
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Yale Graduate School of Arts and Sciences Dissertations 

Spring 2022 

Essays on Information Economics Essays on Information Economics 

Weicheng Min 
Yale University Graduate School of Arts and Sciences, minweicheng1994@gmail.com 

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations 

Recommended Citation Recommended Citation 
Min, Weicheng, "Essays on Information Economics" (2022). Yale Graduate School of Arts and Sciences 
Dissertations. 634. 
https://elischolar.library.yale.edu/gsas_dissertations/634 

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly 
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations 
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more 
information, please contact elischolar@yale.edu. 

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/634?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


Abstract

Essays on Information Economics

Weicheng Min

2022

This dissertation consists of three independent essays that examine how to improve

information transmission and how to incentivize learning.

In Chapter 2, I study the role of a recommender’s career concerns in his relation-

ship with a consumer when the recommender has a private type in expertise. An

informed type has valuable expertise for the consumer, whereas an uninformed type

does not. The uninformed type cannot mimic the informed type, suggesting that

the informed type can build a reputation for competence. However, I find that the

relationship breaks down completely if the recommender is sufficiently patient.

In Chapter 3, which is co-authored with Florian Ederer, we embed probabilistic

lie detection in a standard model of Bayesian persuasion. We show that the Sender

lies more when the lie detection probability increases. Moreover, the Sender’s and

the Receiver’s equilibrium payoffs are unaffected by a weak lie detection technology

because the Sender compensates by lying more.

In Chapter 4, I analyze optimal contracting for experimentation when the agent

who experiments and the principal who provides incentives agree to disagree over the

quality of the project. If efforts are contractible, the principal prefers to reward good

outcomes (efforts) exclusively for a more (less) optimistic agent. Moreover, longer

experimentation is sustained with non-common prior. If efforts are not contractible,

the optimal duration of experimentation is increasing in the agent’s confidence.
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Chapter 1

Introduction

Information and learning are at the heart of any economic problem with an uncertain

nature. People could obtain information by at least two approaches: learning from

potentially more informed people or actively generating information through exper-

imentation. In the first case, information transmission is often limited by strategic

incentives. In the second case, experimentation is typically costly and thus requires

external incentives. This dissertation consists of three independent essays with a

unified objective of improving learning in distinct environments. The first two essays

examine how to improve information transmission subject to strategic incentives. The

last chapter explores how to incentivize costly experimentation.

Chapter 2 considers the interaction between a recommender and a consumer whose

purchase decisions rely on the recommender’s expertise. The recommender has a pri-

vate type in his expertise. An informed type’s expertise is valuable for the consumer,

whereas an uninformed type lacks such expertise. In a one-shot game, information

transmission is possible only if the consumer sufficiently trusts the recommender.

This chapter analyzes the role of the recommender’s career concerns (dynamic incen-

tives) in improving information transmission. The uninformed type cannot mimic the

informed type, suggesting that the informed type can build a reputation for compe-
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tence and that an equilibrium in the repeated game should exhibit more information

transmission. However, I find a contrary result. The relationship breaks down com-

pletely, and no information is transmitted if the recommender is sufficiently patient.

Moreover, this occurs despite an arbitrarily small uncertainty in the expertise.

In Chapter 3, which is co-authored with Florian Ederer, we consider an environ-

ment in which a Sender passes information via a message to a Receiver who then takes

an action. The Sender commits to a reporting strategy, and the Receiver can detect

lies with positive probability whenever the reported message is inconsistent with the

true state. In this model, we ask whether such a lie detection technology improves

information transmission and makes the Receiver better off. We show that the Sender

lies more in response to a higher lie detection probability. Due to this strategic ef-

fect, the Sender’s and the Receiver’s equilibrium payoffs are unaffected by a weak lie

detection technology. However, a sufficiently strong lie detection technology strictly

benefits the Receiver and hurts the Sender.

In Chapter 4, I consider learning through costly experimentation instead. I em-

ploy a principal-agent framework in which the principal incentivizes the agent to

experiment on a project. I am interested in how differential beliefs can be exploited

to provide incentives. Specifically, the two parties are allowed to disagree over the

quality of the project. I study optimal contracting, particularly the optimal length

of experimentation when the two parties agree to disagree. In the absence of moral

hazard, the contract can be contingent on efforts and outcomes. If the agent is more

optimistic than the principal, the optimal contract rewards good outcomes exclu-

sively. Otherwise, the principal finds it more appealing to reward efforts exclusively.

In either case, longer experimentation is sustained than in the common-prior bench-

mark. When there is moral hazard, the contract can only depend on outcomes. In

the optimal contract, both the length of experimentation and the principal’s payoff

are increasing in the agent’s confidence.
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Chapter 2

Expert Recommenders and

Reputation Failure

2.1 Introduction

Recommenders, people in various roles ranging from financial advisors and insurance

sales agents to social media influencers, are supposed to be experts in their respective

fields and recommend suitable products to their audience, or more generally con-

sumers.1 However, not all recommenders may have sufficient expertise. For example,

many influencers on social media claiming to be experts actually lack formal train-

ing or comprehensive knowledge in their fields of expertise, rendering their blogs,

testimonials, and recommendations of limited informational value (Sabbagh et al.,

2020). Some influencers accounts are even fake (Ross, 2015) and engage in fraudulent

activities to boost and inflate influencer metrics.2

Consumers are not experts themselves and thus cannot distinguish between com-

petent and incompetent recommenders. So, incompetent recommenders undermine
1Strictly speaking, sometimes influencers are followed not because they have potential expertise,

but simply because their followers like them. This type of influencer, including most celebrities, is
not the object of interest of this chapter.

2See Influencity (2021) for different categories and examples of influencer fraud.
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the trust of consumers. For example, the Edelman (2021) shows that social media and

financial services are the least trustworthy sectors in 2021. In light of the trust issues,

the value of competent recommenders is limited because they cannot transmit valu-

able information to consumers. Thus, it entails substantial benefit if the relationship

between consumers and recommenders is enhanced.3

Specifically, this chapter studies how the reputational concerns of recommenders

affect this relationship. There is a large literature on the effects of reputation, in-

cluding the influential work of Ely and Välimäki (2003), who show that reputational

concerns are not always good.4 Their “bad reputation” result, however, relies on “bad

types” being able to mimic “good types.” In the case of recommenders, incompetent

types simply do not have the necessary information to mimic competent types. One

may expect then that reputational concerns would benefit the relationship between

consumers and recommenders. Intuitively, if unsuitable products are recommended,

consumers’ negative feedback would hurt the recommenders’ reputation. Provided

that recommenders care enough about their reputation, recommenders will thus be

disciplined to behave in consumers’ best interest, and incompetent recommenders

should eventually be driven out of the market.

However, I show that the above intuition is incorrect. This chapter highlights and

analyzes a new mechanism of reputation failure, suggesting reputational concerns can

be detrimental to the relationship even though incompetent recommenders cannot

mimic competent recommenders.

In particular, I examine an infinitely repeated game between a long-lived rec-

ommender (he) and a long-lived consumer (she). In each period, the recommender

has access to a new product and either recommends it to the consumer or does not.

Given a recommendation, the consumer then decides whether to buy the product.
3See Prior (2015), Zingales (2015), and Mannheim (2021) for further evidence on low trust in

these sectors and related professions.
4A detailed literature review is deferred to the end of this section.
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Otherwise, the consumer is not even aware of the product and makes no choice.

Two types of uncertainty arise in my model: the product may be suitable or

unsuitable to the consumer, and the recommender may be either informed or un-

informed. An informed recommender privately knows the product suitability, while

an uninformed recommender only knows its distribution. At the end of each period,

the suitability is publicly revealed if and only if the consumer buys the product.

Hence, the consumer draws an inference about the recommender’s type from both

the recommender’s actions and the feedback about suitability.

The consumer derives a value from the product and pays a fixed price if she buys

it. The recommender receives a commission when his recommendation is followed

but receives a penalty for making unsuitable recommendations. The two types of

recommender (informed or uninformed) have identical preferences ex-post, but the

discrepancy in their information results in a difference in their ex-ante preferences.

In the baseline model, I consider the most interesting scenario in which the informed

type’s static incentives are aligned with those of the consumer but the uninformed

type has misaligned static incentives.

There are two natural benchmarks in this repeated game with one-sided incom-

plete information. In the static benchmark, the Pareto-optimal equilibrium has an in-

tuitive cutoff structure. If the consumer is sufficiently confident in the recommender’s

expertise, she follows his recommendations. As a best response, the informed type

recommends honestly, and the uninformed type always recommends. If instead, the

consumer’s confidence in the recommender’s expertise is inadequate, the consumer

does not follow the recommendation and thus no information is transmitted. The

second benchmark considers the repeated game with complete information. If the

customer knows the recommender is uninformed, then the consumer does not follow

any recommendation in the unique equilibrium outcome. If instead she knows the

recommender is informed, there is a multiplicity of equilibria. However, in the unique

5



Pareto-optimal equilibrium, the consumer always buys and the informed type always

recommends honestly.

In the full model, I analyze the Markov perfect equilibria. The state variable is

the consumer’s belief that the recommender is informed, or, equivalently, the rec-

ommender’s reputation. In addition, I impose a property requiring that once the

recommender is believed to be informed with certainty, the Pareto-optimal equilib-

rium described in the complete information benchmark is played.

Under this solution concept, a trivial equilibrium is the complete relationship

breakdown: the consumer never follows any recommendation whenever there is un-

certainty in expertise. My main result shows this inefficient outcome is the unique

equilibrium outcome when the recommender is sufficiently patient, even when the

consumer is virtually certain that the recommender is informed. This result is in-

triguing for two reasons. First, the uninformed type lacks the information to mimic

the informed type, ensuring the latter can distinguish himself. Second, the consumer is

forward-looking and thus has experimentation incentives to screen the recommender’s

type. Both ingredients should help the informed type to build a reputation and

transmit information. Nonetheless, the relationship still breaks down and thus no

information is transmitted.

The culprits of the relationship breakdown are two countervailing forces. On the

one hand, the recommender receives a positive flow payoff only if he recommends

and the consumer buys. If the relationship does not break down, the uninformed

type must sometimes strictly prefer to recommend. On the other hand, if he strictly

prefers to recommend, the possible revelation of an unsuitable product accelerates the

separation of types and reduces his continuation payoff. In contrast, if he deviates

to not recommend, the consumer infers that he is certainly informed, after which he

receives a lucrative continuation payoff. Thus, when the recommender is sufficiently

patient, there is a profitable deviation from the putative action, implying the unin-
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formed type always at least weakly prefers not to recommend. As the implications of

these two forces are contradictory, an informative equilibrium must not exist.

This result suggests one explanation regarding low trust in people in roles such as

social media influencers and financial advisors. The relationship between consumers

and these people are hard to sustain even though reputational incentives for being hon-

est are present. Moreover, this result remains unchanged if the long-lived consumer is

replaced with a sequence of short-lived consumers who engage in observational learn-

ing. Thus, my model also speaks to applications that feature infrequent interactions.

For example, doctors prescribe new drugs to different patients, real estate brokers

recommend new properties to potential buyers, and management consultants provide

expert opinions to organizations or individuals.

I next identify the exact threshold of the recommender’s patience level above

which the relationship breaks down and find that this threshold only depends on the

expected product suitability and monotonically increases over it. In other words,

after fixing the recommender’s patience level, products that are ex-ante more likely

to be suitable are more likely to be recommended successfully. This comparative

static suggests that established big brands are more likely to succeed through influ-

encer marketing relative to less-known brands (e.g., brands of new entrants). Given

this prediction, less-known brands should be more cautious in adopting influencer

marketing.

I then explore the main result’s robustness to alternative solution concepts and

modeling assumptions. While the main result’s proof relies on the solution concept

that I use, the general message that reputational concerns can harm the relationship is

still obtained in some special cases even under weaker solution concepts. Furthermore,

the main insight also carries over to settings where the consumer’s inference is noisy

and where the consumer can buy products without recommendations.

Finally, I discuss several approaches to restore the relationship. First, the recom-
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mender’s commission is often predetermined in contracts, and thus the relationship

breakdown can be avoided if the commission level is chosen appropriately so that the

two types of recommender’s incentives align with the consumer’s. Second, in some

applications, the product space is large and the recommender may be able to examine

multiple products in a period. Due to the difference in expertise, the informed type

can select the best product, whereas the uninformed type cannot. It is therefore as

if the informed type has access to products with a higher expected suitability. If the

difference is sufficiently large, the relationship can be restored.

This chapter naturally belongs to the literature on bad reputation. The influential

paper by Ely and Välimäki (2003) studies the interaction between a long-lived agent

(the counterpart of the recommender) and a sequence of short-lived principals (the

counterpart of the consumer). The agent either has biased or an unbiased preferences

relative to the consumer’s preference. They find that when the agent’s reputational

incentives are strong, the unbiased agent is too eager to be separated from the biased

agent, and thus chooses an action that hurts the short-lived principal. Anticipating

this, the principal finds it in her best interest not to participate, and the market fails

altogether. Ely et al. (2008) generalize this insight in multiple directions and identify

a class of games where the mechanism applies.

My model differs from theirs in three aspects. First, I consider an informa-

tion/strategic type instead of a payoff type, which distinguishes the payoff structure

between my model and theirs. More importantly, this distinction also implies that

the “bad” type cannot mimic the “good” type in my model, whereas such mimicking

is possible in theirs. Second, my reputation failure result is unaffected with a patient

consumer, but their result disappears if the principal is patient. Last, they focus on

participation games in which once the principal stops participating, no information

is generated henceforth. In contrast, the consumer moves after the recommender in

my model. Even if the consumer does not buy the product at some period, the rec-

8



ommender’s action still reveals some information. In fact, if the order of moves is

reversed in their models, the bad reputation result disappears again.

A recent paper Deb et al. (forthcoming) also establish a bad reputation result in a

model with two long-lived players, one of whom has a strategic type. However, their

result applies only when the principal is impatient, and does not depend on the agent’s

discount factor. In contrast, this chapter’s result applies when the recommender is

patient and does not depend on the consumer’s discount factor. The difference in the

payoff structure is one crucial factor that drives the difference in results. The agent in

their model only cares about extending the relationship, but the recommender in my

model has direct concerns for the consumer’s suitability, making it easier to screen

the recommender’s type. Roughly speaking, their payoff structure corresponds to a

special case in this chapter in which both types of recommender have a conflict of

interest with the consumer. In this case, the results are consistent with theirs.5

This chapter is also related to a strand of literature on expert reputation, which

studies experts who strive to appear informed in different settings (e.g., Scharfstein

and Stein (1990); Trueman (1994); Ottaviani and Sørensen (2006a,b,c)).6 In those

models, the experts are evaluated based on the expert’s actions and underlying states.

There are two substantial differences compared to this chapter. First, the states are

realized independent of actions in those models. In contrast, the product’s suitability,

which is the counterpart of the state in my model, is revealed only if the product

is recommended and purchased. Second, those models are mostly in a cheap talk

framework. In comparison, the recommender’s action, particularly the action “not

recommending,” does affect the payoff directly, and thus my model does not fit in the

cheap talk framework.

Last, as an important application of this chapter, influencer marketing has caught
5Other papers that concern reputation failure include Schmidt (1993), Cripps and Thomas (1997),

Chan (2000), Morris (2001), Pei (2022), and Deb and Ishii (2021).
6See Marinovic et al. (2013) and recent papers such as Backus and Little (2020) and Vong (2022)

for a detailed survey of references.
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increased attention from researchers, yet the existing literature takes different per-

spectives. Pei and Mayzlin (forthcoming) model how firms choose compensation and

affiliation levels with influencers. Fainmesser and Galeotti (2021) and Mitchell (2021)

both study how influencers strategically choose content composition. Most of the

literature uses a static model and thus cannot capture reputation effects.

The rest of the chapter is organized as follows. Section 2.2 describes the model.

Section 2.3 defines the equilibrium and analyzes the two benchmarks. In Section 2.4,

I establish the main result, and in Section 2.5 I consider comparative statics for the

expected suitability of products and the recommender’s payoff structure. Section 2.6

contains various robustness checks and extensions. Section 2.7 concludes. All omitted

proofs are in Appendix 2.A.

2.2 Model

The model considers a discrete-time infinitely repeated game between two long-lived

players: a recommender (he) and a consumer (she). I first introduce the stage game

in the order of actions, information, and payoffs. Then I describe the ingredients that

connect the repeated game. Last, I discuss some assumptions that are less standard.

2.2.1 Stage Game

Actions: In each period, a new product becomes accessible to the recommender but

not to the consumer. The recommender moves first, and chooses to either recom-

mend (R) the product to the consumer or not (NR). Given a recommendation, the

consumer then chooses to buy the product (B) or not (NB). Given no recommenda-

tion, the stage game ends immediately, and the consumer does not make a decision.

Basically, if no recommendation is provided, the consumer is not even aware of the

product.
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Information: Two types of uncertainty are present in the model. First, the product

is either suitable (S) or unsuitable (NS) for the consumer, but the consumer only

knows it is suitable with probability q. Second, the recommender has uncertain ex-

pertise and is either informed or uninformed. An informed recommender (I) receives

a perfect signal of the suitability, whereas an uninformed recommender (U) receives

no signal. The recommender is informed with ex-ante probability θ0. In summary,

the informed recommender knows both the product’s suitability and his expertise, the

uninformed recommender only knows his expertise, and the consumer knows neither.

Payoffs: There are four possible outcomes in the stage game: the product is rec-

ommended but the consumer does not buy it; the product is not recommended; the

product is recommended, the consumer buys it, and it turns out to be suitable; and

the product is recommended, the consumer buys it, and it turns out to be unsuitable.

Denote the four outcomes by NB, NR, S, and NS, respectively.

If the consumer buys the product, she earns a payoff v − p, where v is the value

of the product,

v =


1 if product is suitable,

0 if product is unsuitable.

and p is the product’s fixed price. Meanwhile, denote the recommender’s payoff by

u if the product is suitable and u ≤ u if the product is unsuitable. Here, u can

be interpreted as the commission paid to the recommender, whereas u − u can be

interpreted as the penalty for making an unsuitable recommendation. Section 2.2.3

discusses the interpretations in more details.

If instead the consumer does not buy the product, either because the recommender

does not recommend or the consumer does not follow the recommendation, both

11



players’ payoffs are normalized to 0.7 Table 2.1 summarizes the payoff structure.

S NS NB NR
Consumer 1− p −p 0 0

Recommender u u 0 0

Table 2.1: The payoff structure in the stage game.

Notice that, if p ≤ q, then even in absence of the recommender, the consumer finds

it optimal to buy the product. On the other hand, if p ≥ 1, then it is so costly that

the consumer never buys it. Therefore, I restrict attention to parameters satisfying

the following assumption.

Assumption 2.1. q < p < 1.

The two types of recommender have an identical ex-post preference. Yet, the

discrepancy in their expertise may result in distinct ex-ante preferences, which are

determined by the parameters u, u, and q. The following definitions clarify when the

recommender’s static incentives are aligned with the consumer’s.

Definition 2.1. (Aligned Static Incentives)

• The informed recommender has aligned static incentives if u > 0 and u < 0. He

has misaligned static incentives if u < 0 or u > 0.

• The uninformed recommender has aligned static incentives if qu+(1− q)u < 0.

He has misaligned static incentives if qu+ (1− q)u > 0.

Essentially, a recommender with aligned static incentives would find it strictly

optimal to behave in the consumer’s interest in a one-shot game. This means that the

informed type recommends honestly and the uninformed type does not recommend.

In the baseline model, I focus on the most interesting case in which the informed

type has aligned static incentives and the uninformed type has misaligned static
7In principle, recommendation may incur a cost even though the consumer does not buy. However,

introducing a negligible cost does not change the main result.
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incentives. This restriction is captured by Assumption 2.2. The remaining cases are

more straightforward and are considered in Appendix 2.A.4.

Assumption 2.2. u > 0, u < 0, qu+ (1− q)u > 0,

To simplify the notation, denote

∆g = u, ∆b = u, ∆∅ = qu+ (1− q)u.

as the expected flow payoff of the recommender conditional on the signal g, b, ∅,

respectively. Then, Assumption 2.2 is equivalent to ∆b < 0 < ∆∅ < ∆g.

Recommender
draws a private

type {I, U}

Recommender
privately receives

s ∈ {g, b, ∅}

Recommender
chooses
action

Public outcome
NR observed

Consumer
chooses
action

Public outcome
NB observed

Public outcome
S or NS
observed

Payoffs
realized

NR

R B

NB

Figure 2.1: The flow chart of the model.

2.2.2 Repeated Game

The recommender’s type is persistent and drawn at the beginning of the game. Hence,

I exclude the possibility that an uninformed recommender learns to be informed

through gradual interactions with the consumer. In contrast, the value v is i.i.d.

across periods. The suitability is publicly revealed at the end of each period if, and
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only if, the consumer buys the product at that period. Last, both the consumer

and the recommender are forward-looking. Unless otherwise stated, they share the

same discount factor δ ∈ [0, 1). Figure 2.1 summarizes the game, where the rectangle

contains a typical stage game.8

2.2.3 Discussion of Assumptions

Most of assumptions of the model are standard, though some of them deserve further

discussion. First, the consumer is not allowed to purchase the product if no recom-

mendation is given. This assumption is imposed to simplify the analysis, and does

not drive the main result. See Section 2.6.4 for an extension in which the consumer

can buy the product without any recommendation.

Moreover, this choice is also natural in some circumstances. The products in some

categories, including beauty, fashion, and food, are very heterogeneous and updating

quickly. It is nearly impossible for the consumer to track all new products. Hence, if

a recommender does not recommend in a period, the consumer would not know which

product has arrived. In addition, even though the consumer knows which product

has arrived, she might not be able to purchase it. For example, patients cannot buy

certain medications without a prescription from doctors.

As to the payoff parameters, it is natural to interpret u as the commission because

it is a common form of compensation for financial advisors, social media influencers,

and doctors who prescribe drugs. The penalty u − u can be motivated in several

ways. First, an unsuitable recommendation hurts the consumer, and as a result, she

may report it to a professional association or market regulator, who then fines the

recommender. In fact, financial advisors can even be sued for making unsuitable

recommendations. Second, an unsuitable recommendation may also indirectly hurt

the firm that provides the product if the consumer leaves a negative review for the
8This figure is inspired by the flow chart in Deb et al. (forthcoming). The comparison between

two flow charts conveniently clarifies the models’ distinctions.
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product, and so the firm may transfer this cost to the recommender via explicit

contracts (the firm’s behavior, however, is not modeled in this chapter). Last, the

recommender may care about the consumer’s welfare for ethical reasons and thus

develops an intrinsic preference for recommending the correct product. This last

motivation is appropriate for health-related occupations such as doctors.9

In addition, the two types of recommender are modeled in an extreme way such

that the informed type is fully informed and the uninformed type knows nothing. On

top of tractability issues, this modeling choice also maximizes the difference between

the two types, rendering it harder for the uninformed type to mimic the informed

type. If no information can be transmitted with this maximal difference, there is

little hope when the two types differ less. Section 2.6.3 considers the extension when

the informed type’s signal is noisy.

2.3 Equilibrium

The baseline model restricts attention to Markov perfect equilibiria, where the natural

state variable is the consumer’s belief that the recommender is informed. The state

variable, denoted by θ, can be naturally interpreted as the recommender’s reputation.

The uninformed type’s Markov strategy is represented by r∅ : [0, 1] −→ [0, 1],

where r∅(θ) specifies the probability that the uninformed type recommends a product

when the state is θ. Due to additional information, the informed type’s Markov

strategy is represented by a pair of functions rg : [0, 1] −→ [0, 1] and rb : [0, 1] −→

[0, 1], where rs(θ) specifies the probability that the informed type recommends a

product when the state is θ and he observes a signal s ∈ {g, b}. A good signal g

implies the product is suitable, and a bad signal b implies the product is unsuitable.

Last, the consumer’s Markov strategy is given by b : [0, 1] −→ [0, 1], where b(θ)

specifies the probability that she buys a recommended product when the state is θ.
9See Inderst and Ottaviani (2012) for more justifications.
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Let θ|NB, θ|NR, θ|S, θ|NS be the posterior beliefs followed by each corresponding

outcome. Whenever Bayes’ rule is applicable, the posterior beliefs evolve as follows.

θ|NB =
θ [qrg(θ) + (1− q)rb(θ)]

θ [qrg(θ) + (1− q)rb(θ)] + (1− θ)r∅(θ)
,

θ|NR =
θ [1− qrg(θ)− (1− q)rb(θ)]

θ [1− qrg(θ)− (1− q)rb(θ)] + (1− θ)[1− r∅(θ)]
,

θ|S =
θrg(θ)

θrg(θ) + (1− θ)r∅(θ)
,

θ|NS =
θrb(θ)

θrb(θ) + (1− θ)r∅(θ)
.

Denote VU , VI , VC as the average discounted payoff of each player. Given a strat-

egy profile (rg, rb, r∅, b), let θt denote the public posterior belief after t periods. Then

the payoffs are defined accordingly.10

VU(θ0) = (1− δ)Eθt

∞∑
t=0

δtb(θt)r∅(θt)∆∅,

VI(θ0) = (1− δ)Eθt

∞∑
t=0

δtb(θt)[qrg(θt)∆g + (1− q)rb(θt)∆b],

VC(θ0) = (1− δ)Eθt

∞∑
t=0

δtb(θt)θt[q(1− p)rg(θt)− p(1− q)rb(θt)]

+ (1− δ)Eθt

∞∑
t=0

δtb(θt)(1− θt)(q − p)r∅(θt).

Formally, the Markov perfect equilibrium is defined as follows.

Definition 2.2. A strategy profile (r∅, rg, rb, b) and a belief system (θ|NB, θ|NR, θ|S,

θ|NS) constitute a Markov perfect equilibrium if

(a) there is no unilateral profitable deviation for ∀i ∈ {I, U, C};

(b) on-path beliefs are derived according to Bayes rule; and
10Be cautious that the three expectation signs have distinct meanings because the each (type of)

player is facing with a different distribution of posteriors.
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(c) if the belief reaches one, then any off-path belief stays at one.11

In what follows, I first characterize the Pareto-optimal equilibrium in the static

benchmark. Then, I analyze the complete information benchmark and introduce a

further refinement on the continuation play at θ = 1. Last, I establish the existence

of an equilibrium that survives the refinement in the full model. For brevity, I drop

the qualifiers in the solution concept whenever there is no confusion, and use the term

“equilibrium” instead.

2.3.1 Static Benchmark

In the one-shot game, the consumer has no experimentation incentive and the rec-

ommender does not need to worry about building his reputation. At any belief θ,

there are two possibilities. In the first case, the consumer does not buy the product:

b(θ) = 0. It follows immediately that everyone gets 0 payoff. This payoff can be sus-

tained by a plethora of equilibria; for example, the two types pool on recommending.

Given such play, the recommendation contains no information, and thus the consumer

refuses to buy the product. Such equilibrium is reminiscent of the “babbling equi-

librium” in the cheap talk literature. Strictly speaking, this game is not a standard

cheap talk model, but nonetheless, I use their terminology in this chapter. Hence-

forth, whenever every player receives zero payoff at a belief, the equilibrium outcome

at this belief is called babbling. Clearly, the babbling outcome can be sustained at

any belief.

In the second case, the consumer buys the product with a positive probability:

b(θ) > 0. Then by Assumption 2.2, the informed type strictly prefers to recommend

honestly: rg(θ) = 1, rb(θ) = 0, and the uninformed type strictly prefers to recom-

mend: r∅(θ) = 1. Given the recommender’s best responses, the consumer indeed
11This off-path restriction is commonly used in the literature (See Rubinstein (1985) and Vong

(2022)), which essentially identifies the subgame at θ = 1 as one of complete information.
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prefers to purchase the product if and only if the conditional value of the recom-

mended product exceeds its price.

p ≤ E[v|R] =
q

q + (1− q)(1− θ)
⇐⇒ θ ≥ p− q

p(1− q)
≡ θS. (2.1)

It is straightforward that this condition is equivalent to a lower bound on the reputa-

tion. The second possible outcome dominates the babbling outcome, but is sustain-

able only if the state θ is higher than threshold θS.

Since the two cases cover all possibilities, the Pareto-optimal equilibrium takes

a cutoff structure. As demonstrated in Figure 2.2, there is a no-purchase region for

θ < θS and a purchase region for θ ≥ θS, where the strategies in each region are

given below. Henceforth, this Pareto-optimal equilibrium is referred to as the static

equilibrium and θS is referred to as the static threshold.

0 1 θθS

No-Purchase Region Purchase Region

rg = 1, rb = 0, r∅ = 1, b = 1

Figure 2.2: Illustration of the Pareto-optimal equilibrium in the static benchmark.

• No-Purchase Region (θ < θS) : rg(θ) = rb(θ) = r∅(θ) = 1, b(θ) = 0.

• Purchase Region (θ ≥ θS) : rg(θ) = r∅(θ) = b(θ) = 1, rb(θ) = 0.

The cutoff increases in p and decreases in q. Intuitively, when the product is

less likely to be suitable ex-ante or the product’s price is high, the recommendation

has to be more informative to attract the consumer. But this is possible only if the

recommender has a higher reputation.
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2.3.2 Complete Information Benchmark

There are two cases in the complete information benchmark. If the recommender

is known to be uninformed, the unique equilibrium outcome features no purchase

because an uninformed recommender never benefits the consumer regardless of his

strategy. If the recommender is known to be informed, there are two possible equi-

librium outcomes.12

First, the “no purchase” outcome is still sustainable if the recommender ignores

his signal and always recommends. Conditional on the recommender’s strategy, it

is indeed optimal for the consumer not to purchase since the recommendation is

uninformative. Conversely, given that the consumer does not buy, the recommender

is indifferent in everything.

However, the other equilibrium outcome is much better, where the recommender

recommends a product if and only if the signal is good, and the consumer always

follows the recommendation. The recommender’s strategy and the consumer’s strat-

egy constitute mutual best responses. Conditional on the recommender’s strategy,

the consumer figures that a recommended product must be suitable and thus buys it

without a doubt. Conditional on the consumer’s strategy, the recommender has no

reputational concern and simply acts on the flow payoff. It follows from Assumption

2.2 that it is indeed optimal for him to recommend honestly. In this equilibrium,

information is fully embedded in the recommendation, rendering the equilibrium ef-

ficient.

Due to efficiency, the second outcome is naturally favored over the first outcome.

Thus, I exclude the unfavorable babbling outcome and focus on the efficient outcome.

Such a choice is implied by many renegotiation-proofness refinements.13

12If b > 0, then we obtain the second equilibrium outcome. Otherwise we get the first equilibrium
outcome.

13Examples include the strongly renegotiation-proof requirement in Farrell and Maskin (1989),
the strong consistency requirement in Bernheim and Ray (1989) and the consistent bargaining
equilibrium in Abreu et al. (1993).
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2.3.3 Equilibrium Existence

By Definition 2.2(c), selecting the efficient outcome in the complete information

benchmark is equivalent to imposing an additional property on the solution con-

cept in the full model. This property, referred to as “ “Efficiency at the Top"”, states

that once the recommender achieves full reputation, the efficient continuation equilib-

rium described in the complete information benchmark is played. Thus, the solution

concept used in the baseline model is Markov perfect equilibrium that satisfies “ “Ef-

ficiency at the Top"”. Again, I use the term “equilibrium” instead whenever there is

no confusion.

Mathematically, “ “Efficiency at the Top"” restricts the strategies at the top belief

to be r∅(1) = 1, rg(1) = 1, rb(1) = 0, b(1) = 1,14 which gives rise to the following

payoffs:

VU(1) = ∆∅, VI(1) = q∆g, VC(1) = q(1− p).

