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Abstract 

Does Soil Carbon Support Climate Resilient Agricultural Systems? Searching for Evidence and 

Developing New Measurement Tools 

Daniel Kane 

2022 

Increasing soil organic carbon (SOC) is frequently promoted as a “win-win” strategy for 

agricultural management in the face of a changing climate. This framing is based on the notion 

that building SOC both reduces yield losses/variability by improving soil water dynamics, and 

that building SOC can contribute to climate change mitigation by reducing atmospheric carbon. 

While this framing may be useful, relationships between SOC and such outcomes are often 

poorly described and not quantitative. That is, it’s unclear how much of an improvement to SOC 

is needed to reduce yield losses, whether or not that effect translates across soil types and 

agricultural systems, and how achievable carbon sequestration goals really are. As efforts to 

increase SOC in agricultural systems develop, there is a need to both better synthesize our 

current understanding of how it supports resilience in agricultural systems and to better monitor 

changes in SOC to understand its impacts on climate change adaptation and resilience. My 

research focuses on two broad topic areas: 1.) exploring the links between SOC, soil water 

dynamics, and yield outcomes, particularly under drought conditions; and 2.) developing 

accessible, robust measurement systems and protocols for quantifying SOC stocks at landscape 

scales (>100 ha) that utilize visible/near-infrared (VNIR) spectrometry.  
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Dissertation overview 

Background 

Soil organic carbon (SOC) is the largest biologically-cycling, terrestrial carbon (C) stock, 

holding an estimated 1500-2400 Pg C to a depth of 1 m (Bradford et al. 2016). Modification of 

landscapes by humans has, however, decreased this stock by an estimated 133 Pg C (Sanderman, 

Hengl, and Fiske 2017), with another 30 to 203 Pg under threat of loss as climate change and 

land conversion accelerate decomposition processes (Crowther et al. 2016). Protecting and 

recapturing SOC could then be an important strategy in mitigating climate change. In a review of 

regional case studies, it was estimated that increasing surface SOC stocks in agricultural soils by 

just 0.4% globally could sequester 2-3 Pg C per year, offsetting 20-35% of annual global 

greenhouse gas emissions over the next 10-20 years (Minasny et al. 2017). 

SOC is also an essential property of agricultural ecosystems. It provides fertility in the 

form of organic compounds that can be mineralized into plant available forms (Robertson et al. 

2014), and it is key to formation of soil aggregates, allowing soils to form pore spaces that retain 

water for plant growth (Bronick and Lal 2005; Hudson 1994; Six et al. 2004; Tisdall and Oades 

1982). Long-term agricultural experiments have consistently demonstrated that higher levels of 

SOC are positively correlated with several indicators of soil biological fertility and biophysical 

function, which in turn increase productivity (Rasmussen et al. 1998). A recent meta-analysis 

also demonstrated that this correlation scales globally across different crops and cropping 

systems, although effects attenuate above certain levels of SOC (Oldfield, Bradford, and Wood 

2019). 

Last, positive correlations between SOC and soil water dynamics are often used to 

suggest that by increasing SOC, producers may reduce inter-annual yield variability and improve 
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yield resilience by mitigating yield losses during adverse weather (Iglesias et al. 2012). This 

message is especially poignant given that climate change is expected to increase the incidence 

and severity of extreme precipitation and drought events (Luber and McGeehin 2008; Meehl et 

al. 2007), meaning its impacts on rain-fed agriculture will likely be substantial (Urban et al. 

2012).  

 

Is increasing SOC a “win-win”? 

Given evidence of its potential as a climate change mitigation solution and evidence of its 

impacts on agricultural productivity and resilience through improved soil water dynamics, 

increasing SOC is frequently promoted as a “win-win” solution for agriculture in the face of a 

changing climate. In this framing, agriculture can both help itself build resilience and maintain 

productivity, while contributing to solving the very root cause of the dangers it faces – climate 

change. A variety of stakeholder groups have now initiated broad-scale campaigns based on this 

framing and are attempting to shift agricultural production models towards ones focused on 

building SOC. But while these campaigns may be based on sound theories, they lack detail on 

the specificity of impact SOC may have and risk overpromising on outcomes.  

For example, the argument that increasing SOC will decrease yield variability appears 

sound based on our understanding of how it impacts soil aggregate formation and structure. But 

very few studies have demonstrated a connection between higher SOC and reduced variability or 

mitigation of yield losses in drought conditions. Using yield data between the years 1949 and 

1998 from several sites across an SOC gradient in China, (Pan, Smith, and Pan 2009) found that 

yield variability across time, measured as coefficient of variation, was lower at sites with higher 

SOC content. Similarly, using historic yield data from the US Department of Agriculture 
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(USDA) and soil data extracted from the USDA’s spatial soils dataset (SSURGO), (Williams et 

al. 2016) found that areas with higher estimated soil water holding capacity had improved corn 

yield stability and decreased risk of low yields in bad weather years for corn. But these studies 

are cross-site comparisons in which the SOC differences between sites are substantial and may 

be conflated with other soil characteristics (i.e. clay content). In contrast, within a given farm, 

differences in SOC and soil texture are likely to be less marked, and the effects of management 

interventions on SOC content are likely to be relatively modest. Importantly, these studies also 

do not focus on separating the direct effects of different agricultural management schemes on 

soil water dynamics from the impacts of relative increases in SOC. Such practices have been 

demonstrated to have positive impacts on yield variability and outcomes (Gaudin et al. 2015), 

but it’s unclear to what extent those impacts are mediated by changes to SOC.  

Furthermore, while there may be a consensus that human activity has led to a substantial 

carbon debt in soils, the efficacy of managing soils for the purpose of carbon sequestration is 

hotly contested. Optimistic estimates are based on a presumption that the majority of this debt 

can be made up and in a reasonable timeframe, leading to moderate but still impactful 

sequestration outcomes (Fargione et al. 2018; Griscom et al. 2017; Minasny et al. 2017; Smith et 

al. 2008). But more skeptical opinions suggest that evidence for how different practices will 

impact SOC stocks is limited and that significant barriers to adoption of these practices are likely 

to limit the extent of those impacts (Amundson and Biardeau 2018; Schlesinger and Amundson 

2019). Furthermore, as climate change alters global temperature and precipitation patterns, SOC 

may become more vulnerable to loss overall, negating possible positive effects of management 

(Crowther et al. 2016; Davidson and Janssens 2006; Natali et al. 2011; Pold et al. 2017; Pries et 

al. 2017).  
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Given these debates, it seems hardly certain that increasing SOC is indeed a “win-win.” 

There may be few downside risks to agricultural systems from this focus in terms of the 

biophysical properties of soils, but a better understanding of what kinds of outcomes to expect 

and better tools to monitor those outcomes are essential to making evidence-based progress.  

 

Research objectives 

My research focuses broadly on two topics central to the debates outlined above: 

1. Evaluating the relative impacts of management and SOC stocks on soil water dynamics 

and climate resilience in agricultural systems (Chapters 1 and 2). For this objective I hope 

to contribute research to better understand the specific impacts increasing SOC may have 

on agricultural systems under future climate scenarios by leveraging existing data. 

2. Developing measurement tools and methods for rapidly quantifying SOC at landscape 

scales (Chapters 3). Our understanding of how different management schemes are 

impacting SOC and, hence, productivity, is often limited by a lack of data, and little 

research has been done at the landscape scale. For this objective I am focusing on 

developing tools for SOC measurement that employ inexpensive visible/near-infrared 

(VNIR) spectrometry and associated measurement protocols to rapidly develop spatially 

explicit estimates of soil carbon content at the field scale. 
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Summary of chapters 

Chapter 1: In this chapter I will quantitatively evaluate the relative importance of soil carbon and 

management on soil water infiltration rates, a key soil biophysical metric and indicator of soil 

health, using a meta-analysis approach. This chapter corresponds to a paper of the same title that 

is currently in review (March 14, 2022) at the journal PLOS ONE.  

 

Chapter 2: In this chapter I will assess whether soil carbon can mitigate the deleterious impacts 

of drought on agricultural productivity. To do so I will synthesize long-term historical data on 

US maize yields from the United States Department of Agriculture’s National Agricultural 

Statistic’s Service (USDA NASS) with data from digital soil maps and data on historical drought 

patterns to assess if higher levels of soil carbon lead to lower yield losses in the US “corn belt.” 

This chapter corresponds to a paper of the same title published March 2021 in Environmental 

Research Letters with the following DOI - 10.1088/1748-9326/abe492.  

 

Chapter 3: In this chapter I will assess the efficacy of a set of low-cost, open-source spectroscopy 

tools and digital soil mapping techniques for rapidly quantifying soil carbon content. In addition, 

I will simulate a potential applied use of such tools in assessing their utility in assessing field-

scale soil carbon variability. This chapter corresponds to a white paper in development to report 

findings from the Quick Carbon research project at Yale School of Environment.  
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Chapter 1: Soil carbon versus other management effects of conservation 

agriculture practices on soil water infiltration: A meta-analysis 

Abstract:  

Agricultural practices that enhance soil water infiltration could improve the resilience of 

agricultural systems to extreme weather events such as droughts and floods by increasing the 

supply of available water to crops and minimizing inundation. Several conservation agriculture 

practices, such as reduced tillage or cover cropping, can increase soil water infiltration relative to 

conventional practices. This link may be explained by increases to soil organic carbon content 

induced by these practices that improve soil aggregate formation and porosity, but additional 

effects not mediated by increases to soil carbon could also help explain such patterns. Separating 

and quantifying soil carbon-associated and other effects could help to inform management 

decisions and to better understand the specific mechanisms by which such practices might 

improve drought and flood resilience. We developed a dataset of paired observations of soil 

carbon and water infiltration rates to determine the relative effect of increases to soil carbon on 

soil water infiltration rates versus other effects of conservation agriculture practices, including 

increased living cover, reduced tillage, and organic amendments. We found that across practices 

increases to soil water infiltration associated with and mediated by increases to soil carbon 

content. For living cover, an additional, unmediated direct effect on soil water infiltration of 

similar magnitude was also observed. Our results support previous studies linking conservation 

agriculture to improved soil water dynamics but also lend greater specificity to the understanding 

of how and when adoption of these practices translate to improvements in soil water infiltration 

rates. Specifically, our data synthesis suggests that the impact of reduced tillage and organic 

amendments on soil water infiltration are contingent on the likelihood they will increase soil 
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carbon content at a given location, whereas the impacts of increased living cover manifest even 

in the absence of soil carbon changes.  
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1. Introduction: 

Weather extremes induced by anthropogenic climate change are reducing the productivity of 

agricultural systems globally (Burchfield et al. 2020; Ortiz-Bobea et al. 2021; Lobell et al. 2014) 

and are projected to have continued, negative impacts over the next century (Dixon et al. 1994; 

Adams et al. 1990; Rosenzweig et al. 2014). Improving the resilience of agricultural systems to 

these extremes will be key to ensuring food security (Schipanski et al. 2016). Recent evidence 

suggests that conservation agriculture strategies, such as increasing annual living cover and 

greater soil organic matter, may improve resilience of yields to extreme weather events (Kane et 

al. 2021; Williams et al. 2016). One mechanism by which they might improve resilience is by 

improving water infiltration dynamics at the soil surface, ensuring that precipitation and/or 

irrigation events lead to a sufficient supply of plant available water (Schipanski et al. 2016; Raza, 

Friedel, and Bodner 2012; Stewart and Peterson 2015). Soil water infiltration rate has been 

identified and widely promoted as a useful, easily measured indicator that could be predictive of 

cropping system resilience. Cropping systems in which aboveground water more readily 

infiltrates may have greater water use efficiency and likely will better cope with both extreme 

drought and extreme rainfall. 

Evidence suggests that management practices such as living cover and reduced tillage 

improve water infiltration (A. Basche and DeLonge 2017; A. Basche and Edelson 2017; A. 

Basche and DeLonge 2019; DeLonge and Basche 2018). This impact may be attributable to 

multiple causal factors. No-till minimizes or eliminates soil disturbance, improving soil 

aggregation and reduces the tortuosity of soil pores such that water infiltrates more readily 

(Alvarez and Steinbach 2009; Smith 2016). Similarly, increasing total annual living cover 

through the use of cover crops and elimination of bare fallows means aboveground cover and 
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living roots are present throughout a greater portion of the year. Aboveground cover reduces the 

velocity with which precipitation meets the soil surface, reducing crusting and surface flow, 

while living roots increase soil aggregation and create larger macropores. 

These practices can also increase soil organic matter (and hence soil carbon) content 

(Paustian, Larson, et al. 2019; Griscom et al. 2017; Fargione et al. 2018; Poeplau and Don 2015), 

and studies have linked increased soil organic matter to increased aggregate formation and 

porosity (Boyle, Frankenberger, and Stolzy 1989; Elliott and Efetha 1999; Franzluebbers 2002). 

But these organic matter responses and hence the consequences for infiltration can vary based on 

geographic location, soil type, and the specific manner in which a practice was implemented. As 

such, it remains unclear whether improvements to water infiltration following the introduction of 

conservation agriculture practices are largely indirect via increases in soil organic matter or are 

driven by other effects such as cover crops decreasing the velocity at which precipitation 

encounters the soil surface. Separating and quantifying the strength of effects mediated by 

increases to soil carbon and other effects on soil induced by management changes can inform 

management decisions by identifying whether the pathways of impact on infiltration rates are 

likely to occur at a particular location. For example, reduced tillage can but does not necessarily 

increase surface soil organic carbon concentrations. If its effects on infiltration are dependent on 

its increasing soil organic carbon then such knowledge will clarify the circumstances under 

which reduced tillage is likely to improve infiltration.  

In this study we used a meta-analysis approach to evaluate the relative influence of soil 

organic carbon versus other, unmeasured effects of different conservation agriculture treatments 

on soil water infiltration rates. First we assembled a collection of papers by combining those 

from a comprehensive literature search in (A. Basche and DeLonge 2019) with a matching 
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literature search to include publications from more recent years (2016-2021). We subset these 

papers to those that included data on both soil carbon and soil water infiltration. Paired 

observations of soil carbon and water infiltration were then analyzed to determine how these 

conservation management strategies influenced water infiltration and the proportional extent to 

which these effects were mediated through increases in soil organic carbon concentrations in 

surface soils versus other effects not mediated by changes to soil organic carbon concentrations.  

 

2. Methods: 

2.1. Literature search 

To develop our meta-analysis database, we started with the database compiled in Basche and 

DeLonge (2019) and then filtered that database down to just those papers that also included data 

on soil organic matter or soil carbon. Extensive details on how the literature search was 

conducted are available in that publication and its supplementary materials, but we briefly 

summarize those methods here. Searches were limited to peer reviewed scientific publications 

until the year 2015 and were conducted using the EBSCO Discovery Service 

(https://www.ebsco.com/products/ebsco-discovery-service), an academic search engine that 

includes publications from all major scientific publishers. Search term strings all began with 

“infiltration W1 rate” AND “crop*” followed by additional keywords related to different 

conservation agricultural production systems, such as reduced tillage, cover cropping, etc. (Table 

1). Searches on EBSCO Discovery Service yielded an initial 598 studies, and an additional 21 

studies were identified in the USDA Natural Resource Conservation Service’s soil health 

literature database (Kucera 2015) and manually added to the database. Basche and DeLonge 

(2019) then screened articles based on whether or not they included data on water infiltration 



 13 

rates and whether or not they included proper controls to evaluate the conservation agriculture 

treatment(s) being evaluated in each paper. This screening process yielded a final count of 89 

articles from which they extracted data for a quantitative meta-analysis. 

We further updated this bibliography to include papers from 2016 to 2021 by using the 

same search terms on CAB Direct. Access to EBSCO Discovery Service was no longer 

available, but CAB Direct includes a comparable collection of publications with a particular 

focus on applied life sciences, including all major agricultural research journals. This search 

yielded an additional 159 articles that were then screened, along with the 89 articles from Basche 

and DeLonge (2019), to identify those papers that contained data on soil organic matter or soil 

carbon for all treatments and controls. Most studies did not include data on soil organic matter or 

soil organic carbon at the start of the study period. As such we use data from the conclusion of 

the study period to allow us to make paired comparisons based on the absence/presence of 

treatments aligned with categories described below (i.e. we compared control values - absence of 

the treatment - to the treatment values). We additionally filtered to select only studies that 

reported soil organic matter/carbon or infiltration rate in units that could be converted to a 

common basis in later data harmonization steps described below. More specifically, we excluded 

several studies that reported soil organic matter/carbon on a mass per area basis (i.e. Mg ha-1) but 

did not report soil depth, obfuscating conversion to a content basis (i.e. g C kg soil-1), and we 

excluded one study for which infiltration rate was reported as the amount of time it took for a set 

volume of water to infiltrate, without specifying information needed to convert to a rate with the 

units cm h-1. This filtering yielded a final database of 44 studies representing 191 paired 

comparisons and 264 complete observations.  
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2.2. Data preparation 

Once the database was compiled we created a matrix of treatment information to match all 

observations. Across all studies we identified three major categories of conservation 

management intervention: increased living cover, reduced tillage, and organic amendment. 

