was sparked by the work of Vijay,

Haah and Fu [41, 42] in which they showed that the examples found by Haah and

Chamon were part of a much larger family of fracton phases.

The related properties of restricted quasiparticle mobility and subsystem scaling

GSD have attracted interest from branches of physics other than condensed matter.

These attributes would suggest fracton models make ideal candidates for topological

quantum memories 8 and this area of research has garnered attention in the quantum

information community[43, 44, 45]. On the less applied side, certain fracton models

[40] do not seem to fit within the paradigm of quantum field theory and the renormalization

group which have been organizing principles underlying physics for over half a century.

This challenge to theoretical physics orthodoxy has been picked up by members of

the high energy theory community. Those fracton models which do have tractable IR

descriptions give rise to unusual quantum field theories [46, 47, 48, 49, 50, 51, 52].
7For example on a 3-torus of size L×L×L the GSD of the toric code is 8 while for the X-Cube

model GSD= 26L−3.
8The search for a robust quantum memory was the initial motivation for Haah’s work.
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One common setting for realizing fracton physics is commuting projector models

with qudit or majorana degrees of freedom. Another natural place to find mobility

restricted phenomenology is higher rank gauge theories [48]. This is somewhat unsurprising

because the mobility constraints on the quasiparticles in fracton phases can be understood

as stemming from high moment conservation laws (eg dipole moment conservation).

In this dissertation we will give several examples of fracton phases built from networks

of Luttinger liquids.

Gapless weak symmetry breaking phases

Typically when one speaks about topological phases of matter one is referring to

gapped systems. The idea being that a gapped system is far from a critical phase

and in this region of phase space quantized properties such as the number of chiral

edge states are robust. Certainly, gapless systems can have “topological features.” A

canonical example is the 2d superfluid which, while symmetry breaking, has gapped

vortex excitations whose discrete charge is related to the winding of the phase around

closed curves in the fluid. Other examples are the compressible phases 9 which arise in

quantum Hall systems [53, 54, 55]. Topology also shows up in 3d gapless systems such

as Weyl semi-metals which feature protected surface states [56]. Recently examples

of intrinsically gapless SPT phases have been found [57].

In this work we will present several examples of compressible phases of matter

which exhibit “weak symmetry breaking.” In these phases the global U(1) charge

symmetry is spontaneously broken, giving rise to a Goldstone mode, but the corresponding
9So very gapless.
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order parameter is non-local (eg a string or planar operator) placing them outside of

Landau-Ginzburg framework. In addition to the gapless sector these phases often

exhibit a topologically ordered sector with deconfined fractonic excitations. We will

explore an example of this in depth in Chapter 5.

1.2 Goals and themes of this work

A great deal of progress has been made the study of topological phases (and condensed

matter theory in general) by coupling together 0-dimensional building blocks (spins/bosons,

fermions) into a reasonable physical model. The low energy physics of these systems

can be extracted by coarse-graining the microscopic description, resulting in a quantum

field theory. While this approach is good and proper, if one is interested in discrete

quantitative (eg topological) or even qualitative emergent properties of the system,

using the full microscopic Hamiltonian can be overkill. A useful tactic is to “pre-

coarse-grain” part of the system and use 1d or 2d quantum field theories as the

building blocks for novel quantum phases of matter.

Coupled wire constructions, in which arrays of quantum wires are coupled together,

have been employed to study the full gauntlet of condensed matter systems [58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69]. Beginning with the work of Kane, Mukhopadhyay,

and Lubensky [60] and Kane and Teo [61] on constructions of fractional quantum Hall

states, the technique has proved remarkably effective at describing both Abelian and

non-Abelian [68, 66] topological phases of matter. The main appeal of the method

is its analytical tractability. Strong interactions can be encoded and then handled
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using bosonization techniques [70, 71]. More specifically, the interactions correspond

to sine-Gordon terms in the Hamiltonian.

Following the example at the end of Sec. 1.1 we will sketch the construction of the

Laughlin state using this technique, first presented in [60]. The idea is to begin with

a decoupled array of wires, where each wire hosts a chiral (ϕL) and anti-chiral (ϕR)

free boson (see Fig. 1.3 (a)). The degrees of freedom have commutation relations

[ϕ
(j′)
η′ (x′), ∂xϕ

(j)
η (x)] = iπ sgn(η)δηη′δjj′δ(x

′ − x) where j labels the wire location, η =

L,R and sgn(η = L/R) = +/−. The Hamiltonian describing the dynamics on each

wire j is given by

H =
v

2π

∫
dx
(
∂xϕ

(j)
L

)2
+
(
∂xϕ

(j)
R

)2
. (1.12)

So far our system is just a stack of decoupled Luttinger liquids. The local operators

ψL/R = eiϕL/R create charged chiral excitations. For concreteness suppose m is odd.

Then we can define the bosonic field

2Θj+1/2 =

(
m+ 1

2
ϕ
(j)
L +

1−m
2

ϕ
(j)
R −

1−m
2

ϕ
(j+1)
L − m+ 1

2
ϕ
(j+1)
R

)

and consider the following tunneling term

(
ψ†L,jψR,j

)m−1
2
(
ψ†L,j+1ψR,j+1

)m−1
2

ψ†L,jψR,j+1 = exp
[
i2Θj+1/2

]
. (1.13)

This describes a process 10 in which m−1
2

left moving quasiparticles and right

10Technically the chiral quasiparticle created by ψη is a fermion so ψn = 0. What we are really
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moving quasiholes are created on wires j and j + 1 and then a right mover on wire j

is converted into a left mover on wire j+1. What we do now is condense this process

by adding the following interaction term to the Hamiltonian

Hint = −g
N∑
j=1

∫
dx cos(2Θj+1/2) . (1.14)

At this point the wires are no longer decoupled. Observe, that all the sine-Gordon

terms in Eq. 1.14 commute with one-another and so in the limit g ≫ 1 11 the

ground state manifold consists of the configurations with ⟨2Θj+1/2⟩ ∈ 2πZ. Density

fluctuations of the original chiral bosons ϕη are gapped out in this regime. The

elementary excitations correspond to tunneling events, or solitons, which interpolate

between allowed configurations in the ground state manifold: Θj+1/2 → Θj+1/2 + nπ.

The fundamental quasiparticle, a 2π soliton, is shown in Fig. 1.3 (b). It can be

moved around using the following operators

Ty(j) = ei(ϕL,j−ϕR,j) and Tx(x1, x2) = e
i

2m

∫ x2
x1

∂x
(

m+1
2
ϕ
(j)
L + 1−m

2
ϕ
(j)
R + 1−m

2
ϕ
(j+1)
L +m+1

2
ϕ
(j+1)
R

)
(1.15)

where Ty(j) hops a 2π kink between across wire j and Tx(x1, x2) moves a 2π kink

from x1 → x2 along the wire. We can also interpret these operators as creating

particle-hole pairs at their endpoints. Measuring the charge the density at the end

point of the Tx operator tells us that these quasiparticles carry charge 1
m

. We can

doing here is point splitting ψn
η (x) ≡

∏n−1
q=0 ψη(x + qa) ∼ ∏n−1

q=0 ∂
q
xψη(x). In the interest of brevity

we have ignored subtleties like these.
11We can always obtain this by adjusting the kinetic terms in the theory to make cos 2Θ relevant.

We can also just consider the situation where g has an already large bare value.
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compute the braiding statistics of between the elementary quasiparticles (see Fig. 1.3

(c)). This process produces a phase of e
2πi
m . The elementary quasiparticles of this

model have charge 1
m

and mutual braiding statistic 2π/m signaling we are in the

same phase as the Laughlin state. Note that any local operator e2iΘ′ not equivalent

to some linear combination
∑

j nj2Θj+1/2 of the interaction terms creates a gapped

excitation. The upshot of this is that the model is stable; in order to destabilize

it we need to introduce a competing sine-Gordon term cos 2Θ′ but as we have just

seen, such a term will be irrelevant. By the same token the expectation of any local

operator ⟨e2iΘ′⟩ = 0 ruling out the possibility of symmetry breaking.

On the other hand, it is possible to find a non-local order parameter. For concreteness

lets place our system on a torus built from N wires and consider the process of

moving an anyon across a full cycle perpendicular to the wire direction. The operator

accomplishes this is
∏N

j=1 e
i(ϕL,j−ϕR,j). Observe though that

∑
j(ϕL,j−ϕR,j) = 1

m

∑
j 2Θj+1/2.

Recalling that in the ground state ⟨Θj+1/2⟩ ∈ πZ we see that ⟨∏N
j=1 e

i(ϕL,j−ϕR,j)⟩ =

e2πi/m. The expectation value of this non-local operator tells us which of the m

degenerate ground states we are in. Furthermore, we can use the operator Tx in Eq.

1.15 to transport an anyon around the cycle along the wire direction. By considering

the commutation relations of Tx and Ty we see that this process toggles between the

ground states of the Laughlin state.

As the example just discussed shows, this construction can realize rather rich

physics in a class of models that are relatively simple to analyze. The condition that

the sine-Gordon terms mutually commute, sometimes referred to as the Haldane null

vector criterion [72], makes the coupled wire construction reminiscent of commuting
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Figure 1.3: a) Here we see the set up for the wire construction. The red/blue wires host
ϕL/R. b) The anyons of the theory correspond to 2π kinks in the condensed field 2Θj+1/2.
Note that the anyon can be thought of as living in the space in between the wires. c) One
anyon is moved around another using the sequence of TxTyT−1x T−1y . The failure of the left
Ty to commute with the Tx operator connecting the quasiparticle-quasihole pair gives rise
to a braiding phase of 2π

m .

projector models with the added capability of being able to describe chiral phases.

Further, the similarity to commuting projector models means that the bulk-boundary

correspondence is very explicit. The relatively simple task of analyzing coupled wire

models makes them an excellent platform for “designing” exotic quantum matter [73].

If lattice degrees of freedom are the “quantum Legos” of condensed matter physics,

the Luttinger liquid can be viewed as the “quantum thread” with which one can quilt

together novel topological phases.

Moving up one dimension, Coupled layer constructions, where stacks of 2d layers

are coupled together, are similarly useful [74, 75, 76, 50]. For one thing, stacking

layers (or wires) is a natural way of constructing higher dimensional SPTs. The

idea, depicted in Fig 1.4, is to start with a non-anomalous pair of 2d layers (1d wires)

featuring the anomalous edge theory S and the inverse theory S̄ 12. By coupling theory
12Note that the wire (Fig. 1.3) and dot (Fig. 1.2) examples we have seen also fit into this

framework. In the wire case S is a chiral boson theory and in the dot case S is some theory of a
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Figure 1.4: Cartoon of the layer construction of a 3+1d SPT phase. A layer, indexed
by i, is made up of a pair of G−symmetric theories S (top, red) and S̄ (bottom, blue).
The phase is trivial when the inter-label coupling dominates the intra-layer coupling and
non-trivial when this inequality is reversed. In the non-trivial case, when the system has a
boundary, there is are anomalous S and S̄ boundary theories on the top and bottom surfaces
respectively.

S in layer i to layer (wire) S̄ in layer (wire) i+1 one can drive a phase transition to the

3D (2D) SPT characterized by the anomalous edge theory S. These constructions are

also implicit in topological defect networks which provide a framework for a partial

classification of fracton phases [77].

In summary the advantage of this coupled wire/layer approach is that by starting

with more sophisticated building blocks the study of novel phases of matter is somewhat

streamlined. The goal of this dissertation is leverage these strengths to study new

strongly coupled quantum phases of matter which have been missed because of their

lack of amenability to more standard techniques.

single qubit.

20



1.3 Outline

The chapters of this dissertation correspond to the following publications [78, 79, 80,

81]. In addition to a general Appendix A at the end of the manuscript, each chapter

will contain its own appendix containing further supplementary details. There is some

redundancy built into the introductory parts of the chapters, particularly between

Chapters 3 and 4. This is done in an effort to make each chapter self contained.

In Chapter 2 we will discuss fermionic SPT phases. We will give a broad review

of SPT physics supplementing the discussion in 1.1 before narrowing our focus to

an interetsing class of fermionic SPT. Specifically, we investigate an intrinsically

interacting 2D fermionic SPT protected by a Z4 × ZT2 symmetry. Such phases carry

the label “intrinsically interacting” because they cannot be realized in systems of free

fermions. We model the edge Hilbert space by replacing the internal Z4 symmetry

with a spatial translation symmetry, and design an exactly solvable Hamiltonian for

the edge model. Then we show that at low-energy the edge can be described by a two-

component Luttinger liquid, with nontrivial symmetry transformations that can only

be realized in strongly interacting systems. We further demonstrate the symmetry-

protected gaplessness under various perturbations, and the bulk-edge correspondence

in the theory.

Chapter 3 presents a general construction for fracton topological orders (1.1) using

the coupled wire method. We find that both gapped and gapless phases with fractonic

excitations can emerge from the models. In the gapless case the weak symmetry

breaking mechanism discussed in 1.1 is a generic feature. In the gapped case, we
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argue that fractonic excitations are mobile along the wire direction, but their mobility

in the transverse plane is generally reduced. We show that the excitations in general

have infinite-order fusion structure, distinct from previously known gapped fracton

models. Like the two-dimensional coupled-wire constructions, many models exhibit

gapless (or even chiral) surface states, which can be described by infinite-component

Luttinger liquids. Unusually though, the universality class of the surface theory

strongly depends on the surface orientation, thus revealing a different type of bulk-

boundary correspondence unique to fracton phases.

Chapter 4 lays out an in-depth study of a specific fracton coupled wire model,

which we dub the “fractonal quantum Hall state.” A complementary coupled layer

construction is also discussed. The model combines the known construction of ν =

1/m Laughlin fractional quantum Hall states with a planar p-string condensation

mechanism [76]. The bulk of the model supports gapped immobile fracton excitations

that generate a hierarchy of mobile composite excitations. Open boundaries of the

model are chiral and gapless, and can be used to demonstrate a fractional quantized

Hall conductance where fracton composites act as charge carriers in the bulk. The

planar p-string mechanism used to construct and analyze the model generalizes to a

wide class of models including those based on layers supporting non-Abelian topological

order. We describe this generalization and additionally provide concrete lattice-model

realizations of the mechanism.

In Chapter 5 we introduce a new type of 3D compressible quantum phase, in

which the U(1) charge conservation symmetry is weakly broken by a rigid string-like

order parameter, and no local order parameter exists. We show that this gapless
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phase is completely stable and described at low energy by an infinite-component

Chern-Simons-Maxwell theory. We determine the emergent symmetry group, which

contains U(1) 0-form planar symmetries and an unusual subgroup of the dual U(1)

1-form symmetry supported on cylindrical surfaces. Through the associated ’t Hooft

anomaly, we examine how the filling condition is fulfilled in the low-energy theory.

We also demonstrate that the phase exhibits a kind of fractonic topological order,

signified by extensively many different types of topologically nontrivial quasiparticles

formed out of vortices of the weak superfluid. A microscopic model realizing the weak

superfluid phase is constructed using an array of strongly coupled Luttinger liquid

wires, and the connection to the field theory is established through boson-vortex

duality.

In the Appendix A we provide background on some useful 1d fermion-boson

dualities, namely the Jordan-Wigner transformation and Abelian bosonization.
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Chapter 2

Edge theories of intrinsically

interacting fermionic SPTs

2.1 Introduction

As discussed in Chapter 1.1 symmetry-protected topological (SPT) phases [30, 82, 83]

are characterized by their protected boundary states. The protecting symmetries

act anomalously on the boundary states, in such a way that a symmetric and non-

degenerate ground state is prohibited. As a result, a boundary without symmetry

breaking must be gapless, or gapped with intrinsic topological order when the boundary

is two-dimensional or higher [84]. Many examples of SPT phases have been discovered

in fermionic systems, in particular in electronic band insulators and BCS superconductors [27,

85, 86, 87]. Due to the non-interacting nature of these states, their boundary physics is

well understood and can be described in terms of Dirac or Majorana fermions when the

interactions on the boundary are sufficiently weak. Dirac-like surface states have been
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observed in 3D time-reversal-invariant topological insulators [86, 87], as well as their

generalizations with crystalline symmetries. Strong interactions can drive the gapless

surface to symmetry-enriched1 topologically ordered phases [84, 88, 89, 90, 91, 92].

Beyond free fermions, recently there has been significant theoretical progress

in classifying SPT phases in interacting fermionic systems [32, 93, 94, 95, 33, 96],

following previous classifications of bosonic SPT phases using group cohomology [30].

A number of different approaches have been put forward, such as fermionic generalizations

of the group-cohomology constructions [32, 33, 34], and classifications based on topological

quantum field theories [35, 36, 37, 38]. These results have pointed to an interesting

possibility, namely interacting Fermionic Symmery-Protected Topological (FSPT)

phases, which can only exist with strong interactions. One mechanism for such phases

is when fermions first form bosonic molecules/spins under strong interactions, and

then these bosons form a SPT state. As an example, imagine in 2D fermions first

form charge-2e bosons, and then these bosons are put into a so-called bosonic integer

quantum Hall state [97], which has an electric Hall conductance quantized to 8e2

h
,

but a vanishing thermall Hall conductance, violating the Wiedemann-Franz law [62].

Thus this phase can only be found in the presence of strong interactions. However,

more interestingly there exist intrinsically fermionic phases which can not be realized

by weakly interacting systems and have no bosonic counterpart. Examples of such

intrinsically FSPT phases have been discovered in one, two and three dimensions [93,

98, 95]. In one dimension, an intrinsically interacting FSPT phase exists when the

symmetry group is Zf4 × Z4 [93, 98], where the edge modes transform as a projective
1Topologically ordered states which also feature symmetry protection.
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representation of the symmetry group. Here Zf4 refers to the conservation of fermion

number mod 4. In two dimensions, the simplest symmetry group that allows an

interacting FSPT phase is Zf2×Z4×ZT
2 . Here ZT

2 denotes the time-reversal symmetry

that squares to the identity, i.e. fermions are Kramers singlets. Similar states

protected by crystalline symmetries have been found [99, 100].

Given that these new phases require strong interactions to exist, their boundary

states cannot be simply free Dirac/Majorana fermions. While exactly-solvable bulk

Hamiltonians can in principle be constructed [32, 98], it is very desirable to have a

physical understanding of the interacting edge states. Generally, nontrivial dynamics

on the edge leads to either gapped phases with broken symmetry, or a symmetric

gapless phase. In this chapter will address this question for the 2D Zf2×Z4×ZT
2 FSPT

phase just mentioned. The strategy will be to study a closely related 2D crystalline

FSPT phase, where the Z4 symmetry is replaced by a Z translation symmetry. The

corresponding crystalline SPT phase has a simple bulk wavefunction, and the edge

modes can be cleanly separated from the bulk as a stand-alone 1D chain of spinless

fermions, which do not allow any quadratic couplings respecting the symmetries.

We design an analytically solvable model for the boundary chain, and derive a two-

component Luttinger liquid theory that captures the low-energy physics, based on

which we propose a very similar theory where the spatial translation Z is replaced by

an internal Z4 symmetry. We then demonstrate that the theory exhibits the correct

quantum anomaly.
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2.2 Intrinsically interacting FSPT phases in 2D

We review the physics of intrinsically interacting FSPT phases in 2D, through a

decorated domain wall picture [101], and closely related ones with crystalline symmetries.

Another construction of FSPT phases using group super-cohomology theory will be

briefly summarized in Appendix 2.7.1. We will focus on G = Z4 × ZT
2 . Notice that

fermions transform as Kramers singlet, e.g. spinless fermions, unlike the spin-1/2

electrons which are Kramers doublets.

We first briefly recall the non-interacting classification with such a symmetry

group [102]. Since there is no charge conservation, in general the BdG Hamiltonian

can be compactly written as H = Ψ†hΨ, where the Nambu spinor Ψ is schematically

defined as Ψ = (c, c†) suppressing all the indices (site, spin, etc.). In the presence of a

unitary symmetry, e.g. Z4 in this case, the first-quantized Hamiltonian h can be block

diagonalized, with blocks labeled by Z4 eigenvalues. Now within each block the only

symmetry is the ZT
2 . Because the fermions are Kramers singlets, the classification for

each block is given by the BDI class in the ten-fold way, which is completely trivial

in 2D. We conclude that the overall classification is trivial as well. Therefore strong

interactions are necessary to form any nontrivial FSPT phases with this symmetry.

2.2.1 Decorated domain wall construction

The ground state wavefunction of many SPT phases can be understood through a

decorated domain wall construction. One first imagines that a discrete symmetry H

is broken spontaneously. We take this discrete symmetry to be a normal subgroup
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of the protecting symmetry of the SPT phase. Once the symmetry is broken, there

can be domain walls between different symmetry-breaking patterns, e.g. different

expectation values of an order parameter. Mathematically, each domain wall is

uniquely labeled by a group element h ∈ H. This process can be reversed: starting

from the broken symmetry state, the symmetry can be restored by proliferating

domain walls. In other words, the wavefunction of a symmetric state can be viewed

as the quantum superposition of all possible domain wall configurations.

Now imagine that the domain walls are “decorated” by 1D SPT states protected by

the remaining symmetry G/H. The decoration is in fact the manifestation of the SPT

order in the symmetry-breaking phase, and can be understood more intuitively in the

presence of a physical edge: while domain walls are closed in the bulk, they can end

on the edge, which also terminate the associated 1D SPT states on the domain walls.

Thus topologically protected zero-energy modes must appear at a domain wall on the

edge. A SPT wavefunction is then obtained by proliferating domain walls decorated

by 1D SPT states. Importantly, a consistent symmetric wavefunction requires that

the decorated 1D SPT states obey the same group multiplication law as the domain

walls. Namely, two domain walls labeled by group elements h1 and h2 can fuse into a

domain wall labeled by h1h2. The same relation must be satisfied by the associated

1D SPT states.

To illustrate, let us consider the example of class DIII topological superconductor

(TSC) in 2D. As a simple model for DIII TSC, consider spin-1/2 electrons with

px+ ipy/px− ipy pairing for spin up/down fermions. Time-reversal symmetry acts on

fermion annihilation operators as ψα →
∑

β(iσ
y)αβψβ, where α, β =↑, ↓ are the spin
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z component. Edge states of this TSC are described by helical Majorana fermions,

where left- and right-moving modes carry opposite spins. They can be gapped out by

turning on a time-reversal breaking mass term. Thus a time-reversal domain wall on

the edge corresponds to a mass that changes sign. It is well-known that a Majorana

zero-energy bound state is found at the mass domain wall. In the bulk, a domain wall

then carries a Majorana chain which gives rise to the Majorana zero mode when it is

cut open by the physical edge 2. Hence the DIII TSC can be thought of as proliferating

domain walls decorated by Majorana chains. Such a picture was realized recently in

a commuting-projector model for the class DIII TSC [103].

For G = Z4 × ZT
2 in 2D, we may write the wavefunction as a superposition of

Z4 domain walls, and decorate them with 1D SPT states protected by the remaining

ZT
2 symmetry. Denote the generator of the Z4 group by g. The classification of 1D

FSPT phases with ZT
2 symmetry is well-understood: non-interacting fermions with

this symmetry fall into the class BDI in the periodic table, with a Z classification [85,

27]. The integer invariant ν counts the number of protected Majorana zero modes

on one edge. When interactions are taken into account, the classification collapses

to Z8 [104, 105], i.e. a state with ν = 8, although topologically nontrivial for free

fermions, can be trivialized by strong interactions.

Now we consider decorating the fundamental Z4 domain walls labeled by g by

the ν = 2 1D FSPT states. Correspondingly, the g2 domain walls are decorated by

the ν = 4 1D FSPT state, etc. Finally, the g4 = 1 domain walls are decorated by
2At the domain wall, the time-reversal symmetry is broken so the remaining symmetry is just

the fermion parity conservation Zf
2 and the corresponding symmetry class for free fermions is class

D.
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ν = 8 states which become trivial in the presence of strong interactions, as required

by the consistency of the construction. This is also why such a decorated domain

wall construction necessarily requires strong interactions to exist.

From the construction, it follows that a defining feature of the edge states in this

FSPT phase is that when the Z4 symmetry is broken, a Z4 domain wall carries a pair

of Majorana zero modes protected by the time-reversal symmetry.

While in principle one can study edge states using the exactly-solvable lattice

model, in practice such models are complicated to work with (see for example [32] and

[98]). In this work we adopt a different approach, ultilizing the connection between

SPT phases with internal symmetry and those with crystalline symmetry with the

same group structure.

2.2.2 Correspondence with crystalline SPT phases

The one-to-one correspondence between SPT phases with internal and crystalline

symmetries was observed in many examples, and recently formalized in [106]. We

provide a heuristic explanation for why this is true, and refer the interested reader to

[106] for a more systematic approach.

Suppose that the low-energy physics of a system of interest can be described by

a continuum field theory. It is very common that the continuum field theory enjoys

a larger symmetry than the microscopic Hamiltonian, for example discrete lattice

translations enhanced to continuous ones. A discrete lattice translation operation is

implemented on the fields by the corresponding (actually continuous) one, possibly
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combined with an internal transformation. However, since the continuous translation

itself is a symmetry, the purely internal part of the transformation must be a symmetry

of the field theory as well. In other words, one can extract the “internal” action of

the lattice translation by simply dropping the coordinate shift. Thus a crystalline

symmetry becomes effectively an internal one within the field-theoretical description.

We thus expect that the classification of SPT phases with a crystalline symmetry

group is the same as those with an internal symmetry as long as the group structures

are identical 3.

While the equivalence works at the level of topological classifications, technically

it is often the case that crystalline SPT phases are easier to understand thanks to the

“block state” construction [107, 108, 109, 110]. For example, consider 2D SPT phases

protected by Z × G where Z is lattice translation along the y direction and G is an

on-site symmetry group. Besides those SPT phases protected by G alone, the rest

can all be constructed by stacking 1D states protected by G, i.e. there is a 1D SPT

state ‘per unit length’ along y.

This argument applies to boundary theories as well. An edge along the same

direction preserves the translation (as well as all the internal symmetries). In this

construction, the edge is nothing but a chain of end states of the 1D SPT phase

which builds up the bulk, and each site transforms projectively under the internal

symmetry (i.e. Zf2 × ZT
2 ). We will study an exactly solvable lattice model of this

edge, and in particular a critical point described by a (1+1)d Luttinger liquid,
3For point-group operations on fermions, additional subtleties occur relating to how the symmetry

group is extended by the fermion parity symmetry [99], but this subtlety is not relevant for the kind
of symmetry we are interested in.
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which is invariant under continuous translations. One can then derive the symmetry

transformations on the low-energy degrees of freedom and extract the “on-site” part

of the transformations. We will show that if the 1D building block of the bulk state

is chosen to be the ν = 2 1D FSPT phase, the resulting edge field theory has all

the features expected for the edge of an intrinsically interacting FSPT phase with

Z4 × ZT
2 , and the lattice translation is identified with the Z4 (namely, the “internal”

part of the lattice translation has order 4).

Similar methods have been applied to study both bulk and boundary physics of

interacting SPT phases in 3D [99, 111, 112].

2.3 The Microscopic Model

We consider a 2D weak topological superconductor, where the bulk is an array of 1D

wires in the BDI class. Looking at the edge, we have a 1D chain of Majorana modes:

γ†i = γi, η
†
i = ηi, γ

2
i = η2i = 1, i = 1, 2, . . . , 2N. (2.1)

which satisfy the following algebra:

{γi, γj} = {ηi, ηj} = 2δij, {γi, ηj} = 0 ∀ i, j. (2.2)
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The time-reversal (TR) symmetry Tr acts as

Tr :


γ

η

i

 −→

γ

η

−i

 (2.3)

We can then pairwise combine the γi and ηi into a complex fermion

ψj =
γj + iηj

2
, (2.4)

with canonical commutation relation {ψi, ψ†j} = δij, {ψi, ψj} = 0. TR symmetry then

becomes an anti-unitary particle-hole transformation:

Tr : ψj → ψ†j . (2.5)

γ1

η1

γ2

η2

γ2N

η2N

ψ1

ψ2

ψ2N

Figure 2.1: Combining 4N Majorana edge modes, pairwise, to form 2N physical fermions.

It is straightforward to check that any Hamiltonian quadratic in ψi, ψ
†
j is not

allowed as it breaks TR symmetry. This also follows from the Z classification of non-

interacting Hamiltonians in BDI class in 1D. Any Hamiltonian we write down then
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must be interacting. With interactions, it is known that the classification is reduced

to Z8, i.e. eight Majorana zero modes can be gapped out by quartic interactions

without spontaneously breaking the TR-symmetry. For the BDI chain, this gapping

mechanism must break translation symmetry as one has to group four sites together.

In other words, if one is to find a gapped phase without breaking the TR symmetry,

the unit cell must be enlarged at least four times.

To explore the possible phases that can occur on edge, we consider the following

TR-invariant Hamiltonian for the boundary chain:

H = −
∑
i

(
tψ†i+1ψi−1 +∆ψi+1ψi−1 + h.c.

)(
2ψ†iψi − 1

)
. (2.6)

For simplicity we assume both t and ∆ are real in the following. The model possesses

translation symmetry; on our physical fermions translation in the transverse direction

acts as Tt : ψi → ψi+1. We will consider closing the chain into a ring with periodic

boundary conditions (PBC) (i.e. ψ2N+1 = ψ1).

This model is exactly solvable. Employing a Jordan-Wigner (JW) transformation

twice we can effectively split the chain in two (even sites and odd sites). One can then

think of the model as two copies of a p-wave superconductor, with the caveat that

the JW transformation maps a physical fermion to a non-local object in the “free”

fermions.
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2.3.1 Jordan-Wigner transformation

Recall the JW mapping:

ψi =

(
i−1∏
j=1

τ zj

)
τ−i . (2.7)

Here τx,y,z are Pauli matrices. There is some subtlety involving the the BC conditions

of the chains which we will address in a separate section. As an example of the

fermion-spin mapping, away from the boundary site one finds

ψ†i+1ψi−1(2ψ
†
iψi − 1) = τ+i+1τ

−
i−1. (2.8)

Note that we only have next to nearest neighbor interactions. This will be the case

for all the other terms in the Hamiltonian as well. Carrying out the JW mapping on

the other terms one arrives at

H = −
∑
i

(
tτ+i+1τ

−
i−1 +∆τ−i+1τ

−
i−1 + h.c.

)
. (2.9)

With only next-nearest-neighbor couplings, the Hamiltonian decomposes into two

decoupled ones on even and odd sites, respectively. We can further JW transform the

two sets (even site and odd site) of spin degrees of freedom resulting in two species

of JW fermions. Given the partitioning of the sites into even and odd it makes sense

to make this explicit in our notation. Let

f̃j = ψ2j−1, fj = ψ2j. (2.10)
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We will refer to ψi (as well as fj, f̃j) as physical fermions since they are local operators

in the original theory. We will similarly define

σj = τ2j, σ̃j = τ2j−1. (2.11)

For later reference, we give the explicit expressions of the JW fermions c in terms of

the physical fermions f :

cn =
n∏
j=1

(−1)f̃†j f̃jfn, c̃n =
n−1∏
j=1

(−1)f†j fj f̃n (2.12)

Note that on a given chain our JW fermions do have fermionic statistics but JW

fermions from different chains actually commute: [cm, c̃n] = 0 = [cm, c̃
†
n].

The Hamiltonian becomes

H =
∑
j

(
− tc†j+1cj +∆cj+1cj + h.c.

)
+ (c→ c̃) (2.13)

2.3.2 Boundary conditions

Define the parity operator

P =
2N∏
i=1

τ zi =
N∏
j

(1− 2f̃ †j f̃j)(1− 2f †j fj). (2.14)
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We can similarly define the parity of the even and odd site chains

P1 =
N∏
j=1

(1− 2f̃ †j f̃j), P2 =
N∏
j=1

(1− 2f †j fj) (2.15)

Note P, P1 and P2 all commute with H. Let µf and µb denote the boundary

conditions on the physical fermions and the JW spin degrees of freedom, respectively.

Recall that we are assuming a PBC in the fermionic variables so µf = 1. Consider

one of the boundary terms of our original H:

f̃ †N+1f̃N = µf f̃
†
1 f̃N = µfτ

+
1

2N−2∏
i=1

τ zi τ
−
2N−1

= τ+2N+1P
2N−2∏
i=1

τ zi τ
−
2N−1

= −µbPτ+1
2N−2∏
i=1

τ zi τ
−
2N−1

(2.16)

Therefore we have

µf = −µbP. (2.17)

When we split the spin chain in two(even sites and odd sites), the resultant chains

clearly inherit the same BC, that is µb1 = µb = µb2 , where µbi is the BC of the spin

degrees of freedom on chain i.

Denote the BCs for the JW operators c̃ and c by µf1 and µf2 . Then a similar

argument shows

µfi = −Piµbi = −Piµb = PiPµf (2.18)

so µf1 = P2µf and µf2 = P1µf . We have imposed a PBC on the physical fermions f
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(µf = 1) thus;

µf1 = P2 and µf2 = P1 . (2.19)

Note we can divide up our Hilbert space into four parity sectors (P1, P2) = (±1.± 1)

or (±1,∓1).

2.4 Phase Diagram: Ising analysis

Since the model is supposed to describe an anomalous edge, the ground state can

not be non-degenerate. Due to the one-dimensional nature it is either gapless, or

gapped with spontaneous breaking of the symmetries. In this section we analyze the

gapped phases of the model Eq. 2.6. After the JW transformation, the Hamiltonian

decomposes into two Majorana chains, which are gapped as long as both t and ∆

are nonzero. We thus expect that the symmetries must be spontaneously broken.

To work out the symmetry breaking properties and gain some intuition about the

edge theory, we come back to the spin representation and consider the Ising point:

|t| = |∆|. The behavior at the Ising point should apply to other values of ∆ with the

same sign since the gap remains open.

Our spin Hamiltonian is

H = −
∑
i

[
(∆ + t)τxi−1τ

x
i+1 + (t−∆)τ yi−1τ

y
i+1

]
. (2.20)

We know from the properties of the JW transform on a closed chain that µb = −P ,

this will emerge as the natural choice from the energetics of the ground state as well.
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Symmetry transformations of the spin variables can be easily derived:

Tr : τ
±
i → (−1)i−1τ∓i , τ zi → −τ zi ,

Tt : τi → τi+1.

(2.21)

To diagnose the symmetry breaking, we will work with the order parameter f̃ †i fi =

σ̃+
i σ̃

z
i σ
−
i . For a given t we may consider the two Ising points: ∆ = t , which

corresponds to H = −2t∑i(σ
x
i σ

x
i+1 + σ̃xi σ̃

x
i+1), and ∆ = −t which corresponds to

H = −2t∑i(σ
y
i σ

y
i+1 + σ̃yi σ̃

y
i+1). With regards to the order parameter, we are really

working with its projection onto the ground state:

f̃ †i fi = σ̃+
i σ̃

z
i σ
−
i
∼=


σ̃xi σ

x
i , ∆ = t

σ̃yi σ
y
i , ∆ = −t

. (2.22)

where we take ∼= to mean equal at the level of projecting onto the ground state space.

Consider the transformation properties of the order parameter (and its ground state

projection) under Tt and Tr:

Tt : f̃
†
i fi → f †i f̃i+1

∼=


σxi σ̃

x
i+1, ∆ = t

σyi σ̃
y
i+1, ∆ = −t

(2.23)

and

Tr : f̃
†
i fi → −f †i f̃i ∼=


−σ̃xi σxi , ∆ = t

−σ̃yi σyi , ∆ = −t
. (2.24)
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Below we work out the symmetry breaking properties for the ∆ = t case. From this

analysis, it is clear that the symmetry breaking properties of the ∆ = −t case are the

same. Flipping the sign of ∆ simply rotates between σx and σy in the Hamiltonian

and in the projection of the order parameter on the ground state space. The upshot

of this is that that the symmetry breaking of the ground state only depends on the

sign of t.

On general grounds, we expect that Tr will always be broken, as an Ising-like

Hamiltonian can at most induce translation symmetry breaking with a doubled unit

cell. Whether Tt is broken depends on the sign of the coupling t, i.e. ferromagnetic

or anti-ferromagnetic. Below we determine the ground state(s) for the different cases

of sign of t and even/oddness of N .

2.4.1 N even

Let t = ∆. One can then basically read off the ground states. In each case the spin

chains will have PBC; µB = 1 means P = −1.

t < 0

t < 0 means we are in a staggered anti-ferromagnetic phase; site i will anti-align with

site i+ 2. Thus we expect that the translation symmetry is broken spontaneously.

Our ground state space will be constructed from the states

{|↑↑↓↓ ... ↓↓⟩ , |↑↓↓↑ .. ↓↑⟩ , |↓↑↑↓ .. ↑↓⟩ , |↓↓↑↑ ... ↑↑⟩}. (2.25)
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Here |↑⟩/|↓⟩ is the eigenstate of τx with eigenvalue +/−. The BC-parity relationship

can be used to quickly read off the ground state. Note that P =
∏

i σ
z
i which, in the

x-basis just flips the spin at every site. Since parity is a good quantum number, we

have a d = 2 ground state space: with basis

|+⟩ = |↑↑↓↓ . . . ⟩ − |↓↓↑↑ . . . ⟩

|−⟩ = |↑↓↓↑ . . . ⟩ − |↓↑↑↓ . . . ⟩
(2.26)

with parity eigenvalue−1. Now lets compute expectation values of our order parameter.

In the ground states, we find

⟨±| σ̃xi σxi |±⟩ = ±1 = −⟨±|σxi σ̃xi+1 |±⟩ (2.27)

Since σ̃xi σxi is odd under Tr, the TR symmetry is spontaneously broken. From Eq.

(2.27) it is also clear that Tt is broken. Therefore, both Tt and Tr are broken, while

their product, TtTr, is preserved.

t > 0

Here we are in a staggered ferromagnetic phase. A basis for our ground state, which

must have P = −1, is

|+⟩ = |↑↑↑↑ ....⟩ − |↓↓↓↓ .....⟩

|−⟩ = |↑↓↑↓ ....⟩ − |↓↑↓↑ .....⟩
(2.28)
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and we see

⟨±| σ̃xi σxi |±⟩ = ±1 = ⟨±|σxi σ̃xi+1 |±⟩ , (2.29)

suggesting Tt is not broken, as one expects.

2.4.2 N odd

t < 0

Again we are in a staggered anti-ferromagnetic phase but the oddness of the split

chains requires an APBC: Our ground state space will be constructed from the states

{|↑↑↓↓ ... ↑↑⟩ , |↑↓↓↑ ... ↑↓⟩ , |↓↑↑↓ ... ↓↑⟩ , |↓↓↑↑ ... ↓↓⟩} (2.30)

but now P = 1. The P = 1 ground state basis is

|+⟩ = |↑↑↓↓ ...⟩+ |↓↓↑↑ ...⟩ ,

|−⟩ = |↑↓↓↑ ...⟩+ |↓↑↑↓ ...⟩ .
(2.31)

Checking the order parameter expectation values we see:

⟨±| σ̃xi σxi |±⟩ = ±1 = −⟨±|σxi σ̃xi+1 |±⟩ ,

⟨±|Trσ̃xi σxi T−1r |±⟩ = −⟨±| σ̃xi σxi |±⟩ .
(2.32)

As in the N even case both Tt and Tr are broken, while their product TtTr is not.
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∆

t

Tr and Tt are broken
while TrTt is unbroken

Only Tr is broken

Figure 2.2: Phase diagram of the model Hamiltonian Eq. 2.6. The symmetry breaking
pattern only depends on the sign of t..

t > 0

This case turns out to be the same as the N even one: only Tr is broken, because of

the ferromagnetic coupling.

2.5 Low-energy Field Theory

The model becomes gapless at ∆ = 0:

H0 = −t
∑
j

(c†j+1cj + h.c.) + (c→ c̃). (2.33)

We will assume t > 0. At this point, the Hamiltonian is simply free JW-fermions

hopping on the chains and no symmetries are broken. The TR symmetry fixes the

chemical potential at 0, i.e. half-filling; so kF = π
2
. Further interactions can be

incorporated by bosonization. However, one must keep in mind that c and c̃ are

highly non-local in terms of physical fermions. In the following we will work out the
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bosonized theory for this gapless point. Of particular importance is how the low-

energy fields transform under the global symmetries, and how physical fermions are

represented in the low-energy theory.

2.5.1 Bosonization

Following the standard bosonization prescription, we linearize the spectrum around

the two Fermi points ±π
2
, and define chiral fields:

ckF+k = cR,k, c−kF+k = cL,k (2.34)

where R/L stand for right/left moving. Introduce a continuum field ψ(x) ∼ cx, we

can write

ψ(x) = ei
π
2
xψR(x) + e−i

π
2
xψL(x) (2.35)

where the chiral fields are defined as

ψR/L(x) ∼
1√
N

∑
k

eikxcR/L,k, (2.36)

There is a similar field ψ̃ on the other chain. In the large size limit we see {ψ(x), ψ†(y)} =

2πδ(x−y) = {ψ̃(x), ψ̃†(y)} while fields from different chains commute i.e [ψ(x), ψ̃(y)] =

[ψ(x), ψ̃†(y)] = 0.
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Now we can bosonize the fields [71]:

ψL/R(x) ∼ ei[θ(x)±ϕ(x)] (2.37)

where the bosonic fields satisfy the canonical commutation relation [ϕ(x), ∂yθ(y)] =

iπδ(x − y). θ̃, ϕ̃ are similarly defined. Note that in our definition ϕ, θ and ϕ̃, θ̃

commute, reflecting the fact that our JW fermions from different chains commute.

Anti-commutation between ψ and ψ̃ can be re-enforced by introducing Klein factors,

but they are not necessary for our purpose. The non-interacting Hamiltonian can be

expressed in terms of the bosonic fields Φ = (ϕ, θ, ϕ̃, θ̃)T :

H =
v

2π

∫
dx [(∂xϕ)

2 + (∂xθ)
2] +

v

2π

∫
dx [(∂xϕ̃)

2 + (∂xθ̃)
2] (2.38)

where v = ta0. The theory is a c = 2 Luttinger liquid. The Luttinger parameter is 1

in the free theory, and can be tuned to other values when density-density interactions

are included.

While the bosonization is fairly straightforward, an important ingredient of the

low-energy theory is how physical electrons are represented, which determine the

allowed operator content. In terms of the bosonic fields, physical fermions are given

by attaching the JW string to ψ(x) and ψ̃(x):

e±iϕ̃±ϕ±θ, e±iϕ±ϕ̃±θ̃. (2.39)
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Their combinations give all physical operators. This is a nontrivial requirement,

forbiding operators like ψ†ψ̃. One may understand the constraints as a gauge symmetry,

which has important consequences for boundary conditions. One can show that a

general vertex operator eilTΦ is physical if and only if both l1 + l2 + l4 and l3 + l2 + l4

are even integers. Furthermore, if eilTΦ is a bosonic operator, then l1 + l2 + l3 + l4

must be even, so l1, l3 and l2 + l4 are all even.

2.5.2 Symmetry transformations of Φ

What distinguishes the field theory from an ordinary 1D quantum wire is their

anomalous transformation properties under the symmetries. The lattice model has

translation whose generator we denote by t, and time-reversal symmetry generated

by r. Notice that r2 = 1 and rt = tr. In addition, the model also has U(1) charge

conservation, but it is not relevant.

From the lattice model (See Appendix 2.7.3 for derivation)

Tr :

ck,L/R
c̃k,L/R

→
 c†k,R/L

−c̃†k,R/L

 , (2.40)

so our fields transform as

Tr

ψL/R
ψ̃L/R

→
 ψ†R/L

−ψ̃†R/L

⇒ Tr :



ϕ

θ

ϕ̃

θ̃


→



−ϕ

θ

−ϕ̃

θ̃ + π


. (2.41)
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Our bosonization procedure (definitions of L/R moving fields etc) has assumed

t > 0 but one can study the t < 0 using the same conventions as Sec. 2.5.1 by

mapping t → −t via the unitary transformation
(
ci, c̃i

)
→
(
(−1)ici, (−1)ic̃i

)
. Note

that boundary terms transform like c†Nc1 → (−1)N−1c†Nc1. For N odd, we see that

the boundary condition is flipped in addition to the sign of t.

With this in mind we can work out the translation transformation properties of

Φ given Tt : f̃i → fi etc. Recall that

ci ∼ e−i
π
2
xei(θ+ϕ) + ei

π
2
xei(θ−ϕ),

c̃i ∼ e−i
π
2
xei(θ̃+ϕ̃) + ei

π
2
xei(θ̃−ϕ̃).

(2.42)

For t > 0, ci → c̃i+1 and c̃i → ci under Tt gives

Tt :



ϕ

θ

ϕ̃

θ̃


→



ϕ̃− π
2

θ̃

ϕ

θ


. (2.43)

For t < 0, ci → −c̃i+1 and c̃i → ci giving

Tt :



ϕ

θ

ϕ̃

θ̃


→



ϕ̃− π
2

θ̃ + π

ϕ

θ


. (2.44)
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We have suppressed the coordinate change associated with the translation.

Notice that in all cases we have T 2
r and T 4

t acting as the identity on bosonic fields.

However, Tr and Tt do not commute when acting on Φ, which seems to contradict the

fact that the symmetry group is ZT
2 ×Z4. The reason for the inconsistency is because

ϕ, θ, ϕ̃ and θ̃ are not local fields. As we will see below, when acting on local degrees

of freedom Tt and Tr do represent the group faithfully.

2.5.3 K matrix formulation

We have derived a low-energy theory from the lattice model. Here we discuss an

alternative formulation using a K matrix description [113, 114, 115, 116, 117], which

has the advantage that only physical degrees of freedom (allowing chiral ones) appear.

First we give a brief overview of K matrix theory. A general (chiral or non-chiral)

Luttinger liquid is described by the following Lagrangian:

L =
1

4π

∑
IJ

KIJ∂tϕI∂xϕJ −
1

4π

∑
IJ

VIJ∂xϕI∂xϕJ − · · · (2.45)

Here K is a symmetric integer matrix, which determines the commutation relations

between fields: [ϕI(y), ∂xϕJ(x)] = 2πi(K−1)IJδ(y − x). Since we are considering an

edge of a short-range entangled bulk without fractionalized excitations, we require

detK = ±1. For such unimodular K matrices, all excitations eiϕi are physical. The

non-universal V matrix determines velocities of bosonic modes as well as scaling

dimensions of operators.