While the strategy at θ = 1 is completely determined, there is no restriction in

the strategies at θ < 1. Thus, the equilibrium existence is easily ensured. One trivial

equilibrium is described as follows: at any belief θ < 1, the consumer never buys

the product and the two types pool on recommending, whereas at θ = 1, they play

the efficient equilibrium. Abusing the notation, this equilibrium is still referred to

as a babbling equilibrium even though the play at θ = 1 is non-babbling. Perhaps

surprisingly, this babbling equilibrium turns out to be the unique equilibrium outcome

provided the recommender is sufficiently patient. In other words, the recommender’s

reputational concerns destroy all the surplus.
14Conditional on the consumer’s strategy, the uninformed type strictly prefers to recommend

because the flow payoff ∆∅ is positive by Assumption 2.2.
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2.4 Main Result: Relationship Breakdown

The main result states that an informative equilibrium exists if and only if the rec-

ommender’s discount factor is lower than a threshold δ < 1.

Proposition 2.1. Let δ = 1
1+

√
1−q

.

(a) If δ ≤ δ, there exists an equilibrium such that VU(θ), VI(θ), VC(θ) > 0, ∀θ ∈

[θ∗, 1) for some θ∗ < 1.

(b) If δ > δ, then in any equilibrium, VU(θ) = VI(θ) = VC(θ) = 0, ∀θ < 1.

The second part of Proposition 2.1 suggests an extreme relationship breakdown,

which applies even for a prior belief arbitrarily close to one. Moreover, this result

is not a limit result because it does not require an arbitrarily patient recommender.

The two parts combined suggest a stark discontinuity of equilibrium payoffs in the

recommender’s discount factor. In what follows, I first show part (a) by explicitly

constructing an informative equilibrium with a low discount factor. Then, I sketch

the proof of part (b) and discuss the underlying mechanism.

2.4.1 Informative Equilibrium with Impatient Players

The construction of the informative equilibrium, summarized in Claim 2.1, has an

identical cutoff structure as the static equilibrium. When the belief is lower than

some threshold, the outcome is babbling. When the belief is higher than the thresh-

old, the informed type recommends honestly, the uninformed type recommends with

probability one, and the consumer buys the product with probability one. The only

difference lies in the cutoff value.15 Due to the consumer’s experimentation incentive,

the cutoff here, denoted by θ∗, is strictly smaller than the static cutoff θS. Essentially,

even when the consumer’s flow payoff is negative, she might purchase the product to
15Similarly, the cutoff is not unique. Instead, I focus on the minimal cutoff that preserves this

type of equilibrium.
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discern the recommender better.

Claim 2.1. Let θ∗ = p−q

(1−q)p+
δ2q2(1−q)(1−p)

1−δ

. Then the following strategy profile and belief

profile constitute an equilibrium if δ ≤ δ.

• Purchase Region : θ ∈ [θ∗, 1]

Strategies: rg(θ) = 1, rb(θ) = 0, r∅(θ) = 1, b(θ) = 1.

Beliefs: θ|S = θ, θ|NS = 0, θ|NR = 1, θ|NB = qθ
qθ+1−θ

.

• No-Purchase Region : θ ∈ [0, θ∗)

Strategies: rg(θ) = 1, rb(θ) = 1, r∅(θ) = 1, b(θ) = 0.

Beliefs: θ|NB = θ (on path), θ|S = θ|NS = θ|NR = θ (off path).

Proof. The verification is deferred to Appendix 2.A.2.

0 1 θθ∗

No-Purchase Region Purchase Region

NS NR

S
θS

Figure 2.3: Illustration of the cutoff equilibrium.

In the no-purchase region, the recommender’s strategies leave both the recom-

mender’s action and the feedback on suitability uninformative. So, at a generic belief

θ in this region,

Vi(θ) = 0, i ∈ {I, U, C}.

In contrast, for a generic belief in the purchase region, the red curves in Figure

22



2.3 reflect the dynamics of posteriors.16 Specifically, the belief drops to 0 whenever

the consumer buys an unsuitable product. On the other hand, the belief jumps to 1

if no recommendation is given. Last, the belief does not move if the consumer buys

a suitable product, and it can then be computed for θ < θ∗,

VI(θ) = q∆g,

VU(θ) =
(1− δ)∆∅

1− qδ
· 1{θ<1} +∆∅ · 1{θ=1},

VC(θ) =
(1− δ)[q − p+ p(1− q)θ] + δqθ(1− q)(1− p)

1− qδ
.

Figure 2.4 depicts the payoffs of this cutoff equilibrium, and there are several im-

mediate observations. First, everyone’s payoff is weakly increasing in the reputation.

Second, the uninformed type’s payoff is discontinuous at θ = 1 due to the require-

ment (c) of the solution concept. Specifically, at an interior belief, an unsuitable

recommendation results in a complete loss of reputation, whereas an unsuitable rec-

ommendation at the extreme belief is off path and thus does not lead to any change

in reputation.

Third, the informed type achieves a higher payoff than the uninformed type. In

fact, this property holds in any equilibrium because they share the same ex-post pref-

erence but the former’s strategy space contains the latter’s. Last, the consumer’s

payoff is piece-wise linear and discontinuous at the cutoff θ∗. To see this, remember

that the consumer’s payoff is a weighted average of the payoff conditional on a rec-

ommendation and the payoff conditional on no recommendation. While the first part

is equal to 0 at the cutoff θ∗, the second part is always strictly positive because the

efficient continuation equilibrium is played with positive probability.

16The posterior θ|NB is not drawn in Figure 2.3 because it is irrelevant for the recommender’s
incentives, but it should lie between θ|S and θ|NS by the martingale property of belief updating.
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0 θ∗ 1

∆∅

q∆g

θ

VI(θ), VU (θ)

VU(θ)
VI(θ)

(a) The Recommender’s Equilibrium Payoffs

0 θ∗ 1

q(1− p)

θ

VC(θ)

VC(θ)

(b) The Consumer’s Equilibrium Payoff

Figure 2.4: Equilibrium payoffs of the cutoff equilibrium.

2.4.2 Babbling Equilibrium with Patient Players

Observe that the cutoff equilibrium fails to exist for δ > δ because when the con-

sumer’s belief falls in the purchase region, the uninformed type’s reputational con-

cerns would be so strong that he finds it profitable to deviate to not recommend. In

particular, his incentive constraint requires

VU(θ) ≥ δVU(1) ⇐⇒ 1− δ

1− qδ
≥ δ ⇐⇒ δ ≤ 1

1 +
√
1− q

= δ.

Proposition 2.1(b) generalizes this observation. If δ > δ, not only does this cutoff

equilibrium fail to exist, but, in fact, any informative equilibrium fails to exist. To this

end, it is equivalent to show that the consumer never follows any recommendation,

at any belief θ < 1.

Suppose the consumer buys with positive probability at some belief θ < 1 in some

equilibrium. The proof’s sketch can be broken down into two steps. In the first step,

I prove the existence of a belief at which the consumer buys with positive probability

and the uninformed type strictly prefers to recommend. If no such belief exists,
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the uninformed type always prefers to not recommend when the consumer buys,

suggesting he receives zero payoff at any interior belief. However, this contradicts the

presumption that the consumer buys with positive probability at some belief.

The second step, on the contrary, argues that such a belief cannot exist, thereby

concluding the proof. Suppose the uninformed type recommends with probability one

and the consumer buys with positive probability at some belief. Then, the outcome

NR must be on path; otherwise, the two types pool on recommending, rendering the

recommendation uninformative. But this is impossible because the consumer would

find it profitable to deviate and not buy. Now that the outcome NR is on path,

it leads to a full reputation by Bayes’s rule, and therefore the static incentives and

dynamic incentives are aligned for an informed type who observes a bad signal. He

strictly prefers to not recommend, further implying that the informed type never

recommends unsuitable products. Hence, the outcome NS is conclusive evidence

of being uninformed. Due to a lack of expertise, the uninformed type inevitably

recommends an unsuitable product sometimes, in which case the continuation payoff

is zero. But if he deviates to not recommend, the continuation payoff is lucrative. It

then follows that he has a profitable deviation from the putative equilibrium when he

is sufficiently patient.

The sketch of the proof highlights two countervailing forces. On the one hand, the

uninformed type gets a positive flow payoff only if he recommends and the consumer

buys. This feature ensures that he gets a positive payoff and recommends with prob-

ability one at some interior belief. On the other hand, whenever he recommends with

probability one, the possible revelation of an unsuitable product accelerates the sep-

aration of types and thus lowers his continuation payoff. In contrast, the deviation to

not recommend yields him the highest reputation and a lucrative continuation payoff.

Hence, if his reputational concerns are strong, the second force kills the possibility

that he gets a positive payoff while recommending with probability one at an interior
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belief.

The culprit of the relationship breakdown is the uninformed recommender’s rep-

utational incentives. Hypothetically, if we let both the informed recommender and

the consumer be myopic, the arguments above remain valid. This is in stark contrast

with Ely and Välimäki (2003) and Deb et al. (forthcoming). In the former, the un-

biased agent’s reputational incentives generate a bad reputation result. In the latter,

the agent’s discount factor does not play an important role. Instead, their insights

require that the principal is long-lived but impatient.

Several elements of the model are crucial for this result. First, suitable products

only arrive stochastically so that not recommending is sometimes necessary. Second,

not recommending immediately ends the game without generating any payoff. These

two features combined give the uninformed type a leeway to camouflage himself by

playing NR. This result fails if each option of the recommender must reveal infor-

mation regarding the type. To understand this, consider the following variant of

the original model. One suitable product and one unsuitable product simultaneously

arrive in each period. An informed recommender can tell the two products apart,

whereas the uninformed recommender and the consumer cannot. The recommender’s

task here is to select which product to recommend and does not have the option to

not recommend. In this scenario, the uninformed type gets the same flow payoff with

either choice so that the first force identified above disappears. As a result, it is

possible to sustain an informative equilibrium.17

I end this section by commenting on the informed type’s signal structure. Having

a binary and perfect signal simplifies the dynamics of posteriors and is necessary for

the construction of equilibrium in Claim 2.1. However, it is not so necessary for

the reputation failure result. More broadly, the proof can be adapted for any signal
17For example, the informed type always chooses the suitable product, the uninformed recom-

mender strictly mixes over two products, and the consumer follows the recommendation if the
recommender’s reputation is sufficiently high.
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structure that satisfies the following property: when the product is unsuitable, then it

is believed to be unsuitable with sufficiently high probabilities for any possible signal

realizations. The binary and perfect signal structure is one obvious example that

satisfies this property, but it is not the unique one. See Section 2.6.3 for more details.

2.5 Comparative Statics

In this section, I examine comparative statics with respect to the expected product

suitability q, and the payoff parameters u, u.

2.5.1 Expected Product Suitability

The threshold of the discount factor in Proposition 2.1 takes the following form.

δ(q) =
1

1 +
√
1− q

,

where q ∈ ( −u
u−u

, p) by Assumption 2.1 and 2.2. As expected, the threshold is increas-

ing in q. If the product is ex-ante more likely to be suitable, the uninformed type

makes less unsuitable recommendations, on average. As a result, the second force

that pushes the uninformed type to not recommend gets weaker. Hence, it is easier

to sustain an informative equilibrium for a fixed discount factor.

What if the expected suitability lies outside the range in which Proposition 2.1

applies? If q ≥ p, it is trivial to construct an efficient equilibrium because even an

uninformed type is beneficial for the consumer. In particular, the following efficient

equilibrium outcome can be sustained for any discount factor δ < 1: at any belief,

the informed type recommends honestly, the uninformed type always recommends,

and the consumer always follows the recommendation.

If q ≤ −u
u−u

, one may expect a bad outcome to occur because more information

is required to attract the consumer. However, this logic ignores the fact that q also
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affects the uninformed type’s static incentive. When the expected suitability is suf-

ficiently small, recommending is exceptionally risky for him since it accelerates the

separation of types and results in a negative expected flow payoff. Indeed, the unin-

formed type must always get zero payoffs in any equilibrium, and an obvious way to

achieve this payoff is to never recommend. Using this fact, an efficient equilibrium is

constructed as follows: at any θ ∈ (0, 1], the informed type recommends honestly, the

uninformed type never recommends, and the consumer always follows the recommen-

dation. Again, this efficient equilibrium can be sustained independent of the discount

factor.

Taken together, a non-monotonicity emerges. For products that are either very

likely to be suitable or very likely to be unsuitable, the uncertainty in expertise is

not an issue at all. However, when products are of intermediate expected suitability,

even arbitrarily small uncertainty in expertise causes a relationship breakdown.

2.5.2 Recommender’s Payoff Structure

The baseline results are derived under the assumption that the (un)informed type’s

static incentives (does not) align with the consumer’s. This is ensured by Assumption

2.2: ∆b < 0 < ∆∅ < ∆g. In this extension, I explore alternative payoff structures.

While doing so, I maintain that u ≥ u, which preserves the ranking among ∆g,∆∅,∆b.

This is a natural assumption to impose because u − u can be viewed as a penalty

for making unsuitable recommendations. A negative penalty means rewarding for

unsuitable recommendations, which is hard to justify. In addition, I ignore knife-

edging cases where any of ∆g,∆b,∆∅ equals 0.

In the first case, assume 0 < ∆b ≤ ∆∅ ≤ ∆g. This payoff structure suggests the

informed type has a perverse static incentive to recommend even when he observes a

bad signal. Given such a perverse incentive, the consumer never follows any recom-

mendation in the static benchmark. If she does, then any type of recommender strictly
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prefers to recommend, leaving the recommendation completely uninformative.18 Per-

haps surprisingly, patience does not overturn the inefficiency in the static benchmark.

This perverse static incentive is so strong that it precludes any informative equilib-

rium for any discount factor δ < 1, and therefore the relationship breakdown is even

stronger than in the baseline model. Formally,

Proposition 2.2. Assume 0 < ∆b ≤ ∆∅ ≤ ∆g. Then for any δ < 1, the unique

equilibrium outcome is VU(θ) = VI(θ) = VC(θ) = 0, ∀θ ∈ [0, 1].

Proof. See Appendix 2.A.4.

Roughly speaking, while the informed type possesses useful information, his per-

verse static incentive prevents the information from being transmitted to the con-

sumer. Thus, it is as if he is an uninformed type.

In the second case, ∆b < 0 < ∆∅ < ∆g. This is an ideal scenario in which the

static incentives of both types of recommender align with the consumer’s. Similar to

the last case in Section 2.5.1, an efficient equilibrium exists for arbitrary δ < 1.

Proposition 2.3. Assume ∆b < ∆∅ < 0 < ∆g. Then the following strategy profile

and beliefs constitute an efficient equilibrium for any δ < 1.

• Strategies: rg(θ) = 1, rb(θ) = 0, r∅(θ) = 0, b(θ) = 1.

• Beliefs: θ|S = θ|NS = θ|NB = 1, θ|NR = θ(1−q)
1−qθ

.

In the last case, ∆b ≤ ∆∅ ≤ ∆g < 0, and in fact, this case may appear un-

reasonable because it requires the commission u to be negative. However, this is

unreasonable only because the informed type has a perfect signal. If instead he re-

ceives a noisy signal, then the expected flow payoff conditional on a good signal (∆g)
18For a fair comparison, I employ the same solution concept as in the baseline results. However,

“Efficiency at the Top" has no bite here because the unique equilibrium outcome at the top belief
is the babbling outcome.
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would be a weighted average of u and u. It is then possible to have a negative ∆g

while simultaneously keeping u positive. Nevertheless, for the purpose of consistency,

I maintain the perfect signal assumption.

In this payoff structure, the informed type’s static incentive is perverse in a dif-

ferent way because he prefers to not recommend even after observing a good signal.

Intuitively, recommendation is too costly for both types of recommender because any

purchase would yield them a loss in expectation. On the other hand, they could

secure zero payoff by never recommending. Hence, the unique equilibrium outcome

must again be babbling. Likewise, this result does not hinge on the discount factor

either. The proof is straightforward and thus omitted.

Proposition 2.4. Assume ∆b ≤ ∆∅ ≤ ∆g < 0. Then for any δ < 1, the unique

equilibrium outcome is VU(θ) = VI(θ) = VC(θ) = 0, ∀θ ∈ [0, 1].

u
u−u0 1− q 1

Low Payoffs
for Large δ

I: aligned
U : misaligned

Babbling
for any δ

I: misaligned
U : misaligned

Efficient Equilibrium
for any δ

I: aligned
U : aligned

Babbling
for any δ

I: misaligned
U : aligned

Figure 2.5: Summary of equilibrium outcomes under different payoff structures.

Conditional on u ≥ u, the recommender’s payoff structure can be summarized

by a single ratio u
u−u

. For example, the payoff structure in the baseline model (As-

sumption 2.2) is equivalent to u
u−u

∈ (1 − q, 1). Making use of this observation,

Figure 2.5 compactly presents a summary of the equilibrium outcomes for all four

different payoff structures. The comparison across payoff structures suggests that it

is possible to avoid relationship breakdown if the static incentives of both types of

recommender align with the consumer’s. Moreover, this condition is also necessary.

If either type has misaligned static incentives, the relationship cannot be sustained

when the recommender is sufficiently patient.
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2.6 Extensions

In this section, I explore the robustness of the main result to weaker solution concepts

and alternative modelling assumptions.

2.6.1 Alternative Solution Concepts

In the baseline model, I consider two refinements—Markov perfection and “Efficiency

at the Top". In this section, I weaken the solution concept in two ways. First, I

drop “Efficiency at the Top" while maintaining the Markov restriction. I show that

when either the uninformed type is a commitment type who plays a pure strategy, or

the informed type is a commitment type who recommends honestly, the equilibrium

payoff of each player vanishes as the recommender gets patient. Then, conversely, I

drop the Markov restriction while maintaining “Efficiency at the Top". I find that as

long as the consumer is not so patient, the main result applies.

Babbling at the Top

As previously mentioned, the implication of “Efficiency at the Top" is that once

the recommender is believed to be informed with certainty, the continuation play is

efficient. If the continuation play is inefficient, then it must be babbling according to

Section 2.3.2. Thus, it suffices to analyze equilibria that satisfies a property called

“ “Babbling at the Top"".

The first observation is that, by coordinating on the worst equilibrium once the

uncertainty is resolved, it is actually possible to construct an informative equilibrium

for arbitrary discount factor δ < 1.19 The construction is identical to the cutoff

equilibrium in Section 2.4 except that I impose “ “Babbling at the Top"". The equi-

librium is described in Claim 2.2 and is henceforth referred to as the modified cutoff
19This is similar in spirit to Deb et al. (forthcoming), where the main insight is that reputational

incentives can be exceedingly strong unless the players coordinate on maximally inefficient strategies.

31



equilibrium.

Claim 2.2. Let θ∗∗ = p−q
p(1−q)

.20 Then, the following strategy profile and belief system

constitute a Markov perfect equilibrium for any δ ∈ [0, 1).

• Purchase Region: θ ∈ [θ∗∗, 1)

Strategies: rg(θ) = 1, rb(θ) = 0, r∅(θ) = 1, b(θ) = 1.

Beliefs: θ|S = θ, θ|NS = 0, θ|NR = 1, θ|NB = qθ
qθ+1−θ

.

• No-purchase Region: θ ∈ [0, θ∗∗) ∪ {1}

Strategies: rg(θ) = 1, rb(θ) = 1, r∅(θ) = 1, b(θ) = 0.

Beliefs: θ|NB = θ (on path), θ|S = θ|NS = θ|NR = θ (off path).

Proof. The verification is deferred to Appendix 2.A.5.

This equilibrium gives rise to the following payoffs. When θ ∈ [θ∗∗, 1),

VU(θ) =
1− δ

1− qδ
∆∅, VI(θ) =

q(1− δ)

1− qδ
∆g, VC(θ) =

(1− δ)[q − p+ p(1− q)θ]

1− qδ
. (2.2)

Otherwise,

Vi(θ) = 0, ∀i ∈ {U, I, C}.

Why does this equilibrium survive when the recommender is patient? In the mecha-

nism of a relationship breakdown, a key step is that whenever the uninformed type

recommends aggressively, there is a force that pushes him toward a deviation to not

recommend. Strictly speaking, such a force has two parts. First, the revelation of
20As usual, θ∗∗ is the minimal cutoff such that an equilibrium with this cutoff structure exists.

It is higher than θ∗, the cutoff of the equilibrium in Section 2.4. “ “Babbling at the Top"" drives
the difference. It can be computed that the consumer’s payoff is 0 at the cutoff θ∗∗, conditional
on both recommendation and no recommendation. Since θ∗∗|S = θ∗∗ and θ∗∗|NS , θ

∗∗|NB < θ∗∗,
experimentation essentially brings no value at θ∗∗ as both buying and not buying lead to zero
continuation payoff. It then follows that only the static incentives matter at the cutoff, implying θ∗∗

equals the static cutoff θS . In contrast, the consumer’s payoff is strictly positive at θ∗ in the original
cutoff equilibrium because of “Efficiency at the Top". This ensures that experimentation still has a
value at θ∗.
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the product suitability lowers his continuation payoff if he recommends. Second, a

deviation leads to the highest reputation and thus the highest continuation payoff

by “Efficiency at the Top". Yet, under “ “Babbling at the Top"", being identified as

informed is the worst thing that can happen. Hence, the second part of the force fails

so that the uninformed type has no incentive to deviate to not recommend.

However, the first part of the force remains in effect, and as a result, the unin-

formed type cannot get a high payoff. Moreover, the more patient the recommender,

the larger amount of continuation payoff is reduced due to the revelation of the prod-

uct suitability. This intuition is formalized in Proposition 2.5. Before the result,

denote Eδ to be the set of Markov perfect equilibrium associated with an arbitrary

discount factor δ < 1.

Proposition 2.5. Assume ““Babbling at the Top"". Then

lim
δ→1

sup
e∈Eδ

sup
θ∈[0,1]

VU(θ; e) = 0.

Proof. See Appendix 2.A.6.

This result might be natural for many readers because whenever the uninformed

type recommends, he is further separated from the informed type. But on the other

hand, the only way to get a positive flow payoff is to recommend. Hence, from a

long-run perspective, the types are eventually separated. It then follows that the

uninformed type’s payoff must vanish as he gets patient.

How about the informed type and the consumer? If full separation occurs almost

surely, it seems that their payoffs should also vanish as δ increases as the outcomes at

two extreme beliefs are both bad. In fact, Equation (2.2) suggests that their payoffs

indeed go to 0 in the modified cutoff equilibrium as δ goes to 1. If an analogous
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result of Proposition 2.5 with the informed type and the consumer is shown, it can

be viewed as a weaker version of reputation failure. Basically, reputational incentives

are still harmful and can destroy all the surplus as the recommender gets arbitrarily

patient.

While these results are desirable and intuitive, it is difficult to establish them.

Instead, I provide two orthogonal sets of restrictions, under which the informed type’s

payoff and the consumer’s payoff both vanish as the recommender gets patient. In

the first type of restriction, the uninformed type is a commitment type who always

plays a pure strategy.21 In the second type of restrictions, the informed type is a

commitment type who always recommends honestly, and the consumer is myopic.

Essentially, both types of restrictions play the same role and make it impossible for

the uninformed type to mimic the informed type. As a result, the types are separated

at a faster speed. But due to “ “Babbling at the Top"", full separation hurts everyone,

and it follows, then, that neither type can obtain a high payoff.

Proposition 2.6 formalizes the result under the first type of restriction. Denote

EU
δ as the set of Markov perfect equilibrium associated with any discount factor δ < 1

such that r∅(θ) ∈ {0, 1}, ∀θ ∈ [0, 1]. It is not empty as the modified cutoff equilibrium,

described in Claim 2.2, belongs to EU
δ .

Proposition 2.6. Assume ““Babbling at the Top"". Then for i ∈ {C, I},

lim
δ→1

sup
e∈EU

δ

sup
θ∈[0,1]

Vi(θ; e) = 0.

Proof. See Appendix 2.A.7.

Proposition 2.7 formalizes the result under the second type of restriction. Denote
21Ely and Välimäki (2003) also assume that one of the type is a commitment type. Otherwise,

they impose a renegotiation-proof refinement which plays the same role as the “Efficiency at the
Top" property.
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EI,C
δ as the set of Markov perfect equilibrium associated with any discount factor

δ < 1 such that rg(θ) = 1, rb(θ) = 0, ∀θ ∈ [0, 1] and the consumer is myopic. Abusing

notation, let VC(θ) be the consumer’s non-discounted payoff.

Proposition 2.7. Assume ““Babbling at the Top"". Then,

(a) lim
δ→1

sup
e∈EI,C

δ

sup
θ∈[0,1]

VI(θ; e) = 0,

(b) lim
T→∞

E[VC(θ
T )] = 0, where θT is the consumer’s posterior after T periods, and

θ0 = θ.

Proof. See Appendix 2.A.9.

To demonstrate that EI,C
δ is non-empty, I explicitly construct an equilibrium,

summarized in Claim 2.3. In fact, it Pareto dominates any equilibrium within this

class point-wise.22

Claim 2.3. Define θk = p−q
1−q

· 1
1−(1−p)(1−q)k

, k ∈ N and θ∞ = p−q
1−q

.23 The following

strategy profile and belief system constitute a Markov perfect equilibrium.

• Region I: θ ∈ [θ0, 1]

Strategies: rg(θ) = r∅(θ) = b(θ) = 1, rb(θ) = 0

Beliefs: θ|S = θ, θ|NS = 0, θ|NR = 1, θ|NB = qθ
qθ+1−θ

.

• Region IIk for k ∈ N+: θ ∈ [θk, θk−1)

Strategies: rg(θ) = 1, rb(θ) = 0, r∅(θ) =
q(1−p)
p−q

· θ
1−θ

, b(θ) = δk.

Beliefs: θ|S = θ0, θ|NS = 0, θ|NB = θ∞, θ|NR = (p−q)(1−q)θ
p−q−p(1−q)θ

.

• Region III: θ ∈ [0, θ∞]

Strategies: rg(θ) = r∅(θ) = 1, rb(θ) = b(θ) = 0.

Beliefs: θ|S = θ, θ|NS = 0, θ|NR = 1, θ|NB = qθ
qθ+1−θ

.
22This equilibrium still exists even when the consumer is long-lived and the informed type is not

committed to recommend honestly. In that case, the equilibrium payoffs vanish as δ goes to 1 as
well, but it is unclear whether Proposition 2.7 holds generally after dropping these restrictions.

23It can be easily verified that θ∞ < θk and θk+1 < θk for ∀k ∈ N.
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Proof. The verification is deferred to Appendix 2.A.8.

In addition to a no-purchase region and a purchase region, there is a new region

for intermediate beliefs where both the consumer and the uninformed type strictly

mix. The new region can be further partitioned into countable sub-regions. Due to

the complicated cutoff structure, this equilibrium is referred to as the general cutoff

equilibrium, illustrated in Figure 2.6.

0 1 θθ∞

III: No-Purchase I: Purchase...... II2 II1

θ0θ1θ2......

NS

NR

S

NS
NR

S

Figure 2.6: Illustration of the general cutoff equilibrium.

Rename I and III, respectively, to II0 and II∞, and denote the payoff of player

i ∈ {U, I} restricted in the sub-region IIk by V k
i for k ∈ N ∪ {∞}. Then, the

recommender’s payoff can be compactly represented by

V k
U (θ) =

1− δ

1− qδ
δk∆∅, V k

I (θ) =
1− δ

1− qδ
δk

[
1− (1− q)k+1

]
∆g. (2.3)

Meanwhile, the consumer’s payoff is a piece-wise linear function:

VC(θ) =


q − p+ p(1− q)θ if θ ∈ [θ0, 1).

0 otherwise.
(2.4)

According to Equation 2.3, supθ∈[0,1] VI(θ) is bounded above by 1−δ
1−qδ

∆g, which con-

verges to zero as δ goes to one. Since this equilibrium is point-wise Pareto dominant

within EI,C
δ , the first part of Proposition 2.7 follows naturally.
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As for the second part, note that there is no flexibility in the consumer’s payoff

within EI,C
δ . For any equilibrium in this class, the consumer’s payoff must take the

form described by Equation 2.4. For a generic belief θ, the consumer’s payoff after T

periods is positive only if the posterior lives in region I. But even for a belief in this

region, there is a constant attrition in the sense that the posterior jumps up to 1 or

down to 0 with a total probability 1− q, in which cases the consumer’s payoff equals

0 henceforth. Thus, after a sufficiently long period, the posterior is almost surely at

one of the extreme beliefs, establishing the second part of Proposition 2.7.

Non-Markov Equilibria

When the Markov restriction is relaxed, the strategies must be redefined. Recall that

in each period, there can be only four outcomes: NR, NB, S, NS. Then, the public

history at the beginning of period t, given below, contains all previous actions and

outcomes observed by the consumer and both types of recommender.

ht−1 ∈ {NR,NB, S,NS}t−1.

with the usual convention that h0 = ∅. Both the consumer and the uninformed type

have no additional private history. The informed type, on the other hand, additionally

observes a signal s ∈ {g, b} of the product’s value in every period. It follows that his

private history at the beginning of period t is given by

ht−1
I ∈ {NR,NB, S,NS}t−1 × {g, b}t−1.

However, when the signal is perfect, as is the case here, some histories are not plausi-

ble. If the public outcome at some period was S (NS), then the signal must be g(b)

to be consistent. Henceforth, denote H as the set of public histories, and denote HI
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as the set of the informed type’s private histories that are consistent with the public

history.

The strategies are defined as follows. The strategy of the consumer b(ht−1) :

H −→ [0, 1] specifies the probability of buying the product at the history ht−1.24

The uninformed type’s strategy r∅(h
t−1) : H → [0, 1] specifies the probability that

he makes a recommendation at the history ht−1. Last, the informed type’s strat-

egy is again represented by a pair of functions: rg(h
t−1, st−1) : HI → [0, 1] and

rb(h
t−1, st−1) : HI → [0, 1], which, respectively, specifies the probability that he

makes a recommendation at his private history (ht−1, st−1) when the current period

signal is good/bad.

After dropping the Markov restriction, there is a plethora of equilibria when the

recommender is believed to be informed with certainty. However, “Efficiency at the

Top" still uniquely selects the efficient equilibrium in which the consumer always

buys the product. Further, the Markov restriction entails an additional implication,

referred to as the “No-Information-No-Purchase" property. It states that, at any

belief, it is impossible that both types of recommender pool on recommending, yet the

consumer buys the product with positive probability. Formally, there is no Markov

perfect equilibrium such that r∅(θ) = rg(θ) = rb(θ) = 1, b(θ) > 0 for some belief

θ ∈ [0, 1].

Thus, the main result (Proposition 2.1(b)) can be decomposed into two steps.

First, when the recommender is sufficiently patient, the unique Markov perfect equi-

librium that satisfies “Efficiency at the Top" and “No-Information-No-Purchase" is

the babbling equilibrium. Second, every Markov perfect equilibrium that satisfies “Ef-

ficiency at the Top" also satisfies “No-Information-No-Purchase". The first step can

be generalized to non-Markov equilibria without additional difficulty.25 Analogously,
24The consumer moves after the recommender and also observes whether the recommender rec-

ommends in the current period. But such information is vacuous because she makes a decision only
if the recommender recommends.

25To accommodate non-Markov equilibria, replace the belief with the history in defining “No-
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the uninformed type receives zero payoff at any on-path public history. It follows,

then, that the consumer cannot buy the product at any on-path public history. The

second step can also be generalized if we disentangle the consumer’s discount factor

from the recommender’s and consider an impatient consumer. Let the consumer’s

and the recommender’s discount factor, respectively, be δc and δr. The following

assumption provides a sufficient condition for “No-Information-No-Purchase".