Increased living cover was defined as treatments in which a fallow period was replaced with a 

cover crop or an additional cash crop. Reduced tillage was defined as treatments in which tillage 

was eliminated (i.e. ‘no-till’) or reduced in intensity or depth compared to control treatments 

within the study. Organic amendment included treatments in which compost, manure, or 

additional crop residues (i.e. green manure) were applied or left in the field. Individual 

treatments and observations were identified as “yes” or “no” according to these categories 

(Supplementary File 1). We used this categorization to develop the pairwise comparisons for 

each management category within each study as detailed below. 

Data on mean soil water infiltration rate for each treatment were collected for each paper. In 

cases where multiple observations of infiltration rate were made over the course of the 

experiment, we recorded the observations from time points that best corresponded to paired 

observations of soil carbon or soil organic matter. The majority of experiments employed water 

infiltration methods using a ring infiltrometer or similar (Bouwer 1986) and reported either 

cumulative infiltration or a steady-state equivalent in units of cm h-1 or similar (e.g. cm min-1).  

As such we elected to normalize all data to a cm h-1 basis, but to account for minor variations in 

methods across papers (i.e. volume of water applied, time for infiltration, size of ring, etc.), we 

implemented a random factor corresponding to each experiment in all models to account for 

these differences in methods. Additionally, we used these data to calculate log response ratios 
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(LRR) for each experimental treatment by taking the natural log of the ratio of the infiltration 

rate for each experimental treatment versus the infiltration rate of the control treatment (Eq. 1). 

 

(1)   LRR	 = ln	 !"#$%&#'%	)'*)+%"$%),'	"$%#
-,'%",+	)'*)+%"$%),'	"$%#

 

Data on mean soil organic matter or soil carbon for each treatment were similarly collected for 

each paper. As with infiltration rate data, in cases where multiple observations of soil organic 

matter/carbon were made over the course of the experiment, we recorded the observations from 

time points that best corresponded to paired observations of water infiltration, or we recorded the 

final observation from the experiment. All soil organic matter and soil carbon data were then 

normalized to the same units of g C kg soil-1. Since additional information to inform selection of 

the most appropriate conversion factor was not available in most cases, soil organic matter 

content data were converted to a soil carbon content basis by multiplying those values by a factor 

of 0.58 (Jensen et al. 2018). Papers involved different protocols for total sampling depth and 

depth increments, but the maximum depth to which soils were sampled in any paper was 30 cm. 

Given that the focus of this meta-analysis is the effect of soil carbon on water infiltration, it made 

most sense to focus on  surface soil depths. For each paper, data from different depth increments 

were combined by weighting each increment by the proportion of the total sample it represented 

and then determining the mean soil carbon content value across all depth increments. 

Additionally, we accounted for these differences in methods by employing the random factor 

corresponding to the study, as described above. Additionally, we also calculated a LRR for soil 

carbon based on the ratio of soil carbon content in experimental treatments versus the soil carbon 

content in control treatments.  
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2.3. LRR models 

We analyzed data for each type of management intervention (living cover, reduced tillage, and 

organic amendment) separately. Initial statistical analyses were based on evaluating the 

relationship of LRRs of water infiltration rate against LRRs of soil carbon. All analyses were 

conducted in the R statistical computing environment (R Core Team 2020). Models were 

constructed as linear mixed effects models using the lme4 package (Bates et al. 2020) and 

included soil carbon LRR as a fixed effect, study as a random effect, and water infiltration LRR 

as the dependent variable. Additionally, model estimation was weighted by length of study to 

account for the possibility that longer-term studies would have resulted in greater changes to soil 

carbon concentrations. To assess whether model results were sensitive to individual studies, we 

also conducted a Jackknife sensitivity analysis. This sensitivity analysis entailed iteratively 

removing each study from the database and re-fitting the same model with data from that study 

removed. Evaluating how model terms changed in each instance indicated whether or not overall 

results from the complete database were strongly influenced by an individual study.  

 

2.4. Meta-regression models 

In addition to models based on LRRs, we also used a series of linear mixed effects models for 

each practice category to test the relationship between soil carbon and practice changes on 

infiltration rate. These models were also fit using the lme4 package (Bates et al. 2020) with soil 

carbon as a fixed effect, management category as a fixed effect, an interaction effect between 

these two fixed effects, study as a random effect, and water infiltration rate as the dependent 

variable. As with the LRR models, model estimation was weighted by length of study to account 

for the possibility that longer-term studies would have resulted in greater changes to soil carbon 
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concentrations. Prior to model fitting, all observations of each independent variable were 

standardized so that coefficient estimates would also be standardized. Data standardization was 

done by subtracting the mean of a given variable from each observation and then dividing that 

value by 2x the standard deviation of that variable (Gelman 2008). 

 

2.5. Path analyses 

Finally, we also conducted a series of confirmatory path analyses for each management category 

to evaluate if causal pathways linking differences in practices to differences in soil carbon and 

finally to differences in soil water infiltration rates emerged in our data. We used a piecewise 

structural equation modeling approach using the piecewiseSEM package (Lefcheck, Byrnes, and 

Grace 2019). For each management category, models were fit to estimate both the direct effect of 

management on water infiltration rate (cm h-1) and the effect of management as mediated 

through soil carbon content. Within each piecewise model component, models were fit using a 

linear mixed effects model with study as a random factor to account for differences in methods, 

and length of study as a weighting factor to account for the possibility that longer-term studies 

may result in greater soil carbon changes and therefore greater effects on water infiltration.  Prior 

to model fitting, all observations of each independent variable were standardized so that 

coefficient estimates would also be standardized. Data standardization was done by subtracting 

the mean of a given variable from each observation and then dividing that value by 2x the 

standard deviation of that variable (Gelman 2008), 
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2.6. Publication bias analysis 

Finally, to assess whether or not our database exhibited a publication bias, we estimated 

summary statistics on the proportion of studies in our database that had positive LRRs for either 

soil carbon concentration or infiltration rate. Additionally, we developed forest plots (Andrade 

2020) to visual potential bias across papers.  

 

3. Results: 

3.1. Database 

The final database included 44 studies representing 191 paired comparisons and 264 complete 

observations. The majority of studies focused on tillage (29 studies), but the number of paired 

comparisons was relatively equal across the three practice groupings (reduced tillage, n = 73; 

living cover, n = 53; organic amendment, n = 65). Studies represented a variety of cropping 

systems across five continents (North America, South America, Asia, Australia, Africa). The 

majority of studies were located in India (n = 22), followed by the United States (n = 7). All 

remaining studies were from a variety of individual countries (Supplementary Table 1).  

Across studies, implementation of conservation practices generally resulted in increases 

to soil carbon content quantified as a positive log response ratio (LRR) of soil carbon in 

treatments versus controls. However, the size of this effect varied across our practice groupings 

(Figure 1). Increased living cover had the greatest effect (mean LRR = 0.22), while organic 

amendments and reduced tillage had similar effects (mean LRR = 0.15). For infiltration rate, 

increased living cover had the greatest effect (mean LRR = 0.36), followed by organic 

amendment (mean LRR = 0.28), and finally reduced tillage (mean LRR = 0.13).  
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Since not all studies included a measure of error for treatment effects, our evaluation of 

publication bias was limited to an assessment of the distribution of estimated effects across 

studies. For infiltration rate, 65% of paired comparisons in living cover studies had a positive 

LRR, 64% in organic amendment studies, and 90% in tillage studies. For soil carbon, paired 

comparisons exhibited a more predominantly positive trend (living cover = 82% positive LRR; 

organic amendment = 95% LRR; reduced tillage = 86% positive LRR). However, in all three 

practice categories  there were negative observations meaning that, although many pairwise 

comparisons were positive, the distribution of effect sizes for most results were centered near 

zero (Figure 1). When these results were grouped by study into tree plots, similar patterns were 

evident (Supplementary Figures 1-6), indicating an overall positive trend but no evidence of 

exclusion of negative or near-zero results.  

 

3.2. LRR models 

Across all practice categories, LRR model results demonstrated that management-induced 

changes to soil carbon were associated with increases in soil water infiltration rates. Soil carbon 

increases via reduced tillage appeared to have the greatest effect (𝛽 = 1.38), followed closely by 

soil carbon increases via organic amendment (𝛽 = 1.16). The effect size of soil carbon increases 

via increased living cover were considerably smaller in comparison (𝛽 = 0.45). Based on the 

Jackknife sensitivity analysis, we found minimal evidence across each practice category that any 

one study had an outsize effect on the observed results. Coefficient estimates when a paper was 

removed remained within the 95% confidence intervals of coefficient estimates when the whole 

database was used.  
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3.3. Meta-regression models  

Initial results from the meta-regression models suggested that the relative importance of direct 

management versus soil carbon change effects on soil water infiltration rate differed across 

practice categories. For both organic amendments and reduced tillage, models indicated that soil 

carbon had a positive, significant effect (𝛼 = 0.05) on soil water infiltration rate and 

presence/absence of the conservation agriculture practice had a non-significant (p > 0.05) effect. 

The opposite was true for increased living cover, which had a positive, significant effect for 

presence/absence of practice, albeit one with substantial standard error (𝛽 = 0.24; 𝛽-SE = 0.10; p 

= 0.02), and a non-significant soil carbon effect. No significant interaction effects were 

observed. 

Jackknife sensitivity analyses indicated that meta-regression results for the increased 

living cover and organic amendments categories were sensitive to an individual paper (Figure 3). 

Specifically, when Lal et al. (1978) was removed from the database, the coefficient for 

presence/absence of the living cover practice in the model decreased and was no longer 

significant (𝛽 = 0.02; p = 0.13). Additionally, a positive, significant interaction effect of soil 

carbon and presence/absence of practice emerged (𝛽 = 0.07; p < 0.01), indicating that in the 

presence of increased living cover, infiltration rate increased with soil carbon content. 

Treatments in Lal et al. (1978) included multiple different cover types used in place of a fallow 

period, which served as the control. All cover treatments had a higher infiltration rate than the 

fallow control treatment, and differences were variable ranging from 37 to 143 cm h-1 greater 

than the control. As such, this study had very high leverage, and the large spread in outcomes 

was responsible for the high standard error of the coefficient for presence/absence of practice in 

the model on the full database. Based on this sensitivity analysis, we elected to remove this study 
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from the database for reporting of meta-regression results (Figure 3) and when conducting path 

analyses.  

For the organic amendments category, removing Moebius-Clune et al. (2008) 

substantially increased the coefficient for soil carbon (𝛽 = 0.35 to 0.67), but other effects 

remained similar. Examining the data from Moebius-Clune et al. (2008) revealed that an 

individual treatment with high soil carbon content had the lowest infiltration rate, so when 

included in the model, data from this treatment suppressed the estimate of the effect of soil 

carbon. Conversely, when Wang et al. (2016) was removed from the database, the effect of soil 

carbon decreased (𝛽 = 0.35 to 0.17), and a small but significant effect for presence/absence of 

practice emerged (𝛽 = 0.35; p < 0.01). Examining the data from this paper, an individual 

treatment with the highest soil carbon content had substantially higher infiltration rate than other 

treatments. In both cases, however, the directionality and significance of the affected coefficients 

remained the same, so we retained these studies in the database for path analyses.   

 

3.4. Path analyses 

Results of path analyses were largely consistent across each practice category. For each category, 

presence of the practice had a positive effect on soil carbon content, and higher soil carbon 

content had a positive effect on soil water infiltration rate (Figure 4). This pattern indicates that 

the effect of management changes (i.e. presence/absence of the practice) on soil water infiltration 

rate were mediated by increases to soil carbon content. In addition to this mediated effect, 

increased living cover also had a direct, positive effect on soil water infiltration rate.  
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4. Discussion: 

Our results suggest that among the studies we summarized, conservation agricultural 

management practices that increase soil carbon content relative to “business as usual” controls 

also increase soil water infiltration rates. Results from LRR models indicated that management-

induced increases to soil carbon content were associated with relatively higher soil water 

infiltration rate. Meta-regression models suggested that increased soil carbon content had a 

positive effect on infiltration rates, and path analyses extended these results by revealing that 

conservation agriculture practices likely had an indirect, mediated effect on soil water infiltration 

rate driven by increasing soil carbon content. The exception was increased living cover, which 

also increased soil water infiltration rate through mechanisms not associated with changes in soil 

carbon content.  

 

4.1. Implications for management 

These results are consistent with previous studies showing that conservation agriculture practices 

increase water infiltration (Basche and DeLonge 2019) and also reflect research results from 

grazing systems in which increases to soil carbon and increases to water infiltration co-occur 

(DeLonge and Basche 2018). Yet they lend greater specificity as to how such practices might 

increase soil water infiltration by highlighting the relative importance of increases to soil carbon 

content versus other mechanisms of impact. Although data on the mechanism by which increases 

in soil carbon facilitate greater infiltration is not available to us across the studies we evaluated, a 

plausible, well-documented mechanism is that an increase in soil organic carbon in such systems 

is, in part, the result of increases in soil macroaggregates and hence greater porosity (A. Basche 

and DeLonge 2017; Elliott and Efetha 1999; Lado, Paz, and Ben-Hur 2004; Boyle, 



 23 

Frankenberger, and Stolzy 1989). Additional research would be needed to discern if this 

mechanism explains the impacts of conservation practices on infiltration rates in the studies 

included here. If it does, then to improve the resilience of agriculture to droughts, one option will 

be to promote practices that build and sustain soil macroaggregate concentrations.  

Notably, cover crops can increase water stable aggregate formation independent of their 

effects on soil organic carbon accrual (Villamil et al. 2006; Rorick and Kladivko 2017). One way 

in which living cover is expected to increase macroaggregate formation and abundance is by 

maintaining living fine roots and mycorrhizae in the soil, whose collective activities such as 

exudation fuel microbial growth, providing the materials needed for microaggregates to 

aggregate into macroaggregates (Carter, Kunelius, and Angers 1994; Six et al. 2004). In addition, 

living cover intercepts rain drops before they hit the surface of otherwise-exposed, mineral soils, 

preventing the destruction of aggregates and resulting decreases in the porosity of the soil surface 

(Smith 2016). Regardless of the exact mechanism(s) by which living cover increases infiltration, 

our results do suggest that increased living cover increases soil water infiltration independent of 

impacts on soil carbon. As such, even when increased living cover does not translate to greater 

soil organic carbon given variation in factors such as soil texture that are out of a producer’s 

control (Poeplau and Don 2015), adoption of practices such as winter cover cropping in 

temperate systems or replacing a bare fallow period may nevertheless improve the resilience of 

an agricultural system to extreme weather events such as floods and droughts. 

A number of recent studies have provided evidence that conservation agriculture systems 

and soil organic carbon are key in supporting the resilience of agricultural systems to weather 

extremes, particularly drought (Kane et al. 2021; Williams et al. 2016; Bowles et al. 2020). This 

pattern is arguably supported by evidence that increased soil carbon content can improve water 
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holding capacity of similarly-textured soils (Hudson 1994). But more recent work across a 

greater diversity of soil types suggests that the actual effects of soil organic carbon content on 

water holding capacity may be more limited than previously thought and effects are more 

pronounced on sandy soil types with lower baseline matric potential (Minasny and McBratney 

2018; Libohova et al. 2018). There is a mismatch, then, between the evidence that increased soil 

organic carbon supports yield resilience and emerging evidence that suggests soil organic carbon 

has only a modest effect on soil water holding capacity. This inconsistency suggests that 

additional soil properties influenced by soil carbon content, but not captured by laboratory 

measures of soil water holding capacity, might in part be responsible for increased resilience of 

yields recorded in the field. Our results suggest that improved soil water infiltration may be such 

a property. Specifically, increasing the belowground capture of precipitation for crop use by 

reducing runoff may be equally important to resilience as is improving the capacity of a soil to 

retain that water under a vapor pressure deficit as a result of carbon accrual. If so, that fact would 

support the argument that soil water infiltration is an essential, easily-measured metric of soil 

health that could help in verifying and tracking improvements to cropping system resilience. By 

comparison, soil carbon is more difficult and expensive to measure and can take several years 

before a change is measurable (Harden et al. 2017; Paustian, Collier, et al. 2019). 