48



A general symmetry transformation Tg takes the following form

T−1g ϕITg =
∑
j

(Wg)IJϕJ + (δϕg)I . (2.46)

To preserve the commutation relations the integer matrix Wg must satisfy

WgK
−1W T

g = ±K−1, (2.47)

+/− for unitary/anti-unitary transformations. In addition, they must obey group

multiplication laws: WgWh = Wgh,

The K matrix for a Luttinger liquid is generally not uniquely defined because one

can make a change of variable: ϕI =
∑

JWIJϕ
′
J , where W is an invertible integer

matrix (i.e. | detW | = 1). For the new fields, the K matrix becomes K̃ ′ = W TKW ,

and

W ′
g = W−1WgW, δϕ

′
g = W−1δϕg. (2.48)

To obtain such a description, we first find a basis for local operators in the theory.

They can be chosen as ϕI = lTI Φ with

l1 = (1, 1, 1, 0),

l2 = (1, 0, 1, 1),

l3 = (−1, 1, 1, 0),

l4 = (1, 0,−1, 1).

(2.49)
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Their commutation relations are given by the following K matrix:

K =



1 −1 0 1

−1 1 1 0

0 1 −1 −1

1 0 −1 −1


. (2.50)

Symmetry properties can be readily obtained from Eq. (2.41) and (2.43). We find

that under TR symmetry

Wr =



0 −1 1 1

−1 0 1 1

1 −1 0 1

−1 1 1 0


, δϕr =



0

π

0

π


, (2.51)

and under lattice translation:

Wt =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


, δϕt = −

π

2



1

1

−1

1


. (2.52)
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We can further simplify the K matrix. A change of variables ϕ = Wϕ′ with

W =



1 0 0 0

1 0 1 −1

0 0 0 1

1 1 0 −1


, (2.53)

brings K into the standard diagonal form:

W TKW =

σz 0

0 σz

 . (2.54)

This is expected from the general classification of non-chiral, unimodular K matrices.

Using Eq. (2.48) we obtain

W ′
r =



0 1 −1 1

1 0 1 −1

1 1 0 −1

1 1 −1 0


, δϕ′r =



0

π

π

0


, (2.55)

and

W ′
t =



1 0 1 −1

0 1 −1 1

1 1 −1 0

1 1 0 −1


, δϕ′t =

π

2



−1

1

1

1


. (2.56)

51



Using the matrix representations, one can check that T 2
r = T 4

t = 1, TrTt = TtTr and

T 2
t ̸= 1, P where P is the global fermion parity, which shows that the symmetry group

is indeed ZT
2 × Z4.

While the K matrix now is the same as the one for free fermions, we emphasize

that it does not mean the theory is free after the basis transformation, because the

symmetry transformations become complicated. For a free theory, we expect that a

n-body operator remains n-body under symmetry transformations, which is not the

case for W ′
r and W ′

t : for example, they map a 1-body operator to a 3-body one. One

can further check that no other basis transformations can bring Wt and Wr into a

form expected for a free theory, while keeping K the same.

It is crucial that the K matrix is 4 × 4, which allows non-trivial transformations

such as W ′
r and W ′

t . We show in the appendix that 2× 2 K matrix can not describe

such an edge. In fact, we prove that within the K matrix framework, there are no

nontrivial fermionic SPT phases with 2 × 2 K matrix. Therefore the theory found

here is in some sense “minimal.”

Although we have provided a completely local description of the effective theory,

in the following we will still work with the formulation given in Sec. 2.5.2, as it is

easier to relate to the lattice model.

2.5.4 Gapped phases in the bosonic field theory

With a complete low-energy gapless theory, we can explore effects of more complicated

interactions to understand its stability. Here we first consider the stability with
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respect to gapping perturbations of null-vector type [114]. For U(1) bosons, generic

local interactions are given by vertex operators of the form eil
TΦ, where l is an integer

vector. Given that we are working with non-local variables, additional constraints

must be placed on l to ensure locality, as discussed in Sec. 2.5.1.

In an effort to gap out the theory we can consider adding Higgs terms of the

form [114, 115, 62, 97, 116]
∑

a Ua cos (l
T
aΦ− αa) with la ∈ Z4. Restricting our

attention to the gapping terms which respect time reversal and translation symmetry

provides a verification of the robustness of the gapless edge and the nontrivial symmetry-

protected topological order of the bulk. To gap out the edge modes, it is sufficient to

choose {la} as a set of linearly independent null vectors, namely they satisfy

[lTaΦ, l
T
b Φ] = 0 (2.57)

for all a, b. Then in the limit of large Ua, all lTaΦ simultaneously acquire finite

expectation values to minimize the cosine potentials. Since there are two conjugate

pairs of bosonic fields, two null vectors are needed to freeze all degrees of freedom.

Our basic tactic is the following: consider a set of symmetry-preserving, independent

gapping terms {cos (lTaΦ− αa)} for a set of null vectors la. We then check whether

there exists any local, elementary field vTΦ that acquires a finite expectation value

in the ground state (meaning that a certain linear combination of la’s is a multiple of

v). If these fields transform non-trivially under the symmetry transformations, then

the ground state spontaneously breaks the symmetry. A more systematic treatment

can be found in [14].
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Continuum limit of the solvable model

Before considering general gapping terms, let us analyze the continuum limit of the

pairing term in the lattice model [118]:

∑
j

∆cj+1cj + h.c. ∼ ∆

∫ L

0

dx [ψ(x+ a)ψ(x) + h.c]

= ∆

∫ L

0

dx [e−i
π
2 ei2θ(x) + h.c.]

(2.58)

Here a is the short-distance cutoff.

So the superconducting term −∆(cj+1cj+ c̃j+1c̃j)+h.c. becomes ∆(sin 2θ+sin 2θ̃).

Without loss of generality, assume ∆ > 0. In the large L limit, θ is pinned at the

minima of ∆sin 2θ, namely θ = −π
4

or 3π
4

. Recall though that the physical ground

states should have definite total fermion parity. One can check that P1 = ei
∫ L
0 ∂xϕ̃ and

P2 = ei
∫ L
0 ∂xϕ, thus:

P = exp

(
i

∫ L

0

∂xϕ̃+ ∂xϕ

)
(2.59)

From the bosonic commutation relations we see

PθP−1 = θ + π, P θ̃P−1 = θ̃ + π. (2.60)

The Hamiltonian conserves both P1 and P2.

We know the parity of our ground state from the lattice model but it is useful to

derive it from the field theory. The physical fermion ei(ϕ̃+ϕ+θ) satisfies PBC, which
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means

ei[ϕ̃(L)+ϕ(L)+θ(L)] = ei[
∫ L
0 ∂x(ϕ̃+ϕ+θ)+(ϕ̃(0)+ϕ(0)+θ(0))]

= −ei
∫ L
0 ∂x(ϕ̃+ϕ+θ)ei[ϕ̃(0)+ϕ(0)+θ(0)]

(2.61)

Because in the ground state manifold θ is pinned, we see that the BC is −P1P2. Thus

we find P = P1P2 = −1. (For t > 0 and odd N , it is the opposite). Similarly we find

ψL/R(L) = −ei(
∫ L
0 dx∂xθ±

∫ L
0 dx∂xϕ)ψL/R(0)

= −P2ψL/R(0),

(2.62)

in accordance with the lattice result cN+1 = P1c1.

Now we work out the ground states for the field theory and check the symmetry

breaking pattern. For the sake of explicitness consider chain 2. We can form the

parity (i.e. P2) eigenstates |±⟩2 =
∣∣−π

4

〉
2
±
∣∣3π
4

〉
2
, where P2 |±⟩2 = ± |±⟩2. The

analysis of chain 1 is identical. The ground state space of the full chain is spanned by

|±⟩1 |±⟩2, subject to the constraint of a fixed total fermion parity. For t > 0, we have

shown that P = −1, so the two states are |+⟩1 |−⟩2 and |−⟩1 |+⟩2. It is convenient to

form the following superpositions:

|±⟩ = |+⟩1 |−⟩2 ± |−⟩1 |+⟩2 . (2.63)
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In terms of θ, θ̃ eigenstates:

|+⟩ =
∣∣∣∣−π4

〉
1

∣∣∣∣−π4
〉

2

−
∣∣∣∣3π4

〉
1

∣∣∣∣3π4
〉

2

|−⟩ =
∣∣∣∣3π4

〉
1

∣∣∣∣−π4
〉

2

−
∣∣∣∣−π4

〉
1

∣∣∣∣3π4
〉

2

.

(2.64)

Now

Tr : (θ, θ̃)→ (θ, θ̃ + π)

meaning Tr : |±⟩ → − |∓⟩ suggesting Tr is broken.

The symmetry breaking can also be detected by an order parameter. In this case,

the order parameter is just cos(θ− θ̃), which is odd under Tr but invariant under Tt.

Its expectation value on |±⟩ is ±1. On the other hand, sin(θ − θ̃) is also odd under

translation but its expectation value vanishes.

In the lattice theory Tt breaking depended on the sign of t so we should expect

the same behavior in the field theory. Recall

Tt : (θ, θ̃)→


(θ̃, θ) t > 0

(θ̃ + π, θ) t < 0

. (2.65)

We can see that the field theory reproduces the symmetry breaking properties of the

lattice. The same result is seen in the odd case with the small adjustment that in the

t > 0 case our P = 1 ground states are given by |±⟩ = |+⟩1 |+⟩2 ± |−⟩1 |−⟩2.
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General gapping terms

With the above special case worked out we can now consider general gapping terms.

We will focus on the t > 0 phase and results for the t < 0 phase are very similar.

Recall how Φ transforms under Tr and Tt:

Tt :



ϕ

θ

ϕ̃

θ̃


→



ϕ̃+ π
2

θ̃

ϕ

θ


and Tr :



ϕ

θ

ϕ̃

θ̃


→



−ϕ

θ

−ϕ̃

θ̃ + π


. (2.66)

As discussed already, if our goal is to investigate the gapability of the model we

need to consider something like δL = U1 cos (l
T
1Φ− α1)+U2 cos (l

T
2Φ− α2). Verifying

that any symmetry-allowed gapping term introduces spontaneous breaking or gapless

modes amounts to working through all the allowed cases. We give a proof of the all

the cases in Appendix 2.7.4. Here we will show a few examples to demonstrate the

approach.

Let us first consider the case in which each gapping term transforms trivially under

both of the symmetries:

T−1g cos (lTΦ− α)Tg = cos (lTΦ− α), g = t/r. (2.67)

let lT = (a, b, c, d), then acting with symmetry operators on cos (aϕ+ bθ + cϕ̃+ dθ̃ − α)

one can derive constraints on the vector l. It follows, via Tt symmetry, that a = ±c

for example. We summarize these constraints in the following table:
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Symmetry Vector constraint Phase constraint

Tt a = ±c and b = ±d a ∈ 4Z

Tr a, c = 0 or b, d = 0 d ∈ 2Z

From the table one has gapping terms of the form cos (4n(ϕ± ϕ̃)) or cos (2m(θ ± θ̃))

which condense. Some fraction of these correspond to physical operators which break

Tt and Tr respectively. For example; for cos 4n(ϕ±ϕ̃), the order parameter cos 2(ϕ±ϕ̃)

has a finite expectation value and breaks translation symmetry.

Now consider the situation in which Tt exchanges the gapping terms and Tr does

not. We have an interaction of the form

U1[cos (aϕ+ bθ + cϕ̃+ dθ̃ − α) + cos (cϕ+ dθ + aϕ̃+ bθ̃ +
aπ

2
− α)]. (2.68)

There are only two Higgs terms so acting with Tt twice must generate a phase of 2nπ.

Symmetry Vector constraint Phase constraint

Tt a+ c ∈ 4Z

Tr a, c = 0 or b, d = 0 b, d ∈ 2Z

If a, c = 0, because both b and d are even we write b = 2m, d = 2n. Then δL ∼

cos (2(mθ + nθ̃)− α) + cos (2(nθ +mθ̃)− α). For m = ±n these two terms collapse

into a single one, meaning the edge has a gapless mode. Otherwise, we can combine

the two arguments to get 2(m + n)(θ + θ̃). So there is a symmetry-breaking order

parameter (θ + θ̃).

If b, d = 0 we have a similar scenario: a+c ∈ 4Z plus the locality constraint means

both a and c are even. If a = ±c then there is just a single term cos[a(ϕ ± ϕ̃)], and
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we require a ∈ 4Z. As we will show below, translation symmetry is broken by the

order parameter 2(ϕ + ϕ̃). For a ̸= ±c, we can combine the two arguments to form

(a+ c)(ϕ+ ϕ̃), which again gives the order parameter 2(ϕ+ ϕ̃).

Details of the remaining cases are given in Appendix 2.7.4. It follows that general

symmetry allowed gapping terms always lead to spontaneous symmetry breaking.

Thus the edge theory describes a non-trivial SPT phase.

2.5.5 The bulk-edge correspondence

Our low-energy edge theory is derived from a microscopic construction of the weak

topological superconductor. The connection with the Z4 × ZT
2 FSPT phase has been

somewhat implicit, only established through the general correspondence between

topological phases with crsytalline and internal symmetries discussed in Sec. 2.2.2.

In this section we directly show that the edge theory captures correctly the anomaly

expected for boundary states of the Z4×ZT
2 FSPT phase. We provide two arguments

for the bulk-edge correspondence. The arguments also provide evidence for stability

of the gapless edge against the most general types of perturbations beyond those of

null-vector type, since it is known that gapping terms which do not obey null-vector

conditions can still open a gap [119, 120].

Domain wall structure

As reviewed in Sec 2.2, the ground state wavefunction of a Z4 × ZT
2 fermionic SPT

phase can be understood using a decorated domain wall picture. While in the bulk

domain walls are closed, they can terminate on the edge and a fermionic zero mode
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appears at the end point due to the decoration. This can be taken as a defining

feature of the edge states: a Z4 domain wall binds a fermionic zero mode protected

by the ZT
2 symmetry.

We will now show that the edge theory does have the right domain wall structure.

We first construct a gapping term which leads to spontaneous breaking of Tt while

preserving Tr. Consider a gapping term U(cos 4ϕ + cos 4ϕ̃), with U < 0, which

condenses ϕ and ϕ̃ at minima of the cosine potential πm
2

with m ∈ Z. From the

derived conditions on physical operators one can see that 2ϕ and 2ϕ̃ are physical but

ϕ and ϕ̃ are not. The Tt symmetry cycles through the ground state space

2ϕ

2ϕ̃

 :

0

0

 Tt−→

π
0

 Tt−→

π
π

 Tt−→

2π

π

 Tt−→

0

0

 (2.69)

while Tr is unbroken.

Suppose we are in the state (denoted by |0→ π⟩) with a domain wall at x

separating the

0

0

 state (denoted by |0→ 0⟩) and the

π
0

 state. Note the

following specific bosonic commutation relation

e±i
θ(y)
2 2ϕ(x)e∓i

θ(y)
2 = 2ϕ(x) +


±π 0 < x < y

0 x > y

. (2.70)

We can create the domain wall configuration from a uniform ground state in two
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ways: two states

|0→ π⟩± = e±i
θ(x)
2 |0→ 0⟩ (2.71)

are degenerate since they are related by the TR transformation. They have the same

domain wall at x, separating the

0

0

 and

π
0

 states, but differ in local properties.

Notice that while eiθ(x)/2 is non-local, in a closed system one always creates domain

walls in pairs by applying exp
[
i
2

∫ x1
x0
∂xθdx

]
, which is a physical string-like operator.

If we look at the charge densities, ρ±(y) = 1
π
⟨0→ π| ∂yϕ(y) |0→ π⟩±, of the two

states we see that

ρ+(y)− ρ−(y) = δ(y − x). (2.72)

.

2ϕ

ρ

Figure 2.3: Degenerate domain wall states differ in their charge densities..

The degenerate kinked states differ in local charge ∆Q = 1, suggesting the

presence of a fermionic zero mode, as the only charge-1 local excitations in our system

are physical fermions. In fact, an operator toggling between the two states is ei(ϕ+ϕ̃+θ)

(note that ϕ and ϕ̃ condense). These two states are related by the TR transformation,

protecting the degeneracy.
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Gauging fermion parity

An alternative way to characterize the bulk SPT phase is through the symmetry

properties of a fermion parity flux. In a nontrivial fermionic SPT phase, a fermion

parity flux transforms projectively under the global symmetry group. In [121], a

classification of 2D fermionic SPT phases was derived using these ideas. Mathematically,

projective representation carried by a fermion parity flux is characterized by a 2-

cocycle in H2[G,Z2], which agrees with the group super-cohomology classification.

We briefly summarize these facts about general classification of 2D FSPT phases in

Appendix 2.7.1.

We will directly couple the SPT phase to a Z2 gauge field, sourced by fermions.

We will first carry out the gauging construction for the bulk theory. To this end, let

us write down a topological field theory for the bulk:

L =
∑
IJ

KIJ

4π
aI ∧ daJ + · · · (2.73)

Here aI are compact U(1) gauge fields, and the K matrix is given in Eq. (2.54). The

same K matrix appears in the bulk Chern-Simons theory and the edge chiral boson

theory following from the general bulk-boundary correspondence. da is the fermion

current in the bulk. Under symmetries, the gauge field transforms as:

Tg : aI →
∑
IJ

(Wg)IJaJ , (2.74)

where Wg is given in Eqs. (2.55) and (2.56).
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Now we couple the bulk to a Z2 gauge field A:

1

2π
(a1 + a2 − a3 − a4)dA+

1

π
BdA. (2.75)

The Z2 gauge theory is described by the mutual Chern-Simons term 1
π
BdA (corresponding

to a K matrix

0 2

2 0

. B can be thought of as a Higgs field that Higgs the U(1)

gauge structure of A down to Z2, and it couples to vortex current.

Here we choose a1+a2−a3−a4 because this combination preserves Tt, and under Tr

it becomes minus itself. Therefore We let T−1t ATt = A, T−1r ATr = A, and T−1r BTr =

−B. We then integrate out A, which leads to a constraint a1+a2−a3−a4+2B = 0.

It can be resolved by writing



a1

a2

a3

a4

B


=



1 0 0 0

−1 1 0 0

0 1 1 1

0 0 −1 1

0 0 0 −1





ã1

ã2

ã3

ã4


. (2.76)

In fact, one can view the upper 4×4 block as the (non-invertible) similarity transformation

between a and ã. We will denote it by U , with detU = 2. In terms of the new variables
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(ã1, ã2, ã3, ã4), the K matrix reads



0 1 0 0

1 0 1 1

0 1 0 2

0 1 2 0


. (2.77)

This K matrix describes a Z2 topological order, as expected. Symmetry transformations

are given by W̃g = U−1WgU, δϕ̃g = U−1δϕg. The commutator between Tt and Tr acts

on the corresponding edge fields as

Φ̃→ Φ̃ +



0

0

π

π


. (2.78)

Notice that eiϕ̃3 are eiϕ̃4 are the two fermion parity fluxes, so they do transform

projectively under Tt and Tr, corresponding to the nontrivial cohomology class in

H2[Z4×ZT
2 ,Z2]. Physically, a fermion parity flux has a two-fold degeneracy protected

by the symmetry.

2.6 Summary

In this chapter we find that edge modes of an intrinsically interacting FSPT phase

can be described by a Luttinger liquid theory. It is possible that the same is true for
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all 2D FSPT phases in the group super-cohomology construction. We have proved

that within K matrix theory, 4×4 is the minimal dimension required for the Z4×ZT
2

FSPT phase. An interesting question to ask is whether this c = 2 edge theory is the

“minimal” (as measured by central charge) among all conformal field theories with

the quantum anomaly. Another example of interacting 2D FSPT phase was found in

Ref. [93], with symmetry group Zf4 ×Z4×Z4. Here the physics is somewhat different

from the example discussed in this work: in the decorated domain wall construction,

the state can be obtained by decorating Z4 domain walls with 1D Zf4 × Z4 FSPT

states. As mentioned in the introduction, the 1D FSPT phase itself can only exist in

the presence of strong interactions, so is the 2D phase. It will be very interesting to

construct a gapless edge theory for this interacting FSPT phase.

An important open problem is to understand the edge physics of intrinsically

interacting FSPT phases beyond group super-cohomology [121, 33, 96]. An example

of such phases in 2D arises with Z8 × ZT
2 symmetry. If the Z8 symmetry is replaced

by translation, the bulk is a stack of Majorana chains, and the edge is a 1D chain

with one Majorana per unit cell. The simplest Hamiltonian must involve four-site

interactions. An example is the following Hamiltonian studied in [122]:

H = g
∑
i

γiγi+1γi+3γi+4. (2.79)

Remarkably, such a Hamiltonian is actually integrable [122], and realizes a gapless

phase with a dynamical exponent z = 3/2. The nature of this phase is not fully

understood. An interesting future direction is to construct other gapless theories, in
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particular conformal field theories, and develop field-theoretical descriptions.

Intrinsically interacting fermionic SPT phases also exist in three spatial dimensions [95,

33, 96]. Recent works have found general conditions on gapped surface topological

order in the group super-cohomology cases [111, 123]. It will be interesting to explore

gapless surface theories in these systems.

2.7 Appendix

2.7.1 Group super-cohomology classification

Suppose the symmetry group is G = Zf2 × Gb, where Gb denotes the “bosonic” part

of the symmetry group. In the group super-cohomology classification, 2D FSPT

phases are labeled by a pair (ν, ω) where [ν] ∈ H2[Gb,Z2] and ω ∈ C3[Gb,U(1)].

Here [·] denotes cohomology class. The Z2-valued 2-cocycle ν’s are responsible for

all the “intrinsically” FSPT phases. Note that ν needs to satisfy an obstruction-free

condition, see Ref. [33] for a recent summary.

There are two ways to understand the physical meaning of ν. First, in a decorated

domain wall construction, domain walls are labeled by g ∈ Gb. At a junction of three

domain walls g,h and gh, one has a fermion mode whose occupation is determined

by ν. Denote Z2 additively as {0, 1}, then the occupation number is just ν(g,h).

Therefore ν determines the complex fermion decoration on domain wall junctions.

Alternatively, let us consider inserting a superconducting vortex into the FSPT

phase. More precisely, such a vortex is a π flux for fermions, i.e. a fermion picks up −1
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phase factor when moving around the π flux. Since the π flux is not a local object,

the symmetry group can be represented projectively on the flux. The projective

representation, or more precisely the factor set, is given by (−1)ν .

Let us work this out for Gb = Z4×ZT
2 . The second cohomology groupH2[Gb,Z2] =

Z2. The nontrivial element of the Z2 corresponds to a two-dimensional projective

representation, on which the generators of Z4 and ZT
2 anticommute. In other words,

the π flux in the FSPT phase carries this projective representation.

2.7.2 2× 2 K matrix

We show that a 2× 2 K matrix can not describe the edge. For a non-chiral fermionic

system, the K matrix can be fixed to be K = σz. Then it is straightforward to show

that the only invertible similarity transformations that leave σz invariant are 1 and

σz. Similarly, the only ones that take σz to −σz are σx and σy.

The time-reversal symmetry squaring to the identity is then implemented by σx.

Because the Z4 generator Wt has to commute with both K and the time-reversal

transformation, only Wt = 1 is allowed. At this point, notice that within 2 × 2 K

matrix, the theory can be realized by free fermions.

We have found that the two symmetry transformations are given by

Tr : Wr = σx, δϕr =

 α

−α

 , (2.80)
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and

Tt : Wt = 1, δϕt =
π

2

n1

n2

 , n1,2 ∈ {0, 1, 2, 3}. (2.81)

Further requiring Z4 commuting with T fixes n1 = n2.

With these transformations, the following perturbation is allowed cos(ϕL−ϕR−α),

which fully gaps out the edge without breaking symmetries.

2.7.3 Symmetry actions on various operators

Let us work out how Tr and Tt act on the fermionic operators. From Eq. (2.12) we

see

Tr : ci −→ (−1)i
i∏

j=1

(1− 2f̃ †j f̃j)f
†
i = (−1)ic†i ,

Tr : c̃i −→ (−1)i−1
i∏

j=1

(1− 2f †j fj)f̃
†
i = (−1)i−1c̃†i .

(2.82)

It should be noted also that Tr : Pi −→ (−1)NPi . Under translation our physical

fermions transform trivially as fi → fi+1, adapting this to our partitioning of the

even and odd sites gives fi → f̃i+1 and f̃i → fi leading to

Tt : ci →
i∏

j=1

(1− 2f †j fj)f̃j+1 =c̃i+1

Tt : c̃i →
i−1∏
j=1

(1− 2f̃ †j+1f̃j+1)fi = ci

(2.83)

Recalling ck = 1√
M

∑M
j=1 e

−ikjcj we can use the transformation properties derived

68



above to see what happens in the momentum basis.

Tr : ck −→
1√
N

N∑
j=1

eikj(−1)jc†j =
1√
N

N∑
j=1

ei(k+π)jc†j

= c†k+π

Similarly, Tr : c̃k −→ −c̃†k+π. For translation, using 2.83 we see

Tt : ck −→
1√
N

N∑
j=1

eikj c̃j+1 = e−ikc̃k

Tt : c̃k −→
1√
N

N∑
j=1

eikjcj = ck

(2.84)

2.7.4 Perturbative stability of the edge theory

Here we give a proof via exhaustion that symmetry allowed Higgs terms push the

edge theory away from a trivial phase. If we wish to gap out the system we must have

exactly two linearly independent Higgs terms: δL = U1 cos (l
T
1Φ− α1)+U2 cos (l

T
2Φ− α2).

We will focus on the t > 0 phase, the proof for the t < 0 phase follows in the same

way. Recall how Φ transforms under Tr and Tt:

Tt :



ϕ

θ

ϕ̃

θ̃


→



ϕ̃+ π
2

θ̃

ϕ

θ


and Tr :



ϕ

θ

ϕ̃

θ̃


→



−ϕ

θ

−ϕ̃

θ̃ + π


(2.85)

a particular symmetry may act internally on each Higgs terms or it may exchange

them. We will consider all the cases and show in each instance gapless modes or SSB
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are present.

No exchange

Consider the case in which each gapping term transforms trivially under both of the

symmetries:

T−1g cos (lTΦ− α)Tg = cos (lTΦ− α), g = t/r. (2.86)

let lT = (a, b, c, d), then acting with symmetry operators on cos (aϕ+ bθ + cϕ̃+ dθ̃ − α)

we arrive at the following constraints:

Symmetry Vector constraint Phase constraint

Tt a = ±c and b = ±d a ∈ 4Z

Tr a, c = 0 or b, d = 0 d ∈ 2Z

If we explicitly consider some specific allowed term we can derive constraints on α (e.g

something like cos (2n(θ + θ̃)− α) is symmetry allowed for any α but Tt constrains α

in a term like cos (2n(θ − θ̃)− α) to be 0, π.) but this will not influence the presence of

symmetry breaking behavior so we will ignore working these constraints out in general.

From the table one has gapping terms of the form cos (4n(ϕ± ϕ̃)) or cos (2m(θ ± θ̃))

which condense. Some fraction of these correspond to physical operators which break

Tt and Tr respectively.
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Tr exchange

Now consider the case in which time reversal exchanges the two Higgs terms: explicitly

this has the form

δL = U1[ cos (aϕ+ bθ + cϕ̃+ dθ̃ − α)

+ (−1)dπ cos (−aϕ+ bθ − cϕ̃+ dθ̃ − α)]
(2.87)

Recall that if we are to condense the gapping terms the operators lT1Φ, l
T
2Φ must

commute with themselves and with each other. Suppose Tt does not exchange the

terms. One can check that the requirement that liK
−1lj = 0 for i, j = 1, 2 is met

only iff a = 0 or b = 0. We summarize the constraints in the following table

Symmetry Vector constraint Phase constraint

Tt a = ±c and b = ±d a ∈ 4Z

lTi K
−1lj = 0 a = 0 or b = 0

Note now that T−1r (ϕ ± ϕ̃)Tr ∼ a(ϕ ± ϕ̃) and T−1r (θ ± θ̃)Tr ∼ b(θ ± θ̃). We are back

to the previous case.

In the case where Tt exchanges the Higgs terms we get:

Symmetry Vector constraint Phase constraint

Tt a = ±c and b = ∓d a ∈ 4Z

lTi K
−1lj = 0 a = 0 or b = 0

Again, the two gapping terms turn out to be proportional, and there is a symmetry

breaking.
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Tt exchanges

Finally, consider the last case in which Tt exchanges the Higgs terms and Tr does not.

We have an interaction of the form

U1[cos (aϕ+ bθ + cϕ̃+ dθ̃ − α) + cos (cϕ+ dθ + aϕ̃+ bθ̃ +
aπ

2
− α)] .

There are only two Higgs terms so acting with Tt twice must generate a phase of 2nπ.

Symmetry Vector constraint Phase constraint

Tt a+ c ∈ 4Z

Tr a, c = 0 or b, d = 0 b, d ∈ 2Z

If a, c = 0 then δL ∼ cos (2(nθ +mθ̃)− α)+ cos (2(mθ + nθ̃)− α) and there is either

a gapless mode (if n = ±m) or a physical fraction of nθ + mθ̃,mθ + nθ̃ and/or

(n+m)θ + (m+ n)θ̃ breaks symmetry.

If b, d = 0 we have a similar scenario: a + c ∈ 4Z, together with the locality

constraint we find that a, c are both even, and we have the same situation as the

a, c = 0 case treated just above.
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Chapter 3

Fractonic phases in coupled wire

models

3.1 Introduction

It is a common belief that gapped phases of quantum many-body systems can be

described by topological quantum field theories (TQFT). There is strong evidence to

support TQFT-based classifications in one and two spatial dimensions, but in three

dimensions, a large family of gapped topological states have been constructed [39,

124, 125, 126, 41, 42], whose properties do not easily fit within the TQFT framework.

They all feature quasiparticle excitations with reduced mobility, and sometimes even

completely immobile ones. When put on a three torus, these fracton orders exhibit a

topological ground state degeneracy (GSD) which, asymptotically, grows exponentially

with linear system size.

In searching for the unified structure underlying fracton order, it was realized that
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certain (type-I) fracton models can be built from coupling stacks of 2D topological

phases [76, 127]. In fact, a simple stack of layers of 2D gapped states already

exhibits some of the characteristics of fracton topological order, e.g. size-dependent

GSD, quasiparticles with reduced mobility (i.e. they can only move in planes). This

observation has inspired more general constructions of fracton topological order [128,

129, 130, 131, 132, 133], as well as shedding light on the precise meaning of fracton

phases [134, 135, 136]. More recently, systematic constructions of fracton models from

networks of 2D TQFTs (possibly embedded in a 3D TQFT) have been proposed [77,

137, 138], encompassing many existing models including type-II examples. Ref. [77]

further conjectured that all 3D gapped phases can be obtained this way.

In this chapter, we explore a different avenue to construct 3D fracton topological

phases. The starting point of our construction is an array of 1D quantum wires, each

described at low energy by a Luttinger liquid. Couplings between wires are then

turned on to lift the extensive degeneracy. This approach is known as a coupled wire

construction [60, 61] and has been widely applied to construct explicit models for

2D topological phases (for a recent survey of these applications see Ref. [139]). The

advantage of the coupled wire construction is that the correspondence between the

bulk topological order and the edge theory can be made very explicit and chiral

topological phases arise naturally. While being more general than other exactly

solvable models (i.e. string-net models), the construction still remains analytically

tractable. The method has previously been applied to 3D systems, however the

examples have fallen under TQFT-type topological orders [68, 75].

Here we will systematically study 3D coupled wire constructions. We will find
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that the construction can easily give rise to both gapped and gapless phases. In

both cases, there can exist gapped fractonic excitations. Notably, these excitations

generally have fusion structures distinct from all previously known gapped fracton

models: they are labeled by an integer-valued (internal) topological charge, much like

electric charges in a gapless U(1) gauge theory, even though the system can be fully

gapped. When it is gapped, we will see that the excitations are mobile along the

wires (but require a quasi-local string operator), but generally have reduced mobility

in the transverse directions. We will demonstrate in a class of examples that all

excitations are immobile in the transverse directions, thus exhibiting a new type of

lineon topological order.

Similar to the 2D case, the coupled wire construction allows direct access to

surface states, at least when the surface is parallel to the wires. The surface states

can be described by an infinite-component Luttinger liquid, defined by an infinite K

matrix, which would ordinarily correspond to an (infinite-component) Abelian Chern-

Simons theory in the bulk. However, the bulk-boundary relation is highly unusual in

the gapped lineon phases: in most cases the surface K matrix strongly depends on

the orientation of the surface, so in a sense different surfaces can host qualitatively

different gapless states.

This chapter is organized as follows: In Sec. 3.2 we provide a systematic overview

of the coupled wire construction. We classify excitations in a general coupled wire

model, emphasizing the important role of Gaussian fluctuations overlooked in previous

studies. A polynomial formalism is introduced for these models which allows for the

use of powerful algebraic methods. In Sec. 3.3 we consider a class of models built
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from wires hosting of a single Luttinger liquid, which we term the chiral plaquette

models. There prove to be both gapped and gapless models within this class. Specific

examples of each case are analyzed. In Sec. 3.4 an example with each wire hosting

a two-component Luttinger liquid is considered. These “CSS” models are shown to

be gapped, with all quasiparticles being lineon. In Appendix 3.6.1 we give a general

treatment of 2D coupled wire construction. Appendix 3.6.2 discusses the spectrum of

Gaussian fluctuations for 3D coupled wire models. This analysis shows that models

which naively appear gapped can actually posses gapless fluctuations. Appendix 3.6.3

gives an algorithm for computing the GSD of these models. In Appendix 3.6.4 we

give an algorithm for finding the charge basis of the models. Finally, in Appendix

3.6.5 we prove that all of the excitations of the CSS models of Sec. 3.4 are lineons.

3.2 Coupled wire construction

In this section we lay out the general theory of coupled wire construction. While our

focus is on the 3D case, the formalism applies to 2D without much modification and

in fact is more tractable there. We provide a detailed account of the general theory

in 2D in Appendix 3.6.1.

Consider quantum wires arranged in a square lattice, as illustrated in Fig. 3.1(a).

Each wire is described by an M component Luttinger liquid, with a K matrix Kw. If

the wire is bosonic (fermionic), we take Kw = σx ⊗ 1M×M (Kw = σz ⊗ 1M×M). The
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Lagrangian for one wire is

L =
1

4π
∂tΦ

TKw∂xΦ−
1

4π
∂xΦ

TV ∂xΦ. (3.1)

Throughout this paper we choose the wires to extend along the x direction. V is

the velocity matrix, which we take to be V = v1 for simplicity. Here Φ denotes the

bosonic fields collectively

Φ = (ϕ1, ϕ2, . . . , ϕ2M)T. (3.2)

They satisfy canonical commutation relations

[Φa(x1), ∂x2Φb(x2)] = 2πi(K−1w )abδ(x1 − x2). (3.3)

Since K−1w = Kw, we do not distinguish the two throughout the paper. Denote the

bosonic field of the wire at site r = (j, k) by Φr(x). Bosonic fields on different

wires commute. Importantly, all these fields are 2π periodic, which means that

local operators in the theory are built out of derivatives of ϕ’s, together with vertex

operators of the form eil
TΦr(x) with l being an arbitrary integer vector.

We add the following type of interactions to gap out the wires:

− U
∑
r

∫
dx

q∑
α=1

cosΘα
r (x), U > 0. (3.4)

Each of the Θα
r (x) is a linear combination of fields at nearby sites, with integer

coefficients. We demand that the system is translation-invariant, including the continuous
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translation along x and the discrete translations along y and z. We write Θα
r (x) =∑

r′(Λ
α
r−r′)

TΦr′(x). The gapping terms should satisfy the null conditions [114, 140,

115, 116]:

[Θα
r (x),Θ

β
r′(x

′)] = 0. (3.5)

This guarantees that the each Θα
r can be simultaneously frozen out in the large U

limit.

Additionally, we demand that Θα
r are asymptotically linearly-independent, so there

are sufficiently many of them to pin all bosonic fields. More precisely, consider the

array of wires with periodic boundary conditions, the total number of independent

Θ’s should be MNw − c where Nw is the number of wires, and c is bounded (c may

vary with system size). This means that there should be no local linear relations for

Θ’s, so all possible linear relations involve infinitely many fields in the thermodynamic

limit.

We further assume that the gapping terms are “locally primitive,” which roughly

says there is no local order parameter. More generally, we impose the condition

that there exist no nontrivial local fields that commute with all Θ’s, except the Θ’s

themselves and their linear combinations with integer coefficients. This is analogous

to the topological order condition for stabilizer codes in qubit systems. Therefore,

when U is sufficiently large, the gapping terms freeze all bosonic fields, at least at the

classical level.
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Figure 3.1: (a) Illustration of the 3D coupled wires construction an (b) the gapping
interaction in the chiral plaquette model..

3.2.1 Energy spectrum and excitations

We now give a semi-classical description of the low-energy excitations. In the limit of

large U , the cosine potentials pin all Θr at the minima and so the ground state

manifold corresponds to the configurations with Θr ∈ 2πZ. Excitations can be

classified into the following two types.

The first type of excitations correspond to small oscillations of the fields Θr

around the minima. The spectrum of such oscillations can be found by a Gaussian

approximation, i.e. cosΘr ≈ 1 − 1
2
Θ2

r at Θr = 0 and diagonalizing the resulting

quadratic Hamiltonian (more details can be found in Appendix 3.6.2). Physically,

these excitations can be interpreted as density waves. We note that the spectrum

of such oscillations may be gapless or gapped depending on the form of the gapping

interactions. One may wonder whether the conditions on gapping terms listed in the

previous section imply that the Gaussian fluctuations are gapped (which might be

implicitly assumed in most coupled wire constructions in the literature, where such

Gaussian fluctuations were not considered), but this is far from obvious and most

likely incorrect.
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The other type of excitations are known as “kinks” or “solitons,” where some of the

fields Θr tunnel from one minima to another. More concretely, for the gapping term

cosΘl
r(x), a n-kink where n ∈ Z is a configuration where Θα

r varies by 2πn over a short

distance ξ. Such kink excitations are localized, and may be topologically nontrivial

( i.e. cannot be created locally). They represent gapped quasiparticle excitations,

which are of most interest to us in this work.

To characterize the quasiparticle excitations, in particular their superselection

sectors as well as the mobility, it is important to understand the structure of local

excitations, i.e. how local operators act on the ground state.

As mentioned in the previous section, local operators come in two types: spatial

derivatives of Φ and vertex operators. First, a local vertex operator eilTΦr(x0) acting

on the ground state generally creates multiple kinks in the yz plane located at x = x0.

From the commutation algebra, one can easily find that a (lTKwΛr−r′)-kink is created

for the Θr′ gapping term. It should be clear that such patterns of local creations

of kinks determine the mobility of quasiparticles in the yz plane, i.e. the plane

perpendicular to the wire direction.

The other type of local operators, namely derivatives of Φ, can be used to transport

excitations along the wire direction. In particular, one can construct string operators

of the general form

exp

(
i
∑
r

wT
r

∫ x2

x1

∂xΦr

)
. (3.6)

Here wr can be real numbers. Without loss of generality, they can be restricted to

[0, 1) as the integral part corresponds to a local vertex operator. For Eq. 3.6 to be a
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legitimate string operator, it should create allowed kink excitations (of strength 2πZ)

at x1 and x2. We further demand that wr should be “quasi-localized” in the yz plane,

either strictly short-range, or exponentially localized.

For a coupled wire model in two dimensions, under quite general conditions we

are able to completely classify superselection sectors (i.e. anyon types) of excitations

and show that they are generally given by the determinant group of an integer K

matrix determined from the gapping terms. We further show that lattice translations

across wires can permute anyon types. Unfortunately for 3D models, we do not have

results of similar generality and will have to work case-by-case.

3.2.2 Ground state degeneracy

In the limit of large U , the ground state of the coupled wire model on a torus is

obtained by minimizing the gapping potentials cosΘα
r = 0, in other words Θα

r =

2πnαr where nαr ∈ Z. The 2π-periodicity of the underlying bosonic fields ϕ’s induces

equivalence relations between different configurations of Θα
r . For example, shifting ϕi

at site r by 2π leads to the following shifts of n’s:

nαr′ → nαr + [KwΛ
α
r−r′ ]i. (3.7)

Thus these two configurations are actually equivalent. Physically distinct ground

states then correspond to equivalence classes of the integer configurations {nαr }.

A more systematic algorithm to compute the ground state degeneracy is presented

in Appendix 3.6.3. The degenerate space is spanned by non-local string operators
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running along x and surface operators in the yz plane, referred to as logical operators,

and therefore topologically protected as least when the system is fully gapped.

3.2.3 Surface states

With open boundary conditions, generally there exist boundary local fields unconstrained

by the bulk gapping terms, which may form gapless surface states. This is most easily

seen when the surface is parallel to the wire direction. For such a surface, “free” surface

fields can be obtained as “incomplete” gapping terms, which by construction commute

with the bulk ones. These incomplete gapping terms however do not commute with

each other in general. Denote the corresponding fields on the boundary by Θ̃n(x),

where n ∈ Z indexes the transverse direction on the surface. Their commutation

relation generally should take the form

[Θ̃m(x1), ∂x2Θ̃n(x2)] = 2πi(Ksurf)mnδ(x1 − x2). (3.8)

Here Ksurf is an integer symmetric matrix. The algebra is formally equivalent to

that of local bosonic fields in a multi-component Luttinger liquid with Ksurf as the K

matrix. As a result, the surface degrees of freedom can be viewed as a 2D extension of

a Luttinger liquid. Interestingly, in general Ksurf depends on the surface orientation,

which is a very unusual form of bulk-boundary correspondence.
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3.2.4 Polynomial representation

Here we introduce a polynomial representation for the coupled wire construction,

inspired by Haah’s polynomial formalism for Pauli stabilizer codes [40, 141]. It gives

a compact form of the gapping terms and allows applications of powerful algebraic

methods.

We denote using y and z, the unit translations along the two directions perpendicular

to wires, and by ȳ = y−1, z̄ = z−1, the inverse translations along the same directions

respectively. The Hamiltonian can be represented as a 2M ×M matrix, where each

column represents one Θα. Rows of a given column give the Laurent polynomial

for the corresponding bosonic field that shows up in Θα. More explicitly, suppose

Λαrr′ ≡ Λαr′−r as required by translation invariance, the p-th row of the column is

σpα =
∑
jk

Λαjk,py
jzk, (3.9)

where 1 ≤ p ≤ 2M, 1 ≤ α ≤M . Following Ref. [40], σ is called a stabilizer map (and

each gapping term is a stabilizer).

The null condition can then be summarized as

σ†Kwσ = 0, (3.10)

where σ† ≡ σ̄T. This is again reminiscent of Haah’s formalism for stabilizer codes,

except that now the polynomials have Z coefficients, instead of Z2. The other

important difference is that K is symmetric, not symplectic.
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We also define ϵ = σ†Kw as the excitation map. The rows in the excitation

map correspond to the different gapping terms. Acting the excitation map on local

operators tells the excited gapping terms i.e. the kink excitations. In other words,

it is a map between local operators and the kink excitations created by the action

of those local operators, hence the name. The null condition in Eq. (3.10) implies

Imσ ⊂ ker ϵ. We further require that Imσ = ker ϵ on an infinite system, which means

that there are no gapless degrees of freedom left, which is the primitive condition

discussed previously.

We study two families of stabilizer maps. For the first family, we consider M = 1

and Kw = σz. The stabilizer map is given by:

σ =

m1 + n2y + n1z +m2yz

m2 + n1y + n2z +m1yz

 . (3.11)

We refer to these stabilizer maps as chiral plaquette models.

The second general family of models is defined for even M and bosonic wires. We

use M = 2 as example with Kw = σx, and denote the two bosonic fields on each wire

as ϕ and θ. The stabilizer map is given by

σ =



f 0

g 0

0 ḡ

0 −f̄


, (3.12)
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where f and g are finite-degree polynomials of y and z. The Hamiltonian is similar to

the “CSS” codes for Pauli stabilizer models, in the sense that one term only involves

ϕ and the other only involves θ.

The polynomial formalism, besides providing an economic representation of the

Hamiltonian, allows for the use of powerful mathematical tools from the theory of

polynomial rings. We use the representation to compute the basis of nontrivial

superselection sectors or the “charge basis” of a given model. In other words, the

charge basis is defined as the set of quotient equivalence classes of charges modulo

trivial charge configuration. A charge configuration is trivial if and only if it can

be created out of the ground state (e.g. two charges created by applying a string

operator) using a local operator. For conventional topological phases, the charge

basis is a finite set. In contrast, a fracton phase necessarily has an infinitely large

charge basis. An efficient algorithm to compute the charge basis is described in

Appendix 3.6.4 along with the calculation for some models.

3.3 Chiral plaquette models

The chiral plaquette model is illustrated in Fig. 3.1(b). Specifically, the gapping term

is given by

Θr = mTΦr + nTΦr+ẑ + [n′]TΦr+ŷ + [m′]TΦr+ŷ+ẑ. (3.13)

Here we define m = (m1,m2),n = (n1, n2) and m′ = (m2,m1), similarly for n′. The

components m1,2, n1,2 are integers. Using the single wire K matrix Kw = σz, we define

a dot product between vectors as x · y = xTKwy, for example m ·m′ = 0. We also
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write x2 = x · x.

In the following we assume gcd(m1,m2) = gcd(n1, n2) = 1. We further assume

that m and n are linearly independent, the same with m and n′. Equivalently, both

m · n′ and m · n must be non-zero.

In Appendix 3.6.2 we find the density wave spectrum

Ek =
√
v2k2x + vU |fk|2, (3.14)

where

fk = m1 + n2e
iky + n1e

ikz +m2e
i(ky+kz). (3.15)

The spectrum is fully gapped if and only if

[(m1 +m2)
2 − (n1 + n2)

2][(m1 −m2)
2 − (n1 − n2)

2] > 0. (3.16)

Otherwise there are gapless points, near which the dispersion is linear.

