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Abstract

Learning Non-parametric and High-dimensional Distributions

via Information-theoretic Methods

Soham Jana

2022

Learning distributions that govern the generation of data and estimating related func-

tionals are at the foundations of many classical statistical problems. In this dissertation we

intend to investigate such topics when either the hypothesized model is non-parametric or the

number of free parameters in the model grows along with the sample size. Using techniques

based on information-theoretic divergences and related mutual-information based methods,

we study the following class of problems with the goal of obtaining minimax rate-optimal

methods for learning the target distributions.

(i) Estimation in compound decision and empirical Bayes settings: To estimate the data-

generating distribution, one often takes the following two-step approach. In the �rst

step the statistician estimates the distribution of the parameters, either the empirical

distribution or the postulated prior, and then in the second step plugs in the estimate

to approximate the target of interest. In the literature, the estimation of empirical

distribution is known as the compound decision problem and the estimation of prior is

known as the problem of empirical Bayes. In our work we use the method of minimum-

distance estimation for approximating these distributions. Considering certain discrete

data setups, we show that the minimum-distance based method provides theoretically

and practically sound choices for estimation. The computational and algorithmic

aspects of the estimators are also analyzed.

(ii) Prediction with Markov chains: Given observations from a Markov chain with un-

known statistics, we study the problem of predicting the next entry in the trajectory.

Existing analysis for such a setup involving dependent data usually centers around

concentration inequalities that uses various extraneous conditions on the mixing prop-

erties. This makes it di�cult to achieve results independent of such restrictions. We



introduce information-theoretic techniques to bypass such issues and obtain funda-

mental limits for the related minimax problems. We also analyze conditions on the

mixing properties that produce a parametric rate of prediction errors.
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Chapter 1

Introduction

Data analyses in many statistical procedures involve estimating the underlying probability

law and its functionals. Given a family of model distributions and a loss function, the statis-

tician's job is to search for a member of that family that produces the least approximation

error. For our work, we consider the loss functions over the space of distributions, com-

monly known as the divergences. These measures of distances need not be metrics; more

speci�cally, they need not be symmetric in the arguments or satisfy the triangle inequality.

Notable instances of statistical divergences include:

� Squared Hellinger distance (H2), known for its robustness properties, see Basu et al.

(2011) for a detailed exposition.

� Total variation (TV) distance, related to the LeCam's two points method (Yu, 1997),

for analyzing mixing of Markov chains Levin and Peres (2017b),

� Chi-square (χ2) divergence, used for the goodness of �t test,

� Kulback Leibler (KL) divergence, related to mutual information (Rényi, 1961). 1

Statistical analysis based on such divergences dates back to as early as the 1900s. For

example, in his revolutionary paper (Pearson, 1900) Karl Pearson discussed the uses of the

Chi-square divergence to describe the goodness of �t of a given probability distribution to

1Squared di�erence between the empirical and estimated distribution functions is often considered a
useful distance measure in the statistical literature. For example it is used in the Cramér-von Mises criterion
(Cramér, 1928; Doob, 1937). However, it is not an f -divergence and it does not play a role in this thesis.
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the data. Systemic studies of the problem of distribution estimation based on similar classes

of divergences were �rst carried out in a series of papers by the renowned Jacob Wolfowitz

(Wolfowitz, 1953, 1954, 1957).

The divergences we mainly use in our work are based on the f -divergence family from

information theory. Introduced formally in (Rényi, 1961) and later extended by Csiszár

(1964, 1972), these divergences play important roles in quantifying entropy and information.

Let P and Q be two probability distributions over a space X such that P is absolutely

continuous with respect to Q. Then, for a convex function f such that f(1) = 0, the f -

divergence between P,Q is de�ned as

Df (P∥Q) =

∫
X
f

(
dP

dQ

)
dQ.

For the divergences KL, H2, TVand χ2 the function f(t) is given by t log t, (
√
t−1)2, 12 |t−1|

and (t−1)2 respectively. In the following thesis, we try to learn about unknown data gener-

ating distributions based on such information-theoretic divergences and associated mutual

information based methods. The models we use for this purpose are either non-parametric

or high-dimensional in nature. Brief descriptions of the problems are provided below.

1.1 Estimating distributions of parameters

To estimate population characteristics, it is a standard procedure to use some cost-e�ective

sampling scheme even when the population size is �nite. In many practical scenarios, the

sampling process is likely to survey only a vanishing portion of the entire population. In

such situations, using information-theoretic arguments, one can show that the consistent

estimation of the whole population distribution is impossible even when the population size

increases to in�nity. Nonetheless, in practice, the quantity of interest often is some function

of the parameters for which consistency might be ensured even when the sample size is far

less than the dimension of the parameters. It is interesting to ask what type of inferences

can be drawn for parameter estimation problems in such scenarios.

As an extension of the problem with large number of parameters, one can consider models
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that assume non-parametric prior distributions on the parameters. The resulting structure of

the data generating distribution is then given by a mixture of distributions. Some important

examples of models in this context are mixtures of Gaussian distributions in the location and

scale parameters or mixtures of Poisson distributions in the mean parameter. A celebrated

strategy of estimating the prior in this setup uses the Non-Parametric Maximum Likelihood

Estimator (NPMLE) (Lindsay, 1983a). The above estimator produces fascinating results

in many applications. However, the theoretical analysis of the estimator is challenging as

it rarely has closed-form expression. Consequently, the question arises: How would one

compute the NPMLE? What alternatives are there to the NPMLE with similar practical

bene�ts? Also, given such an estimator, what are corresponding statistical guarantees?

In our work, we intend to obtain a general solution for these problems in the discrete

setup. Suppose that we have a parametric family of distributions {Pθ : θ ∈ Θ} and we

observe independent samples Xj ∼ Pθj , j = 1 . . . , n. In the frequentist setting, we assume

that θj 's are discrete points in Θ often want to learn about {θj}nj=1. This is known as

the compound statistical decision problem Robbins (1951). In our work we try to estimate

the empirical distribution of {θj}nj=1, also known as the pro�le of the population, given by

π = 1
n

∑n
j=1 δθj . Important population characteristics such as the number of distinct types

and the entropy of the data-generating distribution are linear functionals of the pro�le,

which signi�es the usefulness of the problem. In the Bayesian settings, we assume that the

parameters {θj}nj=1 are independently distributed according to some prior π on Θ and want

to estimate the prior. The problem of estimating the prior is known as the empirical Bayes

problem. To estimate complex functionals of π, such as higher-order moments, medians, etc.,

an easy approach is to estimate π̂ of π and then compute the corresponding functional of π̂.

Our focus for this dissertation is the method of minimum-distance estimation for estimating

π̂, introduced by Kiefer and Wolfowitz (1956). Let that ν(π) denote a population parameter

for which a sample estimate ν̂ is available. Suppose that d denotes a statistical divergence on

the space that includes both ν(π) and ν̂. Then we de�ne the minimum d-distance estimator

3



of π over the constraint set Πk as

π̂ = argmin
π′∈Πk

d(ν̂, ν(π)).

For our work, we will choose ν̂ to be the sample empirical distribution and ν(π) to be a

suitable population-representative known up to π. We use a class of such minimum-distance

estimators to develop a unifying technique to solve the related learning problems.

In Chapter 2 we demonstrate the use of minimum distance estimators for estimating the

pro�le. Consider a population consisting of k individuals, each belonging to one of k types

(some types can be empty). Without any structural restrictions, it is impossible to learn

the composition of the full population, having observed only a small (random) subsample

of size m = o(k). Nevertheless, we show that in the sublinear regime of m = ω(k/ log k), it

is possible to consistently estimate the pro�le of the population in total variation distance.

We also prove that in the linear regime of m = ck for any constant c the optimal rate is

Θ(1/ log k). Our estimator is based on Wolfowitz's minimum distance method, which entails

solving a linear program (LP) of size k. We show that there is a single in�nite-dimensional

LP whose value simultaneously characterizes the risk of the minimum distance estimator

and certi�es its minimax optimality. The sharp convergence rate is obtained by evaluating

this LP using complex-analytic techniques. This chapter is the reproduction of the work

Jana et al. (2020).

The Chapter 3 of the thesis ventures into estimation of the prior π in the empirical

Bayes settings. In our work, we study the problem for the Poisson mixtures, i.e., we assume

unknown prior on the mean parameter of Poisson. We propose a family of estimators based

on minimum-distance methodology, including and generalizing NPMLE, that is minimax

optimal for estimating data generating distributions in expected squared Hellinger distance

for priors that are assumed to have either bounded support or subexponential tails. We

also consider the related problem of estimating the mean parameter of the Poisson random

variable based on training samples. In Bayes settings, the metric of choice for measuring the

performance of any estimator in squared error risk is its excess error over the Bayes estimator

(which is unknown without information about prior). The Robbins method is the most
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iconic and classical procedure in the empirical Bayes literature. When the data is generated

according to the Poisson distribution, this method has been recently proven to produce a

minimax rate optimal worst-case excess squared error loss over the Bayes risk (regret) in

di�erent prior classes (Brown et al., 2013; Polyanskiy and Wu, 2021). However, in practice, it

can be precarious, and is well-recognized to be less smooth and destabilized by small sample

counts in all �nite-sample scenarios. In this work, we propose a spectrum of minimum

distance empirical Bayes estimators based on previous density estimates that achieve the

optimal regret, based on a training sample of size n, for bounded support
(
Θ( (logn)2

n(log logn)2
)
)

and subexponential tails
(
Θ( (logn)

3

n )
)
, and signi�cantly outperform Robbins in practice.

Our estimators also provide much more interpretable results due to their Bayesian form.

1.2 Predicting trajectories from Markov sources

The independence assumption on the sample observations is incompatible with and fails to

capture the inherent dependency structure in many real-life situations. Besides estimat-

ing the model parameters in such a setting, there is signi�cant importance in intelligently

predicting future observations. With recent advancements in machine learning and AI re-

search, such sequential decision-making has garnered widespread interest. Examples of pos-

sible applications include predicting future household expenditure based on the trajectory of

daily/monthly expenses, advising patients based on evolving medical conditions, improving

auto-complete features of search engines. Despite the numerous advances in the application

sector, the theoretical aspects of such dependent data modeling are comparatively much less

developed. For most structures, the problem of estimation/prediction is challenging as even

the basic techniques such as the Central Limit Theorem, Law of Large Numbers are not

directly applicable. Additionally, the sample size might be limited to allow such asymptotic

methods. For example, consider a trajectory coming from an unknown Markov source of

�nite memory. The usual analysis centers around concentration inequalities (Lezaud, 1998;

Paulin, 2015) and existing results (Han et al., 2018a; Hao et al., 2018; Hsu et al., 2019)

require various extraneous assumptions such as fast mixing of the underlying Markov chain

and stationary distribution that is bounded away from zero. One can ask: Is it impossible
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to have meaningful results in an assumption-free framework? We have tried to address such

questions for the prediction problem based on Markov chains, assuming only stationarity

and otherwise allowing the chain to mix arbitrarily slowly. The principal technique we use

in the analysis is based on properties of mutual information and their connection to the

prediction errors.

Denote {xℓ, xℓ+1, . . . , xt} by xtℓ and xt1 by xt. Suppose that we observe a sample trajec-

tory Xn from a stationary Markov chain with transition matrix of order m (i.e., the law of

Xk given Xk−1 is same as the conditional law of Xk given Xk
k−m+1) and stationary distri-

bution π. We consider the problem of predicting the next entry on the trajectory Xn+1. In

the context of mth-order Markov chains this is equivalent to predicting PXn
n−m+1

(Xn+1), the

distribution of Xn+1 given the lastm observations. Denote by D(P∥Q) the Kullback-Leibler

(KL) divergence between discrete distributions P,Q. In our work we measure the error of

prediction in terms of the expected KL divergence and study the minimax objective

Riskk,n,m ≜ inf
P̂

sup
P

E[D(PXn
n−m+1

∥P̂Xn
n−m+1

)]

where the suppremum is taken over all stationary mth-order Markov chains P and the

in�mum is taken over all valid probability distribution estimates P̂ based on the sample

Xn. The problem has been discussed in Falahatgar et al. (2016) for the case k = 2,m = 1,

where they show Risk2,n,1 = Θ( log lognn ). Their analysis for the upper bound uses expansion

of the related model probabilities based on binomial distributions and using Cherno�-type

inequalities for the Binomial distribution. Such an explicit calculation is signi�cantly more

challenging for larger values of k and m. An attempt to resolve the case of m = 1 with

general k ≥ 2 is made by Hao et al. (2018) using concentration inequalities devised for

standard Markov chains. Even though this method is much more generalizable than the

previous approaches, the bounds become trivial when the spectral gaps of the underlying

transition matrix or the probabilities in the stationary distribution is close to zero. As a

result the exact characterization of the case of Riskk,n,1 was still unsolved.

In Chapter 4 we analyze Riskk,n,m for general values of k, n,m. We �rst consider the

case of m = 1. It is shown that given trajectory of length n with k-states (≲
√
n) we have

6



Riskk,n,1 = Θ(k
2

n log n
k2
). Our proof of the upper bound relies on relating the prediction risk

with problem of redundancy (Davisson, 1983; Yang and Barron, 1999). The proof of lower

bound follows from representing the Bayes lower bound to the prediction error via mutual

information and then maximizing it over di�erent prior distributions. We also studied

how the prediction error behaves when we condition on di�erent subsets of parameters

that determine dependency. Consider the absolute spectral gap γ∗ (de�ned for reversible

irreducible chains), which takes values in [0,1] and note that 1
γ∗

serves as a measure of the

dependency among samples. We study the restricted minimax risk

Riskk,n(γ0) ≜ inf
M̂

sup
M∈Mk(γ0)

E
[
D(M(·|Xn)∥M̂(·|Xn))

]

where Mk(γ0) is the set of transition matrices corresponding to irreducible and reversible

chains whose absolute spectral gap exceeds γ0. We have shown that for k = Θ(1) states, the

minimax risk is Θk(
1
n) if and only if γ∗ = Θ(1). We also show that when k = 2, for each γ0 ∈

(0, 1) the minimax rate over chains with γ∗ ≥ γ0 is given byΘ( 1n{max{1, log log(min{n, 1
γ0
})}}),

implying that for 2 state chains we completely determine the minimax rate as a function of

sample size and γ∗ upon observing a single trajectory. This and the previous parts of the

chapter are from the reproduction of the work Han et al. (2021).

Finally, we studied the case m ≥ 2. We show that when the sample size n is moder-

ately large (more speci�cally when 2 ≤ k ≤ m+1
√
n/Cm for appropriate constant Cm only

depending on m) we achieve the minimax rate km+1

n log n
km+1 . In this regime, the structural

properties of Markov transition kernels are comparatively less understood, making it di�-

cult to extend the previous proof techniques based on spectral gap from the case of m = 1.

Instead, we still apply information-theoretic techniques by relating the risk to redundancy,

which in turn can be bounded by mutual information. Notably, the lower bound relies

on a careful construction of a high-order Markov chain whose pseudo spectral gap can be

bounded.
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Chapter 2

Extrapolating the pro�le of a �nite

population

(This is a joint work with Prof. Yury Polyanskiy and Prof. Yihong Wu)

2.1 Introduction

Consider a �nite population, say, an urn of at most k colored balls, with colors indexed by,

without loss of generality, [k] ≜ {1, . . . , k}. Let θj denote the the number of balls of color

j ∈ [k] present in the urn. We observe a subsample, obtained by revealing each ball inde-

pendently with probability p. This sampling scheme is referred to as the Bernoulli sampling

model (Bunge and Fitzpatrick, 1993), a speci�c form of sampling without replacements.

We will be interested in both the linear and the sublinear regime, in which the sampling

probability p is a small constant or vanishing as k grows, respectively.

It is not hard to show (see Appendix 2.6.1) that unless all but a vanishing fraction of

the urn is observed, it is impossible to consistently estimate the empirical distribution of the

colors, which aligns with the conventional wisdom that the sample size needs to exceed the

number of parameters. Fortunately, many interesting properties about the population (such

as entropy, number of distinct elements) are label-invariant and hence learnable through

the pro�le of the population (Orlitsky et al., 2005), de�ned as the empirical distribution of
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θ = (θ1, . . . , θk):

π =
1

k

k∑
j=1

δθj .

where δm denotes the Dirac measure (point mass) at m, Note that π is supported on

{0, . . . , k} with mean at most one and probability mass function given by πm = 1
k

∑k
j=1 1{θj=m}

for m = 0, . . . , k. The pro�le provides information about the diversity of a population. For

example, π = (1− 1
k )δ0 +

1
kδk and π = δ1 correspond to the two extremes of all balls having

the same color and di�erent colors, respectively. Furthermore, π0 encodes the total number

c of distinct colors in urn, since π0 = 1− c/k.

Based on the subsampled population, our goal is to reconstruct the pro�le π of the full

population. Since many symmetric properties can be expressed as its linear functionals,

estimating π under the total variation (TV) distance allows simultaneous estimation of all

such bounded properties. Our main result is that the pro�le can be estimated consistently

even in the sublinear regime.

Let Xj ∼ Binom(θj , p) be the number of observed balls of color j. The minimax TV risk

of estimating π is de�ned as

R(k) = inf supE[∥π − π̂∥TV].

where ∥π− π̂∥TV ≜ 1
2

∑
m≥0 |πm− π̂m|, the supremum is over all urns of at most k balls, and

the in�mum is over all estimators π̂ as a function of X = (X1, . . . , Xk). Our main result is

the following.

Theorem 1. There exist absolute constants c, C, d0, such that if log k ≥ d0
p̄ , then

min

{
p̄

p
,
√
log k

}
c

log k
≤ R(k) ≤ min

{
C

p log k
, 1

}
,

where p̄ = 1 − p. Furthermore, the upper bound in fact holds for all p ∈ (0, 1), achieved by

a minimum-distance estimator computable in polynomial time.

In the linear regime, Theorem 1 shows that the optimal TV rate is Θ( 1
log k ) for any
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constant sampling probability p. This should be contrasted with the estimation of π0,

known as the distinct elements problem, which has been extensive studied in the literature

(Bunge and Fitzpatrick, 1993; Charikar et al., 2000; Raskhodnikova et al., 2009; Valiant and

Valiant, 2011; Wu and Yang, 2018). The precise behavior of the minimax risk of estimating

π0 was determined in Wu and Yang (2018). In particular, if 1
log k ≲ p ≲ 1, the optimal rate

of π0 is k
−Θ(p), much faster than estimating π itself. Our result re�nes this observation and

reveals the following dichotomy: the polynomial rate k−Θ(p) holds not just for estimating

π0 but for all πm with m = o(log k); however, for m = Θ(log k), πm is much harder to

estimate and the rate is no faster than Ω( 1
(log k)2

). This explains the overall TV risk Ω( 1
log k )

for estimating the full distribution π.

In the sublinear regime, Theorem 1 shows that consistent estimation is possible if p =

ω( 1
log k ). Although our current lower bound does not conclude its optimality, it is indeed

the case based on existing impossibility results of the distinct element problem that shows

π0 cannot be estimated with vanishing error if p = O( 1
log k ) (Valiant, 2012; Wu and Yang,

2018).

For simplicity, we focus on the Bernoulli sampling model in this paper. The results can

be extended to models such as iid sampling or Poisson sampling by the usual simulation or

reduction argument (cf. (Wu and Yang, 2018, Appendix A)).

2.1.1 Related work

While the precise question we are considering here was not studied before, there is a

long history of related work. First we observe that the goal of estimating functionals of

θ = (θ1, . . . , θk) is a �compound statistical decision problem�, in the language of Robbins

(1951). Instead of studying minimax risks of estimating θ or its functionals, (Robbins,

1951) proposed an alternative goal (�subminimaxity�), which in our case can be rephrased

as follows: construct an estimator which has vanishing excess risk (regret) over that of the

oracle estimator k̂j(Xj , π) having access to empirical distribution π of θ. The general recipe

proposed in Robbins (1951) (and later promulgated by Robbins (1956) under the name of

�empirical Bayes�), may roughly be described as a two-step procedure: �rst, one produces

an estimate π̂ of π, and then, second, substitutes it into the oracle estimator obtaining
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k̂j(Xj , π̂). Thus, Robbins (Robbins, 1951, p. 146) asked (his Problem I) how well can the

�rst step be done? Our work addresses this question.

The main part of our theorem characterizes how well the �prior� π can be estimated.

We mention that while empirical Bayes method is sometimes understood only as a way to

derive estimates of a particular functional of the prior, as, for example, in the Good-Turing

estimator for the number of unseen species, the idea of estimating the prior itself has also

been proposed in Edelman (1988); Robbins (1956). Furthermore, the solution advocated

therein, Wolfowitz's minimum distance estimator (Wolfowitz, 1957), is the one we employ

in the proof of our result. In this regard, one of the main contributions of the paper is

showing that performance of the minimum distance estimators is characterized by means

of a certain function δTV(t), de�ned as the value of an in�nite-dimensional linear program,

which simultaneously can also be used to produce a matching lower bound. This duality

between the upper and the lower bound has previously been observed and operationalized

in the context of estimating a single linear functional in Juditsky and Nemirovski (2009);

Polyanskiy et al. (2017); Polyanskiy and Wu (2019). Here we extend this program to esti-

mating the full distribution, and evaluate the relevant δTV function using complex-analytic

techniques.

Arguably, the counterintuitive part of our result is the possibility of estimating the pro�le

π consistently in TV, despite the absence of structural assumptions on the urn con�guration

and despite p possibly vanishing. In fact, this is a manifestation of the fascinating e�ect

originally discovered by Orlitsky et al. (2005) and further developed in Han et al. (2018b);

Valiant and Valiant (2013), namely, although there exists no consistent estimator of the

empirical color distribution, its sorted version can be estimated consistently. Nevertheless,

the best upper bound that can be extracted (see Section 2.5.1 for details) from existing

results is O( 1√
log k

) in the linear regime and there is no applicable lower bound. Theorem 1

shows that this rate is suboptimal by a square root factor, potentially due to the fact that

these previous work did not exploit the �niteness of the population.

In terms of techniques, while the approach of Wu and Yang (2018) to the distinct elements

problem relies on polynomial interpolation and approximation, both the scheme (minimum

distance estimator) and the lower bound in the present paper involve linear programming
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(LP), which is more akin in spirit to the work of Polyanskiy and Wu (2019); Valiant and

Valiant (2011). The technical novelty here is that we use tools from complex analysis to

analyze the behavior of the LP.

Finally, we mention that a di�erent line of research tracing back to Lord (1969) studies

the �mirror image� of our problem: estimating the empirical distribution of parameters

p1, . . . , pk from samples Xj ∼ Binom(θ, pj). The recent work of Tian et al. (2017) uses the

method of moments to obtain the optimal rate for θ = o(log k). This is further improved

in Vinayak et al. (2019) by analyzing the nonparametric maximum likelihood. Alas, in this

model, even for large population it is not possible to achieve consistent estimation without

θ →∞.

The rest of the paper is organized as follows. Section 2.2 introduces the minimum

distance estimator and a general characterization of its risk by a linear program. Sections 2.3

and 2.4 are devoted to analyzing the behavior of this LP using complex-analytic techniques

and Laguerre polynomials, completing the proof of Theorem 1. Section 2.5 contains a

detailed discussion on related technical results and a list of open problems. Omitted proofs

are contained in the rest of the appendices.

2.2 Minimum distance estimator and statistical guarantees

As mentioned in the last section, estimation of the pro�le revolves around the idea of mini-

mum distance method, which �ts a statistical model that is closest to the sample distribution

with respect to some meaningful statistical distance. Examples of minimum distance estima-

tors can be traced back to as early as Pearson (1900), which led to the discovery of the famous

minimum chi-square method. In the 1950's, Wolfowitz studied minimum distance methods

for the �rst time as a class, for obtaining strongly (almost surely) consistent estimators (Wol-

fowitz, 1957). The pioneering work of Beran (1977) demonstrates how minimum-Hellinger

method can improve upon classical estimators such as the maximum likelihood in the pres-

ence of outliers. For a comprehensive account and more recent development we refer the

readers to the monograph Basu et al. (2011).

To describe the paradigm of the minimum distance estimators we �rst introduce the
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general setting of Robbins' Problem I mentioned in Section 2.1.1. Consider a parametric

family of distributions {Pθ : θ ∈ Θ} on some measurable space X , viewed also as a Markov

transition kernel P from Θ to X . Let d be a distance on the space of priors P(Θ). Select

θ1, . . . , θk from Θ such that 1
k

∑k
j=1 c(θj) ≤ 1, where c : Θ → R is some cost function

(could be zero), resulting in the empirical distribution π ≜ 1
k

∑k
j=1 δθj . Given observations

Xj
iid∼ Pθj , an estimate π̂(X1, . . . , Xk) is produced with the goal of minimizing E[d(π̂, π)].

The minimax risk is de�ned as

R(k) = inf
π̂

sup
θ1,...,θk

E[d(π̂, π)] .

Remark 1. Note that Robbins also de�ned a related Problem II (Robbins, 1951, p. 147)

in which θj
iid∼ G with EG[c(θ)] ≤ 1 and the goal is to estimate the prior G instead of the

(now random) empirical distribution π. The minimax risk R2(k) is similarly de�ned as the

supremum over all such G. We argue that in many cases the di�erence between R(k) and

R2(k) is insigni�cant.

Indeed, let τk = supG E[d(G, π)], which due to concentration we assume is o(R(k)).

The comparison R2(k) ≤ R(k) + τk is by conditioning on π. In the opposite direction,

if, for example, d(·, ·) ≤ 1, then R(k) ≤ R2(m) + m2

2k since by sampling m times from

(X1, . . . , Xk) with replacement we get m samples from Problem 2's setting with G = π

(except for a set of realizations of probability m2

2k on which we drew some Xj multiple

times). Applying Problem 2's estimator for m samples we get the inequality. In interesting

cases, R2(k) ≍ R2(k
α)≪ k−β for any α, β > 0, and thus we get R1(k) ≍ R2(k).

To solve this problem we proceed by choosing an auxiliary metric ρ on P(Θ), the set of

probability measures on Θ. Let ν̂ = 1
k

∑k
j=1 δXj be the empirical distribution of the sample.

Note that in expectation we have, for all θ1, . . . , θk,

E[ν̂] = πP.

where πP =
∫
Pθπ(dθ) = 1

k

∑k
j=1 Pθj . This motivates the following minimum-distance
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estimator (putting existence of minimum aside):

π̂ = argmin
π′

{
ρ(ν̂, π′P ) : Eπ′ [c(θ)] ≤ 1

}
.

To analyze this estimator, suppose, in addition to (2.2), we have the high-probability guar-

antee:

P[ρ(πP, ν̂) > tk] ≤ ϵk

for some sequences tk, ϵk → 0. By the triangle inequality we also have P[ρ(π̂P, πP ) > 2tk] ≤

ϵk. Finally, de�ning the following deconvolution function:

δ(t) ≜ sup{d(π, π′) : ρ(πP, πP ′) ≤ t,Eπ[c(θ)] ≤ 1,Eπ′ [c(θ)] ≤ 1} ,

where the supremization is over all distributions π, π′ ∈ P(Θ). Then we immediately obtain

the high-probability risk bound P[d(π̂, π) > δ(2tk)] ≤ ϵk. Using other properties of d and c,

we can typically convert this into an upper bound for the average risk like E[d(π̂, π)] ≲ δ(2tk).

Selecting di�erent auxiliary metric ρ's results in di�erent estimators. For example, the choice

of ρ equal to the Kullback-Leibler divergence results in a the non-parametric maximum-

likelihood estimator. As stated this is all well known. Our key contribution is the following:

While ρ is left arbitrary so far, the choice of ρ being total variation (or Hellinger) distance

is special since it comes with an essentially matching lower bound.

Meta-principle. Suppose the loss function d is of seminorm-type, namely d(π, π′) =

supT∈T ⟨T, π − π′⟩ for some dual pairing ⟨·, ·⟩ and a family of linear functionals

T on P(Θ). Take ρ(·, ·) = ∥ · − · ∥TV. Then under regularity conditions on

(Θ,X , c, P, T ) we have

δ(1/k) ≲ R(k) ≲ δ(tk) .

Thus, when δ(1/k) ≍ δ(tk) we get the sharp rate.

Working out general conditions for the applicability of this program is left for future

work. Here we focus on the model discussed in the introduction. Recall π = (π0, . . . , πk) in

(2.1) denotes the pro�le of the urn. In the Bernoulli sampling model, the observed numbers
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of balls with color j are independently distributed as

Xj
ind.∼ Binom(θj , p), j ∈ [k].

Let ν̂ = 1
k

∑k
j=1 δXj denote the empirical distribution of the Xj 's. Then for each m ≥ 0, we

have ν̂m = Ym
k , where

Ym =
∑
j∈[k]

1{Xj = m}

denotes the number of colors that are observed exactly m times.1 De�ne the Markov kernel

P : Z+ → Z+ by P (i, ·) = Binom(i, p), whose transition matrix P = (Pim) is given by

Pim =

(
i

m

)
pm(1− p)i−m, i,m ≥ 0.

Then as in (2.2), we have the unbiased relation E[ν̂] = πP . Particularizing (2.2) with

ρ = ∥ · ∥TV and c(θ) = θ, we obtain the following the minimum distance estimator:

π̂ = argmin
π′∈Πk

∥π′P − ν̂∥TV

where

Πk ≜

{
π′ ∈ P{0, 1, . . . , k} :

k∑
m=0

mπ′
m ≤ 1

}
,

with P{0, 1, . . . , k} being the set of all probability mass functions on {0, 1, . . . , k}. As

mentioned in Section 4.1, the true pro�le π belongs to Πk. The estimator (2.2) is an LP

with k + 1 variables and can be solved in time that is polynomial in k. We will show that

it attains the minimax upper bound in Theorem 1. As the �rst step, we relate the minimax

risk R(k) to the following LP of modulus of continuity type: for each 0 < t < 1,

δTV(t) ≜ sup{∥π − π′∥TV : ∥πP − π′P∥TV ≤ t; π, π′ ∈ Π},

where Π ≜ Π∞ as in (2.2), that is, the set of all distributions on Z+ with mean at most one.

1Technically, ν0 is not directly observed from the sample. Nevertheless, one can compute it by ν̂0 ≜
1−

∑k
m=1 ν̂m.

15



The following result shows that the value of this LP characterizes the minimax risk.

Theorem 2. There exist absolute constants C1, C2, d0 such that for all k ≥ d0

1

72
δTV

(
1

6k

)
− C2√

k
≤ R(k) ≤ 2δTV

(√
C1 log k

k

)
, (2.1)

where the upper bound is attained by the minimum distance estimator given in (2.2).

The proof of Theorem 2 is given in Appendix 2.6.2. The main idea is as follows. By

virtue of the minimum distance estimator π̂ and the triangle inequality, we have:

∥π̂P − πP∥TV ≤ ∥π̂P − ν̂∥TV + ∥πP − ν̂∥TV ≤ 2∥πP − ν̂∥TV,

which implies that (π, π̂) is a feasible pair for δTV(t) with t = 2∥πP − ν̂∥TV, and hence the

following deterministic bound:

∥π̂ − π∥TV ≤ δTV(2∥πP − ν̂∥TV)

Recall from (2.2) that ν̂ is an unbiased estimator of πP . Furthermore, by concentration

inequality one can show that with high probability that ∥ν̂ − πP∥TV = O(
√

log k
k ), from

which the upper bound quickly follows. The lower bound follows from that of estimating

linear functionals developed in Polyanskiy and Wu (2019). Roughly speaking, we use the

optimal solution (π, π′) for δTV(Θ(1/k)) to randomly generate two urns of size Θ(k) whose

sampled version are statistically indistinguishable. With appropriate truncation argument,

this can be turned into a valid minimax lower bound via Le Cam's method (Tsybakov, 2004).

Theorem 2 allows us to reduce the statistical problem (2.1) to studying the behavior of

δTV(t) for small t. This is characterized by the following lemma:

Lemma 3. (1) There exists absolute constant C3 > 0 such that for all p, t we have

δTV(t) ≤ min

{
C3

p log(1/t)
, 1

}
. (2.2)
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(2) There exist absolute constants C4, t0 > 0 such that for any p ∈ (0, 1), t ≤ t0,

δTV(t) ≥ min

{
p̄

p
,
√

log(1/t)

}
C4

log(1/t)
. (2.3)

Combining Theorem 2 and Lemma 3 yields the main result in Theorem 1. The next two

sections are devoted to the proof of Lemma 3.

Remark 2 (Reverse data processing). Note that by the data processing inequality (DPI)

of TV distance, we have ∥πP − π′P∥TV ≤ ∥π − π∥TV and hence δTV(t) ≥ t. Therefore

Lemma 3 can be understood as a reverse DPI for the binomial kernel P in (2.2). For

example, if p = Θ(1), then (2.2) implies that (which is the best possible in view of (2.3)):

∥πP − π′P∥TV ≥ exp

{
−Θ

(
1

∥π − π∥2TV

)}
.

2.3 Upper bound on δTV(t) by H∞-relaxation

To bound δTV(t) from above, we �rst relate it to the following LP

δ∗(t) ≜ sup
∆

{ ∞∑
m=0

|∆m| : ∥∆P∥1 ≤ t,
∞∑

m=0

m|∆m| ≤ 1

}
. (2.4)

The next lemma shows how the two LPs (2.2) and (2.4) are related. The proof is

straightforward and deferred till Appendix 2.6.3.

Lemma 4. For all t ∈ [0, 1] we have 1
2(δ∗(t)− t) ≤ δTV(t) ≤ δ∗(t).

Remark 3. Note that our only goal is to substitute estimates on δTV into (2.1). Therefore,

due to the presence of the (unavoidable) second term in the LHS of (2.1), the slight di�erence

between δ∗(t)− t and δ∗(t) in the lower bound in Lemma 4 is completely irrelevant and we

can essentially think of δTV and δ∗ as universally within a factor of two of each other.

Proof of upper bound in Lemma 3. We start with recalling a few facts from the complex

analysis. Denote the sup-norm of a holomorphic function f over an open set V ⊂ C by

∥ · ∥H∞(V ). Let D = D1 be the open unit disk in C and denote the horodisks for 0 < p ≤ 1
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as

Dp ≜ p̄+ pD = {z ∈ C : |z − p̄| ≤ p} .

In addition, we also de�ne another norm for functions analytic in the neighborhood of the

origin:

∥f∥A ≜
∞∑
j=0

|aj |, f(z) ≜
∑
j≥0

ajz
j . (2.5)

Since f(reiω) ≤
∑

n≥0 r
n|an| ≤ ∥f∥A, we have

∥f∥H∞(D) ≤ ∥f∥A .

In (Polyanskiy et al., 2017, (39)) by an application of Hadamard's three-lines theorem,

it was shown that for any q ∈ (0, 1) and any holomorphic function f

∥f∥H∞(D1/2) ≤ ∥f∥
1−2q

q̄

H∞(D)∥f∥
q
q̄

H∞(Dq)
. (2.6)

Indeed, reparametrizing f(z) = g(1+z
1−z ), we have

∥g∥H∞(ℜ=r) = ∥f∥H∞(D1/(1+r)). (2.7)

for r ≥ 0. Then the Hadamard three-lines theorem applied to g shows that r 7→ log ∥f∥H∞(D1/(1+r))

is convex, proving (2.6). A straightforward generalization (with a di�erent choice of the mid-

dle line in the Hadamard theorem) shows that more generally for any 1 > q1 > q > 0 we

have

∥f∥H∞(Dq1 )
≤ ∥f∥

1− qq̄1
q̄q1

H∞(D)∥f∥
qq̄1
q̄q1

H∞(Dq)
. (2.8)

Next, for any f holomorphic on λD for λ > 0 we have the following estimate

1

ℓ!
|f (ℓ)(0)| ≤ λ−ℓ∥f∥H∞(λD) . (2.9)

which follows by a Cauchy integral formula: f (ℓ)(0)
ℓ! = 1

2πi

∮
|z|=λ

f(z)
zℓ+1 dz.

With these preparations we move to the proof of (2.2). Consider any sequence ∆ feasible
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for δ∗(t). For each absolutely summable sequence ∆, we consider its z-transform: f∆(z) ≜∑
m≥0∆mzm, which is a holomorphic function on the open unit disk D. Furthermore, using

the de�nition of P in (2.2) and the binomial identity, it is straightforward to verify that

f∆P = Pf∆, where the Markov kernel P acts on f as a composition operator (Pf)(z) ≜

f(pz + p̄), where p̄ ≜ 1 − p. Given this observation we see that the de�nition of δ∗(t) can

also be restated as optimization over all holomorphic functions on the unit disk, cf. (2.5):

δ∗(t) = sup
f

{
∥f∥A : ∥Pf∥A ≤ t, ∥f ′∥A ≤ 1

}
. (2.10)

For any feasible f in (2.10) we have that ∥f ′∥H∞(D) ≤ 1 and ∥f∥H∞(Dp) ≤ t. Thus,

integrating f ′ from some point in Dp we obtain that also ∥f∥H∞(D) ≤ 1+ t ≤ 2 . Therefore,

applying (2.8) to f we get ∥f∥H∞(D3/4) ≤ 2t
min( p

3p̄
,1)
. Next, since 1

2D ⊂ D3/4 we have

from (2.9)

|∆ℓ| =
1

ℓ!
|f (ℓ)(0)| ≤ 2ℓt

min( p
3p̄

,1) ≤ 2ℓtp/3 . (2.11)

Finally, since for any ∆ feasible for δ∗(t) we have
∑

mm|∆m| ≤ 1, Markov inequality

implies
∑

m≥J |∆m| ≤ 1
J for any integer J ≥ 1. Together with (2.11) we conclude that for

any feasible ∆-sequence

∑
m

|∆m| ≤ J2J t
p
3 +

1

J
≤ 1

J

(
1 + 6J tp/3

)
, (2.12)

where in the last step we used J2 ≤ 3J . Hence, whenever J ≤
⌊
p log 1

t
3 log 6

⌋
, the right-hand

side of (2.12) can be upper-bounded by 2
J . This, in view of Lemma 4 completes the proof

of (2.2) since by de�nition δTV ≤ 1.

Remark 4. Note that functions that saturate (2.6) are f(z) = e−m 1+z
1−z where m ∼ log 1

t .

Computing Taylor coe�cients [zℓ]f(z) of f(z) for ℓ = Θ(m) can be done by applying the

saddle-point method to the integral

[zℓ]f(z) =
1

2πi

∮
e−m 1+z

1−z
−(ℓ+1) log zdz .
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It turns out that these coe�cients behave in the following way, when ℓ/m = Θ(1):

[zℓ]f(z) =


e−Θ(m), ℓ/m < 1/2

Θ
(

1√
m

)
, ℓ/m > 1/2

This dichotomy corresponds to critical points of the function 1+z
1−z −

ℓ
m log z leaving the unit

circle when ℓ/m < 1/2. This shows that the estimate in (2.12) is qualitatively tight. This

e�ect of sudden jump in the magnitude of coe�cients will be the basis of the lower bound

in the next section.

