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Abstract 

Spatial and Prediction Models for Addressing Challenges in Pediatric Tuberculosis 
Control and Care 

Kenneth Suranga Gunasekera 

2022 

 

Tuberculosis (TB) is among the leading causes of global mortality among 

children <5 years. Each year, over 1 million TB cases occur among children <15 years 

worldwide, and nearly one quarter of those children die; approximately 80% of those 

deaths occur among children <5 years. Alleviating the burden of pediatric TB and 

mortality requires 1) enhanced efforts to prevent transmission to children and 2) treating 

more children for TB. 

Targeting resources to children with a known TB exposure has been a 

cornerstone of the public health response to prevent transmission and detect cases 

early. Infectious adults must be diagnosed and treated earlier to prevent transmission to 

their child contacts. Modeling studies suggest that targeting community-level active 

case-finding to areas with high local transmission intensity may demonstrate population-

level reductions in TB incidence. However, obtaining conclusive evidence of 

concentrated transmission requires access to spatial and genomic data, which is often 

only available under research conditions in high TB-incidence settings. 

In chapter 1, I use Bayesian spatial modeling methods to probe routinely 

collected, age-disaggregated TB notification data to demonstrate that overrepresentation 

of young child cases co-locate with areas of high local transmission intensity, identified 

by molecular evidence of transmission from a prospective cohort study in the same 

setting. This finding suggests that the use of models that leverage widely available 

notification data should be explored as tools to target case-finding and treatment efforts 

in high-transmission locations to maximize the direct and indirect benefits of active 



screening approaches. In chapter 2, I leverage data from a large prevalence survey to 

investigate a poorly understood form of TB that may frustrate symptom-based active 

case-finding efforts. 

Given that modeling estimates suggest that 96% of global childhood mortality 

due to TB occurs among children not receiving antituberculosis treatment, identifying 

and treating more cases of pediatric TB provide an opportunity to reduce child mortality. 

Diagnostic tools for pediatric pulmonary TB are limited by paucibacillary disease in 

children as well by resource constraints in many high TB-incidence settings. This 

contributes to poorer treatment outcomes through missed diagnoses and treatment 

delays. 

In chapter 3, I describe the analysis of a cohort of children being evaluated for TB 

from Cape Town, South Africa to demonstrate that a majority of antituberculosis 

treatment-decisions could be made using clinical evidence alone, without the need for 

additional diagnostic testing. In chapter 4, I describe the assembly of a large cohort of 

pediatric TB diagnostic evaluation data sourced from multiple geographically diverse, 

high TB-incidence settings to develop a prediction model for TB and investigate its 

validity and generalizability. As part of this work, I describe efforts in partnership with the 

World Health Organization to operationalize the prediction model as a treatment-

decision algorithm to guide the evaluation of children with presumptive pulmonary TB.  
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Introduction 

Public health priorities to reduce morbidity and mortality associated with 

childhood tuberculosis 

 

Tuberculosis is among the top ten causes of global mortality among children <5 

years old. 

Each year, over 1 million tuberculosis cases occur among children <15 years 

worldwide, and nearly one quarter of those children die.1 Approximately 80% of those 

deaths occur among children <5 years old.2 This is unacceptable in the setting of 

effective tuberculosis treatment and prophylaxis options for children.3-5 Current public 

health strategies to limit transmission to children are not on track to meet global targets 

set by the World Health Organization (WHO).6,7 Additionally, underdiagnosis of pediatric 

tuberculosis contributes to the substantial gap between estimated and notified cases.8 

Alleviating the burden of pediatric tuberculosis and child mortality requires 1) enhanced 

efforts to prevent transmission to children and 2) treating more children with 

tuberculosis. 

Interventions that limit tuberculosis transmission will disproportionately limit 

transmission to children. 

Targeting resources to children with a known tuberculosis exposure has been a 

cornerstone of the public health response to prevent transmission and improve treatment 

outcomes.9,10 This strategy aims to screen child contacts of infectious adults to identify 

and treat prevalent disease and administer effective prophylaxis to contacts without 

disease. Evidence from a large individual-participant meta-analysis of 137,647 
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tuberculosis-exposed children revealed that 83% of children <5 years who are exposed 

to tuberculosis and diagnosed with disease, are diagnosed within the first 90 days of 

baseline evaluation.11 This contributes to the mounting evidence suggesting that earlier 

diagnosis and treatment of infectious adult cases will have a disproportionate effect on 

preventing transmission to children.12,13 

Community-level tuberculosis screening strategies are expected to reduce transmission 

to children. 

Community-level tuberculosis screening strategies, in which risk groups are 

screened to identify infectious individuals before they passively present to care, have 

garnered particular attention in the tuberculosis control community to reduce 

transmission to levels in line with global tuberculosis control goals.6,14 Because 

untargeted community-level screening in high burden settings has not consistently 

demonstrated population-level benefits,15-18 there has been interest in new practical 

approaches to focus screening to population groups among whom risk is concentrated. 

One such approach is to target screening to hotspots, areas in which transmission is 

most intense.19 While evidence supporting the impact of targeting screening in hotspots 

is currently limited,20 mathematical modeling suggests that such targeting may result in 

substantial population-wide reductions in transmission.21,22 

Identifying transmission hotspots to target community-level screening may maximize its 

benefits. 

Conclusive evidence of tuberculosis transmission hotspots typically relies on 

access to detailed spatial and pathogen genetic data.23-25 While spatial information is 

often available in public health reporting systems (e.g. home location), resources for 

genetic sequencing of sufficient pathogens to infer transmission may only be available in 
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the context of research studies in high-transmission/resource-limited settings. Thus, 

methods to identify hotspots from routine tuberculosis surveillance data would be 

valuable.26 However, high local tuberculosis incidence in surveillance data may not 

necessarily identify transmission hotspots. Patterns of tuberculosis incidence may 

instead reflect spatially-aggregated risk for progression of infection, migration of 

individuals infected with tuberculosis into the area,27 or spatial heterogeneity in 

diagnostic capacity.28 Thus, finding new ways to probe routine surveillance data to find 

evidence of local transmission is a priority. 

The location of child cases in tuberculosis surveillance data may provide a signal for 

transmission hotspots to target screening and interventions to limit transmission to 

children. 

Spatial differences in the age distribution of tuberculosis and other infectious 

diseases may provide a signal for local transmission intensity.29,30 In locations where 

disease transmission is more intense, patients are systematically younger than in 

locations where disease transmission is less intense.31 This principle underlies the use 

of the age-prevalence of tuberculin-skin test positivity to measure risks of infection from 

household and community exposure.32,33 In particular for tuberculosis, the age-related 

risk of progression from infection to disease is especially high among children <5 years 

old, further strengthening the case that children may provide a signal for recent 

transmission.34 Previous studies have suggested that areas with high childhood 

tuberculosis rates may correspond to areas of active transmission;35-37 however, none 

have attempted to provide conclusive evidence to compare inference, and only one 

included covariates to account for potential non-transmission explanations of the spatial 

distribution of child cases.37 
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Subclinical tuberculosis may frustrate symptom-based, active case-finding targeted to 

areas of active tuberculosis transmission. 

Tuberculosis prevalence surveys, in which all eligible individuals (regardless of 

symptoms) are screened for tuberculosis disease, have revealed that a large fraction of 

individuals with prevalent, undiagnosed tuberculosis may be “subclinical” and fail to 

report any classical symptom of tuberculosis.38 Recently, others have suggested the 

failures of symptom-based, active case-finding to demonstrate consistent efficacy might 

be attributable to the potential infectiousness of individuals with subclinical 

tuberculosis.39 One hypothesis is that individuals with chronic cough (for example due to 

pre-existing respiratory conditions, smoking, or unrelated respiratory infections) will be 

less likely to notice the onset of tuberculosis symptoms and more likely to transmit M. 

tuberculosis due to this persistent coughing behavior. These individuals may maintain 

normal activities and social behaviors, further increasing the likelihood of transmission. 

While the presence of chronic cough for reasons others than tuberculosis has been 

associated with delays to presentation and diagnosis of tuberculosis,40-44 further 

understanding of the epidemiological importance of subclinical tuberculosis may 

enhance the impact of active case-finding on tuberculosis transmission. 

Treating more children with tuberculosis provides another opportunity to reduce 

child mortality. 

It is estimated that 96% of global childhood mortality due to tuberculosis occurs 

among children not receiving antituberculosis treatment.2 The gap between estimated 

tuberculosis cases and cases notified to the WHO is larger for children than for adults, 

likely due to limitations in childhood tuberculosis diagnostics.8,45 Unlike adult 

tuberculosis, childhood tuberculosis is generally paucibacillary.46 This limits the 
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sensitivity of microbiological tests including diagnostics such as Xpert MTB/RIF.47 

Furthermore, obtaining specimens for microbiological confirmation for children <5 years 

old requires invasive sampling and resources that may only be available at referral 

centers.48,49 Findings on chest radiography are less sensitive and specific among 

children.50 These limitations cause delays in initiating treatment, resulting in poorer 

outcomes.51 

WHO guidance suggests that children brought to healthcare services with 

symptoms suggestive of tuberculosis (a presumptive tuberculosis case) should be 

further evaluated for tuberculosis disease.52 Once a child has been identified as a 

presumptive case, healthcare workers must consider whether to initiate tuberculosis 

treatment based upon the clinical history, physical examination, demographic data, 

history of recent exposure to a tuberculosis source case in the preceding 12 months, 

confirmatory tests for M. tuberculosis, chest imaging, tests of infection, and clinical 

follow-up where appropriate. Treatment decisions must often be made in the absence of 

microbiological confirmation; thus, symptoms, clinical examination, and history of close 

tuberculosis contact play a crucial role in the decision to initiate tuberculosis treatment. 

Antituberculosis treatment decision-making at peripheral health facilities must be 

optimized.  

 Emerging evidence supports diagnosis and treatment for pediatric tuberculosis at 

peripheral health facilities to identify more children with tuberculosis disease and 

improve treatment outcomes by shortening the delay to treatment initiation.53,54 The 

WHO and the International Union Against Tuberculosis and Lung Disease guidelines 

suggest that clinical evidence may justify treatment when microbiological testing is 

unavailable or in the setting of negative test results;52,55 however, the guidelines do not 
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clearly describe the burden of evidence that is sufficient to initiate treatment for pediatric 

tuberculosis. The evidence supporting the role of symptom-based diagnosis to inform 

tuberculosis treatment decisions has been limited due to poorly standardized symptom 

and case definitions, few validation studies, and challenges in designing studies that 

adequately evaluate the role of individual symptoms and variable symptom 

combinations. Others have developed treatment decision-algorithms and scoring 

systems to promote rapid and uniform treatment decision-making by assigning scores to 

features in the diagnostic evaluation that correspond to risk for tuberculosis.55-57 

Analysis of high-quality diagnostic evaluations data may improve treatment decision-

making at peripheral health facilities among child presumptive tuberculosis cases. 

The high mortality associated with untreated childhood tuberculosis requires 

practical guidance to identify and treat more children with tuberculosis using the best 

available data. Recent approaches to algorithm-building used modeling analytic methods 

to analyze data from diagnostic studies in order to specify which features in the 

diagnostic evaluation of child presumptive tuberculosis cases might be sufficient to begin 

treatment in the absence of bacteriological confirmation.58 Modeling approaches to 

inform treatment-decision algorithm development are advantageous for being data-

driven and allowing for formal validation and investigation of generalizability. 
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ABSTRACT 

Background: Identifying hotspots of tuberculosis transmission can inform spatially-

targeted active case-finding interventions. While national tuberculosis programs maintain 

notification registers which represent a potential source of data to investigate 

transmission patterns, high local tuberculosis incidence may not provide a reliable signal 

for transmission because the population distribution of covariates affecting susceptibility 

and disease progression may confound the relationship between tuberculosis incidence 

and transmission. Child cases of tuberculosis and other endemic infectious disease have 

been observed to provide a signal of their transmission intensity. We assessed whether 

local overrepresentation of child cases in tuberculosis notification data corresponds to 

areas where recent transmission events are concentrated. 

Methods: We visualized spatial clustering of children <5 years old notified to Peru’s 

National Tuberculosis Program from two districts of Lima, Peru from 2005-2007 using a 

log-Gaussian Cox process to model the intensity of the point-referenced child cases. To 

identify where clustering of child cases was more extreme than expected by chance 

alone, we mapped all cases from the notification data onto a grid and used a hierarchical 

Bayesian spatial model to identify grid cells where the proportion of cases among 

children <5 years old is greater than expected. Modeling the proportion of child cases 

allowed us to use the spatial distribution of adult cases to control for unobserved factors 

that may explain the spatial variability in the distribution of child cases. We compare 

where young children are overrepresented in case notification data to areas identified as 

transmission hotspots using molecular epidemiological methods during a prospective 

study of tuberculosis transmission conducted from 2009-2012 in the same setting. 
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Results: Areas in which childhood tuberculosis cases are overrepresented align with 

areas of spatial concentration of transmission revealed by molecular epidemiologic 

methods. 

Conclusions: Age-disaggregated notification data can be used to identify hotspots of 

tuberculosis transmission and suggest local force of infection, providing an easily-

accessible source of data to target active case-finding intervention.  
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INTRODUCTION 

The End TB Strategy’s ambitious goals to reduce tuberculosis incidence require 

new interventions to interrupt transmission.1 This has led to a renewed interest in active 

case-finding strategies, in which risk groups are screened to identify infectious 

individuals before they present to care.2,3 Because untargeted community-based active 

case-finding has not consistently demonstrated population-level benefits,4-7 there has 

been interest in new practical approaches to focus case-finding to population groups 

among whom risk is concentrated. One such approach is to target active case-finding to 

hotspots, areas in which transmission is most intense.8 While evidence supporting the 

impact of targeting screening in hotspots is currently limited,9 mathematical modeling 

suggests that such targeting can produce substantial population-wide reductions in 

transmission.10,11 

Conclusive evidence of hotspot transmission typically relies on access to detailed 

spatial and pathogen genetic data.12-14 While spatial information is often available in 

public health reporting systems (e.g. home location), in high-transmission/lower-income 

settings, resources for genetic sequencing of pathogens are typically only available in 

research studies. Thus, methods to robustly identify hotspots from routine reporting data 

would be valuable.15 However given that high local rates of tuberculosis notifications 

may reflect spatially-aggregated risk for progression of infection, migration of individuals 

infected with tuberculosis into the area,16 or spatial heterogeneity in diagnostic 

capacity,17 finding new ways to probe routine surveillance data to find evidence of local 

transmission is a priority. 

Spatial differences in the age distribution of tuberculosis cases in a single city 

may provide a signal for local transmission intensity.18 In locations where disease 

transmission is more intense, cases are systematically younger than in locations where 



 

 

16 

 

disease transmission is less intense.19 We aimed to test this previously posited, but to 

our knowledge yet untested, idea that areas where children are overrepresented in 

tuberculosis case notification data are areas where recent transmission events are 

concentrated. We tested this hypothesis using case notification data from Lima, Peru, 

where we were able to compare our inference to a prospective molecular epidemiology 

study conducted in the same setting several years later.20,21 This comparison provided 

an opportunity to examine whether routinely-collected tuberculosis notification data can 

be used to identify transmission hotspots. 

METHODS 

Study setting and population 

We examined data from all tuberculosis cases notified to Peru’s National 

Tuberculosis Program from two of Lima’s four health districts, Lima Ciudad and 

contiguous catchment areas of Lima Este, between January 1, 2005 and December 31, 

2007. Patient demographic and clinical information was available within the notification 

data as well as household address, which was identified on high resolution maps 

created using Google Earth. Additional details of the study design and mapping 

procedures have been described previously.22,23 

Our interest was in identifying areas in which young children were 

overrepresented in these routinely collected notification data from 2005-2007 and 

whether they correlated with areas identified as transmission hotspots during a 

prospective study of tuberculosis transmission conducted from 2009-2012.21  The latter 

study included molecular epidemiological characterization of culture-positive cases of 

drug-susceptible and drug-resistant tuberculosis from adults older than 15 years using 

24-loci mycobacterial interspersed repetitive units-variable-number tandem repeats 
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(MIRU-VNTR). Spatial aggregation of Mycobacterium tuberculosis (M.tb) strains 

identified by MIRU-VNTR genotype was presumed to indicate transmission. 

Data visualization and modeling 

We visualized spatial clustering of child cases <5 years old in the notification data 

using a log-Gaussian Cox process (LGCP) to model the intensity function driving the 

point process describing the distribution of child cases. We used the lgcp package and 

defined the Gaussian process with an exponential covariance function and weakly 

informative priors on all model parameters (details provided in the Supplementary 

Information).24 All data visualization and analysis were performed using R 4.0.1.  

Next, we aimed to determine if the clustering of child cases observed in the 

exploratory maps was more extreme than would be expected by chance alone. Point-

level census and covariate data that may explain spatial variability in the distribution of 

child cases through effect on overall risk were not available for this analysis. Due to the 

large number of unique spatial locations observed in the data (10,198) and the well-

known difficulties associated with using a Gaussian process to analyze point-referenced 

spatial data when the sample size is large,25 we opted for a method that approximates 

the point-referenced model while offering computational improvements.26  Specifically, 

we overlaid a grid on the convex hull of the case notification data and modeled the 

proportion of reported tuberculosis cases that occurred among children in each grid cell 

using a hierarchical Bayesian spatial modeling framework. We chose the grid cell sizes 

to be small in order to ensure that the risk within each grid cell was homogeneous and 

also considered multiple sizes in subsequent sensitivity analyses. As the size of the grid 

cells gets smaller, our approximation to the point-referenced geostatistical model 

improves. By modeling the proportion of the tuberculosis cases that were children (as 

opposed to simply modeling the number of child cases), we used the distribution of adult 
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cases to control for unobserved factors that may explain the spatial variability in the 

distribution of child cases. Under this modeling framework, we expect that the local 

proportion of child cases will be higher than the expected proportion of child cases over 

the entire study area in areas where there is local transmission. The hierarchical model 

structure allows us to identify where this occurs and allows us to describe the certainty 

with which the proportion is higher.  

To do this, we use a logistic regression framework to model the grid cell-specific 

proportions such that: 

𝑌𝑖|𝜃𝑖~Binomial(𝑛𝑖, 𝜃𝑖), 𝑖 = 1, … , 𝑚 

ln (
𝜃𝑖

1 − 𝜃𝑖
) = 𝜇 + 𝜙𝑖 

where 𝑌𝑖 is the number of child cases observed in grid cell i, 𝑛𝑖 is the total number of 

child and adult cases in the grid cell, m is the total number of grid cells, and 𝜃𝑖 

represents the proportion of the total cases in the grid cell that are due to children. We 

define child cases as those <5 years old and adult cases as those >15 years old to 

clearly separate recent infection among young children from more distant infection 

among adults (expecting that cases among older children and young adults between 

ages 5 and 15 represent a mix of recent infection and infection that happened earlier in 

their lives). We model these proportions on the logit scale as a function of an overall 

mean, 𝜇 (fixed effect), and a grid cell-specific deviation from that mean, 𝜙𝑖 (random 

effect).  

We anticipate that the proportion of child cases in grid cells that are close 

together may be similar. To account for this potential spatial correlation and to obtain 

spatially smoothed risk estimates, we estimated the 𝜙𝑖 parameters using a conditional 

autoregressive (CAR) model such that: 
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𝜙𝑖|𝝓−𝑖, 𝜏2, 𝜌 ~ N (
𝜌Σ𝑗=1

𝑛 𝑤𝑖𝑗𝜙𝑗

𝜌Σ𝑗=1
𝑛 𝑤𝑖𝑗 + 1 − 𝜌

,
𝜏2

𝜌Σ𝑗=1
𝑛 𝑤𝑖𝑗 + 1 − 𝜌

) 

where 𝝓−𝑖 is the vector of parameters excluding 𝜙𝑖; 𝑤𝑖𝑗 is equal to one if grid cells i and j 

share a common border or point and is equal to zero otherwise; 𝜏2 describes the 

variability in the 𝜙𝑖 parameters; and 𝜌 ∈ (0,1) describes their strength of spatial 

correlation. As a result, this model is flexible enough to accommodate a wide range of 

spatial patterns as well as the possibility that there is no spatial variability in the 

proportion of child cases (i.e., 𝜏2 near zero indicates that all 𝜙𝑖 are near zero). 

Additionally, examining the posterior distributions of 𝜙𝑖 allows us to determine if the grid 

cell proportion differs substantially from the overall mean. 

We selected weakly informative prior distributions for all model parameters and 

used the CAR.Leroux function in the CARBayes package to obtain posterior samples for 

all parameters.27 Details are provided in the Supplementary Information.28 Using the 

posterior samples from each 𝜙𝑖, we estimate the posterior probability that 𝜙𝑖 is larger 

than zero, which would suggest recent transmission based on our hypothesis. 

RESULTS 

Analysis of notification data 

Of the total 11,711 notified tuberculosis cases over the study period, there were 

332 children <5 years old, and 10,352 adults >15 years old. The LGCP modeled 

intensity of the cases among children <5 years old is given in Figure 1. 
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Figure 1. Disease mapping of young children in Peru’s National Tuberculosis 
Program data. 
Log-Gaussian Cox process modeled intensity of the cases of tuberculosis among 
children <5 years old notified to the Peru’s National Tuberculosis Program within two of 
Lima’s four health districts, Lima Ciudad and contiguous catchment areas of Lima 
Este, between January 1, 2005 and December 31, 2007. 

 

We fit the hierarchical Bayesian spatial model to the case notification data 

collected from 2005-2007 aggregated into a 200 m x 200 m grid within the convex hull of 

the data. The model suggested six grid cells in which >95% of the posterior distribution 

of the random effect terms were above zero and an additional eight grid cells in which 

>90% of the posterior distribution was above zero (Figure 2). Examination of the 

posterior estimate of the spatial correlation parameter, 𝜌, suggested that the excess 

variability observed in the data was spatially structured (posterior mean 0.75, 95% 
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credible interval 0.24–0.98). Posterior summaries of the remaining parameters are 

provided in the supplementary Table S1.  

 

Figure 2. Identifying areas with local overrepresentation of young children in 
tuberculosis notification data. 
Hierarchical Bayesian spatial model fit to the child cases <5 years old and adult cases 
>15 years old in the notification data aggregated into 200 m x 200 m grid cells overlaid 
on the convex hull of the data. The model suggested six grid cells (red) in which >95% 
of the posterior distribution of the random effect terms were above zero, and an 
additional eight grid cells (orange) in which >90% of the posterior distribution was 
above zero. The proportion of child cases in these grid cells is greater than expected 
over the study region, suggesting recent tuberculosis transmission based on our 
hypothesis. 

 

Comparison to prospective molecular epidemiological study 

Figure 3a, reproduced with permission from Zelner et al., shows areas in which 

there was statistically significant spatial aggregation of specific M.tb MIRU-VNTR 

genotypes, consistent with localized transmission of these strain types.21 In Figure 3b, 

we overlay the grid from Figure 2 to demonstrate the proximity between areas where 

children <5 years old are overrepresented in case-notification data and areas where 

specific strains are concentrated. In the supplementary Figs. S1-S2 we show that these 

findings are insensitive to assumed grid cell size and age cut-offs for the definitions of 
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young child and adult cases. Figure 4a, also reproduced with permission from Zelner et 

al., shows the spatial variation in annual per capita incidence of tuberculosis by 

healthcare catchment area.21 We similarly overlay the grid from Figure 2 to create 

Figure 4b to demonstrate the proximity between areas where child cases are 

overrepresented and high local incidence. 

 

Figure 3. Comparing tuberculosis transmission inference of hotspots of active 
transmission. 
(a) Reproduced with permission from Zelner et al. demonstrating regions (shaded) 
identified as tuberculosis transmission hotspots. Different color shading denotes 
clusters of different drug-sensitive and drug-resistant strains identified by MIRU-VNTR 
genotype.(21) (b) A grayscale reproduction of this figure is overlaid on the modeled 
200 m x 200 m grid from Figure 2. We highlight those grid cells in red and orange, 
where the modeled proportion of child cases <5 years old is greater than expected, to 
demonstrate the proximity between areas with higher local childhood tuberculosis 
notification and areas with conclusive evidence of transmission. 
Note— MIRU-VNTR, 24-loci mycobacterial interspersed repetitive units-variable-
number tandem repeats. 

 

DISCUSSION 

In this paper we evaluated whether routinely-collected, age-disaggregated 

notification data can be used to identify hotspots of spatially concentrated tuberculosis 

transmission. Our analysis, based on routine data collected from 2005-2007, pinpointed 
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a region where child cases of tuberculosis were overrepresented relative to the number 

of adult cases in the area. This region was previously identified as an area of high 

transmission using molecular genetic data from a prospective study conducted from 

2009-2012.21 This concordance of transmission inference obtained using different 

methods and datasets supports the use of routinely-collected age-disaggregated 

notification data to identify areas of local transmission intensity. 

 

Figure 4. Comparing per capita tuberculosis incidence to putative hotspots. 
(a) Figure reproduced with permission from Zelner et al. demonstrating the spatial 
variation in annual per-100 thousand incidence of drug-sensitive and drug-resistant 
tuberculosis by healthcare catchment area.(21) (b) A grayscale reproduction is overlaid 
on the 200 m x 200 m grid from Figure 2 to demonstrate the proximity between the 
colored grid cells, where the modeled proportion of child cases <5 years old is greater 
than expected, and an area of high local incidence of tuberculosis. 

 

Child cases have been suggested as a useful signal of transmission intensity for 

tuberculosis as well as other infectious disease.29  For example, a number of studies 

used the age-prevalence of tuberculin-skin test positivity to measure risks of infection 

from household and community exposure.30,31 Previous studies have suggested that 

areas with high childhood tuberculosis case notification rates may correspond to areas 

of active transmission;32-34 however, only one included covariates to account for potential 
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non-transmission explanations of the spatial distribution of child cases.34 Thus, our 

analysis is the first to provide molecular and epidemiological evidence to corroborate 

inferences of local tuberculosis transmission with attempts to control for unobserved, 

spatially heterogeneous, non-transmission factors (such as risk factors for progression of 

infection, migration of infected individuals into the area, and/or diagnostic capacity) that 

may explain the distribution of child cases.  

Considering that both the routine notification data and the prospective molecular 

epidemiology study included tuberculosis cases separated by as many as six years, we 

also note that the identified hotspot appears to have been persistent over several years. 

This suggests that tuberculosis transmission hotspots identified from notification data 

may be observable for long enough periods of time to guide targeted interventions, such 

as spatially focused active case-finding.  