3.3.1 Surface theory

First we study the surface states. Consider the (0, 1, 0) surface, parallel to the xz

plane. The bulk occupies the y > 0 region. We follow the general procedure outlined

in Sec. 3.2.3 to find the K matrix. At y = 0, consider vertex operators supported

on two adjacent wires ei(lT1Φz+lT2Φz+1). If they commute with all bulk terms, l1 and l2

should satisfy

l2 ·m = 0, l1 · n = 0, l ·m+ l2 · n = 0. (3.17)
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We find that the only nonzero solution is l2 = m′, l1 = n′. Indeed, these terms can

be viewed as “half” of a hypothetical plaquette term on the boundary.

Denote Θ̃z = n′TΦ0,z +m′TΦ0,z+1. It is not difficult to show that any local vertex

operators can be expressed as linear superposition of Φz. Therefore they form a basis

for local vertex operators. Their commutation relations define the K matrix on the

surface, according to Eq. (3.8). The nonzero entries of the K matrix are

Kzz = m2 + n2, Kz,z+1 = m · n (3.18)

One can similarly find the K matrix on the xy surface. It is easy to see that all one

needs to do is to replace n and n′.

Next we turn to the (0, 1, 1) surface, illustrated in Fig. 3.2(b). Due to the zigzag

shape, there are two kinds of vertex operators surviving at low energy, which can

again be viewed as “incomplete” plaquette terms, as illustrated in Fig. 3.2(b). The

surface K matrix reads:

−



m · n m2 m · n′

m · n′ m2 m · n

m · n m2 m · n′

. . . . . . . . .


, (3.19)

which is generally distinct from the K matrices on the other surfaces. This example

illustrates that in general surfaces of different orientations have very different K

matrices.
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Figure 3.2: Illustrations of surface states, for two different orientations: (a) (0, 1, 0) surface
and (b) (0, 1, 1) surface. Representative local vertex operators are shown in dashed boxes..

Since the surfaces are gapless, one may wonder whether they have any instabilities.

The stability can be analyzed à la Haldane [114] by attempting to find a complete

set of null vectors to gap out the edge, for example. We just point out that in some

of our examples, the (0, 1, 0) and (0, 0, 1) surfaces are stable with respect to any local

perturbations, and in fact fully chiral (i.e. all modes are moving in the same direction).

3.3.2 Mobility of fundamental kinks

Below we consider the mobility of the most fundamental excitation, a kink on a single

plaquette. Following the discussions in Sec. 3.2.1, we first consider mobility in the

yz plane, and then mobility along x, the wire direction.

Mobility in the yz plane.

Determining if a quasiparticle is mobile is equivalent to finding a string operator for

the excitation. We now show that it is sufficient to consider string operators of a

minimal width, i.e. one site. To see this, we consider a string operator of width 2

creating a single plaquette excitation at one end, illustrated by the following figure:
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r+ẑ

r

Suppose the operator at the corner site r+ẑ is eil·Φr+ẑ . Because it should only excite

the plaquette on the bottom left, but not on the top left, we must have l · n′ = 0,

which means l = an for some a ∈ Z. We thus multiply the string operator by a

stabilizer e−iaΘr to clean the operator at site r+ ẑ. This “cleaning” can be repeatedly

applied to the other sites on the same line, so now the width is reduced to just 1. It

should be clear that a similar argument works when the width is greater than 2.

First we study a string operator directed along z direction, which can be written

as ∏
z

eil
T
zΦyz (3.20)

where lz are integer vectors. If the string commutes with the Hamiltonian, the

following conditions must be satisfied:

lk ·m+ lk+1 · n = 0, lk · n′ + lk+1 ·m′ = 0. (3.21)

We write lk = akm + bkn, which is always possible when m · n′ ̸= 0. The second

equation gives bk+1 = ak. The first equation gives the following recursion relation

ak(m
2 + n2) + (ak+1 + bk)m · n = 0, (3.22)
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which can be written as (when m · n ̸= 0)

ak+1 + λzak + ak−1 = 0, λz =
m2 + n2

m · n . (3.23)

A general solution can be expressed as powers of the roots of the characteristic

polynomial:

ak = A

(
−λz +

√
λ2z − 4

2

)k

+B

(
−λz −

√
λ2z − 4

2

)k

. (3.24)

Here A and B can be fixed by initial conditions of the sequence {ak}. Notice that

when |λz| > 2, one of the two roots has absolute value greater than 1 and the other

smaller than 1, so |ak| generally grows exponentially with k.

For concreteness, suppose that at the bottom of the string one finds a single

kink excitation. This corresponds to the initial condition l1 = m, which excites a

(m · n)-kink. Thus the whole string is fixed by a1 = 1, b1 = 0. We can easily find

A = −B = 1√
λ2z−4

. The coefficients ak should all be integers. This is possible only

when λz is an integer:

1. |λz| = 0: the string repeats with period-4 m,n,−m,−n.

2. |λz| = 1: {ak}∞k=1 is {1,−1, 0, 1,−1, 0, 1, . . . } for λz = 1, and {1, 1, 0,−1,−1, 0, 1, . . . }

for λz = −1.

3. |λz| = 2: then ak = (− sgnλ)k+1k.

4. |λz| > 2: |ak| grows exponentially.
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Only for λz = 0,±1, can the string operator actually move the excitation, at least for

appropriate lengths. When |λz| ≥ 2, the excitation created at the end of the string

operator has a strength growing with the length of the string, thus costing more and

more energy as the distance increases. Therefore we conclude that a (m ·n)-kink can

move along z only when λz = 0,±1.

For the mobility along y, a similar calculation can be done and the ratio λy =

−m2+n2

m′·n determines the mobility (basically m→m′).

For certain choices of m and n, e.g. when n = n′, it is necessary to consider string

operators along the z = ±y diagonal directions. We study an example of this type

below in Sec. 3.3.3.

Mobility along x

We now consider the mobility along the wire direction. As discussed in Sec. 3.2.1, in

general kinks can be moved along x with the following string operator:

exp

(
i
∑
r

wT
r

∫ x2

x1

dx ∂xΦr

)
, (3.25)

where wr are real numbers. Locality requires that these wr must have a (quasi-

)localized profile, i.e. either completely short-range, or decaying exponentially away

from the location of the excitation. Below we present a method to construct such a

quasi-local string operator, whose profile in the yz plane is strictly short-range in one

direction, but only quasi-localized in the other direction. In fact, using a cleaning

argument similar to the one in Sec. 3.3.2, one can prove that no string operator of
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strictly finite support in the yz plane can move a single plaquette excitation in the

wire direction, so a string operator, if it exists, must be quasi-localized.

The construction is most easily explained when the system is compactified to a

quasi-2D one. Such a process has been used in Ref. [142] to understand properties of

fracton models. Without loss of generality, we choose the compactification direction

to be z, i.e. a periodic boundary condition is imposed along z. Denote the length of

the z direction by Lz. Basically, a whole column of wires at a given y is viewed a

“super”-wire, with Lz bosonic degrees of freedom. Denote these fields on one “super”-

wire collectively by Φy, and we write the gapping Hamiltonian in the following way:

− U
∑
z

cos(PT
z Φy +QT

zΦy+1). (3.26)

It is straightforward to read off Pz’s from Eq. 3.13. In particular, the K matrix Kxz

can be expressed as [Kxz]zz′ = Pz · Pz′ . We consider the following form of string

operator:

exp

(
i
∑
z

uz

∫ x2

x1

dxPT
z ∂xΦy

)
. (3.27)

One can prove that it only creates excitations at the y-th “super”-wire. It is shown in

Appendix 3.6.1 that to move an elementary excitation located at the (0, z0) plaquette,

we can set

uz = (Kxz)−1zz0 . (3.28)

In order to have a quasi-localized string, uz must be sufficiently localized. For |λz| > 2,
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uz decays exponentially

|(Kxz)−1zz0| ∼ e−|z−z0|/ξ, (3.29)

where ξ ∼ cosh−1 |λz |
2

. Because of the exponential decay, the choice of of boundary

condition is inessential.

If |λz| < 2, the string operator is at best algebraically localized, and for certain

system size the K matrix Kxz can become degenerate. Therefore the construction

does not yield a quasi-localized string operator for a fundamental, single-plaquette

excitation (it is possible that for composite excitations a localized string operator still

exists).

In principle, the construction can be applied to compactification along any direction,

and a quasi-localized string operator can be defined as long as the corresponding K

matrix is “gapped.” Here, a gapped K matrix means that the eigenvalues of K are

separated from 0 by a finite spectral gap in the infinite size limit. Otherwise the K

matrix is said to be gapless. If for any compactification direction the K matrix is

gapless, we believe that the bulk must be gapless (i.e. the condition Eq. 3.16 must

be violated).

3.3.3 Example of gapped phases

We now consider two examples of the chiral plaquette model with fully gapped bulk.

Both examples are not covered by the general discussions in the previous section due

to the special choices of m and n, and in fact turn out to be planon models.
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Planon phase I

Consider m = (p+1, p),n = (1, 1). One can easily check that the bulk is fully gapped.

The K matrix reads

[Kxz]kk′ = (2p+ 1)δkk′ + δk,k′+1 + δk,k′−1, (3.30)

which is also gapped since λz = 2p+1 > 2. In this model, the 1-kink can move along

y = z lines. The string operator is given by

∏
j

ei(1,1)
TΦj,j (3.31)

From the analysis in Sec. 3.3.2, they can also move along the wires, but not along

y or z directions. Therefore all excitations are at least planons. We conjecture that

there are no fully mobile excitations in this model.

Consistent with the planar structure, since n2 = n′2 = 0, the K matrices on all

surfaces different from (0, 1,−1) are actually the same (up to an overall sign). On

the other hand, the surface (0, 1,−1) can be made completely gapped: the K matrix

becomes

[K(0,1,−1)]ij = (p+ 1)(δi,j+1 + δi,j−1). (3.32)

Therefore, boundary fields Θ̃2j, j ∈ Z mutually commute and form a complete set of
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null vectors. The surface can be gapped by the following interactions:

− U ′
∑
j

∫
dx cos Θ̃2j(x). (3.33)

From these results, it is plausible to conjecture that the model realizes a pure

planon phases in the (0,−1, 1) planes. Such a phase can be described by an infinite

Chern-Simons theory [50] with a K matrix given in Eq. 3.30. To further check this

conjecture, we compute the ground state degeneracy for a Ly×Lz grid of wires, with

periodic boundary condition imposed. We find that

GSD(Ly, Lz) =


2p+ 3 l = 1

detKxz(l) l > 1

. (3.34)

Here l = gcd(Ly, Lz) is the number of (effective) 2D planes with this boundary

condition, which naturally explains the degeneracy except the special gcd(Ly, Lz) = 1

case.

Planon phase II

Consider m = (p, 0),n = (0, 1), with p > 1. The bulk is fully gapped according to

Eq. 3.16. The surface K matrices can be easily found:

[Kxz]kk′ = (p2 − 1)δkk′ , (3.35)
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and

[Kxy]jj′ = (p2 + 1)δjj′ + (p+ 1)(δj,j′+1 + δj,j′−1). (3.36)

The K matrix on (0, 1, 1) surface is block diagonalized. Each block is the following

2× 2 matrix: p2 − 1 p− 1

p− 1 p2 − 1

 . (3.37)

It is not difficult to see that the kink charge on each plaquette is defined mod

p2 − 1, namely charge (p2 − 1) can be created locally. An elementary 1-kink can

move along y, with a period-2 string operator, and the mobility along x is also clear

from Kxz. We have computed the charge basis in Appendix 3.6.4, and the result,

{a+ bzµz |a, b ∈ Zp2−1}, is indeed consistent with our observations here.

The GSD is found to be


(p2 − 1)Lz Ly is even

(p+ 1)Lz Ly is odd

. (3.38)

Note that (p2 − 1)Lz = detKxz(Lz). The reduction for odd Ly can be understood as

follows: under Tx, n-kink becomes −pn, mod p2 − 1. Tx-invariant kinks must satisfy

n ≡ −pn mod p2 − 1, or n is a multiple of p− 1, which form a Zp+1 subgroup.

While the degeneracy and the mobility of bulk excitations seem to be compactible

with the model describing decoupled xy planes, this picture is inconsistent with the

fully chiral surface theory given by Eq. 3.36 in the xy plane (it would be gappable if

the decoupled layer picture was correct).
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3.3.4 Examples of gapless phases

In this section we study two examples of chiral plaquette model, whose Gaussian

fluctuations are gapless. We will analyze the properties of the gapped sectors, and

leave the effect of gapless modes for future work.

Gapless fracton phase

Consider m = (p, q),n = (−p, q). We assume p and q are coprime, |p| ≠ |q| and both

nonzero. The Gaussian spectrum is found to be gapless.

It is useful to first give the surface K matrices. For the xz surface, the nonzero

elements are

[Kxz]kk = 2(p2 − q2), [Kxz]k,k+1 = −(p2 + q2). (3.39)

For the xy surface:

[Kxy]kk = m2 − n2 = 0, [Kxy]k,k+1 = m · n′ = 2pq. (3.40)

Similar to the K matrix in Eq. 3.32, the xy surface can be fully gapped.

One can easily see, from previous discussions that a 1-kink is immobile in the yz

plane (a 2pq-kink can move along y). Since both surface K matrices have |λ| < 2, the

construction in Sec. 3.3.2 fails to produce a quasi-localized string operator (only an

algebraically-localizedd one). As mentioned in Sec. 3.3.2, since (p, q) = 1 no string

operator of bounded support in the yz plane can move this excitation. With this

body of evidence we conjecture that the 1-kinks are fractons. As we show below, they
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can be created at corners of a rectangular sheet operator in the yz plane.

The GSD has interesting dependence on Ly and Lz. We will specfically consider

the case when p + q is odd an Lz is even, to illustrate the physics. From numerical

computations we find the GSD is given by the following formula:

GSD =



2 · (2pq)Ly Ly is odd

(2pq)Ly−1| det K̃xz| Ly ≡ 0 (mod 4)

4 · (2pq)Ly Ly ≡ 2 (mod 4)

. (3.41)

An interesting feature of the GSD is that when Ly is a multiple of 4, the additional

factor | det K̃xz| appears in the GSD. Here K̃xz will be defined below, but it is related

to Kxz by an order one factor, and grows exponentially with Lz. We will now explain

the exponential factor (2pq)Ly as well as the dependence on Ly mod 4. We note that

the odd Lz case has a similar Ly dependence.

xz planons. The exponential dependence on Ly can be understood in terms of

planons in the xz plane. These excitations take the form of two 1-kinks 1y,z1y+2,z.

Here we label plaquettes by the coordinate of the down-left corner.

First we show that 1y,z1y+2,z can move along z. We explicitly construct the string

operator. Place the two kinks at (0, 0) and (2, 0), and the string is supported on y = 1

and y = 2: ∏
k≥1

ei(x
T
kΦ1,k+yT

kΦ2,k), (3.42)
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where

yk = iσyxk,xk+1 = −σzxk,yk+1 = σzyk. (3.43)

It is straightforward to check that the string operator commtes with the gapping

terms. The initial condition x1 = (a, b) should satisfy qa − pb = 1, which is always

solvable over Z if (p, q) = 1. We notice that the string operator has period-2 along z.

Furthermore one can show that (2pq)y,z(2pq)y+2,z is a local excitation. This should

be evident from the following figure:

(p, q) −(q, p)

2pq 2pq

Here (a, b) denotes a vertex operator ei(aϕ1+bϕ2). Thus these planons satisfy Z2pq fusion

rules. This construction also immediately shows that 1y,z1y+2,z can move along the

x direction.

From now on we refer to 1y−1,z1y+1,z as the y-th planon. From the string operators

one can easily determine the braiding statistics of these planons. We find that they

are all bosons, and there is a e
iπ
pq mutual braiding phase between neighboring planons.

We note that with the planon string operators can be easily extended to a rectangular

sheet operator that creates four 1-kinks on the corners, similar to what happens in

the X-cube model.

Compactification. To understand the Ly dependence of the GSD, it is useful to

consider compactification along z. Closed string operators wrapping around the z

cycle for the xz planons become local order parameters, which must be fixed under

99



compactification. We give their explicit expressions:

W1y =
1

2q

∑
z

Θy,z,W2y =
1

2p

∑
z

(−1)zΘy,z. (3.44)

We may view W1 as moving the planon q, q around the z cycle, and W2 as moving the

−p,−p planon. Notice that these two string operators are not totally independent,

due to the relation qW1y+pW2y ≡ 0 (mod local stabilizers). Diagonalizing these order

parameters, the theory is partitioned into different sectors labeled by eigenvalues of

W1y and W2y. They naturally form a Z2q × Z2p group. We now prove that with

the additional condition it is in fact Z2pq. In fact, consider the element (1, 1), whose

order is obviously 2pq. Now for a general element (a, b) in Z2q × Z2p, we look for an

integer n such that n ≡ a mod 2q, n ≡ b mod 2p. In other words, there must exist

x1, x2 ∈ Z such that n = a+ 2qx1 = b+ 2px2, or a− b = 2(px2 − qx1). Since a+ b is

even and (p, q) = 1, one can always find x1 and x2 to satisfy this equation.

In this compactified system, we have to fix the local “order parameters,” which

are generated by W1y and W2y when summing over all z. In analyzing the quasi-

2D system, it is convenient to just add another term − cosW1y or − cosW2y. For

simplicity, consider p = 1, then we just need to add − cosW1. A linearly independent

set of gapping terms are W1y,Θy,z, z = 1, 2, · · · , Lz − 1. With this choice of gapping

vectors, the local degeneracy is completely removed. We denote the new K matrix

computed from this set of gapping vectors as K̃xz.
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The GSD of the compactified system reads:



2 Ly is odd

| det K̃xz| Ly ≡ 0 (mod 4)

4 Ly ≡ 2 (mod 4)

, (3.45)

which almost replicates the Ly dependence of the GSD in Eq. 3.41, up to a factor of

2pq when Ly is a multiple of 4 due to an additional relation among the compactified

planon string operators.

The Ly dependence here can be traced to the y-translation symmetry action on

anyons in the compactified system. It turns out that | det K̃xz| is always a perfect

square, so denote M =
√
| det K̃xz|. The fusion group of Abelian anyons turns out to

be Z2
M . Denote the unit translation action on anyons by Ty. We show quite generally

that T 2
y = −1 (i.e. the charge conjugation).

If we choose the basis to be (1, 0, . . . , 0) and (0, 0, . . . , 1), we have numerically

found that the translation action along y is given by the following SL(2,Z) matrix:

Ty =

2 −5

1 −2

 , (3.46)

which satisfies T 2
y = −1, so Ty is order-4. The only order-4 element for SL(2,Z) is

in fact the S matrix, so Ty is in the same conjugacy class. We assume that a basis

transformation has been done to make Ty =

0 −1

1 0

. For odd Ly, the only anyon
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invariant under TLy
y is (M

2
, M

2
). For Ly ≡ 2 (mod 4), the Z2

2 group generated by (M
2
, 0)

and (0, M
2
) is invariant under TLy

y . When Ly is a multiple of 4, all anyons are invariant.

The number of TLy
y -invariant anyons gives the GSD of the compactified system [121].

Gapless planon phase

Consider the following gapless model inspired by the construction in Ref. [61]. Let

m = (1−q
2
, 1+q

2
) and n = (q,−q) where q is odd. We choose a slightly different

stabilizer map which corresponds to flipping the sign of the top-right and bottom-

right corner terms in the plaquette of the chiral plaquette model:

σ =

m1 − n2y + n1z −m2yz

m2 − n1y + n2z −m1yz

 . (3.47)

Using the the results of Appendix 3.6.2 one can confirm that the Gaussian fluctuations

above the ground state manifold are gapless for this model. The gapless points occur

at momenta (0,±2π
3
,∓2π

3
).

Denote l = gcd(Ly, Lz). The GSD is given by

GSD =



ql−1 · 3q if l = 6k + 3

ql−22q · 2q if l = 6k ± 2

ql−2 if l = 6k

ql otherwise

. (3.48)

To understand the size-dependence of the GSD, we need to know the mobility of
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certain elementary excitations. First of all, a 1-kink 1yz is a lineon with mobility along

the diagonal line z = y+α with α ∈ Z. The string operator
∏

j e
i
q
n·Φy+j,z+j translates

the 1-kink along this path. However, a q-kink can move along both y and z directions

(in steps of 6). The composite, 1y−1,z(−1)yz1y,z−1 is a planon with mobility in the

planar surface with normal vector (0, 1,−1). The planon is moved in the discrete

direction by combinations of the lineon string operator and is moved along the wire

by the string operator e
i
q

∫ L
0 m·∂xΦ.

For those familar, we can interpret that the plaquette term in the formalism of

Ref. [61]: Θy,z = ϕ̃Ly,z − ϕ̃Ry+1,z+1 + qθy,z+1 + qθy+1,z where ϕL/Rr = ϕr ± qθr. This

observation along with the mobility of the excitations gives the heuristic picture of a

stack of ν = 1
q

Laughlin states lying in the planes defined by normal vector (0, 1,−1)

which are then coupled by the qθy,z+1 + qθy+1,z terms.

If PBC are imposed in the discrete directions, which have length Ly and Lz, one

can see there are gcd(Ly, Lz) distinct paths of slope z = y. This is shown in Fig

3.3. Since each plane hosts Laughlin-like planons, naively this suggests qgcd(Ly ,Lz)

superselection sectors of planons living on the 2D surfaces partitioning the three

torus, therefore explaining the ql factor in GSD. Let α = 1, 2, . . . , gcd(Ly, Lz) label

these distinct diagonal planes.

With the picture of layers of Laughlin states in mind, we write down a naive basis
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Figure 3.3: An example of the partitioning of lattice with PBC into gcd(Ly, Lz) cycles
along the direction z = y. Here Ly = 6 and Lz = 3 results in 3 distinct closed paths:
α = 1, 2, 3 correspond to the blue, green and red paths respectively..

of logical operators for the system. Fixing a diagonal plane labeled by α, we define

Xα =
1

q
m ·

∫ L

0

dx ∂xΦyz

Zα =
1

q

∑
yz ∈ α

Θyz(x)

(3.49)

where yz ∈ α for Xα. The operator Xα cycles the planon 1y−1,z(−1)yz1y,z−1 around

the wire direction while Zα moves the planon around a cycle in the discrete direction.

However one can check this pairing does not produce a diagonal commuation matrix.

Following the procedure in Appendix 3.6.3 one may consider the commutation matrix

of

[Xα, Zβ] =
2πi

q
(δαβ − δα,β±1) . (3.50)

Computing the Smith normal form of this matrix allows one to construct a set of

canonical logical operators X̃α, Z̃a with [X̃a, Z̃b] =
2πiδab
da

such that
∏

a da = |GSD|,

where GSD is given in Eq. (3.48). This procedure is necessary because while the

model may superficially resemble stacks of Laughlin states, the inter-planar couplings

can induce relations amongst logical operators. As an example, consider the case
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when gcd(Ly, Lz) = 6k. One may verify, using Eq. (3.49) the following relations

between the operators Zα:

k−1∑
i=0

(Z6i+1 + Z6i+2 − Z6i+4 − Z6i+5) = 0,

k−1∑
i=0

(
Z6i+1 − Z6i+3 − Z6i+4 + Z6(i+1)

)
= 0.

(3.51)

This lack of linear independence only holds at system size gcd(Ly, Lz) = 6k and is

reflected in the value of the GSD which is q6k−2.

3.4 CSS models

We study an example of the CSS model, given by the following polynomials:

f(y, z) = y + z + yz,

g(y, z) = n+ y + z.

(3.52)

For general CSS models, the Gaussian spectrum is found to be

Ek =

√
v2k2x
π2

+
2Uv

π
(|fk|2 + |gk|2). (3.53)

In this case, we find that the spectrum is fully gapped for any value of n.

If n > 4, it is further shown in Appendix 3.6.5 that all excitations are lineons

moving along the x direction (i.e. the direction of the wires). In other words, since

the excitations can move only along x, it is a “type-II” model in the yz plane. This

105



is somewhat similar to Yoshida’s Sierpinski spin liquid [126], which is a Z2 stabilizer

model with only lineons. To prove this result we generalize the cleaning argument

for Pauli stabilizer models [125, 143] to the present case. The details of the proof

can be found in Appendix 3.6.5. Notice that unlike the proof in Ref. [125] showing

that there are no string operators at all in Haah’s cubic code, here the model actually

has “string operators” in the yz plane. This string operator, if cut into a segment,

however, does not create a charge and its inverse. In fact, if one fixes the charge at

one end of the string operator, the magnitude of the charge on the other end grows

exponentially with the separation between them, costing an exponentially large energy

to create the configuration. Therefore, the charges are still immobile. In Appendix

3.6.4 we compute a charge basis of this model, and the result is given by a+by, where

a, b ∈ Z. Physically it means that there are infinitely many types of excitations at

the (arbitrarily chosen) origin (0, 0) or (1, 0), labeled by two integers, and any other

excitation can be transformed to an excitation at the two sites by applications of local

operators.

3.5 Summary

In this work we have uncovered new classes of 3D fracton models through coupled wire

constructions. When gapped, they are found to be lineon models, exhibiting integral

fusion structures and some with highly unusual bulk-surface correspondence. All

these features distinguish them from previously studied fracton phases, which either

arise in stabilizer models, or are constructed from condensation transitions in coupled
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2D topologically ordered states. A related class of planon phases was recently studied

in Ref. [iCS], whose surface states are similar to the models in this work, but with

clearer layered structures. These models demonstrate the existence of fully gapped

fracton phases with infinite, integral fusion groups, typically associated with gapless

fractonic U(1) gauge theories [144, 145, 146, 147], and it is an important question for

future works to characterize such fracton orders. For example, it is known that in

certain fracton models lineons can have nontrivial braiding statistics [148, 147]. Are

there similar statistical phases for lineons in our models?

Many of our models have gapless modes, and currently we do not have a clear

physical understanding of the nature of these gapless excitations. One possibility is

that they can be interpreted as photons of certain U(1) gauge fields. It will be of great

interest to identify an effective field theory for these phases, perhaps along the lines

of Ref. [67]. It is also important to understand the interactions between the gapped

quasiparticles and the gapless modes, e.g. whether the gapless modes mediate long-

range interactions between gapped excitations. A related question is the stability of

the gapless phase against perturbations.

Another possible direction for generalization is to consider more complicated,

interacting conformal field theories, such as Wess-Zumino-Witten theories with higher

levels, replacing the Luttinger liquid (essentially free bosons) in each wire [61]. This

may lead to interesting non-Abelian lineon phases.
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3.6 Appendix

3.6.1 Coupled wire construction in 2D

Here we consider the coupled wire construction in 2D and show that under fairly

general assumptions the model is an Abelian topological phase. While this result

is certainly expected and a well-known folklore, it has not been explicitly shown in

literature.

The wires are labeled by a single index j. Each wire is a Luttinger liquid described

by a K matrix Kw. We define l1 · l2 = lT1Kwl2. For the gapping term, without loss of

generality we only include interactions between nearest-neighboring wires:

Hint = −U
∑
j

N∑
α=1

∫
dx cosΘα

j,j+1. (3.54)

Here Θα
j,j+1 = PT

αΦj +QT
αΦj+1 where Pα, Qα are integer vectors.

We make the following assumptions about P,Q’s:

1. They should satisfy the null conditions

Pα · Pβ +Qα ·Qβ = 0, Pα ·Qβ = 0. (3.55)

So that the gapping terms commute with each other.

2. All bosonic fields are gapped out when the system is closed. Since the number

of gapping terms is the same as the fields, as long as the gapping terms are

linearly independent the condition is satisfied.
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3. Topological order condition: if a local vertex operator creates no excitations,

it must be a linear superposition of the “stabilizers” (with integer coefficients).

For example, on each site, if l ∈ Z2N satisfies l · Pα = l ·Qα = 0 for all α, then

l = 0. Therefore, viewed as vectors over R2N , {Pα, Qα} span a complete basis.

Moreover, the subspace spanned by {Pα} and that of {Qα} are orthogonal.

Two useful corollaries follow: 1) Kαβ = Pα · Pβ is an invertible matrix. 2) if

l · Pα = 0 for all α, then l is a linear superposition of Qα’s (over Z), and vice

versa.

As a special but important case of the topological order condition, there should

be no local degeneracy. In other words, there exist no integers mα such that∑
αmαΘ

α
j,j+1 is a non-primitive vector. This leads to the following condition:

let M denote the following N × 4N matrix

M =



P1 Q1

P2 Q2

...
...

PN QN


(3.56)

then the Smith normal form of M must have all non-zero diagonals being ±1.

In fact one should allow superposition of Θα
j,j+1’s from a finite cluster of wires.

Now we classify the superselection sectors of kink excitations, which give anyon

types of the topological phase. They are defined as the equivalence classes of localized

excitations, up to local ones. In the coupled wire model, first consider kinks of Θα at
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the j, j + 1 bond. They can be labeled by a vector e = (e1, e2, . . . , eN) ∈ ZN with a

eα-kink in Θα
j,j+1.

Next we classify which kinks can be locally created. It is not difficult to show

from the topological order condition that it is sufficient to consider a two-wire local

operator ei(lT1Φj+lT2Φj+1). In order for the operator to only create excitations on the

bond j, j + 1, one must have

l1 ·Qα = 0, l2 · Pα = 0,∀α. (3.57)

From our non-degeneracy assumption, we see that l1 =
∑

βm1βPβ, l2 =
∑

βm2βQβ.

Thus the excitation vector is elocα =
∑

β(m1βPα · Pβ + m2γQα · Qγ) =
∑

β(m1β −

m2β)Kαβ.

Therefore, the equivalence class is given by ZN mod out vectors generated by row

(or column) vectors of K. Formally this agrees with the superselection sectors of an

Abelian Chern-Simons theory with the K matrix K.

We also need to understand how kinks on different bonds are related. Suppose

there is a kink e(j−1) on j − 1, j bond. To locally transform it into a kink on j, j + 1

bond, apply a vertex operator eilTΦj at site j, where l must satisfy.

Qα · l = −e(j−1)α . (3.58)

Let Q denote the N × 2N matrix formed by Qα’s. Eq. 3.58 is solvable for any e if

and only if the Smith normal form of Q has only ±1 entries. It is not clear whether
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this follows from the conditions imposed on P and Q, but we do not know of any

counterexamples. Assuming this is the case, then eilTΦ annihilates the kinks on j−1, j

bond and create new kinks on j, j + 1 bond, given by e′ = P · l. The superselection

sector [e′] may be different from [e], but since there are only a finite number of them,

after sufficiently many steps the kinks can be transported without changing its charge

type.

Now we consider moving excitations along the wire direction. Consider an excitation

e on bond j, j + 1, and an operator Wj(x) = ei
∑

α wαPT
αΦj(x), where wα are rational

numbers. Wj commutes with the gapping terms at the j − 1, j bond and creates

excitations at the j, j + 1 bond, in particular wαPα · Pβ for Θβ
j,j+1. Then if we choose

w = K−1e, Wj defines a string operator to move e along the wire:

W †(x2)W (x1) ∼ e
i
∑

α wαPT
α

∫ x2
x1

∂xΦj . (3.59)

We have essentially described the anyon string operators, and can compute their

braiding statistics. However, the string operator that moves an anyon across wires

does not have explicit form, so we do not have general expressions for the braiding

statistics.

We also need to consider the spectrum of Gaussian fluctuations. While we do

not have closed-form expressions for the general case, we expect that the Gaussian

spectrum should be gapped when all the conditions on P and Q are satisfied and the

K matrix is invertible.
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Example with N = 1

We consider fermionic systems with N = 1. We take P = (p1, p2) and Q = (p2, p1),

where gcd(p1, p2) = 1. It is easy to check that all our conditions are satisfied. Local

excitations are of the form ±(p21 − p22), so the group is just Z|p21−p22|.

A period-1 string is given by l = (1, 1)T, which generates an excitation p1 − p2.

If p1 − p2 ̸= ±1, to get a “unit” excitation one needs to consider l1 = (x, y)T, l2 =

(y, x)T, where xp1 − yp2 = 1 (always solvable as gcd(p1, p2) = 1). It implies that

translation along y can act nontrivially on anyons: under translation Ty, a kink of

strength p1x − p2y becomes p1y − p2x. Notice that T 2
y = 1. As an example, if

p1 = 5, p2 = 2, the anyons form a Z8 group and Ty takes a ∈ Z8 to a5. Ref. [60]

considered p1 = m+1
2
, p2 =

m−1
2

to obtain K = (m). In this case, Ty does not act. This

kind of Laughlin states enriched nontrivially by lattice translation was also studied

in Ref. [149].

Now consider the system has an edge at j = 0. It is easy to check that the only

local vertex operator is eiQTΦ0 . The edge theory is thus a chiral Luttinger liquid, with

1× 1 K matrix: K = (p22 − p21).

3.6.2 Gaussian spectrum

In the U →∞ limit of coupled wire models, the gapping terms pin the fields Θ = 0.

Here we study small oscillations of Θ around the minima by expanding cosΘ ∼ −1+

Θ2

2
and solve the resulting quadratic theory. Below we introduce a mode expansion for

the various bosonic fields involved and review how one finds single-particle spectrum
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of a quadratic Hamiltonian of bosonic creation and annihilation operators. We work

out the spectrum of the chiral plaquette model as an example.

Mode expansion of bosonic fields

Mean field theory gives the following translationally invariant effective Hamiltonian

Heff =

∫ L

0

dx
∑
r,q

{
v

2π

[(
∂xϕ

(q)
r

)2
+
(
∂xθ

(q)
r

)2]
+
U

2
Θ2

r

}
. (3.60)

where the index q allows for more than one Luttinger liquid per wire. We use the

following mode expansion

θ(q)r (x) = i

√
π

LNw

∑
kx ̸=0

∑
k

1√
|kx|

(
a†k,q − a−k,q

)
e−i(kxx+k·r)

ϕ(q)
r (x) = −i

√
π

LNw

∑
kx ̸=0

∑
k

sgn kx√
|kx|

(
a†k,q + a−k,q

)
e−i(kxx+k·r),

(3.61)

where the index k = (kx,k) and Nw is the number of wires. Canonical commutation

relations are imposed on a and a†’s: [ak,q, a
†
l,q′ ] = δklδqq′ , [ak,q, al,q′ ] = [a†k,q, a

†
l,q′ ] = 0.

Consider the Fourier representation of the kinetic part of Heff:

∫
dx
∑
r

(
∂xθ

(q)
r

)2
=
∑
k

|kx|
(
a†k,qak,q + a†−k,qa−k,q − a†−k,qa†k,q − ak,qa−k,q

)
∫

dx
∑
r

(
∂xϕ

(q)
r

)2
=
∑
k

|kx|
(
a†k,qak,q + a†−k,qa−k,q + a†−k,qa

†
k,q + ak,qa−k,q

)
.

(3.62)

The term Θ2 will involve terms of the form ϕ
(q)
r ϕ

(q′)
r+∆, θ(q)r θ

(q′)
r+∆ and ϕ(q)

r θ
(q′)
r+∆ where
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∆ is some vector in the yz plane. The mode expansion for these terms is as follows

∫
dx
∑
r

ϕ(q)
r ϕ

(q′)
r+∆ ∼

∑
kx ̸=0,k

eik·∆

|kx|
(
a†k,qak,q′ + a†k,qa

†
−k,q′ + a−k,qa

†
−k,q′ + a−k,qak,q′

)
∫
dx
∑
r

θ(q)r θ
(q′)
r+∆ ∼ −

∑
kx ̸=0,k

eik·∆

|kx|
(
−a†k,qak,q′ + a†k,qa

†
−k,q′ − a−k,qa†−k,q′ + a−k,qak,q′

)
∫
dx
∑
r

ϕqrθ
q′

r+∆ ∼
∑
kx ̸=0,k

sgn(kx)

|kx|
eik·∆

(
−a†k,qak,q′ + a†k,qa

†
−k,q′ + a−k,qa

†
−k,q′ − a−k,qak,q′

)
(3.63)

Using these expressions above one can construct a BdG type Hamiltonian for the

corresponding quadratic bosonic theory.

Bogoluibov transformation for bosons

We will be studying theories which are quadratic in bosonic creation/annihilation

operators. Here we describe how to find the spectrum for a general quadratic Hamiltonian

of bosons:

H =
∑
ij

(
Tija

†
iaj + Uija

†
ia
†
j + U∗ijajai

)

= (a† a)h

 a

a†


(3.64)

where the “first-quantized” Hamiltonian h is defined as:

h =

 T U

U∗ T ∗

 . (3.65)
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Here T is Hermitian and U is symmetric. ai’s satisfy the canonical commutation

relations [ai, a
†
j] = δij. We perform a canonical transformation to a new set of

annihilation operators b in which the Hamiltonian is diagonalized:

H = (b† b)

Λ 0

0 Λ


 b

b†

 where

 a

a†

 = W †

 b

b†

 (3.66)

Here Λ is the diagonal matrix of single-particle energy eigenvalues. Note the requirement

that bi satisfy the canonical commutation relations for bosons means that the Bogoluibov

transformation W is symplectic:

WJW † = J, J =

1 0

0 −1

 . (3.67)

So Λ does not simply correspond to the eigenvalues of the “first-quantized” Hamiltonian

matrix h. However, using the fact that JW †J = W−1, we can rewrite the diagonalization

equation  T U

U∗ T ∗

 = W

Λ 0

0 Λ

W † (3.68)

as a more standard eigenvalue problem:

 T −U

U∗ −T ∗

 = W

Λ 0

0 −Λ

W−1. (3.69)
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So we can solve for the spectrum by diagonalizing the matrix

 T −U

U∗ −T ∗

 .

Spectrum of the chiral plaquette models

Here, as an example, we calculate the spectrum of the chiral plaquette models. These

models were written in the chiral basis, where m·Φ = m1ϕL+m2ϕR. We work, because

of the simplicity of the mode expansion, in the (ϕ, θ) basis with m · Φ = aϕ + bθ,

where a = m1 +m2 and b = m1 −m2 is clear. Similarly c = n1 + n2, d = n1 − n2.

Define the following functions of k

fϕ = a2 + c2 + a2 cos(ky + kz) + c2 cos(ky − kz) + 2ac(cos kz + cos ky),

fθ = b2 + d2 − b2 cos(kz + ky)− d2 cos(ky − kz) + 2bd(cos kz − cos ky),

fϕθ = 2i sgn(kx) [(ad− bc) sin kz − (ad+ cb) sin ky − ab sin(ky + kz)− cd sin(ky − kz)] .

.

(3.70)

Schematically, Θ2 term involves terms of the form ϕϕ, θθ and ϕθ+ θϕ. Using the
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results of Appendix 3.6.2 one can check that

(ϕϕ)k ∼
fϕ(k)

|kx|
(
a†kak + a†ka

†
−k + a−ka

†
−k + a−kak

)
,

(θθ)k ∼
fθ(k)

|kx|
(
a†kak + a†ka

†
−k − a−ka†−k − a−kak

)
,

(ϕθ + θϕ)k ∼
fϕθ(k)

|kx|
(
a†ka

†
−k − a−kak

)
.

(3.71)

The single particle hamiltonian hk then has the following form

hk =

(
a†k a−k

)Tk Uk

U∗k Tk


 ak

a†−k

 (3.72)

where

Tk =
v

π
|kx|+

U

|kx|
(fϕ + fθ)

Uk =
U

|kx|
(fϕ − fθ + fϕθ) .

(3.73)

Diagonalizing the matrix Tk −Uk
U∗k −Tk


gives the spectrum

Ek =
√
v2|kx|2 + vU (fϕ + fθ). (3.74)

So to determine if the fluctuations are gapped one needs to check that min(fϕ+fθ) > 0.
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We define α = ky+kz
2

, β = ky−kz
2

. One can show that fϕ(k) + fθ(k) = |fk|2 ≥ 0 where

|fk| = |m1e
iα +m2e

−iα + n2e
iβ + n1e

−iβ|. (3.75)

Thus one just needs to find the zero locus of |fk|, given by the following equations:

(m1 +m2) cosα + (n1 + n2) cos β = 0,

(m1 −m2) sinα + (n2 − n1) sin β = 0.

(3.76)

Let us define

s = (m1 +m2)
2(n1 − n2)

2,

t = (m1 −m2)
2(n1 + n2)

2,

u = (n2
1 − n2

2)
2.

(3.77)

Assume for now u ̸= 0. We can easily find

cos2 α =
t− u
t− s , sin

2 α =
s− u
s− t . (3.78)

So for both expressions to be positive-definite, we must have

(t− s)(t− u) ≥ 0, (s− t)(s− u) ≥ 0, (3.79)

which implies that either t ≤ u ≤ s or s ≤ u ≤ t. It is easy to see that the s = t case

is included.
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Therefore, if (t− u)(s− u) > 0, there are no zeros for |fk|2, which implies that it

must have a positive minimum. One can further check that this condition also covers

the u = 0 case.

3.6.3 Ground state degeneracy on torus

When the model is fully gapped, an interesting quantity to consider is the ground

state degeneracy (GSD) with periodic boundary conditions imposed. The GSD can

be computed using a method introduced by Ganeshan and Levin [150]. In their

approach, all fields are treated as real-valued, with the Hamiltonian still given by Eq.

3.4. Compactness is then imposed dynamically by adding

− V
∑
r

cos 2πQa
r, Q

a
r =

1

2π

∫
dx ∂xΦ

a
r(x). (3.80)

Collecting all the pinned fields C = {Θα
r (x), Q

a
r}, we compute their commutation

matrix Z. Notice that Θα
r commute with each other, so do the Qa

r’s, thus the nonzero

commutators only occur between Θ and Q, and the commutation matrix takes an

off-diagonal form:

Z =

 0 Z1

−ZT
1 0

 . (3.81)

We then find the Smith normal form of Z1:

AZ1B = D, (3.82)
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where A and B are unimodular integer matrices. Then define

V =

 0 A

BT 0

 , (3.83)

and one obtains

VZVT =

 0 −D

D 0

 . (3.84)

We assume that diagonal elements of D are ordered such that the first I of them,

d1, d2, · · · , dI are non-zero. Then the GSD is given by |d1d2 · · · dI |. The matrix V in

fact gives the logical operators that span the ground state space [150]. More precisely,

the commutation matrix is “diagonalized” in the new basis

C ′ = VC =

 AQ

BTΘ

 . (3.85)

This form of C ′ suggests that the logical operators come in two conjugate groups,

one being AQ (with additional 1/di factors that we haven’t included yet), physically

string operators along x, the other being BTΘ, which can be generally interpreted as

surface operators in the transverse directions.

3.6.4 Algorithm to find a charge basis

We first define the charge basis in terms of the excitation map discussed in the main

text.
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Definition 3.6.1. Charge basis

Any local operator is said to create a trivial charge configuration. In other words,

any charge cluster that belongs to Imϵ where ϵ is the excitation map, is trivial. We

now denote the set of all excitations by E, also referred to as the excitation module.

We use Theorem 1 of Ref. [141] which states that the equivalence class of excitations

modulo trivial ones is a torsion element of the cokernel of the excitation map. In other

words, any topologically nontrivial local charge is an element of T coker ϵ = T (E/Imϵ).

Torsion submodule T (M) of a module M is defined as T (M) = {m ∈ M |∃r ∈

R\{0} such that rm = 0}.

In order to calculate the charge basis given by T coker ϵ = T (E/Imϵ), we first note

that we consider the excitation map represented by a matrix with matrix elements

belonging to a polynomial ring R[x, y, z] over the ring of integers Z i.e. each element

is polynomials in variables y and z with coefficients of monomials in Z. We can

always bring the excitation map to this form i.e. with non-negative exponents of

translation variables since we can choose any translate of the stabilizer generators as

our generating set to write down a polynomial representation of the excitation map.

The same holds for the charge basis. Even though an arbitrary charge configuration

is expressed as a Laurent polynomial, if it is finite, we can change our choice of origin

to write it as a polynomial with non-negative exponents of translation variables i.e.

over a polynomial ring. We will use this idea to compute the charge basis using

the trivial charge polynomials expressed in the non-negative cone i.e. with non-

negative exponents of translation variables. Any non-trivial charge configuration can
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be expressed using the elements of this charge basis up to a translation.

We now introduce some definitions and concepts needed in the calculation of the

charge basis. These definitions are taken from Ref. [151].

Definition 3.6.2. Groebner basis of an ideal

Groebner basis of an ideal I is defined as a basis in which the leading term of every

element divides the leading term of any polynomial in the ideal I.

Consider the Groebner basis G = {g1, g2, ..., gt} for the ideal I. With respect

to the set {lt(g1), ....lt(gt)} of leading terms of G, consider the saturated subsets

J ⊂ {1, ..., t}.

Definition 3.6.3. Saturated subset

For any subset J ⊆ {1, ..., s}, set monomials XJ = LCM(Xj|j ∈ J) where Xj are

monomials. We say that J is saturated with respect to X1, ..., Xs provided that for

all j ∈ {1, ..., s}, if Xj divides XJ , then j ∈ J . In other words, it is saturated if all

the monomial from X1 to Xs divide the LCM of the smaller subset defined by J . For

example, consider the set (X1 = xy,X2 = x2, X3 = y,X4 = x4) and choose the subset

(X1 = xy,X2 = x2). The LCM of elements in the subset is x2y which is divisible by

X3 but X3 /∈ J and hence the subset (X1, X2) is not saturated.

For each saturated subset J ⊆ {1, . . . , t}, we let IJ denote the ideal of R generated

by {lc(gi)|i ∈ J} where lc denotes the leading coefficient. CJ be the complete set of

coset representatives for R/IJ . Assume that O ∈ CJ and also for each power product

X, let JX = {lm(gi)|lm(gi) divides X} where lm(gi) denotes the leading monomial of

gi.
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Definition 3.6.4. Totally reduced polynomial

A polynomial r ∈ A is totally reduced provided that for every power product X, if

cX is the corresponding term of r, then c ∈ CJX . For a given polynomial r ∈ A, a

normal form for f provided that f ≡ r (modI) and r is totally reduced.

Now we state the main theorem (Theorem 4.3.3. of Ref. [151] that describes the

result for the coset representatives of the quotient R/IJ

Theorem 3.6.5. Let G be a Groebner basis for the non-zero ideal I of A. Assume

that for each saturated subset J ⊆ {1, ..., t}, a complete set of coset representatives

CJ for the ideal IJ is chosen. Then, every f ∈ A has a unique normal form. The

normal form can be computed effectively provided linear equations are solvable in R

and R has effective coset representatives.