2.4 Lower bound on δTV(t)

In view of Lemma 4 it su�ces to consider δ∗(t) in (2.4). Given the equivalent de�ni-

tion (2.10), as a warm-up, let us naively replace all ∥ · ∥A norms with ∥ · ∥H∞(D). We then

get the following optimization problem:

δH∞(t) ≜ sup{∥f∥H∞(D) : ∥f ′∥H∞(D) ≤ 1, ∥f∥H∞(p̄+pD) ≤ t}

Note that even though the objective function of (2.4) is smaller than that of δ∗(t), the

feasible set is also a relaxation. Thus δH∞(t) does not constitute a valid lower bound to

δ∗(t); nevertheless its solution, given in the following lemma, provides important insight on

constructing a near-optimal solution for δ∗(t).

Lemma 5. δH∞(t) = Θp

(
1

log(1/t)

)
.

Proof. For the upper bound, as before we reparameterize f(z) = g (w) with w = 1+z
1−z . Then

(2.7) with r = 1/p− 1 implies that ∥g∥H∞(ℜ>p̄/p) = ∥f∥H∞(p̄+pD) ≤ t. By Cauchy's integral

formula, we conclude that for some constant Cp (here and below possibly di�erent on each

line) we have ∥g′∥H∞(ℜ>2p̄/p) ≤ Cpt.

Note that g′(w) = 2
(1+w)2

f ′(w−1
w+1). Applying (2.7) again with r = 0 yields ∥g′∥H∞(ℜ>0) ≤

2. Thus from Hadamard's three lines theorem we conclude for any ϵ ∈ (0, p̄/p), ∥g′∥H∞(ℜ=ϵ) ≤

Cpt
min{ϵp/(2p̄),1}.
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Finally, for any ω ∈ R, integrating the derivative horizontally yields:

|g(iω)− g(iω + p̄/p)| ≤ Cp

∫ p̄/p

0
tϵp/(2p̄)dϵ ≤ Cp

1

log 1
t

Since |g(iω+p̄/p)| ≤ ∥g∥H∞(ℜ=p̄/p) ≤ t, we conclude that on {ℜ = 0} we have ∥g∥H∞(ℜ=0) =

∥f∥H∞(D) ≤ Cp
1

log 1
t

, proving the upper bound part.

For the lower bound, consider the following function

f(z) =
cp

log (1/t)
(1− z)2t

p
p̄

1+z
1−z (2.13)

for some constant cp > 0. Then using (2.7) we have ∥f∥H∞(p̄+pD) ≤
4cp

log(1/t) supz∈p̄+pD |t
p
p̄

1+z
1−z | =

4cpt
log(1/t) , and

∥f ′∥H∞(D) = cp

∥∥∥∥− 2

log(1/t)
(1− z)t

p
p̄

1+z
1−z − 2p

p̄
t
p
p̄

1+z
1−z

∥∥∥∥
H∞(D)

≤cp
(

4

log(1/t)
+

2p

p̄

)∥∥∥t p
p̄

1+z
1−z

∥∥∥
H∞(D)

(2.7)
= cp

(
4

log(1/t)
+

2p

p̄

)
≤ 2cp(1 + p̄)

p̄

where the last inequality follows from log(1/t) ≥ 1 for all small t. This shows f is feasible

for δH∞(t) for small cp. Finally noticing that ∥f∥H∞(D) ≥ |f(−1)| =
cp

log(1/t) concludes the

proof.

Next we modify (2.13) to produce a feasible solution for δ∗(t) leading to the following

lower bound, which, in view of Lemma 4, provides the required bound in (2.3) on δTV(t).

Lemma 6. There exist absolute constants C > 0 and β̃0 > 0 such that for all t > 0 and

p ∈ [0, 1),

δ∗(t) ≥
C

β̃
, β̃ ≜ max

 p

1− p
log

1

t
,

√
log 1

t

1− p

 (2.14)

provided that β̃ ≥ β̃0.

Proof. Fix p, t ∈ (0, 1). Considering (2.10) our goal is to �nd a feasible function and bound

its ∥ · ∥A norm from below. Our main tool for converting between the ∥ · ∥A norms in
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the de�nition (2.10) and the more convenient H∞ norms is the following general result

complementing (2.3): For any r > 1,

∥f∥A ≤
1√

1− r−2
∥f∥H∞(rD) . (2.15)

Indeed, let f(z) =
∑

n≥0 anz
n and let f̃(z) =

∑
n≥0 ãnz

n with ãn = anr
n and thus f̃(z) =

f(rz). From the Plancherel identity we have

∑
n

|ãn|2 =
1

2π

∫ 2π

0
|f̃(eiω)|2dω ≤ ∥f̃∥2H∞(D) = ∥f∥

2
H∞(rD) .

Thus, (2.15) follows from an application of Cauchy-Schwarz inequality:

∑
n

|an| =
∑
n

r−n|ãn| ≤
√∑

n≥0

r−2n∥f∥H∞(rD) =
1√

1− r−2
∥f∥H∞(rD).

Next, �x some β ≥ β0 and τ ∈ (0, 1), where β0 ≥ 1 is a numeric constant to be speci�ed

later, and let α = 1 − τ ∈ (0, 1). Consider the function, a modi�ed version of (2.13), given

by

h(z) = h̃(αz), h̃(z) = exp

(
−β 1 + z

1− z

)
.

Using (2.7), we can explicitly calculate that for any 0 < q ≤ 1:

∥h̃∥H∞(1−q+qD) = e
−β 1−q

q . (2.16)

We will show below the following estimates (all positive numerical constants below, i.e.

those that are independent of parameters p, t, β, are denoted by a common symbol C):

∥h∥A ≥ C
√

β(1− τ)
3β
2 (2.17)

∥h(p ·+p̄)∥A ≤ τ−
1
2 e−βE , E ≜

τ̄ p̄

p+ p̄τ
(2.18)

∥h′∥A ≤ 2τ−
3
2 . (2.19)
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Thus, taking f(z) = 1
2τ

3
2h(z) in (2.10) proves that for all β > β0 we have

δ∗

(τ
2
e−βE

)
≥ C

√
βτ3(1− τ)

3β
2 (2.20)

To show that (2.20) implies (2.14) we set τ = 1
β and thus the last term in (2.20) can be lower

bounded by (1− 1/β0)
3β0/2 and be absorbed into C. Notice also that if β ≥ 2 then τ̄ ≥ 1/2

and thus E ≥ p̄
2

1
1
β
+p

. Since τ ≤ 1 and δ∗ is monotone in its argument we can simplify

δ∗

(
exp

{
− β

1
β + p

p̄

2

})
≥ C

β
(2.21)

Note next that for any µ, p > 0, taking x = max(µp,
√
µ) implies x

1
x
+p
≥ µ

2 , which is veri�ed

by considering the two cases µp ≶
√
µ separately. Then, de�ning µ ≜ 4

p̄ log
1
t and taking

β = max(µp,
√
µ) ensures the argument of δ∗ in (2.21) is at most t. In summary, we obtain

the bound (2.14) for all t ≤ t0.

We proceed to proving (2.17)-(2.19). For (2.18) we set r = 1−αp̄
αp in (2.15) and get

∥h(p ·+p̄)∥A ≤ c∥h(p ·+p̄)∥H∞(rD) = c∥h∥H∞(p̄+prD) = ce
−β αp̄

1−αp̄ ,

where we denoted c =
√

1
1−r−2 and also applied (2.16) with q = αpr = 1 − αp̄. We next

bound c ≤
(
1− r−1

)−1/2
= (1− αp̄)1/2 (1− α)−1/2 ≤ (1− α)−1/2.

For (2.19) we �rst notice that for any function f holomorphic on r2D we can esti-

mate its derivative on r1D, where r1 < r2 via Cauchy integral formula as ∥f ′∥H∞(r1D) ≤

(r2 − r1)
−1 ∥f∥H∞(r2D). Applying this with f = h, r1 =

1+r2
2 and r2 =

1
α we get

∥h′∥H∞(r2D) ≤
√
2
(
α−1 − 1

)−1/2 ∥h∥H∞(D/α) =
√
2
(
α−1 − 1

)−1/2
,

last step being again via (2.16) with q = 1. Applying now (2.15) with r = r2 we obtain

overall

∥h′∥A ≤
2α

(1− α)
√
1− α2

≤ 2

(1− α)3/2
.

To show (2.17), we need to analyze the Taylor coe�cients of h explicitly as the H∞-norm
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bound is too weak. A natural and straightforward way is to apply the saddle-point method

to study these coe�cients. However, due to the special nature of h its coe�cients have

already been well understood. Indeed, in (Szeg®, 1939, 5.1.9)) it shown that for each x ∈ C

and |v| < 1

e−x v
1−v =

∞∑
n=0

vnL(−1)
n (x) , (2.22)

where L
(−1)
n (x) are generalized Laguerre polynomial of degree n. We will not need explicit

formulae of these polynomials and only rely on their asymptotics (of Plancherel-Rotach

type), cf. (Szeg®, 1939, 8.22.9): For each ϵ > 0 there exists a Cϵ > 0 such that for any n ≥ 0,

any ϵ ≤ ϕ ≤ π/2− ϵn−1, we have

L(−1)
n (x) = e

x
2 (−1)n(π sinϕ)−

1
2x

1
4n− 3

4

{
sin

[
n(sin(2ϕ)− 2ϕ) +

3π

4

]
+ (nx)−

1
2Oϵ(1)

}
(2.23)

where x = 4n cos2 ϕ and the Oϵ(1) is uniformly bounded by Cϵ for all n and ϕ.

Comparing (2.22) with the de�nition of h we get h(z) = e−β
∑

m≥0 L
−1
m (2β)zmαm. In

other words, if we denote the m-th coe�cient of h(z) by ∆m, then

∆m = e−βαmL−1
m (2β) . (2.24)

Due to the oscillatory nature of the Laguerre polynomial, it is not possible to bound |∆m|

away from zero. Nevertheless, the following lemma shows that two consecutive terms cannot

be simultaneously small:

Lemma 7. For all m ∈ (β, 3β/2) and for su�ciently large β,

|∆m|+ |∆m+1| ≥ α3β/2β−1/2

√
2

6
. (2.25)

From here (2.17) follows simply by ∥h∥A ≥
∑

β≤m≤3β/2 |∆m| ≥ α3β/2
√
2β
24 . We note that

the estimate (2.17) is tight. Indeed, applying (2.15) with r = 1
α yields ∥h∥A ≤ 1√

1−α2
≤

1/
√
τ , where we also used ∥h∥H∞(D/α) = ∥h̃∥H∞(D) = 1 via (2.16) with q = 1.
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2.5 Discussions

2.5.1 Comparison with previous results

In this section we review previous results on estimating sorted distribution or pro�le under

di�erent loss function and di�erent sampling model. To this end, let us consider an urn

with exactly k balls. Then its composition can be described by the distribution µ on [k]

with µ(x) = θj/k. When we go from µ to π we erase the �color labels� (i.e., if the balls in

the urn are arranged as piles of distinct colors, going from µ to π is analogous to turning o�

the lights so that only the heights of each pile, but not their colors, are shown). This could

have been done in a di�erent way by sorting µ. Namely, let us de�ne

µ↓
i = i-th largest atom of µ.

Note that π and µ↓ can be expressed in terms of one another. In fact we have

∥π1 − π2∥TV ≤ 2∥µ1↓ − µ2↓∥TV ≤ 2∥µ1 − µ2∥TV (2.26)

Indeed, the second inequality follows from the fact that decreasing rearrangement minimizes

the ℓ1-distance. To prove the �rst inequality, note that

2∥µ1↓ − µ2↓∥TV =
∑
j

∣∣∣∣∣∣
∑
i≥j

π1
i − π2

i

∣∣∣∣∣∣ = W1(π
1, π2) . (2.27)

where W1 denotes the 1-Wasserstein distance between probability distributions and, in one

dimension, coincides with the L1-distance between the cumulative distribution functions

(CDFs). Since π1, π2 are supported on Z, the indicator function 1E is 1-Lipschitz for any

E ⊂ Z and thus W1(π
1, π2) ≥ ∥π1 − π2∥TV.

Can one estimate µ↓ from the sample X? The answer is yes, in both ℓ∞ and ℓ1 (TV),

as well as other metrics. However, to discuss these results let us move to the setting of

Robbins Problem II. Namely, suppose we have ZM = (Z1, . . . , ZM )
iid∼ µ with µ some

arbitrary distribution on [k]. The relevance to the Bernoulli sampling model comes from

the following simple reduction: if µ is in fact the empirical distribution of colors, then given
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N , which corresponds a sample of size M ′ ∼ Binom(k, p) from µ without replacement, one

can simulate an iid sample Z1, . . . , ZM with M ≈ (1 − e−p̄)k. Hence, any result regarding

estimating µ↓ from ZM with M = Θ(k) implies a similar result about estimating µ↓ from

N with p = Θ(1).

We review several results regarding estimating µ↓ from ZM when µ is general. The

pioneering result Orlitsky et al. (2005) only showed consistency, i.e. existence of estimator

µ̂↓ such that

E∥µ̂↓ − µ↓∥TV → 0

without convergence rate. In a later draft Orlitsky et al. (2008) (see also (Anevski et al.,

2017, Lemma 3) for a short proof) it was shown that simply estimating µ↓ by a sorted

empirical distribution achieves

E[∥µ̂↓ − µ↓∥∞] = O(k−
1
2 log k) .

A much more relevant result to us, however, is the one in Valiant and Valiant (2013).

For any two π1, π2 they de�ned yet another distance:

D(π1, π2) = inf
ν
E[| lnX1 − lnX2|] , (2.28)

where the in�mum is over all couplings of X1 and X2 distributed on Z+ as P[Xi = j] = jπi
j

for i ∈ {1, 2}, j ∈ [k]. They have shown that when M = a k
log k one can get

E[D(π̂, π)] ≤ O

(
1√
a

)
,

which, per Valiant (2019), also holds for a = Θ(log k). In addition (Valiant and Valiant, 2016,

Appendix B) shows W1(π
1, π2) ≤ 2D(π1, π2). Indeed, let ν(·, ·) be the optimal coupling
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in (2.28). Then de�ne a coupling of π1 to π2 via

ν̃(j1, j2) =



1
max(j1,j2)

ν(j1, j2), j1 ̸= 0, j2 ̸= 0∑
j≥j1

(
1
j1
− 1

j

)
ν(j1, j), j2 = 0, j1 > 0∑

j≥j2

(
1
j2
− 1

j

)
ν(j, j2), j1 = 0, j2 > 0

and completing j1 = j2 = 0 as required. Letting (X1, X2) ∼ ν and (X̃1, X̃2) ∼ ν̃ we have

that

E[|X̃1 − X̃2|] = 2E[|X̃1 − X̃2|+] = 2E
[
|X1 −X2|

max(X1, X2)

]
≤ 2E[| lnX1 − lnX2|] = 2D(π1, π2) .

In all, putting everything together we have that Valiant and Valiant showed that there

exists an estimator of µ↓ from M = Θ(k) samples such that

E[∥µ̂↓ − µ↓∥TV] = O

(
1√
log k

)
. (2.29)

In Han et al. (2018b) it was shown that this rate is minimax optimal over all distributions

supported on [k]. Note, however, that since the lower bound in Han et al. (2018b) does not

produce valid distributions on �nite population (namely, µ with rational entries in 1
kZ), it

does imply that the rate of estimating π in W1 is 1√
log k

, cf. (2.27), is sharp.

In all, we see that following the trailblazing work Orlitsky et al. (2005) a number of

works have established uniform convergence guarantees in various metrics. Relevant to us

is that the best result available is ∥π̂ − π∥TV ≤ O
(

1√
log k

)
, which can obtained by �rst

simulating samples drawn with replacement based on those without replacements, then

combining (2.29) with (2.26). We show that this rate is suboptimal by a square root factor.
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2.5.2 Open problems

For 1 ≤ q ≤ ∞, let us de�ne by Rq(k) to be the minimax risk of estimating π in the ℓq-norm

(
∑

m |πm − π̂m|q)
1
q . Then in the linear regime of p = Θ(1), Theorem 1 shows that

(
1

log k

)2− 1
q

≲ Rq(k) ≲
1

log k
,

which is only tight for q = 1. Our complex-analytic methods seem to be especially well

suited for studying the case of q = 2 and q =∞, but we were not able to close the gap. The

case of ℓ∞ is of particularly interest as it concerns which individual pro�le is the hardest

to estimate. Our result shows that for those colors that occur m = Θ(log k) times, the

corresponding πm is particularly di�cult and cannot be estimated better than Ω( 1
(log k)2

).

It is unclear if this is the hardest case.

Let us de�ne by RW1(k) to be the minimax risk of estimating π in the 1-Wasserstein

distanceW1(π, π̂). Given the equivalence (2.27), estimate (2.29) and lower boundW1(π, π̂) ≥

∥π − π̂∥TV we get

1

log k
≲ RW1(k) ≲

1√
log k

.

Due to W1 being the L1-distance between the CDFs, the minimax W1 risk are also amenable

to complex-analytic techniques, but so far resisted our attempts. An alternative approach is

to generalize the W1-lower bound construction of Han et al. (2018b); however, as observed

in previous work in the distinct elements problem (Valiant, 2012; Wu and Yang, 2018) such

moment-based construct is di�cult to extend to �nite population.

2.6 Appendix

2.6.1 Impossibility of learning the empirical distribution

In this section we show that unless we observe all but a vanishing fraction of the urn,

it is impossible to estimate the empirical distribution of the colors consistently. To this

end, consider a k-ball urn and let µ denote the empirical distribution of the colors, with

µ(j) =
θj
k , j ∈ [k]. Compared to the pro�le π which is a distribution on Z+, here µ is a
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probability measure on the set of colors [k]. Similar to (2.1), we de�ne the minimax TV risk

for estimating µ:

R̃(k) = inf
µ̂

sup
µ

E[∥µ− µ̂∥TV].

The following theorem shows that whenever the sampling ratio p is bounded away from one,

it is impossible to estimate µ consistently. This observation agrees with the typical behavior

in high-dimensional estimation that, absence any structural assumptions, the sample size

need to exceed the number of parameters to achieve consistency.

Theorem 8.

R̃(k) ≥ k − 1

4k
h−1

(
1− p− log2(k + 1)

k − 1

)
where h : [0, 1]→ [0, 1] given by h(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy

function, and h−1 is its inverse on [0, 12 ]. Consequently, for any �xed p < 1, R̃(k) = Ω(1).

Proof. The proof follows the mutual information method that compares the amount of

information data provides and the minimum amount of information needed to reconstruct

the parameters up to a certain accuracy. Consider the following Bayesian setting of a k-ball

urn, where θj
i.i.d.∼ Ber(1/2) for j = 1, . . . , k − 1 and θk = k −

∑
j<k θj . In other words, each

of the �rst k− 1 colors either is absent or appear exactly once with equal probability. Then

for j ∈ [k − 1], the observed Xj is simply the erased version of θj with erasure probability

p̄. Thus the mutual information (in bits) between the parameters θ = (θj : j ∈ [k − 1]) and

the observations X = (Xj : j ∈ [k]) can be upper bounded as follows:

I(θ;X) = I(θ;X1, . . . , Xk−1)︸ ︷︷ ︸
=(k−1)p

+ I(θ;Xk|X1, . . . , Xk−1)︸ ︷︷ ︸
≤H(Xk)≤log2(1+k)

where the inequality follows from the fact that Xk takes at most k values. On the other

hand, suppose there exists µ̂ = µ̂(X), such that E[∥µ− µ̂∥TV] ≤ ϵ. De�ne θ̂j = 1{µ̂j>
1
2k} for

j ∈ [k − 1]. Then 2∥µ− µ̂∥ ≥
∑k−1

i=1 ∥µj − µ̂j∥ ≥ 1
2k

∑k−1
i=1 1{θj ̸=θ̂j}∥. Thus θ̂ are close to θ

in Hamming distance:
∑k−1

i=1 P[θj ̸= θ̂j ] ≤ 4ϵk. By the rate-distortion function of Bernoulli

distribution (Cover and Thomas, 2006, Chap. 10), their mutual information must be lower
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bounded by

I(θ; θ̂) ≥ (k − 1)

(
1− h

(
4ϵk

k − 1

))
.

Combined with the data processing inequality I(θ;X) ≥ I(θ; θ̂), the last two displays imply

that ϵ ≥ k−1
4k h−1(p̄− log2(k+1)

k−1 ) which concludes the proof.

2.6.2 Proof of Theorem 2

Proof. We �rst prove the upper bound by analyzing the minimum distance estimator (2.2).

Let π ∈ Πk ⊂ Π denote the true pro�le. Denote the distribution ν ≜ πP . As outlined in

Section 2.2 and in view of (2.2), the key step is to show that ν̂ is concentrated around ν

in terms of total variation. To this end, observe that for m ≥ 1, we have E[ν̂m] = νm from

(2.2). Furthermore,

k ·Var[ν̂m] =
1

k
Var[Ym] =

1

k

∑
j∈X

Var[1{Xj = m}] ≤ 1

k

∑
j∈X

P[Xj = m] = (πP )m = νm .

Thus E [|ν̂m − νm|] ≤
√
νm/k. Summing over m we get

E[∥ν̂ − ν∥TV] ≤ E

[
k∑

m=1

|ν̂m − νm|

]
≤ 1√

k

k∑
m=1

√
νm

(a)

≤ 1√
k

(
k∑

m=1

mνm

)1/2( k∑
m=1

1

m

)1/2

(b)

≤ O

(√
log k

k

)
, (2.30)

where (a) follows from Cauchy-Schwarz; (b) follows as follows: if we denote U1 ∼ π and

U2|U1 ∼ Binom(U1, p), then U2 ∼ ν and hence E[U2] = pE[U1] ≤ p thanks to the mean

constraint on π ∈ Π. Next we show that

P [|∥ν − ν̂∥TV − E∥ν − ν̂∥TV| ≥ ϵ] ≤ exp(−C0kϵ
2) (2.31)

for some absolute constant C0, all ϵ > 0 and k large. For that we aim to show that

∥ν− ν̂∥TV satis�es the bounded di�erence property and then apply McDiarmid's inequality.
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Let x1, . . . , xk̃ be the distinct colors present in the urn with k̃ ≤ k. Denote ∥ν − ν̂∥TV =

d(Nx1 , . . . , Nx
k̃
) for some function d. Then d satis�es the following: for any i ∈ [k̃] and any

n1, . . . , nk̃
with n′

i ̸= ni, we have

∣∣d(n1, . . . , ni−1, ni, ni+1, . . . , nk̃
)− d(n1, . . . , ni−1, n

′
i, ni+1, . . . , nk̃

)
∣∣

≤1

2

∣∣∣∣|νni − ν̂ni |+ |νn′
i
− ν̂n′

i
| −
∣∣∣∣νni −

(
ν̂ni −

1

k

)∣∣∣∣− ∣∣∣∣νn′
i
−
(
ν̂n′

i
+

1

k

)∣∣∣∣∣∣∣∣
≤1

k
.

Furthermore, (Nx1 , . . . , Nx
k̃
) are independent. Then the desired exponential bound in (2.31)

follows from McDiarmid's inequality.

Combining (2.30) and (2.31) we get

P

[
∥ν − ν̂∥TV ≥

√
C1 log k

k

]
≤ k−1

for some absolute constant C1. Then taking expectations on both sides of (2.2), for su�-

ciently large k we get

E∥π̂ − π∥TV ≤ E[δTV(2∥πP − ν̂∥TV)]

(a)

≤ δTV

(√
C1 log k

k

)
+ k−1

(b)

≤ 2δTV

(√
C1 log k

k

)
,

where (a) follows from (2.6.2) and δTV ≤ 1, (b) follows from the universal fact that δTV(t) ≥ t

(Remark 2) and δTV(t) is increasing in t. This yields the desired upper bound on R(k).

To show the lower bound, consider any bounded function T : Z+ → [−1, 1]. Then for

distribution π on Z+, de�ne the linear functional Tπ:

Tπ =
∑
m

πmT (m).

Note that 2∥π̂ − π∥TV = supT |Tπ̂ − Tπ| for any estimator π̂ of π. Hence the minimax TV

31



risk of estimating π can be lower bounded by that of estimating T

R(k) ≥ 1

2
RT (k), RT (k) ≜ inf supE

[
|T̂ − Tπ|

]
.

where the estimator T̂ depends on (Xj : j ∈ X ) and the supremum is again over all k-ball

urns. We are now in position to apply (Polyanskiy and Wu, 2019, Theorem 8) (with Θ = Z+,

c(θ) = θ, and KV = 1) to obtain2

RT (k) ≥
1

72
δTV

(
1

6k

)
− C2√

k

where

δTV(t, T ) = sup{|Tπ′ − Tπ| : TV(π′P, πP ) ≤ t, π, π′ ∈ Π}

Finally optimizing over T observing that δTV(t) = supT δTV(t, T ) for every t > 0 yields the

result.

2.6.3 Proofs of technical lemmas

Lemma 4. We prove the lemma by showing how a feasible solution of one of the programs

can be utilized to get a feasible solution of the other one, and vice-versa. Let us start with

the second inequality. Given any pair (π,π′) feasible for δTV(t), choose ∆ = (π− π′)/2. We

get

∑
m

m|∆m| =
1

2

∑
m

m|πm − π′
m| ≤

1

2

∑
m

m(πm + π′
m) ≤ 1.

The relation ∥∆P∥1 ≤ t follows directly from ∥πP − π′P∥TV ≤ t. This shows ∆ is feasible

for δ∗(t) with ∥∆∥1 = ∥π − π′∥TV. This proves the second inequality in Lemma 4.

The �rst inequality is proven next. Take any non-zero feasible solution ∆̃ to δ∗(t) (which

exists because we can always choose ∆̃ = 0). Next, suppose that ϵ ≜
∑

m ∆̃m ̸= 0. Then,

2The result of (Polyanskiy and Wu, 2019, Theorem 8) is stated in terms of the χ2-divergence. The TV
version follows by applying (Polyanskiy and Wu, 2019, Proposition 1) to lower bound δχ2(t) via δTV(t).
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let us de�ne ∆j = ∆̃j for j ≥ 1 and ∆0 = ∆̃0 − ϵ. It is clear that

∑
j

∆j = 0 (2.32)

Furthermore, since ⟨∆̃P,1⟩ = ⟨∆̃,1⟩ = ϵ we conclude that |ϵ| ≤ ∥∆P∥1 ≤ t. Therefore,

∑
j

|∆j | ≥
∑
j

|∆̃j | − t . (2.33)

Finally, because ∥rP∥1 ≤ ∥r∥1 we also have from triangle inequality

∥∆P∥1 ≤ t+ |ϵ| ≤ 2t . (2.34)

Next we de�ne ∆+ = max(∆, 0), ∆− = max(−∆, 0), where max is de�ned coordinate

wise. We choose {πm}∞m=0 and {π′
m}∞m=0 as

π0 = 1−
∞∑
j=1

∆+
j , π′

0 = 1−
∞∑
j=1

∆−
j ,

πm = ∆+
m, π′

m = ∆−
m, m ≥ 1

Note that under constraints on ∆, we have π, π′ ∈ Π. Indeed,
∑

m≥1 |∆m| ≤
∑

mm|∆m| =∑
mm|∆̃m| ≤ 1 and thus π0, π

′
0 ≥ 0. Furthermore, since |∆m| = ∆+

m + ∆−
m we have∑

mm(∆+
m + ∆−

m) ≤ 1 which implies
∑

mm(πm + π′
m) ≤ 1. This proves

∑
mmπm ≤ 1

and
∑

mmπ′
m ≤ 1. Next, observe that π0 − π′

0 = ∆0 due to (2.32) and thus π − π′ = ∆.

From (2.34) we conclude that ∥(π − π′)P∥TV ≤ t and hence (π, π′) is a feasible pair for

δTV(t). And thus via (2.33) we obtain

δTV(t) ≥
1

2
(δ∗(t)− t) .

Lemma 7. In view of (2.24) and (2.23) the proof of (2.25) is straightforward but delicate.

To simplify analysis we will assume β →∞ and denote by o(1) the terms vanishing with β.
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For m ∈
(
β, 3β2

)
we de�ne ϕm = arccos

√
β/(2m) and θm = F (ϕm) where F (ϕ) =

sin(2ϕ) − 2ϕ. Here ϕm ∈ (arccos(1/2), arccos(1/3)) and hence is bounded away from both

0 and π/2 for all m in the above range. Then using (2.23) with x = 2β, we get that there

exist absolute constants β0, C7 such that for all β ≥ β0,

|L(−1)
m (2β)| ≥ eβ

√
π
(
1− 1

3

)1/4 (2β)1/4m−3/4

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣− C7β
−1

}

≥ 2eβ
√
π(2/3)1/433/4

β−1/2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣− C7β
−1

}
≥ eββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣− C7β
−1

}
. (2.35)

Now we consider any two consecutive integers m and m+1 in
(
β, 3β2

)
. Using (2.35) we get

|L(−1)
m (2β)|+ |L(−1)

m+1(2β)|

≥eββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣+ ∣∣∣∣sin((m+ 1) θm+1 +
3π

4

)∣∣∣∣− 2C7β
−1

}
. (2.36)

The phase di�erence between the two sine terms comes out to be m(θm−θm+1)−θm. Using

the formula θm = F (ϕm), we get

m(θm − θm+1) = m(ϕm − ϕm+1)
F (ϕm)− F (ϕm+1)

ϕm − ϕm+1
. (2.37)

We will show that the above is bounded away from 0 as m goes to in�nity. We �rst consider

the term m(ϕm − ϕm+1). Using
d
dx arccos

√
x = −1

2
1√

x(1−x)
we deduce that

m (ϕm − ϕm+1) = m

(
arccos

√
β

2m
− arccos

√
β

2m+ 2

)

= m

(
arccos

√
β/2m− arccos

√
β/2m− β/2m

m+ 1

)

=
β

2m
· m

m+ 1
·
arccos

√
β/2m− arccos

√
β/2m− β/2m

(m+1)

β/2m
(m+1)

= −1

2

√
β/2m

1− β/2m
+ o(1)
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where the o(1) term goes to 0 as m,β tends to in�nity with β
2m ∈

(
1
3 ,

1
2

)
. In view of (2.37)

using F ′(ϕ) = 2 cos(2ϕ)− 2 and cos2(ϕm) = β
2m we get

m(θm − θm+1) = −
1

2

√
β/2m

1− β/2m
F ′(ϕm) + o(1)

= −2

√
β/2m

1− β/2m

(
β

2m
− 1

)
+ o(1)

= 2

√
β

2m

(
1− β

2m

)
+ o(1) (2.38)

with the same last conditions on m,β. As β
2m ∈

(
1
3 ,

1
2

)
the above quantity is bounded away

from 0. Also (2.38) implies that θm+1 can be approximated as θm + o(1). As we have

θm = sin(2ϕm)− 2ϕm

= 2 sinϕm cosϕm − 2ϕm

= 2

√
β

2m

(
1− β

2m

)
− 2ϕm

continuing (2.36) and using (2.38) we get

|L(−1)
m (2β)|+ |L(−1)

m+1(2β)|

≥eββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣+
∣∣∣∣∣sin

(
mθm +

3π

4
+ θm − 2

√
β

2m

(
1− β

2m

))∣∣∣∣∣+ o(1)

}

=
eββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣+ ∣∣∣∣sin(mθm +
3π

4
− 2ϕm

)∣∣∣∣+ o(1)

}
. (2.39)

Now we note that for any real number a ∈ (0, π) the function s(x) ≜ | sin(x)|+ | sin(x− a)|

has period π and is piecewise concave on the intervals (0, a) and (a, π). As s(0) = s(a) =

s(π) = sin(a) we get

inf
j
{| sin(x)|+ | sin(x− a)|} = sin(a).
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In view of the above, continuing (2.39) we get

|L(−1)
m (2β)|+ |L(−1)

m+1(2β)| ≥
eββ−1/2

2
{sin (2ϕm) + o(1)}

=
eββ−1/2

2

{
2

√
β

2m

(
1− β

2m

)
+ o(1)

}

≥ eββ−1/2

2

(
2
√
2

3
+ o(1)

)

for any m ∈
(
β, 3β2

)
. In view of (2.24) this implies (2.25).
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Chapter 3

Poisson empirical Bayes estimation:

How to improve upon the (optimal)

Robbins estimator

(This is a joint work with Prof. Yury Polyanskiy and Prof. Yihong Wu)

3.1 Introduction

Suppose we have an observation Y coming from the Poisson distribution with an unknown

mean θ, which we want to estimate under the squared error loss. Under the Bayesian settings,

one assumes that θ is distributed according to some prior G on the positive real line (R+).

It is well established that when G is known, the optimal estimator (termed as the Bayes

estimator) is given by the posterior mean E [θ|Y ]. Denote by fG the marginal distribution

of Y , given by the mixture of the Poisson mass function fθ(y) = e−θ θy

y! , y ∈ Z+ ≜ {0, 1, . . .}

and the prior distribution G: fG(y) =
∫
fθ(y)G(dθ). Then the Bayes estimator of θ for

sample Y is given as

θ̂G(Y ) = EG [θ|Y ] =

∫
θe−θ θY

Y !G(dθ)∫
e−θ θY

Y !G(dθ)
= (Y + 1)

fG(Y + 1)

fG(Y )
. (3.1)
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Unfortunately, absolute knowledge about the prior is rarely available in practice, and one

often resorts to approximating the Bayes estimator. A surprising fact about the Empirical

Bayes (EB) theory, introduced �rst by Robbins (1951, 1956), is that when independent and

seemingly unrelated training samples Y n ≜ {Yi}ni=1
i.i.d.∼ fG are available, it is indeed possible

to produce estimate of θ̂G(Y ) that has vanishing excess risk over the estimation error of

oracle (known as �regret"). Since then, empirical Bayes methodology has been widely used

in practice for large-scale data analysis, with notable applications in computational biol-

ogy especially microarrays (Efron et al., 2001), ecology (Ver Hoef, 1996), sports prediction

(Brown, 2008), predicting accidents (Persaud et al., 2010), etc. For a detailed exposition

on the theory and methodology on empirical Bayes see Casella (1985); Efron (2014, 2021);

Morris (1983); Zhang (2003).

In the literature, the problem of the Poisson EB has two main avenues of solution:

� f -modeling: Construct an approximate Bayes estimator using the empirical counts in

the sample. For example, consider the modi�ed Robbins estimator 1 (Polyanskiy and

Wu, 2021; Robbins, 1956)

θ̂Robbins(Y ) ≜ θ̂Robbins(Y ;Y1, . . . , Yn) = (Y + 1)
Nn(Y + 1)

Nn(Y ) + 1
(3.2)

Nn(y) ≜
n∑

i=1

1{Yi=y}, y ∈ Z+.

� g-modeling: A more systematic approach that involves obtaining an estimate Ĝ(n) of

the prior distribution G from Y n and then computing θ̂
Ĝ(n) . Examples of Ĝ(n) include

the celebrated non-parametric maximum likelihood estimator (NPMLE) (Kiefer and

Wolfowitz, 1956; Lindsay, 1983a,b)

Ĝ(n) = argmax
G

n∏
i=1

fG(Yi)

1The classical Robbins estimator in Robbins (1956) is constructed for compound estimation settings in
which the interest lies in recovering θn ≜ {θi}ni=1 from observations Y n. The estimate of θj is given by

θ̂j = (Yj + 1)

∑n
i=1 1{Yi=Yj+1}∑n
i=1 1{Yi=Yj}

. This is same as (3.2) when we view (Y1, . . . , Yj−1, Yj+1, . . . , Yn) as training

sample for estimating θj .
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where the maximization is performed over a properly chosen class of prior distributions

on R+.

In recent years, there have been signi�cant developments in analyzing the properties of

f -modeling estimators for the Poisson EB, speci�cally the Robbins method. For studying

priors with bounded supports, Brown et al. (2013) considered a certain sampling method

which generates a sample of variable size N ∼ Poi(n) (here and below Poi(θ) denotes the

Poisson distribution with mean θ). There the authors showed that the Robbins estimator

achieves a regret rate of O
(

(logn)2

n(log logn)2

)
. Later, Polyanskiy and Wu (2021) carried out the

analysis for a �xed sample size n and showed the estimator is minimax rate-optimal by

attaining a similar worst-case lower bound. In the case of priors with a subexponential tail,

the same estimator also achieves optimal minimax regret Θ
(
(logn)3

n

)
. Albeit its optimality

guarantees and simplicity in computation, the Robbins method produces unstable perfor-

mances in most practical cases. This behavior originates in a �nite sample scenario as there

will always be y ∈ Z+ for which there are fewer sample observations N(y), sometimes as

small as 0. When N(y + 1) is moderately large this will pull θ̂Robbins(y) estimate towards

exceptionally high values. Also if N(y + 1) = 0 for some y (for example y ≥ maxni=1 Yi + 1)

the estimate θ̂Robbins(y) shrinks to 0 irrespective of any existing information about sample

observations for y. This contradicts the fact that the Bayes estimator θ̂G(y) is increas-

ing in y for any G (Brown et al., 2013, Section 8). Since the conception of the Robbins

method, several articles have drawn criticism to these and similar �nite sample issues of

the estimator. For historical discussions see (Maritz, 1968, Section 1),(Maritz and Lwin,

2018, Section 1.9). In recent times (Efron and Hastie, 2021, Section 6.1) also pointed out

such destabilized behavior with real life examples (e.g., while analyzing insurance claims

data from automobile companies). Even though most of these articles have come up with

estimators to produce better numerical performances, it is not guaranteed whether they

can challenge �nite-sample optimality guarantees of the Robbins method. This raises the

question of whether it is possible to construct some estimator that removes these problems

while maintaining the similar optimality results.

Interestingly all the g-modeling estimators are free from these �uctuating behaviors,
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thanks to the aforementioned monotonicity property. More generally, this monotonicity

property of g-estimators holds for any mixture model of exponential families (Houwelingen

and Stijnen, 1983) and the Poisson model happens to be a speci�c example. Modeling

of the g-type is also convenient for situations where the the statistician has qualitative

knowledge about the shape of the prior. Coming to the issue of consistency for g-modeling,

(3.1) suggests the possibility of translating point-wise approximation guarantees for the

mixture fG to that of estimating θ̂G. The minimum-distance method is one of the existing

classical techniques to estimate the data generating mixture distribution. Introduced in the

pioneering works Wolfowitz (1953, 1954), these estimators are long-established to produce

robust and consistent approximates to the data-generating distributions, see Basu et al.

(2011); Beran (1977) for detailed expositions. In particular, for estimating a mixture of

discrete distributions, even the NPMLE is of minimum-distance type (see the discussions

in Section 3.2.2). As a result, it is natural to ask whether the minimum-distance-based

techniques can be utilized for both density estimation and estimation of θ̂G. Considering the

Poisson mixtures for the class of bounded and subexponential priors, we show a collection

of minimum-distance estimators that are optimal for mixture density estimation (in the

squared Hellinger distance) the g-estimators based on them also achieve the optimal regret

rate. This collection of estimators includes the NPMLE as well.