Assumption 2.3. δc ≤ p−q
p(1−q)

.

Intuitively, by following an uninformative recommendation, the consumer bears a

loss (q − p)(1− δ) in the flow payoff but at most gains q(1− p)δ in the continuation

payoff. When she is sufficiently impatient, the loss outweighs the gain so that she

strictly prefers to not follow the recommendation. Since both steps can be generalized,

the main insight that reputational concerns can destroy the surplus carries over to

this extension as well.

Proposition 2.8. Assume δc ≤ p−q
p(1−q)

and δr > 1
1+

√
1−q

. Then any equilibrium that

satisfies “Efficiency at the Top" is babbling.

Proof. See Appendix 2.A.10.

An alternative sufficient condition to generalize the second step is to impose an

off-path condition. Specifically, at any histories such that NR is off path, let the

off-path belief be equal to 1. This off-path condition ensures “No-Information-No-

Purchase"; otherwise, the informed type would then strictly prefer to deviate to not

recommend when he receives a bad signal as it yields both a higher flow payoff and

a continuation payoff.

Information-No-Purchase".
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2.6.2 Product Selection

An important element of the baseline model is that the two types face the same

products and suitable products only arrive stochastically. However, in real life, an

informed type may be able to actively select products. For example, there may be

multiple new products of independent values, and the informed type knows each

product’s value and decides whether to recommend the best one. In contrast, the

uninformed type does not know the value of any product and behaves as if he only

sees one product.

The probability that at least one of the products is suitable clearly exceeds the

probability that a randomly drawn product is suitable, and therefore the two types are

essentially facing products with different expected suitability. Thus, the selection can

be conveniently incorporated into the model without changing the underlying product

structure. In each period, let the product that arrives at the informed (uninformed)

type be suitable with probability q′ (q), where q′ > q. The next proposition suggests

that the main insight carries over to this setting if the selection is not too strong.

The arguments are repeating the main result’s proof and are thus omitted.

Proposition 2.9. If q′ < p and δ > δ = 1
1+

√
1−q

, the unique equilibrium is babbling.

The assumption q′ < p ensures “No-Information-No-Purchase", which is a key

ingredient of the main result. Intuitively, if the selection is sufficiently strong, i.e.,

q′ is sufficiently high, then even when the two types pool on recommending, the

consumer may want to buy the product as long as she believes the recommender is

informed with high probabilities. This comparison implies that it is more likely to

retain consumers’ trust when the product space is large because the informed type

could then demonstrate his competence through product selection. This prediction

matches the fact that the most successful categories in influencer marketing, including

beauty and apparel, are often the categories with countless new products.
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2.6.3 Noisy Inference

In the baseline model, the consumer’s inference of the recommender’s type is not

interfered with any noise. This extension considers noisy inference, which may arise

in two different settings: 1) the informed type is not perfectly informed about the

consumer’s preference, and 2) the product’s suitability is revealed with a noise. The

second setting is more plausible if we consider a sequence of short-lived consumers,

where subsequent consumers may not perfectly know the payoffs of previous con-

sumers. Mathematically, these two settings are equivalent, but it is easier to describe

the first setting. In what follows, I explore whether the main insight extends to

alternative signal structures.

First, as briefly mentioned in Section 2.4, the proof of Proposition 2.1(b) does not

require the signal to be perfect. The essential property is that when the product is

unsuitable, it is believed to be unsuitable with sufficiently high probabilities for any

possible signal realizations. This property ensures that when the uninformed type

recommends with probability one, NS is conclusive evidence of being uninformed

so that the type’s continuation payoff from recommending is bounded away from the

continuation payoff if he deviates to not recommend. In the context of a binary signal

s ∈ {g, b}, this property is satisfied for any signal structure that satisfies Assumption

2.4.26

Assumption 2.4. Pr(s = b|v = 0) = 1 and Pr(s = g|v = 1) = µ ∈ ( qu+(1−q)u
qu

, 1].

As the previous discussion suggests, the proof of the main result goes through

under any binary signal structure, satisfying Assumption 2.4.

Proposition 2.10. Suppose the informed type’s signal structure satisfies Assumption

2.4. Then there exists δ < 1 such that, for any δ > δ = 1
1+

√
1−q

, the unique equilibrium

26The signal needs not to be binary. Generally, let S be the set of possible realizations, and
f(s|v) is the conditional probability that s is realized given the value is v. Then a counterpart of
Assumption 2.4 is f(s|v=0)

f(s|v=1) > − qu
(1−q)u for ∀s ∈ S such that f(s|v = 0) > 0.
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outcome is babbling.

Proof. See Appendix 2.A.11.

Note that Assumption 2.4 still requires the good signal to be perfect. If both

signals are imperfect, the main result’s proof does not go through anymore. However,

the main message is consistent. For convenience, let the signal structure be symmetric:

Pr(s = b|v = 0) = Pr(s = g|v = 1) = λ ∈ (p, 1). Moreover, let the uninformed type

be a commitment type who always plays a pure strategy. The latter restriction is

imposed not just for tractability, and more importantly, the restriction renders it

impossible for the uninformed type to mimic the informed type. Thus, it echoes with

the motivation that even if such mimicking is impossible, reputational concerns may

be detrimental to the relationship.

Proposition 2.11. Suppose the uninformed type commits to play a pure strategy,

then for δ > 1
2
, the unique equilibrium is babbling.

Proof. See Appendix 2.A.12.

The following is a sketch of the proof. I first establish a claim that whenever the

consumer buys with positive probability, the uninformed type recommends. Using

this claim, I show that the consumer does not buy in any equilibrium if her belief is

lower than some threshold. Equivalently, I construct an initial babbling interval and

then look at beliefs slightly higher than the threshold. Suppose the consumer buys

with positive probability at those beliefs; then, again, the uninformed type must

recommend. This implies that the posteriors following S,NS,NB all drift down

and fall in the initial babbling interval. The uninformed type’s continuation payoff

from recommending is therefore zero, whereas he receives a lucrative continuation

payoff if he deviates to not recommend. Thus, he has a profitable deviation when
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he is sufficiently patient, suggesting the consumer cannot buy at these beliefs. These

arguments essentially expand the initial babbling interval. After sufficiently many

repetitions, the babbling interval eventually covers [0, 1).

2.6.4 Purchase without Recommendations

In some scenarios, the consumer knows what the product is even in absence of recom-

mendation. For example, it is easy for a consumer to keep track of new movie releases

since producing a movie is very costly, limiting the number of releases. In this case,

the consumer should have the option to watch a movie even if she does not see a

recommendation. However, if she watches a new movie without a recommendation,

the recommender should not be held accountable if this movie turns out to be a bad

match for the consumer. In other words, the recommender receives no flow payoff

when he chooses to not recommend regardless of the product’s suitability.

While allowing this alternative possibility to buy complicates the analysis by in-

troducing two more posteriors, the two forces in the main result are still present.

Similar arguments imply that in any equilibrium, the consumer never follows any

recommendation, and both types of recommender receive zero payoff. However, the

consumer may still be able to obtain a positive payoff from buying the product with-

out a recommendation. This can happen because the recommender receive a zero

payoff anyway, and thus may as well behave in such a way that the action NR sig-

nals the product to be suitable with high probabilities. As a response, the consumer

strictly finds it optimal to buy the product without recommendations.

Nevertheless, I deem this type of equilibrium implausible because it greatly hinges

on the recommender’s indifference between two actions. Introducing an arbitrarily

small cost ϵ > 0 for recommending would break the indifference immediately be-

cause both types then strictly prefer to not recommend, rendering the action NR

uninformative. Moreover, the arguments used in the main result are immune to a
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negligible cost for recommendation. Thus, even though the consumer can potentially

get additional feedback in this extension, the relationship still breaks down as the

recommender gets patient.

Proposition 2.12. Assume δ > δ = 1
1+

√
1−q

. There exists ϵ > 0 such that for any

ϵ ∈ (0, ϵ), the unique equilibrium is babbling.

Proof. The arguments follows from the discussion, and are thus omitted.

2.7 Concluding Remarks

Consumers often rely on the information of recommenders to make decisions. If

consumers are convinced the recommenders are genuine experts, there is no trust

issue and the information can be fully transmitted to consumers. It is tempting to

expect that most information can be transmitted to consumers when there is a tiny

chance that recommenders are incompetent. However, this chapter suggests a stark

discontinuity. I find that provided sufficiently patient recommenders, no information

can be transmitted even with arbitrarily small uncertainty, suggesting reputational

concerns cannot enhance the relationship but can be detrimental. Moreover, it may

be particularly difficult for new entrants in these markets because consumers most

likely have uncertainty over the expertise of new entrants.

Technically speaking, the current arguments for reputation failure either require

imposing “Efficiency at the Top” or restricting the recommender’s strategies. How-

ever, neither of these restrictions may be necessary. In general, I conjecture that the

informed type’s payoff in any Markov perfect equilibrium converges to 0 as he gets pa-

tient, which is supported by the following crude intuition. Suppose “Efficiency at the

Top” is not imposed, and the informed type gets a nontrivial amount of payoff even

if the recommender is arbitrarily patient, then the posterior belief must stay interior

even after a long horizon with a large probability. But then, even the uninformed
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type may be able to obtain a non-trivial amount of payoff in the limit, which can not

happen in any equilibrium. In the future, I wish to further pursue this direction and

prove this conjecture.

Last, I comment on several approaches to restore the relationship. First, the

relationship breakdown does not occur if the commission level is chosen appropriately

so that the two types of recommender’s incentives align with the consumer’s. Second,

the relationship can be restored if the informed type has access to products with

a higher expected suitability relative to the uninformed type and the difference is

sufficiently large. This naturally occurs if there is a large set of products so that the

informed recommender can apply his expertise and select the best product. Last, in

the application of social media influencers, there is a unique feature that may help

sustain the relationship. Social media provides followers a platform to communicate

with other followers who have no reputational concerns. If the comments from other

followers about the products are sufficiently reliable, then one may buy the product

even though the influencers’ recommendations are uninformative.
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2.A Omitted Proofs

2.A.1 Prerequisite Lemmas

The following lemmas summarize some elementary properties of the equilibrium pay-

offs, and are repetitively used to prove results in both the main body and the exten-

sions. To avoid redundancy, I state them in the most general form. In particular I

allow for a noisy signal structure: Pr(s = g|S) = Pr(s = b|NS) = λ ∈ (p, 1].

The first lemma simplifies the definition of babbling outcome. Instead of checking

that everyone gets 0 payoff, it suffices to show that the uninformed type gets 0 payoff.

After all, the recommender gets a positive payoff at a belief θ if and only if the

consumer purchases the product at some posterior belief that can be reached from θ

with a positive probability (including the prior itself).

Lemma 2.1. Fix δ < 1 and any corresponding Markov perfect equilibrium. At any

θ ∈ [0, 1], if VU(θ) = 0, then VC(θ) = VI(θ) = 0.

Proof. Suppose VC(θ) > 0, that means at some future contingency (including the

current period), the consumer makes a purchase with some probability. However,

given this, the uninformed type could have secured a positive payoff by recommending

with positive probability at the same contingency. Contradiction. So, VC(θ) = 0.

Similarly, if VI(θ) > 0, then the consumer must purchase the product at some

future contingency, contradiction. So, VI(θ) = 0 as well.

The next lemma gives upper bounds on the equilibrium payoffs, and indicates that

some of the bounds cannot be attained at any belief θ < 1.

Lemma 2.2. Fix any δ < 1 and any corresponding Markov perfect equilibrium. Then,

(a) At any θ ∈ [0, 1], VU(θ) ≤ ∆∅, VI(θ) ≤ q∆g, VC(θ) ≤ q(λ− p).
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(b) At any θ < 1, VU(θ) < ∆∅, VC(θ) < q(λ− p).27

Proof. Part (a) is almost straightforward, because those bounds are exactly the

bounds of the (undiscounted) flow payoffs. Hence, focus on the part (b) instead.

For the consumer, the upper bound is achieved only if at all future contingencies,

the consumer buys the product with probability one, given which the dynamic incen-

tives of both types of recommenders do not play a role anymore. It follows by their

static incentives that at all future contingencies, the informed type recommends if

and only if the signal is good, while the uninformed type always recommends.

But conditional on the recommender’s strategies, the posterior following NS keeps

drifting down. The belief is eventually so low that the consumer’s flow payoff from

buying the product is negative. Since she also does not care about the continuation

payoff anymore, it then follows that she has a strict incentive to deviate. Contradic-

tion. Hence, it is impossible that VC(θ) = q(λ− p) for θ < 1.

Now, suppose the upper bound of the uninformed type’s equilibrium payoff is at-

tained at some θ < 1, a necessary condition is that the consumer buys the product

with probability one in each period. It then follows that it is impossible VU(θ) = ∆∅

for θ < 1 either.

Intuitively, whenever there is some chance that the recommender is uninformed,

the lack of expertise renders it impossible for the uninformed type to keep the con-

sumer buying forever.

The third lemma illustrates an intuitive relationship between VU and VI . In any

circumstance, the informed type must get a higher payoff than the uninformed type

because having additional information is beneficial.

27Notice that the result in part (b) does not apply to VI . In fact, the threshold equilibrium
constructed in Section 2.4 suggests the upper bound of VI in part (a) is attainable even for interior
beliefs. However, that crucially relies on λ = 1.
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Lemma 2.3. Fix δ < 1 and any corresponding Markov perfect equilibrium. Then

VU(θ) ≤ VI(θ) at any θ ∈ [0, 1]. If in addition b(θ) > 0, then the inequality is strict.

Proof. Since the two types of recommenders share the same payoff function, the

informed type could play the following mimicking strategy to perfectly imitate the

uninformed type: rg(θ) = rb(θ) = r∅(θ), which guarantees him at least the payoff of

the uninformed type. If in addition b(θ) > 0, then the informed recomender could

choose to play a different strategy rg(θ) = r∅(θ), rb(θ) = 0 for one period, and then

play the mimicking strategy henceforth. Under the composite strategy, the informed

type gets a higher flow payoff than the uninformed type in the first period because

q(1− δ)b(θ)∆g > (1− δ)b(θ)∆∅

by Assumption 2.2. So, this composite strategy breaks the difference and makes the

inequality strict.

The last lemma enables us to apply the Bayes’ rule whenever the outcome is not

babbling, so that we need not worry about off-path beliefs in this case.

Lemma 2.4. Fix any δ < 1 and any corresponding Markov perfect equilibrium. For

any θ ∈ [0, 1], if VI(θ) > 0 or VU(θ) > 0 or VC(θ) > 0, then both actions R and NR

are on path at θ.

Proof. It is easier to see the contrapositive statement. At a belief θ ∈ [0, 1], if R is

off-path, then the consumer cannot buy the product. In addition, she does not update

the belief as the action NR is not informative about the type of the recommender.

Hence,

Vi(θ) = δVi(θ), i = I, U, C,

so that VI(θ) = VU(θ) = VC(θ) = 0. Similarly, if NR is off-path, then the action R
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is uninformative, which results in a negative flow payoff for the consumer. Moreover,

the posterior beliefs θ|S, θ|NS, θ|NB all equal to θ. As a consequence, the consumer

does not buy the product. It then follows that again,

Vi(θ) = δVi(θ), i = I, U, C.

so that VI(θ) = VU(θ) = VC(θ) = 0.

2.A.2 Proof of Claim 2.1 and Proposition 2.1(a)

The outcome in the no-purchase region is purely babbling, it must be that VU(θ) =

VI(θ) = VC(θ) = 0, θ < θ∗. The incentive constraints are trivially satisfied. Instead,

focus on incentives for beliefs in the purchase region [θ∗, 1]. The strategy profile and

beliefs are given by

• rg(θ) = 1, rb(θ) = 0, r∅(θ) = 1, b(θ) = 1.

• θ|S = θ, θ|NS = 0, θ|NR = 1, θ|NB = qθ
qθ+1−θ

.

For each player, I first compute the equilibrium payoffs conditional on the strategy

profile and beliefs, and then verify that no one has profitable deviation.

• Given the profile of strategies and beliefs, the uninformed type’s payoff satisfies

VU(θ) = (1− δ)∆∅ + qδVU(θ) + (1− q)δVU(0)

=⇒VU(θ) =
1− δ

1− qδ
∆∅.

He has no incentive to deviate if

VU(θ) ≥ δVU(θ|NR) = δVU(1) = δ∆∅.
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This inequality is guaranteed by δ ≤ δ = 1
1+

√
1−q

.

• Given the profile of strategies and beliefs, the informed type’s payoff satisfies

VI(θ) = q[(1− δ)∆g + δVI(θ)] + (1− q)δVI(1)

=⇒VI(θ) = q∆g.

He has no incentive to deviate after observing a good signal because

(1− δ)∆g + δVI(θ|S) = (1− δ + qδ)∆g > q∆g = δVI(θ|NR).

He has no incentive to deviate after observing a bad signal because

(1− δ)∆b + δVI(θ|NS) = (1− δ)∆b < δVI(θ|NR).

• Given the profile of strategies and beliefs, the probability of recommendation is

Pr(R) = θ · q + (1− θ) · 1.

Conditional on a recommendation, the expected value of the product is

E[v|R] =
q

qθ + 1− θ
.

So, the consumer’s payoff satisfies

VC(θ) = (qθ + 1− θ)

[
(1− δ)

(
q

qθ + 1− θ
− p

)
+

q

qθ + 1− θ
δVC(θ)

+
(1− q)(1− θ)

qθ + 1− θ
δVC(0)

]
+ θ(1− q)δVC(1),
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which gives

VC(θ) =
(1− δ)[q − p+ pθ(1− q)] + δqθ(1− q)(1− p)

1− δq
.

She has no incentive to deviate if

(1− δ)

(
q

qθ + 1− θ
− p

)
+ δ

q

qθ + 1− θ
VC(θ) ≥ δVC (θ|NB) . (1.A.1)

which can be further simplified to

(1− δ)[q − p+ pθ(1− q)] + δ2q2θ(1− q)(1− p)

(qθ + 1− θ)(1− δq)
≥ δVC

(
qθ

qθ + 1− θ

)
.

To verify her incentive constraint, consider two cases depending on whether
qθ

qθ+1−θ
≥ θ∗ = p−q

(1−q)p+
δ2q2(1−q)(1−p)

1−δ

.

(i) If qθ
qθ+1−θ

< θ∗, then VC

(
qθ

qθ+1−θ

)
= 0. Equation 1.A.1 is satisfied.

(ii) If qθ
qθ+1−θ

≥ θ∗, then VC

(
qθ

qθ+1−θ

)
is equal to

δ(1− δ)[q − p+ (q2 − q − pq2 + p)θ] + δ2q2θ(1− q)(1− p)

(qθ + 1− θ)(1− δq)
.

Substitute it into Equation 1.A.1, we eventually get

θ ≥ (1− δ)(p− q)

[δ(q − p− pq) + p](1− q)
.
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This condition is always satisfied since qθ
qθ+1−θ

≥ θ∗ implies

θ ≥ (1− δ)(p− q)

(1− δ)(p− q + pq)(1− q) + δ2q3(1− q)(1− p)

≥ (1− δ)(p− q)

(1− δ)(p− q + pq)(1− q) + q(1− q)(1− p)

=
(1− δ)(p− q)

[δ(q − p− pq) + p](1− q)
.

Thus, the consumer has no incentive to deviate at any belief.

This concludes the verification of the cutoff equilibrium.

2.A.3 Proof of Proposition 2.1(b)

Fix δ > 1
1+

√
1−q

and an associated equilibrium. By Lemma 2.1, it suffices to prove

that VU(θ) = 0, ∀θ ∈ [0, 1). To this end, Let V U = sup
θ<1

VU(θ) be the supremum of

the uninformed type’s equilibrium payoff over all beliefs θ ∈ [0, 1). For the purpose of

contradiction, suppose V U is positive. Then ∃θ̃ ∈ (0, 1) such that VU(θ̃) > δV U > 0.

At this belief, the uninformed type’s payoff satisfies

VU(θ̃) =max
{
b(θ̃)

[
(1− δ)∆∅ + qδVU(θ̃|S) + (1− q)δVU(θ̃|NS)

]
+[1− b(θ̃)]δVU(θ̃|NB), δVU(θ̃|NR)

}
. (1.A.2)

The next two claims partially characterize of the strategies and posteriors at θ̃.

Claim 2.4. At θ̃, the uninformed type recommends with probability one: r∅(θ̃) = 1.

In addition, the posterior following NR jumps to one: θ̃|NR = 1.

Proof. Suppose r∅(θ̃) < 1. It then follows that θ̃|NR < 1 by Bayes’ rule. Hence,

VU(θ̃) = δVU(θ̃|NR) ≤ δV U < VU(θ̃).
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Contradiction. On the other hand, since VU(θ̃) > 0, Lemma 2.4 implies NR is on

path. Hence, θ̃|NR = 1 by Bayes’ rule .

As a direct implication of Claim 2.4, Equation 1.A.2 is reduced to

VU(θ̃) = b(θ̃)
[
(1− δ)∆∅ + qδVU(θ̃|S) + (1− q)δVU(θ̃|NS)

]
+ [1− b(θ̃)]δVU(θ̃|NB)

≥ δVU(θ̃|NR) = δ∆∅. (1.A.3)

Claim 2.5. At the belief θ̃, the consumer purchases the product with positive proba-

bility: b(θ̃) > 0.

Proof. Suppose instead b(θ̃) = 0, then

VU(θ̃) = δVU(θ̃|NB) ≤ δV U < VU(θ̃).

Contradiction.

Now that θ̃|NR = 1 and b(θ̃) > 0, the informed type strictly prefer to play NR after

observing a bad signal: rb(θ̃) = 0, because relative to R, NR both leads to a higher

continuation payoff and a strictly higher flow payoff. By Bayes’ rule, θ̃|NS = 0 and

θ̃|S, θ̃|NB < 1. It follows that VU(θ̃|NS) = 0 and VU(θ̃|S), VU(θ̃|NB) ≤ V U . Substitute

all these into the first line of Equation 1.A.3, we obtain that

VU(θ̃) ≤ b(θ̃)
[
(1− δ)∆∅ + qδV U

]
+ [1− b(θ̃)]δV U

= δV U + b(θ̃)
[
(1− δ)∆∅ − (1− q)δV U

]
.

By construction, VU(θ̃) > δV U . So, the expression in the bracket must be strictly
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positive, and we could further relax the inequality by letting b(θ̃) = 1.

VU(θ̃) ≤ δV U +
[
(1− δ)∆∅ − (1− q)δV U

]
= (1− δ)∆∅ + qδV U . (1.A.4)

Equation 1.A.4 holds for all beliefs θ̃ < 1 such that VU(θ̃) > δV U . It then follows that

V U ≤ (1− δ)∆∅ + qδV U =⇒ V U ≤ 1− δ

1− qδ
∆∅.

We have found an upper bound on V U . When δ is sufficiently large: δ > 1
1+

√
1−q

,

1− δ

1− qδ
∆∅ < δ∆∅.

so that

VU(θ̃) ≤ V U < δ∆∅.

But this clearly contradicts with the second line of Equation 1.A.3. Therefore, it

must be that V U = 0, or equivalently, VU(θ) = 0, ∀θ ∈ [0, 1).

2.A.4 Proof of Proposition 2.2

First, it can be easily checked that Lemma 2.1, 2.2(b), 2.3, and 2.4 still hold under

this alternative payoff structure. Observe that, even at the best belief, Vi(1) = 0,

i ∈ {I, C, U}.

For the purpose of contradiction, suppose there exists θ ∈ [0, 1] such that VU(θ) >

0, then there exists θ̃ ∈ [0, 1] such that VU(θ̃) > 0 and r∅(θ̃) = 1. Otherwise

VU(θ̃|NR,...,NR) explodes as the number of NR increases. So, it follows from Lemma

2.4 that NR is on path and θ|NR = 1. By Lemma 2.3, VI(θ) > 0, the informed type

thus has unambiguous incentives to recommend: rg(θ) = rb(θ) = 1. However, the

profile of strategies would leave NR off-path, contradiction. So, there does not exist
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θ ∈ [0, 1] such that VU(θ) > 0. Lastly, by Lemma 2.1, there does not exist θ ∈ [0, 1]

such that VI(θ) > 0 or VC(θ) > 0.

2.A.5 Proof of Claim 2.2

Again, the outcome in the no-purchase region is purely babbling. Nobody has a strict

incentive to deviate. Hence, it suffices to check the incentives in the purchase region

[θ∗∗, 1), where the strategies and beliefs are given by rg(θ) = r∅(θ) = b(θ) = 1, rb(θ) =

0 and θ|S = θ, θ|NS = 0, θ|NR = 1, θ|NB = qθ
qθ+1−θ

.

• Given the profile of strategies and beliefs, the uninformed type’s payoff satisfies

VU(θ) = (1− δ)∆∅ + qδVU(θ) + (1− q)δVU(0).

=⇒ VU(θ) =
1− δ

1− qδ
∆∅.

He has no incentive to deviate because

VU(θ) > δVU(θ|NR) = 0.

• Given the profile of strategies and beliefs, the informed type’s payoff satisfies

VI(θ) = q[(1− δ)∆g + δVI(θ)] + (1− q)δVI(1).

=⇒ VI(θ) =
q(1− δ)

1− qδ
∆g.

He has no incentive to deviate given a good signal because

(1− δ)∆g + δVI(θ) > 0 = δVI(θ|NR).
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He also has no incentive to deviate given a bad signal because

(1− δ)∆b + δVI(θ|NS) = (1− δ)∆b < 0 = δVI(θ|NR).

• Given the profile of strategies and beliefs, the probability of recommendation is

Pr(R) = qθ + 1− θ.

Conditional on a recommendation, the expected value of the product is

E[v|R] =
q

qθ + 1− θ
.

Lastly, the consumer’s payoff satisfies

VC(θ) = (qθ + 1− θ)

[
(1− δ)

(
q

qθ + 1− θ
− p

)
+δ

q

qθ + 1− θ
VC(θ) + δ

(1− q)(1− θ)

qθ + 1− θ
VC(0)

]
+(1− q)θδVC(1).

which gives

VC(θ) =
1− δ

1− qδ
[q − p+ (1− q)pθ].

She has no incentive to deviate if

(1− δ)

(
q

qθ + 1− θ
− p

)
+ δ

q

qθ + 1− θ
VC(θ) ≥ δVC (θ|NB)

⇐⇒ 1− δ

1− qδ

(
q

qθ + 1− θ
− p

)
≥ δVC

(
qθ

qθ + 1− θ

)
. (1.A.5)

In order to check the incentive constraint, we need to compute VC

(
qθ

qθ+1−θ

)
first. There are two cases depending on whether qθ

qθ+1−θ
≥ θ∗∗ = p−q

p(1−q)
.
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(i) If qθ
qθ+1−θ

≥ p−q
p(1−q)

, then Equation 1.A.5 is equivalent to

1− δ

1− qδ

(
q

qθ + 1− θ
− p

)
≥ δ

1− δ

1− qδ

[
q − p+ (1− q)p

qθ

qθ + 1− θ

]
⇐⇒ q

qθ + 1− θ
− p ≥ δ

[
q − p+ (1− q)p

qθ

qθ + 1− θ

]
.

This inequality is always satisfied because

q

qθ + 1− θ
− p = q − p+ (1− q)

qθ

qθ + 1− θ
> q − p+ (1− q)p

qθ

qθ + 1− θ
.

(ii) If qθ
qθ+1−θ

< p−q
p(1−q)

, then VC(
qθ

qθ+1−θ
) = 0. Equation 1.A.5 is trivially satis-

fied.

Thus, the consumer has no profitable deviation.

This concludes the verification of the modified cutoff equilibrium.

2.A.6 Proof of Proposition 2.5

Fix δ < 1 and a corresponding equilibrium. Suppose V U = supθ∈[0,1] VU(θ). Let θ̃ be

a belief such that VU(θ̃) > δV U . Such a belief exist for sure unless VU is equal to 0

everywhere, in which case the result is proved trivially.

At this belief, we must have r∅(θ̃) = 1 and b(θ̃) > 0. Otherwise, we would have

VU(θ̃|NR) > V U or VU(θ̃|NB) > V U , contradiction. In addition, NR must be on path.

Otherwise, the action R is uninformative and thus the consumer does not buy the

product, contradicting with b(θ̃) > 0.

Now that NR is on path, θ̃|NR = 1 by Bayes’ rule. By ““Babbling at the Top"",

being identified as informed leads to 0 payoff for the informed type. It then follows

that rg(θ̃) = 1, rb(θ̃) < 1 (otherwise NR is off path), and θ̃|S = θ̃. Hence, playing R
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at most gives the informed type a 0 payoff conditional on a bad signal.

0 ≥ b(θ̃)[(1− δ)∆b + δVI(θ̃|NS)] + [1− b(θ̃)]δVI(θ̃|NB). (1.A.6)

Equation 1.A.6 gives an upper bound on VI(θ̃|NS) and thus VU(θ̃|NS) by Lemma 2.3.

VU(θ̃|NS) ≤ VI(θ̃|NS) ≤
−(1− δ)∆b

δ
.

Now, substitute this upper bound, θ̃|S = θ̃, and VU(θ̃|NB) ≤ V U into the unin-

formed type’s incentive constraint,

VU(θ̃) = b(θ̃)
[
(1− δ)∆∅ + qδVU(θ̃|S) + (1− q)δVU(θ̃|NS)

]
+ [1− b(θ̃)]δVU(θ̃|NB).

we then attain an upper bound on VU(θ̃).

VU(θ̃) ≤
1− δ

1− qδ
[∆∅ − (1− q)∆b] =

q(1− δ)

1− qδ
∆g.

This bound is valid for any θ̃ such that VU(θ̃) > δV U . It follows that V U is

bounded by the same expression. Besides, this bound holds for all equilibria and δ.

Therefore, limδ→1 supe∈Eδ
supθ∈[0,1] VU(θ; e) = 0, establishing the desired result.

2.A.7 Proof of Proposition 2.6

Fix δ < 1, and any corresponding equilibrium such that the uninformed type plays a

pure strategy. In part (a), I prove the result for the informed type’s payoff. In part

(b), I prove the result for the consumer’s payoff.

(a) At any belief θ ∈ [0, 1], if VU(θ) = 0, then VI(θ) = VC(θ) = 0 by Lemma 2.1.

Hence, without loss, consider θ such that VU(θ) > 0. By the restriction, either

r∅(θ) = 0 or r∅(θ) = 1.
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• If r∅(θ) = 1, then by the same arguments in the proof of Proposition 2.5,

θ|NR = 1, rg(θ) = 1 and rb(θ) < 1. Further, θ|S = θ by Bayes’ rule. The

informed type’s equilibrium payoff satisfies:

VI(θ) = q{b(θ)[(1− δ)∆g + δVI(θ)] + [1− b(θ)]δVI(θ|NB)}. (1.A.7)

Conditional a bad signal, he weakly prefers to not recommend. So,

b(θ)[(1− δ)∆b + δVI(θ|NS)] + [1− b(θ)]δVI(θ|NB) = 0.

which implies

[1− b(θ)]δVI(θ|NB) ≤ −b(θ)(1− δ)∆b.

Substitute the inequality back to Equation 1.A.7, we get

VI(θ) ≤
q(1− δ)

1− qδb(θ)
b(θ)(∆g −∆b) ≤

q(1− δ)

1− qδ
(∆g −∆b).