The actual calculation is best understood through examples. We now show an

example from different classes of models mentioned in the main text.

Charge basis for different models

• We first consider the CSS model.

ϵ =

 0 0 yz + y + z n+ y + z

n+ y + z −(yz + y + z) 0 0

 . (3.86)

where n is an integer. Since there is a duality between the ϕ and θ sectors, we can

consider only one sector, let’s say ϕ and calculate the charge basis in the ϕ sector.

The excitation map (3.86) implies that any excitation pattern that belongs to
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the im ϵ is a linear combination of the two polynomials as shown in the map i.e.

it belongs to the ideal ⟨yz + y + z, n+ y + z⟩. The Groebner basis of the ideal

with lexicographic ordering is given by {g1 = y+ z + n, g2 = z2 + nz + n}. The

leading terms are then given by y and z2 i.e. leading monomials y and z2 with

coefficients 1 and 1. Now we use the definition that for each power product X,

JX = {mi| lm(gi) divides X} where lm denotes the leading monomial. Then

we get the saturated subsets J1 = ∅, Jyµy = {m1}, Jz = ∅, Jzµz>1 = {m2},

Jy = {m1} and Jyµy zµz>1 = {m1,m2} where µy and µz are non-zero integer

exponents of y and z. Thus, the corresponding ideals IJ are IJ1 = IJz = 0,

IJyµy = ⟨1⟩, IJ
zµz≥2

= ⟨1⟩ and IJyµy zµz
= ⟨1⟩. We get CJ1 = CJz = Z while all

other coset representatives are 0. Thus, a complete set of coset representatives

for Z[y, z]/I is the set {a+ bz|a, b ∈ Z}.

We can also simply arrive at this result by writing down relations y = −n − z

and yz = n from the relations y+z+n = 0 and y+z+yz = 0 in the ideal. Using

these two relations, we get z2 + nz + n = 0. Hence, an arbitrary polynomial

in y and z can be expressed only in terms of monomials 1 and z since y and

z2 can be reduced to polynomials in 1 and z. The choice of basis monomials is

not unique. Notice that because our original ideal is symmetric in y and z, we

can also use the relation y2 + ny + n = 0 and express an arbitrary polynomial

in terms of basis monomials 1 and y i.e. as {a+ by|a, b ∈ Z}.
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• We now consider a family of models described by

ϵ =

(
m1 + n2y + n1z +m2yz m2 + n1y + n2z +m1yz

)
. (3.87)

1. m = (p, q) and n = (−p, q)

2. m = (p+ 1, p) and n = (1, 1)

3. m = (p, 0) and n = (0, 1)

1. We consider the first example in this family for particular values of p and

q as p = 3, q = 2 such that

ϵ =

(
3 + 2y − 3z + 2yz 2− 3y + 2z + 3yz

)
. (3.88)

The excitation map (3.88) implies that the trivial charge configuration

ideal is given by

⟨3 + 2y − 3z + 2yz, 2− 3y + 2z + 3yz⟩ .

The Groebner basis of the ideal with lexicographic ordering is given by

{g1 = yz − 5y + 5z − 1, g2 = 12y − 13z + 5, g3 = 13z2 − 10z + 13}. The

leading terms are then given by yz, 12y and 13z2 i.e. leading monomials

m1 = yz, m2 = y and m3 = z2 with coefficients 1, 12 and 13. Then, we

write the saturated subsets, J1 = ∅, Jy = {m2}, Jz = ∅, Jzµz>1 = {m3},

Jyµy z = {m1,m2} and Jyµy zµz>1 = {m1,m2,m3} where µy and µz are non-
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zero integer exponents of y and z. Thus, the corresponding ideals IJ are

IJ1 = IJz = 0, IJyµy = ⟨12⟩, IJ
zµz≥2

= ⟨13⟩ and IJyµy zµz
= ⟨1⟩. We

get CJ1 = CJz = Z, CJyµy = Z12, CJ
zµz≥2

= Z13 while all other coset

representatives are 0. Thus, a complete set of coset representatives for

Z[y, z]/I is the set {a+ byµy + cz + dzµz>1|a, c ∈ Z, b ∈ Z12, d ∈ Z13}.

2.

ϵ =

(
(p+ 1) + y + z + pyz p+ y + z + (p+ 1)yz

)
. (3.89)

The excitation map (3.89) implies that the trivial charge configuration

ideal is given by

⟨(p+ 1) + yz + pyz, p+ y + z + (p+ 1)yz⟩ .

The Groebner basis of the ideal with lexicographic ordering is given by

{g1 = y+z+2p+1, g2 = z2+(2p+1)z+1}. The leading terms are then given

by y and z2 i.e. leading monomials m1 = y and m2 = z2 with coefficients 1

and 1. Then, we get the saturated subsets J1 = ∅, Jyµy = {m1}, Jz = ∅,

Jzµz>1 = {m2}, Jyµy z = {m1} and Jyµy zµz>1 = {m1,m2} where µy and µz

are non-zero integer exponents of y and z. Thus, the corresponding ideals

IJ are IJ1 = 0, IJz = 0, IJyµy = ⟨1⟩, IJ
zµz≥2

= ⟨1⟩ and IJyµy zµz
= ⟨1⟩.

We get CJ1 = CJz = Z while all other coset representatives are 0. Thus, a

complete set of coset representatives for Z[y, z]/I is the set {a+bz|a, b ∈ Z}.
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3.

ϵ =

(
p+ y z + pyz

)
. (3.90)

where p is an integer. The excitation map (3.90) implies that the trivial charge

configuration ideal is given by ⟨p+ y, 1 + py⟩. The Groebner basis of the ideal

with lexicographic ordering is given by {g1 = y + p, g2 = p2 − 1}. The leading

terms are then given by y and p2 − 1 i.e. the leading monomials m1 = y and

m2 = 1 with coefficients 1 and p2 − 1. Then we get the saturated subsets

J1 = {m2}, Jyµy = {m1,m2}, Jzµz = {m2} and Jyµy zµz = {m1,m2} where

µy and µz are positive integer exponents of y and z. Thus, the corresponding

ideals IJ are IJ1 = ⟨p2 − 1⟩, IJyµy = ⟨1⟩, IJzµz = ⟨p2 − 1⟩ and IJyµy zµz
= ⟨1⟩.

We get CJ1 = Zp2−1 and CJzµz = Zp2−1 while the other coset representatives

are 0. Thus, a complete set of coset representatives for Z[y, z]/I is the set

{a+ bzµz |a, b ∈ Zp2−1}.

• We now consider another family of models given by

ϵ =

(
m1 − n2y + n1z −m2yz m2 − n1y + n2z −m1yz

)
. (3.91)

where m =
(
1−q
2
, 1+q

2

)
and n = (q,−q). where q is odd. For q = 3, we get

ϵ =

(
−1 + 3y + 3z − 2yz 2− 3y − 3z + yz

)
. (3.92)
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The excitation map (3.92) implies that the trivial charge configuration ideal is

given by

⟨−1 + 3y + 3z − 2yz, 2− 3y − 3z + yz⟩ .

The Groebner basis of the ideal with lexicographic ordering is given by {g1 =

yz − 1, g2 = 3y + 3z − 3, g3 = 3z2 − 3z + 3}. The leading terms are then given

by yz, 3y and 3z2 i.e. leading monomials m1 = yz, m2 = y and m3 = z2 with

coefficients 1, 3 and 3. Then, we get the saturated subsets J1 = ∅, Jyµy =

{m2}, Jz = ∅, Jzµz>1 = {m3}, Jyµy z = {m1,m2} and Jyµy zµz>1 = {m1,m2,m3}

where µy and µz are non-zero positive integer exponents of y and z. Thus,

the corresponding ideals IJ are IJ1 = IJz = 0, IJyµy = ⟨3⟩, IJ
zµz≥2

= ⟨3⟩ and

IJyµy zµz
= ⟨1⟩. We get CJ1 = CJz = Z, CJyµy = Z3 and CJzµz = Z3 while all

other coset representatives are 0. Thus, a complete set of coset representatives

for Z[y, z]/I is the set {a+ byµy + cz + dzµz>1|a, c ∈ Z, b, d ∈ Z3}.

3.6.5 Proof that the model Eq. 3.52 has only lineons

Recall that the stabilizer map is given by

σ =



x+ y + xy

n+ x+ y

n+ x+ y

−(x+ y + xy)


. (3.93)
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Formally the stabilizers can be written as

XX XI

IXn XX

ZZ−1 ZnI

IZ−1 ZZ−1

(3.94)

Here for brevity and in analogy with stabilizer codes we denote XI ≡ eiϕ1 , IX ≡

eiϕ2 , ZI ≡ eiθ1 , IZ ≡ eiθ2 , suppressing the x coordinate dependence. We consider

cleaning of arbitrary pair creation operators to show that there is nontrivial logical

string operator. Since the code is “CSS,” cleaning the pair creation operators of one

type would be enough. Thus, we consider Z pair creation operators.

Cleaning to a minimal box containing the excitation patches

We can clean an arbitrary pair creation operator that creates a pair of excitation

patches to a minimal box that contains the two patches. This can be done by using

the commutation constraints due to the corners shared with X stabilizers, i.e. where

the independent verticesXI andXX of the X stabilizer operator hits the pair creation

operator enclosing the excitation patches. There are two orthogonal edges with these

type of independent vertices, XX and XI, in the X stabilizer. Such edges are called

good edges for cleaning [125] and having two of them here implies that one can clean

the Z pair creation operator down to a minimal box containing the excitation patches

as shown in Figs. 3.4, 3.5 and 3.6 using commutation constraints with the corners of

the kind XX and XI of the X stabilizer.
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Diagonal pair creation operators

The figures 3.4(a) and 3.5(a) can be cleaned to flat-rod configurations by just step-

wise cleaning of corners. For example, in Fig. 3.4a, use [O,XX] = 0 which gives

O = ZZ−1 and thus it can be cleaned by multiplying the Z-stabilizer. The process

can be repeated for O1 and O2 and so on to yield Fig. 3.4(c). The same process can

be carried out for configuration in fig. 3.5(a) to yield Fig 3.5c using the constraint

[O,XI] = 0 which yields O = IZ, II.

(a) (b) (c)

Figure 3.4: Cleaning of pair creation operators.

(a) (b) (c)

Figure 3.5: Cleaning of pair creation operators.

Horizontal and vertical strips

The horizontal and vertical strips can be reduced again to the lines. For the horizontal

line, we can show the deformation result for recursion as follows. Suppose the operator
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on site i is (ai, bi). Then they must satisfy

ai + bi + ai+1 = 0, nbi + ai+1 + bi+1 = 0. (3.95)

It follows that ai+2 = nbi, and

n(ai + ai+1) + ai+2 = 0. (3.96)

The characteristic polynomial is x2 + nx + n = 0, with roots ω1,2 =
−n±
√
n(n−4)
2

. So

we can generally write

ai = u1ω
i
1 + u2ω

i
2. (3.97)

Then

bi = −ai − ai+1 = −u1(1 + ω1)ω
i
1 − u2(1 + ω2)ω

i
2. (3.98)

It is easy to see that if n > 4, both ω1,2 are real and |ω1,2| > 1, so ai or bi grows

exponentially large with i.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Cleaning of pair creation operators.
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Similarly, for the vertical line, we have the recursion relations

ai + ai+1 + bi+1 = 0, ai + bi + nbi+1 = 0. (3.99)

It follows that ai = nbi+2, and

nbi+2 + nbi+3 + bi+1 = 0. (3.100)

The characteristic polynomial is nx2 + nx + 1 = 0, with roots λ1,2 = −1
2
±
√

1
4
− 1

n
.

So we can generally write

bi = u1λ
i
1 + u2λ

i
2. (3.101)

Then

ai = −bi − nbi+1 = −u1(1 + nλ1)λ
i
1 − u2(1 + nλ2)λ

i
2. (3.102)

When n ≥ 4, both roots |λ1,2| < 1. As a result, ai and bi decays exponentially and

the string can not extend to arbitrarily long length.

We have shown that both horizontal and vertical string operators must create

charges exponentially large in the length of the string at least on one end. Now we

further prove explicitly that no string operators can create charges of opposite values,

meaning nbi = −a0− b0 and ai+ bi = −a0. Consider the horizontal line. This implies

n[u1(1 + ω1)ω
i
1 + u2(1 + ω2)ω

i
2] = u1(2 + ω1) + u2(2 + ω2), (3.103)
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and

u1ω
i+1
1 + u2ω

i+1
2 = u1 + u2. (3.104)

They have no non-zero solution for any i. Similar holds for the vertical relations.

L shaped operators

(a) (b)

(c) (d)

Figure 3.7: L shaped operators.

We now consider string operators that could be formed from L shaped operators in

Fig. 3.4(c) and Fig. 3.5(c). Using the cleaning done for the horizontal and vertical

strips, we can reduce these operators to width 1 operators shown in Fig. 3.7. The

lines do not join exactly at the corner in order to cancel out the excitations around it.

The patches shown at the ends show the excitation strengths at those ends. We now
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show string operator formed from such joining L shaped width 1 operators cannot

form a nontrivial logical operator.

L shaped operators in Fig. 3.7(a) and (b)

In Fig.3.7a, due to the commutation with stabilizer generators, the vertices Oh0 and

Ov0 have constraints [Oh0, IX
n] = [Ov0, IX

n] = 0 which imply Oh0 = (ZI)nh ≡ (nh, 0)

and Ov0 = (ZI)nv ≡ (nv, 0). In order to cancel the excitation shared by the two lines

of the L shape as shown, we get nh + nv = 0. Along the horizontal line, we have the

recursion constraints due to the commutation as follows

ahi+1 + bhi+1 + ahi = 0 (3.105)

nbhi+1 + ahi + bhi = 0 (3.106)

which give the recursive equation

nbhi+2 + nbhi+1 + bhi = 0. (3.107)

This can be solved using the quadratic ny2 + ny + 1 = 0 which has two roots λ1, λ2.

Thus, we get for the other corner (ahi , b
h
i ),

bhi = uh1λ
i
1 + uh2λ

i
2 (3.108)

ahi = −uh1(1 + nλ1)λ
i
1 − uh2(1 + nλ2)λ

i
2. (3.109)

Using the constraint Oh0 ≡ (ah0 , b
h
0) = (−nv, 0), we get uh1 = −uh2 = −nv

n(λ2−λ1) .
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Similarly, for the vertical line, we have

avi + avi+1 + bvi+1 = 0 (3.110)

avi + bvi + nbvi+1 = 0 (3.111)

which gives the recursive equation

nbvi+2 + nbvi+1 + bvi = 0 (3.112)

with roots λ1,2 of the same characteristic equation as before i.e. ny2 + ny + 1 = 0.

Hence, we again get

bvi = uv1λ
i
1 + uv2λ

i
2 (3.113)

avi = −uv1(1 + nλ1)λ
i
1 − uv2(1 + nλ2)λ

i
2. (3.114)

Using Ov0 ≡ (av0, b
v
0) = (nv, 0), we get uv1 = −uv2 = nv

n(λ2−λ1) . Now, in order for the L

shape to form a string operator, we need to cancel out the excitation created at the

two ends. Hence, we require avi = 0, ahi = 0 and bvi + bhi = 0. But

avi =
n1

λ2 − λ1
(λi+2

1 − λi+2
2 ). (3.115)

We notice that both λ1 and λ2 are negative with |λ2| > |λ1| and thus avi = 0 is not

possible for n > 4.

We can have the same L shape with different boundary operators at the corner for
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the horizontal and vertical segments, as shown in Fig.3.7b. In this case, in order to

cancel the excitations in the plaquettes, we get Oh0 = (nnv, 0) and Ov0 = (nv,−nv).

The recursion relations are the same as the L shape in Fig.3.7a because of the same

commutation constraints along the edge. Thus, the solutions are of the form (3.113)

and (3.114) for the horizontal segment and of the form (3.113) and (3.114) for the

vertical segment. Only the boundary conditions are different i.e. Oh0 = (ah0 , b
h
0) =

(nv, 0) and Ov0 = (av0, b
v
0) = (nv,−nv). Hence the solutions for uvi are modified to be

uv1 = nvλ2
λ2−λ1 and uv2 = −nvλ1

λ2−λ1 . To form a string operator, we require as in Fig. 3.7a,

avi = 0, ahi = 0 and bvi + bhi = 0. We have

avi =
nvλ1λ2
λ1 − λ2

[
(1 + nλ2)λ

i−1
2 − (1 + nλ1)λ

i−1
1

]
. (3.116)

We again notice that both λ1 and λ2 are negative with |λ2| > |λ1|, and so it is

impossible to have avi = 0.

L shaped operators in Fig. 3.7(c) and (d)

In Fig. 3.7c, we have [Oh0, XX] = [Ov0, XX] = 0 such that Oh0 = (ZZ−1)nh and

Ov0 = (ZZ−1)nv . In order to cancel the common excitation, we require nh = nnv.

Thus, Oh = (ZZ−1)nh ≡ (nnv,−nnv) and Ov = (ZZ−1)nv ≡ (nv,−nv). For the vertical

line, we have the same constraints as (3.110) and (3.111), thus we get

bvi = uv1λ
i
1 + uv2λ

i
2 (3.117)

avi = −uv1(1 + nλ1)λ
i
1 − uv2(1 + nλ2)λ

i
2. (3.118)
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with roots λ1,2 of the same characteristic equation as before i.e. nx2 + nx + 1 = 0.

Using O2 ≡ (av0, b
v
0) = (n2,−n2), we get uv1 =

n2λ2
λ1−λ2 and uv2 =

−n2λ1
λ1−λ2 . For the horizontal

line, we get

nbhi + ahi+1 + bhi+1 = 0 (3.119)

ahi + bhi + ahi+1 = 0 (3.120)

which leads to n(ahi + ahi+1) + ahi+2 = 0. This leads to

ahi = uh1ω
i
1 + uh2ω

i
2 (3.121)

bhi = n−1(uh1ω
i+2
1 + uh2ω

i+2
2 ), (3.122)

where ω1, ω2 are roots of the characteristic equation x2 + nx + n = 0. Using ah0 =

uh1 + uh2 = nnv and bh0 = −nnv, we get uh1 =
−nnv(n+ω2

2)

ω2
1−ω2

2
and uh2 =

−nnv(n+ω2
2)

ω2
1−ω2

2
. We get

ahi + bhi =
n2nv

ω2
2 − ω2

1

(1 + n−1ω2
1)(1 + n−1ω2

2)(ω
i
1 − ωi2). (3.123)

The cancellation of excitations requires avi + bvi = 0, avi + nbhi = 0 and ahi + bhi = 0.

From (3.123), we see ahi + bhi = 0 is not possible for n > 4.

We can have the same L shape with different boundary operators at the corner

for the horizontal and vertical segments, as shown in Fig.3.7d. In this case, in order

to cancel the excitations in the plaquettes, we get the boundary conditions Oh0 =

(ah0 , b
h
0) = (−nv, nv) and Ov0 = (av0, b

v
0) = (nv, 0). Hence the solutions for uh/vi are
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modified as follows

uh1 =
nnv + nvω

2
2

ω2
1 − ω2

2

(3.124)

uh2 =
−nvω2

1 − nnv
ω2
1 − ω2

2

(3.125)

which gives

ahi + bhi = uh1(1 + n−1ω2
1)ω

i
1 + uh2(1 + n−1ω2

2)ω
i
2 (3.126)

=
nv

ω2
1 − ω2

2

{
[(n+ ω2

1) + (1 + n−1w2
1)ω

2
2]ω

i
1 − [(n+ ω2

2) + (1 + n−1ω2
2)ω

2
1]ω

i
2

}
(3.127)

=
nvn

2

ω2
1 − ω2

2

(
ωi1 − ωi2

)
. (3.128)

The condition ahi + bhi to cancel the excitation at the ends to form a string operator

cannot be satisfied for n > 4.
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Chapter 4

The “fractonal” quantum Hall effect:

Fracton phases from chiral layers

4.1 Introduction

As discussed in Chapter 3 fracton phases are a new class of topological states of matter

characterized by “subdimensional” quasiparticles with emergent mobility restrictions

(see Refs. [152, 153] for a recent review). Initially of interest for their glassy features [39,

154] and utility as topological quantum memories [125, 155, 156, 43, 124, 157, 158] due

to constrained quasiparticle dynamics [159, 160], the subject has grown to challenge

the classification of topological phases of matter via topological quantum field theory [134,

161, 137, 77, 162] and demonstrated the possibility of heretofore unforeseen field

theories [144, 145, 163, 52, 164, 146, 165, 166, 167, 131, 48, 168, 169, 170, 171, 172,

173, 49].

While many constructions of fracton phases have been proposed, a systematic
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understanding of all possible phases is yet to be rigorously established. Most works

so far have relied on constructing exactly solvable “commuting-projector” models

whose Hamiltonians are sums of commuting terms [39, 154, 125, 155, 126, 174,

41, 42, 76, 127, 129, 175, 176, 128, 130, 177, 178, 179, 143, 180, 133]. However,

many topological phases, including chiral phases with broken time-reversal symmetry,

cannot be realized by such models [181]. Such phases include many of the most famous

(2+1)-dimensional topological orders, including fractional quantum Hall (FQH) phases

[182]. Different tools are thus required to build, study, and classify models of chiral

fracton phases, the prospect of which has only recently been raised [183, 75].

Chiral topological phases nevertheless admit analytically tractable microscopic

models in the form of coupled-wire constructions. These constructions, which were

also discussed in Chapter 3, model topological phases as arrays of (1+1)-dimensional

quantum wires with suitably chosen many-body interactions. Coupled-wire constructions

allow for the use of powerful techniques from (1+1)-dimensional systems, including

bosonization and conformal field theory (CFT), to describe strongly interacting phases

of matter in higher dimensions. They have been used to build and analyze numerous

models of topological phases in (2+1) [58, 59, 60, 61, 62, 63, 64, 65, 66, 67], (3+1) [68,

69], and higher dimensions [68], including both Abelian and non-Abelian examples.

Expanding upon the results of Chapter 3, we show that the coupled-wire formalism

can be applied to realize new chiral fracton phases in (3+1) dimensions. We focus

primarily on a model inspired by the wire construction of the ν = 1/m Laughlin

FQH states [60, 61] that realizes subdimensional excitations with anyonic statistics

inherited from those of Laughlin quasiparticles. The models we consider have a useful
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Figure 4.1: Schematic depiction of the coupled-wire array with vertex and plaquette terms
UVr (purple) and UPr (orange). Gray circles represent the wires, and crossed and dotted
circles represent right and left movers, respectively. The labels q = 1, 2 arise from viewing
each wire as the intersection of a vertical and horizontal plane, respectively. .

interpretation in terms of anyon condensation, wherein stacks of ν = 1/m Laughlin

phases on x-z and y-z planes are coupled by condensing “p-strings” composed of

Laughlin quasiparticles at the lines of intersection of each pair of planes. This planar

p-string condensation mechanism allows for the rapid determination of broad classes

of new fracton phases, including examples based on non-Abelian topological orders.

The chapter is laid out as follows. In Section 4.2 we introduce our coupled-wire

model and study the topological properties of its bulk and boundary. In Section 4.3 we

provide a high level description of planar p-string condensation. In Appendix 4.5.1

we provide detailed calculations on the coupled-wire model that complement the

discussion in the main text. In Appendix 4.5.7 we generalize our coupled-wire construction

to a non-Abelian model. In Appendix 4.5.8 we present further details about planar

p-string condensation, including examples and relations to existing mechanisms to

generate fracton topological order.
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4.2 Chiral Fracton Phase in a Laughlin Coupled-

Wire Model

In this section we introduce and analyze a coupled wire model that realizes a chiral

fracton phase. In Sec. 4.2.1 we define the model; starting from a decoupled array

of two-component Luttinger liquids and then introducing two types of sine-Gordon

terms to produce a strongly coupled phase. In Sec. 4.2.2 we explore an interpretation

of the model through the lens of the planar p-string condensation mechanism. The

bulk excitations are discussed in the Sec. 4.2.3. In Sec. 4.2.4 we discuss the surface

theory of the model. Finally, the topological degeneracy is addressed in Sec. 4.2.5.

4.2.1 Model Definition

We consider a set of (1+1)-dimensional quantum wires oriented along the z-axis and

placed on the vertices r = (x, y) of an Lx × Ly square lattice Λ in the x-y plane (see

Fig. 4.1). Each vertex contains two quantum wires labeled by q = 1, 2, and each wire

contains two chiral channels labeled by η = L,R. The wires consist of free fermions,

which we write in bosonized form as Ψq
η,r ∼ eiϕ

q
η,r , where the chiral bosonic fields

ϕqη,r(z) obey the equal-time canonical commutation relations

[ϕqL/R,r(z), ϕ
q′

L/R,r′(z
′)]=±δq,q′δr,r′ iπ sgn(z−z′), (4.1)
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where we associate the signs + and − with η = L and R, respectively. To specify the

couplings between wires, we define new fields and commutation relations

ϕ̃qL/R,r = [(ϕqL,r + ϕqR,r)±m(ϕqL,r − ϕqR,r)]/2 (4.2)

[ϕ̃qL/R,r(z), ϕ̃
q′

L/R,r′(z
′)]=± δq,q′δr,r′ iπm sgn(z−z′),

with m an odd integer, which are appropriate for describing Laughlin quasiparticles

at filling ν = 1/m. In these new variables, the local vertex operator eiϕ̃
q
η,r defines

a chiral quasiparticle with fermionic statistics, while the nonlocal vertex operator

eiϕ̃
q
η,r/m defines a chiral Laughlin quasiparticle with anyonic statistical angle 2π/m.

We now couple the wires with interactions Hint = −
∑

r

∫ Lz

0
dz
(
λV U

V
r + λP U

P
r

)
,

where

UV
r = cos

[
1

m

(
ϕ̃1
L,r−ϕ̃1

R,r+ϕ̃
2
L,r−ϕ̃2

R,r

)]
≡cos(θVr ) (4.3)

UP
r = cos

[
2
(
θ̃1r,ŷ+θ̃

2
r+ŷ,x̂−θ̃1r+x̂,ŷ−θ̃2r,x̂

)]
≡cos(θPr ),

and 2θ̃qr,â = ϕ̃qL,r − ϕ̃qR,r+â, with â = x̂, ŷ the unit vectors in the x and y directions.

Importantly, these interactions are local when written in terms of the “fundamental”

fermions Ψq
η,r; this can be checked explicitly using Eq. (4.2) (see also Ref. [61]).

Furthermore, it is straightforward to check using Eq. (4.2) that the interaction terms

UV
r and UP

r commute among themselves and can therefore be simultaneously diagonalized.

In the strong-coupling limit λP , λV → ∞, the ground state manifold is obtained by

pinning the arguments of UV
r and UP

r to integer multiples of 2π.
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We remark that, strictly speaking, the vertex terms UV
r appearing in Eq. (4.3)

are not translation invariant in the z-direction when written in terms of the original

fermions due to the presence of oscillatory factors ∼ ei 4kF z, where kF is the Fermi

wavenumber. These factors can be removed by making a global change of variables

ϕ̃2
η,r → −ϕ̃2

η,r, which amounts to choosing different bosonization conventions depending

on the index q = 1, 2. This effectively redefines kF → −kF for the q = 2 layers,

leading to the pairwise cancellation of the 2kF factors giving rise to the oscillations,

while maintaining commutativity of the vertex and plaquette terms and preserving

the canonical commutation relations. This transformation does not affect any of the

properties of the model considered here, so we continue to use the original convention

of Eq. (4.3).

4.2.2 Planar p-String Condensation Interpretation

The interactions (4.3) have an appealing interpretation in terms of coupled layers.

Consider a system of initially decoupled ν = 1/m Laughlin FQH systems stacked

along y-z and x-z planes of the cubic lattice. We assign the labels q = 1, 2 to y-z and

x-z planes, respectively. Now define a square lattice in the x-y plane whose vertices

r are the locations of the lines of intersection of pairs of x-z and y-z planes. We can

now couple pairs of Laughlin planes where they intersect by condensing a bosonic

bound state of local excitations. The simplest nontrivial object we can condense is

a bound state of two quasiparticle-quasihole pairs, one pair for each q = 1, 2. A

microscopic model for this setup is obtained by representing each Laughlin plane
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using a coupled-wire construction. Within this construction, the local operator that

creates a Laughlin quasiparticle-quasihole pair within a layer is given by [61]

Qq
r = ei

1
m
(ϕ̃qL,r−ϕ̃

q
R,r). (4.4)

Adding −λV
∑

r

∫ Lz

0
dz UV

r to the Hamiltonian and taking λV → ∞ thus condenses

the bound state of two such quasiparticle-quasihole pairs for all z along the intersection

line r. This four-body composite can be viewed as a small loop composed of Laughlin

quasiparticles (i.e. a p-string, see below), which fluctuates in the presence of condensation

terms UV
r′ located at lattice sites r′ ̸= r. The plaquette terms UP

r emerge by

performing degenerate perturbation theory in the coupling g that couples the wires

within a given x-z or y-z plane to form the Laughlin FQH layer building blocks [see

Appendix 4.5.2].

The coupled-wire model with interactions (4.3) is thus one simple instance of

a large class of models obtained by coupling two interpenetrating stacks of (2+1)-

dimensional topological phases. The condensation process implemented by the vertex

terms UV
r is an example of p-string condensation [76, 127, 128], because it proliferates

closed loops composed of Laughlin quasiparticles. This distinguishes p-string condensation

from standard anyon condensation [184], which proliferates pointlike anyon composites.

Anyon condensation has also been used to build 3D topological orders from 2D

building blocks [185, 69, 75], but such constructions do not yield totally immobile

fracton excitations. In contrast, p-string constructions generically lead to fractons

(for a summary, see Sec. 4.3).
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Figure 4.2: Action of (a) the Laughlin quasiparticle operator 4.4, (b) the chiral electron
operator 4.6, and (c) the composite chiral quasiparticle operator Q12

LL,r 4.7. Integer charges
of the vertex and plaquette solitons are indicated in purple and orange, respectively. .

The present class of models is distinguished from other p-string condensation

constructions [76, 127, 128, 183] by the fact that p-strings are only allowed to fluctuate

within x-y planes. This new restriction enables the condensation of p-strings composed

of anyons with nontrivial mutual statistics—the Laughlin p-strings defined above

being a simple example. In prior p-string constructions, such condensates could not

be consistently defined due to the nontrivial braiding of p-strings from intersecting

planes. The construction introduced here thus enables a host of new fracton phases

not obtainable by other means that are explored further in Sec. 4.3 and Appendix 4.5.8.

4.2.3 Bulk Excitations of the Coupled-Wire Model

The coupled-wire array supports two kinds of excitations: charged solitons, i.e.

abrupt jumps of the pinned fields θVr , θPr between integer multiples of 2π, and neutral

Gaussian fluctuations of these fields around their minima. The solitons constitute

gapped topological excitations of the theory. The Gaussian fluctuations become

gapless in the thermodynamic limit Lx, Ly →∞ [80] [see Appendix 4.5.3]. However,

they are topologically trivial and do not contribute to the charge response at the level
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of Eq. (4.3). Furthermore, numerical results indicate a scaling limit Lx = Ly → ∞,

U ≳ L2.8
x in which they are gapped [see Appendix 4.5.3]. We defer further analysis of

the Gaussian fluctuations and their stability to future work.

Pointlike charged excitations of the coupled-wire array are identified with solitons:

∂zθ
V,P
r → ∂zθ

V,P
r + 2πn δ(z − z0), (4.5)

for n ∈ Z and some 0 ≤ z0 < Lz. A basis for these excitations is obtained by

considering the action of all local vertex operators in a given wire. The vertex

operators at our disposal are the Laughlin quasiparticle-quasihole pair operator Qq
r(z)

[Eq. (4.4)], the chiral “electron” operator

Ψ̃q
η,r = eiϕ̃

q
η,r , (4.6)

and the chiral operator

Qq
η,r(z1, z2) = exp

(
i

m

∫ z2

z1

dz ∂zϕ̃
q
η,r

)
, (4.7)

which moves a Laughlin quasiparticle from z = z1 to z2. (Note that Q2
r = eiθ

V
r Q1†

r , so

that Q1†
r ≃ Q2

r when acting on the ground state, where θVr is pinned.) Of these three

operator types, the first two create genuine integer solitons in UV,P
r , see Fig. 4.2(a) and

(b). Qq
η,r(z1, z2) creates pairs of integer solitons in UP

r , but a pair of fractional solitons

in UV
r . This constitutes a linelike excitation, because it shifts UV

r by a noninteger
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Figure 4.3: Subdimensional excitations of the coupled-wire array include (a) immobile
fractons, (b) lineons mobile only along fixed lattice directions, and (d) planons mobile only
within 2D planes. Panel (c) depicts the fusion of x and y lineons into a z lineon, while
(d) depicts a pair of operators that can be multiplied to allow a planon to “turn a corner”
between the x- and z-directions. .

multiple of 2π in the region between z1,2. However, one can build composite operators

Qqq′

ηη′,r(z1, z2) = Qq
η,r(z1, z2)[Q

q′

η′,r(z1, z2)]
† (4.8)

for which such linelike excitations cancel; for example, Q12
LL,r(z1, z2) creates a pair of

three integer plaquette solitons separated by z2 − z1 along a wire [see Fig. 4.2(c)].

A hierarchy of quasiparticle mobility restrictions follows from the observation

that a single plaquette excitation cannot be moved by a local operator. This mobility

restriction in the x-y plane is visible in Fig. 4.2, which demonstrates that plaquette

solitons of strength ±1 are created in groups of at least four. Immobility of the

plaquette solitons in the z-direction can be deduced from a “Gauss’s-law” constraint;
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for any compact region M in the x-y plane, we have

∑
r∈M

θPr (z) =
∑

(r,â)∈∂M

2 θ̃qr,â(z), (4.9)

where the sum on the right-hand side runs over bonds contained in the boundary ∂M

of M . [Note that q and â are correlated in this sum: â = x̂ (ŷ) implies q = 2 (1).]

Suppose there exists a local operator O that moves a single ±1 plaquette soliton from

z1 to z2. Such an operator shifts the left-hand side of Eq. (4.9) by ±2π. However,

because O is local, we can always choose M larger than O’s support; hence, O

commutes with the right-hand side of (4.9), a contradiction. Thus all local operators

must create plaquette solitons in pairs of charge ±1 at fixed z, establishing charge-

neutrality as a necessary (but not sufficient) condition for mobility in z.

The immobility of a single plaquette soliton implies that these excitations are

fractons. Since they are created by the same operators Qq
r that create Laughlin

quasiparticle-quasihole pairs in the ν = 1/m FQH state, we conclude that the condensation

transition described in the coupled-layer picture transmutes quasiparticles with planar

mobility into immobile subdimensional excitations. A group of four fractons created

by applying, e.g., Q2
r to the ground state can be separated from one another by

sequential application of Q2 operators on contiguous vertices, creating a rectangular

membrane operator with fractons at its corners [see Fig. 4.3(a)]. Alternatively, Q2
r

can be used to propagate pairs of fractons in the x- or y-direction, indicating that

such pairs become “lineons,” i.e. quasiparticles mobile only along one-dimensional

submanifolds of the wire array [see Fig. 4.3(b)]. As shown in Fig. 4.3(c), lineons
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mobile in the x- and y-directions can “fuse” to become a lineon mobile in the z-

direction. Fig. 4.3(d) shows how pairs of lineons can be combined to form “planons”

with mobility in, e.g., x-z planes. This hierarchy of quasiparticle mobility is a familiar

feature of many fracton models and also follows directly from the planar p-string

condensation interpretation of the coupled-wire model [see Section 4.3].

Finally, we note that the braiding statistics of these subdimensional quasiparticles

reveals their fractionalized nature. The notion of mutual and self-statistics of fractons,

lineons, and planons has been defined [186, 147] and follows from the phase acquired

upon exchanging the membrane and string operators used to propagate the corresponding

excitations. In the present case, this exchange phase follows from the commutation

relations (4.2) and reflects the relationship between fractons and Laughlin quasiparticles.

For example, the statistical angle obtained from braiding two lineons [e.g., those

depicted in Figs. 4.2(c) and 4.3(b)], or two planons in vertically offset x-z planes

[Fig. 4.3(d)], is ±2π/m.

4.2.4 Surface Theory

We now show that the coupled-wire model with interactions (4.3) possesses chiral

surface states that are gapless at any system size, evoking a (3+1)-dimensional

generalization of FQH physics. To see this, we consider a square lattice with LxLy

vertices, each containing four chiral modes, and place periodic boundary conditions

(PBC) in the z-direction and open boundary conditions (OBC) in the x- and y-

directions. This leaves a 2D boundary with the topology of a 2-torus. Next, we apply
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a counting argument due to Haldane [114] to determine how many of the 4LxLy chiral

modes are gapped by the interactions (4.3). Recalling that a single cosine term gaps

out two modes with opposite chirality in the strong-coupling limit, and noting that

there are LxLy vertex terms UV
r and (Lx−1)(Ly−1) plaquette terms UP

r , we conclude

that the interactions (4.3) are sufficient to gap out all but N = 2(Lx+Ly− 1) modes

in the array. For the remainder of this paper we assume a fixed finite Lx, Ly.

In Appendix 4.5.1, we show that these N gapless modes are strictly localized

on the 2D surface of the array by explicitly identifying a set of surface modes that

commute with the bulk couplings. Here, we summarize several notable features of

these modes. First, they are chiral, with modes localized on opposite faces of the

wire array having opposite chirality. Second, they are spatially overlapping and

have nontrivial commutation relations that follow directly from Eq. (4.2) and can

be encoded in an N × N integer matrix K. Third, the K-matrix for modes living

on the same face of the array closely resembles that of a stack of fractional quantum

Hall states coupled by long-range Coulomb interactions [187, 188, 189, 190].

The spatially overlapping and noncommuting chiral gapless surface modes discussed

above can be disentangled by coupling additional boundary wires into the array as

shown in Fig. 4.4. We add 2(Lx + Ly) wires, each carrying one right- and one left-

mover governed by the commutation relation (4.2). The number of gapless modes in

the array then increases to N +4(Lx+Ly) = 3N +4. We now add additional strong

commuting interaction terms to the Hamiltonian until N + 2 gapless chiral modes

remain. First we introduce 2(Lx − 1) + 2(Ly − 1) truncated plaquette terms along

the left, right, top, and bottom (L,R,T,B) faces of the array. For example, on the T

151



face we add the couplings [compare to Eq. (4.3)]

UT
(x,Ly)= cos

[
2
(
θ̃1(x,Ly),ŷ−θ̃1(x+1,Ly),ŷ−θ̃2(x,Ly),x̂

)]
(4.10)

for x = 1, . . . , Lx − 1, and likewise for the remaining three faces. Here, 2θ̃1(x,Ly),ŷ
=

ϕ̃1
L,(x,Ly)

− ϕ̃1
R,(x,Ly+1), where ϕ̃1

R,(x,Ly+1) is one of the additional boundary fields. This

removes 2N − 4 gapless modes, leaving 6 outstanding gapless modes. To dispose of

these modes, it suffices to add truncated plaquette terms to three “corners” of the

array; for example, on the top-left (TL) corner we add the coupling [compare to

Eq. (4.3)]

UTL
(1,Ly)= cos

[
2
(
θ̃1(1,Ly),ŷ + θ̃2(0,Ly),x̂

)]
, (4.11)

and likewise for the TR and BR corners. Here θ̃2(0,Ly),x̂
= ϕ̃2

L,(0,Ly)
− ϕ̃2

R,(1,Ly+1), where

ϕ̃2
L,(0,Ly)

is one of the additional boundary fields. Note that we could also add a

truncated plaquette term to the BL corner, but the argument of this plaquette term

is linearly dependent with the other plaquette terms in the array and hence is not

necessary for the construction.

The modified surface theory constructed above is that of N + 2 = 2(Lx + Ly)

commuting chiral gapless modes—precisely what one would obtain for a stack of

Lx+Ly decoupled ν = 1/m Laughlin states. In fact, the surface theory defined above

arises perturbatively within the coupled-layer interpretation of the model when the

underlying Laughlin layers are arranged such that their chiral edges do not undergo
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Figure 4.4: Schematic of the surface termination obtained by adding auxiliary boundary
wires (gray ovals) and new boundary couplings (green, blue, and red). Dangling chiral
gapless modes on the top and right surfaces are clearly visible. .

p-string condensation [see Appendix 4.5.2].

One advantage of this alternative surface termination is that it makes the system’s

nontrivial Hall response transparent. Since the low-energy theory consists of N + 2

decoupled chiral gapless modes that are identical to ν = 1/m Laughlin edge states,

inserting a vector potential in the z-direction corresponding to one flux quantum

pumps a fractional charge eLx/m (eLy/m) between the T/B (L/R) faces of the

array [191], corresponding to quantized fractional Hall conductivity σyz (σxz) [192,

193]. This response is ultimately mediated by the bulk fractons, which descend from

Laughlin quasiparticles and whose bound states are the only charged bulk excitations.
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4.2.5 Topological Degeneracy

In order to calculate the topological degeneracy of the ground-state manifold, we add

additional couplings to remove the remaining chiral gapless surface modes. Starting

from the surface termination shown in Fig. 4.4, we add N/2 + 1 = Lx + Ly strong

interaction terms of the form cos(2θ̃qr,â) that couple gapless chiral modes on opposing

faces of the array. The resulting model can be viewed as a three-torus containing

two intersecting surface defects, each with the topology of a two-torus, on which

the final interaction terms reside. This unusual boundary condition simplifies the

analysis relative to the case of standard PBCs without auxiliary boundary wires [see

Appendix 4.5.6].

We calculate (in Appendix 4.5.5) the topological degeneracy using the method of

Ref. [67], starting from the set of strong-coupling ground states labeled by the values

of the pinned bulk fields θV,Pr ∈ 2πZ and their boundary counterparts. Naively,

this implies an infinite-dimensional ground state manifold; however, many of these

ground states are equivalent since the bosonic fields ϕqη,r are only defined modulo

2π. Accounting for this redundancy, we find that the ground-state manifold has

dimension mLx+Ly . This subextensive ground-state degeneracy is a hallmark of

“type-I” fracton phases. We remark that the model also exhibits a subextensive

number of superselection sectors with standard PBC, as shown in Appendix 4.5.6. In

Appendix 4.5.10 we define an exactly solvable lattice model containing a chiral sector

whose bulk topological excitations and ground-state degeneracy exactly match those

of the coupled-wire model.
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4.3 Planar p-String Condensation Mechanism

In this Section we expound upon the planar p-string condensation mechanism for

constructing fracton phases of matter. This was introduced in the context of the

coupled-wire model in the previous section, but here we study the mechanism more

abstractly from the point of view of coupled layers of topological orders that support

nontrivial anyonic excitations. In Sec. 4.3.1, we discuss how to perform the planar

p-string condensation procedure at the level of the anyon theory of the underlying 2D

layers. In Sec. 4.3.2, we apply this condensation procedure to the example of chiral

ZN anyon layers, providing a high-level description of the topological fracton sectors

in the coupled-wire model from the previous section. A lattice model that is foliated

equivalent [134] to this chiral fracton theory is described in Appendix 4.5.8 alongside

further examples, as well as the connection between planar p-string condensation,

gauging planar subsystem symmetries [183] and topological defect networks [77].

To date, several constructions of fracton models from coupled layers have appeared

in the literature. They can all be understood as some form of p-string condensation

on a stack of 2D layers with topological order. First we review Refs. [76, 127, 128],

where the authors consider stacking topological layers along xy, yz, and xz planes

of the cubic lattice. These layers must support a group (under fusion) of Abelian

bosons A. The authors consider abstract A-net configurations, which correspond to

general stringlike objects that satisfy A fusion rules (for Z2 these are simply loops).

Composite p-string excitations, with fusion rules given by A, are formed along these

A-nets in three dimensional space by pinning the appropriate Abelian g boson in a
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topological layer to its intersection point with a string segment labelled by g in the A-

net. These p-string excitations are then condensed to form a cage-net fracton phase.

This is achieved by adding local perturbations to the edges where layers intersect

that fluctuate small loops of the p-string excitations, by creating particle-antiparticle

pairs of g bosons in both intersecting layers. The effect of the condensation is to

confine any particles that braid nontrivially with the p-strings, and to promote the

defect appearing at the open end of a p-string into a deconfined fracton excitation.

Particles that braid trivially with the p-strings remain deconfined planons, and the A

bosons in particular become equivalent to a pair of fractons (they can be viewed as a

small segment of p-string). Particles that braid nontrivially with the p-string can be

paired up across different layers to form deconfined lineons (for perpendicular layers)

or planons (for parallel layers).

More recently, in Ref. [183], a construction was presented for a single stack of

topological layers along the xy planes of a cubic lattice, also supporting a group A of

Abelian bosons or fermions. Once again p-string excitations with fusion rules given by

A can be constructed. However, in this construction, the p-strings are only condensed

within yz and xz planes of the cubic lattice (this can be done simultaneously as

the p-strings braid trivially). This renders particles that braid nontrivially with the

p-strings immobile fractons, as their movement in the x̂ and ŷ directions becomes

confined. Pairs of such fractons, separated along x̂ or ŷ, are equivalent to charges

under the condensing p-strings, and have planon mobility. The defects that appear

at the ends of p-strings become lineons. Again particles that braid trivially with the

p-strings remain deconfined planons. The A particles in particular are equivalent to
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(a) (b) (c)

Figure 4.5: (a) A loop of p-string excitation, confined to the xy plane (green), at the
junction of two topological layers. Anyons (red) are pinned to the p-string where it pierces
through a topological layer. The p-string, and attached anyons, fluctuates over the xy plane
(shown by red arrows).
(b) A system of topological layers in xz and yz planes with an extended p-string excitation
fluctuating over an xy plane (green), as indicated by red arrows.
(c) A fracton model obtained from topological layers in xz and yz planes via p-string
condensation within xy layers (green). .

a pair of lineons, as they can be viewed as small segments of p-string.