To motivate our approach further, we provide here some synthetic data examples to

compare several g-modeling estimators against the Robbins method. For demonstration

purposes let us consider G = Uniform[0, 3] (similar real and synthetic data experiments

for di�erent priors are carried out later in Section 3.5.3). In addition to the NPMLE, we

consider the minimum squared Hellinger (H2) and the minimum Chi-squared (χ2) divergence

estimators of G. Let us denote these divergences respectively as follows

H2(p, q) =
∑
y∈Y

(√
p(y)−

√
q(y)

)2
, χ2(p∥q) =

∑
x∈Y

(p(y)− q(y))2

q(y)
,

where p, q are any two probability mass functions on the non-negative integers Z+ ≜
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{0, 1, 2, . . .}. Denote by pemp
n the empirical mass function of the training samples {Y1, . . . , Yn}

pemp
n (y) =

1

n

n∑
i=1

1{Yi=y}. (3.3)

Then the minimum-H2 estimator and and minimum-χ2 divergence estimator are given by

argmin
Q

H2(pemp
n , fQ), argmin

Q
χ2(pemp

n ∥fQ),

where the minimization is done over the class of all prior distributions on R+. We �x

n = 50, 100, 225, 500, simulate (θ1, . . . , θn) independently from G and generate Yi according

to Poi(θi), i = 1, . . . , n. Then we plot θ̂Robbins and θ̂
Ĝ(n) , where Ĝ(n) is either the NPMLE

or the minimum-H2 or the minimum-χ2 divergence estimator, against the true values of

θi and the Bayes estimates θ̂G(Yi). As shown in Fig. 3.1 all the three minimum-distance

estimators provide a much more consistent approximation of the Bayes estimator compared

to the Robbins estimator and can be seen as viable contenders for practical usage.

Figure 3.1: Empirical study of prediction for di�erent estimators with Uniform[0, 3] prior

41



In summary, several g-modeling type estimators promise excellent performances in terms

of practical experiments. We show that they also happen to be minimax optimal in various

classes of prior distributions.

3.1.1 Related works

Searching for a stable and smooth alternative to the classical Robbins method for the Poisson

EB problem has a long history. Maritz (1966) was one of the proponents of using g-modeling

estimators to resolve this problem. The author considered modeling the prior using the

Gamma distribution and estimated the scale and shape parameters using a χ2-distance

minimization. Maritz (1969) studied the non-decreasing property of the oracle in Poisson EB

and used non-decreasing polynomials for approximating the oracle. Lemon and Krutchko�

(1969) considered estimation of the prior using an iterative method, �rst using the empirical

distribution of the training sample Y n and then using corresponding posterior means of

the θis. Although, they numerically argue that higher-order iterations might not improve

the estimation loss. On a similar line, Bennett and Martz (1972) assumed the existence of

density of the prior distribution and used Kernel estimates to approximate the prior. For

a detailed exposition on other similar smooth EB methods, see Maritz and Lwin (2018).

Our paper also analyzes the regret via such smooth EB procedures, but we use the non-

parametric estimation of mixture distributions over di�erent classes of priors.

Analysis of the NPMLE for estimating the mixture distribution is well studied in the

literature. Kiefer and Wolfowitz (1956) was one of the preliminary papers to prove the

consistency of the NPMLE. Later consistency of the NPMLE for econometric data was an-

alyzed in Heckman and Singer (1984), for exponential and Weibull distributions in Jewell

(1982), and for general exponential families in Pfanzagl (1988). For more recent discussions

on asymptotic consistency of NPMLE for general mixtures, see Chen (2017). For the Pois-

son mixture setup, Lambert and Tierney (1984) showed that when the prior has bounded

support and is relatively smooth at the origin, then over any �nite set, the MLE and the

sample proportions assign similar probabilities asymptotically. For more references on the

consistency, see Chen (2017). In the current work, we study the Poisson mixture and char-

acterize consistency in a �nite-sample, minimax rate optimal way. Early analysis of NPMLE
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in the �nite-sample context can be attributed to Simar (1976) which showed that for the

Poisson mixture case, the support size of NPMLE is bounded from above by the number of

distinct entries in the sample and also established its uniqueness. Later Lindsay (1983a,b,

1995) showed that the �nite support and uniqueness properties of the NPMLE are closely

related to the geometry of the likelihood function. Our paper extends these results for the

Poisson mixture and shows that similar properties hold for a spectrum of minimum-distance

based estimators that include the NPMLE. For important �nite-sample results on mixtures

of continuous distributions see Polyanskiy and Wu (2020); Saha and Guntuboyina (2020);

Walter and Blum (1984). In a related scenario of estimating heterogeneous mixtures of

Poisson distributions, Miao et al. (2021) has explored the application of NPMLE as well.

The initial work on non-parametric estimation for the prior in the context of empirical

Bayes regret analysis was carried out in Laird (1982). The author analyzed the NPMLE

for the Binomial and the Normal location models (with known but di�erent variances), and

the analysis is primarily numerical. The Gaussian location-mixture setup has previously

noted a �nite-sample theoretical analysis of EB with NPMLE. In the revolutionary paper

Zhang (2009), the authors have shown that the NPMLE based mixture density estimates are

within polylog(n) factor of the worst-case estimation guarantees in terms of the expected

squared Hellinger distance (Kim, 2014). In the follow-up work, Jiang and Zhang (2009)

used this last result on the NPMLE to construct an EB oracle estimator (termed as the

GMLEB) and established similar theoretical guarantees for the regret. However, due to

the slack in guarantees of mixture estimation, the guarantees on regret presented therein

are also suboptimal. Even though our analysis follows along the similar lines of Jiang

and Zhang (2009), the striking di�erence in the results is that we can provide much more

accurate theoretical guarantees of the mixture density and EB estimator for the Poisson

model. Our improvements can be attributed to accurately estimating the mixture density

in the discrete setup of Poisson. Additionally, we generalize the NPMLE based EB estimator

to the minimum-distance-based classes of estimators.

43



3.2 Problem formulation and results

3.2.1 Notations

For any given distribution G let EG and PG respectively denote the expectation and proba-

bility law with respect to G. Given any prior distribution G on the Poisson mean parameter

θ let Y ∼ fG as before. The mean squared error of estimating θ ∼ G based on a single

observation Y ∼ fθ of an estimator θ̂ is EG

[
(θ̂(Y )− θ)2

]
. The Bayes error, also known as

the minimum mean squared error (mmse), is given by

mmse(G) ≜ inf
θ̂
EG

[(
θ̂(Y )− θ

)2]
= EG

[
(θ̂G(Y )− θ)2

]
.

Given any estimator Ĝ(n) of G based on {Yi}ni=1
i.i.d.∼ fG, de�ne the regret of θ̂

Ĝ(n) as the

excess mean squared error over mmse(G)

Regret(Ĝ(n);G) = EG

[(
θ̂
Ĝ(n)(Y )− θ

)2]
−mmse(G) = EG

[(
θ̂
Ĝ(n)(Y )− θ̂G(Y )

)2]
,

where the last equality followed using the orthogonality principle: the average risk of any

estimator θ̂ can be decomposed as

EG[(θ̂ − θ)2] = mmse(G) + EG[(θ̂ − θ̂G)
2]. (3.4)

Similarly we de�ne the maximum regret of Ĝ(n) over the class of model distributions G

Regret(Ĝ(n);G) = sup
G∈G

Regret(Ĝ(n);G).

Let Z be the class of all probability mass functions on Z+. Consider the class of divergence

D such that any d ∈ D satis�es:

(P1) There exist c1, c2 > 0 such that c1H
2(q1, q2) ≤ d(q1∥q2) ≤ c2χ

2(q1∥q2) for all discrete

mass functions q1, q2 ∈ Z

(P2) (t, ℓ)-representation: There exist maps t : Z 7→ R, ℓ : R2 7→ R such that for any two

44



distributions q1, q2 ∈ Z

d (q1∥q2) = t(q1) +
∑
y∈Y

ℓ(q1(y), q2(y)),

where ℓ(a, b) is decreasing and strictly convex as a function of b for each a ≥ 0 and

ℓ(0, b) = 0 for each b ≥ 0.

Remark 5. The divergences Kullback Leibler (KL), squared Hellinger and Chi squared

belong to D. This follows from noting that 2H2 ≤ KL ≤ χ2 and each of the divergences

obtain (t, ℓ)−representation: for squared Hellinger t ≡ 2, ℓ(a, b) = −2
√
ab, for KL divergence

t ≡ 0, ℓ(a, b) = a log a
b , for χ

2-divergence t ≡ −1, ℓ(a, b) = a2

b .

3.2.2 Results

Let Y1, . . . , Yn
i.i.d.∼ fG for G in some distribution class G and pemp

n be de�ned as in (3.3). Let

d ∈ D be such that it satis�es (P1) for some c1, c2 > 0. Consider the minimum d-distance

estimator

Ĝ(n) = argmin
Q∈G′

d(pemp
n ∥fQ) (3.5)

where G′ is some distribution class chosen according to the problem (when the minimization

is performed over the set of all distribution functions we use the notation argminQ). For the

purpose of this paper we will consider distribution classes that are superset of either P [0, h],

the set of all distributions supported on [0, h], or SubE(s), the set of all s-subexponential

distributions on R+: SubE(s) =
{
G : G([t,∞)]) ≤ 2e−t/s, ∀t > 0

}
. We will analyze the

empirical Bayes estimators of the form θ̂
Ĝ(n) . Our main results are the following.

Theorem 9 (Density estimation). Given any h, s > 0, there exist absolute constants C1 =

C1(h, c1, c2) and C2 = C1(s, c1, c2) such that the following are satis�ed.

(a) Let G ∈ P[0, h],G ⊇ P[0, h] and Ĝ(n) = argminQ∈G d(p
emp
n ∥fQ), then E

[
H2(fG, fĜ(n))

]
≤

C1
n

logn
log logn .

(b) Let G ∈ SubE(s),G ⊇ SubE(s) and Ĝ(n) = argminQ∈G d(p
emp
n ∥fQ), then E

[
H2(fG, fĜ(n))

]
≤
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C2
n log n.

Theorem 10 (Empirical Bayes). Given any h, s > 0, there exist absolute constants C1 =

C1(h, c1, c2) and C2 = C1(s, c1, c2) such that the following are satis�ed.

(a) If Ĝ(n) = argminQ∈P[0,h] d(p
emp
n ∥fQ), then Regret(Ĝ(n);P[0, h]) ≤ C1

n

(
logn

log logn

)2
.

(b) If Ĝ(n) = argminQ d(pemp
n ∥fQ), then Regret(Ĝ(n); SubE(s)) ≤ C2

n (log n)3.

The following remarks are in order:

1. For any d ∈ D, both argminQ∈P[0,h] d(p
emp
n ∥fQ) and argminQ d(pemp

n ∥fQ) exist and are

unique. The proof is given in Appendix 3.6.1.

2. The condition (P2) is only required to prove Theorem 10(b). More speci�cally, un-

der the above condition on the divergence d, the minimum-distance estimator Ĝ(n) =

argminQ d(pemp
n ∥fQ) can be chosen to be supported on the bounded interval [Y (n)

min, Y
(n)
max]

where Y
(n)
min = minni=1 Yi, Y

(n)
max = maxni=1 Yi. See Lemma 12 for details. This result is

essential for demonstrating the optimal regret rate of the unrestricted minimizer.

3. As mentioned before, in recent work Polyanskiy and Wu (2021) has shown that for

�xed sample size n the minimax regret guarantee scales as Θ
(

(logn)2

n(log logn)2

)
for P[0, h]

class of priors and as Θ
(
(logn)3

n

)
when we consider SubE(s) class of priors. This

establishes rate optimality of our estimators for any given h, s.

4. When d denotes the Kullback-Leibler (KL) divergence, i.e. d(p∥q) ≜ D(q∥p) =∑
y∈Y q(y) log q(y)

p(y) , the minimum-distance estimator Ĝ(n) = argminQ d(p∥q) gives us

the NPMLE. This follows from the expansion

D(pemp
n ∥fQ) =

∑
y∈Y

pemp
n (y) log

pemp
n (y)

fQ(y)
=
∑
y∈Y

pemp
n (y) log pemp

n (y)− 1

n

n∑
i=1

log fQ(Yi),

as minimizing the above with respect toQ is equivalent to maximizing 1
n

∑n
i=1 log fQ(Yi)

and hence the likelihood
∏n

i=1 fQ(Yi).

5. The results demonstrated above hold for each of the NPMLE, the minimum H2 distance

estimator and the minimum χ2 divergence estimator as their corresponding divergences
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belong to class D.

6. Our results hold for much more general class of estimators. Consider a generalization

of the estimator in (3.5) as

d(pemp
n ∥f

Ĝ(n)) ≤ inf
Q∈G′

d(pemp
n ∥fQ) + δ. (3.6)

for some δ > 0. Then the results corresponding to the bounded priors setup hold for

δ ≲ logn
n log logn and the results corresponding to the subexponential priors setup hold

for δ ≲ logn
n . Note that Ĝ(n) is the NPMLE over G′ if δ = 0 and d is given by KL

divergence. In case of NPMLE, (3.6) translates to obtaining Ĝ(n) that satis�es

n∏
i=1

{
f
Ĝ(n)(Yi)

fQ(Yi)

}
≥ e−nδ, ∀Q ∈ G′.

This type of relaxed estimators is well known in the literature; for example, Jiang and

Zhang (2009); Zhang (2009) used similar estimators for constructing the generalized

maximum likelihood Empirical Bayes (GMLEB) estimators to analyze the Normal

location-mixture model. These estimators enjoy a much less conservative optimization

routine than the typical NPMLE while attaining similar regret guarantees.

3.3 Proof of error upper bound in density estimation

The central idea in the proof of Theorem 9 is as follows. It is straightforward to show

that the density estimation error for any minimum d-distance estimator can be bounded

from above by the expected distance between the empirical mass function pemp
n and the

data generating distribution fG, which can be further bounded from above by the expected

χ2-distance between said quantities χ2(pemp
n ∥fG). We show that the signi�cant contribution

in χ2(pemp
n ∥fG) comes from the �essential support-set" of the data generating distribution,

i.e. the set of minimal support-points outside which the probability of observing a sample

point is vanishing at a rate o( 1n). For the the prior classes P[0, h] and SubE(s) such support-

sets have sizes respectively of orders O
(

logn
log logn

)
and O (log n). Each support point from
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the essential support-set has at most 1
n contribution to χ2(pemp

n ∥fG) from which our results

follow. The technical details are provided below.

Proof of Theorem 9. For any K ≥ 1 and distribution G denote the tail probabilities of the

Poisson mixture as ϵK(G) ≜
∑∞

y=K fG(y). We will prove the following inequality

E
[
H2(fG, fĜ(n))

]
≤ 4c2

c1

K

n
+

(
4c2
c1

+ 2n

)
ϵK(G). (3.7)

Specializing it to di�erent distribution classes we achieve our results.

Note that d ∈ D satis�es c1H
2(q1, q2) ≤ d(q1∥q2) ≤ c2χ

2(q1∥q2) for all q1, q2 ∈ Z. Using

the triangle inequality for the Hellinger distance, the elementary result (a+b)2 ≤ 2(a2+b2),

and utilizing the minimizer property of Ĝ(n) we get

H2(fG, fĜ(n)) ≤
(
H(pemp

n , f
Ĝ(n)) + H(pemp

n , fG)
)2

≤ 2[H2(pemp
n , f

Ĝ(n)) + H2(pemp
n , fG)]

≤ 2

c1
(d(pemp

n ∥f
Ĝ(n)) + d(pemp

n ∥fG)) ≤
4

c1
d(pemp

n ∥fG). (3.8)

Bounding d(pemp
n ∥fG) by c2χ

2(pemp
n ∥fG) we get

E
[
d(pemp

n ∥fG)1{Y (n)
max<K

}] ≤ c2
∑
y

E
[
(pemp

n (y)− fG(y))
21{

Y
(n)
max<K

}]
fG(y)

(a)

≤ c2
∑
y<K

Var(pemp
n (y))

fG(y)
+ c2

∑
y≥K

fG(y)

= c2
∑
y<K

fG(y)(1− fG(y))

nfG(y)
+ c2

∑
y≥K

fG(y) ≤
c2K

n
+ c2ϵK(G).

where (a) followed by using Var(pemp
n (y)) = 1

n2

∑n
i=1Var(1{Yi=y}) =

fG(y)(1−fG(y))
n and for

all y > Y
(n)
max we get pemp

n (y) = 0. Using the union bound and the fact H2(p, q) ≤ 2, p, q ∈ Z

we have

E
[
H2(fG, fĜ(n))1{Y (n)

max≥K
}] ≤ 2P

[
Y (n)
max ≥ K

]
≤ 2nϵK(G).
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Combining this with the last display we use (3.8) to get

E
[
H2(fG, fĜ(n))

]
≤ E

[
H2(fG, fĜ(n))1{Y (n)

max<K
}]+ E

[
H2(fG, fĜ(n))1{Y (n)

max≥K
}]

≤ 4

c1
E
[
d(pemp

n ∥fG)1{Y (n)
max<K

}]+ 2nϵK(G) ≤ 4c2
c1

K

n
+

(
4c2
c1

+ 2n

)
ϵK(G)

as required.

(a) Note that we have G ∈ P[0, h]. For any K > 2h using the fact that for each y > 0 the

function e−θθy is increasing in θ ∈ [0, y] we have

ϵK(G) =
∞∑

y=K

∫ h

0

e−θθy

y!
G(dθ) ≤

∞∑
y=K

e−hhy

y!
≤ e−hhK

K!

∞∑
y−K=0

(
h

K

)y−K

≤ 2e−hhK

K!
.

We choose K =
⌈
2(2+he) logn

log logn

⌉
. Using K! ≥

(
K
e

)K
from Stirling's formula and the fact

log x < x
2 with x = log log n we continue the last display to get

ϵK(G) ≤ 2

(
he

K

)K

≤ 2

(
log logn

2 log n

) 2(2+he) logn
log logn

≤ 2e
−(log logn−log log logn)

2(2+he) logn
log logn ≤ 2e−2 logn ≤ 2

n2

(3.9)

as required.

(b) ChooseK = 2 logn

log(1+ 1
2s)

. Then the properties of Poisson mixture (Appendix 3.6.2) imply

that ϵK(G) ≤ 3
2n2 . Plugging this in (3.7) we get the result.

3.4 Proof of error upper bound for the empirical Bayes esti-

mators

3.4.1 General program for regret upper bound via density estimation

The proof of our bounds in Theorem 10 relies on relating the regret to the mixture density

estimation error in the squared Hellinger distance. This idea has been previously noted in
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(Jiang and Zhang, 2009, Theorem 3) in the context of the Gaussian location models. For

the above continuous model the authors bounded the regret from above using the squared

Hellinger distance between the data generating mixture and NPMLE based estimator. We

use a similar technique for general minimum distance estimators. The added bene�t in our

approach is that our class of minimum-distance based estimators are optimal for estimating

the mixture distribution in a discrete setup. This turn out to be essential for achieving

optimal upper bounds on the regret.

As a �rst step to achieving regret upper bounds we bound the error of estimating θ̂G(Y )

by θ̂
Ĝ
(Y ), where Y ∼ fG and Ĝ is any distribution function. More speci�cally we want to

bound
∞∑
y=0

(θ̂
Ĝ
(y)− θ̂G(y))

2fG(y)

for any given estimator Ĝ of G. Then to obtain bound on regret for any estimator based on

the training sample we average the above formula over the relevant distribution. Given any

h > 0 let Gh denote its restriction on [0, h], i.e. Gh(A) = G(A∩[0,h])
G([0,h]) , A ⊆ R. Then we have

the following result.

Lemma 11. Let G be a distribution such that EG[θ
4] ≤ M for some constant M . Then

given any arbitrary distribution Ĝ supported on [0, ĥ] and any h > 0,K ≥ 1

∞∑
y=0

(θ̂
Ĝ
(y)− θ̂G(y))

2fG(y) ≤
{
6(h2 + ĥ2) + 24(h+ ĥ)K

}
H2(f

Ĝ
, fGh

)

+ (h+ ĥ)2ϵK(Gh) +
(1 + 2

√
2)

√
(M + ĥ4)G((h,∞))

G([0, h])
.

The core idea of the proof is as follows. It is relatively easier to bound the estimation error

if the corresponding Bayes estimator is also bounded. One can force the Bayes estimator to

be bounded if we use priors with bounded support. Thankfully, the extra price we pay to

change the problem from estimating θ̂G to estimating θ̂Gh
can be controlled for our chosen

classes of priors. More speci�cally, using properties of the mmse and the mean squared error
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from (Wu and Verdú, 2010, Lemma 2) we show

∞∑
y=0

(θ̂
Ĝ
(y)− θ̂G(y))

2fG(y) ≤
∞∑
y=0

(θ̂
Ĝ
(y)− θ̂Gh

(y))2fGh
(y) +

(1 + 2
√
2)

√
(M + ĥ4)G((h,∞))

G([0, h])
.

Then we use the structure of the Bayes estimator in the Poisson case to relate the error of

estimating θ̂G(Y ) by θ̂
Ĝ
(Y ) to the squared Hellinger distance between fGh

and f
Ĝ

∞∑
y=0

(θ̂
Ĝ
(y)− θ̂Gh

(y))2fGh
(y) ≤

{
6(h2 + ĥ2) + 24(h+ ĥ)K

}
H2(f

Ĝ
, fGh

) + (h+ ĥ)2ϵK(Gh)

from which the result follows. The technical details have been provided in Appendix 3.6.3.

3.4.2 Proof of Theorem 10

Proof of Theorem 10(a). Using Lemma 11, with Ĝ(n) = argminQ∈P[0,h] d
(
pemp
n ∥fQ

)
, ĥ = h,

and Theorem 9 we get for K =
⌈
2(2+he) logn

log logn

⌉
, G ∈ P[0, h]

Regret(Ĝ(n);G) ≤
{
12h2 + 48hK

}
EG

[
H2
(
fG, fĜ(n)

)]
+ 4h2ϵK(G)

≤ C0

n

(
log n

log log n

)2

+
4h2

n2

where the bound on ϵK(G) used in last inequality follows from (3.9) and C0 is some absolute

constant depending on h.

Proof of Theorem 10(b). To use Lemma 11 for our purpose we need to show that there exists

an ĥ such that [0, ĥ] includes the support of Ĝ(n). Indeed for any divergence d satisfying

property (P2), the support of the minimum distance estimator Ĝ(n), based on training

sample Y1, . . . , Yn, is a subset of [0, Y
(n)
max] as the following lemma indicates.

Lemma 12. Let d is a divergence satisfying (P2). Then the search of the minimizer

argminQ d(pemp
n ∥fQ) reduces to minimization over distributions supported on [Y

(n)
min, Y

(n)
max].
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A proof of the above lemma is provided at the end of this section. Next, de�ne

h = 4s log n, K =
2 log n

log
(
1 + 1

2s

) , M = 30s4

and note that from Appendix 3.6.2, for all n ≥ 2

EG[θ
4] ≤M, G((h,∞)) ≤ 2

n4
, ϵK(Gh) ≤ ϵK(G)

1

G([0, h])
≤ 3

2n2(1− 2/n4)
≤ 3

n2
.

Observe that given any d satisfying (P2) the minimimum distance estimator Ĝ(n) = argminQ d(pemp
n ∥fQ)

that is supported on [0, ĥ] where ĥ = Y
(n)
max. De�ne Bn,s = 64(logn)4+45

(log(1+ 1
2s))

4 and note that

EG[(Y
(n)
max)4] ≤ Bn,s (see Appendix 3.6.2 for a proof). Then using Lemma 11 we get

Regret(Ĝ(n);G)

≤ EG

[{
6(h2 + (Y (n)

max)
2) + 24K(h+ Y (n)

max)
}
H2(fGh

, f
Ĝ(n)) +

3(h+ Y
(n)
max)2

n2

+

√
2(1 + 2

√
2)

√
M + (Y

(n)
max)4

n2


(a)

≤ EG

[{
6(h2 + (Y (n)

max)
2) + 24K(h+ Y (n)

max)
}
H2(fGh

, f
Ĝ(n))

]
+

6(h2 + EG[(Y
(n)
max)2])

n2

+

√
2(1 + 2

√
2)

√
M + EG[(Y

(n)
max)4]

n2

(b)

≤ 6EG

[{
(h2 + (Y (n)

max)
2) + 4K(h+ Y (n)

max)
}
H2(fGh

, f
Ĝ(n))

]
+

C

n
(3.10)

for some absolute constant C, where inequality (a) followed from Jensen's inequality EG

[√
Z
]
≤√

EG [Z] with random variable Z = M + (Y
(n)
max)4 and inequality (x+ y)2 ≤ 2(x2 + y2), and

(b) followed by using the result (EG[(Y
(n)
max)2])2 ≤ EG[(Y

(n)
max)4] ≤ Bn,s ≤ Cn. Next we bound

the expectation term in the last line of (3.10). Using the fact that the squared Hellinger
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distance between any two distributions is less than 2 we get

EG

[{
(h2 + (Y (n)

max)
2) + 4K(h+ Y (n)

max)
}
H2(fGh

, f
Ĝ(n))

]
= EG

[{
(h2 + (Y (n)

max)
2) + 4K(h+ Y (n)

max)
}
H2(fGh

, f
Ĝ(n))1{Y (n)

max≤2K
}]

+ EG

[{
(h2 + (Y (n)

max)
2) + 4K(h+ Y (n)

max)
}
H2(fGh

, f
Ĝ(n))1{Y (n)

max>2K
}]

≤ (h2 + 4KH + 12K2)EG

[
H2
(
fGh

, f
Ĝ(n)

)]
+ 2EG

[{
(h2 + (Y (n)

max)
2) + 4K(h+ Y (n)

max)
}
1{

Y
(n)
max>2K

}] (3.11)

For bounding the expectation in the �rst term of (3.11) we use triangle inequality and

(x+ y)2 ≤ 2(x2 + y2) to get

H2(fGh
, f

Ĝ(n)) ≤ 2
{
H2(fG, fĜ(n)) + H2(fGh

, fG)
}
.

We get EG

[
H2(fG, fĜ(n))

]
≤ C′ logn

n using Theorem 9 for absolute constant C ′. To bound

H2(fGh
, fG) for any G ∈ SubE(s) we use the total variation distance between fGh

, fG to get

H2(fGh
, fG) ≤

∞∑
y=0

|fGh
)(y)− fG(y)|

≤
K−1∑
y=0

|fGh
(y)− fG(y)|+

∞∑
y=K

fG(y) +
∞∑

y=K

fGh
(y)

=

K−1∑
y=0

∣∣∣∣∣
∫ h
θ=0

e−θθy

y! G(dθ)

G([0, h])
− fG(y)

∣∣∣∣∣+ ϵK(G) +

∞∑
y=K

∫ h
θ=0

e−θθy

y! G(dθ)

G([0, h])

≤
K−1∑
y=0

(∣∣∣∣ fG(y)

G([0, h])
− fG(y)

∣∣∣∣+
∫∞
θ>h

e−θθy

y! G(dθ)

G([0, h])

)
+ ϵK(G) +

ϵK(G)

G([0, h])

≤
K−1∑
y=0

G((h,∞))

G([0, h])
fG(y) +

G((h,∞))

G([0, h])
+ ϵK(G)

(
1 +

1

G([0, h])

)
≤ 7

n2
.

Next we bound the second term in (3.11). Note that by union bound and Appendix 3.6.2

we have PG

[
Y

(n)
max ≥ 2K

]
≤ nϵ2K(G) ≤ 3

2n3 . Using this and the Cauchy-Schwarz inequality
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we get

EG

[{
6(h2 + (Y (n)

max)
2) + 24K(h+ Y (n)

max)
}
1{

Y
(n)
max>2K

}]
≤

√
EG

[{
6(h2 + (Y

(n)
max)2) + 24K(h+ Y

(n)
max)

}2
]
PG

[
Y

(n)
max ≥ 2K

]
≤

√
EG

[{
6(h2 + (Y

(n)
max)2) + 24K(h+ (Y

(n)
max))

}2
]
nϵ2K(G)

≤
√
3√

2n3/2

√
EG

[{
4(h4 + (Y

(n)
max)4) + 16K2(h2 + (Y

(n)
max)2)

}]
≤

√
3√

2n3/2

√
h4 +Bn,s + 4K2(h2 +

√
Bn,s) ≤

c

n3/2

for some absolute constant c. Plugging the bounds back in (3.11) in view of (3.10) we get

the result.

Proof of Lemma 12. Given any distribution Q de�ne Q̃ as

dQ̃(θ) =


Q([0, Y

(n)
min]), θ = Y

(n)
min,

dQ(θ), Y
(n)
min < θ < Y

(n)
max,

Q([Y
(n)
max,∞)), θ = Y

(n)
max.

In other words, Q̃ accumulates masses of Q over the intervals [0, Ymin], [Ymax,∞) on the

points Ymin and Ymax respectively. As v(θ) = e−θθx is increasing in θ ∈ [0, x] and decreasing

in θ ∈ [x,∞) we get for each i = 1, . . . , n

fQ(Yi) =

∫
e−θθYi

Yi!
dQ(θ)

=

∫
0<θ≤Y

(n)
min

e−θθYi

Yi!
dQ(θ) +

∫
Y

(n)
min<θ<Y

(n)
max

e−θθYi

Yi!
dQ(θ) +

∫
Y

(n)
max≥θ

e−θθYi

Yi!
dQ(θ)

≤ Q([0, Y
(n)
min])

e−Y
(n)
min

(
Y

(n)
min

)Yi

Yi!
+

∫
Y

(n)
min<θ<Y

(n)
max

e−θθYi

Yi!
dQ(θ)

+Q([Y
(n)
min,∞))

e−Y
(n)
max

(
Y

(n)
max

)Yi

Yi!

=

∫
e−θθYi

Yi!
dQ̃(θ) = f

Q̃
(Yi).
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Note that we can write

d(pemp
n ∥fG) = t(pemp

n ) +
∑
y∈Y

ℓ(pemp
n (y), fG(y))

= t(pemp
n ) +

1

n

∑
y∈Y:pemp

n (y)>0

∑n
i=1 1{Yi=y}ℓ(p

emp
n (y), fG(y))

pemp
n (y)

= t(pemp
n ) +

1

n

n∑
i=1

∑
y∈Y:pemp

n (y)>0

1{Yi=y}ℓ(p
emp
n (Yi), fG(Yi))

pemp
n (Yi)

= t(pemp
n ) +

1

n

n∑
i=1

ℓ(pemp
n (Yi), fG(Yi))

pemp
n (Yi)

, (3.12)

which implies

∑
y∈Y

ℓ(pemp
n (y), fQ(y)) =

1

n

n∑
i=1

ℓ
(
pemp
n (Yi), fQ(Yi)

)
pemp
n (Yi)

≥ 1

n

n∑
i=1

ℓ
(
pemp
n (Yi), fQ̃(Yi)

)
pemp
n (Yi)

=
∑
y∈Y

ℓ(pemp
n (y), f

Q̃
(y)),

and hence given any Q we can produce Q̃ such that d(pemp
n ∥f

Q̃
) ≤ d(pemp

n ∥fQ). As a result

we can choose Ĝ(n) = argminQ d(pemp
n ∥fQ) to be supported on [Y

(n)
min, Y

(n)
max].

3.5 Numerical experiments

In this section we analyze the performances of the empirical Bayes estimators based on

the minimum-H2, the minimum-χ2, and the minimum-KL divergence estimator (i.e., the

NPMLE). We compare them against the Robbins estimator and also draw comparisons

among their individual performances. Unlike the Robbins estimator the minimum-distance

based estimators usually do not have any closed form solutions. To compute the solution

we rely on the optimality conditions.

3.5.1 First-order optimality condition and algorithm

In the numerical studies we consider the unrestricted minimizers of the form Ĝ(n) = argminQ d(pemp
n ∥fQ).

Given any divergence d let Ĝ(n) be any such minimum d-distance estimator. Given d ∈ D
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the support of any such minimizer has size at most n (see Appendix 3.6.1) and Lemma 12

implies that the support points lie in the interval [0, Ymax]. For any θ ∈ R+ let δθ denote

the degenerate distribution at θ. Then the �rst-order optimality condition for Ĝ(n) is given

by (both necessary and su�cient for establishing optimality of Ĝ(n))

d(pemp
n ∥f

Ĝ(n)) ≤ d(pemp
n ∥f

(1−ϵ)Ĝ(n)+ϵδθ
), θ ∈ R+, ϵ ∈ [0, 1].

When d ∈ D is either of H2, χ2 or the KL divergence d(pemp
n ∥f

(1−ϵ)Ĝ(n)+ϵδθ
) is di�erentiable

in ϵ, a consequence of the corresponding t − ℓ representation via smooth ℓ functions. This

implies

d

dϵ
d(pemp

n ∥f
(1−ϵ)Ĝ(n)+ϵδθ

)

∣∣∣∣
ϵ=0

≥ 0

Let y1, . . . , yq be the distinct values in the training sample {Y1, . . . , Yn}. Then in view of

the last inequality we get

q∑
i=1

d

df
ℓ(pemp

n (yi), f)

∣∣∣∣
f=f

Ĝ(n) (yi)

(fθ(yi)− f
Ĝ(n)(yi)) ≥ 0.

The locations of θ where the above inequality is satis�ed are given by the solutions to

d

dθ

{
q∑

i=1

d

df
ℓ(pemp

n (yi), f)

∣∣∣∣
f=f

Ĝ(n) (yi)

(fθ(yi)− f
Ĝ(n)(yi))

}
= 0.

Simplifying the above equation we get that the support points of Ĝ(n) satis�es the following

polynomial equation in θ

e−θ
q∑

i=1

wi(Ĝ
(n))

(
yiθ

yi−1 − θyi
)
= 0, wi(Ĝ

(n)) =

d
df ℓ(p

emp
n (yi), f)

∣∣∣
f=f

Ĝ(n) (yi)

yi!
.

Based on the above conditions we construct the following algorithm to approximate the

minimum-distance estimators.
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Algorithm 1 Computing the minimum d-distance estimators

Input: Data-points Y1, . . . , Yn. Target distribution Gθ,µ =
∑

j µjδθj . Divergence d with
t− ℓ decomposition d(q1∥q2) = t(q1)+

∑
y∈Y ℓ(q1(y), q2(y)). Objective function to minimize

v(µ,θ) = d(pemp
n ∥fG) = t(pemp

n ) +

q∑
i=1

ℓ(pemp
n (yi),

∑
j

µjfθj (yi)).

Initiate 1000 equidistant points in [0, Ymax] as θ and initiate probability assignment µ ran-
domly. Number of steps N to guarantee convergence of optimization rule.
Output: θ,µ such that d(pemp

n ∥fGθ,µ
) is minimized.

1: for t = 1, . . . , N do

2: Update µ← argminµ
∑q

i=1 ℓ(p
emp
n (yi),

∑
j µjfθ(t−1)

j

(yi))

3: Ĝθ,µ =
∑

j µ̂jδθj
4: Update θ as roots of the polynomial

∑q
i=1wi(Ĝθ,µ)

(
yiθ

yi−1 − θyi
)
.

5: t← t+ 1.
6: end for

3.5.2 Real-data analysis: Prediction of hockey goals

We study the data on total number of goal scored in the National Hockey League for the

seasons 2017-18 and 2018-19 (the data is available at https://www.hockey-reference.com/).

We consider the statistics of n = 745 players, for whom the data were collected for both the

seasons. Let Yi be the total number of goal scored by the ith player in the season 2017-18.

We model Yi as independently distributed Poi(θi), where θi's are independently distributed

according to some distribution G on the non-negative integers. Based on the observations we

intend to predict the goal scored by the ith player in the season 2018-19 using θ̂G. In Fig. 3.2

we plot the EB estimators based on the Robbins method, the minimum H2, the minimum-

χ2 distance estimator and the NPMLE against the 2017-18 data (denoted as �Past" on the

x-axis) and compare their estimates against the real values of goals in 2018-19 (denoted by

�Future" on the y-axis). On the left �gure we show the comparison for all the estimators,

whereas the �gure on the right presents more detailed comparison for the minimum distance

based estimators.
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Figure 3.2: Robbins vs. minimum-distance EB: Experiments with hockey goals

From the �rst �gure it is visible that there exist many individuals for whom the Robbins

methods produces signi�cantly worse predictions compared to all the minimum distance

methods. This di�erence is signi�cant for values of scored goals which have lower sample

representations. On the other hand the separate comparison of the minimum distance based

predictions shows that their behavior are mostly comparable except near the tail end of

the data-points. Upon computing the root mean squared error (RMSE) and the Mean

absolute deviation (MAD) with respect to the true goal values in 2018-19 it turns out that

the minimum H2-distance based EB estimator marginally outperforms the other minimum-

distance based EB estimators.

Methods Robbins minimum-H2 NPMLE minimum-χ2

RMSE 15.589 6.023 6.0386 6.053

MAD 6.639 4.368 4.381 4.389

Table 3.1: Robbins vs. minimum-distance: Prediction error comparison

3.5.3 Simulation studies: Unbounded priors

Next we extend the simulation studies presented in the Introduction section to priors with

unbounded supports. The three g-modeling estimators provide comparatively better perfor-

mance than the Robbins estimator in the unbounded prior setup as well. To demonstrate

this we consider both discrete and continuous priors. For the discrete setup we choose the

mixture of Poi(1),Poi(2) and Poi(8) with weights (0.2, 0.3, 0.5) and for the continuous setup

we choose Gamma distribution with scale parameter 2 and shape parameter 4, i.e. with
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prior density f(x) = 1
96x

3e−
x
2 . In both of the cases we simulate {θi}600i=1 independently from

the prior distribution and correspondingly generate data Yi ∼ Poi(θi). For each of the priors

we calculate the Bayes estimator numerically (denoted by the black dashed line in the plots).

Then from the generated datasets we compute the Robbins estimator, the NPMLE based

EB estimator, the H2-distance based EB estimator and the χ2-distance based EB estimator.

All the estimators are then plotted against θ and the data (Fig. 3.3). As expected, the

Robbins estimator shows high deviation from the true θ values in many instances whereas

the minimum-distance based estimators are much more stable.

Figure 3.3: Robbins vs. minimum-distance: Unbounded priors

A natural follow up question in this context is to search for characteristics of the priors

that might help to di�erentiate between performances of the minimum-distance estimators.

We aim to analyze the e�ect of heavy tail distributions in this context. For this purpose we

focus on the exponential distributions parameterized by scale (α) and with density gα(x) =

1
αe

−x/α. Note that the higher values of α generate distributions with heavier tails. We

consider three values of α: 0.3,1.05 and 2. At each such value we estimate the regret for

training sample sizes n in the range [50, 300]. Write the regret as EG[(θ̂(Y ) − θ̂
Ĝ(n)(Y ))2],

where Ĝ(n) is any of the three minimum-distance estimates based on training sample size n.

The Bayes estimator θ̂G(y) is computed for each y by numerically calculating the marginals.

For every triplet (α, n) we replicate the following experiment 500 times for each minimum-

distance method:

� Generate {θi}ni=1 and Yi ∼ Poi(θi),
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� Calculate Ĝ(n),

� Generate independently θ ∼ G, Y ∼ Poi(Y ),

� Calculate (θ̂G(Y )− θ̂
Ĝ(n)(Y ))2.

Then we take the average of (θ̂G(Y ) − θ̂
Ĝ(n)(Y ))2 values from all the 500 replications to

estimate EG[(θ̂(Y ) − θ̂
Ĝ(n)(Y ))2]. We plot the regrets against training sample size below

(Fig. 3.4).