It is important to note several simplifying assumptions in our analysis. Given the 

absence of detailed information on the distribution of covariates in the source population, 

we incorporated all spatial heterogeneity in the distribution of child cases into the 

random effect term of the model. As a result, our model necessarily attributes all spatial 

variability in the modeled proportions to possible recent transmission. If there are other 

non-transmission-related factors that impact the proportion of total cases that occurred in 

children, this could lead to a grid cell being incorrectly labeled as a transmission 

“hotspot.” However, given the consistency of our results with the previous findings that 

more directly measure transmission, this may not be a major issue in this work. Our 

hierarchical Bayesian spatial modeling approach (as well as the log-Gaussian Cox 

process intensity modeling approach) is flexible enough to incorporate local covariate 

data as regression components. Future study should include such information when 

available. 
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Though we provide compelling evidence, we must be cautious interpreting that 

age-disaggregated data will always provide a reliable signal of transmission. Molecular 

evidence of transmission against which we compare transmission inference was only 

available for those >15 years old. Thus, we are unable to biologically link childhood 

cases to the identified clusters of transmission. Furthermore, accurately diagnosing 

tuberculosis among children is difficult. While it is clear that missing child cases in 

notification data likely underestimates transmission, it is unclear how false positives may 

affect signal detection. In addition, though we demonstrate that the putative hotspot 

persists over time, it is not possible to assess how mobility over the time period through 

which all data from these two studies was collected may affect hotspot detection. It is 

important to note that our findings do not imply an either-or choice between genetic and 

age-incidence data: future analyses exploring the impact of combining granular 

molecular genetic data with age-incidence data in a single model could improve the 

predictive capacity of such models. 

This methodology may be adapted to settings in which high-resolution residence 

data is not readily available. For example, in settings where residential geocoding is not 

feasible, it may be reasonable to model the proportion of child cases in the smallest 

recorded unit to which the household belongs (such as modeling the proportion in the 

neighborhood, community, and/or administrative unit).  

CONCLUSIONS 

In summary, we show that age-disaggregated tuberculosis notification data may 

be used to investigate potential hotspots of tuberculosis transmission. This suggests that 

the use of models leveraging widely available data should be explored as tools for 

targeting case-finding and treatment efforts in high-transmission locations in the hope of 

maximizing the direct and indirect protective benefits of active screening approaches. 
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SUPPLEMENTARY INFORMATION 
 
 

Log-Gaussian Cox process details 

The log-Gaussian Cox process provides an approach to model the intensity 

function driving spatial point processes. Examining the fitted intensity of the cases 

among children <5 years old provides a robust means to identify clusters of child cases. 

The lgcp package in R models the intensity function of the spatial region that contains a 

regular grid with a cell width chosen to be sufficiently small to approximate continuous 

spatial variation. We selected a cell width of 100 m, defined the Gaussian process with 

an exponential covariance function, and placed weakly informative priors on all model 

parameters as recommended by the lgcp Vignette. We collected 100,000 posterior 

samples after discarding the first 10,000 as a burn-in period, and thinned by a factor of 

90 to result in 1,000 samples from which we make posterior inference. Markov-chain 

Monte Carlo was performed using the Metropolis-adjusted Langevin algorithm with a 

target acceptance probability set to 0.574, achieved by the Andrieu and Thoms algorithm 

as implemented by the lgcp package. 

Hierarchical Bayesian spatial model details 

Justification for small grid cell 

Small grid cells ensure that the assumption of homogenous risk within the grid 

cell is plausible and leads to finer scale mapping of risk across the map. Additionally, 

smaller grid cells allow for better approximation of a model of continuous spatial 

variation. 
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Prior distribution specifications 

We placed weakly informative priors on the parameter describing the fixed effect 

term (𝜇), the parameter describing variability in the random effect terms (𝜏2), and the 

parameter describing the spatial correlation parameter (𝜌) such that: 

𝜇~Normal(0,1000) 
𝜏2~Inverse Gamma(0.01,0.01) 
𝜌~Uniform(0,1) 

 

Model interpretation 

Values for 𝜌 near zero suggest near-independence of the spatial random effects 

while 𝜌 near one suggests a strong dependence on neighboring values (i.e., the 

conditional mean is an average of the neighboring values). We adopted the queen 

definition of neighbors because there was no data to suggest that grid cells sharing 

bordering points are not unrelated. 

Model convergence and posterior parameter estimation 

Model convergence was assessed using visual inspection of individual parameter 

traceplots and the Geweke diagnostic calculated for each parameter. Neither tool 

suggested obvious convergence issues (Table S1). In total, we collected 100,000 

posterior samples after discarding the first 10,000 as a burn-in period. We further 

thinned the remaining samples by a factor of 10 to reduce posterior autocorrelation, 

resulting in 10,000 samples with which to make posterior inference.  

Sensitivity Analyses 

Sensitivity analysis to child and adult age cut-offs 

We modeled the proportion of children of the total number of child and adult 

cases using different age cut-offs for both children (<2 years old, <5 years old, <15 years 

old) and adults (>15 years old and >25 years old). In Fig. S1a-e, we demonstrate that 

the highlighted grid cells, where the proportion of child cases is greater than expected, 
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continue to approximate an area with molecular evidence of transmission and our 

findings are insensitive to the definition of children and adults. 

In Fig. S1c where the highlighted grid cells that represent where the proportion of 

cases <15 years old is greater than expected do not so clearly approximate an area with 

molecular evidence of transmission. This is likely because young children in notification 

data can only have been infected during the period that they have been alive, whereas 

older children in notification data represent a mix of recent infection and infection that 

happened earlier in their lives. 

Sensitivity analysis to grid size 

We varied the size of the grid over which we aggregated the notification data to 

demonstrate that our proposed method is insensitive to grid size. We demonstrate this 

finding in Fig. S2a-i, where the highlighted grid cells, representing where the proportion 

of child cases is greater than expected, approximate the same area—irrespective of grid 

size—that corresponds to an area with molecular evidence of transmission. 
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Table S1. Hierarchical Bayesian spatial model posterior parameter estimates 
Posterior parameter estimates and model convergence diagnostics for the hierarchical Bayesian 
spatial CAR model specified in the main text. This model was built using case notification data 
collected from 2005-2007 aggregated into a 200 m x 200 m grid using age cut-offs for children as 
<5 years old and adults as >15 years old. 
 

Model Parameter Posterior Median (95% 
credible interval) 

Effective Number 
of Independent 
Samples 

Geweke Diagnostic 
Z-score 

𝝁  -3.6 (-3.8 – -3.5) 475.0 -0.2 

𝝉𝟐  1.3 (0.3 – 2.6) 243.6 0.1 

𝝆  0.7 (0.2 – 1.0) 267.0 -0.3 
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Figure S1. Sensitivity analysis to child and adult age cut-offs. Model fit using case 
notification data aggregated into 400 m x 400 m grid cells using different age cut-offs to define 
child and adult cases as follows: (a) child: <5 years old, adult: >15 years old (presented in the 
main text); (b) child: <2 years old, adult: >15 years old; (c) child: <15 years old, adult: >15 years 
old; (d) child: <5 years old, adult: >25 years old; (e) child: <2 years old, adult: >25 years old. We 
highlight those grid cells in which >90% of the modeled posterior distribution of the random effect 
is above zero (orange), which includes those grid cells in which >95% of the modeled posterior 
distribution is above zero (red). 
a) 

 
b) 
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c) 

 
d) 
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e) 
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Figure S2: Sensitivity analysis to grid size. Model fit using age cut-offs of children as <5 years 
and adults as >15 years old on different size grids as follows: (a) 200 m x 200 m (presented in the 
main text); (b) 300 m x 300 m; (c) 400 m x 400 m; (d) 500 m x 500 m; (e) 600 m x 600 m; (f) 700 
m x 700 m; (g) 800 m x 800 m; (h) 900 m x 900 m; (i) 1000 m x 1000 m. We highlight those grid 
cells in which >90% of the modeled posterior distribution of the random effect is above zero 
(orange), which includes those grid cells in which >95% of the modeled posterior distribution is 
above zero (red). 
a) 

 
b) 
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c) 

 
d) 
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e) 

 
f) 
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g) 

 
h) 
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i) 
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ABSTRACT 

Background: Despite multiple tuberculosis (TB) prevalence surveys reporting a relatively 

high frequency of bacteriologically confirmed, active TB among individuals reporting no 

typical symptoms of disease, our understanding of this phenomenon is limited.  

Objective: To quantify the epidemiological burden and estimate associations between 

individual-level variables and this “subclinical” presentation. 

Methods: We performed a secondary analysis of TB prevalence survey data from the 

South African communities of the Zambia and South Africa Tuberculosis and AIDS 

Reduction trial. Generalized estimating equations were used to estimate the association 

between individual-level demographic, behavioral, socio-economic, and medical 

variables and the risk of bacteriologically positive TB among participants not reporting 

any symptoms consistent with active TB. 

Results: The crude prevalence of TB was 2,222.1 cases per 100,000 population (95% CI 

2,053.4–2,388.5); 44.7% (295/660) of all documented prevalent cases of TB were 

subclinical. Current tobacco smoking (OR 2.37, 95% CI 1.41–3.99) and HIV-positive 

status (OR 3.26, 95% CI 2.31–4.61) were significantly associated with subclinical TB. 

Conclusion: Individuals who smoke or have HIV may be at increased risk of active TB 

and not report typical symptoms consistent with disease. This suggests possible 

shortcomings of symptom-based case finding which may need to be addressed in similar 

settings. 
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INTRODUCTION 

In 2017, only 6.4 of the estimated 10.0 million individuals with incident 

tuberculosis (TB) worldwide were reported to the World Health Organization (WHO).1 

Several possible mechanisms may contribute to the gap between true TB incidence and 

TB notifications: 1) individuals with TB may not self-present to health care providers for 

diagnosis due to poor self-recognition of symptoms and/or barriers to accessing 

healthcare; 2) individuals with TB may self-present to health care providers, but fail to be 

accurately diagnosed due to imperfect diagnostic practices or diagnostic tools; and 3) 

individuals with TB may be accurately diagnosed, but not recorded by standardized 

reporting systems due to imperfect administrative systems.2 

Identifying the specific mechanisms responsible for the overall gap between 

estimated TB incidence and notifications has been highlighted by the WHO and the 

Global Fund as a major research priority,1,3 and efforts to study leaks in the “TB care 

cascade” have helped to quantify deficiencies in diagnosis (mechanism 2 above)4 and 

notification (mechanism 3 above).5 TB diagnosis in most settings requires individuals to 

recognize their own symptoms and seek care (i.e., passive case-finding); therefore, the 

frequency of poor self-awareness of symptoms (mechanism 1) is challenging to quantify. 

TB prevalence surveys, in which all eligible individuals are screened for TB disease 

regardless of symptoms, have revealed that in some settings a large fraction of 

individuals with prevalent, undiagnosed TB may be “subclinical” and fail to report any 

classical symptom of TB, such as cough, fever, weight loss and night sweats. For 

example, analysis of national TB prevalence surveys in Asia revealed that between 40% 

and 79% of all individuals with prevalent TB did not report symptoms that met screening 

criteria.6 It is not clear how many of individuals detected with subclinical prevalent TB 

would have eventually become aware of symptoms and seek care. 
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Esmail et al. recently suggested that the limited evidence of the benefit of active 

case-finding interventions using symptom-based screening for reducing TB prevalence 

might be attributable to individuals with subclinical TB in transmission.7 They 

hypothesized that individuals with chronic cough (for example, due to pre-existing 

respiratory conditions, smoking, or unrelated respiratory infections) will be less likely to 

notice the onset of TB symptoms and more likely to transmit Mycobacterium tuberculosis 

infections due to persistent coughing behavior. Furthermore, these individuals may 

maintain normal activities and social behaviors, further increasing the likelihood of 

transmission. While the presence of chronic cough for reasons other than TB has been 

associated with delays in presentation and diagnosis of TB,8–12 the epidemiological 

importance of subclinical TB has not yet been well-characterized. 

Here we present a secondary analysis of data from TB prevalence surveys in 

South Africa to 1) quantify the burden of subclinical TB, and 2) estimate the association 

between patient-level variables and subclinical TB.  

METHODS 

Setting and study population 

In 2010, TB prevalence surveys were conducted in eight communities in the 

Western Cape Province of South Africa that were part of the Zambia and South Africa 

Tuberculosis and AIDS Reduction (ZAMSTAR) trial. Trial communities were selected 

based on TB notification rates greater than 400/100,000 per annum, high human 

immunodeficiency virus (HIV) prevalence, and proximity to a TB diagnostic center. 

Community-level HIV prevalence rates did not exist at the time of site selection; 

however, expert opinion and available data defined all communities as having an HIV 

prevalence higher than provincial estimates. The detailed ZAMSTAR study design has 

been described previously. Below, we provide brief details relevant for this analysis.13,14 
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Data collection 

TB prevalence surveys were conducted over a period of 12 months. The 

communities were divided into >150 clusters demarcated by census enumeration areas, 

and trained study personnel visited all households. Informed consent was provided by 

eligible adults (individuals aged ≥18 years who stayed in the household the previous 

night. All participants were asked to produce spot respiratory secretion samples, either 

spontaneously or with the help of breathing techniques. Research assistants 

administered a structured questionnaire to elicit demographic, behavioral, clinical, and 

socio-economic information (Supplementary Data S1). Participants were asked whether 

they had cough, fever, drenching night sweats, or weight loss at the time of survey. HIV 

status was determined by testing participants who provided a finger-prick sample using 

Determine™ HIV-1&2 test kits (Alere, Waltham, USA). Self-reported status was 

documented in case of participants who refused consent for HIV testing. 

Case definitions 

A case of bacteriologically confirmed TB (confirmed TB) was defined as a 

participant who produced a respiratory sample resulting in a positive culture for M. 

tuberculosis.13 A subclinical case of TB (subclinical TB) was defined as a participant with 

bacteriologically confirmed TB who did not report any of the symptoms specified by the 

WHO for diagnosis of TB: cough, 1 month of fever, weight loss, and night sweats.15 A 

symptomatic case of TB (active TB) was defined as a participant with bacteriologically 

confirmed TB by culture who reported at least one symptom. No TB was defined as 

having no microbiologic evidence of M. tuberculosis on culture. 
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Data analysis 

Crude prevalence of TB was calculated among the entire study population, the 

population reporting no symptoms associated with TB, and the population reporting at 

least one of the symptoms associated with TB. 

Multivariate generalized estimating equations (GEE) were used to provide 

population-average estimates of odds ratios (OR) between individual-level variables and 

the risk of bacteriologically positive TB among participants who did not report any 

symptoms consistent with TB at the time of the prevalence survey. We included basic 

demographic (age, sex, race), socio-economic (education, occupation), behavioral 

(tobacco smoking, alcohol use), and health (previous TB, HIV infection, diabetes) data 

that have well-documented associations with risk of TB.16 

Because data collected by cluster violates the independence assumptions made 

by regression, we selected GEEs and specified an exchangeable correlation structure. 

GEEs provide reasonable estimates of the log(OR) and standard errors when the 

number of clusters is large.17 Variables with P < 0.5 after a Bonferroni Correction for 

multiple comparisons testing were considered to be significantly associated with culture-

positive TB. A complete case analysis was performed in order to fit the model. Analyses 

were performed using R v3.3.2 programming software (R Computing, Vienna, Austria) 

using the ‘geepack’ package geeglm function for the GEEs.18 

Ethics 

Approval for this analysis was given by Stellenbosch University, Tygerberg, 

South Africa (N17/09/084). Yale University Institutional Review Board, New Haven, CT, 

USA, exempted this study from a full board review, as the Yale-based investigators did 

not have identifying data. Approval for the ZAMSTAR trial was given by the Health 

Research Ethics Committees of Stellenbosch University, the University of Zambia 
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(Lusaka, Zambia), and the London School of Hygiene & Tropical Medicine (London, UK). 

Written informed consent was provided by participants during the prevalence surveys. 

Participants did not give consent for data to be shared.  

RESULTS 

Of the 32,792 eligible adults providing consent to participate in the ZAMSTAR 

trial prevalence survey in South Africa (78% of those approached), 99.9% 

(32,770/32,792) had recorded data on age and sex. Evaluable respiratory secretions 

were obtained from 91.6% (30,017/32,770) of those providing consent. There were 300 

participants receiving TB treatment at the time of the survey who were excluded from 

this analysis. 

 

Figure 1. Flow diagram of participants included in this analysis. 
Note: ZAMSTAR—Zambia and South Africa Tuberculosis and AIDS, Reduction TB—
tuberculosis. 
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Of the surveyed participants, 64% (18,944/29,717) reported no symptoms 

associated with TB (as defined above), and the remaining 36% (10,773/29,717) reported 

at least one symptom consistent with TB (Figure 1). 

The crude prevalence of TB among those not on treatment within the South 

African ZAMSTAR trial communities was 2,222.1 cases per 100,000 (n = 660 cases, 

95% CI 2,053.4–2,388.5 per 100,000). Of the total number of bacteriologically confirmed 

cases of prevalent TB, 44.7% (295/660) were subclinical. The crude prevalence of TB 

among participants reporting no symptoms was 1,557.2 per 100,000 (n = 295, 95% CI 

1,381.0–1,733.5 per 100,000). The crude prevalence of TB among participants reporting 

symptoms was 3,388.1 per 100,000 (n = 365, 95% CI 3,046.4–3,729.8 per 100,000). 

Demographic breakdown of the data for both the symptomatic and asymptomatic 

populations and the prevalence of bacteriologically confirmed TB within the levels of 

each variable are given in Table 1. Among the participants not reporting any symptoms, 

data on all modeled variables were available for 58% (10,995/18,944). The primary 

source of missing data was HIV-status—7,809 participants did not undergo HIV testing 

or report HIV status. The proportion of younger males among participants excluded from 

the analysis was higher than the proportion among participants included in the complete 

case analysis. Full description of the differences can be found in Supplementary Table 

S1.  

Multivariate analysis on sufficiently complete cases (Table 2) found current 

tobacco smoking (OR 2.37, 95% CI 1.41–3.99) and HIV-positive status (OR 3.26, 95% 

CI 2.31–4.61) to be independently associated with an increased risk of subclinical TB. 

Participants in the 30–34 years age group were less likely to have subclinical TB (OR 

0.45, 95% CI 0.24–0.84). History of tobacco smoking was not significant after correcting 

for multiple hypothesis testing (OR 1.68, 95% CI 1.04–2.71). 
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Table 1. Demographic breakdown of all participants in the eight South African 
ZAMSTAR trial communities (including participants with missing data) grouped by 
presence of symptoms and showing prevalence of bacteriologically confirmed TB. 
Note: ZAMSTAR—Zambia and South Africa Tuberculosis and AIDS, Reduction TB—
tuberculosis, HIV—human immunodeficiency virus. 
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Table 2. Multivariate analysis of predictors of bacteriologically confirmed TB among 
those participants not reporting any current symptoms of TB* 
* Only variables with sufficiently complete data were included in this analysis. 
† Indicates significance with P < 0.05 and Bonferroni Correction allowing for 10% false-
discovery rate. 
Note: TB—tuberculosis, OR—odds ratio, CI—confidence interval, HIV—human 
immunodeficiency virus. 
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DISCUSSION 

In our study population (n = 29,717), 44.7% of participants with bacteriologically 

confirmed prevalent TB did not report any classical TB symptom during the standard 

screening interview; this is consistent with several other large-scale prevalence studies 

reporting high burdens of subclinical disease.6 

A growing body of evidence supports the notion that subclinical disease may be a 

useful category within the continuum of TB infection and suggests that disease course 

after infection may include a subclinical state.19,20 History of smoking and HIV infection 

are well-known to be associated with active TB disease; these findings are reflected in 

the subclinically infected individuals in this analysis. This perhaps suggests that 

subclinical disease may be a subset of active TB disease. Analysis of the symptomatic 

group (data not shown) did indicate that smoking and HIV infection in the ZAMSTAR 

survey were also associated with TB disease; however, in the case of smoking, the 

association was not as strong as with TB disease in the subclinical asymptomatic group. 

Our analysis of ZAMSTAR prevalence data was not powered to compare the 

associations. 

Molecular and mathematical evidence suggests that it may be useful to think of 

subclinical TB as distinct from active TB.20–25 A recent meta-analysis of active case-

finding interventions revealed that these interventions have generally failed to show 

either reductions in community incidence or improvement in individual patient outcomes, 

although such case-finding lead to earlier disease detection among individuals 

screened.26 Dowdy et al. used a model that included subclinical disease to demonstrate 

the potential limitations of symptom-based screening and to suggest how active case-

finding strategies may improve control, especially if those not reporting classical 

symptoms could be identified.22 However, the impact of such strategies will depend on 
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quantities for which we currently have little data, such as the relative infectiousness of 

individuals with bacteriologically confirmed TB that do not have symptoms compared 

with those who have symptoms, and the natural history of subclinical TB.  

Given the nature of the cross-sectional ZAMSTAR prevalence data, information 

on whether individuals with subclinical TB progressed to symptomatic TB was 

unavailable. A cohort study may be able to provide insight into determinants of 

subclinical TB and disease progression; however, the natural history of subclinical TB is 

challenging to investigate due to ethical concerns of withholding treatment from 

individuals with bacteriological confirmation. Historical cohorts from the pre-anti-TB 

chemotherapeutic era may inform the natural history if symptomatic and asymptomatic 

individuals were investigated for bacteriological confirmation of TB with follow-up. 

Narrowing uncertainty around key parameters related to infectiousness of subclinical TB 

may inform more effective interventions; for example, if individuals with subclinical 

disease remain in this health state for long periods of time and are likely to transmit M. 

tuberculosis, active-case finding interventions to identify individuals with subclinical 

disease would be especially attractive. 

Our analysis supports Esmail et al.’s hypothesis that behaviors and health 

conditions that mask recognition of classical TB symptoms, such as smoking, may 

inform the design of active case-finding interventions with greater impact. Since upper 

respiratory infections and chronic cough associated with cigarette smoking may impede 

self-recognition of TB symptoms and delay healthcare seeking, the strong association 

between subclinical TB and current cigarette smoking shown in our analysis is 

potentially significant.27,28 For example, our findings support the possibility of further 

probing for details about symptoms possibly relating to TB among individuals who 

smoke and do not report symptoms upon initial screening. Our analysis of the 
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ZAMSTAR trial TB prevalence survey allows us to assess the relationship between 

smoking behaviors and current TB, therefore avoiding potential recall bias that limit 

retrospective studies that assess smoking behaviors after a TB diagnosis has been 

made or among symptomatic individuals seeking a diagnosis. 

The ZAMSTAR trial prevalence data provides compelling evidence that HIV 

infection is also independently associated with subclinical TB. Crude HIV prevalence in 

the South African ZAMSTAR trial communities, based on individuals who consented to 

give blood for HIV testing or self-report HIV status in the TB prevalence survey, was 

about 16,100 per 100,000; however, HIV status was missing for more than one third of 

the population. Previous studies of TB among HIV-positive individuals have identified 

subclinical disease in these populations, and have posited that subclinical presentation 

may be related to atypical disease associated with immune suppression.23,29–31 Our 

study further supports the importance of screening for TB among individuals infected by 

HIV in high TB-HIV co-burden settings, and that such screening may need to be more 

comprehensive than an assessment of symptoms through questionnaires. 

Limitations 

Our ability to assess the presence of symptoms was based on several questions 

related to the presence of any cough, fever, weight loss and drenching night sweats 

(Supplementary Data S1). While responses by surveyed participants to these questions 

may accurately reflect their ability to recognize their current symptoms, it is not clear 

whether additional questioning could have revealed the presence of worsening baseline 

cough or other potential signs of TB. 

Our analysis is also limited by substantial missing data, especially related to HIV 

infection, which may introduce bias. Given that younger adult males are known to have a 

higher prevalence of active TB, it will be important to investigate potential reasons for the 
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lack of data on HIV status to enhance the strength of future study of subclinical 

infection.1 

Radiological data were not available for analysis. Previous studies have shown 

that radiological findings are variable in the context of subclinical infection,23,29,32 which is 

significant, given that many prevalence surveys and diagnostic algorithms rely on the 

presence/absence of such findings. 

CONCLUSION 

Nearly 45% of participants with bacteriologically confirmed TB in the South 

African ZAMSTAR trial TB prevalence surveys denied experiencing any of classical 

symptoms of TB. Among those participants for which we had sufficiently complete data, 

current smoking was independently associated with a greater than two-fold odds, and 

HIV infection was independently associated with a greater than three-fold odds of 

subclinical TB. These findings confirm the importance of new approaches for detecting 

disease among individuals with atypical presentation or among individuals who may 

have other explanations for their symptoms, which can impede self-recognition of TB. 

While this study provides additional support for claims of the potential importance of 

subclinical disease, the epidemiological significance of subclinical disease remains 

unclear, and studies which can address the natural history of subclinical disease and the 

transmission potential of individuals with subclinical TB will be valuable.  
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Supplementary Table 1: 
Comparison of participants without symptoms sufficiently complete for multivariate analysis 
against those excluded from the analysis due to missing data. Males were more likely to be 
excluded from the analysis than females; other than sex, the distributions of variables among 
those included in our analysis were similar to those excluded.   

Data Included in Analysisa Data Excluded from Analysisa 

Population Total 
 

10995 
 

7949 
 

Gender Male 3464 31·5% 3588 45·1%  
Female 7531 68·5% 4361 54·9% 

Age Group 18-24 3426 31·2% 2625 33·1%  
25-29 2060 18·7% 1402 17·7%  
30-34 1528 13·9% 1014 12·8%  
35-39 1170 10·6% 804 10·1%  
40-49 1471 13·4% 1047 13·2%  
50-59 789 7·2% 604 7·6%  
60+ 551 5·0% 444 5·6% 

Male Age Group 18-24 1039 30·0% 1259 35·1%  
25-29 620 17·9% 648 18·1%  
30-34 477 13·8% 486 13·6%  
35-39 368 10·6% 380 10·6%  
40-49 496 14·3% 435 12·1%  
50-59 265 7·7% 216 6·0%  
60+ 199 5·7% 160 4·5% 

Female Age Group 18-24 2387 31·7% 1366 31·4%  
25-29 1440 19·1% 754 17·3%  
30-34 1051 14·0% 528 12·1%  
35-39 802 10·6% 424 9·7%  
40-49 975 12·9% 612 14·0%  
50-59 524 7·0% 388 8·9%  
60+ 352 4·7% 284 6·5% 

TB-status Negative 10832 98·5% 7817 98·3%  
Positive 163 1·5% 132 1·7% 

Race Non-Black 1257 11·4% 483 6·1%  
Black 9738 88·6% 7466 93·9% 

Tobacco Smoking Never smoker 8773 79·8% 6225 78·3%  
Ex-smoker 1527 13·9% 855 10·8%  
Current smoker 695 6·3% 869 10·9% 

Alcohol Use Never 6473 58·9% 4615 58·1%  
Daily 179 1·6% 172 2·2%  
Occasional 3837 34·9% 2878 36·2%  
Ex-drinker 506 4·6% 284 3·6% 

Previously Infected 
w/ TB 

No 9763 88·8% 7338 92·4% 

 
Yes 1232 11·2% 605 7·6% 

Diabetes No 10218 92·9% 7613 95·8%  
Yes 777 7·1% 336 4·2% 

HIV Status No 9458 86·0% 8 100·0%  
Yes 1537 14·0% 0 0·0% 

Final Year of 
Education 

None/Grade 
1/Grade 2 

458 4·2% 406 5·1% 

 
Grade 3 - Grade 6 1116 10·2% 876 11·0%  
Grade 7- Grade 10 3912 35·6% 2872 36·1%  
Grade 11 - Grade 
12 

4959 45·1% 3470 43·7% 

 
College/University 550 5·0% 325 4·1% 

Occupation at Year 
of Survey 

None or Own Land 4666 42·4% 2956 37·2% 

 
Occasional 682 6·2% 411 5·2%  
Employed 3627 33·0% 2928 36·8%  
Unable to Work 175 1·6% 158 2·0%  
Student 1338 12·2% 1225 15·4%  
Home-Maker 507 4·6% 271 3·4% 

a = Percentages given as a total of the entire population of participants included in the analysis or 
participants excluded in the analysis 
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Supplementary Appendix 1: 
Structured individual and household questionnaires used in the Zambia South Africa TB and 
AIDS reduction trial prevalence survey1 to elicit demographic, behavioral, clinical, and 
socioeconomic information. Trained research assistants administered these questionnaires in the 
trial participants’ households.
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ABSTRACT 

Background: Limitations in the sensitivity and accessibility of diagnostic tools for 

childhood tuberculosis contribute to the substantial gap between estimated cases and 

cases notified to national tuberculosis programs. Thus, tools to make accurate and rapid 

clinical diagnoses are necessary to initiate more children on antituberculosis treatment. 