Here, we describe yet another p-string construction. We consider topological layers

stacked along the xz and yz planes of the cubic lattice that support a group A of

Abelian anyons that do not need to be bosons or fermions (to construct a consistent

lattice model they must have on-site string operators, which excludes semions in

particular). We then consider condensing p-strings, made up of A excitations, within

xy planes of the cubic lattice only. This promotes particles in the layers that braid

nontrivially with the Abelian A anyons into lineons. The defect at the open end of

a p-string is promoted to a fracton. Particles in the layers that braid trivially with

the A anyons remain planons. In particular, an A anyon in an xz or yz plane is

equivalent to a pair of fractons, as it can be viewed as a small segment of p-string.
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4.3.1 Anyon theory description

We consider layers described by an emergent anyon theory (modular tensor category)

M [194, 11] that contains a group A of Abelian anyons. The anyon theory can be

broken up into a direct sum according to the braiding phases of the anyons with the

Abelian particles in A, which form characters χ of the group A,

M =
⊕
χ∈Â

Cχ . (4.12)

Specifically, an anyon aχ ∈ Cχ and an Abelian anyon g ∈ A have S-matrix element

Saχ,g|Saχ,g|−1 = χ(g).

We start from a system of decoupled topological layers, stacked along the xz and

yz planes of a cubic lattice, that support anyon theories denoted by Mxz and Myz

respectively (The anyon theories need not be the same in every layer, so long as each

supports a subgroup of Abelian anyons isomorphic to A). We utilize the cubic lattice

to label anyons by their position, where axỹz denotes an anyon in the yz layer at

coordinate x, located between xz layers at y and y + 1, and contained within the xy

plane at coordinate z. Since the axỹz anyon is free to move throughout the yz layer

with coordinate x (before the layers are coupled) we also utilize the notation ax to

indicate the anyon is located somewhere in that layer. Similarly, we use the notation

axz̃ to denote that the anyon is located in a strip of the yz layer with coordinate x,

between the xy planes at z and z + 1. We employ similar notation throughout this

section and Appendix 4.5.8.

Next, we add coupling terms to the decoupled-layer Hamiltonians, at every triple
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(a) (b) (c)

Figure 4.6: (a) The red × depicts a fracton excitation in the planar p-string condensed
layer model. It appears at the end of a p-string that has been condensed in an xy-plane
(indicated by red arrows) and so does not incur an energy penalty except at the open
endpoint. Hence the excitation is pointlike.
(b) A fracton dipole oriented along x̂. This is equivalent to an open p-string piercing a
single yz layer, which pins a single Abelian anyon (red sphere). For bosonic (fermionic) p-
strings this composite excitation is a yz planon. For p-strings consisting of Abelian anyons
with a modular braiding this excitation is a ŷ lineon as it cannot pass through the p-string
condensates on the xy planes without incurring an energy penalty.
(c) A fracton dipole oriented along ŷ. Similar to (b) for bosonic (fermionic) p-string
condensation this is an xz planon. For modular Abelian anyon p-strings this is an x̂ lineon.
.

intersection point of an xz and yz layer with an xy plane, that simultaneously create

g-g pairs, for g ∈ A, in both Mxz and Myz, see Fig. 4.5a. In the limit of infinitely

strong coupling this induces p-string excitations, formed by composites of A anyons,

to fluctuate and condense in the xy planes, see Fig. 4.5b. For the planar p-string

condensate to lead to a consistent gapped phase the F -symbols restricted to A must

be trivial. The limit of the inter-plane spacing along ẑ going to zero is particularly

relevant for the coupled-wire construction from the main text.

In the p-string condensed phase, the topological excitations are generated by fusion

products of:

• Fractons f gx̃ỹz ∼
∏

a<x̃ gaỹz, with A fusion rules, that appear on xy plaquettes

of the cubic lattice. Where x̃ denotes the point between layers x and x+1, and
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similarly for ỹ. These fractons appear at the open endpoints of p-strings that

consist of a line of g anyons, such as the fusion product of all gaỹz with a < x̃,

see Fig. 4.6a.

• Lineons along x̂ given by (aχ)xz̃ and similarly along ŷ given by (bχ)yz̃, for anyons

aχ, bχ ∈ Cχ, see Figs. 4.7a, 4.7b. There are also composite lineons along ẑ, given

by ℓabxy ∼ (aχ)xz̃(bχ)yz̃, see Fig. 4.7c.

• Planons (a1)x/y. For bosonic or fermionic p-string excitations this includes

any nontrivial (g1)x = f gx̃ỹzf
g
(x̃−1)ỹz, see Fig. 4.6b, and similarly for y, see

Fig. 4.6c. For p-strings formed by more general Abelian anyons with a modular

braiding the fracton composites (gχ)xz̃ = f gx̃ỹzf
g
(x̃−1)ỹz are in fact ŷ lineons, and

similarly (gχ)yz̃ are x̂ lineons. (Since modular subtheories of an anyon model

factor out [195], this case corresponds to the chiral ZN fracton model described

below stacked with some other layers.) There are also composite planons

(aχ)x(bχ)(x−1), see Fig. 4.7f, and similarly for y and z, see Figs. 4.7e, 4.7d.

In this class of models the fractons are Abelian, while the lineons may be non-Abelian.

The braidings of the quasiparticles are inherited from the M layers. In particular,

the fracton-composite planons may have nontrivial mutual braidings. Similarly the

lineon-composite planons may have nontrivial mutual braidings. Single lineons and

planons may also have nontrivial topological spin [147].

In the limit that the inter-plane spacing goes to zero there is no space for excitations

supported between layers. However, all the topological excitations can be pushed onto

p-string layers and these representatives survive the limit. This is required to match
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(a)
(b)

(c)

(d) (e) (f)

Figure 4.7: (a) An anyon in an xz layer that braids nontrivially with the p-strings becomes
an x̂ lineon after condensation.
(b) Similarly an anyon in a yz layer that braids nontrivially with the p-strings becomes a ŷ
lineon.
(c) A composite of x̂ and ŷ lineons that, together, braid trivially with the p-strings is a ẑ
lineon.
(d) A dipole of x̂ (or ŷ) lineons that can be created by a local string operator oriented along
ẑ, is an xy planeon.
(e) A dipole of x̂ lineons separated along ŷ that, together, braid trivially with the p-strings
is an xz planeon.
(f) Similarly a dipole of ŷ lineons separated along x̂ that, together, braid trivially with the
p-strings is a yz planeon. .

the excitations with those arising in the coupled-wire model from the previous section.

4.3.2 Example: ZN anyon layers

We now present an example of the construction outlined above that reproduces

the topological fracton sectors found in the Abelian coupled-wire construction from

Section 4.2.3. We consider Abelian chiral topological layers with Z(n)
N anyons, in the
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notation of Ref. [196], for N an odd integer and n coprime to N . For n = 2, N = m,

this describes the anyon theory of a Laughlin FQH state at filling fraction ν = 1
m

,

modulo the physical fermion. The topological charges, and their fusion, are described

by the cyclic group ZN under addition. The S-matrix and topological spins of the

anyons are

Sa,b =
1√
N
ei

4πn
N
ab , θa = ei

2πn
N
a2 , (4.13)

while the quantum dimensions and F symbols are trivial. The obvious ZN grading

on the anyons is induced by braiding with the 1 anyon that generates the ZN under

fusion with itself (using additive notation for the composition rule i.e. 0 denotes the

vacuum). The 1 anyon is not a boson or fermion as it has topological spin ei
2πn
N .

A fracton model is constructed by driving a ZN p-string condensation transition

within the xy planes of a stack of ZN anyon theories along the xz and yz planes of

a cubic lattice. This case is slightly degenerate and unusual in an interesting way,

since there are no nontrivial particles in the trivial sector (i.e. the sector containing

the particles that braid trivially with 1), as n is coprime to N . Even the generating

particle 1 braids nontrivially with itself. The resulting model contains topological

charges with a hierarchy of subdimensional topological excitations generated by:

• ZN fractons that appear on the open ends of condensed p-strings. These fractons

are more exotic than the usual fractons appearing in p-string condensation, as

the p-strings are formed by anyons and impart a vestige of the anyonic statistics

onto the fractons.
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• x̂ lineons from nontrivial anyons in an xz layer, trapped between p-string planes.

Similarly there are ŷ lineons from the yz layers. There are also ẑ lineons from

composites of an x̂ and ŷ lineon trapped between the same p-string planes. A

pair of fractons adjacent on either side of a p-string plane is equivalent to a

single p-string condensed anyon, and hence is also a lineon in this example.

These lineons can be obtained by moving an x̂ or ŷ lineon onto a p-string plane.

We remark that this behavior is due to the anyonic nature of the p-strings, and

does not occur for bosonic or fermionic p-string condensations.

• Planons that arise from pair composites of lineons, which are themselves composites

of fractons, that have opposite braiding phases with the condensed p-strings.

In this example a composite formed by only a pair of fractons is not a planon

due to the anyonic nature of the p-strings.

In this example we have considered a planar p-string condensation involving

anyonic p-strings. Attempting to apply the conventional 3D p-string condensation

to these anyonic p-strings would not succeed in producing a gapped phase due to

their nontrivial braidings. This is even true for planar p-string condensation with

intersecting planes, again due to the nontrivial braidings. However, as we have only

considered the anyonic p-string planes to be nonoverlapping, and the F -symbols are

trivial, there is no inconsistency in the above construction. This inconsistency can be

formulated as the anomaly of a subsystem symmetry in the gauging formulation of

planar p-string condensation [183], see Appendix 4.5.8.

A lattice model with fracton topological order that is foliated equivalent to the

163



example in this section is presented in Appendix 4.5.10 where it is used to calculate

the ground space degeneracy of the current example for various boundary conditions.

4.4 Summary

In this chapter we have introduced a coupled-wire construction for a family of chiral

fracton phases in (3+1) dimensions with chiral gapless boundary modes. This construction

inspired a planar p-string condensation mechanism which we elaborated upon in the

main text, as well as Appendix 4.5.8, where it is shown to yield a wide variety of

fracton models, including ones based upon non-Abelian layers. In Appendix 4.5.7,

we also propose a coupled-wire realization of such non-Abelian models.

The models constructed here motivate further exploration of coupled-wire constructions

for fracton phases and new potential paths towards experimental realizations of

fracton physics. They also raise the challenge of developing a deeper theoretical

understanding of chiral fracton phases.

Finally, this work points towards intriguing field theories obtained by taking

the continuum limit in the remaining two directions that were left discrete in the

current work. This brings to the forefront challenging technical issues surrounding

the continuum limit of a system with an exponentially scaling topological degeneracy.
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4.5 Appendix

4.5.1 Details on the coupled-wire model

In this Appendix we provide some of the details for calculations relating to the wire

model. First, in Sec 4.5.1 we review the 2D coupled wire construction for the Laughlin

state. In Sec 4.5.2 we analyze, via perturbation theory, a model of intersecting

Laughlin layers with pairs of Laughlin quasiparticles condensed at vertices and show

that the leading order effective Hamiltonian for this model is the one presented in

Sec. 4.2. The gap to neutral Gaussian fluctuations is discussed in Sec 4.5.3. We give a

thorough discussion of the surface theory in Sec 4.5.4. Lastly, we calculate the ground

state degeneracy of the model with the alternative boundary conditions considered

in the body of the text (Sec 4.5.5) and with fully periodic boundary conditions (Sec

4.5.6)

Coupled-wire construction of the Laughlin state

Here we review the coupled-wire construction of the ν = 1/m Laughlin state, first

presented in [60, 61]. The building blocks of this construction are a collection of

1D quantum wires of free fermions oriented along the z direction and labelled by a

site index j. Upon bosonization; one has Ψη,j(z) ∼ eiϕη,j(z) for sites j and chirality

η = L,R. This construction involves only a single species of fermion on each wire

so there is no need for the additional superscript q used in the main text. Any local

vertex operator must be decomposable into an integer combination of ϕη,i. The chiral

bosons have the familiar commutation relations:
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[ϕL/R,j(z), ϕL/R,i(z
′)] = ±iπδij sgn(z − z′) and [ϕL,j(z), ϕR,i(z

′)] = 0 (4.14)

Next, for m ∈ 2Z+ 1, consider the new composite fields

ϕ̃L/R,j =
(ϕL,j + ϕR,j)±m (ϕL,j − ϕR,j)

2
with [ϕ̃L/R,j(z), ϕ̃L/R,i(z

′)] = ±imπδij sgn(z−z′)

(4.15)

Note that because m is odd eiϕ̃η is a local operator and creates a chiral quasiparticle

with fermionic statistics. The non-local vertex operator eiϕ̃η/m creates an anyonic

quasiparticle with self-statistics 2π/m. Finally consider the field defined by

2θ̃j,â = ϕ̃L,j − ϕ̃R,j+â (4.16)

where â is a unit vector indexing the lattice site direction. In this situation one can

equivalently think of the site j + â as j + 1. More generally, and in the case of the

main text, one may consider unit vectors â in more than one direction and so the

notation used here is chosen so as to reinforce the notation used in the main text.

With all of the relevant fields defined consider a collection of evenly spaced parallel

wires with the following Hamiltonian:
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H = H0+Hint =
∑
j

∫ Lz

0

dz
[
(∂zϕL,j)

2 + (∂zϕR,j)
2]−λ∑

j

∫ Lz

0

dz cos (2θ̃j,â) (4.17)

In the λ → ∞ limit, the interaction term condenses and 2θ̃j,â = 0 ∀ i. In this

regime the model is gapped and has an m-fold ground state degeneracy. The gapped

excitations correspond to solitons in the condensed fields: 2θ̃j,â(z) → 2θ̃j,â(z) +

2πnΘ(z− z0). The model has anyonic excitations corresponding to minimal strength

solitons (kinks of size 2π) which are fully mobile in 2D. The anyons are moved along

the wire direction by an operator such as e
i
m

∫ z2
z1

dz ∂zϕ̃η,j and are moved along the lattice

direction by the operator ei(ϕ̃L,j−ϕ̃R,j)/m = ei(ϕL,j−ϕR,j). Using these quasiparticle

translation operators one can compute the anyonic braiding statistics of 2π/m by

considering, e.g., the commutator

(∏
j

e
i
m
(ϕ̃L,j−ϕ̃R,j)

)
e

i
m

∫ L
0 dz ∂zϕ̃L,i = e

i
m

∫ L
0 dz ∂zϕ̃L,i

(∏
j

e
i
m
(ϕ̃L,j−ϕ̃R,j)

)
e−2πi/m, (4.18)

which follows directly from Eq. (4.15).

4.5.2 Perturbation theory

We claim that the model discussed in the main text emerges as the lowest (fourth)

order term in perturbation theory in a model of interpenetrating stacks of ν = 1/m

Laughlin planes coupled by condensing Laughlin quasiparticles using the vertex terms

UV
r . Heuristically one can see that the plaquette terms are related to products of four
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Figure 4.8: (a) Dipole configurations are created in the vertex terms by the Laughlin
interaction operators exp(2isθ̃). (b) To avoid being projected out of the low-energy subspace,
these operators must enter the effective Hamiltonian in the form of a plaquette term. In
such configurations, the vertex solitons generated by different Laughlin interaction operators
cancel. .

Laughlin interaction terms, cos(2θ̃qr,â) (see Appendix 4.5.1).

Let’s see how this emerges. The Hamiltonian can be decomposed into two parts:

H0 = Hkin − λV
∑
r

∫ Lz

0

dz cos (2θ1r + 2θ2r) (4.19a)

H1 = g
∑
r

∫ Lz

0

dz
[
cos
(
2θ̃1r,ŷ

)
+ cos

(
2θ̃2r,x̂

)]
, (4.19b)

where Hkin is the kinetic term for the wires in the absence of the couplings λV , g.

In the limit λV → ∞, solitons in the argument of the vertex term in H0 do not

lie in the spectrum of low-energy states. The aim is to find an effective theory which

describes the physics in this low-energy subspace. This can be accomplished using

Wigner-Brillouin perturbation theory: we introduce the operator P which projects

onto the ground-state subspace of H0 and in particular throws out any states with
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solitons in the λV terms. Our effective Hamiltonian is then given by H0+Heff, where

Heff = PH1

∞∑
n=0

{[
E0 − (1− P )H0(1− P )

]−1
H1

}n
P (4.20)

In the limit λV → ∞, eigenstates of H0 can be labeled schematically by occupation

numbers associated with solitons in each vertex term. Occupied states will be projected

out, so we need to determine the lowest-order term in the series which does not excite

any vertices. Suppressing the integral over z, we can express H1 as

H1 =
g

2

∑
r,s=±

[
exp

(
2isθ̃1r,ŷ

)
+ exp

(
2isθ̃2r,x̂

)]
.

As one can see from Fig. 4.8(a), exp(2isθ̃1) creates a ±s dipole of vertex solitons in

the y-direction while exp(2isθ̃2) creates an analogous dipole in the x-direction. The

terms in Heff correspond to products of these dipoles. One needs to go to 4th order to

create a dipole configuration that leaves behind no vertex solitons and avoids being

projected out:

H
(4)
eff = P

∑ g4

16∆3
kink

[
exp

(
2isθ̃1r,ŷ + 2is′θ̃2r′,x̂ + 2is′′θ̃1r′′,ŷ + 2is′′′θ̃2r′′′,x̂

)
+ H.c.

]
P

+ terms w/ unequal numbers of x- and y-dipoles that get projected out,

(4.21)

where ∆kink is the energy gap to creating a vertex-soliton dipole. Applying the

projection operators one can see that the only terms that survive form a unit square
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with s = −s′ = −s′′ = s′′′, see Fig. 4.8(b). This yields

Heff ∼
g4

∆3
kink

∑
r

cos
(
2θ̃1r,ŷ − 2θ̃2r,x̂ − 2θ̃1r+x̂,ŷ + 2θ̃2r+ŷ,x̂

)
+ higher-order terms,

(4.22)

which is, up to subleading corrections, precisely the plaquette term defined in Eq. (4.3)

in the main text.

The above analysis can be extended to describe the case where strong vertex terms

are only turned on in a bounded subregion, which we take to be an Lx×Ly rectangle

for simplicity, of the full lattice of wires. In the perturbative treatment, strong vertex

terms on the boundary of this subregion generate truncated plaquette operators which

contain the only edges of a full plaquette that touch one of the strong vertex terms.

For example, vertex terms along the top boundary of the subregion generate the

interaction cos
[
2
(
θ̃1(x,Ly),ŷ

−θ̃1(x+1,Ly),ŷ
−θ̃2(x,Ly),x̂

)]
, while the vertex term in the top-

right corner of the subregion generates the interaction cos
[
2
(
θ̃1(Lx,Ly),ŷ

−θ̃2(Lx,Ly),x̂

)]
.

These are precisely the boundary interactions used in the surface termination discussed

in the main text, which can be viewed as a minimal example in which the topmost

and bottommost q = 2 Laughlin layers and the leftmost and rightmost q = 1 Laughlin

layers are omitted.

Given this perturbative analysis, we can try to understand the excitations of the

model from the perspective of p-string condensation, as discussed in the main text.

The term λV condenses two pairs of anyons created by exp 2iθ1xy and exp 2iθ2xy. This

condensate proliferates in the limit λV →∞. Low energy excitations must commute
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Figure 4.9: A plot of the smallest eigenvalue at a given kz along the wire direction with
U = 100 and system size L = 15. One can see that the gap ∆kz→0 → 4.8380 + ϵ (ϵ ≪ 1)
reflecting the fact that the model is gapped at finite system size..

with the condensate and so the emergent mobility restrictions can be understood as

stemming from this constraint. For more on this perspective, we refer the reader to

Appendix 4.5.8.

4.5.3 Scaling of the gap

While gapped to charged topological excitations (solitons), the model studied in the

main text possesses gapless neutral excitations in the thermodynamic limit. These

neutral excitations, which we refer to as “phonons,” correspond to Gaussian density

fluctuations and do not participate in the transport of charge.

In this Appendix we present numerical results on the phonon spectrum for PBC

in the z-direction and the boundary conditions in the x-y plane used to calculate the

topological degeneracy in the main text and in Appendix 4.5.5. For these calculations,

we set Lx = Ly ≡ L and consider a vertex coupling λV = 100U , with all other

couplings including λP and the boundary and corner couplings set to U ; in turn,

we take U ≫ v, where v is the kinetic energy scale of the decoupled wires. We set
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Figure 4.10: Log-Log plot of ∆δkz(L) vs L at U = 100. We see that the scaling relation
∆δkz(L) ∼ Lα with α ≈ −1.4118. .

3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Log[U]

Lo
g
[Δ

δ
k
(U
)]

0.500023 Log[U] - 0.726217

Figure 4.11: Log-Log plot of ∆δkz(U) vs U at L = 20. We see that the scaling relation
∆δkz(U) ∼ Uβ with β ≈ .500023. This points to a scaling ∆δkz(U) ∼

√
U ..

v = 1 unless specified otherwise. This hierarchy of energy scales is consistent with the

perturbative treatment of Appendix 4.5.2. We analyze the scaling of the phonon gap

with the momentum kz along the wire direction, the system size L, and the strong

coupling U . Our results indicate that the phonons are gapped at finite system size,

and in a particular scaling limit in which U scales at least as a sufficiently large power

of L as L→∞.

Following [80], for each pinning term we make the replacement cos(Λ · Φ) ∼
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1− (Λ·Φ)2

2
and analyze the corresponding Bogoliubov-de-Gennes mean field theory. The

alternate boundary conditions break translation symmetry in the discrete directions

x, y so the model must be solved using a mixed basis {a†r(kz), ar(kz)}, which create/destroy

bosonic fluctuations of momentum kz on wire r = (x, y). Since kz is a well defined

quantum number, let us define ∆kz(U,L) to be the smallest energy eigenvalue with

momentum kz at system size L and coupling strength U (note that we identify this

quantity with the phonon gap since the Hamiltonian is positive semidefinite). We

suppress the arguments U and L when convenient.

First let us consider the behavior of ∆kz as we let kz → 0. Since the real space

calculation is done numerically one cannot actually evaluate the ∆kz at kz = 0 because

the BdG Hamiltonian will involve terms proportional to 1
|kz | coming from factors ϕ2

and θ2 (see Ref. [80]). An analytical expression for the eigenenergies is prohibitively

complicated but should be a function f(vkz, vU) in order to the prevent divergence

as kz → 0. Fig. 4.9 shows ∆kz at system size L = 15. Evidently, at this system size

∆kz → ∆0 ∈ [4.380 − ϵ, 4.380 + ϵ] with ϵ ≪ 1, reflecting the fact that the model is

gapped at finite L. In other words, at finite L, ∆kz(L)→ ∆0(L) > 0 as kz → 0. With

this justification, we henceforth approximate ∆0 by ∆δkz with a small δkz = 10−5.

We now consider the scaling of the gap with L and U . Determining how ∆0(L)

depends on L enables us to check if the gap persists in the thermodynamic limit.

We find that ∆δkz(L) → 0 as L → ∞. Thus, while gapped at finite L, the phonons

become gapless in the limit of infinite system size. In Fig. 4.10 we see a power-

law dependence of the form ∆δkz(L) ∼ Lα with α ∼ −1.412. Lastly, the scaling of

∆δkz(U) with U is shown in Fig 4.11: ∆δkz ∼ U .500023. Since we use a δk of order 10−5,
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our numerical results are consistent with the dependence ∆kz→0 ∼
√
U , which is also

found in Ref. [80]’s analysis of translation-invariant coupled-wire models with gapless

fluctuations. Putting these dependences together, we conclude that ∆kz→0 ∼
√
ULα.

One interesting take-away from this analysis is that there exists a scaling limit, in

which the strong-coupling limit U →∞ is taken alongside the thermodynamic limit

L → ∞ such that U ≳ L−2α, in which the fluctuations are gapped. In this limit,

one has ∆0 ≳ L
1
2
(−2α)Lα ∼ O(1). At first glance this may seem a somewhat artificial

limit to take. Recall though that the U →∞ limit has been assumed throughout in

our discussion of both the charged and neutral sectors of the theory. Thus the scaling

limit merely demands that the U →∞ limit be taken sufficiently “fast” compared to

the L→∞ limit.

4.5.4 Details on surface theory

Figure 4.12: Pictorial definition of the gapless surface (L,R,T,B) and corner
(TL,TR,BL,BR) modes with open boundary conditions in the x- and y-directions. Chiral
modes belonging to the same surface or corner mode are encircled, and ± indicates the
relative sign with which each chiral mode appears [see, e.g., Eq. 4.23]. .

In this Appendix we provide further details on the construction of the surface
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theory for the case of open boundary conditions in x and y and periodic boundary

conditions in z. In particular, we construct the 2(Lx + Ly)-dimensional K-matrix

of the surface theory, which encodes the commutation relations among the gapless

surface modes, and show that it has two zero modes that correspond to bulk degrees

of freedom that are gapped in the strong coupling limit. This leaves N = 2(Lx+Ly−

1) gapless modes residing on the surface, as expected from the counting argument

presented in the main text.

We identify the chiral gapless boundary modes by finding linear combinations of

bosonic fields on the surface that commute with the bulk interaction terms (4.3). The

boundary of the coupled-wire array can be divided into left, right, top, and bottom

(L,R,T,B) faces. The L and R faces each contain Ly−1 bonds, and the Tand B faces

each contain Lx − 1 bonds. Each such bond is associated with a chiral mode that

commutes with the bulk interactions. For example, on the L surface [r = (1, y),

y = 1, . . . , Ly − 1], one finds using Eq. (4.2) that the Ly − 1 chiral modes

ϕ̂L
R,r = ϕ̃2

R,r − ϕ̃1
R,r + ϕ̃1

L,r−ŷ − ϕ̃2
R,r−ŷ

(4.23)

all commute with the interactions (4.3). Analogous definitions for the R,T,B surfaces

can be read off from Fig. 4.12. In addition to the 2(Lx+Ly−2) chiral modes from the

L,R,T,B surfaces, there are four gapless modes associated with the TL,TR,BL,BR

corners of the array; for example, at the BL corner we have

ϕ̂BL
R = ϕ̃2

R,(1,1) − ϕ̃1
R,(1,1), (4.24)
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and similar expressions for the other corners can be read off from Fig. 4.12. We thus

find a total of 2(Lx + Ly) = N + 2 boundary modes that commute with the bulk

interactions. Of these, all but the modes at the TL and BR corners are chiral, i.e.

contain an excess of right- or left-movers.

Each of the surface modes identified above has a nontrivial commutation relation

both with itself and with its immediate neighbors; these commutation relations follow

directly from Eq. (4.2). We organize these commutation relations into an (N + 2)-

dimensional square matrix K defined by

[ϕ̂α(z), ϕ̂β(z
′)] = iπ Kαβ sgn(z − z′), (4.25)

where α, β = 1, . . . , N + 2 label the surface modes identified above. We compute

K as an 8 × 8 block matrix whose diagonal blocks describe the L,R,T,B faces

and the TL,TR,BL,BR corners, and whose off-diagonal blocks encode nontrivial

commutation relations among the corners and faces.

We first focus on the block-diagonal part of K. Each of the L,R,T,B faces has

an (La − 1)-dimensional (a = x, y) K-matrix for the modes identified in Eq. (4.23)
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that is proportional to

Ka =



−2m m 0 . . . 0 0

m −2m m 0 . . .

0 m −2m m 0 . . .

...
...

...
...

...
...

0 0 . . . 0 m −2m


. (4.26)

This K matrix is (up to an unimportant sign on the diagonal entries) proportional to

that of the so-called “121” phase of a stack of fractional quantum Hall layers identified

in Ref. [189]. The K-matrices for the T,B,L, and R surfaces are

KT = −Kx, KB = Kx, KL = Ky, KR = −Ky, (4.27)

indicating that opposite surfaces have opposite chiralities, as expected. The remaining

diagonal blocks of K describe the self-commutation relations of the TL,TR,BL,BR

corner modes identified in Eq. (4.24); they are

KTL = 0, KTR = 2m, KBR = 0, KBL = −2m. (4.28)

Note that KTL = KBL = 0 because these modes are nonchiral.

We now determine the off-diagonal blocks of K. Each of the corner modes has

a nontrivial algebra with neighboring modes from the two surfaces it touches. This
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algebra is encoded in the 1× (Lx − 1) K-matrices

KTLT =

(
−m 0 . . . 0

)
= −KBRB, (4.29a)

the (Lx − 1)× 1 K-matrices

KTTR =



0

...

0

−m


= −KBBL, (4.29b)

the 1× (Ly − 1) K-matrices

KTRR =

(
m 0 . . . 0

)
= −KBLL, (4.29c)

and the (Ly − 1)× 1 K-matrices

KRBR =



0

...

0

m


= −KT

TLL. (4.29d)

Combining Eqs. (4.26), (4.27), (4.28), and (4.29), we can write the full 2(Lx + Ly)-
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dimensional K-matrix in block form as

K =



KTL KTLT 0 0 0 0 0 KTLL

KT
TLT KT KTTR 0 0 0 0 0

0 KT
TTR KTR KTRR 0 0 0 0

0 0 KT
TRR KR KRBR 0 0 0

0 0 0 KT
RBR KBR KBRB 0 0

0 0 0 0 KT
BRB KB KBBL 0

0 0 0 0 0 KT
BBL KBL KBLL

KT
TLL 0 0 0 0 0 KT

BLL KL



. (4.30)

The existence of the 2(Lx + Ly)-dimensional K-matrix (4.30) seems to imply the

existence of 2(Lx+Ly) = N+2 gapless modes that commute with the bulk interaction

terms, rather than the N modes expected based on counting the bulk interaction

terms. However, it is possible that some linear combinations of these surface modes

can be rewritten in terms of pinned bulk fields, since these bulk fields also commute

with the interaction Hamiltonian. Indeed, we find that the K-matrix (4.30) has

two zero modes at any system size, and that these zero modes correspond to linear

combinations of pinned bulk fields. The first zero mode can be written compactly in

(N + 2)-dimensional vector form as

Υ+ =

(
−1 −1Lx−1 −1 +1Ly−1 −1 −1Lx−1 −1 +1Ly−1

)T

, (4.31)

179



where 1d is a d-dimensional vector with unit entries. The second is

Υ− =

(
Lx+Ly

2
C+−

Ly−Lx

2
C−+ −Lx+Ly

2
−C+−

Lx−Ly

2
−C−+

)T

, (4.32a)

where the (Lx − 1)-dimensional vector

C+− =

(
Lx+Ly

2
− 1 Lx+Ly

2
− 2 . . . Ly−Lx

2
+ 1

)
(4.32b)

and the (Ly − 1)-dimensional vector

C−+ =

(
Lx−Ly

2
+ 1 Lx+Ly

2
+ 2 . . . Lx+Ly

2
− 1

)
. (4.32c)

Writing these zero modes as linear combinations of the underlying bosonic surface

fields defined by Eqs. (4.23) and (4.24) and their analogs, we find that they can be

reexpressed as linear combinations of the pinned bulk vertex and plaquette fields. For

example,

Υ+ =
∑
r∈Λ

θPr , (4.33)

where the sum runs over all vertices r in the square lattice Λ with OBC and where

θPr is the pinned (i.e. gapped) plaquette field. Υ− can also be expressed as a linear

combination of pinned vertex and plaquette fields θVr and θPr , respectively, but the

expression is more complicated (in particular, it depends on system size) and we omit

it here. Pictorial examples of the expressions for Υ± in terms of pinned bulk fields
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Figure 4.13: Schematic depiction of the expressions for the zero modes Υ+ (a) and Υ−
(b) in terms of pinned bulk fields θV,Pr at system size Lx = Ly = 4. Integers appearing in a
plaquette or vertex of the square lattice signify the coefficient with which the corresponding
θPr or θVr field (respectively) enters the expression of Υ± as a linear combination of these
fields. .

for Lx = Ly = 4 are shown in Fig. 4.13. In summary, while a naive identification of

surface modes commuting with the bulk interaction terms finds N +2 such modes, a

closer look shows that two of these modes can be reexpressed as linear combinations

of pinned bulk fields. We thus find N gapless surface modes, as expected from the

counting of bulk interaction terms.

We note in passing that the Lagrangian for the surface theory constructed in this

Appendix can be written as

Lbdy =

∫ Lz

0

dz

4π
[(∂tϕ̂)

TK+(∂zϕ̂)− (∂zϕ̂)
TV (∂zϕ̂)], (4.34)

wherein we have collected the boundary modes into an (N +2)-component vector ϕ̂,

and where the (N+2)-dimensional symmetric rational matrixK+ is the pseudoinverse

of K. The matrix V encodes the kinetic energy of the boundary modes and depends

on microscopics. This surface theory is unusual because K+ is generically not sparse,

and deserves further study.
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4.5.5 Topological ground-state degeneracy

Here we compute the topological ground-state degeneracy (GSD) for the coupled-wire

model with the alternative “unusual” boundary conditions defined in the main text.

The method used is presented in Ref. [67]. The closed model is shown in Fig. 4.14 a).

Note that in the strong coupling limit any configuration in the ground state manifold

is labeled by a set of integers defined by θV,Pr , 2θ̃qi ∈ 2πZ where r ∈ Λ labels wires in

the original 2D array and i = 1, . . . , N/2 + 1 labels pairs of added boundary wires.

Naively then, a general ground state can be labelled by assigning each plaquette,

vertex, and oval in 4.14(a) a value in Z. However, because of the compact nature of

the degrees of freedom (ϕqη,r ≡ ϕqη,r + 2π), many of these ground-state configurations

should, in fact, be identified. Starting with an arbitrary configuration, one can “clean”

the set of ground-state labels by using local shifts ϕqη,r → ϕqη,r + 2π to set extraneous

labels to zero. The patterns of these local 2π shifts are the same as those produced

by the application of vertex operators, some of which are displayed in Figs. 4.2 and

4.3. Patterns of particular use are displayed in Fig. 4.14(b); we refer to the patterns

therein by the labels A-E in the cleaning argument below.

First we address the configuration of the vertex terms which are represented in

Fig 4.14(a) by the grey circles. We claim that any configuration of vertex terms is

trivial and can by cleaned so that θVr = 0 at each r while the other terms remain

unchanged. First note that, by repeated application of D, all vertex terms except one

can be set to zero. Suppose the remaining nonzero vertex term is in the top edge and

has value θV = q. Then, by combining B and C, we can set θV = 0 at the expense
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Figure 4.14: (a) A representation of the model with the alternative boundary conditions
discussed in the main text. The grey circles correspond to the vertex terms θVr and the
squares (both complete and partially complete) correspond to the plaquette terms θPr .
The blue and red ovals, which are shared between the left/right and top/bottom faces,
respectively, correspond to the argument of the Laughlin interaction term, 2θ̃1,2. Note that
the bottom-left corner does not have a plaquette term, as discussed in the main text. (b)
Here we provide examples of some useful phase shift patterns which are employed to clean a
general configuration in the ground state manifold. Note C ′ in particular, which is a special
case of pattern C in the bottom left-corner where the plaquette term is absent. This will be
key for cleaning the entire configuration of plaquettes..

of shifting the red oval directly above, corresponding to θ̃1, by mq. Finally, using E,

this factor of mq can be cleaned.

Next we consider the plaquette terms θPr . First we assign some value in Z to each

square in 4.14(a) except for the bottom-left corner, which is assumed to be free of

a truncated plaquette term as discussed in the main text. Observe that by using

pattern A one can set all plaquettes to 0 except those in an “L”-shaped region on the

perimeter. Suppose all nonzero plaquettes are confined to the top and right edge. By

applying C from left to right and then top to bottom, the values of the plaquettes can

be shifted onto the red or blue ovals. This procedure leaves one remaining nonzero

plaquette in the bottom-right corner. For this term, we can apply C to shift its value

to the left until it reaches the bottom-left corner, where it can be removed using C ′.
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At this point all plaquettes and vertices have been set to zero, leaving only the

integers corresponding to interaction terms represented by the red and blue ovals in

Fig. 4.14. Using E one can now clean the red and blue ovals modulo m. This analysis

yields

GSD = mLx+Ly (4.35)

where Lx × Ly is the size of the square lattice Λ of vertices in the array. Another

method for computing topological ground-state degeneracies for coupled-wire models

was introduced in [197]. Applying it here produces the same answer.

4.5.6 Periodic boundary conditions

We now briefly comment on the coupled-wire model when the natural periodic boundary

conditions (PBC) are imposed in all directions, so that the coupled-wire array has

the topology of a three-torus. In this case, the Gauss law defined in Eq. (4.9) in the

main text can be applied with M = Λ, leading to the global constraint

∑
r∈Λ

θPr = 0. (4.36)

Now we can apply the Haldane counting argument summarized in the main text.

The number of chiral gapless modes in the array is 4LxLy, and with PBC there are

LxLy vertex terms and LxLy plaquette terms. Since each interaction term gaps a

pair of chiral modes, the number of interaction terms at first appears sufficient to

fully gap all chiral modes. However, the constraint (4.36) reduces by one the number
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of linearly independent interaction terms in the Hamiltonian. We thus arrive at the

conclusion that the model retains one pair of gapless chiral modes with opposite

chirality when PBC are imposed in all directions. We remark that that the model

with open boundary conditions (OBC) also has chiral gapless modes, but, as shown

in Appendix 4.5.4, these modes are associated entirely with the surface. We expect

that local bulk properties of the coupled-wire array—e.g., the energy gap for local

excitations—cannot depend on boundary conditions. We therefore expect that the

remaining chiral gapless modes cannot be excited by any local operator. We attribute

these modes to an infinite ground-state degeneracy that occurs when the continuum

limit of a closely related fracton lattice model (see Appendix 4.5.8) is taken in the

wire direction. This subtlety, which is also present in Ref. [68] but was overlooked

there, will be investigated in future work.

Under the plausible assumption of an energy gap to all topological excitations

created by local operators, the topological ground-state degeneracy with PBC can

be computed using the techniques of Appendix 4.5.5. This calculation finds that the

ground-state manifold has dimension

GSD = mLx+Ly−2 gcd(Lx, Ly). (4.37)

This differs from Eq. (4.35) by the factor gcd(Lx, Ly)/m2. The numerator of this

factor comes from the fact that the final vertex in the vertex-cleaning procedure

described in Appendix 4.5.5 can no longer be eliminated in the case of PBC, and

the minimal shift of this remaining vertex is 2π gcd(Lx, Ly). The denominator of
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this factor comes from relations among the plaquette terms that only arise for PBC.

One factor of m comes from the fact that cleaning all plaquettes into an “L” shape

as in Appendix 4.5.5 yields only Lx + Ly − 1 unique plaquette terms for PBC. The

remaining factor of m comes from the global constraint (4.36), which reduces by one

the number of independent plaquette terms.

4.5.7 Generalization to non-Abelian coupled-wire models

We now propose a direct generalization of the coupled-wire construction depicted in

Fig. 4.1 that yields models with non-Abelian excitations. The idea is to promote

each Luttinger-liquid wire in Fig. 4.1 to a rational conformal field theory (CFT),

and to couple these CFTs in such a way that chiral non-Abelian topological phases

(rather than Abelian Laughlin ν = 1/m phases) reside on x-z and y-z planes of the

square lattice. We then couple the planes by adding strong local interactions at the

vertices where they intersect; similar to the Laughlin construction, these interactions

condense p-strings consisting of fractionalized excitations from different planes. This

condensation process generates plaquette terms that give rise to subdimensional non-

Abelian excitations. For a high-level analysis of related models, we refer the reader

to Appendix 4.5.8.

A relatively simple and very interesting class of examples uses SU(2)k CFTs

as building blocks. These CFTs can be realized using spin chains at criticality or

fermionic wires with 2k fermion species. They can be coupled using current-current

interactions within the x-z and y-z planes of the square lattice to yield chiral SU(2)k
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topological phases in each plane. Specifically, we define the SU(2)k current operators

using the decomposition SU(2)k = Zk × U(1)k as [66]

Jq,+η,r =
√
k ψqη,r e

+iϕ̃qη,r/k (4.38)

Jq,−η,r =
√
k ψq †η,r e

−iϕ̃qη,r/k (4.39)

Jq,zη,r = i

√
k

2
∂zϕ

q
η,r, (4.40)

where r ≡ (x, y), q = 1, 2 labels whether the CFT belongs to a vertical or horizontal

plane, respectively, and η = L,R labels the chirality. Here, ψqη,xy and ψq †η,xy are

parafermion operators that are the simple currents in the Zk CFT, and ϕqη,xy are

chiral boson operators from the U(1)k CFT. The parafermion operators in a given

wire obey the exchange algebra

ψqL/R,r(z)ψ
q′

L/R,r′(z
′) = ψq

′

L/R,r′(z
′)ψqL/R,r(z) e

±iπ
k
δq,q′δr,r′ sgn(z−z′) (4.41)

ψq †L/R,r(z)ψ
q′ †
L/R,r′(z

′) = ψq
′ †
L/R,r′(z

′)ψq †L/R,r(z) e
±iπ

k
δq,q′δr,r′ sgn(z−z′) (4.42)

ψqL/R,r(z)ψ
q′ †
L/R,r′(z

′) = ψq
′ †
L/R,r′(z

′)ψqL/R,r(z) e
∓iπ

k
δq,q′δr,r′ sgn(z−z′), (4.43)

while the chiral bosons obey the algebra

[ϕ̃qL/R,r(z), ϕ̃
q′

L/R,r′(z
′)] = ±iπ k δq,q′δr,r′ sgn(z − z′). (4.44)
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We can then couple the wires using current-current interactions of the form

H = λ
∑
x,y

3∑
a=1

(
U1
r,r+ŷ + U2

r,r+x̂

)
, (4.45)

where

U q
r,r′ = Jq,+L,r J

q,−
R,r′ + Jq,−L,r J

q,+
R,r′ (4.46)

= k
[
ψqL,rψ

q †
R,r′ e

i
(
ϕ̃qL,r−ϕ̃

q

R,r′

)
/k

+ H.c.
]
. (4.47)

The interactions (4.45) are marginally relevant under the renormalization group, so

the coupling constant λ flows to infinity when it has the appropriate sign. Each plane

then enters a gapped phase with SU(2)k non-Abelian topological order [65, 66].

Next we seek vertex terms that couple intersecting x-z and y-z planes. The

simplest local operators are products of primary operators Φ
q,(ℓ)
r in each CFT, from

which we can construct Hamiltonian terms

UV,ℓℓ′

r = Φ1,(ℓ)
r Φ2,(ℓ′)

r + H.c. (4.48)

Here, the index ℓ = 0, . . . , k labels the k+1 primary fields of the SU(2)k CFT. These

primary operators can be expressed in terms of operators in the Zk and U(1)k CFTs

as (suppressing the labels q and r for compactness) [198]

Φ(ℓ) = Φℓ
LΦ

ℓ
R e

i ℓ
2

4k
ϕ̃L e−i

ℓ2

4k
ϕ̃R , (4.49)

188



where Φℓ
LΦ

ℓ
R is a primary operator in the Zk CFT. (Note that Φ0

LΦ
0
R = Φk

LΦ
k
R =

1.) The primary operators Φ(ℓ) are in one-to-one correspondence with anyons in

the gapped bulk of the coupled-wire array, creating quasiparticle-quasihole pairs

consisting of anyons with label ℓ. The vertex terms (4.48) thus create bound states of

anyonic excitations in the intersecting layers; adding such a term to the Hamiltonian

and manually imposing a large coupling λV ≫ λ leads to condensation of p-strings

composed of these anyons. The natural anyon to condense in this fashion is the one

with label ℓ = k. This anyon is always Abelian and carries topological spin ei
πk
2 —

thus, it is a boson when k = 0 mod 4, a fermion when k = 2 mod 4, and a semion

or antisemion when k = 1 or 3 mod 4. To condense p-strings composed of these

anyons, we choose ℓ = ℓ′ = k in Eq. (4.48).

Implementing p-string condensation using the vertex terms UV,kk
r leads to modified

couplings between wires arising from perturbation theory in λ/λV . Based on our

understanding of the Abelian case, it is clear that the current-current couplings (4.46)

generically excite the vertex terms (4.48)—this can be seen, for example, by inspection

of the Abelian components of the current operators (4.38) and the primary operators

(4.49), whose commutation is governed by Eq. (4.44). Thus, perturbation theory

generates products of the current-current interactions (4.46). An example of a term

generated at fourth order is

UP
r ∼ J1,+

L,r J
1,−
R,r+ŷJ

2,+
L,r+ŷJ

2,−
R,r+ŷ+x̂J

1,+
R,r+ŷ+x̂J

1,−
L,r+x̂J

2,+
R,r+x̂J

2,−
L,r + H.c., (4.50)

whose sign structure mimics that of its Abelian counterpart, see Eq. (4.3). To see
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that this indeed commutes with UV,kk
r , we first consider the Abelian sector. The

commutator of the Abelian parts of the current operators in Eq. (4.50) with the

Abelian part of UV,kk
r can be shown to vanish using (4.44). Next, we consider the

non-Abelian sector. In order for the non-Abelian parts of Eqs. (4.50) and UV,kk
r to

commute, we must demand that the combination of Zk primary operators entering

Eq. (4.48) with ℓ = ℓ′ = k has trivial monodromy with the parafermion operators

entering Eq. (4.50). For general ℓ, ℓ′, this is achieved when the following two relationships

hold:

∆Φℓ +∆ψ −∆Φℓ×ψ = −(∆Φℓ′ +∆ψ† −∆Φℓ′×ψ†) mod 1 (4.51)

∆Φℓ +∆ψ† −∆Φℓ×ψ† = ∆Φℓ′ +∆ψ −∆Φℓ′×ψ mod 1, (4.52)

where ∆O is the chiral scaling dimension of the operator O and O ×O′ denotes the

fusion product of the operators O and O′. Using the data [198]

∆Φℓ =
ℓ(ℓ+ 2)

4(k + 2)
− ℓ2

4k
(4.53)

∆ψ = −1

k
(4.54)

∆ψ† = −(k − 1)2

k
(4.55)

∆Φℓ×ψ =
ℓ(ℓ+ 2)

4(k + 2)
− (ℓ+ 2)2

4k
(4.56)

∆Φℓ×ψ† =
ℓ(ℓ+ 2)

4(k + 2)
− (ℓ+ 2k − 2)2

4k
(4.57)

we see that Eq. (4.51) reduces to ℓ = ℓ′ mod k, while Eq. (4.52) reduces to ℓ =
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−ℓ′ mod k. The only nontrivial solution satisfying both constraints is ℓ = ℓ′ = k.