• If r∅(θ) = 0, then by Lemma 2.4, θ|NB = 1 so that VI(θ|NB) = 0. Further-

more, θ|S = θ|NS = 1. On the other hand, the uninformed type’s payoff

satisfies

VU(θ) = δVU(θ|NR).

Since VU(θ) > 0, it follows that

VI(θ|NR) ≥ VU(θ|NR) > 0.

Hence, the informed type plays NR for sure upon a bad signal because it

yields both a higher flow payoff and a higher continuation payoff. Since R
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is on path, it must be that rg(θ) > 0, so that

b(θ)(1− δ)∆g ≥ δVI(θ|NR).

So, the informed type’s equilibrium payoff satisfies

VI(θ) = qb(θ)(1− δ)∆g + (1− q)δVI(θ|NR) ≤ (1− δ)∆g.

In all cases, we obtain a uniform upper bound on VI(θ) that does not depend

on θ or the particular equilibrium. Moreover, each upper bound goes to 0 as δ

goes to 1. So, lim
δ→1

sup
e∈EU

δ

sup
θ∈[0,1]

VI(θ; e) = 0.

(b) Next, we focus on the consumer’s payoff. Suppose ṼC = supθ∈[0,1] VC(θ)>0. Let

θ̃ be a belief such that VC(θ̃) > δṼC . I first claim that b(θ̃) = 1. Otherwise,

the payoff VC(θ̃) is an average of δVC(θ̃|NB) and δVC(θ̃|NR), which is less than

VC(θ̃), contradiction. Again, either r∅(θ̃) = 0 or r∅(θ̃) = 1.

• If r∅(θ̃) = 1, then θ̃|NR = 1 and rg(θ̃) = 1 by the arguments used in part

(a). The consumer’s payoff satisfies

VC(θ̃) = Pr(R) ·
{
[E[v|R]− p](1− δ)

+ δE[v|R]VC(θ̃|S) + δ(1− E[v|R])VC(θ̃|NS)
}
. (1.A.8)

where

Pr(R) = θ̃[q + (1− q)rb(θ̃)] + 1− θ̃,

E[v|R] =
q

Pr(R)
.
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Notice that, E[v|R]− p must be non-negative. Otherwise,

VC(θ̃) ≤ Pr(R) ·
[
E[v|R]− p+ VC(θ̃)

]
< Pr(R) · VC(θ̃).

Contradiction. But if it is positive, then Pr(R) is bounded away from 1.

Pr(R) =
q

(E[v|R]− p) + p
≤ q

p
< 1.

Substitute this bound into Equation 1.A.8, and relax the inequality, we

obtain

VC(θ̃) ≤
q

p
[(1− p)(1− δ) + VC(θ̃)] =⇒ VC(θ̃) ≤

q(1− p)

p− q
(1− δ).

This applies for all θ̃ such that VC(θ̃) > δṼC . So,

ṼC ≤ q(1− p)

p− q
(1− δ).

• If r∅(θ̃) = 0, again, θ̃|NB = θ̃|S = θ̃|NS = 1 by the arguments in part (a).

Thus VC(θ̃|NB) = VC(θ̃|S) = VC(θ̃|NS) = 0. The consumer’s payoff then

satisfies

VC(θ̃) = Pr(R) · (E[v|R]− p)(1− δ) + Pr(NR) · δVC(θ̃|NR).

Because VC(θ̃) > δVC(θ̃|NR) by construction, it follows that

VC(θ̃) ≤[E[v|R]− p](1− δ) ≤ (1− p)(1− δ).

61



This applies for all θ̃ such that VC(θ̃) > δṼC . So,

ṼC ≤ (1− p)(1− δ).

Now, in both cases, we obtain a uniform bound on ṼC that does not depend

on the particular equilibrium. Moreover, both bounds go to 0 as δ goes to 1.

Hence, lim
δ→1

sup
e∈EU

δ

sup
θ∈[0,1]

VC(θ; e) = 0.

2.A.8 Proof of Claim 2.3

In this proof, I demonstrate that the general cutoff equilibrium still holds when the

informed type is not committed to recommend honestly. As usual, I compute the

equilibrium payoffs and verify the incentive constraints in the order of Region III, I, II.

Region III

Although the informed type is recommending honestly, the consumer’s belief is so

low that she finds it optimal to not trust the recommendation. So, the outcome is

effectively babbling in Region III, and VU(θ) = VI(θ) = VC(θ) = 0 for θ ∈ [0, θ∞]∪{1}.

So, the verification is trivial.

Region I

Observe that, the purchase region in the modified cutoff equilibrium is the same as

Region I here. The strategies, beliefs and even the region per se are all identical. It

follows that the equilibrium payoffs are also identical. In summary,

VU(θ) =
1− δ

1− qδ
∆∅, VI(θ) =

q(1− δ)

1− qδ
∆g, VC(θ) =

1− δ

1− qδ
[q − p+ p(1− q)θ].
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Lastly, the incentive constraints are also identical. So, both types of recommender

have no incentive to deviate. As for the consumer, she indeed finds it optimal to buy

because

VC(θ) ≥
1− δ

1− qδ
[q − p+ p(1− q)θ0] = 0.

Region IIk, k ∈ N+

For θ ∈ [θk, θk−1), the strategies and beliefs are given by

• rg(θ) = 1, rb(θ) = 0, r∅(θ) =
q(1−p)
p−q

· θ
1−θ

, b(θ) = δk.

• θ|S = θ0, θ|NS = 0, θ|NB = θ∞, θ|NR = (p−q)(1−q)θ
p−q−p(1−q)θ

.

θ0 and θ∞ are two important beliefs. Since θ0 ∈ I and θ∞ ∈ III. It follows that

VU(θ0) =
1− δ

1− qδ
∆∅, VI(θ0) =

q(1− δ)

1− qδ
∆g, VC(θ0) = 0.

and Vi(θ∞) = 0, i = C, I, U .

Temporarily, rename I to II0. Denote the payoff of player i ∈ {C, I, U} restricted

in the sub-region IIk by V k
i .

• Given the profile of strategies and beliefs, the uninformed type’s payoff satisfies

V k
U (θ) = δk(1− δ)∆ + qδVU(θ0) + (1− q)δVU(0) + (1− δk)δVU(θ∞).

which gives

V k
U (θ) =

1− δ

1− qδ
δk∆∅.

The indifference constraint is satisfied because θ|NR ∈ IIk−1, so that

V k
U (θ) = δV k−1

U (θ|NR) = δ · 1− δ

1− qδ
δk−1∆∅.
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• Given the profile of strategies and beliefs, the informed type’s payoff satisfies

V k
I (θ) = q[δk[(1− δ)∆g + δVI(θ0)] + (1− δk)δVI(θ∞)] + (1− q)δV k−1

I (θ|NR).

Since VI is constant over Region I, and IIk|NR = IIk−1, it follows that VI is

constant in each sub-region. So, there is an iterative relationship between V k
I

and V k−1
I . After inserting the payoffs at θ0 and θ∞, we obtain

V k
I = qδk

1− δ

1− qδ
∆g + (1− q)δV k−1

I .

which gives

V k
I (θ) =

1− δ

1− qδ
δk

[
1− (1− q)k+1

]
∆g.

He has no incentive to deviate given a good signal because

δk[(1− δ)∆g + δVI(θ0)]+(1− δk)δVI(θ∞) =
1− δ

1− qδ
δk∆g

>
1− δ

1− qδ
δk

[
1− (1− q)k

]
∆g = δVI(θ|NR).

He also has no incentive to deviate given a bad signal because

δk[(1− δ)∆b + δVI(θ|NS)] + (1− δk)δVI(θ∞) = (1− δ)δk∆b < δVI(θ|NR).

• Given the profile of strategies and beliefs, the expected value of the product

conditional on a recommendation is

E[v|p] = q[θ + (1− θ)r∅(θ)]

qθ + (1− θ)r∅(θ)
.

which is exactly equal to p by construction of r∅(θ). Thus, the consumer is

willing to mix. This concludes the verification of the general cutoff equilibrium.
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2.A.9 Proof of Proposition 2.7

Fix δ < 1, I first characterize the class of equilibrium in which the informed type al-

ways does the right thing, and the consumer is myopic. Using the characterizations,

I then prove the reputation failure result.

Property 1: For any θ ≤ θ∞, Vi(θ) = 0, ∀i ∈ {C, I, U}.

For the purpose of contradiction, suppose there exists some belief θ̃ ∈ (0, θ∞] such

that VU(θ̃) > 0. Then both actions are on path, so that θ̃|R and θ̃|NR can be derived

by Bayes’ rule. Next, I prove a key claim.

Claim 2.6. For all θ ∈ (0, θ∞], VU(θ) = δVU(min{θ|R, θ|NR}).

Proof. This claim is proved case by case.

(1) If b(θ) > 0, it can be shown that r∅(θ) ≤ q. Suppose the inequality is violated.

In this case,

E[v|R] =
q[θ + (1− θ)r∅(θ)]

qθ + (1− θ)r∅(θ)
.

Clearly, it decreases in r∅(θ) and increase in θ. So,

E[v|R] <
q[θ∞ + q(1− θ∞)]

qθ∞ + q(1− θ∞)
= p.

Contradicting with b(θ) > 0. By Bayes’ rule, θ|NR ≤ θ ≤ θ|R. Meanwhile, since

the uninformed type puts positive probability on NR, the incentive constraint

implies

VU(θ) = δVU(θ|NR).

65



Or equivalently,

VU(θ) = δVU(min{θ|R, θ|NR}).

(2) If b(θ) = 0 and r∅(θ) = 1, the incentive constraint implies VU(θ) = δVU(θ|R).

On the other hand, by Bayes’ rule, θ|NR = 1 > θ ≥ θ|R. So, we again have

VU(θ) = δVU(min{θ|R, θ|NR}).

(3) If b(θ) = 0 and r∅(θ) < 1, the incentive constraint implies VU(θ) = δVU(θ|R) =

δUVU(θ|NR). So, we also have

VU(θ) = δVU(min{θ|R, θ|NR}).

The three cases cover all possibilities, hence Claim 2.6 is established.

Apply this claim to θ̃, and notice that min{θ̃|R, θ̃|NR} < θ by the martingale

property and VU(θ̃) > 0. So, we could reapply the claim. Formally, define a sequence

as follows. Let θ0 = θ̃, and θk = min{θk−1|R, θk−1|NR} for k ∈ N+. Applying Claim

2.6 repeatedly, we obtain that θk ∈ (0, θk−1) and

0 < VU(θ̃) = δkVU(θk).

for any k ∈ N+. Let k goes to infinity, then U ’s payoff explodes to infinity along

the sequence of beliefs. This leads to contradiction as VU(θ) is bounded above by

∆∅ < ∞. Therefore, it must be that VU(θ) = 0,∀θ ≤ θ∞ in any equilibrium. It

follows from Lemma 2.1 that any equilibrium must feature babbling when the belief

is sufficiently low.
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Property 2: For any θ > θ0, b(θ) = 1, r∅(θ) = 1. The payoffs are VU(θ) =

1−δ
1−qδ

∆∅, VI(θ) =
q(1−δ)
1−qδ

∆g, and VC(θ) = q − p+ p(1− q)θ.

The informed type always embeds the information in the recommendation. When

the reputation is sufficiently high, regardless of the uninformed type’s strategy, the

conditional value is higher than the price.

E[v|R] >
q[θ0 + (1− θ0)r∅(θ0)]

qθ0 + (1− θ0)r∅(θ0)
≥ q[θ0 + (1− θ0) · 1]

qθ0 + (1− θ0) · 1
= p.

It then follows that the consumer strictly prefers to buy the product.

For any θ > θ0, a feasible strategy for the uninformed type is to always recommend

both today and in the future. Because rg(θ) = 1, it then follows that θ|S ≥ θ so that

θ|S > θ0. Since the consumer always buys in this range of belief, it follows that the

recommender gets at least a flow payoff (1 − δ)∆∅ in each period provided that the

outcome in the last period was S. So, such a strategy yields at least

VU(θ) ≥ (1− δ)∆g + qδ(1− δ)∆g + q2δ2(1− δ)∆g + ... =
1− δ

1− qδ
∆∅.

Meanwhile, the maximal payoff V U = maxθ∈[0,1] VU(θ) is bounded above by the same

expression 1−δ
1−qδ

∆∅. To see this, note that at the maximizer θ̃, it must be that r∅ = 1.

But then, θ̃|S = θ, θ̃|NS = 0. So,

V U = VU(θ̃) ≤ (1− δ)∆∅ + δV U =⇒ V U ≤ 1− δ

1− qδ
∆∅.

Taken together, the inequality is attained. At the same time, r∅(θ) = 1, VU(θ) =

1−δ
1−qδ

∆∅, for any θ > θ0. It can be computed that the informed type’s payoff is equal

to

VI(θ) =
q(1− δ)

1− qδ
∆g.
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Lastly, the consumer’s payoff is equal to

VC(θ) = Pr(R)(E[v|R]− p) = q − p+ p(1− q)θ.

Property 3: At θ0, r∅(θ0) = 1 and b(θ0) can take any value in [0, 1]. In addition,

VC(θ0) = 0, VU(θ0) =
b(θ0)(1−δ)
1−b(θ0)qδ

∆∅, and VI(θ0) =
b(θ0)q(1−δ)
1−b(θ0)qδ

∆g.

If r∅(θ0) < 1, then by the consumer’s decision problem, b(θ0) = 1. In that case,

θ0|S > θ0, so that playing R gives at least

(1− δ)∆∅ + qδ
1− δ

1− qδ
∆∅ =

1− δ

1− qδ
∆∅ = V U .

whereas playing NR gives at most δV U , contradicting the indifference condition. As

a result, r∅(θ0) = 1. However, then the consumer is absolutely indifferent, so there

is no restriction on b(θ0) and she receives zero payoff. For the uninformed type,

θ0|NB = θ∞, so that his payoff equals

VU(θ0) = b(θ0)[(1− δ)∆∅ + qδVU(θ0)] =⇒ VU(θ0) =
b(θ0)(1− δ)∆∅

1− b(θ0)qδ
.

Property 4: For θ ∈ (θ∞, θ0), either r∅(θ) =
q(1−p)
p−q

· θ
1−θ

or VU(θ) = VI(θ) = 0. But

either way, VC(θ) = 0.

There are three potential cases.

• If r∅(θ) <
q(1−p)
p−q

· θ
1−θ

, then by the consumer’s decision problem, b(θ) = 1 so that

θ|S > θ0. A similar argument in the proof of Property 3 suggests that playing

R is more profitable than playing NR, contradiction.

• If r∅(θ) >
q(1−p)
p−q

· θ
1−θ

, then by the consumer’s decision problem, b(θ) = 0 and
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θ|NB < θ∞. So, the uninformed type gets

VU(θ) = δVU(θ|NB) = 0.

By Lemma 2.1, the informed type and the consumer get zero payoff as well.

• If r∅(θ) =
q(1−p)
p−q

· θ
1−θ

, the consumer is indifferent and thus gets zero payoff.

These properties suggest that any equilibrium in EI,C is Pareto-dominated by the

general cutoff equilibrium, described in Claim 2.3. First, Property 1 − 3 proves the

statement for beliefs either weakly above θ0 or weakly below θ∞. So, it suffices to

look at θ ∈ (θ∞, θ0). Moreover, it suffices to look at the recommender because the

consumer’s payoff is always equal to 0 over this interval by Property 4.

If VU(θ) = VI(θ) = 0, it is clearly dominated. So consider VU(θ) > 0, VI(θ) > 0.

Then by Property 4, r∅(θ) = q(1−p)
p−q

· θ
1−θ

. Without loss, let θ ∈ [θk, θk−1) for some

k ∈ N+. Then θ|S = θ0, θ|NS = 0, θ|NB = θ∞, θ|NR ∈ [θk−1, θk−2). The uninformed

type’s indifference condition implies VU(θ|NR)) > 0. If the posterior θ|NR remains in

(θ∞, θ0), then by Property 4 again, r∅(θ|NR) =
q(1−p)
p−q

· θ|NR

1−θ|NR
. Repeat the procedure. It

follows that the posteriors evolution and the strategies at those posteriors are exactly

the same as in the general cutoff equilibrium. So, it also generates the same payoffs.

Since supθ∈[0,1] VI(θ) vanishes as δ goes to one in the general cutoff equilibrium, it

follows that the first part of Proposition 2.7 is proved. For the second part, it suffices

to restrict attention to a prior θ ∈ (θ0, 1) because VC(θ) is positive if and only if θ

falls in this region. Pick a generic belief θ ∈ (θ0, 1), the distribution of the posterior

θ′ from the consumer’s perspective is

θ′ =


θ w.p. q,

0 w.p. (1− θ)(1− q),

1 w.p. θ(1− q),
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Because VC(0) = VC(1) = 0, and the extreme beliefs are absorbing, it follows that

lim
T→∞

E[VC(θ
T )] = lim

T→∞
qTVC(θ) = 0.

2.A.10 Proof of Proposition 2.8

The proof is very similar to the proof of Proposition 2.1, which can be found in

Appendix 2.A.3. Hence, some details are omitted.

First, Lemma 2.1 continues to hold for non-Markov equilibrium. So, it suffices to

show the uninformed type receives a zero payoff. Fix any equilibrium with δc <
p−q

p(1−q)

and δr > δr. Let V U be the supremum of the uninformed type’s equilibrium payoff

over all on-path histories that induce an interior posterior.

We again proceed via contradiction, and suppose V U > 0. Then there exists some

on-path history h̃ such that it induces an interior posterior and VU(h̃) > δrV U . By

the same arguments in Claim 2.4 and 2.5, we must have r∅(h̃) = 1 and b(h̃) > 0.

Next, NR must be on-path. Otherwise, a deviation to not buy the product is

profitable for the consumer because if she buys the product, she receives at most

(q−p)(1− δc)+ δcq(1−p) < 0. Now that NR is on-path, the posterior belief followed

by NR jumps up to one jumps to one. Thus, at any private history that is consistent

with h̃, the informed type strictly prefers to not recommend if he observes a bad

signal.

The rest of arguments are identical to those in Appendix 2.A.3. In short, I show

that the belief followed by NS goes down to zero. Thus, the uninformed type’s

continuation payoff is low if he recommends. On the other hand, since he receives a

lucrative continuation payoff if he deviates to not recommend. It then follows that

r∅(h̃) < 1 provided δr is large. Contradiction.
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2.A.11 Proof of Proposition 2.10

It is sufficient to prove that θ|NS = 0 whenever θ|NR = 1 and b(θ) > 0. Once this step

is established, the rest of proof is identical to the proof of Proposition 2.1(b). Since

the good signal is generated if the product is suitable, the formula of θ|NS remains

unchanged.

θ|NS =
θrb(θ)

θrb(θ) + (1− θ)r∅(θ)
. (1.A.9)

However, the definition of ∆b is changed to

Pr(v = 1|s = b) · u+ Pr(v = 0|s = b) · u = µu+ (1− µ)u.

Assumption 2.4 ensures ∆b to be strictly negative. Hence, for the informed type with

a bad signal, NR still strictly dominates R as it yields a strictly higher flow payoff

and a weakly higher continuation payoff. It then follows that rb(θ) = 0 and thus

θ|NS = 0 by Equation 1.A.9.

2.A.12 Proof of Proposition 2.11

In the two claims below, I first characterize the recommender’s strategy as much as

possible respectively when the consumer buys with positive probability, and when she

does not buy at all.

Claim 2.7. If b(θ) > 0, then r∅(θ) = 1, rb(θ) = 0, θ|NS < θ|NB < θ|S ≤ θ < θ|NR =

1, VU(θ) ≥ δ∆∅ and VC(θ) > 0.

Proof. To this end, first note that VU(θ) > 0 whenever b(θ) > 0 because the unin-

formed type could always secure a minimum payoff (1− δ)b(θ)∆∅ by recommending

the product. Then by Lemma 2.4, R is on path. Now, for the purpose of contra-

diction, suppose r∅(θ) = 0, it follows by Bayes’ rule that θ|NB = 1. But then, the
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uninformed type has unambiguous incentives to deviate to recommend because it

both yields a higher flow payoff and continuation payoff. Contradiction.

Now that r∅(θ) = 1, similar arguments imply that θ|NR = 1 and thus rb(θ) = 0.

It follows by Bayes’ rule then θ|NS < θ|NB < θ|S ≤ θ < θ|NR = 1. Moreover, by the

incentive constraints,

VU(θ) ≥ δVU(θ|NR) = δ∆∅.

and

VC(θ) ≥ Pr(NR) · δVC(θ|NR) = q(1− q)(λ− p).

Claim 2.8. If b(θ) = 0, then VU(θ) = VC(θ) = VI(θ) = 0.

Proof. It suffices to prove that VU(θ) = 0 by Lemma 2.1. If b(θ) = 0, the uninformed

type’s incentive constraint is reduced to

VU(θ) = max{δVU(θ|NB), δVU(θ|NR)}.

For the purpose of contradiction, suppose VU(θ) > 0, then there are two cases.

• If r∅(θ) = 0, then VU(θ|NB) ≤ VU(θ|NR). In addition, both R and NR are on

path by Lemma 2.4, so that θ|NB = 1 and θ|NR < 1 by Bayes’ rule. Now by

Lemma 2.2,

VU(θ|NR) < ∆∅ = VU(1) = VU(θ|NB).

Contradiction.

• If r∅(θ) = 1, then VU(θ|NB) ≥ VU(θ|NR). In addition, both R and NR are on

path by Lemma 2.4, so that θ|NB < 1 and θ|NR = 1 by Bayes’ rule. Now by

Lemma 2.2,

VU(θ|NB) < ∆∅ = VU(1) = VU(θ|NR).
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Contradiction.

In either case, we reach contradiction. Hence, VU(θ) must equal to 0. Moreover, it

follows that VC(θ) = 0. If not, that means the consumer must purchase at some point

in the future.

Now, partition [0, 1) into two regions.

R1 = {θ ∈ [0, 1) | b(θ) = 0, VU(θ) = 0},

R2 = {θ ∈ [0, 1) | b(θ) > 0, VU(θ) ≥ δ∆∅}.

The goal is to prove R2 = ∅ when δ is sufficiently large. To this end, I first show in

Claim 2.9 that the region R1 includes beliefs that are sufficiently low. Then I prove

by contradiction that R1 includes the whole interval [0, 1).

Claim 2.9. Fix δ < 1, then ∃θ > 0 such that in any equilibrium, b(θ) = 0, ∀θ ≤ θ.

Proof. Fix any equilibrium given δ. Suppose b(θ) > 0 for some 0 < θ ≤ θ, then

VC(θ) > 0 by Claim 2.7. Hence, the consumer’s incentive constraint suggests

VC(θ) ≤ Pr(R)(E[v|R]− p)(1− δ) + Pr(NR)δVC(θ|NR) + δmax{VC(θ|S), VC(θ|NS)}.

For arbitrary rg(θ), as θ decreases, the first term is eventually negative and does not

vanish because Pr(R) goes to one and E[v|R]− p converges to q− p < 0. Meanwhile,

the second term is positive but vanishes because Pr(NR) goes to zero. So, there

exists a θ > 0 such that the sum of the first two terms is negative for any θ ≤ θ. It

then follows that

VC(θ) ≤ δmax{VC(θ|S), VC(θ|NS)}.

Let f(θ) = min{θ′ ∈ {θ|S, θ|NS} |VC(θ
′) = max{VC(θ|S), VC(θ|NS)}. Then by defini-
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tion,

V (f(θ)) ≥ 1

δ
VC(θ) > 0.

By Claim 2.7, we have b(f(θ)) > 0 and θ|NS < θ|S < 1 so that

0 < f(θ) < θ.

Therefore, we could repeat the above procedure and conclude that V (fk(θ)) =

1
δk
VC(θ) → ∞ as k goes to infinity, contradiction. As a consequence, it must be

that b(θ) = 0 for ∀θ ≤ θ.

Now, suppose R2 ̸= ∅, then θ = inf R2 ≥ θ > 0 by Claim 2.9. Choose θ̃ ∈ R2 that

is arbitrarily close to θ such that θ̃|S < θ.28 Then by Claim 2.9, VU(θ|S) = VU(θ|NS) =

VU(θ|NB) = 0 so that the uninformed type’s incentive constraint implies

VU(θ) = b(θ)∆∅(1− δ) ≥ δVU(θ|NR) = δ∆∅

However, this is impossible for δ > 1
2
. It then follows that whenever δ > 1

2
, R2 = ∅,

so that VU(θ) = VC(θ) = VI(θ) = 0, ∀θ < 1.

28Such θ̃ is possible because for any θ ∈ R2, θ|S =
θλrg(θ)

θλrg(θ)+1−θ < θ.
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Chapter 3

Baysian Persuasion and Lie Detection

(joint with Florian Ederer, Yale School of Management)

3.1 Introduction

Lies are a pervasive feature of communication, even when communication is subject

to intense public and media scrutiny. For example, during his tenure as US President,

Donald Trump has made over 20,000 false or misleading claims.1 However, such lies

are also often detectable. Monitoring and fact-checking should constrain how much

license a sender of communication has when making false statements. But, interest-

ingly, in the face of increased fact-checking and media focus, the rate of Trump’s lying

increased rather than decreased—a development that runs counter to this intuition.

In this chapter, we incorporate probabilistic lie detection in an otherwise standard

model of Bayesian persuasion (Kamenica and Gentzkow, 2011; Kamenica, 2019). Two

players, a Sender and a Receiver, engage in one round of communication. The Sender

observes the binary state of nature and sends a message to the Receiver. To clearly
1See https://www.washingtonpost.com/politics/2020/07/13/president-trump-has-m

ade-more-than-20000-false-or-misleading-claims/ for a comprehensive analysis of this
behavior.
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define whether a message is a lie or not, we assume that the message space and the

state space are the same. The Receiver observes the message, and if the message is

a lie, it is flagged as such with some probability. The Receiver then takes an action.

Whereas the Sender prefers the Receiver to take the “favorable” action regardless of

the state of nature, the Receiver wants to match the action to the underlying state.

Finally, payoffs (or payoffs which we use interchangeably) are realized for both parties.

Our main assumption that lies are detectable is a natural one in many applications.

Ekman and Frank (1993) argue that there are two basic reasons why lies fail due to

detection: facts and emotions. First, facts may surface that contradict the message

of the Sender. These facts do not necessarily tell all the information about the state

of the world, but they reveal that the Sender’s message was a lie. Second, lies can

be detected because emotions and physical reactions such as blushing or sweating

provide strong clues that the Sender is lying.

Our model delivers the following set of results. First, the Sender lies more fre-

quently when the lie detection technology improves. Second, as long as the lie de-

tection probability is sufficiently small, the equilibrium payoffs of both players are

unaffected by the lie detection technology because the Sender simply compensates by

lying more frequently in the unfavorable state of nature by claiming that the state is

favorable. That is to say, the lie detection technology changes the Sender’s message

strategy but does not have an impact on the payoffs of both players. Third, when

the lie detection technology is sufficiently reliable, any further increase in the lie de-

tection probability causes the Sender to lie more frequently in the favorable state of

nature and the Sender’s (Receiver’s) equilibrium payoff decreases (increases) with the

lie detection probability.

Our framework is sufficiently tractable to analyze a number of extensions. First,

we consider alternative detection technologies such as truth detection and show that

the central insights of our model continue to hold. Second, we analyze the (non-
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trivial) case in which the default action coincides with the Sender’s preferred action

and show that the main results are analogous to those in the baseline model. Third,

we show that our results do not rely on the fully revealing nature of a lie in our model.

They continue to hold even when the state is not binary and thus the detection of a

lie does not fully reveal the state of nature.

Two recent papers (Balbuzanov, 2019; Dziuda and Salas, 2018) also investigate the

role of lie detectability in communication. The most significant difference with respect

to this chapter lies in the commitment assumption of the Sender. In all those papers,

the communication game takes the form of cheap talk (Crawford and Sobel, 1982)

rather than Bayesian persuasion as in this chapter. We defer a detailed comparison

between these papers and our work to Section 3.4. Jehiel (2021) considers a setting

with two rounds of communication á la Crawford and Sobel (1982), but includes the

innovative feature that a Sender who lied in the first period cannot remember what

exact lies she told. However, the potential inconsistency of messages never arises in

any pure strategy equilibrium. As a result, no lies are ever detected in equilibrium.

Related theoretical work on lying in communication games also includes Kartik et

al. (2007) and Kartik (2009) who do not consider lie detection but instead introduce

an exogenous cost of lying tied to the size of the lie in a cheap talk setting. They

find that most types inflate their messages, but only up to a point. In contrast to our

results, they obtain full information revelation for some or all types depending on the

bounds of the type and message space.

A large and growing experimental literature (Gneezy, 2005; Hurkens and Kartik,

2009; Sánchez-Pagés and Vorsatz, 2009; Ederer and Fehr, 2017; Gneezy et al., 2018)

examines lying in a variety of communication games. Most closely related to our work

is Fréchette et al. (forthcoming) who investigate models of cheap talk, information

disclosure, and Bayesian persuasion, in a unified experimental framework. Their

experiments provide general support for the strategic rationale behind the role of
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commitment and, more specifically, for the Bayesian persuasion model of Kamenica

and Gentzkow (2011).

Finally, this chapter is related to recent work on communication in political sci-

ence. Whereas we focus on an improvement of the Receiver’s communication tech-

nology (i.e., lie detection), Gehlbach et al. (2022) analyze how improvements that

benefit the Sender (e.g., censorship and propaganda) impact communication under

Bayesian persuasion. In a related framework that can be recast as Bayesian persua-

sion, Luo and Rozenas (2018) study how the electoral mechanism performs when the

government (the Sender) can rig elections by manipulating the electoral process ex

ante and falsifying election returns ex post.

3.2 Model

Consider the following simple model of Bayesian persuasion in the presence of lie

detection. Let w ∈ {0, 1} denote the state of the world and Pr(w = 1) = µ ∈ (0, 1).

The Sender (S, he) observes w and sends a message m ∈ {0, 1} to the Receiver (R,

she).

Lie Detection Technology

If the Sender lies (i.e., m ̸= w), the Receiver is informed with probability q ∈ [0, 1]

that it is a lie and thus learns w perfectly. With remaining probability 1 − q, she is

not informed. If the Sender does not lie (i.e., m = w), the message is never flagged

as a lie so and the Receiver is not informed. Formally, the detection technology can
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be described by the following relation2

d(m,w) =


lie, with probability q if m ̸= w,

¬lie, with probability 1− q if m ̸= w,

¬lie, with probability 1 if m = w.

With a slight abuse of notation we denote d = {lie,¬lie} as the outcome of the

detection result. The detection technology is common knowledge. In a standard

Bayesian persuasion setup this detection probability q is equal to 0, giving us an

immediately comparable benchmark.

Note that lie detection here is different from state detection. While the former

would inform the Receiver the true state conditional on a lie, the latter would inform

her the true state independently of the message. Section 3.4 discusses their differences

in more detail.

Messages in our model are defined to have literal meanings and thus they are

classified as lies if they do not match the true state of nature. An alternative definition

of messages and lies views a message as a lie if, in equilibrium, this message induces an

action that is inconsistent with the true state of nature. This alternative definition

is more complicated and involves calculating a fixed point. Essentially, one starts

with an arbitrary lying set L ⊂ {(m = 1, ω = 1), (m = 1, ω = 0)} × {(m = 0, ω =

1), (m = 0, ω = 0)} and then solves for the Sender’s optimal solution when any pair

in L triggers a lie detection with probability q. This provisional solution generates

a new lying set L′. A consistency condition L = L′ is thus required to close the

model. We do not adopt this alternative definition because it leads to a multiplicity

of equilibria which hinders the comparative statics.
2Note that, the lie detection here is different from state detection. While the former would

inform the Receiver the true state conditional on a lie, the latter would inform her the true state
independently of the message. Section 3.4.1 discusses their differences in more detail.
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Payoffs

Given both m and d, the Receiver takes an action a ∈ {0, 1}, and the payoffs are

realized. The payoffs are defined as follows.

uS(a, w) = 1{a=1},

uR(a, w) = (1− t)× 1{a=w=1} + t× 1{a=w=0}, 0 < t < 1.

