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Abstract 

Network Approaches to the Study of Genomic Variation in Cancer 

Hussein Mohsen 

2022 

 

Advances in genomic sequencing technologies opened the door for a wider study of cancer 

etiology. By analyzing datasets with thousands of exomes (or genomes), researchers gained 

a better understanding of the genomic alterations that confer a selective advantage towards 

cancerous growth. A predominant narrative in the field has been based on a dichotomy of 

alterations that confer a strong selective advantage, called cancer drivers, and the bulk of 

other alterations assumed to have a neutral effect, called passengers. Yet, a series of studies 

questioned this narrative and assigned potential roles to passengers, be it in terms of 

facilitating tumorigenesis or countering the effect of drivers. Consequently, the passenger 

mutational landscape received a higher level of attention in attempt to prioritize the 

possible effects of its alterations and to identify new therapeutic targets. 

 

In this dissertation, we introduce interpretable network approaches to the study of genomic 

variation in cancer. We rely on two types of networks, namely functional biological 

networks and artificial neural nets. In the first chapter, we describe a propagation method 

that prioritizes 230 infrequently mutated genes with respect to their potential contribution 

to cancer development. In the second chapter, we further transcend the driver-passenger 

dichotomy and demonstrate a gradient of cancer relevance across human genes. In the last 

two chapters, we present methods that simplify neural network models to render them more 

interpretable with a focus on functional genomic applications in cancer and beyond.  
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Chapter 1 

Introduction 

 

Rapid advancements in nucleotide sequencing since the early 2000’s reshaped the genomic 

study of cancer. During this period, studies that utilize sequences from 100 or more tumors 

have become common, and reports on cancer etiology often transcend the sequence level 

to incorporate functional data on the route between genotype and phenotype. In light of the 

wide spectrum of discovered genomic variation across and within cancer types, research 

questions proliferated, and the identification of mutational contributions to cancer 

development took a more central position in biomedical research [1].  

 

Historically, cancer genomics studies predominantly focused on somatic mutations and 

strictly divided them into two classes: drivers that confer advantageous fitness on cells to 

develop cancer, and passengers with assumed neutral selective advantage. To identify 

drivers and passengers, researchers often adopted frequency-based strategies that primarily 

compare a genomic region’s mutational load in tumor versus healthy tissues. At times 

described as "mountains" spanning the landscape of genomic cancer mutations [2], 

frequently mutated driver genes increasingly defined the central narrative of cancers’ 

genomic etiologies. Another strategy that confers the "driver" title on genes (or mutations) 

is based on the functional impact of their mutations [3]. Both strategies have been used to 

collate consistently updated lists of cancer drivers that often include hundreds of genes [2, 

4-10].  
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Yet, recent large-scale studies, including those led by The Cancer Genome Atlas and the 

Pan Cancer Analysis of Whole Genomes projects, exposed limitations of existing driver 

lists. On one front, these studies further highlighted that the intricacies of cancer genomic 

development considerably transcend acquired somatic point mutations in coding regions. 

Long structural variants, epigenetic changes, and noncoding mutations and novel somatic-

germline associations have all been discovered to play a significant role in the development 

of the disease [11, 12]. On another front, and despite the efficacy of frequency-based 

discovery strategies, they have missed a significant subset of infrequently mutated but 

functionally important candidate genes.  

 

Relatedly, a growing body of research have raised questions about the rigidity of the driver-

passenger dichotomy and suggested varying important roles contributed to mutations 

previously portrayed as neutral. Described as “mini-drivers”, “latent drivers”, or 

“hitchhikers”, subsets of passenger mutations were assigned functional roles that would 

facilitate the progression of cancer by altering signaling pathways and optimizing the effect 

of driver mutations [13-15]. Interestingly, a second set of studies suggested an opposite 

role of passenger mutations in what was described as a “tug-of-war” between drivers and 

passengers, where the combined effect of multiple passenger mutations might be either 

slowing down tumor growth or reducing metastatic progression [11, 16, 17]. 

 

The demonstrated effect of passenger mutations opened new venues for the study of 

genomic variation in cancer. In this context, we present a series of works that primarily 

aim to assess the functional significance of genomic variation in cancer with a relative 
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focus on previously unknown driver mutations. These collaborative works integrate 

multiple layers of biomedical data stemming from the functional genomics matrix, drug 

response assays, and biomedical literature text mining, and rely on two types of networks 

according to which the chapters of this document can be classified. In Chapters 2 and 3, 

we describe novel approaches to prioritizing genomic variation using genomic mutation 

and functional network data. In Chapters 4 and 5, we present algorithmic approaches to 

enhancing the interpretability of artificial neural networks trained to fulfill prediction tasks 

pertaining to cancer genomics and other biomedical applications. 

  



 4 

Chapter 2 

Network propagation-based prioritization of long tail genes in 17 cancer types 

 

 

This chapter is based on the work described in Mohsen et al. [18]. 

 

2.1. Abstract 

 

The diversity of genomic alterations in cancer poses challenges to fully understanding the 

etiologies of the disease. Recent interest in infrequent mutations, in genes that reside in the 

“long tail” of the mutational distribution, uncovered new genes with significant 

implications in cancer development. The study of cancer relevant genes often requires 

integrative approaches pooling together multiple types of biological data. Network 

propagation methods demonstrate high efficacy in achieving this integration. Yet, the 

majority of these methods focus their assessment on detecting known cancer genes or 

identifying altered subnetworks. In this chapter, we introduce a network propagation 

approach that entirely focuses on prioritizing long tail genes with potential functional 

impact on cancer development. 

 

We identify sets of often overlooked, rarely to moderately mutated genes whose biological 

interactions significantly propel their mutation-frequency-based rank upwards during 

propagation in 17 cancer types. We call these sets “upward mobility genes” and 

hypothesize that their significant rank improvement indicates functional importance. We 
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report new cancer-pathway associations based on upward mobility genes that are not 

previously identified using driver genes alone, validate their role in cancer cell survival in 

vitro using extensive genome-wide RNAi and CRISPR data repositories, and further 

conduct in vitro functional screenings resulting the validation of 18 previously unreported 

genes. Our analysis extends the spectrum of cancer relevant genes and identifies novel 

potential therapeutic targets. 

 

2.2. Background 

 

Rapid developments in sequencing technologies allowed comprehensive cataloguing of 

somatic mutations in cancer. Early mutation-frequency-based methods identified highly 

recurrent mutations in different cancer types, many of which were experimentally validated 

as functionally important in the transformation process and are commonly referred to as 

cancer driver mutations. However, the biological hypothesis that recurrent mutations in a 

few driver genes account fully for malignant transformation turned out to be overly 

simplistic. Recent studies indicate that some cancers do not harbor any known cancer driver 

mutations, and all cancers carry a large number of rarely recurrent mutations in unique 

combinations in hundreds of potentially cancer relevant genes [19-25]. These genes are 

part of a long tail in mutation frequency distributions and referred to as “long tail” genes. 

 

Many long tail mutations demonstrated functional importance in laboratory experiments, 

but studying them all and assessing their combined impact is a daunting task for 

experimentalists. This creates a need for new ways to estimate the functional importance 
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and to prioritize long tail mutations for functional studies. A central theme in finding new 

associations between genes and diseases relies on the integration of multiple data types 

derived from gene expression analysis, transcription factor binding, chromatin 

conformation, or genome sequencing and mechanistic laboratory experiments. Protein-

protein interaction (PPI) networks are comprehensive and readily available repositories of 

biological data that capture interactions between gene products and can be useful to identify 

novel gene-disease associations or to prioritize genes for functional studies. In this chapter, 

we rely on a framework that iteratively propagates information signals (i.e. mutation scores 

or other quantitative metrics) between each network node (i.e. gene product) and its 

neighbors.  

 

Propagation methods have often leveraged information from genomic variation, biological 

interactions derived from functional experiments, and pathway associations derived from 

the biomedical literature. Studies consistently demonstrate the effectiveness of this type of 

methods in uncovering new gene-disease and gene-drug associations using different 

network and score types. Nitsch et al. [26] is one of the early examples that used differential 

expression-based scores to suggest genes implicated in disease phenotypes of transgenic 

mice. A study by Lee et al. shortly followed to suggest candidate genes using similar 

propagation algorithms in Crohn’s disease and type 2 diabetes [27]. Other early works that 

use propagation account for network properties such as degree distributions [28] and 

topological similarity between genes [29-31] to predict protein function or to suggest new 

candidate genes. 
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Cancer has been the focus of numerous network propagation studies. We divide these 

studies into two broad categories: (A) methods that initially introduced network 

propagation into the study of cancer, often requiring several data types, and (B) recent 

methods that utilize genomic variation, often focusing on patient stratification and gene 

module detection (for a complete list, see [32]). 

 

Köhler et al. [33] used random walks and diffusion kernels to highlight the efficacy of 

propagation in suggesting gene-disease associations in multiple disease families including 

cancer. The authors made comprehensive suggestions and had to choose a relatively low 

threshold (0.4) for edge quality filtering to retain a large number of edges given the 

limitations in PPI data availability in 2008. Shortly afterwards, Vanunu et al. [34] 

introduced PRINCE, a propagation approach that leverages disease similarity information, 

known disease-gene associations, and PPI networks to infer relationships between complex 

traits (including prostate cancer) and genes. Propagation-based studies in cancer rapidly 

cascaded to connect gene sequence variations to gene expression changes using multiple 

diffusions [35], to generate features used to train machine learning models that predict 

gene-disease associations in breast cancer, glioblastoma multiforme, and other cancer types 

[36, 37], or to suggest drug targets in acute myeloid leukemia by estimating gene knockout 

effects in silico [38].  

 

Hofree et al. introduced network-based stratification (NBS) [39], an approach that runs 

propagation over a PPI network to smoothen somatic mutation signals in a cohort of 

patients before clustering samples into subtypes using non-negative matrix factorization. 
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Hierarchical HotNet [40] is another approach that detects significantly altered subnetworks 

in PPI networks.  It utilizes propagation and scores derived from somatic mutation profiles 

as its first step to build a similarity matrix between network nodes, constructs a threshold-

based hierarchy of strongly connected components, then selects the most significant 

hierarchy cutoff according to which mutated subnetworks are returned. Hierarchical 

HotNet makes better gene selections than its counterparts with respect to simultaneously 

considering known and candidate cancer genes, and it builds on two earlier versions of 

HotNet (HotNet [41] and HotNet2 [42]). 

 

These studies have addressed varying biological questions towards a better understanding 

of cancer, and they have faced limitations with respect to (i) relying on multiple data types 

that might not be readily available [35, 36], (ii) limited scope of biological analysis that 

often focused on a single cancer type [35, 38], (iii) suggesting too many [38] or too few 

[37] candidate genes, or (iv) being focused on finding connected subnetworks, which 

despite its demonstrated strength as an approach to study cancer at a systems level might 

miss lone players or understudied genes [35, 40-42]. To address these issues and parallel 

the emerging focus on long tail genes and non-driver mutations [11, 13-15, 17, 20, 22, 23], 

we build on the well-established rigor of propagation and introduce a new approach that 

particularly prioritizes rarely to moderately mutated genes implicated in cancer. Our 

analysis spans 17 cancer types and relies centrally on two data types: mutation frequency 

and PPI connectivity data. We hypothesize that a subset of long tail genes, originally with 

low mutation frequency ranks, can leverage their positionality in PPI networks and the 

mutational burden within their extended neighborhoods to play an important role in cancer 
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as signaled by the much higher individual ranks they attain after propagation. These genes 

are not merely pinpointed based on their high post-propagation ranks, but rather on the 

strong improvement in their pre- and post-propagation ranking difference that exceeds 

stringent measures. Hence, we describe these genes throughout this chapter as upward 

mobility genes (UMGs). To the limits of our knowledge, this is the first propagation 

approach that focuses entirely on long tail genes. 

 

We efficiently identify a considerable number of UMGs (n = 28-83 per cancer type) and 

demonstrate their functional importance in cancer on multiple levels. Using somatic 

mutation data from the TCGA and two comprehensive PPI networks with significant 

topological differences, STRING v11  and HumanNet v2, we detect UMGs in BRCA, 

CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, 

READ, STAD, THCA, and UCEC. These genes reveal a significant number of regulatory 

pathway associations that would be overlooked when relying on known driver genes alone. 

Further, in silico analysis demonstrates that UMGs exert highly significant effect on cancer 

cell survival in vitro with cancer type specificity, and they outperform genes suggested by 

other network methods with respect to this impact on cancer cell survival. We then validate 

a previously unreported subset of the identified genes in vitro through siRNA knockout 

experiments. Finally, we perform a analysis of UMGs’ positionality in a combined 

STRING-HumanNet v2 PPI network to classify each UMG as a potential cancer driver, 

drug target, or both. Together with known drivers, we hope that UMGs will draw a more 

complete portrait of the disease. 
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2.3. Results 

 

2.3.1. Overview 

 

First, we generate PPI networks specific to each of 17 cancer types in the TCGA using only 

genes that are expressed in a given cancer type (Figure 2.1a). We use the STRING and 

HumanNet v2 networks that have different topologies and information channels for 

constructing the networks and use only high-quality edges. We then perform propagation 

over each network, where each sample’s somatic mutation profile includes a quantized 

positive value ∈ [1,4] for genes with mutations, and 0 otherwise (Figure 2.1b). Next, we 

perform the Mann Whitney U test to assess the significance of propagation-based rankings 

by measuring the enrichment of known functionally important COSMIC genes towards 

higher ranks in post-propagation lists. Results demonstrate high statistical significance 

across all studied cohorts (p < 10-5) demonstrating the validity of the method to identify 

genes with functional importance. We then calculate the difference in pre- (i.e. raw 

mutation frequency) and post-propagation ranking for each gene. Genes that move up in 

the rank order in the post propagation list are called UMGs. We construct a preliminary 

UMG list for each cancer cohort based on stringent final rank cutoff and upward rank 

increase (i.e. upward mobility) threshold. In this chapter, genes whose rank significantly 

improves during propagation and land in a pre-defined top block of post-propagation 

ranked lists are retained (Figure 2.1c). Using this strategy, our approach focuses on long 

tail genes and excludes frequently mutated genes (including classical cancer drivers) that 

occupy high ranks before propagation and therefore cannot meet the upward mobility 
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threshold. We identify UMGs separately for each of the 17 cancer types. To further filter 

UMGs for potential functional importance, we remove genes with minimal or no impact 

on corresponding cancer cell survival after gene knockdown in the Cancer Dependency 

Map Project (DepMap) [43]. This step eliminates 4-13% of UMGs (Figure 2.1d). We 

finally analyze the biological and topological properties of the shortlisted UMGs on pan-

cancer and cancer type levels (Figure 2.1e). 