Methods: We analyzed data from a prospective cohort of children <13 years being 

routinely evaluated for pulmonary tuberculosis in Cape Town, South Africa from March 

2012 to November 2017. We developed a regression model to describe the contributions 

of baseline clinical evaluation to the diagnosis of tuberculosis using standardized, 

retrospective case definitions. We included results from baseline chest radiography and 

Xpert MTB/RIF to the model to develop an algorithm with at least 90% sensitivity in 

predicting tuberculosis. 

Results: Data from 478 children being evaluated for pulmonary tuberculosis were 

analyzed (median age: 16.2 months, interquartile range: 9.8-30.9); 242 (50.6%) were 

retrospectively classified with tuberculosis, of which 104 (43.0%) were bacteriologically-

confirmed. The area under the receiver operating characteristic curve for the final model 

was 0.87. Clinical evidence identified 71.4% of all tuberculosis cases in this cohort, and 

inclusion of baseline chest radiography results increased the proportion to 89.3%. The 

algorithm was 90.1% sensitive and 52.1% specific, and maintained a sensitivity of above 

90% among children <2 years or with low weight-for-age. 

Conclusions: Clinical evidence alone was sufficient to make most clinical 

antituberculosis treatment decisions. The use of evidence-based algorithms may 

improve decentralized, rapid treatment-initiation, reducing the global burden of childhood 

mortality. 
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INTRODUCTION 

Each year, 1.2 million children are estimated to develop tuberculosis, and about 

one quarter of those children die.1 This places tuberculosis in the top ten causes of 

mortality among children under 5 worldwide. Globally, over 96% of deaths in children 

with tuberculosis occur among those not receiving treatment.2 

Childhood tuberculosis is generally paucibacillary, limiting the sensitivity of 

bacteriologic tests including rapid molecular diagnostics such as Xpert MTB/RIF (Xpert).3 

Findings on chest radiography (CR) are similarly less sensitive among children.4 In 

addition to diagnostic limitations, accessing these tests may be challenging—especially 

in low- and middle-income countries that bear the greatest burden of tuberculosis.5 

These limitations in sensitivity and accessibility contribute to the substantial gap between 

the estimated 1.2 million annual incident cases of childhood tuberculosis and the 

approximate 500,000 annual cases notified to the World Health Organization (WHO).1 

Decentralized diagnosis and treatment for childhood tuberculosis may reduce the 

risk of untreated tuberculosis and improve treatment outcomes by shortening the delay 

to treatment initiation.6-10 To that end, the WHO and the International Union against 

Tuberculosis and Lung Disease suggest treating children for whom there is sufficient 

clinical evidence of tuberculosis, even in the absence of further diagnostic 

investigation;11,12 however, it is not clear what clinical evidence is sufficient to start 

treatment. Practical, data-driven treatment-decision algorithms could help support more 

effective and uniform treatment decision-making at peripheral health facilities.13 

A recent study among children living with HIV demonstrated that antituberculosis 

treatment-decisions may be made using clinical evidence alone.14 We present a 

complementary study, in which we analyze data from HIV-uninfected children from a 
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well-characterized prospective cohort of young children routinely evaluated for 

pulmonary tuberculosis in Cape Town, South Africa. We aimed to investigate the relative 

contributions of baseline clinical characteristics, baseline CR, and baseline Xpert to the 

diagnosis of childhood pulmonary tuberculosis in a high-tuberculosis burden setting. We 

used this evidence to develop a practical algorithm to assist in making sensitive and 

rapid antituberculosis treatment-initiation decisions. 

METHODS 

Participants 

Children <13 years old routinely evaluated for pulmonary tuberculosis were 

prospectively identified for participation in a diagnostic study.15-17 Children were recruited 

from inpatient wards and emergency rooms at Tygerberg Hospital and Karl Bremer 

Hospital, referral hospitals in Cape Town, South Africa, from March 2012 to November 

2017. Eligibility criteria reflected the WHO and national criteria for the evaluation of 

childhood tuberculosis and were any of the following: cough ≥2 weeks, unexplained 

fever ≥1week, poor growth/weight loss over the preceding three months, or cough <1 

week with a known tuberculosis exposure in the previous 12 months, positive tuberculin 

skin test (TST), or CR suggestive of tuberculosis as evaluated by study physicians. 

Children were not eligible if they had received antituberculosis treatment for >1 day or 

had extrapulmonary tuberculosis without also being evaluated for pulmonary 

tuberculosis. 

Procedures and definitions 

At the time of enrollment each participant underwent a standardized clinical 

examination performed by study physicians; TST; bacteriological testing for 

Mycobacterium tuberculosis (M.tb) using acid-fast bacilli smear microscopy, Xpert, and 

Mycobacteria Growth Indicator Tube (MGIT) liquid culture from a minimum of two 
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respiratory specimens (one specimen of either gastric aspirate for children <5 years or 

spontaneously produced sputum for older children able to expectorate, and one 

specimen of induced sputum); and anteroposterior and lateral CR. CR was read by two 

independent pulmonology and/or pediatric tuberculosis experts blinded to the clinical 

history using a standardized evaluation tool. Some children underwent additional 

sampling for other respiratory specimens for M.tb confirmation, including 

nasopharyngeal aspirate and stool, as part of investigational sub-studies. At two months, 

all study participants were evaluated irrespective of tuberculosis diagnosis at baseline. 

All children with an ongoing suspicion for tuberculosis, regardless of the decision to treat 

for tuberculosis, had respiratory samples taken during follow up at 1, 2, and/or 6 months 

or as clinically needed for smear microscopy, MGIT, and Xpert. Data were dual-entered 

into standard case report forms. Managing clinical teams made the decision to treat.  

Study participants were retrospectively classified by the study team as having 

confirmed, unconfirmed, or unlikely tuberculosis using standardized clinical case 

definitions developed for the evaluation of diagnostics for childhood pulmonary 

tuberculosis (supplemental Table S1).18 These definitions considered clinical history 

from baseline evaluations, immunological evidence of M.tb infection, consistency of CR 

with tuberculosis as evaluated by experts blinded to the clinical history, confirmation of 

M.tb from Xpert or MGIT from respiratory specimens collected at baseline or in follow-

up, and follow-up evaluation to assess for resolution or persistence of symptoms. All 

available information was used to inform classification of tuberculosis using these 

definitions. 

Given the epidemiological difference in the risk of tuberculosis and severe forms 

of disease,19 we defined two risk-groups in our population: higher-risk children <2 years 
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of age or with a weight-for-age Z-score of <-2, and lower-risk children ≥2 years of age 

and with a weight-for-age Z-score of ≥-2. 

Statistical analysis 

We used logistic regression to develop a model to predict confirmed and 

unconfirmed tuberculosis restricted to data from the baseline evaluation of children with 

complete predictor information. We identified candidate predictors from the baseline 

clinical evaluation (the initial clinical history and physical examination) used in previous 

scoring systems to diagnose childhood pulmonary tuberculosis, as well as from a nested 

case-control analysis of our data, where we defined cases as having any bacteriological 

confirmation of M.tb over the study period and controls as those retrospectively 

classified as unlikely tuberculosis with the additional requirement that they completed the 

study without ever receiving antituberculosis treatment. 

We carried out backward variable selection from the full model containing only 

predictors from the baseline clinical evaluation to develop the first model (clinical model). 

We used an inclusion p-value cutoff informed by variable degree-of-freedom as per 

Akaike information criterion in model selection.20 We added results from the baseline CR 

and Xpert performed on all respiratory specimens collected at baseline only to obtain the 

second model (investigational model). Though MGIT culture is more sensitive for M.tb 

than Xpert, we include Xpert in our models given improved accessibility in many settings 

and shorter time-to-result. 

All predictors were binary variables to reflect their presence or absence in the 

child except cough duration, which we categorized as no cough or cough <1 week, 1-2 

weeks, 2-3 weeks, or >3 weeks. A list of all relevant candidate predictors and their 
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definitions as relevant to this study are provided in the supplementary information. 

Analysis was performed using R version 4.0.1. 

Given that a positive Xpert result was sufficient to classify a child as having 

tuberculosis by the reference standard, coefficient and standard error estimates for the 

investigational model were obtained using Firth’s logistic regression using function 

‘brglm’ in R package brglm. We examined separation by plotting the receiver operating 

characteristic (ROC) curve for each model and assessing the area under the ROC curve 

(AUC) using the R package pROC. We used the function ‘roc.test’ to compare whether 

the models had statistically significant AUCs using DeLong’s test for correlated ROC 

curves. We used leave-one-out cross-validation using function ‘cv.glm’ in the R package 

boot to assess out-of-sample predictive performance. 

Treatment-decision algorithm development 

We scaled the coefficient estimates for the parameters in each model such that a 

score of >100 constituted a sensitivity of at least 90% to diagnose pulmonary 

tuberculosis, consistent with the WHO target product profile of a community-based triage 

test to identify tuberculosis (scaling methodology described in the supplementary 

information).21 To develop a treatment-decision algorithm, we examined how study 

participants met criteria for diagnosis disaggregated by contribution from baseline clinical 

evidence, baseline CR consistent with tuberculosis, and baseline Xpert on respiratory 

specimens. 

Ethical considerations 

Data collection and analysis was approved by the Stellenbosch University Health 

Research Ethics Committee (Ref No. N11/09/282). Written informed consent for study 

participation was obtained from parents or legal caregivers, and written assent was 
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obtained from children 7 years and above. This analysis was approved via expedited 

review by the Yale Institutional Review Board (Ref No. 2000028046) and did not require 

specific consent as it was a secondary analysis of previously collected data.  

RESULTS 

Population 

Data were available for 608 children who completed evaluation for the 

prospective study, of which 478 HIV-uninfected participants had sufficiently complete 

data for this analysis (Figure 1). Two hundred and forty-two (50.6%) children were 

retrospectively classified as having confirmed or unconfirmed pulmonary tuberculosis 

using the clinical case definitions, and 104 of these (43.0%) were bacteriologically-

confirmed. See supplemental Table S2 for differences between population 

included/excluded from this analysis due to missing variables. 

 

Figure 1. Flow diagram demonstrating participant eligibility for this analysis.17 

Table 1 describes the demographics and candidate predictors for children with 

sufficiently complete data for this analysis. Of 478 children, 223 (46.7%) were female, 

the median age was 16.2 months (interquartile range [IQR]: 9.8 - 30.9), and the median 

weight-for age Z-score was -1.58 (IQR: -2.7 - -0.7). We classified 378 children (79.1%) 
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as at higher-risk for tuberculosis and severe disease. Descriptions of these higher- and 

lower-risk subpopulations are provided in the supplemental Tables S3 & S4. 

Table 1. Description of demographics and candidate predictors from clinical evaluation 
and diagnostic imaging/testing of HIV-uninfected participants with sufficiently complete 
data for this analysis. 

 

Prediction modeling 

The predictors selected from baseline clinical evidence for inclusion in the final 

model were cough duration, fever, failure to thrive/weight loss, lethargy, history of 

tuberculosis exposure, and hepatomegaly. We added results from baseline CR and 

baseline Xpert to create the investigational model. Odds ratios, 95% confidence 

intervals, and p-value of the predictors included in the clinical and investigational models 

along with AUC and leave-one-out cross-validation for each model are provided in Table 
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2, and the ROC curves for the models are presented in Figure 2. The clinical and 

investigational models had statistically different AUCs of 0.75 and 0.87 respectively (P-

value < 0.001). 

Table 2. Prediction models of baseline clinical history and physical evaluation 
with/without diagnostic imaging/microbiological investigation. 

 

Treatment-decision algorithm 

The probability threshold of the investigational model was set at 0.25 to classify 

tuberculosis with 90.1% sensitivity and 52.1% specificity. At this threshold, 173 (71.5%) 

of the 242 children with a diagnosis of tuberculosis could be identified using clinical 

evidence (Figure 3). Among those children not identifiable by clinical evidence, an 

additional 43 were identified by CR. Inclusion of chest radiography results after clinical 

evidence increased the proportion of tuberculosis identified to 89.3%. Figure 4 shows 

the treatment-decision algorithm built from the investigational model. This algorithm 
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failed to diagnose 24 children with tuberculosis (described in supplemental Table S5). 

The sensitivity and specificity compared to the retrospective reference standard for 

baseline CR alone was 0.54 and 0.91 and respectively 0.26 and 1.0 for baseline Xpert 

alone. 

 

Figure 2. Receiver operating characteristic curves of the clinical model (solid line) 
including the features form the baseline clinical evidence (cough duration, fever, failure 
to thrive/weight loss, lethargy, a history of tuberculosis exposure, and hepatomegaly) 
and the investigational model (dotted line) considering baseline clinical evidence, 
baseline chest radiography, and Xpert MTB/RIF from respiratory specimens collected 
at baseline. The horizontal dashed line is drawn at a sensitivity of 90%. 
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Figure 3. Venn diagram depicting how the 242 participants with tuberculosis in this 
cohort met criteria to be classified as having tuberculosis by the investigational model. 
Criteria was met by having sufficient evidence from baseline clinical evaluation, having 
baseline chest radiography consistent with pulmonary tuberculosis, and/or having 
Xpert MTB/RIF-confirmed M.tb from respiratory specimens collected at baseline. Note 
that 24 participants classified as having tuberculosis by the reference standard were 
missed by the investigational model. 

Table 3 demonstrates the sensitivity, specificity, positive predictive value, and 

negative predictive value of the algorithm in the higher- and lower-risk subpopulations. 

The algorithm had a sensitivity and specificity of 91.8% and 51.6% respectively among 

higher-risk children and 83.3% and 53.8% respectively among lower-risk children. 

Table 3. Sensitivity, specificity, positive predictive value, and negative predictive value 
of the algorithm developed from the investigational model including baseline clinical 
evidence, chest radiography, and Xpert MTB/RIF given for the subpopulations of 
children at higher- and lower-risk for tuberculosis and severe disease. 
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Figure 4. Treatment-decision algorithm developed from the investigational model 
which includes baseline clinical evidence, baseline chest radiography, and Xpert 
MTB/RIF from respiratory specimens collected at baseline. 

The algorithm built from the clinical model including only clinical evidence is 

shown in supplemental Figure S1, with a sensitivity of 90.5% and specificity of 33.9% 

(supplemental Figure S2 and supplemental Table S6). 

DISCUSSION 

Our analysis of a well-characterized, prospective cohort of young children 

evaluated for pulmonary tuberculosis demonstrates that a detailed clinical history and 

physical examination is sufficient to initiate treatment in most HIV-uninfected children. In 

our setting, CR and Xpert only impacted the decision to treat a minority of children with 
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symptoms suggestive of pulmonary tuberculosis. This suggests that diagnostic 

testing/imaging may be reserved for those children who do not meet criteria for 

treatment-initiation based on clinical evidence alone. We used these findings to 

construct a data-driven algorithm to promote sensitive and rapid antituberculosis 

treatment-initiation.  

While the WHO does not define the target sensitivity and specificity of diagnostic 

tools for childhood tuberculosis as compared to a composite reference standard, we 

fixed the sensitivity of our algorithm at 90% to be consistent with both the WHO-defined 

target for a community-based triage and the algorithm-building approach adopted by 

Marcy and colleagues.14,21 Our specificity fell short of the WHO-proposed target; 

however, given the severe consequences of failing to diagnose and treat a case of 

childhood tuberculosis, we elected to prioritize sensitivity over specificity. 

Our results highlight the importance of a detailed clinical history and physical 

examination in making treatment-initiation decisions for childhood tuberculosis. We 

identified clinical evidence suggestive of childhood pulmonary tuberculosis that is 

consistent with the literature,14,22-25 and we quantitatively described their contribution to 

diagnosis. This analysis demonstrates that incorporating additional clinical 

characteristics may improve the specificity of treatment decisions without a substantial 

sacrifice in sensitivity among children identified by the WHO symptom screen. 

Additionally, this approach allows health workers to identify those children with sufficient 

clinical evidence to begin antituberculosis treatment without the need for additional 

diagnostic imaging/testing. This supports rapid treatment-initiation in settings where 

access to diagnostic imaging/testing is limited, as well where negative results from 

available tests may not change management. 
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Our analysis suggests pursuing CR prior to Xpert among those children who do 

not meet criteria to receive antituberculosis treatment using clinical evidence alone. This 

is reasonable given the accessibility of CR in many settings and its utility in identifying 

other pathology not related to tuberculosis. Additionally, it does not require any invasive 

sampling procedures that may be needed to obtain samples from young children for 

microbiological confirmation. We note that the contribution to diagnosis that we present 

for CR in this analysis may be optimistic, given that high quality images were obtained in 

a tertiary care setting with expert readings that may be unavailable in some high-burden, 

low-resource settings.26 Prospective investigation into the use of standardized digital CR 

and enhanced reader training will be important to understand the use of CR in childhood 

tuberculosis diagnosis in settings with limited resources.27 Furthermore, inclusion of 

specific findings on CR may increase the specificity of our algorithm.4 

Though we demonstrate that well-collected respiratory specimens for Xpert 

performed at baseline do not substantially improve our algorithm, we note that Xpert 

may provide important information on guiding treatment selection in settings where drug 

resistance is a concern. However, it is important to note that lack of access to 

microbiological testing and negative test results should not prevent children from 

accessing antituberculosis treatment when clinical criteria are met. Furthermore, while 

drug-resistant tuberculosis transmission is an important public health concern, the 

relative importance of microbiological tests in children should be informed by the local 

epidemiology of drug-resistant tuberculosis transmission.28 Given limitations in the 

sensitivity of microbiological testing among children, obtaining a detailed exposure 

history that includes the drug susceptibility test profile of any potential source cases 

remains critical. 
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Good performance of this algorithm among younger or low weight-for-age 

children is encouraging, given a higher risk of severe tuberculosis in this group. The 

children missed by this algorithm were generally older, had a higher weight-for-age Z-

score, and had a shorter cough duration. We believe that increased sensitivity of 

treatment decisions, rather than precise diagnosis, is likely to have a greater impact on 

child mortality given the high proportion of young children who are undiagnosed. It may 

be necessary to accept some overtreatment with relatively safe antituberculosis therapy 

to reduce the preventable morbidity and mortality of untreated tuberculosis.29,30 

Diagnostic vigilance and careful follow-up are critically important for all children, 

regardless of the initial treatment-initiation decision, to consider competing diagnoses 

and monitor for adverse drug events. 

Although TSTs were used to establish the reference standard, we chose not to 

include it in our analysis due to the many participants with missing TST data (120/478) 

due to global tuberculin stockouts during the study. While immunological testing for M.tb 

infection may improve the specificity of the algorithms, limitations in sensitivity among 

young and malnourished children and lack of accessibility at peripheral health centers 

may discourage their inclusion in treatment-decision algorithms.31  

A source of potential bias in this analysis arises from the fact that the clinical 

evaluation, CR results, and Xpert results are included as predictors in the model and as 

components of the clinical reference standard. We believe that this may not be a major 

issue in this study given the high degree of microbiological confirmation. This is further 

supported by the similar operational characteristics of the algorithms in the nested case-

control subpopulation as compared to in the development cohort (supplemental Tables 

S7 & S8). Additionally, we must be careful not to overinterpret the generalizability of 

these algorithms that were built from a cohort that was pre-screened for tuberculosis and 
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sourced from a tertiary care center. While the entry criteria for this development cohort 

reflects the WHO criteria for investigation for tuberculosis and a low value for cross-

validation suggest generalizability and external validity, the positive predictive value of 

these algorithms may be lower where the baseline prevalence of tuberculosis is lower. 

Further evidence is required to determine the pre-test probability of tuberculosis in 

children identified as having a positive WHO symptom screen across different settings, 

as this would have implications for the performance of this treatment-decision algorithm. 

Furthermore, randomized, interventional investigation is necessary to evaluate the 

morbidity and mortality impact of using data-driven, treatment-decision algorithms to 

guide antituberculosis treatment initiation in different settings. 

This analysis outlines an approach to interpret clinical data to inform treatment-

initiation decisions for children being evaluated for pulmonary tuberculosis. It is important 

to recognize that this algorithm is context-specific and translation to other settings should 

be undertaken cautiously. Ideally, treatment-decision algorithms should be constructed 

locally to reflect the site-specific epidemiology, the quality and accessibility of diagnostic 

imaging and testing, and the relative consequence of overtreatment versus untreated 

child tuberculosis. Furthermore, these algorithms should be revised and recomputed as 

circumstance change—for example, as local capacity to incorporate additional tools 

changes or as improved diagnostic tools are discovered. Implementation of treatment-

decision algorithms must include programmatic support and mentorship for the 

healthcare providers to use them effectively, as well as additional resources to support 

the families of the children initiated onto treatment.7 

We demonstrate that algorithms that incorporate evidence from a detailed clinical 

history and physical examination could play an important role in guiding sensitive 

treatment-initiation decisions for most children being evaluated for pulmonary 
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tuberculosis. Data-driven treatment algorithms provide an important framework to 

consider the contribution of additional investigation, after detailed clinical evaluation. 

Algorithms that support rapid, decentralized antituberculosis treatment decision-making 

are important tools to reduce the burden of childhood tuberculosis morbidity and 

mortality. 
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SUPPLEMENTARY INFORMATION 

Available data for predictors in model and their definition 

Data from the baseline clinical evaluation (clinical history and physical 

examination) that were available for inclusion as predictors of tuberculosis included the 

following: fever, cough duration, failure to thrive/weight loss, lethargy, poor appetite, 

history of a known exposure to someone with tuberculosis, peripheral lymphadenopathy, 

hepatomegaly, splenomegaly, wheeze, and stridor. Definitions of select variables are 

presented below: 

• Cough duration was recorded in days and collapsed into the following 

categories: no cough, cough <1 week, cough 1-2 weeks, cough 2-3 

weeks, cough >3 weeks. 

• Failure to thrive/weight loss was defined as poor growth over the 

preceding three months or having a weight-for-age z-score <-2 in the 

absence of previous weight measurements. 

• History of exposure to tuberculosis was defined as having a family 

member in the same household with tuberculosis or exposure for ≥4 

hours with someone who had tuberculosis. 

Scaling coefficients to form a score for treatment-decision algorithm 

A general form of a multivariate logistic regression equation is given as follows: 

 

logit(𝑝) = 𝛽0 + 𝛽1 ∗ 𝑥1 +  𝛽2 ∗ 𝑥2 + ⋯ + 𝛽𝑛 ∗ 𝑥𝑛 

 

Where p is the probability of tuberculosis, 𝑥1…𝑛 refers to the predictors and 𝛽 1…𝑛 refers to 

the coefficients describing the relationship between the predictor and the logit-

transformed probability. We fit the prediction model to the data, and we identified the 

probability corresponding to classification of tuberculosis with at least 90% sensitivity 

compared to the retrospective reference standard. We obtained a threshold probability 

by subtracting the intercept from the logit-transformed probability corresponding to 

diagnosis with 90% sensitivity. We scaled the threshold to 100 by multiplying by a 
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scaling factor, and we multiplied the coefficients for each predictor by that scaling factor 

to obtain the score for that predictor. Thus, the score for each individual meeting entry 

criteria was obtained by summing the scaled coefficients for each factor present in the 

patient, and a total score of >100 constituted a diagnosis of tuberculosis using this 

treatment-decision algorithm. 

Table S1. Retrospective case definitions of childhood intrathoracic tuberculosis adapted from 
Graham et al.1 
 

Case Definition Criteria 

Confirmed 
tuberculosis 

Bacteriological confirmation obtained 
M.tb must be confirmed (culture or Xpert MTB/RIF from at least one respiratory specimen by 

expectoration, sputum induction, gastric aspirate, nasopharyngeal aspirate, string test, or other 
relevant respiratory specimens or stool) 

Unconfirmed 
tuberculosis 

Bacteriological confirmation NOT obtained AND at least 2 of the following: 
- Symptoms/signs suggestive of TB (defined in Graham et al.)[18] 
- Chest radiograph consistent with TB 
- Close TB exposure or immunologic evidence of M.tb infection 
- Positive response to TB treatment (requires documented positive clinical response on TB 

treatment) 
o With M.tb infection 

▪ Immunological evidence of Mtb infection (TST and/or IGRA positive) 
o Without M.tb infection 

▪ No immunological evidence of M.tb infection 

Unlikely 
tuberculosis 

Bacteriological confirmation NOT obtained AND criteria for “unconfirmed tuberculosis” NOT met 
o With M.tb infection 

▪ Immunological evidence of M.tb infection (TST and/or IGRA 
positive) 

o Without M.tb infection 
▪ No immunological evidence of M.tb infection 

 
M.tb – Mycobacterium tuberculosis, TB – tuberculosis, TST – tuberculin skin test, IGRA – 
interferon-gamma release assay.
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Table S2. Differences in demographic and candidate predictors from clinical evaluation and 
diagnostic imaging/testing between the participants in/excluded from analysis due to missing 
values for variables of interest. 