That is, the Sender wants the Receiver to always take the action a = 1 regardless of

the state, while the Receiver wants to match the state. The payoff from matching

the state 0 may differ from the payoff from matching the state 1. Given the payoff

function, the Receiver takes action a = 1 if and only if

Pr(w = 1 | m, d) ≥ t.

Therefore, one could also interpret t as the threshold of the Receiver’s posterior belief

above which she takes a = 1. Note that if t ≤ µ, there is no need to persuade because

the Receiver will choose the Sender’s preferred action a = 1 even without a message.

Therefore, we assume t ∈ (µ, 1).

Strategies

We assume that the Sender has full commitment power as is common in the Bayesian

persuasion framework.3 Specifically, the strategy of the Sender is a mapping m :

{0, 1} −→ ∆({0, 1}), and the strategy of the Receiver is a mapping a : {0, 1} ×
3For a detailed discussion and relaxation of this assumption see Min (2017), Fréchette et al.

(forthcoming), Lipnowski et al. (forthcoming), and Nguyen and Tan (2021). Titova (2021) shows
that with binary actions and a sufficiently rich enough state space verifiable disclosure enables the
Sender’s commitment solution as an equilibrium.
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{lie,¬lie} −→ ∆({0, 1}). Formally, the Sender is choosing m(·) to maximize

Ew,d,m[uS(a (m(w), d(m(w), w)) , w)],

where a(m, d) maximizes

Ew[uR(a, w) | m, d].

The two expectation signs are taken with respect to different variables. The expec-

tation sign in the Sender’s utility is taken with respect to both w, d, and perhaps m

if the strategy is mixed, whereas the (conditional) expectation sign in the Receiver’s

utility is only taken with respect to w. Due to the simple structure of the model, it

is without loss of generality to assume that the Sender chooses only two parameters

p0 = Pr(m = 0 | w = 0) and p1 = Pr(m = 1 | w = 1) to maximize Pr(a(m, d) = 1)

which we write as Pr(a = 1) henceforth for brevity of notation. We denote the opti-

mal reporting probabilities of the Sender by p∗0 and p∗1, and the ex-ante payoffs under

this reporting probabilities as US and UR.

3.3 Analysis

3.3.1 Optimal Messages

Given the Sender’s reporting strategy, the Receiver could potentially see four types

of events to which she needs to react when choosing action a.

First, the Receiver could observe the event (m = 0, d = lie) which occurs with

probability µ(1−p1)q. Given the lie detection technology, the Receiver is certain that

the message m = 0 is a lie. Therefore, the state of the world w must be equal to 1,

that is

Pr(w = 1 | m = 0, d = lie) = 1.
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As a result, the Receiver optimally chooses a = 1.

Second, the event (m = 0, d = ¬lie) could occur with probability µ(1 − p1)(1 −

q) + (1− µ)p0. In that case, the Receiver is uncertain about w because she does not

know whether the Sender lied or not. Her posterior probability is given by

Pr(w = 1 | m = 0, d = ¬lie) = µ(1− p1)(1− q)

µ(1− p1)(1− q) + (1− µ)p0
≡ µ0.

Hence, the Receiver takes action a = 1 if and only if µ0 ≥ t. We denote the

posterior following this event by µ0 (and thus omitting the lie detection outcome

d = ¬lie) for brevity of notation. When p0 = 0, p1 = 1, this event occurs with 0

probability, so the belief is off-path and not restricted by Bayesian updating. However,

the off-path belief does not matter for the Sender, because if the Sender chooses the

strategy that renders (m = 0, d = ¬lie) a zero probability event, he does not care

about how the Receiver responds to that event. For expositional convenience, define

µ0 = 0 when p0 = 0, p1 = 1.

Third, (m = 1, d = lie) occurs with probability (1 − µ)(1 − p0)q. Because a

lie was detected, the Receiver is again certain about w and therefore her posterior

probability is given by

Pr(w = 1 | m = 1, d = lie) = 0,

which immediately implies the action a = 0.

Fourth, (m = 1, d = ¬lie) occurs with probability µp1 + (1 − µ)(1 − p0)(1 − q).

The Receiver is again uncertain about w. Her posterior is given by

Pr(w = 1 | m = 1, d = ¬lie) = µp1
µp1 + (1− µ)(1− p0)(1− q)

≡ µ1.

The Receiver takes action a = 1 if and only if µ1 ≥ t. Analogously, for brevity of
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notation, we denote the posterior following this event by µ1 (and thus omitting the

lie detection outcome d = ¬lie). Similarly, if p0 = 1, p1 = 0, this event occurs with

0 probability, and the belief µ1 is not well-defined, but again this does not matter for

the Sender. For simplicity, define µ1 = 0 when p0 = 1, p1 = 0.

Given these optimal responses by the Receiver, the relationships between the

posteriors µ0, µ1 and the posterior threshold t divide up the strategy space into four

different types of strategies which we denote by I, II, III, and IV respectively. For

each strategy type, the Receiver’s response as a function of (m, d) is the same, making

it then easy to find the specific optimal strategy. We are then left to pick the best

strategy out of the four candidates. These types of strategies are defined as follows:

I. µ0 < t, µ1 < t: For this type of strategy, the Receiver only chooses a = 1 if

(m = 0, d = lie) and a = 0 otherwise because the posteriors µ0 and µ1 are

insufficiently high to persuade her to choose S’s preferred action. Only if the

Sender lies in state w = 1 and his message is detected as a lie, is the Receiver

sufficiently convinced that a = 1 is the right action. The maximal probability

that the Receiver chooses a = 14 is given by

PrI(a = 1) = sup
p0,p1∈[0,1]

µ(1− p1)q s.t. µ0 < t, µ1 < t.

II. µ0 ≥ t, µ1 < t: The Receiver chooses a = 1 if (m = 0, d = lie) or (m = 0, d =

¬lie) and a = 0 otherwise. The maximal probability that the Receiver chooses

a = 1 is given by

PrII(a = 1) = sup
p0,p1∈[0,1]

µ(1− p1) + (1− µ)p0 s.t. µ0 ≥ t, µ1 < t.

III. µ0 < t, µ1 ≥ t: The Receiver chooses a = 1 if (m = 0, d = lie) or (m = 1, d =

4The choice set of the maximization problem is not closed, so the maximum may not be achieved.
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¬lie) and a = 0 otherwise. The maximal probability that the Receiver chooses

a = 1 is given by

PrIII(a = 1) = sup
p0,p1∈[0,1]

µp1 + µ(1− p1)q + (1− µ)(1− q)(1− p0)

s.t. µ0 < t, µ1 ≥ t.

IV. µ0 ≥ t, µ1 ≥ t: The Receiver chooses a = 1 if (m = 0, d = lie), (m = 0, d = ¬lie)

or (m = 1, d = ¬lie) and a = 0 otherwise. The maximal probability that the

Receiver chooses a = 1 is given by

PrIV(a = 1) = sup
p0,p1∈[0,1]

1− (1− µ)(1− p0)q s.t. µ0 ≥ t, µ1 ≥ t.

Table 3.1 summarizes when the Receiver chooses a = 1 under different types of

strategies. Notably, by the definition of off-path beliefs, (0, 1) is a type III strategy

and (1, 0) is a type I strategy. We are now ready to state the main proposition.

d = lie d = ¬lie
m =
0

I, II, III,
IV

II, IV

m =
1

III, IV

Table 3.1: Cases where the Receiver chooses a = 1 under I, II, III, and IV.

Proposition 3.1. Let q = 1− µ(1−t)
t(1−µ)

∈ (0, 1). If q ≤ q, the Sender’s optimal strategy

is a type III strategy, in which the Sender always tells the truth under w = 1, but lies

with positive probability under w = 0. If q > q, the Sender’s optimal strategy is a type

IV strategy, in which the Sender lies with positive probability under both states.

Proof. See Appendix 3.A.1.
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In Figure 3.1 we graphically illustrate how these four strategy types are divided.

The proof involves sequential comparisons between the four type-optimal strategies.

First, there exists some type II strategy that is better than all type I strategies. Con-

sider a particular strategy p0 = p1 = 0 of type II (i.e., the Sender totally misreports

the state). Following this strategy, the Receiver takes action a = 1 if and only if

w = 1, which occurs with probability µ. This strategy may not be optimal among

all type II strategies, but it is sufficient to beat all strategies of type I since for those

strategies the Receiver takes action a = 1 only if w = 1 and (m = 0, d = lie), which

occurs with a probability less than µ.

0 1

1
p∗

II

I

III

p0

p1
µ0 = t
µ1 = t

(a) q ≤ q

0 1

1

p∗

p̂

II

IV

I

III

p0

p1
µ0 = t
µ1 = t

(b) q > q

Figure 3.1: Equilibrium strategies for different detection probabilities q.

Second, there exists some type III strategy that is better than all type II strategies.

Within type II strategies, we just need to focus on the ones with p1 = 0 because lying

more under state w = 1 relaxes both constraints and is beneficial for the Sender.

Now, for any type II strategy of the form (p0, 0), consider a strategy (p̃0, 1) such that

p0 = (1− p̃0)(1− q). It can then be verified that this is a type III strategy. Moreover,

this new strategy is equally good as (p0, 0) for the Sender by construction.

To see the intuition for this result, note that the type II and III strategies are

totally symmetric if the lie detection technology is not available (q = 0) since in
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that case the messages have no intrinsic meaning and we could always rename the

messages. However, the introduction of a lie detection technology (q > 0) generates

an intrinsic meaning for the message the Sender uses. In particular, an on-path

message that was not detected as a lie always carries some credibility for the state to

which it corresponds. Now, this additional source of credibility breaks the symmetry.

By definition, type II strategies are such that (m = 0, d = ¬lie) suggests w = 1

with a sufficiently high probability, while (m = 1, d = ¬lie) suggests w = 0 with a

sufficiently high probability. Loosely speaking, it is harder to persuade the Receiver

to take a = 1 using type II strategies since the Sender needs to counter the intrinsic

credibility of messages.

By transitivity, both type I and type II strategies are suboptimal relative to type

III strategies, and we only need to focus on the comparison between type III and type

IV strategies. Interestingly, as suggested by Figure 3.1 (a), type IV strategies do not

exist when q is small. The proof is given in Appendix 3.A. Intuitively, when q = 0

our setup yields the standard Bayesian Persuasion benchmark, which essentially only

involves two events (m = 0, d = ¬lie) and (m = 1, d = ¬lie). In that case, we

know it is impossible to induce a = 1 under both events because by the martingale

property, the posteriors following two events must average to the prior, suggesting

some posterior is lower than the prior and must induce a = 0. However, the presence

of lie detection extends the information from m to a couple (m, d), and the martingale

property only requires the four posteriors’ average over the prior. Furthermore, the

posterior following (m = 1, d = lie) is 0. Therefore if q is sufficiently large, it is

possible to support the two posteriors following (m = 1, d = ¬lie) and (m = 0, d =

¬lie) to be both higher than the prior and even higher than the threshold t.

In addition, as shown by Figure 3.1 (a), the constraint µ0 < t is implied by

the constraint µ1 ≥ t. Hence, the set of type III strategies is compact, and the

associated maximization problem admits a solution. Combining this observation with
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the previous arguments, we immediately obtain the first half of Proposition 3.1, i.e.,

the Sender’s optimal strategy is a type III strategy if q ≤ q. In particular, the optimal

strategy takes the following form:

p∗0 =
q − q

1− q
and p∗1 = 1.

This is reminiscent of Kamenica and Gentzkow (2011), where the Receiver is indif-

ferent between two actions when she takes the preferred action a = 1, and certain of

the state when she takes the less preferred action a = 0.

If the detection probability q is larger than q, the two lines that characterize the

constraints in the right panel of Figure 3.1 intersects, implying the set of type III

strategies is not closed anymore. However, the associated maximization problem still

admits a solution: (p0, p1) = (0, 1), which is a type III strategy according to off path

beliefs specified earlier. This strategy can be shown to be optimal within type III

strategies in two steps. First, increasing p1 relaxes both constraints and improves the

Sender’s expected payoff at the same time (i.e., being more sincere in the favorable

state benefits the Sender unambiguously). Thus, the optimal type III strategy, if it

exists, must be of the form (p0, 1). Second, the whole segment from (0, 1) to (1, 1) are

type III strategies when q > q. Hence, the optimal strategy on this segment is the

leftmost point (0, 1) as it involves sending the persuasive message m = 1 as frequently

as possible.

Yet, this optimal type III strategy, denoted as p̂ in Figure 3.1 (b), is no longer

globally optimal because the set of type IV strategies is non-empty, and the optimal

type IV strategy is better than p̂. In fact, we can prove a stronger statement that

p̂ is worse than any type IV strategy p whenever the latter is feasible. To this end,

we decompose the value of a strategy for the Sender into two parts: the expected

payoff in the favorable state w = 1 and the expected payoff in the unfavorable state
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w = 0. The strategy p̂ induces a = 1 for sure when w = 1 because the Sender always

truthfully sends m = 1, which is credible and is never flagged as a lie. Meanwhile, any

strategy p of type IV also induces a = 1 for sure. Such a strategy could induce three

different events: (m = 1, d = ¬lie), (m = 0, d = ¬lie), (m = 0, d = lie). The first

two events successfully persuade the Receiver to take a = 1 by definition of type IV

strategies. The last event directly informs the Receiver that w = 1, so it also induces

a = 1. Hence, the strategy p̂ and p agree in the expected payoff in the favorable state

w = 1. However, they differ in the expected payoff in the unfavorable state w = 0.

Given p̂, the Sender always lies and sends the message m = 1 when w = 0, which

induces a = 1 only if the lie is not detected. Given p, the Sender sometimes tells the

truth by sending the message m = 0 as well, but by definition of type IV strategies,

m = 0 is now a risk-free way to induce a = 1 since it will never be flagged as a lie

in the unfavorable state w = 0. Hence, the strategy p results in a higher expected

payoff for Sender in the unfavorable state as well as overall. Mathematically,

US(p̂) = µ︸︷︷︸
Pr(w=1)

×
Pr(a=1|w=1; p̂1)︷ ︸︸ ︷

1× 1 + (1− µ)︸ ︷︷ ︸
Pr(w=0)

×
Pr(a=1|w=0; p̂0)︷ ︸︸ ︷
1× (1− q) ,

and

US(p) = µ︸︷︷︸
Pr(w=1)

×
Pr(a=1|w=1; p1)︷ ︸︸ ︷

[p1 × 1 + (1− p1)× (1− q) + (1− p1)× q]

+ (1− µ)︸ ︷︷ ︸
Pr(w=0)

×
Pr(a=1|w=0; p0)︷ ︸︸ ︷

[p0 × 1 + (1− p0)× (1− q)] .

where the first term (µ× 1) is the same for the two expressions, but the second term

is larger for US(p) since p0 is not multiplied by 1− q but instead by 1. As we argued

above, the main benefit of p relative to p̂ is that the “safer” message m = 0 is sent

more frequently in p. Thus, the optimal type IV strategy must involve the highest p0,
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or the least lying in the unfavorable state. Such a strategy, given by p∗ in Figure 3.1

(b), is also globally optimal by the previous arguments provided that q > q. The

expressions are given by

p∗0 =
1− q

(2− q)q
(q − q) and p∗1 =

1− q

(2− q)q

[
1

1− q
− (1− q)

]
.

Although the optimal strategy features partial lying under both states, the Sender

still lies more in the unfavorable state than in the favorable state (p∗0 < p∗1).

Interestingly, the difference between the Sender’s payoffs of the strategy p̂ and p∗

is non-monotone in the detection probability q. When q = q, p̂ coincides with p∗, so

they are equally good. When q = 1, it is as if the Receiver is informed about the

state with probability 1, so any strategy results in the same payoff for the Sender.

Only when q ∈ (q, 1), p∗ yields a strictly higher payoff than p̂.

Finally, the threshold q where the optimal strategy switches from a type III to

a type IV strategy, is decreasing in µ and increasing in t. To see the intuition for

this result, fix the lie detection probability q ∈ (0, 1). If a weak signal is sufficient to

persuade the Receiver (i.e., the prior µ is already close to the threshold t), a type IV

strategy is optimal for the Sender. On the other hand, if the signal has to be very

convincing to persuade the Receiver (i.e., the threshold t is much larger than the prior

µ), a type III strategy is optimal for the Sender.

3.3.2 Comparative Statics

We now consider the comparative statics of our model with respect to the central

parameter of the lie detection probability q to show how the optimal communication

and the payoffs of the communicating parties changes as the lie detection technology

improves.
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Optimal Messages

Proposition 3.2 describes how the structure of the optimal message strategy (p∗0, p
∗
1)

changes as the detection probability varies. Figure 3.2 plots these optimal report-

ing probabilities as a function of q. For comparison, the probabilities pBP
0 and pBP

1

are the equilibrium reporting probabilities that would result in a standard Bayesian

persuasion setup without lie detection.

Proposition 3.2. As the lie detection probability q increases,

1. p∗0 = Pr(m = 0 | w = 0) is decreasing over [0, q], and has an inverse U shape

over (q, 1].

2. p∗1 = Pr(m = 1 | w = 1) is constant over [0, q], and decreases over (q, 1].

Proof. See Appendix 3.A.2.

If q ≤ q = 1 − µ(1−t)
t(1−µ)

, p∗0 is decreasing in q and p∗1 is constant at 1. In this range

of q, the Sender’s optimal strategy lies in III, which involves truthfully reporting the

state w = 1 (i.e., p1 = 1), but progressively misreporting the state w = 0 as the lie

detection technology improves (i.e., p0 < 1 and decreasing with q).

If q > q, p∗0 initially increases and then decreases. In contrast, p∗1 decreases over

the entire range of [q, 1]. In this range, the Sender’s optimal strategy lies in IV which

involves misreporting both states of the world.

For q = 0 we have the Bayesian benchmark. Recall from Kamenica and Gentzkow

(2011) that if an optimal signal induces a belief that leads to the worst action for

the Sender (a = 0 in our case), the Receiver is certain of her action at this belief. In

addition, if the optimal signal induces a belief that leads to the best action for the

Sender (a = 1 in our case), the Receiver is indifferent between the two actions at this

belief.
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(a) p∗0 ≡ Pr(m = 0 | w = 0)
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pBP
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III IV

q

p∗1

(b) p∗1 ≡ Pr(m = 1 | w = 1)

Figure 3.2: Equilibrium strategies p∗0 and p∗1 as a function of q for µ = 1
3 and t = 1

2

Now consider the addition of a lie detection technology. As the lie detection

probability q increases, (m = 1, d = ¬lie) becomes more indicative of the favorable

state w = 1, and therefore the Receiver would strictly prefer to take the favorable

action a = 1. As a response, the Sender would like to send the message m = 1

more often while still maintaining that (m = 1, d = ¬lie) sufficiently persuades the

Receiver to take the action a = 1. Because the Sender already sends the message

m = 1 with probability 1 under w = 1, the only way to increase the frequency of

m = 1 is to send such a message more often in the unfavorable state w = 0 (i.e., lie

more frequently if w = 0). In other words, the Sender increases the frequency of lying

just enough about the unfavorable state (w = 0) to make the Receiver indifferent

when choosing the favorable action a = 1.

Recall that in the canonical Bayesian persuasion setup, the Receiver is held to her

outside utility of getting no information whatsoever. Thus, when the lie detection

probability q increases, the Receiver is more certain that (m = 1, d = ¬lie) means

w = 1 and would obtain a larger surplus from the improvement in the lie detection

technology. However, as long as p∗0 is greater than 0 the Sender can simply undo

this improvement by lying more about w = 0 (i.e., reduce p∗0 even further), thereby
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“signal-jamming” the information obtained by the Receiver.

However, once the detection probability q rises above q it is no longer possible for

the Sender to just lie about the unfavorable state because he already maximally lies

about it at q. His optimal messaging strategy is now a type IV strategy when q > q.

Under a type IV strategy, the Receiver only takes the unfavorable action a = 0 if he

receives a message m = 1 that is flagged as a lie. This is because with a type IV

strategy the Receiver has access to such a reliable lie detection technology that a lie

involving the message m = 1 is sufficiently likely to be detected as a lie and will then

induce the unfavorable action a = 0. At the same time, the Receiver is also very likely

to be notified of a lie involving the message m = 0 which the Sender can use to his

advantage to ensure that the Receiver chooses the favorable action a = 1. Therefore

at q = q, the Sender wants to increase the frequency of the message m = 0 which

he achieves by both increasing p0 and decreasing p1. However, when the detection

probability is close to 1, (i.e., the lie detection technology is almost perfect) p1 is close

to 0 and any message m = 1 is very likely to be a lie. To make sure that a message

m = 1 which is not detected as a lie still sufficiently persuades the Receiver to choose

a = 1 (i.e., does not violate the constraints µ0 ≥ t and µ1 ≥ t required for a type IV

strategy), the Sender also has to decrease p0 while decreasing p1.

These perhaps surprising comparative statics, especially those of the type IV strat-

egy, are partly due to the asymmetric nature of the signal structure (as in Engers

et al. (1999)) which in our case only detects lies rather than detecting both lies and

truths, and partly due to the persuasion game leading to a mixed strategy equilib-

rium. Such mixed strategy equilibria often have counterintuitive comparative statics

properties, as Crawford and Smallwood (1984) point out.
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Payoffs

Recall that US and UR denote the equilibrium payoffs of the Sender and the Receiver.

We now investigate how US and UR are affected by improvements in the lie detection

technology. The results are summarized in Proposition 3.3 and graphically depicted

in Figure 3.3. For comparison, UBP
S and UBP

R are the equilibrium payoffs that would

result in a standard Bayesian persuasion setup without lie detection.

Proposition 3.3. As the lie detection probability q increases,

1. US is constant over [0, q], and decreases over (q, 1].

2. UR is constant over [0, q], and increases over (q, 1].

Proof. See Appendix 3.A.3.

0 q 1

UBP
S

III IV

q

US

(a) The Sender’s Equilibrium Payoff

0 q 1

UBP
R

III IV

q

UR

(b) The Receiver’s Equilibrium Payoff

Figure 3.3: Equilibrium payoffs as a function of q for µ = 1
3 , t =

1
2

.

The Sender’s equilibrium payoff does not change for q ≤ q and decreases with q

for q > q. As long as q ≤ q the Sender receives exactly the same utility that he would

receive under the Bayesian Persuasion benchmark. Any marginal improvement in the

lie detection technology (i.e., increase in q) is completely offset by less truthful report-

ing when w = 0 (i.e., decrease in p∗0). However, for q > q any further improvements
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reduce the Sender’s utility. In the limit case where q = 1 the Sender has no influence

anymore and the action a = 1 in only implemented when the state is w = 1 which

occurs with probability µ.

Analogously for the case of the Sender’s utility, the Receiver’s utility is also con-

stant at the Bayesian persuasion benchmark as long as q ≤ q and then increases with

q for q > q as the lie detection technology starts to bite. If having access to the lie

detection technology required any costly investment, the Receiver would only ever

want to invest in improving lie detection if it raised q above the threshold q. In the

limit, the Receiver is just as well off as she would be under perfect information.

3.4 Discussion

Our baseline model considers the role of lie detection in a simple setting with binary

states. We now investigate how alternative assumptions modify our analysis.

3.4.1 Detection Technology

First, consider a different detection technology that informs the Receiver with prob-

ability r that a message is truthful. That is to say, rather than being able to (prob-

abilistically) detect a lie the Receiver can (probabilistically) detect that a message is

truthful. Truth detection is perhaps a less realistic assumption as it is often easier to

detect whether the Sender has lied than whether he has sent a truthful message.

In our setting, truth detection turns out to be payoff-equivalent to lie detection.

Therefore, all of our insights about the equilibrium payoffs as a function of the lie

detection probability q in Figure 3.3 also hold for the truth detection probability r.

However, under truth detection the Sender’s optimal message is completely flipped

and has some unnatural features. When the truth detection probability r is low but

positive, it is optimal for the Sender to always lie in the favorable state (i.e., p1 = 0)
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and to choose p0 such that the Receiver is indifferent between a = 0 and a = 1 upon

a message m = 0 that is not marked as truth.

Second, combining lie detection and truth detection such that they are perfectly

positively correlated is equivalent to state detection. With probability q = r the

Receiver learns the state w regardless of the message sent by the Sender. With such

a state detection technology the analysis becomes much simpler as we just return

to the Bayesian persuasion benchmark. This is because the Sender’s message does

not influence at all whether the Receiver learns the state, and any message m is

only relevant whenever the Receiver does not learn the state. This finding contrasts

with the literature on noisy cheap talk in which adding communication error or noise

influences the messaging strategies and can improve welfare (Blume et al., 2007).

These observations highlight our interpretation of Bayesian persuasion under lie

detection in that the Sender’s messages have a literal meaning of truth and lies. Even

though the Sender is committing to the strategy—or, alternatively speaking, choosing

an experiment—the strategies employed by the Sender are not equivalent to just an

arbitrary garbling of the state.

3.4.2 Default Action Coincides with Sender’s Preferred Action

In standard Bayesian persuasion models without lie detection the Sender can always

send a purely uninformative signal. Therefore, a trivial case obtains if the Receiver’s

default action coincides with the Sender’s preferred action because the Sender can

induce the Receiver to take this action with probability one by committing to an

uninformative signal. However, the messages in our model have literal meanings and

are subject to lie detection. Therefore, a purely uninformative signal is unavailable to

the Sender. Intuitively, lie detection forces information transmission from the Sender

to the Receiver which makes the Sender’s optimization problem nontrivial even when

the Receiver’s default action coincides with the Sender’s preferred action.
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In this extension, we analyze the scenario in which the prior mean µ is higher

than the action threshold t. The results are analogous to those in the baseline model.

As before, the Sender’s maximization problem is solved by considering the four sub-

problems. The only change relative to the baseline model is that Region IV now

exists for any q ∈ [0, 1] as shown in Figure 3.4.

0 1

1

p∗

p̄

II

IV

III

p0

p1
µ0 = t
µ1 = t

(a) q ≤ q̃

0 1

1

p∗

II

IV

I

III

p0

p1
µ0 = t
µ1 = t

(b) q > q̃

Figure 3.4: Equilibrium message strategies for different detection probabilities q (µ ≥ t).

The optimal messaging strategy p∗ is always in Region IV. When q ∈ q̃ ≡ 1 −
t(1−µ)
µ(1−t)

, the strategy (p0, p1) = (1, 0) would induce the Receiver to take a = 1 with

probability one and is thus optimal.5 Under this strategy, the Sender reports m = 0

with probability one in both states. If it is flagged as a lie, the Receiver immediately

learns that the true state is ω = 1. Otherwise, her posterior mean would drop by the

martingale property. Nonetheless, if q is sufficiently small, her posterior mean would

be close to the prior mean which is still higher than the action threshold. Hence, the

Receiver is always willing to take the favorable action.

If q is sufficiently large such a strategy is no longer sustainable and it is impossible

to induce a = 1 with probability one. For example, in the extreme case where q = 1,

it is as if the Receiver learns the true state. Hence, it must be that the Receiver takes
5It is not unique though because the Receiver actually strictly prefers to take a = 1 when she

observes (m = 0,¬lie). Other optimal strategies include the segments from p∗ to p̄.
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action a = 1 if and only if ω = 1. In fact, the Sender’s optimal messaging strategy

is again characterized by the intersection of two indifference conditions: µ0 = t and

µ1 = t as in Figure 3.4 (b).

Given this discussion above, the Sender’s (Receiver’s) payoff is initially constant

in q when q ≤ q̃, and then decreasing (increasing) in q when q > q̃. This is consistent

with Proposition 3.3.

Admittedly, the fact that the Sender cannot induce the Receiver to always take

the favorable action even when µ ≥ t, suggests some tension between our model and

the standard persuasion paradigm. In the standard paradigm without lie detection

this case is trivial whereas in ours it is not. However, it is easy to reconcile this tension

by introducing an additional stage prior to the persuasion game, in which the Sender

decides whether or not to enter the game. If he enters, the Sender and the Receiver

play the persuasion game with lie detection specified in our main analysis. Otherwise,

the Sender cannot send any message and the Receiver takes an action based on her

prior. It is straightforward to show that the Sender enters the game if the Receiver’s

default action does not coincide with his preferred action. Otherwise, the Sender does

not enter the game, but the Receiver always takes action a = 1, consistent with the

standard persuasion paradigm.

3.4.3 Non-revealing Lie Detection

In a binary-state environment, the lie detection technology considered in this chapter

is quite special in the sense that whenever the Receiver learns that the Sender has

lied, she immediately learns the true state. However, Proposition 3.3 is not driven

by this special feature.6 Intuitively, in a binary-state environment, the lie detection

technology forces the release of too much information to the Receiver. Still, we show
6In the three-state environment, the uniqueness of equilibrium is not necessarily guaranteed.

Thus, it is hard to generalize Proposition 3.2. However, the strategic effect still appears and plays
an important role.
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that the Receiver does not benefit from a weak lie detection technology, even in this

case. Following this reasoning, when the Receiver’s posterior beliefs after a lie detec-

tion are non-degenerate, the Receiver obtains less information. Therefore, we would

expect Proposition 3.3 to be strengthened instead of weakened. For example, if the

state space is continuous and the prior belief has no point mass, then the lie detection

technology is essentially useless because learning that a single state is impossible does

not alter the Receiver’s belief. In fact, even in a three-state environment, lie detection

technology is useless. This section shows that both the Sender’s and the Receiver’s

payoff are unaffected by the strength of lie detection, suggesting that fully revealing

lie detection is not the driving force.7

Formally, let ω ∈ {0, λ, 1} be the state of the world and (P0, Pλ, P1) be the full-

support prior belief where λ ∈ (0, 1). The message space is again restricted to be

identical to the state space and a lie is detected with probability q ∈ [0, 1] whenever

the message is inconsistent with the true state. For simplicity, keep the player’s

utility functions unchanged. In particular, the Sender always prefers a = 1 over

a = 0 regardless of the true state, whereas the Receiver takes an action a = 1 if and

only if her posterior mean is higher than an action threshold t. Assume t ∈ (µ, λ),

where µ = P1+λPλ is the prior mean.8 The implication of this restriction is twofold.

First, the Receiver’s default action is a = 0. Second, if the Receiver knows the state

is λ, she prefers to take an action a = 1. In other words, both ω = 1 and ω = λ are

favorable states for the Sender. To quantify the Receiver’s utility explicitly, let her
7An alternative approach to model non-revealing lie detection is to modify the lie detection

technology by introducing false alarms. In other words, a lie may be detected even if the message
is consistent with the true state. However, this approach is more complicated. So, we adopt the
approach of expanding the state space.

8The choice of t is not important for the extension. However, it affects two things and complicates
the exposition. First, it affects the Receiver’s utility function. Second, it affects the Sender’s
equilibrium payoff in the benchmark.
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payoff function and expected payoff be

uR(a, ω) = (1− t) · 1{a=1,ω=1} + (λ− t) · 1{a=1,ω=λ} + t · 1{a=0,ω=0},

and

UR = (1− t) · Pr(a = 1, ω = 1) + (λ− t) · Pr(a = 1, ω = λ) + t · Pr(a = 0, ω = 0).