We thus arrive at the interesting conclusion that condensing p-strings composed

of ℓ = k SU(2)k anyons yields a class of models that naturally generalizes the Abelian

construction depicted in Fig. 4.1.

Having constructed a nontrivial class of models, we now discuss how to determine

the allowed quasiparticles after condensation. Here we can take advantage of the

connection between anyon condensation in topological quantum field theories (TQFTs)

and chiral algebra extensions in CFTs [184]. Namely, when a primary operator in a

CFT is “condensed” (or, algebraically speaking, added to the representation of the

vacuum sector) by adding a term of the form (4.48) to the Hamiltonian, the operator

content of the CFT reorganizes itself in a manner reminiscent of anyon condensation

in TQFT. In particular, the new primary operators in the “extended” CFT are in

one-to-one correspondence with deconfined quasiparticles after condensation in the

TQFT. Each new primary operator corresponds to a quasiparticle species, as we saw

in the Abelian case where each local nonchiral product of vertex operators makes a

bound state of fractons. Non-Abelian excitations are created by primary operators in

the extended CFT that have a nontrivial fusion algebra, i.e. if their fusion with one

or more other primary operators has multiple possible channels.

As an example, consider a wire construction based on SU(2)4 CFTs coupled by

current-current interactions (4.46) and vertex terms (4.48) with ℓ = ℓ′ = 4. The

effect of adding the vertex terms at strong coupling can be understood heuristically

by viewing the p = 1, 2 copies of SU(2)4 as two separate SU(2)4×SU(2)4 topological

orders, whose anyons we label by (ℓ, ℓ′)p with ℓ, ℓ′ = 0, . . . , 4 and p = 1, 2. In this

191



analogy, each anyon with integer topological spin in either of the two copies, including

the “diagonal” anyons (ℓ, ℓ)p, corresponds to a local operator in the associated CFT.

These two topological orders are then coupled by condensing the anyon (4, 4)1(4, 4)2.

One can verify by explicit calculation along the lines of Ref. [184] that the condensed

theory hosts a pair of diagonal non-Abelian anyons that can be labeled by (1, 1)1(0, 0)2

and (0, 0)1(1, 1)2. The corresponding local operators in the CFT thus create non-

Abelian quasiparticles.

Although it is interesting that we can generate non-Abelian generalizations of the

coupled-wire model studied in the main text, the analysis of this model is cumbersome

to carry out at the level of the underlying CFTs. In Appendix 4.5.8, we introduce

a general algebraic prescription for carrying out the planar p-string condensation

procedure discussed here. Applying this construction to SU(2)k layers allows for a

much more rapid analysis of quasiparticle mobility in the resulting fracton models.

4.5.8 Further aspects of planar p-string condensation

In this Appendix we present further details about examples of and connections between

planar p-string condensation and existing mechanisms that generate fracton topological

order.

In Sec. 4.5.9, we present further high-level examples of planar p-string condensation,

one of which is non-Abelian. In Sec. 4.5.10, we introduce several spin lattice models

constructed via planar p-string condensation, including a model that is foliated equivalent [134]

to the chiral fracton theory that emerges in the bulk of the coupled-wire model
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introduced in the main text. We go on to discuss in Sec. 4.5.11 how this mechanism

is related to gauging planar subsystem symmetries [183], and in Sec. 4.5.12 how it

fits into the recently developed framework of topological defect networks [77].

4.5.9 Further high-level examples

In this section we present a pair of examples, the first generalizing the ZN layer

examples to even N , the second realizing non-Abelian fracton sectors that emerge

from the coupled-wire construction in Appendix 4.5.7.

Semion layers

There is a closely related family of examples to those presented in Section 4.3 with

N even. These correspond to the semion theory (and related theories). Again the

topological charges and their fusion is given by ZN with N an even integer in this

case. The S-matrix and topological spins are

Sa,b =
1√
N
ei

2π
N
ab , θa = ei

π
N
a2 , (4.58)

and the quantum dimensions are all 1. However, in this case the F symbols are

nontrivial, namely

F abc
[a+b+c] = ei

π
N
a(b+c−[b+c]) , (4.59)

where [ ] denotes addition modulo N .
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There is an obvious ZN grading generated by braiding with the 1 anyon, which is

semionic (or a generalization thereof). The planar p-string condensation construction

of a fracton model can be formally followed through exactly as above. However, in this

case the string operators for the anyonic p-strings being condensed in disjoint layers

do in fact have a nontrivial anomaly due to the nontrivial F -symbol. This F -symbol

implies that the string operators making up the membrane operator that creates a

p-string cannot be realized as on-site operators, and hence cannot be condensed in a

consistent way, see Sec. 4.5.11. Another way to say this is that the p-strings cannot

be condensed into the vacuum of a gapped phase, as that would allow a vacuum to

vacuum process involving the creation and annihilation of p-strings resulting in the

vacuum state being equal to minus itself due to the nontrivial F -symbol, which takes

values ±1.

SU(2)k anyon layers

For an example that is related to the non-Abelian coupled-wire construction proposed

in Appendix 4.5.7, we consider chiral topological layers supporting SU(2)k anyons.

The topological charges of the SU(2)k anyon theory are labelled by half integers

{0, 1
2
, . . . , k

2
}. Their fusion rules, quantum dimensions, S-matrix and topological spins

are

j1 × j2 =
min(j1+j2,k−j1−j2)∑

j=|j1−j2|

j , dj =
sin (2j+1)π

k+2

sin π
k+2

,

Sj1,j2 =

√
2

k + 2
sin

(2j1 + 1)(2j2 + 1)π

k + 2
, θj = e2πi

j(j+1)
k+2 , (4.60)
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respectively. See Ref. [196] for a review of the F and R symbols of the SU(2)k anyon

theory.

The k
2

particle is an Abelian Z2 anyon; it is a boson for k = 0 mod 4, a semion

for k = 1 mod 4, a fermion for k = 2 mod 4, and an antisemion for k = 3 mod 4.

The braiding phases Sj, k
2
|Sj, k

2
|−1 = ±1 with k

2
induce a Z2 grading on the topological

charges, organizing them into integers and half-integers {0, 1, . . . }+ ⊕ {12 , 32 , . . . }−.

The half-integer −1 sector contains a non-Abelian anyon for any k > 1.

We construct a fracton model by driving Z2 p-string condensation of k
2

anyons

within xy planes of a stack of SU(2)k anyon layers along the xz and yz planes of

the cubic lattice. The resulting fracton model has a hierarchy of subdimensional

topologial excitations generated by:

• Abelian Z2 fractons that appear on the open ends of condensed p-strings.

• Non-Abelian (and Abelian) x̂ lineons from the half-integer anyons in an xz

layer, trapped between p-string planes. Similarly there are ŷ lineons from the

yz layers. There are also non-Abelian ẑ lineons from composites of an x̂ and ŷ

lineon trapped between the same p-string planes.

• Planons, that may be non-Abelian, coming from the integer anyons in an xz or

yz layer or from composites of fractons or lineons that have an overall trivial

braiding with the p-strings.

We remark that for odd k there is an anomaly of the string operators preventing

the p-strings from condensing to form a consistent condensate, due to the nontrivial F -

symbols of the semions or antisemions. For this reason we do not expect that driving
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such a p-string condensation in odd-k SU(2)k planes can lead to a gapped phase. In

Sec. 4.5.11, this is expressed as an anomaly of the planar subsystem symmetry that

applies semion or antisemion string operators to layers intersected by the plane.

For k/2 an odd integer, the p-strings being condensed in layers are made up of

emergent fermions. For conventional p-string condensation throughout the whole 3D

bulk this would be anomalous, due to the nontrivial topological spin of the emergent

fermions. However, as was shown in Ref. [183], a planar subsystem symmetry generated

by fermion string operators is not anomalous and can be gauged. This is equivalent

to the condensation of p-strings consisting of emergent fermions, see Sec. 4.5.11 for a

further discussion.

4.5.10 Lattice models

We now present several lattice-model constructions using the planar p-string condensation

mechanism. We highlight in particular that the lattice model discussed in Sec. 4.5.10

is closely related to the coupled-wire model studied in the main text and to the

abstract model discussed in Sec. 4.3.2.

X-cube from Z2 gauge theory layers

As a warm up we consider 2D layers of toric code, i.e. Z2 lattice gauge theory, stacked

along the xz and yz planes of the cubic lattice. We introduce couplings that induce

p-loop condensation of m anyons on the xy planes. The resulting planar p-string

condensed model is simply the well-known X-cube model [42].
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The Hamiltonian governing the edge qubits in each 2D layer is

HTC = −
∑
v

∏
e∋v

Ze −
∑
p

∏
e∈p

Xe . (4.61)

where e ∋ v denotes the edges e containing a vertex v and p is used to denote

plaquettes. The layers are stacked along the xz and yz planes of the cubic lattice,

leading to a single qubit per edge in each xy plane and two qubits per ẑ edge e, which

we label exz and eyz. The m anyon p-string creation operators are given by ZexzZeyz .

These couplings are introduced to the decoupled layer Hamiltonian

Hλ =
∑
ℓxz

Hℓxz
TC +

∑
ℓyz

H
ℓyz
TC − λ

∑
e⊥ẑ

ZexzZeyz , (4.62)

where ℓxz and ℓyz denote xz and yz planes, respectively. In the limit of infinitely strong

coupling λ→∞ the two qubit Hilbert space on each xy-plane edge is projected onto

a single qubit described by the operators Zexz ∼ Zeyz 7→ Ze and XexzXeyz 7→ Xe. The

resulting strongly coupled Hamiltonian has cube terms, given by products of four

plaquette terms, arising at leading order in degenerate perturbation theory (higher

order terms are not independent and hence simply shift the energetics of gapped

excitations). This is simply the X-cube model at leading order:

Hcondensed = −
∑
v

∏
e∋v,e⊥x̂

Ze +
∏

e∋v,e⊥ŷ

Ze −
∑
c

∏
e∈c

Xe . (4.63)

The anyons in the toric code layers have Z2 × Z2 fusion generated by the Z2

electric charge e, which are created by X string operators along edges of the graph,
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and magnetic flux m, which are created by Z string operators along dual edges.

Since the m particles are planar p-string condensed in this example, the e particles

are promoted to lineons, while m becomes a planon composite of a pair of fractons,

as described in the general treatment above.

We remark that this example extends directly to planar p-loop condensing ZN

lattice gauge theory layers to obtain the ZN X-cube model. In the next example we

introduce an alternate anyonic planar p-loop condensation transition that drives ZN

lattice gauge theory layers to a twisted ZN X-cube model that is foliated equivalent

to the chiral fracton model introduced in the main text and discussed in Sec. 4.3.2.

Anomalous string operators in ZN gauge theory

For our next example we consider anyonic planar p-string condensation in layers

containing ZN gauge theory. The resulting fracton model is equivalent to the coupled-

wire fracton model introduced in the main text and Sec. 4.3.2, up to stacking with

decoupled 2D layers (also known as foliated equivalence).

To describe the model we denote the ZN clock and shift matrices by X and Z.

They satisfy the relations

XN = ZN = 1 , XZ = ωZX , (4.64)

where ω is a primitive Nth root of unity. The 2D layer Hamiltonians act on edge
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qubits of a square lattice via

H2D = −
∑
v

Av −
∑
p

Bp + H.c. (4.65)

where the vertex and star terms are given by

Av =

Z†

Z Z†

Z

, Bp =

X†

X† X

X

. (4.66)

The above terms generate Z string operators on the dual lattice, and X string

operators on the lattice. These string operators create emergent anyons corresponding

to gauge flux and charge, which we denote by m and e respectively, that generate

ZN×ZN fusion rules. The anyon theory describing these particles is formally denoted

by the Drinfeld center Z(VecZN
), which is discussed further in the next section. The

braiding S-matrix of this anyon theory is

Seimj ,ekmℓ =
1

N
ωiℓ+jk . (4.67)

ForN odd this theory can be decomposed into layers of opposite chirality, Z(VecZN
) ∼=

Z(n)
N ⊠ Z(−n)

N , for n = 1, 2, or any other integer coprime to N , where we have used

the notation of Ref. [196]. The ⊠ notation we have used refers to the operation of

stacking decoupled layers. The generating anyon for the Z(n)
N chiral layer is given by

enm, while the generator of the antichiral Z(−n)
N layer is enmN−1. Denoting anyons in
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terms of the chiral-antichiral generators as (i, j) the S-matrix is then written

S(i,j),(k,ℓ) =
1

N
ω2n(ik−jℓ) = S

(n)
i,k S

(−n)
j,ℓ , (4.68)

where S(n)
i,k , S

(−n)
j,ℓ , are the S-matrices of the chiral and antichiral layers respectively.

The anyon theory describing the superselection sectors of the Laughlin state at

filling fraction ν = 1
m

, modulo the physical fermion, is Z(2)
N for N = m, see Ref. [196]

for example. Below we utilize the embedding of the Z(2)
N anyons into the Z(VecZN

)

anyons of the ZN lattice gauge theory to construct a lattice model via p-string

condensation that is foliated equivalent [134] (i.e. equivalent up to stacking decoupled

Z(−2)
N layers) to the fracton model arising from the coupled-wire construction in the

main text when a lattice cutoff is introduced in the wire direction. We explicitly

consider n = 2, which is relevant to the Laughlin case, but a more general family of

models starting from hierarchy FQH states can be obtained using n ̸= 2.

The string operators for the chiral Abelian anyons in a given 2D layer, as viewed

from above, are of the form

. . .
Z Z Z Z Z

X2 X2 X2 X2 X2

. . . (4.69)

For convenience we conjugate the model by the following local unitary circuit to

simplify the horizontal string operators

U =
∏
v

Hv+ x̂
2
CX2

v+ x̂
2
,v+ ŷ

2

H†
v+ x̂

2

, (4.70)
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where x̂ and ŷ denote the axes of the square lattice depicted above. where Hi is a

generalized Hadamard matrix, or ZN Fourier transform, which satisfies

HXH† = Z† , HZH† = X , (4.71)

while CXi,j is a generalized controlled-X matrix, which satisfies

CX(XI)CX† = XX , CX(IX)CX† = IX , CX(ZI)CX† = ZI , CX(IZ)CX† = Z†Z ,

(4.72)

where XI, IX denote Xi, Xj, and similarly for Z. The conjugated string operator

becomes

. . . Z Z Z Z Z . . . . (4.73)

The Bp terms in the Hamiltonian are left invariant under conjugation by U , while

the Av terms become

UAvU
† =

X−2 Z†X2

Z Z†X2

Z

X−2

. (4.74)

To facilitate the coupled-layer construction we modify our choice of the Hamiltonian

vertex terms by multiplying the above operators with plaquette terms, which preserves
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the topological phase, as follows:

Ãv =

X2

Z†

ZX−2 Z†X2

Z

X−2

. (4.75)

The planar p-string coupled-layer model is obtained by stacking the 2D Hamiltonian

along xz and yz planes of the cubic lattice, such that there are two qudits per ẑ edge

coming from the vertical edges of the intersecting 2D layers, and driving a phase

transition with a strong uniform ZZ† field applied to these edges, i.e.

H(α) =
∑

xz, yz planes

H2D − α
∑
e∥ẑ

ZZ† + H.c. (4.76)

In the planar p-string condensed limit, as α → ∞, the low energy subspace has one

effective qudit per ẑ edge with logical operators ZI ∼ IZ 7→ Z,XX 7→ X and the

leading order Hamiltonian on this Hilbert space is given by

H = −
∑
v

(Ãxzv + Ãyzv )−
∑
c

Bc + H.c., (4.77)

where Ãxzv and Ãyzv are modified star terms that now act on a common set of qubits

on the ẑ edges, and

Bc =
∏
e∈c

Xσe
e (4.78)
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is the cage term of the ZN X-cube model, where σe = ±1 depending upon the edge.

Hence we refer to the Hamiltonian (4.77) as a twisted ZN X-cube model, though

we remark that the way this model is twisted is distinct from previously considered

generalizations of X-cube [76, 128].

We now discuss the ground space degeneracy of the model (4.77) with periodic and

open boundary conditions and describe how these results compare with the coupled-

wire model discussed in the main text and Appendices 4.5.5 and 4.5.6.

Periodic boundary conditions: On an L1 × L2 × L3 torus there are an equal

number of qubits and local stabilizer generator terms in the Hamiltonian and so we

can compute the ground space degeneracy by counting the number of independent

relations between the generators, i.e. nontrivial products of generators equal to the

identity. The cube terms are identical to those in the X-cube model, where it is known

that the product over any dual lattice plane gives rise to a relation. Furthermore,

there are two redundancies in these relations as the product over all dual xy planes

is identical to the product over all dual yz planes, and similarly for dual xz planes.

The vertex terms in Eq. (4.77) are twisted relative to those in the X-cube model,

however a similar set of relations still hold: the product of the Ãxzv terms over an xz

plane gives a relation, and similarly for the product of the Ãyzv terms over a yz plane.

Finally, we can take the product of Ãxzv (Ãyzv )† over an xy plane, leaving a product of

Pauli X±2 operators over the edges in a pair of xy planes, which can be cancelled

out by multiplication with cube terms Bc between the planes, provided Lx, Ly, are

multiples of N . There is one redundancy in these relations as the product of the Ãxzv

relations over all xz planes, and the (Ãyzv )† relations over all yz planes is identical to
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the product of the Ãxzv (Ãyzv )† relations over all xy planes.

The counting of the relations modulo redundancies gives a total ground space

degeneracy of N2(Lx+Ly+Lz)−3, matching that of the untwisted X-cube model. As

explained above, the lattice model in this section is foliated-equivalent to the topological

phase of the coupled-wire model, up to stacking with Lx+Ly decoupled Z(−2)
N layers,

which are not affected by the p-string condensation. The degeneracy of the decoupled

antichiral layers after planar p-string condensation is NLx+Ly , leaving a degeneracy

of NLx+Ly+2Lz−3 associated to the chiral fracton model.

To match with the degeneracy of the wire model we must take the continuum

limit in the ẑ direction, which sends the number of sites in that direction to infinity,

i.e. Lz → ∞. Hence we see from the lattice model that there is necessarily some

infinite topological degeneracy due to the continuum limit along ẑ. This infinite

degeneracy is quite subtle, although a similar phenomenon can already be seen to

occur for the continuum limit of decoupled topological layers stacked along ẑ. It is

topologically protected in the sense that splitting by local operators is exponentially

suppressed as a function of Lx and Ly but it can be lifted by local operators to give a

nontrivial dispersion in the ẑ direction within the exponentially suppressed window.

We leave a more in-depth study of this limit to future work. In the continuum limit

along ẑ, relations that limit to a product over a continuum are lumped into the infinite

degeneracy, i.e. we separate out the component of the degeneracy that becomes infinite

via N2Lz−2 → ∞. This leaves a degeneracy of NLx+Ly−1 which matches that of the

coupled-wire model with PBC (see Appendix 4.5.6) for N = m and Lx, Ly such that

gcd(Lx, Ly) = N .
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Open boundaries: It is simple to modify the above example to match the

alternative boundary conditions used to calculate the ground space degeneracy in the

main text and in Appendix 4.5.5. To see this, we first note that by picking gapped

open boundary conditions at x = 0, Lx, for an xz layer, and y = 0, Ly, for a yz

layer, we can induce the chiral layer to fold over and become the antichiral layer.

Equivalently, with electric charge-condensing rough boundaries [199] we have that

pairs of chiral and antichiral anyons condense at the boundary. Combining this with

periodic boundary conditions in the ẑ direction we have a system that can be viewed

as decoupled tori on xz and yz planes supporting chiral Z(2)
N anyons. Inducing p-string

condensation on the chiral layers only, as described above, drives the chiral layers to

enter the phase of the fracton model described in the main text, but with gapped

boundary conditions where the x = 0 and x = Lx (y = 0 and y = Ly) boundaries of

the fracton model are connected via a stack of 2D antichiral layers.

To construct the lattice model we again start from decoupled 2D Hamiltonians

that we write as

HRBC
2D = −

∑
v

Av −
∑
p

Bp −
∑
p∈L

BL
p −

∑
p∈R

BR
p + H.c., (4.79)

where the Av terms are the same as above, and the Bp terms on plaquettes not

touching the left or right open boundaries (as viewed from above) are also the same.

The plaquette terms touching the left, or right, boundaries (viewed from above) are
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given by

BL
p =

X†

X

X

, BR
p =

X†

X†

X

, (4.80)

respectively. At this rough boundary, e anyons condense as single vertex terms Av

can be excited by an open string of X operators ending on the boundary. In terms

of the decomposition into chiral and antichiral layers Z(2)
N ⊠ Z(−2)

N generated by e2m

and e2mN−1, respectively, this gapped boundary corresponds to a simple fold, since

e2m× e2mN−1 = e4 generates the condensate there.

As above, we apply the local unitary circuit from Eq. (4.70), restricted to the

vertices not on the boundaries. All but the leftmost vertex terms take the same form

as in Eq. (4.74). After a phase preserving redefinition of the vertex terms they are

all brought into the form of Eq. (4.75) (including the leftmost vertex terms, by way

of multiplication with the BL
p terms). The coupled-layer model is found by driving

planar p-string condensation on the xy planes of a stack of Z(2)
N layers in xz and yz

planes with rough boundary conditions on the x = 0, Lx, and y = 0, Ly, planes

H(α) =
∑

xz, yz planes

HRBC
2D − α

∑
e∥ẑ

ZZ† + H.c. (4.81)

Taking the planar p-string condensed limit, α→∞, projects each edge into a single

qudit subspace spanned by operators ZI ∼ IZ 7→ Z,XX 7→ X. The Hamiltonian on
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this Hilbert space is given by

H = −
∑
v

(Ãxzv + Ãyzv )−
∑
c

Bc −
∑
c∈∂

B∂
c + H.c. (4.82)

where Ãxzv , Ãyzv and Bc are as above and

B∂
c =

∏
e∈c

Xσe
e , (4.83)

is a partial cage term of the X-cube model in the presence of a rough gapped

boundary [186], where c contains eight edges for a boundary term and five edges

for a corner term, while σe = ±1 depending upon the edge. To count the ground

space degeneracy in the above stabilizer Hamiltonian we first note that with the

gapped open boundary conditions there are 3LxLy+Lx+Ly edge qubits, 2LxLy star

terms, and LxLy + Lx + Ly + 1 cube terms (including truncated edge and corner

cubes) per xy layer. There are (Ly + 1) + (Lx + 1) + Lz constraints from products

of cube terms over dual xz, yz, and xy planes that give identity. However there are

two global redundancies between the product of the relations over all dual xz and yz

planes, and all xz and xy planes, respectively. Combining the above contributions

yields a ground state degeneracy of

NLx+Ly = N (3LxLy+Lx+Ly)Lz−(3LxLy+Lx+Ly+1)Lz+(Lx+1+Ly+1+Lz)−2 (4.84)

which forN = mmatches the result quoted in the main text and derived in Appendix 4.5.5.
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String-net layers

Finally, we consider a class of examples based on inducing planar p-string condensation

on decoupled layers supporting models from the general class of 2D string-net Hamiltonians.

Any nonchiral anyon theory that admits a gapped boundary to vacuum (technically

Witt trivial [200]) can be realized by a string-net lattice model [201]. The starting

point is a theory C consisting of a finite number of string types {s}, including the

vacuum 1, together with a fusion operation described by coefficients N c
ab that is not

strictly associative, which is captured by F -symbols. This mathematical object is

formalised by a unitary fusion category (UFC) [202].

The string-net Hamiltonian based on C is defined on a honeycomb lattice (and

more generally on any directed trivalent planar graph)

HSN = −
∑
v

Av −
∑
p

Bp , (4.85)

where the vertex term enforces the fusion rule at every vertex of the lattice

Av

∣∣∣∣∣
a b

c

〉
= δcab

∣∣∣∣∣
a b

c

〉
, (4.86)

with

δcab =


0 N c

ab = 0 ,

1 N c
ab > 0 ,

(4.87)
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and the plaquette term further decomposes as

Bp =
1

D2

∑
s∈C

dsB
s
p , (4.88)

where ds is the quantum dimension of string type s, D2 =
∑

s d
2
s is the total quantum

dimension of C and

Bs
p

∣∣∣∣∣
〉

=

∣∣∣∣∣ s

〉
, (4.89)

inserts a loop of string type s into the plaquette p, which is then fused into the lattice.

The emergent anyons in the topological phase containing the string-net model

based on the UFC C are described by the Drinfeld center Z(C). In the special case

that C already describes an algebraic theory of anyons, known as a modular tensor

category (MTC), the Drinfeld center is simply given by stacking the anyon theory

with its time-reverse, Z(C) ∼= C ⊠ C. Another important special case is where the

string types are given by elements of a finite group G and the F -symbols are trivial,

denoted VecG, in which the emergent anyons Z(VecG) correspond to the charges,

fluxes and dyons of G gauge theory.

If the emergent anyon theory Z(C) contains a group G of Abelian bosons that are

closed under fusion, then the above lattice model can be constructed so as to have an

on-site 1-form G symmetry [203, 204, 205, 206]. This is achieved by taking an input

UFC CG that is G-graded, without loss of generality. This simply means that the

string types decompose into nonempty g-sectors Cg containing string types we denote
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{sg}. The full UFC is recovered by a direct sum over these sectors, i.e.

CG =
⊕
g

Cg , (4.90)

and the fusion rule respects the grading, i.e.

N ck
agbh

= δghk̄N
ck
agbh

, (4.91)

where k̄ = k−1. The plaquette terms of the string-net Hamiltonian can then be

rearranged to form a projection onto the symmetric sector of a G representation

Bp =
1

|G|
∑
g

Bg
p , (4.92)

where

Bg
p =

1

D2
0

∑
s∈Cg

dsB
s
p , (4.93)

and D2
0 =

∑
s∈C0 d

2
s is the total quantum dimension of the trivial sector.

To describe the 1-form symmetry we first fix a decomposition of the Abelian group

G ∼= Zpn1
1
× · · · × Zpnk

k
, (4.94)

for primes pi, and their powers ni ∈ N. Using this decomposition we can express an
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arbitrary group element and its inverse as

g = (g1, . . . , gk) , ḡ = (−g1, . . . ,−gk) . (4.95)

where gi = 0, . . . , pni
i − 1 and group composition is given by addition in Zpni

i
. We can

now define a generalized clock matrix on the G-graded vector space of string types.

Denoting a basis element from sector g as |ag⟩, the generalized clock matrix acts via

Z̃g |ah⟩ =
k∏
i=1

ωgihii |ah⟩ , (4.96)

where ωi is a primitive pni
i -th root of unity and gihi denotes multiplication in Zpni

i
.

This clock operator has commutation relation

Z̃g
eB

h
p =

k∏
i=1

ωσ
p
egihi
i Bh

p Z̃
g
e , (4.97)

with the plaquette representation of G, where e ∈ ∂p and σpe = 1 if the orientation of

e matches p and −1 otherwise.

The 1-form symmetry is then generated by string operators

Z̃g
γ :=

∏
e∩γ

(Z̃g
e )
σγ
e , (4.98)

where γ denotes a closed curve in the dual lattice, and σγe = 1 if γ intersects e at a

right handed crossing, and −1 otherwise. When applied to an open curve γ, running

from plaquette γ− to γ+, the string operator Z̃g
γ creates a ḡ boson at γ− and a g boson
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at γ+.

We now utilize this 1-form symmetry, and the Abelian bosons created by open

string operators, to construct a lattice model by layering graded string-nets along

the xz and yz planes of a cubic lattice and inducing p-string condensation of these

bosons in xy planes. We consider layers of graded string-net models on the square

lattice, where each vertex is resolved into a pair of trivalent vertices, making it

equivalent to the honeycomb lattice. The decoupled layer model is then described by

the Hamiltonian

HDecoupled =
∑
ℓx

Hyz,ℓx
SN +

∑
ℓy

H
xz,ℓy
SN , (4.99)

where the sums are taken over yz and xz planes of the cubic lattice, respectively. This

system has one qudit per x̂ and ŷ edge, two qudits per ẑ edge of the cubic lattice,

one coming from each layer intersecting at that edge, and several qudits per vertex,

coming from the resolved vertices of the 2D square lattice string-net. A basis for the

qudits on each ẑ edge of the cubic lattice is given by a pair of string types, one from

each intersecting layer, which we take to share a common orientation.

To induce p-string condensation we first note that Z̃g
exz Z̃

ḡ
eyz creates two pairs of

g bosons adjacent to e that are equivalent to a small loop of the p-string excitation

in the xy plane labelled by g. Hence adding these operators to the Hamiltonian and

taking the limit of large coupling strength induces condensation of these p-strings
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within xy planes. The coupled-layer Hamiltonian is

H(∆) = HDecoupled −∆
∑
e∥ẑ

∑
g∈G

Z̃g
exz Z̃

ḡ
eyz , (4.100)

and in the limit of large ∆ it enters the planar p-string condensed phase. For ∆→∞

the on-site Hilbert space is projected into the subspace given by
⊕

g Cxzg ⊠ Cyzg which

is spanned by pairs of strings with matching sector label
∣∣sg, s′g〉. At leading order in

perturbation theory the p-string condensed Hamiltonian on this Hilbert space is

Hcondensed = −
∑
v

Axzv + Ayzv −
∑
c

Bc , (4.101)

where Axzv includes the vertex terms for the resolved vertex in the xz layers, and

similarly for Ayzv . We remark that the Av terms appear unchanged as they commute

with the Z̃ ḡ
e operators. The cube term Bc is given by

Bc =
1

|G|4
∑
g

Bg
c , (4.102)

where Bg
c = Bg

pxzB
g
p′xzB

g
qyzB

g
q′yz with p, p′ the xz plaquettes in ∂c and similarly for

q, q′ and yz.

The emergent excitations of the model are described by the general theory of

excitations that arise by applying planar p-string condensation to the g bosons in

layers of Z(C) anyons, see Sec. 4.3.1.

SU(2)k string-net layers: When the input UFC is given by the SU(2)k anyon
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theory introduced in Sec. 4.5.9, the string types are Z2-graded into integer and half-

integer sectors with the generalized clock operator given by Z̃ |j⟩ = (−1)2j |j⟩, where

j = 0, 1
2
, . . . , k

2
. The plaquette terms in the SU(2)k string-net model can be written

as Bp =
1
2
(B+

p +B−p ) where

B+
p =

1

D2
0

∑
j integer

djB
j
p , B−p =

1

D2
0

∑
j half-integer

djB
j
p . (4.103)

The planar p-string condensation on layers of SU(2)k string-nets is induced by driving

a phase transition with large Z̃Z̃ couplings on every ẑ edge. This projects into a

subspace where the string types on the ẑ edges are forced to both be integer, or both

be half-integer. The cage operators in the condensed model are given by products

B±c = B±pxzB
±
p′xzB

±
qyzB

±
q′yz using the same notation as above.

The emergent anyon theory in each string-net layer is described by SU(2)k ⊠ SU(2)k,

whose elements we denote by (i, j). The Z2 1-form symmetry utilized in the p-string

condensation is generated by the (k/2, k/2) boson in this anyon theory. The anyons

that braid nontrivially with this boson, and hence are promoted to lineons in the

planar p-string condensed model, are of the form ( i
2
, j) or (j, i

2
), for i, j, integers,

whereas pairs of integers, or half-integers braid trivially with (k/2, k/2) and hence

remain planons. The (k/2, k/2) boson itself is a planon that is equivalent to a

composite of fractons.
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4.5.11 Construction from gauging planar subsystem symmetries

In this section we describe how planar p-string condensation can be induced by

gauging planar subsystem symmetries.

The planar p-string condensation introduced above can be realized by gauging a

planar subsystem symmetry [42, 207, 208, 136] along a stack of planes, as introduced

in Ref. [183], see Ref. [209] for a related discussion. The particular planar subsystem

symmetries are generated by a stack of Abelian string operators, see Fig. 4.15a. The

domain wall of such a planar symmetry corresponds to a p-string, and gauging the

symmetry condenses these domain walls, see Fig. 4.15b. This provides insight into the

possible anomalies of the subsystem symmetry which prevent it from being gauged,

and render the corresponding p-string condensation inconsistent. In particular, anomalies

of the 1-form symmetries, generated by the string operators involved in the planar

symmetries, that arise due to braiding are no obstacle to gauging these symmetries as

the string operators involved do not intersect, hence fermionic Z2 and arbitrary ZN

anyons (for N > 2) can be planar p-string condensed. Only anomalies arising from

the non on-site nature of the string operators present obstacles to gauging planar

symmetries, such as for those generated by a stack of semionic string operators.

We consider a local Hamiltonian on the cubic lattice H =
∑

v hv with planar

subsystem symmetries in the xy planes of the cubic lattice generated by

∏
x,y

Ux,y,z(g) , (4.104)

where each on-site action is given by a product of string operators segments on the
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intersecting layers U(g) = V xz(g)W yz(g). That is,
∏

x V
xz
x,y,z(g) is an on-site string

operator for an Abelian G anyon on an xz layer, and similarly
∏

yW
yz
x,y,z(g) is a string

operator on a yz layer. The domain wall obtained by truncating this symmetry

corresponds to a p-string excitation formed by a loop of Abelian g anyon. We can

gauge each planar symmetry following the standard procedure for gauging a global

2D symmetry [210, 211, 212, 121], this is known to condense the domain walls, and

hence induce planar p-string condensation. Although the symmetries described here

are Abelian, the planar gauging can be applied also to non-Abelian symmetries. We

describe the general gauging procedure below as it may be useful in future work.

To gauge the symmetry we first introduce C[G] gauge spins onto the x̂ and ŷ edges

of the cubic lattice, which are given an orientation. Next we introduce projectors on

each vertex that implement a generalized Gauss’s law within each plane

P xy
v =

1

|Gxy|
∑
g∈Gxy

P xy
v (g) , (4.105)

P xy
v (g) = Uv(g)

∏
e→v,e⊥ẑ

Le(g)
∏

e←v,e⊥ẑ

Re(g) , (4.106)

where e→ v (e← v) denotes adjacent edges that are oriented towards (away from) the

vertex v, and L(g), R(g), denote the left and right regular representations respectively.

We also introduce projectors onto zero flux through each xy plaquette

F xy
p =

∑
g1,g2,g3,g4

δ(g
σp
e1

1 g
σp
e2

2 g
σp
e3

3 g
σp
e4

4 = 1)πe1ẑ(g1)πe2ẑ(g2)πe3ẑ(g3)πe4ẑ(g4) , (4.107)

where πeẑ(g) = |g⟩eẑ ⟨g| and the edges e1, e2, e3, e4 ∈ ∂p are in order starting from
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some vertex in ∂p and following the orientation induced by p with σpei = 1 if the

orientation of ei matches and −1 otherwise.

To gauge a local term in the Hamiltonian we extend it onto the gauge qubits and

then project onto the subspace of gauge invariant operators as follows

G[hv] = P [hv
∏

e∈TOm

πeẑ(1)] , (4.108)

where Thv is a tree, within an xy plane, that contains the vertices in Shv , the support

of hv. The projection onto the subspace of gauge invariant operators is

P [O] =
∑
{gv}

∏
v∈SO

P xy
v (gv)|SO O

∏
v∈SO

P xy
v (gv)|†SO

, (4.109)

where SO is the set of sites in the support of O. The gauged Hamiltonian is then

Hgauged =
∑
v

G[hv]− ε
∑
p

F xy
p − λ

∑
v

P xy
v , (4.110)

and the Gauss’s law constraints becomes strict in the limit of λ→∞.

By gauging the planar symmetries, all operators that do not commute with them

are projected out. In particular the hopping operators for any anyons in the 2D

layers that braid nontrivially with the string operators in each planar symmetry are

projected out. This causes these anyons to become stuck between a pair of plains,

hence becoming lineons. Any anyons that braid trivially with the planar symmetry

string operators remain planons. The gauge charges are equivalent to pairs of anyons

that are created by a string operator along ẑ that violates the planar symmetry, and
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(a) (b)

Figure 4.15: (a) A subsystem symmetry on an xy plane (green), consisting of a product
of Abelian anyon string operators (red) where the plane intersects topological layers in the
xz planes.
(b) The domain wall created by applying a partial subsystem symmetry is a p-string
excitation. Gauging the subsystem symmetry condenses these domain walls within the
plane, hence inducing planar p-string condensation.
The connection between subsystem symmetries and p-string excitations depicted in (a), (b),
holds similarly when topological layers in yz planes are also included, the simpler case has
been depicted for clarity of presentation. .

hence are planons given by a composite of lineons. The gauge fluxes are given by

gauged twist defects [121, 206, 183], obtained by terminating a domain wall of the

symmetry, and hence correspond to fractons. A pair of such fractons separated by a

unit along x̂ or ŷ is equivalent to one of the g anyons that is being p-string condensed,

and hence is a planon if the anyon is bosonic or fermionic, and a lineon if the anyon

has a nontrivial self braiding phase.

Honeycomb model example

We now present an example lattice construction based on fermionic planar p-string

condensation induced by gauging planar subsystem symmetries on layers of Kitaev’s

honeycomb model [11].

We consider layers supporting chiral Ising anyons, realized by Kitaev’s honeycomb
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model [11], and apply planar p-string condensation to the Z2 fermions in each layer.

This realizes a model that is closely related to the SU(2)2 example from Sec. 4.5.9,

since the anyons only differ by the Frobenius-Schur indicator for the non-Abelian

particle [213], which is +1 for Ising and −1 for SU(2)2. Hence the resulting fracton

models differ only in the Frobenius-Schur indicators of the non-Abelian lineons.

For the lattice model we consider Kitaev’s honeycomb model [11] in the chiral

Ising anyon phase with a perturbation that respects the fermionic 1-form symmetry

and opens an energy gap

H(J,∆) = −J
∑
⟨ij⟩

Kij −∆
∑
⟨ij⟩⟨ik⟩

KijKik −∆
∑

⟨ij⟩⟨ik⟩⟨iℓ⟩

KijKikKiℓ ,

where i, j, k, l, denote distinct points and ⟨ij⟩ denote edges in the honeycomb lattice.

The chirality of the gapped Ising anyon phase is given by ν = sgn∆. The edge

operators Kij depend on the orientation of ⟨ij⟩ which we denote by α = x, y, z, i.e.

Kij = σαi σ
α
j , (4.111)

where σx = X, σy = Y, σz = Z. Abusing notation to only keep track of the edge

orientation and after coarse graining to a square lattice with two qubits per site we

have

Kx = IX XI , Ky = Y Y , Kz =
IZ

ZI

. (4.112)
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The fermionic 1-form symmetry restricted to the x̂-axis is given by

∏
i

(ZZ)ij , (4.113)

truncating this symmetry operator to a finite line creates emergent fermion excitations

at the end points.

We consider a stack of perturbed honeycomb layers (that have been coarse grained

to the square lattice) along the xz and yz planes of a cubic lattice such that the ẑ

axes of the layers align

∑
ℓx

Hyz
ℓx
(J,∆) +

∑
ℓy

Hxz
ℓy (J,∆) , (4.114)

where the Hyz
ℓx

indicates the honeycomb Hamiltonian in a yz plane at x = ℓx. This

model obeys a large symmetry group given by the product of the fermionic 1-form

symmetries within each layer, this contains a 3D 1-form symmetry given by taking

products of the fermionic string operators over codimension-1 surfaces [183]. Within

the 1-form symmetry group is a subgroup of planar subsystem symmetries along the

xy planes of the cubic lattice, generated by products of the fermionic string operators

over such a plane

∏
i,j

(ZZ)yzijk(ZZ)
xz
ijk , (4.115)

where yz, xz, denote the plane from which the qubits at coordinate ijk originate.

The domain walls of these planar symmetries are p-strings formed by the fermion
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excitations in each layer that the p-string intersects.

To induce planar p-string condensation we gauge the subsystem symmetries defined

above. This introduces an additional qubit to each x̂ and ŷ link of the cubic lattice,

which we index with half integer coordinates. The gauged Hamiltonian is then given

by

∑
ℓx

H̃yz
ℓx
(J,∆) +

∑
ℓy

H̃xz
ℓy (J,∆)− ε

∑
ijk

Fijk − λ
∑
ijk

Gijk , (4.116)

where

Fijk = X(i+ 1
2
)jkX(i+ 1

2
)(j+1)kXi(j+ 1

2
)kX(i+1)(j+ 1

2
)k , (4.117)

energetically penalizes nonflat Z2-gauge connections,

Gijk = (ZZ)yzijk(ZZ)
xz
ijkZ(i+ 1

2
)jkZ(i− 1

2
)jkZi(j+ 1

2
)kZi(j− 1

2
)k , (4.118)

energetically enforces the planar Gauss’s law, which becomes strict in the λ→∞

limit, and the gauged Hamiltonians within each layer are defined by

H̃(J,∆) = −J
∑
⟨ij⟩

K̃ij −∆
∑
⟨ij⟩⟨ik⟩

K̃ijK̃ik −∆
∑

⟨ij⟩⟨ik⟩⟨iℓ⟩

K̃ijK̃ikK̃iℓ ,
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(a) (b) (c)

Figure 4.16: (a) A ŷ-oriented 1-strata where xy-oriented 2-strata supporting ZN gauge
theory (green) and yz-oriented 2-strata supporting a general topological order that contains
ZN Abelian anyons, meet.
(b) A ŷ-oriented 1-strata where xy-oriented 2-strata supporting ZN gauge theory (green)
and xz-oriented 2-strata supporting a general topological order that contains ZN Abelian
anyons, meet.
(c) A ẑ-oriented 1-strata linking xz-oriented 2-strata, and yz-oriented 2-strata, by a tensor
product of identity domain walls. .

with minimally coupled local terms

K̃x = IX X XI , K̃y = Y Y , K̃z =
IZ

ZI

. (4.119)

This produces a fracton model whose emergent excitation theory is closely related to

the SU(2)2 model described in Sec. 4.5.9 up to the Frobenius-Schur indicator of the

nonAbelian lineons being −1.

4.5.12 Topological defect network construction

The planar p-string condensed models introduced in this paper can be described by

the recently introduced topological defect network construction, providing support

for the conjecture made in Ref. [77] that all gapped fracton topological orders fit

into this framework. We follow the procedure used in Ref. [183] to turn a gauged
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layer construction into a defect network by introducing layers of gauge theory on the

subsystem symmetry planes and gapped boundaries where the planes intersect the

initial stacks of topological layers

The defect network construction is given by trivial 3-strata, 2D topological orders

described by the anyon theory M on the xz and yz oriented 2-strata, and A gauge

theory (denoted Z(VecA)) on the xy oriented 2-strata. The codimension-2 defects on

the ẑ oriented 1-strata are simply given by the trivial identity domain wall between

the pairs of xz 2-strata, and yz 2-strata, meeting there, respectively, see Fig. 4.16c.

This is described by the following Lagrangian algebra of bosons that condenses on

the defect

L =
∑
a,b∈M

(a, ā, b, b̄) , (4.120)

where we have used the folding trick to view the defect as a gapped boundary

to vacuum of Mxz ⊠Mrev
xz ⊠Myz ⊠Mrev

yz , with the layer subscripts included for

guidance. Similarly, the defects on the x̂ and ŷ oriented 1-strata are equivalent to

gapped boundaries to vacuum ofM⊠Mrev ⊠ Z(VecA)⊠ Z(VecA)rev via the folding

trick. The following Lagrangian algebra describes the appropriate gapped boundary

L =
∑
a∈M

∑
b∈Z(VecA)

∑
χ∈Â

∑
g∈A

(aχ, ḡ ⊗ āχ̄, χ⊗ bg, b̄ḡ) , (4.121)

where we have utilized the A-grading of A gauge theory by flux sectors g, see

Figs. 4.16a & 4.16b. This construction presents an immediate generalization of the
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construction by replacing the gauge theory layers Z(VecA) with more general A-

graded anyon theories.

224



Chapter 5

Weak superfluidity: Weak symmetry

breaking and topological order in a

3d compressible quantum liquid

5.1 Introduction

A quantum state is compressible if the charge density is a continuous and strictly

increasing function of the chemical potential. Common examples of stable compressible

matter include:

1. Symmetry-breaking phase, in particular when the U(1) charge conservation is

spontaneously broken by a local order parameter, i.e. a superfluid.

2. For fermionic systems, the Fermi liquid is a compressible phase which does not

break any symmetry (U(1) or translation).
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Both can be “deformed” to obtain other compressible phases with distinct low-energy

dynamics. For example, a Fermi liquid can be coupled to gapless bosonic excitations

(e.g. critical fluctuations or gauge fields), leading to various kinds of non-Fermi

liquids. For a superfluid, by adding additional interactions one can change the

dispersion of the Goldstone boson to alter the low-energy physics. Examples of this

include the quantum Lifshitz liquid [214] and Bose-Luttinger liquid [215, 216].

While it is a formidable task to generally classify the low-energy dynamics of

gapless phases, one can first characterize them at the kinematic level, in particular

their emergent symmetries and the associated quantum anomalies. Recently Ref.

[217] has taken this approach to study the low-energy theory of compressible phases.

The filling condition can be formulated in a way similar to the ’t Hooft anomaly [110,

218], and in particular it is shown that the emergent symmetry group cannot be a

compact 0-form and/or finite higher-form symmetry group. The previous two classes

of examples illustrate two mechanisms to satisfy the filling condition: the symmetry

group of the superfluid phase is U(1)[0] ×U(1)[D−1] [219, 220], where D is the spatial

dimension. The presence of the U(1)[D−1] form symmetry is essentially equivalent to

the fact that superfluid vortices must form (D − 1)-dimensional closed surface. The

mixed anomaly between the two subgroups is responsible for the filling condition.

The same mechanism underlies some more exotic examples of compressible phases of

bosons, such as the Bose-Luttinger liquid [216]. For the Fermi liquid, the emergent

symmetry is the (0-form) loop group[217] LD−1U(1), which describes at the level of

kinematics the existence of a Fermi surface. The group is “larger” than any compact

Lie group. Deformations of the two types of examples may change the emergent
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symmetry group, but do not affect the way that the filling anomaly is realized. In a

sense, these two examples represent two “minimal” emergent symmetry groups that

allow compressibility in the respective classes. It is clearly an important problem to

understand whether there exist other low-energy kinematical structures compatible

with a generic filling factor.

