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Abstract

Spatial and Prediction Models for Addressing Challenges in Pediatric Tuberculosis
Control and Care

Kenneth Suranga Gunasekera
2022

Tuberculosis (TB) is among the leading causes of global mortality among
children <5 years. Each year, over 1 million TB cases occur among children <15 years
worldwide, and nearly one quarter of those children die; approximately 80% of those
deaths occur among children <5 years. Alleviating the burden of pediatric TB and
mortality requires 1) enhanced efforts to prevent transmission to children and 2) treating

more children for TB.

Targeting resources to children with a known TB exposure has been a
cornerstone of the public health response to prevent transmission and detect cases
early. Infectious adults must be diagnosed and treated earlier to prevent transmission to
their child contacts. Modeling studies suggest that targeting community-level active
case-finding to areas with high local transmission intensity may demonstrate population-
level reductions in TB incidence. However, obtaining conclusive evidence of
concentrated transmission requires access to spatial and genomic data, which is often

only available under research conditions in high TB-incidence settings.

In chapter 1, | use Bayesian spatial modeling methods to probe routinely
collected, age-disaggregated TB notification data to demonstrate that overrepresentation
of young child cases co-locate with areas of high local transmission intensity, identified
by molecular evidence of transmission from a prospective cohort study in the same
setting. This finding suggests that the use of models that leverage widely available
notification data should be explored as tools to target case-finding and treatment efforts

in high-transmission locations to maximize the direct and indirect benefits of active



screening approaches. In chapter 2, | leverage data from a large prevalence survey to
investigate a poorly understood form of TB that may frustrate symptom-based active

case-finding efforts.

Given that modeling estimates suggest that 96% of global childhood mortality
due to TB occurs among children not receiving antituberculosis treatment, identifying
and treating more cases of pediatric TB provide an opportunity to reduce child mortality.
Diagnostic tools for pediatric pulmonary TB are limited by paucibacillary disease in
children as well by resource constraints in many high TB-incidence settings. This
contributes to poorer treatment outcomes through missed diagnoses and treatment

delays.

In chapter 3, | describe the analysis of a cohort of children being evaluated for TB
from Cape Town, South Africa to demonstrate that a majority of antituberculosis
treatment-decisions could be made using clinical evidence alone, without the need for
additional diagnostic testing. In chapter 4, | describe the assembly of a large cohort of
pediatric TB diagnostic evaluation data sourced from multiple geographically diverse,
high TB-incidence settings to develop a prediction model for TB and investigate its
validity and generalizability. As part of this work, | describe efforts in partnership with the
World Health Organization to operationalize the prediction model as a treatment-

decision algorithm to guide the evaluation of children with presumptive pulmonary TB.
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Introduction

Public health priorities to reduce morbidity and mortality associated with

childhood tuberculosis

Tuberculosis is among the top ten causes of global mortality among children <5

years old.

Each year, over 1 million tuberculosis cases occur among children <15 years
worldwide, and nearly one quarter of those children die.* Approximately 80% of those
deaths occur among children <5 years old.? This is unacceptable in the setting of
effective tuberculosis treatment and prophylaxis options for children.3® Current public
health strategies to limit transmission to children are not on track to meet global targets
set by the World Health Organization (WHO).5" Additionally, underdiagnosis of pediatric
tuberculosis contributes to the substantial gap between estimated and notified cases.®
Alleviating the burden of pediatric tuberculosis and child mortality requires 1) enhanced
efforts to prevent transmission to children and 2) treating more children with

tuberculosis.

Interventions that limit tuberculosis transmission will disproportionately limit

transmission to children.

Targeting resources to children with a known tuberculosis exposure has been a
cornerstone of the public health response to prevent transmission and improve treatment
outcomes.®1% This strategy aims to screen child contacts of infectious adults to identify
and treat prevalent disease and administer effective prophylaxis to contacts without

disease. Evidence from a large individual-participant meta-analysis of 137,647



tuberculosis-exposed children revealed that 83% of children <5 years who are exposed
to tuberculosis and diagnosed with disease, are diagnosed within the first 90 days of

baseline evaluation.!! This contributes to the mounting evidence suggesting that earlier
diagnosis and treatment of infectious adult cases will have a disproportionate effect on

preventing transmission to children.213

Community-level tuberculosis screening strategies are expected to reduce transmission

to children.

Community-level tuberculosis screening strategies, in which risk groups are
screened to identify infectious individuals before they passively present to care, have
garnered particular attention in the tuberculosis control community to reduce
transmission to levels in line with global tuberculosis control goals.®!* Because
untargeted community-level screening in high burden settings has not consistently
demonstrated population-level benefits, > there has been interest in new practical
approaches to focus screening to population groups among whom risk is concentrated.
One such approach is to target screening to hotspots, areas in which transmission is
most intense.® While evidence supporting the impact of targeting screening in hotspots
is currently limited,?° mathematical modeling suggests that such targeting may result in

substantial population-wide reductions in transmission.?%:22

Identifying transmission hotspots to target community-level screening may maximize its

benefits.

Conclusive evidence of tuberculosis transmission hotspots typically relies on
access to detailed spatial and pathogen genetic data.?*2° While spatial information is
often available in public health reporting systems (e.g. home location), resources for

genetic sequencing of sufficient pathogens to infer transmission may only be available in

2



the context of research studies in high-transmission/resource-limited settings. Thus,
methods to identify hotspots from routine tuberculosis surveillance data would be
valuable.?® However, high local tuberculosis incidence in surveillance data may not
necessarily identify transmission hotspots. Patterns of tuberculosis incidence may
instead reflect spatially-aggregated risk for progression of infection, migration of
individuals infected with tuberculosis into the area,?’ or spatial heterogeneity in
diagnostic capacity.?® Thus, finding new ways to probe routine surveillance data to find

evidence of local transmission is a priority.

The location of child cases in tuberculosis surveillance data may provide a signal for
transmission hotspots to target screening and interventions to limit transmission to

children.

Spatial differences in the age distribution of tuberculosis and other infectious
diseases may provide a signal for local transmission intensity.2%%° In locations where
disease transmission is more intense, patients are systematically younger than in
locations where disease transmission is less intense.3! This principle underlies the use
of the age-prevalence of tuberculin-skin test positivity to measure risks of infection from
household and community exposure.®>33 |n particular for tuberculosis, the age-related
risk of progression from infection to disease is especially high among children <5 years
old, further strengthening the case that children may provide a signal for recent
transmission.* Previous studies have suggested that areas with high childhood
tuberculosis rates may correspond to areas of active transmission;*3” however, none
have attempted to provide conclusive evidence to compare inference, and only one
included covariates to account for potential non-transmission explanations of the spatial

distribution of child cases.®”



Subclinical tuberculosis may frustrate symptom-based, active case-finding targeted to

areas of active tuberculosis transmission.

Tuberculosis prevalence surveys, in which all eligible individuals (regardless of
symptoms) are screened for tuberculosis disease, have revealed that a large fraction of
individuals with prevalent, undiagnosed tuberculosis may be “subclinical” and fail to
report any classical symptom of tuberculosis.*® Recently, others have suggested the
failures of symptom-based, active case-finding to demonstrate consistent efficacy might
be attributable to the potential infectiousness of individuals with subclinical
tuberculosis.*® One hypothesis is that individuals with chronic cough (for example due to
pre-existing respiratory conditions, smoking, or unrelated respiratory infections) will be
less likely to notice the onset of tuberculosis symptoms and more likely to transmit M.
tuberculosis due to this persistent coughing behavior. These individuals may maintain
normal activities and social behaviors, further increasing the likelihood of transmission.
While the presence of chronic cough for reasons others than tuberculosis has been
associated with delays to presentation and diagnosis of tuberculosis,*®** further
understanding of the epidemiological importance of subclinical tuberculosis may

enhance the impact of active case-finding on tuberculosis transmission.

Treating more children with tuberculosis provides another opportunity to reduce

child mortality.

It is estimated that 96% of global childhood mortality due to tuberculosis occurs
among children not receiving antituberculosis treatment.2 The gap between estimated
tuberculosis cases and cases notified to the WHO is larger for children than for adults,
likely due to limitations in childhood tuberculosis diagnostics.®4> Unlike adult

tuberculosis, childhood tuberculosis is generally paucibacillary.*® This limits the



sensitivity of microbiological tests including diagnostics such as Xpert MTB/RIF.#
Furthermore, obtaining specimens for microbiological confirmation for children <5 years
old requires invasive sampling and resources that may only be available at referral
centers.*®4° Findings on chest radiography are less sensitive and specific among
children.® These limitations cause delays in initiating treatment, resulting in poorer

outcomes.5!

WHO guidance suggests that children brought to healthcare services with
symptoms suggestive of tuberculosis (a presumptive tuberculosis case) should be
further evaluated for tuberculosis disease.>? Once a child has been identified as a
presumptive case, healthcare workers must consider whether to initiate tuberculosis
treatment based upon the clinical history, physical examination, demographic data,
history of recent exposure to a tuberculosis source case in the preceding 12 months,
confirmatory tests for M. tuberculosis, chest imaging, tests of infection, and clinical
follow-up where appropriate. Treatment decisions must often be made in the absence of
microbiological confirmation; thus, symptoms, clinical examination, and history of close

tuberculosis contact play a crucial role in the decision to initiate tuberculosis treatment.

Antituberculosis treatment decision-making at peripheral health facilities must be

optimized.

Emerging evidence supports diagnosis and treatment for pediatric tuberculosis at
peripheral health facilities to identify more children with tuberculosis disease and
improve treatment outcomes by shortening the delay to treatment initiation.>*** The
WHO and the International Union Against Tuberculosis and Lung Disease guidelines
suggest that clinical evidence may justify treatment when microbiological testing is

unavailable or in the setting of negative test results;>>°® however, the guidelines do not



clearly describe the burden of evidence that is sufficient to initiate treatment for pediatric
tuberculosis. The evidence supporting the role of symptom-based diagnosis to inform
tuberculosis treatment decisions has been limited due to poorly standardized symptom
and case definitions, few validation studies, and challenges in designing studies that
adequately evaluate the role of individual symptoms and variable symptom
combinations. Others have developed treatment decision-algorithms and scoring
systems to promote rapid and uniform treatment decision-making by assigning scores to

features in the diagnostic evaluation that correspond to risk for tuberculosis.®5-°’

Analysis of high-quality diagnostic evaluations data may improve treatment decision-

making at peripheral health facilities among child presumptive tuberculosis cases.

The high mortality associated with untreated childhood tuberculosis requires
practical guidance to identify and treat more children with tuberculosis using the best
available data. Recent approaches to algorithm-building used modeling analytic methods
to analyze data from diagnostic studies in order to specify which features in the
diagnostic evaluation of child presumptive tuberculosis cases might be sufficient to begin
treatment in the absence of bacteriological confirmation.®® Modeling approaches to
inform treatment-decision algorithm development are advantageous for being data-

driven and allowing for formal validation and investigation of generalizability.
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ABSTRACT

Background: Identifying hotspots of tuberculosis transmission can inform spatially-
targeted active case-finding interventions. While national tuberculosis programs maintain
notification registers which represent a potential source of data to investigate
transmission patterns, high local tuberculosis incidence may not provide a reliable signal
for transmission because the population distribution of covariates affecting susceptibility
and disease progression may confound the relationship between tuberculosis incidence
and transmission. Child cases of tuberculosis and other endemic infectious disease have
been observed to provide a signal of their transmission intensity. We assessed whether
local overrepresentation of child cases in tuberculosis notification data corresponds to

areas where recent transmission events are concentrated.