 

 

 

Figure 2.1. Schematic overview of the UMG identification strategy. 

 

2.3.2. UMGs across 17 cancer types 

 

We report 230 UMGs across 17 cancer types. UMG lists capture the expected biological 

heterogeneity of cancer types: 76 genes (33%) are specific to one cancer type, 116 (50.4%) 

to 2-9 types, and only 38 (16.5%) to 10 or more types. The longest list of UMGs 

corresponds to CESC (n = 83 genes) and the shortest to CHOL (n = 28). Hierarchical 

complete linkage clustering of cancer types (right of Figure 2.2) using UMG list 

membership and DepMap dependency scores of the genes (which reflect their importance 



 12 

in cell growth) reveals interesting patterns. Similar to results based on driver gene sets 

identified in [25], subsets of squamous (ESCA, HNSC, and LUSC) and gynecological 

(BRCA, CESC, and UCEC) cancers cluster together. Close clustering results also 

correspond to the lung (LUAD and LUSC) and colon and rectum (COAD and READ) as 

tissues of origin, while others match with the rates of driver mutations across cancer types 

(i.e. Figure 1D in [25]), particularly (i) STAD and CESC, (ii) KIRP, READ, and COAD, 

and (iii) LUSC, LUAD, HNSC, ESCA, and LIHC, suggesting similarities between driver 

and long tail mutational patterns. Interestingly, UMGs specific to a single cancer type (left 

of Figure 2.2) include a considerable number of genes whose products have similar 

functions such as COL4A1 and COL1A1 that encode different types of collagen (specific 

to ESCA), and triplets of genes that encode proteins in the 26S proteasome complex 

(PSMC1/2/3, specific to UCEC) and mitogen-activated kinases (MAPK1 and MAP2K1/2, 

specific to THCA). Functional gene clusters shared among cancer types include 

DYNC1LI2/I2/H1 that encode different components of the cytoplasmic dynein 1 complex 

and PPP1CC/1CA/2CB/2CA that encode subunits of protein phosphatase enzymes. The 

circos plot [44] of Figure 2.2 shows the distribution of UMGs across cancer types, their 

relative ranks within UMG lists, and their impact on cancer type-specific cell survival. 

 

2.3.3. UMGs reveal known and novel cancer-pathway associations 

 

Biological enrichment analysis of UMGs, separately and in combination with known 

drivers, confirms some already known functional importance of the UMGs and suggests  
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Figure 2.2. Distribution of UMGs across 17 cancer types. Right: genes in 2 or more 

cancer types. Dendrogram is based on hierarchical clustering of heatmap rows. Each 

heatmap value corresponds to a percentage-based score of a cancer type’s cell lines whose 

survival is negatively impacted by a gene’s knockout. For each value, the maximum 

percentage across RNAi and CRISPR experiments is selected. Left: cancer type-specific 

genes. Histogram throughout the plot corresponds to the normalized rank of each UMG in 

the lists it belongs to. 
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new associations between cancer types and biological pathway alterations. UMGs analyzed 

alone or together with known cancer drivers have statistically significant associations 

(Benjamini p-adjusted < 0.05) with most of the oncogenic pathways (8 out of 10) curated 

by Sanchez-Vega et al. [45] (Figure 2.3a). These results indicate that UMGs are members 

of known biological pathways and can broaden the study of biological processes that 

contribute to malignant transformation. This is particularly relevant in cancers where driver 

gene-based pathway associations revealed only a few relevant pathways (e.g.  KICH and 

CHOL in [25]). Interestingly, the p53 pathway has only a small number of associations 

with UMGs in contrast to the many associations we detected with the TGF-beta and Hippo 

signaling pathways. Other known cancer pathways are also altered by UMGs and include 

Notch, HIF-1 and mTOR. Notably, the number of cancer type-specific pathway 

associations does not correlate with the size of UMG lists. For example, KICH, which has 

one of the smallest lists of UMGs  (n = 41 genes), has a sizeable set of pathway associations, 

while CESC with the largest UMG list (n = 83) has considerably fewer associations. These 

findings suggest greater diversity in altered biological processes that lead to development 

of KICH compared to CESC. 

 

On the pancancer level, we partitioned enrichment results for all 230 UMGs into 9 major 

functional clusters based on biological function (Figure 2.3b). Using EnrichmentMap (EM) 

[46], we built a network of intra- and inter-cluster similarity measured through gene 

overlap between enrichment entities (i.e. pathways, biological processes and molecular 

functions; Methods). Connectivity patterns within the EM network provide insights into 
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the sets of entities and UMGs. Within the clusters, we identified biological entities with 

high connectivity (red labels, Figure 2.3b). These entities include oncogenic pathways such 

as PI3K-AKT, RAS, and mTOR, and important biological processes including cell matrix 

adhesion and chromatin remodeling. Their high connectivity is often driven by a selected 

subset of UMGs with high frequency in their constituent edges (Table 1.1). Subsets of these 

frequent UMGs encode subunits of proteins and members of protein complexes with strong 

association with cancer (e.g. PIK3R2/R3/CB/CD’s products in phosphatidylinositol kinases 

(PI3Ks) [47], and IKBKB/G’s products that are regulatory subunits in an inhibitor of the 

Nuclear Factor Kappa B kinase (NFKB) [48]). Given their significant and wide range of 

biological functionality, these genes constitute a potential subset of potent drug targets. A 

similar analysis on KEGG mega-pathways corresponding to diseases and infections 

revealed another subset of frequent UMGs and demonstrated that UMGs are generally 

important genes that participate in broader biological processes than cancer alone (Figure 

2.3c, Table 1.1). Observed associations include well-studied ones between multiple cancers 

and Hepatitis C [49], Type II Diabetes Mellitus [50, 51], and HTLV-I infection [52], and 

new ones such as the potential association with COVID-19 [53]. 

 

2.3.4. UMGs impact survival of cancer cells in vitro 

 

To assess the functional importance of UMGs in cancer cell survival in vitro, we obtained 

their cancer type-specific dependency scores from the DepMap project. DepMap reports 

results on comprehensive genome-wide loss of function screening for all known human 

genes using RNA interference (RNAi) and CRISPR to estimate tumor cell viability after   
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Figure 2.3. Biological enrichment results for UMGs at cancer type and pancancer 

levels. a UMGs uncover known and novel associations between cancer types and 

biological pathways. Enrichment analyses are performed for each cancer type’s combined 

list of UMGs and drivers. Shown results correspond to significant pathway and molecular 
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function associations exclusively uncovered by UMGs. b Pancancer analysis of all 230 

UMGs allows for the identification of biological pathways, processes and functions 

strongly associated with UMGs (in red) that suggests potential therapeutic targets. c 

Similar analysis to b on clusters of KEGG mega-pathways uncover disease-disease and 

disease-infection associations pertaining. 

 

gene silencing in hundreds of cancer cell lines. The CRISPR dataset includes 990 cell lines, 

and the RNAi dataset includes 712 cell lines [43]. A dependency score of 0 corresponds to 

no effect on cell viability, and a negative score corresponds to impaired cell viability after 

knocking down the gene; the more negative the dependency score, the more important the 

gene is for cell viability. We used the most recent data release that accounts for batch and 

off-target effects and therefore provides more accurate estimates of functional impact [54].  

 

We found that cancer type-specific mean dependency scores of UMGs is higher (i.e. more 

negative) than non-UMGs’ across all 17 cancer types, and in both CRISPR and RNAi 

experiments. This indicates that knockout of UMGs consistently yields a stronger negative 

effect on cancer cell survival than that of non-UMGs (Mann-Whitney U test, p < 5 ×10-3, 

Methods). 

 

Our UMG detection method is entirely focused on prioritizing long tail genes for functional 

importance. Most existing network methods focus their assessment on uncovering known 

cancer genes or are geared towards other goals—such as detecting subnetworks that 

maximize coverage of mutational profiles or are highly mutated—and therefore may be 
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Functional Cluster Frequent UMGs 

Known Cancer-related 
 PIK3R2, PIK3R3, AKT1, IKBKB, MAPK1, MAPK3, 

PIK3CB, PIK3CD, MAP2K1, MAP2K2 

Proliferation 

CCND1, BUB1B, CDC16, ANAPC4, ANAPC7, CDC23, 

CDC26, CDC27, CUL3, TGFB1, AURKA, CDK1, CDK2, 

CDK4, CCNB1, NDC80 

Adhesion ITGB1, ITGB5, RHOA, SRC, ITGA2, ITGA4, VCL 

Transcription and Translation RUVBL2 

Binding SRC, RELA 

Immune System TRAF6, MTOR, IRF4, IKBKB, IKBKG 

Cancer Mega-pathways 
 CCND1, PIK3R2, PIK3R3, GRB2, EGFR, AKT1, MAPK1, 

MAPK3, PIK3CB, SOS1, PIK3CD, MAP2K1, MAP2K2 

Other Diseases and Infections 

Mega-pathways 

 CASP3, MAPK14, CASP8, PIK3R2, PIK3R3, TRAF6, 

AKT1, MAP3K7, IRF3, IKBKB, IKBKG, MAPK1, MAPK3, 

PIK3CB, RELA, MAPK8, PIK3CD, MAPK9 

Table 1.1. Frequent UMGs driving high connectivity within EnrichmentMap functional 

clusters. 

 

less efficient to prioritize long tail genes. To have a better understanding of the 

specifications of UMGs, we compared their impact on the survival of cancer cell lines to 

that of non-driver genes selected by five other methods. Three of these methods are 
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propagation-based and include FDRNet [55], Hierarchical HotNet (HHotNet) [40]—in 3 

different settings, and Zhou et al.’s propagation algorithm that resembles random walk with 

restart—in its original and edge-normalized settings [56]. The other two include nCOP 

[57], a non-propagation network method that recently demonstrated an ability to uncover 

non-driver genes across multiple cancer types, and MutSig [58], which identifies genes 

mutated more often than expected in a given cohort. HHotNet reported statistically 

significant results after the integration over both PPI networks in only 5 out of the 17 cancer 

types. Hence, we included two other settings (largest and all subnetworks) where the 

method was able to report statistically significant results in one network. FDRNet 

successfully generated results on STRING, and its reported results across cancer types are 

based on this network (Methods).  

 

Almost all methods’ generated gene sets had a knockdown negative impact on cancer cell 

survival, but UMGs had the strongest impact across cancer types and in both CRISPR and 

RNAi experiments (Figure 2.4a). The median percentage-based score of cell lines 

negatively impacted by UMGs’ knockout is also consistently higher than that for genes 

selected by the other methods in 28 out of the 34 cancer type-assay combinations (Figure 

2.4b), with the remaining 6 including 4 ties. Notably, a number of UMGs have an extremely 

strong negative impact on cell survival across cancer types. For instance, PRAD, READ, 

and THCA sets include genes with mean DepMap CRISPR score < -2 in their cell lines, 

and all other cancer types except HNSC include genes with score < -1.7. Similar results 

were also obtained for these comparisons before the optional DepMap filtering step that 

only removed 4-13% of UMGs. As FDRNet, HHotNet, Zhou et al., nCOP and MutSig do 
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not solely focus on long tail genes and gene sets generated by these methods include known 

cancer drivers, we performed the same comparisons after including known cancer-specific 

drivers from all gene lists, which also produced similar results (Supplementary Figure 2). 

Concurrently including both subsets of UMGs (pre-DepMap filtering and drivers) 

produced similar results across cancer types as well (Supplementary Figure 3). 

 

2.3.5 UMGs as “weak drivers” and potential novel drug targets 

 

The aim behind identifying UMGs is to expand the repertoire of cancer relevant genes in 

line with recent studies whose results defy the neutrality of long tail genes or passenger 

mutations in carcinogenesis [11, 13-15, 17, 20, 22, 23]. In this section, we categorize each 

UMG as a potential “weak driver” that may complement known drivers, a candidate drug 

target whose inhibition could arrest cancer growth, or both, based on positionality in PPI 

networks relative to currently known drivers. 

 

In the propagation framework we use, two of the most important factors that determine a 

node’s score after convergence are the number of high scoring nodes within its 

neighborhood and the connectivity of these neighbors. For a node to rank higher, the best 

case scenario involves having near exclusive connections with multiple neighbors (k ≥ 1 

steps)  whose initial scores are high. We examine these properties of each cancer type’s 

UMGs. We use a composite PPI network that merges signals from STRING and HumanNet 

v2 by including the union of high-quality edges of both networks. Figure 2.5 shows a 
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Figure 2.4. Comparisons with other methods. a UMGs demonstrate considerably 

stronger (CRISPR- and RNAi-measured) impact on survival of cancer cell lines than other 

non-driver genes suggested by HHotNet (in 3 settings), FDRNet, Zhou et al. (in its original 

and edge-normalized settings), nCOP, and MutSig. Higher negative values indicate 

greater negative effect on cell survival after gene knockdown. b UMGs’ strong impact on 

the survival of cancer cell lines is significantly broader than that of genes selected by other 

methods. The median percentage-based score of cancer cell lines negatively impacted by 

UMGs’ knockout is consistently higher with cancer type specificity. 

 

representative network that corresponds to BRCA, with all others included in the 

supplement (Supplementary Figures 4-19). For convenience in visualization, we include 

immediate neighborhoods of each node and the UMG-driver edges only. 
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The first category of UMGs includes genes connected to high scoring known drivers 

(Figure 2.5 left side, olive and orange edges). By virtue of sharing connections with these 

frequently mutated drivers, this subset of UMGs likely includes cancer type-specific 

potential drug targets. The most promising UMG drug target candidates are those 

connected to high degree, high scoring drivers (via olive edges). Building on the same 

reasoning, low scoring drivers might not be the dominating force driving cancer across the 

majority of samples. UMGs connected to these low scoring drivers (Figure 2.5 right side, 

dark blue and purple edges) constitute the second category and are considered potential 

supplementary drivers that enhance the driver function. The third category includes UMGs 

with nearly no observed mutations in the TCGA cohort (i.e. very low initial score). These 

UMGs often form a small subset and are likely to be drug targets or false positives limited 

by the size of the cohort under study. In Figure 2.5 (and Supplementary Figures 4-19), they 

can be distinguished by their lack of node border (e.g. 6 genes in Figure 2.5: NUP37, 

UBE21, POLR2E, IRF7, BIRC5, and EIF4E). The fourth category includes UMGs with 

positive initial score and no connections to driver genes (Figure 2.5, top right grid). These 

genes’ positive scores and connectivity with non-drivers significantly lift their rank during 

propagation and render them potentially overlooked weak drivers. While most UMGs are 

designated either potential drug targets or weak drivers, others are connected to multiple 

types of driver genes and accordingly might be considered for both (e.g. RBBP5 with multi-

colored edges in Figure 2.5). We also point out the well-connectedness of many UMGs, 

which in part allows them to have enough upward mobility to be detected by our approach. 