Figure 3.4: Comparison of minimum-distance estimators

We observe that that minimum-H2 based estimator outperforms the other estimators

when the scale of the exponential distribution is small. As the tails of the prior distributions

become heavier, the performance of the minimum-H2 based estimator gets worse and the

NPMLE based estimator comes out as a better choice.
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3.6 Appendix

3.6.1 Existence and uniqueness of minimum distance estimators

Theorem 13. Fix any divergence d ∈ D. Given training sample Y1, . . . , Yn and corre-

sponding empirical distribution pemp
n there exist unique choices for argminQ d(pemp

n ∥fQ) and

argminQ∈P[0,h] d(p
emp
n ∥fQ), and the solutions have support set sizes bounded from above by

the number of distinct sample points.

Proof. We �rst note that in view of Lemma 12 we have

argmin
Q

d(pemp
n ∥fQ) = argmin

P[0,Ymax]
d(pemp

n ∥fQ).

Hence given any sample observations, without loss of generality, it su�ces to analyze exis-

tence and uniqueness of argminQ∈P[0,h] d(p
emp
n ∥fQ) for any arbitrary h > 0. Suppose that

the distinct values in the sample Y1, . . . , Yn are given by y1, . . . , yq, q ≤ N . Consider the

strictly convex function v(f1, . . . , fn) =
∑q

i=1 ℓ(p
emp
n (yi), fi) (which follows from the strict

convexity of the ℓ function in its second argument) on the set

S = {(fG(y1), . . . , fG(yq)) : G ∈ P[0, h]} .

Note that S is convex and compact, which follow from the fact that (see existence

argument of (Simar, 1976, Section 3.1) for details) S can be written as closed convex hull

of the bounded set {fθ(y1), . . . , fθ(yq) : θ ∈ [0, h]}. Due to strict convexity of v(f1, . . . , fq)

we get that there exists a unique point (f∗
1 , . . . , f

∗
q ) on S where v(f1, . . . , fq) achieves its

minimum. In view of (3.12) we get that any G that minimizes d(pemp
n ∥fG) (need not be

unique) also satis�es

fG(yj) = f∗
j , j = 1, . . . , q (3.13)

Let Ĝ(n) be one such minimizer (it is known that an q-atomic minimizer exists thanks to the

Fenchel-Eggleston-Caratheodory theorem (Eggleston, 1966)). For any θ ∈ R+ let δθ denote

the atomic distribution on θ. Then from the �rst order optimality condition we get that for
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all θ ∈ R+, ϵ ∈ [0, 1]

d(pemp
n ∥f

Ĝ(n)) ≤ d(pemp
n ∥f

(1−ϵ)Ĝ(n)+ϵδθ
).

This implies d
dϵd(p

emp
n ∥f

(1−ϵ)Ĝ(n)+ϵδθ
)
∣∣∣
ϵ=0
≥ 0, and hence

q∑
i=1

d

df
ℓ(pemp

n (yi), f)

∣∣∣∣
f=f∗

i

(fθ(yi)− f∗
i ) ≥ 0.

As ℓ is decreasing in second coordinate (and hence d
df ℓ(p

emp
n (yi), f) ≤ 0 for all f ∈ R+, i =

1, . . . , q), rearranging the terms we get

q∑
i=1

 1
yi!

d
df ℓ(p

emp
n (yi), f)

∣∣∣
f=f∗

i∑q
i=1

d
df ℓ(p

emp
n (yi), f)

∣∣∣
f=f∗

i

f∗
i

 θyi ≤ eθ.

Hence given any optimizer Ĝ(n) its support points satisfy equality in the last display. Using

(Simar, 1976, Lemma 3.1) we get that there are at most m(≤ q) di�erent θi's (denote them

by θ1 . . . , θm) for which equality holds in the last display. This implies given any optimizer

Ĝ(n) its support points form a subset of {θ1 . . . , θm}. Let wi be the weight Ĝ
(n) puts on θi.

Then in view of (3.13) we get that

m∑
j=1

wje
−θjθyij = f∗

i yi!, i = 1, . . . , q.

The matrix {θyij : j = 1, . . . ,m, i = 1, . . . , q} has full column rank, and hence the vector

{w1e
−θi}mi=1 can be solve uniquely. This implies unique solution of (wi, . . . , wm) and as a

consequence uniqueness of the optimizer Ĝ(n) as well. This �nishes the proof.

3.6.2 Properties of the subexponential distributions

Lemma 14. For any G ∈ SubE(s) random variables the followings are satis�ed.

(i) If θ ∼ G

P [θ ≥ c1 log n] ≤ 2n− c1
s , E[θ4] ≤ 30s4.
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(ii) If {Yi}ni=1
i.i.d.∼ fG

ϵK(G) = P [Y1 ≥ K] ≤ 3

2
e−K log(1+ 1

2s), E

[(
n

max
i=1

Yi

)4
]
≤ 64(log n)4 + 45(

log
(
1 + 1

2s

))4 .
Proof. (i) Using tail property of SubE(s) distributions

P [θ ≥ c1 log n] ≤ 2e−
c1 logn

s ≤ 2n− c1
s .

For the expectation term using z3 ≤ 15e
z
2 , z ∈ R we have

E[θ4] = 4

∫
y3P [θ > y] dy ≤ 2

∫
y3e−

y
s dy ≤ 30s4

∫
e−

z
2 dz. ≤ 30s4.

(ii) Using EZ∼Poi(θ)

[
eZt
]
= eθ(e

t−1), t > 0 and denoting c(s) = log 1+2s
2s we have

E
[
eY1c(s)

]
= Eθ∼G

[
EY1∼Poi(θ)

[
eY1c(s)

∣∣∣ θ]] = EG

[
e

θ
2s

]
=

∫
eθ/2sG(dθ)

=

∫
θ

∫
x<θ

ex/2s

2s
dxG(dθ) =

∫
x

ex/2s

2s
G([x,∞))dx

(a)

≤
∫
x<0

ex/2s

2s
dx+

∫
x>0

e−x/2s

s
dx ≤ 3

2

where (a) followed by using tail bound for SubE(s) distribution G. In view of Markov

inequality

P [Y1 ≥ K] ≤ E
[
eY1c(s)

]
e−c(s)K ≤ 3

2
e−K log(1+ 1

2s).
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For the expectation term we have for any L > 0

E

[(
n

max
i=1

Yi

)4
]
= 4

∫
y3P

[
n

max
i=1

Yi > y

]
≤ 4L4 + n

∫
y>L

y3P [Y1 > y] dy

≤ 4L4 +
3n

2

∫
y>L

y3e−y log(1+ 1
2s)dy

≤ 4L4 +
3n

2
{
log
(
1 + 1

2s

)}4 ∫
z>L log(1+ 1

2s)
z3e−zdz

≤ 4L4 +
45n

2
{
log
(
1 + 1

2s

)}4 ∫
z>L log(1+ 1

2s)
e−z/2dz ≤ 4L4 +

45ne−
L
2
log(1+ 1

2s){
log
(
1 + 1

2s

)}4
where c2 is an absolute constant. Choosing L = 2 logn

log(1+ 1
2s)

we get the desired result.

3.6.3 Proof of Lemma 11

Let θ ∼ G, Y |θ ∼ fθ and {Y, θ}. Then we can write

EG

[
θ̂
Ĝ
(Y )− θ̂G(Y )

]2
=

∞∑
y=0

(θ̂
Ĝ
(y)− θ̂G(y))

2fG(y).

Fix h > 0 and note the following

� (Wu and Verdú, 2010, Lemma 2) mmse(Gh) ≤ mmse(G)
G([0,h]) ,

� mmse(G) ≤
√

E[θ4] ≤
√
M , and

� For any �xed distribution Ĝ

EG

[
(θ̂

Ĝ
(Y )− θ)2

]
≤ EG

[
(θ̂

Ĝ
(Y )− θ)21{θ≤h}

]
+ EG

[
(θ̂

Ĝ
(Y )− θ)21{θ>h}

]
(a)

≤ EG

[
(θ̂

Ĝ
(Y )− θ)2

∣∣∣ θ ≤ h
]
+

√
EG

[
(θ̂

Ĝ
(Y )− θ)4

]
EG

[
1{θ>h}

]
(b)

≤ EGh

[
(θ̂

Ĝ
(Y )− θ)2

]
+

√
8(ĥ4 + EG[θ4])G((h,∞))

= EGh

[
(θ̂

Ĝ
(Y )− θ)2

]
+

√
8(ĥ4 +M)G((h,∞)).
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where step (a) followed by the Cauchy-Schwarz inequality and step (b) followed as

(x+ y)4 ≤ 8(x4 + y4) for any x, y ∈ R.

In view of the above and the orthogonality relation (3.4), with θ̂ = θ̂
Ĝ
, we have

EG

[
θ̂
Ĝ
(Y )− θ̂G(Y )

]2
= EG

[
(θ̂

Ĝ
(Y )− θ)2

]
−mmse(G)

≤ EGh

[
(θ̂

Ĝ
(Y )− θ)2

]
−mmse(Gh) +mmse(Gh)−mmse(G) +

√
8(ĥ4 +M)G((h,∞))

≤ EGh

[
(θ̂

Ĝ
(Y )− θ̂Gh

(Y ))2
]
+

(
1

G([0, h])
− 1

)
mmse(G) +

√
8(ĥ4 +M)G((h,∞))

≤ EGh

[
(θ̂

Ĝ
(Y )− θ̂Gh

(Y ))2
]
+

G((h,∞))

G([0, h])

√
M +

√
8(ĥ4 +M)G((h,∞))

≤ EGh

[
(θ̂

Ĝ
(Y )− θ̂Gh

(Y ))2
]
+

(1 + 2
√
2)

√
(ĥ4 +M)G((h,∞))

G([0, h])
. (3.14)

Next we �x K ≥ 1. Using θ̂Gh
(y) ≤ h, θ̂

Ĝ
(y) ≤ ĥ we have

EGh

[
(θ̂

Ĝ
(Y )− θ̂Gh

(Y ))21{Y≤K−1}

]
=

K−1∑
y=0

(y + 1)2fGh
(y)

(
f
Ĝ
(y + 1)

f
Ĝ
(y)

− fGh
(y + 1)

fGh
(y)

)2

(a)

≤
K−1∑
y=0

(y + 1)2fGh
(y)

{
3

(
f
Ĝ
(y + 1)

f
Ĝ
(y)

−
2f

Ĝ
(y + 1)

fGh
(y) + f

Ĝ
(y)

)2

+ 3

(
fGh

(y + 1)

fGh
(y)

− 2fGh
(y + 1)

fGh
(y) + f

Ĝ
(y)

)2

+3

(
2fGh

(y + 1)− 2f
Ĝ
(y + 1)

fGh
(y) + f

Ĝ
(y)

)2
}

≤ 3

K−1∑
y=0

{(
(y + 1)f

Ĝ
(y + 1)

f
Ĝ
(y)

)2 (fGh
(y)− f

Ĝ
(y))2

fGh
(y) + f

Ĝ
(y)

+

(
(y + 1)fGh

(y + 1)

fGh
(y)

)2 (fGh
(y)− f

Ĝ
(y))2

fGh
(y) + f

Ĝ
(y)

+4(y + 1)2
(fGh

(y + 1)− f
Ĝ
(y + 1))2

fGh
(y) + f

Ĝ
(y)

}

= 3({θ̂Gh
(y)}2 + {θ̂

Ĝ
(y)}2)

K−1∑
y=0

(fGh
(y)− f

Ĝ
(y))2

fGh
(y) + f

Ĝ
(y)

+ 12
K−1∑
y=0

(y + 1)2
(fGh

(y + 1)− f
Ĝ
(y + 1))2

fGh
(y) + f

Ĝ
(y)

≤ 3(h2 + ĥ2)
K−1∑
y=0

(fGh
(y)− f

Ĝ
(y))2

fGh
(y) + f

Ĝ
(y)

+ 12
K−1∑
y=0

(y + 1)2
(fGh

(y + 1)− f
Ĝ
(y + 1))2

fGh
(y) + f

Ĝ
(y)
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where (a) followed from (x+y+z)2 ≤ 3(x2+y2+z2) for any x, y, z ∈ R. Using (
√
fGh

(x)+√
f
Ĝ
(x))2 ≤ 2(fGh

(x) + f
Ĝ
(x)) for x = y, y + 1 we continue the last display to get

EGh

[
(θ̂

Ĝ
(Y )− θ̂Gh

(Y ))21{Y≤K−1}

]
≤ 6(h2 + ĥ2)

K−1∑
y=0

(
√

fGh
(y)−

√
f
Ĝ
(y))2

+ 24K
K−1
max
y=0

(y + 1)fGh
(y + 1) + (y + 1)f

Ĝ
(y + 1)

fGh
(y) + f

Ĝ
(y)

K−1∑
y=0

(
√
fGh

(y + 1)−
√

f
Ĝ
(y + 1))2

≤
(
6(h2 + ĥ2) + 24(h+ ĥ)K

)
H2(f

Ĝ
, fGh

).

Again using θ̂Gh
(y) ≤ h, θ̂

Ĝ
(y) ≤ ĥ we bound EGh

[
(θ̂

Ĝ
(Y )− θ̂Gh

(Y ))21{Y≥K}

]
by (h +

ĥ)2ϵK(Gh). Combining this with the last display we get

EGh

[
(θ̂

Ĝ
(Y )− θ̂Gh

(Y ))2
]
≤
{
6(h2 + ĥ2) + 24(h+ ĥ)K

}
H2(f

Ĝ
, fGh

) + (h+ ĥ)2ϵK(Gh).

In view of above continuing (3.14) we have

EG

[
θ̂
Ĝ
(Y )− θ̂G(Y )

]2
≤
{
6(h2 + ĥ2) + 24(h+ ĥ)K

}
H2(f

Ĝ
, fGh

)

+ (h+ ĥ)2ϵK(Gh) +
(1 + 2

√
2)

√
(M + ĥ4)G((h,∞))

G([0, h])
.

This �nishes the proof.
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Chapter 4

Optimal prediction of Markov chains

with and without spectral gap

(This is a joint-work with Yanjun Han and Yihong Wu)

4.1 Introduction

Learning distributions from samples is a central question in statistics and machine learning.

While signi�cant progress has been achieved in property testing and estimation based on

independent and identically distributed (iid) data, for many applications, most notably

natural language processing, two new challenges arise: (a) Modeling data as independent

observations fails to capture their temporal dependency; (b) Distributions are commonly

supported on a large domain whose cardinality is comparable to or even exceeds the sample

size. Continuing the progress made in Falahatgar et al. (2016); Hao et al. (2018), in this

paper we study the following prediction problem with dependent data modeled as Markov

chains.

SupposeX1, X2, . . . is a stationary �rst-order Markov chain on state space [k] ≜ {1, . . . , k}

with unknown statistics. Observing a trajectory Xn ≜ (X1, . . . , Xn), the goal is to pre-

dict the next state Xn+1 by estimating its distribution conditioned on the present data.

We use the Kullback-Leibler (KL) divergence as the loss function: For distributions P =

[p1, . . . , pk] , Q = [q1, . . . , qk], D(P∥Q) =
∑k

i=1 pi log
pi
qi

if pi = 0 whenever qi = 0 and

67



D(P∥Q) =∞ otherwise. The minimax prediction risk is given by

Riskk,n ≜ inf
M̂

sup
π,M

E[D(M(·|Xn)∥M̂(·|Xn))] = inf
M̂

sup
π,M

k∑
i=1

E[D(M(·|i)∥M̂(·|i))1{Xn=i}]

where the supremum is taken over all stationary distributions π and transition matrices

M (row-stochastic) such that πM = π, the in�mum is taken over all estimators M̂ =

M̂(X1, . . . , Xn) that are proper Markov kernels (i.e. rows sum to 1), and M(·|i) denotes

the ith row of M . Our main objective is to characterize this minimax risk within universal

constant factors as a function of n and k.

The prediction problem (4.1) is distinct from the parameter estimation problem such as

estimating the transition matrix (Anderson and Goodman, 1957; Bartlett, 1951; Billingsley,

1961; Wolfer and Kontorovich, 2019) or its properties (Csiszár and Shields, 2000; Han et al.,

2018a; Hsu et al., 2019; Kamath and Verdú, 2016) in that the quantity to be estimated

(conditional distribution of the next state) depends on the sample path itself. This is

precisely what renders the prediction problem closely relevant to natural applications such

as autocomplete and text generation. In addition, this formulation allows more �exibility

with far less assumptions compared to the estimation framework. For example, if certain

state has very small probability under the stationary distribution, consistent estimation of

the transition matrix with respect to usual loss function, e.g. squared risk, may not be

possible, whereas the prediction problem is unencumbered by such rare states.

In the special case of iid data, the prediction problem reduces to estimating the dis-

tribution in KL divergence. In this setting the optimal risk is well understood, which is

known to be k−1
2n (1 + o(1)) when k is �xed and n → ∞ (Braess et al., 2002) and Θ( kn) for

k = O(n) (Kamath et al., 2015; Paninski, 2004).1 Typical in parametric models, this rate

k
n is commonly referred to the �parametric rate�, which leads to a sample complexity that

scales proportionally to the number of parameters and inverse proportionally to the desired

accuracy.

In the setting of Markov chains, however, the prediction problem is much less understood

1Here and below ≍,≲,≳ or Θ(·), O(·),Ω(·) denote equality and inequalities up to universal multiplicative
constants.
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especially for large state space. Recently the seminal work Falahatgar et al. (2016) showed

the surprising result that for stationary Markov chains on two states, the optimal prediction

risk satis�es

Risk2,n = Θ

(
log log n

n

)
,

which has a nonparametric rate even when the problem has only two parameters. The

follow-up work Hao et al. (2018) studied general k-state chains and showed a lower bound of

Ω(k log logn
n ) for uniform (not necessarily stationary) initial distribution; however, the upper

bound O(k
2 log logn

n ) in Hao et al. (2018) relies on implicit assumptions on mixing time such

as spectral gap conditions: the proof of the upper bound for prediction (Lemma 7 in the

supplement) and for estimation (Lemma 17 of the supplement) is based on Berstein-type

concentration results of the empirical transition counts, which depend on spectral gap. The

following theorem resolves the optimal risk for k-state Markov chains:

Theorem 15 (Optimal rates without spectral gap). There exists a universal constant C > 0

such that for all 3 ≤ k ≤
√
n/C,

k2

Cn
log
( n

k2

)
≤ Riskk,n ≤

Ck2

n
log
( n

k2

)
.

Furthermore, the lower bound continues to hold even if the Markov chain is restricted to be

irreducible and reversible.

Remark 6. The optimal prediction risk of O(k
2

n log n
k2
) can be achieved by an average

version of the add-one estimator (i.e. Laplace's rule of succession). Given a trajectory xn =

(x1, . . . , xn) of length n, denote the transition counts (with the convention Ni ≡ Nij ≡ 0 if

n = 0, 1)

Ni =
n−1∑
ℓ=1

1{xℓ=i}, Nij =
n−1∑
ℓ=1

1{xℓ=i,xℓ+1=j}.
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The add-one estimator for the transition probability M(j|i) is given by

M̂+1
xn (j|i) ≜ Nij + 1

Ni + k
, (4.1)

which is an additively smoothed version of the empirical frequency. Finally, the optimal

rate in (15) can be achieved by the following estimator M̂ de�ned as an average of add-one

estimators over di�erent sample sizes:

M̂xn(xn+1|xn) ≜
1

n

n∑
t=1

M̂+1
xn
n−t+1

(xn+1|xn). (4.2)

In other words, we apply the add-one estimator to the most recent t observations (Xn−t+1, . . . , Xn)

to predict the next Xn+1, then average over t = 1, . . . , n. Such Cesàro-mean-type estimators

have been introduced before in the density estimation literature (see, e.g., Yang and Barron

(1999)). It remains open whether the usual add-one estimator (namely, the last term in

(4.2) which uses all the data) or any add-c estimator for constant c achieves the optimal

rate. In contrast, for two-state chains the optimal risk (4.1) is attained by a hybrid strategy

Falahatgar et al. (2016), applying add-c estimator for c = 1
logn for trajectories with at most

one transition and c = 1 otherwise. Also note that the estimator in (4.2) can be computed in

O(nk) time. To derive this �rst note that given any j ∈ [k] calculating M̂+1

xn−1
1

(j|xn−1) takes

O(n) time and given any M+1

xn−1
n−t+1

(j|xn−1) we need O(1) time to calculate M̂+1

xn−1
n−t+2

(j|xn−1).

Summing over all j we get the algorithmic complexity upper bound.

Theorem 15 shows that the departure from the parametric rate of k2

n , �rst discovered

in Falahatgar et al. (2016); Hao et al. (2018) for binary chains, is even more pronounced

for larger state space. As will become clear in the proof, there is some fundamental di�er-

ence between two-state and three-state chains, resulting in Risk3,n = Θ( lognn ) ≫ Risk2,n =

Θ( log lognn ). It is instructive to compare the sample complexity for prediction in the iid and

Markov model. Denote by d the number of parameters, which is k − 1 for the iid case and

k(k − 1) for Markov chains. De�ne the sample complexity n∗(d, ϵ) as the smallest sample
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size n in order to achieve a prescribed prediction risk ϵ. For ϵ = O(1), we have

n∗(d, ϵ) ≍



d
ϵ iid

d
ϵ log log

1
ϵ Markov with 2 states

d
ϵ log

1
ϵ Markov with k ≥ 3 states.

At a high level, the nonparametric rates in the Markov model can be attributed to the

memory in the data. On the one hand, Theorem 15 as well as (4.1) a�rm that one can

obtain meaningful prediction without imposing any mixing conditions;2 such decoupling

between learning and mixing has also been observed in other problems such as learning linear

dynamics Dean et al. (2019); Simchowitz et al. (2018). On the other hand, the dependency

in the data does lead to a strictly higher sample complexity than that of the iid case; in

fact, the lower bound in Theorem 15 is proved by constructing chains with spectral gap

as small as O( 1n) (see Section 4.3). Thus, it is conceivable that with su�ciently favorable

mixing conditions, the prediction risk improves over that of the worst case and, at some

point, reaches the parametric rate. To make this precise, we focus on Markov chains with a

prescribed spectral gap.

It is well-known that for an irreducible and reversible chain, the transition matrix M

has k real eigenvalues satisfying 1 = λ1 ≥ λ2 ≥ . . . λk ≥ −1. The absolute spectral gap of

M , de�ned as

γ∗ ≜ 1−max {|λi| : i ̸= 1} ,

quanti�es the memory of the Markov chain. For example, the mixing time is determined by

1/γ∗ (relaxation time) up to logarithmic factors. As extreme cases, the chain which does

not move (M is identity) and which is iid (M is rank-one) have spectral gap equal to 0

and 1, respectively. We refer the reader to Levin and Peres (2017a) for more background.

Note that the de�nition of absolute spectral gap requires irreducibility and reversibility,

thus we restrict ourselves to this class of Markov chains (it is possible to use more general

notions such as pseudo spectral gap to quantify the memory of the process, which is beyond

2To see this, it is helpful to consider the extreme case where the chain does not move at all or is periodic,
in which case predicting the next state is in fact easy.

71



the scope of the current paper). Given γ0 ∈ (0, 1), de�ne Mk(γ0) as the set of transition

matrices corresponding to irreducible and reversible chains whose absolute spectral gap

exceeds γ0. Restricting (4.1) to this subcollection and noticing the stationary distribution

here is uniquely determined by M , we de�ne the corresponding minimax risk:

Riskk,n(γ0) ≜ inf
M̂

sup
M∈Mk(γ0)

E
[
D(M(·|Xn)∥M̂(·|Xn))

]

Extending the result (4.1) of Falahatgar et al. (2016), the following theorem characterizes

the optimal prediction risk for two-state chains with prescribed spectral gaps (the case γ0 = 0

correspond to the minimax rate in Falahatgar et al. (2016) over all binary Markov chains):

Theorem 16 (Spectral gap dependent rates for binary chain). For any γ0 ∈ (0, 1)

Risk2,n(γ0) ≍
1

n
max

{
1, log log

(
min

{
n,

1

γ0

})}
.

Theorem 16 shows that for binary chains, parametric rate O( 1n) is achievable if and

only if the spectral gap is nonvanishing. While this holds for bounded state space (see

Corollary 18 below), for large state space, it turns out that much weaker conditions on

the absolute spectral gap su�ce to guarantee the parametric rate O(k
2

n ), achieved by the

add-one estimator applied to the entire trajectory. In other words, as long as the spectral

gap is not excessively small, the prediction risk in the Markov model behaves in the same

way as that of an iid model with equal number of parameters. Similar conclusion has been

established previously for the sample complexity of estimating the entropy rate of Markov

chains in (Han et al., 2018a, Theorem 1).

Theorem 17. The add-one estimator in (4.1) achieves the following risk bound.

(i) For any k ≥ 2, Riskk,n(γ0) ≲
k2

n provided that γ0 ≳ ( log kk )1/4.

(ii) In addition, for k ≳ (log n)6, Riskk,n(γ0) ≲
k2

n provided that γ0 ≳
(log(n+k))2

k .

Corollary 18. For any �xed k ≥ 2, Riskk,n(γ0) = O( 1n) if and only if γ0 = Ω(1).

Finally, we address the optimal prediction risk for higher-order Markov chains. In con-

trast to the Θ
(
log logn

n

)
rate in the binary �rst-order Markov chains, for all higher-order
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chains the minimax rate for binary state space is signi�cantly higher: Θ
(
logn
n

)
. In general,

we show that for the mth-order chain the minimax prediction error is km+1

n log n
km+1 for any

given m ≥ 2, upto constant multiples depending on m. A Cesàro-mean of add-one type

estimators, similar to the �rst-order construction and generalized for the mth-order chains,

achieves the upper bound. The lower bound construction is based on a similar mutual in-

formation based characterization of the prediction error. The construction of prior on the

transition matrices, which are km × k dimensional, to achieve the required bounds on the

mutual information, is more involved but uses a certain generalization of the symmetry

structure of the �rst-order transition matrices.

Theorem 19. There is a constant Cm depending on m such that for any 2 ≤ k ≤ m+1
√
n/Cm

and constant m ≥ 2 the minimax prediction rate for mth-order Markov chains with stationary

initialization is Θm

(
km+1

n log n
km+1

)
.

4.1.1 Proof techniques

The proof of Theorem 15 deviates from existing approaches based on concentration inequal-

ities for Markov chains. For instance, the standard program for analyzing the add-one

estimator (4.1) involves proving concentration of the empirical counts on their population

version, namely, Ni ≈ nπi and Nij ≈ nπiM(j|i), and bounding the risk in the atypical case

by concentration inequalities, such as the Cherno�-type bounds in Lezaud (1998); Paulin

(2015), which have been widely used in recent work on statistical inference with Markov

chains (Han et al., 2018a; Hao et al., 2018; Hsu et al., 2019; Kamath and Verdú, 2016;

Wolfer and Kontorovich, 2019). However, these concentration inequalities inevitably de-

pends on the spectral gap of the Markov chain, leading to results which deteriorate as the

spectral gap becomes smaller. For two-state chains, results free of the spectral gap are ob-

tained in Falahatgar et al. (2016) using explicit joint distribution of the transition counts;

this re�ned analysis, however, is di�cult to extend to larger state space as the probability

mass function of (Nij) is given by Whittle's formula (Whittle, 1955) which takes an unwieldy

determinantal form.

Eschewing concentration-based arguments, the crux of our proof of Theorem 15, for both
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the upper and lower bound, revolves around the following quantity known as redundancy :

Redk,n ≜ inf
QXn

sup
PXn

D(PXn∥QXn) = inf
QXn

sup
PXn

∑
xn

PXn(xn) log
PXn(xn)

QXn(xn)
.

Here the supremum is taken over all joint distributions of stationary Markov chains Xn

on k states, and the in�mum is over all joint distributions QXn . A central quantity which

measures the minimax regret in universal compression, the redundancy (4.1.1) corresponds

to minimax cumulative risk (namely, the total prediction risk when the sample size ranges

from 1 to n), while (4.1) is the individual minimax risk at sample size n � see Section 4.2

for a detailed discussion. We prove the following reduction between prediction risk and

redundancy:

1

n
Redsymk−1,n −

log k

n
≲ Riskk,n ≤

1

n− 1
Redk,n

where Redsym denotes the redundancy for symmetric Markov chains. The upper bound is

standard: thanks to the convexity of the loss function and stationarity of the Markov chain,

the risk of the Cesàro-mean estimator (4.2) can be upper bounded using the cumulative

risk and, in turn, the redundancy. The proof of the lower bound is more involved. Given a

(k − 1)-state chain, we embed it into a larger state space by introducing a new state, such

that with constant probability, the chain starts from and gets stuck at this state for a period

time that is approximately uniform in [n], then enters the original chain. E�ectively, this

scenario is equivalent to a prediction problem on k−1 states with a random (approximately

uniform) sample size, whose prediction risk can then be related to the cumulative risk and

redundancy. This intuition can be made precise by considering a Bayesian setting, in which

the (k − 1)-state chain is randomized according to the least favorable prior for (4.1.1), and

representing the Bayes risk as conditional mutual information and applying the chain rule.

Given the above reduction in (4.1.1), it su�ces to show both redundancies therein are

on the order of k2

n log n
k2
. The redundancy is upper bounded by pointwise redundancy, which

replaces the average in (4.1.1) by the maximum over all trajectories. Following Csiszár

and Shields (2004); Davisson et al. (1981), we consider an explicit probability assignment

de�ned by add-one smoothing and using combinatorial arguments to bound the pointwise
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redundancy, shown optimal by information-theoretic arguments.

The optimal spectral gap-dependent rate in Theorem 16 relies on the key observation

in Falahatgar et al. (2016) that, for binary chains, the dominating contribution to the

prediction risk comes from trajectories with a single transition, for which we may apply an

add-c estimator with c depending appropriately on the spectral gap. The lower bound is

shown using a Bayesian argument similar to that of (Hao et al., 2018, Theorem 1). The

proof of Theorem 17 relies on more delicate concentration arguments as the spectral gap is

allowed to be vanishingly small. Notably, for small k, direct application of existing Bernstein

inequalities for Markov chains in Lezaud (1998); Paulin (2015) falls short of establishing the

parametric rate of O(k
2

n ) (see Remark 9 in Section 4.4.2 for details); instead, we use a fourth

moment bound which turns out to be well suited for analyzing concentration of empirical

counts conditional on the terminal state.

For large k, we further improve the spectral gap condition using a simulation argument

for Markov chains using independent samples Billingsley (1961); Han et al. (2018a). A key

step is a new concentration inequality for D(P∥P̂+1
n,k), where P̂+1

n,k is the add-one estimator

based on n iid observations of P supported on [k]:

P

(
D(P∥P̂+1

n,k) ≥ c · k
n
+

polylog(n) ·
√
k

n

)
≤ 1

poly(n)
, (4.3)

for some absolute constant c > 0. Note that an application of the classical concentration

inequality of McDiarmid would result in the second term being polylog(n)/
√
n, and (4.3)

crucially improves this to polylog(n)·
√
k/n. Such an improvement has been recently observed

by Agrawal (2020); Guo and Richardson (2020); Mardia et al. (2020) in studying the similar

quantity D(P̂n∥P ) for the (unsmoothed) empirical distribution P̂n; however, these results,

based on either the method of types or an explicit upper bound of the moment generating

function, are not directly applicable to (4.3) in which the true distribution P appears as the

�rst argument in the KL divergence.

The nonasymptotic analysis of the prediction rate for higher-order chains with large

alphabets is based on a similar redundancy-based reduction as the �rst-order chain. How-

ever, achieving nonasymptotic bounds for redundancy in the higher-order regimes is more
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challenging. The geometry of the eigenvalues and the eigenvectors of asymmetric transition

matrices are comparatively less understood. As a result, the spectral gaps are not well

de�ned, which makes it challenging to borrow related analysis for the �rst-order case from

Tatwawadi et al. (2018). To bypass this issue, we deduced results based on the pseudo

spectral gap of the transition matrix of the �rst-order chain {(Xt+1, . . . , Xt+m−1)}n−m+1
t=0 .

Our analysis entails the construction of a prior that retains Θ
(
km+1

)
degrees of freedom for

the transition matrix and achieves pseudo spectral gap of constant order, which ensures the

required estimation bounds for the transition kernel and attains the required minimax rate.

4.1.2 Related work

While the exact prediction problem studied in this paper has recently been in focus since

Falahatgar et al. (2016); Hao et al. (2018), there exists a large body of literature on relate

works. As mentioned before some of our proof strategies draws inspiration and results from

the study of redundancy in universal compression, its connection to mutual information, as

well as the perspective of sequential probability assignment as prediction, dating back to

Davisson (1973); Davisson et al. (1981); Rissanen (1984); Ryabko (1988); Shtarkov (1987).

Asymptotic characterization of the minimax redundancy for Markov sources, both average

and pointwise, were obtained in Atteson (1999); Davisson (1983); Jacquet and Szpankowski

(2002), in the regime of �xed alphabet size k and large sample size n. Non-asymptotic

characterization was obtained in Davisson (1983) for n≫ k2 log k and recently extended to

n ≍ k2 in Tatwawadi et al. (2018), which further showed that the behavior of the redundancy

remains unchanged even if the Markov chain is very close to being iid in terms of spectral

gap γ∗ = 1− o(1).

The current paper adds to a growing body of literature devoted to statistical learning

with dependent data, in particular those dealing with Markov chains. Estimation of the tran-

sition matrix Anderson and Goodman (1957); Bartlett (1951); Billingsley (1961); Sinkhorn

(1964) and testing the order of Markov chains Csiszár and Shields (2000) have been well

studied in the large-sample regime. More recently attention has been shifted towards large

state space and nonasymptotics. For example, Wolfer and Kontorovich (2019) studied the

estimation of transition matrix in ℓ∞ → ℓ∞ induced norm for Markov chains with prescribed
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pseudo spectral gap and minimum probability mass of the stationary distribution, and de-

termined sample complexity bounds up to logarithmic factors. Similar results have been

obtained for estimating properties of Markov chains, including mixing time and spectral

gap Hsu et al. (2019), entropy rate (Han et al., 2018a; Kamath and Verdú, 2016; Obremski

and Skorski, 2020), graph statistics based on random walk (Ben-Hamou et al., 2018), as well

as identity testing (Cherapanamjeri and Bartlett, 2019; Daskalakis et al., 2018; Fried and

Wolfer, 2021; Wolfer and Kontorovich, 2020). Most of these results rely on assumptions on

the Markov chains such as lower bounds on the spectral gap and the stationary distribu-

tion, which a�ord concentration for sample statistics of Markov chains. In contrast, one of

the main contributions in this paper, in particular Theorem 15, is that optimal prediction

can be achieved without these assumptions, thereby providing a novel way of tackling these

seemingly unavoidable issues. This is ultimately accomplished by information-theoretic and

combinatorial techniques from universal compression.

4.1.3 Notations and preliminaries

For n ∈ N, let [n] ≜ {1, . . . , n}. Denote xn = (x1, . . . , xn) and xnt = (xt, . . . , xn). The dis-

tribution of a random variable X is denoted by PX . In a Bayesian setting, the distribution

of a parameter θ is referred to as a prior, denoted by Pθ. We recall the following de�ni-

tions from information theory (Cover and Thomas, 2006; Csiszár and Körner, 1982). The

conditional KL divergence is de�ned as as an average of KL divergence between conditional

distributions:

D(PA|B∥QA|B|PB) ≜ EB∼PB
[D(PA|B∥QA|B)] =

∫
PB(db)D(PA|B=b∥QA|B=b).

The mutual information between random variables A and B with joint distribution PAB is

I(A;B) ≜ D(PB|A∥PB|PA); similarly, the conditional mutual information is de�ned as

I(A;B|C) ≜ D(PB|A,C∥PB|C |PA,C).
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The following variational representation of (conditional) mutual information is well-known

I(A;B) = min
QB

D(PB|A∥QB|PA), I(A;B|C) = min
QB|C

D(PB|A,C∥QB|C |PAC).

The entropy of a discrete random variables X is H(X) ≜
∑

x PX(x) log 1
PX(x) .

4.1.4 Organization

The rest of the paper is organized as follows. In Section 4.2 we describe the general paradigm

of minimax redundancy and prediction risk and their dual representation in terms of mu-

tual information. We give a general redundancy-based bound on the prediction risk, which,

combined with redundancy bounds for Markov chains, leads to the upper bound in Theo-

rem 15. Section 4.3 presents the lower bound construction, starting from three states and

then extending to k states. Spectral-gap dependent risk bounds in Theorems 16 and 17

are given in Section 4.4. Section 4.5 presents the results and proofs for mth-order Markov

chains. Section 4.6 discusses the assumptions and implications of our results and related

open problems.

4.2 Two general paradigms

4.2.1 Redundancy, prediction risk, and mutual information representa-

tion

For n ∈ N, let P = {PXn+1|θ : θ ∈ Θ} be a collection of joint distributions parameterized by

θ.

�Compression�. Consider a sample Xn ≜ (X1, . . . , Xn) of size n drawn from PXn|θ for

some unknown θ ∈ Θ. The redundancy of a probability assignment (joint distribution) QXn

is de�ned as the worst-case KL risk of �tting the joint distribution of Xn, namely

Red(QXn) ≜ sup
θ∈Θ

D(PXn|θ∥QXn).

78



Optimizing over QXn , the minimax redundancy is de�ned as

Redn ≜ inf
QXn

Redn(QXn),

where the in�mum is over all joint distribution QXn . This quantity can be operationalized

as the redundancy (i.e. regret) in the setting of universal data compression, that is, the

excess number of bits compared to the optimal compressor of Xn that knows θ (Cover and

Thomas, 2006, Chapter 13).

The capacity-redundancy theorem (see Kemperman (1974) for a very general result)

provides the following mutual information characterization of (4.2.1):

Redn = sup
Pθ

I(θ;Xn),

where the supremum is over all distributions (priors) Pθ on Θ. In view of the variational

representation (4.1.3), this result can be interpreted as a minimax theorem:

Redn = inf
QXn

sup
Pθ

D(PXn|θ∥QXn |Pθ) = sup
Pθ

inf
QXn

D(PXn|θ∥QXn |Pθ).

Typically, for �xed model size and n → ∞, one expects that Redn = d
2 log n(1 + o(1),

where d is the number of parameters; see Rissanen (1984) for a general theory of this type.

Indeed, on a �xed alphabet of size k, we have Redn = k−1
2 log n(1 + o(1)) for iid model

Davisson (1973) and Redn = km(k−1)
2 log n(1 + o(1)) for m-order Markov models Tro�mov

(1974), with more re�ned asymptotics shown in Szpankowski and Weinberger (2012); Xie

and Barron (1997). For large alphabets, nonasymptotic results have also been obtained. For

example, for �rst-order Markov model, Redn ≍ k2 log n
k2

provided that n ≳ k2 Tatwawadi

et al. (2018).

�Prediction�. Consider the problem of predicting the next unseen data point Xn+1 based

on the observations X1, . . . , Xn, where (X1, . . . , Xn+1) are jointly distributed as PXn+1|θ for

some unknown θ ∈ Θ. Here, an estimator is a distribution (for Xn+1) as a function of

Xn, which, in turn, can be written as a conditional distribution QXn+1|Xn . As such, its
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worst-case average risk is

Risk(QXn+1|Xn) ≜ sup
θ∈Θ

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn|θ),

where the conditional KL divergence is de�ned in (4.1.3). The minimax prediction risk is

then de�ned as

Riskn ≜ inf
QXn+1|Xn

Riskn(QXn+1|Xn),

While (4.2.1) does not directly correspond to a statistical estimation problem, (4.2.1) is

exactly the familiar setting of �density estimation�, where QXn+1|Xn is understood as an

estimator for the distribution of the unseen Xn+1 based on the available data X1, . . . , Xn.