 
 

 
Included in Analysis 

(n=478) 
Excluded for MV 

(n=46) 
MV 

 
 

n or 
Median 

% or IQR n or 
Median 

% or IQR  

 
 

  
 

  
 

 

Demographic Sex    
 

  
 

 

    Male 255 0.53 27 0.59 0 

    Female 223 0.47 19 0.41 0 

Age (months) 16.21 9.82 to 30.9 12.47 7.89 to 26.56 0 

     0-1 years 316 0.66 34 0.74 0 

     2-4 years 122 0.26 10 0.22 0 

     5 years and older 40 0.08 2 0.04 0 

Weight (Z-score for age) -1.58 -2.69 to -0.67 -1.74 -2.4 to -0.6 0 

     Z-score < -2 197 0.41 18 0.39 0 

Clinical History at 
Baseline 

Cough Duration  
    

5 

     No cough 101 0.21 8 0.17  

     Cough < 1 week 171 0.36 19 0.41  

     Cough 1-2 weeks 75 0.16 5 0.11  

     Cough 2-3 weeks 39 0.08 1 0.02  

     Cough > 3 weeks 92 0.19 8 0.17  

Fever 252 0.53 30 0.65 0 

Failure to thrive/weight loss 198 0.41 20 0.43 0 

Poor appetite 259 0.54 26 0.57 0 

Lethargy 178 0.37 23 0.5 0 

History of tuberculosis contact 183 0.38 11 0.24 0 

Clinical 
Examination at 
Baseline 

Lymphadenopathy 296 0.62 28 0.61 0 

Stridor 9 0.02 1 0.02 0 

Wheeze 113 0.24 16 0.35 0 

Hepatomegaly 61 0.13 6 0.13 0 

Splenomegaly 25 0.05 2 0.04 0 

Diagnostic 
Testing/Imaging at 
Baseline 

Chest radiography consistent 
with PTB 

153 0.32 2 0.04 41 

Xpert-confirmed M.tb on 
respiratory specimens 

62 0.13 4 0.09 0 

Retrospective 
Clinical Case 
Definitions 

Confirmed TB 104 0.22 7 0.15 0 

Unconfirmed TB 138 0.29 12 0.26 0 

Unlikely TB 236 0.49 27 0.59 0 

 
MV – missing values, IQR – interquartile range, PTB – pulmonary tuberculosis, Xpert – Xpert 
MTB/RIF, M.tb – Mycobacterium tuberculosis, TB – tuberculosis.
  



 

98 
 

Table S3. Description of demographics and candidate predictors from clinical evaluation and 
diagnostic imaging/testing of the subpopulation at higher-risk for tuberculosis and severe disease 
as defined as being <2 years old or having a weight-for-age Z-score of <2. 

 
 

 
TB (n=194) Not TB (n=184) 

 
 

n or 
Median 

% or IQR n or 
Median 

% or IQR 

 
     

Demographic Sex  
    

    Male 102 0.53 103 0.56 

    Female 92 0.47 81 0.44 

Age (months) 13.72 8.32 to 
22.42 

12.91 7.63 to 
18.17 

     0-1 year 155 0.8 161 0.88 

     2-4 years 28 0.14 18 0.1 

     5 years and older 11 0.06 5 0.03 

Weight (Z-score for age) -2.13 -3.28 to -
0.96 

-1.98 -2.86 to -
0.97 

     Z-score < -2 105 0.54 92 0.5 

Clinical 
History at 
Baseline 

Cough Duration  
    

     No cough 37 0.19 43 0.23 

     Cough < 1 week 58 0.3 77 0.42 

     Cough 1-2 weeks 37 0.19 26 0.14 

     Cough 2-3 weeks 12 0.06 10 0.05 

     Cough > 3 weeks 50 0.26 28 0.15 

Fever 116 0.6 81 0.44 

Failure to thrive/weight loss 97 0.5 80 0.43 

Poor appetite 100 0.52 99 0.54 

Lethargy 83 0.43 66 0.36 

History of tuberculosis contact 109 0.56 40 0.22 

Clinical 
Examination 
at Baseline 

Lymphadenopathy 113 0.58 106 0.58 

Stridor 5 0.03 3 0.02 

Wheeze 51 0.26 50 0.27 

Hepatomegaly 40 0.21 17 0.09 

Splenomegaly 18 0.09 5 0.03 

Diagnostic 
Testing/Imagi
ng at 
Baseline 

Chest radiography consistent with PTB at 
baseline 

103 0.53 17 0.09 

Xpert-confirmed M.tb on respiratory 
specimens at baseline 

50 0.26 0 0 

Retrospective 
Clinical Case 
Definitions 

Confirmed TB 80 0.41 0 0 

Unconfirmed TB 114 0.59 0 0 

Unlikely TB 0 0 184 1 

 
TB – tuberculosis, IQR – interquartile range, PTB – pulmonary tuberculosis, Xpert – Xpert 
MTB/RIF, M.tb – Mycobacterium tuberculosis. 
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Table S4. Description of demographics and candidate predictors from clinical evaluation and 
diagnostic imaging/testing of the subpopulation at lower-risk for tuberculosis and severe disease 
as defined as being ≥2 years old and having a weight-for-age Z-score of ≥2. 
 

 
 

TB (n=48) Not TB (n=52) 

 
 

n or 
Median 

% or IQR n or 
Median 

% or IQR 

 
     

Demographic Sex  25 0.52 25 0.48 

    Male 23 0.48 27 0.52 

    Female 45.5 31.92 to 
74.81 

44.11 31.99 to 
53 

Age (months) 0 0 0 0 

     0-1 year 32 0.67 44 0.85 

     2-4 years 16 0.33 8 0.15 

     5 years and older -0.79 -1.32 to -
0.21 

-0.63 -1.34 to 
0.2 

Weight (Z-score for age) 0 0 0 0 

     Z-score < -2 
    

Clinical 
History at 
Baseline 

Cough Duration  9 0.19 12 0.23 

     No cough 16 0.33 20 0.38 

     Cough < 1 week 6 0.12 6 0.12 

     Cough 1-2 weeks 11 0.23 6 0.12 

     Cough 2-3 weeks 6 0.12 8 0.15 

     Cough > 3 weeks 31 0.65 24 0.46 

Fever 14 0.29 7 0.13 

Failure to thrive/weight loss 37 0.77 23 0.44 

Poor appetite 21 0.44 8 0.15 

Lethargy 19 0.4 15 0.29 

History of tuberculosis contact 38 0.79 39 0.75 

Clinical 
Examination 
at Baseline 

Lymphadenopathy 1 0.02 0 0 

Stridor 4 0.08 8 0.15 

Wheeze 2 0.04 2 0.04 

Hepatomegaly 1 0.02 1 0.02 

Splenomegaly 
    

Diagnostic 
Testing/Imagi
ng at Baseline 

Chest radiography consistent with PTB at 
baseline 

28 0.58 5 0.1 

Xpert-confirmed M.tb on respiratory 
specimens at baseline 

12 0.25 0 0 

Retrospective 
Clinical Case 
Definitions 

Confirmed TB 24 0.5 0 0 

Unconfirmed TB 24 0.5 0 0 

Unlikely TB 0 0 52 1 

 
TB – tuberculosis, IQR – interquartile range, PTB – pulmonary tuberculosis, Xpert – Xpert 
MTB/RIF, M.tb – Mycobacterium tuberculosis. 
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Table S5. Description of demographics and candidate predictors from clinical evaluation and 
diagnostic imaging/testing of the 24 participants with tuberculosis missed by the treatment-
decision algorithm built from the investigational model using initial evaluation data only. 

 
 

 
n or Median % or IQR 

 
   

Demographic Sex    

    Male 16 0.67 

    Female 8 0.33 

Age (months) 25.84 14.06 to 33.64 

     0-1 year 10 0.42 

     2-4 years 13 0.54 

     5 years and older 1 0.04 

Weight (Z-score for age) -1.13 -2.29 to -0.33 

     Z-score < -2 9 0.38 

Clinical History at 
Baseline 

Cough Duration  
  

     No cough 5 0.21 

     Cough < 1 week 11 0.46 

     Cough 1-2 weeks 3 0.12 

     Cough 2-3 weeks 0 0 

     Cough > 3 weeks 5 0.21 

Fever 11 0.46 

Failure to thrive/weight loss 10 0.42 

Poor appetite 16 0.67 

Lethargy 11 0.46 

History of tuberculosis contact 0 0 

Clinical 
Examination at 
Baseline 

Lymphadenopathy 17 0.71 

Stridor 0 0 

Wheeze 1 0.04 

Hepatomegaly 2 0.08 

Splenomegaly 0 0 

Diagnostic 
Testing/Imaging at 
Baseline 

Chest radiography consistent with PTB at baseline 0 0 

Xpert-confirmed M.tb on respiratory specimens at baseline 0 0 

Retrospective 
Clinical Case 
Definitions 

Confirmed TB 5 0.21 

Unconfirmed TB 19 0.79 

Unlikely TB 0 0 

 
TB – tuberculosis, IQR – interquartile range, PTB – pulmonary tuberculosis, Xpert – Xpert 
MTB/RIF, M.tb – Mycobacterium tuberculosis. 
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Table S6. Sensitivity, specificity, positive predictive value, and negative predictive value of the 
algorithm developed from the clinical model given for the subpopulations of children at higher- 
and lower-risk for tuberculosis and severe disease. 

 Sensitivity Specificity PPV NPV 

High-Risk Children     

< 2 years old or 
weight-for-age Z-
score < -2 

92.8% 34.3% 59.8% 81.8% 

Low-Risk Children     

≥ 2 years old and 
weight-for-age Z-
score ≥ -2 

81.3% 32.7% 52.7% 65.4% 

 
PPV – positive predictive value, NPV – negative predictive value. 
 

Table S7. Description of demographics and candidate predictors from clinical evaluation and 

diagnostic imaging/testing of the nested case-control subpopulation. Cases were defined as 

children with any bacteriological-confirmation over the study period and controls were defined as 

children retrospectively classified as “unlikely tuberculosis” without ever receiving antituberculosis 

treatment. 

 
 

TB (n=104) Not TB (n=184) 

 
 

n or 
Median 

% or IQR n or Median % or IQR 

 
     

Demographic Sex      

    Male 48 0.46 100 0.54 

    Female 56 0.54 84 0.46 

Age (months) 18.56 9.4 to 47.43 15.85 9.15 to 31.51 

     0-1 year 60 0.58 119 0.65 

     2-4 years 25 0.24 52 0.28 

     5 years and older 19 0.18 13 0.07 

Weight (Z-score for age) -1.83 -2.92 to -0.94 -1.44 -2.44 to -0.49 

     Z-score < -2 48 0.46 71 0.39 

Clinical History 
at Baseline 

Cough Duration  
    

     No cough 16 0.15 29 0.16 

     Cough < 1 week 32 0.31 80 0.43 

     Cough 1-2 weeks 22 0.21 28 0.15 

     Cough 2-3 weeks 12 0.12 15 0.08 

     Cough > 3 weeks 22 0.21 32 0.17 

Fever 65 0.62 81 0.44 

Failure to thrive/weight loss 47 0.45 67 0.36 

Poor appetite 60 0.58 97 0.53 

Lethargy 48 0.46 53 0.29 

History of tuberculosis contact 51 0.49 45 0.24 

Clinical 
Examination at 
Baseline 

Lymphadenopathy 65 0.62 114 0.62 

Stridor 2 0.02 2 0.01 

Wheeze 21 0.2 43 0.23 

Hepatomegaly 22 0.21 14 0.08 

Splenomegaly 13 0.12 5 0.03 

Diagnostic 
Testing/Imaging 
at Baseline 

Chest radiography consistent with 
PTB at baseline 

80 0.77 17 0.09 

Xpert-confirmed M.tb on respiratory 
specimens at baseline 

62 0.6 0 0 

Retrospective 
Clinical Case 
Definitions 

Confirmed TB 104 1 0 0 

Unconfirmed TB 0 0 0 0 

Unlikely TB 0 0 184 1 

TB – tuberculosis, IQR – interquartile range, PTB – pulmonary tuberculosis, Xpert – Xpert 
MTB/RIF, M.tb – Mycobacterium tuberculosis.
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Table S8. Sensitivity and specificity of the algorithms developed from the clinical model (evidence 
from baseline clinical evaluation only) and the investigational model (evidence from baseline 
clinical evaluation, baseline chest radiography, and baseline Xpert MTB/RIF on respiratory 
specimens) from the nested case-control subpopulation. 
 

 Sensitivity Specificity 

Clinical model 88.5% 32.6% 

Investigational model 95.2% 51.1% 

 
Figure S1. Treatment-decision algorithm developed from the clinical model using baseline clinical 
evidence only. 
PTB – pulmonary tuberculosis, TB – tuberculosis. 
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Figure S2. A) Depicts the changes in true positive (red), false positive (green), true negative 
(purple), and false negative (blue) over the steps of the algorithm built from the investigational 
model after clinical evaluation followed by CR then Xpert or Xpert then CR. CR reduces the false 
negative more than Xpert when performed first after clinical evaluation. B) Using the treatment-
decision algorithm built from the clinical model, clinical evidence alone results in a sensitivity and 
specificity of 90.5% and 52.1% respectively. Using the treatment-decision algorithm built from the 
investigational model, meeting a score of >100 from clinical evidence alone has a sensitivity of 
71.5% and specificity of 59.3%. Those participants not meeting criteria based on clinical evidence 
alone are investigated further by CR and/or Xpert to result in the overall investigational model 
algorithm sensitivity and specificity of 90.1% and 52.1% respectively. We suggest use of the 
clinical model algorithm in settings where CR and Xpert are not available to maintain algorithm 
sensitivity of at least 90%. 
TP – true positive, FP – false positive, TN – true negative, FN – false negative, CR – chest 
radiography, Xpert – Xpert MTB/RIF. 
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ABSTRACT 

Background: Identifying children with pulmonary tuberculosis (PTB) is challenging due to 

the paucibacillary nature of childhood tuberculosis and concentration of resources and 

expertise to diagnose in tertiary or referral healthcare centers. Moving treatment initiation 

decisions to peripheral healthcare settings may improve outcomes by increasing 

treatment detection and reducing delays. Treatment-decision algorithms may empower 

providers in these settings by relating information gained in the evaluation into an 

assessment of tuberculosis disease risk. Recent advances in algorithm development 

have used prediction modeling approaches; however, studies that have done so are 

small and provide limited insight into generalizability. We describe the assembly of a 

large, individual participant dataset (IPD) from child presumptive PTB cases to develop a 

new data-driven algorithm. 

Methods: Studies enrolling presumptive PTB cases aged <10 years old were identified 

through referral from experts in pediatric TB and a World Health Organization (WHO) 

call for data. We used clinical evaluation, bacteriology, and imaging IPD to 

retrospectively evaluate the performance of existing treatment-decision algorithms for 

PTB. We then used this IPD to develop a logistic regression model to predict PTB and 

investigated generalizability using an internal-external cross-validation framework. 

Findings: IPD from 4,718 children (38.3% with bacteriologically-confirmed and 

unconfirmed PTB) were received from 13 studies in high TB-incidence settings. Existing 

algorithms were found to have heterogeneous performance in classifying PTB. We 

developed a prediction model with a sensitivity of 85% [95% credible interval (CrI): 0.78-

0.91] and specificity of 37% [95% CrI: 0.22-0.55] in classifying PTB with similarly 

heterogeneous performance. With guidance from WHO, we operationalized this model 

as a treatment-decision algorithm to guide evaluation of children with presumptive PTB 

in peripheral health centers. 



 

106 
 

Interpretation: We present a pragmatic and transparent approach for the development of  

a data-driven algorithm, that can be revised as better data and technologies become 

available. Treatment decision-algorithms represent an important tool that could, in 

combination with improved health system investment, reduce child mortality.  

Funding: World Health Organization, US National Institutes of Health  
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INTRODUCTION 

Mycobacterium tuberculosis (Mtb) is a leading cause of mortality among young 

children, with estimates suggesting that nearly a quarter of a million children (<15 years) 

die due to tuberculosis (TB) each year.1 Mtb is responsible for ~2.5% of the 6 million 

deaths that occur in children <5 years old annually.2 Modeling suggests that that 96% of 

child mortality due to TB occurs among children not on treatment.3 The World Health 

Organization (WHO) estimates suggest that nearly 50% of TB among children is 

undiagnosed, with an even greater proportion undiagnosed among children <5 years 

old.1 Thus, efforts to improve TB case detection among children represents an important 

opportunity to reduce the global burden of child mortality.4 

Identifying children with TB can be challenging, in part as disease among 

younger children (<10 years) tends to be paucibacillary, resulting in low sensitivity of 

bacteriological investigations.5 Furthermore, collection of respiratory specimens from 

children who are unable to expectorate is invasive and requires resources that are 

generally concentrated in tertiary or referral healthcare centers.6 Thus, symptoms, 

clinical examination, and history of Mtb exposure play a crucial role in the decision to 

initiate TB treatment. However, expertise and resources to make clinical diagnoses 

and/or initiate TB treatment are similarly concentrated at tertiary or referral centers. This 

can lead to delays in care-seeking and treatment initiation, which are known to be 

associated with worse outcomes.7,8 Moving treatment initiation decisions to more 

peripheral healthcare settings may increase case detection and reduce child TB 

mortality. 

Treatment-decision algorithms or scores (referred to as algorithms in this article) 

aim to empower healthcare workers in primary and peripheral health settings to make 

treatment decisions for children with presumptive TB by relating information gained in 
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the evaluation of children into an assessment of TB disease risk.9 A study in Uganda 

demonstrated that adopting an algorithmic approach improved case-detection in primary 

and peripheral health settings.10 Other groups have developed algorithms to guide the 

evaluation of children with TB,11,12 including an attempt by the International Union 

Against TB and Lung Diseases to operationalize previous WHO guidance.13 Many of 

these algorithms have been developed using expert opinion and have not been 

validated. 

There have been several recent attempts to develop algorithms using modeling 

approaches, in which data from diagnostic TB evaluations of children or adults are used 

to quantify the contribution of different characteristics to generate an algorithm.14-16 

These data-driven approaches are more transparent and offer greater potential for 

formal validation. While these approaches represent an important advance, previous 

modeling studies have been small and have not allowed for assessment of 

generalizability. In this study, we aimed to assemble individual patient-level data from 

children with presumptive pulmonary TB from multiple cohorts in geographically diverse, 

high TB-incidence settings. We then sought to use this individual patient data (IPD) to 

evaluate the performance of diagnostic algorithms used in practice and cited in the 

literature, as well as to develop a new data-driven algorithm. We further aimed to 

operationalize this new algorithm to make it relevant for primary care settings to enable 

inclusion into the updated 2022 WHO consolidated guidelines on tuberculosis in children 

and adolescents and the accompanying operational handbook.17,18 

METHODS 

Establishment of individual-participant data 

In collaboration with the Secretariat of the Child and Adolescent Tuberculosis 

Working Group at the WHO, we identified potential sources for IPD from studies carried 
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out within a geographically diverse set of high TB-burden countries. Studies were eligible 

for inclusion if they consecutively enrolled children <10 years old brought to healthcare 

facilities for clinical evaluation and meeting established criteria as a presumptive 

pulmonary TB case.19 Investigators were identified to join this collaborative group 

through referral from experts in the field of pediatric TB and from responses to the WHO 

Public Call for Data on the Management of Children with TB in July 2020. 

After identification of eligible primary studies, we requested IPD including details 

from the initial clinical history and physical examination, readings from initial chest x-ray, 

results from rapid confirmatory tests for Mtb performed on samples collected at the initial 

encounter, and a final classification of pulmonary TB (that may have included data 

collected from subsequent encounters). A full list of variables requested is provided in 

supplemental Appendix A. Unpublished data meeting eligibility criteria for this analysis 

were also acceptable. All data assembly and analysis described in this manuscript were 

carried out using R software. To account for the uncertainty associated with missing 

variables, we used 2-level multiple imputation by chained equations (MICE) 

implemented in the MICE package to generate 100 imputed datasets (additional details 

in supplemental Appendix B.20  

Existing algorithm evaluation 

We identified existing algorithms used to guide the evaluation of children with 

presumptive pulmonary TB through a literature search and through consultation with 

members of the WHO Guideline Development Group formed to oversee the 

development of the 2022 WHO consolidated guidelines on the management of TB in 

children and adolescents. We retrospectively evaluated the performance of these 

algorithms to inform treatment decisions using the IPD data from the baseline 

investigation, against the final classification of TB, using both confirmed and all TB 
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(confirmed and unconfirmed) as the reference standards. We used the "reitsma” function 

from the mada package to pool study-level sensitivity and specificity using a bivariate 

model (additional details in supplemental Appendix C).21,22 

Prediction model development and validation 

We used logistic regression to develop a model to predict TB using baseline 

evaluation data available in the IPD. We included all variables for which there was <50% 

missing in the IPD to predict the binary outcome of TB, considering both all TB versus 

unlikely TB. To account for possible heterogeneity in the relationship between the 

predictors and the outcome among the different studies comprising the IPD, we used the 

“metapred” function in package metamisc to fit the model at the level of each study 

comprising the IPD and then pooled the study-level parameter coefficients and their 

respective standard error estimates to generate a prediction model.23,24 To account for 

the uncertainty introduced by missing data, we generated a prediction model (as 

described before) from each of the 100 imputed datasets and used established methods 

to pool the parameter coefficient and standard error estimates to generate a final, single 

prediction model.25 

We used an internal-external cross-validation framework to validate the 

prediction model by investigating discrimination and calibration.23 This framework uses a 

leave-one-study-out approach, building a model on n-1 studies (n being the total number 

of studies included in the IPD) and validating performance on the remaining nth study, 

repeating this such that n models have been built on n sets of n-1 studies and validated 

on the holdout study. Specifically, we examined the c-statistic (also known as the area 

under the receiver operating characteristic curve) to understand whether there were 

studies in which the model had better or worse discrimination between TB and non-TB; 

and we examined the observed: expected (O:E) slope as a measure of calibration to 
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assess whether there were studies in which the model over- or under-classified TB. 

Empiric evidence has shown that this internal-external cross-validation approach is a 

more efficient use of available IPD to build prediction models as compared to methods 

that arbitrarily divide into training and test sets. As above, we accounted for uncertainty 

introduced by missing data, by pooling the c-statistic and O:E slope estimates from each 

of the multiply imputed datasets. 

Algorithm development 

To generate an algorithm that was easily implementable in settings without 

advanced computational power, we scaled the coefficient estimates for the parameters 

in each of the final prediction models to develop a score such that a score of >10 

corresponded to classification of TB at fixed sensitivities of 90%, 85%, 80%, 75%, and 

70%. Additional details describing this method are specified in the supplemental 

Appendix D. To estimate the sensitivity and specificity of the scaled score in classifying 

TB (all TB vs. unlikely TB), study-level sensitivities and specificities were pooled using 

the bivariate model of Reitsma et al. (implemented in the mada package) accounting for 

uncertainty introduced by imputation of missing data.21,22 

In conjunction with the Secretariat of the WHO Child and Adolescent TB Working 

Group, we convened panel of experts to advise on the development of algorithms from 

these prediction models. The composition of this panel is provided in the supplemental 

Appendix E. Specifically, we sought advice on: 1) which features to include in the model 

that are clinically relevant and easy to assess in peripheral health settings, 2) 

modifications required to implement the models at peripheral health centers, given 

development had used data from tertiary levels of care, and 3) selection of a 

performance target for the final algorithm. 
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Ethics 

This analysis was approved by the Stellenbosch University Health Research 

Ethics Committee (Ref No. X21/02/003) and the Yale Institutional Review Board (Ref 

No. 2000028046) and did not require specific consent as it was a secondary analysis of 

previously collected data. Collaborating investigators provided evidence of ethical 

approval for original data collection. 

ANALYSIS 

Data Assembly 

Eighteen studies were identified as having potentially appropriate data; two of 

these studies were unable to provide data in the necessary timeline and an additional 

three studies did not meet the inclusion criteria (Figure 1). This led to 4,718 IPD records 

from children <10 years old with presumptive pulmonary TB from 13 studies,26-39 of 

which, 1,811 (38.3%) were found to have TB (541 confirmed, 1,270 unconfirmed), 2,818 

(59.7%) were found not to have TB, and 89 (1.9%) were not given a final classification of 

TB (Table 1). The data were predominantly collected from tertiary and referral settings. 

 

Figure 1. Studies involved and data contributed to IPD. Flow-diagram 
demonstrating how the eighteen studies that were identified as having potentially 
appropriate data for this analysis led to inclusion of 4,718 IPD records from children 
<10 years old with presumptive pulmonary TB (1,811 [38.3%] were found to have 
either bacteriologically-confirmed TB or unconfirmed TB). Note that 285 IPD records 
from eligible studies were excluded due to missing age. TB – tuberculosis, IPD – 
individual participant data, PTB – pulmonary tuberculosis. 
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Table 1. Characteristics of studies contributing to IPD. Study-level descriptions 
of data included in the IPD. HIV – human immunodeficiency virus, SAM – severely 
acutely malnourished, TB- tuberculosis, BD – Bangladesh, BR – Brazil, KE – Kenya, 
MM – Myanmar, Multi – Multi-country study (includes Burkina Faso, Cameroon, 
Vietnam, and Cambodia), MZ – Mozambique, PK – Pakistan, UG – Uganda, VN – 
Vietnam, ZA – South Africa. 

 

Though each study was required to include children with presumptive pulmonary 

TB, there were heterogeneities in the inclusion criteria, definitions of variables, and 

reference classification of TB. Details describing heterogeneities and the imputation 

models to handle missing data are provided in the supplemental Appendices F-J. 

Existing algorithm performance evaluation 

We retrospectively evaluated the performance of eight existing algorithms to 

guide treatment decision-making for presumptive pulmonary TB in children;10,13-15,40-43 

one of these algorithms was evaluated only on data from children living with HIV,14 and 

another was evaluated only on data from children without HIV.15 The data to develop 

these latter two algorithms were included in the IPD; thus, their data were excluded from 

the evaluation of the respective algorithms. We had to make modifications to the  
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Figure 2. Performance of existing algorithms at classifying TB. Retrospective 
estimates of the pooled (a) sensitivity and (b) specificity of eight algorithms to guide 
treatment decision-making for children with presumptive pulmonary TB, had they been 
used to evaluate the children for whom we have IPD records. The reference 
classification of pulmonary TB included bacteriologically-confirmed pulmonary TB as 
well as unconfirmed pulmonary TB. Modifications were made to the algorithms to 
maximize the use of the available IPD. TB – tuberculosis, IPD – individual participant 
data, HIV – human immunodeficiency virus, BD – Bangladesh, BR – Brazil, KE – 
Kenya, MM – Myanmar, Multi – (PAANTHER) Multi-country study (includes Burkina 
Faso, Cameroon, Vietnam, and Cambodia), MZ – Mozambique, PK – Pakistan, UG – 
Uganda, VN – Vietnam, ZA – South Africa, MoH – (Brazil) Ministry of Health, NTLP – 
(Uganda) National TB and Leprosy Program. 
*Performance estimates of the Marcy et al. Algorithm were derived from only HIV-
positive children in the IPD that excludes data form the Marcy/2016/Multi cohort (from 
which the algorithm was developed) 
**Performance estimates of the Gunasekera et al. Algorithm were derived from only 
HIV-negative children in the IPD that excludes data from the Walter/2017/ZA 
population (from which the algorithm was developed). 
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algorithms to evaluate their performance, given that not all features were available in the 

IPD (details describing these modifications are provided in the supplemental Appendix 

K). The overall performance of these algorithms is shown in Figure 2; the study-level 

performance of each algorithm can be found in the supplemental Appendix L. A 

sensitivity analysis evaluating algorithm performance to discriminate confirmed TB from 

unlikely TB (excluding unconfirmed TB from this analysis) demonstrated generally higher 

sensitivities and comparable specificities to the performance in the entire dataset 

including those with unconfirmed TB; these results are provided in the supplemental 

Appendix M. 