Yet, UMGs tend to have a considerably smaller number of neighbors compared to very 

well-studied drivers such as TP53, PIK3CA, and BRCA1. 
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Figure 2.5. PPI network analysis of the relationships between UMGs (white nodes) 

and known driver genes (red) in breast invasive carcinoma (BRCA) suggest roles of 

UMGs. Driver genes are split into categories based on initial mutation score and node 

degree: (i) high score, high degree (bottom left), (ii) high score, low degree (top left), (iii) 

low score, low degree (top right) and (iv) low score, high degree (bottom right). UMGs 

connected to driver subsets (i) and (ii) (olive and orange edges) and ones with no mutation 

score (e.g. POLR2E) are likely to be drug targets. UMGs connected to (iii) and (iv) and 

ones without connections to drivers (top right corner, e.g. DSN1) are likely to be “weak 

drivers.” 
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2.3.6. UMGs bridge gaps in literature and suggest novel genes 

 

The study of cancer has long been interdisciplinary, often in the realms of various scientific 

and medical spheres. Disciplinary paradigms evolved over time to produce varying types 

of associations between genes and cancers. To further estimate the functional importance 

of UMGs, we manually cross referenced our UMG lists with publications  and found that 

a large percentage of UMGs have been previously reported to play a role in cancer based 

on functional experiments. This percentage is as high as 85% of UMGs in cancer types like 

BRCA. Surprisingly, the same percentage drops to only 31% when we used CancerMine 

to find literature-based associations. CancerMine is an automated tool that applies text 

mining on existing literature to report drivers, oncogenes, or tumor suppressors across 

cancers. Similar results were obtained across cancer types. 

 

2.3.7. Screening experiments validate 18 new genes in vitro 

 

We performed a series of siRNA knockdown experiments in vitro to validate the DepMap 

results and to confirm the functional importance of selected UMGs. We selected 29 UMGs  

that have not been reported in the literature to be tested in gene knockdown experiments in 

the context of any cancer phenotype (Methods). We used 7 cell lines representing 3 types 

of cancer, namely H460 and HCC1299 from lung, MDAMB231, MDAMB468, BT549, 

and HCC187 from breast, and DU145 from prostate cancer. 

 



 25 

Experimental results further underscore the efficacy of UMG detection to uncover 

functionally important long tail genes. The knockdown of 18 out of these 29 UMGs (62%) 

significantly decreased cell survival in 1 to 5 cell lines exceeding the threshold of 3 

standard deviations with respect to negative control samples (Methods). We note that 

several UMGs demonstrated cell line specificity while others had a more widespread effect 

(affects 5/7 cell lines). These newly cancer-relevant genes  have already known functions 

in regulating immune response (AP2M1, DCTN1, CCT4, DYNC1I2, and DYNC1LI2), 

kinase binding (DLG3), cell cycle progression (SEC13, ANAPC7, CDC26, PSMC3, 

PPP1CC), DNA repair (PPIE, RFC5, POLR2E and POLR2L), cell death (VAPA), and 

mRNA splicing (SF3A2). The list also includes PNPLA2, which encodes for an enzyme 

associated with transacetylase activity. 

 

2.4. Discussion 

 

Biological analysis of UMGs demonstrates strong correlations with studies performed on 

known cancer drivers. It also unlocks a wide range of potential associations between key 

pathways and cancer types and allows for classifying UMGs based on their centrality to 

biological functions, which in turn opens the door for a more informed drug targetability. 

Based on their network positionality, we propose that UMGs include “weak drivers” and 

cancer type-specific drug targets. Manual curation of literature confirmed that many of our 

UMGs were previously implicated in cancer biology in various ways, but we also identified 

previously unstudied potential cancer relevant genes. Yet, results suggest that we have not 

reached a point of data saturation with respect to analyzing long tail genes. The generation 
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of new and larger datasets will likely improve UMG prioritization for rare cancer types 

such as cholangiocarcinoma (CHOL) and chromophobe renal cell carcinoma (KICH). As 

the functional importance and centrality of known and new cancer relevant genes changes, 

network propagation results and UMG rankings will likely follow suit. This was already 

evident in our PPI positionality analysis: with 3 or less known genes identified in KICH 

and READ in Bailey et al. [25] and COSMIC [59], respectively, most of these cancer types’ 

UMGs belong to the third and fourth categories (near-zero mutation scores and no 

connections with drivers, Supplementary Figures 9 and 16). Another example is CHOL, 

with its small cohort that brings most UMGs into the third category (no observed mutations, 

Supplementary Figure 5).  

 

In their current arrangement in the circos plot of Figure 2.2, we also posit that the 

confidence associated with UMGs increases in a roughly clockwise direction, with the 

highest confidence to be associated with cancer type-specific genes. The incorporation of 

additional functional genomics data (e.g. noncoding mutations and methylation data), 

coupled with improvements in the accuracy of reported PPIs, will strengthen our 

knowledge on the role of UMGs and long tail genes more broadly. Finally, we note that 

bridging gaps across disciplines is often essential to biomedical knowledge production. 

The oncogenic validation of potential drug targets in UMGs also remains central to 

changing their status from potential to clinically actionable ones. 
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2.5. Methods 

 

2.5.1. Mutation matrix generation 

 

Variants from the TCGA MC3 somatic mutation dataset (n = 3.6 M) are used to generate 

initial scores for each of the 17 cancer types. A sample-gene matrix for each cancer type 

includes mutation counts restricted to splicing and coding exonic variants. Counts are then 

normalized by gene length, and each resulting non-zero value is finally converted to a 

discrete integer between 1 and 4 based on its position with respect to 50th, 70th and 90th 

percentiles in the cancer type-specific normalized mutation frequency distribution. Gene 

ranks before and after propagation are calculated based on the mean frequency within each 

cohort. 

 

2.5.2. PPI network processing 

 

We adopt the broad definition of protein-protein interactions that encompasses direct 

physical interactions alongside indirect functional ones derived from co-expression, gene 

fusion, text mining, co-essentiality, and pathway membership datasets among others. We 

perform edge filtering on both PPI networks and retain edges with a confidence score equal 

to or higher than 0.7 across all information channels in STRING v11 and the top 10% of 

edges in HumanNet v2. The networks after this filtering have |V| = 17,130 and 11,360 

vertices and |E| =  419,772 and 37,150 undirected edges, respectively. We then generate 

cancer type-specific PPI networks by selecting the largest connected component in each 
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network and filtering out (proteins of) genes unexpressed in the tumor samples of each 

cancer type (i.e. genes with FPKM > 15 in > 20% of tumor samples are retained). 

 

2.5.3. Propagation score calculation 

 

To calculate propagation scores, we use an approach that imitates random walk with restart 

[56]. Briefly, let the PPI network be represented as G = (V, E), where V is the set of gene 

products and E is the set of edges. Further, let W be the weighted adjacency matrix of G. 

We choose to normalize W such that W’ =  W . D-1, where D is the diagonal matrix of 

column sums in W: D = diag( ∑ 𝑊𝑖𝑗 
|𝐺|
𝑖=1 ), 1 ≤  j ≤ |G|. 

 

Let M be a |G| × N matrix with somatic mutation profiles of N ≥  1 samples over genes 

from which G’s nodes originate before transcription. Sij is a positive value for each gi  ∈ G 

with mutations in sample sj ∈ S, and 0 otherwise. Propagation is then executed within each 

sample until convergence according to the following function: 

 

𝑆(𝑡+1) =   𝛼 𝑊’𝑆(𝑡)  +  (1 –  𝛼) 𝑆(0) 

 

where S(0) = M and α ∈ [0.5, 1]. Convergence of this propagation technique is 

guaranteed. We summarize the proof noted in [60] below for the sake of completeness. 

 

The function above can be written at convergence as S =  VS + (1 – α) S(0), where V = α 

W’, which can also be rearranged into S =  (1 – α) (I - V)-1 S(0). For convergence to a unique, 

non-negative solution to be guaranteed, (I - V)-1 > 0 must hold. 

(1.1) 
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Lemma 1. Largest eigenvalue of V < 1. W’ is a column-stochastic matrix. Per the Perron-

Frobenius theorem, its eigenvalues ∈ [-1, +1]. Since α < 1, the largest eigenvalue (i.e. 

spectral radius) of V < α < 1. 

 

Lemma 2. (I - V)-1  exists, and is non-negative. (I – V) is an M-matrix since its in the form 

sI – B, with s = 1 > 0, s >= largest eigenvalue of B (i.e. V) by Lemma 1, and V > 0. An M-

matrix is inverse positive, hence (I - V)-1 > 0. 

 

Convergence can also be achieved iteratively [56, 61], which we apply at a maximum of 

350 iterations and is more commonly deployed with large PPI matrices for practical 

considerations. The value of α we pick is 0.8. Other values in the [0.6, 0.8] range have little 

effect on results. 

 

2.5.4. Upward mobility gene identification 

 

The mobility status of a gene is determined by its rank before and after propagation. A 

gene’s rank is calculated according to its arithmetic average score across samples. For each 

gene gi  ∈ G, 

 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝐼𝑆𝑖 =  
1

𝑁
 ∑ 𝑆𝑖𝑗

(0)𝑁
𝑗=1   and 

 

 

(1.2) 
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𝐹𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝐹𝑆𝑖 =
1

𝑁
 ∑ 𝑆𝑖𝑗

(∞)

𝑁

𝑗=1

 

 

 

Let RIS and RFS be the lists of gene ranks in IS and FS, respectively, i.e. RISi = rank of gi 

in sorted IS and RFSi = rank in sorted FS. The mobility status of gi, MSi, is then calculated 

as the difference between RISi  and RFSi as: 

 

𝑀𝑆𝑖 = 𝑅𝐼𝑆𝑖 − 𝑅𝐹𝑆𝑖 

 

Since higher scores lead to a higher rank, and a higher rank has a lower value (i.e. rank 1, 

2, … |G|), genes whose ranks improve because of propagation have positive MS values, 

and ones with lowered ranks (downward mobility) negative ones.  

 

We then define upward mobility status according to two parameters: mobility 𝛽 and rank 

threshold T. 

 

  𝑈𝑀𝐺 =  {𝑔𝑖 | 𝑀𝑆𝑖  ≥  𝛽 . |𝐺|  ∧  𝑅𝐹𝑆𝑖  ≤  𝑇  ∀ 𝑖 ∈ 1, 2, … |𝐺|} 

 

 

Mobility 𝛽 value determines the minimum upward jump size a gene needs to make to be 

considered for UMG status. For instance, a 𝛽 value of 0.1 in a PPI network with 10,000 

nodes requires a gene’s position to improve by a minimum of 1,000 ranks. We choose 

stringent values of  𝛽 dictated by TCGA cohort size and the variance of each cancer type’s 

(1.3) 

(1.4) 

(1.5) 
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mutational. Cancer types with a high number of samples and/or a high variance of gene 

mutation frequency receive a value of 0.25 (BRCA, COAD, HNSC, LUAD, LUSC, PRAD, 

STAD, UCEC), others with moderate variance a value of 0.2 (CESC, KIRC, KIRP, LIHC) 

and 0.15 (ESCA, READ), and low variance and/or cohort size cancer types a value of 0.05 

(CHOL, KICH, THCA). These values ensure that to be considered a UMG, a gene has to 

jump hundreds to thousands of ranks during propagation depending on the PPI network 

and cancer type under study. Rank threshold T specifies the minimum rank a gene needs 

to achieve after propagation to be considered a UMG. We choose T = 1,000 to strictly focus 

on the top 10-16% of genes (i.e. approximately top 10% in STRING and top 16% in 

HumanNet v2), a threshold that has proved to be effective in other studies [38]. 

 

We further apply two optional selection criteria on the final UMG lists based on (i) each 

gene’s DepMap scores in CRISPR and RNAi experiments and (ii) propagation within 

multiple PPIs. Per (i), UMG becomes: 

 

𝑈𝑀𝐺 =  {𝑔𝑖 | 𝑀𝑆𝑖  ≥  𝛽 . |𝐺| ∧  𝑅𝐹𝑆𝑖  ≤  𝑇 ∧ 𝐷𝑀𝑖 ≥ 𝑝, 𝑖 ∈ 1, 2, … |𝐺|}, 

 

where p is the proportion of cancer type-specific cell lines in which a gene’s DepMap score 

is negative (i.e. its knockout has negative impact on cancer cell survival), and DMi is the 

maximum value across CRISPR and RNAi experiments. We choose p = 0.5 (50%), which 

ends up eliminating 2-10 out of 30-91 genes per cancer type. Per (ii), integration of lists 

across K PPI networks yields the intersection of lists. In this chapter, to increase confidence 

(1.6) 
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is selected genes, we integrate lists over cancer type-specific STRING and HumanNet v2 

networks. Formally, 

 

𝑈𝑀𝐺𝐹𝑖𝑛𝑎𝑙 = 𝑈𝑀𝐺𝐺1
∩  𝑈𝑀𝐺𝐺2

∩ … 𝑈𝑀𝐺𝐺𝐾
 

 

 

2.5.5. Statistical validation of rankings 

 

To assess the validity of ranking after propagation, we tested if known COSMIC genes are 

ranked significantly higher than other genes using the one-sided Mann Whitney U 

statistical test (also known as one-sided Wilcoxon Rank Sum test). Results show a strong 

enrichment of COSMIC genes towards highly ranked genes for all PPI network-cancer 

type combinations (p < 10-5). 

 

2.5.6. Driver and COSMIC genes 

 

Cancer type-specific driver genes were obtained from Bailey et al.’s except for COAD and 

READ which were combined into a single group in that study. For these two cancer types, 

we designated tissue-specific COSMIC v90 genes as the driver genes.  