(3.1)

This utility function is analogous to the one in the main body. The Receiver would

like to take the right action for each state but assigns different weights for different

states. The particular choice of weights induces a decision rule that it is optimal to

take a = 1 if and only if the posterior is higher than t.

The goal here is to show that both players’ payoffs are constant in q. To this end,

we first compute the Sender’s payoff in the benchmark scenario (q = 0) and then

construct a strategy that leads to the same payoff for the Sender with any detection

probability. Last, we show that in any Sender’s preferred equilibrium, the Receiver’s

payoff is constant. Moreover, this constant is independent of q.

The optimal signal/messaging strategy in the classical Bayesian Persuasion frame-

work with a binary action has been analyzed in the literature. Ivanov (2021) shows

that in a binary-action and continuous-state environment, there exists an optimal

strategy with a partitional structure where the Sender sends a message if the state

is above some threshold and sends another message otherwise. By applying the in-

sight to our discrete-state model, there exists an optimal strategy with the following

properties. The Sender sends one (another) message if the state is strictly higher

(lower) than some threshold state. Moreover, he mixes between two messages at the
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threshold state. In particular, the following strategy achieves the optimum.

ω = 1 −→ m = 1

Strategy 1: ω = λ −→ m = 1

ω = 0 −→ m =


1, w.p. r

0, w.p. 1− r

where r solves

P1 + λPλ

P1 + Pλ + rP0

= t.

Essentially, the mixing probability r ensures the Receiver to be indifferent after ob-

serving m = 0. Given Strategy 1, the Receiver takes the favorable action if and only

if she receives m = 1. Thus,

US(0) = P1 + Pλ + rP0 =
µ

t
.

Now, suppose there is a lie detection probability q > 0. In principle, this limits

the Sender’s scope to manipulate the Receiver’s posterior beliefs, and thus potentially

lowers the Sender’s payoff. However, the following strategy yields the Sender the same

payoff as in the benchmark. Moreover, this strategy is independent of q, suggesting
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that lie detection has not impact on the Sender’s payoff at all.

ω = 1 −→ m = λ

Strategy 2: ω = λ −→ m = 1

ω = 0 −→ m =


1, w.p. r

λ, w.p. s

0, w.p. 1− r − s

where r and s respectively solve


λPλ

Pλ+P0r
= t,

P1

P1+P0s
= t.

The assumption µ < t < λ ensures that s, r, s + r ∈ (0, 1). Given Strategy 2, the

Receiver is indifferent after observing (m = 1, d = ¬lie), (m = 1, d = lie), (m =

λ, d = ¬lie), and (m = λ, d = lie). So, she takes the favorable action if and only if

she receives m = 1 or m = λ, regardless of the lie detection outcome. It follows that

US(q) = P1 + P0r + Pλ + P0s =
λPλ

t
+

P1

t
=

µ

t
= US(0), ∀q ∈ (0, 1]. (3.2)

Lie detection is not useful here because conditional on this particular strategy, the

message λ and the message 1 are always lies, whereas a message 0 is never a lie.

Moreover, the probability of lie detection is constant as long as the Sender is lying.

Thus, lie detection does not provide any additional information for the Receiver, no

matter how strong it is.

Since we focus on the Sender’s preferred equilibrium, the Receivers’ payoff is

potentially non-unique. Fortunately, that is not the case here. Lemma 3.1 guarantees

that the Receiver’s payoff is unique. In addition, it is always linear in the Sender’s
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equilibrium payoff with a negative slope.

Lemma 3.1. Fix a lie detection probability q ∈ [0, 1]. If µ < t < λ, then in any

Sender’s preferred equilibrium,

UR(q) = (1− t)P1 + (λ− t)Pλ + t[1− US(q)].

Here is the key intuition of this result. Note that both ω = 1 and ω = λ are

favorable states for the Sender. Thus, it is optimal to induce a = 1 under those two

states, which suggests Pr(a = 1, ω = 1) = Pr(a = 1, ω = λ) = 1 in any Sender’s pre-

ferred equilibrium. Then, according to Equation 3.1, the Receiver’s expected payoff

only depends on Pr(a = 0, ω = 0). But this probability is completely determined

by the Sender’s optimality and is therefore linked to the Sender’s equilibrium payoff.

Roughly speaking, the Sender wishes to minimize this probability while conditional

on Pr(a = 1, ω = 1) = Pr(a = 1, ω = λ) = 1.

Combining Equation 3.2 and Lemma 3.1, it is immediate that the Receiver’s

equilibrium payoff is also independent of q.

UR(q) = (1− t)P1 + (λ− t)Pλ + t− µ = tP0.

Our analysis suggests that fully revealing lie detection does not drive Proposition 3.3.

3.4.4 Related Literature

Balbuzanov (2019) and Dziuda and Salas (2018) also study strategic communication

in the presence of a lie detection technology but in a cheap talk setting. The largest

difference between these two papers and ours therefore lies in the commitment power

of the Sender. Although it is debatable whether the extreme cases of full commitment

(as in Bayesian persuasion) or no commitment (as in cheap talk) constitute more
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plausible assumptions about real-life communication setting, we believe our model

is an important step towards studying the communication games with lie detection

under (partial) commitment.

This chapter also differs from Balbuzanov (2019) in the payoff functions. In Bal-

buzanov (2019) the Sender and the Receiver have some degree of common interest

whereas there is no common interest in our model. Due to this difference the Sender’s

type-dependent preferences in Balbuzanov (2019) permit fully revealing equilibria in

some cases as it allows the Receiver to tailor message-specific punishment actions.

In particular, fully revealing equilibria exist for some intermediate degree of lie de-

tectability if the Sender’s bias is small. However, the Sender in our model never

reveals the state perfectly due to the conflict in payoffs.

Dziuda and Salas (2018) do not allow for common interest and therefore, like in

this chapter, and thus fully revealing equilibria are impossible in their paper. In their

continuous state model, there are many off-path beliefs to be specified. To discipline

these off-path beliefs, they impose two refinements. They show that in all remaining

equilibria, the lowest types lie but some higher types tell the truth. However, the

assumptions of our model allow the second refinement required by Dziuda and Salas

(2018) to be violated. Therefore, irrespective of the commitment power of the Sender,

our model is not nested by theirs. Furthermore, in the baseline model of Dziuda and

Salas (2018), a higher lie detection probability leads to more truth-telling, which is

contrary to our finding.

3.5 Conclusion

In this chapter we analyze the role of probabilistic lie detection in a model of Bayesian

persuasion between a Sender and a Receiver. We show that the Sender lies more when

the lie detection probability increases. As long as the lie detection probability is
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sufficiently small the Sender’s and the Receiver’s equilibrium payoff are unaffected by

the lie detection technology because the Sender compensates by lying more. Once the

lie detection probability is sufficiently high, the Sender can no longer maximally lie

about the unfavorable state and the Sender’s (Receiver’s) equilibrium payoff decreases

(increases) with the lie detection probability. Our model rationalizes that a sender of

communication chooses to lie more frequently when it is more likely that their false

statements will be flagged as lies.

This chapter explores the impact of lie detection on communication in a setting

with complete commitment to a communication strategy by the Sender. It thereby

establishes a useful benchmark relative to the diametrically opposed assumption of

no commitment in existing cheap talk models with lie detection. However, how does

lie detection influence communication behavior in intermediate settings with partial

commitment? We leave this and other interesting questions to future research.
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3.A Omitted Proofs

3.A.1 Proof of Proposition 3.1

We now show that type I and II strategies are suboptimal because the resulting imple-

mentation probabilities PrI(a = 1) and PrII(a = 1) are dominated by the probability

PrIII(a = 1) resulting from III. To see this, note first that

PrI(a = 1) ≤ µ ≤ PrII(a = 1).

The second inequality holds because (p0, p1) = (0, 0) is a type II strategy and gives

value µ. In fact, for a type II strategy, it is optimal to set p1 = 0 because this loosens

both constraints, and improves the objective. Given this, µ1 = 0 < t is loose. Hence

the optimum requires

µ0 =
µ(1− q)

µ(1− q) + (1− µ)p0
= t,

and hence

PrII(a = 1) = µ+
(µ
t
− µ

)
(1− q).

Similarly, in the maximization problem within type III strategies, it is optimal to

set p1 = 1. Then µ0 = 0 < t becomes loose. The optimum requires p0 to be as small

as possible while ensuring that µ1 ≥ t. Define q ≡ 1− µ(1−t)
t(1−µ)

∈ (0, 1), then there are

two cases to consider.

• µ
µ+(1−µ)(1−q)

≤ t or q ≤ q. In this case, there exists p∗0 s.t. µ1 = t, that is
µ

µ+(1−µ)(1−p∗0)(1−q)
= t. Therefore, PrIII(a = 1) = µ

t
.

• µ
µ+(1−µ)(1−q)

> t or q > q. In this case, µ1 ≥ t can never bind. Thus, the best

option is to set p = 0 which implies PrIII(a = 1) = µ+ (1− µ)(1− q).
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Clearly, in either case we have PrIII(a = 1) > PrII(a = 1) and therefore both type I

and II strategies are suboptimal. It therefore remains to compare PrIII(a = 1) and

PrIV(a = 1).

(1) If µ
µ+(1−µ)(1−q)

≤ t, the type IV strategies do not exist, i.e., there is no way to

choose p0, p1 such that µ1 ≥ t and µ0 ≥ t. If that were the case we would have

µp1
µp1 + (1− µ)(1− p0)(1− q)

≥ t,

and

µ(1− p1)(1− q)

µ(1− p1)(1− q) + (1− µ)p
≥ t ⇐⇒ µ(1− p1)

µ(1− p1) + (1− µ) p
1−q

≥ t,

which would imply

µp1 + µ(1− p1)

µp1 + µ(1− p1) + (1− µ)(1− p0)(1− q) + (1− µ) p
1−q

≥ t,

and therefore

t ≤ µ

µ+ (1− µ)(1− p0)(1− q) + (1− µ) p
1−q

≤ µ

µ+ (1− µ)(1− q)
,

where the last inequality is binding if q = 0 or p = 0. This in turn yields

t < µ
µ+(1−µ)(1−q)

which is a contradiction. Hence, if µ
µ+(1−µ)(1−q)

≤ t, the optimal

strategy is

p∗0 = 1−
µ(1−t)
t(1−µ)

1− q
and p∗1 = 1.
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Alternatively,

p∗0 =
q − q

1− q
and p∗1 = 1.

(2) If µ
µ+(1−µ)(1−q)

> t, it is now possible to induce µ1 ≥ t, µ0 ≥ t. In particular, the

constraints can be rewritten as two lines where the coordinates are p0 and p1.

In particular, we have

µ1 ≥ t ⇔ (1− t)µp1 ≥ t(1− µ)(1− p0)(1− q),

which passes through (1, 0) and
(
0, t(1−µ)(1−q)

(1−t)µ

)
where t(1−µ)(1−q)

(1−t)µ
< 1 by assump-

tion. We also have

µ0 ≥ t ⇔ µ(1− t)(1− p1) ≥ t(1− µ)
p

1− q
,

which passes through (0, 1) and
(

µ(1−t)(1−q)
t(1−µ)

, 0
)

where µ(1−t)(1−q)
t(1−µ)

< 1 because

t > µ.

Since the objective is to maximize 1 − (1 − µ)(1 − p0)q, we want to find the

point in type IV strategies with the largest value of p0. Clearly, this point is at

the intersection of the two lines in Figure 3.1(b), given by

p∗0 = 1−
1− (1− q)µ(1−t)

t(1−µ)

(2− q)q
and p∗1 = 1−

1− (1− q) t(1−µ)
µ(1−t)

(2− q)q
,

where µ(1−t)
t(1−µ)

∈ (1− q, 1) by assumption. Alternatively,

p∗0 =
1− q

(2− q)q
(q − q) and p∗1 =

1− q

(2− q)q

[
1

1− q
− (1− q)

]
.

As a result, we have PrIII(a = 1) < PrIV(a = 1) because the following inequality
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holds

PrIII(a = 1) = µ+ (1− µ)(1− q)

= 1− (1− µ)q < 1− (1− µ)q(1− p∗0) = PrIV(a = 1).

3.A.2 Proof of Proposition 3.2

• If q ≤ q,

p∗0 =
q − q

1− q
and p∗1 = 1.

Clearly, p∗0 = 1− 1−q
1−q

decreases in q and p∗1 is constant in q.

• If q > q,

p∗0 =
1− q

(2− q)q
(q − q) and p∗1 =

1− q

(2− q)q

[
1

1− q
− (1− q)

]
.

This implies

∂p∗0
∂q

=
(−2q + 1 + q) · (2− q)q − (2− 2q)(1− q)(q − q)

(2− q)2q2

=
−q2 + (q2 − 2q + 2)q

(2− q)2q2
.

Therefore,

∂p∗0
∂q

≥ 0 ⇐⇒ 1

q
≤ q2 − 2q + 2

q2
= 1 +

2− 2q

q2
.

RHS decreases in q, meaning the sign of the derivative at most changes one time.

Since the derivative is positive at q = q, but negative at q = 1, we conclude

that p∗0 is first increasing and then decreasing in q over (q, 1].
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On the other hand, p∗1 can be written as a product of (1−q)
(2−q)

and
1

1−q
−(1−q)

q
. Each

term decreases in q, the it follows that p∗1 decreases in q over (q, 1].

3.A.3 Proof of Proposition 3.3

The expected payoff of the Sender is Pr(a = 1). There are two cases depending on

whether q > q.

• If q ≤ q, then the Receiver chooses a = 1 whenever (m = 1, d = ¬lie) or

(m = 0, d = lie). But the latter occurs with probability 0 in the equilibrium.

So,

US = µ+ (1− µ)(1− p∗0)(1− q) =
µ

t
,

which is constant in q. Essentially, any marginal improvement in the lie detec-

tion technology (i.e., increase in q) is completely offset by less truthful reporting

when w = 0 (i.e., decrease in p∗0).

• If q > q, then the Receiver chooses a = 1 always unless (m = 1, d = lie). So,

US = 1− (1− µ)(1− p∗0)q = 1− t(1− µ)− µ(1− t)(1− q)

t(2− q)
,

which is decreasing in q as

∂US

∂q
=

−µ(1− t)t(2− q)− t[t(1− µ)− µ(1− t)(1− q)]

t2(2− q)2

=
−µ(1− t)− t(1− µ)

t(2− q)2

< 0.

The Receiver’s expected payoff is t · Pr(a = w = 0) + (1 − t) · Pr(a = w = 1).

Again, there are two cases.
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• If q ≤ q, then the Receiver matches the state w = 0 correctly if (w = 0,m = 0)

or if (w = 0,m = 1, d = lie), and matches the state w = 1 correctly if w = 1.

In sum,

UR = (1− µ)t · [p∗0 + (1− p∗0)q] + µ(1− t)

= (1− µ)t · [1− (1− p∗0)(1− q)] + µ(1− t)

= (1− µ)t ·
[
1− µ(1− t)

t(1− µ)

]
+ µ(1− t)

= (1− µ)t,

which is constant in q.

• If q > q, then the Receiver matches the state w = 0 correctly if (w = 0,m =

1, d = lie), and matches the state w = 1 correctly if w = 1. In sum,

UR = (1− µ)t · (1− p∗0)q + µ(1− t)

= (1− µ)t ·
1− (1− q)µ(1−t)

t(1−µ)

2− q
+ µ(1− t)

=
(1− µ)t+ t(1− µ)

2− q
,

which is increasing in q.

3.A.4 Proof of Lemma 3.1

In Step 1, we characterize properties of the Sender’s preferred equilibria and show

that in any Sender’s preferred equilibrium, the Receiver always takes a = 1 under

state 1 and λ. In Step 2, we decompose the payoff functions US(q) and link it to UR(q).

Step 1:

Let the Sender’s strategy be represented by a = {aij}i,j∈{0, λ, 1}, where aij is the

probability of sending message j under state i. Let X be the set of pairs (m, d)

110



where (m, d) ∈ {0, λ, 1} × {lie, ¬lie}. Let µm,d denote the posterior mean after

observing (m, d) ∈ {0, λ, 1} × {lie, ¬lie}. The formulas of the posterior means are

given by9

µ1, lie =
q · λPλaλ1

q · (Pλaλ1 + P0a01)

µ1,¬lie =
P1a11 + λPλaλ1(1− q)

P1a11 + Pλaλ1(1− q) + P0a01(1− q)

µλ, lie =
q · P1a1λ

q · (P1a1λ + P0a0λ)

µ1,¬lie =
λPλaλλ + P1a1λ(1− q)

Pλaλλ + P1a1λ(1− q) + P0a0λ(1− q)

µ0, lie =
q · (P1a10 + λPλaλ0)

q · (P1a10 + Pλaλ0)

µ0,¬lie =
(P1a10 + λPλaλ0)(1− q)

P0a00 + (P1a10 + Pλaλ0)(1− q)

Moreover, let num(x) = µx ·Pr(x) to be the numerator of µx. Denote X1 = {(m, d) ∈

X |µm,d ≥ t} as the set of message-detection pairs under which the Receiver takes

action a = 1. An observation is that the sum of six numerators equal µ and the sum

of six denominators equal 1. Thus, for any strategy a, the Sender’s payoff is equal to

∑
x∈X1

Pr(x) ≤

∑
x∈X1

µx · Pr(x)

t
≤ µ

t
(1.A.1)

We know from Equation 3.2 that µ
t

is exactly the Sender’s optimal payoff in this case.

Thus, it suffices to find conditions on a such that both equalities in Equation 1.A.1

are attained. The first equality requires that ∀x ∈ X1, the Receiver is indifferent

after observing x : µx = t. This immediately implies a10 = aλ0 = 0 because otherwise

µ0, lie > t by assumption t < λ. Next, we consider two cases.

9In particular, 0
0 ≡ 0.
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If a1λ > 0, then the second equality requires (λ, lie) ∈ X1. Otherwise,

∑
x∈X1

num(x) ≤ µ− q · P1a1λ < µ.

Analogously, (λ, ¬lie) ∈ X1. However, if (λ, lie), (λ, ¬lie) ∈ X1, then by the

implication of the first equality, it must be that aλλ = 0 and thus aλ1 = 1. Re-

peat the arguments, the second equality requires (1, lie), (1, ¬lie) ∈ X1, and the

first inequality requires a11 = 0 and thus a1λ = 1. In summary, the Sender al-

ways sends message 1 under state λ and sends message λ under state 1. Moreover,

(λ, ¬lie), (λ, lie) (1, ¬lie), (1, lie) all induce action a = 1. Thus, Pr(a = 1, ω = 1) =

Pr(a = 1, ω = λ) = 1.

In the second case, suppose a1λ = 0, which implies a11 = 1. By the second

equality, (1, ¬lie) ∈ X1. Now, aλ1 must be 0. Otherwise, the second equality also

requires (1, lie) ∈ X1. However, then the first equality is violated as t ≤ µ1,¬lie <

µ1, lie. In summary, the Sender is totally truthful under state 1 and λ. Moreover,

(λ, ¬lie), (1, ¬lie) both induce action a = 1. Again, Pr(a = 1, ω = 1) = Pr(a =

1, ω = λ) = 1.

Step 2:

Note that the Sender’s equilibrium payoff can be decomposed in the following way.

US(q) = Pr(a = 1)

= P1 · Pr(a = 1, ω = 1) + Pλ · Pr(a = 1, ω = λ) + P0 · Pr(a = 1, ω = 0).

Step 1 implies Pr(a = 1, ω = 1) = Pr(a = 1, ω = λ) = 1 so that

US(q) = P1 + Pλ + P0 · [1− Pr(a = 0, ω = 0)].
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At the same time, the Receiver’s expected payoff defined in Equation 3.1 is reduced

to

UR(q) = (1− t)P1 + (λ− t)Pλ + tP0 · Pr(a = 0, ω = 0)

= (1− t)P1 + (λ− t)Pλ + t[1− US(q)].

which concludes the proof.
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Chapter 4

Contracts for Experimentation with

Non-Common Priors

4.1 Introduction

Without experimentation, there is no innovation. Starting a profitable business or

developing an invention idea typically involves considerable ex ante experimentation

because the profitability of a project or the feasibility of an idea is initially uncertain.

However, experimentation is often costly and thus relies on external incentives. For

example, venture capitalists incentivize entrepreneurs to experiment on their start-

ups. Managers in the R&D department motivate employees to experiment on de-

signing new products. Professors induce students to experiment on different research

ideas.

In such a principal-agent framework, two types of friction are likely to arise. First,

if the principal cannot monitor the agent’s behaviors, the experimentation is subject to

moral hazard. For example, venture capitalists may not know whether entrepreneurs

misuse financial funding. Similarly, managers (professors) may not know whether

workers (students) are shirking. Second, the two parties may also disagree on how
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promising the project or the idea is. While the common-prior assumption has been

accepted as a standard assumption in the literature due to its nice learning foundation,

Acemoglu et al. (2016) provide a critique that shakes this foundation. They find that

if two Bayesian agents have different priors and receive the same sequence of signals,

then they asymptotically disagree even if there is an arbitrarily small uncertainty in

interpreting the signals. Moreover, disagreement is the rule rather than the exception

in real life. Entrepreneurs are well acknowledged to exhibit overconfidence (Cooper

et al., 1988), probably more than venture capitalists. 1

This chapter studies the following questions. How should the principal incen-

tivize experimentation through contracts subject to the two aforementioned types of

friction? Given the optimal contract, is there overexperimentation or underexperi-

mentation relative to the principal’s first-best criterion? If there is distortion, which

friction drives it?

To answer the set of questions, I follow the model of Halac et al. (2016) (henceforth

HKL (2016)) with one principal (he), one agent (she), and one project. The project

can be either good or bad. Each of the two parties has a prior over the quality, and

they agree to disagree (Aumann, 1976). In each period, the agent chooses between

working and shirking, in which working incurs a fixed cost but shirking does not. If

the project is good and the agent exerts effort in a period, success occurs with a fixed

probability. Otherwise, a failure is certain to occur. If success occurs in a period, the

principal obtains a surplus, and there is no need to experiment further.

The principal provides incentives to experiment via contracts and has full com-

mitment power. A contract includes a working schedule and a compensation scheme.

The working schedule specifies when the agent works, and the compensation scheme

specifies how much compensation the agent receives in each period in the working
1Landier and Thesmar (2009) provides three potential reasons for entrepreneurial optimism:

the “above-average” effect, the planning fallacy, and selection. In addition to these reasons, en-
trepreneurial overconfidence may be related to the “endowment effect”. An entrepreneur owning a
start-up may deem it more valuable than venture capitalists.
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schedule. Once the deadline (the last period in the working schedule) is reached,

the contract ends, and the experimentation ceases. The principal can incentivize the

agent through both bonuses that are conditional on success and wages that are con-

ditional on effort. Note that wages are feasible only if moral hazard is absent. Due

to different priors, the two parties have joint incentives to bet with each other. Thus,

limited liability is imposed on the agent’s side to protect her from being exploited

infinitely.

The model departs from that in HKL (2016) in two aspects. First, the types of

friction in the experimentation are distinct. HKL (2016) studies the interaction of

adverse selection and moral hazard. In contrast, this chapter abstracts from adverse

selection and introduces heterogeneous priors. Second, in HKL (2016), the principal

can achieve the first best when adverse selection is absent, i.e., the only friction comes

from moral hazard. In contrast, the agent in my model is protected by limited liability.

Consequently, even if there is only moral hazard, the principal cannot achieve the first

best.

The optimal contract is derived for any pair of priors, both with and without

moral hazard. First, assume the effort is observable so that moral hazard is absent.

If, additionally, the two parties agree on the prior, then the principal simply solves

an optimal stopping problem. He induces the agent to keep working until he becomes

sufficiently pessimistic about the project, after which the project is abandoned. An

optimal and straightforward contract is a pure wage contract that compensates for the

effort cost up to the optimal stopping time. However, the optimality of this contract

is not robust to the common-prior assumption. Once the two parties hold different

priors, the principal can be strictly better off by offering alternative contracts.

If the agent is more optimistic than the principal, the agent essentially has strong

intrinsic incentives (higher confidence in the project). She is then willing to work

with weak extrinsic incentives (lower payments) because the intrinsic incentives and
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extrinsic incentives are substitutes. Thus, the optimal contract uses bonuses exclu-

sively because providing incentives is cheaper through bonuses than through wages.

Moreover, the principal could reuse the saved money to sustain longer experimenta-

tion. In fact, the optimal length of experimentation is exactly the optimal stopping

time evaluated according to the agent’s prior and is longer than the optimal stop-

ping time evaluated according to the principal’s prior. Last, since the prior enters

the principal’s objective function linearly, the optimal contract is independent of the

principal’s prior.

On the other hand, if the agent is less optimistic than the principal, provid-

ing incentives is more expensive through bonuses than through wages. Thus, bonus

contracts are suboptimal relative to wage contracts. Furthermore, the two parties

disagree on the probability of reaching a fixed future period (without success in the

past). In particular, the agent deems success less likely at all times and thus has

a higher belief in reaching that future period. The disagreement over the event’s

likelihood gives the principal room to exploit the agent. In particular, instead of

compensating for the effort cost in every period, he can concentrate all compensation

on a late period. The rearrangement of wages is appealing to the principal because,

from his perspective, success is quite likely to be generated before that period. In

this case, the agent always works yet does not receive any compensation. However,

the period can be set arbitrarily late, which leads to the non-existence of an optimal

contract. Note that this type of contract crucially depends on the principal’s commit-

ment power. If the principal lacks commitment, the agent would not initially trust

the principal.

When the effort is not observable so that moral hazard plays a role, the agent

can only be incentivized through bonuses. For this reason, the non-compactness issue

in the previous case disappears, and an optimal contract always exists. It varies

continuously in the agent’s prior belief and is independent of the principal’s prior
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belief. The optimal bonus amount decreases in the agent’s prior belief (over the good

state) because a highly confident agent has sufficient intrinsic incentives to work and

demands lower extrinsic incentives. As a result, the optimal length of experimentation

is longer when the agent is more confident since the principal can sustain the same

length at a cheaper cost. In addition, the non-observability of effort significantly

reduces the optimal length of experimentation due to classical arguments of moral

hazard. Essentially, the principal has to give away some rents to the agent, which

forces the principal to cease the experimentation much earlier. Last, the principal’s

payoff is strictly increasing in the agent’s prior belief, which echoes Gervais et al.

(2011)’s claim that overconfident managers are more attractive to firms than their

rational counterparts.

In principle, the two parties may also disagree over other model components, such

as the agent’s ability. An experimenter may deem her marginal contribution of effort

higher or lower than the principal evaluates it to be. If the agent underestimates

her ability, she initially views success as less likely. However, after a failure, she

updates her belief about the project quality more slowly than the principal because she

attributes the failure primarily to her low ability. This new feature implies that after

sufficiently long periods of failure, the agent may view success as more probable than

the principal. Intuitively, the agent appears underconfident initially and overconfident

after some transition. In this context, the insight that the principal employs different

instruments for different agents still applies. The principal uses wages exclusively

before the transition and uses bonuses exclusively after the transition. Moreover, the

relative confidence of the agent with respect to the principal grows along with the

experimentation, which suggests that the agent prefers the bonus in the last period

over any other type of compensation more than the principal. As a result, it is optimal

for the principal to concentrate the bonus on the last period.

There has been an extensive literature on experimentation in the past decades.
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The first wave of papers focuses on dynamic moral hazard, either with a single agent

(Bergemann and Hege, 1998, 2005; Hörner and Samuelson, 2013) or a team compris-

ing of multiple agents (Bolton and Harris, 1999; Keller et al., 2005; Keller and Rady,

2010; Bonatti and Hörner, 2011). Some recent papers (Gomes et al., 2016; Halac et

al., 2016) emphasize on an alternative friction in the experimentation—adverse se-

lection. Specifically, Gomes et al. (2016) consider uncertainty in projects’ qualities,

while Halac et al. (2016) consider uncertainty in agents’ abilities. However, none of

the papers in the literature have studies heterogeneous beliefs in an experimentation

setting, which, as argued earlier, is another plausible and pervasive friction. There-

fore, this chapter provides new understandings of how explicit disagreements shape

the optimal contract for experimentation.

In addition, this chapter contributes to the burgeoning literature on behavioral

contract theory.2 The central theme of this literature is that if firms are aware of con-

sumers’ potential bias, they could design contracts or set prices in a way to exploit the

bias. For instance, in DellaVigna and Malmendier (2004), partially naïve hyperbolic

discounters are not aware of their time inconsistency issue. In response, firms set

the price of investment goods below marginal cost while pricing leisure goods above

marginal cost. In Gabaix and Laibson (2006), naïve consumers ignore add-on prices,

and firms respond by choosing high add-on prices. In Grubb (2009), consumers be-

lieve that they can predict their consumption more precisely than they actually can,

so firms respond by setting high marginal prices for high usage. Note that, while

de la Rosa (2011) also studies moral hazard models with an overconfident agent, he

considers only a static problem and thus cannot capture the learning component, the

heart of experimentation.

Last, this chapter is distantly related to the literature in finance concerning con-

tract designs with heterogeneous beliefs. Landier and Thesmar (2009) presents a
2See Koszegi (2014) for a comprehensive survey.
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simple three-period model without moral hazard in which a cohort of entrepreneurs

endowed with different beliefs self-select into different types of contracts. In Gervais

et al. (2011), the agent has access to a private signal about the project but overesti-

mates the precision of the signal. In contrast, the agent has no private information

in my model, and the meaning of overconfidence is different.

The chapter is organized as follows. The model is presented in Section 4.2. Sec-

tions 4.3 and 4.4, respectively, examine the optimal contract with observable and

nonobservable effort. Section 4.5 explores an extension in which the disagreement is

over the agent’s ability. Section 4.6 concludes. All omitted proofs are included in

Appendix 4.A.

4.2 Model

Environment. A principal hires an agent to work on a project. The quality of

the project is unknown and can be either good or bad. As the main departure from

the literature, the two parties may disagree over the expected quality. Specifically,

the principal’s prior on the project being good is µP
0 ∈ (0, 1), while the agent’s prior

on the project being good is µA
0 ∈ (0, 1). If µA

0 > µP
0 , the agent is referred to as

being overconfident; if µA
0 < µP

0 , the agent is referred to as being underconfident; if

µA
0 = µP

0 , the agent is referred to as being unbiased.3 Moreover, the difference in

the belief is common knowledge. That is, they agree to disagree. For example, the

entrepreneur may be more passionate and overconfident about a start-up than the

venture capitalist, but they recognize the discrepancy and maintain their own beliefs.

Time is discrete: t = 0, 1, .... Starting from period 1, the agent chooses an effort

level at ∈ {0, 1} in each period, where at = 0 (shirking) is costless and at = 1 (working)

costs the agent c > 0. If the project is good and the agent exerts effort in period
3The results of the paper do not depend on whose prior is correct. However, for expositional

convenience, assume that the principal’s prior is correct and that the agent is biased.
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t, then the project generates an observable success in that period with probability

λ ∈ (0, 1). Otherwise, no success can be obtained in that period. In other words,

both effort and high quality are necessary for success.

Without loss of generality, a success yields the principal a payoff of 1. 4 Once

success is generated, the experimentation ends, and no further effort is required. To

make the problem interesting, assume that both parties deem it efficient to experiment

for at least one period.

Assumption 4.1. µP
0 λ > c, µA

0 λ > c.

Last, both parties are risk neutral, have quasi-linear preferences, share a common

discount factor δ ∈ (0, 1), and are expected-utility maximizers.