 

4.2. Study limitations and ways forward 

Given the inclusion criteria we set for this meta-analysis, our final database was a relatively 

limited number of papers. Furthermore, most articles only reported treatment means for soil 

organic carbon and water infiltration rate and did not report statistics on variance, and the 

majority were based on studies in India on cropping systems specific to the region. These factors 
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limit how generalizable our results are to locations outside the areas and cropping systems 

included in the papers we used and make it impossible to quantify how measurement error may 

have impacted the results. Our meta-analysis reinforces the need for controlled experiments to 

report variance statistics in addition to means and/or to publish raw data in conjunction with 

articles to improve their usefulness to future research and meta-analyses. Additionally, several of 

the papers retrieved in our initial searches included data on soil water infiltration but no data on 

soil organic carbon or related properties such as aggregation or porosity. Given past research that 

indicates a mechanistic connection between these properties and water infiltration, and given the 

results presented here that appear to confirm the importance of increasing soil organic carbon to 

increase water infiltration, future studies could provide greater value by evaluating all these 

properties together.  

Additionally, the limitations of our database similarly suggest a need for more detailed 

study of the impacts of specific practices on soil carbon and soil water infiltration. We classified 

practices into three broad categories but within each of those categories there was substantial 

variation in management. For example, reduced tillage is often broadly defined as tillage systems 

that leave 30-50% of previous crop residues on the soil surface (Doval 2019). This definition 

could include a range of tooling approaches, including chisel plows, disks, or no-till, all of which 

vary in degree of soil disturbance and tillage depth. The broader category definition may then 

foster misguided expectations as to how introducing reduced tillage will alter water infiltration 

rates. Our results suggest that expectations around the impact of reduced tillage on infiltration 

should be prefaced on how likely a subsequent increase in soil carbon is at a given location. Yet 

the size of the impact on soil organic carbon is likely dependent on the specific type of reduced 

tillage, with practices within that category that produce the least soil disturbance being expected 
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to have the greatest positive effect on soil carbon (Aguilera et al. 2013; Luo, Wang, and Sun 

2010; Angers and Eriksen-Hamel 2008). Similarly, whereas the likelihood of organic 

amendments to increase total soil carbon content is more assured than that of reduced tillage 

given that they are a direct subsidy of carbon to the soil, properties such as soil texture will likely 

mediate the impact of such management strategies on total soil carbon content and hence water 

infiltration rates. Our findings therefore identify the need for infiltration studies to report not 

only changes in soil carbon contents, but also information on specific practice types and soil 

properties that modulate how adoption of a practice is likely to translate into impact on soil water 

infiltration and hence agricultural resilience under drought. 

Results of our bias analysis confirmed that the patterns reported here are not the result of 

systematic publication bias. Similarly, results of our sensitivity analyses suggest that the 

observed effects were generally robust against outlying studies and different ranges of observed 

change in soil organic carbon content, except in the case of increased living cover studies, where 

the removal of one study (Lal et al. 1978) resulted in substantive changes to estimates of model 

coefficients. Both of these analyses suggest that despite the limited number of studies we found 

that matched our criteria, our results were not the consequence of biased reporting in the 

literature or outlying studies. Nonetheless, ensuring future experiments that evaluate 

management-induced changes to soil water infiltration rate also study changes to soil organic 

carbon would help to resolve the underlying mechanisms and also guide management 

interventions, intended to improve soil water availability, that are tailored to what is achievable 

at a site. For example, our findings suggest that cover crops should be the preferred intervention 

in systems where building soil carbon content is more difficult to achieve, given they appear to 

impact soil water infiltration rates by mechanisms beyond soil carbon change. 
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5. Conclusions: 

Through a meta-analysis of peer-reviewed literature we found evidence that reduced tillage and 

organic amendments increased soil water infiltration rates and that these increases were 

associated with increasing soil organic carbon content. Additional effects of these management 

interventions, not mediated by increases to soil organic carbon, were small to non-existent. By 

contrast, increasing living cover had a greater overall effect on improving soil water infiltration 

rate than reduced tillage or organic amendments and this effect was likely mediated both through 

increases to soil organic carbon content and unmeasured effects of increasing living cover on 

soils. We suggest that these increases are likely attributable to changes in soil structural 

properties such as aggregation and porosity, which can be associated with increases in soil 

organic carbon but have also been shown to increase with the introduction of increased living 

cover independent of increases in soil organic carbon content (Basche and DeLonge 2017; 

Rorick and Kladivko 2017). 

Our findings can help guide management recommendations and inform anticipated 

success for increasing infiltration rates. For example, increasing living cover appears to be a 

strategy for increasing soil water infiltration that will be effective regardless of how soil carbon 

contents respond. Whereas the effects of reducing tillage or organic amendments on water 

infiltration appear to depend on the success of those practices for increasing soil carbon content. 

Further, our results raise the possibility that the observed relationship between soil carbon 

content and resilience of yields to drought events may, at least in part, be mediated by increases 

to soil water infiltration. Future research focused on resilience should aim to more explicitly 

connect management, soil organic carbon, water infiltration, and yield resilience under drought 
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to clarify underlying mechanisms and provide more informed quantitative expectations for how 

management recommendations relate to desired outcomes.  
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Figures: 

 

Figure 1. Distribution of log response ratios of infiltration rates and soil carbon content of experimental treatments 
as compared to controls across all studies in each management intervention category. Lines represent a smoothed 
kernel density estimate for each distribution, and the y axis represents the probability density function at each LRR 
bin. Dots represent the number of observations for each LRR bin. 
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Figure 2. Jacknife sensitivity analysis across practice categories (a = living cover, b = organic amendments, c = 
reduced tillage). Dot plots represent the 95% confidence intervals of models testing effects specified in meta-
regression models when the corresponding paper is removed from the database. Dashed vertical line represents the 
mean coefficient estimate when the entire database is used, and solid vertical lines represent the 95% confidence 
intervals when the entire database is used.  
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Figure 3. Beta coefficient estimates for meta-regression models relating presence of conservation agriculture 
practices and soil carbon content to soil water infiltration rate for each practice category. Dots represent mean beta 
coefficient estimates (with exact values shown in numerals above the dots), bars represent 95% confidence intervals. 
Estimates for the living cover are based on models excluding Lal et al. 1978.  
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Figure 4. Diagrams of path analysis models across all practice categories (a = living cover, b = organic amendment, 
c = reduced tillage). Boxes represent variables in the path analysis, lines represent estimated relationships, and 
numbers over lines represent the estimated coefficient. Solid lines indicate the relationship is significant at a 
confidence level of ɑ = 0.05, and dashed lines are non-significant at the same confidence level.  
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Supplementary figure 1. Tree plot of IR LRR values for increased living cover studies.  
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Supplementary figure 2. Tree plot of SOC LRR values for increased living cover studies.  
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Supplementary figure 3. Tree plot of IR LRR for organic amendment studies.  
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Supplementary figure 4. Tree plot of SOC LRR for organic amendment studies. 
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Supplementary figure 5. Tree plot of IR LRR values for reduced tillage studies.  
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Supplementary figure 6. Tree plot of SOC LRR values for reduced tillage studies. 
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Chapter 2: Soil organic matter protects US maize yields and lowers crop 

insurance payouts under drought 

 

Abstract:  

Higher levels of soil organic matter improve soil water retention, meaning they could mitigate 

agricultural yield losses from drought. Yet evidence to support such claims is mixed and 

incomplete. Using data from 12,376 county-years in the United States of America, we show that 

counties with higher soil organic matter are associated with greater yields, lower yield losses, 

and lower rates of crop insurance payouts under drought. Under severe drought, an increase of 

1% soil organic matter was associated with a yield increase of 2.2 ± 0.33 Mg ha-1 (32.7 bu ac-1) 

and a 36 ± 4.76% reduction in the mean proportion of liabilities paid. Similar, yet smaller, effects 

were found for less severe levels of drought and this effect was reduced as soil clay content 

increased. Confirmatory pathway analyses indicate that this positive association of soil organic 

matter and yields under drought is partially explained by positive effects of soil organic matter 

on available water capacity and cation exchange capacity, but that soil organic matter may be 

imparting yield protection via mechanisms not fully captured by those metrics. Overall, our 

results suggest soil organic matter predicts yield resilience at regional scales in the United States. 

We argue that data on soil organic matter should be used in agricultural policy and financial 

planning, with our analyses providing quantitative evidence of the co-benefits of soil organic 

matter believed fundamental to advancing soil health and carbon sequestration initiatives.  
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1. Introduction 

Rain-fed agriculture, which made up 75% of global cropland use as of 2000 (Portmann, Siebert, 

and Döll 2010), is highly susceptible to extreme weather conditions, such as heat and drought. 

Extreme heat accelerates plant development, effectively shortening growing season length and 

reducing harvest index, and in extreme instances, extreme heat causes plant reproductive 

failures, such as kernel abortion in maize, that drastically reduce yields (Hsiao, Swann, and Kim 

2019; Craufurd and Wheeler 2009; Sage and Kubien 2007). Similarly, drought leads to elevated 

vapor pressure deficit which can lead to increased transpiration by plants, closing of stomata, and 

ultimately reduced rates of photosynthesis that slow plant growth and reduce grain yields (Lobell 

et al. 2013; 2014). Climate change is predicted to increase the incidence and severity of droughts 

and floods (Luber and McGeehin 2008; Meehl et al. 2007), thereby increasing the risk of crop 

failures and yield losses (Urban et al. 2012). Conservative estimates for maize suggest yields 

could drop between 20-80% in the US under plausible future climate scenarios (Hsiao, Swann, 

and Kim 2019; Lobell et al. 2014; Schlenker and Roberts 2009). Such scenarios threaten global 

food security and suggest that resilience planning to mitigate these impacts is necessary. 

Increasing soil organic matter can increase soil water holding capacity on similarly 

textured soils (Minasny and McBratney 2018; Hudson 1994) and improve water infiltration 

(Boyle, Frankenberger, and Stolzy 1989; Elliott and Efetha 1999; Franzluebbers 2002) by 

supporting greater aggregate formation and, hence, a greater volume of pore spaces (Lado, Paz, 

and Ben-Hur 2004). Researchers have argued that soils with higher organic matter can retain 

more water under vapor pressure deficit, protecting crops from losses induced by extreme heat 

and drought better than low organic matter soils (Iizumi and Wagai 2019; Carminati and Javaux 

2020; Bot and Benites 2005). Yet recent work suggests the actual effect of soil organic matter on 
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plant available water is modest (Minasny and McBratney 2018; Libohova et al. 2018), and it is 

unclear whether these effects on water retention are great enough to reduce drought-induced 

yield losses. Studies have demonstrated that higher soil organic matter is associated with lower 

long-term interannual yield variability at regional scales (Williams et al. 2016; Pan, Smith, and 

Pan 2009). But lower variability is not necessarily indicative of greater resilience or protection 

against yield losses and/or crop failure under adverse conditions. Some field-level studies have 

shown that practices known to increase soil organic matter can protect yields (Bowles et al. 

2020; Gaudin et al. 2015), but these do not explicitly test the relative effect of organic matter and 

do not provide information at county or regional scales which are arguably most relevant to 

policy initiatives. Furthermore, these studies did not attempt to quantify how the effect of soil 

organic matter on yields does or does not scale under different drought conditions.  

In light of these evidence gaps, we quantified the impact of soil organic matter on 

agronomic risk to drought in the United States of America. We analyzed county-level maize (Zea 

mays L.) yield and crop insurance payouts in the US from 2000 - 2016 in combination with soil 

characterization data and county-level Standardized Precipitation Evapotranspiration Index 

(SPEI) data. Data were gathered for 754 counties where maize production was predominantly 

rain-fed, representing a total of 12,376 county-years, 5945 of which experienced drought 

conditions over the summer growing season. We hypothesized that counties with higher levels of 

soil organic matter in surface soils (0-30 cm depth) where most of the fine-root biomass is found, 

would be less prone to yield losses in drought years given expected positive effects of soil 

organic matter on crop water availability and that, as a result, a lower proportion of crop 

insurance liabilities would be paid out in drought years.  
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2. Methods 

2.1. Data collection 

2.1.1. Maize yield data 

We collected mean maize (Zea mays L.) yield (Mg ha-1) data for all US counties between the 

years 2000 to 2016 for which maize yield data were available from the United States Department 

of Agriculture National Agricultural Statistics Service (USDA NASS) (USDA NASS Staff 2018) 

accessed via the rnassqs package (Potter et al. 2019) in the R v.3.6.3 statistical software 

environment (R Core Team 2020). Data were limited to the years 2000-2016 to minimize the 

confounding effect improvements in maize genetics may have on yield data and because other 

data used to estimate drought incidence in each county detailed below were only available 

beginning in the year 2000. We removed data from counties in which corn was not grown for at 

least 16 of the 17 years in the study period. Yield data were then detrended on a county basis per 

the method detailed in Lu et al. 2017 (Lu, Carbone, and Gao 2017). Briefly, we fit a locally 

weighted regression (LOWESS) model wherein yield was the dependent variable and year was 

the independent variable. Models were fit using the R package caret (Kuhn et al. 2020) using a 

10-fold cross validation approach wherein the span parameter was constrained to a range of 5-10 

years and the degree parameter was allowed to be either 1 (linear) or 2 (polynomial). We then 

added the yearly residuals of these models to the long-term county average yield to estimate 

detrended yield for each county-year in the study period, and we also divided the observed yield 

by the predicted yield of these models for each county-year to estimate yield anomaly.  

Because soil organic matter might protect yields by improving soil water dynamics, 

irrigation could mask the effects of soil organic matter on agricultural resilience. As such, we 

restricted the analysis to primarily non-irrigated acres. We also retrieved data from USDA NASS 
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(USDA NASS Staff 2018) via the rnassqs (Potter et al. 2019) on the total number of corn acres 

harvested in each county-year and the total number of irrigated corn acres harvested in each 

county-year for the US Agricultural Census years of 1997, 2002, 2007, and 2012. The US 

Agricultural Census is conducted every 5 years, so data on irrigation within our study period is 

only available for those years. We then calculated the percent of maize-growing acres that were 

irrigated in each county for each census year, averaged those figures across all four census years, 

and filtered yield data to those counties in which corn-growing acres were on average <5% 

irrigated during the study period and in which average acres irrigated had a standard deviation of 

<1% across the four census years for which data were retrieved.   

 

2.1.2. Drought data  

We retrieved county-level Standardized Precipitation-Evapotranspiration Index (SPEI) figures 

from the Center for Disease Control (National Environmental Public Health Tracking Network 

2018). SPEI is a multi-scalar drought index based on the similar Standardized Precipitation Index 

(Vicente-Serrano et al. 2012; Vicente-Serrano, Beguería, and López-Moreno 2009). Differences 

between cumulative monthly precipitation and potential evapotranspiration are calculated for a 

chosen time scale (i.e. 1 month, 3 months, etc.). These figures are then standardized based on a 

log-logistic distribution so that they are comparable across locations. The CDC dataset we used 

is based on a 1-month standardization. We summarized SPEI data in each county-year by 

calculating the mean of monthly SPEI values for the summer growing season months of May to 

August.  
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In addition to SPEI, we also retrieved drought data from The National Drought Mitigation Center 

(The National Drought Mitigation Center 2019c), which reports on a daily basis the percent area 

of each county that is at each level of their drought index: D0 (no drought) – D4 (severe 

drought). This drought index is a categorization based on the Palmer Drought Severity Index, 

Standardized Precipitation Index, soil and streamflow models, and local expert 

assessment/verification by USDA field agents (The National Drought Mitigation Center 2019b). 

We then converted these coverage statistics to a daily Drought Severity Classification 

Index (DSCI), per the instructions of the US Drought Monitor website (The National Drought 

Mitigation Center 2019a). Briefly, DSCI is a weighted sum of the percent area of each county 

under each drought index level. We then subset daily DSCI data to the months of May to August, 

the months that are most crucial to maize growth and yield, and averaged them for each county-

year across the study period. DSCI data were not used in our primary analyses but were instead 

used in a set of sensitivity analyses (Supplementary Information) to determine the relative 

importance of how drought is quantified on estimating the mitigating effect of soil organic matter 

on yields under drought.  