Methods: We visualized spatial clustering of children <5 years old notified to Peru’s
National Tuberculosis Program from two districts of Lima, Peru from 2005-2007 using a
log-Gaussian Cox process to model the intensity of the point-referenced child cases. To
identify where clustering of child cases was more extreme than expected by chance
alone, we mapped all cases from the notification data onto a grid and used a hierarchical
Bayesian spatial model to identify grid cells where the proportion of cases among
children <5 years old is greater than expected. Modeling the proportion of child cases
allowed us to use the spatial distribution of adult cases to control for unobserved factors
that may explain the spatial variability in the distribution of child cases. We compare
where young children are overrepresented in case notification data to areas identified as
transmission hotspots using molecular epidemiological methods during a prospective

study of tuberculosis transmission conducted from 2009-2012 in the same setting.
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Results: Areas in which childhood tuberculosis cases are overrepresented align with
areas of spatial concentration of transmission revealed by molecular epidemiologic

methods.

Conclusions: Age-disaggregated notification data can be used to identify hotspots of
tuberculosis transmission and suggest local force of infection, providing an easily-

accessible source of data to target active case-finding intervention.
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INTRODUCTION

The End TB Strategy’s ambitious goals to reduce tuberculosis incidence require
new interventions to interrupt transmission.! This has led to a renewed interest in active
case-finding strategies, in which risk groups are screened to identify infectious
individuals before they present to care.??® Because untargeted community-based active
case-finding has not consistently demonstrated population-level benefits,*’ there has
been interest in new practical approaches to focus case-finding to population groups
among whom risk is concentrated. One such approach is to target active case-finding to
hotspots, areas in which transmission is most intense.® While evidence supporting the
impact of targeting screening in hotspots is currently limited,® mathematical modeling
suggests that such targeting can produce substantial population-wide reductions in

transmission.111

Conclusive evidence of hotspot transmission typically relies on access to detailed
spatial and pathogen genetic data.'?** While spatial information is often available in
public health reporting systems (e.g. home location), in high-transmission/lower-income
settings, resources for genetic sequencing of pathogens are typically only available in
research studies. Thus, methods to robustly identify hotspots from routine reporting data
would be valuable.® However given that high local rates of tuberculosis notifications
may reflect spatially-aggregated risk for progression of infection, migration of individuals
infected with tuberculosis into the area,® or spatial heterogeneity in diagnostic
capacity,’ finding new ways to probe routine surveillance data to find evidence of local

transmission is a priority.

Spatial differences in the age distribution of tuberculosis cases in a single city
may provide a signal for local transmission intensity.*® In locations where disease

transmission is more intense, cases are systematically younger than in locations where
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disease transmission is less intense.!® We aimed to test this previously posited, but to
our knowledge yet untested, idea that areas where children are overrepresented in
tuberculosis case notification data are areas where recent transmission events are
concentrated. We tested this hypothesis using case notification data from Lima, Peru,
where we were able to compare our inference to a prospective molecular epidemiology
study conducted in the same setting several years later.?%2! This comparison provided
an opportunity to examine whether routinely-collected tuberculosis notification data can

be used to identify transmission hotspots.

METHODS
Study setting and population

We examined data from all tuberculosis cases notified to Peru’s National
Tuberculosis Program from two of Lima’s four health districts, Lima Ciudad and
contiguous catchment areas of Lima Este, between January 1, 2005 and December 31,
2007. Patient demographic and clinical information was available within the notification
data as well as household address, which was identified on high resolution maps
created using Google Earth. Additional details of the study design and mapping

procedures have been described previously.?>%3

Our interest was in identifying areas in which young children were
overrepresented in these routinely collected notification data from 2005-2007 and
whether they correlated with areas identified as transmission hotspots during a
prospective study of tuberculosis transmission conducted from 2009-2012.2! The latter
study included molecular epidemiological characterization of culture-positive cases of
drug-susceptible and drug-resistant tuberculosis from adults older than 15 years using

24-loci mycobacterial interspersed repetitive units-variable-number tandem repeats
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(MIRU-VNTR). Spatial aggregation of Mycobacterium tuberculosis (M.tb) strains

identified by MIRU-VNTR genotype was presumed to indicate transmission.

Data visualization and modeling

We visualized spatial clustering of child cases <5 years old in the natification data
using a log-Gaussian Cox process (LGCP) to model the intensity function driving the
point process describing the distribution of child cases. We used the Igcp package and
defined the Gaussian process with an exponential covariance function and weakly
informative priors on all model parameters (details provided in the Supplementary

Information).?* All data visualization and analysis were performed using R 4.0.1.

Next, we aimed to determine if the clustering of child cases observed in the
exploratory maps was more extreme than would be expected by chance alone. Point-
level census and covariate data that may explain spatial variability in the distribution of
child cases through effect on overall risk were not available for this analysis. Due to the
large number of unique spatial locations observed in the data (10,198) and the well-
known difficulties associated with using a Gaussian process to analyze point-referenced
spatial data when the sample size is large,?® we opted for a method that approximates
the point-referenced model while offering computational improvements.?® Specifically,
we overlaid a grid on the convex hull of the case notification data and modeled the
proportion of reported tuberculosis cases that occurred among children in each grid cell
using a hierarchical Bayesian spatial modeling framework. We chose the grid cell sizes
to be small in order to ensure that the risk within each grid cell was homogeneous and
also considered multiple sizes in subsequent sensitivity analyses. As the size of the grid
cells gets smaller, our approximation to the point-referenced geostatistical model
improves. By modeling the proportion of the tuberculosis cases that were children (as

opposed to simply modeling the number of child cases), we used the distribution of adult
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cases to control for unobserved factors that may explain the spatial variability in the
distribution of child cases. Under this modeling framework, we expect that the local
proportion of child cases will be higher than the expected proportion of child cases over
the entire study area in areas where there is local transmission. The hierarchical model
structure allows us to identify where this occurs and allows us to describe the certainty

with which the proportion is higher.

To do this, we use a logistic regression framework to model the grid cell-specific

proportions such that:

Y;|6;~Binomial(n;, 6;),i = 1,...,m

1(9" )— +
n1—9i =u+¢;

where Y; is the number of child cases observed in grid cell i, n; is the total number of
child and adult cases in the grid cell, m is the total number of grid cells, and 6;
represents the proportion of the total cases in the grid cell that are due to children. We
define child cases as those <5 years old and adult cases as those >15 years old to
clearly separate recent infection among young children from more distant infection
among adults (expecting that cases among older children and young adults between
ages 5 and 15 represent a mix of recent infection and infection that happened earlier in
their lives). We model these proportions on the logit scale as a function of an overall
mean, u (fixed effect), and a grid cell-specific deviation from that mean, ¢; (random

effect).

We anticipate that the proportion of child cases in grid cells that are close
together may be similar. To account for this potential spatial correlation and to obtain
spatially smoothed risk estimates, we estimated the ¢; parameters using a conditional

autoregressive (CAR) model such that:
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where ¢_; is the vector of parameters excluding ¢;; w;; is equal to one if grid cells i and |

share a common border or point and is equal to zero otherwise; t? describes the
variability in the ¢; parameters; and p € (0,1) describes their strength of spatial
correlation. As a result, this model is flexible enough to accommodate a wide range of
spatial patterns as well as the possibility that there is no spatial variability in the
proportion of child cases (i.e., T2 near zero indicates that all ¢; are near zero).
Additionally, examining the posterior distributions of ¢; allows us to determine if the grid

cell proportion differs substantially from the overall mean.

We selected weakly informative prior distributions for all model parameters and
used the CAR.Leroux function in the CARBayes package to obtain posterior samples for
all parameters.?’ Details are provided in the Supplementary Information.?® Using the
posterior samples from each ¢;, we estimate the posterior probability that ¢; is larger

than zero, which would suggest recent transmission based on our hypothesis.

RESULTS
Analysis of notification data

Of the total 11,711 notified tuberculosis cases over the study period, there were
332 children <5 years old, and 10,352 adults >15 years old. The LGCP modeled

intensity of the cases among children <5 years old is given in Figure 1.
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Figure 1. Disease mapping of young children in Peru’s National Tuberculosis
Program data.

Log-Gaussian Cox process modeled intensity of the cases of tuberculosis among
children <5 years old notified to the Peru’s National Tuberculosis Program within two of
Lima’s four health districts, Lima Ciudad and contiguous catchment areas of Lima
Este, between January 1, 2005 and December 31, 2007.

We fit the hierarchical Bayesian spatial model to the case notification data
collected from 2005-2007 aggregated into a 200 m x 200 m grid within the convex hull of
the data. The model suggested six grid cells in which >95% of the posterior distribution
of the random effect terms were above zero and an additional eight grid cells in which
>90% of the posterior distribution was above zero (Figure 2). Examination of the
posterior estimate of the spatial correlation parameter, p, suggested that the excess

variability observed in the data was spatially structured (posterior mean 0.75, 95%
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credible interval 0.24-0.98). Posterior summaries of the remaining parameters are

provided in the supplementary Table S1.

Figure 2. Identifying areas with local overrepresentation of young children in
tuberculosis notification data.

Hierarchical Bayesian spatial model fit to the child cases <5 years old and adult cases
>15 years old in the notification data aggregated into 200 m x 200 m grid cells overlaid
on the convex hull of the data. The model suggested six grid cells (red) in which >95%
of the posterior distribution of the random effect terms were above zero, and an
additional eight grid cells (orange) in which >90% of the posterior distribution was
above zero. The proportion of child cases in these grid cells is greater than expected
over the study region, suggesting recent tuberculosis transmission based on our
hypothesis.

Comparison to prospective molecular epidemiological study

Figure 3a, reproduced with permission from Zelner et al., shows areas in which
there was statistically significant spatial aggregation of specific M.tb MIRU-VNTR
genotypes, consistent with localized transmission of these strain types.?* In Figure 3b,
we overlay the grid from Figure 2 to demonstrate the proximity between areas where
children <5 years old are overrepresented in case-notification data and areas where
specific strains are concentrated. In the supplementary Figs. S1-S2 we show that these

findings are insensitive to assumed grid cell size and age cut-offs for the definitions of
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young child and adult cases. Figure 4a, also reproduced with permission from Zelner et

al., shows the spatial variation in annual per capita incidence of tuberculosis by
healthcare catchment area.?* We similarly overlay the grid from Figure 2 to create
Figure 4b to demonstrate the proximity between areas where child cases are

overrepresented and high local incidence.

— R —
0 1 2km 0 1 2km

Figure 3. Comparing tuberculosis transmission inference of hotspots of active
transmission.

(a) Reproduced with permission from Zelner et al. demonstrating regions (shaded)
identified as tuberculosis transmission hotspots. Different color shading denotes
clusters of different drug-sensitive and drug-resistant strains identified by MIRU-VNTR
genotype.(21) (b) A grayscale reproduction of this figure is overlaid on the modeled
200 m x 200 m grid from Figure 2. We highlight those grid cells in red and orange,
where the modeled proportion of child cases <5 years old is greater than expected, to
demonstrate the proximity between areas with higher local childhood tuberculosis
notification and areas with conclusive evidence of transmission.

Note— MIRU-VNTR, 24-loci mycobacterial interspersed repetitive units-variable-
number tandem repeats.

DISCUSSION
In this paper we evaluated whether routinely-collected, age-disaggregated

notification data can be used to identify hotspots of spatially concentrated tuberculosis

transmission. Our analysis, based on routine data collected from 2005-2007, pinpointed
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a region where child cases of tuberculosis were overrepresented relative to the number
of adult cases in the area. This region was previously identified as an area of high
transmission using molecular genetic data from a prospective study conducted from
2009-2012.2* This concordance of transmission inference obtained using different
methods and datasets supports the use of routinely-collected age-disaggregated

notification data to identify areas of local transmission intensity.