 

2.5.7. UMG vs non-UMG comparisons 

 

In the first set of comparisons, Mann Whitney U one-sided test is used to compare the 

distribution of a percentage-based score of negatively impacted cell lines by UMGs vs non-

(1.7) 
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UMGs in each cancer type. Each gene’s percentage-based score value is equal to the 

percentage of its negative DepMap scores among k cancer type-specific cell lines and the 

average of these values (to account for distribution of DepMap scores across cell lines). To 

calculate a more stringent score and reduce false positives, we also assume the presence of 

at least one cancer cell line with a non-negative DepMap score, which especially accounts 

for cancer types with a small number of cell lines in the DepMap database. Hence, the score 

is the sum of each gene’s k + 1 values mentioned above divided by k + 2. Alternative 

hypothesis for each of the Mann Whitney U tests is 𝐻1 =  𝜓(𝑈𝑀𝐺) is shifted to the right 

of 𝜓(𝑈𝑀𝐺̅̅ ̅̅ ̅̅ ̅), where 𝜓(𝑋) is the percentage-based distribution of negatively impacted cell 

lines over genes in set X). Cancer type-specific cell lines are selected based on annotations 

provided in the DepMap dataset. For cancer types not represented among the cell lines in 

DepMap, we used values across all 750 (CRISPR knockout data) and 712 (RNAi) cell 

lines. A negative DepMap dependency score indicates decreased cell survival after gene 

knockout in a particular cell line. For RNAi experiments, we use data with enhanced batch 

and off-target processing as described in [54]. 

 

2.5.8. UMGs vs gene candidates identified by other network methods 

 

Hierarchical HotNet (HHotNet) generates statistically significant results (p < 0.05) in only 

5 of the 17 cancer types after integrating its results for both PPI networks (HHotNet-

consensus): ESCA, KIRC, LIHC, LUAD and LUSC. As a result, we include HHotNet 

results from two other settings described below.  In 13 cancer types, HHotNet generates 

statistically significant results for one of the two PPI networks, and in two others (PRAD 
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and READ) significant result with a relaxed threshold (0.05 < p < 0.1). We include 

HHotNet results from both the largest subnetwork (HHotNet-LC) and all subnetworks with 

more than one node (HHotNet-all) in comparisons. Namely, for 15 cancer types, we choose 

results from STRING in BRCA, ESCA, HNSC, KICH, KIRC, LIHC, LUAD, LUSC, 

STAD and THCA and from HumanNet v2 in CESC, COAD, PRAD, READ, and UCEC. 

In CHOL and KIRP, HHotNet results were not statistically significant for both PPI 

networks, so we exclude results for this method. In all runs, we execute HHotNet in default 

settings with 1000 permutations using the second controlled randomization approach 

suggested in [40]. For FDRNet, we run the method to detect subnetworks for all seed genes 

and in default settings. We convert MutSig2CV [58] p-values across TCGA cohorts to local 

FDR values using the scripts provided by FDRNet. We use FDRNet results for 16 cancer 

types over the STRING network as this method was not able to detect any subnetwork over 

HumanNet v2 for almost all seed genes (664/673, 98%). No FDRNet results could be 

produced for CHOL. In nCOP, we use lists of rarely mutated genes reported in [57] (Figure 

2.4) on the TCGA somatic mutational dataset in 15 of the 17 cancer types studied in our 

chapter (all except CHOL and ESCA). For Zhou et al.’s propagation method, we select the 

top k genes identified post-propagation, where k is the equivalent number of UMGs for 

each cancer type across networks. In its edge normalized setting, we divide each gene’s 

post-propagation score by the same score when propagation α = 1 (i.e. ignoring initial 

scores) before selecting top genes. For MutSig, we select all genes with statistically 

significant results (FDR < 0.1) across TCGA cohorts. As these methods do not primarily 

focus on long tail genes, we remove driver genes from these methods’ gene lists to ensure 

balanced comparisons with UMGs. It is worth noting however that including driver genes 
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or the small percentage of UMGs filtered in the last step of the pipeline did not have a 

considerable impact on results (Supplementary Figures 1-3). 

 

2.5.9. Enrichment analysis 

 

Enrichment analysis to identify pathways, GO molecular functions, and GO biological 

processes is performed on g:Profiler [62]. Enrichment results with Benjamini p-adjusted < 

0.05 are selected for analysis. Network visualization is executed using EnrichmentMap 

v3.0 on Cytoscape v3.8.2 [63], with a comprehensive subset of results related to cancer 

shown in Figure 2.3. Frequent terms highlighted in red in Figure 2.3b have ≥ 5 intra-cluster 

edges and those in Figure 2.3c ≥ 10 edges. Frequent UMGs in Table 1.1 are identified 

based on their frequent presence in edges between a cluster’s nodes according (i.e. presence 

in ≥ 20 edges in Figure 2.3b clusters and ≥ 30 in those of Figure 2.3c). 

 

2.5.10. PPI analysis 

 

Composite PPI is the union of high-quality edges in STRING v11 and HumanNet v2. Initial 

score of each gene is the one based on somatic mutations across a cohort as described 

earlier. Drivers are split according to initial score and degree with thresholds of 150 and 

0.075, respectively. Initial scores of < 0.0015 are zeroed to attain lower FPR. Visualization 

and degree calculation are executed using Cytoscape v3.8.2. 
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2.5.11. Manual Literature Curation of Functionally Validated UMGs 

 

We manually cross-referenced each UMG with PubMed publications to detect which ones 

have been earlier reported to play a role in cancer based on functional experiments. We 

based results on an extensive search using the gene name AND “cancer” as keywords in 

PubMed. If any gene was the target of a previous functional assay, i.e. was deliberately 

overexpressed, suppressed, or mutated, and resulted an in vitro change in the proliferation 

or survival of cancer cell lines, it was annotated as functionally validated. Otherwise, the 

genes is considered not validated. 

 

2.5.12. Experiment validation: siRNA screening and annotation 

 

Cell lines from breast (MDAMB231, MDAMB468, BT549, HCC187), lung (H460, 

HCC1299), and prostate cancers (DU145) were cultured in RPMI medium supplemented 

with 10% HI-FBS and penicillin/streptomycin (1:100). The siRNA transfection 

experiments were performed at the Yale Center for Molecular Discovery. Reverse 

transfections were performed using 384-well tissue-culture treated plates (Corning 

CLS3764) pre-plated with siRNAs to achieve 20 nM final assay concentration. RNAiMax 

transfection reagent (Invitrogen) was added to plates according to the manufacturer’s 

recommendations and incubated with siRNAs for 20 minutes. Cells were then seeded at 

plating densities optimized during assay development (MDAMB468, HCC1187, and 

BT549 seeded at 4000 cells per well; MDAMB231 and H460 seeded at 1000 cells per well; 

DU145 and HCC1299 seeded at 500 cells per well) and incubated at 37C. After 72 hours, 
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CellTiter-Glo (Promega) was used to monitor viability. Each screening plate contained 16 

replicates of negative siRNA controls (either siGENOME Smart Pool non-targeting control 

#1, #2, or #4, Dharmacon) and positive siRNAs controls (siGENOME Smart Pool Human 

PLK1 or KIF11, Dharmacon). Signal-to-background (S/B), coefficient of variation (CV), 

and Z prime factor (Z’) were calculated for each screening plate using mean and standard 

deviation values of the positive and negative controls to monitor assay performance. All 

cell lines were obtained from ATCC and have been thoroughly tested and authenticated by 

the vendor. The cell lines will be routinely monitored for correct morphology and growth 

characteristics to confirm cell line identity. For each cell line, test siRNA data were 

normalized relative to the mean of negative control samples (set as 0% effect) and the mean 

of positive control samples (set as 100% effect). Three standard deviations of the negative 

control samples were used as a cutoff to define screen actives.  

 

2.5.13. Availability of data and materials 

 

UMG detection code is available at https://github.com/gersteinlab/UMG [64] and 

https://doi.org/10.5281/zenodo.5500467 [65]. Results in the chapter are in whole or part 

based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. 

MC3 high-quality somatic mutation dataset is obtained from [66]. STRING v11 [67] and 

HumanNet v2 [68] functional network (FN) are respectively downloaded from 

https://string-db.org/ and https://www.inetbio.org/humannet. Gene expression data 

corrected for batch effect and study-specific bias are downloaded from RNAseqDB [69] at 

https://github.com/mskcc/RNAseqDB. Variant annotations are based on RefSeq hg19 

https://github.com/gersteinlab/UMG
https://doi.org/10.5281/zenodo.5500467
https://www.cancer.gov/tcga
https://github.com/mskcc/RNAseqDB
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provided via ANNOVAR 2018b [70], and gene length values are provided via the bioMart 

Bioconductor package [71]. Genetic dependency data from the Cancer Dependency Map 

[43] (for both CRISPR and RNAi experiments) are downloaded from 

https://depmap.org/portal/download/, MutSig2CV [58] data across cancer types from 

http://gdac.broadinstitute.org, COSMIC v90 census gene list from 

https://cancer.sanger.ac.uk/cosmic, and CancerMine v24 [72] gene lists from 

http://bionlp.bcgsc.ca/cancermine. 

 

2.6. Conclusion 

 

In this chapter, we describe a new network propagation-based approach that is particularly 

well suited to estimate the functional importance of rarely mutated long tail genes in cancer. 

The method is computationally efficient and is based on change in ranking before versus 

after network propagation. We show that upward mobility genes that attain significant 

improvements in mutation score-based ranking after propagating through PPI networks are 

enriched in functionally relevant genes. By virtue of high post-propagation ranks, cancer-

related biological function, and significantly strong impact on cancer cell line survival, our 

approach prioritizes long tail genes across 17 cancer types. To reduce false positivity rate, 

we integrate results over two major networks, filter out nodes whose genes are unexpressed 

in each cancer type’s tumor samples, and statistically validate rankings and cell survival 

impact. Computational and in vitro analyses further highlight the importance of reported 

genes and open the door for an expanded spectrum of gene cancer relevance. 

 

  

https://cancer.sanger.ac.uk/cosmic
http://bionlp.bcgsc.ca/cancermine
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Chapter 3 

Network distance-based cancer relevance of human genes 

 

 

 

This chapter is based on the work described in Qing et al. [73]. 

 

3.1. Abstract 

 

The evolving narrative underlying the genomic basis of carcinogenesis engenders the need 

for new approaches to measuring the cancer relevance of human genes. Transcending the 

driver-passenger dichotomy, we analyze a compendium of human genes and their potential 

contribution to cancer development based on their positionality in functional biological 

networks. We categorize genes into 1-, 2-, 3-, and >3-steps removed from the nearest core 

cancer gene (CCG) in the STRING network and demonstrate that the cancer-related 

functional contribution of the genes in these different neighborhood categories decreases 

as their distance from the CCGs increases. Genes closer to CCGs seem to have higher 

levels of (a) impact on cancer cell survival in vitro, (b) negative selection pressure in 

healthy populations, and (c) somatic mutational burden. These results suggest that the 

cancer relevance of human genes transcends the driver-passenger binary and might better 

be portrayed as a wider spectrum of gradient effects. 
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3.2. Background 

 

The identification of genes whose altered function, or lack thereof, contribute to 

carcinogenesis has been a central question in cancer research. Since the 1970’s, researchers 

deployed a variety of experimental media—i.e. in vivo, in vitro, and in silico—to prioritize 

hundreds of genes with respect to their contribution to cancer [25, 59, 74, 75], often 

describing them as “cancer drivers” to imply therapeutic potential. The majority of somatic 

mutations, which appear random and are not recurrent in a cancer type, had until recently 

been described as “passengers” to suggest that they confer no selective advantage on cancer 

cells. Yet, it has also become increasingly clear that deleterious mutations in driver genes 

alone cannot lead to initiation and progression of all tumors. Large scale efforts to sequence 

thousands of whole exomes and whole genomes revealed tumors without previously known 

driver mutations and identified functionally significant genomic alterations associated with 

the disease—point mutations, indels, and structural variants [25, 75-77]. Relatedly, recent 

studies suggested different cancer-related roles of “passengers” [11, 16, 17] or elaborated 

on the potential role of germline genomic variation underlying predisposition to the disease 

[78-80]. Altogether, these advances highlighted that the spectrum of cancer-relevant genes 

is broader than our current models suggest. 

 

From a systems biology perspective, gene products, in their “healthy” state, interact to 

maintain homeostasis. Deleterious alterations to one or more of the products’ functions can 

be assumed to have cascading effects on their immediate or surrounding neighbors. The  
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availability of comprehensive lists of interactions, such as the ones represented as a 

functional network in the STRING database that we use in this chapter, allow for assessing 

the potential significance of genes based on their proximity to a starting subset known to 

be associated with a phenotype of interest, herein cancer. We hypothesize that proteins 

physically associated with, or known to directly interact with, an experimentally or 

clinically validated core cancer gene (CCG) can also have an impact on cancer biology and 

denote these genes as "one step removed" from a CCG (Figure 3.1). By extension, we also 

assume that genes that directly interact with the “one-step removed genes” might also  

 

Figure 3.1. Study schema. Overview of our hypothesis that genes closer to core cancer 

genes in STRING network are more functional important in cancer development. 
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influence cancer biology, although to a lesser extent. Based on this model, one could 

categorize human genes into one-, two-, three-, and > three-steps removed from the nearest 

CCG in the STRING network. We perform a series of analyses based on this paradigm to 

assess the cancer relevance of genes (herein used interchangeably with gene products) in 

each of these four categories to somatic mutational burden, effect size, germline selection 

pressure, and in vitro cancer cell survival. 

 

3.3. Results 

 

3.3.1. Gene connectivity descreases with distance to CCGs 

 

 

We select the 486 validated cancer genes of the Memorial Sloan Kettering-Integrated 

Mutation Profiling of Actionable Cancer Targets list as the core genes to resemble the 

starting point of our analyses. Next, we measure the shortest distance between each of the 

16,904 in the high-quality (i.e. edge score >700) STRING functional network and any of 

the CCGs. Each gene is then assigned one of four categories based on the resulting distance: 

n=1 for immediate CCG neighbors, n = 2 for 2-step removed ones, and so forth for n = 3 

and n > 3. The resulting distribution indicates that 6791, 7742, 1587, and 362 genes are 1-

, 2-, 3-, and >3-steps removed from CCGs (Figure 3.2a, 3.2b). These results demonstrate 

that the majority of genes are in the immediate (i.e. 1-step) or close (i.e. 2-steps) 

neighborhoods of CCGs, and that the latter set unsurprisingly plays a central role in PPI 

networks. The cancer relevance of the association with these genes is further supported 

when considering citations in the cancer literature and connectivity (i.e. degree or number 

of edges) in the functional network. Based on citations extracted by CancerMine [72], an 
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automated text mining approach, we demonstrate that 18.2%, 6.1%, 3.8%, and 2.2% of the 

1-step, 2-step, 3-step, and >3-step genes are associated with cancer in the literature, 

respectively (Figure 3.2c). Similarly, with connectivity values range from 1 to 1,435, CGCs 

show higher connectivity than other genes, and connectivity values decrease with distance 

from this gene set (Figure 3.2d). 