Prediction model development and validation 

The variables included in the prediction model included features from the 

baseline clinical evaluation and baseline chest x-ray findings that were recommended by 

the panel of experts to advise on algorithm development. The model fit with odds ratios 

and 95% confidence intervals (CI) are displayed in Table 2. The panel also 

recommended building a model including only features from the baseline clinical 

evaluation (without chest x-ray findings). We present the model fit with odds ratios and 

95% CI of this model in supplemental Appendix N. 

The summary estimate of the c-statistic for the prediction model including chest 

x-ray features was 0.71 [95% CI: 0.66-0.76]; the c-statistic in each of the holdout studies 

is included in Figure 3a. The summary estimate of the O:E slope for the prediction 

model was 0.90 [95% CI: 0.28-2.98]; the O:E in each of the holdout studies is included in 

Figure 3b. 

Algorithm Development 

The scaled prediction coefficient scores corresponding to classification of TB with 

respective sensitivities of 90%, 85%, 80%, 75%, and 70% can be found in supplemental 
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Appendix O. The study-level and summary performance of these scores in classifying 

TB can be found in supplemental Appendix P. 

Table 2. Estimates of logistic regression prediction model developed from IPD. 
Odds ratio with 95% confidence interval and p-value estimates for each parameter 
included in the logistic regression prediction model. The model parameter estimates 
account for potential clustering at the study-level as well as uncertainty introduced by 
missing data. IPD – individual participant data, OR – odds ratio, CXR – chest x-ray. 

  OR 2.5%ile 97.5%ile P-value 

 (Intercept) 0.147 0.075 0.285 0.000 

Cough duration ≥ 2 weeks 
(Absence is no cough or 
<2 weeks) 

Absent -- -- -- -- 

Present 1.185 0.913 1.537 0.856 

Fever duration ≥ 2 weeks 
(Absence is no fever or <2 
weeks) 

Absent -- -- -- -- 

Present 1.568 1.178 2.087 0.245 

Lethargy 
 

Absent -- -- -- -- 

Present 1.282 1.016 1.618 0.663 

Weight loss 
 

Absent -- -- -- -- 

Present 1.251 0.970 1.615 0.746 

History of known TB 
exposure 
 

Absent -- -- -- -- 

Present 4.195 2.385 7.377 0.000 

Hemoptysis 
 

Absent -- -- -- -- 

Present 1.404 0.690 2.857 0.788 

Night sweats 
 

Absent -- -- -- -- 

Present 1.224 1.022 1.465 0.709 

Peripheral 
lymphadenopathy 
 

Absent -- -- -- -- 

Present 1.422 1.141 1.772 0.353 

Temperature >38 
 

Absent -- -- -- -- 

Present 1.004 0.776 1.299 1.000 

Tachycardia 
 

Absent -- -- -- -- 

Present 1.159 0.879 1.529 0.896 

Tachypnea 
 

Absent -- -- -- -- 

Present 0.949 0.766 1.176 0.983 

Cavities on baseline CXR 
 

Absent -- -- -- -- 

Present 1.600 0.898 2.849 0.527 

Intrathoracic 
lymphadenopathy on 
baseline CXR 
 

Absent -- -- -- -- 

Present 4.323 2.727 6.854 0.000 

Opacities on baseline 
CXR 
 

Absent -- -- -- -- 

Present 1.540 1.022 2.320 0.452 

Miliary infiltrate on 
baseline CXR 
 

Absent -- -- -- -- 

Present 3.558 1.761 7.191 0.000 

Pleural effusion on 
baseline CXR 
 

Absent -- -- -- -- 

Present 1.899 1.217 2.964 0.128 
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Figure 3. Calibration and discrimination of prediction model to classify TB. 
Study-level and pooled estimates of the (a) discrimination (c-statistic) and (b) 
calibration (O:E slope) of the prediction model developed from the IPD in classifying 
TB using an internal-external cross-validation framework (reference standard: 
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB). c-Statistic 
– concordance statistic, O:E – observed: expected slope, IPD – individual participant 
data, TB – tuberculosis, BD – Bangladesh, BR – Brazil, KE – Kenya, MM – Myanmar, 
Multi – Multi-country study (includes Burkina Faso, Cameroon, Vietnam, and 
Cambodia), MZ – Mozambique, PK – Pakistan, UG – Uganda, VN – Vietnam, ZA – 
South Africa. 

Given that the prediction models were developed on IPD largely sourced from 

tertiary and referral healthcare settings and that the models are intended to be used in 

primary and peripheral healthcare settings, the panel recommended additional selection 

steps prior to using the prediction model. Specifically, it was recommended to stratify 
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children by risk of mortality and progression of TB disease. Higher-risk children, defined 

as children <2 years old, severely acutely malnourished, and/or living with HIV, would 

enter the prediction model at the time of initial evaluation; the remaining lower-risk 

children would be followed-up in 1-2 weeks, and only those with persistent/worsening 

symptoms at follow-up would enter the prediction model. This stratification was intended 

to enrich the probability of TB among the population of children proceeding through the 

algorithm to the model such that the probability would more closely reflect the 

preselected population producing the data from which the prediction model was built 

while balancing the consequences of untreated TB among high-risk children. 

To balance the consequences of untreated TB versus the consequences of 

overtreatment, the panel recommended selecting a sensitivity threshold of 85% in 

classifying TB (all TB vs. unlikely TB), resulting in the development of a score with a 

sensitivity of 0.85 [95% credible interval (CrI): 0.78-0.91] and a specificity of 0.37 [95% 

CrI: 0.22-0.55] (Figure 4). A sensitivity analysis of the performance of this score in 

classifying confirmed TB vs. unlikely TB (excluding unconfirmed TB from this analysis) 

demonstrated a sensitivity of 0.88 [95% CrI: 0.81-0.92] and specificity of 0.38 [95% CrI: 

0.23-0.55] (supplemental Appendix Q). 

Under the same sensitivity threshold of 85%, the score developed from the 

model that including only features from the baseline clinical evaluation (without chest x-

ray findings) had a sensitivity of 0.84 [95% CrI: 0.76-0.89] and specificity of 0.30 [95% 

CrI: 0.20-0.44] in classifying all TB vs. unlikely TB, and sensitivity of 0.86 [95% CrI: 0.78-

0.91] and specificity of 0.30 [95% CrI: 0.20-0.44] in classifying confirmed TB vs. unlikely 

TB (excluding unconfirmed TB from this analysis; see supplemental Appendix R). 
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Figure 4. Performance of scaled scores from prediction model to classify TB with 
85% sensitivity. Study-level and pooled estimates of the (a) sensitivity and (b) 
specificity of classifying TB (reference standard: bacteriologically-confirmed pulmonary 
TB and unconfirmed pulmonary TB) of the scores derived from the prediction model 
developed from the IPD to classify TB with 85% sensitivity. TB – tuberculosis, IPD – 
individual participant data, BD – Bangladesh, BR – Brazil, KE – Kenya, MM – 
Myanmar, Multi – Multi-country study (includes Burkina Faso, Cameroon, Vietnam, and 
Cambodia), MZ – Mozambique, PK – Pakistan, UG – Uganda, VN – Vietnam, ZA – 
South Africa. 

These recommendations resulted in the development of the treatment-decision 

algorithm presented in Figure 5, in which children <10 years with presumptive 

pulmonary TB would be triaged by risk of mortality prior to entering the prediction model. 
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Figure 5. Treatment-decision algorithm derived from prediction model. 
Tuberculosis treatment-decision algorithm for use among children less than 10 years of 
age with symptoms suggestive of pulmonary tuberculosis, reproduced from the 
operational handbook accompanying the 2022 consolidated guidelines on the 
management of TB in children and adolescents.18 Selection steps prior to entering 
scoring system reflect recommendations from the WHO expert panel to enrich the 
probability of TB among the population of children proceeding through the algorithm to 
the model such that the probability would more closely reflect the preselected 
population producing the data from which the prediction model was built while 
balancing the consequences of untreated TB among high-risk children. Scores 
associated with features from clinical history and physical exam and chest X-ray 
translate to risk of TB and are scaled from the prediction model developed from the 
IPD. WHO – World Health Organization, TB – tuberculosis, IPD – individual participant 
data, HIV – human immunodeficiency virus, mWRD – molecular WHO-recommended 
rapid diagnostic test, CLHIV – children living with HIV, LF-LAM – lateral flow urine 
lipoarabinomannan assay, CXR – chest X-ray. 



 

121 
 

The clinical and chest x-ray features included in the model were given a score 

corresponding to risk of TB such that a total score of >10 would result in classification of 

TB with a sensitivity of 85%. The same parameters were used to construct the 

treatment-decision algorithm from the model without chest x-ray features (supplemental 

Appendix S), for use in settings in which chest x-ray is not available. 

DISCUSSION 

 This work describes the assembly of a large IPD cohort of children with 

presumptive pulmonary TB from geographically diverse, high-TB burden settings to 

evaluate existing algorithms and to develop a novel, prediction model for children being 

evaluated for pulmonary TB. We incorporated this prediction model into an algorithm to 

assist the evaluation of children with presumptive pulmonary TB for the 2022 WHO 

consolidated guidelines on the management of tuberculosis in children and adolescents. 

This model-based, algorithm-building approach represents an important advance to 

support uniform and rapid treatment decision-making for children being evaluated for 

pulmonary TB in high TB-burden settings. 

 Modeling diagnostic IPD from children with presumptive pulmonary TB provides 

quantitative evidence of which features from the clinical exam are sufficient to make 

sensitive TB-treatment decisions. Reviews of existing diagnostic algorithms reveal that 

many existing algorithms have been produced by expert opinion/consensus or from data 

sourced from small cohorts of children being investigated for pulmonary TB.11,12 Few 

have been subject to any form of validation. Our modeling approach allows for validation 

and interrogation of model performance in various settings and selection of a sensitivity 

threshold to meet global TB treatment priorities. Notably, our approach is able to provide 

clear guidance as to which features from the clinical evaluation, if present, justify 
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treatment for TB, including suggesting when there is sufficient evidence to treat in the 

absence of chest x-ray. 

 Our development of two models, both with the same features from the clinical 

evaluation but one without features from baseline chest x-ray, is intended to 

acknowledge the reality that chest x-ray is not uniformly available in all settings. As 

demonstrated by the higher specificity (at a fixed sensitivity target) of the model that 

includes chest x-ray features as compared to the model without chest x-ray features, 

additional resources for testing/imaging would improve the specificity of treatment 

decisions. We did not include results from baseline Xpert MTB/RIF completed on 

respiratory specimens in our models to be consistent with the WHO recommendation to 

perform recommended rapid molecular testing on respiratory specimens in child 

presumptive TB cases whenever possible. 

While it is true that inclusion of chest x-ray features still does not sufficiently raise 

the specificity of the algorithms to meet the targets in the WHO Target Product Profile for 

a triage test for TB, this provides pragmatic guidance driven by data to reduce the 

burden of childhood mortality associated with untreated TB.44 Studies have yet to 

demonstrate evidence that any test for childhood pulmonary TB meets the performance 

targets outlined in the Target Product Profile. In the absence of such a test, a panel of 

experts convened by WHO identified that prioritizing the sensitivity of treatment 

decisions, at the expense of reduced specificity, is necessary to mitigate the public 

health crisis of untreated childhood TB. Antituberculosis treatment is relatively safe in 

children and poses a low concern for selection of drug resistance,45 and many children 

may now be treated with a shorter fourth-month treatment regimen.46 However, 

overtreatment of TB is not without consequence.47 Decision-analytic modeling of the 
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relative weight of false positive and false negative classification of TB may provide 

insight to select an appropriate sensitivity threshold. 

 Our cross-validation analyses found study-level heterogeneity in discrimination 

and calibration. Though this IPD is the largest of its size compiled to date, there were not 

enough studies to investigate the features that drive this heterogeneity, which may 

include local prevalence of TB, heterogeneous population demographics, 

heterogeneities in variable and outcome definitions, and uncertainty introduced by the 

imputation. Given that the existing algorithms demonstrated similar heterogeneities in 

performance as compared to the one we developed, we suggest that this data-driven 

approach is superior as it offers the flexibility to further interrogate the sources of 

heterogeneity as additional data is accumulated into the IPD to inform model 

development. 

Inclusion of children with unconfirmed pulmonary TB along with those that have 

bacteriologically-confirmed pulmonary TB as the definition of TB in the primary analyses 

is important, given the high burden of unconfirmed childhood TB presenting to 

healthcare. The underlying pathology associated with individuals in the unconfirmed TB 

group is unclear; it may represent either an early stage in TB disease, an alternative 

disease process or (most likely) a heterogenous group in which some children have TB 

and some have other causes for their symptoms.48,49 Irrespective, current guidelines 

recommend treating children with unconfirmed TB. From an analytic perspective, 

exclusion of children without bacteriological confirmation may introduce bias, artificially 

inflating the estimates of the strength of the relationship for those features used by study 

clinicians to determine whether a child had pulmonary TB in the absence of 

bacteriological confirmation. A sensitivity analyses that restricted the definition of 
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pulmonary TB to bacteriologically-confirmed TB demonstrated generally improved 

sensitivity. 

While there are many strengths to this data-driven algorithm-development 

approach, there are limitations due to missingness in the data and the absence of data 

from primary and peripheral health centers. The pre-test probability of TB (i.e., the 

prevalence) is likely substantially lower at peripheral settings and the disease 

presentation may be different as compared to tertiary and referral settings. We believe 

that the risk-stratification and delayed entry of lower-risk children is a practical attempt to 

raise the pre-test probability given that there is no perfect solution in the absence of 

relevant data. Studies evaluating the implementation of other algorithms are currently 

underway and are expected to provide important insight into how to support healthcare 

workers to adopt algorithmic approaches to antituberculosis treatment-decisions into 

clinical practice with high fidelity.50 Additional work to externally validate our newly 

generated algorithm through a prospective, randomized investigation will be critical to 

evaluating efficacy. Finally, we acknowledge that children face a disproportionately high 

burden of extrapulmonary TB (EPTB). Given the highly varied presentation of EPTB, we 

restricted this analysis to provide guidance for pulmonary TB only. Developing tools to 

identify EPTB is an important area of future research. 

A distinct advantage of the modeling approach to algorithm development is the 

ability to revise and improve the models as additional data become available. High-

quality studies of new diagnostic tools, including biomarkers and those available at the 

point-of-care, may improve the specificity of such algorithms while maintaining strong 

sensitivity targets. Additionally, diagnostic studies that also stratify children with 

pulmonary TB by disease severity may inform the development of algorithms that 

determine first whether to treat a child for TB and then second, to stratify those with non-
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severe disease who may be eligible for shorter treatment will be important pragmatic 

guidance to healthcare workers. 

Treatment decision-algorithms represent an important pragmatic tool that could, 

in combination with improved health system investment, reduce the morbidity/mortality of 

this public health crisis. This work represents a pragmatic and transparent approach 

using advanced analytic methods to develop an algorithm based on the best available 

data that can be validated and further specified as additional becomes available. 
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SUPPLEMENTARY INFORMATION 

Abbreviations and shorthand 

AUC – area under the receiver-operator curve 

BCG - Bacille Calmette-Guérin vaccine 

BD – Bangladesh 

BR – Brazil 

CI – confidence interval 

CrI – credible interval 

c-Statistic – concordance statistic 

CXR – chest X-ray 

EPTB – extrapulmonary tuberculosis 

ES – expectorated sputum 

GA – gastric aspirate 

ART –Antiretroviral therapy 

HIV – human immunodeficiency virus 

IPD – individual participant data 

IS – induced sputum 

KE – Kenya 

LF-LAM – lateral flow urine lipoarabinomannan assay 

MICE – multiple imputation by chained equations 

MM – Myanmar 

MoH – Ministry of Health 

Mtb – Mycobacterium tuberculosis 

Multi – (PAANTHER) Multi-country study (includes Burkina Faso, Cameroon, Vietnam, 

and Cambodia) 

mWRD –  molecular WHO-recommended rapid diagnostic test 

MZ – Mozambique 

NTLP – National TB and Leprosy Program 

O:E – observed: expected slope 

OR – odds ratio 

PAANTHER - Pediatric Asian African Network for Tuberculosis and HIV Research 

PK – Pakistan 

PPD – purified protein derivative 

PTB – pulmonary tuberculosis 

SAM – severely acutely malnourished 

TB – tuberculosis 

TST – tuberculin skin test 

UG – Uganda 

VN – Vietnam 

WFAZ – weight-for-age Z-score 

WHO – World Health Organization 

Xpert – Xpert MTB/RIF 

Xpert Ultra – Xpert MTB/RIF Ultra 

ZA – South Africa 
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Appendix A: Data Requested 

 

Table S1. Data requested from studies and suggested format 

FIELD VARIABLE DESCRIPTION FORM
AT 

CODE LABEL 

studyID Study ID Data source cohort int 1 Brazil 

2 Kenya 

3 Mozambique 
ITACA 

4 Mozambique 
TOSSE 

5 Myanmar 

6 PAANTHER 

7 Pakistan 

8 South Africa 
DTTC 

9 Uganda 1 

10 Uganda 2 

11 Vietnam 

12 Bangladesh 

13 South Africa 
UCT 

age Age (months) Age (months) at enrolment num ### NA = unknown 

sex Sex Participant sex int 0 Female 

1 Male 

NA Unknown 

weight Weight (kg) Weight (kg) at initial 
evaluation 

num ### NA = unknown 

height Height (cm) Height/length (cm) at initial 
evaluation 

num ### NA = unknown 

bcg_evidence BCG 
evidence 

Evidence of BGC 
vaccination (BCG scar or 
BCG recorded in 
immunization record) at 
initial evaluation 

int 0 No evidence of 
BCG 
vaccination 

1 Evidence of 
BCG 
vaccination 

NA Unknown 

HIV_status_ba_pk_no HIV-status Participant HIV status int 0 HIV-negative 

1 HIV-positive 

NA Unknown 

cough_less2wk_gr2wk_gr3w
k_gr4wk 

Cough 
duration 

Duration of cough at initial 
evaluation 

int 0 No cough 

1 Cough 0-13 
days 

2 Cough 14-20 
days 

3 Cough 21-27 
days 

4 Cough 28 
days 

NA Unknown 

cough_greater_2wk Cough 
duration 

Presence of cough 2 
weeks at initial evaluation 

int 0 Cough 2 
weeks not 
present 

1 Cough 2 
weeks present 

NA Unknown 

fever_less2wk_gr2wk_gr3wk
_gr4wk 

Fever 
duration 

Duration of fever at initial 
evaluation 

int 0 No fever 

1 Fever 0-13 
days 

2 Fever 14-20 
days 

3 Fever 21-27 
days 
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4 Fever 28 
days 

NA Unknown 

fever_greater_1wk Fever 
duration 

Presence of fever 1 week 
at initial evaluation 

int 0 Fever 1 week 
not present 

1 Fever 1 week 
present 

NA Unknown 

lethargy_any2wk Lethargy Presenting history of 
unusual lethargy or lack of 
playfulness at initial 
evaluation 

int 0 No lethargy 

1 Lethargy 

NA Unknown 

weight_loss Weight loss Presenting history of poor 
growth over the preceding 
3 months AND not 
responding to nutritional 
rehabilitation (or 
antiretroviral therapy if HIV 
infected) 

int 0 No weight loss 

1 Weight loss 

NA Unknown 

significant_tbc Known TB 
exposure 

Known exposure to MTB at 
initial evaluation in 
previous 12 months 

int 0 No known TB 
exposure in 
previous 12 
months 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

night_sweats Night sweats Presenting history of night 
sweats at initial evaluation 

int 0 No night 
sweats 

1 Night sweats 

NA Unknown 

hemoptysis Hemoptysis Presenting history of 
hemoptysis at initial 
evaluation 

int 0 No hemoptysis 

1 Hemoptysis 

NA Unknown 

temp Temperature 
(C) 

Recorded temperature at 
initial evaluation 

num #### NA=unknown 

heart_rate Heart rate 
(per min) 

Heart rate (per minute) at 
initial evaluation 

num ### NA=unknown 

respiratory_rate Respiratory 
rate (per min) 

Respiratory rate (per 
minute) at initial evaluation 

num ### NA=unknown 

peripheral_lad Peripheral 
lymphadenop
athy 

Peripheral 
lymphadenopathy (at 
cervical, submandibular, 
and/or axillary nodes) at 
initial evaluation 

int 0 No peripheral 
lymphadenopa
thy 

1 Peripheral 
lymphadenopa
thy 

NA Unknown 

first_xpertORculture_yn First Xpert 
MTB/RIF 

Result from first Xpert 
MTB/RIF (not Ultra) 
performed on ES/IS (or GA 
for young children) 
collected at initial 
evaluation 

int 0 Xpert negative 
for MTB 

1 Xpert positive 
for MTB 

NA Unknown/not 
performed 
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CXRcomb_TB_yn CXR 
consistent 
with TB 

Result of CXR performed 
at initial evaluation as 
assessed by reader 
performing clinical 
evaluation/making TB-
treatment decision or by 
reader to inform research 
classification of TB if 
former not available 

int 0 CXR not 
consistent with 
TB 

1 CXR 
consistent with 
TB 

NA Unknown/not 
assessed 

CXRindex_opacity Opacities on 
CXR 

Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on 
CXR performed at initial 
evaluation as assessed by 
reader performing clinical 
evaluation/making TB-
treatment decision or by 
reader to inform research 
classification of TB if 
former not available 

int 0 Opacities not 
present on 
CXR 

1 Opacities 
present on 
CXR 

NA Unknown/not 
assessed 

CXRindex_cavity Cavities on 
CXR 

Cavities on CXR performed 
at initial evaluation as 
assessed by reader 
performing clinical 
evaluation/making TB-
treatment decision or by 
reader to inform research 
classification of TB if 
former not available 

int 0 Cavities not 
present on 
CXR 

1 Cavities 
present on 
CXR 

NA Unknown/not 
assessed 

CXRindex_mili Miliary 
infiltrate on 
CXR 

Miliary infiltrate on CXR 
performed at initial 
evaluation as assessed by 
reader performing clinical 
evaluation/making TB-
treatment decision or by 
reader to inform research 
classification of TB if 
former not available 

int 0 Miliary infiltrate 
not present on 
CXR 

1 Miliary infiltrate 
present on 
CXR 

NA Unknown/not 
assessed 

CXRindex_nodes Nodes on 
CXR 

Nodes (e.g., perihilar 
nodes, paratracheal nodes, 
mediastinal nodes) on CXR 
performed at initial 
evaluation as assessed by 
reader performing clinical 
evaluation/making TB-
treatment decision or by 
reader to inform research 
classification of TB if 
former not available 

int 0 Nodes not 
present on 
CXR 

1 Nodes present 
on CXR 

NA Unknown/not 
assessed 
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CXRindex_effusion Pleural 
effusion on 
CXR 

Pleural effusion on CXR 
performed at initial 
evaluation as assessed by 
reader performing clinical 
evaluation/making TB-
treatment decision or by 
reader to inform research 
classification of TB if 
former not available 

int 0 Pleural 
effusion not 
present on 
CXR 

1 Pleural 
effusion 
present on 
CXR 

NA Unknown/not 
assessed 

TST_result Tuberculin 
skin test 

Tuberculin skin test 
positive at initial evaluation 

num 0 TST negative 

1 TST positive 

NA Unknown/not 
performed 

TB_class TB 
classification 

Final classification of TB int 0 Unlikely TB 

1 Bacteriological
ly-confirmed 
TB 

2 Unconfirmed 
TB 

NA Unknown 
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Appendix B: Information about multiple imputation by chained equations 

 
Imputation of missing data was carried out using the multiple imputation by chained 

equations (MICE) methods implemented in the mice package in R. MICE is a “fully conditionally 

specified” modeling approach that first imputes the mean for missing data in each variable then 

uses regression modeling to re-impute missing data in each variable by conditioning on the 

remaining variables, and iteratively updating imputations using the newly imputed data. 

All IPD (specified in Table S1) were included in the imputation models. We included a 

cluster-specific random effects term in the imputation model for each variable whenever possible 

to allow for study-level heterogeneities in the baseline distribution for each imputed variable. For 

continuous variables and categorical variables, we used a two-level predictive mean matching 

model implemented using the “2l.pmm” function in the miceadds package in R; for binary 

variables, we used a two-level logistic model implemented using the “2l.bin” function. Few binary 

variables gave a singular fit warnings using two-level methods; for these variables, we reflexed to 

using a one-level logistic model implemented using the “logreg” function. MICE was run using the 

“mice” function  with 20 iterations to generate 100 imputed datasets. The methods used to impute 

each variable are specified as follows: 

2l.pmm: cough_less2wk_gr2wk_gr3wk_gr4wk, fever_less2wk_gr2wk_gr3wk_gr4wk, 

weight, temp, heart_rate, respiratory_rate, height 

2l.bin: cough_greater_2wk, fever_greater_1wk, lethargy_any2wk, weight_loss, 

night_sweats, peripheral_lad, tbc_yn, bcg_evidence, HIV_status_ba_pk_no, 

CXRcomb_TB_yn, CXRindex_nodes, CXRindex_opacity, CXRindex_effusion, 

TST_result, CXRindex_cavity, first_xpertORculture_yn  

logreg: sex, hemoptysis, CXRindex_mili 

Additional imputation specifications are as follows: 

Cluster variable: studyID 

No imputation method specified (fully complete data): studyID, age 

Successful imputation was assessed by visual assessment of convergence of the mean 

and standard deviation of each variable over the imputation iterations.  
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Appendix C: Estimation of algorithm performance accounting for multiply imputed 

data 

 

For each algorithm, sensitivity and specificity estimates were computed at the 

study-level and pooled using a bivariate model as implemented in the “reitsma” function 

in the mada package in R. To account for the uncertainty associated with missing data, 

we created 100 imputed datasets as specified in supplemental Appendix C. Study-level 

and pooled estimates of sensitivity and specificity were computed for each of the 100 

datasets. To obtain a point estimate for each study-level and pooled measure of 

sensitivity and specificity, we determined the median value over the 100 estimates; to 

obtain a 95% credible interval for each measure, we respectively determined the median 

value of the upper and lower bounds of each estimate provided by the “reitsma” function 

over the 100 estimates. 
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Appendix D: Develop a score from models produced on multiply imputed data 

 
A general form of a multivariate logistic regression equation is given as follows: 

logit(𝑝) = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + ⋯ + 𝛽𝑛 ∗ 𝑥𝑛 

Where p is the probability of tuberculosis, 𝑥1…𝑛 refers to the predictors and 𝛽 1…𝑛 refers to the 

coefficients describing the relationship between the predictor and the logit-transformed 

probability. We fit the prediction model to the data, and we identified the probability 

corresponding to classification of tuberculosis with a given sensitivity compared to the 

reference standard. For example, let us specify an interest in classifying tuberculosis with a 

sensitivity of at least 85%. We obtained a threshold probability by subtracting the intercept 

from the logit-transformed probability corresponding to diagnosis with at least an 85% 

sensitivity. We scaled the threshold probability to 10 by multiplying by a scaling factor, and 

we multiplied the coefficients for each predictor by that scaling factor to obtain the score for 

that predictor. Thus, the score for each individual meeting entry criteria was obtained by 

summing the scaled coefficients for each factor present in the patient, and a total score of 

>10 constituted a diagnosis of tuberculosis with a sensitivity of 85% using this treatment-

decision algorithm. 