  

2.1.3. Crop insurance data 

The USDA Risk Management Agency collates a variety of data on the US crop insurance market 

on an annual basis, including total liabilities, total indemnities, and cause of loss. These data are 

available at the county-level via the USDA Southwest Climate Hub’s AgRisk Viewer (Southwest 

Climate Hub 2018). We retrieved data on total liabilities and total indemnities in USD for maize 

due to loss by drought for the same set of counties for which we retrieved yield data. We then 

used these data to calculate loss cost (Reyes and Elias 2019), a unitless index based on the ratio 
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of total indemnities to total liabilities in a given county-year. Loss cost implicitly accounts for 

differences in USD figures across years due to inflation, as well as differences across counties 

due to differences in total output and coverage patterns.  

 

2.1.4. Soil data 

To aggregate soil data for each county in our analysis we first identified those areas in each 

county that are primarily used for maize production. To do so, we used the “Corn Frequency” 

raster available at USDA NASS’s CropScape portal, which reports how many years between 

2008 – 2017 each pixel was used for maize production (Han et al. 2014). We then subset this 

raster to only those pixels in which maize was produced for 2 or more years to identify pixels 

from any field in which maize was grown with relative consistency but not opportunistically (e.g. 

in a high price year), while also eliminating non-crop areas. This subset of pixels was then used 

to generate a masking layer used in subsequent steps.  

The gSSURGO database is spatially organized as a series of discrete polygons referred to 

as map units that are composed of different component soil series. Associated with each soil 

series is characterization data organized by pedological horizon, including soil texture, soil 

organic matter, and measures of soil biophysical characteristics. As such, we first used the aqp 

(Beaudette, Roudier, and Brown 2020) package in R to convert characterization data for each 

component soil series to a fixed depth increment of 0-30 cm to represent the typical rooting zone 

of maize.  We then calculated a representative map unit value for each soil characteristic soil 

organic matter (%), clay content (%), H3O+ concentration (mol), cation exchange capacity (meq 

100 g soil-1), and available water capacity (%) by calculating a map unit mean weighted by the 

relative proportions of each component soil series in a map unit. We then converted the data to a 
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raster format and used the masking layer described previously to remove soil data in each county 

from areas where maize is not consistently grown. Finally, we used these masked rasters to 

calculate county-level means for all soil properties we then used in our analyses. 

 

2.1.5. Cropping system management 

For the purposes of this study we did not include data on the rates of different cropping system 

management strategies or practices, such as mean fertilizer rate by county or incidence of 

conservation tillage by county. Such data are not available at the county level or on a timestep 

that would make them sufficiently useful for our analysis. For example, data on per area fertilizer 

use is available via USDA NASS only at the state level, and questions on implementation of 

conservation agriculture practices were only recently included in the agricultural census. Given 

these inconsistencies in data, we could not account for management effects with a fixed effect for 

each practice. Instead, we accounted for them by implementing a random effect for state (Section 

2.2). We argue that since farms in the same state are generally more likely to implement fertilizer 

rates and management practices similar to other farms in their state than those out of their state, 

our model accounts to some degree for broad differences in management. Whereas direct 

estimation of the effect of different management practices would be preferable, sufficient data 

simply do not exist and use of current, sparser data could lead to flawed inference. 

 

2.2. Data analysis 

Initial data analysis demonstrated that the yield response to SPEI begins to saturate above SPEI 

values of 0, indicating that when the balance of precipitation and evapotranspiration is negative, 

yields drop below the typical yield potential of a given area. Additionally, we found that when 
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SPEI decreased (i.e. drought conditions became more severe) the impact of soil organic matter 

was greater on maize yield (Mg ha-1), yield anomaly, and loss cost (Supplementary Information). 

As such, we chose to subset our data into different levels of drought severity based on SPEI and 

then analyze each subset to understand how the effect of soil organic matter on each outcome 

variable changed as drought severity changed. Drought severity thresholds were calculated based 

on the global mean and standard deviation of SPEI. Very severe drought was defined as greater 

than two standard deviations from the global mean (SPEI < -1.02); severe drought as between 

one and two standard deviations from the mean (-1.02 < SPEI < -0.46); moderate drought as 

between one standard deviation from the mean and the mean (-0.46 < SPEI < 0.10); and normal 

conditions as greater than or equal to the mean (SPEI > 0.10). 

Within each of these drought subsets we then fit a series of models wherein the 

dependent variable in these models was either yield (Mg ha-1), yield anomaly, or loss cost. 

Independent variables across all models included soil organic matter, soil clay content, and soil 

H3O+ concentration. These variables were chosen by fitting a multivariate linear model with 

multiple potential independent variables then assessing variance inflation factors to eliminate 

spurious, highly collinear variables. We also included a random effect of state to account for 

possible impacts of geographic differences in management and production environment on 

model outcomes not accounted for in the data we collected. For yield and yield anomaly, linear 

mixed effects models including all possible interaction effects were fit using a restricted 

maximum likelihood approach in the lme4 (Bates et al. 2020) package in R. For loss cost, a 

mixed effects Tobit regression model was fit using a Newton-Raphson maximization approach in 

the censReg (Henningsen 2020) package in R to account for the fact that loss cost was left 

censored at a value of 0. Prior to model fitting, all observations of each independent variable 
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were standardized so that coefficient estimates would also be standardized. Data standardization 

was done by subtracting the mean of a given variable from each observation and then dividing 

that value by 2x the standard deviation of that variable (Gelman 2008).  

Finally, we conducted a series of confirmatory path analyses to evaluate to what extent 

the impacts of soil organic matter on maize yields were mediated by their impacts on soil 

available water capacity and cation exchange capacity, a proxy variable for soil fertility, under 

both drought and normal conditions. First, we split data into those observations from normal 

SPEI years (SPEI > 0.10) and drought SPEI years (SPEI < 0.10), and then calculated the mean 

yield (Mg ha-1) for each county under either set of conditions. We then employed a piecewise 

structural equation modeling approach using the piecewiseSEM (Jon Lefcheck, Byrnes, and 

Grace 2019) package in R to fit models in which the effects of soil organic matter were either 

partially mediated or fully mediated by its effects on available water capacity and cation 

exchange capacity. Briefly, the fully mediated SEM was such that available water capacity and 

cation exchange capacity were modeled as functions of soil organic matter and yield was 

modeled as a function of available water capacity and cation exchange capacity. Whereas, in the 

partially mediated SEM, available water capacity and cation exchange capacity were modeled 

the same way, but soil organic matter was included as an additional independent variable for 

modeling yield. To determine the most parsimonious model, we compared models via an 

analysis of variance and on the basis of AIC/BIC scores. Coefficients were extracted from the 

final model and standardized to then assess whether or not effects of organic matter on yields 

under drought were mediated by its impacts on available water capacity and cation exchange 

capacity. An initial analysis with all data in either SPEI category indicated a negative 

relationship between cation exchange capacity and yields. When we manually inspected data we 
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found that this result was the consequence of outlying cation exchange capacity values, defined 

as being two standard deviations greater than the mean (CEC > 31.9), with extremely high clay 

content. As such, we removed these outliers for the final path analysis to better estimate effects 

on typical soils, but include results from a path analysis including these observations in 

Supplementary Information.  

 

3. Results and Discussion: 

3.1. Maize yields and yield anomalies 

We found that across all county-years and possible weather conditions, soil organic matter 

content was a strong positive predictor of yield. Soil organic matter had a standardized marginal 

effect of 0.83 with a standard error of 0.04, meaning an increase of 1% soil organic matter was 

associated with an increase in yields of 0.83 ± 0.04 Mg ha-1. This observed relationship between 

soil organic matter and yield is consistent with other studies which show yield increases are 

associated with higher levels of soil organic matter (Oldfield, Bradford, and Wood 2019). Our 

analysis extends these observations by showing that as drought conditions became more severe, 

the marginal effect of soil organic matter on yields increased (Figure 1; Table 1). For example, 

under moderate drought conditions (-0.46 < SPEI < 0.12 ) an increase of 1% soil organic matter 

was associated with an increase in yields of 0.76  ± 0.07 Mg ha-1, and under very severe drought 

conditions (SPEI < -1.02) a 2.2  ± 0.33 Mg ha-1 increase. Interaction effects of other soil 

properties with soil organic matter also emerged across the severe, moderate, and normal drought 

categories (Table 1). Sensitivity analyses of these interaction effects revealed that in many cases 

outlying observations were responsible for the interaction. When those outliers were removed, 

the size and significance of interaction effects and corresponding main effects were diminished 
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(Supplementary Information). However, interaction effects of soil organic matter and clay 

content were robust to outlier observations and indicated that the effect of soil organic matter on 

yields remained positive at higher levels of clay but was diminished relative to lower clay soils. 

This result is consistent with broad-scale studies which demonstrate the primary importance of 

clay on the water holding capacity of soils and the diminished impact of organic matter when 

clay is high (Minasny and McBratney 2018; Libohova et al. 2018). Nonetheless, our results show 

the effect of soil organic matter is still positive, regardless of clay content, and improves maize 

yields, and that soil organic matter was the only soil property that consistently buffered yields 

against drought conditions.  

To more fully evaluate whether this greater relative yield advantage under drought is 

because soil organic matter protects against drought-induced yield losses, we also evaluated the 

relationship between soil organic matter and annual yield anomaly, the ratio of observed yield to 

expected yield estimated from long-term trends (Lu, Carbone, and Gao 2017). Under very severe 

drought conditions (SPEI < -1.01) an increase of 1% soil organic matter content was associated 

with a mitigation of yield losses of 12  ± 0.03%, under severe drought conditions (-1.01 < SPEI < 

-0.46) this effect decreased to a 5  ± 0.01% mitigation, and under moderate drought (-0.46 < 

SPEI < 0.10) the effect was non-significant (Table S2).  

Further examination of yield anomaly data revealed that counties with lower soil organic 

matter content have high interannual variability, outperforming historical yield trends in 

favorable conditions but experiencing greater losses relative to historical trends under adverse 

conditions. Whereas counties with high soil organic matter have low interannual variability and 

consistently yield near expected yields based on historical trends, even under adverse drought 

conditions. For example, in counties with greater than 2.5% soil organic matter content, the mean 
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of soil organic matter content across all counties in this study, the interquartile range for yield 

anomalies was 98% to 107% of expected yield under normal conditions and 91% to 104% under 

all drought conditions. By contrast, counties with lower than 2.5% soil organic matter ranged 

from 99% to 114% of expected yield under normal conditions and 82% to 104% under all 

drought conditions. This pattern is consistent with previous studies demonstrating that higher soil 

carbon is associated with lower long-term interannual yield variability (Pan, Smith, and Pan 

2009; Williams et al. 2016). Our findings offer additional insight by demonstrating that those 

reductions in interannual variability are partly explained by the association of higher soil organic 

matter and lower yield losses under drought conditions. 

 

3.2. Crop insurance 

Given the decrease in yield risk associated with greater levels of soil organic matter, we expected 

that lower yield risk would be reflected in crop insurance payouts to farmers. Specifically, we 

expected that counties with higher soil organic matter would have lower loss cost (Reyes and 

Elias 2019), a metric based on the ratio of total indemnities to total liabilities. Our results support 

this expectation, showing that soil organic matter is associated with reduced loss cost under 

drought conditions and that the marginal effect of soil organic matter increases as drought 

severity increases (Figure 2). Under very severe drought conditions (SPEI < -1.02), an increase 

in soil organic matter of 1% was associated with a 36 ± 4.76% reduction in loss cost (Table S3). 

Similar to yield anomaly, though, this effect decreases sharply as SPEI approaches normal. Soil 

organic matter was associated with an 8.4 ± 1.41% reduction in loss cost under severe drought 

conditions (-1.02 <  SPEI < -0.46) and just a 4 ± 0.73% reduction under moderate drought (-0.46 

< SPEI < 0.10). Nevertheless, given the expectation of increasing frequency of severe droughts 
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(Hayhoe et al. 2010; Adams et al. 1990; Meehl et al. 2007), our results suggest that it would be 

strategic for rain-fed US agriculture to directly incorporate differences in soil properties into 

policy and insurance planning for yield resilience. 

 

3.3. Path analyses 

The fact that we found that soil organic matter appeared to impart such effective protection 

against yield losses under severe drought appears inconsistent with results from recent studies 

using large soil databases into how soil organic matter influences the plant available water 

capacity in soils. Briefly, the ability of soils to provide water to plants is often estimated as 

‘available water capacity’, which typically is the difference in water content of saturated soil 

samples dried on pressure plates at -1500 kPa and -33 kPa (Cassel and Nielsen 2018; Soil Survey 

Staff 2015). These analyses have suggested that the net impact of soil organic matter on available 

water capacity is relatively modest and contingent on soil texture (Libohova et al. 2018; Minasny 

and McBratney 2018). To investigate potential discrepancies in conclusions between these past 

studies and our work, we performed a series of confirmatory path analyses (Jonathan Lefcheck 

2019; Shipley 2009) to investigate the extent to which soil organic matter associations with 

yields under drought and non-drought conditions are related to its influence on available water 

capacity and cation exchange capacity, used here as a proxy measure of soil fertility. We found 

that soil organic matter was strongly associated with cation exchange capacity but only weakly 

associated with available water capacity, and under both drought and non-drought conditions, 

cation exchange capacity and available water capacity were positively associated with yields 

(Figure 3). However, our confirmatory path analysis also suggested that soil organic matter had 
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an independent, unmediated positive effect on yields under both drought and non-drought 

conditions (Table S4).  

  These results confirm that soil organic matter has a positive influence on yields via its 

effects on available water capacity and soil fertility. But it also suggests that soil organic matter 

likely influences plant water availability and soil fertility in ways not captured by how those 

properties are commonly measured. Although our analyses cannot resolve these additional 

influences, we do know that soil organic matter affects other important soil biophysical 

properties, such as porosity, bulk density, and water infiltration (Franzluebbers 2002; Lado, Paz, 

and Ben-Hur 2004; Libohova et al. 2018; Boyle, Frankenberger, and Stolzy 1989). Favorable 

changes in all of these properties may increase the soil volume from which plants can draw water 

and may effectively increase the supply of water to plants between rain events. In addition, soil 

organic matter is also an important source of key nutrients for plant growth. Under drought 

conditions, water transpiration and radiation efficiency in maize plants increase with increasing 

nitrogen fertilizer use (Teixeira et al. 2014) and nitrogen fertilizer can be important for 

maintaining key metabolic functions and increasing yield (Zhang et al. 2007). Further work is 

required to ascertain whether soil organic matter has similar, nutrient-mediated effects under 

drought conditions.  

 

3.4. Broader implications 

Our analyses are based on subcontinental-scale variation in soil organic matter and yield 

outcomes. As such, they cannot be used to argue directly that field-scale increases in soil organic 

matter achieved through conservation agricultural practices such as cover-cropping or reduced 

tillage, will lead to the same level of meaningful yield protection under drought. More 
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specifically, the demonstrated increases in soil organic matter such practices often achieve is 

smaller than the relative range of soil organic matter content represented in this study, and the 

magnitude of the effect of a soil organic matter demonstrated here may not be maintained at the 

field scale. Similarly, our results are specific to the ‘corn belt’ region of the US and we only 

examined the impact of soil organic matter under drought on maize. Much of this region 

comprises relatively high organic matter soils, and maize is a drought sensitive crop. Last, our 

results likely mask substantial variation in management practices (i.e. fertilizer regimes, tillage, 

cover crops, etc.) that could also impart resilience on rain-fed maize systems. Additional farm-

scale evidence is required to understand whether increases in soil organic matter over time are 

associated with resilience to drought conditions at the farm scale, whether or not management 

practices can impart similar resilience, and whether or not these results are generalizable to other 

geographies, agro-ecological zones, and crops.  