Annual Tuberculosis Cases/100K [N Annual Tuberculosis Cases/100K . |
0 100 200 300 0 100 200 300

Figure 4. Comparing per capita tuberculosis incidence to putative hotspots.

(a) Figure reproduced with permission from Zelner et al. demonstrating the spatial
variation in annual per-100 thousand incidence of drug-sensitive and drug-resistant
tuberculosis by healthcare catchment area.(21) (b) A grayscale reproduction is overlaid
on the 200 m x 200 m grid from Figure 2 to demonstrate the proximity between the
colored grid cells, where the modeled proportion of child cases <5 years old is greater
than expected, and an area of high local incidence of tuberculosis.

Child cases have been suggested as a useful signal of transmission intensity for
tuberculosis as well as other infectious disease.?® For example, a number of studies
used the age-prevalence of tuberculin-skin test positivity to measure risks of infection
from household and community exposure.®>3! Previous studies have suggested that
areas with high childhood tuberculosis case notification rates may correspond to areas

of active transmission;3?-3* however, only one included covariates to account for potential
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non-transmission explanations of the spatial distribution of child cases.** Thus, our
analysis is the first to provide molecular and epidemiological evidence to corroborate
inferences of local tuberculosis transmission with attempts to control for unobserved,
spatially heterogeneous, non-transmission factors (such as risk factors for progression of
infection, migration of infected individuals into the area, and/or diagnostic capacity) that

may explain the distribution of child cases.

Considering that both the routine notification data and the prospective molecular
epidemiology study included tuberculosis cases separated by as many as six years, we
also note that the identified hotspot appears to have been persistent over several years.
This suggests that tuberculosis transmission hotspots identified from notification data
may be observable for long enough periods of time to guide targeted interventions, such

as spatially focused active case-finding.

It is important to note several simplifying assumptions in our analysis. Given the
absence of detailed information on the distribution of covariates in the source population,
we incorporated all spatial heterogeneity in the distribution of child cases into the
random effect term of the model. As a result, our model necessarily attributes all spatial
variability in the modeled proportions to possible recent transmission. If there are other
non-transmission-related factors that impact the proportion of total cases that occurred in
children, this could lead to a grid cell being incorrectly labeled as a transmission
“hotspot.” However, given the consistency of our results with the previous findings that
more directly measure transmission, this may not be a major issue in this work. Our
hierarchical Bayesian spatial modeling approach (as well as the log-Gaussian Cox
process intensity modeling approach) is flexible enough to incorporate local covariate
data as regression components. Future study should include such information when

available.
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Though we provide compelling evidence, we must be cautious interpreting that
age-disaggregated data will always provide a reliable signal of transmission. Molecular
evidence of transmission against which we compare transmission inference was only
available for those >15 years old. Thus, we are unable to biologically link childhood
cases to the identified clusters of transmission. Furthermore, accurately diagnosing
tuberculosis among children is difficult. While it is clear that missing child cases in
notification data likely underestimates transmission, it is unclear how false positives may
affect signal detection. In addition, though we demonstrate that the putative hotspot
persists over time, it is not possible to assess how mobility over the time period through
which all data from these two studies was collected may affect hotspot detection. It is
important to note that our findings do not imply an either-or choice between genetic and
age-incidence data: future analyses exploring the impact of combining granular
molecular genetic data with age-incidence data in a single model could improve the

predictive capacity of such models.

This methodology may be adapted to settings in which high-resolution residence
data is not readily available. For example, in settings where residential geocoding is not
feasible, it may be reasonable to model the proportion of child cases in the smallest
recorded unit to which the household belongs (such as modeling the proportion in the

neighborhood, community, and/or administrative unit).

CONCLUSIONS

In summary, we show that age-disaggregated tuberculosis notification data may
be used to investigate potential hotspots of tuberculosis transmission. This suggests that
the use of models leveraging widely available data should be explored as tools for
targeting case-finding and treatment efforts in high-transmission locations in the hope of

maximizing the direct and indirect protective benefits of active screening approaches.
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SUPPLEMENTARY INFORMATION

Log-Gaussian Cox process details

The log-Gaussian Cox process provides an approach to model the intensity
function driving spatial point processes. Examining the fitted intensity of the cases
among children <5 years old provides a robust means to identify clusters of child cases.
The Igcp package in R models the intensity function of the spatial region that contains a
regular grid with a cell width chosen to be sufficiently small to approximate continuous
spatial variation. We selected a cell width of 100 m, defined the Gaussian process with
an exponential covariance function, and placed weakly informative priors on all model
parameters as recommended by the Igcp Vignette. We collected 100,000 posterior
samples after discarding the first 10,000 as a burn-in period, and thinned by a factor of
90 to result in 1,000 samples from which we make posterior inference. Markov-chain
Monte Carlo was performed using the Metropolis-adjusted Langevin algorithm with a
target acceptance probability set to 0.574, achieved by the Andrieu and Thoms algorithm
as implemented by the Igcp package.
Hierarchical Bayesian spatial model details
Justification for small grid cell

Small grid cells ensure that the assumption of homogenous risk within the grid
cell is plausible and leads to finer scale mapping of risk across the map. Additionally,
smaller grid cells allow for better approximation of a model of continuous spatial

variation.
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Prior distribution specifications
We placed weakly informative priors on the parameter describing the fixed effect
term (u), the parameter describing variability in the random effect terms (z2), and the
parameter describing the spatial correlation parameter (p) such that:
u~Normal(0,1000)
72~Inverse Gamma(0.01,0.01)
p~Uniform(0,1)
Model interpretation
Values for p near zero suggest near-independence of the spatial random effects
while p near one suggests a strong dependence on neighboring values (i.e., the
conditional mean is an average of the neighboring values). We adopted the queen
definition of neighbors because there was no data to suggest that grid cells sharing
bordering points are not unrelated.
Model convergence and posterior parameter estimation
Model convergence was assessed using visual inspection of individual parameter
traceplots and the Geweke diagnostic calculated for each parameter. Neither tool
suggested obvious convergence issues (Table S1). In total, we collected 100,000
posterior samples after discarding the first 10,000 as a burn-in period. We further
thinned the remaining samples by a factor of 10 to reduce posterior autocorrelation,
resulting in 10,000 samples with which to make posterior inference.
Sensitivity Analyses
Sensitivity analysis to child and adult age cut-offs
We modeled the proportion of children of the total number of child and adult
cases using different age cut-offs for both children (<2 years old, <5 years old, <15 years
old) and adults (>15 years old and >25 years old). In Fig. Sla-e, we demonstrate that

the highlighted grid cells, where the proportion of child cases is greater than expected,
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continue to approximate an area with molecular evidence of transmission and our
findings are insensitive to the definition of children and adults.

In Fig. S1c where the highlighted grid cells that represent where the proportion of
cases <15 years old is greater than expected do not so clearly approximate an area with
molecular evidence of transmission. This is likely because young children in notification
data can only have been infected during the period that they have been alive, whereas
older children in notification data represent a mix of recent infection and infection that
happened earlier in their lives.

Sensitivity analysis to grid size

We varied the size of the grid over which we aggregated the notification data to
demonstrate that our proposed method is insensitive to grid size. We demonstrate this
finding in Fig. S2a-i, where the highlighted grid cells, representing where the proportion
of child cases is greater than expected, approximate the same area—irrespective of grid

size—that corresponds to an area with molecular evidence of transmission.
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Table S1. Hierarchical Bayesian spatial model posterior parameter estimates

Posterior parameter estimates and model convergence diagnostics for the hierarchical Bayesian
spatial CAR model specified in the main text. This model was built using case notification data
collected from 2005-2007 aggregated into a 200 m x 200 m grid using age cut-offs for children as
<5 years old and adults as >15 years old.

Model Parameter Posterior Median (95%  Effective Number Geweke Diagnostic

credible interval) of Independent Z-score
Samples
u -3.6 (-3.8--3.5) 475.0 -0.2
2 1.3(0.3-2.6) 243.6 0.1
p 0.7 (0.2-1.0) 267.0 -0.3
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Figure S1. Sensitivity analysis to child and adult age cut-offs. Model fit using case
notification data aggregated into 400 m x 400 m grid cells using different age cut-offs to define
child and adult cases as follows: (a) child: <5 years old, adult: >15 years old (presented in the
main text); (b) child: <2 years old, adult: >15 years old; (c) child: <15 years old, adult: >15 years
old; (d) child: <5 years old, adult; >25 years old; (e) child: <2 years old, adult; >25 years old. We
highlight those grid cells in which >90% of the modeled posterior distribution of the random effect
is above zero (orange), which includes those grid cells in which >95% of the modeled posterior
distribution is above zero (red).
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Figure S2: Sensitivity analysis to grid size. Model fit using age cut-offs of children as <5 years
and adults as >15 years old on different size grids as follows: (a) 200 m x 200 m (presented in the
main text); (b) 300 m x 300 m; (c) 400 m x 400 m; (d) 500 m x 500 m; (e) 600 m x 600 m; (f) 700
m x 700 m; (g) 800 m x 800 m; (h) 900 m x 900 m; (i) 1000 m x 1000 m. We highlight those grid
cells in which >90% of the modeled posterior distribution of the random effect is above zero
(orange), which includes those grid cells in which >95% of the modeled posterior distribution is
above zero (red).
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ABSTRACT
Background: Despite multiple tuberculosis (TB) prevalence surveys reporting a relatively
high frequency of bacteriologically confirmed, active TB among individuals reporting no

typical symptoms of disease, our understanding of this phenomenon is limited.

Objective: To quantify the epidemiological burden and estimate associations between

individual-level variables and this “subclinical” presentation.

Methods: We performed a secondary analysis of TB prevalence survey data from the
South African communities of the Zambia and South Africa Tuberculosis and AIDS
Reduction trial. Generalized estimating equations were used to estimate the association
between individual-level demographic, behavioral, socio-economic, and medical
variables and the risk of bacteriologically positive TB among participants not reporting

any symptoms consistent with active TB.

Results: The crude prevalence of TB was 2,222.1 cases per 100,000 population (95% CI
2,053.4-2,388.5); 44.7% (295/660) of all documented prevalent cases of TB were
subclinical. Current tobacco smoking (OR 2.37, 95% CI 1.41-3.99) and HIV-positive

status (OR 3.26, 95% CI 2.31-4.61) were significantly associated with subclinical TB.

Conclusion: Individuals who smoke or have HIV may be at increased risk of active TB
and not report typical symptoms consistent with disease. This suggests possible
shortcomings of symptom-based case finding which may need to be addressed in similar

settings.
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INTRODUCTION

In 2017, only 6.4 of the estimated 10.0 million individuals with incident
tuberculosis (TB) worldwide were reported to the World Health Organization (WHO).!
Several possible mechanisms may contribute to the gap between true TB incidence and
TB notifications: 1) individuals with TB may not self-present to health care providers for
diagnosis due to poor self-recognition of symptoms and/or barriers to accessing
healthcare; 2) individuals with TB may self-present to health care providers, but fail to be
accurately diagnosed due to imperfect diagnostic practices or diagnostic tools; and 3)
individuals with TB may be accurately diagnosed, but not recorded by standardized

reporting systems due to imperfect administrative systems.?