Ref. [217] mostly operates within the framework of quantum field theory in

continuum with both translation and rotation symmetries. The aforementioned examples

can be easily modified to introduce certain anisotropies, for example in boson velocity

or the shape of the Fermi surface. However these modifications can all be smoothly

turned off without changing the nature of the states i.e. no phase transitions. In

particular, they do not affect the kinematical structure. A natural question then

is whether there are fundamentally new types of symmetry mechanisms to allow

arbitrary filling, once we go beyond the framework of continuum field theory. In

fact, there is a trivial toy example that goes beyond what we have discussed so far:

consider a stack of decoupled 2D superfluids 1. Such a phase is obviously compressible

but the emergent symmetry group is very different from that of a 3D superfluid.

More specifically, each layer has a separate U(1) 0-form symmetry and U(1) 1-form

symmetry at low energy. One may object that a stack of 2D superfluids is unstable to

infinitesimal boson tunneling, thus does not represent a truly stable phase. Quantum

phases with such “subsystem” symmetries have been vigorously studied in recent

years, largely inspired by the discovery of fracton topological order [39, 124, 125,
1Similarly, one can consider a stack of 2D Fermi liquids. However, such a state has an open Fermi

surface consisting of two curves wrapping around the Brillouin zone.
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41, 42, 207, 152, 221]. It has been recognized recently that a large class of two- and

three-dimensional quantum phases cannot be described as conventional quantum field

theories [222, 223, 144, 145, 48, 46, 171, 47, 167, 49]. They are often characterized by

exotic global symmetries [207, 136, 224], e.g. those defined on certain submanifolds.

Motivated by this question and building on top of recent works on fracton models [225,

226, 79], in this work we study a new example of a completely stable compressible state

in three dimensions, whose low-energy sector is described by an infinite-component

Chern-Simons (iCS) theory, consisting of coupled planar U(1) gauge fields (other

generalizations of CS-like theory to 3D in the context of fractonic order have been

considered in [227] and [168]). Variants of the field theory with fully gapped spectrum

have been studied in Ref. [225], which are shown to possess a particular kind of fracton

topological order, with all quasiparticles restricted to move in planes. Moreover, it is

proposed that the theory provides an example of a “non-foliated” fracton topological

phase. Ref. [225] also noticed that the field theory we obtain has a gapless spectrum.

One motivation for this work is to elucidate the rich physics of the gapless iCS theory,

and provide a lattice realization which can be controllably solved and which manifests

the symmetries of the underlying field theory.

Below we briefly summarize the main features of this compressible quantum liquid,

focusing on those that distinguish it from the known types of compressible phases

previously mentioned. Most importantly, the emergent symmetry group (relevant for

the filling anomaly) consists of a 0-form U(1) symmetry group of charge conservation,

and a “cylindrical” 1-form symmetry, the meaning of which will be defined later. (Note

that an ordinary 3D superfluid has an emergent U(1) 2-form symmetry.) This exotic
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emergent 1-form symmetry stems from a rigid string-like superfluid order, where

an order parameter for the U(1) 0-form symmetry is supported on a straight line

penetrating the entire system. However, there exists no other local order parameter.

Thus we dub this phenomenon “weak symmetry breaking” (WSB). The terminology

has been previously used in the context of (2+1)d symmetry-enriched topological

order [11, 14, 228], when there exists no local order parameter but certain non-

local observables break the (0-form) symmetry. In addition, the low-energy theory

also exhibits finite 1-form symmetries, corresponding to deconfined, topologically

nontrivial quasiparticle excitations. They can be formed from dipoles of vortices of

the “weak” superfluid. Thus in a sense the phase of matter intertwines U(1) symmetry

breaking and topological order in an interesting way.

Phenomenologically, we find that at low energy there is only a single gapless

point. We argue that the gapless state is in fact robust to any local perturbation

and therefore represents a stable gapless phase. In particular, the gapless excitations

are charge neutral and all local charged excitations are gapped. We also study the

transport properties, and find that the phase exhibits a superconducting response

in the plane perpendicular to the direction of the non-local order parameter, and

insulating in the other.

The chapter is organized as follows: in Sec. 5.2 we first provide a microscopic

realization of the compressible liquid with WSB, using a coupled-wire construction,

and study its various properties. We derive an infinite-component CS theory description

of the low-energy physics, by applying boson-vortex duality transformation in the

coupled wire setting. Gapped cases of these field theories have been recently studied
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in Ref. [225] as examples of Abelian fractonic phases without any foliation structure.

In Sec. 5.3 we then explore the emergent symmetries, anomalies (especially the filling

anomaly) and stability of the phase, using the dual gauge theory formulation.

5.2 Coupled wire construction

We start from a microscopic model realizing the phase. The model is built from an

array of interacting one-dimensional quantum wires. Such models have proven very

fruitful in providing explicit realizations of topological phases in both two and three

dimensions [60, 61, 226, 79, 69, 79, 226].

5.2.1 Model Hamiltonian and symmetries

Consider quantum wires arranged in a square lattice. Each wire is described by a

c = 1 bosonic Luttinger liquid, with a K matrix Kw = σx. We postulate that the

Luttinger liquid is realized as the low-energy effective theory of a one-dimensional

chain of bosons (or spins). The Hamiltonian is

H =
v

2π

∑
r

∫
dx [(∂xφr)

2 + (∂xθr)
2]. (5.1)

Here r = (y, z) labels the position of wires in the yz plane. The bosonic fields φ and

θ satisfy the canonical commutation relation

[φr(x1), ∂x2θr′(x2)] = 2πiδ(x1 − x2)δrr′ . (5.2)
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We have also assumed that all wires have the same velocity to ensure translation

invariance.

We add the following type of interactions to gap out the wires:

− g
∑
r

∫
dx cosΘr(x), g > 0. (5.3)

Here Θr ≡ Θy,z is defined as

Θy,z = −φyz +mθyz + φy+1,z +mθy+1,z

+ (n1θy,z−1 + n2θy,z+1 + n2θy+1,z−1 + n1θy+1,z+1).

(5.4)

This is a generalization of the coupled wire construction for bilayer quantum Hall

states by Teo and Kane [61]. The interaction cosΘ is illustrated in Fig. 5.1(b). One

can easily show that these fields satisfy the null vector condition[114]:

[Θr(x),Θr′(x
′)] = 0, (5.5)

so they can be minimized simultaneously. We are interested in the strong-coupling

limit g → ∞, at which the cosine terms pin all Θ fields to the minima. This can be

achieved either by having a large bare value of g, or turning on inter-wire density-

density interactions to make g a relevant coupling.

First we study the global symmetry of the model. Before turning on the coupling

Eq. (5.4), each wire has U(1)φ × U(1)θ symmetry, the charge densities of which are

1
2π
∂xθ and 1

2π
∂xφ, respectively, and there is a mixed ’t Hooft anomaly between the two
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Figure 5.1: The coupled wire construction in this work starts from a 2D array of single-
component Luttinger liquids, as illustrated in (a), and then gapping interactions between
nearby wires are turned on to create a 3D quantum state. The form of the interaction is
illustrated in (b).

U(1) subgroups. One of them, U(1)φ, can be understood as the conservation of boson

number, which is assumed to be an exact symmetry of the microscopic Hamiltonian.

Here we choose the convention that the boson density is given by 1
2π
∂xθ, and the

symmetry transformation acts on the fields as

φ→ φ+ α, (5.6)

where α ∈ [0, 2π) is the U(1) rotation angle. The other subgroup U(1)θ then must be

emergent at low energy due to the mixed anomaly. Importantly, the lattice translation

symmetry along the wire is realized at low energy as a particular element of U(1)θ:

Tx : θ → θ + 2πν, (5.7)

where ν is the filling factor of the wire, which is equal to the filling factor of the

entire 3D system. When ν is not an integer, the celebrated Lieb-Schultz-Mattis
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theorem [229] shows that the 1D wire cannot be fully gapped without breaking the

translation symmetry.

The coupling Eq. (5.4) apparently reduces the symmetry group. For each xy

plane, there is a U(1)φ subsystem symmetry:

φyz → φyz + αz, (5.8)

However, the U(1)θ symmetry is broken in general.

We are mainly interested in the special case when m = −(n1+n2). For this choice

of parameters, we find a U(1)θ subsystem symmetry in each xz plane:

θyz → θyz + βy. (5.9)

This obviously includes a global transformation θr → θr + β.

If we set n1 = n2, then there is a further U(1) dipole symmetry on each xz plane:

θyz → θyz + zγy. (5.10)

We now consider spatial translations. The full Hamiltonian is obviously invariant

under the discrete translations along y and z directions. For the lattice translation

Tx, the interaction is invariant if and only if (m + n1 + n2)ν is an integer. If m =

−(n1 +n2), then ν can be any real number. Otherwise the model is only translation-

invariant for certain special rational fillings. We thus conclude that the model with

m = −(n1 + n2) can be defined at any filling. As will be shown below, there is no
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spontaneous symmetry breaking for either the global U(1)φ or U(1)θ, in the sense

that no local order parameter exists. Therefore the coupled wire model constitutes a

new example of compressible quantum phase.

To summarize, we find that at m = −(n1+n2), the system preserves the following

global continuous symmetry:

U(1)φ : φr → φr + α,

U(1)θ : θr → θr + β.

(5.11)

These two U(1) symmetries have a mixed ’t Hooft anomaly, so cannot be realized

as on-site symmetries microscopically at the same time. In this work we choose the

convention that U(1)φ is the boson number conservation, and U(1)θ is an emergent

symmetry. The lattice translation along wires is embedded into U(1)θ.

So far we have only considered the so-called 0-form symmetries. At low energy,

the system can develop emergent “higher-form” symmetries [230], whose charges are

extended objects. An example relevant to our discussion is the U(1) 1-form symmetry

in a 2D superfluid, which is physically equivalent to all superfluid vortices being non-

dynamical (i.e. infinitely heavy). In our model, if m = n1 = n2 = 0, the system is

a stack of layers of 2D superfluids, and at low energy each layer has its own U(1)

1-form symmetry. Schematically, the 1-form charge in the layer z for a closed path C

is given by

Qz(C) =

∮
C

∇φz, (5.12)

which counts the total vorticity enclosed by C. When the coupling to θ is turned
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on, since eiθ creates a vortex-anti vortex pair and hops vortices in the layer, the U(1)

1-form symmetry for the layer is explicitly broken. However, when m = −n1 − n2,

the term cos(Θy,z) preserves the 1-form charge

Qz−1(C) +Qz(C) +Qz+1(C). (5.13)

Note that C must be the same for the three layers. Now considering all layers together,

the total 1-form charge ∑
z

Qz(C) (5.14)

is conserved by the Hamiltonian at low energy when the cosine term dominates,

assuming periodic boundary condition. We refer to the conservation of the total

vorticity Eq. (5.14) as a cylindrical 1-form symmetry, since the closed loop C must

be exactly aligned throughout all the layers, so the symmetry operator is in fact

supported on a cylindrical surface. This should be compared with the 2-form symmetry

in a 3D superfluid, where the symmetry operator is supported on arbitrary loops. We

illustrate the symmetry operator in Fig 5.2b.

5.2.2 Spectrum and excitations

We now move on to analyze the spectrum of the Hamiltonian. The model is generally

not solvable, so we limit ourselves to the strong-coupling limit where the cosine

potential terms dominate over the kinetic terms. As shown in Ref. [226], low-energy

excitations can be divided into two types: first of all, there are excitations that
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Figure 5.2: (a) The 2-form symmetry operators in a 3D superfluid are supported on closed
curves. The corresponding charged objects form closed surfaces (i.e. vortex sheets), hence a
2-form symmetry. (b) The higher-form symmetry operator of the WSB compressible liquid,
which is defined in Eq 5.14. The surface is deformable in xy-plane provided it is deformed
in the same way in each layer. We refer to this as a cylindrical 1-form symmetry..

describe smooth fluctuations of the bosonic fields, similar to spin waves. They can

be analyzed in the “mean-field” approximation, where we expand cosΘr ≈ 1 − 1
2
Θ2

r,

and then solve the quadratic theory. We find that the spectrum of such Gaussian

fluctuations is given by

Ek =
√
v2k2x + vg(fφ + fθ) (5.15)

where

fφ = 2− 2 cos ky,

fθ = 4

[
m cos

ky
2

+ n1 cos(
ky
2
− kz) + n2 cos(

ky
2

+ kz)

]2
.

(5.16)

When |m| ≤ |n1 + n2|, one can make both fφ = fθ = 0 by setting ky = 0, cos kz =

− m
n1+n2

, which is clearly the minimum of fφ+fθ since both functions are non-negative.

Therefore the spectrum is gapless. For m = −(n1 + n2), the minimum is at k =
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(0, 0, 0). Near this point, Ek takes the following approximate form:

Ek =
[
v2k2x + vg

(
k2y + 2(n2

2 − n2
1)kyk

3
z

+ (n1 − n2)
2k2yk

2
z + (n1 + n2)

2k4z

)]1/2
.

(5.17)

For n1 = n2 = n, we have

fφ + fθ = 4 cos2
ky
2
[(m+ 2n cos kz)

2 − 1] + 4. (5.18)

If |m| > 2|n|, the minimum of this function is 4 at ky = ±π and the spectrum is fully

gapped. When |m| ≤ 2|n|, the minimum is 0 with ky = 0 and cos kz = −m
2n

. In this

case the spectrum is gapless, with one or two gap-closing points. For m = −2n, near

the gap-closing point k = (0, 0, 0), the spectrum is approximately

Ek =
√
v2k2x + vgk2y + 4vgn2k4z . (5.19)

Besides smooth fluctuations, there also exist localized excitations, corresponding

to “discontinuities” in the field configurations. At the mean-field level, they can be

built out of soliton excitations of the gapping terms that tunnel between different

minima. More concretely, for cosΘr(x), a k-soliton where k ∈ Z at x0 is a configuration

where Θr winds by 2πk over a short distance ξ around x0. In this limit, these

excitations can be thought of as massive quasi-particles. While we do not know

the exact profile of such an excitation, we assume that they stay gapped beyond the

mean-field analysis, at least for a range of g. We give a more systematic description
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of the solitonic excitations in Sec. 5.2.5.

To create such excitations, one can apply vertex operators, such as eiφ or eiθ. Note

that these two, together with derivatives of φ and θ, generate all local operators in

the wire model. It is easy to show that derivatives of φ or θ cannot create localized

solitons. Rather they only result in smooth configurations of the fields. Therefore we

can focus just on the vertex operators. A crucial fact which we rely on here is that

the model satisfies a version of the “topological order” condition as discussed in Ref.

[226]. Namely, if a vertex operator has a finite support and commutes with all Θr,

then it must be a linear combination of Θr’s. In other words, any vertex operator with

local support has to create gapped excitations, provided it is not some combination

of Θr’s. Therefore such operators are infinitely irrelevant even when the theory is

gapless. This strongly suggests that the gapless theories, when |m| ≤ |n1 + n2|,

are stable with respect to weak local perturbations, as long as the topological order

condition is obeyed. This is analogous to 3D U(1) gauge theory with gapped charges.

It is important to note that the topological order condition is shown for an

infinitely large system. When the system is finite (or finite in one direction), the

situation turns out to be quite different. As we discuss next, there can be vertex

operators commuting with all gapping terms. Such operators are crucial in understanding

the symmetry breaking (or the absence thereof) in the low-energy theory.
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5.2.3 String superfluid order

In this section we focus on m = −(n1 + n2) and assume that both global U(1)θ and

U(1)φ symmetries are preserved. The topological order condition does not preclude

the existence of non-local vertex operators that commute with all plaquette terms.

We can consider a closed system with periodic boundary condition along z, in which

case we can identify two such non-local operators:

Φy =
∑
z

φyz, Πz =
∑
y

θyz. (5.20)

Note that when n1 = n2 there is an additional operator of interest given by Dy =∑
z zφyz, but it does not exist with PBC. The operator eiΦy has a charge Nz under

U(1)φ, where Nz is the size of system in the z direction. Likewise, eiΠz has a charge

Ny under U(1)θ.

We show in Appendix 5.5.4 that with a finite Nz, when viewed as a quasi-two-

dimensional system, the eiΦy operator orders and spontaneously breaks the U(1)φ

symmetry. More precisely, the two-point function decays as

⟨eiΦy(x)e−iΦy′ (x
′)⟩ → e

Lz
ρ
( 1
|r−r′|−

1
a0

)
, (5.21)

where ρ is a constant, and r = (x, y) is the coordinate in the xy plane. Therefore,

fixing Nz, the correlation function approaches a constant when |r−r′| is much greater

than Nz/ρ. This makes sense since for such large separation the thickness along the z

direction becomes negligible. However, going to the 3D limit when Nz is comparable
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to the size of the other dimensions, the superfluid order is suppressed and eventually

vanishes in the thermodynamic limit Nz →∞.

Equivalently, one can consider the superfluid stiffness in the quasi-two-dimensional

system. The “Josephson” coupling that stabilizes the superfluid order originates from

the φy,z − φy+1,z term in Θr. However, such a term only accesses a small local

portion of the order parameter, which is highly non-local and runs through the entire

z direction. As a result, one can show that the superfluid stiffness vanishes as 1/Nz.

To summarize, we find that the line operator eiΦy develops long-range order

breaking the U(1)φ symmetry, but there exist no local U(1)φ order parameter. This

is what we refer to as the phenomenon of “weak symmetry breaking.” We note that

similarly eiΠz exhibits long-range order in the x − z plane, although the asymptotic

of the correlation function is now more anisotropic. So the U(1)θ symmetry is also

weakly broken by the line order parameter.

It is also instructive to consider open boundary conditions along z. Suppose there

are two yz surfaces at z = 0 and z = Nz− 1. We first choose the gapping terms to be

− g
∑
y

Ny−2∑
z=1

cosΘyz. (5.22)

At each y, there are Nz wires but only Nz − 2 gapping terms, which leaves certain

fields near the boundary unpinned. We focus on the z = 0 surface. Unpinned fields

on the surface are generated by θy0 and

φ̃y+ 1
2
= φy+1,0 − φy,0 + n1θy,1 + n2θy+1,1. (5.23)
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Note that both φ̃y+ 1
2

and θy0 commute with themselves. We see that all unpinned

fields are neutral under U(1)φ symmetry.

Now we further add interactions on the surface, e.g. cos(φ̃y− 1
2
− φ̃y+ 1

2
) or cos(θy0−

θy+1,0), which spontaneously break the U(1)θ symmetry. In this case, the eiΦy operator

no longer commutes with the surface order and thus is not a low-energy observable.

We can also create a completely symmetric and gapped surface, by adding the

following perturbations:

− cos
[m
2
(θy,0 + θy+1,0) + φ̃y+ 1

2

]
. (5.24)

One can check that all the cosine arguments commute with each other and there

are enough of them to gap out all the degrees of freedom on the surface. In this

case, one can slightly modify the definition of Φy at the surfaces so that it still

commutes with all the gapping interactions. This is done by adding a vertex operator

which generates an appropriate phase slip at the end of the string operator: Φy →∑
z φyz − (n1−n2

2
)θy0. Note that when n1 = n2 = −m/2, Φy has the same form as the

PBC case.

While we do not have a general proof, we believe one of following scenarios must

occur: either the U(1)θ symmetry is spontaneously or explicitly broken at the surface,

in which case no (local or non-local) U(1)φ order parameter exists in the system, or

the U(1)θ symmetry is preserved but one can then find a non-local order parameter

by modifying Φy near the surface.

Since the model has a non-local superfluid order, one may wonder whether there
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is any superconducting response once coupled to an external electromagnetic field.

Given the model is highly anisotropic, it is not surprising that the answer depends

on direction. As shown in Eq. (5.8), the U(1) charge in each layer is conserved

by the Hamiltonian as well as the ground state. As a result there cannot be any

charge transport in the z direction, i.e. it is insulating. The other directions are

quite different. Using the dual gauge theory we compute the effective action for the

external field in Appendix 5.5.4, and indeed show that the system is superconducting

in the xy plane.

5.2.4 Duality mapping

In this section we describe how the microscopic wire model can be mapped to an

infinite-component CS theory coupled to gapped matter fields. The full details of this

procedure are presented in Appendix 5.5.2. Schematically, the gauge theory emerges

by employing a boson-vortex duality within each horizontal layer of wires. We adopt

the method explained in Refs. [231, 232] to the 3D coupled wire model. Note that

an alternative method to derive Chern-Simons-type gauge theory from coupled wire

models have been proposed in Ref. [67].

Recall that the wire model is described by a rectangular array of Luttinger liquids

with conjugate variables (φ, θ) and Lagrangian

L[φ, θ] =
∑
r

i

π
∂xθr∂τφr +

ṽ

2π
(∂xφr)

2 +
u

2π
(∂xθr)

2

+
v

8π
(∂x∆yφr)

2 − g cos(2θ̄r)
(5.25)
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where

2θ̄r = ∆yφr + Λθr

= (φr+ŷ − φr)

+ (mθr +mθr+ŷ + n1θr−ẑ + n2θr+ẑ

+ n2θr+ŷ−ẑ + n1θr+ŷ+ẑ).

(5.26)

Here we define ∆yXr = Xr+ŷ − Xr and r = (y, z) is a wire index. Note that the

kinetic part of Eq. (5.25) is more general than the free boson Hamiltonian given

in Eq. (5.1). In particular, v
8π

(∂x∆yφr)
2 has been added to the standard Luttinger

Liquid kinetic term. This is done because it is convenient for the duality mapping to

the vortex theory but its presence does not affect the qualitative physics [231].

Throughout the discussion of the microscopic model we use two equivalent forms

of labelling for the wires, Or+â ≡ Oy+ay ,z+az . Anticipating the layered structure of the

gauge theory, we treat z as the “layer” index while y is coarse grained to a continuous

spatial coordinate. With this motivation in mind, we define the following pair of

conjugate variables:

φ̃yz = −
∑

y′ sgn
(
y′ − y − 1

2

)
θy′z

θ̃yz =
1
2
(φy+1,z − φy,z) .

(5.27)

Here φ̃yz creates a 2π vortex in the φ field in layer z, in between wires y and y + 1.

The operator ∂xθ̃yz is the “charge” operator for this vortex. We can re-express the

Lagrangian in Eq. (5.25) in terms of these new fields but the result will be highly
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non-local in the y direction. We can restore locality in each layer z via a Hubbard-

Stratonovich transformation at the expense of adding new degrees of freedom a
(z)
0 (x, y)

and a(z)1 (x, y). At this stage, the Lagrangian takes the form

L[φ̃, θ̃, aµ] =
∑
r

i

π
∂xθ̃r(∂τ φ̃r − a(z)0,r) +

u

2π

(
∂xφ̃r − a(z)1,r

)2
+

v

2π

(
∂xθ̃r

)2
− g cos(2θ̃r +

1

2
Λ ·∆yφ̃r)

+ L(z)
Maxwell.

(5.28)

Here, the definition of Λ can be easily inferred from Eq. (5.26), so that the argument

of the cosine term matches 2θ̄r. L(z)
Maxwell =

u
2π
(∆ya

(z)
1 )2+ 1

2πṽ
(∆ya

(z)
0 )2. The superscript

of this term is no accident; we interpret Eq. (5.28) as a stack of 2D gauge theories

in the a(z)2 = 0 gauge coupled to matter (φ̃, θ̃). In the context of Eq. 5.28 the gauge

fields would appear to be over-labeled since r = (y, z). We keep the redundant (z)

superscript to emphasize this picture of stacks of 2D gauge theories. Such “layered”

gauge theories have recently been studied in the context of fracton physics [225] and

are reminiscent of the foliated gauge theories developed to describe fracton order [49].

We emphasize that the interpretation of a’s as a stack of 2D gauge fields in the xy

plane is motivated, and ultimately justified by providing a correct description of the

low-energy physics of the model.

The next step is to integrate out the fields φ̃ and θ̃. The details of the derivation

can be found in Appendix 5.5.2. In the end we obtain the effective layered Maxwell-CS

theory:

L[a] ≡ iKzz′

4π
a(z) ∧ da(z′) + (Maxwell terms), (5.29)
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where

Kzz′ = 2mδzz′ + (n1 + n2)δz,z′±1. (5.30)

The inter-layer Maxwell term contains couplings between components of the electromagnetic

field from adjacent layers (z); as an example the B2 term corresponds to

∑
z,z′

B(z)
[ u
2π
δzz′ +

v

8π
(KTK)zz′

]
B(z′) .

So far we have assumed that φ and θ vary smoothly, excluding the “solitonic”

excitations of the cosine pinning term. These more singular configurations are the

analog of vortices in the usual boson-vortex duality, which should be minimally

coupled to the dynamical gauge fields. In Appendix 5.5.2 we show that this is indeed

the case; namely the solitons become gauge charges in the dual gauge theory.

OBC in z direction

Now we consider OBC in the z direction and the effect of the various surface gapping

terms discussed in Sec 5.2.3 on the resulting dual gauge theory.

First we discuss the symmetrically gapped surface generated by the pinning term

in Eq. (5.24). The analysis is similar to the PBC case, except now we must pay

attention to the z = 0 layer of wires. We decompose
∑

r into
∑

y

∑
z>0+

∑
y,z=0 in

Eq (5.25). The terms in the first sum are unchanged while in the second sum,
∑

y,z=0,
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the surface pinning term is cos 2θ̄y0 where

2θ̄y0 = 2θ̃y0 +
m

4
∆y(φ̄y,0 + φ̄y+1,0)

+
n1

2
∆yφ̄y,1 +

n2

2
∆yφ̄y+1,1 .

(5.31)

From here one can integrate out the matter fields and truncate higher order derivative

terms where appropriate. The upshot of this is a modification of the K-matrix:

Ksym,OBC = m



−1 1 0

1 −2 1

. . . . . . . . .

1 −2 1

0 1 −1


. (5.32)

The B2 term is also modified near the surface. This can be seen by noting that the

term in the Lagrangian corresponds to something proportional to (1+αKTK)zz′B
(z)B(z′)

for some constant α.

Alternatively, we can explicitly break the U(1)θ symmetry by adding the very

natural pinning term corresponding to the middle and top layer of the bulk plaquette

term. This partial plaquette is given by

2θ̄y0 = 2θ̃y0 +
m

2
∆y(φ̄y,0 + φ̄y+1,0)

+
n1

2
∆yφ̄y,1 +

n2

2
∆yφ̄y+1,1.

(5.33)

The duality mapping of this surface theory proceeds in the same way as the symmetric

246



gapped example just discussed. In this case

Kbroken,OBC = m



−2 1 0

1 −2 1

. . . . . . . . .

1 −2 1

0 1 −2


. (5.34)

5.2.5 Vortices and quasiparticles

Throughout our derivation of the dual gauge theory, we have assumed that the bosonic

fields φ and θ vary smoothly in spacetime. As we have already mentioned, the

complete spectrum also contains solitonic configurations. We show in Appendix 5.5.2

that the solitons are in fact dynamical charges of the dual gauge fields. Below we

describe the universal properties of the soliton excitations. Many details are delegated

to Appendix 5.5.1.

Physically, a “fundamental” soliton, i.e. a 2π jump in a single Θr term, is in fact

a vortex of the weak superfluid. This can be demonstrated by explicitly constructing

a string operator to create a pair of such solitons separated in the y direction. The

string operator takes the following form:

∏
y

eiθyz(x), (5.35)

which causes a branch cut of 2π phase jump in the string order parameter, thus the
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corresponding excitation is a vortex. It is useful to divide the excitations into vortices

and non-vortices. The simplest non-vortex excitation is just a dipole of two vortices,

with opposite vorticities k and −k, separated along the z direction. Such non-vortex

excitations can be considered as being “deconfined” quasiparticles in this phase. We

call k the strength of the dipole.

Now we discuss the mobility of excitations. The string operator Eq. (5.35) shows

that all excitations can move freely along the y direction. In Appendix 5.5.1 we

show that such a fundamental soliton is immobile in the z direction, when |m| ≥ 2|n|.

Notice that these results hold true in both gapped and gapless models. For the gapless

theory with m = −2n, one can show that a dipole whose strength is a multiple of m

can move in the z direction.

The question of mobility along the x direction is more subtle. We present a

construction of a x-string operator in Appendix. The string operator is ultra-local in

the y direction, but can have some extension in the z direction. For a gapped model,

we find that the construction does yield an exponentially localized string operator, as

expected. However, the gapless case is quite different. To be concrete let us consider

a finite Nz system. For a vortex, the construction fails if PBC or the symmetric OBC

is imposed in the z direction. Only when the symmetry-breaking OBC is present one

can find a string operator. For a dipole, a string operator always exists regardless of

the boundary condition in the z direction. In both cases, however, the constructed

string operator decays only algebraically in the z direction away from the localization

of the excitation. This observation suggests that the mobility of these excitations

along the x direction is also reduced.
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In a gapped system, one can define the superselection sectors of quasiparticle

excitations as the equivalence classes under local operations. Namely, two excitations

are equivalent if they can be transformed to each other by local operator. We can

attempt to generalize the notion to our model. We focus on the non-vortex excitations,

because there are infinitely many types labeled by the vorticity. Since every non-

vortex excitation is mobile along y, we can just consider them at a fixed y. Equivalence

between excitations located at different x is less clear since the string operator is only

algebraically localized. If however we consider them to be equivalent, we find that

there are mNz−1 · Nz classes of non-vortex excitations when PBC is imposed, which

agrees with the topological ground state degeneracy of the coupled wire model. More

details of the counting can be found in Appendix 5.5.1.

Since the vortices are coupled to the gapless gauge fields, gauge fluctuations induce

long-range interactions between the vortices. We compute the interactions when the

simplest, most isotropic Maxwell term is added to the dual CS theory (see Eq. (5.57)

below). For two unit vortices separated by r = (x, y, z), let ρ =
√
x2 + y2. The

interaction potential takes the following asymptotic form:

V (r) ∼


1
|z| g̃z2 ≫ ρ

1√
ρ

g̃z2 ≪ ρ

. (5.36)

From this one can further obtain the interactions between dipoles, which decay with

a higher power. Details of the calculations can be found in Appendix 5.5.4.
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5.3 Infinite-component CS theory

Our duality mapping suggests that the low-energy physics can be described by an

infinite-component Chern-Simons gauge theory, as given in Eq. (5.29). The gapped

case |m| > |n1 +n2| was studied in greater detail in Ref. [225]. Briefly, such a theory

exhibits a kind of fracton topological order, with all quasiparticles being planons.

Interestingly, in many cases the Wilson loop operators for these quasiparticles must

have exponentially decaying tails in the z direction, and as a result, the braiding

statistics between quasiparticles are not strictly local. When this phenomenon happens,

the fractonic order appears to be beyond the topological defect network framework [77,

138, 137].

In the following we focus more on the gapless case, and our main task is to analyze

the symmetry, anomaly and the issue of stability. We show that the iCS theory indeed

captures the universal aspects of the coupled wire model. First of all, we note that

the photon spectrum of the iCS theory with only “intra-layer” Maxwell terms was

calculated in Ref. [225] and the result agrees 2 with the Gaussian spectrum Eq.

(5.17) of the coupled wire model. Below we discuss how other universal aspects of

the coupled wire model are encoded in the iCS field theory.

While we are interested in the iCS theory as a (3+1)d system, we start by reviewing

the global symmetry and anomaly of a general U(1)Nz CS theory, which can be

thought of as compactifying the 3D system in the z direction (so there are Nz “layers”).
2At first glance the spectrum of the layered gauge theory arising from Eq. (5.87) would seem

to depend only on n1 + n2 and m, which does not agree with the spectrum derived for the wire
model. This discrepancy stems from the fact the y direction has been coarse grained in the layered
picture. Restoring higher order derivative terms in y in the gauge theory gives a spectrum matching
Eq. (5.17)
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i.e. it reduces to a quasi-2D theory for small compactification radius or by allowing

non-locality along the compactified direction.

Notice that below we use differential form notations extensively.

5.3.1 Global symmetry and anomaly

We consider the action of a U(1)N CS theory:

S =

∫
M3

KIJ

4π
aI ∧ daJ , (5.37)

where M3 is a closed three manifold. K is a symmetric integer matrix. First we

consider the theory with the Chern-Simons term only and assume that there are no

matter fields. This is a valid assumption since all vortices are gapped, so well below

the gap we can just study the pure gauge theory.

Global symmetry

We now enumerate all the unitary symmetries, including 0-form and 1-form, of the

topological action.

First consider the pure topological action Eq. (5.37). The theory has the following

discrete symmetries:

aI → WIJaJ , (5.38)

where W belongs to GL(N,Z), i.e. an invertible N × N integral matrix, such

that WTKW = K. Physically, when K is non-degenerate, W corresponds to a

permutation of anyon types in the (2+1)d Abelian topological phase.
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In addition, a U(1)N gauge theory also has U(1)N 0-form symmetries, the conservation

of magnetic fluxes. The currents of the symmetries are ⋆daI , where ⋆ is the Hodge

star operator. When K is non-degenerate, these symmetries are embedded into the

1-form symmetry group.

We now discuss the 1-form symmetry of the model, first assuming that K is

invertible. A general 1-form transformation takes the following form:

aI → aI + qIλ, (5.39)

where λ is a properly normalized flat connection, i.e. dλ = 0, and the holonomy of λ

along any 1-cycle is an integer multiple of 2π. qI is an arbitrary real number at this

point. When qI ∈ Z, the transformation can be viewed as a (possibly singular) gauge

transformation. Additionally, one can prove that in order for the partition function of

the theory to be invariant, the qI ’s have to satisfy the following quantization condition:

KIJqI ∈ Z. (5.40)

The derivation can be found in Appendix 5.5.3. If K is invertible, it implies that qI ’s

must take the values

qI = (K−1)IJkJ , kJ ∈ Z, (5.41)

and the 1-form symmetry forms a finite Abelian group, the determinant group of K.

Each 1-form transformation corresponds to an integer vector m, modulo those that

can be written as Kl for l ∈ ZN , and is in fact one-to-one correspondent to anyon
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types. This is well-known, as the 1-form symmetries are generated by Wilson loops.

The 1-form symmetry is generally anomalous if the corresponding anyon is not a

boson [233].

When K is degenerate, the null space of K needs to be considered separately.

Suppose that v ∈ ZN is a null vector, i.e. Kv = 0. Without loss of generality we can

assume v is primitive (i.e. gcd(v1, v2, . . . ) = 1). In that case, the following 1-form

transformation

a→ a+ αvλ (5.42)

is always an exact symmetry of the 4d action (without any 2πZ shift), where α is

an arbitrary real number in [0, 1). Therefore each null vector of K gives rise to a

U(1) 1-form symmetry group. Physically, a null vector corresponds to a mode of the

gauge fields without CS term, which can be dualized to a superfluid, which has a U(1)

1-form symmetry in the absence of vortices [219]. More generally, if the dimension of

the null space is r, then we have U(1)r 1-form symmetry.

Now we consider what happens when Maxwell terms are included. The U(1)N

and 1-form symmetries are not affected at all by the Maxwell terms. The Maxwell

terms may break the 0-form symmetry, however. We then have only the subgroup

that preserves the Maxwell terms as well.

We make connections between the symmetries identified in the CS gauge theory,

especially with the K matrix given by Eq. (5.30), and those found in the coupled wire

lattice model which are discussed in Sec 5.2.1. The magnetic U(1) 0-form symmetry of

the I-th layer is nothing but the planar U(1)φ symmetry. The U(1) “1-form” symmetry
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defined in Eq. (5.42) can be identified with the conservation of total vorticity Eq.

(5.14). Finally, as we will see shortly, we can identify the string order parameter with

a “string” monopole operator.

’t Hooft anomaly

The emergent symmetry group defined in the previous section generally has ’t Hooft

anomalies. The discrete part of the 0-form symmetry group has to be analyzed on a

case-by-case basis. The anomaly of the finite 1-form symmetry group was studied in

Ref. [233], and since it is not particularly relevant to us we do not go into details.

So in the following we study the mixed anomaly between the 0-form U(1)N and the

1-form symmetry group A× U(1)r.

We consider, without any loss of generality, a U(1) 0-form symmetry with charge

vector t. In other words, the U(1) current is given by

j =
∑
I

tI ⋆daI . (5.43)

We turn on a general background gauge field A for the U(1) symmetry:

tI
2π

∫
aI ∧ dA. (5.44)

To check whether this coupling can be compatible with the 1-form symmetries,

perform a general 1-form gauge transformation aI → aI + qIλI where now λI is

allowed to be non-flat. The action changes by − qI tI
2π

∫
A ∧ dλ. To restore gauge
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invariance, the additional term can be cancelled by inflow from a 4d action

Sbulk =
qItI
2π

∫
M4

B ∧ dA, (5.45)

where B is the background 2-form gauge field.

A similar argument works for the U(1)r part of the 1-form symmetry group: under

the 1-form gauge transformation aI → aI + αvIλ, to maintain gauge invariance we

need to have a bulk theory given by

Sbulk =
v · t
2π

∫
M4

B ∧ dA, (5.46)

where now B is a 2-form U(1) gauge field, transforming under the 1-form gauge

transformation as B → B + αdλ.

5.3.2 The filling anomaly

We now analyze the filling anomaly in the layered CS gauge theory. We are mainly

interested in K matrices given in Eq. (5.30), although we present the analysis in a

form that applies to more general cases. Such theories have a discrete translation

symmetry, generated by

Tz : aI → aI+1, (5.47)

provided that the K matrix satisfies KIJ = KI+1,J+1. This is the formal way of

identifying the index I as labeling layers in the z direction. We assume that K is

“short-ranged” in the z direction, which means that there exists an integer d ≥ 0
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such that KIJ = 0 if |I − J | > d. For now we assume that either Nz → ∞, or

periodic boundary condition is imposed so aI+Nz = aI . This way, the layered CS

theory describes a highly anisotropic 3D system.

We are going to show that the (3+1)d theory can exist at any filling. Instead of

directly computing the 3D filling anomaly, we take a detour and study the compactified

system, with periodic boundary condition imposed along the z direction. Suppose

that the 3D system has a filling factor ν (i.e. the average U(1) charge is ν per unit

cell). When viewed as a quasi-2D system, the filling factor becomes Nzν. Here the

dependence on Nz reflects the 3D nature.

Before going to the details, we briefly review the theory of the filling anomaly. It

has been understood now that even though the filling condition does not correspond

to a true, quantized ’t Hooft anomaly (essentially because the filling factor is a

continuous quantity), its impact on the low-energy physics can be described in the

same theoretical framework. We first present a formal argument, following the

approach in [234]. The standard method to detect the ’t Hooft anomaly of a global

symmetry is to couple the system to the background gauge field of the symmetry,

and compute the topological response. While translation is a spatial symmetry, at

low energy it can be described effectively as an internal symmetry. To this end, we

formally introduce Z gauge fields x1 and x2 for the 2D translation symmetry. We also

turn on a U(1) background gauge field A. The filling condition can be captured by

the following response

Sbulk = ν

∫
dA ∪ x1 ∪ x2. (5.48)
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Before getting to the CS gauge theory, we show how the filling anomaly can be

embedded into the U(1)[0]×U(1)[1] ’t Hooft anomaly discussed in Sec. 5.3.1. Formally,

we start from the bulk action

k

2π

∫
B ∪ dA. (5.49)

To realize the filling anomaly, we demand that the translation background gauge field

is activated through the 2-form background:

B = 2πνx1 ∪ x2. (5.50)

Then we see that the action gives a filling factor kν.

We give a physical interpretation as follows. Eq. (5.50) implies that when a loop

charged under the U(1)[1] symmetry moves, it picks up a phase factor given by the

flux of the background 2-form gauge field B through the transverse area swept by the

loop. Now recall that x1,2 are translational gauge fields, x1 ∪ x2 can be heuristically

interpreted as the area in the 2D plane. So Eq. (5.50) basically says that a phase

2πνA, where A is the enclosed area, is attached to the loop. The anomaly action then

implies that the loop is identified with magnetic field lines of the U(1)[0] gauge field.

Therefore, the anomaly action and the particular background Eq. (5.50) together

can be summarized by the following intuitive picture: a 2π U(1)[0] flux picks up e2πiν

phase factor when it moves around a unit area. This is exactly the Aharonov-Bohm

phase expected from the filling factor.

Such a mechanism is realized by a (2+1)d superfluid. A 2π U(1)[0] magnetic flux
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is trapped in a superfluid vortex. It is well-known that under boson-vortex duality,

vortices see a background magnetic field, the strength of which is fixed by the filling

factor.

We can apply these considerations to the CS theory. The anomaly is given by Eq.

(5.46). The charge vector is simply tI = 1, as we have shown in the duality mapping.

We posit that the translation symmetry is realized via the U(1) 1-form symmetry

corresponding to the “zero mode” v = (1, 1, · · · , 1)T, by the 2-form background given

in Eq. (5.50). Together, we find that the coefficient of the topological action is

v · tν = Nzν. which is the expected filling factor. In fact, it is clear that as long as

the charge vector t and v are translation-invariant (i.e. invariant under, or a certain

multiple), the theory can be defined at arbitrary filling. Physically, whenever a zero

mode exists, after compactification the system becomes a quasi-2D superfluid where

the U(1)[0] symmetry is spontaneously broken.

Notice that so far we have assumed periodic boundary condition in the z direction.

Now we turn to open boundary condition. In this case, the z translation symmetry

is broken. The filling of the quasi-2D system is still Nzν. The boundary condition

at the top and bottom layers now becomes crucial. We have considered two kinds of

boundary conditions in the coupled wire model in Sec. 5.2.4, which lead to different

K matrices after duality transformation. If the boundary condition preserves all the
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symmetries, we found the following K matrix:

Ksym,OBC ∝



−1 1 0

1 −2 1

. . . . . . . . .

1 −2 1

0 1 −1


. (5.51)

With this K matrix, (1, 1, . . . , 1)T is still a zero mode, and the same argument, as

used for the periodic boundary condition, applies.

We also studied a symmetry-breaking surface in Sec. 5.2.4, which yields the

following K matrix:

Kbroken,OBC ∝



−2 1 0

1 −2 1

. . . . . . . . .

1 −2 1

0 1 −2


. (5.52)

This K matrix is non-degenerate, thus representing a fully gapped 2D phase. As

discussed in [230] and [233], such a CS theory has a finite emergent symmetry group,

incompatible with a generic filling. Thus the only way that the theory can emerge

is to to break the symmetries explicitly. This is indeed the case in the coupled wire

model.
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5.3.3 Monopole operators

U(1) gauge theories generally admit monopole (or “disorder”) operators, which are

charged under the magnetic U(1) symmetries. For U(1)N gauge group, a monopole

operator is labeled by the magnetic charge vector m ∈ ZN , i.e. 2πmI flux for the

aI gauge field. Physically, it is actually an instanton that inserts 2πm flux at a

point. Due to the Chern-Simons coupling, the flux insertion necessarily nucleates

charges, so we expect that the monopole operator is not gauge-invariant. In order

to build a gauge-invariant monopole operator, one has to dress the “bare” operator

by matter fields of charge Km. As matter fields are absent (or very massive) in the

low-energy theory, a gauge-invariant monopole operator can be introduced at low

energy (i.e. well below the mass gap) only when m is a null vector of K. For a

translation-invariant K matrix, null vectors are also translation-invariant. They are

precisely the string order parameters in the coupled wire model. Via the well-known

Polyakov mechanism, adding monopole operators to the theory causes confinement

of the gauge theory. However, if the monopole operator has a translation-invariant

magnetic charge vector, it is in fact a highly non-local, string-like object in 3D and

cannot appear as a local term in the Hamiltonian. We thus conclude that such theories

are stable with respect to confinement caused by monopole proliferation.

We now look closer at the monopole operators, which requires adding Maxwell

terms in the action:

SMaxwell =

∫
g̃IJfI ∧ ⋆fJ . (5.53)
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For this purpose, we diagonalize the K matrix:

∑
J

KIJe
α
J = λqeqI , (5.54)

where q labels different eigenvectors. Here we normalize eq such that
∑

I e
q
Ie
q′

I = δqq
′ .

Then the K matrix can be written as KIJ =
∑

q λ
qeqIe

q
J . Define new gauge fields

bq = eqIaI and the inverse transformation reads aI = eqIb
q. In terms of the new fields,

the CS term becomes ∑
q

λq

4π
bq ∧ dbq. (5.55)

and the Maxwell term becomes

g̃IJe
q
Ie
q′

J f
q ∧ ⋆f q′ , (5.56)

here f = db.

For the simplest choice, we can set g̃IJ = g̃δIJ , then g̃IJeqIe
q′

J = g̃δqq
′ . So the theory

becomes

L =
λq

4π
bq ∧ dbq − g̃f q ∧ ⋆f q. (5.57)

In our layered CS theory, the translation invariance along z guarantees that different

modes do not couple. In general, g̃a stays finite even when N → ∞, unless g̃IJ is

exactly proportional to KIJ .

As we have already mentioned, the gauge-invariant monopole operators correspond

to null space of the K matrix. Such operators only exist when the K matrix is
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degenerate, so it has zero eigenvalues, the number of which is the same as the

dimension of the null space. We focus on one such mode, and denote by b0. Since

the CS term vanishes, the b0 mode is just a pure Maxwell theory dual to a superfluid.

The charged operator of the superfluid is the monopole operator.

A 2πmI instanton for aI corresponds to a 2πeqImI instanton for the bq gauge fields.

At this point, we pause to discuss the Dirac quantization condition. For aI gauge

fields, we have the standard quantization condition:

∫
M2

daI
2π
∈ Z, (5.58)

where M2 is a closed surface. In terms of the new field strength:

∑
α

eqI

∫
M2

f q

2π
∈ Z. (5.59)

Since we are only interested in gauge-invariant operators, we can assume that
∫
M2
f q =

0 for λq ̸= 0. For simplicity, we assume that K has a unique zero mode v. The

normalized eigenvector is e0 = v
v
. Then the quantization condition is

vI
v

∫
M2

f 0

2π
∈ Z. (5.60)

Since gcd(v1, v2, . . . ) = 1, we find

∫
M2

f 0

2πv
∈ Z. (5.61)
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This is the formal way of saying that the fundamental monopole is labeled by v (when

expressed using the original gauge fields aI).