Nevertheless, our results do appear to have the potential to directly inform agricultural 

financing programs and policy in the US. At present, knowledge of risk is incorporated into US 

Federal Crop Insurance Programs (FCIP) only indirectly. Premiums are based on the Actual 

Production History (APH) of a given area and farm, and current policy dictates that APH be 

calculated based on a 10-year trend excluding years in which yield losses were extreme (Bryant 

and O’Connor 2017). While differences in soil organic matter and other biophysical limitations 

to resilience are arguably endogenous to these yield data, APH may become less predictive of 

risk under future climate scenarios where drought frequency is predicted to increase. It may 

therefore be more strategic for policy planning for agricultural resilience to explicitly consider 

differences in soil properties, such as organic matter levels, across counties. For instance, if 

maize yields in counties with low soil organic matter are particularly vulnerable to drought, it 
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may make more sense to incentivize a transition to crops that are more appropriate to soil and 

predicted climate conditions in those counties, than to focus exclusively on economic protection 

through insurance.  

Furthermore, while more extensive evidence is needed to understand if the trends we 

identified at the aggregate-level scale down to the farm, we argue that our findings generally 

support the notion that large-scale efforts to restore soil organic matter levels at 

regional/continental scales should improve the resilience of agricultural systems. Such a notion is 

key to soil health initiatives aimed at increasing agricultural resilience by rebuilding soil organic 

matter (Bradford et al. 2019) and initiatives such as 4 per Mille that argue the co-benefits of 

increased soil organic matter are an important additional incentive to advancing soil carbon 

sequestration (Lal 2016; Chenu et al. 2019).  

 

4. Conclusions 

Our analyses demonstrate that counties with higher mean soil organic matter content are 

associated with lower maize yield loss due to drought, that this relationship is strongest under 

severe drought conditions, and this increased yield protection translates to lower crop insurance 

payouts under drought conditions. Furthermore, we demonstrate that these impacts are not solely 

mediated through the impact of soil organic matter on conventional measures of plant available 

water, but likely occur through additional pathways that influence soil water supply and use by 

plants, which appear to collectively provide the yield protection benefits we document here. At 

least at the county level then for US rain-fed maize agriculture, soil organic matter content 

appears to be an important predictor of resilience to the type of drought conditions that are likely 

to occur more frequently under future climate scenarios. Further work should investigate whether 
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similar benefits of soil organic matter for yield protection are afforded by agricultural 

managements that build organic matter in agricultural soils worldwide. In the interim, our 

analyses highlight the potential value of integrating soil information into resilience planning as 

agricultural outcomes become more uncertain with the increasing incidence and severity of 

extreme weather events.  
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Figures and Tables: 

 

Figure 1. Maize yields increase with soil organic matter content (%), with the effect becoming 
more pronounced with increasing drought severity. Drought levels are based on the following 
ranges of Standardized Precipitation Evapotranspiration Index (SPEI): Very severe < -0.99; 
Severe > -0.99 < -0.44; Moderate > -0.44 < 0.12; Normal > 0.12. Numbers on each panel 
represent the marginal effect of soil organic matter for the corresponding drought level and 
trendlines represent predicted yields based on that marginal effect.  
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Figure 2. Higher levels of soil organic matter were associated with lower loss cost, the unitless 
ratio of crop insurance indemnities to liabilities, under drought conditions. Figure 2a is a map of 
mean soil organic matter content across counties (n=730) within a subset of states (PA, WI, MI, 
MN, IL, IN, IA, OH, MO, and KY) included in this study. Figure 2b is a map of mean loss cost 
under all drought conditions in those same counties. The marginal effect of soil organic matter 
on loss cost under all drought conditions is -6.47 (𝜎=0.84, p<0.001).  
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Figure 3. Increases in yield under drought associated with increasing soil organic matter appear 
only partially mediated by increases to soil available water capacity induced by higher soil 
organic matter. Figure 3 is a diagram of a structural equation model of best fit developed during 
a series of confirmatory pathway analyses. Numbers on each arrow represent standardized 
coefficients of the relationship between the variables connected, and the direction of arrows 
indicate variable dependence. Solid lines indicate statistically significant (p < 0.05) relationships 
and dotted lines indicate non-significant relationships. 
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Drought  Term Coefficient Std. error p 

Very severe 

 SOM 2.1976 0.3339 < 0.0001 
 Clay 0.4999 0.3355 0.1371 
 H3O+ 0.5665 0.6013 0.3467 

 SOM:Clay 0.6549 0.6312 0.3001 

 SOM:H3O+ 0.0426 0.9302 0.9635 
 Clay:H3O+ 1.0140 0.9089 0.2653 
 SOM:Clay:H3O+ 0.9120 1.6866 0.5890 

Severe 

 SOM 1.1820 0.1270 < 0.0001 
 Clay -0.1776 0.1340 0.1852 
 H3O+ -0.3637 0.1716 0.0342 
 SOM:Clay 0.8457 0.2340 0.0003 
 SOM:H3O+ -0.5317 0.2429 0.0288 
 Clay:H3O+ -0.0274 0.2900 0.9249 
 SOM:Clay:H3O+ -1.6099 0.5223 0.0021 

Moderate 

 SOM 0.7616 0.0687 < 0.0001 
 Clay 0.3132 0.0718 < 0.0001 
 H3O+ -0.3794 0.0949 0.0001 
 SOM:Clay 0.6793 0.1189 < 0.0001 
 SOM:H3O+ -0.2837 0.1264 0.0249 
 Clay:H3O+ -0.2869 0.1549 0.0640 

 SOM:Clay:H3O+ -0.5372 0.2941 0.0678 

Normal 

 SOM 0.7266 0.0514 < 0.0001 
 Clay 0.2085 0.0577 0.0003 
 H3O+ -0.5189 0.0856 < 0.0001 
 SOM:Clay 0.5992 0.0985 < 0.0001 
 SOM:H3O+ -0.1456 0.1219 0.2322 
 Clay:H3O+ -0.2103 0.1445 0.1456 
 SOM:Clay:H3O+ 0.1430 0.2600 0.5822 

 
Table 1. Results of linear mixed effects models across multiple levels of drought severity relating 
yield (Mg ha-1) to soil organic matter (SOM, %), clay (%), and H3O+ concentration (mol). 
Coefficients for terms are standardized. Sample numbers for each drought level are as follows: 
Very severe, n=410; Severe, n= 1537; Moderate, n=3998; Normal, n=6431. Conditional 
coefficient of determination for each model is as follows: Very severe, R2=0.53; Severe, 
R2=0.45; Moderate,  R2=0.51; Normal,  R2=0.59. 
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Supplementary Information: 

Selection of independent variables 

Since many soil properties predictive of crop yields are likely to be collinear with soil organic 

matter, inclusion of these properties as independent variables may reduce the accuracy of 

coefficient estimates for soil organic matter. As such, we performed an initial model 

specification analysis to determine a set of independent variables that would reduce collinearity. 

We fit a multivariate linear regression with yield (Mg ha-1) as the dependent variable and no 

interaction effects. Independent variables included soil organic matter (%), soil clay content (%), 

soil H3O+ concentration (mol), and cation exchange capacity (meq 100g soil-1). We then 

evaluated variance inflation factors to determine which independent variables could be removed 

to reduce multicollinearity. Cation exchange capacity had the highest variance inflation factor 

with a value of 4.6. We removed cation exchange capacity then fit the model again with the 

remaining three variables. Variance inflation factors remained within tolerance (1-2), so they 

were kept for use in further analyses.  

 

Initial analyses and drought index sensitivity analysis 

Prior to subsetting data into different ranges of drought severity, we fit an initial model to assess 

if soil organic matter interacted at all with the effect of drought conditions to affect yields. The 

dependent variable in these models was yield (Mg ha-1) and the independent variables included 

soil organic matter (%), soil clay content (%), soil H3O+ concentration (mol), and mean 

standardized precipitation evapotranspiration index (SPEI) for the months of May to August. We 

also included a random effect of State to account for possible impacts of geographic differences 

in management and production environment on model outcomes not accounted for in the data we 
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collected. In addition, we also developed a set of parallel models using the Drought Severity 

Classification Index (DSCI) to perform a sensitivity analysis to evaluate whether or not the 

interaction effects of soil properties with yield changed if drought was quantified in a different 

manner. Models including all possible interaction effects were fit using a restricted maximum 

likelihood approach in the lme4 (Bates et al 2020) package in R. Prior to model fitting, all 

observations of each independent variable were standardized so that coefficient estimates would 

also be standardized. Data standardization was done by subtracting the mean of a given variable 

from each observation and then dividing that value by 2x the standard deviation of that variable.  

Results from the models using SPEI indicated that when SPEI decreased (i.e. drought 

conditions became more severe) the impact of soil organic matter was greater on maize yield 

(Mg ha-1) (Table S5). Sensitivity analyses confirmed that when DSCI was substituted for SPEI, 

directionality, significance, and relative magnitude of estimated coefficients remained largely the 

same (Table S6), as DSCI increased (drought conditions became more severe), the effect of soil 

organic matter on yields became more positive. To better understand the nature of this 

interaction effect, we then subset data to different ranges of drought severity for further analysis 

as described in the main text.  

 

Analyses of interaction effects 

While our primary interest was determining the main effect of soil organic matter on yields 

under variable drought conditions, several interaction effects with soil organic matter emerged 

for models in which yield or loss cost were the dependent variable. Here we document them and 

conduct a series of sensitivity analyses to understand why and how they emerged, and to 
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demonstrate that the positive effects of soil organic matter on yields were robust across drought 

conditions and typical variation in soil properties. 

For models in which yield (Mg ha-1) was the dependent variable, which interaction 

effects emerged as statistically significant (p < 0.05) varied by drought category. For very severe 

drought, no interaction effects emerged; under severe and moderate drought two-way interaction 

effects emerged between soil organic matter and H3O+ concentration, soil organic matter and 

clay, as well as a three-way interaction effect between soil organic matter, clay, and H3O+ 

concentration; and under normal conditions, a two-way interaction between soil organic matter 

and clay emerged (Table S1). Matching significant interaction effects had the same direction and 

similar magnitude across drought levels.  

Analysis of model residuals indicated that the interaction effect of soil organic matter and 

soil clay content is such that the positive effect of soil organic matter on yields diminishes as 

clay content diminishes. Multiple sensitivity analyses to test the sensitivity of this effect to 

observations on either end of the distribution of clay content did not substantially change 

coefficients or their p values. These sensitivity analyses indicate that this is a valid interaction 

effect and that organic matter has a more limited positive effect on yields in counties where clay 

content is limited.  

The negative interaction effect of soil organic matter and H3O+ concentration is such that 

the positive effect of soil organic matter on yields is diminished as H3O+ concentration increases. 

This interaction effect appears to be primarily driven by observations from 6 counties with very 

high H3O+ concentration that are also high soil organic matter. When observations from these 

counties are removed, the interaction effect is rendered non-significant (p=0.63 at moderate 

drought). Removing these observations also rendered the three-way interaction effect of soil 
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organic matter, clay, and H3O+ concentration non-significant (p=0.76 at moderate drought), as 

these same observations were also very high clay content. 

For models in which loss cost was the dependent variable, negative two-way interaction 

effects emerged between soil organic matter and clay content, as well as between soil organic 

matter and H3O+ concentration at the severe and moderate drought levels; at the very severe 

drought level a negative three-way interaction effect between soil organic matter, clay, and H3O+ 

concentration (Table S3). The interaction effects between soil organic matter and clay content 

reflected the corresponding effects for yield discussed above. The mitigating (i.e. negative) effect 

of soil organic matter on loss cost diminished as clay content decreased, and sensitivity analyses 

indicate that this effect is robust against outliers.  

The interaction effects between soil organic matter and H3O+ concentration did not reflect 

the corresponding effects from models in which yield was the dependent variable. As H3O+ 

concentration increases, the negative effect of soil organic matter on loss cost is made more 

strongly negative. Exploration of the residuals and the raw data indicated that this effect was due 

to a limited number of observations that had high H3O+ concentrations and high soil organic 

matter. At the severe drought level a very small number (n=5) of these observations also had a 

loss cost value of 0. When these observations were removed, the interaction effect was rendered 

non-significant (p=0.72). Similarly, at the moderate drought level a small number of 

observations (n=29) with both low clay and soil organic matter content that also had a loss cost 

of 0 appear to have been responsible for this interaction effect. Removing these observations 

rendered the effect non-significant (p=0.93). Given that this interaction effect was not robust to 

sensitivity analyses and was caused by opposite outlier cases at either drought level, it does not 

appear to be robust but is instead the result of anomalous observations.  
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Finally, the three-way interaction at the severe drought level is such that the negative effect of 

soil organic matter on loss cost becomes more strongly negative when soil clay content and H3O+ 

concentration increase. Evaluation of residuals and the data itself seem to indicate that this effect 

is largely the result of a small number of counties in Iowa that had normal yields, and thus low 

loss cost, despite bad weather conditions. These counties had low clay content and H3O+ 

concentrations in the lower quartile, producing the interaction effect we observed. Removing 

these observations (n=18) rendered the effect non-significant (p=0.13).  

 

Structural equation model fitting 

To determine the best, most parsimonious structural equation models for our confirmatory path 

analysis, we fit two candidate models for data from either drought or non-drought conditions in 

which the effect of soil organic matter on yields was either fully or partially mediated by its 

impacts on available water capacity and cation exchange capacity. We then compared these 

models for best fit based on Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), and an analysis of variance. In both cases, the model in which the effect of soil organic 

matter on yield was only partially mediated by its effects on available water capacity had lower 

AIC/BIC, and an analysis of variance indicated the partially mediated model was significantly 

different than the fully mediated model (Table S7). This initial analysis also resulted in a 

negative effect of cation exchange capacity on yields under both drought and non-drought 

conditions. As this result runs counter to previous evidence suggesting cation exchange capacity 

is an important positive predictor of yields, we manually inspected the data to find that this result 

was the consequence of outlying cation exchange capacity values that correlate to extremely high 
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clay content. To make our confirmatory path analysis more representative of conventional, 

maize-growing soil types, we removed these observations (n=20) and then refit the structural 

equation models. The partially mediated model was again the better fitting model, and 

coefficients for soil organic matter and available water capacity’s influence on yields remained 

similar, but cation exchange capacity’s coefficient changed to become positive (Table S8).  
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Drought  Term Coefficient Std. error p 

Very severe 

 SOM 2.1976 0.3339 < 0.0001 
 Clay 0.4999 0.3355 0.1371 
 H3O+ 0.5665 0.6013 0.3467 

 SOM:Clay 0.6549 0.6312 0.3001 

 SOM:H3O+ 0.0426 0.9302 0.9635 
 Clay:H3O+ 1.0140 0.9089 0.2653 
 SOM:Clay:H3O+ 0.9120 1.6866 0.5890 

Severe 

 SOM 1.1820 0.1270 < 0.0001 
 Clay -0.1776 0.1340 0.1852 
 H3O+ -0.3637 0.1716 0.0342 
 SOM:Clay 0.8457 0.2340 0.0003 
 SOM:H3O+ -0.5317 0.2429 0.0288 
 Clay:H3O+ -0.0274 0.2900 0.9249 
 SOM:Clay:H3O+ -1.6099 0.5223 0.0021 

Moderate 

 SOM 0.7616 0.0687 < 0.0001 
 Clay 0.3132 0.0718 < 0.0001 
 H3O+ -0.3794 0.0949 0.0001 
 SOM:Clay 0.6793 0.1189 < 0.0001 
 SOM:H3O+ -0.2837 0.1264 0.0249 
 Clay:H3O+ -0.2869 0.1549 0.0640 

 SOM:Clay:H3O+ -0.5372 0.2941 0.0678 

Normal 

 SOM 0.7266 0.0514 < 0.0001 
 Clay 0.2085 0.0577 0.0003 
 H3O+ -0.5189 0.0856 < 0.0001 
 SOM:Clay 0.5992 0.0985 < 0.0001 
 SOM:H3O+ -0.1456 0.1219 0.2322 
 Clay:H3O+ -0.2103 0.1445 0.1456 
 SOM:Clay:H3O+ 0.1430 0.2600 0.5822 

 

Table S1: Results of linear mixed effects models across multiple levels of drought severity 
relating yield (Mg ha-1) to soil organic matter (SOM, %), clay (%), and H3O+ concentration 
(mol). Coefficients for terms are standardized. Sample numbers for each drought level are as 
follows: Very severe, n=410; Severe, n= 1537; Moderate, n=3998; Normal, n=6431. 
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Drought  Term Coefficient Std. error p 

Very severe 

 SOM 0.1154 0.0362 0.0015 
 Clay 0.0203 0.0358 0.5700 
 H3O+ -0.0095 0.0650 0.8834 
 SOM:Clay -0.0246 0.0680 0.7184 
 SOM:H3O+ -0.1604 0.1011 0.1135 
 Clay:H3O+ -0.0607 0.0984 0.5376 
 SOM:Clay:H3O+ -0.2421 0.1827 0.1858 