 

 

 

Figure 3.2. Connectedness of cancer genes. a STRING protein interaction network. Each 

dot represents a gene, colors indicate distance from core cancer genes. The grey lines show 

between-gene connections. b Number of human genes in 4 cancer gene neighborhood 

categories. c Proportion of genes implicated in cancer biology in the literature (reported 

or not in connection with cancer) by neighborhood categories. d Distribution of log2-

transformed connectivity score of 16,904 human genes in STRING. e The distribution of 

log2 transformed connectivity score for the cancer genes and 4 neighborhood categories. 
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One-sided Mann–Whitney U test (values of closer neighborhood genes are greater than 

that of all the genes in the remoter steps) p-values are symbolized by ***, **, * 

corresponding to p < 0.0001, 0.001, and 0.01, respectively. Red bars correspond to the 

median of the distributions. CCGs: core cancer genes. 

 

 

 3.3.2. Impact on cancer cell viability decreases with distance to CCGs 

 

 

Another aspect of a gene’s functional significance is its impact on cell viability. To assess 

the importance of the four CCG-based gene categories, we leverage the Cancer 

Dependency Map (DepMap) described in the previous chapter. In summary, DepMap 

reports the results of genome-wide pooled loss-of-function (CRISPR and short hairpin (sh) 

RNA interference) screening experiments to provide estimates of in vitro gene impact on 

the viability, i.e. a dependency score, of cancer cell lines [43]. DepMap scores are reported 

for 712 cell lines in CRISPR and 563 lines in shRNA (i.e. RNAi) experiments. A 

dependency score of 0 corresponds to no impact on cell survival, and a negative score’s 

magnitude corresponds to the level of impaired cell viability after gene knockdown. We 

calculated the average dependency scores for each of the four gene categories based on 

distance to CCGs. For both CRISPR and RNAi experiments, a significant pattern emerged 

further highlighting the gradient of gene importance relative to distance from CCGs: (i) 

CCGs and step-1-removed genes had the most negative dependency scores, i.e. stronger 

impact on cell viability, (ii) step-2 and step-3- removed genes had scores closer to 0, and 

(iii) >3-step-removed genes had an average of 0 indicating no impact. This pattern suggests 

that a large number of genes, rather than a selected subset of “core” or driver cancer genes, 

affect cancer cell survival, and that this effect is proportional to distance from CCGs in the 
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functional network (Kendall’s τ z-statistic = 15.13 in the CRISPR dataset (Figure 3.3a), 

19.33 in RNAi (Figure 3.3b), p < 10-5). 

  

 

Figure 3.3. Cell viability dependence scores for cancer genes and genes in different 

cancer gene neighborhood categories. a Distribution of DepMap CRISPR-based 

dependency scores. b Distribution of DepMap RNAi-based dependency scores. Y-axes are 

dependency scores—the lower the value, the more important the gene is for cell viability. 

One-sided Mann–Whitney U test (values of closer neighborhood genes are greater than 

that of all the genes in the remoter steps) p values are symbolized by ***, **, and *, 

corresponding to p < 0.0001, p < 0.001, and p < 0.01, respectively, and n.s. abbreviating 

not significant. Red bars correspond to the median of the distributions. CCGs: core cancer 

genes. 
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3.3.3. Positive selection of somatic mutations correlates with distance to CCGs 

 

 

While results based on the DepMap sheds the light on an important aspect of gene cancer 

relevance (i.e. loss of function), gain of function, altered protein substrate affinity and 

altered expression associated with somatic mutations can also be indicative of the 

significance of distance to CCGs in a functional network. For this purpose, we compare 

the average prevalence of somatic mutations in CCGs and the four distance-based 

categories across 32 cancer types in The Cancer Genome Atlas (TCGA). In 21 0f the 32 

types, CCGs expectedly exhibit the highest average prevalence as they in part were 

considered “core” cancer genes because of the functional significance of their associated 

somatic mutational burden. Prevalence gradually decreases, however, with the increase of 

the distance from CCGs in the functional network further suggesting the significance of 

this measure (Kendall’s τ z-statistic < -2.96, FDR < 0.018, Figure 3.4a). Interestingly, 

across all 32 cancers, the trends of somatic mutation prevalence across CCGs and 

neighborhood categories were negatively correlated with cancer incidence rate, tumor 

mutation burden, and number of somatic mutation affected genes (Figure 3.5), where 

results suggest that in common cancers, a larger number of genes may contribution to 

transformation than in rare tumors. Further, we demonstrate that average cancer effect size 

of each neighborhood category tend to decrease with distance from CCGs (Figure 3.4b). 

An effect size in a neighborhood category is an aggregate, herein average, scaled selection 

coefficient of the advantage that somatic mutations in a category’s genes confer on the 

cancer cell lineage [81]. This in turn suggests that higher proximity to CCGs is associated 



 47 

with an increased positive selection of somatic mutations that might bolster tumor 

progression or increase cell fitness. 

 

Figure 3.4. Somatic mutation frequencies of genes and cancer effect sizes of variants 

in genes across CCGs and 4 neighborhood categories in 21 well-sampled TCGA 

cancer types. a Somatic mutation frequencies of many TCGA types show decreasing 
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somatic mutation frequency for genes with increasing distance from CCGs (FDR < 0.05). 

b Average cancer gene effect size (scaled selection coefficients) of variants in all genes of 

4 neighborhood categories decrease with increasing distance from CCGs. Red bars 

correspond to the medians of the distributions. One-sided Mann–Whitney U test (values of 

closer neighborhood genes are greater than that of all the genes in the remoter steps) P 

values are symbolized by ***, **, and *, corresponding to p < 0.0001, p < 0.001, and p < 

0.01, respectively, and n.s. abbreviating not significant. CCGs: core cancer genes. 

 

 

Figure 3.5. Associations between somatic mutation frequency trends and cancer 

incidence, tumor mutation burden (TMB), and number of mutated genes across all 

TCGA cancer types. a Z-statistic τ versus cancer incidence rate. b Z-statistic τ versus 

TMB.  c Z-statistic τ versus number of affected genes by somatic mutation. Each dot 

represents a cancer type and the colors indicate if it showed a significant trend for 

decreasing average somatic mutation frequency across CCG neighborhood categories 

with increasing distance from core cancer genes. The Y-axes shows average values within 

cancer types. The r value represents Pearson correlation coefficient. P-values are 

estimated based on the Pearson product-moment correlation coefficient. 
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3.3.4. Negative selection of germline variants is associated with distance to CCGs 

 

An additional measure of functional importance can be drawn from an evolutionary 

perspective. Namely, this measure is germline negative selection. Aberrations in genes that 

play roles in essential processes such as cell division, cell differentiation, cellular 

metabolism, and cell death can contribute to a wide range of diseases including cancer. 

Given the central roles these genes play in cell—and an individual’s—survival, there has 

been a strong selection pressure to preserve their sequence and, consequently, function. 

Indeed, deleterious germline variants in these genes decrease fitness and tend to be rare in 

human populations [82]. Relatedly, the greater the functional importance, the stronger this 

negative selection pressure [83], and population-based whole-exome sequencing studies 

indicate strong negative selection pressure on deleterious germline variants in many 

cancer-related genes [84].  

 

To investigate the possible association between the negative selection pressure in the 

germline and distance from CCGs in the functional network, we obtained coefficients of 

negative selection of heterozygous rare protein-truncating variants (Sh) for 15,998 human 

genes from Cassa et al. [83] and loss-of-function intolerance (pLI) scores for 18,225 genes 

from Lek et al. [85]. The higher the Sh and pLI score, the greater the selection pressure 

against protein-truncating germline variants of a given gene. We then observed a pattern 

that confidently supports our hypothesis on proximity-based cancer relevance of genes: the 

average Sh and pLI scores of each neighborhood category decreases significantly as 
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distance from CCGs grows (Kendall’s τ z-statistic = -27.7 Sh and -29.4 for pLI, p < 10-5; 

Figure 3.6a and 3.6b, respectively).  

 

 

 

Figure 3.6. Germline selection pressure on genes in different cancer-gene 

neighborhood categories. a Selection pressure against protein-truncating variants (PTV): 

the lower the Sh score, the more tolerant the gene is for a germline PTV. b Loss-of-function 

variant intolerance (pLI): the lower the pLI score, the more tolerant the genes is for 

germline loss of function variants. One-sided Mann–Whitney U test (values of closer 

neighborhood genes are greater than that of all the genes in the remoter steps) p values 

are symbolized by ***, **, and * corresponding to p < 0.0001, p < 0.001, and p < 0.01, 

respectively, and n.s. abbreviating not significant. Red bars correspond to the median of 

the distributions. CCGs: core cancer genes. 
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3.4. Discussion  

 

An increasing body of evidence suggests that a relatively small subset of genes, often 

described as “drivers,” are not enough to explain the development and progression of all 

tumors [20, 86]. Instead, dysfunctions in a wide array of genes seem to be required for the 

transformation of a normal cell to a cancer cell, at least in a subset of samples. We 

comprehensively investigate a spectrum of cancer relevance of most human genes by 

aggregating a compendium of biomedical datasets ranging from multi-channel functional 

networks to mutational and evolutionary signals. We hypothesize that the level of 

proximity to a set of core cancer genes [87] is a reliable, continuous proxy of cancer 

relevance. To maximize sample size and in turn increase statistical power, we divide genes 

into four categories: 1-, 2-, 3- and >3-steps away from a core gene in the STRING 

functional network. Building on multiple experiments, we demonstrate that the aggregate 

relevance of each category continuously increases with proximity to core genes. Namely, 

the average somatic mutational burden, negative selection in the germline, impact of cancer 

cell survival in vitro, and literature prevalence of gene categories vary in association with 

distance to core cancer genes, confirming our hypothesis. Yet, discordant within-category 

results can emerge on the gene level. The functional importance of most genes, even in the 

malignant transformation process, is likely tissue specific [88]. However, there is no agreed 

upon list of tissue-specific cancer genes. Protein function may be affected through multiple 

mechanisms other than somatic mutations (transcriptional regulation, posttranslational 

modifications, protein degradation, binding partners, etc.). The importance of any mutation 

and protein dysfunction is also molecular context dependent, which in a cancer cell with 
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unstable genome opens opportunities for a large number of potential systems level 

combinatorial abnormalities [88, 89]. 

 

3.5. Conclusion 

 

Our results supplement the emerging trend of transcending the driver-passenger dichotomy 

of classifying genes in human cancers. We suggest a discretized spectrum of cancer 

relevance based on aggregate subsets of genes. The ongoing growth of data generation 

expected to yield hundreds of thousands of whole genomes will likely help to enhance the 

resolution of this relevance spectrum and identify the potential role each gene might be 

playing in malignant transformation. 

 

3.6. Methods 

 

3.6.1. Data Sources and Preparation 

 

Protein-protein interactions: STRING (v11.0) is a comprehensive database of protein-

protein associations using data from genomic context, high-throughput experiments, 

conserved co-expression and experimental results as well as text mining of the scientific 

literature [67]. The data is available through https://string-db.org/. 
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Cancer Dependency Map (DepMap) data:. DepMap project provides a gene dependency 

score for the majority of known human genes that represents the effect of gene silencing 

on cancer cell viability [43]. The data are available at https://depmap.org/. 

 

Somatic mutation data: Somatic mutations of 32 cancer types of 10,208 cancers in TCGA 

were obtained from the Multi-Center Mutation Calling in Multiple Cancers (MC3) dataset 

[66] that is available at https://gdc.cancer.gov/about-data/publications/mc3-2017. 

 

Sh and pLI scores: The Sh coefficients were derived from analyses of exome sequence data 

from 60,706 individuals and measure genome-wide estimates of selection against germline 

heterozygous protein-truncating variants of a gene using Bayesian estimates [83]. The 

coefficients are available at http://genetics.bwh.harvard.edu/genescores/. The probability 

of being loss-of-function (LoF) intolerant (pLI) in the germline score was derived from 

whole exome sequence data of 60,706 individuals generated as part of the Exome-

Aggregation Consortium [85] and is available at https://gnomad.broadinstitute.org/. 

 

CancerMine: A text-mining based, regularly updated database of cancer driver genes, 

oncogenes and tumor suppressors in different types of cancer [72]. Data are available at 

http://bionlp.bcgsc.ca/cancermine. 

 

3.6.2. Defining cancer gene neighbors 

 

https://depmap.org/
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The shortest distance from one protein to the other in the STRING (v11.0) network was 

calculated by Dijkstra’s algorithm [90] using the NetworkX v1.11 Python package 

https://networkx.github.io/documentation/networkx-1.11/. We visualized the connection 

of CCGs to neighboring genes using Cytoscape (v3.7.2) with default settings [63]. To plot 

the results, we manually set the size of gene nodes to 50, 40, 30, 20 and 10 for CCGs, 1-

step, 2-step, 3-steps and >3-step removed genes, respectively. 

 

3.6.3. Somatic mutation analysis 

 

For somatic mutation frequency, we only considered the 2,257,845 nonsynonymous 

mutations that comprised missense, non-sense, frameshifting, in-frame shifting, or splice-

site altering single-nucleotide changes or indels in 32 cancer types. Somatic mutation 

frequency at gene level was defined as the percent of cases that carried at least one 

nonsynonymous mutation of the gene within a cancer type. Gene level mutation 

frequencies were averaged over each gene neighborhood class. Tumor mutation burden 

(TMB) was calculated for each cancer as the number of somatic mutations, including both 

nonsynonymous and synonymous, per sequenced megabase. For each cancer type, we 

averaged TMB across all patients. The total number of genes which were affected by at 

least one nonsynonymous mutation was also calculated for each cancer and was averaged 

across all the patients with a given cancer type. 

 

Cancer effect size is the scaled selection coefficient of the mutation, conveying the degree 

to which the mutation enhances the survival or reproduction of the mutant lineage. Cancer 
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effect sizes were calculated with cancereffectsizeR 0.1.1.9006 

(https://github.com/Townsend-Lab-Yale/cancereffectsizeR) as in Cannataro et al. [81] 

except that the likelihood of the scaled selection coefficient was maximized based on 

tumor-specific mutation rates, and only COSMIC v3 signatures consistent with 

Alexandrov et al. [91] were used for each tumor type. We calculated average cancer effect 

size for all somatic mutations in TCGA cancer types effecting all genes in a given 

neighborhood category. 

 

3.6.4. Statistical analysis 

 

The connectivity score, dependency score, somatic mutation frequency, cancer effect size, 

Sh and pLI score were compared between different groups of genes (e.g. CCG, 1 step, 2 

step, etc..) using the one-sided Mann–Whitney U test with the “base” package of the R-

project (www.R-project.org/). 