In the Bayesian setting where θ is drawn from a prior Pθ, the Bayes prediction risk

coincides with the conditional mutual information as a consequence of the variational rep-

resentation (4.1.3):

inf
QXn+1|Xn

Eθ[D(PXn+1|Xn,θ∥QXn+1|Xn |PXn|θ)] = I(θ;Xn+1|Xn).

Furthermore, the Bayes estimator that achieves this in�mum takes the following form:

QBayes
Xn+1|Xn = PXn+1|Xn =

∫
Θ PXn+1|θ dPθ∫
Θ PXn|θ dPθ

, (4.4)

known as the Bayes predictive density Davisson (1973); Liang and Barron (2004). These

representations play a crucial role in the lower bound proof of Theorem 15. Under appro-

priate conditions which hold for Markov models (see Lemma 46 in Appendix 4.7.1), the

minimax prediction risk (4.2.1) also admits a dual representation analogous to (4.2.1):

Riskn = sup
θ∼π

I(θ;Xn+1|Xn),

which, in view of (4.2.1), show that the principle of �minimax=worst-case Bayes� continues

to hold for prediction problem in Markov models.

The following result relates the redundancy and the prediction risk.

80



Lemma 20. For any model P,

Redn ≤
n−1∑
t=0

Riskt.

In addition, suppose that each PXn|θ ∈ P is stationary and mth-order Markov. Then for all

n ≥ m+ 1,

Riskn ≤ Riskn−1 ≤
Redn
n−m

.

Furthermore, for any joint distribution QXn factorizing as QXn =
∏n

t=1QXt|Xt−1, the pre-

diction risk of the estimator

Q̃Xn|Xn−1(xn|xn−1) ≜
1

n−m

n∑
t=m+1

QXt|Xt−1(xn|xn−1
n−t+1)

is bounded by the redundancy of QXn as

Risk(Q̃Xn|Xn−1) ≤
1

n−m
Red(QXn).

Remark 7. Note that the upper bound (20) on redundancy, known as the �estimation-

compression inequality� Falahatgar et al. (2016); Kamath et al. (2015), holds without con-

ditions, while the lower bound (20) relies on stationarity and Markovity. For iid data, the

estimation-compression inequality is almost an equality; however, this is not the case for

Markov chains, as both sides of (20) di�er by an unbounded factor of Θ(log log n) for k = 2

and Θ(log n) for �xed k ≥ 3 � see (4.1) and Theorem 15. On the other hand, Markov chains

with at least three states o�ers a rare instance where (20) is tight, namely, Riskn ≍ Redn
n

(cf. Lemma 21).

Proof. The upper bound on the redundancy follows from the chain rule of KL divergence:

D(PXn|θ∥QXn) =

n∑
t=1

D(PXt|Xt−1,θ∥QXt|Xt−1 |PXt−1).

Thus

sup
θ∈Θ

D(PXn|θ∥QXn) ≤
n∑

t=1

sup
θ∈Θ

D(PXt|Xt−1,θ∥QXt|Xt−1 |PXt−1).

Minimizing both sides over QXn (or equivalently, QXt|Xt−1 for t = 1, . . . , n) yields (20).
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To upper bound the prediction risk using redundancy, �x any QXn , which gives rise

to QXt|Xt−1 for t = 1, . . . , n. For clarity, let use denote the tth estimator as P̂t(·|xt−1) =

QXt|Xt−1=xt−1 . Consider the estimator Q̃Xn|Xn−1 de�ned in (20), namely,

Q̃Xn|Xn−1=xn−1 ≜
1

n−m

n∑
t=m+1

P̂t(·|xn−t+1, . . . , xn−1).

That is, we apply P̂t to the most recent t−1 symbols prior to Xn for predicting its distribu-

tion, then average over t. We may bound the prediction risk of this estimator by redundancy

as follows: Fix θ ∈ Θ. To simplify notation, we suppress the dependency of θ and write

PXn|θ ≡ PXn . Then

D(PXn|Xn−1∥Q̃Xn|Xn−1 |PXn−1)
(a)
= E

[
D

(
PXn|Xn−1

n−m

∥∥∥ 1
n

n∑
t=1

P̂t(·|Xn−1
n−t+1)

)]
(b)

≤ 1

n−m

n∑
t=m+1

E
[
D(PXn|Xn−1

n−m
∥P̂t(·|Xn−1

n−t+1))
]

(c)
=

1

n−m

n∑
t=m+1

E
[
D(PXt|Xt−1

t−m
∥P̂t(·|Xt−1))

]
(d)
=

1

n−m

n∑
t=m+1

D(PXt|Xt−1∥QXt|Xt−1 |PXt−1)

≤ 1

n−m

n∑
t=1

D(PXt|Xt−1∥QXt|Xt−1 |PXt−1)

(e)
=

1

n−m
D(PXn∥QXn),

where (a) uses themth-order Markovian assumption; (b) is due to the convexity of the KL di-

vergence; (c) uses the crucial fact that for all t = 1, . . . , n−1, (Xn−t, . . . , Xn−1)
law
= (X1, . . . , Xt),

thanks to stationarity; (d) follows from substituting P̂t(·|xt−1) = QXt|Xt−1=xt−1 , the Marko-

vian assumption PXt|Xt−1
t−m

= PXt|Xt−1 , and rewriting the expectation as conditional KL

divergence; (e) is by the chain rule (4.2.1) of KL divergence. Since the above holds for any

θ ∈ Θ, the desired (20) follows which implies that Riskn−1 ≤ Redn
n−m . Finally, Riskn−1 ≤ Riskn

follows from E[D(PXn+1|Xn
∥P̂n(X

n
2 ))] = E[D(PXn|Xn−1

∥P̂n(X
n−1
1 ))], since (X2, . . . , Xn) and

(X1, . . . , Xn−1) are equal in law.
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Remark 8. Alternatively, Lemma 20 also follows from the mutual information representa-

tion (4.2.1) and (4.2.1). Indeed, by the chain rule for mutual information,

I(θ;Xn) =
n∑

t=1

I(θ;Xt|Xt−1),

taking the supremum over π (the distribution of θ) on both sides yields (4.2.1). For (4.2.1),

it su�ces to show that I(θ;Xt|Xt−1) is decreasing in t: for any θ ∼ π,

I(θ;Xn+1|Xn) = E log
PXn+1|Xn,θ

PXn+1|Xn
= E log

PXn+1|Xn,θ

PXn+1|Xn
2

+ E log
PXn+1|Xn

2

PXn+1|Xn︸ ︷︷ ︸
−I(X1;Xn+1|Xn

2 )

,

and the �rst term is

E log
PXn+1|Xn,θ

PXn+1|Xn
2

= E log
PXn+1|Xn

n−m+1,θ

PXn+1|Xn
2

= E log
PXn|Xn−1

n−m,θ

PXn|Xn−1

= I(θ;Xn|Xn−1)

where the �rst and second equalities follow from the mth-order Markovity and stationarity,

respectively. Taking supremum over π yields Riskn ≤ Riskn−1. Finally, by the chain rule

(8), we have I(θ;Xn) ≥ (n−m)I(θ;Xn|Xn−1), yielding Riskn−1 ≤ Redn
n−m .

4.2.2 Proof of the upper bound part of Theorem 15

Specializing to �rst-order stationary Markov chains with k states, we denote the redundancy

and prediction risk in (4.2.1) and (4.2.1) by Redk,n and Riskk,n, the latter of which is precisely

the quantity previously de�ned in (4.1). Applying Lemma 20 yields Riskk,n ≤ 1
n−1Redk,n.

To upper bound Redk,n, consider the following probability assignment:

Q(x1, · · · , xn) =
1

k

n−1∏
t=1

M̂+1
xt (xt+1|xt)

where M̂+1 is the add-one estimator de�ned in (4.1). This Q factorizes as Q(x1) =
1
k and

Q(xt+1|xt) = M̂+1
xt (xt+1|xt). The following lemma bounds the redundancy of Q:

Lemma 21. Red(Q) ≤ k(k − 1)
[
log
(
1 + n−1

k(k−1)

)
+ 1
]
+ log k.

Combined with Lemma 20, Lemma 21 shows that Riskk,n ≤ C k2

n log n
k2

for all k ≤
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√
n/C and some universal constant C, achieved by the estimator (4.2), which is obtained

by applying the rule (20) to (4.2.2).

It remains to show Lemma 21. To do so, we in fact bound the pointwise redundancy

of the add-one probability assignment (4.2.2) over all (not necessarily stationary) Markov

chains on k states. The proof is similar to those of (Csiszár and Shields, 2004, Theorems

6.3 and 6.5), which, in turn, follow the arguments of (Davisson et al., 1981, Sec. III-B).

Proof. We show that for every Markov chain with transition matrix M and initial distribu-

tion π, and every trajectory (x1, · · · , xn), it holds that

log
π(x1)

∏n−1
t=1 M(xt+1|xt)

Q(x1, · · · , xn)
≤ k(k − 1)

[
log

(
1 +

n

k(k − 1)

)
+ 1

]
+ log k, (4.5)

where we abbreviate the add-one estimator Mxt(xt+1|xt) de�ned in (4.1) as M(xt+1|xt).

To establish (4.5), note that Q(x1, · · · , xn) could be equivalently expressed using the

empirical counts Ni and Nij in (6) as

Q(x1, · · · , xn) =
1

k

k∏
i=1

∏k
j=1Nij !

k · (k + 1) · · · · · (Ni + k − 1)
.

Note that
n−1∏
t=1

M(xt+1|xt) =
k∏

i=1

k∏
j=1

M(j|i)Nij ≤
k∏

i=1

k∏
j=1

(Nij/Ni)
Nij ,

where the inequality follows from
∑

j
Nij

Ni
log

Nij/Ni

M(j|i) ≥ 0 for each i, by the nonnegativity of

the KL divergence. Therefore, we have

π(x1)
∏n−1

t=1 M(xt+1|xt)
Q(x1, · · · , xn)

≤ k ·
k∏

i=1

k · (k + 1) · · · · · (Ni + k − 1)

NNi
i

k∏
j=1

N
Nij

ij

Nij !
. (4.6)

We claim that: for n1, · · · , nk ∈ Z+ and n =
∑k

i=1 ni ∈ N, it holds that

k∏
i=1

(ni

n

)ni

≤
∏k

i=1 ni!

n!
, (4.7)
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with the understanding that ( 0n)
0 = 0! = 1. Applying this claim to (4.6) gives

log
π(x1)

∏n−1
t=1 M(xt+1|xt)

Q(x1, · · · , xn)
≤ log k +

k∑
i=1

log
k · (k + 1) · · · · · (Ni + k − 1)

Ni!

= log k +

k∑
i=1

Ni∑
ℓ=1

log

(
1 +

k − 1

ℓ

)

≤ log k +

k∑
i=1

∫ Ni

0
log

(
1 +

k − 1

x

)
dx

= log k +
k∑

i=1

(
(k − 1) log

(
1 +

Ni

k − 1

)
+Ni log

(
1 +

k − 1

Ni

))
(a)

≤ k(k − 1) log

(
1 +

n− 1

k(k − 1)

)
+ k(k − 1) + log k,

where (a) follows from the concavity of x 7→ log x,
∑k

i=1Ni = n− 1, and log(1 + x) ≤ x.

It remains to justify (4.7), which has a simple information-theoretic proof: Let T denote

the collection of sequences xn in [k]n whose type is given by (n1, . . . , nk). Namely, for each

xn ∈ T , i appears exactly ni times for each i ∈ [k]. Let (X1, . . . , Xn) be drawn uniformly

at random from the set T . Then

log
n!∏k

i=1 ni!
= H(X1, . . . , Xn)

(a)

≤
n∑

j=1

H(Xj)
(b)
= n

k∑
i=1

ni

n
log

n

ni
,

where (a) follows from the fact that the joint entropy is at most the sum of marginal

entropies; (b) is because each Xj is distributed as (n1
n , . . . , nk

n ).

4.3 Optimal rates without spectral gap

In this section, we prove the lower bound part of Theorem 15, which shows the optimality

of the average version of the add-one estimator (20). We �rst describe the lower bound

construction for three-state chains, which is subsequently extended to k states.

4.3.1 Warmup: an Ω( logn
n

) lower bound for three-state chains

Theorem 22. Risk3,n = Ω
(
logn
n

)
.
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To show Theorem 22, consider the following one-parameter family of transition matrices:

M =

Mp =


1− 2

n
1
n

1
n

1
n 1− 1

n − p p

1
n p 1− 1

n − p

 : 0 ≤ p ≤ 1− 1

n

 .

Note that each transition matrix inM is symmetric (hence doubly stochastic), whose cor-

responding chain is reversible with a uniform stationary distribution and spectral gap Θ( 1n);

see Fig. 4.1.

1

2 3

1
n

1
n

1− 2
n

1
n

p

1− 1
n − p

p

1
n

1− 1
n − p

Figure 4.1: Lower bound construction for three-state chains.

The main idea is as follows. Notice that by design, with constant probability, the tra-

jectory is of the following form: The chain starts and stays at state 1 for t steps, and then

transitions into state 2 or 3 and never returns to state 1, where t = 1, . . . , n− 1. Since p is

the single unknown parameter, the only useful observations are visits to state 2 and 3 and

each visit entails one observation about p by �ipping a coin with bias roughly p. Thus the

e�ective sample size for estimating p is n− t− 1 and we expect the best estimation error is

of the order of 1
n−t . However, t is not �xed. In fact, conditioned on the trajectory is of this

form, t is roughly uniformly distributed between 1 and n − 1. As such, we anticipate the

estimation error of p is approximately

1

n− 1

n−1∑
i=1

1

n− t
= Θ

(
log n

n

)
.

Intuitively speaking, the construction in Fig. 4.1 �embeds� a symmetric two-state chain
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(with states 2 and 3) with unknown parameter p into a space of three states, by adding

a �nuisance� state 1, which e�ectively slows down the exploration of the useful part of the

state space, so that in a trajectory of length n, the e�ective number of observations we get

to make about p is roughly uniformly distributed between 1 and n. This explains the extra

log factor in Theorem 22, which actually stems from the harmonic sum in E[ 1
Uniform([n]) ].

We will fully explore this embedding idea in Section 4.3.2 to deal with larger state space.

Next we make the above intuition rigorous using a Bayesian argument. Let us start by

recalling the following well-known lemma.

Lemma 23. Let q ∼ Uniform(0, 1). Conditioned on q, let N ∼ Binom(m, q). Then the

Bayes estimator of q given N is the �add-one� estimator:

E[q|N ] =
N + 1

m+ 2

and the Bayes risk is given by

E[(q − E[q|N ])2] =
1

6(m+ 2)
.

Proof of Theorem 22. Consider the following Bayesian setting: First, we draw p uniformly

at random from [0, 1 − 1
n ]. Then, we generate the sample path Xn = (X1, . . . , Xn) of a

stationary (uniform) Markov chain with transition matrix Mp as de�ned in (4.3.1). De�ne

Xt = {xn : x1 = . . . = xt = 1, xi ̸= 1, i = t+ 1, . . . , n}, t = 1, . . . , n− 1,

X = ∪n−1
t=1 Xt.

(4.8)

Let µ(xn|p) = P [X = xn]. Then

µ(xn|p) = 1

3

(
1− 2

n

)t−1 2

n
pN(xn)

(
1− 1

n
− p

)n−t−1−N(xn)

, xn ∈ Xt,

87



where N(xn) denotes the number of transitions from state 2 to 3 or from 3 to 2. Then

P [Xn ∈ Xt] =
1

3

(
1− 2

n

)t−1 2

n

n−t−1∑
k=0

(
n− t− 1

k

)
pk
(
1− 1

n
− p

)n−t−1−k

=
1

3

(
1− 2

n

)t−1 2

n

(
1− 1

n

)n−t−1

=
2

3n

(
1− 1

n

)n−2(
1− 1

n− 1

)t−1

and hence

P [Xn ∈ X ] =
n−1∑
t=1

P [Xn ∈ Xt] =
2(n− 1)

3n

(
1− 1

n

)n−2
(
1−

(
1− 1

n− 1

)n−1
)

=
2(1− 1/e)

3e
+ on(1).

Consider the Bayes estimator (for estimating p under the mean-squared error)

p̂(xn) = E[p|xn] = E[p · µ(xn|p)]
E[µ(xn|p)]

.

For xn ∈ Xt, using (4.3.1) we have

p̂(xn) =
E
[
pN(xn)+1

(
1− 1

n − p
)n−t−1−N(xn)

]
E
[
pN(xn)

(
1− 1

n − p
)n−t−1−N(xn)

] , p ∼ Uniform

(
0,

n− 1

n

)

=
n− 1

n

E
[
UN(xn)+1 (1− U)n−t−1−N(xn)

]
E
[
UN(xn) (1− U)n−t−1−N(xn)

] , U ∼ Uniform(0, 1)

=
n− 1

n

N(xn) + 1

n− t+ 1
,

where the last step follows from Lemma 23. From (4.3.1), we conclude that conditioned on

Xn ∈ Xt and on p, N(Xn) ∼ Binom(n− t−1, q), where q = p

1− 1
n

∼ Uniform(0, 1). Applying

Lemma 23 (with m = n− t− 1 and N = N(Xn)), we get

E[(p− p̂(Xn))2|Xn ∈ Xt] =

(
n− 1

n

)2

E

[(
q − N(xn) + 1

n− t+ 1

)2
]

=

(
n− 1

n

)2 1

6(n− t+ 1)
.
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Finally, note that conditioned on Xn ∈ X , the probability of Xn ∈ Xt is close to uniform.

Indeed, from (4.3.1) and (4.3.1) we get

P [Xn ∈ Xt|X ] =
1

n− 1

(
1− 1

n−1

)t−1

1−
(
1− 1

n−1

)n−1 ≥
1

n− 1

(
1

e− 1
+ on(1)

)
, t = 1, . . . , n− 1.

Thus

E[(p− p̂(Xn))21{Xn∈X}] = P [Xn ∈ X ]
n−1∑
t=1

E[(p− p̂(Xn))2|Xn ∈ Xt]P [Xn ∈ Xt|X ]

≳
1

n− 1

n−1∑
t=1

1

n− t+ 1
= Θ

(
log n

n

)
.

Finally, we relate (4.3.1) formally to the minimax prediction risk under the KL diver-

gence. Consider any predictor M̂(·|i) (as a function of the sample path X) for the ith row

of M , i = 1, 2, 3. By Pinsker inequality, we conclude that

D(M(·|2)∥M̂(·|2)) ≥ 1

2
∥M(·|2)− M̂(·|2)∥2ℓ1 ≥

1

2
(p− M̂(3|2))2

and similarly, D(M(·|3)∥M̂(·|3)) ≥ 1
2(p− M̂(2|3))2. Abbreviate M̂(3|2) ≡ p̂2 and M̂(2|3) ≡

p̂3, both functions of X. Taking expectations over both p and X, the Bayes prediction risk

can be bounded as follows

3∑
i=1

E[D(M(·|i)∥M̂(·|i))1{Xn=i}]

≥ 1

2
E[(p− p̂2)

21{Xn=2} + (p− p̂3)
21{Xn=3}]

≥ 1

2

∑
x∈X

µ(xn)
(
E[(p− p̂2)

2|X = xn]1{xn=2} + E[(p− p̂3)
2|X = xn]1{xn=3}

)
≥ 1

2

∑
xn∈X

µ(xn)E[(p− p̂(xn))2|X = xn](1{xn=2} + 1{xn=3})

=
1

2

∑
xn∈X

µ(xn)E[(p− p̂(xn))2|X = xn]

=
1

2
E[(p− p̂(X))21{X∈X}]

(4.3.1)
= Θ

(
log n

n

)
.
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4.3.2 k-state chains

The lower bound construction for 3-state chains in Section 4.3.1 can be generalized to k-

state chains. The high-level argument is again to augment a (k − 1)-state chain into a

k-state chain. Speci�cally, we partition the state space [k] into two sets S1 = {1} and

S2 = {2, 3, · · · , k}. Consider a k-state Markov chain such that the transition probabilities

from S1 to S2, and from S2 to S1, are both very small (on the order of Θ(1/n)). At state

1, the chain either stays at 1 with probability 1 − 1/n or moves to one of the states in S2

with equal probability 1
n(k−1) ; at each state in S2, the chain moves to 1 with probability

1
n ; otherwise, within the state subspace S2, the chain evolves according to some symmetric

transition matrix T . (See Fig. 4.2 in Section 4.3.2 for the precise transition diagram.)

The key feature of such a chain is as follows. Let Xt be the event thatX1, X2, · · · , Xt ∈ S1

and Xt+1, · · · , Xn ∈ S2. For each t ∈ [n − 1], one can show that P(Xt) ≥ c/n for some

absolute constant c > 0. Moreover, conditioned on the event Xt, (Xt+1, . . . , Xn) is equal in

law to a stationary Markov chain (Y1, · · · , Yn−t) on state space S2 with symmetric transition

matrix T . It is not hard to show that estimating M and T are nearly equivalent. Consider

the Bayesian setting where T is drawn from some prior. We have

inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt]

]
≈ inf

T̂
ET

[
E[D(T (·|Yn−t)∥T̂ (·|Yn−t))]

]
= I(T ;Yn−t+1|Y n−t),

where the last equality follows from the representation (4.2.1) of Bayes prediction risk as

conditional mutual information. Lower bounding the minimax risk by the Bayes risk, we
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have

Riskk,n ≥ inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]
≥ inf

M̂

n−1∑
t=1

EM

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt] · P(Xt)

]
≥ c

n
·
n−1∑
t=1

inf
M̂

EM

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt]

]
≈ c

n
·
n−1∑
t=1

I(T ;Yn−t+1|Y n−t) =
c

n
· (I(T ;Y n)− I(T ;Y1)). (4.9)

Note that I(T ;Y1) ≤ H(Y1) ≤ log(k − 1) since Y1 takes values in S2. Maximizing the right

hand side over the prior PT and recalling the dual representation for redundancy in (4.2.1),

the above inequality (4.9) leads to a risk lower bound of Riskk,n ≳ 1
n(Red

sym
k−1,n− log k), where

Redsymk−1,n = sup I(T ;Y1) is the redundancy for symmetric Markov chains with k − 1 states

and sample size n. Since symmetric transition matrices still have Θ(k2) degrees of freedom,

it is expected that Redsymk,n ≍ k2 log n
k2

for n ≳ k2, so that (4.9) yields the desired lower bound

Riskk,n = Ω(k
2

n log n
k2
) in Theorem 15.

Next we rigorously carry out the lower bound proof sketched above: In Section 4.3.2, we

explicitly construct the k-state chain which satis�es the desired properties in Section 4.3.2.

In Section 4.3.2, we make the steps in (4.9) precise and bound the Bayes risk from below

by an appropriate mutual information. In Section 4.3.2, we choose a prior distribution on

the transition probabilities and prove a lower bound on the resulting mutual information,

thereby completing the proof of Theorem 15, with the added bonus that the construction is

restricted to irreducible and reversible chains.
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Construction of the k-state chain

We construct a k-state chain with the following transition probability matrix:

M =



1− 1
n

1
n(k−1)

1
n(k−1) · · ·

1
n(k−1)

1/n

1/n

...

1/n

(
1− 1

n

)
T


, (4.10)

where T ∈ RS2×S2 is a symmetric stochastic matrix to be chosen later. The transition

diagram of M is shown in Figure 4.2. One can also verify that the spectral gap of M is

Θ( 1n).

1

2 3 . . . k

S1
S2

1
n(k−1)

1
n(k−1) 1

n(k−1)

1− 1
n

1
n

(1− 1
n)T2,3

(1− 1
n)T2,k

(1− 1
n)T2,2

1
n

(1− 1
n)T3,3

(1− 1
n)T3,k

1
n

1
n

(1− 1
n)Tk,k

Figure 4.2: Lower bound construction for k-state chains. Solid arrows represent transitions within

S1 and S2, and dashed arrows represent transitions between S1 and S2. The double-headed arrows

denote transitions in both directions with equal probabilities.
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Let (X1, . . . , Xn) be the trajectory of a stationary Markov chain with transition matrix

M . We observe the following properties:

(P1) This Markov chain is irreducible and reversible, with stationary distribution (12 ,
1

2(k−1) , · · · ,
1

2(k−1));

(P2) For t ∈ [n−1], let Xt denote the collections of trajectories x
n such that x1, x2, · · · , xt ∈

S1 and xt+1, · · · , xn ∈ S2. Then

P(Xn ∈ Xt) = P(X1 = · · · = Xt = 1) · P(Xt+1 ̸= 1|Xt = 1) ·
n−1∏

s=t+1

P(Xs+1 ̸= 1|Xs ̸= 1)

=
1

2
·
(
1− 1

n

)t−1

· 1
n
·
(
1− 1

n

)n−1−t

≥ 1

2en
.

Moreover, this probability does not depend of the choice of T ;

(P3) Conditioned on the event that Xn ∈ Xt, the trajectory (Xt+1, · · · , Xn) has the same

distribution as a length-(n−t) trajectory of a stationary Markov chain with state space

S2 = {2, 3, · · · , k} and transition probability T , and the uniform initial distribution.

Indeed,

P [Xt+1 = xt+1, . . . , Xn = xn|Xn ∈ Xt] =

1
2 ·
(
1− 1

n

)t−1 · 1
n(k−1)

∏n−1
s=t+1M(xs+1|xs)

1
2 ·
(
1− 1

n

)t−1 · 1n ·
(
1− 1

n

)n−1−t

=
1

k − 1

n−1∏
s=t+1

T (xs+1|xs).

Reducing the Bayes prediction risk to redundancy

Let Msym
k−1 be the collection of all symmetric transition matrices on state space S2 =

{2, . . . , k}. Consider a Bayesian setting where the transition matrix M is constructed in

(4.10) and the submatrix T is drawn from an arbitrary prior on Msym
k−1. The following

lemma lower bounds the Bayes prediction risk.

Lemma 24. Conditioned on T , let Y n = (Y1, . . . , Yn) denote a stationary Markov chain on

state space S2 with transition matrix T and uniform initial distribution. Then

inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]
≥ n− 1

2en2
(I(T ;Y n)− log(k − 1)) .
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Lemma 24 is the formal statement of the inequality (4.9) presented in the proof sketch.

Maximizing the lower bound over the prior on T and in view of the mutual information

representation (4.2.1), we obtain the following corollary.

Corollary 25. Let Risksymk,n denote the minimax prediction risk for stationary irreducible and

reversible Markov chains on k states and Redsymk,n the redundancy for stationary symmetric

Markov chains on k states. Then

Riskrevk,n ≥
n− 1

2en2
(Redsymk−1,n − log(k − 1)).

We make use of the properties (P1)�(P3) in Section 4.3.2 to prove Lemma 24.

Proof of Lemma 24. Recall that in the Bayesian setting, we �rst draw T from some prior

onMsym
k−1, then generate the stationary Markov chain Xn = (X1, . . . , Xn) with state space

[k] and transition matrix M in (4.10), and (Y1, . . . , Yn) with state space S2 = {2, . . . , k} and

transition matrix T .

We �rst relate the Bayes estimator of M and T (given the X and Y chain respectively).

For clarity, we spell out the explicit dependence of the estimators on the input trajectory.

For each t ∈ [n], denote by M̂t = M̂t(·|xt) the Bayes estimator of M(·|xt) give Xt = xt, and

T̂t(·|yt) the Bayes estimator of T (·|yt) give Y t = yt. For each t = 1, . . . , n− 1 and for each

trajectory xn = (1, . . . , 1, xt+1, . . . , xn) ∈ Xt, recalling the form (4.4) of the Bayes estimator,

we have, for each j ∈ S2,

M̂n(j|xn) =
P
[
Xn+1 = (xn, j)

]
P [Xn = xn]

=
E[12M(1|1)t−1M(xt+1|1)M(xt+2|xt+1) . . .M(xn|xn−1)M(j|xn)]

E[12M(1|1)t−1M(xt+1|1)M(xt+2|xt+1) . . .M(xn|xn−1)]

=

(
1− 1

n

)
E[T (xt+2|xt+1) . . . T (xn|xn−1)T (j|xn)]

E[T (xt+2|xt+1) . . . T (xn|xn−1)]

=

(
1− 1

n

)
T̂n−t(j|xnt+1),

where we used the stationary distribution of X in (P1) and the uniformity of the stationary

distribution of Y , neither of which depends on T . Furthermore, by construction in (4.10),
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M̂n(1|xn) = 1
n is deterministic. In all, we have

M̂n(·|xn) =
1

n
δ1 +

(
1− 1

n

)
T̂n−t(·|xnt+1), xn ∈ Xt.

with δ1 denoting the point mass at state 1, which parallels the fact that

M(·|x) = 1

n
δ1 +

(
1− 1

n

)
T (·|x), x ∈ S2.

By (P2), each event {Xn ∈ Xt} occurs with probability at least 1/(2en), and is indepen-

dent of T . Therefore,

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]
≥ 1

2en

n−1∑
t=1

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xn ∈ Xt]

]
.(4.11)

By (P3), the conditional joint law of (T,Xt+1, . . . , Xn) on the event {Xn ∈ Xt} is the same

as the joint law of (T, Y1, . . . , Yn−t). Thus, we may express the Bayes prediction risk in the

X chain as

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xn ∈ Xt]

]
(a)
=

(
1− 1

n

)
· ET

[
E[D(T (·|Yn−t)∥T̂ (·|Y n−t))]

]
(b)
=

(
1− 1

n

)
· I(T ;Yn−t+1|Y n−t), (4.12)

where (a) follows from (4.3.2), (4.3.2), and the fact that for distributions P,Q supported

on S2, D(ϵδ1 + (1 − ϵ)P∥ϵδ1 + (1 − ϵ)Q) = (1 − ϵ)D(P∥Q); (b) is the mutual information

representation (4.2.1) of the Bayes prediction risk. Finally, the lemma follows from (4.11),

(4.12), and the chain rule

n−1∑
t=1

I(T ;Yn−t+1|Y n−t) = I(T ;Y n)− I(T ;Y1) ≥ I(T ;Y n)− log(k − 1),

as I(T ;Y1) ≤ H(Y1) ≤ log(k − 1).
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Prior construction and lower bounding the mutual information

In view of Lemma 24, it remains to �nd a prior on Msym
k−1 for T , such that the mutual

information I(T ;Y n) is large. We make use of the connection identi�ed in Davisson (1983);

Davisson et al. (1981); Rissanen (1984) between estimation error and mutual information

(see also (Csiszár and Shields, 2004, Theorem 7.1) for a self-contained exposition). To lower

the mutual information, a key step is to �nd a good estimator T̂ (Y n) of T . This is carried

out in the following lemma.

Lemma 26. In the setting of Lemma 24, suppose that T ∈Msym
k with Tij ∈ [ 1

2k ,
3
2k ] for all

i, j ∈ [k]. Then there is an estimator T̂ based on Y n such that

E[∥T̂ − T∥2F] ≤
16k2

n− 1
,

where ∥T̂ − T∥F =
√∑

ij(T̂ij − Tij)2 denotes the Frobenious norm.

We show how Lemma 26 leads to the desired lower bound on the mutual information

I(T ;Y n). Since k ≥ 3, we may assume that k − 1 = 2k0 is an even integer. Consider the

following prior distribution π on T : let u = (ui,j)i,j∈[k0],i≤j be iid and uniformly distributed

in [1/(4k0), 3/(4k0)], and ui,j = uj,i for i > j. Let the transition matrix T be given by

T2i−1,2j−1 = T2i,2j = ui,j , T2i−1,2j = T2i,2j−1 =
1

k0
− ui,j , ∀i, j ∈ [k].

It is easy to verify that T is symmetric and a stochastic matrix, and each entry of T is

supported in the interval [1/(4k0), 3/(4k0)]. Since 2k0 = k − 1, the condition of Lemma 26

is ful�lled, so there exist estimators T̂ (Y n) and û(Y n) such that

E[∥û(Y n)− u∥22] ≤ E[∥T̂ (Y n)− T∥2F] ≤
64k20
n− 1

.

Here and below, we identify u and û as k0(k0+1)
2 -dimensional vectors.

Let h(X) =
∫
−fX(x) log fX(x)dx denote the di�erential entropy of a continuous random

vectorX with density fX w.r.t the Lebesgue measure and h(X|Y ) =
∫
−fXY (xy) log fX|Y (x|y)dxdy
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the conditional di�erential entropy (cf. e.g. Cover and Thomas (2006)). Then

h(u) =
∑

i,j∈[k0],i≤j

h(ui,j) = −
k0(k0 + 1)

2
log(2k0).

Then

I(T ;Y n)
(a)
= I(u;Y n)

(b)

≥ I(u; û(Y n)) = h(u)− h(u|û(Y n))

(c)

≥ h(u)− h(u− û(Y n))

(d)

≥ k0(k0 + 1)

4
log

(
n− 1

1024πek20

)
≥ k2

16
log

(
n− 1

256πek2

)
.

where (a) is because u and T are in one-to-one correspondence by (4.3.2); (b) follows from

the data processing inequality; (c) is because h(·) is translation invariant and concave; (d)

follows from the maximum entropy principle Cover and Thomas (2006): h(u − û(Y n)) ≤
k0(k0+1)

4 log
(

2πe
k0(k0+1)/2 · E[∥û(Y

n)− u∥22]
)
, which in turn is bounded by (4.5.2). Plugging

this lower bound into Lemma 24 completes the lower bound proof of Theorem 15.

Proof of Lemma 26. Since T is symmetric, the stationary distribution is uniform, and there

is a one-to-one correspondence between the joint distribution of (Y1, Y2) and the transition

probabilities. Motivated by this observation, consider the following estimator T̂ : for i, j ∈

[k], let

T̂ij = k ·
∑n

t=1 1{Yt=i,Yt+1=j}

n− 1
.

Clearly E[T̂ij ] = k · P(Y1 = i, Y2 = j) = Tij . The following variance bound is shown in

(Tatwawadi et al., 2018, Lemma 7, Lemma 8) using the concentration inequality of Paulin

(2015):

Var(T̂ij) ≤ k2 · 8Tijk
−1

γ∗(T )(n− 1)
,

where γ∗(T ) is the absolute spectral gap of T de�ned in (4.1). Note that T = k−1J + ∆,
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where J is the all-one matrix and each entry of ∆ lying in [−1/(2k), 1/(2k)]. Thus the

spectral radius of ∆ is at most 1/2 and thus γ∗(T ) ≥ 1/2. Consequently, we have

E[∥T̂ − T∥2F] =
∑

i,j∈[k]

Var(T̂ij) ≤
∑

i,j∈[k]

16kTij

n− 1
=

16k2

n− 1
,

completing the proof.

4.4 Spectral gap-dependent risk bounds

4.4.1 Two states

To show Theorem 16, let us prove a re�ned version. In addition to the absolute spectral gap

de�ned in (4.1), de�ne the spectral gap

γ ≜ 1− λ2

andM′
k(γ0) the collection of transition matrices whose spectral gap exceeds γ0. Paralleling

Riskk,n(γ0) de�ned in (4.1), de�ne Risk′k,n(γ0) as the minimax prediction risk restricted to

M ∈M′
k(γ0) Since γ ≥ γ∗, we haveMk(γ0) ⊆M′

k(γ0) and hence Risk′k,n(γ0) ≥ Riskk,n(γ0).

Nevertheless, the next result shows that for k = 2 they have the same rate:

Theorem 27 (Spectral gap dependent rates for binary chain). For any γ0 ∈ (0, 1)

Risk2,n(γ0) ≍ Risk′2,n(γ0) ≍
1

n
max

{
1, log log

(
min

{
n,

1

γ0

})}
.

We �rst prove the upper bound on Risk′2,n. Note that it is enough to show

Risk′2,n(γ0) ≲
log log (1/γ0)

n
, if n−0.9 ≤ γ0 ≤ e−e5 .

Indeed, for any γ0 ≤ n−0.9, the upper bound O (log log n/n) proven in Falahatgar et al.

(2016), which does not depend on the spectral gap, su�ces; for any γ0 > e−e5 , by mono-

tonicity we can use the upper bound Risk′2,n(e
−e5).

We now de�ne an estimator that achieves (4.4.1). Following Falahatgar et al. (2016), con-
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sider trajectories with a single transition, namely,
{
2n−ℓ1ℓ, 1n−ℓ2ℓ : 1 ≤ ℓ ≤ n− 1

}
, where

2n−ℓ1ℓ denotes the trajectory (x1, · · · , xn) with x1 = · · · = xn−ℓ = 2 and xn−ℓ+1 = · · · =

xn = 1. We refer to this type of xn as step sequences. For all non-step sequences xn, we

apply the add-12 estimator similar to (4.1), namely

M̂xn(j|i) =
Nij +

1
2

Ni + 1
, i, j ∈ {1, 2},

where the empirical counts Ni and Nij are de�ned in (6); for step sequences of the form

2n−ℓ1ℓ, we estimate by

M̂ℓ(2|1) = 1/(ℓ log(1/γ0)), M̂ℓ(1|1) = 1− M̂ℓ(2|1). (4.13)

The other type of step sequences 1n−ℓ2ℓ are dealt with by symmetry.

Due to symmetry it su�ces to analyze the risk for sequences ending in 1. The risk of

add-12 estimator for the non-step sequence 1n is bounded as

E
[
1{Xn=1n}D(M(·|1)∥M̂1n(·|1))

]
= PXn(1n)

{
M(2|1) log

(
M(2|1)
1/(2n)

)
+M(1|1) log

(
M(1|1)

(n− 1
2)/n

)}

≤ (1−M(2|1))n−1

{
2M(2|1)2n+ log

(
n

n− 1
2

)}
≲

1

n
.

where the last step followed by using (1−x)n−1x2 ≤ n−2 with x = M(2|1) and log x ≤ x−1.

From (Falahatgar et al., 2016, Lemma 7,8) we have that the total risk of other non-step

sequences is bounded from above by O
(
1
n

)
and hence it is enough to analyze the risk for

step sequences, and further by symmetry, those in
{
2n−ℓ1ℓ : 1 ≤ ℓ ≤ n− 1

}
. The desired

upper bound (4.4.1) then follows from Lemma 28 next.

Lemma 28. For any n−0.9 ≤ γ0 ≤ e−e5 , M̂ℓ(·|1) in (4.13) satis�es

sup
M∈M′

2(γ0)

n−1∑
ℓ=1

E
[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂ℓ(·|1))

]
≲

log log(1/γ0)

n
.
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Proof. For each ℓ using log
(

1
1−x

)
≤ 2x, x ≤ 1

2 with x = 1
ℓ log(1/γ0)

,

D(M(·|1)∥M̂ℓ(·|1)) = M(1|1) log

(
M(1|1)

1− 1
ℓlog(1/γ0)

)
+M(2|1) log (M(2|1)ℓlog(1/γ0))

≲
1

ℓlog(1/γ0)
+M(2|1) log(M(2|1)ℓ) +M(2|1) log log(1/γ0)

≤ 1

ℓlog(1/γ0)
+M(2|1) log+(M(2|1)ℓ) +M(2|1)log log(1/γ0),(4.14)

where we de�ne log+(x) = max{1, log x}. Recall the following Chebyshev's sum inequality:

for a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn, it holds that

n∑
i=1

aibi ≤
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
.