Severe 

 SOM 0.0478 0.0135 0.0004 
 Clay -0.0304 0.0138 0.0287 
 H3O+ 0.0018 0.0188 0.9249 
 SOM:Clay 0.0075 0.0258 0.7714 
 SOM:H3O+ -0.0172 0.0272 0.5266 
 Clay:H3O+ 0.0365 0.0324 0.2600 

 SOM:Clay:H3O+ -0.0934 0.0590 0.1139 

Moderate 

 SOM 0.0016 0.0068 0.8150 
 Clay 0.0155 0.0068 0.0230 
 H3O+ 0.0079 0.0096 0.4081 
 SOM:Clay 0.0050 0.0123 0.6846 
 SOM:H3O+ 0.0045 0.0133 0.7366 
 Clay:H3O+ 0.0033 0.0161 0.8353 
 SOM:Clay:H3O+ 0.0273 0.0312 0.3803 

Normal 

 SOM -0.0261 0.0048 < 0.0001 
 Clay 0.0016 0.0053 0.7605 
 H3O+ -0.0058 0.0080 0.4678 
 SOM:Clay -0.0088 0.0093 0.3449 
 SOM:H3O+ -0.0072 0.0116 0.5345 
 Clay:H3O+ -0.0185 0.0137 0.1778 
 SOM:Clay:H3O+ 0.0104 0.0249 0.6749 

 
Table S2: Results of linear mixed effects models across multiple levels of drought severity 
relating yield anomaly to soil organic matter (SOM, %), clay (%), and H3O+ concentration (mol). 
Coefficients for terms are standardized. Sample numbers for each drought level are as follows: 
Very severe, n=410; Severe, n= 1537; Moderate, n=3998; Normal, n=6431. 
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Drought  Term Coefficient Std. error p 

Very severe 

 SOM -36.0966 4.7641 < 0.0001 
 Clay -17.8897 4.6736 0.0001 
 H3O+ -32.0566 9.9484 0.0013 
 SOM:Clay -13.4321 9.5874 0.1612 
 SOM:H3O+ -23.1025 15.2054 0.1287 
 Clay:H3O+ -42.9249 13.4872 0.0015 
 SOM:Clay:H3O+ -53.6069 24.4468 0.0283 

Severe 

 SOM -8.3689 1.4140 < 0.0001 
 Clay -1.3879 1.4720 0.3458 
 H3O+ -5.5117 2.2093 0.0126 
 SOM:Clay -11.5867 2.7725 < 0.0001 
 SOM:H3O+ -6.2995 3.0806 0.0409 
 Clay:H3O+ -11.2259 3.7693 0.0029 
 SOM:Clay:H3O+ 0.9964 6.9334 0.8857 

Moderate 

 SOM -3.9536 0.7339 < 0.0001 
 Clay -0.7116 0.7060 0.3135 
 H3O+ -4.3376 1.1342 0.0001 
 SOM:Clay -4.8935 1.3467 0.0003 
 SOM:H3O+ 0.9792 1.3513 0.4687 
 Clay:H3O+ -7.4802 1.7291 < 0.0001 
 SOM:Clay:H3O+ 4.8528 3.6119 0.1791 

Normal 

 SOM -1.9504 1.3170 0.1386 
 Clay -0.4230 1.3886 0.7607 
 H3O+ -8.7301 2.3950 0.0003 
 SOM:Clay 3.4948 2.6662 0.1899 
 SOM:H3O+ -0.9849 3.5804 0.7833 
 Clay:H3O+ -7.4969 4.2564 0.0782 
 SOM:Clay:H3O+ 6.7002 8.1071 0.4086 

 
Table S3: Results of mixed effects Tobit regression models across multiple levels of drought 
severity relating loss cost to soil organic matter (SOM, %), clay (%), and H3O+ concentration 
(mol). Coefficients for terms are standardized. Sample numbers for each drought level are as 
follows: Very severe, n=410; Severe, n= 1537; Moderate, n=3998; Normal, n=6431. 
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Drought  Model  Response Predictor Coefficient Std. error p 

Drought 
 

 Partial 

 Yield CEC 0.2007 0.0102 < 0.0001 
 Yield AWC 0.3253 0.0222 < 0.0001 
 Yield SOM 0.3979 0.0383 < 0.0001 
 AWC SOM 0.0557 0.0573 0.1332 
 CEC SOM 0.5848 0.1247 < 0.0001 

 Full 

 Yield CEC 0.4727 0.0087 < 0.0001 
 Yield AWC 0.2324 0.0233 < 0.0001 
 AWC SOM 0.0557 0.0573 0.1332 
 CEC SOM 0.5848 0.1247 < 0.0001 

Normal 

 Partial 

 Yield CEC 0.2044 0.0097 < 0.0001 
 Yield AWC 0.4085 0.0210 < 0.0001 
 Yield SOM 0.2337 0.0363 < 0.0001 
 AWC SOM 0.0557 0.0573 0.1332 
 CEC SOM 0.5848 0.1247 < 0.0001 

 Full 

 Yield CEC 0.3642 0.0078 < 0.0001 
 Yield AWC 0.3540 0.0208 < 0.0001 
 AWC SOM 0.0557 0.0573 0.1332 
 CEC SOM 0.5848 0.1247 < 0.0001 

 
Table S4: Results of partially and fully mediated piecewise structural equation models under 
drought and non-drought conditions. SEMs relate the effect of soil organic matter (SOM, %) to 
yield (Mg ha-1) via its impacts on available water capacity (AWC, %) and cation exchange 
capacity (CEC, meq 100 g soil-1). Coefficients for terms are standardized. Models for the drought 
category include observations at all levels of drought severity (i.e. very severe, severe, 
moderate). To more accurately model typical soil types, observations with a CEC value greater 
than 31.92 meq 100 g soil-1 were excluded. Sample numbers for each drought level are as 
follows: Drought, n=5740; Normal, n=6307. Model inputs were based on the mean value for 
each term at the county level.  
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Term Coefficient Std error p 
SPEI 1.1507 0.0325 < 0.0001 
SOM 0.8316 0.0404 < 0.0001 
H3O+ -0.4497 0.0613 < 0.0001 
Clay 0.1992 0.0440 < 0.0001 
SPEI:SOM -0.6661 0.0659 < 0.0001 
SPEI:H3O+ -0.1508 0.1070 0.1588 
SOM:H3O+ -0.3258 0.0852 0.0001 
SPEI:Clay -0.1686 0.0647 0.0092 
SOM:Clay 0.6487 0.0745 < 0.0001 
H3O+:Clay -0.2630 0.1029 0.0106 
SPEI:SOM:H3O+ 0.2498 0.1599 0.1182 
SPEI:SOM:Clay 0.2117 0.1276 0.0972 
SPEI:H3O+:Clay -0.1153 0.1934 0.5512 
SOM:H3O+:Clay -0.4649 0.1881 0.0134 
SPEI:SOM:H3O+:Clay 0.5682 0.3571 0.1115 
 
Table S5: Results of linear mixed effects models relating yield (Mg ha-1) to Standardized 
Precipitation Evapotranspiration Index (SPEI), soil organic matter (SOM, %), clay (%), and 
H3O+ concentration (mol). Coefficients for terms are standardized. Sample number was 
n=12,376. 
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Term Coefficient Std error p 
DSCI -1.2245 0.0388 < 0.0001 
SOM 0.8423 0.0407 < 0.0001 
H3O+ -0.4235 0.0622 < 0.0001 
Clay 0.2474 0.0443 < 0.0001 
DSCI:SOM 0.4675 0.0760 < 0.0001 
DSCI:H3O+ 0.3370 0.1302 0.0096 
SOM:H3O+ -0.1634 0.0857 0.0565 
DSCI:Clay 0.2943 0.0663 < 0.0001 
SOM:Clay 0.6290 0.0748 < 0.0001 
H3O+:Clay -0.1733 0.1029 0.0923 
DSCI:SOM:H3O+ -0.2908 0.1942 0.1342 
DSCI:SOM:Clay -0.5208 0.1282 0.0001 
DSCI:H3O+:Clay 0.1289 0.2005 0.5204 
SOM:H3O+:Clay -0.1827 0.1881 0.3316 
DSCI:SOM:H3O+:Clay -0.3559 0.3689 0.3347 
 
Table S6: Results of linear mixed effects models relating yield (Mg ha-1) to Drought Severity 
Classification Index (DSCI), soil organic matter (SOM, %), clay (%), and H3O+ concentration 
(mol). Coefficients for terms are standardized. Sample number was n=12,376. 
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Drought Model AIC BIC Fisher C p 

Drought Full 343.85 389.75 323.85 --- 

vs. Partial 219.4 269.89 197.4 < 0.01 

Normal Full 260.89 306.8 240.89 --- 

vs. Partial 219.4 269.89 197.4 < 0.01 

 
Table S7: Results of a fit comparison and analysis of variance for partially and fully mediated 
piecewise structural equation models under drought and non-drought conditions. SEMs relate the 
effect of soil organic matter (SOM, %) to yield (Mg ha-1) via its impacts on available water 
capacity (AWC, %) and cation exchange capacity (CEC, meq 100 g soil-1). Models for the 
drought category include observations at all levels of drought severity (i.e. very severe, severe, 
moderate). Sample numbers for each drought level are as follows: Drought, n=5945; Normal, 
n=6431. Model inputs were based on the mean value for each term at the county level.  
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Drought  Model  Response Predictor Coefficient Std. error p 

Drought 
 

 Partial 

 Yield CEC -0.0752 0.0074 0.0155 

 Yield AWC 0.4465 0.0206 < 0.0001 

 Yield SOM 0.5282 0.0353 < 0.0001 

 AWC SOM 0.0677 0.0575 0.0642 

 CEC SOM 0.4522 0.1604 < 0.0001 

 Full 

 Yield CEC 0.1693 0.0078 < 0.0001 

 Yield AWC 0.4231 0.0244 < 0.0001 

 AWC SOM 0.0677 0.0575 0.0642 

 CEC SOM 0.4522 0.1604 < 0.0001 

Normal 

 Partial 

 Yield CEC -0.1241 0.0071 0.0001 

 Yield AWC 0.5374 0.0198 < 0.0001 

 Yield SOM 0.3910 0.0340 < 0.0001 

 AWC SOM 0.0677 0.0575 0.0642 

 CEC SOM 0.4522 0.1604 < 0.0001 

 Full 

 Yield CEC 0.0569 0.0070 0.0745 

 Yield AWC 0.5201 0.0217 < 0.0001 

 AWC SOM 0.0677 0.0575 0.0642 

 CEC SOM 0.4522 0.1604 < 0.0001 
 
Table S8: Results of partially and fully mediated piecewise structural equation models under 
drought and non-drought conditions. SEMs relate the effect of soil organic matter (SOM, %) to 
yield (Mg ha-1) via its impacts on available water capacity (AWC, %) and cation exchange 
capacity (CEC, meq 100 g soil-1). Coefficients for terms are standardized. Models for the drought 
category include observations at all levels of drought severity (i.e. very severe, severe, 
moderate). Sample numbers for each drought level are as follows: Drought, n=5945; Normal, 
n=6431. Model inputs were based on the mean value for each term at the county level.  
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Chapter 3: Testing the potential for a reduced-wavelength spectrophotometer 

to estimate soil carbon content at the point and field scales 

Abstract 

Proximal sensing methods for estimating soil carbon content on field collected samples have 

been proposed as a lower-cost, alternative method to standard laboratory methods that would 

enable the collection of data at higher spatial densities. Previous evidence suggests that such 

methods may have sufficient accuracy to do so, but most studies employ high-cost instruments 

(> 10,000 USD) that may not be accessible to practitioners in the field. We tested the capacity of 

the Our Sci Reflectomer, a low cost (< 500 USD) handheld spectrophotometer, to estimate soil 

carbon content on individual point-based samples across multiple grazing and rangeland sites in 

Wyoming, Montana, and New York, USA. We additionally simulated potential real-world 

applications of this tool for generating estimates of the distribution of soil carbon content at the 

field scale. We found that the accuracy of methods using this low-cost spectrophotometer to 

estimate soil carbon content on individual samples was highly variable but generally low (R2 < 

0.5; RMSE > 0.5) and sensitive to how representative training data were of a given site. 

Relatedly, simulated applications of these methods to real-world scenarios indicated that in order 

to accurately and consistently characterize field-level distribution characteristics of soil carbon 

content, a substantial amount of training data generated through laboratory testing is necessary, 

undermining any advantage gained through increased sampling. Our results indicate that the 

methods and tools we employed in this study likely have limited utility for assessing field carbon 

stocks with adequate statistical confidence. Other studies using more sophisticated VNIR 

instruments have generally achieved greater accuracy. But results from our best-performing 

models and sites were still within the range of other reported results, and many other studies are 
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based on large spectral libraries, whereas our analysis was limited to the site-level to represent 

potential real-world applications. As such, we suggest our research demonstrates the need for 

more deliberate testing of the use of proximal sensing methods for suggested field applications to 

assess their true usefulness. Furthermore, to make such low-cost proximal sensing methods most 

useful, adapting mid-infrared spectroscopy and building regional soil spectral libraries and 

corresponding methods for calibration transfer across instruments and geographies are necessary.      
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1. Introduction 

The spatial variability of soil carbon content makes estimation of carbon stocks difficult at field 

and landscape scales. Numerous factors, including spatial variation in soil types, physical 

geography, and plant communities, dictate spatial patterns in accumulation of soil carbon and 

hence soil carbon content (Grunwald, Thompson, and Boettinger 2011; McBratney, Mendonça 

Santos, and Minasny 2003). These factors imply that efforts to map soil carbon must be correctly 

planned or large numbers of samples must be collected to estimate spatial variability of soil 

carbon with sufficient statistical confidence. Soil carbon content is typically measured in the 

laboratory using combustion analysis and gas chromatography/mass spectrometry (GCMS). 

These analyses provide highly accurate, per sample, soil carbon measurements, but involve 

substantial material and labor costs. Given the high analytical and labor costs of laboratory 

methods, spatially intensive sampling campaigns are generally cost-prohibitive.  

Proximal sensing methods that employ visible/near-infrared (VNIR) or mid-infrared 

(MIR) spectrometry offer an approach to measuring soil carbon that is complementary to 

laboratory combustion analyses and potentially more affordable (McBratney, Minasny, and 

Viscarra Rossel 2006a; Angelopoulou et al. 2020; Nocita et al. 2015). As soil carbon content in 

like soils increases, soils absorb and reflect visible and infrared radiation differently. VNIR and 

MIR spectrometers can measure these spectral reflectance characteristics on bulk soil samples, 

and these data can then be used along with soil carbon content data from GCMS analyses to train 

models capable of estimating soil carbon content on further samples without the need for 

laboratory work. Research has demonstrated that these methods can achieve reasonable accuracy 

in soil carbon estimation with sufficient training data and adequate sample preparation, but they 

generally cannot achieve the same per-sample accuracy as GCMS (Gao et al., 2014; Minasny 
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and McBratney, 2008; van Groenigen et al., 2003; Viscarra Rossel et al., 2006). However, 

compared to typical laboratory analysis, these methods are generally less labor-intensive, have 

near-zero material costs, and instrumentation is less expensive and less difficult to 

maintain/operate.  

The suggested advantage, then, of proximal sensing tools is that they could allow users to 

collect lower accuracy data on soil carbon content at much higher spatial sampling rates to 

replace or complement lab-measured data (Nocita et al. 2015). With higher sampling rates, 

characterization of spatial variability in soil carbon content at the field-level with statistical 

confidence is potentially more achievable. Combining proximal sensing data with other sources 

of information predictive of soil carbon content, such as regional/national digital soil maps, 

remote sensing imagery, and elevation datasets, can further improve their accuracy and utility 

(Gomez, Viscarra Rossel, and McBratney 2008; Paul et al. 2019).     