Contracts. The principal has full commitment power and offers a contract in period

0. Since the class of contracts depends on the observability of effort, I introduce the

class of contracts for two cases separately.

If effort is observable, then the principal can condition payment on both outcomes

and effort. A contract includes a finite set of working periods Γ ⊂ N+, a bonus scheme

{bt}t∈Γ ≥ 0, and a wage scheme {wt}t∈Γ ≥ 0. A period t ̸∈ Γ is interpreted as a locked-

out period in which the agent cannot work. For any t ∈ Γ, bt is a bonus given to

the agent conditional on a success in period t, and wt is a wage given to the agent

whenever the agents works in period t. Last, if the agent shirks in a period t ∈ Γ, the

contract ends immediately, and the agent is fired. This “firing” continuation contract

is independent of the history and is thus dropped from the definition of a contract

for brevity. Formally, denote C = {
(
Γ, {bt}t∈Γ , {wt}t∈Γ

)
|Γ ⊂ N+, |Γ| < ∞; bt, wt ≥

0, ∀t ∈ Γ} as the set of contracts available to the principal.

At first sight, this class of contracts seems nonstandard or special in many aspects.
4For simplicity, assume that the agent does not value the success directly. However, this is not

essential for the main results.
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First, the principal cannot penalize the agent for a failure. Second, Γ is potentially

nonconnected. Third, the continuation contract after shirking is too restrictive, as the

principal may wish to continue the relationship with the agent even after detecting

shirking. However, it turns out that the inability to use the penalty as an instrument

is almost necessary for this problem. In addition, allowing for nonconnected Γ and

disallowing richer continuation contracts is without loss of generality.

It is well known that if two people hold non-common beliefs, they are willing

to engage in a bet with arbitrarily large stakes. Hence, if bonus and penalty are

simultaneously allowed, then whenever the priors differ, the principal could obtain

an infinite payoff by betting on the outcome in period 1. 5 To limit such Dutch

book arguments, assume that penalty is not available to the principal and that all

payments (including both bonus and wage) are nonnegative. Essentially, the agent

has limited liability.6

An alternative class of contracts requires Γ to be connected but allows any indi-

vidually rational continuation contract after shirking. Notice that the continuation

contract has a recursive structure because in every continuation contract, one must

specify the plan if the agent shirks again. The recursive structure makes it cumber-

some to define this alternative class. However, it turns out that this alternative class

is payoff equivalent to C so that one can bypass the recursive structure.

To see the equivalence, first note that firing the agent imposes the lowest contin-

uation payoff for her among all individually rational continuation contracts. If the

agent decides to work because she worries that shirking leads to a low (but positive)

continuation payoff, she must also decide to work if she is fired after shirking. In

addition, if the agent shirks in any period given a contract in the alternative class,
5For example, if the agent is more optimistic, consider the following contract: T = 1, w1 = 0, b1 =

b, l1 = l, and the agent is fired if a1 = 0. The principal could gain infinitely (from his point of view)
by choosing an arbitrarily large b and l that satisfy µA

0 λb ≥ (1−µA
0 λ)l+c and (1−µP

0 λ)l ≥ µP
0 λ(b−1).

Such a pair (b, l) exists as µA
0 > µP

0 .
6It is, of course, feasible to allow a positive payment to the agent even when failure occurs.

However, it is never optimal to use this option in an optimal contract.
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she receives no compensation in that period. Thus, the principal could alternatively

lock out that period. The two observations suggest that for any contract in the al-

ternative class, there exists a contract in C that replicates the agent’s action and the

compensation in each period, thereby generating the same payoff to the principal.

Conversely, any contract in C can also be interpreted as a contract in the alternative

class. To this end, the principal simply needs to fill the holes of Γ (locked-out periods)

and choose the compensation and continuation contracts carefully in those periods.

Specifically, let the compensation be 0 and the continuation contract be identical to

the base contract. Then, the agent deliberately chooses not to work in the locked-out

periods because otherwise, she has to bear the effort cost and risk terminating the

project without any additional compensation. Thus, the outcome of any contract in

C can be perfectly replicated by a contract in the alternative class.7

When effort is not observable, the principal can only condition the payment on the

outcome so that wages are no longer feasible. In addition, there is no need to specify

the continuation contract, as shirking is not detected. As a result, the principal just

needs to choose the set of working periods Γ and the bonus scheme {bt}t∈Γ. Formally,

denote C ′ = {
(
Γ, {bt}t∈Γ

)
|Γ ⊂ N+, |Γ| < ∞; bt ≥ 0, ∀t ∈ Γ} as the set of contracts

available to the principal.

Payoffs. Again, there are two cases. If effort is observable, the game ends imme-

diately whenever the agent shirks. Given a contract C = (Γ, {bt}t∈Γ , {wt}t∈Γ) ∈ C

and an arbitrary action profile a = (at)t∈Γ, let t̄ = min{t ∈ Γ | at = 0} be the first
7The “firing” continuation contract is admittedly stringent. However, it is effectively equivalent to

another, softer continuation contract. Instead of terminating the contract, the principal could delay
the old contract by one period. For example, if the agent accepts a contract with Γ = {1, 2, 3, 4, 5}
but shirks in period 3, then the continuation contract requires the agent to work in periods 4, 5, and
6, where the compensation in period t of the continuation contract corresponds to the compensation
in period t− 1 of the old contract, t ∈ {4, 5, 6}. Intuitively, if firing deters the agent from shirking,
her payoff by not shirking, denoted by U , must be weakly positive. Thus, it must be that U ≥ δU ,
which means that the agent also prefers to work if the principal imposes the above continuation
contract.
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shirking period. If the agent never shirks, then t̄ = max{t|t ∈ Γ}+1. The principal’s

expected discounted payoff at period 0 is given by

Π0(C,a) = −(1− µP
0 )

∑
t∈Γ, t<t̄

δtwt + µP
0

∑
t∈Γ, t<t̄

δt

[ ∏
s<t, s∈Γ

(1− λ)

]
[λ(1− bt)− wt] .

(4.1)

Equation (4.1) is interpreted as follow. The project is bad with probability 1 − µP
0

from the principal’s view, in which case no success can be generated. The principal

simply pays wages up to the last working period, i.e., max{t ∈ Γ | t < t̄}. With

probability µP
0

[ ∏
s<t, s∈Γ

(1− λ)

]
λ, the project is good, and a success is generated in

period t. In this case, the principal obtains a payoff 1 from success and pays the

corresponding bonus bt. Moreover, even if the project is good, he still needs to pay

the wage wt whenever no success has occurred before period t.

Analogously, the agent’s expected discounted payoff at period 0 is given by

U0(C,a) = (1− µA
0 )

∑
t∈Γ, t<t̄

δt(wt − c) + µA
0

∑
t∈Γ, t<t̄

δt

[ ∏
s<t, s∈Γ

(1− λ)

]
(λbt − c+ wt).

(4.2)

The interpretation is similar except that the agent evaluates the payoffs according to

her own prior µA
0 . In her view, the project is bad with probability 1 − µA

0 , in which

case no success is generated and she receives the wage wt up to the last working

period. With probability µA
0

[ ∏
s<t, s∈Γ

(1− λ)

]
λ, a success is generated in period t,

and she receives the bonus bt. Moreover, even if the project is good, she receives wage

wt whenever no success has occurred before period t.

If effort is nonobservable, the wage disappears from the expressions of payoffs,

and the contract does not end when the agent shirks. Therefore, given a contract

C = (Γ, {bt}t∈Γ) ∈ C ′ and an arbitrary action profile a = (at)t∈Γ, the two parties’
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expected discounted payoffs at period 0 are modified to

Π̃0(C,a) = µP
0

∑
t∈Γ

δt

[ ∏
s<t, s∈Γ

(1− asλ)

]
atλ(1− bt). (4.3)

Ũ0(C,a) = −(1− µA
0 )
∑
t∈Γ

δtatc+ µA
0

∑
t∈Γ

δt

[ ∏
s<t, s∈Γ

(1− asλ)

]
at(λbt − c). (4.4)

Note that the action profile explicitly appears in the cost and success probability

because it is not observable. The multiplicative form is a convenient trick to express

the payoffs.

4.3 Optimal Contracts with Observable Effort

4.3.1 Common-Prior Benchmark

In the simplest case, both types of friction—disagreement and moral hazard—are

absent. Then, it is well known that the problem is solved by an optimal stopping

rule. Essentially, the principal asks the agent to experiment until either obtaining

success or becoming sufficiently pessimistic after a sequence of failures. Formally, the

principal chooses a stopping time T ∗ to maximize the expected value of the project,

given by

T∑
t=1

δt
[
µP
0 (1− λ)t−1(λ− c)− (1− µP

0 )c
]
.

The expression in the bracket is strictly decreasing in t. Hence, the optimal termi-

nation date T ∗ is the latest date such that the expression in the bracket is positive.

Ignoring integer issues, the following equation characterizes the closed-form solution

of T ∗.

(1− λ)T
∗−1 =

1− µP
0

µP
0

· c

λ− c
. (4.5)
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Alternatively, define µP
t as the principal’s posterior belief at the beginning of period

t given that the agent has exerted effort in all past periods.8

µP
t =

µP
0 (1− λ)t−1

µP
0 (1− λ)t−1 + (1− µP

0 )
.

Then T ∗ is precisely the timing at which the principal finds it worthless to experiment

for one more period.

T ∗ = max
t≥0

{
t : µP

t λ ≥ c
}
. (4.6)

This optimal stopping rule is implemented by a simple wage contract such that Γ =

{1, .., T ∗}, bt = 0, wt = c, ∀t ∈ Γ. This is consistent with the insight in the classical

contract theory literature that outcomes are redundant when effort is observable.

However, as shown in the next subsection, this insight relies heavily on the common-

prior assumption. In the absence of this assumption, there exist alternative contracts

that yield the principal a strictly higher payoff.

4.3.2 Exploitative Contracts under Non-Common Priors

In this section, I first formalize and simplify the principal’s problem. Then, I illustrate

the nature of optimal contracts through two simple examples. Last, I generalize the

results in the examples by solving the principal’s problem.

Note that each contract C = (Γ, {bt}t∈Γ , {wt}t∈Γ) ∈ C induces an action profile a.

It is without loss to restrict attention to contracts under which the agent participates

and works in all periods in Γ because the principal could have locked out the periods

when the agent shirks. In other words, Γ can be interpreted as the set of periods in

which the principal wishes the agent to work. Let 1 denote the action profile such

that at = 1, ∀t ∈ Γ. Then, the principal maximizes his period-0 expected discounted

payoff Π0(C,1) subject to the agent’s individual rationality constraints (henceforth
8µP

1 = µP
0 because there is no learning in period 0.
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IR constraints) at each t ∈ Γ ∪ {0} and the limited liability constraints that all

bonuses and wages be nonnegative.9

sup
C∈C

Π0(C,1)

s.t. U0(C,1) ≥ 0 (IR0) (♦)

Uτ (C,1) ≥ 0, ∀τ ∈ Γ (IRτ )

bτ ≥ 0, wτ ≥ 0, ∀τ ∈ Γ (LL)

Here, Uτ (C,1) represents the agent’s expected discounted payoff at the beginning

of period τ given that she has been following and will continue to follow the action

profile 1. To be precise, Uτ (C,1) equals

(1− µA
τ )

∑
t∈Γ, t≥τ

δt−τ (wt − c) + µA
τ

∑
t∈Γ, t≥τ

δt−τ

[ ∏
τ≤s<t, s∈Γ

(1− λ)

]
(λbt + wt − c).

The solution to (♦) depends on the direction of the agent’s bias. The following two

examples illustrate the underlying ideas.

Example 4.1. (Overconfident Agent) µP
0 = 1

2
, λ = 4

5
, c = 1

5
, µA

0 = 4
5
, δ ∈ (0, 1).

In this example, since µP
1 = 1

2
> c

λ
and µP

2 =
µP
0 (1−λ)

µP
0 (1−λ)+(1−µP

0 )
= 1

6
< c

λ
, it follows by

Equation (4.6) that T ∗ = 1, i.e., the principal wishes the agent to experiment for only

one period if their beliefs are aligned. One naïve contract that the principal could

offer is the wage contract used in the benchmark: Γ = {1}, bt = 0, wt = c. Denote

this contract by C1. It can be easily computed that the principal’s payoff under C1

is given by

Π(C1) = δ(µP
0 λ− c) =

1

5
δ.

9Let t = min{t | t ∈ Γ}; then, the IR0 constraint is essentially equivalent to the IRt constraint
up to discounting because neither effort is exerted nor compensation implemented between period 0
and (the beginning of) period t. However, I include both for completeness.
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Now, consider an alternative contract C2: Γ = {1}, b1 = 5
16
, w1 = 0. This contract

is constructed such that all of the agent’s IR constraints are binding. However, this

contract yields the principal a higher payoff:

Π(C2) = δ[µP
0 λ(1− b1)] =

11

40
δ >

1

5
δ = Π(C1).

To see the reason, note that in the benchmark case, the optimal contract is not

unique. The wage contract C1 is one optimal contract, while a pure bonus contract

C̃2: Γ = {1} , b1 = 1
2
, w1 = 0 is another one. Since the agent is overconfident now,

C̃2 leaves some fictitious revenue to the agent because she believes that success occurs

with a higher probability in period 1. As a result, the principal could lower the amount

of the bonus from 1
2

to 5
16

to increase his own payoff. Intuitively, an overconfident

agent has stronger intrinsic incentives, demanding weaker extrinsic incentives. The

two instruments—wages and bonuses—are equally costly when the principal faces an

unbiased agent, but the former are more costly than the latter if the principal faces

an overconfident agent.

However, C2 is still not optimal. The gap in their priors not only induces the

principal to use bonuses as the instrument but also affects the length of experimen-

tation. Consider a third contract C3 : Γ = {1, 2} , b1 = 5
16
, b2 = 9

16
, w1 = w2 = 0.

Again, it is easy to verify that all of the agent’s IR constraints are binding. Given

C3, the principal obtains an even higher payoff than Π(C2).

Π(C3) = µP
0

[
δλ(1− b1) + δ2λ(1− λ)(1− b2)

]
=

11

40
δ +

7

200
δ2 > Π(C2).

Table 4.1 summarizes the payoffs under the three contracts.

Why would the principal receive a higher payoff by inducing the agent to over-

experiment relative to T ∗? Recall that in the benchmark case, both parties think

spending more time on the project is worthless after T ∗. Therefore, the principal is
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Principal’s payoff Agent’s payoff Agent’s payoff evaluated by µP
0

C1
1
5
δ 0 0

C2
11
40
δ 0 − 3

40
δ

C3
11
40
δ + 7

200
δ2 0 − 3

40
δ − 3

40
δ2

Table 4.1: Players’ payoffs under contracts C1, C2, C3.

willing to give the project to the agent for free even though the agent does not value

it. However, if the agent is overconfident, then after T ∗, the project is still potentially

valuable to her. In this numerical example, the efficient length of experimentation

evaluated according to the agent’s prior equals 2. Thus, the agent would love to

experiment for one more period if the principal transfers the project to her. As a

response, the principal could further extract the fictitious revenue from the agent by

extending the deadline of experimentation and setting b2 appropriately such that the

IR constraint is binding. Essentially, it is the agent’s efficient length instead of the

principal’s that matters.

A natural question emerges here. Can the principal repeat this trick infinitely and

keep extending the experimentation? The answer is no. Intuitively, if the agent also

finds it worthless to keep experimenting beyond a deadline, then there is no way to

profitably incentivize her to exert effort. Indeed, C3 is an optimal contract in this

example. If the principal further extends the contract to period 3, the IR constraint

in period 3 requires the bonus b3 to be higher than 1, the principal’s payoff from a

success. Thus, it is never in the principal’s interest to offer such a contract.

µA
0 (1− λ)2(λb3 − c) ≥ (1− µA

0 )c =⇒ b3 ≥
39

16
> 1.

Example 4.1 suggests that providing incentives through effort is more expensive

than through outcome if the agent is overconfident. The converse is true if the

agent is underconfident, in which case the principal ignores the outcomes and only
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pays conditional on effort. However, the wage contract used in the benchmark that

compensates for the effort cost in each period is still suboptimal. In Example 4.2, I

explain how the principal could achieve a higher payoff by concentrating the wage on

a single period.

Example 4.2. (Underconfident Agent) µP
0 = 1

2
, λ = 4

5
, c = 1

5
, µA

0 = 1
4
, δ ∈ (0, 1).

The parameters in this case are the same as before except that the agent’s prior is

lower than the principal’s prior. Therefore, the efficient length of experimentation

evaluated according to the principal’s prior is still 1. If the principal adopts a wage

contract C4: Γ = {1} , b1 = 0, w1 = 1
5
, he receives the same payoff as in Example

4.1.

Π(C ′
1) = δ(µP

0 λ− c) =
1

5
δ.

However, he is strictly better off by offering C5: Γ = {1, 2} , b1 = b2 = 0, w1 =

0, w2 = c + c
δ[µA

0 (1−λ)+1−µA
0 ]

= 1
5
+ 1

4δ
. In this contract, the agent does not receive any

payment if the project succeeds in the first period. The only way to be compensated

is to work in period 1, hoping for a failure, work in period 2, and receive w2. Again,

all IR constraints are satisfied. In fact, since the payment is back-loaded, IR2 is

loose, and IR1 is binding. Under this contract, the principal receives

Π(C5) = µP
0

[
δλ+ δ2 (1− λ)λ

]
− δ2

[
µP
0 (1− λ) + 1− µP

0

]
w2

=
1

4
δ − 1

25
δ2 > Π(C4), ∀δ ∈ (0, 1).

How can the principal be better off by overexperimenting relative to both parties’

efficient length? This contract works because the two parties disagree on the proba-

bility of reaching period 2. The agent thinks she is likely to reach period 2 and receive

significant compensation. Thus, she is willing to sacrifice the compensation in period

1. However, from the principal’s perspective, the project will succeed in period 1

with a high probability, in which case he will extract all the surplus without paying a
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single penny to the agent. While the social surplus is maximal with only one period

of experimentation, the principal still benefits from extending the experimentation

because the expected compensation is reduced, and the gain may outweigh the loss.

The story of exploitation does not end here. The principal could do better by

offering the following contract C6: Γ = {1, N} , b1 = bN = 0, w1 = 0, wN = c +

c
δN−1[µA

0 (1−λ)+1−µA
0 ]

= 1
5
+ 1

4δN−1 . This contract bears much resemblance to C5, except

that the second period of experimentation is postponed to an arbitrary period N > 2

and the wage wN is adjusted to ensure that IR1 constraint binds. One could similarly

verify that both IR constraints hold. However, under this contract, the principal

obtains an even higher payoff.

Π(C6) = µP
0

[
δλ+ δN (1− λ)λ

]
− δN

[
µP
0 (1− λ) + 1− µP

0

]
wN

=
1

4
δ − 1

25
δN > Π(C5), ∀δ ∈ (0, 1).

Table 4.2 summarizes the payoffs under the three different contracts.

Principal’s payoff Agent’s payoff Agent’s payoff evaluated by µP
0

C4
1
5
δ 0 0

C5
1
4
δ − 1

25
δ2 0 − 1

20
δ

C6
1
4
δ − 1

25
δN 0 − 1

20
δ

Table 4.2: Players’ payoffs under contracts C4, C5, C6.

The improvement of C6 over C5 may be puzzling. After all, the two parties share

the same discount factor, and it seems the trick of delaying compensation should

not work. This result is best understood by interpreting the discount factor as a

surviving probability. In this model, there are two types of “attrition”: one due to

discounting and the other due to success. However, they essentially play the same

role. An underconfident agent underestimates the second type of attrition, so it is as

if the agent perceives a higher surviving probability. Thus, the scenario is effectively
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one in which the agent’s discount factor is higher than the principal’s. Then, it is

clear that the principal wants to postpone the payment. One could also understand

this result by decomposing Π(C6) as follows.

Π(C6) = δ

[
µP
0 λ− c

µP
0 (1− λ) + 1− µP

0

µA
0 (1− λ) + 1− µA

0

]
︸ ︷︷ ︸

Gain in Period 1

+ δN
[
µP
0 (1− λ)(λ− c)− (1− µP

0 )c
]︸ ︷︷ ︸

Loss in Period N

.

The first term measures the principal’s “essential” payoff within period 1 because it

is independent of N . This term is less than µP
0 λ − c, the social surplus from ex-

perimenting in period 1, thus creating an additional gain relative to the benchmark.

The second term measures the principal’s “essential” payoff within period N , which is

negative because it is socially suboptimal to experiment for one period by construc-

tion. Postponing the second period of experimentation reduces the loss while not

affecting the gain. As a result, the principal finds it profitable to postpone N . By

choosing an arbitrarily large N , the principal receives a payoff converging to 1
4
δ. In

fact, this is still not the best that the principal could obtain. However, the point is

that no optimal contract may exist due to the possibility of postponing because the

principal could always include one more period of experimentation but postpone it

to an arbitrarily late period.

Example 4.1 and 4.2 illustrate some important features of the “optimal” contract

under non-common priors. First, the principal prefers a pure bonus contract when

the agent is overconfident and prefers a pure wage contract when the agent is un-

derconfident. Second, if the agent is underconfident, the principal is better off by

concentrating the wage on the last period. Third, the principal finds it profitable

to overexperiment relative to the efficient length evaluated according to µP
0 in either

case. It turns out that all these features still hold in the general setting.

The principal’s maximization problem (♦) is solved in two steps. Note that, it

is natural to decompose the instruments into the working schedule Γ and the com-
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pensation scheme ({bt}t∈Γ , {wt}t∈Γ) so that the maximization problem can be solved

sequentially. Fix any arbitrary working schedule Γ = {t1, ..., tN} where N ∈ N+ and

t1 < ... < tN < ∞; the principal first chooses the associated optimal compensation

scheme
(
{btj}Nj=1, {wtj}Nj=1

)
that satisfies the IR and LL constraints. Next, he com-

pares across different working schedules and selects the one that delivers the highest

payoff.

As hinted in the two examples, most IR constraints are loose at the optimum.

Motivated by this, we consider a relaxed problem in the first step where all the

{IRtj}j=1,...,N constraints are ignored. Once the relaxed problem is solved, it suffices

to verify that the solution satisfies those constraints. With the payoffs explicitly

written out, the principal solves the following problem.

max
{btj }

N
j=1, {wtj }

N
j=1

−(1− µP
0 )

N∑
j=1

δtjwtj + µP
0

N∑
j=1

δtj(1− λ)j−1
[
λ(1− btj)− wtj

]
s.t. (1− µA

0 )
N∑
j=i

δtj(wtj − c) + µA
0

N∑
j=i

δtj(1− λ)j−1
(
λbtj − c+ wtj

)
≥ 0 (IR0) (♦♦)

btj ≥ 0, wtj ≥ 0, ∀j = 1, ..., N (LL)

There are two immediate observations. First, at the optimal solution, IR0 must bind.

Otherwise, there exists a period at which either the bonus or the wage is strictly

positive. Then, however, the principal could lower it and achieve a higher payoff.

Second, this is a linear programming problem since both the objective function and

the constraints are linear in the choice variables. Thus, some choice variables hit

the corner solutions at the optimum. Lemma 4.1 provides a characterization for the

variables that are equal to 0.

Lemma 4.1. If µA
0 > µP

0 , then wtj = 0, ∀j = 1, ..., N. If µA
0 < µP

0 , then btj = 0, ∀j =

1, ..., N.

Proof. See Appendix 4.A.1.
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This lemma formalizes the intuition that providing incentives through bonuses

(wages) is cheaper if the agent is overconfident (underconfident). Essentially, for each

player, we can define the marginal rate of substitution between btj and wtj .

MRSA
btj ,wtj

=

∂U0

∂btj

∂U0

∂wtj

=
µA
0 (1− λ)j−1λ

1− µA
0 + µA

0 (1− λ)j−1
,

MRSP
btj ,wtj

=

∂Π0

∂btj

∂Π0

∂wtj

=
µP
0 (1− λ)j−1λ

1− µP
0 + µP

0 (1− λ)j−1
.

For i ∈ {A,P}, MRSi
btj ,wtj

measures how much wage in period tj the player i is willing

to sacrifice to have one more unit of bonus in period tj. Due to non-common priors,

MRSP
btj ,wtj

̸= MRSA
btj ,wtj

. In particular, whoever is more confident perceives a higher

marginal rate of substitution. Thus, if the agent is overconfident (underconfident),

the agent’s relative preference for bonuses (wages) is higher than the principal’s. It

follows that the principal prefers to use bonuses (wages) as an instrument. In short,

when the agent is more optimistic (pessimistic), her intrinsic incentives are strong

(weak), lowering (raising) the cost of extrinsic incentives through bonuses. The rest

of derivation depends on the direction of the agent’s bias and is divided into two

parts.

Overconfident Agent

If µA
0 > µP

0 , the wage in every period is set to 0. When we substitute the binding

IR0 into the objective function, it turns out that the objective function is reduced to

a constant.

Π0 = µP
0

N∑
j=1

δtj
[
(1− λ)j−1 (λ− c)− 1− µA

0

µA
0

c

]
. (4.7)

This suggests that the optimal compensation scheme is nonunique. It is nonunique

since the marginal rate of substitution between bonuses in two different periods is
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the same for both parties. Thus, any bonus scheme that satisfies the binding IR0

constraint and all limited liability constraints solves the relaxed problem. Further-

more, any bonus scheme that satisfies the binding IR0 constraint, all {IRtj}j=1,...,N

constraints and all limited liability constraints solves the first-step maximization prob-

lem. Thus, the most natural candidate makes all IR constraints binding so that the

agent is always indifferent between working and shirking, which implies

µA
0 (1− λ)j−1(λbtj − c)− (1− µA

0 )c = 0. (4.8)

Moreover, this particular solution is robust in two different senses. First, if success

is also allowed in the bad state, this bonus scheme is the unique optimal solution.

Second, the arrangement of bonuses across periods is time consistent, meaning that

the principal does not want to revise the contract as the experimentation process goes

on. This suggests that even when the principal lacks commitment, this bonus scheme

remains optimal.

Given the optimal compensation scheme associated with the working schedule, the

principal maximizes Π0 in Equation (4.7) over the working schedule Γ. Denote the

expression in the bracket of Equation (4.7) by Cj. Then, the principal should include

all periods such that Cj ≥ 0 and exclude all periods such that Cj < 0. Observe that

C1 = µA
0 λ− c > 0 by Assumption 4.1, C∞ < 0, and Cj strictly decreasing in j. Thus,

the optimal working schedule turns out to be connected, and Γ∗ = {1, ...,max {j :

Cj ≥ 0}}. Proposition 4.1 characterizes the optimal contract when the agent is more

optimistic than the principal. Denote the principal’s payoff under this contract by

Π∗
0.

Proposition 4.1. Assume that effort is observable and that µP
0 < µA

0 ; then, the fol-

lowing contract is an optimal contract: Γ = {1, ..., T ∗}, bt = 1
λ

[
1−µA

0

µA
0

· c
(1−λ)t−1 + c

]
, wt =
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0, ∀t ∈ Γ, where

T ∗ = max
t≥0

{t : µA
0 (1− λ)t−1(λ− c) ≥ (1− µA

0 )c}.

Ignoring integer issues, the closed-form solution of T ∗ is given by

(1− λ)T
∗−1 =

1− µA
0

µA
0

· c

λ− c
. (4.9)

Proof. See Appendix 4.A.2.

Proposition 4.1 echoes Example 4.1 in three aspects. First, the optimal contract

is a pure bonus contract, though the observability of effort is still important because

it imposes off-equilibrium threats. Second, the agent overexperiments relative to the

efficient length from the principal’s view because the principal could additionally

extract fictitious surplus from the agent. Third, when we compare Equations (4.5)

and (4.9), the optimal length of experimentation is identical to the efficient length

from the agent’s view. Beyond this length, it is impossible to profitably incentivize

the agent.

Moreover, the bonus is strictly increasing in t. Intuitively, after many periods of

failure, the agent gradually loses her confidence and intrinsic incentives. Therefore,

she demands higher extrinsic incentives and higher compensation. The bonus is also

strictly decreasing in µA
0 for an apparent reason. The wider the gap between the

initial priors, the higher the intrinsic incentives that the agent has, and the lower the

compensation that she demands. Last, the optimal contract is independent of the

principal’s prior. In fact, the principal could have sold the whole project at a price

Π∗
0 to the agent. By the IR constraint, the agent would like to buy it. However, such

a contract is excluded by limited liability.
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Underconfident Agent

If µA
0 < µP

0 , the bonus in every period is set to 0 by Lemma 4.1. Unlike in the previous

case, the objective function is no longer a constant after the binding IR0 constraint

is substituted in. Since the two parties also disagree over the marginal rate of sub-

stitution between two wages in different periods, the arrangement of wages across

periods plays a role. Lemma 4.2 implies that the principal prefers to concentrate all

compensation onto the last period.

Lemma 4.2. If µA
0 < µP

0 , then at the optimum, wtj = 0, ∀j = 1, ..., N − 1, and

wtN =

∑N
j=1 δ

tj
[
µA
0 (1− λ)j−1 + 1− µA

0

]
δtN [µA

0 (1− λ)N−1 + 1− µA
0 ]

c.

Proof. See Appendix 4.A.3.

Since the compensation is concentrated on the last period, all the {IRtj}j=1,...,N

constraints are looser than IR0 because as the experimentation goes on, the agent is

more likely to receive the wage wN and, at the same time, there is less discounting.

Thus, it is indeed without loss to drop these constraints in the beginning. Lemma 4.2

solves the first step of the maximization problem. Substitute the optimal compensa-

tion scheme back into the objective function; the latter is simplified to

Π0 =
N∑
j=1

δtj
{
µP
0 (1− λ)j−1λ− P P

N

PA
N

[
µA
0 (1− λ)j−1 + 1− µA

0

]
c

}
,

where P i
N = µi

0(1 − λ)N−1 + 1 − µi
0 is the probability that i ∈ {P,A} assigns to the

event that the project reaches period tN given that the agent has exerted effort for

N − 1 periods. Since the agent is more pessimistic, she assigns higher probability to

this event, i.e., P P
N < PA

N . Thus, the expression in the brace, denoted as D(N, j), is

strictly decreasing in j. In addition, DN,1 = µP
0 λ− PP

N

PA
N
c > 0 by Assumption 4.1, and
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DN,∞ < 0. However, it is incorrect to simply include all periods such that D(N, j) ≥ 0

since DN,j is also indexed by N .

There are two effects of increasing N to N + 1. On the one hand, an additional

period of experimentation means one more period of payoff, which is either positive

or negative depending on the sign of D(N +1, N +1). On the other hand, the payoffs

in the first tN periods unambiguously increase because DN,j is increasing in N .10

Therefore, if the second effect dominates the first effect, it is beneficial to experiment

for one more period even though it may not be efficient. In fact, the first effect is

eventually dominated by the second effect due to discounting. As a result, an optimal

working schedule and optimal contract do not exist, as shown by Proposition 4.2.

Proposition 4.2. Assume that effort is observable and that µP
0 > µA

0 ; then, no

optimal contract exists.

Proof. See Appendix 4.A.4.

It can be shown that the principal’s payoff is bounded above by

Π̄0 =
T̃∑
t=1

δt
{
µP
0 (1− λ)t−1λ− 1− µP

0

1− µA
0

[
µA
0 (1− λ)t−1 + 1− µA

0

]
c

}
,

where

T̃ = max{t : µP
0 (1− λ)t−1λ− 1− µP

0

1− µA
0

[
µA
0 (1− λ)t−1 + 1− µA

0

]
c ≥ 0}.