The following inequalities are thus direct corollaries: for x, y ∈ [0, 1],

n−1∑
ℓ=1

x(1− x)n−ℓ−1y(1− y)ℓ−1 ≤ 1

n− 1

(
n−1∑
ℓ=1

x(1− x)n−ℓ−1

)(
n−1∑
ℓ=1

y(1− y)ℓ−1

)

≤ 1

n− 1
, (4.15)

n−1∑
ℓ=1

x(1− x)n−ℓ−1y(1− y)ℓ−1 log+(ℓy) ≤
1

n− 1

(
n−1∑
ℓ=1

x(1− x)n−ℓ−1

)(
n−1∑
ℓ=1

y(1− y)ℓ−1 log+(ℓy)

)

≤ 1

n− 1

n−1∑
ℓ=1

y(1− y)ℓ−1(1 + ℓy) ≤ 2

n− 1
, (4.16)

where in (4.16) we need to verify that ℓ 7→ y(1− y)ℓ−1 log+(ℓy) is non-increasing. To verify

it, w.l.o.g. we may assume that (ℓ+ 1)y ≥ e, and therefore

y(1− y)ℓ log+((ℓ+ 1)y)

y(1− y)ℓ−1 log+(ℓy)
=

(1− y) log((ℓ+ 1)y)

log+(ℓy)
≤
(
1− e

ℓ+ 1

)(
1 +

log(1 + 1/ℓ)

log+(ℓy)

)
≤
(
1− e

ℓ+ 1

)(
1 +

1

ℓ

)
< 1 +

1

ℓ
− e

ℓ+ 1
< 1.
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Therefore,

n−1∑
ℓ=1

E
[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂ℓ(·|1))

]
≤

n−1∑
ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1D(M(·|1)∥M̂ℓ(·|1))

(a)

≲
n−1∑
ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1

(
1

ℓ log(1/γ0)
+M(2|1) log+(M(2|1)ℓ) +M(2|1) log log(1/γ0)

)
(b)

≤
n−1∑
ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1

ℓ log(1/γ0)
+

2 + log log(1/γ0)

n− 1
, (4.17)

where (a) is due to (4.14), (b) follows from (4.15) and (4.16) applied to x = M(1|2), y =

M(2|1). To deal with the remaining sum, we distinguish into two cases. Sticking to the

above de�nitions of x and y, if y > γ0/2, then

n−1∑
ℓ=1

x(1− x)n−ℓ−1(1− y)ℓ−1

ℓ
≤ 1

n− 1

(
n−1∑
ℓ=1

x(1− x)n−ℓ−1

)(
n−1∑
ℓ=1

(1− y)ℓ−1

ℓ

)
≤ log(2/γ0)

n− 1
,

where the last step has used that
∑∞

ℓ=1 t
ℓ−1/ℓ = log(1/(1−t)) for |t| < 1. If y ≤ γ0/2, notice

that for two-state chain the spectral gap is given explicitly by γ = M(1|2)+M(2|1) = x+y,

so that the assumption γ ≥ γ0 implies that x ≥ γ0/2. In this case,

n−1∑
ℓ=1

x(1− x)n−ℓ−1(1− y)ℓ−1

ℓ
≤
∑
ℓ<n/2

(1− x)n/2−1 +
∑
ℓ≥n/2

x(1− x)n−ℓ−1

n/2

≤ n

2
e−(n/2−1)γ0 +

2

n
≲

1

n
,

thanks to the assumption γ0 ≥ n−0.9. Therefore, in both cases, the �rst term in (4.17) is

O(1/n), as desired.

Next we prove the lower bound on Risk2,n. It is enough to show that Risk2,n(γ0) ≳

1
n log log (1/γ0) for n

−1 ≤ γ0 ≤ e−e5 . Indeed, for γ0 ≥ e−e5 , we can apply the result in the

i.i.d. setting (see, e.g., Braess et al. (2002)), in which the absolute spectral gap is 1, to obtain

the usual parametric-rate lower bound Ω
(
1
n

)
; for γ0 < n−1, we simply bound Risk2,n(γ0)
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from below by Risk2,n(n
−1). De�ne

α = log(1/γ0), β =

⌈
α

5 logα

⌉
, (4.18)

and consider the prior distribution

M = Uniform(M), M =

{
M : M(1|2) = 1

n
,M(2|1) = 1

αm
: m ∈ N ∩ (β, 5β)

}
.(4.19)

Then the lower bound part of Theorem 16 follows from the next lemma.

Lemma 29. Assume that n−0.9 ≤ γ0 ≤ e−e5. Then

(i) γ∗ > γ0 for each M ∈M;

(ii) the Bayes risk with respect to the prior M is at least Ω
(
log log(1/γ0)

n

)
.

Proof. Part (i) follows by noting that absolute spectral gap for any two states matrix M

is 1 − |1−M(2|1)−M(1|2)| and for any M ∈ M, M(2|1) ∈
(
α−5β, α−β

)
⊆ (γ0, γ

1/5
0 ) ⊆

(γ0, 1/2) which guarantees γ∗ = M(1|2) +M(2|1) > γ0.

To show part (ii) we lower bound the Bayes risk when the observed trajectory Xn is

a step sequence in
{
2n−ℓ1ℓ : 1 ≤ ℓ ≤ n− 1

}
. Our argument closely follows that of (Hao

et al., 2018, Theorem 1). Since γ0 ≥ n−1, for each M ∈ M, the corresponding stationary

distribution π satis�es

π2 =
M(2|1)

M(2|1) +M(1|2)
≥ 1

2
.

Denote by Risk(M ) the Bayes risk with respect to the prior M and by M̂B
ℓ (·|1) the

Bayes estimator for prior M given Xn = 2n−ℓ1ℓ. Note that

P
[
Xn = 2n−ℓ1ℓ

]
= π2

(
1− 1

n

)n−ℓ−1 1

n
M(1|1)ℓ−1 ≥ 1

2en
M(1|1)ℓ−1.
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Then

Risk(M ) ≥ EM∼M

[
n−1∑
ℓ=1

E
[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂B

ℓ (·|1))
]]

≥ EM∼M

[
n−1∑
ℓ=1

M(1|1)ℓ−1

2en
D(M(·|1)∥M̂B

ℓ (·|1))

]

=
1

2en

n−1∑
ℓ=1

EM∼M

[
M(1|1)ℓ−1D(M(·|1)∥M̂B

ℓ (·|1))
]
. (4.20)

Recalling the general form of the Bayes estimator in (4.4) and in view of (4.4.1), we get

M̂B
ℓ (2|1) =

EM∼M [M(1|1)ℓ−1M(2|1)]
EM∼M [M(1|1)ℓ−1]

, M̂B
ℓ (1|1) = 1− M̂B

ℓ (2|1). (4.21)

Plugging (4.21) into (4.20), and using

D((x, 1− x)∥(y, 1− y)) = x log
x

y
+ (1− x) log

1− x

1− y
≥ xmax

{
0, log

x

y
− 1

}
,

we arrive at the following lower bound for the Bayes risk:

Risk(M )

≥ 1

2en

n−1∑
ℓ=1

EM∼M

[
M(1|1)ℓ−1M(2|1)max

{
0, log

(
M(2|1) · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]

)
− 1

}]
.(4.22)

Under the prior M , M(2|1) = 1−M(1|1) = α−m with β ≤ m ≤ 5β.

We further lower bound (4.22) by summing over an appropriate range of ℓ. For any

m ∈ [β, 3β], de�ne

ℓ1(m) =

⌈
αm

logα

⌉
, ℓ2(m) = ⌊αm logα⌋ .

Since γ0 ≤ e−e5 , our choice of α ensures that the intervals {[ℓ1(m), ℓ2(m)]}β≤m≤3β are

disjoint. We will establish the following claim: for all m ∈ [β, 3β] and ℓ ∈ [ℓ1(m), ℓ2(m)], it
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holds that

α−m · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]
≳

log(1/γ0)

log log(1/γ0)
. (4.23)

We �rst complete the proof of the Bayes risk bound assuming (4.23). Using (4.22) and

(4.23), we have

Risk(M ) ≳
1

n
· 1

4β

3β∑
m=β

ℓ2(m)∑
ℓ=ℓ1(m)

α−m(1− α−m)ℓ−1 · log log(1/γ0)

=
log log(1/γ0)

4nβ

3β∑
m=β

{
(1− α−m)ℓ1(m)−1 − (1− α−m)ℓ2(m)

}
(a)

≥ log log(1/γ0)

4nβ

3β∑
m=β

((
1

4

) 1
logα

−
(
1

e

)−1+logα
)

≳
log log(1/γ0)

n
,

with (a) following from 1
4 ≤ (1− x)

1
x ≤ 1

e if x ≤ 1
2 , and α−m ≤ α−β ≤ γ

1/5
0 ≤ 1

2 .

Next we prove the claim (4.23). Expanding the expectation in (4.19), we write the LHS

of (4.23) as

α−m · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]
=

Xℓ +Aℓ +Bℓ

Xℓ + Cℓ +Dℓ
,

where

Xℓ =
(
1− α−m

)ℓ
, Aℓ =

m−1∑
j=β

(
1− α−j

)ℓ
, Bℓ =

5β∑
j=m+1

(
1− α−j

)ℓ
,

Cℓ =
m−1∑
j=β

(
1− α−j

)ℓ
αm−j , Dℓ =

5β∑
j=m+1

(
1− α−j

)ℓ
αm−j .

We bound each of the terms individually. Clearly, Xℓ ∈ (0, 1) and Aℓ ≥ 0. Thus it

su�ces to show that Bℓ ≳ β and Cℓ, Dℓ ≲ 1, for m ∈ [β, 3β] and ℓ1(m) ≤ ℓ ≤ ℓ2(m).

Indeed,

� For j ≥ m+ 1, we have

(
1− α−j

)ℓ ≥ (1− α−j
)ℓ2(m) (a)

≥ (1/4)
ℓ2(m)

αj ≥ (1/4)
logα
α ≥ 1/4,
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where in (a) we use the inequality (1 − x)1/x ≥ 1/4 for x ≤ 1/2. Consequently,

Bℓ ≥ β/2;

� For j ≤ m− 1, we have

(
1− α−j

)ℓ ≤ (1− α−j
)ℓ1(m) (b)

≤ e
−αm−j

logα = γ
αm−j−1

logα

0 ,

where (b) follows from (1− x)1/x ≤ 1/e and the de�nition of ℓ1(m). Consequently,

Cℓ ≤ γ
α

logα

0

m−2∑
j=β

αm−j + αγ
1

logα

0 ≤ e
− α2

logα
+(2β+1) logα

+ e
logα− α

logα ≤ 2,

where the last step uses the de�nition of β in (4.18);

� Dℓ ≤
∑5β

j=m+1 α
m−j ≤ 1, since α = log 1

γ0
≥ e5.

Combining the above bounds completes the proof of (4.23).

4.4.2 k states

Proof of Theorem 17 (i)

Notice that the prediction problem consists of k sub-problems of estimating the individual

rows of M , so it su�ces show the contribution from each of them is O
(
k
n

)
. In particular,

assuming the chain terminates in state 1 we bound the risk of estimating the �rst row by

the add-one estimator M̂+1(j|1) =
N1j+1
N1+k . Under the absolute spectral gap condition of

γ∗ ≥ γ0, we show

E
[
1{Xn=1}D

(
M(·|1)∥M̂+1(·|1)

)]
≲

k

n

(
1 +

√
log k

kγ40

)
. (4.24)

By symmetry, we get the desired Riskk,n(γ0) ≲ k2

n

(
1 +

√
log k
kγ4

0

)
. The basic steps of our

analysis are as follows:

� When N1 is substantially smaller than its mean, we can bound the risk using the

worst-case risk bound for add-one estimators and the probability of this rare event.

105



� Otherwise, we decompose the prediction risk as

D(M(·|1)∥M̂+1(·|1)) =
k∑

j=1

[
M(j|1) log

(
M(j|1)(N1 + k)

N1j + 1

)
−M(j|1) + N1j + 1

N1 + k

]
.

We then analyze each term depending on whether N1j is typical or not. Unless N1j is

atypically small, the add-one estimator works well whose risk can be bounded quadrat-

ically.

To analyze the concentration of the empirical counts we use the following moment

bounds. The proofs are deferred to Appendix 4.7.2.

Lemma 30. Finite reversible and irreducible chains observe the following moment bounds:

(i) E
[
(Nij −NiM(j|i))2 |Xn = i

]
≲ nπiM(j|i)(1−M(j|i)) +

√
M(j|i)
γ∗

+ M(j|i)
γ2
∗

(ii) E
[
(Nij −NiM(j|i))4 |Xn = i

]
≲ (nπiM(j|i)(1−M(j|i)))2 +

√
M(j|i)
γ∗

+ M(j|i)2
γ4
∗

(iii) E
[
(Ni − (n− 1)πi)

4 |Xn = i
]
≲ n2π2

i
γ2
∗

+ 1
γ4
∗
.

When γ∗ is high this shows that the moments behave as if for each i ∈ [k], N1 is

approximately Binomial(n − 1, πi) and Nij is approximately Binomial(Ni,M(j|i)), which

happens in case of i.i.d. sampling. For i.i.d. models Kamath et al. (2015) showed that

the add-one estimator achieves O
(
k
n

)
risk bound which we aim here too. In addition,

dependency of the above moments on γ∗ gives rise to su�cient conditions that guarantees

parametric rate. The technical details are given below.

We decompose the left hand side in (4.24) based on N1 as

E
[
1{Xn=1}D

(
M(·|1)∥M̂+1(·|1)

)]
= E

[
1{A≤}D

(
M(·|1)∥M̂+1(·|1)

)]
+ E

[
1{A>}D

(
M(·|1)∥M̂+1(·|1)

)]

where the typical set A> and atypical set A≤ are de�ned as

A≤ ≜ {Xn = 1, N1 ≤ (n− 1)π1/2} , A> ≜ {Xn = 1, N1 > (n− 1)π1/2} .

For the atypical case, note the following deterministic property of the add-one estimator.

Let Q̂ be an add-one estimator with sample size n and alphabet size k of the form Q̂i =
ni+1
n+k ,
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where
∑

ni = n. Since Q̂ is bounded below by 1
n+k everywhere, for any distribution P , we

have

D(P∥Q̂) ≤ log(n+ k).

Applying this bound on the event A≤, we have

E
[
1{A≤}D

(
M(·|1)∥M̂+1(·|1)

)]
≤ log (nπ1 + k)P [Xn = 1, N1 ≤ (n− 1)π1/2]

(a)

≲ 1{nπ1γ∗≤10}π1 log (nπ1 + k) + 1{nπ1γ∗>10}π1 log (nπ1 + k)
E
[
(N1 − (n− 1)π1)

4 |Xn = 1
]

n4π4
1

(4.25)

(b)

≤ 1{nπ1γ∗≤10}
10

nγ∗
log

(
10

γ∗
+ k

)
+ 1{nπ1γ∗>10} log (nπ1 + k)

(
1

n2π1γ2∗
+

1

n4π3
1γ

4
∗

)
(c)

≲
1

n

{
1{nπ1γ∗≤10}

log(1/γ∗) + log k

γ∗
+ 1{nπ1γ∗>10} (nπ1 + log k)

(
1

nπ1γ2∗
+

1

n3π3
1γ

4
∗

)}
≲
1

n

{
1{nπ1γ∗≤10}

(
1

γ2∗
+

log k

γ∗

)
+ 1{nπ1γ∗>10}

(
1

γ2∗
+

log k

γ∗

)}
≲

1

nγ20
+

log k

nγ0
. (4.26)

where we got (a) from Markov inequality, (b) from Lemma 30(iii) and (c) using x + y ≤

xy, x, y ≥ 2.

Next we bound E
[
1{A>}D

(
M(·|1)∥M̂+1(·|1)

)]
. De�ne

∆i = M(i|1) log

(
M(i|1)

M̂+1(i|1)

)
−M(i|1) + M̂+1(i|1).

As D(M(·|1)∥M̂+1(·|1)) =
∑k

i=1∆i it su�ces to bound E
[
1{A>}∆i

]
for each i. For some

r ≥ 1 to be optimized later consider the following cases separately

Case (a) nπ1 ≤ r or nπ1M(i|1) ≤ 10: Using the fact y log(y) − y + 1 ≤ (y − 1)2 with

y = M(i|1)
M̂+1(i|1)

= M(i|1)(N1+k)
N1i+1 we get

∆i ≤
(M(i|1)N1 −N1i +M(i|1)k − 1)2

(N1 + k) (N1i + 1)
. (4.27)
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This implies

E
[
1{A>}∆i

]
≤ E

[
1{A>} (M(i|1)N1 −N1i +M(i|1)k − 1)2

(N1 + k) (N1i + 1)

]
(a)

≲
E
[
1{A>} (M(i|1)N1 −N1i)

2
]
+ k2π1M(i|1)2 + π1

nπ1 + k

(b)

≲
π1E

[
(M(i|1)N1 −N1i)

2
∣∣∣Xn = 1

]
nπ1 + k

+
1 + rkM(i|1)

n

where (a) follows from N1 >
(n−1)π1

2 in A> and the fact that (x+ y+ z)2 ≤ 3(x2 + y2 + z2);

(b) uses the assumption that either nπ1 ≤ r or nπ1M(i|1) ≤ 10. Applying Lemma 30(i) and

the fact that x+ x2 ≤ 2(1 + x2), continuing the last display we get

E
[
1{A>}∆i

]
≲

nπ1M(i|1) +
(
1 + M(i|1)

γ2
∗

)
n

+
1 + rkM(i|1)

n
≲

1 + rkM(i|1)
n

+
M(i|1)
nγ20

.

Hence

E
[
1{A>}D(M(·|1)∥M̂+1(·|1))

]
=

k∑
i=1

E
[
1{A>}∆i

]
≲

rk

n
+

1

γ20
. (4.28)

Case(b) nπ1 > r and nπ1M(i|1) > 10: We decompose A> based on count of N1i into

atypical part B≤ and typical part B>

B≤ ≜ {Xn = 1, N1 > (n− 1)π1/2, N1i ≤ (n− 1)π1M(i|1)/4}

B> ≜ {Xn = 1, N1 > (n− 1)π1/2, N1i > (n− 1)π1M(i|1)/4}

and bound each of E
[
1{B≤}∆i

]
and E

[
1{B>}∆i

]
separately.
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Bound on E
[
1{B≤}∆i

]
Using M̂+1(i|1) ≥ 1

N1+k and N1i < N1M(i|1)/2 in B≤ we get

E
[
1{B≤}∆i

]
= E

[
1{B≤}M(i|1) log

(
M(i|1)(N1 + k)

N1i + 1

)]
+ E

[
1{B≤}

(
N1i + 1

N1 + k
−M(i|1)

)]
≤ E

[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
+ E

[
1{B≤}

(
N1i

N1
−M(i|1)

)]
+ E

[
1{B≤}
N1

]

≲ E
[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
+

1

n
(4.29)

where the last inequality followed as E
[
1{B≤}/N1

]
≲ P[Xn = 1]/nπ1 = 1

n . Note that for

any event B and any function g,

E
[
g(N1)1{N1≥t0,B}

]
= g(t0)P[N1 ≥ t0, B] +

n∑
t=t0+1

(g(t)− g(t− 1))P[N1 ≥ t, B].

Applying this identity with t0 = ⌈(n− 1)π1/2⌉, we can bound the expectation term in (4.29)

as

E
[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
= M(i|1) log (M(i|1)(t0 + k))P

[
N1 ≥ t0, N1i ≤

nπ1M(i|1)
4

, Xn = 1

]
+M(i|1)

n−1∑
t=t0+1

log

(
1 +

1

t− 1 + k

)
P
[
N1 ≥ t+ 1, N1i ≤

nπ1M(i|1)
4

, Xn = 1

]
≤ π1M(i|1) log (M(i|1)(t0 + k))P

[
M(i|1)N1 −N1i ≥

M(i|1)t0
4

∣∣∣∣Xn = 1

]
+

M(i|1)
n

n−1∑
t=t0+1

P
[
M(i|1)N1 −N1i ≥

M(i|1)t
4

∣∣∣∣Xn = 1

]
(4.30)

where last inequality uses log
(
1 + 1

t−1+k

)
≤ 1

t ≲ 1
nπ1

for all t ≥ t0. Using Markov inequality

P [Z > c] ≤ c−4E
[
Z4
]
for c > 0, Lemma 30(ii) and x+x4 ≤ 2(1+x4) with x =

√
M(i|1)/γ∗

P
[
M(i|1)N1 −N1i ≥

M(i|1)t
4

∣∣∣∣Xn = 1

]
≲

(nπ1M(i|1))2 + M(i|1)2
γ4
∗

(tM(i|1))4
.
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In view of above continuing (4.30) we get

E
[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
≲

(
(nπ1M(i|1))2 + M(i|1)2

γ4∗

)(
π1M(i|1) log(M(i|1)(nπ1 + k))

(nπ1M(i|1))4
+

1

n(M(i|1))3
n∑

t=t0+1

1

t4

)

≲

(nπ1M(i|1))2 + M(i|1)2
γ4
∗

n

( log(nπ1M(i|1) + kM(i|1))
(nπ1M(i|1))3

+
1

(nπ1M(i|1))3

)

≲
1

n

(
(nπ1M(i|1))2 + M(i|1)2

γ4∗

)
log(nπ1M(i|1) + kM(i|1))

(nπ1M(i|1))3

≲
1

n

(
log(nπ1M(i|1) + kM(i|1))

nπ1M(i|1)
+

M(i|1) log(nπ1M(i|1) + k)

nπ1γ4∗(nπ1M(i|1))2

)
(a)

≲
1

n

(
nπ1M(i|1) + kM(i|1)

nπ1M(i|1)
+

M(i|1) log(nπ1M(i|1))
nπ1γ4∗(nπ1M(i|1))2

+
M(i|1) log k

nπ1γ4∗(nπ1M(i|1))2

)
(b)

≲
1

n

(
1 + kM(i|1) + M(i|1) log k

rγ40

)

where (a) followed using x+y ≤ xy for x, y ≥ 2 and (b) followed as nπ1 ≥ r, nπ1M(i|1) ≥ 10

and log(nπ1M(i|1)) ≤ nπ1M(i|1). In view of (4.29) this implies

k∑
i=1

E
[
1{B≤}∆i

]
≲

k∑
i=1

1

n

(
1 + kM(i|1)

(
1 +

log k

rkγ40

))
≲

k

n

(
1 +

log k

rkγ40

)
.

Bound on E
[
1{B>}∆i

]
Using the inequality (4.27)

E
[
1{B>}∆i

]
≤ E

[
1{B>} (M(i|1)N1 −N1i +M(i|1)k − 1)2

(N1 + k) (N1i + 1)

]

≲
E
[
1{B>}

{
(M(i|1)N1 −N1i)

2
}]

+ k2π1M(i|1)2 + π1

(nπ1 + k)(nπ1M(i|1) + 1)

≲
π1E

[
(M(i|1)N1 −N1i)

2
∣∣∣Xn = 1

]
(nπ1 + k)(nπ1M(i|1) + 1)

+
kM(i|1)

n

where (a) follows using properties of the set B> along with (x+ y + z)2 ≤ 3(x2 + y2 + z2).
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Using Lemma 30(i) we get

E
[
1{B>}∆i

]
≲

nπ1M(i|1) +
(
1 + M(i|1)

γ2
∗

)
n(nπ1M(i|1) + 1)

+
kM(i|1)

n
≲

1 + kM(i|1)
n

+
M(i|1)
nγ20

.

Summing up the last bound over i ∈ [k] and using we get for nπ1 > r, nπ1M(i|1) > 10

E
[
1{A>}D(M(·|1)∥M̂+1(·|1))

]
=

k∑
i=1

[
E
[
1{B≤}∆i

]
+ E

[
1{B>}∆i

]]
≲

k

n

(
1 +

1

kγ20
+

log k

rkγ40

)
.

Combining this with (4.28) we obtain

E
[
1{A>}D(M(·|1)∥M̂+1(·|1))

]
≲

k

n

(
1

kγ20
+ r +

log k

rkγ40

)
≲

k

n

(
1 +

√
log k

kγ40

)

where we chose r = 10 +
√

log k
kγ4

0
for the last inequality. In view of (4.26) this implies the

required bound.

Remark 9. We explain the subtlety of the concentration bound in Lemma 30 based on

fourth moment and why existing Cherno� bound or Chebyshev inequality falls short. For

example, the risk bound in (4.26) relies on bounding the probability that N1 is atypically

small. To this end, one may use the classical Cherno�-type inequality for reversible chains

(see (Lezaud, 1998, Theorem 1.1) or (Paulin, 2015, Proposition 3.10 and Theorem 3.3))

P [N1 ≤ (n− 1)π1/2|X1 = 1] ≲
1
√
π1

e−Θ(nπ1γ∗);

in contrast, the fourth moment bound in (4.25) yields P [N1 ≤ (n− 1)π1/2|X1 = 1] = O( 1
(nπ1γ∗)2

).

Although the exponential tail in (9) is much better, the pre-factor 1√
π1
, due to condi-

tioning on the initial state, can lead to a suboptimal result when π1 is small. (As a

concrete example, consider two states with M(2|1) = Θ( 1n) and M(1|2) = Θ(1). Then

π1 = Θ( 1n), γ = γ∗ ≈ Θ(1), and (9) leads to P [N1 ≤ (n− 1)π1/2, Xn = 1] = O( 1√
n
) as

opposed to the desired O( 1n).)

In the same context it is also insu�cient to use 2nd moment based bound (Chebyshev),

which leads to P [N1 ≤ (n− 1)π1/2|X1 = 1] = O( 1
nπ1γ∗

). This bound is too loose, which,
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upon substitution into (4.25), results in an extra log n factor in the �nal risk bound when

π1 and γ∗ are large.

Proof of Theorem 17 (ii)

Let k ≥ (log n)6 and γ0 ≥ (log(n+k))2

k . We prove a stronger result using spectral gap as

opposed to the absolute spectral gap. Fix M such that γ ≥ γ0. Denote its stationary

distribution by π. For absolute constants τ > 0 to be chosen later and c0 as in Lemma 31

below, de�ne

ϵ(m) =
2k

m
+

c0(log n)
3
√
k

m
, cn = 100τ2

log n

nγ
,

n±
i = nπi ± τ max

{
log n

nγ
,

√
πi log n

nγ

}
, i = 1, . . . , k.

Let Ni be the number of visits to state i as in (6). We bound the risk by accounting for the

contributions from di�erent ranges of Ni and πi separately:

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]

=
∑

i:πi≥cn

E
[
1{Xn=i,n−

i ≤Ni≤n+
i }D

(
M(·|i)∥M̂+1(·|i)

)]
+

∑
i:πi≥cn

E
[
1{Xn=i,Ni>n+

i or Ni<n−
i }D

(
M(·|i)∥M̂+1(·|i)

)]
+

∑
i:πi<cn

E
[
1{Xn=i}D

(
M(·|i)∥M̂+1(·|i)

)]
≤ log(n+ k)

∑
i:πi≥cn

P
[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni), n

−
i ≤ Ni ≤ n+

i

]
+

∑
i:πi≥cn

E
[
1{Xn=i,n−

i ≤Ni≤n+
i }ϵ(Ni)

]
+ log(n+ k)

∑
i:πi≥cn

[
P
[
Ni ≥ n+

i

]
+ P

[
Ni ≤ n−

i

]]
+

∑
i:πi≤cn

πi log(n+ k)

≲ log(n+ k)
∑

i:πi≥cn

P
[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni), n

−
i ≤ Ni ≤ n+

i

]
+

∑
i:πi≥cn

πi max
n−
i ≤m≤n+

i

ϵ(m)

+ log(n+ k)
∑

i:πi≥cn

(
P
[
Ni > n+

i

]
+ P

[
Ni < n−

i

])
+

k (log(n+ k))2

nγ
. (4.31)

where the �rst inequality uses the worst-case bound (4.4.2) for add-one estimator. We

analyze the terms separately as follows.

For the second term, given any i such that πi ≥ cn, we have, by de�nition in (4.4.2),
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n−
i ≥ 9nπi/10 and n+

i − n−
i ≤ nπi/5, which implies

∑
i:πi≥cn

πi max
n−
i ≤m≤n+

i

ϵ(m) ≤
∑

i:πi≥cn

πi

(
2k

0.9nπi
+

10

9

c0(log n)
3
√
k

nπi

)
≲

k2

n
+

(log n)3k3/2

n
.(4.32)

For the third term, applying (Han et al., 2018a, Lemma 16) (which, in turn, is based on

ther Bernstein inequality in Paulin (2015)), we get P
[
Ni > n+

i

]
+ P

[
Ni < n−

i

]
≤ 2n

−τ2

4+10τ .

To bound the �rst term in (4.31), we follow the method in Billingsley (1961); Han et al.

(2018a) of representing the sample path of the Markov chain using independent samples

generated from M(·|i) which we describe below. Consider a random variable X1 ∼ π and

an array W = {Wiℓ : i = 1, . . . , k and ℓ = 1, 2, . . .} of independent random variables, such

that X and W are independent and Wiℓ
i.i.d.∼ M(·|i) for each i. Starting with generating X1

from π, at every step i ≥ 2 we set Xi as the �rst element in the Xi−1-th row of W that

has not been sampled yet. Then one can verify that {X1, . . . , Xn} is a Markov chain with

initial distribution π and transition matrix M . Furthermore, the transition counts satisfy

Nij =
∑Ni

ℓ=1 1{Wiℓ=j}, where Ni be the number of elements sampled from the ith row of W .

Note the conditioned on Ni = m, the random variables {Wi1, . . . ,Wim} are no longer iid.

Instead, we apply a union bound. Note that for each �xed m, the estimator

M̂+1(j|i) =
∑m

ℓ=1 1{Wiℓ=j} + 1

m+ k
≜ M̂+1

m (j|i), j ∈ [k]

is an add-one estimator for M(j|i) based on an i.i.d. sample of size m. Lemma 31 below

provides a high-probability bound for the add-one estimator in this iid setting. Using this

result and the union bound, we have

∑
i:πi≥cn

P
[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni), n

−
i ≤ Ni ≤ n+

i

]
≤

∑
i:πi≥cn

(
n+
i − n−

i

)
max

n−
i ≤m≤n+

i

P
[
D(M(·|i)∥M̂+1

m (·|i)) > ϵ(m)
]
≤

∑
i:πi≥cn

1

n2
≤ k

n2

where the second inequality applies Lemma 31 with t = n ≥ n+
i ≥ m and uses n+

i − n−
i ≤

nπi/5 for πi ≥ cn.
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Combining the above with (4.32), we continue (4.31) with τ = 25 to get

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]
≲

k2

n
+

(log n)3k3/2

n
+

k(log(n+ k))2

nγ

which is O
(
k2

n

)
whenever k ≥ (log n)6 and γ ≥ (log(n+k))2

k .

Lemma 31 (KL risk bound for add-one estimator). Let V1, . . . , Vm
iid∼ Q for some distribu-

tion Q = {Qi}ki=1 on [k]. Consider the add-one estimator Q̂+1 with Q̂+1
i = 1

m+k (
∑m

j=1 1{Vj=i}+

1). There exists an absolute constant c0 such that for any t ≥ m,

P

[
D(Q∥Q̂+1) ≥ 2k

m
+

c0(log t)
3
√
k

m

]
≤ 1

t3
.

Proof. Let Q̂ be the empirical estimator Q̂i = 1
m

∑m
j=1 1{Vj=i}. Then Q̂+1

i = mQ̂i+1
m+k and

hence

D(Q∥Q̂+1) =
k∑

i=1

(
Qi log

Qi

Q̂+1
i

−Qi + Q̂+1
i

)

=
k∑

i=1

(
Qi log

Qi(m+ k)

mQ̂i + 1
−Qi +

mQ̂i + 1

m+ k

)

=

k∑
i=1

(
Qi log

Qi

Q̂i +
1
m

−Qi + Q̂i +
1

m

)
+

k∑
i=1

(
Qi log

m+ k

m
− kQ̂i

m+ k
− k

m(m+ k)

)

≤
k∑

i=1

(
Qi log

Qi

Q̂i +
1
m

−Qi + Q̂i +
1

m

)
+

k

m

with last equality following by 0 ≤ log
(
m+k
m

)
≤ k/m.

To control the sum in the above display it su�ces to consider its Poissonized version.

Speci�cally, we aim to show

P

[
k∑

i=1

(
Qi log

Qi

Q̂poi
i + 1

m

−Qi + Q̂poi
i +

1

m

)
>

k

m
+

c0(log t)
3
√
k

m

]
≤ 1

t4
(4.33)

where mQ̂poi
i , i = 1, . . . , k are distributed independently as Poi(mQi). (Here and below

Poi(λ) denotes the Poisson distribution with mean λ.) To see why (4.33) implies the desired
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result, letting w = k
m + c0(log t)3

√
k

m and Y =
∑k

i=1mQ̂poi
i ∼ Poi(m), we have

P

[
k∑

i=1

(
Qi log

Qi

Q̂i +
1
m

−Qi + Q̂i +
1

m

)
> w

]
(a)
= P

[
k∑

i=1

(
Qi log

Qi

Q̂poi
i + 1

m

−Qi + Q̂poi
i +

1

m

)
> w

∣∣∣∣∣
k∑

i=1

Qpoi
i = 1

]
(b)

≤ 1

t4P[Y = m]
=

m!

t4e−mmm

(c)

≲

√
m

t4
≤ 1

t3
.

where (a) followed from the fact that conditioned on their sum independent Poisson random

variables follow a multinomial distribution; (b) applies (4.33); (c) follows from Stirling's

approximation.

To prove (4.33) we rely on concentration inequalities for sub-exponential distributions. A

random variable X is called sub-exponential with parameters σ2, b > 0, denoted as SE(σ2, b)

if

E
[
eλ(X−E[X])

]
≤ e

λ2σ2

2 , ∀|λ| < 1

b
.

Sub-exponential random variables satisfy the following properties (Wainwright, 2019, Sec. 2.1.3):

� If X is SE(σ2, b) for any t > 0

P [|X − E[X]| ≥ v] ≤


2e−v2/(2σ2), 0 < v ≤ σ2

b

2e−v/(2b), v > σ2

b .

(4.34)

� Bernstein condition: A random variable X is SE(σ2, b) if it satis�es

E
[
|X − E[X]|ℓ

]
≤ 1

2
ℓ!σ2bℓ−2, ℓ = 2, 3, . . . . (4.35)

� If X1, . . . , Xk are independent SE(σ2, b), then
∑k

i=1Xi is SE(kσ
2, b).

De�ne Xi = Qi log
Qi

Q̂poi
i + 1

m

−Qi + Q̂poi
i + 1

m , i ∈ [k]. Then Lemma 32 below shows that Xi's

are independent SE(σ2, b) with σ2 = c1(logm)4

m2 , b = c2(logm)2

n for absolute constants c1, c2,

and hence
∑k

i=1 (Xi − E[Xi]) is SE(kσ
2, b). In view of (4.34) for the choice c0 = 8(c1 + c2)
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this implies

P

[
k∑

i=1

(Xi − E[Xi]) ≥ c0
(log t)3

√
k

m

]
≤ 2e−

c20k(log t)6

2m2σ2 + 2e−
c0

√
k(log t)3

2mb ≤ 1

t3
. (4.36)

Using 0 ≤ y log y − y + 1 ≤ (y − 1)2, y > 0 and E
[

λ
Poi(λ)+1

]
=
∑∞

v=0
e−λλv+1

(v+1)! = 1− e−λ

E

[
k∑

i=1

Xi

]
≤ E

 k∑
i=1

(
Qi −

(
Q̂poi

i + 1
m

))2
Q̂poi

i + 1
m


=

k∑
i=1

mQ2
iE

[
1

mQ̂poi
i + 1

]
− 1 +

k

m
=

k∑
i=1

Qi

(
1− e−mQi

)
− 1 +

k

m
≤ k

m
.

Combining the above with (4.36) we get (4.33) as required.

Lemma 32. There exist absolute constants c1, c2 such that the following holds. For any

p ∈ (0, 1) and nY ∼ Poi(np), X = p log p

Y+ 1
n

− p+ Y + 1
n is SE

(
c1(logn)4

n2 , c2(logn)
2

n

)
.

Proof. Note that X is a non-negative random variable. Since E
[
(X − E[X])ℓ

]
≤ 2ℓE

[
Xℓ
]
,

by the Bernstein condition (4.35), it su�ces to show E[Xℓ] ≤
(
c3ℓ(logn)2

n

)ℓ
, ℓ = 2, 3, . . . for

some absolute constant c3. guarantees the desired sub-exponential behavior. The analysis

is divided into following two cases for some absolute constant c4 ≥ 24.

Case I p ≥ c4ℓ logn
n : Using Cherno� bound for Poisson (Janson, 2002, Theorem 3)

P [|Poi(λ)− λ| > x] ≤ 2e
− x2

2(λ+x/3) , λ, x > 0,

we get

P

[
|Y − p| >

√
c4ℓp log n

4n

]
≤ 2 exp

(
− c4nℓp log n

8np+ 2
√
c4nℓp log n

)

≤ 2 exp

(
− c4ℓ log n

8 + 2
√
c4ℓ log n/np

)
≤ 1

n2ℓ

which implies p/2 ≤ Y ≤ 2p with probability at least 1 − n−2ℓ. Since 0 ≤ X ≤ (Y−p− 1
n
)2

Y+ 1
n

,

we get E[Xℓ] ≲

(√
c4ℓp logn/4n

)2ℓ

(p/2)ℓ
+ nℓ

n2ℓ ≲
(
c4ℓ logn

n

)ℓ
.
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Case II p < c4ℓ logn
n :

� On the event {Y > p}, we have X ≤ Y + 1
n ≤ 2Y , where the last inequality follows

because nY takes non-negative integer values. Since X ≥ 0, we have Xℓ1{Y >p} ≤

(2Y )ℓ1{Y >p} for any ℓ ≥ 2. Using the Cherno� bound (4.4.2), we get Y ≤ 2c4ℓ logn
n

with probability at least 1− n−2ℓ, which implies

E
[
Xℓ1{Y≥p}

]
≤ E

[
(2Y )ℓ1{

Y >p,Y≤ 2c4ℓ logn
n

}]+ E
[
(2Y )ℓ1{

Y >p,Y >
2c4ℓ logn

n

}]
≤
(
4c4ℓ log n

n

)ℓ

+ 2ℓ
(
E[Y 2ℓ]P

[
Y >

2c4ℓ log n

n

]) 1
2

≤
(
c5ℓ log n

n

)ℓ

for absolute constant c5. Here, the last inequality follows from Cauchy-Schwarz

and using the Poisson moment bound (Ahle, 2021, Theorem 2.1):3 E[(nY )2ℓ] ≤(
2ℓ

log
(
1+ 2ℓ

np

)
)2ℓ

≤ (c6ℓ log n)
2ℓ for some absolute constant c6, with the second inequal-

ity applying the assumption p < c4ℓ logn
n .