Identifying the specific mechanisms responsible for the overall gap between
estimated TB incidence and natifications has been highlighted by the WHO and the
Global Fund as a major research priority,' and efforts to study leaks in the “TB care
cascade” have helped to quantify deficiencies in diagnosis (mechanism 2 above)* and
notification (mechanism 3 above).®> TB diagnosis in most settings requires individuals to
recognize their own symptoms and seek care (i.e., passive case-finding); therefore, the
frequency of poor self-awareness of symptoms (mechanism 1) is challenging to quantify.
TB prevalence surveys, in which all eligible individuals are screened for TB disease
regardless of symptoms, have revealed that in some settings a large fraction of
individuals with prevalent, undiagnosed TB may be “subclinical” and fail to report any
classical symptom of TB, such as cough, fever, weight loss and night sweats. For
example, analysis of national TB prevalence surveys in Asia revealed that between 40%
and 79% of all individuals with prevalent TB did not report symptoms that met screening
criteria.® It is not clear how many of individuals detected with subclinical prevalent TB

would have eventually become aware of symptoms and seek care.
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Esmail et al. recently suggested that the limited evidence of the benefit of active
case-finding interventions using symptom-based screening for reducing TB prevalence
might be attributable to individuals with subclinical TB in transmission.” They
hypothesized that individuals with chronic cough (for example, due to pre-existing
respiratory conditions, smoking, or unrelated respiratory infections) will be less likely to
notice the onset of TB symptoms and more likely to transmit Mycobacterium tuberculosis
infections due to persistent coughing behavior. Furthermore, these individuals may
maintain normal activities and social behaviors, further increasing the likelihood of
transmission. While the presence of chronic cough for reasons other than TB has been
associated with delays in presentation and diagnosis of TB,%*? the epidemiological

importance of subclinical TB has not yet been well-characterized.

Here we present a secondary analysis of data from TB prevalence surveys in
South Africa to 1) quantify the burden of subclinical TB, and 2) estimate the association

between patient-level variables and subclinical TB.

METHODS

Setting and study population

In 2010, TB prevalence surveys were conducted in eight communities in the
Western Cape Province of South Africa that were part of the Zambia and South Africa
Tuberculosis and AIDS Reduction (ZAMSTAR) trial. Trial communities were selected
based on TB notification rates greater than 400/100,000 per annum, high human
immunodeficiency virus (HIV) prevalence, and proximity to a TB diagnostic center.
Community-level HIV prevalence rates did not exist at the time of site selection;
however, expert opinion and available data defined all communities as having an HIV
prevalence higher than provincial estimates. The detailed ZAMSTAR study design has

been described previously. Below, we provide brief details relevant for this analysis.'®14
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Data collection

TB prevalence surveys were conducted over a period of 12 months. The
communities were divided into >150 clusters demarcated by census enumeration areas,
and trained study personnel visited all households. Informed consent was provided by
eligible adults (individuals aged 218 years who stayed in the household the previous
night. All participants were asked to produce spot respiratory secretion samples, either
spontaneously or with the help of breathing techniques. Research assistants
administered a structured questionnaire to elicit demographic, behavioral, clinical, and
socio-economic information (Supplementary Data S1). Participants were asked whether
they had cough, fever, drenching night sweats, or weight loss at the time of survey. HIV
status was determined by testing participants who provided a finger-prick sample using
Determine™ HIV-1&2 test kits (Alere, Waltham, USA). Self-reported status was

documented in case of participants who refused consent for HIV testing.

Case definitions

A case of bacteriologically confirmed TB (confirmed TB) was defined as a
participant who produced a respiratory sample resulting in a positive culture for M.
tuberculosis.'® A subclinical case of TB (subclinical TB) was defined as a participant with
bacteriologically confirmed TB who did not report any of the symptoms specified by the
WHO for diagnosis of TB: cough, 1 month of fever, weight loss, and night sweats.*® A
symptomatic case of TB (active TB) was defined as a participant with bacteriologically
confirmed TB by culture who reported at least one symptom. No TB was defined as

having no microbiologic evidence of M. tuberculosis on culture.
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Data analysis
Crude prevalence of TB was calculated among the entire study population, the
population reporting no symptoms associated with TB, and the population reporting at

least one of the symptoms associated with TB.

Multivariate generalized estimating equations (GEE) were used to provide
population-average estimates of odds ratios (OR) between individual-level variables and
the risk of bacteriologically positive TB among participants who did not report any
symptoms consistent with TB at the time of the prevalence survey. We included basic
demographic (age, sex, race), socio-economic (education, occupation), behavioral
(tobacco smoking, alcohol use), and health (previous TB, HIV infection, diabetes) data

that have well-documented associations with risk of TB.6

Because data collected by cluster violates the independence assumptions made
by regression, we selected GEEs and specified an exchangeable correlation structure.
GEEs provide reasonable estimates of the log(OR) and standard errors when the
number of clusters is large.!” Variables with P < 0.5 after a Bonferroni Correction for
multiple comparisons testing were considered to be significantly associated with culture-
positive TB. A complete case analysis was performed in order to fit the model. Analyses
were performed using R v3.3.2 programming software (R Computing, Vienna, Austria)

using the ‘geepack’ package geeglm function for the GEEs.*®

Ethics

Approval for this analysis was given by Stellenbosch University, Tygerberg,
South Africa (N17/09/084). Yale University Institutional Review Board, New Haven, CT,
USA, exempted this study from a full board review, as the Yale-based investigators did
not have identifying data. Approval for the ZAMSTAR trial was given by the Health

Research Ethics Committees of Stellenbosch University, the University of Zambia
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(Lusaka, Zambia), and the London School of Hygiene & Tropical Medicine (London, UK).

Written informed consent was provided by participants during the prevalence surveys.

Participants did not give consent for data to be shared.

RESULTS

Of the 32,792 eligible adults providing consent to participate in the ZAMSTAR
trial prevalence survey in South Africa (78% of those approached), 99.9%

(32,770/32,792) had recorded data on age and sex. Evaluable respiratory secretions

were obtained from 91.6% (30,017/32,770) of those providing consent. There were 300

participants receiving TB treatment at the time of the survey who were excluded from

this analysis.

Adults Providing Consentin
South African ZAMSTAR
Communities
N =32,792

™

Agel/Gender Recorded and
Provided Sputum
N=32770

AgelGender not Recorded
N =22

¥

Participants with Evaluable
Sputum
N = 30,017

Individuals with
Unevaluable Sputum
N=2753

v

Participants Included in Analysis
N =29,717

Participants on TB therapy
at time of Survey Excluded
from Analysis
N =300

e

Participants wio any Classical
Symptoms of TB (Cough, Night
Sweats, Fever, Weight Loss)
N=18,944

Symptomatic Participants
N=10,773

™

Participants wio Classical
Symptoms of TB Complete for
Variables in Analysis
N =10,995

Participants Excluded
from Analysis due to
Missing Data
N=7949

I

¥

No Symptoms and

Non-TB
N=10,832

Subclinical TB
(No Symptoms and
Bacteriologically-
confirmed TB)
N=163

Figure 1. Flow diagram of participants included in this analysis.

Note: ZAMSTAR—Zambia and South Africa Tuberculosis and AIDS, Reduction TB—

tuberculosis.
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Of the surveyed participants, 64% (18,944/29,717) reported no symptoms
associated with TB (as defined above), and the remaining 36% (10,773/29,717) reported

at least one symptom consistent with TB (Figure 1).

The crude prevalence of TB among those not on treatment within the South
African ZAMSTAR trial communities was 2,222.1 cases per 100,000 (n = 660 cases,
95% Cl 2,053.4-2,388.5 per 100,000). Of the total number of bacteriologically confirmed
cases of prevalent TB, 44.7% (295/660) were subclinical. The crude prevalence of TB
among participants reporting no symptoms was 1,557.2 per 100,000 (n = 295, 95% ClI
1,381.0-1,733.5 per 100,000). The crude prevalence of TB among participants reporting
symptoms was 3,388.1 per 100,000 (n = 365, 95% CI 3,046.4-3,729.8 per 100,000).
Demographic breakdown of the data for both the symptomatic and asymptomatic
populations and the prevalence of bacteriologically confirmed TB within the levels of
each variable are given in Table 1. Among the participants not reporting any symptoms,
data on all modeled variables were available for 58% (10,995/18,944). The primary
source of missing data was HIV-status—7,809 participants did not undergo HIV testing
or report HIV status. The proportion of younger males among participants excluded from
the analysis was higher than the proportion among participants included in the complete
case analysis. Full description of the differences can be found in Supplementary Table

S1.

Multivariate analysis on sufficiently complete cases (Table 2) found current
tobacco smoking (OR 2.37, 95% CI 1.41-3.99) and HIV-positive status (OR 3.26, 95%
Cl 2.31-4.61) to be independently associated with an increased risk of subclinical TB.
Participants in the 30—34 years age group were less likely to have subclinical TB (OR
0.45, 95% CI 0.24-0.84). History of tobacco smoking was not significant after correcting

for multiple hypothesis testing (OR 1.68, 95% CI 1.04-2.71).
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Table 1. Demographic breakdown of all participants in the eight South African
ZAMSTAR trial communities (including participants with missing data) grouped by
presence of symptoms and showing prevalence of bacteriologically confirmed TB.
Note: ZAMSTAR—Zambia and South Africa Tuberculosis and AIDS, Reduction TB—
tuberculosis, HIV—human immunodeficiency virus.

Crude Crude
No TB with TB case with subclinical symptomatic
no classical no classical TB point No TB with TB case with TB point
symptoms of TB symptoms of TB prevalence  symptoms at the  symptoms at the prevalence
Vanable at time of survey  at ime of survey  {1100000) time of survey time of survey (A100000)
Total population, n 18649 2595 1557.2 10408 365 33881
Male sex, n 6923 129 18293 3949 181 43826
Age group, years
18-24 2268 30 13055 1041 25 23452
25-29 1250 18 14196 B26 20 3096.0
30-34 944 19 1973.0 504 25 47259
35-39 729 19 25401 453 23 48319
40-49 907 24 25779 645 48 6926.4
50-59 470 1 22869 405 23 5373.8
=60 351 8 22284 272 17 5882.4
Missing 4 1] 1] 3 1] 1]
Female sex, n 11726 166 13959 6459 184 27698
Age group, years
18-24 3698 55 14655 1609 45 27207
25-29 2162 32 14585 1026 37 3480.7
30-34 1567 12 760.0 797 22 2686.2
35-39 1211 15 12235 653 14 2099.0
40-49 1568 19 1197.2 1068 29 26436
50-59 896 16 1754.4 750 24 3100.8
=680 ] 17 2673.0 550 13 23091
Missing 5 0 0 & 0 0
Ethnicity
MNon-Black 1714 26 1494 3 854 48 5321.5
Black 16935 269 15636 9554 317 3211.4
Tobacco smoking
Mever smoker 14794 204 13602 7222 212 2851.8
Ex-smoker 2330 52 21830 1965 103 4980.7
Current smoker 1525 39 2493 6 1221 50 39339
Alcohol use
MNever 10944 144 12987 4992 112 2184.4
Daily 340 1 31339 305 16 4984 4
Occasional 6594 121 180 .92 4420 197 4266.8
Ex-drinker 77 19 24051 621 40 5472.0
Previously infected with TB
Ma 16849 252 14736 8648 274 30711
Yes 1794 43 23408 1756 m 4926.9
Missing 6 1] 1] 4 1] 1]
Diabetes
Ma 17552 279 1564.7 9307 338 3504.4
Yes 1097 16 1437 .6 110 27 23936
HIV status
Negative 9356 110 11621 5710 173 29407
Positive 1484 53 IME 3 1230 76 5819.3
Missing 7809 132 16623 3468 116 3236.6
Final year of education
Mone/Grade 1/Grade 2 &1 23 2662.0 715 34 4539.4
Grade 3-Grade 6 1938 54 27108 1410 55 3754.3
Grade 7-Grade 10 BE71 113 1665.7 4142 167 38756
Grade 11-Grade 12 8332 97 11508 3755 10 26193
Caollege/university 867 8 914 .3 386 8 2030.5
Occupafion at year of survey
Mone or own land 7485 137 1797.4 4340 172 38121
Occasional 1071 22 20128 1164 4 3402.5
Employed 6462 93 14188 3070 101 3185.1
Unable to waork 325 8 24024 264 17 6049.8
Student 2536 27 10535 1174 26 21667
Homemaker 770 8 10283 396 8 1980.2
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Table 2. Multivariate analysis of predictors of bacteriologically confirmed TB among

those participants not reporting any current symptoms of TB*

* Only variables with sufficiently complete data were included in this analysis.