Given that we generated multiple imputed datasets, we had to take additional steps 

to determine the probability threshold and pooled coefficient estimates. We used the 

“metapred” function in package metamisc to fit a logistic regression model on each imputed 

dataset, resulting in 100 logistic regression models. Note that the model generated by 

“metapred” is a pooled model of models with the same specifications fit at the study-level. A 

pooled estimate of each parameter coefficient was obtained by taking the mean of each of 

the 100 coefficient estimates for each parameter. A pooled probability threshold was 

determined by taking the mean of the probability threshold corresponding to classification of 

tuberculosis with a given sensitivity compared to the reference standard of each model. The 

pooled probability threshold and pooled coefficient estimates were used to produce the 

scores as described above.  
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Appendix E: Composition of WHO expert panel to inform algorithm development 

 

⎯ Anna Mandalakas; Global TB Program, Baylor College of Medicine and Texas 

Children's Hospital, Houston, TX, USA 

⎯ Ben Marais; The Children’s Hospital at Westmead Clinical School, Faculty of 

Medicine and Health, University of Sydney, Australia 

⎯ Farhana Amanullah; Indus Hospital & Health Network 

⎯ Moorine Sekkade; National Tuberculosis and Leprosy Program, Kampala, 

Uganda. 

⎯ Olivier Marcy; University of Bordeaux, Inserm, Institut de Recherche pour le 

Développement, Bordeaux, France 

⎯ Stephen Graham; Centre for International Child Health, University of Melbourne 

Department of Paediatrics and Murdoch Children’s Research Institute, Royal 

Children’s Hospital, Melbourne, Australia and International Union Against 

Tuberculosis and Lung Disease (The Union), Paris, France 
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Appendix F: Study Information 

Table S2. Study information for Kabir/2020/BD 

Geographic setting Dhaka, Bangladesh 

Healthcare setting Name Healthcare level Recruitment setting 

Dhaka Medical College 
and Hospital 

Tertiary Inpatient 

Sir Salimullah Medical 
College and Mitford 
Hospital 

Tertiary Inpatient 

Shaheed Suhrawardy 
Medical College and 
Hospital 

Tertiary Inpatient 

icddr,b Dhaka Hospital Tertiary  Inpatient 

Enrolment duration 22 January 2018 – 04 April 2019 

Purpose for data 
collection 

Evaluate the performance of Xpert MTB/RIF Ultra assay on stool specimen 
for the diagnosis of childhood TB 

Study design Cross-sectional study with follow-up of children diagnosed both 
bacteriologically and clinically at every month over phone started on 
antituberculosis therapy of 6 months 

Inclusion criteria Children aged 0-15 years with symptoms suggestive of pulmonary TB 
based on any of the following: persistent non-remitting cough for >14 days 
weeks not responding to antibiotics, persistent documented fever for >14 
days, document weight loss or failure to gain weight over the preceding 3 
months, or fatigue/reduced playfulness/decreased activity 

Exclusion criteria Children with serious co-morbid condition (e.g., in intensive care unit, co-
morbid heart condition, etc.); physician unable to collect respiratory 
specimen; children started on anti-tuberculosis treatment; children 
suspected clinically to have intestinal TB  

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

NO: local treating physicians evaluated CXR 

Standardized follow-up 
for all children? 

NO: only children diagnosed w/ TB and initiated on anti-tuberculosis 
treatment were followed-up over phone to assess symptom resolution 

Reference classification 
of TB 

Confirmed PTB – bacteriologically positive on culture/Xpert on induced 
sputum or stool specimens; 
Unconfirmed PTB – bacteriologically negative but diagnosed by managing 
clinical team based on symptoms, CXR, TST, and contact history; 
Unlikely PTB – not meeting criteria for confirmed TB or unconfirmed TB; 
Classifications made by study team (separate from managing clinical team) 
based on data from the initial evaluation 

No. screened/No. 
enrolled 

454/447 

Ethics review Protocol no.PR#17072, Approved from Institutional Review Board, icddr,b 
constitutes of two Committee Research Review Committee on RRC on 18 
July 2017 and Ethical Review Committee on 28 August 2017 

References Kabir S, Rahman SMM, Ahmed S, et al. Xpert Ultra assay on stool to 
diagnose pulmonary tuberculosis in children. Clin Infect Dis 2020. 
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Table S3. Study information for Aurilio/2020/BR 

Geographic setting Rio de Janeiro, Brazil 

Healthcare setting Name Healthcare level Recruitment setting 

Instituto de 
Puericultura e 
Pediatria Martagao 
Gesteira 

Tertiary Inpatient/Outpatient 

Hospital Raphael de 
Paula Souza 

Tertiary Inpatient/Outpatient 

Hospital Universitário 
Antonio Pedro 

Tertiary Inpatient/Outpatient 

Enrolment duration 17 April 2014 – 27 July 2020 

Purpose for data 
collection 

Evaluate Xpert MTB/RIF as diagnostic test for PTB in children 

Study design Prospective cohort study with baseline assessment and follow-up of all 
children at 60 days. Assessment of treatment outcome at 6 months or upon 
completion of treatment for those started on anti-TB treatment. 

Inclusion criteria Children aged 0-19 years with symptoms of respiratory infection for 14 
days and abnormal CR 

Exclusion criteria Inappropriate samples for Xpert 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB; 
Retrospective classifications made by study team (separate from managing 
clinical team) at the 2-month follow-up visit 

No. screened/No. 
enrolled 

50/50 (among those children <10 years old) 

Ethics review Instituto de Puericultura e Pediatria Martagão Gesteira (24/02/2015, 
number 961.452 and 07/11/2017 number 2.369.814) and Hospital 
Universitário Antônio Pedro (28/07/2015 number 1.160.695) 

References Aurilio RB, Luiz RR, Land MGP, Cardoso CAA, Kritski AL, Sant Anna CC. 
The clinical and molecular diagnosis of childhood and adolescent 
pulmonary tuberculosis in referral centers. Rev Soc Bras Med Trop 2020; 
53. 

 

  



 

145 
 

Table S4. Study information for Song/2021/KE 

Geographic setting Kisumu County, Kenya 

Healthcare setting Name Healthcare level Recruitment setting 

Jaramogi Oginga 
Odinga Teaching and 
Referral Hospital 

Tertiary Inpatient/Outpatient 

*Additional patients from unspecified secondary inpatient/outpatient, and 
contact tracing 

Enrolment duration October 2013 – August 2015 

Purpose for data 
collection 

Determine the performance of a wide panel of specimen types and 
microbiological tests in children evaluated for TB 

Study design Prospective cohort study with baseline assessment and follow-up of all 
children at 2 weeks, 2 months, and 6 months. 

Inclusion criteria Children aged 0-5 years and >2.5 kg with either parenchymal abnormality 
on CXR or visible cervical lymph node mass persisting for >1 month 
despite antibiotics and either 1) persistent cough not resolving after 
treatment with antibiotics or 2) moderate or severe malnutrition 

Exclusion criteria Currently on anti-tuberculosis treatment or isoniazid preventive therapy or 
history of anti-tuberculosis treatment or isoniazid preventive therapy in the 
6 months prior to enrolment. 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB; 
Retrospective classifications made by study team (separate from managing 
clinical team) using information from all visits up to the 2-month follow-up 

No. screened/No. 
enrolled 

2564/300 

Ethics review US Centers for Disease Control and Prevention (#6334) 
Kenya Medical Research Institute (#2343) 
Jaramogi Oginga Odinga Teaching and Referral Hospital 
Children’s Hospital Boston/Harvard Medical School (relied on the review 
and oversight of the Centers for Disease Control and Prevention 
institutional review board) 

References Song R, Click ES, McCarthy KD, et al. Sensitive and feasible specimen 
collection and testing strategies for diagnosing tuberculosis in young 
children. JAMA Pediatr 2021: e206069-e. 
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Table S5. Study information for LopezVarela/2015/MZ 

Geographic setting Manhiça District, Mozambique 

Healthcare setting Name Healthcare level Recruitment setting 

Manhiça District 
Hospital (and 
attached health 
centre) 

Secondary Inpatient/Outpatient 

*1483 patients from Manhiça District Hospital and Manhiça Health 
Research Centre Health and Demographic Surveillance System peripheral 
health centres (Palmeira, Maragra, Ilha, Josina, Taninga) and 180 contacts 
through contact tracing 

Enrolment duration 2011 - 2012 

Purpose for data 
collection 

Estimate the annual minimum incidence of TB in children <3 in the Manhiça 
District 

Study design Prospective cohort study with baseline assessment and follow-up of all 
children within 6 months of enrolment. Persistently symptomatic children 
had additional evaluation and testing. 

Inclusion criteria Children aged 0-3 years with symptoms suggestive of PTB or EPTB or who 
are close contacts of notified TB cases. Symptoms suggestive of PTB 

included one or more of the following: cough 14 days not responding to 

appropriate antibiotics, fever 14 days after excluding malaria/pneumonia, 
chronic or acute malnutrition or failure to gain weight for more than 2 

months, unexplained wheeze 14 months not responding to treatment, 

lower respiratory tract infection 14 days not responding to antibiotics after 
72 hours, contact with TB case in previous 12 months) 

Exclusion criteria Children aged >3 who reside outside the study area or with diagnosis of TB 
at pre-enrolment 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

NO 

Reference classification 
of TB 

Graham 2012: Confirmed PTB, Probable PTB, Possible PTB, PTB Unlikely, 
MTB infection; 
Classification made by the managing clinical team using information from 
the baseline visit and all available follow-up visits 

No. screened/No. 
enrolled 

1663/789 

Ethics review The study protocol was approved by the Mozambican National Bioethics 
Committee and the Hospital Clinic of Barcelona Ethics Review Committee. 

References López-Varela E, Augusto OJ, Gondo K, et al. Incidence of tuberculosis 
among young children in rural Mozambique. Pediatr Infect Dis J 2015; 
34(7): 686-92. 
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Table S6. Study information for García/2020/MZ 

Geographic setting Manhiça District, Mozambique 

Healthcare setting Name Healthcare level Recruitment setting 

Manhiça District 
Hospital (and 
attached health 
centre) 

Secondary Inpatient/Outpatient 

*Manhiça Health Care Centre and Manhiça District Hospital and 9 
peripheral health care centre (Maluana, Munguine, Taninga, Maragra, 
Malavela, Palmeiras, Chibututuine, Calanga, Chibucutzo) 

Enrolment duration 20 August 2013 – 20 August 2014 

Purpose for data 
collection 

Improve the quality of TB surveillance indicators using newly introduced 
Xpert MTB/RIF 

Study design Cross-sectional study with baseline assessment. Digital CXR only if 
clinician ordered. Two-week follow-up for children not initially started on TB 
treatment. Follow-up of all children started on TB treatment at months 2 
and 6. 

Inclusion criteria Children and adults with symptoms suggestive of PTB or EPTB or who are 
close contacts of notified TB cases. Symptoms suggestive of PTB include 

cough 2 weeks, night sweats, weight loss, fever, and/or hemoptysis. 

Exclusion criteria Children diagnosed with TB prior to enrolment. 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

NO 

Reference classification 
of TB 

Confirmed PTB – Bacteriologically positive on culture/Xpert on any 
respiratory specimen; 
Unconfirmed PTB - bacteriologically negative but diagnosed by managing 
clinical team based on symptoms, CXR, TST, and contact history; 
Unlikely PTB - not meeting criteria for confirmed TB or unconfirmed TB; 
Classification made by the managing clinical team using information from 
the initial visit and information gathered on follow-up at 2-weeks for those 
not started on TB treatment and after first few weeks of follow-up for those 
started on TB treatment 

No. screened/No. 
enrolled 

UNKNOWN/142 

Ethics review The study was approved by CISM local bioethics committee (CIBS) and the 
National Bioethics Committee (CNBS). Ref. 199/CNBS13 

References García JI, Mambuque E, Nguenha D, et al. Mortality and risk of tuberculosis 
among people living with HIV in whom TB was initially ruled out. Sci Rep 
2020; 10(1): 15442-. 
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Table S7. Study information for Myo/2018/MM 

Geographic setting Mandalay, Myanmar 

Healthcare setting Name Healthcare level Recruitment setting 

Children Hospital, 
Mandalay 

Tertiary Inpatient and 
Casualty/Emergency 

Enrolment duration 01 January 2015 – 21 March 2017 

Purpose for data 
collection 

Evaluate Xpert MTB/RIF as diagnostic test for PTB in children 

Study design Prospective cohort study with baseline assessment and 8-week follow-up. 

Inclusion criteria Children aged 0-12 years with cough 14 days and one of the following: 
fever >7 days, weight loss or failure to thrive, unexplained loss of appetite, 
or lethargy.  

Exclusion criteria Receipt of anti-tuberculosis treatment for >72 hours before specimen 
collection. 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB; 
Retrospective classifications made by study team (separate from managing 
clinical team) at the 2-month follow-up visit 

No. screened/No. 
enrolled 

259/255 

Ethics review Research Ethics Committee, University of Medicine, Mandalay  

References Myo K, Zaw M, Swe TL, et al. Evaluation of Xpert® MTB/RIF assay as a 
diagnostic test for pulmonary tuberculosis in children in Myanmar. Int J 
Tuberc Lung Dis 2018; 22(9): 1051-5. 
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Table S8. Study information for Marcy/2016/Multi 

Geographic setting Bobo Dioulasso, Burkina Faso 
Phnom Penh, Cambodia 
Siem Reap, Cambodia 
Yaounde, Cameroon 
Ho Chi Minh City, Vietnam 

Healthcare setting Name Healthcare 
level 

Recruitment setting 

Pediatric Department, Centre Hospitalier 
Universitaire Souro Sanou, (Bobo 
Dioulasso, Burkina Faso) 

Tertiary Inpatient/Outpatient 

National Pediatric Hospital (Phnom Penh, 
Cambodia) 

Tertiary Inpatient/Outpatient 

Angkor Hospital for Children (Siem Reap, 
Cambodia) 

Tertiary Inpatient/Outpatient 

Centre Hospitalier de la Caisse d’Essos 
(Yaounde, Cameroon) 

N/A Inpatient/Outpatient 

Centre Mère et Enfant de la Fondation 
Chantal Biya (Yaounde, Cameroon) 

N/A Inpatient/Outpatient 

Pediatric Department, Pham Ngoc Thach 
Hospital (Ho Chi Minh City, Vietnam) 

Tertiary Inpatient/Outpatient 

Infectious Diseases Department, 
Pediatric Hospital No. 1 (Nhi Dong 1) (Ho 
Chi Minh City, Vietnam) 

Tertiary Inpatient/Outpatient 

Infectious Diseases Department, 
Pediatric Hospital No. 2 (Nhi Dong 2) (Ho 
Chi Minh City, Vietnam) 

Tertiary Inpatient/Outpatient 

Enrolment duration April 2011 – December 2014 

Purpose for data 
collection 

Evaluate Xpert MTB/RIF performed on stool for MTB and to assess response to 
antituberculosis treatment for children living with HIV 

Study design Prospective cohort study with baseline assessment and follow-up of all children 
at months 1,2,3, and 6. 

Inclusion criteria Children aged 0-12 years with HIV-1 infection (irrespective of HAART) and one 
or more of the following: cough >14 days, fever > 14 days, failure to thrive 
(deviation from previous growth trajectory in previous 3 months or weight-for-age 
Z-score <-2), failure to improve on broad spectrum antibiotics for pulmonary 
infection, or CXR suggestive of PTB 

Exclusion criteria History of any anti-tuberculosis treatment in the 2 years prior to enrolment. 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB; 
Retrospective classifications made by an algorithm following the Graham 2015 
classification using information from all visits up to the 6-month follow-up visit 

No. screened/No. 
enrolled 

XXX/438 

Ethics review Ethics Committee for Research in Health (Burkina Faso); 
National Ethics Comity for Health and Research (Phnom Penh, 
Cambodia); 
National Ethics Committee (Cameroon); 
Division of Health Operations Research Ministry of Public Health (Cameroon); 
Pham Ngoc Thach Hospital Institutional Review Board (Vietnam); 
Ho Chi Minh City Department of Health (Vietnam);  
Ho Chi Minh City People’s Committee (Vietnam). 

References Marcy O, Ung V, Goyet S, et al. Performance of Xpert MTB/RIF and alternative 
specimen collection methods for the diagnosis of tuberculosis in HIV-infected 
children. Clin Infect Dis 2016; 62(9): 1161-8. 
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Table S9. Study information for Hamid/2019/PK 

Geographic setting Karachi, Pakistan 

Healthcare setting Name Healthcare level Recruitment setting 

Indus Hospital Ghauri 
Clinic 

Tertiary/Referral Outpatient 

 * Participants were referred from contact tracing program as well as from 
other general physicians in the community, and family 
physicians/pediatricians/ surgeons of the hospital. 

Enrolment duration 01 January 2019 – 06 April 2020 

Purpose for data 
collection 

Identify gaps in childhood TB care delivery and improve Pediatric TB 
Program implementation 

Study design Cross-sectional study with baseline assessment and 1-month follow-up 

Inclusion criteria Children aged 0-10 years with any of the following: 2 symptoms of TB 

(cough 14 days, fever, weight loss, lethargy, loss of appetite, night 

sweats), a TB known TB exposure within the past 2 years with 1 symptom 
suggestive of TB, swollen lymph node for >14 days, previous history of TB 

and 1 symptom suggestive of TB 

Exclusion criteria N/A 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Confirmed PTB – bacteriologically positive on culture/Xpert/ on any 
respiratory specimen (including stool); 
Unconfirmed PTB – bacteriologically negative but diagnosed by managing 
clinical team based on symptoms, CXR, TST, and contact history; 
Unlikely PTB – not meeting criteria for confirmed TB or unconfirmed TB; 
Retrospective classification made at the 1-month follow-up visit 

No. screened/No. 
enrolled 

XXX/447 

Ethics review N/A 

References Hamid M, Brooks MB, Madhani F, et al. Risk factors for unsuccessful 
tuberculosis treatment outcomes in children. PLoS One 2019; 14(9): 
e0222776. 
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Table S10. Study information for Nicol/2017/ZA 

Geographic setting Cape Town, South Africa 
Port Elizabeth, South Africa 

Healthcare setting Name Healthcare level Recruitment setting 

Red Cross War 
Memorial Children’s 
Hospital 

Tertiary/Referral Inpatient/Outpatient and 
Emergency/Casualty 

 Dora Nginza 
Provincial Hospital 

Tertiary/Referral Inpatient/Outpatient and 
Emergency/Casualty 

Enrolment duration 01 February 2010 – 31 January 2017 

Purpose for data 
collection 

Novel tuberculosis diagnostics in HIV-infected and HIV-uninfected children.  

Study design Prospective cohort study with baseline assessment and follow-up of all 
children at months 1, 2, and 6. 

Inclusion criteria Children aged 0-15 years with clinical suspicion of PTB based on cough 
and one of (household TB contact within preceding 3 months, weight loss of 
failure to gain weight for preceding 3 months, positive TST, or chest 
radiograph suggestive of PTB) or clinical suspicion of EPTB 

Exclusion criteria Children who had received treatment for tuberculosis or TB prophylaxis for 
>72 hours prior to enrolment; patients living outside the catchment area; 
patients for whom adequate clinical samples could not be obtained; or 
patients for whom informed consent or permission for HIV testing could not 
be obtained 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB; 
Retrospective classifications made by study team (separate from managing 
clinical team) using data from all visits up to the 3-month follow-up visit 

No. screened/No. 
enrolled 

4548/1346 

Ethics review University of Cape Town Human Research Ethics Committee (HREC), 
2008, Ref no. 045/2008.   

References Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert MTB/RIF ultra for 
the diagnosis of pulmonary tuberculosis in children. Pediatr Infect Dis J 
2018; 37(10). 
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Table S11. Study information for Walters/2017/ZA 

Geographic setting Cape Town, South Africa 

Healthcare setting Name Healthcare level Recruitment setting 

Tygerberg Hospital Tertiary/Referral Inpatient/Outpatient 

Karl Bremer Hospital Secondary Inpatient/Outpatient 

Enrolment duration March 2012 – November 2017 

Purpose for data 
collection 

Evaluate feasible strategies to improve and promote microbiological testing 
of children with PTB and treatment response. 

Study design Prospective cohort study with baseline assessment and follow-up of all 
children at months 1, 2, and 6. 

Inclusion criteria Children 0-12 with any of the following: cough 2 weeks, unexplained fever 

1 week, poor growth/weight loss over the preceding 3 months, or cough <1 
week with a known TB exposure in the previous 12 months, a positive TST, 
or a CXR suggestive of PTB 

Exclusion criteria Children who had received treatment for tuberculosis for >1 day or were 
being evaluated for EPTB without being evaluated for PTB. 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB; 
Retrospective classifications made by study team (separate from managing 
clinical team) using information from all visits up to the 6-month follow-up 
visit 

No. screened/No. 
enrolled 

XXX/620 

Ethics review Health Research Ethics Committee of Stellenbosch University Faculty of 
Health Sciences No. N11/09/282 

References Walters E, Demers AM, van der Zalm MM, et al. Stool culture for diagnosis 
of pulmonary tuberculosis in children. J Clin Microbiol 2017; 55(12): 3355-
65. 
Walters E, Scott L, Nabeta P, et al. Molecular detection of Mycobacterium 
tuberculosis from stools in young children by use of a novel centrifugation-
free processing method. J Clin Microbiol 2018; 56(9). 
Walters E, van der Zalm MM, Palmer M, et al. Xpert MTB/RIF on stool is 
useful for the rapid diagnosis of tuberculosis in young children with severe 
pulmonary disease. Pediatr Infect Dis J 2017; 36(9): 837-43. 
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Table S12. Study information for Orikiriza/2018/UG 

Geographic setting Mbarara, Uganda 

Healthcare setting Name Healthcare level Recruitment setting 

Mbarara Regional 
Referral Hospital 

Tertiary/Referral Inpatient/Outpatient 
(includes children 
referred from TB 
contact screening) 

Enrolment duration 12 April 2012 – 14 January 2014 

Purpose for data 
collection 

Evaluate the performance of Xpert MTB/RIF on induced sputum and to 
assess treatment outcome and safety of pediatric TB drug dosages. 

Study design Prospective cohort study with baseline assessment and follow-up at 3 
months for children not started on TB treatment and follow-up at 12 months 
for children started on TB treatment. 

Inclusion criteria Children aged 0-14 with any of: weight loss/failure to thrive/growth faltering 
over preceding 3 months, non-remittent cough or wheeze >14 days, night 

sweats in preceding 14 days, unexplained fever for 7 days, chest pain 
within the preceding 2 weeks, unexplained 
fatigue/weakness/apathy/lethargy in previous 2 weeks, or abnormal CXR 
suggestive of TB 

Exclusion criteria Children who had received >3 days of treatment for tuberculosis or had 
completed treatment within the past 6 months or with poor access to follow-
up evaluation. 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

No. screened/No. 
enrolled 

467/392 

Reference classification 
of TB 

Graham 2012: Confirmed PTB, Probable PTB, Possible PTB, PTB Unlikely; 
Retrospective classification made by blinded, independent endpoint review 
committee at 3-month visit for children not started on TB treatment and 6-
month visit for children started on TB treatment 

Ethics review MUST Research Ethics Committee (MUST-REC), Uganda National Council 
for Science and Technology (UNCST), Comité de Protection des 
Personnes (CPP), Iles de France XI France.   

References Orikiriza P, Nansumba M, Nyehangane D, et al. Xpert MTB/RIF diagnosis 
of childhood tuberculosis from sputum and stool samples in a high TB-HIV-
prevalent setting. Eur J Clin Microbiol Infect Dis 2018; 37(8): 1465-73. 
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Table S13. Study information for Bonnet/**/UG 

Geographic setting Mbarara, Uganda 

Healthcare setting Name Healthcare level Recruitment setting 

Mbarara Regional 
Referral Hospital 

Tertiary/Referral Inpatient 

Enrolment duration September 2015 – March 2018 

Purpose for data 
collection 

Evaluate the performance of Xpert MTB/RIF on stool and urine AlereLAM 
among children with increased risk of disseminated  or severe TB. 

Study design Prospective cohort study with baseline assessment and follow-up at weeks 
1, 2, 8, and 24 for all children. 

Inclusion criteria Children aged 0-1 year or HIV-infected or with severe malnutrition and 
either 1) at least two of the following: cough >2 weeks, fever >1 week, 
severe malnutrition, >2 lethargy >2 weeks, known exposure to TB within 
preceding 2 years, or 2) any sign suggestive of TB meningitis or 
disseminated/miliary TB  

Exclusion criteria Children who received anti-tuberculosis treatment 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

YES 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB; 
Automated diagnostic algorithm for retrospective classification using 
information from all visits up to the 6-month follow-up visit, review by 
independent endpoint committee for cases not classified by the algorithm 

No. screened/No. 
enrolled 

238/219 

Ethics review MUST Research Ethics Committee (MUST-REC), Uganda National Council 
for Science and Technology (UNCST), Comité de Protection des 
Personnes (CPP), Iles de France XI France.   

References N/A 
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Table S14. Study information for Giang/2015/VN 

Geographic setting Ho Chi Minh City, Vietnam 

Healthcare setting Name Healthcare level Recruitment setting 

Pham Ngoc Thach 
Hospital 

Tertiary/Referral Inpatient 

Enrolment duration 01 April 2013 – 01 October 2013 

Purpose for data 
collection 

Evaluate the performance of Xpert MTB/RIF for the diagnosis of TB in HIV-
uninfected children. 

Study design Prospective cohort study with baseline assessment and unspecified 
minimum follow-up (consistent with routine clinical practice). 

Inclusion criteria HIV-uninfected children aged 0-15 years with 1 or more of: persistent 
unexplained fever, cough >2 weeks, night sweats, weight loss, failure to 
thrive, reduced playfulness/lethargy, and/or any of the following for infants 
<60 days: neonatal pneumonia, unexplained hepatomegaly, or sepsis-like 
illness 

Exclusion criteria Children who received anti-tuberculosis treatment prior to specimen 
collection for MTB confirmation or children living with HIV. 

Standardized form to 
guide evaluation? 

YES 

Standardized form to 
guide CXR evaluation? 

NO 

Standardized follow-up 
for all children? 

YES 

Reference classification 
of TB 

Graham 2012: Confirmed PTB, Probable PTB, Possible PTB, PTB Unlikely; 
Retrospective classification made by the managing clinical team at 2-month 
visit 

No. screened/No. 
enrolled 

154/150 

Ethics review Pham Ngoc Thach Hospital Institutional review Board (IRB), the Oxford 
Tropical Ethics Committee (OxTREC) and the Health services of Ho Chi 
Minh City.  