� As X1{Y≤p} ≤ p log n + 1
n ≲ ℓ(logn)2

n , we get E
[
Xℓ1{Y≤p}

]
≤
(
c7ℓ(logn)2

n

)ℓ
for some

absolute constant c7.

Proof of Corollary 18

We show the following monotonicity result of the prediction risk. In view of this result,

Corollary 18 immediately follows from Theorem 16 and Theorem 17 (i). Intuitively, the

optimal prediction risk is monotonically increasing with the number of states; this, however,

does not follow immediately due to the extra assumptions of irreducibility, reversibility, and

prescribed spectral gap.

Lemma 33. Riskk+1,n(γ0) ≥ Riskk,n(γ0) for all γ0 ∈ (0, 1), k ≥ 2.

Proof. Fix an M ∈ Mk(γ0) such that γ∗(M) > γ0. Denote the stationary distribution π

such that πM = π. Fix δ ∈ (0, 1) and de�ne a transition matrix M̃ with k + 1 states as

3For a result with less precise constants, see also (Ahle, 2021, Eq. (1)) based on (Lataªa, 1997, Corollary
1).
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follows:

M̃ =

(1− δ)M δ1

(1− δ)π δ


One can verify the following:

� M̃ is irreducible and reversible;

� The stationary distribution for M̃ is π̃ = ((1− δ)π, δ)

� The absolute spectral gap of M̃ is γ∗(M̃) = (1− δ)γ∗(M), so that M̃ ∈Mk+1(γ0) for

all su�ciently small δ.

� Let (X1, . . . , Xn) and (X̃1, . . . , X̃n) be stationary Markov chains with transition ma-

trices M and M̃ , respectively. Then as δ → 0, (X1, . . . , Xn) converges to (X̃1, . . . , X̃n)

in law, i.e., the joint probability mass function converges pointwise.

Next �x any estimator M̂ for state space [k + 1]. Note that without loss of generality

we can assume M̂(j|i) > 0 for all i, j ∈ [k + 1] for otherwise the KL risk is in�nite. De�ne

M̂ trunc as M̂ without the k+1-th row and column, and denote by M̂ ′ its normalized version,

namely, M̂ ′(·|i) = M̂trunc(·|i)
1−M̂trunc(k+1|i)

for i = 1, . . . , k. Then

E
X̃n

[
D(M̃(·|X̃n)∥M̂(·|X̃n))

]
δ→0−−−→ EXn

[
D(M(·|Xn)∥M̂(·|Xn))

]
≥ EXn

[
D(M(·|Xn)∥M̂ ′(·|Xn))

]
≥ inf

M̂
EXn

[
D(M(·|Xn)∥M̂(·|Xn))

]

where in the �rst step we applied the convergence in law of X̃n to Xn and the continuity

of P 7→ D(P∥Q) for �xed componentwise positive Q; in the second step we used the fact

that for any sub-probability measure Q = (qi) and its normalized version Q̄ = Q/α with

α =
∑

qi ≤ 1, we have D(P∥Q) = D(P∥Q̄) + log 1
α ≥ D(P∥Q̄). Taking the supremum over

M ∈ Mk(γ0) on the LHS and the supremum over M̃ ∈ Mk+1(γ0) on the RHS, and �nally

the in�mum over M̂ on the LHS, we conclude Riskk+1,n(γ0) ≥ Riskk,n(γ0).
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4.5 Higher-order Markov chains

In this section we prove Theorem 19. We start with some basic de�nitions for higher-order

Markov chains. Let m ≥ 1. Let X1, X2, . . . be an mth-th order Markov chain with state

space S and transition matrix M ∈ RSm×S so that P
[
Xt+1 = xt+1|Xt

t−m+1 = xtt−m+1

]
=

M(xt+1|xtt−m+1) for all t ≥ m. Clearly, the joint distribution of the process is speci�ed by the

transition matrix and the initial distribution, which is a joint distribution for (X1, . . . , Xm).

A distribution π on Sm is a stationary distribution if {Xt : t ≥ 1} with (X1, . . . , Xm) ∼ π

is a stationary process, that is,

(Xi1+t, . . . , Xin+t)
law
= (Xi1 , . . . , Xin), ∀n, i1, . . . , in ∈ N, t ∈ Z+.

It is clear that (4.5) is equivalent to (X1, . . . , Xm)
law
= (X2, . . . , Xm+1). In other words, π is

the solution to the linear system:

π(x1, . . . , xm) =
∑
x0∈S

π(x0, x1, . . . , xm−1)M(xm|x1, . . . , xm−1), ∀x1, . . . , xm ∈ S.(4.37)

Next we discuss reversibility. A random process {Xt} is reversible if for any n,

Xn law
= Xn,

where Xn ≜ (Xn, . . . , X1) denotes the reversal of X
n = (X1, . . . , Xn). Note that a reversible

mth-order Markov chain must be stationary. Indeed,

(X2, . . . , Xm+1)
law
= (Xm, . . . , X1)

law
= (X1, . . . , Xm),

where the �rst equality follows from (X1, . . . , Xm+1)
law
= (Xm+1, . . . , X1). The following lemma

gives a characterization for reversibility:

Lemma 34. An mth-order stationary Markov chain is reversible if and only if (4.5) holds
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for n = m+ 1, namely

π(x1, . . . , xm)M(xm+1|x1, . . . , xm) = π(xm+1, . . . , x2)M(x1|xm+1, . . . , x2), ∀x1, . . . , xm+1 ∈ S.

(4.38)

Proof. First, we show that (4.5) for n = m+ 1 implies that for n ≤ m. Indeed,

(X1, . . . , Xn)
law
= (Xm+1, . . . , Xm−n+2)

law
= (Xn, . . . , X1)

where the �rst equality follows from (X1, . . . , Xm+1)
law
= (Xm+1, . . . , X1) and the second ap-

plies stationarity.

Next, we show (4.5) for n = m+ 2 and the rest follows from induction on n. Indeed,

P [(X1, . . . , Xm+2) = (x1, . . . , xm+2)]

= π(x1, . . . , xm)M(xm+1|x1, . . . , xm)M(xm+2|x2, . . . , xm+1)

(a)
= π(xm+1, . . . , x2)M(x1|xm+1, . . . , x2)M(xm+2|x2, . . . , xm+1)

(b)
= π(x2, . . . , xm+1)M(x1|xm+1, . . . , x2)M(xm+2|x2, . . . , xm+1)

(c)
= π(xm+2, . . . , x3)M(x2|xm+2, . . . , x3)M(x1|xm+1, . . . , x2)

= P [(X1, . . . , Xm+2) = (xm+2, . . . , x1)] = P [(Xm+2, . . . , X1) = (x1, . . . , xm+2)] .

where (a) and (c) apply (4.5) for n = m+1, namely, (4.38); (b) applies (4.5) for n = m.

Note that any distribution π on Sm and mth-order transition matrix M that satisfy

π(xm) = π(xm) and (4.38) also satisfy (4.37). This implies such a π with be the stationary

distribution for M . In view of Lemma 34 the above conditions also guarantee reversibility.

This observation can be summarized in the following lemma, which we will use to prove

reversibility of speci�c Markov chains later.

Lemma 35. Let M be a km × k stochastic matrix describing transitions from Sm to S.

Suppose that π is a distribution on Sm such that π(xm) = π(xm) and π(xm)M(xm+1|xm) =

π(xm+1
2 )M(x1|xm+1

2 ). Then π is the stationary distribution of M and the resulting chain is

reversible.
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We de�ne the prediction risk as

Riskk,n,m ≜ inf
M̂

sup
M

E[D(M(·|Xn
n−m+1)∥M̂(·|Xn

n−m+1))]

= inf
M̂

sup
M

∑
xm∈Sm

E[D(M(·|xm)∥M̂(·|xm))1{Xn
n−m+1=xm}]

where the suppremum is taken over all km × k stochastic matrices M and the trajectory

is initiated from the stationary distribution. Based on these de�nitions we will show the

following.

Theorem 36. There exist constants Cm > 0 such that for all m ≥ 2, 2 ≤ k ≤ m+1
√
n/Cm

km+1

Cmn
log
( n

km+1

)
≤ Riskk,n,m ≤

Cmkm+1

n
log
( n

km+1

)
.

The lower bound is achieved over the class of all reversible Markov chains.

4.5.1 Upper bound

We prove the upper bound part of the preceding theorem, using only stationarity (not

reversibility). Our proof uses techniques in (Csiszár and Shields, 2004, Chapter 6, Page

486) for proving redundancy bounds for the mth-order chains. Let Q be the probability

assignment given by

Q(xn) =
1

km

∏
am∈Sm

∏k
j=1Namj !

k · (k + 1) · · · (Nam + k − 1)
,

where Namj denotes the number of times the block amj occurs in xn, and Nam =
∑k

j=1Namj

is the number of times the block am occurs in xn−1. This probability assignment corresponds

to the add-1 prediction rule

Q(j|xn) = M̂+1
xn (j|xnn−m+1) =

Nxn
n−m+1j

+ 1

Nxn
n−m+1

+ k
.

Then in view of Lemma 20, the following lemma generates the desired upper bound in

Theorem 36.
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Lemma 37. Let Red(QXn) be the redundancy of the mth-order Markov chain, as de�ned in

Section 4.2.1, and Xm be the corresponding observed trajectory. Then

Red(QXn) ≤ 1

n−m

{
km(k − 1)

[
log

(
1 +

n−m

km(k − 1)

)
+ 1

]
+m log k

}
.

Proof. We show that for every Markov chain with transition matrix M and initial distribu-

tion π on Sm, and every trajectory (x1, · · · , xn), it holds that

log
π(xm1 )

∏n−1
t=mM(xt+1|xtt−m+1)

Q(x1, · · · , xn)
≤ km(k − 1)

[
log

(
1 +

n−m

km(k − 1)

)
+ 1

]
+m log k,

where M(xt+1|xtt−m+1) the transition probability of going from xtt−m+1 to xt+1. Note that

n−1∏
t=m

M(xt+1|xtt−m+1) =
∏

am+1∈Sm+1

M(am+1|am)Nam+1 ≤
∏

am+1∈Sm+1

(Nam+1/Nam)
Nam+1 ,

where the last inequality follows from
∑

am+1∈S

Nam+1

Nam
log

Nam+1

NamM(am+1|am) ≥ 0 for each am,

by the non-negativity of the KL divergence. Therefore, we have

π(xm1 )
∏n−1

t=mM(xt+1|xtt−m+1)

Q(x1, · · · , xn)
≤ km ·

∏
am∈Sm

k · (k + 1) · · · · · (Nam + k − 1)

NNam

am

∏
am+1∈S

N
Nam+1

am+1

Nam+1 !
.

(4.39)

Using (4.7) we continue (4.39) to get

log
π(x1)

∏n−1
t=mM(xt+1|xt)

Q(x1, · · · , xn)
≤ m log k +

∑
am∈Sm

log
k · (k + 1) · · · · · (Nam + k − 1)

Nam !

= m log k +
∑

am∈Sm

Nam∑
ℓ=1

log

(
1 +

k − 1

ℓ

)

≤ m log k +
∑

am∈Sm

∫ Nam

0
log

(
1 +

k − 1

x

)
dx

= m log k +
∑

am∈Sm

(
(k − 1) log

(
1 +

Nam

k − 1

)
+Nam log

(
1 +

k − 1

Nam

))
(a)

≤ km(k − 1) log

(
1 +

n−m

km(k − 1)

)
+ km(k − 1) +m log k,
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where (a) follows from the concavity of x 7→ log x,
∑

am∈Sm Nam = n−m+1, and log(1+x) ≤

x.

4.5.2 Lower bound

Special case m ≥ 2, k = 2

We only analyze the case m = 2, i.e. second-order Markov chains with binary states, as the

lower bound for the case of m ≥ 3 case is then implied. The transition matrix for second-

order chains is given by a k2× k stochastic matrices M that gives the transition probability

from the ordered pairs (i, j) ∈ S × S to some state ℓ ∈ S:

M(ℓ|ij) = P [X3 = ℓ|X1 = i,X2 = j] .

Our result is the following.

Theorem 38. Risk2,n,2 = Θ
(
logn
n

)
.

Proof. The upper bound part follows from that of �rst-order Markov chains. Given any

mth-order chain {Xt}t≥1 on the state space [k], the process {Yt}t≥1, with Yt ≜ Xt+m−1
t

consisting of adjacentm-tuples, is a �rst-order Markov chain with states space Sm. Applying

the data processing inequality, the KL risk of estimating PXn+1|Xn−1
n−m+1

is at most that of

estimating PYn+2−m|Yn+1−m
. As such, we have Riskk,n,m ≤ Riskkm,n−m+1. This implies that

Risk2,n,2 ≤ Risk4,n = Θ(log n/n), in view of Theorem 15.

For the lower bound, consider the following one-parametric family of transition matrices

(we replace S by {1, 2} for simplicity of the notation)

M̃ =



Mp =



1 2

11 1− 1
n

1
n

21 1
n 1− 1

n

12 1− p p

22 p 1− p


: 0 ≤ p ≤ 1


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and place a uniform prior on p ∈ [0, 1]. One can verify that each Mp has the uniform

stationary distribution over the set {1, 2} × {1, 2} and the chains are reversible.

Next we introduce the set of trajectories based on which we will lower bound the pre-

diction risk. Analogous to the set X = ∪nt=1Xt de�ned in (4.8) for analyzing the �rst-order

risk, we de�ne

V =
{
1n−tzt : z1 = z2 = zt = 2, zi+1

i ̸= 11, i ∈ [t− 1], t = 4, . . . , n− 2
}
⊂ {1, 2}n.

In other words, the sequences in V starts with a sequence of 1's, then transitions into two

consecutive 2's, has no consecutive 1's afterwards, and end with 2 as well. Suppose that the

operation ⊕ combines any two blocks from {22, 212} via merging the end digit of the �rst

block and the �rst digit of the second block

22⊕ 212 = 2212, 22⊕ 22 = 222, 212⊕ 22 = 2122, 212⊕ 212 = 21212.

Then for any xn ∈ V we can write it using the initial part containing all 1's, alternating run

of blocks from {22, 212} with the �rst run being of the block 22 (all the runs have positive

lengths), and the merging operation ⊕

xn = 1 . . . 1︸ ︷︷ ︸
all ones

22⊕ 22 · · · ⊕ 22︸ ︷︷ ︸
p1 many 22

⊕ 212⊕ 212 · · · ⊕ 212︸ ︷︷ ︸
p2 many 212

⊕ 22⊕ 22 · · · ⊕ 22︸ ︷︷ ︸
p3 many 22

⊕ 212⊕ 212 · · · ⊕ 212︸ ︷︷ ︸
p4 many 212

⊕22⊕ . . . .

(4.40)

Suppose that the vector (q22→22, q22→212, q212→22, q212→212) gives the transition probabilities

between blocks in {22, 212} (note that the blocks share common adjacent random variable

that joins them)

q22→22 = P [X3 = 2, X2 = 2|X2 = 2, X1 = 2] = M(2|22) = 1− p

q22→212 = P [X4 = 2, X3 = 1, X2 = 2|X2 = 2, X1 = 2] = M(2|21)M(1|22) =
(
1− 1

n

)
p

q212→22 = P [X4 = 2, X3 = 2|X3 = 2, X2 = 1, X1 = 2] = M(2|12) = p

q212→212 = P [X5 = 2, X4 = 1, X3 = 2|X3 = 2, X2 = 1, X1 = 2] = M(2|21)M(1|12) =
(
1− 1

n

)
(1− p).
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Given any xn ∈ V we can calculate its probability under the law of Mp using frequency

counts F (xn) = (F111, F22→22, F22→212, F212→22, F212→212), de�ned as

F111 =
∑
i

1{xi=1,xi+1=1,xi+2=1}, F22→22 =
∑
i

1{xi=2,xi+1=2,xi+2=2},

F22→212 =
∑
i

1{xi=2,xi+1=2,xi+2=1,xi+3=2}, F212→22 =
∑
i

1{xi=2,xi+1=1,xi+2=2,xi+3=2},

F212→212 =
∑
i

1{xi=2,xi+1=1,xi+2=2,xi+3=1,xi+4=2}.

Denote µ(xn|p) = P [Xn = xn|p]. Then for each xn ∈ V with F (xn) = F we have

µ(xn|p)

= P(XF111+2 = 1F111+2)M(2|11)M(2|12)
∏

a,b∈{22,212}

qFa→b
a→b

=
1

4

(
1− 1

n

)F111 1

n
· p · pF212→22

{
p

(
1− 1

n

)}F22→212

(1− p)F22→22

{
(1− p)

(
1− 1

n

)}F212→212

=
1

4

(
1− 1

n

)F111+F22→212+F212→212 1

n
py+1(1− p)f−y (4.41)

where y = F212→22 + F22→212 denotes the number of times we alternate between the run of

22 and the run of 212, and f = F212→22 +F22→212 +F212→212 +F22→22 denotes the number

of times we jump between blocks from {22, 212}.

Note that the range of f includes all the integers in between 1 and (n−6)/2. This follows

from the de�nition of V and the fact that if we merge either 22 or 212 using the operation

⊕ at the end of any string zt with zt = 2, it increases the length of the string by at most 2.

Also, given any value of f the value of y ranges from 0 to f . The number of sequences in V

for any given realization of (y, f) is
(
f
y

)
. A short proof is provided. Fix xn ∈ V and let that

p2i−1 is the length of the i-th run of 22 blocks and p2i is the length of the i-th run of 212

blocks in xn as depicted in (4.40). The pi's are all positive integers. There are total y + 1

such runs and the pi-s satisfy
∑y+1

i=1 pi = f + 1, as the total number of blocks in the string

from {22, 212} is one more than its total number of f -transitions. Each positive solution to

this equation {pi}y+1
i=1 gives us one single sequence xn ∈ V and vice versa. The total number

of such sequences is
(
f
y

)
.

125



For any xn ∈ V with given F the Bayes estimator of p (under squared error loss and

p ∼ Uniform[0, 1]) is

p̂(xn) = E[p|xn] = E[p · µ(xn|p)]
E[µ(xn|p)]

(4.41)
=

y + 2

f + 3
.

Note that the probabilities µ(xn|p) in (4.41) can be bounded from below by 1
4enp

y+1(1 −

p)f−y. Using this, for each xn ∈ V with given y, f we get the following bound on the

integrated squared error for the particular sequence xn

∫ 1

0
µ(xn|p)(p− p̂(xn))2dp

≥ 1

4en

∫ 1

0
py+1(1− p)f−y

(
p− y + 2

f + 3

)2

dp =
1

4en

(y + 1)!(f − y)!

(f + 2)!

(y + 2)(f − y + 1)

(f + 3)2(f + 4)

where last equality followed by noting that the integral is the variance of a Beta(y + 2, f −

y + 1) random variable without its normalizing constant.

Next we bound the risk of any predictor by the Bayes error. Consider any predictor

M̂(·|ij) (as a function of the sample path X) for transition from ij, i, j ∈ {1, 2}. By the

Pinsker's inequality, we conclude that

D(M(·|12)∥M̂(·|12)) ≥ 1

2
∥M(·|12)− M̂(·|12)∥2ℓ1 ≥

1

2
(p− M̂(2|12))2

and similarly, D(M(·|22)∥M̂(·|22)) ≥ 1
2(p − M̂(1|22))2. Abbreviate M̂(2|12) ≡ p̂12 and
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M̂(1|22) ≡ p̂22, both functions of X. Then we have

3∑
i,j=1

E[D(M(·|ij)∥M̂(·|ij)))1{Xn
n−1=ij}]

≥ 1

2
E
[
(p− p̂12)

21{Xn
n−1=12,Xn∈V} + (p− p̂22)

21{Xn
n−1=22,Xn∈V}

]
≥ 1

2

∫ 1

0

∑
F

∑
xn∈V:F (xn)=F

µ(xn|p)
(
(p− p̂12)

21{xn
n−1=12} + (p− p̂22)

21{xn
n−1=22}

) dp

≥ 1

2

∫ 1

0

∑
F

∑
xn∈V:F (xn)=F

µ(xn|p)(p− p̂(xn))2

 dp

≥ 1

2

n−6
2∑

f=1

f∑
y=0

(
f

y

)
1

4en

(y + 1)!(f − y)!

(f + 2)!

(y + 2)(f − y + 1)

(f + 3)2(f + 4)

≥ 1

8en

n−6
2∑

f=1

f∑
y=0

y + 1

(f + 2)(f + 1)

(y + 2)(f − y + 1)

(f + 3)2(f + 4)
≥ Θ

(
1

n

) n−6
2∑

f=1

f
3∑

y= f
4

1

f2
= Θ

(
log n

n

)
.

General case m ≥ 2, k ≥ 3

We will prove the following.

Theorem 39. For absolute constant C, we have

Riskk,n,m ≥
1

2m+4

(
1

2
− 2m − 2

n

)(
1− 1

n

)n−2m+1 (k − 1)m+1

n
log

(
1

22m+8 · 3πe(m+ 1)
· n−m

(k − 1)m+1

)
.

For ease of notation let S = {1, . . . , k}. Denote S̃ = {2, . . . , k}. Consider an mth-order

transition matrix M of the following form:
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M(s|xm) =

Starting string xm
Next state

s = 1 s ∈ {2, . . . , k}

1m 1− 1

n

1

n(k − 1)

1xm−1, xm−1 ∈ S̃m−1
1− b

b

(k − 1)

xm ∈ S̃m
1

n

(
1− 1

n

)
T (s|xm)

xm /∈
{
1m, 1S̃m−1, S̃m

} 1

2

1

2(k − 1)

, b =
1

2
− 2m − 2

n
.

(4.42)

Here T is a (k − 1)m × (k − 1) transition matrix for an mth-order Markov chain with state

space S̃, satisfying the following property:

(P) T (xm+1|xm) = T (x1|xm+1
2 ), ∀xm+1 ∈ S̃m+1.

Lemma 40. Under the condition (P), the transition matrix T is reversible and its station-

ary distribution is uniform on S̃m. Under the condition (P), the mth-order Markov chain

with transition matrix T and uniform initial distribution on S̃m is reversible (and hence

stationary).

Proof. We prove this result using Lemma 35. Let π denote the uniform distribution on S̃m,

i.e., π(xm) = 1
(k−1)m for all xm ∈ S̃m. Then for any xm ∈ S̃m the condition π(xm) = π(xm)
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follows directly and π(xm)T (xm+1|xm) = π(xm+1
2 )T (x1|xm+1

2 ) follows from the assumption

(P).

Lemma 41. M is a reversible transition matrix with the stationary distribution π given by

π(xm) =



1
2 xm = 1m

b
(k−1)m xm ∈ S̃m

1
n(k−1)d(x

m) otherwise

where d(xm) ≜
∑m

i=1 1{xi∈S̃} and b = 1
2 −

2m−2
n as in (4.42).

Proof. Note that π is exchangeable, which enforces that all the lower dimensional distri-

butions are well de�ned, and the choice of b guarantees that
∑

xm∈Sm π(xm) = 1. The

condition π(xm) = π(xm) for all xm ∈ Sm follows directly. Next we check the condition

π(xm)M(xm+1|xm) = π(xm+1
2 )M(x1|xm+1

2 ). For the sequence 1m+1 the claim is easily ver-

i�ed. For the rest of the sequences we have the following.

� Case 1 (xm+1 ∈ S̃m+1): Note that xm+1 ∈ S̃m+1 if and only if xm, xm+1
2 ∈ S̃m. This

implies

π(xm)M(xm+1|xm) =
b

(k − 1)m

(
1− 1

n

)
T (xm+1|xm)

=
b

(k − 1)m

(
1− 1

n

)
T (x1|xm+1

2 ) = π(xm+1
2 )M(x1|xm+1

2 ).

� Case 2 (xm+1 ∈ 1S̃m or xm+1 ∈ S̃m1): By symmetry it is su�cient to analyze

the case xm+1 ∈ 1S̃m. Note that in the sub-case xm+1 ∈ 1S̃m, xm ∈ 1S̃m−1 and

xm+1
2 ∈ S̃m. This implies

π(xm) =
1

n(k − 1)m−1
, M(xm+1|xm) =

b

k − 1
,

π(xm+1
2 ) =

b

(k − 1)m
, M(x1|xm+1

2 ) =
1

n
.

In view of this we get π(xm)M(xm+1|xm) = π(xm+1
2 )M(x1|xm+1

2 ).
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� Case 3 (xm+1 /∈ 1m+1 ∪ S̃m+1 ∪ 1S̃m ∪ S̃m1):

Suppose that xm+1 has d many elements from S̃. Then xm, xm+1
2 /∈

{
1m, S̃m

}
. We

have the following sub-cases.

� If x1 = xm+1 = 1, then both xm, xm+1
2 have exactly d elements from S̃. This

implies π(xm) = π(xm+1
2 ) = 1

n(k−1)d
and M(xm+1|xm) = M(x1|xm+1

2 ) = 1
2

� If x1, xm+1 ∈ S̃, then both xm, xm+1
2 have exactly d − 1 elements from S̃. This

implies π(xm) = π(xm+1
2 ) = 1

n(k−1)d−1 and M(xm+1|xm) = M(x1|xm+1
2 ) = 1

2(k−1)

� If x1 = 1, xm+1 ∈ S̃, then xm has d−1 elements from S̃ and xm+1
2 has d elements

from S. This implies π(xm) = 1
n(k−1)d−1 , π(x

m+1
2 ) = 1

n(k−1)d
and M(xm+1|xm) =

1
2(k−1) ,M(x1|xm+1

2 ) = 1
2

� If x1 ∈ S̃, xm+1 = 1, then xm has d elements from S̃ and xm+1
2 has d − 1

elements from S then π(xm) = 1
n(k−1)d

, π(xm+1
2 ) = 1

n(k−1)d−1 and M(xm+1|xm) =

1
2 ,M(x1|xm+1

2 ) = 1
2(k−1)

For all these sub-cases we have π(xm)M(xm+1|xm) = π(xm+1
2 )M(x1|xm+1

2 ) as re-

quired.

This �nishes the proof.

Let (X1, . . . , Xn) be the trajectory of a stationary Markov chain with transition matrix

M as in (4.42). We observe the following properties:

(R1) This Markov chain is irreducible and reversible with mass 1
2 on the state 1m.

(R2) Form ≤ t ≤ n−1, let Xt denote the collections of trajectories x
n such that x1, x2, · · · , xt =

1 and xt+1, · · · , xn ∈ S̃. Then using Lemma 41

P(Xn ∈ Xt) = P(X1 = · · · = Xt = 1) · P(Xt+1 ̸= 1|Xt
t−m+1 = 1m)

·
m−1∏
i=2

P(Xt+i ̸= 1|Xt
t−m+i = 1m−i+1, Xt+i−1

t+1 ∈ S̃i−1)

· P(Xt+m ̸= 1|Xt = 1, Xt+m−1
t+1 ∈ S̃m−1) ·

n−1∏
s=t+m

P(Xs+1 ̸= 1|Xs
s−m+1 ∈ S̃m)

=
1

2
·
(
1− 1

n

)t−m

· b

n2m−2
·
(
1− 1

n

)n−m−t

=
b

n2m−1

(
1− 1

n

)n−2m

.
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Moreover, this probability does not depend of the choice of T ;

(R3) Conditioned on the event that Xn ∈ Xt, the trajectory (Xt+1, · · · , Xn) has the same

distribution as a length-(n − t) trajectory of a stationary mth-order Markov chain

with state space S̃ and transition probability T , and the uniform initial distribution.

Indeed,

P [Xt+1 = xt+1, . . . , Xn = xn|Xn ∈ Xt]

=

1
2 ·
(
1− 1

n

)t−m · b
n2m−2(k−1)m

∏n−1
s=t+m

(
1− 1

n

)
T (xs+1|xss−m+1)

b
n2m−1

(
1− 1

n

)n−2m

=
1

(k − 1)m

n−1∏
s=t+m

T (xs+1|xss−m+1).

Reducing the Bayes prediction risk to mutual information Consider the following

Bayesian setting, we �rst draw T from some prior satisfying property (P), then generate the

stationary mth-order Markov chain Xn = (X1, . . . , Xn) with state space [k] and transition

matrix M in (4.42) and stationary distribution π in (41). The following lemma lower bounds

the Bayes prediction risk.

Lemma 42. Conditioned on T , let Y n = (Y1, . . . , Yn) denote an mth-order stationary

Markov chain on state space S̃ = {2, . . . , k} with transition matrix T and uniform initial

distribution. Then

inf
M̂

ET

[
E[D(M(·|Xn

n−m+1)∥M̂(·|Xn
n−m+1)))]

]
≥ b(n− 1)

n22m−1

(
1− 1

n

)n−2m (
I(T ;Y n−m)−m log(k − 1)

)
.

Proof. We �rst relate the Bayes estimator of M and T (given the X and Y chain respec-

tively). For each m ≤ t ≤ n, denote by M̂t = M̂t(·|xt) the Bayes estimator of M(·|xtt−m+1)

given Xt = xt, and T̂t(·|yt) the Bayes estimator of T (·|ytt−m+1) given Y t = yt. For each

t = 1, . . . , n−1 and for each trajectory xn = (1, . . . , 1, xt+1, . . . , xn) ∈ Xt, recalling the form
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(4.4) of the Bayes estimator, we have, for each j ∈ S̃,

M̂n(j|xn)

=
P
[
Xn+1 = (xn, j)

]
P [Xn = xn]

=
E[12 ·

(
1− 1

n

)t−m · b
n2m−2(k−1)m

∏n−1
s=t+mM(xs+1|xss−m+1)M(j|xnn−m+1)]

E[12 ·
(
1− 1

n

)t−m · b
n2m−2(k−1)m

∏n−1
s=t+mM(xs+1|xss−m+1)]

=

(
1− 1

n

) E[ 1
(k−1)m

∏n−1
s=t+m T (xs+1|xss−m+1)T (j|xnn−m+1)]

E[ 1
(k−1)m

∏n−1
s=t+m T (xs+1|xss−m+1)]

=

(
1− 1

n

) P
[
Y n−t+1 = (xnt+1, j)

]
P
[
Y n−t = xnt+1

]
=

(
1− 1

n

)
T̂n−t(j|xnt+1).

Furthermore, since M(1|xm) = 1/n for all xm ∈ S̃ in the construction (4.42), the Bayes

estimator also satis�es M̂n(1|xn) = 1/n for xn ∈ Xt and t ≤ n−m. In all, we have

M̂n(·|xn) =
1

n
δ1 +

(
1− 1

n

)
T̂n−t(·|xnt+1), xn ∈ Xt, t ≤ n−m.

with δ1 denoting the point mass at state 1, which parallels the fact that

M(·|ym) =
1

n
δ1 +

(
1− 1

n

)
T (·|ym), ym ∈ S̃m.

By (R2), each event {Xn ∈ Xt} occurs with probability at least b
n2m−1

(
1− 1

n

)n−2m
, and

is independent of T . Therefore,

ET

[
E[D(M(·|Xn−1Xn)∥M̂(·|Xn))]

]
≥ b

n2m−1

(
1− 1

n

)n−2m n−m∑
t=m

ET

[
E[D(M(·|Xn

n−m+1)∥M̂(·|Xn))|Xn ∈ Xt]
]
. (4.43)

By (R3), the conditional joint law of (T,Xt+1, . . . , Xn) on the event {Xn ∈ Xt} is the same

as the joint law of (T, Y1, . . . , Yn−t). Thus, we may express the Bayes prediction risk in the
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X chain as

ET

[
E[D(M(·|Xn

n−m+1)∥M̂(·|Xn))|Xn ∈ Xt]
]

(a)
=

(
1− 1

n

)
· ET

[
E[D(T (·|Y n−t

n−t−m+1)∥T̂ (·|Y
n−t))]

]
(b)
=

(
1− 1

n

)
· I(T ;Yn−t+1|Y n−t), (4.44)

where (a) follows from (4.5.2), (4.5.2), and the fact that for distributions P,Q supported

on S̃, D(ϵδ1 + (1 − ϵ)P∥ϵδ1 + (1 − ϵ)Q) = (1 − ϵ)D(P∥Q); (b) is the mutual information

representation (4.2.1) of the Bayes prediction risk. Finally, the lemma follows from (4.43),

(4.44), and the chain rule

n−m∑
t=m

I(T ;Yn−t+1|Y n−t) = I(T ;Y n−m)− I(T ;Y m) ≥ I(T ;Y n−m)−m log(k − 1),

as I(T ;Y m) ≤ H(Y m) ≤ m log(k − 1).

Prior construction and lower bounding the mutual information We assume that

k = 2k0+1 for some integer k0. For simplicity of notation we replace S̃ by Y = 1, . . . , k − 1.

This does not a�ect the lower bound. De�ne an equivalent relation on |Y|m−1 given by

the following rule: xm−1 and ym−1 are related if and only if xm−1 = ym−1 or xm−1 =

ym−1. Let Rm−1 be a subset of Ym−1 that consists of exactly one representative from

each of the equivalent classes. As each of the equivalent classes under this relation will

have at most two elements the total number of equivalent classes is at least |Y|m−1

2 , i.e.,

|Rm−1| ≥ (k−1)m−1

2 . We consider the following prior: let u =
{
uixm−1j

}
i≤j∈[k0],xm−1∈Rm−1

be

iid and uniformly distributed in [1/(4k0), 3/(4k0)] and for each i ≤ j, xm−1 ∈ Rm−1 de�ne

ujxm−1i, uixm−1j
, u

jxm−1i
to be same as uixm−1j . Let the transition matrix T be given by

T (2j − 1|2i− 1, xm−1) = T (2j|2i, xm−1) = uixm−1j ,

T (2j|2i− 1, xm−1) = T (2j − 1|2i, xm−1) =
1

k0
− uixm−1j , i, j ∈ Y, xm−1 ∈ Ym−1.

One can check that the constructed T is a stochastic matrix and satis�es the property (P),

which enforces uniform stationary distribution. Also each entry of T belongs to the interval
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[ 1
2(k−1) ,

3
2(k−1) ].

Next we use the following lemma to derive estimation guarantees on T .

Lemma 43. Suppose that T is an ℓm × ℓ transition matrix, on statespace Ym with |Y| = ℓ,

satisfying T (xm+1|xm) = T (x1|xm+1
2 ), ∀xm+1 ∈ [ℓ]m+1 and T (ym+1|ym) ∈ [ c1ℓ ,

c2
ℓ ] with

0 < c1 < c2 < 1 < c1 for all ym+1 ∈ [ℓ]m+1. Then there is an estimator T̂ based on

stationary trajectory Y n simulated from T such that

E[∥T̂ − T∥2F] ≤
4c2m+3

1 (m+ 1)ℓ2m

c2(n−m)
,

where ∥T̂ − T∥F =
√∑

ym+1(T̂ (ym+1|ym)− T (ym+1|ym))2 denotes the Frobenious norm.

For our purpose we will use the above lemma on T with ℓ = k − 1, c1 = 1
2 , c2 = 3

2 .

Therefore it follows that there exist estimators T̂ (Y n) and û(Y n) such that

E[∥û(Y n)− u∥22] ≤ E[∥T̂ (Y n)− T∥2F] ≤
4c2(m+ 1)(k − 1)2m

c2m+3
1 (n−m)

.

Here and below, we identify u =
{
uixm−1j

}
i≤j,xm−1∈Rm−1

and û =
{
ûixm−1j

}
i≤j,xm−1∈Rm−1

as |Rm−1|k0(k0+1)
2 = |Rm−1|(k2−1)

8 -dimensional vectors.

Let h(X) =
∫
−fX(x) log fX(x)dx denote the di�erential entropy of a continuous random

vectorX with density fX w.r.t the Lebesgue measure and h(X|Y ) =
∫
−fXY (xy) log fX|Y (x|y)dxdy

the conditional di�erential entropy (cf. e.g. Cover and Thomas (2006)). Then

h(u) =
∑

i≤j∈[k0],xm−1∈Rm−1

h(uixm−1j) = −
|Rm−1|(k2 − 1)

8
log(k − 1).

Then

I(T ;Y n)
(a)
= I(u;Y n)

(b)

≥ I(u; û(Y n)) = h(u)− h(u|û(Y n))

(c)

≥ h(u)− h(u− û(Y n))

(d)

≥ |Rm−1|(k2 − 1)

16
log

(
c2m+3
1 |Rm−1|(k2 − 1)(n−m)

64πec2(m+ 1)(k − 1)2m+2

)
≥ (k − 1)m+1

32
log

(
n−m

cm(k − 1)m+1

)
.
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for constant cm = 128πec2(m+1)

c2m+3
1

, where (a) is because u and T are in one-to-one correspon-

dence by (4.5.2); (b) follows from the data processing inequality; (c) is because h(·) is

translation invariant and concave; (d) follows from the maximum entropy principle Cover

and Thomas (2006): h(u − û(Y n)) ≤ |Rm−1|(k2−1)
16 log

(
2πe

|Rm−1|(k2−1)/8
· E[∥û(Y n)− u∥22]

)
,

which in turn is bounded by (4.5.2). Plugging this lower bound into Lemma 42 completes

the lower bound proof of Theorem 36.

Proof of Lemma 43 via pseudo spectral gap

In view of Lemma 40 we get that the stationary distribution of T is uniform over Ym,

and there is a one-to-one correspondence between the joint distribution of Y m+1 and the

transition probabilities

P
[
Y m+1 = ym+1

]
=

1

ℓm
T (ym+1|ym).

Consider the following estimator T̂ : for ym+1 ∈ [ℓ]m+1, let

T̂ (ym+1|ym) = ℓm ·

∑n−m
t=1 1{Y t+m

t =ym+1}
n−m

.

Clearly E[T̂ (ym+1|ym)] = ℓmP [ym+1|ym] = T (ym+1|ym). Next we observe that the sequence

of random variables
{
Y t+m
t

}n−m

t=1
is a �rst-order Markov chain on [ℓ]m+1. Let us denote its

transition matrix by Tm+1 and note that its stationary distribution is given by π(am+1) =

ℓ−mT (am+1|am), am+1 ∈ [ℓ]m+1. For the transition matrix Tm+1, which might must be

non-reversible, the pseudo spectral gap γps(Tm+1) is de�ned as

γps(Tm+1) = max
r≥1

γ((T ∗
m+1)

rT r
m+1)

r
,

where T ∗
m+1 is the adjoint of Tm+1 de�ned as T

∗
m+1(b

m+1|am+1) = π(bm+1)T (am+1|bm+1)/π(am+1).

With these notations, the concentration inequality of (Paulin, 2015, Theorem 3.2) gives the
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following variance bound:

Var(T̂ (ym+1|ym)) ≤ ℓ2m ·
4P
[
Y m+1 = ym+1

]
γps(Tm+1)(n−m)

≤ ℓ2m · 4T (ym+1|ym)ℓ−m

γps(Tm+1)(n−m)
.

The following lemma bounds the pseudo spectral gap from below.

Lemma 44. Let T ∈ Rℓm×ℓ be the transition matrix of an m-th order Markov chain (Yt)t≥1

over a discrete state space Y with |Y| = ℓ, and assume that

� all the entries of T lie in the interval [ c1ℓ ,
c2
ℓ ] for some absolute constants 0 < c1 < c2;

� T has the uniform stationary distribution on [ℓ]m.