 

We estimated the statistical significance of the trend of the average dependency score, 

somatic mutation frequency, Sh and pLI score across the different gene groups (e.g. CCG, 

1-step, 2-step, etc.) using Jonckheere Terpstra (JT) trend analysis [92]. P-values were 

calculated using the “JonckheereTerpstraTest” function of “DescTools” packages (31) in 

the R-project. The number of permutations for the reference distribution was set as 

100,000. Z statistic of Kendall's tau (τ) coefficient was estimated to show the increasing 

(positive value) burden, and the number of affected genes. Pearson correlation coefficient 

and p-values were also calculated using the “cor.test” function of the “stats” R package.  

http://www.r-project.org/
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We separated the 32 TCGA cancer types into two groups: (i) “withTrend” indicating 

statistically significant decreasing trend of somatic mutation frequency, and (ii) “noTrend” 

corresponding to cancers with no decreasing trend. We assigned a cancer type to the 

“withTrend” group if the Jonckheere Terpstra FDR was less than 0.05, otherwise, a cancer 

type was assigned to the “noTrend” group.  

 

We used Kendall's τ to quantify association between cancer incidence rate, tumor mutation 

burden, and the number of affected genes. Pearson correlation coefficient and P-value were 

also calculated using the “cor.test” function of the “stats” package. 

  



 57 

 

Chapter 4 

Weight-based neural network interpretability using activation tuning  

and personalized products 

 

This chapter is based on the work described in Mohsen et al. [93]. 

 

4.1. Abstract 

 

We introduce approaches to simplifying neural networks and enhancing their 

interpretability using activation-based neuron tuning and personalized weight matrix 

products. Inspired by the evolutionary principle of the survival of the fittest, we gradually 

remove neurons with little to no learning activity during training and hypothesize that their 

absence renders opaque models more interpretable. Experimental results pertaining to 

cancer and diabetes hospital readmission appear to support our hypothesis and generate 

biomedically salient results. Our approaches also allow for interpretations at the sample 

level, a feature of high importance in multiple fields including personalized medicine. 

 

4.2. Introduction 

 

Wide applicability of neural network models is contingent on our understanding of the 

underlying dynamics leading to their exemplary performance. In fields like biomedicine, 

interpretability is a necessary bridge to establish trust between AI and medical scientists 
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[94]. Artificial neural networks (ANNs) were arguably first used in biomedicine in 2007 

[95], but the popularity of these models started to rise in 2014 starting with applications to 

understand the human RNA splicing code [96]. Due to the recent popularity of deep 

learning and the availability of large biomedical datasets, neural network interpretation 

approaches in biomedicine have been limited. Current methods, for instance, use trained 

networks to estimate the effects of genetic variants by comparing model outputs when 

provided with reference and mutated sequences as inputs [97], or to suggest new functional 

sequence regions using learned weights [98-100]. In cancer genomics, Yousefi et al. [101] 

developed a method called Risk Propagation to estimate the contribution of input features 

to predicted patient survival. Inspired by the backpropagation algorithm that calculates 

gradients used to update weights during training, Risk Propagation uses the chain rule to 

calculate the partial derivative of predicted risk (rather than error) with respect to each 

input feature. Warrell et al. [102] presented a greedy approach that traverses paths in 

trained networks to identify related subsets of inputs, with applications in functional 

genomics. More recently, Keunzi et al. developed hierarchical interpretability approaches 

to simulate drug response to cancer therapies [103]. 

 

Our goal in this chapter is two-fold. First, we aim to further understand how neural 

networks learn with a focus on learned weights, rather than gradients. Second, we aim to 

generate biomedical hypotheses at the sample level by scrutinizing the high number of 

parameters learned during training—i.e. learned weight matrices. To these ends, we 

introduce two complementary approaches: Activation-based Neuron Tuning (ANT) to 

discard neurons considered inactive during training, and Personalized Weight Product 
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(PWP) to interpret the resulting network using products of data and weight paths. While 

each of ANT and PWP can be deployed as a standalone approach that serve different yet 

related tasks, we connect them through a bio-inspired hypothesis on the learning process 

of neural networks that renders ANT a favorable precursor to PWP. 

 

4.3. Activation-based Neuron Tuning 

 

4.3.1. Hypothesis 

 

Activation-based neural tuning is inspired from biological phenomena where only a subset 

of entities participating in a process endure or contribute to the final outcome. Whether it 

is a key cellular pathway whose disruption leads to cancer after inactivating only a few 

genes, or the brain responding to external stimuli using a small fraction of its neurons, 

prioritizing biomarkers according to their contribution intensity is a recurring theme in 

biology. Applicability of this hypothesis on neural network training is centered around two 

ideas inherent to the training process. The first pertains to the stochasticity of training: 

networks with different weight initializations can yield different learned weights but 

comparable overall predictive performance, suggesting that neural networks can take 

multiple “learning routes” to identify patterns in data. The second relates to the comparable 

predictive performance of networks with different architectures. In supervised learning 

tasks, network size often reaches a saturation limit where adding neurons does not improve 

performance. 
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Our tuning approach trims a network during training to (1) keep only enough neurons to 

learn target patterns and (2) restrict the “learning route” to untrimmed neurons considered 

significant by the virtue of receiving concentrated learning flow during training. We 

hypothesize that discarded neurons could be inducing noise on the learning process. By the 

end of training, remaining neurons are expected to resemble the “learning bottleneck” of 

the network, i.e. a small set of neurons that suffice for effective and less noisy learning. 

This perspective resembles an indirect relation to the “information bottleneck” [104], and 

from an evolutionary biology angle, it can be seen as a model of Darwin’s survival of the 

fittest. The measure of fitness is based on the level of a neuron’s engagement during 

training measured through an activation function-specific proxy described below. 

 

4.3.2. Neuron Selection Criteria 

 

For weight updates to effectively navigate the loss function’s (L) error surface, gradient 

magnitudes must take values higher than 0 or ε (i.e. small values that often pertain to the 

saturation problem). To turn off neurons during training, our ANT selection criteria 

measure the properties of neurons’ input distributions (Z’s) to rank them according to the 

magnitude of weight updates. Neurons with inputs concentrated around activation 

function-specific favorable intervals are prioritized, while others distant from a 

concentrated target distribution (Φt) are permanently turned off. The number of neurons to 

be removed per tuning step, n, and the number of epochs at which neurons are regularly 

turned off, k (leading to m = ⌊ Total number of epochs / k ⌋ tuning steps) are pre-defined 
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parameters that indicate the total number of neurons eliminated from each layer by the end 

of training (Figure 4.1). 

Figure 4.1. The ANT tuning scheme. 

 

4.3.3. Calculus Interpretation 

 

In calculus terms, we define neuron activity in terms of its gradients’ updates during 

optimization. By virtue of the chain rule used to calculate gradient values during each 

backward pass, overall gradients are affected by derivatives of neuron activation functions 

with respect to their inputs (i.e. middle term of equation (4.1)). 
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where L is the loss function, l and l - 1 are subsequent layers, i is the source neuron index 

in layer l - 1, j is the destination neuron index in layer l, al is the activation function in l, al
j 

= al(zj
l), zj

l = wj
l-1 al-1 + bl, wj

l-1 is the weight vector incoming from l - 1 to neuron j in l, and 

bl is the bias term of layer l. We explain next how we accordingly select neurons to turn 

off based on input distributions to activation functions. We focus on the cases of ReLU and 

sigmoid functions and describe a rationale that generalizes to other functions for neuron 

selection. 

 

Derivative of the sigmoid function σ’(x) ∈ ]0, 0.25], with its highest values at x ∈ [3; +3] 

(Figure 4.2A). To encourage active updates in a layer’s neurons, we select the target 

distribution for sigmoid to be Φt
Sigm. ~ N (0, 1.5), a distribution with high peaked-ness 

centered around μ = 0 and 2 [-3, +3] (Figure 4.2C). Neurons receiving input distributions 

(Z) close to Φt
Sigm. encourage non-zero and relatively large sigmoid gradient values (≫ ε) 

resulting active overall neuron gradient updates during backpropagation. In contrast, input 

distributions furthest from Φt
Sigm. lead to recurring 0 and ε-like gradients impeding progress 

during optimization. ANT uses Kullback–Leibler divergence to measure the difference 

between the histograms of both distributions Φ and Z over training data points. 

 

A similar rationale is adopted to select target for ReLU, where Φt
ReLU encourages positive, 

larger derivatives and discourages 0-valued ones. Generally, the gradient of ReLU is either 

0 or 1 depending on the input value passed during the forward pass: positive values lead to 

a derivative of 1, while negative values lead to a derivative of 0 (Figure 4.2B). We select 

Φt
ReLU to be an “inverted power law” distribution representing a considerably higher 
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density shifted towards positive values (Figure 4.2D). This same goal can drive the 

selection of target distributions that favor high activity regions of other activation 

functions. 

 

Figure 4.2. Function and gradient curves (A, B) and ANT target distributions (C, D) of 

sigmoid and ReLU functions, respectively. Subfigures (A) and (B) are adopted from part 

of Figure 3-5 in [105]. 

 

4.3.4. Algorithm 

 

We lay out the steps of ANT in Algorithm 1. 
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Input: Training data D, Initialized neural network N, Target layers T, tuning step k 

number of tuned neurons n 

Output: Tuned neural network N’ 

 

for epoch ← 1 to E epochs do 

 SGD(D; N; W) 

 if epoch % k = 0 then 

  for layer l ∈ 2 T do 

   Sl ← DKL(Zi
l || Φt) ∀ neuron ∈ l 

   Nl
tuned  ← Nl

tuned ⋃ argmax Sl 

              1..n 

  Remove Nl
tuned from the network 

 end for 

end if    

end for 

 

 

 

Algorithm 1. Activation-based Neuron Tuning (ANT) algorithm. 

 

 

 

4.4. Personalized Weight Product 

 

The idea of leveraging weight matrix products to interpret trained neural networks was 

arguably first introduced long before deep learning garnered its recent popularity, namely 
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with Garson’s algorithm [106]. Recent cancer genomics research highlighted the high 

heterogeneity of cancer subtypes, emphasizing the need for patient- or subgroup-level 

treatments, a trend that falls under a set of practices that became known as “personalized 

medicine.” [1, 75]. Driven by this and other recent trends in biomedicine, we introduce 

PWP with an ability to estimate the contribution of input features to prediction on whole 

set, subset, or individual sample levels. We also leverage biomedical domain knowledge 

to incorporate the signs of the weights during matrix multiplication to mimic the important 

directionality of interactions between genes or clinical phenotypes pertaining to disease. 

Hence, unlike Garson’s algorithm that relies on the absolute values of every weight matrix, 

we use absolute values only in the final step after signed matrices take part in iterative 

multiplication. PWP is formalized in equation (4.2) below. 

 

PWPI = X . | W1 . W2 … WL  |, 

 

 

 

where I is the set of inputs, L is the number of layers, and X is the dataset based on which 

input contributions are to be calculated. 

 

5. Results 

 

We evaluate ANT and PWP on two biomedical datasets to predict drug response in acute 

myeloid leukemia (AML) [107] and hospital readmission of diabetes patients [108, 109], 

and on the MNIST dataset. The first set of experiments investigates the possibility of 

(4.2) 
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deteriorating performance caused by neuron removal by ANT, while the second studies the 

performance of PWP as a standalone approach and combined with ANT. Reported results 

are aggregated over 10 reproducible runs. 

 

5.1. One-Layer and Two-Layer Tuning 

 

While the predictive performance of a trained network is not the central goal of ANT, this 

performance must not be sacrificed in exchange of higher levels of interpretability. To this 

end, we compare ANT-tuned networks with baseline models (i.e. without neuron tuning). 

Each baseline model constitutes 3 layers with its hyperparameters selected using 

hyperopt [110]. We note that a slightly higher performance has been achieved on the 

MNIST dataset using CNNs, but we focus on the fully-connected neural nets, the target 

network type of our current approaches. 

 

Results from all predictive tasks demonstrate that ANT maintains high AUC, accuracy, 

and precision across all three datasets while turning off up to 70% of the first hidden layer’s 

neurons (Figure 4.3A). Similar results are obtained when tuning two hidden layers while 

shrinking the model by at least 50% (Figure 4.3B). 

 

5.2. Biomedical Interpretation: Cancer Genomics and Clinical Diabetes 

 

In the first task, we perform biological enrichment analysis on the top 100 genes prioritized 

by PWP vs weight-based Garson’s algorithm out of >26,000 input features encompassing 
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gene expression and genomic variation profiles. Enrichment results returned by the 

DAVID web service [111] for the top 100 genes prioritized by each approach demonstrate  

 

Figure 4.3. Predictive performance of neural networks across ANT tuning rates applied 

on (A) one or (B) two hidden layers. 

 

that PWP identifies significantly more biological entities associated with AML than 

Garson’s: “AML” term count, number of associated publications, and statistically 

significant (Benjamini p-value < 0.05) chart and clustering annotation records. More 

interestingly, PWP applied on ANT-tuned models (labeled PWP-ANT) achieves better 

performance than PWP alone. Annotation of the PWP-ANT prioritized genes, the majority 
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of which are long tail ones, is also the only one to include AML as a directly reported GAD 

disease (Figure 4.4A). A similar pattern is observed in the diabetes patient readmission 

task. PWP-ANT’s top 5 features included 3 of the gold standard clinical features curated 

based on expansive literature review, compared to two features using PWP alone and only 

one feature by Garson’s algorithm (Figure 4.4B). These results highlight the significance 

of using signed network matrices to capture interactions between features. We also note 

that PWP variants achieved significantly better results compared to randomly selected 

genes as another baseline in the AML task. 

 

 

Figure 4.4. AML and Diabetes Results. A PWP-ANT’s top gene list uncovers more 

biomedical annotations pertaining to AML than that of PWP alone or Garson’s algorithm. 

B PWP-ANT prioritizes more clinically important features than both approaches. 
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5.3. Personalized Interpretations 

 

A severe limitation of the Garson’s algorithm’s weight matrix product approach is its 

estimation of a singular value for each feature’s contribution to the output. The data-driven 

nature of PWP allows it to identify prioritized features on a sample- or subset-levels of 

interest. To examine the potential of PWP-ANT as an attribution method, we run PWP-

ANT on MNIST with three input datasets: (i) all images of all digits, (ii) all images of each 

digit separately, and (iii) only two images of the same digit. Prioritized pixels varied de-

pending on the subset being considered. On dataset (i), PWP-ANT highlights pixels 

pertaining to specific features of multiple digits included the set. Interestingly, these pixels 

are located in discriminative locations that allow for the distinction between similar-

looking digits such as the edges in the center of 3 and 8 or 0 and 9 (white rectangles of 

Figure 4.5A). On subset (ii), prioritized pixels become more specific to the target digit. 