However, despite reducing per-sample costs, most spectrometers considered for use in 

proximal sensing of soils remain expensive (> 10,000 USD). Furthermore, past research has 

highlighted several barriers to expanding the use of such tools. For example, sufficiently large 

libraries of soil spectral data are necessary to train accurate estimation models (Viscarra Rossel 

et al. 2016; Reeves III 2010), and while efforts to create such libraries are underway at 

continental and regional scales, transferability of models across areas is not always possible 

(Minasny et al. 2009) and methods to aid in effective calibration transfer have only recently been 

developed (Padarian, Minasny, and McBratney 2019). These barriers limit the use of such 

methods by non-experts and suggest that in the short-term, proximal sensing will require 

calibration of models through at the local field scale with data acquired through laboratory 

analysis.  
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As part of the Quick Carbon research project developed at the Yale School of 

Environment, we tested the efficacy of the Our Sci Reflectometer (https://www.our-

sci.net/reflectometer/; Ann Arbor, MI, USA), a simplified, inexpensive, and open-source field 

spectrometer to estimate soil carbon content at individual sample points and at the field scale 

(100 – 1000 ha) across multiple grassland and rangeland sites in the United States. At each site 

we collected spatially distributed sets of soil samples that were then analyzed for soil carbon 

content using conventional analytical laboratory approaches. We then tested the accuracy of a 

variety of modeling approaches using data from the reflectometer, geographic datasets, and 

digital soil maps to estimate soil carbon content of individual soil samples. Further, knowing that 

such modeling approaches were likely to be less accurate than conventional laboratory analysis 

on a per-sample basis but could potentially support higher sampling rates we wanted to 

investigate if this trade-off could allow for characterization of site-level distributions of soil 

carbon content at relatively lower effort. On a subset of sites, we tested the accuracy of estimates 

of site-level soil carbon distributions using models trained on a limited proportion of the 

collected samples. We then iteratively increased the proportion of samples in this subset to see if 

there was a threshold at which modeled estimates were consistently, statistically accurate as 

compared to a withheld test sample. This analysis was intended to simulate a real-world soil 

carbon monitoring scenario in which a limited budget is used for lab analysis and proximal 

sensing methods are then employed to gather more additional data points with the intention of 

increasing confidence in assessment of spatial variability at the field scale.  
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2. Methods 

2.1. Field sites and sampling design 
 

Samples and data used in this analysis were collected in 2016 and 2018 from 6 field sites. Sites 

included several working rangelands and grazing lands in the Northern Great Plains and one site 

in New England. We collected a total of 1302 complete samples across all sites. Total carbon 

concentrations of soil samples measured using elemental analysis ranged from 0.44% to 9.05%. 

Distributions of soil carbon content varied greatly across sites, but most followed a lognormal 

distribution with an extended right-hand tail (i.e. few, high carbon samples). Based on 

comparisons to digital soil maps, sites spanned a broad range of soil orders and suborders but 

most were dominated by soil types with minimal horizon development (i.e. Inceptisols, Entisols; 

Table 1). 

Sample design varied across sites based on which year the site was sampled. For sites 

sampled in 2016, we sampled soils at a density of ~1 sample ha-1 based on a systematic radial 

transect sample pattern. Within each ranch we identified different parcels selected to represent 

different representative soil taxa, and within each parcel we established a series of anchor points 

at regular intervals. From these anchor points, we then set transects at 0, 72, 144, 216, and 288 

degrees and collected samples at random distance intervals between 1–100 m along each transect 

until we met the boundary of the parcel. We sampled to a depth of 20 cm using a hammer probe 

with a 2 cm diameter and passed samples through a 4 mm sieve in the field at the point of 

collection.  

For sites sampled in 2018, soil sampling points were selected through a stratified random 

sampling procedure with the Google Earth Engine web application Stratifi (Bettigole 2021). This 

web app first retrieves data on vegetative productivity (Landsat 8 derived indices; 30 m 
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resolution), topography/slope/aspect (National Elevation Dataset; 10 m resolution), and soil 

properties (gSSURGO 30 m resolution) within a pre-defined study from the Google Earth 

Engine data catalog (“Earth Engine Data Catalog” 2022). It uses an unsupervised hierarchical 

clustering algorithm, WEKA X-Means (Witten et al. 2016), to select an optimal number of strata 

based on these input layers and then generates those strata by assigning each pixel (30 m 

resolution) to a stratum, optimizing for likeness across input data. Stratifi then chooses a series of 

random sampling sites based on the desired sampling density and the relative size of each 

stratum. At each point we collected soil at two depth increments 0-15 cm and 15-30 cm using a 

battery-operated drill, auger bit, and custom sample collection device. This device was designed 

with depth stops to ensure soil was collected at the correct depth increments. In cases where this 

approach was inadequate given soil wetness or loose soil structure, we used a push probe with a 

2 cm diameter instead. For the purposes of this analysis, we chose to only use data from the 0-15 

cm increment.  

 
2.2. Sample processing and analysis 
 

Field-collected samples were left to air dry until they could be shipped or returned to the lab. 

Once in the lab, we dried all soil samples to constant mass in ovens at 60°C, and homogenized 

them in a SPEX Sample Prep ball mill (Metuchen, NJ, USA) or manually with a rolling pin. We 

then collected visible/near-infrared reflectance data on each sample using the Our Sci 

Reflectometer (“Our Sci - Reflectometer” 2021). This device is a highly simplified, low cost 

(<$500) spectroscopy instrument that employs a series of LEDs and photoreceptors to measure 

sample reflectance at a select series of wavelengths: 370, 395, 420, 530, 605, 650, 730, 850, 880, 

and 940 nm. A soil sample is placed in front of the optical window inside a glass petri dish. The 
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LEDs then flash in sequence and the photoreceptors record reflectance measurements 

simultaneously in a companion smartphone app. To control for instrument drift over repeated 

measurements, we also scanned a “black/white” standard card at the beginning of each session in 

the lab to standardize measurements to a 0-100 scale. Corrected reflectance measurements were 

then converted to an absorbance scale using the following formula.  

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = 	 𝑙𝑜𝑔./
1

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 

We also analyzed each sample for carbon and nitrogen content using standard laboratory 

techniques. We analyzed samples collected in 2016 at the Yale Stable Isotope Center on a 

Costech Elemental Analyzer (Valencia, CA, USA) attached to a Thermo DeltaPlus Advantage 

Isotope Mass Spectrometer (Waltham, MA, USA). Samples collected in 2018 were analyzed at 

Ward Labs (Kearney, NE, USA) on a LECO TruMac Analyzer (St. Joseph, MI, USA).  

 

2.3. Data processing 
 

We recorded the coordinates of each sample location in the field, allowing us to later retrieve 

data from digital soil maps and other geostatistical sources for all sample points for use in model 

development. We focused on collecting data types that would add predictive power to our 

models for estimating soil carbon content, including data on soil texture and soil chemical 

properties from SoilGrids, normalized differential vegetation index (NDVI), and topographic 

data (Table 2).   

 
SoilGrids is a global, 250m resolution dataset on soil properties generated using a 

machine learning process trained on several continental and national level soil inventories 

(Hengl, Jesus, et al. 2017; Hengl et al. 2014). Data were retrieved from SoilGrids for every 



 93 

sample point via their RESTful API using the GSIF package (Hengl, Kempen, et al. 2017) in R 

v. 4.0.3 (R Core Team 2020).  

NDVI was calculated as the normalized difference between band 8 (NIR, 835.1 nm) and 

band 4 (red, 664.5 nm) of the Sentinel 2 Multi-spectral Instrument dataset from the European 

Space Agency. To calculate NDVI at each sampling point, we retrieved Level 1-C Sentinel 2 

reflectance data for a bounding box containing the entire sampling area using the ee package 

(Gorelick 2021) in Python to access the Google Earth Engine data catalog (Google 2021b). Data 

were retrieved for all available dates from January 1, 2019 to December 31, 2019. Images for 

each date were then cloud-masked using the QA60 band from Sentinel 2 for the corresponding 

date to identify and remove all pixels obscured by clouds or cirrus clouds. Finally, a ‘greenest 

pixel’ composite image of the study area was created by selecting the highest NDVI value across 

the date range for each pixel. Specific NDVI values for each sample point were then extracted 

from this composite image by overlaying point coordinates and finding the corresponding NDVI 

value. 

Topographic data was similarly retrieved for each point by accessing the Google Earth 

Engine data catalog with the ee package in Python. Using the same bounding box, we retrieved 

elevation data from the USGS National Elevation Dataset for the entire study area (Google 

2021c). Slope was then derived from elevation data using the Google Earth Engine 

ee.terrain.products function (Google 2021a). Specific values of elevation, slope, and aspect were 

then extracted for each sample point by overlaying the coordinates on each final image.  
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2.4. Accuracy of soil carbon estimation 
 

For each site we then developed models to estimate soil carbon content using two different 

approaches: 1.) using just absorbance data from the Our Sci Reflectometer, herein referred to as 

“reflectance only” models, and 2.) using absorbance data from the Our Sci Reflectometer in 

combination with data extracted for each point from the digital soil maps and geostatistical 

datasets described above in Section 2.3, herein referred to as “combination” models. Models 

were calibrated using soil carbon data content from elemental analysis as the dependent variable. 

All models were developed in R v. 4.0.3 (R Core Team 2020). We used a Random Forest 

approach and developed models using the ‘caret’ package (Wing et al. 2018). Random Forest is a 

machine learning ensemble method that is well-suited for building non-linear predictive models 

with multiple, colinear independent variables. We used a grid search to select model parameters, 

and employed a 5-fold cross-validation to tune hyperparemeters and select the best model.  

For each model type, 80% of samples from each site were randomly partitioned to create 

a training dataset for the model, while the remaining 20% were partitioned for testing model 

predictions. The data were randomly partitioned this way 100 times to bootstrap each modeling 

approach and assess the distribution of possible model outcomes depending on training data. In 

addition, we used a similar iterative 80/20 approach in which we used a conditioned Latin 

hypercube sampling (cLHS) algorithm (Minasny and McBratney 2006) provided in the R 

package ‘cLHS’ (Roudier et al. 2021) to select training data based on the independent variables 

of the model. Conditioned Latin hypercube sampling is a stratified random data selection 

procedure that uses a multi-dimensional set of covariates to identify a subset of n points from a 

sample population (N) that is optimally representative of the distribution and correlation of those 
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covariates. This approach was intended to optimize spread in the indepdendent variables and 

thereby enhance the accuracy of estimation models.  

Model fit was evaluated for all iterations of each combination of model type and training 

data selection procedure by comparing laboratory measures of soil carbon content with modeled 

estimates of soil carbon content in the withheld test data and calculating root mean square error 

(RMSE), mean absolute error (MAE), and coefficient of determination (R2) based on those 

comparisons.  

 

2.5. Estimating distributions of soil carbon at the field scale 

Since spectrometry methods have higher measurement error than typical laboratory methods on   

a per sample basis but lower labor and material costs, a suggested use for such methods is 

assessment of spatial variability in soil carbon content at the field scale at reduced cost. The logic 

behind this suggested use is that while individual estimates may be inaccurate, estimates of the 

distribution of soil carbon content at the field scale (100-1000 ha) may still be sufficiently 

accurate in aggregate to estimate field carbon stocks or make inferences about management with 

statistical confidence. We simulated this suggested application for our combination modeling 

approach described in 2.3.1 at the two sites with the greatest per-sample estimation accuracy, SB 

and SR, to assess if they could accurately capture characteristics of field-scale soil carbon 

content distributions. We additionally sought to base this analysis on potential real-world 

constraints to more accurately understand if such approaches truly reduce sampling effort as 

compared to conventional lab analysis, or if the need for sufficient training data obviates any 

possible reduction of effort and cost savings. Lastly, to account for the possible impact of 

training data on estimates and to account for measurement error inherent in the approach we used 
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a Monte Carlo-Markov Chain (MCMC) approach to simulate and test a more complete range of 

possible outcomes.   

At each site, we iteratively sub-sampled the full dataset using an increasing proportion of 

the total number of samples collected at the site, starting with just 10% of samples and increasing 

up to 50% of samples at 10% increments. This approach was used to simulate a potential real-

world scenario in which a limited budget is available for laboratory analysis, so a subset of 

samples is analyzed in the lab to train a site-specific model for estimating carbon at other points 

in the same field. Sample subsets were selected using the cLHS algorithm (Roudier et al. 2021) 

with digital soil map and remote sensing data corresponding to each point to attempt to ensure 

the sub-sample was representative of the total population. This training data selection process 

was repeated 100 times at each level of sampling proportion (n = 8) for both sites (n = 2) for a 

total of 1000 iterations.  

For each of these iterations we built a combination model similar to those described in 

Section 2.3.1 that included data for each point from the reflectometer, geostatistical data sources, 

and digital soil maps, but instead, models were fit using a Quantile Regression Forest (QRF) 

approach as implemented in the ‘quantregForest’ package in R (Meinshausen 2017). QRF is an 

extension of Random Forests that allows for easy estimation of posterior predictive distributions 

on individual points (Meinshausen 2006). Models were then used to estimate 95% prediction 

intervals on the posterior predictive distribution of carbon content for all collected sample points. 

We then iteratively resampled this distribution for each point 100 times to bootstrap a set of 100 

samples of the field-level population based on each of the 1000 estimation models. This 

approach was employed to account for estimation error in our assessment of methods instead of 

simply relying on the mean estimate of the model for each point.  
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Each bootstrapped sample of estimated soil carbon content values was then combined 

with laboratory values from the training dataset, and this combined sample was then compared to 

an independent, randomly selected test sample of actual soil carbon content values as determined 

by lab analysis from the same site with n equal to 50% of the total number of points. We 

compared these samples using the following procedures: 

1. Two-sample Student’s t-test: We performed this test using the t.test function in 

the ‘stats’ package in R (R Core Team 2021) to determine if the means of either 

sample are significantly different from one another. When the p value was greater 

than 0.05, we considered that an indication that sample means were not 

significantly different and the test was passed. 

2. Two-sample Kolmogorov-Smirnov test: We performed this test using the ks.test 

function in the ‘stats’ package in R (R Core Team 2021) to determine if either 

sample was drawn from the same probability distribution function. As opposed to 

a Student’s t-test, the KS test allows to make inferences as to how well 

distributions match instead of just how well means match. When the p value was 

greater than 0.05, we considered that an indication that the samples were drawn 

from the same population distribution function and the test was passed.  

3. Confidence interval comparison: For each sample we generated 95% confidence 

intervals for estimated soil carbon content using the following formula:  𝜇0 	±

(1.96	 ×	𝑆𝐸0), where 𝜇0 is the sample mean and SEi is the standard error of 

estimated carbon for the ith sample, and 1.96 is the z-score corresponding to a 95% 

confidence interval. This interval was then compared to intervals using ± 5% and 

± 10% margin of error around the mean actual soil carbon content for the ith 
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sample. When the 95% confidence interval for estimated soil carbon fell within 

the margin of error, we considered that a pass of the test. 

We then aggregated test results for each sampling proportion level (10%-50%) at each site by 

calculating the frequency with which each test was passed as per the criteria outlined above. If 

for a given site and sampling proportion level, the test was passed in >95 % of iterations, we 

concluded that soil carbon estimation using a combination modeling approach was robust to 

variation in training data and model error and could pass the corresponding test consistently.  

 

3. Results and discussion 

3.1 Estimation accuracy at individual points 
 

Accuracy of soil carbon estimates at individual sample points using absorbance only models 

from the reflectometer varied widely across sites (Table 3). For most sites, average mean 

absolute error (MAE) and root mean squared error (RMSE) on test samples across all iterations 

were between 0.5 and 1. Coefficient of determination (R2) of estimated soil carbon as compared 

to actual measured soil carbon was highly variable across sites but generally remained low as 

models tended to underestimate carbon on samples in the upper tail of a site’s distribution and 

overestimated those in the lower tail (Figure 1).  

Including additional data from digital soil maps, NDVI data, and data on physical 

geography (e.g. slope) improved the accuracy of models across nearly all sites, as did applying a 

conditioned Latin hypercube sampling (cLHS) selection algorithm to training data to ensure they 

were sufficiently representative of variability in soil properties (Table 3). In particular, these 

approaches helped to improve prediction accuracy at the tails of the distributions for each site, 

increasing correlation coefficients (Figure 1). This finding is consistent with studies of other 
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‘multi-sensor’ studies in which local collected soil proximal sensing data was combined with 

remote sensing or digital soil map data to enhance predictions (Cobo et al. 2010; Paul et al. 2019; 

Gomez, Viscarra Rossel, and McBratney 2008). At two sites, TS and PF, prediction accuracy 

was poor and estimates skewed strongly towards the mean carbon content value of the site 

regardless of modeling approach. 