Let Tm+1 ∈ Rℓm+1×ℓm+1
be the transition matrix of the �rst-order Markov chain ((Yt, Yt+1, · · · , Yt+m))t≥1.

Then we have

γps(Tm+1) ≥
c2m+3
1

c2(m+ 1)
.

Consequently, we have

E[∥T̂ − T∥2F] =
∑

ym+1∈[ℓ]m+1

Var(T̂ (ym+1|ym))

≤
∑

ym+1∈[ℓ]m+1

4c2(m+ 1)ℓm

c2m+3
1

· T (ym+1|ym)

n−m
=

4c2(m+ 1)ℓ2m

c2m+3
1 (n−m)

,

completing the proof.

Proof of Lemma 44. As Tm+1 is a �rst-order Markov chain, the stochastic matrix Tm+1
m+1 de-

�nes the probabilities of transition from (Yt, Yt+1, · · · , Yt+m) to (Yt+m+1, Yt+m+2, · · · , Yt+2m+1).

By our assumption on T

min
a2m+2∈Y2m+2

Tm+1
m+1 (a

2m+2
m+2 |a

m+1) ≥
m∏
t=0

T (a2m+2−t|a2m+1−t
m+2−t ) ≥

cm+1
1

ℓm+1
. (4.45)
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Given any am+1, bm+1 ∈ Ym+1, using the above inequality we have

(T ∗
m+1)

m+1(bm+1|am+1)

=
∑

y1∈Ym+1,...,ym∈Ym+1

T ∗
m+1(b

m+1|ym)

{
m−1∏
t=1

T ∗
m+1(ym−t+1|ym−t)

}
T ∗
m+1(y1|am+1)

=
∑

y1∈Ym+1,...,ym∈Ym+1

π(bm+1)Tm+1(ym|bm+1)

π(ym)

{
m−1∏
t=1

π(ym−t+1)Tm+1(ym−t|ym−t+1)

π(ym−t)

}
π(y1)Tm+1(a

m+1|y1)

π(am+1)

=
π(bm+1)

π(am+1)

∑
y1∈Ym+1,...,ym∈Ym+1

Tm+1(ym|bm+1)

{
m−1∏
t=1

Tm+1(ym−t|ym−t+1)

}
Tm+1(a

m+1|y1)

=
π(bm+1)

π(am+1)
Tm+1
m+1 (a

m+1|bm+1)

=
π(bm)T (bm+1|bm)

π(bm)T (am+1|am)
Tm+1
m+1 (a

m+1|bm+1) ≥ c1
c2
· c

m+1
1

ℓm+1
. (4.46)

Using (4.45),(4.46) we get

min
am+1,bm+1∈Ym+1

{
(T ∗

m+1)
m+1Tm+1

m+1

}
(bm+1|am+1)

≥
∑

dm+1∈Ym+1

(
min

am+1,dm+1∈Ym+1
(T ∗

m+1)
m+1(dm+1|am+1)

)(
min

bm+1,dm+1∈Ym+1
Tm+1
m+1 (b

m+1|dm+1)

)

≥
∑

dm+1∈Ym+1

c2m+3
1

c2ℓ2m+2
≥ c2m+3

1

c2ℓm+1
.

As (T ∗
m+1)

m+1Tm+1
m+1 is an ℓm+1 × ℓm+1 stochastic matrix, we can use Lemma 45 to get the

lower bound on its spectral gap γ((T ∗
m+1)

m+1Tm+1
m+1 ) ≥

c2m+3
1
c2

. Hence we get

γps(Tm+1) ≥
γ((T ∗

m+1)
m+1Tm+1

m+1 )

m+ 1
≥ c2m+3

1

c2(m+ 1)

as required. A more generalized version of Lemma 45 can be found in from Ho�man (1967).

Lemma 45. Suppose that A is a d× d stochastic matrix with mini,j Aij ≥ ϵ. Then for any

eigenvalue λ of A other than 1 we have |λ| ≤ 1− dϵ.

Proof. Suppose that λ is an eigenvalue of A other than 1 with non-zero left eigenvector v,
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i.e. λvj =
∑d

i=1 viAij , j = 1, . . . , d. As A is a stochastic matrix we know that
∑

j Aij = 1

for all i and hence
∑d

i=1 vi = 0. This implies

|λvj | = |
d∑

i=1

viAij | = |
d∑

i=1

vi(Aij − ϵ)| ≤
d∑

i=1

|vi(Aij − ϵ)| =
d∑

i=1

|vi|(Aij − ϵ)

with the last equality following from Aij ≥ ϵ. Summing over j = 1, . . . d in the above

equation and dividing by
∑d

i=1 |vi| we get |λ| ≤ 1− dϵ as required.

4.6 Discussions and open problems

We discuss the assumptions and implications of our results as well as related open problems.

Very large state space. Theorem 15 determines the optimal prediction risk under the

assumption of k ≲
√
n. When k ≳

√
n, Theorem 15 shows that the KL risk is bounded away

from zero. However, as the KL risk can be as large as log k, it is a meaningful question to

determine the optimal rate in this case, which, thanks to the general reduction in (4.1.1),

reduces to determining the redundancy for symmetric and general Markov chains. For iid

data, the minimax pointwise redundancy is known to be n log k
n +O(n

2

k ) (Szpankowski and

Weinberger, 2012, Theorem 1) when k ≫ n. Since the average and pointwise redundancy

usually behave similarly, for Markov chains it is reasonable to conjecture that the redundancy

is Θ(n log k2

n ) in the large alphabet regime of k ≳
√
n, which, in view of (4.1.1), would imply

the optimal prediction risk is Θ(log k2

n ) for k ≫
√
n. In comparison, we note that the

prediction risk is at most log k, achieved by the uniform distribution.

Other loss functions As mentioned in Section 4.1.1, standard arguments based on con-

centration inequalities inevitably rely on mixing conditions such as the spectral gap. In

contrast, the risk bound in Theorem 15, which is free of any mixing condition, is enabled by

powerful techniques from universal compression which bound the redundancy by the point-

wise maximum over all trajectories combined with information-theoretic or combinatorial
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argument. This program only relies on the Markovity of the process rather than station-

arity or spectral gap assumptions. The limitation of this approach, however, is that the

reduction between prediction and redundancy crucially depends on the form of the KL loss

function4 in (4.1), which allows one to use the mutual information representation and the

chain rule to relate individual risks to the cumulative risk. More general loss in terms of

f -divergence have been considered in Hao et al. (2018). Obtaining spectral gap-independent

risk bound for these loss functions, this time without the aid of universal compression, is an

open question.

Stationarity As mentioned above, the redundancy result in Lemma 21 (see also Davisson

(1983); Tatwawadi et al. (2018)) holds for nonstationary Markov chains as well. However,

our redundancy-based risk upper bound in Lemma 20 crucially relies on stationarity. It is

unclear whether the result of Theorem 15 carries over to nonstationary chains.

4.7 Appendix

4.7.1 Mutual information representation of prediction risk

The following lemma justi�es the representation (4.2.1) for the prediction risk as maximal

conditional mutual information. Unlike (4.2.1) for redundancy which holds essentially with-

out any condition Kemperman (1974), here we impose certain compactness assumptions

which hold �nite alphabets such as �nite-state Markov chains studied in this paper.

Lemma 46. Let X be �nite and let Θ be a compact subset of Rd. Given {PXn+1|θ : θ ∈ Θ},

de�ne the prediction risk

Riskn ≜ inf
QXn+1|Xn

sup
θ∈Θ

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn|θ),

Then

Riskn = sup
Pθ∈M(Θ)

I(θ;Xn+1|Xn).

whereM(Θ) denotes the collection of all (Borel) probability measures on Θ.

4In fact, this connection breaks down if one swap M and M̂ in the KL divergence in (4.1).
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Note that for stationary Markov chains, (4.2.1) follows from Lemma 46 since one can

take θ to be the joint distribution of (X1, . . . , Xn+1) itself which forms a compact subset of

the probability simplex on X n+1.

Proof. It is clear that (46) is equivalent to

Riskn = inf
QXn+1|Xn

sup
Pθ∈M(Θ)

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn,θ).

By the variational representation (4.1.3) of conditional mutual information, we have

I(θ;Xn+1|Xn) = inf
QXn+1|Xn

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn,θ).

Thus (46) amounts to justifying the interchange of in�mum and supremum in (46). It su�ces

to prove the upper bound.

Let |X | = K. For ϵ ∈ (0, 1), de�ne an auxiliary quantity:

Riskn,ϵ ≜ inf
QXn+1|Xn≥ ϵ

K

sup
Pθ∈M(Θ)

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn,θ),

where the constraint in the in�mum is pointwise, namely, QXn+1=xn+1|Xn=xn ≥ ϵ
K for all

x1, . . . , xn+1 ∈ X . By de�nition, we have Riskn ≤ Riskn,ϵ. Furthermore, Riskn,ϵ can be

equivalently written as

Riskn,ϵ = inf
QXn+1|Xn

sup
Pθ∈M(Θ)

D(PXn+1|Xn,θ∥(1− ϵ)QXn+1|Xn + ϵU |PXn,θ),

where U denotes the uniform distribution on X .

We �rst show that the in�mum and supremum in (4.7.1) can be interchanged. This fol-

lows from the standard minimax theorem. Indeed, note thatD(PXn+1|Xn,θ∥(1−ϵ)QXn+1|Xn+

ϵU |PXn,θ) is convex in QXn+1|Xn , a�ne in Pθ, continuous in each argument, and takes values

in [0, log K
ϵ ]. SinceM(Θ) is convex and weakly compact (by Prokhorov's theorem) and the

collection of conditional distributions QXn+1|Xn is convex, the minimax theorem (see, e.g.,
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(Fan, 1953, Theorem 2)) yields

Riskn,ϵ = sup
π∈M(Θ)

inf
QXn+1|Xn

D(PXn+1|Xn,θ∥(1− ϵ)QXn+1|Xn + ϵU |PXn,θ).

Finally, by the convexity of the KL divergence, for any P on X , we have

D(P∥(1− ϵ)Q+ ϵU) ≤ (1− ϵ)D(P∥Q) + ϵD(P∥U) ≤ (1− ϵ)D(P∥Q) + ϵ logK,

which, in view of (4.7.1) and (4.7.1), implies

Riskn ≤ Riskn,ϵ ≤ sup
Pθ∈M(Θ)

I(θ;Xn+1|Xn) + ϵ logK.

By the arbitrariness of ϵ, (46) follows.

4.7.2 Proof of Lemma 30

Recall that for any irreducible and reversible �nite states transition matrix M with station-

ary distribution π the followings are satis�ed:

1. πi > 0 for all i.

2. M(j|i)πi = M(i|j)πj for all i, j.

The following is a direct consequence of the Markov property.

Lemma 47. For any 1 ≤ t1 < · · · < tm < · · · < tk and any Z2 = f (Xtk , . . . , Xtm) , Z1 =

g
(
Xtm−1 , . . . , Xt1

)
we have

E
[
Z21{Xtm=j}Z1|X1 = i

]
= E [Z2|Xtm = j]E

[
1{Xtm=j}Z1|X1 = i

]
For t ≥ 0, denote the t-step transition probability by P [Xt+1 = j|X1 = i] = M t(j|i),

which is the ijth entry of M t. The following result is standard (see, e.g., (Levin and Peres,

2017a, Chap. 12)). We include the proof mainly for the purpose of introducing the spectral

decomposition.
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Lemma 48. De�ne λ∗ ≜ 1 − γ∗ = max {|λi| : i ̸= 1}. For any t ≥ 0,
∣∣M t(j|i)− πj

∣∣ ≤
λt
∗

√
πj

πi
.

Proof. Throughout the proof all vectors are column vectors except for π. Let Dπ denote

the diagonal matrix with entries Dπ(i, i) = πi. By reversibility, D
1
2
πMD

− 1
2

π , which shares

the same spectrum with M , is a symmetric matrix and admits the spectral decomposition

D
1
2
πMD

− 1
2

π =
∑k

a=1 λauau
⊤
a for some orthonormal basis {u1, . . . , uk}; in particular, λ1 = 1

and u1i =
√
πi. Then for each t ≥ 1,

M t =

k∑
a=1

λt
aD

− 1
2

π uau
⊤
a D

1
2
π = 1π +

k∑
a=2

λt
aD

− 1
2

π uau
⊤
a D

1
2
π . (4.47)

where 1 is the all-ones vector. As ua's satisfy
∑k

a=1 uau
⊤
a = I we get

∑k
a=2 u

2
ab = 1−u2a1 ≤ 1

for any b = 1, . . . , k. Using this along with Cauchy-Schwarz inequality we get

∣∣M t(j|i)− πj
∣∣ ≤√πj

πi

k∑
a=2

|λa|t |uaiuaj | ≤ λt
∗

√
πj
πi

(
k∑

a=2

u2ai

) 1
2
(

k∑
a=2

u2aj

) 1
2

≤ λt
∗

√
πj
πi

as required.

Lemma 49. Fix states i, j. For any integers a ≥ b ≥ 1, de�ne

hs(a, b) =
∣∣E [1{Xa+1=i}

(
1{Xa=j} −M(j|i)

)s |Xb = i
]∣∣ , s = 1, 2, 3, 4.

Then

(i) h1(a, b) ≤ 2
√

M(j|i)λa−b
∗

(ii) |h2(a, b)− πiM(j|i)(1−M(j|i))| ≤ 4
√

M(j|i)λa−b
∗ .

(iii) h3(a, b), h4(a, b) ≤ πiM(j|i)(1−M(j|i)) + 4
√
M(j|i)λa−b

∗ .

Proof. We apply Lemma 48 and time reversibility:
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(i)

h1(a, b) = |P [Xa+1 = i,Xa = j|Xb = i]−M(j|i)P [Xa+1 = i|Xb = i]|

=
∣∣∣M(i|j)Ma−b(j|i)−M(j|i)Ma−b+1(i|i)

∣∣∣
≤M(i|j)

∣∣∣Ma−b(j|i)− πj

∣∣∣+M(j|i)
∣∣∣Ma−b+1(i|i)− πi

∣∣∣
≤ λa−b

∗ M(i|j)
√

πj
πi

+M(j|i)λa−b+1
∗

= λa−b
∗
√
M(j|i)M(i|j) +M(j|i)λa−b+1

∗ ≤ 2
√
M(j|i)λa−b

∗ .

(ii)

|h2(a, b)− πiM(j|i)(1−M(j|i))|

=
∣∣∣E [1{Xa+1=i,Xa=j}|Xb = i

]
− πiM(j|i) + (M(j|i))2 (E

[
1{Xa+1=i}|Xb = i

]
− πi)

− 2M(j|i)(E
[
1{Xa+1=i,Xa=j}|Xb = i

]
− πiM(j|i))

∣∣∣
≤ |P [Xa+1 = i,Xa = j|Xb = i]− πjM(i|j)|+ (M(j|i))2 |P [Xa+1 = i|Xb = i]− πi|

+ 2M(j|i) |P [Xa+1 = i,Xa = j|Xb = i]− πjM(i|j)|

=M(i|j)
∣∣∣Ma−b(j|i)− πj

∣∣∣+ (M(j|i))2
∣∣∣Ma−b+1(i|i)− πi

∣∣∣+ 2M(j|i)M(i|j)
∣∣∣Ma−b(j|i)− πj

∣∣∣
≤M(i|j)

√
πj
πi

λa−b
∗ + (M(j|i))2λa−b+1

∗ + 2M(j|i)M(i|j)
√

πj
πi

λa−b
∗

≤λa−b
∗

√M(i|j)

√
M(i|j)πj

πi
+ (M(j|i))2 + 2M(j|i)

√
M(i|j)

√
M(i|j)πj

πi


≤4
√

M(j|i)λa−b
∗ .

(iii) h3(a, b), h4(a, b) ≤ h2(a, b).

Proof of Lemma 30(i). For ease of notation we use c0 to denote an absolute constant whose

value may vary at each occurrence. Fix i, j ∈ [k]. Note that the empirical count de�ned in
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(6) can be written as Ni =
∑n−1

a=1 1{Xn−a=i} and Nij =
∑n−1

a=1 1{Xn−a=i,Xn−a+1=j}. Then

E
[
(M(j|i)Ni −Nij)

2 |Xn = i
]

=E

(n−1∑
a=1

1{Xn−a=i}
(
1{Xn−a+1=j} −M(j|i)

))2
∣∣∣∣∣∣Xn = i


(a)
=E

(n−1∑
a=1

1{Xa+1=i}
(
1{Xa=j} −M(j|i)

))2
∣∣∣∣∣∣X1 = i


(b)
=

∣∣∣∣∣∣
∑
a,b

E [ηaηb|X1 = i]

∣∣∣∣∣∣ ≤ 2
∑
a≥b

|E [ηaηb|X1 = i]| ,

where (a) is due to time reversibility; in (b) we de�ned ηa ≜ 1{Xa+1=i}
(
1{Xa=j} −M(j|i)

)
.

We divide the summands into di�erent cases and apply Lemma 49.

Case I: Two distinct indices. For any a > b, using Lemma 47 we get

|E [ηaηb|X1 = i]| = |E [ηa|Xb+1 = i]| |E [ηb|X1 = 1]| = h1(a, b+ 1)h1(b, 1)

which implies

∑∑
n−1≥a>b≥1

|E [ηaηb|X1 = i]| =
∑∑

n−1≥a>b≥1

h1(a, b+ 1)h1(b, 1) ≲ M(j|i)
∑∑

n−1≥a>b≥1

λa−2
∗ ≲

M(j|i)
γ2∗

.

Here the last inequality (and similar sums in later deductions) can be explained as follows.

Note that for γ∗ ≥ 1
2 (i.e. λ∗ ≤ 1

2), the sum is clearly bounded by an absolute constant;

for γ∗ < 1
2 (i.e. λ∗ > 1

2), we compare the sum with the mean (or higher moments in other

calculations) of a geometric random variable.

Case II: Single index.

n−1∑
a=1

E
[
η2a|X1 = i

]
=

n−1∑
a=1

h2(a, 1) ≲ nπiM(j|i)(1−M(j|i)) +
√
M(j|i)
γ∗

.
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Combining the above we get

E
[
(Nij −M(j|i)Ni)

2 |Xn = i
]
≲ nπiM(j|i)(1−M(j|i)) +

√
M(j|i)
γ∗

+
M(j|i)
γ2∗

as required.

Proof of Lemma 30(ii). We �rst note that due to reversibility we can write (similar as in

proof of Lemma 30(i)) with ηa = 1{Xa+1=i}
(
1{Xa=j} −M(j|i)

)
E
[
(M(j|i)Ni −Nij)

4 |Xn = i
]

= E

(n−1∑
a=1

1{Xa+1=i}
(
1{Xa=j} −M(j|i)

))4
∣∣∣∣∣∣X1 = i


=

∣∣∣∣∣∣
∑
a,b,d,e

E [ηaηbηdηe|X1 = i]

∣∣∣∣∣∣ ≤
∑
a,b,d,e

|E [ηaηbηdηe|X1 = i]| ≲
∑

a≥b≥d≥e

|E [ηaηbηdηe|X1 = i]| .

We bound the sum over di�erent combinations of a ≥ b ≥ d ≥ e to come up with a bound

on the required fourth moment. We �rst divide the η's into groups depending on how many

distinct indices of η there are. We use the following identities which follow from Lemma 47:

for indices a > b > d > e

� |E [ηaηbηdηe|X1 = i]| = h1(a, b+ 1)h1(b, d+ 1)h1(d, e+ 1)h1(e, 1)

� For s1, s2, s3 ∈ {1, 2},
∣∣E [ηs1a ηs2b ηs3d |X1 = i

]∣∣ = hs1(a, b+ 1)hs2(b, d+ 1)hs3(d, 1)

� For s1, s2 ∈ {1, 2, 3},
∣∣E [ηs1a ηs2b |X1 = i

]∣∣ = hs1(a, b+ 1)hs2(b, 1)

� E
[
η4a|X1 = 1

]
= h4(a, 1)

and then use Lemma 49 to bound the h functions.
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Case I: Four distinct indices. Using Lemma 49 we have

∑∑∑∑
n−1≥a>b>d>e≥1

|E [ηaηbηdηe|X1 = i]| =
∑∑∑∑
n−1≥a>b>d>e≥1

h1(a, b+ 1)h1(b, d+ 1)h1(d, e+ 1)h1(e, 1)

≤M(j|i)2
∑∑∑∑
n−1≥a>b>d>e≥1

λa−4
∗ ≲

M(j|i)2

γ4∗
.

Case II: Three distinct indices. There are three cases, namely η2aηbηd, ηaη
2
bηd and

ηaηbη
2
d.

1. Bounding
∑∑∑

n−1≥a>b>d≥1

∣∣E [η2aηbηd|X1 = i
]∣∣:

∑∑∑
n−1≥a>b>d≥1

∣∣E [η2aηbηd|X1 = i
]∣∣ = ∑∑∑

n−1≥a>b>d≥1

h2(a, b+ 1)h1(b, d+ 1)h1(d, 1)

≲
∑∑∑

n−1≥a>b>d≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λa−b−1

∗

)
M(j|i)λb−2

∗

≲
M(j|i)
γ2∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
3
2

γ3∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
3
2

γ3∗
+

M(j|i)2

γ4∗

where the last inequality followed by using xy ≤ x2 + y2.

2. Bounding
∑∑∑

n−2≥a>b>d≥1

∣∣E [ηaη2bηd|X1 = i
]∣∣:

∑∑∑
n−2≥a>b>d≥1

∣∣E [ηaη2bηd|X1 = i
]∣∣

=
∑∑∑

n−2≥a>b>d≥1

h1(a, b+ 1)h2(b, d+ 1)h1(d, 1)

≲
∑∑∑

n−2≥a>b>d≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λb−d−1

∗

)
M(j|i)λa−b+d−2

∗

≲
M(j|i)
γ2∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
3
2

γ3∗

≲ nπiM(j|i)(1−M(j|i))2 + M(j|i)
3
2

γ3∗
+

M(j|i)2

γ4∗
.
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3. Bounding
∑∑∑

n−2≥a>b>d≥1

∣∣E [ηaηbη2d|X1 = i
]∣∣:

∑∑∑
n−2≥a>b>d≥1

∣∣E [ηaηbη2d|X1 = i
]∣∣

=
∑∑∑

n−2≥a>b>d≥1

h1(a, b+ 1)h1(b, d+ 1)h2(d, 1)

≲
∑∑∑

n−2≥a>b>d≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λd−1

∗

)
M(j|i)λa−d−2

∗

≲
M(j|i)
γ2∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
3
2

γ3∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
3
2

γ3∗
+

M(j|i)2

γ4∗
.

Case III: Two distinct indices. There are three di�erent cases, namely η2aη
2
b , η

3
aηb and

ηaη
3
b .

1. Bounding
∑∑

n−2≥a>b≥1

∣∣E [η2aη2b |X1 = i
]∣∣:

∑∑
n−2≥a>b≥1

E
[
η2aη

2
b |X1 = i

]
=

∑∑
n−2≥a>b≥1

h2(a, b+ 1)h2(b, 1)

≲
∑∑

n−2≥a>b≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λa−b−1

∗

)(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λb−1

∗

)
≲

∑∑
n−2≥a>b≥1

{
πiM(j|i)(1−M(j|i))

√
M(j|i)(λa−b−1

∗ + λb−1
∗ )

+ (πiM(j|i)(1−M(j|i)))2 +M(j|i)λa−2
∗

}
≲ (nπiM(j|i)(1−M(j|i)))2 +

√
M(j|i)
γ∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
γ2∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
γ2∗

.

2. Bounding
∑∑

n−2≥a>b≥1

∣∣E [η3aηb|X1 = i
]∣∣:
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∑∑
n−2≥a>b≥1

∣∣E [η3aηb|X1 = i
]∣∣

=
∑∑

n−2≥a>b≥1

h3(a, b+ 1)h1(b, 1)

≲
∑∑

n−2≥a>b≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λa−b−1

∗

)√
M(j|i)λb−1

∗

≲

√
M(j|i)
γ∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
γ2∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
γ2∗

.

3. Bounding
∑∑

n−2≥a>b≥1

∣∣E [ηaη3b |X1 = i
]∣∣:

∑∑
n−2≥a>b≥1

∣∣E [ηaη3b |X1 = i
]∣∣

=
∑∑

n−2≥a>b≥1

h1(a, b+ 1)h3(b, 1)

≲
∑∑

n−2≥a>b≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λb−1

∗

)√
M(j|i)λa−b−1

∗

≲

√
M(j|i)
γ∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
γ2∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
γ2∗

.

Case IV: Single index. Bound on
∑n−1

a=1 E
[
η4a|X1 = i

]
:

n−1∑
a=1

E
[
η4a|X1 = i

]
=

n−1∑
a=1

h4(a, 1)≤nπiM(j|i)(1−M(j|i)) +
√
M(j|i)
γ∗

.

Combining all cases we get

E
[
(M(j|i)Ni −Nij)

4 |Xn = i
]
≲ (nπiM(j|i)(1−M(j|i)))2 +

√
M(j|i)
γ∗

+
M(j|i)
γ2∗

+
M(j|i)

3
2

γ3∗
+

M(j|i)2

γ4∗

≲ (nπiM(j|i)(1−M(j|i)))2 +
√
M(j|i)
γ∗

+
M(j|i)2

γ4∗

as required.

Proof of Lemma 30(iii). Throughout our proof we repeatedly use the spectral decomposi-
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tion (4.47) applied to the diagonal elements:

M t(i|i) = πi +
∑
v≥2

λt
vu

2
vi,

∑
v≥2

u2vi ≤ 1.

Write Ni − (n− 1)πi =
∑n−1

a=1 ξa where ξa = 1{Xa=i} − πi. For a ≥ b ≥ d ≥ e,

E [ξaξbξdξe|X1 = i]

= E
[
ξaξb

(
1{Xd=i,Xe=i} − πi1{Xd=i} − πi1{Xe=i} + π2

i

)
|X1 = i

]
= E

[
ξaξb1{Xd=i,Xe=i}|X1 = i

]
− πiE

[
ξaξb1{Xd=i}|X1 = i

]
− πiE

[
ξaξb1{Xe=i}|X1 = i

]
+ π2

i E [ξaξb|X1 = i]

= E [ξaξb|Xd = i]P [Xd = i|Xe = i]P[Xe = i|X1 = i]− πiE [ξaξb|Xd = i]P[Xd = i|X1 = i]

− πiE [ξaξb|Xe = i]P[Xe = i|X1 = i] + π2
i E [ξaξb|X1 = i]

= E [ξaξb|Xd = i]
{
Md−e(i|i)M e−1(i|i)− πiM

d−1(i|i)
}

−
{
πiE [ξaξb|Xe = i]M e−1(i|i)− π2

i E [ξaξb|X1 = i]
}

(4.48)
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Using the Markov property for any d ≤ b ≤ a, we get

∣∣∣∣∣∣E[ξaξb|Xd = i]− πi
∑
v≥2

u2viλ
a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣E [1{Xa=i,Xb=i} − πi1{Xa=i} − πi1{Xb=i} + π2
i |Xd = i

]
− πi

∑
v≥2

u2viλ
a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣Ma−b(i|i)M b−d(i|i)− πiM
a−d(i|i)− πiM

b−d(i|i) + π2
i − πi

∑
v≥2

u2viλ
a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣
πi +

∑
v≥2

u2viλ
a−b
v

πi +
∑
v≥2

u2viλ
b−d
v

 − πi

πi +
∑
v≥2

u2viλ
a−d
v


−πi

πi +
∑
v≥2

u2viλ
b−d
v

+ π2
i − πi

∑
v≥2

u2viλ
a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

v≥2

u2viλ
a−b
v

∑
v≥2

u2viλ
b−d
v

− πi
∑
v≥2

u2viλ
a−d
v

∣∣∣∣∣∣
≤ λa−d

∗

∑
v≥2

u2vi

∑
v≥2

u2vi

+ λa−d
∗ πi

∑
v≥2

u2vi ≤ 2λa−d
∗ . (4.49)

We also get for d ≥ e

∣∣∣Md−e(i|i)M e−1(i|i)− πiM
d−1(i|i)

∣∣∣
=

∣∣∣∣∣∣
πi +

∑
v≥2

u2viλ
d−e
v

πi +
∑
v≥2

u2viλ
e−1
v

− πi

πi +
∑
v≥2

u2viλ
d−1
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣πi
∑
v≥2

u2viλ
e−1
v + πi

∑
v≥2

u2viλ
d−e
v +

∑
v≥2

u2viλ
e−1
v

∑
v≥2

u2viλ
d−e
v

− πi
∑
v≥2

u2viλ
d−1
v

∣∣∣∣∣∣
≤ 2λd−1

∗ + πiλ
e−1
∗ + πiλ

d−e
∗ .
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This implies

|E [ξaξb|Xd = i]|
∣∣∣Md−e(i|i)M e−1(i|i)− πiM

d−1(i|i)
∣∣∣

≤

πi
∑
v≥2

u2viλ
a−b
v + 2λa−d

∗

(2λd−1
∗ + πiλ

e−1
∗ + πiλ

d−e
∗

)
≤
(
πiλ

a−b
∗ + 2λa−d

∗

)(
2λd−1

∗ + πiλ
e−1
∗ + πiλ

d−e
∗

)
≤ 4

[
π2
i λ

a−b+d−e
∗ + π2

i λ
a−b+e−1
∗ + πi

(
λa−b+d−1
∗ + λa−d+e−1

∗ + λa−e
∗

)
+ λa−1

∗

]
(4.50)

Using (4.49) along with Lemma 48 for any e ≤ b ≤ a we get

∣∣πiE [ξaξb|Xe = i]M e−1(i|i)− π2
i E [ξaξb|X1 = i]

∣∣
≤ πi |E [ξaξb|Xe = i]|

∣∣M e−1(i|i)− πi
∣∣+ π2

i

∣∣∣∣∣∣E [ξaξb|Xe = i]− πi
∑
v≥2

u2viλ
a−b
v

∣∣∣∣∣∣
+ π2

i

∣∣∣∣∣∣E [ξaξb|X1 = i]− πi
∑
v≥2

u2viλ
a−b
v

∣∣∣∣∣∣
≤ πi

πi∑
v≥2

u2viλ
a−b
v + 2λa−e

∗

 2λe−1
∗ + 2π2

i λ
a−e
∗ + 2π2

i λ
a−1
∗

≤ 2π2
i λ

a−b+e−1
∗ + 4π2

i λ
a−e
∗ + 4π2

i λ
a−1
∗ .

This together with (4.50) and (4.48) implies

|E [ξaξbξdξe|X1 = i]| ≲ π2
i

(
λa−b+d−e
∗ + λa−b+e−1

∗

)
+ λa−1

∗

+ πi

(
λa−b+d−1
∗ + λa−d+e−1

∗ + λa−e
∗

) (4.51)

To bound the sum over n− 1 ≥ a ≥ b ≥ d ≥ e ≥ 1, we divide the analysis according to the

number of distinct ordered indices related variations in terms.

Case I: four distinct indices. We sum (4.51) over all possible a > b > d > e.
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� For the �rst term,

π2
i

∑∑∑∑
n−1≥a>b>d>e≥1

λa−b+d−e
∗ ≲

nπ2
i

γ∗

∑∑
n−1≥a>b≥3

λa−b
∗ ≲

n2π2
i

γ2∗
.

� For the second term,

π2
i

∑∑∑∑
n−1≥a>b>d>e≥1

λa−b+e−1
∗ ≲

nπ2
i

γ∗

∑∑
n−1≥a>b≥3

λa−b
∗ ≲

n2π2
i

γ2∗

� For the third term,

∑∑∑∑
n−1≥a>b>d>e≥1

λa−1
∗ ≲

∑
n−1≥a≥4

a3λa−1
∗ ≲

1

γ4∗
.

� For the fourth term,

πi
∑∑∑∑
n−1≥a>b>d>e≥1

λa−b+d−1
∗ ≤ πi

γ2∗

∑∑
n−1≥a>b≥3

λa−b
∗ ≲

nπi
γ3∗

� For the �fth term,

πi
∑∑∑∑
n−1≥a>b>d>e≥1

λa−d+e−1
∗ ≲

πi
γ∗

 ∑∑
n−1≥a>b≥3

λa−b
∗

b−1∑
d≥2

λb−d
∗

 ≲
nπi
γ3∗

.

� For the sixth term,

πi
∑∑∑∑
n−1≥a>b>d>e≥1

λa−e
∗ ≲ πi

 ∑∑
n−1≥a>b≥3

λa−b
∗

b−1∑
d≥2

λb−d
∗

d−1∑
e≥1

λd−e
∗

 ≲
nπi
γ3∗

.

Combining the above bounds and using the fact that ab ≤ a2 + b2, we obtain

∑∑∑∑
n−1≥a>b>d>e≥1

|E [ξaξbξdξe|X1 = i]| ≲ n2π2
i

γ2∗
+

nπi
γ3∗

+
1

γ4∗
≲

n2π2
i

γ2∗
+

1

γ4∗
. (4.52)

Case II: three distinct indices. There are three cases, namely, ξaξ
2
b ξe, ξaξbξ

2
e , and

ξ2aξbξe.
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1. Bounding
∑∑∑

n−1≥a>b>e≥1

∣∣E [ξaξ2b ξe|X1 = i
]∣∣: We specialize (4.51) with b = d to

get

∣∣E [ξaξ2b ξe|X1 = i
]∣∣ ≲ πi

(
λa−b+e−1
∗ + λa−e

∗

)
+ λa−1

∗ .

Summing over a, b, e we have

∑∑∑
n−1≥a>b>e≥1

∣∣E [ξaξ2b ξe|X1 = i
]∣∣

≲
∑∑∑
n−1≥a>b>e≥1

{
πi

(
λa−b+e−1
∗ + λa−e

∗

)
+ λa−1

∗

}

≲
πi
γ∗

∑∑
n−1≥a>b≥2

λa−b
∗ + πi

 ∑∑
n−1≥a>b≥2

λa−b
∗

b−1∑
e≥1

λb−e
∗

+
∑

n−1≥a≥3

a3λa−1
∗

≲
nπi
γ2∗

+
1

γ3∗
≲

n2π2
i

γ2∗
+

1

γ3∗
(4.53)

with last inequality following from xy ≤ x2 + y2.

2. Bounding
∑∑∑

n−1≥a>b>e≥1

∣∣E [ξaξbξ2e |X1 = i
]∣∣: We specialize (4.51) with e = d to

get

∣∣E [ξaξbξ2e |X1 = i
]∣∣ ≲ π2

i λ
a−b
∗ + πi

(
λa−b+e−1
∗ + λa−e

∗

)
+ λa−1

∗ .

Summing over a, b, e and applying (4.53), we get

∑∑∑
n−1≥a>b>e≥1

∣∣E [ξaξbξ2e |X1 = i
]∣∣

≲
∑∑∑
n−1≥a>b>e≥1

{
π2
i λ

a−b
∗ + πi

(
λa−b+e−1
∗ + λa−e

∗

)
+ λa−1

∗

}
≲ nπ2

i

∑∑
n−1≥a>b≥2

λa−b
∗ +

nπi
γ2∗

+
1

γ3∗
≲

n2π2
i

γ∗
+

nπi
γ2∗

+
1

γ3∗
≲

n2π2
i

γ2∗
+

1

γ3∗
.

3. Bounding
∑∑∑

n−1≥a>b>e≥1

∣∣E [ξ2aξbξe|X1 = i
]∣∣: Specializing (4.51) with a = b we
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get

∣∣E [ξ2b ξdξe|X1 = i
]∣∣ ≲ π2

i

(
λd−e
∗ + λe−1

∗

)
+ λb−1

∗ + πi

(
λd−1
∗ + λb−d+e−1

∗ + λb−e
∗

)
,

which is equivalent to

∣∣E [ξ2aξbξe|X1 = i
]∣∣ ≲ π2

i

(
λb−e
∗ + λe−1

∗

)
+ λa−1

∗ + πi

(
λb−1
∗ + λa−b+e−1

∗ + λa−e
∗

)
.

For the �rst, second and fourth terms

∑∑∑
n−1≥a>b>e≥1

{
π2
i

(
λb−e
∗ + λe−1

∗

)
+ πiλ

b−1
∗

}
≲

π2
i

γ∗

∑∑
n−1≥a>b≥2

1 +
nπi
γ2∗

≲
n2π2

i

γ∗
+

nπi
γ2∗

,

and for summing the remaining terms we use (4.53), which implies

∑∑∑
n−1≥a>b>e≥1

∣∣E [ξ2aξbξe|X1 = i
]∣∣ ≲ n2π2

i

γ∗
+

nπi
γ2∗

+
1

γ3∗
≲

n2π2
i

γ2∗
+

1

γ3∗
.

Case III: two distinct indices. There are three cases, namely, η2aη
2
e , ηaη

3
e and η3aηe.

1. Bounding
∑∑

n−1≥a>e≥1 E
[
ξ2aξ

2
e |X1 = i

]
: Specializing (4.51) for a = b and e = d we

get

E
[
ξ2aξ

2
e |X1 = i

]
≲ π2

i + πi
(
λe−1
∗ + λa−e

∗
)
+ λa−1

∗ .

Summing up over a, e we have

∑∑
n−1≥a>e≥1

E
[
ξ2aξ

2
e |X1 = i

]
≲

∑∑
n−1≥a>e≥1

{
π2
i + πi

(
λe−1
∗ + λa−e

∗
)
+ λa−1

∗
}
≲ n2π2

i +
nπi
γ∗

+
1

γ2∗
.

2. Bounding
∑∑

n−1≥a>e≥1

∣∣E [ξaξ3e |X1 = i
]∣∣: Specializing (4.51) for e = b = d we get

∣∣E [ξaξ3e |X1 = i
]∣∣ ≲ πiλ

a−e
∗ + λa−1

∗
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which sums up to

∑∑
n−1≥a>e≥1

∣∣E [ξaξ3e |X1 = i
]∣∣ ≲ πi

∑∑
n−1≥a>e≥1

λa−e
∗ +

∑∑
n−1≥a>e≥1

λa−1
∗ ≲

nπi
γ∗

+
1

γ2∗
.

3. Bounding
∑∑

n−1≥a>e≥1

∣∣E [ξ3aξe|X1 = i
]∣∣: Specializing (4.51) for a = b = d we get

∣∣E [ξ3aξe|X1 = i
]∣∣ ≲ πi

(
λa−e
∗ + λe−1

∗
)
+ λa−1

∗

which sums up to

∑∑
n−1≥a>e≥1

∣∣E [ξ3aξe|X1 = i
]∣∣ ≲ ∑∑

n−1≥a>e≥1

{
πi
(
λa−e
∗ + λe−1

∗
)
+ λa−1

∗
}
≲

nπi
γ∗

+
1

γ2∗
.

Case IV: single distinct index. We specialize (4.51) to a = b = d = e to get

E
[
ξ4a|X1 = i

]
≲ πi + λa−1

∗ .

Summing the above over a

n−1∑
a=1

E
[
ξ4a|X1 = i

]
≲ nπi +

1

γ∗
. (4.54)

Combining (4.52)�(4.54) and using nπi
γ∗

≲ n2π2
i

γ2
∗

+ 1
γ4
∗
, we get

E
[
(Ni − (n− 1)πi)

4 |X1 = i
]
≲

n2π2
i

γ2∗
+

1

γ4∗
.
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