References Giang do C, Duong TN, Ha DT, et al. Prospective evaluation of GeneXpert 
for the diagnosis of HIV- negative pediatric TB cases. BMC Infect Dis 2015; 
15: 70. 
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Appendix H: Modifications to IPD received 

Table S15. Modifications to IPD from Kabir/2020/BD 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

HIV-status Participant HIV status 0 HIV-negative HIV status was not collected as a 
part of this study. In consultation 
with study authors, we assumed 
that all children in this study were 
HIV-negative. 

1 HIV-positive 

NA Unknown 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

An exposure was defined as 
having a family member living 
with the child who was diagnosed 
with and received treatment for 
TB in the previous 12 months. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS 
(or GA for young children) 
collected at initial evaluation 

0 Xpert negative 
for Mtb 

Result from first Xpert performed 
on induced sputum specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR 
consistent with 
TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

CXR assessment made by 
managing clinical team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

TB 
classification 

Final classification of TB 0 Unlikely TB See note on reference 
classification in study description 
table above. 1 Bacteriologically-

confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S16. Modifications to IPD from Aurilio/2020/BR 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

An  exposure was defined as a 
mother, household member, or 
someone spending ~4 hours a 
day with the child having 
documented or reported positive 
Xpert or TB  culture [or receiving 
treatment for TB] in the previous 
12 months). 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS 
(or GA for young children) 
collected at initial evaluation 

0 Xpert negative 
for Mtb 

Result from first Xpert: mostly 
GA/ES/IS, some pleural effusion, 
bronchalveolar lavage, and 
tracheal aspirate. 1 Xpert positive for 

Mtb 

NA Unknown/not 
performed 

CXR 
consistent with 
TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

All CXR assessments made by 
the study team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

Opacities on 
CXR 

Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on CXR 
performed at initial evaluation as 
assessed by reader performing 
clinical evaluation/making TB-
treatment decision or by reader 
to inform research classification 
of TB if former not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar opacification 
and bronchopneumonia; if either 
of these were positive, then the 
CXR was said to demonstrate 
opacities. 

1 Opacities 
present on CXR 

NA Unknown/not 
assessed 

Nodes on CXR Nodes (e.g., perihilar nodes, 
paratracheal nodes, mediastinal 
nodes) on CXR performed at 
initial evaluation as assessed by 
reader performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Nodes not 
present on CXR 

Received data corresponding to 
presence of perihilar 
lymphadenopathy, paratracheal 
lymphadenopathy, and calcified 
nodes; if any of these were 
positive, then the CXR was said 
to demonstrate nodes. 

1 Nodes present 
on CXR 

NA Unknown/not 
assessed 

TB 
classification 

Final classification of TB 0 Unlikely TB See note on reference 
classification in study description 
table above. 1 Bacteriologically-

confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S17. Modifications to IPD from Song/2021/KE 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

Tuberculosis exposure was 
defined as caregiver-reported 
household contact with someone 
with TB within 24 months prior to 
enrollment. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS 
(or GA for young children) 
collected at initial evaluation 

0 Xpert negative 
for Mtb 

Result from first Xpert: all GA 
specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR 
consistent with 
TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

CXR assessment made by the 
study team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

TB 
classification 

Final classification of TB 0 Unlikely TB See note on reference 
classification in study description 
table above. 1 Bacteriologically-

confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S18. Modifications to IPD from LopezVarela/2015/MZ 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Weight loss Presenting history of poor 
growth over the preceding 3 
months AND not responding to 
nutritional rehabilitation (or 
antiretroviral therapy if HIV 
infected) 

0 No weight loss Used WAZ/HAZ for this 
definition. 1 Weight loss 

NA Unknown 

Known TB 
exposure 

Known exposure to MTB at 
initial evaluation in previous 12 
months 

0 No known TB 
exposure in 
previous 12 
months 

Exposure to TB was defined as 
contact with someone 
diagnosed as or being treated 
for TB. No time-limit, but given 
that all kids were under the age 
of 3, this would have included 
any exposure during lifetime. 
For those children identified 
through active case finding, the 
definition was contact with a 
smear-positive adult with PTB 
registered at the district 
National TB Program (NTP) in 
the previous 24 months. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy (at 
cervical, submandibular, and/or 
axillary nodes) at initial 
evaluation 

0 No peripheral 
lymphadenopathy 

Received data corresponding to 
presence of cervical 
lymphadenopathy and axillary 
lymphadenopathy; if either of 
these were positive, then the 
child was said to have 
peripheral lymphadenopathy. 
Not all children were assessed 
for this feature. 

1 Peripheral 
lymphadenopathy 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS 
(or GA for young children) 
collected at initial evaluation 

0 Xpert negative for 
Mtb 

Xpert was not performed as a 
part of this study. We assumed 
that a positive culture was 
equivalent to a positive Xpert 
result. Preferentially used the 
result from liquid culture or solid 
culture of the first GA 
specimen. If GA was not 
available, then we took the 
result of either liquid culture or 
solid culture from the first ES 
specimen. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR consistent 
with TB 

Result of CXR performed at 
initial evaluation as assessed 
by reader performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

All CXR assessments made by 
the study team, which was the 
same as the managing clinical 
team. 1 CXR consistent 

with TB 

NA Unknown/not 
assessed 

Opacities on 
CXR 

Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on CXR 
performed at initial evaluation 
as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar 
opacification; if this was 
positive, then the CXR was said 
to demonstrate opacities. 

1 Opacities present 
on CXR 

NA Unknown/not 
assessed 

TB classification Final classification of TB 0 Unlikely TB See note on reference 
classification in study 
description table above. 
'Probable TB' and 'possible TB' 
were coded as 'unconfirmed 
TB,' 'MTB infection' was coded 
as 'unlikely TB.' 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S19. Modifications to IPD from Garcia/2020/MZ 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Known TB 
exposure 

Known exposure to MTB at 
initial evaluation in previous 12 
months 

0 No known TB 
exposure in 
previous 12 
months 

An exposure was defined as a 
mother, household member, or 
someone spending ~4 hours a 
day with the child receiving 
treatment for TB in the previous 
12 months. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy (at 
cervical, submandibular, and/or 
axillary nodes) at initial 
evaluation 

0 No peripheral 
lymphadenopathy 

Received data corresponding to 
presence of cervical 
lymphadenopathy; if if this was 
positive, then the child was said 
to have peripheral 
lymphadenopathy. 

1 Peripheral 
lymphadenopathy 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS 
(or GA for young children) 
collected at initial evaluation 

0 Xpert negative for 
Mtb 

Result from first Xpert: all either 
ES or IS specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR consistent 
with TB 

Result of CXR performed at 
initial evaluation as assessed 
by reader performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

All CXR assessments made by 
the managing clinical team. 
CXR was only performed for 
children for whom the managing 
clinical team determined that 
CXR was necessary; thus, not 
all children had CXR performed. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

Opacities on 
CXR 

Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on CXR 
performed at initial evaluation 
as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar 
opacification and 
bronchopneumonia; if either of 
these were positive, then the 
CXR was said to demonstrate 
opacities. 

1 Opacities present 
on CXR 

NA Unknown/not 
assessed 

Nodes on CXR Nodes (e.g., perihilar nodes, 
paratracheal nodes, mediastinal 
nodes) on CXR performed at 
initial evaluation as assessed 
by reader performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Nodes not 
present on CXR 

Received data corresponding to 
presence of perihilar 
lymphadenopathy, paratracheal 
lymphadenopathy, and calcified 
nodes; if any of these were 
positive, then the CXR was said 
to demonstrate nodes. 

1 Nodes present on 
CXR 

NA Unknown/not 
assessed 

TB classification Final classification of TB 0 Unlikely TB See note on reference 
classification in study 
description table above. 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S20. Modifications to IPD from Myo/2018/MM 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

Defined as a documented or 
reported exposure to a case of 
tuberculosis (household or close 
contact) within the preceding 12 
months 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS (or 
GA for young children) collected 
at initial evaluation 

0 Xpert negative 
for Mtb 

Result from first Xpert: all GA 
specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR 
consistent with 
TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

CXR assessment made by the 
study team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

TB 
classification 

Final classification of TB 0 Unlikely TB See note on reference 
classification in study description 
table above. 1 Bacteriologically-

confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S21. Modifications to IPD from Marcy/2016/Multi 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Fever duration Presence of fever 1 week at initial 
evaluation 

0 Fever 1 week not 
present 

Fever duration was not provided in 
granular enough detail to identify 
those with fever for greater than or 
equal to one week. 

1 Fever 1 week 
present 

NA Unknown 

Lethargy Presenting history of unusual 
lethargy or lack of playfulness at 
initial evaluation 

0 No lethargy Positive if the patient experienced 
lethargy in the previous 4 weeks. 1 Lethargy 

NA Unknown 

Weight loss Presenting history of poor growth 
over the preceding 3 months AND 
not responding to nutritional 
rehabilitation (or antiretroviral 
therapy if HIV infected) 

0 No weight loss Positive if the patient experienced 
weight loss in the previous 4 weeks. 1 Weight loss 

NA Unknown 

Known TB exposure Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in previous 
12 months 

Exposure defined as having a 
household contact with smear + TB 
in the previous 12 months. 

1 Known TB exposure 
in previous 12 
months 

NA Unknown 

Night sweats Presenting history of night sweats at 
initial evaluation 

0 No night sweats Positive if the patient experienced 
night sweats in the previous 4 
weeks. 

1 Night sweats 

NA Unknown 

Hemoptysis Presenting history of hemoptysis at 
initial evaluation 

0 No hemoptysis Positive if the patient experienced 
hemoptysis in the previous 4 weeks. 1 Hemoptysis 

NA Unknown 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy (at 
cervical, submandibular, and/or 
axillary nodes) at initial evaluation 

0 No peripheral 
lymphadenopathy 

Received data corresponding to 
presence of cervical 
lymphadenopathy, submandibular 
lymphadenopathy, and axillary 
lymphadenopathy; if any of these 
were positive, then the child was 
said to have peripheral 
lymphadenopathy. 

1 Peripheral 
lymphadenopathy 

NA Unknown 

First Xpert MTB/RIF Result from first Xpert MTB/RIF (not 
Ultra) performed on ES/IS (or GA for 
young children) collected at initial 
evaluation 

0 Xpert negative for 
Mtb 

Result from first Xpert: mostly ES, 
with some IS and GA specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR consistent with 
TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not consistent 
with TB 

All CXR assessments made by the 
managing clinical team. 

1 CXR consistent with 
TB 

NA Unknown/not 
assessed 

Opacities on CXR Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on CXR 
performed at initial evaluation as 
assessed by reader performing 
clinical evaluation/making TB-
treatment decision or by reader to 
inform research classification of TB 
if former not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar opacification; if 
this was positive, then the CXR was 
said to demonstrate opacities. 

1 Opacities present on 
CXR 

NA Unknown/not 
assessed 

Nodes on CXR Nodes (e.g., perihilar nodes, 
paratracheal nodes, mediastinal 
nodes) on CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Nodes not present 
on CXR 

Received data corresponding to 
presence of perihilar 
lymphadenopathy and paratracheal 
lymphadenopathy; if either of these 
were positive, then the CXR was 
said to demonstrate nodes. 

1 Nodes present on 
CXR 

NA Unknown/not 
assessed 

TB classification Final classification of TB 0 Unlikely TB See note on reference classification 
in study description table above. 1 Bacteriologically-

confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S22. Modifications to IPD from Hamid/2019/PK 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Age (months) Age (months) at enrolment ### NA = unknown Age was reported as years old; 
assumed to be at midpoint of 
year and converted to months. 

HIV-status Participant HIV status 0 HIV-negative HIV status was not collected as a 
part of this study. In consultation 
with study authors, we assumed 
that all children in this study were 
HIV-negative. 

1 HIV-positive 

NA Unknown 

Weight loss Presenting history of poor growth 
over the preceding 3 months 
AND not responding to nutritional 
rehabilitation (or antiretroviral 
therapy if HIV infected) 

0 No weight loss Defined as subjective weight loss 
reported by parents/guardians. 

1 Weight loss 

NA Unknown 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

An exposure was defined as a 
mother, household member, or 
someone spending ~4 hours a 
day with the child having 
documented or reported positive 
Xpert or TB culture (or receiving 
treatment for TB) in the previous 
24 months. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS (or 
GA for young children) collected 
at initial evaluation 

0 Xpert negative 
for Mtb 

Result from first Xpert: performed 
only on stool specimens. Not all 
children received Xpert testing. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR 
consistent with 
TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

All CXR assessments made by 
the managing clinical team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

TB 
classification 

Final classification of TB 0 Unlikely TB Eighteen children were given a 
diagnosis of EPTB; these children 
were classified as unlikely PTB 
given different presentation. 
Otherwise, see note on reference 
classification in study description 
table above. 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S23. Modifications to IPD from Nicol/2017/ZA 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

An exposure was defined as a 
mother, household member, or 
someone spending ~4 hours a 
day with the child having 
documented or reported positive 
Xpert or TB culture (or receiving 
treatment for TB) in the previous 
24 months. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS (or 
GA for young children) collected 
at initial evaluation 

0 Xpert negative 
for Mtb 

Result from first Xpert: performed 
only on IS specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR 
consistent with 
TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

All CXR assessments made by 
the study team; many were 
determined to be inconclusive for 
PTB. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

Opacities on 
CXR 

Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on CXR 
performed at initial evaluation as 
assessed by reader performing 
clinical evaluation/making TB-
treatment decision or by reader to 
inform research classification of 
TB if former not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar 
opacification; if positive, then the 
CXR was said to demonstrate 
opacities. 

1 Opacities 
present on CXR 

NA Unknown/not 
assessed 

Nodes on 
CXR 

Nodes (e.g., perihilar nodes, 
paratracheal nodes, mediastinal 
nodes) on CXR performed at 
initial evaluation as assessed by 
reader performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Nodes not 
present on CXR 

Received data corresponding to 
presence of perihilar 
lymphadenopathy and 
paratracheal lymphadenopathy; if 
either of these were positive, then 
the CXR was said to demonstrate 
nodes. 

1 Nodes present 
on CXR 

NA Unknown/not 
assessed 

TB 
classification 

Final classification of TB 0 Unlikely TB Removed data from 37 
individuals with EPTB as not 
relevant to the analysis 
population. Otherwise, see note 
on reference classification in 
study description table above. 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S24. Modifications to IPD from Walters/2017/ZA 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Weight loss Presenting history of poor growth 
over the preceding 3 months AND 
not responding to nutritional 
rehabilitation (or antiretroviral 
therapy if HIV infected) 

0 No weight loss Weight loss was specifically 
defined as follows: Poor growth 
documented over the preceding 3 
months (clear deviation from the 
child's previous growth trajectory  
and/or static growth or weight loss 
in the preceding 3 months; 
alternatively,  weight-for-age Z-
score (WFAZ) ≤2 in children with 
no previous weight 
measurements). 

1 Weight loss 

NA Unknown 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

Exposure to any identified adult TB 
source case in the preceding 12 
months, where exposure was either 
within the household; or involved 
the child's primary caregiver; or 
occurred for >4 hours per day 
during the period of exposure. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy (at 
cervical, submandibular, and/or 
axillary nodes) at initial evaluation 

0 No peripheral 
lymphadenopathy 

Received data corresponding to 
presence of cervical 
lymphadenopathy, submandibular 
lymphadenopathy, and axillary 
lymphadenopathy; if any of these 
were positive, then the child was 
said to have peripheral 
lymphadenopathy. 

1 Peripheral 
lymphadenopathy 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS (or 
GA for young children) collected at 
initial evaluation 

0 Xpert negative for 
Mtb 

Result from first Xpert performed. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR consistent 
with TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

All CXR assessments made by the 
study team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

Opacities on 
CXR 

Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on CXR 
performed at initial evaluation as 
assessed by reader performing 
clinical evaluation/making TB-
treatment decision or by reader to 
inform research classification of TB 
if former not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar opacification 
and bronchopneumonia; if either of 
these were positive, then the CXR 
was said to demonstrate opacities. 

1 Opacities present 
on CXR 

NA Unknown/not 
assessed 

Nodes on CXR Nodes (e.g., perihilar nodes, 
paratracheal nodes, mediastinal 
nodes) on CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Nodes not 
present on CXR 

Received data corresponding to 
presence of perihilar 
lymphadenopathy, paratracheal 
lymphadenopathy, and calcified 
nodes; if any of these were 
positive, then the CXR was said to 
demonstrate nodes. 

1 Nodes present on 
CXR 

NA Unknown/not 
assessed 

TB classification Final classification of TB 0 Unlikely TB See note on reference 
classification in study description 
table above. 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S25. Modifications to IPD from Orikiriza/2018/UG 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Cough duration Duration of cough at initial evaluation 0 No cough Duration of cough was only provided a 
greater than or equal to 2 weeks or 
less than 2 weeks/no cough. 

1 Cough 0-13 days 

2 Cough 14-20 days 

3 Cough 21-27 days 

4 Cough 28 days 

NA Unknown 

Fever duration Duration of fever at initial evaluation 0 No fever Duration of fever was only provided as 
greater than or equal to 1 week or less 
than 1 week/no cough. 

1 Fever 0-13 days 

2 Fever 14-20 days 

3 Fever 21-27 days 

4 Fever 28 days 

NA Unknown 

Lethargy Presenting history of unusual lethargy 
or lack of playfulness at initial 
evaluation 

0 No lethargy Lethargy was positive if present for 
greater than or equal to 2 weeks; 
negative if no lethargy or for less than 
2 weeks. 

1 Lethargy 

NA Unknown 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

For children referred from another 
contact study (any child who has lived 
in the same household with the index 
case continuously for at least 2 weeks 
within the 3-month period immediately 
preceding the diagnosis of smear-
positive or culture-positive TB in the 
index case. For other children, 
documented as reported contact with 
a bacteriologically-positive case within 
the preceding 12 months. 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

Night sweats Presenting history of night sweats at 
initial evaluation 

0 No night sweats Night sweats coded using the 
following scale: absent, mild, 
moderate, severe, or life threatening. 
Recoded absent = 0, and others = 1. 

1 Night sweats 

NA Unknown 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy (at 
cervical, submandibular, and/or 
axillary nodes) at initial evaluation 

0 No peripheral 
lymphadenopathy 

Location of peripheral 
lymphadenopathy not specified. 

1 Peripheral 
lymphadenopathy 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF (not 
Ultra) performed on ES/IS (or GA for 
young children) collected at initial 
evaluation 

0 Xpert negative for 
Mtb 

Result from first Xpert: performed on 
two pooled IS specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR consistent 
with TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical evaluation/making 
TB-treatment decision or by reader to 
inform research classification of TB if 
former not available 

0 CXR not 
consistent with TB 

All CXR assessments made by the 
managing clinical team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

Opacities on CXR Opacities (e.g., alveolar consolidation 
and/or bronchopneumonia) on CXR 
performed at initial evaluation as 
assessed by reader performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if former 
not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar opacification and 
bronchopneumonia; if either of these 
were positive, then the CXR was said 
to demonstrate opacities. 

1 Opacities present 
on CXR 

NA Unknown/not 
assessed 

Nodes on CXR Nodes (e.g., perihilar nodes, 
paratracheal nodes, mediastinal 
nodes) on CXR performed at initial 
evaluation as assessed by reader 
performing clinical evaluation/making 
TB-treatment decision or by reader to 
inform research classification of TB if 
former not available 

0 Nodes not present 
on CXR 

Positive if mediastinal 
lymphadenopathy was present. 

1 Nodes present on 
CXR 

NA Unknown/not 
assessed 

TB classification Final classification of TB 0 Unlikely TB See note on reference classification in 
study description table above. 
'Probable TB' and 'possible TB' were 
coded as 'unconfirmed TB.' 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S26. Modifications to IPD from Bonnet/**/UG 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

BCG evidence Evidence of BGC vaccination (BCG 
scar or BCG recorded in 
immunization record) at initial 
evaluation 

0 No evidence of 
BCG vaccination 

If had a BCG-scar or a positive 
immunization card/verbal response, 
then determined to have evidence 
of BCG vaccination. 

1 Evidence of BCG 
vaccination 

NA Unknown 

Cough duration Duration of cough at initial 
evaluation 

0 No cough Duration of cough was only 
provided a greater than or equal to 
2 weeks or less than 2 weeks/no 
cough. 

1 Cough 0-13 days 

2 Cough 14-20 
days 

3 Cough 21-27 
days 

4 Cough 28 days 

NA Unknown 

Fever duration Duration of fever at initial 
evaluation 

0 No fever Duration of fever was only provided 
as greater than or equal to 1 week 
or less than 1 week/no cough. 

1 Fever 0-13 days 

2 Fever 14-20 days 

3 Fever 21-27 days 

4 Fever 28 days 

NA Unknown 

Known TB 
exposure 

Known exposure to MTB at initial 
evaluation in previous 12 months 

0 No known TB 
exposure in 
previous 12 
months 

Contact of a household member 
with positive Xpert or TB culture in 
the previous 12 months 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy (at 
cervical, submandibular, and/or 
axillary nodes) at initial evaluation 

0 No peripheral 
lymphadenopathy 

Significant peripheral 
lymphadenopathy on screening 
(location unspecified). 1 Peripheral 

lymphadenopathy 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS (or 
GA for young children) collected at 
initial evaluation 

0 Xpert negative for 
Mtb 

Result from first Xpert: performed 
on GA specimens. 

1 Xpert positive for 
Mtb 

NA Unknown/not 
performed 

CXR consistent 
with TB 

Result of CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 CXR not 
consistent with 
TB 

All CXR assessments made by the 
managing clinical team. 

1 CXR consistent 
with TB 

NA Unknown/not 
assessed 

Opacities on 
CXR 

Opacities (e.g., alveolar 
consolidation and/or 
bronchopneumonia) on CXR 
performed at initial evaluation as 
assessed by reader performing 
clinical evaluation/making TB-
treatment decision or by reader to 
inform research classification of TB 
if former not available 

0 Opacities not 
present on CXR 

Received data corresponding to 
presence of alveolar opacification 
and bronchopneumonia; if either of 
these were positive, then the CXR 
was said to demonstrate opacities. 

1 Opacities present 
on CXR 

NA Unknown/not 
assessed 

Nodes on CXR Nodes (e.g., perihilar nodes, 
paratracheal nodes, mediastinal 
nodes) on CXR performed at initial 
evaluation as assessed by reader 
performing clinical 
evaluation/making TB-treatment 
decision or by reader to inform 
research classification of TB if 
former not available 

0 Nodes not 
present on CXR 

Received data corresponding to 
presence of Gohn focus and hilar 
lymphadenopathy (grouped 
together) and mediastinal nodes; if 
either of these were positive, then 
the CXR was said to demonstrate 
nodes. 

1 Nodes present on 
CXR 

NA Unknown/not 
assessed 

TB classification Final classification of TB 0 Unlikely TB See note on reference 
classification in study description 
table above. 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Table S27. Modifications to IPD from Giang/2015/VN 

VARIABLE DESCRIPTION CODE LABEL MODIFICATION 

Cough duration Duration of cough at initial 
evaluation 

0 No cough Duration of cough was only 
provided a greater than or 
equal to 2 weeks or less than 2 
weeks/no cough. 

1 Cough 0-13 days 

2 Cough 14-20 
days 

3 Cough 21-27 
days 

4 Cough 28 days 

NA Unknown 

Fever duration Duration of fever at initial 
evaluation 

0 No fever Duration of fever was only 
provided as greater than or 
equal to 1 week or less than 1 
week/no cough. 

1 Fever 0-13 days 

2 Fever 14-20 days 

3 Fever 21-27 days 

4 Fever 28 days 

NA Unknown 

Weight loss Presenting history of poor 
growth over the preceding 3 
months AND not responding to 
nutritional rehabilitation (or 
antiretroviral therapy if HIV 
infected) 

0 No weight loss Subjective weight loss and/or 
failure to thrive. 1 Weight loss 

NA Unknown 

Known TB 
exposure 

Known exposure to MTB at 
initial evaluation in previous 12 
months 

0 No known TB 
exposure in 
previous 12 
months 

Exposure was defined as a 
household or close contact with 
a TB case (unspecified). 

1 Known TB 
exposure in 
previous 12 
months 

NA Unknown 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy 
(at cervical, submandibular, 
and/or axillary nodes) at initial 
evaluation 

0 No peripheral 
lymphadenopathy 

Received data corresponding 
to presence of cervical 
lymphadenopathy and 
submandibular 
lymphadenopathy; if either of 
these were positive, then the 
child was said to have  
peripheral lymphadenopathy. 

1 Peripheral 
lymphadenopathy 

NA Unknown 

First Xpert 
MTB/RIF 

Result from first Xpert MTB/RIF 
(not Ultra) performed on ES/IS 
(or GA for young children) 
collected at initial evaluation 

0 Xpert negative for 
Mtb 

Result from first Xpert: 
performed on mostly GA 
specimens. 1 Xpert positive for 

Mtb 

NA Unknown/not 
performed 

CXR consistent 
with TB 

Result of CXR performed at 
initial evaluation as assessed 
by reader performing clinical 
evaluation/making TB-
treatment decision or by reader 
to inform research classification 
of TB if former not available 

0 CXR not 
consistent with 
TB 

Unclear whether this data 
corresponds to result as 
assessed by the study team or 
the managing clinical team. 1 CXR consistent 

with TB 

NA Unknown/not 
assessed 

TB classification Final classification of TB 0 Unlikely TB See note on reference 
classification in study 
description table above. 
'Probable TB' and 'possible TB' 
were coded as 'unconfirmed 
TB.' One child unable to 
classify as 'probable TB' or 
'possible TB' in original data 
was coded as 'unconfirmed TB' 
for the purposes of this analysis 

1 Bacteriologically-
confirmed TB 

2 Unconfirmed TB 

NA Unknown 
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Appendix I: Missingness in IPD received 

 

Figure S1. Missingness in IPD received (note variables names per Table S1) 
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Appendix J: Generate additional variables 

 

After imputation, additional variables were computed from requested variables as 

follows: 

⎯ Temperature >38°C 

o Objective temperature recorded as greater than 38°C 

⎯ Tachycardia  

o Children <2 months old, heart rate >160 

o Children 2-12 months old, heart rate >150 

o Children 12 months – 5 years old, heart rate >140 

o Children >5 years old, heart rate >120 

⎯ Tachypnea 

o Children <2 months old, respiratory rate >60 

o Children 2-12 months old, respiratory rate >50 

o Children 12 months – 5 years old, respiratory rate >40 

o Children >5 years old, respiratory rate >30 

⎯  Weight-for-age Z-score 

o Determined from sex, age, and weight as per WHO Child Growth 

Standards 

o Implemented in function “addWGSR” in package zscorer 

⎯ Weight-for-height Z-score 

o Determined from sex, weight, and height as per WHO Child Growth 

Standards 

o Implemented in function “addWGSR” in package zscorer 

⎯ Body-mass-index-for-height Z-score 

o Determined from sex, weight, height, and age as per WHO Child Growth 

Standards 

o Implemented in function “addWGSR” in package zscorer 

⎯ Severely acutely malnourished 

o Children <5 years old, weight-for-height Z-score <-3 

o Children ≥5 years old, body-mass-index-for-height Z-score <-3   
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Appendix K: Existing algorithms and modifications to make maximal use of IPD 

 

Table S28. Modifications to Marais et al. Criteria 

Algorithm Variable in data Differences 

Persistent, nonremitting 
cough > 2 weeks 

Cough duration Cannot specify cough 
characteristic (persistent 
and nonremitting) 

Objective weight loss 
(documented failure to 
thrive) during the preceding 
3 months 

Weight loss Definition of weight loss 
was not specific to failure 
to thrive 

Reported fatigue Lethargy  

 

Marais BJ, Gie RP, Hesseling AC, Schaaf HS, Lombard C, Enarson DA, et al. A refined 

symptom-based approach to diagnose pulmonary tuberculosis in children. Pediatrics. 