 Angelopoulu et al. (2020) conducted an exhaustive review of literature on estimation of 

soil carbon via VNIR methods and reported a broad range in outcomes with some studies 

reporting poor accuracy and high bias (R2 < 0.5; RMSE > 1%) and others reporting high 

accuracy and minimal bias (R2 > 0.8; RMSE < 0.01%). Results from the best-performing models 

and sites in our study were on the lower end of the accuracy range indicated by this review. But 

their comparability with these other studies is notable given that most other studies used more 

sophisticated spectrometers. Results from the worst-performing models and sites in our study 

were substantially less accurate.  

 One possible explanation of weak performance is high sensitivity to training datasets. 

Iterative random selection of training datasets at each site led to considerable range in accuracy 

outcomes within sites as represented by the standard deviations of accuracy metrics across all 

100 train/test iterations (Table 3). This pattern indicates that the methods we tested were highly 

sensitive to selection of the training dataset and how well it represented true variability in soil 

properties at a given site. Improvement of model performance when training data were selected 

using the cLHS algorithm further supports this finding. The need for optimal calibration datasets 

has been studied previously (Ramirez-Lopez et al. 2014a), and our results confirm this finding.    

As well, despite being considerably less expensive than alternative devices, limiting the 

Our Sci Reflectometer’s range to select VNIR wavelengths may create substantive trade-offs in 
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terms of accuracy. Several recent studies have indicated that visible/near-infrared (VNIR) 

spectroscopy alone for estimation of soil carbon content is limited and that data on reflectance of 

samples further in the NIR range and into the mid-infrared range of the spectrum provides higher 

accuracy estimates (Johnson et al. 2019; Riedel et al. 2018; Hutengs et al. 2019; Sanderman, 

Savage, and Dangal 2020; Dangal et al. 2019a). These ranges likely provide greater accuracy as 

functional groups frequently found in organic carbon compounds that largely comprise soil 

carbon produce a greater, more distinct signal in them, particularly the MIR. Expanding the 

range of the Our Sci Reflectometer to be capable of measuring reflectance further into the 

infrared range, potentially including the MIR range, could be an essential next step to improving 

accuracy.  

Finally, while some soil samples likely included appreciable inorganic carbon content 

particularly at sites in WY and MT, budget limitations meant we were unable to measure 

inorganic carbon on samples to determine if it was indeed reducing accuracy by contaminating 

the reflectance signal of organic carbon compounds. Similarly, soils at some of the worst-

performing sites included soil types with parent materials with strong visible color signals (e.g. 

red sandstone at RC) that we expect would have reduced overall site accuracy. While we weren’t 

able to directly test the impacts of such factors on our results, if they did indeed decrease 

accuracy, we note that such an impact suggests the tools we tested may be less generalizable 

across the broad range of soil conditions most real-world users would be likely to encounter.  

 

3.2. Accuracy at the field-level 

In simulated real-world scenarios based on equivalent effort, estimates of the distribution of soil 

carbon content at the field scale using combination models were little improved as compared to 
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traditional lab methods, despite enabling the collection of greater numbers of samples. After 

propagating measurement uncertainty through MCMC simulation, combination models at the SB 

and SR sites were not capable of producing samples with 95% confidence intervals that were 

consistently (> 95% of iterations) within a 5% margin of error of withheld test samples, 

regardless of how much training data were used to calibrate the model. The same was true for 

producing 95% confidence intervals within a 10% margin of error at the SB site, but at the SR 

site, models produced samples within a 10% margin of error when 30% or more of data were 

used to calibrate the model (Table 4). By comparison, we calculated that relatively fewer 

samples were necessary to achieve the same level of accuracy using laboratory data alone given 

statistics on the mean and standard deviation at each site (SB: 5% - 141, 10% - 35; SR: 5% - 194, 

10% - 49).  

Furthermore, Kolmogorov-Smirnov tests indicated that combination models were not 

capable of consistently characterizing distributions of soil carbon content in a statistically robust 

manner until substantial amounts of data were dedicated to training models (Table 4). 

Performance on Student’s t-tests were better, with SB passing a 90% threshold with 20% of data 

dedicated to model training and SR at 30% of data dedicated to model training. However, again 

by comparison, using just lab data from the training dataset these tests were consistently passed 

at low sampling rates, indicating that selection of samples using a procedure such as cLHS may 

be adequate for reducing sampling costs/effort. This result is consistent with other work 

demonstrating such model-based sampling design approaches can produce representative 

samples at relatively lower effort than unbiased, designs (Minasny and McBratney 2006; 

Malone, Minansy, and Brungard 2019; de Gruijter et al. 2016). This pattern additionally 
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indicates that the addition of proximal soil sensing based estimates reduced statistical confidence 

because of the introduction of measurements with high error.  

However, we note that similar studies using more sophisticated, but also more expensive, 

instrumentation have realized greater success. Paul et al. (2019) found that mid-infrared 

spectroscopy (MIRs) could enhance mapping of multiple soil properties, including soil organic 

matter, on a 54 hectare field in Vancouver, BC, Canada by enabling researchers to collect 

samples at greater spatial densities than sampling efforts that relied on laboratory analysis alone 

at equivalent effort/cost. Cobo et al. (2010) similarly found that combining MIRs with 

geostatistical mapping methods supported rapid, cost-effective assessment of the spatial 

variability of multiple soil properties at the landscape scale (730 – 1360 ha) in multiple villages 

in Tanzania. Finally, Mirzaeitalarposhti et al. (2017) demonstrated that such approaches were 

effective at the regional level in southwest Germany and Vågen et al. (2016) demonstrated their 

utility at the continental scale in sub-Saharan Africa. Nonetheless, our results indicate that when 

estimation accuracy at the point level is limited, that error propagates to the field scale in a 

measurable way.  

 

4. Conclusions 

Using a simplified handheld spectrometer to measure soil reflectance at a select number of 

wavelengths, we were able to estimate soil carbon content for soil samples spanning a range of 

soil types, but results varied widely across sites and prediction was particularly poor at the tails 

of distributions as modeled estimates tended to skew towards site means. Including additional 

information easily acquired from publicly available digital soil maps and geostatistical datasets 

and ensuring that model training data were well stratified to represent variability and correlation 
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of independent variables further improved accuracy, particularly at the tails of a site’s possible 

distribution of soil carbon values. However, at some field sites, accuracy remained limited, 

regardless of modeling approach or training data selection.  

In simulated real-world scenarios at the SB and SR sites where a fraction of samples were 

used to train an estimation model that was then used across a sample of other points, estimation 

of soil carbon via methods that employed the reflectometer in combination with data from 

geostatistical sources and digital soil maps (combination models) did not consistently result in 

samples that were statistically similar to the true distribution of soil carbon content as determined 

via laboratory analysis on the same sample.  

Our results suggest that the methods and instruments tested in this study likely have 

limited utility for measuring soil carbon at the point scale and are sensitive to site conditions and 

selection of training data. Nonetheless, results from our best-performing models and sites were 

within the accuracy range indicated by other studies of VNIR spectroscopy for soil carbon 

estimation, albeit on the lower end, even though the device we tested was considerably less 

sophisticated than instrumentation used in other studies (Angelopoulou et al. 2020; McCarty et 

al. 2002). As such, we suggest the results of our analysis simulating real-world applications still 

have useful implications for continued testing of proximal soil sensing methods.  

The promise of enabling the collection of greater numbers of samples is often cited as a 

possible advantage of proximal soil sensing and a reason to employ such methods (Alex B. 

McBratney, Minasny, and Viscarra Rossel 2006b). Despite documented trade-offs in terms of 

accuracy and sensitivity to model calibration procedures and training data, the suggestion is that 

characterization of soil carbon distributions at larger spatial scales can be achieved at lower cost. 

This advantage is of particular interest to participants in nascent agricultural carbon markets, as 
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most current accounting protocols primarily require characterization of site-level carbon stocks 

for estimation of change in those stocks over time rather than accurate, precise measurement at 

the point scale (“Soil Enrichment Protocol” 2021; “Verra - VM0042 Methodology for Improved 

Agricultural Land Management, v1.0” 2021). Furthermore, such projects are likely to be 

conducted over multiple fields in aggregate and monitoring of soil carbon is potentially cost-

constrained.  

However, our results indicate that when measurement error and potential sensitivities of 

models to training data and field-scale variability are considered, the suggested advantage of 

enabling collection of more samples may be obviated by the need to collect more and better 

laboratory data in-field. In other words, to achieve sufficient accuracy to have statistical 

confidence in data collected through proximal soil sensing methods, users of such methods must 

collect so much training/testing data via lab analysis that no real reduction of effort is achieved. 

However, other studies focused on testing the application of more sophisticated, accurate 

proximal sensing tools (e.g. MIR spectrometry) at field scales or greater did achieve better 

results, demonstrating a possible sampling advantage of proximal soil sensing (Brodský et al. 

2013; Paul et al. 2019). 

As proximal soil sensing methods gain greater acceptance and use, generalized 

approaches for testing their accuracy will be necessary to supporting robust use in real-world 

scenarios. Most importantly, full accounting of measurement error and its impacts on inferences 

made with such tools is necessary to ensure that users do not draw spurious conclusions. 

Similarly, research exploring the scales, agricultural systems, and monitoring scenarios for which 

these tools are most well-suited is lacking and represents an important new direction for future 

research.  
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We suggest that for low-cost proximal sensing methods, such as those we tested here, to 

achieve their suggested value in reducing sampling costs and supporting rapid data collection at 

scale, continued development of instruments with the intent of improving accuracy and efforts to 

develop libraries of soil spectroscopy data for cross-site model development are key. Without 

these improvements, more extensive laboratory analysis of samples on-site is necessary to 

achieve sufficient accuracy for soil carbon estimates that support statistically robust monitoring.  

Several studies indicate that MIR spectroscopy is likely a superior method for estimation 

of soil carbon content as reflectance/absorbance data from such instruments can be more directly 

tied to organic compounds that comprise soil carbon (Soriano Disla et al. 2014; Reeves 2010; 

Dangal et al. 2019b). Although such instruments appear to be less widely adopted given their 

greater expense and limited portability relative to VNIR instruments, they may be a more viable 

tool for reducing the cost of soil sampling efforts, and compared to traditional laboratory 

analytical methods they are likely to still have lower per-sample costs.  

Research has demonstrated that with sufficient regional data, models capable of 

accurately predicting soil carbon content can be applied at more local scales that reduce the need 

for additional laboratory analysis and support use of proximal sensing methods to map carbon 

(Cobo et al. 2010; Paul et al. 2019). Furthermore, other research has demonstrated and our 

research confirms that stratified sampling algorithms can help identify an optimal set of samples 

for model training at the local scale (Minasny and McBratney 2006; Ramirez-Lopez et al. 

2014b). These studies and several others suggest that development of extensive soil spectral 

libraries could make proximal sensing tools most useful in real-world applications, and several 

efforts are underway to build such libraries for public use. However, challenges still remain for 

making such libraries practical for the implementation of proximal sensing methods related to 
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understanding how information from such large libraries can be useful at the field scale 

(Padarian, Minasny, and McBratney 2019) and if/how models developed at one site or region can 

be successfully transferred to new sites and regions (Minasny et al. 2009; Dangal and Sanderman 

2020). 

While proximal soil sensing tools may still prove useful for reducing the burden of soil 

carbon monitoring efforts at scale, our study exemplifies the need for proper accounting of 

measurement error, sensitivity to training data, and constraining tests to real-world conditions to 

earnestly assess their usefulness. Furthermore, our results highlight that efforts to produce 

extremely low-cost, portable sensors, such as the one employed here, may make trade-offs in 

terms of accuracy too substantial for them to be useful in carbon monitoring scenarios. Instead, 

more expensive, but more accurate instrumentation may still be necessary. Low-cost tools may 

still provide utility in other applications (e.g. rapid mapping, pre-sampling, change detection over 

long time periods), particularly when previous training data are available, but we were unable to 

test such applications. Coordination of effort to create procedures for testing proximal sensing 

tools and continued development of standardized training datasets and calibration transfer 

procedures will be essential to helping realize the suggested usefulness of proximal soil sensing 

methods.  
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Figures and tables: 

 

 
Figure 1. Comparison of actual soil carbon content (%) and estimated soil carbon content (%) from models trained 
using OurSci Reflectometer (absorbance only) and models trained using absorbance data and data retrieved from 
digital soil maps and geostatistical datasets (combination). Models were trained for each site using 80% of the 
dataset, and the remaining 20% was used to test model predictions. This process was repeated 100 times for each 
site using either random selection of training data or a cLHS algorithm implemented on model independent variables 
to select training data. Panel columns correspond to different study sites, and rows correspond to different 
combinations of modeling approach and training data selection. Dots represent the mean estimated soil carbon 
content across 100 modeling iterations. Bars represent the mean ± 2 standard deviations of the estimated soil carbon 
content across 100 modeling iterations.  
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Table 1. Location information, total samples collected, and descriptive soil information for all study sites.   
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Table 2. Remote sensing, digital soil map, and geostatistical data used in development of ‘combination’ models.  
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Table 3. Accuracy statistics for soil carbon estimation models trained with just absorbance data from the OurSci 
Reflectometer (absorbance only) and models trained using absorbance data and data retrieved from digital soil maps 
and geostatistical datasets (combination). Models were trained for each site using 80% of the dataset, and the 
remaining 20% was used to test model predictions. Training data were selected using either a random selection 
algorithm or using cLHS on independent variables. This process was repeated 100 times for each site. Figures 
provided in each table cell represent the mean of the corresponding metric across all 100 iterations, and figures in 
the parentheses of each cell represent the standard deviation of the corresponding metric across all 100 iterations.  
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Table 4. Probability at two sites that combination models will produce a sample of with 95% confidence intervals 
within a 5% or 10% margin of error of a withheld test dataset with increasing proportions of the total dataset 
dedicated to model training, and/or pass specified statistical tests. Probabilities are based on the frequency with 
which individual bootstrapped samples (n = 10000) produced an estimate within the specified margin of error or 
passed the specified statistical test (i.e. p > 0.05, indicating no statistical difference between samples). Bootstrapped 
samples were generated using a MCMC process to account for prediction uncertainty and sensitivity of the method 
to training data. 
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Concluding Remarks: 

Claims that increasing soil carbon is a “win-win” for agriculture have been poorly supported to 

date by evidence and anecdotal claims. Here I synthesize quantitative evidence to support claims 

that increasing soil carbon stocks does indeed lead to improvements in the resilience of 

agricultural systems by improving soil water infiltration dynamics and protecting yields under 

drought conditions. I believe this evidence suggests that action to increase soil carbon in 

agricultural systems can indeed provide benefit to farmers and potentially greater food security 

under projected future climate conditions.  

 As efforts to support such action develop, such as through emerging markets for soil 

carbon offsets, accessible tools for monitoring of outcomes will support and enhance such 

efforts. My research here also tested one such tool combining soil spectroscopy with digital soil 

mapping approaches. Results indicates that despite some promise and the potential to reduce 

costs, further development seems necessary. Most importantly, while conversations around such 

emerging tools often suggest that new tools do not need to achieve accuracy on par with standard 

laboratory techniques, my research reveals that reduced accuracy can strongly impact the 

accuracy of more spatially explicit estimates of soil carbon and that requirements for training 

datasets for such methods are substantial enough that the necessary site-level laboratory analysis 

may undermine their potential to reduce effort and costs.  

 Based on my research I suggest the following direction for future research and action:  

1. Continue to develop policy and market mechanisms to support famers in 

transitioning to improved agricultural practices that sequester soil carbon. Climate 

mitigation and adaptation outcomes appear to be achievable by increasing soil 

carbon, so corresponding social/policy tools could accelerate success. 
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2. Continue research that better quantifies adaptation outcomes at the field scale. At 

the field scale, variation in soil carbon content is lower and potential increases to 

soil carbon are not of the same magnitude as differences in soil carbon content 

seen at regional scales. As such, adaptation outcomes and improvements to 

resilience may be more muted than the results described in Chapter 2, so more 

local research is key to extending our understanding.  

3. Continue to improve soil spectroscopy and digital soil mapping tools with an 

explicit focus on application. To date, much research in this area has been done in 

a manner that does not provide direct insight into proposed field applications. 

Accuracy/bias of new measurement tools and their sensitivity to training data 

appear to have strong impacts on their efficacy as compared to more traditional 

laboratory analysis methods with much lower measurement error. As such tools 

develop, better testing in real-world monitoring scenarios, such as those that are 

likely to emerge in nascent soil carbon market projects, will be necessary.  
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