This payoff corresponds to the scenario where all the positive terms in Π0 are maxi-

mized whereas all the negative terms in Π0 are hypothetically dropped. While being

nonachievable, this bound can be approximated by a sequence of contracts {Ck}∞k=1

such that the working schedule Γk = {1, ..., T̃} ∪ {kT̃ + 1, ..., kT̃ + k}. As k grows
10As N grows larger, the disagreement over the probability of reaching period N is larger.
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large, the sum of the negative payoffs in the later k periods vanishes to 0 due to

discounting.

4.4 Optimal Contracts with Nonobservable Effort

Let us turn to the scenario in which the principal cannot observe the agent’s effort so

that a contract includes only the working schedule Γ and the bonus scheme {bτ}τ∈Γ.

Again, it is without loss to consider contracts that induce the agent to work in all

periods t ∈ Γ because the principal has the discretion to lock out periods in which the

agent shirks. However, due to the nonobservability of effort, the principal also needs to

make sure that the agent indeed prefers to follow the action profile 1. The incentive-

compatibility constraints (henceforth IC constraints) capture these considerations.

Formally, the principal solves the following problem, where the payoff function Π̃0

and Ũ0 are defined in Equations (4.3) and (4.4).

max
C∈C′

Π̃0(C,1)

s.t. Ũ0(C,1) ≥ 0 (IR0)

Ũτ (C,1) ≥ 0, τ ∈ Γ (IRτ ) (✪)

1 ∈ argmax
a∈{0,1}Γ

Ũ0(C,a) (IC)

bτ ≥ 0, τ ∈ Γ (LL)

Similarly, this problem could be solved in a two-step fashion. Fix any arbitrary work-

ing schedule Γ = {t1, ..., tN}, where N ∈ N and t1 < ... < tN < ∞; the principal

chooses the optimal bonus scheme {btj}Nj=1 that satisfies the IR constraints, IC con-

straint, and LL constraints. Next, he compares across different working schedules

and selects the one that delivers the highest payoff.

Note that the additional IC constraint actually embeds 2N−1 constraints because
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there are 2N − 1 ways of deviating. As usual, I consider a relaxed problem in the

first step. In particular, all IR constraints are initially ignored, and the (global) IC

constraint is replaced by a set of LIC (local incentive-compatibility) constraints. For

j = 1, ..., N , LICj states that shirking in period tj is not as good as always working.

Denote 1−j as the action profile in which the agent works in all periods in Γ but tj.

Then, consider the following relaxed problem.

max
C∈C′

Π̃0(C,1)

s.t. Ũ0(C,1) ≥ U0(C,1−j), ∀j = 1, ..., N (LIC) (✪✪)

btj ≥ 0, ∀j = 1, ..., N (LL)

By relaxing IC to LIC, we reduce the number of incentive-compatibility constraints

from 2N − 1 to N , making the problem more manageable. In fact, it turns out all

LIC constraints bind at the optimum. The solution to the relaxed problem (✪✪) is

given by Lemma 4.3.

Lemma 4.3. Fix Γ = {t1, ..., tN}, the following bonus scheme solves the relaxed

problem (✪✪).

λbtjc =
1

(1− λ)j−1

1− µA
0

µA
0

c+ λ

[
δtj+1−tj

(1− λ)j
+ ...+

δtN−tj

(1− λ)N−1

]
1− µA

0

µA
0

c, j = 1, ..., N.

(4.10)

Proof. See Appendix 4.A.5.

Moreover, the optimal bonus scheme given by Equation (4.10) satisfies all the

dropped IR constraints and the global IC constraint. As a result, it must also solve

the original problem (✪).

Lemma 4.4. Fix Γ = {t1, ..., tN}; the bonus scheme characterized by Equation (4.10)
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solves the original problem (✪).

Proof. See Appendix 4.A.6.

Observe that if the second term of the right-hand side in Equation (4.10) is ignored,

then the bonus derived here is identical to the bonus derived in Equation (4.8). Hence,

the agent is paid a higher bonus when effort is not observable. This is not surprising.

When effort is observable, the principal knows exactly whether a failure results from

shirking or purely bad luck, and shirking always leads to 0 continuation payoff for the

agent. Here, the principal is unsure what caused a failure, and thus shirking always

leads to a positive continuation payoff for the agent. Therefore, the principal has to

pay the agent a higher bonus to incentivize the agent to work. Roughly speaking, the

agent should be compensated both for potential success in the current period and for

a higher chance of succeeding in future periods had she shirked in the current period.

At the last period N , the bonus derived here coincides with the one under observable

effort because there is no longer any future period.

After the optimal bonus scheme is substituted into the objective function, the

latter is simplified to

Π̃0(C,1) = µP
0

N∑
j=1

δtj
[
(λ− c)(1− λ)j−1 − (1− µA

0 )

µA
0

c

(1− λ)j−1

]
, (4.11)

where the derivation involves tedious algebra and can be found in Appendix 4.A.7.

Denote the term in the bracket as Fj. Clearly, the optimal Γ should include only

periods such that Fj ≥ 0. Observe that Fj is decreasing in j and that F1 > 0 by

Assumption 4.1; it follows that Γ = {1, ..., T ∗∗}, where, ignoring integer issues, T ∗∗

solves

(1− λ)2T
∗∗−2 =

1− µA
0

µA
0

· c

λ− c
. (4.12)

The optimal length of experimentation T ∗∗ increases in the agent’s prior µA
0 , which is
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consistent with the results in Section 4.3.2. Regardless of the observability of effort, as

the agent becomes optimistic, her minimally required extrinsic incentives decreases,

and thus, the principal can sustain longer experimentation.

When the agent is overconfident or unbiased, the comparison between T ∗ in Equa-

tions (4.5) and T ∗∗ in Equation (4.9) suggests that the nonobservability of effort re-

duces the length of experimentation significantly. This is because the agent obtains

a rent when effort is nonobservable so that it costs more to incentivize the agent for

a fixed working schedule Γ. Therefore, although the agent still deems the project

valuable at T ∗∗, the principal cannot afford to continue the experimentation. When

the agent is underconfident, Proposition 4.2 implies that there is no optimal contract.

Nevertheless, the principal can approximate the supreme payoff by experimenting

arbitrarily long. Thus, the reduction in the length of experimentation is even more

significant. Intuitively, the nonobservability of effort makes it impossible to imple-

ment a severe punishment upon shirking and, at the same time, forces the principal

to use a more expensive instrument.

Now, substitute Equation (4.12) into Equation (4.10); the optimal bonus scheme

is further simplified. The derivation can be found in Appendix 4.A.7.

λbj − c =

[
1− δ

(1− λ)j−1
+

δ

(1− λ)N−1

]
1− µA

0

µA
0

c. (4.13)

The bonus bj is strictly decreasing in µA
0 because, again, extrinsic incentives and

intrinsic incentives are substitutes. Moreover, it is strictly increasing in j, meaning

that the bonus is back-loaded. This also makes sense since the agent’s intrinsic

incentives are undermined during the experimentation process if no success occurs.

Hence, the agent demands a higher bonus as the time approaches the deadline. In

summary, the optimal contract with nonobserved effort is given by the following

proposition.
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Proposition 4.3. The optimal contract with nonobserved effort is ({1, ..., T ∗∗}, {0}T ∗∗
t=1, {bt}T

∗∗
t=1)

, where T ∗∗ and bt, respectively, are solved by Equations (4.12) and (4.13).

Proof. Omitted.

Observe that both the optimal length of experimentation and the optimal bonus

scheme are independent of the principal’s prior µP
0 . This is again consistent with

Proposition 4.1. However, the independence here is stronger because it does not

require the agent to be overconfident. When the agent is underconfident and effort

is not observable, the principal cannot exploit the agent. In the extreme case where

µA
0 = 0, the agent never works because a failure is inevitable in her view.

Last, note that the optimal contract for a less optimistic agent is also acceptable

for a more optimistic agent yet the principal chooses a different contract for the more

optimistic agent. Revealed preference implies that he must receive a higher payoff

by doing so. Thus, the principal’s payoff under the optimal contract increases in

the agent’s prior belief. This result provides a new rationale for why overconfidence

flourishes in real life. We observe many overconfident entrepreneurs not just because

this bias is pervasive among all entrepreneurs but also because venture capitalists

deliberately select those who exhibit overconfidence.

4.5 Heterogeneous Beliefs over the Agent’s Ability

This section explores the optimal contract when the two parties agree on the quality

µ0 but disagree over λ. Roughly, λ measures the agent’s ability. Given a good

project, the higher the agent’s ability is, the more likely success occurs. In particular,

denote the principal’s perceived ability by λP and the agent’s perceived ability by λA.

For simplicity, restrict attention to the scenario with observable effort. As implied

earlier, disagreement over ability is distinct from disagreement over quality. Suppose
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the agent underestimates her ability, i.e., λA < λP ; then, initially, she is less optimistic

than the principal that success will occur if she works for one period.

µ0λ
A < µ0λ

P .

However, this ranking is time variant. If success does not occur despite effort, the

agent updates her belief about the project downwards, albeit more slowly than the

principal. As a result, if there are sufficiently many periods of failure despite effort,

the agent eventually becomes more confident in the project quality and can be more

optimistic than the principal that success will occur if she works for one more period.

The following inequality captures this feature.

µA
t+1λ

A =
µ0(1− λA)tλA

1− µ0 + µ0(1− λA)tλA
>

µ0(1− λP )tλP

1− µ0 + µ0(1− λP )tλP
= µP

t+1λ
P for sufficiently large t.

In fact, there exists a threshold period T̂ such that µA
t λ

A < µP
t λ

P if and only if t ≤ T .11

Conversely, if the agent overestimates her ability, i.e., λA > λP , she is initially more

optimistic but later more pessimistic than the principal that success will occur if she

works for one more period. Analogously, there exists a threshold period T̂ such that

µA
t λ

A > µP
t λ

P if and only if t ≤ T . To make the problem interesting, in either case,

let T̂ be smaller than the efficient length according to both λP and λA. Alternatively,

at T̂ , both parties would like to continue experimenting.

Assumption 4.2. (1− λi)T̂−1 > 1−µ0

µ0
· c
λi−c

, for i ∈ {P,A}.

To stay as close as possible to the main body, consider the same class of contracts

C, where a typical contract C = {Γ, {bt}t∈Γ , {wt}t∈Γ}. Without loss of generality,

restrict attention to contracts that induce an “always-working” action profile a = 1.

Analogously, the principal’s problem can be solved in two steps. The principal first
11For simplicity, suppose that there is no integer t such that µA

t λ
A = µP

t λ
P .

144



solves the optimal compensation scheme associated with an arbitrary Γ = {t1, ..., tN}

and then optimizes over Γ.

Assumption 4.2 guarantees that the principal never chooses N ≤ T̂ because both

parties find it worthwhile to extend by one period even after T̂ periods of failure.

Without loss, let N > T̂ . Moreover, as in the main body, all {IRτ}τ∈Γ constraints

are dropped initially and verified later on. Formally, the principal solves

max
{btj }

N
j=1, {wtj }

N
j=1

−(1− µ0)
N∑
j=1

δtjwtj + µ0

N∑
j=1

δtj(1− λP )j−1
[
λP (1− btj)− wtj

]
s.t. (1− µ0)

N∑
j=i

δtj(wtj − c) + µ0

N∑
j=i

δtj(1− λA)j−1
(
λAbtj − c+ wtj

)
≥ 0 (IR0)

btj ≥ 0, wtj ≥ 0, ∀j = 1, ..., N (LL) (▲)

The problem is slightly more complicated than the problems in the main body

because the objective function is not linear in λP nor is the IR0 constraint linear in

λA. However, fundamentally, it is still a linear programming problem since both the

objective function and the IR constraint are linear in the choice variables. Thus, it can

be solved by comparing the marginal rate of substitution between instruments across

players. For simplicity, assume that λA < λP in what follows. The following lemma

characterizes the optimal compensation scheme associated with Γ = {t1, ..., tN}.

Lemma 4.5. Assume that λA < λP ; then, at the optimum, wtj = 0 for any j =

1, ..., N and btj = 0 for any j = 1, ..., N − 1. Moreover, btN is chosen such that IR0

binds.

Proof. See Appendix 4.A.8.

The intuition of Lemma 4.5 is decomposed into three steps. First, since N > T̂ ,

the agent appears underconfident in the first T̂ experimentation periods and appears

overconfident in the later N − T̂ experimentation periods. Thus, the principal prefers
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wages in the first T̂ experimentation periods and prefers bonuses in the later N − T̂

experimentation periods. Second, in any of the first T̂ experimentation periods, the

principal prefers to postpone the wage by one more period to exploit the agent’s

free labor. This suggests that wtj is a more costly instrument than wtj+1
for any

j ≤ T̂ . As a result of the first two observations, wages are never used at any period.

Last, the ratio of the agent’s confidence in success over the principal’s confidence in

success is increasing over time and is maximized at the last period N . Therefore, it

is suboptimal to pay any bonus in the first N − 1 periods because the agent prefers

a bonus in period N over a bonus in any other period more than the principal does.

When we put the three steps together, btN is the least costly instrument for the

principal. Thus, he concentrates all compensation on btN .

Obviously, the optimal compensation scheme derived in Lemma 4.5 satisfies all IR

constraints ignored earlier because the payment is concentrated on the last period.

Thus, it must solve the original problem. What is the optimal working schedule in the

second step? Unfortunately, the noncompactness issue emerges again. The principal

could invite the agent to work for arbitrarily many periods and promise to give an

unrealistically high bonus at an arbitrarily late period.

4.6 Conclusion

Disagreement is the rule rather than the exception in many economic circumstances.

However, it has received insufficient attention in the literature. As a first attempt

at addressing this gap, I focus on contracting problems in a simple experimentation

model. Specifically, I study how the magnitude and direction of disagreement affect

the shape of the optimal contract for experimentation and how those effects interact

with moral hazard. In the future, it would be interesting to study disagreements in

more general settings.
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As shown in Section 4.3.2, a potential issue with this approach is the nonexistence

of an optimal contract in some cases, particularly when the agent is underconfident.

The underlying reason for this nonexistence is the fundamental difference between

an overconfident agent and an underconfident agent. The former is susceptible to

bets that offer a lucrative payoff today and a low payoff in the future. However,

the individual rationality constraints set the lower bound of the future payoff to 0,

preventing the agent from being infinitely exploited. In contrast, an underconfident

agent is susceptible to bets that offer a lucrative payoff in the future and a low

payoff today. The individual rationality constraints do not protect such an agent

because looking forward, there is always a chance of earning the lucrative payment.

To protect the underconfident agent, her payoff needs to be nonnegative, even if

we look backward. However, such conditions are hard to interpret. Thus, exploring

plausible approaches to eliminating this type of bets in models featuring non-common

priors is an exciting and essential direction for future work.
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4.A Omitted Proofs

4.A.1 Proof of Lemma 4.1

Suppose µA
0 > µP

0 and wti > 0 for some i ∈ {1, .., N}, then the principal could lower

the wti to 0 while increase bti by 1−µA
0 +µA

0 (1−λ)i−1

µA
0 (1−λ)i−1 ·wti . Such modification of payments

would not affect the agent’s IR constraint, but improves the principal’s payoff because

− 1− µA
0 + µA

0 (1− λ)i−1

µA
0 (1− λ)i−1

· wti · δtiµP
0 (1− λ)i−1 + δti

[
1− µP

0 + µP
0 (1− λ)i−1

]
· wti

=δtiwti ·
µP
0 − µA

0

µA
0 (1− λ)i−1

> 0.

Similarly, if µA
0 < µP

0 , and bti > 0 for some i ∈ {1, .., N}, then the principal could

lower bti to 0 and increase wti appropriately.

4.A.2 Proof of Proposition 4.1

Most of the proof is contained in the main body already. Here, I only derive Equation

4.7 and verify that the optimal bonus scheme given by Equation 4.8 makes all IR

constraints binding. First, after substituting the IR0 constraint into the objective

function, the latter is reduced to

µP
0

N∑
j=1

δtj(1− λ)j−1
[
λ(1− btj)− wtj

]
=µP

0

N∑
j=1

δtj(1− λ)j−1 (λ− c)− µP
0

N∑
j=1

δtj(1− λ)j−1
(
λbtj − c

)
=µP

0

N∑
j=1

δtj(1− λ)j−1 (λ− c)− µP
0

N∑
j=1

δtj(1− λ)j−11− µA
0

µA
0

· c

(1− λ)j−1

=
µP
0

µA
0

N∑
j=1

δtj
[
µA
0 (1− λ)j−1 (λ− c)− (1− µA

0 )c
]
.
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By Bayes rule, for any j = 1, ..., N , the IRtj constraint is equivalent to

(1− µA
0 )

N∑
j=i

δtj(wtj − c) + µA
0

N∑
j=i

δtj(1− λ)j−1(λbtj − c+ wtj) ≥ 0.

By wtj = 0, j = 1, ..., N and Equation 4.8,

LHS = (1− µA
0 )

N∑
j=i

δtj(−c) + µA
0

N∑
j=i

δtj(1− λ)j−1(λbtj − c)

=
N∑
j=i

δtj [µA
0 (1− λ)j−1(λbtj − c)− (1− µA

0 )c]

= 0

so that IRtj binds for j = 1, ..., N .

4.A.3 Proof of Lemma 4.2

Suppose wtj > 0 for some j ∈ {1, ..., N}, consider the following modification.

(wt1 , ..., wtj , ..., wtN ) −→ (wt1 , ..., 0, ..., wtN +
µA
0 (1− λ)j−1 + (1− µA

0 )

µA
0 (1− λ)N−1 + (1− µA

0 )
δtj−tNwtj).

This modification does not affect the IR0 constraint, but improves the principal’s

payoff because

µA
0 (1− λ)j−1 + (1− µA

0 )

µA
0 (1− λ)N−1 + (1− µA

0 )
δtj−tNwtj · δtN

[
µP
0 (1− λ)N−1 + (1− µP

0 )
]

︸ ︷︷ ︸
Loss from increasing wtN

<δtj
[
µP
0 (1− λ)j−1 + (1− µP

0 )
]
wtj︸ ︷︷ ︸

Gain from decreasing wtj

⇐⇒ µA
0 (1− λ)j−1 + (1− µA

0 )

µA
0 (1− λ)N−1 + (1− µA

0 )
<

µP
0 (1− λ)j−1 + (1− µP

0 )

µP
0 (1− λ)N−1 + (1− µP

0 )

⇐⇒(µA
0 − µP

0 )[(1− λ)N−1 − (1− λ)j−1] > 0.
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Apply the same argument to ∀j = 1, ..., N − 1, it follows that all wages are concen-

trated on the last period. By IR0,

wtN =

∑N
j=1 δ

tj
[
µA
0 (1− λ)j−1 + 1− µA

0

]
δtN [µA

0 (1− λ)N−1 + 1− µA
0 ]

c.

4.A.4 Proof of Proposition 4.2

It suffices to show that for any finite Γ = {t1, ..., tN}, there exists a finite Γ′ generating

a higher payoff for the principal. Recall that T ∗(µP
0 ) = max

t≥0
{t : µP

0 (1−λ)t−1(λ−c) ≥

(1− µP
0 )c}, there are two possible cases.

(1) N < T ∗(µP
0 ).

By definition of T ∗(µP
0 ), DN,N = µP

0 (1− λ)N−1λ− P P
N · c = µP

0 (1− λ)N−1(λ−

c) − (1 − µP
0 )c > 0. Consider Γ′ = (t1, ..., tN , 1 + tN), which adds one more

period after the last period in Γ. By the monotonicity property of D(N, j)

in j, DN+1,j > DN,j, ∀j = 1, ..., N . In addition, N + 1 ≤ T ∗(µP
0 ) implies

DN+1,N+1 ≥ 0. So, the principal is strictly better off because the two effects of

increasing N are both positive.

(2) N ≥ T ∗(µP
0 ).

Now, the two effects are of different directions, but the negative effect could be

made negligible. Consider Γ′ = (t1, ..., tN ,M+tN) for M large enough. The pos-

itive effect remains unchanged and is bounded away from 0. At the same time,

the negative effect, δM+tNDN+1,N+1 = δM+tN
[
µP
0 (1− λ)N(λ− c)− (1− µP

0 )c
]

vanishes to 0 as M −→ ∞. Therefore, the principal is overall strictly better off.
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4.A.5 Proof of Lemma 4.3

Consider the relaxed problem.

max
C∈C′

Π0(C,1)

s.t. U0(C,1) ≥ U0(C,1−j), ∀j = 1, ..., N (LIC)

btj ≥ 0, ∀j = 1, ..., N (LL)

For i = 1, ..., N , the LICi constraint is given below.

− (1− µA
0 )

N∑
j=1

δtjc+ µA
0

N∑
j=1

δtj(1− λ)j−1(λbtj − c) ≥

− (1− µA
0 )

∑
j ̸=i

δtjc+ µA
0

[
i−1∑
j=1

δtj(1− λ)j−1(λbtj − c) +
N∑

j=i+1

δtj(1− λ)j−2(λbtj − c)

]
.

After simplifying the algebra, the above inequality is equivalent to:

µA
0 δ

ti(1− λ)i−1(λbti − c)− (1− µA
0 )δ

tic− λµA
0

N∑
j=i+1

δtj(1− λ)j−2(λbtj − c) ≥ 0.

Now, I argue that all LIC constraints must bind at the optimum using induction

from the last period. First consider the LICN :

µA
0 (1− λ)N−1(λbtN − c)− (1− µA

0 )c ≥ 0.

If LICN is not binding, then btN must be positive. the principal could lower btN

marginally so that LICN is still satisfied. By doing so, all the preceding LIC con-

straints are even looser. Intuitively, the agent has an intertemporal trade-off. A lower

bonus in the future gives the agent more incentives to work today because otherwise

he misses a chance to win a high bonus today. However, such a change increases

the principal’s payoff, thereby violating the optimality. So, LICN must bind at the
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optimum, implying that

λbtN − c =
1− µA

0

µA
0

1

(1− λ)N−1
c. (1.A.1)

Substitute Equation 1.A.1 into LICN−1, we obtain

µA
0 (1− λ)N−2(λbtN−1

− c)− (1− µA
0 )c− (1− µA

0 )
λ

1− λ
δtN−tN−1c ≥ 0.

By a similar logic, LICN−1 must also bind at the optimum. Otherwise reducing btN−1

slightly yields a higher payoff to the principal without violating any of the constraints.

The binding LICN−1 further implies that:

λbtN−1
− c =

(
1 + λ

δtN−tN−1

1− λ

)
1− µA

0

µA
0

1

(1− λ)N−2
c.

By induction, all LIC constraints bind at the optimum, which suggest that

λbtj − c =

{
1 + λ

[
δtj+1−tj

1− λ
+ ...+

δtN−tj

(1− λ)N−j

]}
1− µA

0

µA
0

1

(1− λ)j−1
c

=

{
1

(1− λ)j−1
+ λ

[
δtj+1−tj

(1− λ)j
+ ...+

δtN−tj

(1− λ)N−1

]}
1− µA

0

µA
0

c.

4.A.6 Proof of Lemma 4.4

It suffices to verify the solution to the relaxed problem is feasible given original con-

straints. First, all IR constraints are satisfied because12

Ũti(C,1) ∝ −(1− µA
0 )

N∑
j=i+1

δtjc+ µA
0

N∑
j=i+1

δtj(1− λ)j−1(λbtj − c)

= (1− µA
0 )

N∑
j=i+1

δtj
{
(1 + λ

[δtj+1−tj

1− λ
+ ...+

δtN−tj

(1− λ)N−j

]
)c− c

}
> 0.

12IR0 is equivalent to IRt1 .
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Next, let us verify the global IC. Note, LIC states that the agent prefers 1 over

1−j for any j = 1, ..., N , or compactly 1 ≻ 1−j. In contrast, the global IC requires

1 ≻ (a1, ..., aN), ∀a1, ..., aN ∈ {0, 1}. The next claim links the two types of constraints.

Claim 4.1. For ∀i = 1, ...N , and ∀a1, ..., ai−1 ∈ {0, 1},

(a1, ..., ai−1, 1, ..., 1) ≻ (a1, ..., ai−1, 0, 1, ..., 1).

Proof. Let ā = (a1, ..., ai−1, 1, ..., 1), a = (a1, ..., ai−1, 0, 1, ..., 1), then decompose

Ũ0(C, ā) and Ũ0(C,a) into three parts respectively.

Ũ0(C, ā) = µA
0

i−1∑
j=1

δtj(1− λ)|{s:ās=1,s<j}|(λbtj − c)aj − (1− µA
0 )

i−1∑
j=1

δtjajc

+ [µA
0 δ

ti(1− λ)|{s:ās=1,s<i}|(λbti − c)− (1− µA
0 )δ

tic

+ µA
0

N∑
j=i+1

δtj(1− λ)|{s:ās=1,s<j}|(λbtj − c)− (1− µA
0 )

N∑
j=i+1

δtjc.

Ũ0(C,a) = µA
0

i−1∑
j=1

δtj(1− λ)|{s:as=1,s<j}|(λbtj − c)aj − (1− µA
0 )

i−1∑
j=1

δtjajc

+ 0

+ µA
0

N∑
j=i+1

δtj(1− λ)|{s:as=1,s<j}|(λbtj − c)− (1− µA
0 )

N∑
j=i+1

δtjc.

Since |{s : ās = 1, s < i}| = |{s : as = 1, s < i}| for j = 1, ..., i, the first part of

Ũ0(C, ā) and Ũ0(C,a) coincide. The second part of Ũ0(C,a) is 0 because the agent

shirks in period i under a. For j = i + 1, ..., N , |{s : ās = 1, s < i}| = 1 + |{s : as =
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1, s < i}| because the two action profiles only differ at the ith coordinate. Therefore,

Ũ0(C, ā)− Ũ0(C,a) =µA
0 δ

ti(1− λ)|{s:ās=1,s<i}|(λbti − c)− (1− µA
0 )δ

tic

+

(
1− 1

1− λ

)
µA
0

N∑
j=i+1

δtj(1− λ)|{s:ās=1,s<j}|(λbtj − c)

Let m = |{s : ās = 1, s < i}|, then |{s : ās = 1, s < j}| = m+ j− i for j = i+1, ..., N .

Multiply the above equation by (1− λ)i−m−1 from both sides, we obtain

(1− λ)i−m−1
[
Ũ0(C, ā)− Ũ0(C,a)

]
=µA

0 δ
ti(1− λ)i−1(λbti − c)− (1− µA

0 )δ
tic(1− λ)i−m−1

− λ

1− λ
µA
0

N∑
j=i+1

δtj(1− λ)j−1(λbtj − c)

>µA
0 δ

ti(1− λ)i−1(λbti − c)− (1− µA
0 )δ

tic− λµA
0

N∑
j=i+1

δtj(1− λ)j−2(λbtj − c)

=0.

This implies that the agent prefers ā over a.

Now, the global IC is ensured by repeatedly applying the claim.

1 ≻ (a1, 1, ..., 1) ≻ (a1, a2, 1, ...., 1) ≻ ... ≻ (a1, ..., aN),∀a1, ..., aN ∈ {0, 1}.

In other words, an arbitrary action profile with some shirking periods could be im-

proved by switching shirking to working period by period in a backward order.
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4.A.7 Derivations of Equation 4.11 and 4.13

The principal’s objective in the second step is given by

Π0(C,1) = µP
0

N∑
j=1

δtj(1− λ)j−1λ(1− bt)

= µP
0

N∑
j=1

δtj(1− λ)j−1[λ− c− (λbt − c)]

= µP
0

N∑
j=1

δtj(1− λ)j−1(λ− c)

− µP
0 (1− µA

0 )

µA
0

c
N∑
j=1

δtj
{
1 + λ

[
δtj+1−tj

1− λ
+ ...+

δtN−tj

(1− λ)N−j

]}

= µP
0

N∑
j=1

δtj(1− λ)j−1(λ− c)− µP
0 (1− µA

0 )

µA
0

N∑
j=1

δtj

(1− λ)j−1
c

= µP
0

N∑
j=1

δtj
[
(λ− c)(1− λ)j−1 − (1− µA

0 )

µA
0

c

(1− λ)j−1

]
.

Where the fourth equality involves a double summation. Equation 4.13 comes from

the fact that

1

(1− λ)j−1
+ λ

[
δtj+1−tj

(1− λ)j
+ ...+

δtN−tj

(1− λ)N−1

]
=

1

(1− λ)j−1

[
1 + δλ

1
(1−λ)N−j − 1

1
1−λ

− 1

]

=
1

(1− λ)j−1

[
1 + δ

(
1

(1− λ)N−j
− 1

)]
=

1− δ

(1− λ)j−1
+

δ

(1− λ)N−1
.

4.A.8 Proof of Lemma 4.5

It suffices to compare MRSA
i,k with MRSP

i,k, where i, k ∈ {bt1 , ..., btN , wt1 , ..., wtN}. If

MRSA
i,k > MRSP

i,k for some i, k, then the instrument k is not used in the optimal

compensation scheme because the agent prefers i over k more than the principal does.
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The following claim summarizes the comparison between different instruments.

Claim 4.2. The following statements are true.

(a) For j ≤ T̂ , MRSA
wtj+1 ,wtj

> MRSP
wtj+1 ,wtj

.

(b) For j > T̂ , MRSA
btN ,wtj

> MRSP
btN ,wtj

.

(c) For j < N , MRSA
btN ,btj

> MRSP
btN ,btj

.

Part (a) and (b) jointly suggest that wj = 0, ∀j = 1, ..., N . Part (c) suggests that

bj = 0, ∀j = 1, ..., N − 1. So, it suffice to prove this claim.

Proof. I prove the three parts sequentially.

(a) If j ≤ T̂ , then

µ0(1− λA)j−1λA

1− µ0 + µ0(1− λA)j−1
<

µ0(1− λP )j−1λP

1− µ0 + µ0(1− λP )j−1

⇐⇒µ0(1− λA)j−1 − µ0(1− λA)j

1− µ0 + µ0(1− λA)j−1
<

µ0(1− λP )j−1 + µ0(1− λP )j

1− µ0 + µ0(1− λP )j−1

⇐⇒ 1− µ0 + µ0(1− λA)j

1− µ0 + µ0(1− λA)j−1
>

1− µ0 + µ0(1− λP )j

1− µ0 + µ0(1− λP )j−1

⇐⇒MRSA
wtj+1 ,wtj

> MRSP
wtj+1 ,wtj

.

(b) For j > T̂ ,

µ0(1− λA)j−1λA

1− µ0 + µ0(1− λA)j−1
>

µ0(1− λP )j−1λP

1− µ0 + µ0(1− λP )j−1

⇐⇒ (1− λA)j−1λA

(1− λP )j−1λP
>

1− µ0 + µ0(1− λA)j−1

1− µ0 + µ0(1− λP )j−1

=⇒ (1− λA)N−1λA

(1− λP )N−1λP
>

1− µ0 + µ0(1− λA)j−1

1− µ0 + µ0(1− λP )j−1

=⇒ (1− λA)N−1λA

1− µ0 + µ0(1− λA)j−1
>

(1− λP )N−1λP

1− µ0 + µ0(1− λP )j−1

⇐⇒MRSA
btN ,wtj

> MRSP
btN ,wtj

.
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(c) For j < N ,

MRSA
btN ,btj

/MRSP
btN ,btj

=
µ0δ

tN (1− λA)N−1λA

µ0δtj(1− λA)j−1λA
· µ0δ

tj(1− λP )j−1λP

µ0δtN (1− λP )N−1λP

=
(1− λA)N−j

(1− λP )N−j

>1

=⇒MRSA
btN ,btj

> MRSP
btN ,btj

.
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