T Indicates significance with P < 0.05 and Bonferroni Correction allowing for 10% false-

discovery rate.

Note: TB—tuberculosis, OR—odds ratio, Cl—confidence interval, HIV—human
immunodeficiency virus.

OR 95% ClI P value

Baseline 0.02 0.01-0.04 <0.001
Sex

Male

Femnale 0.91 0.63-1.31 0.615
Age group, years

18-24

25-29 0.87 0.54-1.41 0.572

30-34 0.45 0.24-0.84 0.012!

35-39 1.12 0.67-1.86 0.665

40-49 0.82 0.46-1.44 0.488

50-59 1.14 0.58-2.24 0.706

=60 0.71 0.29-1.74 0.453
Race

Other

Black 1.11 0.66-1.85 0.696
Tobacco smoking

MNever smoker

Ex-smoker 1.68 1.04-2.71 0.032

Current smoker 37 1.41-3.99 0.001"
Alcohol use

Never

Daily 0.50 0.13-1.96 0.321

Occasional 1.09 0.75-1.59 0.657

Ex-drinker 1.34 0.69-2.58 0.385
Previously infected with TB

No

Yes 1.13 0.73-1.74 0.585
Diabetes

No

Yes 1.22 0.69-2.15 0.500
HIV status

Negative

Positive 3.26 2.31-4.61 <0.0011
Final year of education

None/Grade 1/Grade 2

Grade 3—-Grade 6 0.70 0.32-1.52 0.363

Grade 7-Grade 10 0.78 0.38-1.60 0.501

Grade 11-Grade 12 0.61 0.29-1.30 0.204

College/university 0.76 0.27-2.20 0.618
Occupation at year of survey

MNone or own land

Occasional 0.96 0.51-1.81 0.889

Employed 0.84 0.57-1.23 0.359

Unable 1.27 0.43-3.78 0.666

Student 0.81 0.44-1.48 0.487

Home-maker 0.41 0.13-1.31 0.131
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DISCUSSION

In our study population (n = 29,717), 44.7% of participants with bacteriologically
confirmed prevalent TB did not report any classical TB symptom during the standard
screening interview; this is consistent with several other large-scale prevalence studies

reporting high burdens of subclinical disease.®

A growing body of evidence supports the notion that subclinical disease may be a
useful category within the continuum of TB infection and suggests that disease course
after infection may include a subclinical state.'%2° History of smoking and HIV infection
are well-known to be associated with active TB disease; these findings are reflected in
the subclinically infected individuals in this analysis. This perhaps suggests that
subclinical disease may be a subset of active TB disease. Analysis of the symptomatic
group (data not shown) did indicate that smoking and HIV infection in the ZAMSTAR
survey were also associated with TB disease; however, in the case of smoking, the
association was not as strong as with TB disease in the subclinical asymptomatic group.
Our analysis of ZAMSTAR prevalence data was not powered to compare the

associations.

Molecular and mathematical evidence suggests that it may be useful to think of
subclinical TB as distinct from active TB.2-?° A recent meta-analysis of active case-
finding interventions revealed that these interventions have generally failed to show
either reductions in community incidence or improvement in individual patient outcomes,
although such case-finding lead to earlier disease detection among individuals
screened.? Dowdy et al. used a model that included subclinical disease to demonstrate
the potential limitations of symptom-based screening and to suggest how active case-
finding strategies may improve control, especially if those not reporting classical

symptoms could be identified.?? However, the impact of such strategies will depend on
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guantities for which we currently have little data, such as the relative infectiousness of
individuals with bacteriologically confirmed TB that do not have symptoms compared

with those who have symptoms, and the natural history of subclinical TB.

Given the nature of the cross-sectional ZAMSTAR prevalence data, information
on whether individuals with subclinical TB progressed to symptomatic TB was
unavailable. A cohort study may be able to provide insight into determinants of
subclinical TB and disease progression; however, the natural history of subclinical TB is
challenging to investigate due to ethical concerns of withholding treatment from
individuals with bacteriological confirmation. Historical cohorts from the pre-anti-TB
chemotherapeutic era may inform the natural history if symptomatic and asymptomatic
individuals were investigated for bacteriological confirmation of TB with follow-up.
Narrowing uncertainty around key parameters related to infectiousness of subclinical TB
may inform more effective interventions; for example, if individuals with subclinical
disease remain in this health state for long periods of time and are likely to transmit M.
tuberculosis, active-case finding interventions to identify individuals with subclinical

disease would be especially attractive.

Our analysis supports Esmail et al.’s hypothesis that behaviors and health
conditions that mask recognition of classical TB symptoms, such as smoking, may
inform the design of active case-finding interventions with greater impact. Since upper
respiratory infections and chronic cough associated with cigarette smoking may impede
self-recognition of TB symptoms and delay healthcare seeking, the strong association
between subclinical TB and current cigarette smoking shown in our analysis is
potentially significant.?’?® For example, our findings support the possibility of further
probing for details about symptoms possibly relating to TB among individuals who

smoke and do not report symptoms upon initial screening. Our analysis of the
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ZAMSTAR trial TB prevalence survey allows us to assess the relationship between
smoking behaviors and current TB, therefore avoiding potential recall bias that limit
retrospective studies that assess smoking behaviors after a TB diagnosis has been

made or among symptomatic individuals seeking a diagnosis.

The ZAMSTAR trial prevalence data provides compelling evidence that HIV
infection is also independently associated with subclinical TB. Crude HIV prevalence in
the South African ZAMSTAR trial communities, based on individuals who consented to
give blood for HIV testing or self-report HIV status in the TB prevalence survey, was
about 16,100 per 100,000; however, HIV status was missing for more than one third of
the population. Previous studies of TB among HIV-positive individuals have identified
subclinical disease in these populations, and have posited that subclinical presentation
may be related to atypical disease associated with immune suppression.?2%-31 Our
study further supports the importance of screening for TB among individuals infected by
HIV in high TB-HIV co-burden settings, and that such screening may need to be more

comprehensive than an assessment of symptoms through questionnaires.

Limitations

Our ability to assess the presence of symptoms was based on several questions
related to the presence of any cough, fever, weight loss and drenching night sweats
(Supplementary Data S1). While responses by surveyed participants to these questions
may accurately reflect their ability to recognize their current symptoms, it is not clear
whether additional questioning could have revealed the presence of worsening baseline

cough or other potential signs of TB.

Our analysis is also limited by substantial missing data, especially related to HIV
infection, which may introduce bias. Given that younger adult males are known to have a

higher prevalence of active TB, it will be important to investigate potential reasons for the
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lack of data on HIV status to enhance the strength of future study of subclinical

infection.t

Radiological data were not available for analysis. Previous studies have shown
that radiological findings are variable in the context of subclinical infection,?32%32 which is
significant, given that many prevalence surveys and diagnostic algorithms rely on the

presence/absence of such findings.

CONCLUSION

Nearly 45% of participants with bacteriologically confirmed TB in the South
African ZAMSTAR trial TB prevalence surveys denied experiencing any of classical
symptoms of TB. Among those participants for which we had sufficiently complete data,
current smoking was independently associated with a greater than two-fold odds, and
HIV infection was independently associated with a greater than three-fold odds of
subclinical TB. These findings confirm the importance of new approaches for detecting
disease among individuals with atypical presentation or among individuals who may
have other explanations for their symptoms, which can impede self-recognition of TB.
While this study provides additional support for claims of the potential importance of
subclinical disease, the epidemiological significance of subclinical disease remains
unclear, and studies which can address the natural history of subclinical disease and the

transmission potential of individuals with subclinical TB will be valuable.
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Supplementary Table 1:
Comparison of participants without symptoms sufficiently complete for multivariate analysis
against those excluded from the analysis due to missing data. Males were more likely to be
excluded from the analysis than females; other than sex, the distributions of variables among

those included in our analysis were similar to those excluded.

Data Included in Analysis®

Data Excluded from Analysis?

Population Total 10995 7949
Gender Male 3464 31-5% 3588 45-1%
Female 7531 68:5% 4361 54-9%
Age Group 18-24 3426 31-2% 2625 33:1%
25-29 2060 18-7% 1402 17-7%
30-34 1528 13-9% 1014 12-8%
35-39 1170 10-6% 804 10-1%
40-49 1471 13-4% 1047 13-2%
50-59 789 7-2% 604 7-6%
60+ 551 5-0% 444 5-6%
Male Age Group 18-24 1039 30:0% 1259 35:1%
25-29 620 17-9% 648 18-1%
30-34 477 13-8% 486 13-6%
35-39 368 10-6% 380 10-6%
40-49 496 14-3% 435 12-1%
50-59 265 7-7% 216 6-0%
60+ 199 5-7% 160 4-5%
Female Age Group 18-24 2387 31-7% 1366 31-4%
25-29 1440 19-1% 754 17-3%
30-34 1051 14-0% 528 12-1%
35-39 802 10-6% 424 9-7%
40-49 975 12-9% 612 14-0%
50-59 524 7-0% 388 8-9%
60+ 352 4-7% 284 6-5%
TB-status Negative 10832 98-5% 7817 98-3%
Positive 163 1-5% 132 1-7%
Race Non-Black 1257 11-4% 483 6-1%
Black 9738 88:6% 7466 93-:9%
Tobacco Smoking Never smoker 8773 79-8% 6225 78-:3%
Ex-smoker 1527 13-9% 855 10-8%
Current smoker 695 6-3% 869 10-9%
Alcohol Use Never 6473 58-9% 4615 58-1%
Daily 179 1-6% 172 2:2%
Occasional 3837 34-9% 2878 36:2%
Ex-drinker 506 4-6% 284 3:6%
Previously Infected No 9763 88-8% 7338 92-4%
w/ TB
Yes 1232 11-2% 605 7-6%
Diabetes No 10218 92:9% 7613 95-8%
Yes 777 7-1% 336 4-2%
HIV Status No 9458 86-0% 8 100-0%
Yes 1537 14-0% 0 0-0%
Final Year of None/Grade 458 4-2% 406 5:1%
Education 1/Grade 2
Grade 3 - Grade 6 1116 10-2% 876 11-0%
Grade 7- Grade 10 3912 35:6% 2872 36:1%
Grade 11 - Grade 4959 45-1% 3470 43-7%
12
College/University 550 5-0% 325 4-1%
Occupation at Year None or Own Land 4666 42-4% 2956 37-2%
of Survey
Occasional 682 6-2% 411 5-2%
Employed 3627 33:0% 2928 36-8%
Unable to Work 175 1-6% 158 2-0%
Student 1338 12-2% 1225 15-4%
Home-Maker 507 4-6% 271 3-4%

a = Percentages given as a total of the entire population of participants included in the analysis or
participants excluded in the analysis
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Supplementary Appendix 1:

Structured individual and household questionnaires used in the Zambia South Africa TB and
AIDS reduction trial prevalence survey! to elicit demographic, behavioral, clinical, and
socioeconomic information. Trained research assistants administered these questionnaires in the
trial participants’ households.

Indiwidual Questionnaire

SECTION 1

ALL QUESTIONS IN THIS SECTION MUST BE ANSWERED

HOUSEHOLD BARCODE
Q01_INC Interviewer's code
Qo2_DAT Date today
Q03_SEN Serial Number

Qos_HOH Are you the Head of Household?