Each row in Figure 4.5B highlights the same pixels prioritized to cover discriminative 

features of the target digit (0, 1 or 7 shown as examples). Selected pixels might also 

demonstrate locations where the digit of interest uniquely has no pixels. For instance, being 

the only digit without a single pixel in the center, these pixels were highlighted for digit 0 

(center top image of 4.5B, orange rectangle). Prioritized pixels become even more specific 

for subset (iii) as shown in 4.5C. When only two images of the same digit are provided to 

the method, PWP-ANT uncovers the specific edge pixels of these particular images. We 

note that no retraining of any baseline or ANT-tuned network was required in these or other 

experiments, and the specificity of prioritized features is based solely on data provided to 

PWP as described in equation (2) with minimal computational overhead. 
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Figure 4. Representative MNIST results. Highlighted pixels prioritized by PWP-ANT 

capture the important discriminative features used to distinguish digits in the input in each 

of three scenarios: A all validation data including all digits, B all data of for a single digit, 

and C two data points of the same digit. 
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6. Potential Future Directions 

 

We introduce efficient approaches to simplifying neural networks and enhancing our 

understanding of learned parameter values. Driven by biomedical domain knowledge, our  

results highlight the importance of learned weight signs and the efficacy of adopting a 

parsimonious perspective in training yielding smaller networks. While we demonstrate the 

improvement our method introduces to its closest counterpart (i.e. weight-based Garson’s 

algorithm), experiments can be expanded in relation to related work by: (i) comparing 

ANT’s tuning to other methods including the lottery ticket theory [112] and the work in 

[113], (ii) extending PWP to detect feature interactions in line with weight-based Garson’s 

algorithm-inspired work in [114], or (iii) elaborating on the attributive side of PWP in 

comparison with other attribution methods  that have made significant recent advances with 

potential opportunities for additional improvement (e.g. [115-117]). 
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Chapter 5 

Compression-based neural network interpretability with applications in 

functional genomics 

 

This chapter is based on the work described in Warrell, Mohsen and Gerstein [118]. 

 

5.1. Abstract 

 

We introduce complimentary approaches that allow for an efficient compression of a 

trained neural network and the extraction of domain-related patterns learned by the 

network. The compression approach, named Rank Projection Trees (RPTs), selects a sparse 

set of predicative network paths forming a DAG based on a branching factor and the 

properties of learned parameter. Using data from multiple functional genomics tasks, we 

demonstrate the efficacy of RPTs and provide a measure to score the interpretability 

potential of resulting compressed networks. 

 

5.2. Introduction 

 

A multitude of definitions of neural network interpretability has been proposed in the 

literature [119, 120]. Should researchers focus on gradient updates or values of learned 

parameters after training? Single data point or an entire dataset underlying a predictive 

task? Design customized loss functions inspired by the underlying question? When it 

comes to the trained network, should they consider the whole network or, instead, search 
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for a subset of representative paths that can act as hypothesis generators in the task’s 

domain of interest? To the last question, which addresses what we describe herein as 

network compression, a number of approaches have been suggested to respond to limited 

memory or real time execution requirements [121], to provide bounds on the generalization 

error of a trained model [122, 123], or to establish a link between generalization and 

regularization [112, 124]. Yet, the relationship between compression and interpretability 

has not been thoroughly explored, which is the gap we aim to address in the chapter.  

 

While a number of existing approaches suggest approximating a complex model using a 

predefined target model (e.g. linear models) [125-127], they leave open questions to the 

user regarding the degree and type of compression. We propose complimentary approaches 

capable of identifying a considerably compressed, domain-relevant structure in the 

network’s architecture that are not restricted to a target model class. We frame these 

approaches together as an interpretability scheme (Figure 5.1) that a) performs efficient 

post-hoc network compression, b) interprets the compressed model to extract domain-

relevant information, and c) provides (PAC-Bayes based) score estimates for interpretable 

model selection. 

 

5.3. Rank Projection Trees 

 

We first introduce a compression approach that identifies an interpretable tree grouping in 

the learned network. While other methods such as the Shapley features [126] can select 

groupings of interest, they do not explicitly derive these from the network structure, which  
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Figure 5.1. The general framework of the RPT interpretability scheme. 

 

might lead to more opaque interpretations. The resulting trees of our approach, referred to 

as Rank Projection Trees (RPTs), are instead meant to identify nested groups of nodes 

which have potential joint interactions, a common scenario in functional genomics where 

sets of  biomarkers interact to determine a trait’s phenotype. The RPT framework provides 

a multiscale output-to-input interpretation of the learned neural network and is agnostic to 

the ranking function used to select nodes while building the tree. This in turn provides more 

flexibility allowing for many node-based scoring functions, including those derived from 
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interpretability approaches that focus on scoring individual nodes rather than paths (e.g. 

[116, 128, 129]), to be used in tree construction. 

 

Let N be a neural network with L+1 layers, where 𝑛𝑙.𝑖  is the ith neuron of layer l such that 

0 ≤ l ≤ L, and let Wl1,l2 and 𝛽𝑙 be the weight matrix between layers l1 and l2 = l1 -1 and the 

bias vector at layer l, respectively. A rank projection tree (RPT, see Figure 5.2) over a 

given network is fully determined by specifying (a) a half branching factor 𝐵 <
𝑁𝑙

2
, ∀ 𝑙, 

and (b) a ranking function 𝑟𝑖,𝑙,𝑚(𝑗), where 𝑙 < 𝑚 ≤  𝐿 are layer indices, 𝑖 and 𝑗 are node 

indices on layers 𝑙 and 𝑚 respectively, and the function returns an integer specifying the 

position of node 𝑗 in an ordering of the nodes at layer 𝑚 according to their ‘score’ with 

respect to node 𝑖 and layer 𝑙.  Semantically, we expect that increased activation of node 𝑗 

towards the top of the ranking will lead to increased activation of node 𝑖, while increased 

activation of nodes towards the bottom will lead to decreased activation of 𝑖; hence, any 

score function of the kind described above (such as the gradient) may be used. 

 

The nodes of the rank projection tree 𝑇 are lists of “branching indices” of the form [ ], 

[𝑏1], [𝑏1, 𝑏2], . . . [𝑏1, . . . , 𝑏𝐿], where 𝑏𝑙 ∈  {1, . . . , 𝐵} ∪ {−1, . . . , −𝐵}, ∀ 𝑙.  The node [ ] is the 

root of the tree, and the parent function is defined as 𝑃𝑎([𝑏1, . . . , 𝑏𝑙−1, 𝑏𝑙])  =

 [𝑏1, . . . , 𝑏𝑙−1].  A node 𝑡 of 𝑇, where 𝑡 is a list of length 𝑙, is then associated with a node in 

layer 𝑙 of the neural network via a function 𝜙 defined recursively as follows: 

 

 

𝜙 ∶  𝑇 →  𝑁 
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𝜙([ ])  =  𝑛0,1 

 

𝜙(𝑡 = [𝑏1, . . . 𝑏𝑙])  =  𝑟𝑃𝑎(𝑡),𝑙−1,𝑙
−1 (𝑏𝑙), 

 

 

where 𝑟𝑖,𝑙,𝑚
−1 (𝑏) is a “quasi-inverse” of the ranking function, which returns the node 𝑛𝑚,𝑗 

for which 𝑟𝑖,𝑙,𝑚(𝑗) = 𝑏 if 𝑏 > 0, and 𝑛𝑚,𝑗 for which 𝑟𝑖,𝑙,𝑚(𝑗) = 𝑁𝑚 + 𝑏 + 1 if 𝑏 < 0.  For 

node 𝑡 in 𝑇 then, which maps to 𝜙(𝑡) = 𝑛 at layer 𝑙, the mappings of the children of 𝑡 are 

set by first ranking layer 𝑙 + 1 of the neural net with respect to 𝑛, and assigning the top 𝐵 

and bottom 𝐵 nodes of this ranking to the children of 𝑡, hence projecting the full ranking 

onto a reduced ranking across the 2𝐵 children.   

 

Each node 𝑡 in 𝑇 may be associated with positive and negative subsets, 𝑆𝑡
+ and 𝑆𝑡

−, at a 

reference layer, which we take to be the input layer 𝐿.  These are defined as: 

 

𝑆𝑡
+  =  {𝜙(𝑡′ = [𝑡, 𝑏𝑙+1, 𝑏𝑙+2, . . . , 𝑏𝐿])|𝑏𝑙+1 ⋅  𝑏𝑙+2 . . .⋅  𝑏𝐿  >  0} 

 

𝑆𝑡
−  =  {𝜙(𝑡′ = [𝑡, 𝑏𝑙+1, 𝑏𝑙+2, . . . , 𝑏𝐿])|𝑏𝑙+1 ⋅  𝑏𝑙+2 . . .⋅  𝑏𝐿 <  0} 

 

 

Hence, 𝑆𝑡
+  contains all those nodes mapped to by descendants of 𝑡 at layer 𝐿 along paths 

where the product of the branching indices below 𝑙 is positive, and 𝑆𝑡
− is defined similarly, 

but where the product of the branching indices is negative. A collection of ‘prioritized’ 

(5.2) 

(5.1) 
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subsets at multiple levels is thus formed by applying Eq. 5.2 as 𝑡 runs across 𝑇.  We note 

that, since multiple nodes in 𝑇 may map to the same node in 𝑁, sets at the same layer may 

overlap, including positive and negative sets associated with the same node in 𝑇.  Finally, 

we may define a prioritization function 𝜋 (or ‘salience map’) of the nodes at the reference 

layer in 𝑁, 𝜋(𝑛)  =  𝑓(𝜙−1(𝑛)), where 𝜙−1(𝑛) = {𝑡1, 𝑡2. . . } is the pre-image of 𝑛 under 

𝜙, and 𝑓 may be chosen from a number of possibilities. 

 

5.4. Compression Bounds 

 

We next introduce a PAC-Bayes approach to interpretable model selection. This approach 

allows for the use of RPT selection for both enhanced comprehension of the model and 

providing a minimum description length (MDL) prior to identify its generalizable structure. 

For this purpose, we use the following basic form of the PAC-Bayes bound, outlined in 

[130]: 

 

𝑅(𝑁) ≤𝛿 𝜓(𝑁, 𝑋) = 𝑅(𝑁, 𝑋) + (
1

𝜆
) [KL(𝑁, 𝜋) + log (

1

𝛿
) + (

𝜆2

𝑁𝑋
)] 

 

 

where 𝑅(𝑁) is the true risk of network 𝑁, 𝑅(𝑁, 𝑋) is the empirical risk on the observed 

sample 𝑋, 𝜋 is a prior over networks, and KL(𝑁, 𝜋) is the KL-divergence of a delta-

distribution at 𝑁 with 𝜋.  As introduced in [122], given an encoding scheme, 𝜋 may be 

formulated as a minimum description length (MDL) prior: 

 

(5.3) 
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KL(𝑁, 𝜋) ≤ |𝑁̂|𝑐log2 − log (𝑚(|𝑁̂|
𝑐
)) 

 

where 𝑁̂ is the code-word for 𝑁 (which may be a lossy code), |. |𝑐 is the code length, and 

𝑚(. ) is a prior over code lengths, which for convenience may be taken to be uniform.  For 

RPT, codewords may be generated by taking the compressed representation, i.e. sparsified 

network, and subjecting it to further compression via LZW coding to generate a binary 

code.  Equation 5.3 can thus be used directly as a generalization bound after substituting 

equation 5.4 for the KL term. 

Figure 5.2. Rank projection trees. The rank projection tree (left, 𝑇) is mapped onto a 

trained neural network (right, 𝑁) via the mapping 𝜙 which depends on an arbitrary 

ranking function 𝑟. The image of 𝑇 under 𝜙  is used to prioritize inputs and sets of inputs 

in 𝑁 in an output dependent fashion. 

 

As noted previously, we are also interested in combining compression with prior 

information to produce a modified MDL bound.  For this purpose, we introduce the 

following bound: 

 

(5.4)

4 
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Theorem 1 (Modified MDL Bound). Let 𝜋𝑀𝐷𝐿 be an MDL prior and 𝜋𝑑𝑒𝑝 be a data 

dependent prior, 𝒩(. ; 𝑁0, 𝜎2), where 𝑁0 is a pretrained neural network, and 𝒩(. ; . , 𝜎) is a 

Gaussian with symmetric covariance 𝜎.  Then, for the weighted prior 𝜋 = 𝛼𝜋𝑀𝐷𝐿 + (1 −

𝛼) 𝜋𝑑𝑒𝑝 and posterior 𝜌 = 𝒩(. ; 𝑁, 𝜎3) we have: 

 

KL(𝜌, 𝜋) ≤ 𝛼 [|𝑁̂|𝑐log2 − log (𝑚 (|𝑁̂|
𝑐
)) + KL (𝒩(. ; 𝑁, 𝜎3), 𝒩(. ; 𝑁̂, 𝜎2))] +  

(1 − 𝛼)KL (𝒩(. ; 𝑁, 𝜎3), 𝒩(. ; 𝑁0, 𝜎2)) 

 

The bound from equation 5.5 can be directly substituted into equation 5.3, after training 𝑁0 

on hold-out data following [131, 132]. 

 

5.5. Results 

 

For our empirical investigation, we use the RPT scheme to interpret networks trained on 

functional genomics tasks related to cancer and psychiatric genomics. 

 

5.5.1. Predictive Tasks 

 

In the cancer-related task, we use somatic and germline genomic variation data from The 

PanCancer Analysis of Whole Genomes (PCAWG) study [75]. PCAWG includes a variety 

of biological data types corresponding to 2,800 samples from the International Cancer 

Genome Consortium. To train networks for our analysis, rare variants are singled out for 

Skin Melanoma and Esophageal Adenocarcinoma samples. The predictive task according 

(5.5) 
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to which the neural networks have been trained is the prediction of somatic and germline 

variation co-occurrence at the gene level for 718 genes of the COSMIC census list fetched 

on May 08, 2018. Input data included 43 features ranging from germline variant signatures 

of known cancer genes alongside a set of biological features extracted from multiple data 

and annotation repositories, namely UCSC Genome Browser [133], Gencode v27 [134], 

and COSMIC [59]. Each model whose weights have been analyzed by rank projection 

trees has 3 hidden layers. Number of hidden nodes (285-941), optimization algorithm 

(Adam or Nesterov Adam), and activation functions (Exponential or Rectified Linear Unit) 

for each network have been determined by automated hyperparamter optimization using 

the hyperopt package [110]. Results are averaged over five neural networks trained on 

randomly stratified training datasets for each cancer type, with test performance of high 

precision and recall values ranging between 70% and 83%. To balance training datasets, 

we deployed the SMOTE oversampling algorithm [135] using the implementation in the 

imbalanced-learn Python package [136]. 