To restore the standard normalization, we need to rescale f 0 → vf 0, so the

Lagrangian density of the Maxwell term of b0 now reads

L0 = −v2g̃f 0 ∧ ⋆f 0. (5.62)

This theory can be dualized to a superfluid, but now the superfluid density is proportional

to 1
v2g̃

. So the mass generated by instanton proliferation is ∝ 1
|v|2 (there is a further

fugacity factor, which should actually decay exponentially with v2).

Now we specialize to the K matrix of the compactified system. In that case,

we have |v| = √Nz, thus the superfluid density goes down as N−1z . The monopole

operator, which is charged under the magnetic symmetry of all the layers, is indeed

the string superfluid order parameter of the coupled wire model identified in Sec.

5.2.3. The N−1z decay of the superfluid density also agrees with the result of the

two-point correlation function of the order parameter.

One notices an apparent discrepancy between the superfluid density which decays

as N−1z and a finite superconducting response. The resolution is that the charge of

the order parameter grows with Nz to compensate the decay of the superfluid density.

5.3.4 Classification of charge excitations

We now discuss the topological classification of charges in the Chern-Simons theory.

Again we consider the case of a finite number Nz of layers. Suppose the null space
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of the K matrix is spanned by null vectors vj, j = 1, 2, . . . , r where Kvj = 0.

As shown earlier, each null vector corresponds to a 1-form U(1)(j) symmetry, and

the corresponding magnetic U(1) 0-form symmetry is spontaneously broken. One

can then show that the total vorticity (with respect to the weak superfluid of the

U(1)(j) symmetry) is given by vT
j l, by e.g. checking the U(1)(j) 1-form charge of the

corresponding Wilson loop.

One can also consider the equivalence classes of non-vortex gauge charges. The

definition of equivalence is essentially the same as that of a topological Abelian CS

theory with a non-degenerate K matrix, which we briefly review now: a gauge charge

l is a local excitation if and only if it can be written as l = Kl′ for some integer

vector l′. This is true even when K is degenerate, as already mentioned in Sec. 5.3.3,

and easily follows from the equation of motion. Two charges are equivalent if their

difference is local. From this definition, it is easy to see that all local excitations

must have zero vorticity, as expected in any superfluid. We thus focus on the non-

vortex charges, the equivalence classes of which form a finite Abelian group, which is

the generalization of the anyon group. To determine the structure of this group, we

can simply perform a GL(Nz,Z) transformation to decouple the null space. In other

words, we can find an invertible integer matrix W, such that

WTKW =

0r×r

K̃

 , (5.63)

where K̃ is a non-degenerate matrix. The structure of the anyon group is determined
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by the Smith normal form of K̃. The number of distinct equivalence classes is given

by | det K̃|. For the K matrix arising from the coupled wire construction, we find

that K̃ is basically the same as the K matrix with symmetry-breaking OBC, but with

Nz − 1 layers, and | det K̃| = mNz−1 ·Nz. These results all agree very well that those

of the coupled wire model.

5.4 Summary

In this chapter we have introduced a new type of compressible matter: a “weak

superfluid,” which is a 3D anisotropic phase distinct from the conventional superfluid

or Fermi liquid. The weak symmetry breaking is characterized by a “rod” order

parameter, which is supported on a straight line along a fixed direction, and at the

same time there exist no local order parameters. We argue that the low-energy physics

can be captured by a gapless infinite-component Chern-Simons theory introduced in

Ref. [225].

We determined the emergent symmetry of the highly anisotropic “weak superfluid”,

both from the coupled wire model and from the iCS field theory. Most importantly,

the weak symmetry breaking leads to a “cylindrical” U(1) 1-form symmetry, where

the symmetry transformations are defined on cylinders along the z direction (with

arbitrary shape in the xy plane), as depicted in Fig 5.2. The mixed anomaly between

the cylindrical U(1) 1-form symmetry and the U(1) 0-form symmetry is responsible

for the arbitrary filling condition, i.e. being a compressible phase.

Recently, Ref. [220] identified an interesting conceptual relation between zero-
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temperature DC conductivity and “fluxibility”, which is a mixed anomaly between

charge U(1) symmetry and an emergent symmetry. The latter is also responsible for

the arbitrary filling condition. This led to the conjecture [220] that a translation-

invariant quantum system is compressible if and only if it is fluxible. In our work,

the filling condition is indeed realized in the low-energy theory as a mixed anomaly

between the U(1) charge conservation symmetry and the cylindrical 1-form symmetry,

which suggests that the system is indeed “fluxible,” in an appropriate sense. However,

the highly anisotropic emergent symmetry group results in more complicated zero-

temperature DC transport, quite different from the isotropic theories considered in

Ref. [220].

Our microscopic model was given by a coupled wire construction which stitches

together arrays of 1D Luttinger Liquids. We can also understand the phase by

imagining gluing together layers of 2D superfluids. In Chapters 3 and 4, other classes

of 3D coupled wire models were shown to exhibit fractonic behavior. Interestingly, for

appropriate choice of parameters, these models can also be made compressible (i.e.

invariant under the anomalous U(1) × U(1) symmetry defined in Eq. 5.11. Similar

to the models studied in this work, they become gapless and exhibit weak symmetry

breaking, i.e. there are no local order parameter of any kind. But the non-local

order parameter is now supported on a membrane that spans the whole 2D section

perpendicular to the wires. It is not yet clear whether the physics can be understood

in terms of some variation of the iCS theory. We leave a detailed investigation of

these other models for future work.

Another natural question is whether similar WSB phenomena occur in two-dimensional
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compressible systems. While we are not aware of any fundamental reasons prohibiting

such phenomena in 2D, it is unlikely that a 2D coupled wire model can realize it. The

duality transformation employed in this work can be applied to a general coupled wire

model, under reasonable conditions. The result is then a 2+1D Abelian CS theory,

which is either fully gapped when the K matrix is non-degenerate, or dual to a

superfluid when the K matrix is degenerate, which now has a local order parameter

(e.g. the quasi-2D limit of the model studied in this work after compactification). It

will be interesting to understand whether this is just the limitation of the coupled

wire construction, or there is a more fundamental obstruction in 2D.

The iCS models have been shown to realize new and novel phases of matter. The

gapped case discussed in [225] provides new examples of type-I fractonic order without

any foliation structure. Thus far the iCS theories that have been analyzed have only

involved nearest neighbor couplings. It would be interesting to study models with a

wider range of couplings between the layers of gauge theories, and explore possible

connections with other fracton phases. We have shown here that the coupled wire

construction provides a useful tool for building microscopic models which realize these

phases at low energy.
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5.5 Appendix

5.5.1 String operators for solitonic excitations

In this section we consider the mobility of the solitons. We focus on the most

elementary excitation, namely a unit soliton of a single Θr term. We work in the

mean-field approximation, assuming large vg.

One can apply a vertex operator to create solitons, and move them around in the

yz plane. In this model, it is easy to see that eiθ can hop a 1-soliton along y. In other

words,
∏

y e
iθyz(x) is a string operator. Note that strictly speaking, the string creates

perfectly sharp solitons, which are only valid at g → ∞. At finite g, the soliton is

smeared over a length scale ξ and the string operator must be modified to create the

smeared profile. But these modifications do not change universal features, such as

mobility or the braiding statistics.

We also consider how a single soliton excitation can be transported along the wire.

For simplicity we consider the n1 = n2 = n case, but the same method works for the

more general cases as well. Following the general discussion in Ref. [226], we define

φLyz = φyz +mθyz + n(θy,z−1 + θy,z+1). (5.64)

We construct a string operator of the following form:

Wy(x2, x1) = exp

(
i

∫ x2

x1

∑
z

wz∂xφ
L
yz

)
. (5.65)
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where wz ∈ R. At the end point x2, W creates a soliton of strength
∑

z′ Kzz′wz′ for

the Θyz term, where y is fixed, and the opposite one at x1. We thus denote such

an excitation at one end of the string by a Nz-dimensional integer vector v, the z-th

entry of which is the strength of the soliton in the Θyz term. Thus finding a string

operator of the form Eq. (5.65) reduces to solving the equation Kw = v.

Thus to move a single soliton of unit strength at z = 0, we set wz = (K−1)0z.

When the bulk is fully gapped (i.e. 2|m| > |n1 + n2|), w as a function of z decays

exponentially away from the location of the excitation (it is strictly localized in y),

so our string operator is quasi-localized, and the soliton can move along the wire.

This agrees with the prediction of the iCS field theory [225], that is the quasiparticles

have exponentially localized profiles leading to quasi-localized braiding statistics. In

the coupled wire model, the quasiparticle excitation itself is strictly localized as a

violation of a certain plaquette term (at least in the mean-field limit), but the string

operator is quasi-localized.

In the gapless case, the construction in Eq. (5.65) does not work in general as K

is singular, at least when PBC along the z direction is imposed. However, we can

still invert the K matrix in the complement of the null space. For m = −2n, this

subspace consists of all vectors v such that
∑

i vi ̸= 0. For the vectors with non-zero

overlap with the null space, as we discussed in the main text they should be thought

of as vortices in the weak superfluid. For example, if v0 = (1,−1, 0, · · · ), then we can

find the following w which satisfies Kw = v0:

w =
1

m

(
− 1

Lz
,
Lz − 2

Lz
,
Lz − 1

Lz
, · · · , 1

Lz
, 0
)
. (5.66)

269



w is no longer quasi-localized. The weight is only inversely proportional to the

distance away from the location of the excitation. A string operator moving this

excitation along the wire direction can then be constructed using the w.

It is shown in Ref. [79] that two excitations v and v′ (with the same x coordinate)

belong to the same superselection sector, i.e. they can be transformed into each other

by acting with local operators, if and only if v′ = v + Ku for some integer vector

u. This agrees with the mathematical definition of superselection sectors in Abelian

CS theories. Let us now enumerate the number of superselection sectors. We can

easily show that, all translations of mv0 are equivalent, and mLzv0 is local. It is then

straightforward to show that the total number of inequivalent non-vortex excitations

is mLz−1 · Lz. More generally, we can find the Smith normal form of K, and the

number of superselection sectors is the same as the absolute value of the product of

all non-zero entries. Notice that here we only count the “non-vortex” excitations, as

there are infinite types of vortices labeled by vorticity.

Finally, we consider the mobility of excitations along z. Since eiθ only moves

solitons along y, motion along z necessarily involves eiφ. It is useful to represent

the charge configuration formally by a Laurent polynomial in two variables y and z.

Namely, define ∑
i,j∈Z

qijy
izj. (5.67)

Here qij is the charge at coordinate i, j in the y− z plane and it should be clear that

we do not need to worry about their x coordinates. Such polynomial representation

was discussed in Ref. [226].
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The operator eiφ creates the pattern (nz−1 + m + nz)(1 + y). Since 1 − y can

be created by eiθ, for mobility along z we can move all excitations to the same y

and thus just consider 2(nz−1 +m+ nz). Suppose by applying eiajφj (together with

appropriate eiθ’s to move all charges to the same y), we can create a configuration with

two solitons of opposite charges separated by a distance l. In terms of the polynomial

representation, this amounts to finding a polynomial f(z) =
∑

j ajz
j such that

f(z)(nz−1 +m+ nz) ∝ 1 + zl. (5.68)

Suppose that l is large so we essentially look for a string operator along z. For

1≪ j ≪ l we have

naj+1 +maj + naj−1 = 0. (5.69)

Since m2 > 4n2, the corresponding characteristic polynomial has two real roots. As

a result, aj grows exponentially with j (in either directions), which means the charge

created at one end costs an exponentially large amount of energy. For m = −2n, let

f(z) = a0 + a1z + · · ·+ alz
l, then f(z)(nz−1 − 2n+ nz) = n[a0 + (a1 − 2a0)z + (a2 −

2a1+a0)z
2+ · · ·+alzl+1]. If we require aj+1−2aj+aj−1 = 0 for all 1 ≤ j ≤ l−1, then

we aj = a0 + j(a1 − a0). So the only way to have bounded |aj| is to set a1 = a0, and

the excitation created at one end is precisely a vortex-anti-vortex dipole of strength

n.
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5.5.2 Details of the duality mapping

In this section we provide more detail for the mapping described in section 5.2.4.

Boson-vortex duality

The wire model is described by an array of Luttinger liquids with conjugate variables

(φ, θ) and Lagrangian

L[φ, θ] =
∑
r

i

π
∂xθr∂τφr +

ṽ

2π
(∂xφr)

2 +
u

2π
(∂xθr)

2 +
v

8π
(∂x∆yφr)

2 − g cos(2θ̄r)

(5.70)

where

2θ̄r = ∆yφr + Λθr

= (φr+ŷ − φr) + (mθr +mθr+ŷ + n1θr−ẑ + n2θr+ẑ + n2θr+ŷ−ẑ + n1θr+ŷ+ẑ) .

(5.71)

Here we define ∆yXr = Xr+ŷ −Xr and r = (y, z) is a wire index. The definition of Λ

can be easily inferred from Eq. (5.71). Note also that v
8π

(∂x∆yφr)
2 has been added

to the standard Luttinger Liquid kinetic term. This is done because it is convenient

for the duality mapping to the vortex theory but its presence does not affect the

qualitative physics [231].

In what follows we use the two equivalent forms of labelling for the wires, Or+â ≡

Oy+ay ,z+az . Anticipating the layered structure of the gauge theory, we treat z as the

“layer” index and y is to be coarse grained to a continuous spatial coordinate. With
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this motivation in mind, we define the following pair of conjugate variables:

φ̃yz = −
∑

y′ sgn
(
y′ − y − 1

2

)
θy′z

θ̃yz =
1
2
(φy+1,z − φy,z) .

(5.72)

Here φ̃yz creates a 2π vortex in the φ field in layer z, in between wires y and y + 1.

The operator ∂xθ̃yz is the “charge” operator for this vortex. We can re-express the

Lagrangian in Eq. (5.70) in terms of these new fields but the result will be highly

non-local in the y direction. We can restore locality via a Hubbard-Stratonovich

transformation at the expense of introducing new degrees of freedom a
(z)
0 (x, y) and

a
(z)
1 (x, y) in each layer indexed by (z).

We now rewrite the kinetic part of the Lagrangian using the dual variables (φ̃, θ̃)

and the Hubbard-Stratonovich fields (a
(z)
0 , a

(z)
1 ):

∑
r
i
π
∂xθr∂τφr =

∑
r
i
π
∂xθ̃r∂τ φ̃r

∑
r
v
8π

(∂x∆yφr)
2 =

∑
r
v
2π

(
∂xθ̃r

)2

∑
r
ṽ
2π

(∂xφr)
2 =

∑
r
ṽ
2π

(
∆−1y ∂xθ̃r

)2
→∑

r

[
− i
π
∂xθ̃ra

(z)
0 +

(∆ya
(z)
0 )2

8πṽ

]

∑
r
u
2π

(∂xθr)
2 =

∑
r
u
8π

(∂x∆yφ̃r)
2 →∑

r
u
8π

[(
∂xφ̃r − a(z)1

)2
+
(
∆ya

(z)
1

)2]
+
∑

z,y,y′
u
8π
Vy,y′∂x (∆yφ̃yz) ∂x (∆yφ̃y′z)

(5.73)
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where V = ∆T
y (1 + ∆T

y∆y)
−1∆y, which decays exponentially in the difference in wire

index y. Up to this point everything is exact. Now we interpret a(z)µ as a (2+1)d

gauge field, living in layer z, in the a(z)2 = 0 gauge. The upshot of all this is that we

get a theory of layers of vortices minimally coupled to a layered gauge theory. Using

Eq. (5.72), we re-express the plaquette term in terms of the vortex variables

2θ̄yz = 2θ̃yz +
1

2
∆y [n1(φ̃y,z+1 + φ̃y+1,z−1) + n2(φ̃y,z−1 + φ̃y+1,z+1) +m(φ̃yz + φ̃y+1,z)]

= 2θ̃yz +
1

2
Λ ·∆yφ̃yz .

(5.74)

In what follows, when coupled to matter fields (φ̄, θ̄), we suppress the (z) layer index

of the gauge fields and use the r index in order to make the expressions more succinct.

The various indices can be parsed as follows aµ,r = aµ,yz = a
(z)
µ (x, y). At this stage

the Lagrangian takes the form

L[φ̃, θ̃, aµ] =
∑
r

i

π
∂xθ̃r

(
∂τ φ̃r − a(z)0,r

)
+
u

2π

(
∂xφ̃r − a(z)1,r

)2
+

v

2π

(
∂xθ̃r

)2
− g cos(2θ̃r +

1

2
Λ ·∆yφ̃r) + L(z)

Maxwell.

(5.75)

Here, in the a(z)2 = 0 gauge, L(z)
Maxwell =

u
2π
(∆ya

(z)
1 )2 + 1

2πṽ
(∆ya

(z)
0 )2. In order to

simplify the sine-Gordon term we can introduce another set of conjugate variables:

φ̄r = φ̃r and θ̄r = θ̃r +
1

4
Λ ·∆yφ̄r. (5.76)

Expressing the Lagrangian in this final basis and also expanding the cosine term
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yields

L[φ̄, θ̄, aµ] =
∑
r

i

π
∂xθ̄r(∂τ φ̄r − a0,r) +

i

4π
(Λ ·∆y∂xφ̄)r a0,r +

u

2π
(∂xφ̄r − a1,r)2

+
v

2π

(
∂xθ̄r

)2 − v

4π
(Λ ·∆y∂xφ̄)r ∂xθ̄r +

v

32π
(Λ ·∆y∂xφ̄)

2
r

+ gθ̄2r + LMaxwell.

(5.77)

Integrating out matter fields

In order to get a pure gauge theory the plaquette degrees of freedom φ̄, θ̄ must be

integrated out. The first step in the derivation is to collect all the terms involving φ̄,

up to O(φ̄2):

O(φ̄2) : ∂xφ̄r′

[ u
2π

+
v

32π
(Λ ·∆y)

T(Λ ·∆y)
]
r′r
∂xφ̄r = ∂xφ̄M∂xφ̄

O(φ̄) :
[−i
4π

Λ ·∆ya0 −
u

π
a1 +

i

π
∂τ θ̄ +

v

4π
Λ ·∆y∂xθ̄

]
r︸ ︷︷ ︸

Γr

∂xφ̄r

(5.78)

We denote the cross term by Γr[θ̄, a]∂xφ̄r.Note here we have used a discrete “integration

by parts” in parts involving Λ ·∆y and dropped z boundary terms. This step requires

care when considering open boundary conditions in z. Integrating out φ̄ results in an

expression of the form:

− 1

4
Γr′
(
M−1)

r′r
Γr. (5.79)
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We are interested in the low energy theory so we can express M−1 as a derivative

expansion in powers of Λ ·∆y. To accomplish this note that for M = 1 +D

M−1 = (1 +D)−1 =
∞∑
j=0

(−1)jDj . (5.80)

In the present case M−1 ≈ 2π
u
− vπ

8u2
(Λ · ∆y)

T(Λ · ∆y). We keep the 2nd order term

because the a21 term in Γ2 cancels and the next lowest order term is (Λ · ∆ya1)
2.

Including the left over terms which do not involve φ̄ and only keeping the lowest

order derivative terms in the expansion of Γ2 gives

L[θ̄, a] =
∑
r

−i
4π

(Λ ·∆ya0)ra1,r +
v

8π
(Λ ·∆ya1)

2
r +

1

32πu
(Λ ·∆ya0)

2
r

+
i

π
θ̄r (∂xa0 − ∂τa1)r + gθ̄2r + LMaxwell + Higher order terms

(5.81)

Integrating out θ̄ is now relatively simple and the result is

L[a] =
∑
r

− i

4π
(Λ ·∆ya1)ra0,r︸ ︷︷ ︸

CS term

+
1

4π2g
(∂xa0 − ∂τa1)2r

+
1

2πṽ
(∆ya0)

2
r +

1

32πu
(Λ ·∆ya0)

2
r +

u

2π
(∆ya1)

2
r +

v

8π
(Λ ·∆ya1)

2
r.

(5.82)

If the y direction is coarse grained and the layer (z) index restored then

(Λ ·∆ya)z ≈ (n1 + n2)∆ya
(z+1) + 2m∆ya

(z) + (n1 + n2)∆ya
(z−1) (5.83)
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So the first term in Eq. (5.82), corresponding to a CS term, becomes

LCS[a] =
i

4π

[
(n1 + n2)a

(z+1)
1 ∂ya

(z)
0 + 2ma

(z)
1 ∂ya

(z)
0 + (n1 + n2)a

(z−1)
1 ∂ya

(z)
0

]
. (5.84)

When the gauge constraint, a2 = 0, is relaxed a(z)1 ∂ya
(z′)
0 → ϵµνλa

(z)
µ ∂νa

(z′)
λ , so the CS

part of the Lagrangian has the more familiar form

LCS[a] ≡
iKzz′

4π
a(z) ∧ da(z′) . (5.85)

We can similarly investigate parts of Eq. (5.82) associated with the Maxwell terms

of the gauge theory. For example, coarse graining y and restoring gauge invariance

in the 4th term corresponds to

(Λ ·∆ya0)
2 → (Λ · [∆ya0−∂τa2])2 =

[
(n1 + n2)E

(z+1)
2 + 2mE

(z)
2 + (n1 + n2)E

(z−1)
2

]2
.

(5.86)

We see that the typical E2
y term present in conventional Maxwell theory is replaced

by something which couples the same component (y in this case) of the electric field

in different layers. Indeed, a similar term is generated for B but not for Ex, this is

not surprising given the anisotropic nature of the underlying microscopic model. The

full result for the Maxwell term is given by

LMaxwell =
∑
zz′

E
(z)
1

δzz′

4π2g
E

(z′)
1 + E

(z)
2

[
δzz′

2πṽ
+

1

32πu
(KTK)zz′E

(z′)
2

+B(z)

[
uδzz′

2π
+

v

8π
(KTK)zz′

]
B(z′) .

(5.87)
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The upshot of this discussion is that the effective IR Lagrangian is given by:

L[a] ≡ iKzz′

4π
a(z) ∧ da(z′) + LMaxwell . (5.88)

Note that for the compressible state, m = −(n1 + n2), KTK → ∂4z under coarse-

graining in z and so the inter-layer portion of the Maxwell term would appear to be

irrelevant in this context.

Coupling to vortices

So far we have assumed that φ and θ vary smoothly, excluding the “solitonic” excitations

of the cosine pinning term. These more singular configurations are the analog of

vortices in the usual boson-vortex duality, which should be minimally coupled to the

dynamical gauge fields. we now extend the duality map to include these excitations.

To this end, we replace the cosine potential g cos(2θ̄r) by

−g
2
(2θ̄r − 2πnr)

2 (5.89)

Here nr parametrizes the locations of the solitons where 2θ̄ jumps by integer multiples

of 2π.

From the discussion of the microscopic model we can view n as corresponding to

some configuration of vortices created by an operator of the form ei
∑∫

n(x,y,z)∂xφ̃. It

is natural to wonder how the introduction of such a field manifests in the dual gauge

theory. This can be settled using the mapping of section 5.2.4. Indeed, amending Eq
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5.81 gives

L[θ̄, a] =
∑
r

−i
4π

(Λ ·∆ya0)ra1,r +
v

8π
(Λ ·∆ya1)

2
r +

1

32πu
(Λ ·∆ya0)

2
r

+
i

π
θ̄(∂xa0 − ∂τa1 + 2πign) + gθ̄2r +

g

4
n2
r

+ LMaxwell + Higher order terms.

(5.90)

Integrating out θ̄ gives Eq. (5.82) plus a coupling term between the gauge fields and

n

L[a, n] = L[a] + i(∂xa
(z)
0 − ∂τa(z)1 )n→ L[a]− (a0i∂xn− a1i∂τn). (5.91)

This tells us that we can interpret n as a x-dipole of the gauge charge. Namely,

∂xn = ρ is the charge density. One can expect that if we treat the dynamics of

solitons carefully (e.g. solitons moving between wires), one would obtain the full

matter-gauge coupling j · a. Therefore, as expected, vortices become gauge charges.

5.5.3 Quantization condition for 1-form symmetry transformation

In order to derive the quantization conditions on qI , it is more convenient to use the

4d definition of the Chern-Simons term. Suppose that M3 is the boundary of a 4d

manifold M4, i.e. ∂M4 = M3. The gauge field is also extended to M4. Then the CS

action can be defined as

S =
KIJ

4π

∫
M4

FI ∧ FJ . (5.92)
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Now consider 1-form transformations parametrized by λI . We assume that they are

extended to the bulk as well, but not necessarily flat. The 4d action changes:

δS =
KIJ

4π

∫
M4

(qIdλI ∧ FJ + qJFI ∧ dλJ + qIqJdλI ∧ dλJ)

=
KIJ

4π

∫
M4

(qIdλI ∧ FJ + qJFI ∧ dλJ) +
KIJ

4π
qIqJ

∫
M3

λI ∧ dλJ

=
KIJ

4π

∫
M4

(qIdλI ∧ FJ + qJFI ∧ dλJ)

= 2πKIJqI

∫
M3

λI
2π
∧ FJ

2π

(5.93)

Since
∫
M3

λI
2π
∧ FJ

2π
is an integer (intersection number), for the partition function to

remain the same, we must have eiδS = 1, or KIJqI an integer.

5.5.4 Phenomenologies

Order parameter

The stretched superfluid order parameter is given by the string operator eiΦy where

Φy(x) =
∑

z φyz. We want to compute the two point function: ⟨eiΦy(x)e−iΦy′ (x
′)⟩. To

tackle this we approximate the sine-Gordon term by the quadratic term Θ2 in the

strong coupling limit. The resulting theory is free so we can shift our attention to

calculating the ⟨Φy(x)Φy′(x
′)⟩, which is equal to

∑
z,z′

⟨φyz(x)φy′z′(x′)⟩ =
∑∫
q

∑∫
q′

⟨φqφq′⟩
∑
z,z′

eiq·reiq
′·r′ =

∑∫
Gφ(q)e

ik⊥·(r−r′)
Nz∑

z,z′=1

eikz(z−z
′).

(5.94)
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Here k⊥ = (ω, kx, ky) is the momentum perpendicular to z, q = (k⊥, kz) and G(q, q′) =

δq,q′G(q), since the theory is free and translation invariant. The sum over z, z′ can be

easily evaluated ∑
zz′

eikz(z−z
′) = Nz

∑
z

eikzz = Nzδ(kz). (5.95)

Thus

⟨Φy(x)Φy′(x
′)⟩ = Nz

∫
dk⊥ e

ik⊥·rGφ(kz = 0). (5.96)

To work out the two-point function Gφ we re-express the action as

S =
∑
q

(
φ(q) θ(q)

)
G−1(q)

φ(−q)
θ(−q)

 . (5.97)

Recall the mean-field Lagrangian Eq. (5.25) is given by:

S =
∑∫
r,x,τ

dxdτ
i

π
∂xθr∂τφr +

[
ṽ(∂xφr)

2 + u(∂xθr)
2 + gΘ2

r

]
. (5.98)

Using this, we get

G−1(q) =


ṽk2x + gfφ(q)

ikxω
π

+ gf(q)

ikxω
π

+ gf(−q) uk2x + gfθ(q)

 (5.99)
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where

fφ = 2− 2 cos ky

fθ = 4
[
m cos ky

2
+ n1 cos(

ky
2
− kz) + n2 cos(

ky
2
+ kz)

]2

f = 2i
[
n1 sin kz + n2 sin(ky + kz) +m sin ky + n1 sin (ky − kz)− n2 sin kz

]
.

(5.100)

We are interested in realizations with the chiral U(1) present which occurs when

n1 + n2 = −m. In this case fφfθ − |f |2 = 0 and so we can express Gφ as follows

Gφ =
uk2x + gfθ

k2x
[
ṽuk2x +

ω2

π2 + g (ufφ + ṽfθ)
] . (5.101)

Setting kz = 0, we have fθ = 0, and Gφ is simplified to

Gφ =
u

ω2

π2 + uṽk2x + 2gu(1− cos ky)
. (5.102)

This form makes sense as kz = 0 means θ fields are independent of z, so the wire

coupling term decouples into cos(φyz − φy+1,z). For long wavelength limit, we can

expand 1− cos ky ≈ k2y
2
, and rescale kx → kx√

ṽ
, ky → ky

g
,

⟨Φy(x)Φ0(0)⟩ ∼
Nz√

gx2 + ṽy2
, (5.103)

which can be understood as a superfluid with anisotropic dispersion. Thus the two-
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point function for our order parameter has the following scaling:

⟨eiΦy(x)e−iΦ0(0)⟩ ∼ e
−C Nz√

gx2+ṽy2 . (5.104)

Here C is a constant.

Compressibility

The presence of both global U(1) symmetries means the model can be defined at

arbitrary filling. This, in turn, suggests compressibility. Here we add more field

theoretic justification for this feature. To compute compressibility we add a uniform

chemical potential term to the Hamiltonian

H − µN = H − µ
∑
r

∫
∂xθr

=

∫
1

2π
[ṽ(∂xφ)

2 + u(∂xθ)
2]− µ∂xθ − g cos(2θ̄)

(5.105)

where we have suppressed
∑

r in the last line. The term µ∂xθ can be absorbed into

(∂xθ)
2 by completing the square: u

2π
(∂xθ)

2 − µ∂xθ = u
2π
(∂xθ − π

u
µ)2 − π

2u
µ2. Next we

can shift ∂xθ − π
u
µ → ∂xθ by redefining θ → θ + π

u
µx but this is also a symmetry of

the sine-Gordon term. In particular under this transformation 2θ̄ → 2θ̄. Including

the uniform chemical potential the action is given by

S[µ] = S − πV

2u
µ2. (5.106)
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The compressibility is κ ∼ ∂2F
∂µ2

which, for this action, is finite. Note that the above

argument rests on the fact that the shift θ → θ + π
u
µx is a symmetry of 2θ̄. This is

a consequence of the presence of the U(1)θ subsystem symmetry. So we are in some

way factoring in the stretched order parameter in this calculation.

Electromagnetic response

In order to work out the transport properties of the model we can consider coupling

the gauge theory to a 3+1D background field A. The natural current is the monopole

current in each layer jIµ ∼ ϵµνλ∂νa
I
λ. Indeed the appropriate minimal coupling can

be derived from the microscopic model by replacing ∂µφ → ∂µφ + Aµ and carrying

out the mapping of section 5.2.4. For simplicity consider the case with an intra-layer

Maxwell term and a common charge t in each layer as in section 5.3.3,

L =
KIJ

4π
aI ∧ daJ − g̃fI ∧ ⋆fI +

it

2π
AI ∧ daI (5.107)

where here AI = A(x, y; z = I). Note the Az(x, y, z) does not couple to any current,

which reflects the fact that the transport of charge along layers is highly suppressed.

This can be seen from the form of the coupling term in the microscopic model. Recall

the sine-Gordon term Θyz = φyz −φy+1,z + (θ terms ). Heuristically this condenses a

process in which a charged particle created by eiφ is hopped along the y direction with

some additional complicated back-scattering of vortices between different z layers, but

no charges tunnel between layers. As was done in Sec. 5.3.3, we can diagonalize Eq.
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(5.107).

L =
∑
q

λq

4π
bq ∧ dbq − g̃f q ∧ ⋆f q + it

2π
Aq ∧ dbq. (5.108)

In what follows we use q subscripts and superscripts interchangeably, (e.g. Oq ≡ Oq)

since there is no subtlety with raising and lowering operators for the layer index.

It is helpful to integrate out the gauge fields b in order to get a theory purely in

terms of the background field A. Note that L =
∑

q Lq where, defining mq =
λq
8πq

and

working in the ∂µbqµ = 0 gauge,

Lq = −g̃fµν,qf qµν + 2mqϵ
muνγbqµ∂νb

q
γ + bqµJ

µ,q = 2g̃ bqµ
(
∂2ηµν −mqϵ

γµν∂γ
)
bqν + bqµJ

µ,q .

(5.109)

One can check that the propagator for this theory is given by

Dµν
qq′(x, y) =

−δqq′
2g̃

∫
d3k

(2π)3
1

k2 −m2
q

[
ηµν −m2

q

kµkν

k4
+ i

mq

k2
ϵµνγkγ

]
eik·(x−y) .

(5.110)

Integrating out bq results in the effective action S[J ] = −1
2

s
J(x)D(x, y)J(y). Here

the current is given by Jµ,q = it
2π
ϵµνγ∂νA

q
γ. Working in momentum space the full

effective action is given by

S[A] =
t2

16π2g̃
ϵµαγϵνβξ

∑
q

∫
d3k

(2π)3
kαA

q
γ(k)D

qq
µν(k)kβAξ(−k)

=
t2

16π2g̃

∑
q

∫
d3k

(2π)3
k2(Aq)2 − (k · Aq)2 − imqϵ

µνγAqµ(k)kνA
q
γ(−k)

k2 −m2
q

.

(5.111)
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Restricting attention to the q = 0 sector, where mq = 0, the Lagrangian has the form

Lq=0 =
t2

16π2g̃
Aq=0
µ (k)

(
ηµν − kµkν

k2

)
Aq=0
ν (−k) . (5.112)

From this we can surmise that the application of a long wavelength (q → 0, k → 0 )

vector potential induces a Meissner effect, a hallmark of superconductivity [235].

Interaction between vortices

Making the (z) layer index I of the background field manifest, we have seen that

vortices are minimally coupled to the gauge field:

L[a, n] = L[a] +
∑
I

aIµj
µ,I , (5.113)

where jµ,I is the vortex current in the I-th layer and we have used the layered Maxwell-

CS theory of section 5.3.3:

L[a] = KIJ

4π
aI ∧ daJ + g̃

∑
z

fI ∧ ⋆fI . (5.114)

As before we can diagonalize the K-matrix. For the compressible model i.e. for

m = −(n1 + n2), the normalized eigenvectors eqI = 1√
N
eiqI have eigenvalues λq =

2− 2 cos q. In this basis L =
∑

q Lq with

Lq =
λq
4π
bq ∧ dbq + g̃f q ∧ ⋆f q + bq ∧ ⋆jq. (5.115)
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Integrating out the gauge fields, we find the effective action of the currents jµ is

[236]

E =
1

2T

∑
qq′

x
d3xd3y jµq (x)D

qq′

µν (x, y)j
ν
q′(y). (5.116)

where the propagator Dµν
qq′ is given by Eq. (5.110). Here the measure is given by

d3x = dx0dx1dx2 = dtdxdy = dtd2r. Notice that here r denotes the position in the

xy plane, different from our convention in the main text.

Consider a vortex-antivortex pair at (ra, za) and (rb, zb) respectively. This corresponds

to n(x, y; z) = 2πδzzaδyyaΘ(x − xa) − 2πδzzbδyybΘ(x − xb) which can be expressed as

the following current

jµ(z) = iηµ0 [δ(r− ra)δzza − δ(r− rb)δzzb ]

=
∑
q

iηµ0 [δ(r− ra)e
−iqza − δ(r− rb)e

−iqzb ]
eiqz√
Nz

=
∑
q

jµq
eiqz√
Nz

(5.117)

which minimally couples to the gauge field jµ(z)a
(z)
µ = jµ,IaIµ.
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Plugging this into Eq 5.116 and ignoring the self energy terms gives the following

E =
1

2T

∑
qq′

x
d3xd3y

eiqza√
Nz

eiq
′zb

√
Nz

D00
qq′δ

2(x− a)δ2(y − b)

=
−1
4T g̃

∑
q

x
dx0dy0

eiq(za−zb)

Nz

∫
d3p

(2π)3
e−ix0p0e−iy0p0

eip·(ra−rb)

p2 − λ2q/g̃2
(
η00 − λ2q

p0p0

g̃2p4

)

=
1

4TNzg̃

∑
q

∫
dx0eiq(za−zb)

∫
dp1dp2

(2π)2
eip·(ra−rb)

p · p+ λ2q/g̃
2

=
1

2Nzg̃

∑
q

eiq(za−zb)
∫
dp1dp2

(2π)2
eip·(ra−rb)

p · p+ λ2q/g̃
2

(5.118)

where in going from line 2 to line 3 we first used
∫
dx0e−ix0p0 = δ(p0) and then carried

out the integral
∫
dp0. In going from line 3 to line 4 we used

∫
dy0 = T . In the large

Nz limit we can replace 1
Nz

∑
q →

∫
dq, so

E[ra, rb] ∼
∫
d2pdq

eip·(ra−rb)eiq(za−zb)

p2 + 1
g̃2
(2− 2 cos q)2

∼
∫
d2pdq

eip·(ra−rb)eiq(za−zb)

p2 + 1
g̃2
q4

.

(5.119)

To evaluate this we identify q2/g̃ with the mass in a 2D free theory. Placing one of

the vortices the origin we have

E[r, z] ∼
∫
dqeiqzK0(q

2|r|/g̃) = π2

√
8

g̃z

|r|

[
I−1/4

(
z2g̃

8|r|

)2

− I1/4
(
z2g̃

8|r|

)2
]
. (5.120)

Note that in the strong coupling limit g̃ is small.

When z2/|r| ≫ 1
g̃

then we must use the Iν(x → ∞) asymptotic expansion. Note
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that Kν = π
2
I−ν−Iν
sinπν

, so I2−ν − I2ν = 2 sinπν
π

Kν (I−ν + Iν). Combining the asymptotic

expansion for K1/4 and I±1/4 gives

E ≈ 4π

|z| +O
( |r|2
g̃2z5

)
. (5.121)

In the other limit where z2/|r| is comparable or much less than 1 we use the asymptotic

form of the limit Iν(x→ 0). In this case I2−1/4(u)−I21/4(u) =
√
2

Γ(3/4)2
1√
u
−

√
u

Γ(5/4)2
√
2
+ . . .

and so

E ≈
√

g̃

|r| +O
(
z2
g̃3/2

|r|3/2
)
. (5.122)

Having worked out the basic example of the vortex-antivortex pair we can compute

the interaction energy of more complicated configurations of vorticees. Consider the

case of a pair of vortex dipoles; one at the origin oriented in the ẑ direction and one

at position (r1, z1) oriented in the negative ẑ direction. The current is given by

jµ(z) = iηµ0 [δ(r− r1)(δz,z1 − δz,z1+1)− δ(r)(δz,0 − δz,1)]. (5.123)

In the limit where z21/|r1| ≫ 1
g̃

the interaction energy is given by

E ≈ 8πa20
|z1|3

, (5.124)

where a0 is the distance between neighboring layers. In the limit where z21/|r1| is

comparable or much less than 1, which includes the case where the dipoles reside in
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the same xy-plane, the interaction energy scales as

E ∝ −
(

g̃

|r1|

)3/2

. (5.125)
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Appendix A

Appendix

A.1 Fermion-Boson dualities in 1D

Jordan-Wigner transformation and Bosonization

On a 1D lattice there is a convenient duality between fermionic and spin 1/2 (bosonic)

degrees of freedom. To begin we can consider a single site. Here there is simple

analogy to be made between the basis states of the fermionic and spin Hilbert spaces

|↑⟩ ≡ c† |0⟩ , |↓⟩ ≡ |0⟩ . (A.1)

Furthermore we can make identifications between the important operators in the

different settings
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σ+ = c† =

0 1

0 0

 , σ− = c =

0 0

1 0

 , σz = c†c− 1

2
=

1
2

0

0 −1
2

 . (A.2)

Now suppose we have a lattice of spins along a line. The mapping in Eq A.2

runs into a problem when we consider the respective commutation relations for these

quantum systems

Fermions: {ci, c†j} = δij, {ci, cj} = 0 Spin 1/2: [σai , σ
b
j ] = iδijϵabcσ

c, {σi, σj} =
1

2
δij .

(A.3)

The issue is that fermionic operators on different sites anti-commute while Pauli

operators on different sites commute. All is not lost though, we can still salvage

the correspondence between these fundamental two-level systems. We work on the

fermionic side first and define the string operator eiϕj where ϕj = π
∑j−1

i=0 c
†
ici measures

the fermionic occupation between the edge (or some reference site on periodic boundary

conditions) and site j − 1. One can verify that the following operators obey the spin

1/2 commutation relations of Eq A.3

σ+
j = c†je

iϕj , σ−j = cje
−iϕj , σzj = c†jcj −

1

2
. (A.4)

Succinctly, we see that spin = fermion × string. Note that we can also invert this

mapping because ϕj = π
∑j

i=0 c
†
ici = π

∑j
i=0 σ

z
i +

1
2
. Inverting the transformation
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gives

c†j =

(
j−1∏
i=0

σzi

)
σ+
j , cj =

(
j−1∏
i=0

σzi

)
σ−j , c†jcj = σzj +

1

2
. (A.5)

Somewhat unsurprisingly, fermion = spin× string.

At an operational level we see that the string operators role is to provide the

additional minus sign to enforce the desired commutation relation. Given two spins

σbj , σ
b
k with k > j, in the fermionic description the support of the string part of σk

will contain the the raising/lowering part faj of σj but not vice-versa. This gives us

the desired commuting algebra built out of degrees of freedom which anti-commute.

We see that this procedure goes awry in higher dimensions because now there is no

canonical ordering of the sites and one may “wiggle” the string operators around.

Higher dimension Jordan Wigner transformations require greater care [237].

Bosonization

In the previous section we looked at some dualities between discrete fermionic and

bosonic systems. In this section we will discuss their continuum analogues. For

canonical treatments of this subject see [71, 2]. To begin with let us consider the

simple setting of non-interacting spinless fermions on a 1D lattice. In the momentum

basis we can write the Hamiltonian as

HF =
∑
k

ε(k)c†(k)c(k) (A.6)
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The dispersion relation ϵ(k) is shown in Fig. A.1. At low energies it is clear that the

relevant states are those near the Fermi points and so it is pertinent coarse grain.

We linearize (ϵ(k)→ vk) around the Fermi points and work with the new degrees of

freedom and effective Hamiltonian

Figure A.1: Plot of the dispersion relation ε(k) of some translation invariant free fermion
system. Figure borrowed from [2].

HF =
∑
|k|<Λ

vk
(
c†L(k)cL(k) + c†R(k)cR(k)

)
with cR(k) = c (kF + k) , cL(k) = c (−kF − k) .

(A.7)

With an eye toward coarse graining we can define chiral fermions and use them

to construct true Dirac fermion

ψR/L(x) =

(
2π

L

)1/2 ∑
|k|<Λ

cR/L(k)e
±ikx −→ Ψ(x) = eikF xψR(x)+e

−ikF xψL(x) . (A.8)
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Our effective Hamiltonian can be recast in terms of these continuum fields

HF = −iv
2

∫
dx
(
ψR(x)

†∂xψR(x)− ψ†L(x)∂xψL(x)
)
. (A.9)

Where we have used Fourier convention where cR/L(k) = 1√
2πL

∫
dxψR/L(x)e

∓ikx.

Let us take a quick aside an consider the following free bosonic Hamiltonian in

1D:

HB =
1

π

∫
dx (∂xϕR)

2 + (∂xϕL)
2 (A.10)

where the bosons have commutation relations [ϕL/R(x), ∂xϕL/R(x
′)] = ±2πiδ(x−

x′), [ϕL, ϕR] = iπ.

We will be interested in the vertex operators eiϕL/R of the bosonic degrees and their

correlation functions. Throughout this work any exponentiated operator is implicitly

normal ordered (e.g. eiA ≡: eiA :). We omit the details here [2] but one can use the

mode expansion of the chiral bosons and standard identities about normal ordered

operators to arrive at

⟨eiϕL(x)e−iϕL(y)⟩ = ϵ

ϵ− i(x− y) and ⟨eiϕR(x)e−iϕR(y)⟩ = ϵ

ϵ+ i(x− y) . (A.11)

The correlation functions for the chiral fermions have the form

312



⟨ψL(x)ψ†L(y)⟩ =
i

2π

1

(x− y) + iϵ
and ⟨ψR(x)ψ†R(y)⟩ =

−i
2π

1

(x− y)− iϵ . (A.12)

Comparing Eqs A.11 and A.12 we see we can make the following identification

ψL(x) =
1√
2πϵ

eiϕL(x) and ψR(x) =
1√
2πϵ

eiϕR(x) (A.13)

We can check that the vertex operators reproduce the appropriate fermionic

commuation relations {ψη(x), ψ†η′(y)} = δηη′δ(x− y), {ψη(x), ψη′(y)} = 0.

Further more we can use Eqs A.13 and A.11 to establish a Fermion-to-Boson

dictionary between important operators such as the currents. For example, using

ψ†L/R(x)ψL/R(x) = lim
δ→0

1

2πϵ
e−iϕL/R(x+δ)eiϕL/R(x)

= lim
δ→0

1

2πϵ
e−iϕL/R(x+δ)−ϕL/R(x)e⟨ϕL/R(x+δ)ϕL/R(x)⟩

= lim
δ→0

1

2πϵ

(
1− iδ∂xϕL/R +O(δ2)

) ϵ

ϵ∓ iδ

= ± 1

2π
∂zϕL/R + divergent piece fixed by normal ordering

(A.14)

we see that the U(1) charge density ρ = ψ†LψL+ψ
†
RψR = 1

2π
(∂xϕL−∂xϕR) = 1

π
∂θ. The

free fermion theory also has chiral symmetry U(1)chiral with charge density ρchiral =

ψ†LψL − ψ†RψR = 1
2π
(∂xϕL + ∂xϕR) = 1

2π
∂xφ. Here we have introduced an equally

valid pair of bosonic variables (φ = ϕL + ϕR, θ =
ϕL−ϕR

2
), with commuation relations

[φ(x), ∂yθ(y)] = 2πiδ(x− y).
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We can consider adding terms to our fermion Hamiltonian. For example we may

break the chiral symmetry by adding a mass term

∆H = m
(
ψ†LψR + ψ†RψL

)
= m

(
e−iϕLeiϕR + eiϕLe−iϕR

)
= −m

πϵ
cos(2θ) .

(A.15)

The mass term shows up in the dual bosonic theory as a sine-Gordon term. Alternatively

we can add a density-density interaction

∆H = gρ2 = g(ψ†LψL + ψ†RψR)
2

=
g

π2
(∂xθ)

2 .

(A.16)

This time the interaction term renormalizes the kinetic term in the dual bosonic

theory.

Generically, adding interactions to the fermionic Hamiltonian will manifest in

the dual bosonic theory by either renormalizing the couplings of the kinetic terms

or introducing a sine-Gordon term. Throughout this dissertation we will leverage

this fact to map fermionic (and bosonic) theories with complicated backscattering

interactions to relatively simple bosonic theories.
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