Qoe_SEX Sex M F
[ 1] 2 |
Q07_AGE Age
Qo3_MAR Married to
Q09_DIS Disability?
Mo Disability 1
Sight{blind, severe visual impairment) 2
Hearing [deaff profoundly hard of hearing) 3
Communication{speech impairment) 4
Physical{needs wheelchairf crutches) 5
Mental disability 6
Q1o _COMN Consent Mo Yes  Absent Excluded
o] 1] 2 [ 3
aD4_IND Individual Barcode [If Consent = Yes)

OMLY CONTINUE IF CONSENT 15 GIVEN

SECTION 2A — FILL THIS AND SUBSEQUENT SECTIONS IN ONLY IF PERSON HAS GIVEN CONSENT

| would like to ask you some guestions

Qli_DOB Date of Birth (01,/01/1800 if unknown)
If not known, what was your age in
Q11 _1_DOB years at your last birthday?
(999 if unknown)
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012_YLC

How many years have you lived in this community?
Write down actual number, zero if less than one year)

Q13_RAC What is your race?
Select only one option Black 1
Coloured 2
Indizan/Asian 3
White 4
COrther 5
014 COB What is your country of birth?
[Drop down menu with SADC countries and few other Africa
countries)
Q15_HZS Before this survey, have you heard of or been involved with
ZAMBART/ZAMSTAR [DTTC/ ZAMSTAR for SA) Mo  Yes
o | 1 |
Qle_CMS5 What is your current marital Status?
If married, Divorced or widowed, continue, If never married go to Q18
Mever married | 1
Currently married or living as married | 2
Divorced or Separated 3
Widowed | 4
Q17 _AFM Age at first marriage? [years)
Qis_mMoy What has been your main
occupation during the past year?
Unemployed /working on own land 1
Occasional/seasonal employment 2
Employed (Formal employment or self employed 3
making money)
Unable to work 4
Student 5
Housewife/ home-maker &

| would like to ask you about smoking

019 Hawve you ever smoked

a5 1
(Record Age - X Years old)

019_2 i you have stopped smoking, how old were you when you stopped?

How old were you when you first started regular cigarette smoking?

X years old

(I the participant has not stopped smoking, record as 953)

Q19 3 On average over the entire time that you smicke(d), about how many cigarettes per week do (did)

you smoke?
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Q19 _4 On average over the entire time that you smicke(d), do (did) you primarily smoke IIE

manufactured or hand relled cigarettes

| would like to ask you about youwr current drinking habits |

Q20 _CDH How would you classify your drinking habits?
Hawe never drunk 1
Daily drinker 2
Dccasional drinker 3
Ex-drimker 4
Now | will ask guestions about your education
021 _HEA What is the highest level of education you have
attained?
No Formal Education 0
Grade 1-12{Indicate actual grade)Note Grade 8-12 is also Form 1 —form 5
College 20
University 30
If has attended school, continue, if No formal education go to Q23
Q21 1_FBS Have you ever attended a faith-based school [ No [ Yes | Unknown
If has attended school, continue, if Mo formal education go to 023
Q22_YES When was the last year you were enroclled
in School/College/University? Enter 9999 if year is not known
Q23_0cc Please state main occupation at
age 15 years?
Unemployed, working on own land 1
Seasonal/Occasional employment 2
Employed (formal employment or seif employed 3
eaming moneay)
Unable to work 4
Student 5
Housewife/home-maker [
Can't remember -5
| would like to ask you about your health. [Current TB questions) |
Q24_CTB Are you currently on TB treatment? Probe and be sure only conventional Mo Yes
treatment (on ATT)
[0 ] 1]
(I yes continue, If No go to Q35)
Q25_FPS Where did you first present for your symptoms?
Government/ Community clinic 1
Private Clinic/hospital 2
Government Provindal/District 3
hospital
Pharmacy 4
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Private Doctor 5
Traditional Healer [
ZAMSTAR/DTTC Sputum 7
collection point
Q26_TCA Is TB treatment card available? (confirm by seeing the card) Mo Yes
I yes continue, If No go to Q31 “
Q27_DTS Date treatment started
028 TTH TB treatment Number (from treatment card)
Q25 _CAT Category of TB as recorded on card?
Sputumn smear Positive 1
Sputum smear Negative 2
Extrapulmonary 3
Unknown,/not recorded -5
Q30_TTC TB treatment Centre|as written on card)
ASK QUESTION 31 TO 34 IF TB TREATMENT CARD MNOT AVAILABLE
031_MST Which month did you start treatment
January 1
February 2
March | 3
April [ 4
May 5
June | &
July [ 7
August [ 8
September | 9
October | 10
Movember | 11
December | 12
Unknown | -5
Q32_sPT Was the sputum smear positive for TB? No Yes Unk
| o ] 1| =
0Q33_RTF Where are you receiving your TB
treatment from?
Government/ Community clinic 1
Private Clinic/hospital 2
Government Provincial/District hospital 3
Pharmacy 4
Private Doctor 5
Q34_TTC TB treatment Centre

Questions about previous TB treatment
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Previous TB treatment

0Q35_TTB Hawve you ever been on TB treatment before? No Yes Unk
If yes continue, if no go to 037 | o | 1| 5 |

036_HMT How many times?
Once 1
Twice 2
Three times 3
More than three times 4
Unknown -5

| wiould like to ask about your current state of health |

Q37_CHC Do you currently have a cough? No Yes
If yes continue, if no go to Q47 (o] 1 |
Q38_WBC How many weeks have you been coughing? I
<1 week 1
1 week 2
2 weeks 3
3 weeks 4
4 weeks 5
5 weeks 6
6 weeks 7
T weeks a
8 weeks (2 months) 9
3 — 6 months 10
> b months 11
Unknown -5
Q39_CP5 D you currently produce sputum No Yes
Q40_CCB Do you currently cough up blood? No  Yes

65



041_CAC Did you consult anybody for this cough? Mo  Yes
If yes continue, if no go Q47
042_GHF Where did you go for help first?
Government fCommunity dinic 1
Private dinic/hospital 2
Government Provincial/ District hospital 3
Pharmacy 4
Private Doctor 5
Traditional healer [
ZAMSTAR/DTTC Sputum collection point 7
If1, 2, 3 goto 044
043 _GCP If pharmacy/privateftradition healer, did you ever go to a
government,/community/sputum collection point No  Yes
[ 0 | 1|
O44_AS5S Did anyone ask for sputum samples? Mo Yes
If yes continue, if no go to 0 47 n
045_DGS If yes, did you give sputum? Mo  Yes
K yes continue, if no go to 047
046_RES What was the result?
Megative for TB 0
Positive for TB 1
Unknown/can't remember -5
Other symptoms
Q47_CCP Do you currently have chest pains? No Yes
[0 ] 1]
Q48_CHF Do you currently hawve fever? Mo Yes
049_DNS Do you currently have drenching night sweats? Mo Yes
Qz0_Lwu In the last month have you lost weight unintentionally? Mo  Yes
[0 ] 1]
Qs1_DBB Do you currently have difficulty breathing or shortness of breath? No  Yes

i

Mow | will ask guestions about Diabetes and HIV

Q52_THD Hawve you ever been told you have diabetes Mo
I Yes continue, if No go to Q55 [ 0 ]

Q53_CAT If yes, are you currently on any treatment for diabetes? Mo
i yes continue If no go to Q55 “

054 _TON What treatment are you on?
Dietary only

M e

g
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Tablets | 2
Insulin injections | 3
O55_KHS Do you know your HIV status? No  Yes
[0 ] 1]
Q%6_DHS Are you willing to disclose your HIV status? Mo Yes
I yes continue, if not willing to discuss and male go to Q&0. “
Q57_HIV What is your HIV status?
MNegative 0
Positive 1
If HIV status is Positive, continue, if negative and male go to Q60
058 ART Are you on Antiretroviral treatment]( ART) No Yes
If yes continue, if no and male go to Q&0 n
Q59_LAR How long have you been on ART? Write down actual number
of months
Ask guestion 60 and &1 only to males
Q&0_CIR Are you circumcised? Mo Yes Unk
If yes continue, if no go to Q62 Lo 1] 5]
Qsl1_wcl When were you circumcised ?
0-10 years 1
10-15 years 2
15 — 20 years 3
>20 years 4
Date THANEK
You
Interview’s Signature FOR
code m YOUR
Interviewer HELP
Field manager
1" data entry
2" data entry
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Individual Barcode

SECTION 2 B
MEASUREMENTS
Q01_INC Counselor's code
Q01_INC Murse's code
Qo2_DAT Date today
Q62_WEI Weight? Record weight in Kilograms [one dedmal point)
If mot done, write 3999 .
Q&3 _HEI Height? Record weight in centimeters
If mot done, write 359 em
Q&4_ABC Abdominal Circumference? Record in centimeters
If mot done, write 359 em
SECTION 3
RECORD BLOOD SUGAR AMD HIV RESULTS HERE
Qe5_BLG Blood Glucose. Write actual Results below
0O65_1 LAG When did you last hawve anything to eat or drink Write Number of hours ago

[except water)?.

T 1

Q66 _HIV_DET HIV Test result [Determing).

Negative 0

Paositive 1

Not Done -5
Q67_HIW_UNI Confirmatory HIV Test result {Unigold/Sensa)

Negative 0

Positive 1

Not Done -5
063_KHS Does study participant want to know his/her HIV Result? No Yes



068_1 GHRR HIV test results given to study participant? Mo Yas
[ o0 [ 1 |
065 _HIV_ORA Oral HIV Test
MNegative ]
Positive 1
Not Done -5
THANK YOU FOR YOUR HELP
Date
Interview’s Signature
d |d Y
code - ¥
Interviewer
Field manager
1% data entry
2" data entry
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Household Questionnaire

ALL QUESTIONS IN THES SECTION MUST BE ANSWERED
Administer questicnnaire to head of household or any responsible adult who is available

HOUSEHOLD BARCODE

OD01_INC Interviewer's code
002_DAT Date today
003_HOH Are you the Head of Household?
[ o | 1 |
ALL QUESTIONS IN THIS SECTION MUST BE ANSWERED
Household quastions to be asked |
004_HHH In your Household is there No  Yes
[chedk every option) Electricity | o 1
& radio/radio cassette | O 1
A television o 1
A refrigerator/ffreezer | O 1
Abicycle | o 1
Amotorcyce | 0 1
Aar o 1
A domestic worker not related to o 1
household head
A mobile phone | o 1
A landline (non mobile telephone] | 0 1
05 _WoL Do members of your household work on their or the family"s agricufture land?
i) a5

‘What is the main source of DRINKING WATER for this

QO5_WAT  bsusahold fcheck only ane option)
Piped water inside the residence | 1
Piped water inthe yard | 2
Piped water from a publictap | 3
Protected well | 4
Unprotected shallow well [ 5
Traditional well | &
Bore hole | 7
River, stream, lake etz | B
other (| 9
ao7_Tol Whiat is the main type of TOILET fadility for this household? Private flush toilet 1
(check only one option) Shared flush toilat 2
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Q09_HMR

Q10_FLO

Ol11_HEA

Pit Latrine without ventilation
VIP Latrine

None- use bush/field

Bucket system

Chemical

Other

Which of the following types best describes the main dwelling unit that this household ocoupies?

House, brick structure on own stand{single unit)

Townhouse,cluster/semidetached house{multiunit residential)
Traditional dwelling/hut/structure made from traditional
material

Flat in block of flats

Brick house/flat/room in backyard

Informal dwelling or shadk in back yard

Informal dwelling or shack not in backyard. (informal squatter
settlement)

caravan,Tent
worker's hostel
other

Number of persons per sleeping room I:I

What is the main type of flooring for this household? Dirt/earth
[check only one option) Wood, plank
Parguet, lino
Cement
Tile flooring
Other

‘What type of fuel does your household mainly use to keep warm
inside the house during winter?