 

In the Schizophrenia-related task (SCZ), we use bulk data of the transcriptome, which is 

heavily affected by the environment, from the PsychENCODE [137, 138] consortium 

project. We create 10 training and testing partitions (including 640 and 70 samples 

respectively) of control and schizophrenia subjects, which are balanced 50-50% for 

controls and cases. We train neural networks with 2 hidden layers to predict a binary 

case/control indicator, with 100 and 400 nodes at layers 1 and 2 respectively, logistic 

sigmoid activations, and SGD with early stopping for training. We train separate neural 

networks using individual gene expression levels as inputs, and mean expression levels 
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across modules of genes pretrained using WGCNA [139], pre-selecting the top 1% and 

15% of genes/modules respectively according to the absolute Pearson correlation between 

the input and the binary output indicator on each training partition (resulting in 187 genes 

and 754 modules in each respective model). The test performance of the models averaged 

across partitions was 73.6% and 66.1% for the gene- and module-based models, 

respectively. 

 

5.5.2. Prioritization Functions 

 

After training the networks, we first compare the relevance of input genes prioritized by 

RPT with different prioritization functions based on their literature associations with the 

disease under study on Google Scholar as a proxy for ‘ground truth’ ranking. We select a 

ranking function based on the signed values of learned weights, i.e. for layers 𝑙 and 𝑚 =

𝑙 + 1, 𝑟𝑖,𝑙,𝑚(𝑗) returns the rank of 𝑛𝑚,𝑗 in the ordering induced by the weights 𝑊𝑙,𝑚(𝑖, . ) 

(signed values, descending), and set 𝐵 = 2.  We then calculate the cumulative rank scores 

𝑐𝑡 over each path in T for the prioritization function 𝜋, i.e. for leaf node 𝑡 =  [𝑏1, . . . 𝑏𝐿], 

we set 𝑐_𝑡 = (∑ |𝑏𝑙|𝑙  )(∏ sign(𝑏𝑙)𝑙 ).  We then set 𝜋(𝑛)  =  𝑓(𝜙−1(𝑛))  =

 𝑔([𝑐𝑡1
, 𝑐𝑡2

, . . . ]) for 𝑡1, 𝑡2. . . ∈ 𝜙−1(𝑛), where 𝑔(. ) is one of the functions: 

{sum, average, max, min} of signed or absolute values, or length. In Table 5.1, we show 

the scored rankings of the top 20 genes (averaged across networks) according to each 𝑔(. )  

based on the ℓ1-distance between the two rankings (RPT and literature-based ‘ground 

truth’), normalized by its maximum (ℓ1([1. . .20], [20. . .1])).  In general, the absolute 

average and max functions appear to be better indicators of individual gene importance. 
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Network Absolute Signed Count 

Sum Avg. Max Min Sum Avg. Max Min 

Skin 

Mel. 

0.628 0583 0.632 0.624 0.588 0.597 0.614 0.625 0.614 

Es. 

Adeno. 

0.655 0.644 0.603 0.661 0.670 0.612 0.642 0.671 0.670 

Schiz. 0.642 0.628 0.664 0.656 0.710 0.674 0.708 0.686 0.634 

Table 5.1. Prioritization function comparison. The rankings of genes induced by 

different prioritization functions are compared against citation-based rankings from 

existing literature. Table shows normalized ℓ1-distances of predicted and citation-based 

rankings for the top 20 genes, with best performing metrics highlighted. Rows are: Skin 

Melanoma, Esophageal Adenocarcinoma, and Schizophrenia. 

 

5.5.3. Multigene Groupings 

 

We then measure RPT’s ability to extract multigene groupings of high relevance to disease. 

To generate RPT groupings, we rely on the networks with the WGCNA modules average 

expression levels as inputs. Hence, for set 𝑆 formed from equation 5.2, we take the union 

of the genes in all modules which are elements of 𝑆, where all positive and negative 

groupings across layers 𝑙 = 0. . .3 of the schizophrenia networks are extracted. In parallel, 

we extract similar groupings but based on a randomized ranking function as a control. After 

a gene-set enrichment analysis to annotate all of the groupings based on the KEGG 

pathway terms with a q-value < 0.001, a ranking across KEGG terms is calculated 
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independently for each layer by counting the number of groupings a term is associated with 

across all models (including duplicate groupings, hence accounting for increased 

importance of nodes in 𝑁 mapped to by multiple nodes in 𝑇). A literature-based analysis 

of the top 20 terms demonstrates that the RPT scheme selects more disease-relevant terms 

than the random tree across all network layers, with the groupings selected at the higher 

hidden layers (i.e. closer to input layer) associating with more trait-relevant. Literature 

analysis is based on Google Scholar results, and gene-set enrichment analysis is performed 

using clusterProfiler [140].   

 

We then extend the analysis to measure the enrichment for “high-confidence trait genes” 

in the groupings from all layers. In our example, these are genes which can be linked to 

GWAS hits for schizophrenia by any three of the following four methods: Hi-C 

interactions; enhancer-target links; eQTL linkages, and isoform-QTL linkages (321 genes; 

list available in [137]). The enrichment of such genes in each module is scored using a p-

value from the hyper-geometric test. Figure 5.3 shows that these genes are significantly 

more enriched in the RPT groupings than randomized ones, with the penultimate layer 𝐿1, 

again, being the most trait-relevant.  We also compare the 𝐿3 distribution with a gradient-

based prioritization scheme which ranks the modules at this level according to the absolute 

magnitude of the gradient of the network output with respect to each input (as in [128]), 

but report that it is not significantly better than the randomized tree (p=0.78); the RPT is 

better than the randomized tree across all layers (p < 10-4 for 𝐿1−3, and p=0.012 for 𝐿0, all 

p-values using 1-tail KS-tests). 
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Figure 5.3. Visualization of network interpretations. Enrichment of high-confidence 

schizophrenia associated genes in gene groupings found associated with different neural 

network layers. Enrichment p-values are from the hyper-geometric test, and the empirical 

cumulative density function (CDF) is plotted on the y-axis. 

 

5.5.4. Interpretability and Generalization 

 

 

Finally, we investigate the relationship between generalization and interpretability of 

neural networks compressed using the RPT scheme, and whether there is a relationship  

between the strength of the semantic associations and the generalization of the network. 

We begin by investigating the strength of association between the PAC-Bayes bound 

(equation 5.3) with the MDL-prior (equation 5.4) in predicting the test error. To compress 

networks to multiple degrees,  we vary the RPT half-branching factor to 𝐵 = {1, 2, … 5} on 

each of the 10 SCZ data splits.  We evaluate the bound in equation 5.3 by compressing the 

parameters of the resulting networks using LZW compression [33], and use the resulting 

binary code as the network representation, 𝑁̂ in equation 5.4.  Figure 5.4 shows plots of 

the correlation between MDL bounds and empirical test error, where the bound parameter 

𝜆 is fitted independently for each group of compressed models associated with a given 
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uncompressed model (corresponding to a fixed data split); hence each plot includes 

networks associated with 𝐵 = {1,2, … 5}. We further standardize each bound, by dividing 

by the variance per plot, and subtracting the minimum distance with the test error across 

all models. A significant positive correlation is detected between bounds and test error 

(sign-test, 𝑝 = 0.022), suggesting a considerable ability to predict test error by the 

predefined bounds. 

Figure 5.4. Plots of test error vs. MDL bounds for groups of models derived from the RPT 

scheme. 

 

We then measure the correlation between the predicted accuracy of each model, defined as 

1 − MDL-bound, with the KS test statistic, calculated as in Sec. 5.5.2 for the gene 

groupings derived per-layer from the compressed networks (based on the enrichment of 

high-confidence SCZ genes from [137]), to investigate the relationship between 

generalization and interpretability by measuring.  Figure 5.5 shows significantly skewed 

positive correlations across all models (𝑝 = 0.0072, 1-sample t-test). 

 

Finally, we combine MDL and data-dependent components to investigate the modified 

MDL bound. We replicate the generalization test from Figure 5.4 using this bound, while 

fitting 𝜆 and 𝛼 for each group of models.  This achieves an improved mean correlation of 

𝑟 = 0.955 for the top 3 models, which is again significant (permutation test, 𝑝 < 0.05).   
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Figure 5.5. The relationship between interpretability and predicted accuracy (defined as 

1 − MDL-bound) per network layer (𝐿) and compression strength (𝑍) for the RPT scheme. 

 

Table 5.2 further compares the mean KS-bound correlation across models (as in Figure 

5.5) of the MDL and modified-MDL bound, showing only a marginal increase in 
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correlation. The table shows that both bounds achieve a significantly stronger correlation 

with the semantic KS-scores than the observed test error. A possible reason for this is the 

use of the training error in the first term of the bound, which is typically more stable than 

the test error, given the larger number of data points (640 vs. 70 in the SCZ datasets). 

 

Bound Test error MDL MDL + prior 

Mean r 0.142 0.217 0.218 

p-val 0.025 0.007 0.007 

Table 5.2. Comparing MDL and Modified MDL bounds for predicting semantic 

enrichment. Table shows mean Pearson correlation and 1-sample t-test p-values for 

models using the RPT scheme, when the KS-semantic-enrichment is correlated with the 

quantities shown. 

 

5.6. Conclusion 

 

We introduced a post-hoc network compression scheme, namely Rank Projection Trees 

(RPTs), that enhances the interpretability of neural network models trained using 

functional genomics data. We showed that RPTs are able to pick out biologically important 

genes using networks trained to predict epistatic interactions of germline and somatic 

mutations in cancer and risk for Schizophrenia. Finally, we established a link between 

network generalization and interpretation quality and describe MDL PAC-Bayes bounds 

that can be used as proxy scores for interpretable model selection, hence supporting the 

general applicability of compression-based interpretability schemes. 
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Chapter 6 

Conclusion 

 

Rapid technological advances across computational and biomedical disciplines brought to 

the fore unprecedented challenges and perspectives. The available number of sequenced 

cancer exomes (and genomes) allowed for a plethora of approaches to test long held 

hypotheses about the nature of cancer and its heterogeneity across and within tumor types. 

In parallel, new experimental assays expanded the functional genomics landscape resulting 

a multitude of angles through which cancer genomics could be studied, among which are 

the ones underlying the works described in this document: patterns of—altered and 

“normal”—gene product interactions, cellular response to therapeutic regimens, and the 

potential cancer relevance of each human gene. 

  

One narrative that dominated the study of genomic variation underlying carcinogenesis 

focused on a binary description of mutations: recurrent drivers in selected genes that confer 

selective advantage on cancer cells, and passengers with assumed neutral effect. The 

previous chapters investigate a central question in light of aforementioned technological 

attainments: do patterns of genomic variation transcend this binary divide into a spectrum 

of gene effects? To answer this question, we relied on two types of networks. 

 

In Chapters 2 and 3, we leveraged functional networks that summarize different types of 

associations between gene products, somatic and germline genomic variation data, and 
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recently available data on cancer cell viability to prioritize human genes with respect to 

their relative contributions to cancer development. In Chapters 4 and 5, we turned to 

artificial neural networks, a class of complex machine learning methods with growing 

popularity and notable performance. In these two chapters, we suggested three approaches 

to simplify models and render them more interpretable in order to establish trust in their 

predictions. On the applications side, we demonstrated the efficacy of the interpretability 

approaches and prioritized input features, including at the single sample level, in multiple 

biomedical tasks pertaining to functional genomics. 

 

The nexus of computational methods and cancer theory is expected to garner more attention 

in the years to come. Expectedly, utilizing new tools to address questions pertaining to 

cancer genomics has begotten new, fine-scale questions. The growing availability of a 

population-scale biobanks around the world will likely open more venues to study the 

spectrum of gene relevance at the—coding and noncoding—DNA level with higher 

resolution. Recent experimental assays will further enrich the functional lens through 

which we study biological processes underlying physiology and disease, and the cancer 

relevance spectrum will likely be among the top targets of research. Together with the 

immense amount of labor put towards computational method development and the growing 

investment in cloud technologies, it is expected that our understanding of cancer, or cancers 

to be more precise, will reach higher levels. It is in this context that the work described in 

this document has been pursued over the last several years, and it is with the hope that its 

chapters constitute a contribution on this long road. 
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Supplementary Figures 

 

Supplementary Figure 1. Impact on cancer cell line survival of UMG lists before the 

DepMap filtering step compared to other methods’ lists. Extension to Figure 2.4. 
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Supplementary Figure 2. Impact on cancer cell line survival of UMG lists compared to 

other methods’ lists, all including known driver genes. Extension to Figure 2.4. 
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Supplementary Figure 3. Impact on cancer cell line survival of UMG lists before the 

DepMap filtering step compared to other methods’ lists, all including known driver genes. 

Extension to Figure 4. 
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Supplementary Figure 4. PPI network analysis of the relationships between UMGs (white 

nodes) and known driver genes (red) in CESC. Extension to Figure 2.5. 
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Supplementary Figure 5. PPI network analysis of the relationships between UMGs (white 

nodes) and known driver genes (red) in CHOL. Extension to Figure 2.5. 
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Supplementary Figure 6. PPI network analysis of the relationships between UMGs (white 

nodes) and known driver genes (red) in COAD. Extension to Figure 2.5. 
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Supplementary Figure 7. PPI network analysis of the relationships between UMGs (white 

nodes) and known driver genes (red) in ESCA. Extension to Figure 2.5. 
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Supplementary Figure 8. PPI network analysis of the relationships between UMGs (white 

nodes) and known driver genes (red) in HNSC. Extension to Figure 2.5. 
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Supplementary Figure 9. PPI network analysis of the relationships between UMGs (white 

nodes) and known driver genes (red) in KICH. Extension to Figure 2.5. 
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Supplementary Figure 10. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in KIRC. Extension to Figure 2.5. 
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Supplementary Figure 11. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in KIRP. Extension to Figure 2.5. 
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Supplementary Figure 12. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in LIHC. Extension to Figure 2.5. 
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Supplementary Figure 13. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in LUAD. Extension to Figure 2.5. 
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Supplementary Figure 14. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in LUSC. Extension to Figure 2.5. 
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Supplementary Figure 15. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in PRAD. Extension to Figure 2.5. 
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Supplementary Figure 16. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in READ. Extension to Figure 2.5. 
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Supplementary Figure 17. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in STAD. Extension to Figure 2.5. 
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Supplementary Figure 18. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in THCA. Extension to Figure 2.5. 
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Supplementary Figure 19. PPI network analysis of the relationships between UMGs 

(white nodes) and known driver genes (red) in UCEC. Extension to Figure 2.5. 
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