2006;118(5):e1350-9. 
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Figure S2. The Union’s Desk Guide 

 

Graham S. The Union's desk guide for diagnosis and management of TB in children. 3 

ed. Paris, France: International Union Against Tuberculosis and Lung Disease; 2016.  
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Table S29. Modifications to The Union’s Desk Guide 

Algorithm Variables in data Differences 

Strict Symptom Criteria   

Persistent, non-remitting 
cough or wheeze for more 
than 2 weeks not responding 
to standard therapy 

Cough duration 
 

Cannot specify cough 
characteristic (persistent and 
nonremitting) 

Documented loss of weight or 
failure to thrive during past 3 
months especially if not 
responding to food and/or 
micronutrient 
supplementation, or severe 
malnutrition 

Weight loss 
 
 
Weight/Height/Age 
 

Definition of weight loss was 
not specific to failure to thrive 
 
Use weight/height/age to 
determine if severely acutely 
malnourished 

Fatigue/reduced playfulness Lethargy  

Persistent fever >10 days Fever duration 
 

Evaluated as fever >7 days 

TB contact in the preceding 
year 

Known TB exposure Some studies defined known 
TB exposure as within the 
previous 24 months 

HIV HIV-status  

Physical signs   

Weight loss or poor weight 
gain, evidence of growth 
faltering 

Weight loss 
 

Definition of weight loss was 
not specific to failure to thrive 

Fever Temperature (C)  

Increased respiratory rate Respiratory rate (per min)  

Signs of respiratory distress N/A N/A 

Auscultation and percussion N/A N/A 

CXR   

Enlarged hilar lymph nodes Nodes on CXR  

Opacification in lung tissue Opacities on CXR  

Miliary mottling Miliary infiltrate on CXR  

Cavitation Cavities on CXR  

Pleural or pericardial effusion Pleural effusion on CXR Did not evaluate pericardial 
effusion 

Marked abnormality on CXR 
in child with no signs of 
respiratory distress (no fast 
breathing or chest indrawing) 
is supportive of TB 

N/A N/A 

Sputum Xpert First Xpert MTB/RIF  

Sputum smear N/A N/A 
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Figure S3. Stegen-Toledo Score 

 

Montenegro SH, Gilman RH, Sheen P, Cama R, Caviedes L, Hopper T, et al. Improved 

Detection of Mycobacterium tuberculosis in Peruvian Children by Use of a Heminested 

IS6110 Polymerase Chain Reaction Assay. Clin Infect Dis. 2003;36(1):16-23. 
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Table S30. Modifications to Stegen-Toledo Score (using cutoff of 5 points to classify 

TB) 

Algorithm Variables in data Differences 

Positive culture result First Xpert MTB/RIF Used Xpert MTB/RIF 
rather than culture given 
practical advantage of 
Xpert 

Tuberculosis granuloma N/A N/A 

Positive PPD test result TST result  

Known contact with a 
person with TB during past 
2 years 

Known TB exposure Some studies defined 
known TB exposure as 
within the previous 12 
months 

Radiological results 
suggestive of TB 

CXR consistent with TB  

Clinical presentation 
suggestive of TB (defined 
as duration of cough >2 
weeks) 

Cough duration  
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Figure S4. Uganda NTLP Algorithm 

 

Uganda Ministry of Health, Uganda National Tuberculosis and Leprosy Control 

Programme. Manual for management and control of tuberculosis and leprosy in Uganda. 

Kampala, Uganda: MoH, 2017. 
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Table S31. Modifications to Uganda NTLP Algorithm 

Algorithm Variables in data Differences 

Xpert or microscopy First Xpert MTB/RIF Did not evaluate 
microscopy 

Symptoms suggestive 

of TB (2 of the 
following) 

  

Persistent cough 2 wks Cough duration  

Persistent fever for 2 
wks 

Fever duration  

Poor weight gain in the 

last 1 month 

Weight loss 
 

 

CXR findings 
suggestive of PTB 

  

Miliary picture Miliary infiltrate on CXR  

Hilar adenopathy Nodes on CXR  

Cavitation Cavities on CXR  

Physical signs 
suggestive of TB 

  

Severe malnutrition Weight/Height/Age Use weight/height/age 
to determine if severely 
acutely malnourished 

Enlarged lymph nodes 
around neck or arm pit 

Peripheral lymphadenopathy  

Acute pneumonia not 
responding to complete 
course of appropriate 
antibiotics 

N/A N/A 

Recurrent pneumonias N/A N/A 

Persistent wheeze not 
responding to 
bronchodilators 

N/A N/A 

Persistence of swelling 
on the back (Gibbus) 

N/A N/A 

Signs of meningitis in 
child with symptoms 
suggestive of TB 

N/A N/A 
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Figure S5. Brazilian Ministry of Health Score 

 

Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de 

Vigilância das Doenças Transmissíveis. Manual de recomendações para o controle da 

tuberculose no Brasil. 2 a ed. atual. Brasília: Ministério da Saúde; 2019. 
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Table S32. Modifications to Brazilian Ministry of Health Score (using cutoff of 30 

points to classify TB) 

Algorithm Variables in data Differences 

Fever 2 wks Fever duration  

Cough 2 wks Cough duration  

Adynamia 2 wks Lethargy Duration not specified in 
data 

Expectoration 2 wks N/A N/A 

Slimming 2 wks Weight loss Duration not specified in 
data 

Sweating 2 wks Night sweats Duration not specified in 
data 

Respiratory infection that 
improved after using 
antibiotics for common 
germs or without antibiotics 

N/A  

Hilar adenomegaly or 
miliary pattern and/or 
condensation or infiltrate 
(with or without cavitation) 
unchanged by ≥ 2 weeks 
and/or condensation or 
infiltrate (with or without 
excavation) for ≥ 2 weeks, 
progressing with worsening 
or without improvement 
with antibiotics for common 
germs 

Nodes on CXR 
Miliary infiltrate on CXR 
Opacities on CXR 
Cavities on CXR 

CXR abnormalities 
consistent with TB of 
unknown duration 

Condensation or infiltrate 
of any type for less than 2 
weeks 

N/A No data on duration of 
CXR abnormalities 
consistent with TB 

Normal radiography N/A No data to indicate CXR 

Close contact in the last 2 
years (with adult with TB) 

Known TB exposure Some studies defined 
known TB exposure as 
within the previous 12 
months 

TST diameter TST result TST diameter not 
specified in data, only 
whether result was 
positive or not 

Serious malnutrition 
(weight <10th percentile) 
 

Weight/age Weight and age used to 
compute weight-for-age 
z-score 
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Figure S6. Keith-Edwards Score 

 

Edwards K. The diagnosis of childhood tuberculosis. P N G Med J. 1987;30(2):169-78. 
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Table S33. Modifications to Keith-Edwards Score 

Algorithm Variables in Data Differences 

Duration of illness Cough duration 
Fever duration 

Used the max of cough or 
fever duration to represent 
duration of illness 

Nutrition (% of weight for 
age) 

Weight/age Weight and age used to 
compute weight-for-age z-
score 

Family history of 
tuberculosis 

Known TB exposure Data unavailable on 
whether TB exposure was 
bacteriologically-confirmed 

Fever Temperature (C)  

Night sweats Night sweats  

No response to malaria 
treatment 

N/A N/A 

Lymph nodes: large, 
painless, firm, soft sinus 
in neck/axilla 

Peripheral 
lymphadenopathy 

 

Malnutrition, not 
improving after 4 weeks 

Weight loss Cannot specify whether 
malnutrition did not 
improve after 4 weeks 

Central nervous system: 
change in temperament, 
fits with or without 
abnormal cerebrospinal 
fluid findings 

Lethargy Unable to evaluate fits or 
abnormal cerebrospinal 
fluid findings 

Joint swelling, bone 
swelling, sinuses 

N/A N/A 

Unexplained abdominal 
mass, ascites 

N/A N/A 

Angle deformity of spine N/A N/A 
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Figure S7. Gunasekera et al. Algorithm 

 

Gunasekera KS, Walters E, van der Zalm MM, Palmer M, Warren JL, Hesseling AC, et 

al. Development of a treatment-decision algorithm for human immunodeficiency virus–

uninfected children evaluated for pulmonary tuberculosis. Clin Infect Dis. 2021. 
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Table S34. Modifications to Gunasekera et al. Algorithm. Given that we had access 

to the Walters/2017/ZA data from HIV-negative children used to develop this algorithm, 

we refit the logistic regression model using a complete case analysis of variables 

available in the IPD before any imputation; thus, this algorithm is modified from the 

originally stated algorithm (we do not include hepatomegaly and fever is defined as ≥1 

week). This model had an AUC of 0.85. The model parameter coefficients were scaled 

to produce a score such that a sum of the scores resulted in classification of TB with a 

sensitivity of 90% -- this resulted in an algorithm with a sensitivity of 91% and a 

specificity of 49%. 
 

OR 2.50
% 

97.5
% 

p-
value 

Scaled 
score 

(Intercept) 0.10 0.04 0.21 0.00 -- 

No cough --    -- 

Cough < 2 weeks 0.81 0.37 1.78 0.60 -22 

Cough 2 weeks 1.14 0.40 3.18 0.81 13 

Cough 3 weeks  1.56 0.46 5.25 0.47 46 

Cough >3 weeks 3.60 1.49 9.01 0.01 132 

No fever or fever <1 week --    -- 

Fever ≥1 week 2.12 0.87 5.33 0.10 78 

No weight loss --    -- 

Weight loss 1.98 1.06 3.76 0.03 71 

No lethargy --    -- 

Lethargy 1.43 0.71 2.88 0.32 37 

No history of known TB 
contact 

--    -- 

History of known TB contact 6.64 3.53 12.99 0.00 195 

CXR not consistent with TB --    -- 

CXR consistent with TB 11.02 5.39 23.90 0.00 248 

Xpert negative for MTB --    -- 

Xpert positive for MTB 13927274.1
5 

0.00 Inf 0.98 1698 
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Figure S8. Marcy et al. Algorithm 

 

Marcy O, Borand L, Ung V, Msellati P, Tejiokem M, Huu KT, et al. A treatment-decision 

score for HIV-infected children with suspected tuberculosis. Pediatrics. 

2019;144(3):e20182065. 

  



 

185 
 

Table S35. Modifications to Marcy et al. Algorithm. Given that we had access to the 

Marcy/2016/Multi data from HIV-positive children used to develop this algorithm, we refit 

the logistic regression model using a complete case analysis of variables available in the 

IPD before any imputation; thus, this algorithm is modified from the originally stated 

algorithm (we use cough ≥2 weeks rather than remitting cough, and we do not include 

abdominal ultrasound results). This model had an AUC of 0.80. The model parameter 

coefficients were scaled to produce a score such that a sum of the scores resulted in 

classification of TB with a sensitivity of 90% -- this resulted in an algorithm with a 

sensitivity of 91% and a specificity of 40%. 
 

odds-
ratio 

2.50
% 

97.50
% 

p-
value 

scaled_coe
ff 

(Intercept) 0.19 0.07 0.44 0.00 -- 

No cough or cough <2 weeks --    -- 

Cough ≥2 weeks 1.11 0.52 2.37 0.78 9 

No fever or fever <1 week --    -- 

Fever ≥1 week 2.94 1.72 5.39 0.00 95 

No weight loss --    -- 

Weight loss 1.79 1.01 3.37 0.05 52 

No hemoptysis --    -- 

Hemoptysis 3.29 0.62 93.23 0.23 105 

No tachycardia --    -- 

Tachycardia 2.03 0.91 5.12 0.09 62 

No history of known TB contact --    -- 

History of known TB contact 1.71 0.60 5.59 0.33 47 

Miliary infiltrate not present on 
CXR 

--    -- 

Miliary infiltrate present on CXR 2.56 0.77 10.36 0.14 83 

Opacities not present on CXR --    -- 

Opacities present on CXR 2.36 1.32 4.53 0.00 76 

Nodes not present on CXR --    -- 

Nodes present on CXR 5.41 2.84 11.83 0.00 149 

Xpert negative for MTB --    -- 

Xpert positive for MTB 29.18 3.40 Inf 0.03 298 
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Appendix L: Performance of existing algorithms against reference classification of 

all TB 

 

Figure S9. Performance of Marais et al. Criteria. Study-level and pooled estimates of 

the (a) sensitivity and (b) specificity of classifying TB (reference standard: 

bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB).
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Figure S10. Performance of Stegen-Toledo Score (using cutoff of 5 points to classify 
TB). Study-level and pooled estimates of the (a) sensitivity and (b) specificity of 
classifying TB (reference standard: bacteriologically-confirmed pulmonary TB and 
unconfirmed pulmonary TB). 
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Figure S11. Performance of Uganda NTLP Algorithm. Study-level and pooled 
estimates of the (a) sensitivity and (b) specificity of classifying TB (reference standard: 
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB). 
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Figure S12. Performance of The Union’s Desk Guide. Study-level and pooled 
estimates of the (a) sensitivity and (b) specificity of classifying TB (reference standard: 
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB). 
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Figure S13. Performance of Brazilian Ministry of Health Score (using cutoff of 30 
points to classify TB) Study-level and pooled estimates of the (a) sensitivity and (b) 
specificity of classifying TB (reference standard: bacteriologically-confirmed pulmonary 
TB and unconfirmed pulmonary TB). 
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Figure S14. Performance of Keith-Edwards Score. Study-level and pooled estimates 
of the (a) sensitivity and (b) specificity of classifying TB (reference standard: 
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB). 
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Figure S15. Performance of Marcy et al. Algorithm. Performance estimates of the 
Marcy et al. Algorithm were derived from only HIV-positive children in the IPD that 
excludes data form the Marcy/2016/Multi cohort (from which the algorithm was 
developed). Study-level and pooled estimates of the (a) sensitivity and (b) specificity of 
classifying TB (reference standard: bacteriologically-confirmed pulmonary TB and 
unconfirmed pulmonary TB). 
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Figure S16. Performance of Gunasekera et al. Algorithm. Performance estimates of 
the Gunasekera et al. Algorithm were derived from only HIV-negative children in the IPD 
that excludes data from the Walter/2017/ZA population (from which the algorithm was 
developed). Study-level and pooled estimates of the (a) sensitivity and (b) specificity of 
classifying TB (reference standard: bacteriologically-confirmed pulmonary TB and 
unconfirmed pulmonary TB). 
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Appendix M: Performance of existing algorithms against reference classification 

of bacteriologically-confirmed TB 

 

Figure S17. Performance of existing algorithms at classifying confirmed TB 

(excluding data from children with unconfirmed TB). Retrospective estimates of the 

pooled (a) sensitivity and (b) specificity of eight algorithms to guide treatment decision-

making for children with presumptive pulmonary TB, had they been used to evaluate the 

children for whom we have IPD records. The reference classification of pulmonary TB 

included bacteriologically-confirmed pulmonary TB only (children with unconfirmed TB 

are excluded from this analysis). 
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Appendix N: Logistic regression model developed form IPD without CXR features 

 

Table S36. Estimates of logistic regression prediction model developed from IPD 
without CXR features. Odds ratio with 95% confidence interval and p-value estimates 
for each parameter included in the logistic regression prediction model that does not 
include CXR features. The model parameter estimates account for potential clustering at 
the study-level as well as uncertainty introduced by missing data. IPD – individual 
participant data, OR – odds ratio. 

  OR 2.5%ile 97.5%ile P-value 

 (Intercept) 0.257 0.144 0.458 0.000 

Cough duration ≥ 2 weeks 
(Absence is no cough or <2 weeks) 

Absent -- -- -- -- 

Present 1.248 0.972 1.600 0.747 

Fever duration ≥ 2 weeks 
(Absence is no fever or <2 weeks) 

Absent -- -- -- -- 

Present 1.576 1.203 2.066 0.207 

Lethargy 
 

Absent -- -- -- -- 

Present 1.223 0.989 1.513 0.753 

Weight loss 
 

Absent -- -- -- -- 

Present 1.276 1.007 1.618 0.680 

History of known TB exposure 
 

Absent -- -- -- -- 

Present 3.763 2.243 6.311 0.000 

Hemoptysis 
 

Absent -- -- -- -- 

Present 1.486 0.765 2.887 0.696 

Night sweats 
 

Absent -- -- -- -- 

Present 1.329 1.123 1.571 0.428 

Peripheral lymphadenopathy 
 

Absent -- -- -- -- 

Present 1.379 1.128 1.685 0.395 

Temperature >38 
 

Absent -- -- -- -- 

Present 1.006 0.801 1.264 1.000 

Tachycardia 
 

Absent -- -- -- -- 

Present 1.212 0.919 1.600 0.825 

Tachypnea 
 

Absent -- -- -- -- 

Present 1.077 0.836 1.387 0.971 
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Appendix O: Prediction model fit and scaled scores at different sensitivity thresholds 

 

Table S37. OR and 95% CI of prediction model developed from IPD and corresponding scaled scores. 

  OR 2.5%ile 97.5%ile P-value Score at  
90% sens. 

Score at  
85% sens. 

Score at 
80% sens. 

Score at 
75% sens. 

Score at 
75% sens. 

 (Intercept) 0.147 0.075 0.285 0.000 -- -- -- -- -- 

Cough duration ≥ 2 weeks 

(Absence is no cough or <2 weeks) 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.185 0.913 1.537 0.856 3 2 2 1 1 

Fever duration ≥ 2 weeks 

(Absence is no fever or <2 weeks) 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.568 1.178 2.087 0.245 7 5 4 4 3 

Lethargy 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.282 1.016 1.618 0.663 4 3 2 2 2 

Weight loss 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.251 0.970 1.615 0.746 3 3 2 2 2 

History of known TB exposure 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 4.195 2.385 7.377 0.000 22 17 14 12 10 

Hemoptysis 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.404 0.690 2.857 0.788 5 4 3 3 2 

Night sweats 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.224 1.022 1.465 0.709 3 2 2 2 1 

Peripheral lymphadenopathy 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.422 1.141 1.772 0.353 5 4 3 3 2 

Temperature >38 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.004 0.776 1.299 1.000 0 0 0 0 0 

Tachycardia 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.159 0.879 1.529 0.896 2 2 1 1 1 

Tachypnea 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 0.949 0.766 1.176 0.983 -1 -1 -1 0 0 

Cavities on baseline CXR 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.600 0.898 2.849 0.527 7 6 5 4 3 

Intrathoracic lymphadenopathy on 

baseline CXR 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 
4.323 2.727 6.854 0.000 23 17 14 12 10 

Opacities on baseline CXR 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.540 1.022 2.320 0.452 7 5 4 4 3 

Miliary infiltrate on baseline CXR 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 3.558 1.761 7.191 0.000 20 15 12 10 9 

Pleural effusion on baseline CXR 

 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.899 1.217 2.964 0.128 10 8 6 5 4 
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Table S38. OR and 95% CI of prediction model without chest x-ray features developed from IPD and corresponding scaled 

scores. 

  OR 2.5%ile 97.5%ile P-value Score at  
90% sens. 

Score at  
85% sens. 

Score at 
80% sens. 

Score at 
75% sens. 

Score at 
75% sens. 

 (Intercept) 0.257 0.144 0.458 0.000 -- -- -- -- -- 

Cough duration ≥ 2 weeks 
(Absence is no cough or <2 weeks) 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.248 0.972 1.600 0.747 6 5 4 3 3 

Fever duration ≥ 2 weeks 
(Absence is no fever or <2 weeks) 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.576 1.203 2.066 0.207 13 10 8 7 6 

Lethargy 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.223 0.989 1.513 0.753 6 4 4 3 3 

Weight loss 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.276 1.007 1.618 0.680 7 5 4 4 3 

History of known TB exposure 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 3.763 2.243 6.311 0.000 39 29 24 20 17 

Hemoptysis 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.486 0.765 2.887 0.696 12 9 7 6 5 

Night sweats 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.329 1.123 1.571 0.428 8 6 5 4 4 

Peripheral lymphadenopathy 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.379 1.128 1.685 0.395 9 7 6 5 4 

Temperature >38 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.006 0.801 1.264 1.000 0 0 0 0 0 

Tachycardia 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.212 0.919 1.600 0.825 6 4 3 3 2 

Tachypnea 
 

Absent -- -- -- -- -- -- -- -- -- 

Present 1.077 0.836 1.387 0.971 2 2 1 1 1 
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Appendix P: Performance of scores from prediction model at different sensitivity 

thresholds 

 

Figure S18. (a) sensitivity and (b) specificity of score developed from prediction 

model to classify TB with 90% sensitivity. 

 

Figure S19. (a) sensitivity and (b) specificity of score developed from prediction 

model to classify TB with 85% sensitivity. Presented in the main text. 

 

Figure S20. (a) sensitivity and (b) specificity of score developed from prediction 

model to classify TB with 80% sensitivity. 
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Figure S21. (a) sensitivity and (b) specificity of score developed from prediction 

model to classify TB with 75% sensitivity. 

Figure S22. (a) sensitivity and (b) specificity of score developed from prediction 

model to classify TB with 70% sensitivity. 
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Appendix Q: Performance of scores from prediction model to classify TB with 85% 

sensitivity  

 

Figure S23. Performance of scaled scores from prediction model to classify TB 

with 85% sensitivity. Presented in the main text. 

  

Figure S24. Performance of scaled scores from prediction model to classify 

confirmed TB with 85% sensitivity. Analysis excludes data from children with 

unconfirmed TB. 
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Appendix R: Performance of scores from prediction model without chest X-ray 

features to classify TB with 85% sensitivity 

 

Figure S25. Performance of scaled scores from prediction model without chest x-

ray to classify TB with 85% sensitivity. 

 

 

Figure S26. Performance of scaled scores from prediction model without chest x-

ray to classify confirmed TB with 85% sensitivity. Analysis excludes data from 

children with unconfirmed TB. 
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Appendix S: Inspire algorithm without CXR features 

 

Figure S27. Treatment-decision algorithm derived from prediction model without 

CXR features. 

 



203 
 

Conclusions 

 

Childhood tuberculosis is a public health crisis that contributes substantially to 

the global burden of child mortality. This body of work describes analyses to address two 

major priorities in childhood tuberculosis: 1) preventing tuberculosis transmission to 

children and 2) improving case detection for children with tuberculosis. 

The work in Chapter 1 described the application of a Bayesian spatial model to 

use accessible, age-disaggregated tuberculosis notification data to identify potential 

hotspots of tuberculosis transmission. A unique strength of this study was its ability to 

compare inference from the proposed application of disease mapping methodology on 

routinely-available notification data against conclusive molecular evidence of 

transmission from a prospective cohort study in the same setting. The concordance of 

transmission inference obtained using different methods and datasets provided 

compelling evidence in support of the concept that children are sentinels for community-

transmission of tuberculosis. This finding suggests that the use of models that leverage 

widely available notification data should be explored as tools for targeting case-finding 

and treatment efforts in high-transmission locations, in the hope of maximizing the direct 

and indirect protective benefits of active screening approaches. 

 The work in Chapter 2 investigated subclinical tuberculosis, a poorly understood 

form of tuberculosis that may frustrate symptom-based active screening approaches to 

limit tuberculosis transmission. This study contributed to the growing body of evidence 

that has revealed that subclinical tuberculosis is more common than previously 

appreciated. The findings that subclinical tuberculosis was more common among active 

cigarette smokers and individuals living with HIV may inform the design of more effective 
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case-finding interventions. This work also suggests that efforts to screen individuals 

based on self-reported symptoms may not be sufficient to rule out tuberculosis, 

especially among individuals who smoke and/or who are living with HIV. While this study 

provided additional support for claims of the potential importance of subclinical disease, 

the epidemiological significance of subclinical disease remains unclear. Future studies 

are required to investigate the natural history and transmission potential of subclinically-

infected individuals. 

 The work in Chapter 3 and Chapter 4 aimed to improve case detection for 

children with pulmonary tuberculosis by leveraging diagnostic evaluations data to build 

prediction models that may guide treatment decision-making among children with 

presumptive pulmonary tuberculosis. These works demonstrated that for symptomatic 

children being investigated for tuberculosis disease in resource-limited settings, an 

algorithmic approach may be sufficient to guide tuberculosis treatment initiation, even in 

the absence of chest x-ray or confirmatory testing.  

The work in Chapter 3 outlined an approach to interpret clinical data to inform 

treatment-initiation decisions for children being evaluated for pulmonary tuberculosis. 

Diagnostic evaluations data from children in Cape Town, South Africa were used as the 

substrate to develop a prediction model that was operationalized as a treatment-decision 

algorithm to support decision-making for children with presumptive pulmonary 

tuberculosis. This work demonstrated that algorithms that incorporate evidence from a 

detailed clinical history and physical examination could play an important role in guiding 

sensitive treatment-initiation decisions for most children being evaluated for pulmonary 

tuberculosis. Additionally, this demonstrated that sensitive treatment-decisions for 

children with tuberculosis could be made based on clinical evidence alone. 
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The work in Chapter 4 arose from the desire to formally validate and investigate 

the generalizability of models to predict tuberculosis from diagnostic evaluations data. 

Thus, this work established the largest known cohort of individual participant diagnostic 

evaluations data from children being investigated for childhood pulmonary tuberculosis. 

These data were used to evaluate existing algorithms for pulmonary tuberculosis and to 

develop a model to predict pulmonary tuberculosis. This work, carried out in conjunction 

with the World Health Organization, described how this model was operationalized as a 

new treatment-decision algorithm to include in upcoming guidelines on the management 

of tuberculosis in children. 

Treatment decision-algorithms represent an important pragmatic tool that could, 

in combination with improved health system investment, reduce the morbidity/mortality of 

this public health crisis. These works represent a pragmatic and transparent approach, 

using advanced analytic methods, to develop an algorithm based on the best available 

data that can be validated and further specified as additional becomes available. 

Though the causes of the childhood tuberculosis public crisis are multifactorial, 

major challenges arise from the paucibacillary nature of childhood tuberculosis and from 

limited public health resources available to curtail this epidemic. In spite of these 

limitations, this body of work describes pragmatic attempts to address critical challenges 

that may have an impact on reducing the burden of child morbidity and mortality 

associated with tuberculosis. 


	Spatial and Prediction Models for Addressing Challenges in Pediatric Tuberculosis Control and Care
	Recommended Citation

	tmp.1681827122.pdf.xL0ht