[check only one option) Maothing
Electricity

Liquefied Petroleumn Gas

Kerosene/Paraffin

Charcoal

wood

other

what type of fuel does your household mainly use for cooking?
(check only one option) If charcoal or wood continue, else o to Q14 No cooking is done
Electricity
Gas

Paraffin

C-R - U

[ - T T

[T I T VR I =

Wik |=]la
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ai13_Tos

14 WcH

Q15_ROM

Q16_HUM

What type of stove is usually used for cooking?

Where does cooking mainky happen?
[Check only one option)

Charcoal

wood

other

Open fire
Surrounded fire

Stove with combustion
chamber

Twao or three pot stove

Sunken pot stove

Indoors separate building

Outdoors

5
Indoors in main house 1
2
3

Did your household have to rely on any of the following in the [ast 18 months?

(Eadh item must be answered)

Relief food, free food from gowernment and other bodies
Reducing number of meals or feod in-take

Borrowing cash (e.g. kaloba, borrowing from friends etc)
Sale of assets

sending household members away

During the past three months, did it happen even once that you or any member of your family experienced

hunger because you did not hawe any food to eat?

ND o

Yes 1

Unik 5

Interviewer's Signature
Code 4 |4 B
d|m ¥y |v |¥

Imterviewear
Field Manager
1% data entry
2™ data entry
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ABSTRACT

Background: Limitations in the sensitivity and accessibility of diagnostic tools for
childhood tuberculosis contribute to the substantial gap between estimated cases and
cases notified to national tuberculosis programs. Thus, tools to make accurate and rapid

clinical diagnoses are necessary to initiate more children on antituberculosis treatment.

Methods: We analyzed data from a prospective cohort of children <13 years being
routinely evaluated for pulmonary tuberculosis in Cape Town, South Africa from March
2012 to November 2017. We developed a regression model to describe the contributions
of baseline clinical evaluation to the diagnosis of tuberculosis using standardized,
retrospective case definitions. We included results from baseline chest radiography and
Xpert MTB/RIF to the model to develop an algorithm with at least 90% sensitivity in

predicting tuberculosis.

Results: Data from 478 children being evaluated for pulmonary tuberculosis were
analyzed (median age: 16.2 months, interquartile range: 9.8-30.9); 242 (50.6%) were
retrospectively classified with tuberculosis, of which 104 (43.0%) were bacteriologically-
confirmed. The area under the receiver operating characteristic curve for the final model
was 0.87. Clinical evidence identified 71.4% of all tuberculosis cases in this cohort, and
inclusion of baseline chest radiography results increased the proportion to 89.3%. The
algorithm was 90.1% sensitive and 52.1% specific, and maintained a sensitivity of above

90% among children <2 years or with low weight-for-age.

Conclusions: Clinical evidence alone was sufficient to make most clinical
antituberculosis treatment decisions. The use of evidence-based algorithms may
improve decentralized, rapid treatment-initiation, reducing the global burden of childhood

mortality.
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INTRODUCTION

Each year, 1.2 million children are estimated to develop tuberculosis, and about
one quarter of those children die.! This places tuberculosis in the top ten causes of
mortality among children under 5 worldwide. Globally, over 96% of deaths in children

with tuberculosis occur among those not receiving treatment.?

Childhood tuberculosis is generally paucibacillary, limiting the sensitivity of
bacteriologic tests including rapid molecular diagnostics such as Xpert MTB/RIF (Xpert).®
Findings on chest radiography (CR) are similarly less sensitive among children.* In
addition to diagnostic limitations, accessing these tests may be challenging—especially
in low- and middle-income countries that bear the greatest burden of tuberculosis.®
These limitations in sensitivity and accessibility contribute to the substantial gap between
the estimated 1.2 million annual incident cases of childhood tuberculosis and the

approximate 500,000 annual cases notified to the World Health Organization (WHO).!

Decentralized diagnosis and treatment for childhood tuberculosis may reduce the
risk of untreated tuberculosis and improve treatment outcomes by shortening the delay
to treatment initiation.®1° To that end, the WHO and the International Union against
Tuberculosis and Lung Disease suggest treating children for whom there is sufficient
clinical evidence of tuberculosis, even in the absence of further diagnostic
investigation;***2 however, it is not clear what clinical evidence is sufficient to start
treatment. Practical, data-driven treatment-decision algorithms could help support more

effective and uniform treatment decision-making at peripheral health facilities.*3

A recent study among children living with HIV demonstrated that antituberculosis
treatment-decisions may be made using clinical evidence alone.'* We present a

complementary study, in which we analyze data from HIV-uninfected children from a
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well-characterized prospective cohort of young children routinely evaluated for
pulmonary tuberculosis in Cape Town, South Africa. We aimed to investigate the relative
contributions of baseline clinical characteristics, baseline CR, and baseline Xpert to the
diagnosis of childhood pulmonary tuberculosis in a high-tuberculosis burden setting. We
used this evidence to develop a practical algorithm to assist in making sensitive and

rapid antituberculosis treatment-initiation decisions.

METHODS
Participants

Children <13 years old routinely evaluated for pulmonary tuberculosis were
prospectively identified for participation in a diagnostic study.'>'” Children were recruited
from inpatient wards and emergency rooms at Tygerberg Hospital and Karl Bremer
Hospital, referral hospitals in Cape Town, South Africa, from March 2012 to November
2017. Eligibility criteria reflected the WHO and national criteria for the evaluation of
childhood tuberculosis and were any of the following: cough 22 weeks, unexplained
fever 21week, poor growth/weight loss over the preceding three months, or cough <1
week with a known tuberculosis exposure in the previous 12 months, positive tuberculin
skin test (TST), or CR suggestive of tuberculosis as evaluated by study physicians.
Children were not eligible if they had received antituberculosis treatment for >1 day or
had extrapulmonary tuberculosis without also being evaluated for pulmonary

tuberculosis.

Procedures and definitions

At the time of enroliment each participant underwent a standardized clinical
examination performed by study physicians; TST; bacteriological testing for
Mycobacterium tuberculosis (M.tb) using acid-fast bacilli smear microscopy, Xpert, and
Mycobacteria Growth Indicator Tube (MGIT) liquid culture from a minimum of two
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respiratory specimens (one specimen of either gastric aspirate for children <5 years or
spontaneously produced sputum for older children able to expectorate, and one
specimen of induced sputum); and anteroposterior and lateral CR. CR was read by two
independent pulmonology and/or pediatric tuberculosis experts blinded to the clinical
history using a standardized evaluation tool. Some children underwent additional
sampling for other respiratory specimens for M.tb confirmation, including
nasopharyngeal aspirate and stool, as part of investigational sub-studies. At two months,
all study participants were evaluated irrespective of tuberculosis diagnosis at baseline.
All children with an ongoing suspicion for tuberculosis, regardless of the decision to treat
for tuberculosis, had respiratory samples taken during follow up at 1, 2, and/or 6 months
or as clinically needed for smear microscopy, MGIT, and Xpert. Data were dual-entered

into standard case report forms. Managing clinical teams made the decision to treat.

Study patrticipants were retrospectively classified by the study team as having
confirmed, unconfirmed, or unlikely tuberculosis using standardized clinical case
definitions developed for the evaluation of diagnostics for childhood pulmonary

tuberculosis (supplemental Table S1).1® These definitions considered clinical history

from baseline evaluations, immunological evidence of M.tb infection, consistency of CR
with tuberculosis as evaluated by experts blinded to the clinical history, confirmation of
M.tb from Xpert or MGIT from respiratory specimens collected at baseline or in follow-
up, and follow-up evaluation to assess for resolution or persistence of symptoms. All
available information was used to inform classification of tuberculosis using these

definitions.

Given the epidemiological difference in the risk of tuberculosis and severe forms

of disease,!® we defined two risk-groups in our population: higher-risk children <2 years
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of age or with a weight-for-age Z-score of <-2, and lower-risk children 22 years of age

and with a weight-for-age Z-score of 2-2.

Statistical analysis

We used logistic regression to develop a model to predict confirmed and
unconfirmed tuberculosis restricted to data from the baseline evaluation of children with
complete predictor information. We identified candidate predictors from the baseline
clinical evaluation (the initial clinical history and physical examination) used in previous
scoring systems to diagnose childhood pulmonary tuberculosis, as well as from a nested
case-control analysis of our data, where we defined cases as having any bacteriological
confirmation of M.tb over the study period and controls as those retrospectively
classified as unlikely tuberculosis with the additional requirement that they completed the

study without ever receiving antituberculosis treatment.

We carried out backward variable selection from the full model containing only
predictors from the baseline clinical evaluation to develop the first model (clinical model).
We used an inclusion p-value cutoff informed by variable degree-of-freedom as per
Akaike information criterion in model selection.?® We added results from the baseline CR
and Xpert performed on all respiratory specimens collected at baseline only to obtain the
second model (investigational model). Though MGIT culture is more sensitive for M.tb
than Xpert, we include Xpert in our models given improved accessibility in many settings

and shorter time-to-result.

All predictors were binary variables to reflect their presence or absence in the
child except cough duration, which we categorized as no cough or cough <1 week, 1-2

weeks, 2-3 weeks, or >3 weeks. A list of all relevant candidate predictors and their
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definitions as relevant to this study are provided in the supplementary information.

Analysis was performed using R version 4.0.1.

Given that a positive Xpert result was sufficient to classify a child as having
tuberculosis by the reference standard, coefficient and standard error estimates for the
investigational model were obtained using Firth’s logistic regression using function
‘brgim’ in R package brgim. We examined separation by plotting the receiver operating
characteristic (ROC) curve for each model and assessing the area under the ROC curve
(AUC) using the R package pROC. We used the function ‘roc.test’ to compare whether
the models had statistically significant AUCs using DeLong’s test for correlated ROC
curves. We used leave-one-out cross-validation using function ‘cv.gim’ in the R package

boot to assess out-of-sample predictive performance.

Treatment-decision algorithm development

We scaled the coefficient estimates for the parameters in each model such that a
score of >100 constituted a sensitivity of at least 90% to diagnose pulmonary
tuberculosis, consistent with the WHO target product profile of a community-based triage

test to identify tuberculosis (scaling methodology described in the supplementary

information).?! To develop a treatment-decision algorithm, we examined how study
participants met criteria for diagnosis disaggregated by contribution from baseline clinical
evidence, baseline CR consistent with tuberculosis, and baseline Xpert on respiratory

specimens.

Ethical considerations
Data collection and analysis was approved by the Stellenbosch University Health
Research Ethics Committee (Ref No. N11/09/282). Written informed consent for study

participation was obtained from parents or legal caregivers, and written assent was
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obtained from children 7 years and above. This analysis was approved via expedited

review by the Yale Institutional Review Board (Ref No. 2000028046) and did not require

specific consent as it was a secondary analysis of previously collected data.

RESULTS
Population

Data were available for 608 children who completed evaluation for the
prospective study, of which 478 HIV-uninfected participants had sufficiently complete
data for this analysis (Figure 1). Two hundred and forty-two (50.6%) children were
retrospectively classified as having confirmed or unconfirmed pulmonary tuberculosis
using the clinical case definitions, and 104 of these (43.0%) were bacteriologically-

confirmed. See supplemental Table S2 for differences between population

included/excluded from this analysis due to missing variables.

N
Baseline visit
n=608 ("~ Unclassifiable
by
of childhood
Classifiable by PTB
definitions of n=13
childhood PTB N
n=595
R S—R HiV-infected
/—¢ﬁ n=72
HIV-uninfected S
n=524 o
Missing data
P e, >
Data sufficiently
complete for analysis
N=478

— —
L 1 ¥

PTB
n =242 No PTB
(Confirmed TB n = 104 n=236
Unconfirmed TB n = 138)

Figure 1. Flow diagram demonstrating participant eligibility for this analysis.!”

Table 1 describes the demographics and candidate predictors for children with

sufficiently complete data for this analysis. Of 478 children, 223 (46.7%) were female,

the median age was 16.2 months (interquartile range [IQR]: 9.8 - 30.9), and the median

weight-for age Z-score was -1.58 (IQR: -2.7 - -0.7). We classified 378 children (79.1%)
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as at higher-risk for tuberculosis and severe disease. Descriptions of these higher- and

lower-risk subpopulations are provided in the supplemental Tables S3 & S4.

Table 1. Description of demographics and candidate predictors from clinical evaluation
and diagnostic imaging/testing of HIV-uninfected participants with sufficiently complete

data for this analysis.

Children, No. (%)
Variable Tuberculosis {n = 242) Mot Tuberculosis (n = 236)
Demographics
Sex
Male 127 (62} 128 (54)
Female 115 (48) 108 (46)

Age, median (IQR), mo

18.09 (10.14-32.1)

15.28 (9.36-2752}

Age group, y
0-1 15 (64} 161 (68)
2-4 60 (25} 62 (28]
=5 27 (11) 13 (B)

Weight-forage z score , median (IQR)

-1.71(-3.01 to -0.86)

-1.46 (-2.47 t0 -0.69)

Weight-forage z score below -2 106 (43) 92 (39)
Clinical history at baseline
Cough duration, wk
No cough 46 (19 55 (23]
<1 74 (31) 97 (41)
-2 43 (18) 32 (14)
2-3 23 (1) 16 (7)
=3 56 (23) 36 (18)
Fever 147 (61} 105 (44)
Failure to thrive/weight loss 111 (48) 87 (37)
Poor appetite 137 (67) 122 (52)
Lethargy 104 (43) 74 (31)
History of tuberculosis contact 128 (53} 55 (23]
Clinical exarmination at baseline
Lymphadenopathy 161 (62) 145 (B1)
Stridor 6(2) 31
Wheeze 55 (23) 58 (25)
Hepatomegaly 42 (17) 19 (8)
Splenomegaly 19 (8) 6 (3)
Diagnostic testing/imaging at baseline
CR findings consistent with pulmonary tuberculosis at baseline 131 (64) 22 (8)
KXpert-confirmed Mycobacterium tuberculosis on respiratory specimens at baseline 62 (26) [R()]
Retrospective clinical case definitions
Confirmed tuberculosis 104 (43) [PR0n)]
Uncenfirmed tuberculosis 138 (57) 00
Unlikely tuberculosis oo 236 (0)

Prediction modeling

The predictors selected from baseline clinical evidence for inclusion in the final
model were cough duration, fever, failure to thrive/weight loss, lethargy, history of
tuberculosis exposure, and hepatomegaly. We added results from baseline CR and
baseline Xpert to create the investigational model. Odds ratios, 95% confidence
intervals, and p-value of the predictors included in the clinical and investigational models

along with AUC and leave-one-out cross-validation for each model are provided in Table
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2, and the ROC curves for the models are presented in Figure 2. The clinical and
investigational models had statistically different AUCs of 0.75 and 0.87 respectively (P-

value < 0.001).

Table 2. Prediction models of baseline clinical history and physical evaluation
with/without diagnostic imaging/microbiological investigation.

Clinical Madel: Clinical Investigational Model: Clinical
Evidence Only Evidence + CR + Xpert
95% CI 95% Cl

Predictor OR (0.025-0.975) PValue OR (0.025-0.975) PValue
Intercept 0.22 0.12-0.37 .00 0.10 0.04-0.18 <.01
Cough duration, wk

No cough Reference . . Reference

<1 0.68 0.39-1.19 18 0.62 0.31-1.18 15

1-2 1.51 0.78-2.97 .22 129 0.59-2.85 52

2-3 2.29 1.01-5.29 05 1.35 0.48-3.76 56

=3 2.27 1.20-4.35 .01 2.48 1.19-5.49 02
Fever present

No Reference . Reference

Yes 1.89 1.24-2.90 .01 1.69 1.03-2.88 .04
Failure to thrive/weight loss

No Reference . . Reference .

Yes 1.66 1.10-2.54 .02 180 1.10-3.04 02
Lethargy

No Reference - Reference

Yes 1.40 0.90-2.18 14 1.68 0.98-2.97 .06
History of tuberculosis exposure

No Reference . . Reference .

Yes 5.13 3.33-8.05 .01 6.99 4.20-13.00 <.01
Hepatomegaly

No Reference - . Refsrence .

Yes 2.62 1.38-5.13 .01 118 0.52-2.71 69
Baseline CR findings consistent with pulmonary tuberculosis

No . . Reference

Yes - 9.38 5.22-19.45 <.01
Baseline respiratory specimens positive for Mycobacteriun tuberculosis

with Xpert

No - ~ . Reference .

Yes - 90.41 10.69-Inf <.01
Leave-one-out cross-validation 0.21 - 0.16
Area under the ROC curve 0.75 . 0.87

Treatment-decision algorithm

The probability threshold of the investigational model was set at 0.25 to classify
tuberculosis with 90.1% sensitivity and 52.1% specificity. At this threshold, 173 (71.5%)
of the 242 children with a diagnosis of tuberculosis could be identified using clinical
evidence (Figure 3). Among those children not identifiable by clinical evidence, an
additional 43 were identified by CR. Inclusion of chest radiography results after clinical
evidence increased the proportion of tuberculosis identified to 89.3%. Figure 4 shows

the treatment-decision algorithm built from the investigational model. This algorithm
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failed to diagnose 24 children with tuberculosis (described in supplemental Table S5).

The sensitivity and specificity compared to the retrospective reference standard for
baseline CR alone was 0.54 and 0.91 and respectively 0.26 and 1.0 for baseline Xpert

alone.

1.00 1

0.75 1

0.50 1

sensitivity

0.251

0.00 1

1.00 0.75 0.50 0.25 0.00
specificity

Figure 2. Receiver operating characteristic curves of the clinical model (solid line)

including the features form the baseline clinical evidence (cough duration, fever, failure

to thrive/weight loss, lethargy, a history of tuberculosis exposure, and hepatomegaly)
and the investigational model (dotted line) considering baseline clinical evidence,
baseline chest radiography, and Xpert MTB/RIF from respiratory specimens collected
at baseline. The horizontal dashed line is drawn at a sensitivity of 90%.
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Baseline
Xpert MTB/RIF

<~

Baseline Baseline
Clinical Chest
Evaluation Radiography

Figure 3. Venn diagram depicting how the 242 participants with tuberculosis in this
cohort met criteria to be classified as having tuberculosis by the investigational model.
Criteria was met by having sufficient evidence from baseline clinical evaluation, having
baseline chest radiography consistent with pulmonary tuberculosis, and/or having
Xpert MTB/RIF-confirmed M.tb from respiratory specimens collected at baseline. Note
that 24 participants classified as having tuberculosis by the reference standard were
missed by the investigational model.

Table 3 demonstrates the sensitivity, specificity, positive predictive value, and
negative predictive value of the algorithm in the higher- and lower-risk subpopulations.
The algorithm had a sensitivity and specificity of 91.8% and 51.6% respectively among

higher-risk children and 83.3% and 53.8% respectively among lower-risk children.

Table 3. Sensitivity, specificity, positive predictive value, and negative predictive value
of the algorithm developed from the investigational model including baseline clinical
evidence, chest radiography, and Xpert MTB/RIF given for the subpopulations of
children at higher- and lower-risk for tuberculosis and severe disease.

Risk for Tuberculosis and
Severe Disease Sensitivity, % Specificity, % PPV, % NPV,%

High risk (age <2y 91.8 51.6 66.7 85.6
or weight-forage z
score below -2)

Low risk (age =2 y and 83.3 53.8 62.5 778
weight-for-age z score
of at least -2)
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Child £13 years being evaluated for PTB with:
Cough 22 weeks OR
Fever 21 weeks OR
Paoor growth/weight loss in previous 3 months

Perform detailed clinical evaluation:

Cough 1 week -37
Cough 2 weeks +20
3 NO Cough 3 weeks +23 Treat as
[ Known TB exposure? ]—> Cough >3 weeks  +71 appropriate and
Fever +41 reassess
YES Failure to thrive +46 7y
Lethargy +40
Hepatomegaly +13
YES i
Score »1007? ]
‘ NO
Pursue Chest Radiography
YES L
4' Consistent with PTB? ]
[ nO
Pursue Xpert MTB/RIF
v
|dentified M.tb on ] NO
respiratory specimens? J
I  YES
Initiate antituberculosis treatment
Reassess for persistence or resolution of symptoms and adverse drug events

Figure 4. Treatment-decision algorithm developed from the investigational model
which includes baseline clinical evidence, baseline chest radiography, and Xpert
MTB/RIF from respiratory specimens collected at baseline.

The algorithm built from the clinical model including only clinical evidence is

shown in supplemental Figure S1, with a sensitivity of 90.5% and specificity of 33.9%

(supplemental Figure S2 and supplemental Table S6).

DISCUSSION

Our analysis of a well-characterized, prospective cohort of young children
evaluated for pulmonary tuberculosis demonstrates that a detailed clinical history and
physical examination is sufficient to initiate treatment in most HIV-uninfected children. In

our setting, CR and Xpert only impacted the decision to treat a minority of children with
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symptoms suggestive of pulmonary tuberculosis. This suggests that diagnostic
testing/imaging may be reserved for those children who do not meet criteria for
treatment-initiation based on clinical evidence alone. We used these findings to
construct a data-driven algorithm to promote sensitive and rapid antituberculosis

treatment-initiation.

While the WHO does not define the target sensitivity and specificity of diagnostic
tools for childhood tuberculosis as compared to a composite reference standard, we
fixed the sensitivity of our algorithm at 90% to be consistent with both the WHO-defined
target for a community-based triage and the algorithm-building approach adopted by
Marcy and colleagues.'*2! Our specificity fell short of the WHO-proposed target;
however, given the severe consequences of failing to diagnose and treat a case of

childhood tuberculosis, we elected to prioritize sensitivity over specificity.

Our results highlight the importance of a detailed clinical history and physical
examination in making treatment-initiation decisions for childhood tuberculosis. We
identified clinical evidence suggestive of childhood pulmonary tuberculosis that is
consistent with the literature,'#22-2> and we quantitatively described their contribution to
diagnosis. This analysis demonstrates that incorporating additional clinical
characteristics may improve the specificity of treatment decisions without a substantial
sacrifice in sensitivity among children identified by the WHO symptom screen.
Additionally, this approach allows health workers to identify those children with sufficient
clinical evidence to begin antituberculosis treatment without the need for additional
diagnostic imaging/testing. This supports rapid treatment-initiation in settings where
access to diagnostic imaging/testing is limited, as well where negative results from

available tests may not change management.
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Our analysis suggests pursuing CR prior to Xpert among those children who do
not meet criteria to receive antituberculosis treatment using clinical evidence alone. This
is reasonable given the accessibility of CR in many settings and its utility in identifying
other pathology not related to tuberculosis. Additionally, it does not require any invasive
sampling procedures that may be needed to obtain samples from young children for
microbiological confirmation. We note that the contribution to diagnosis that we present
for CR in this analysis may be optimistic, given that high quality images were obtained in
a tertiary care setting with expert readings that may be unavailable in some high-burden,
low-resource settings.?® Prospective investigation into the use of standardized digital CR
and enhanced reader training will be important to understand the use of CR in childhood
tuberculosis diagnosis in settings with limited resources.?” Furthermore, inclusion of

specific findings on CR may increase the specificity of our algorithm.*

Though we demonstrate that well-collected respiratory specimens for Xpert
performed at baseline do not substantially improve our algorithm, we note that Xpert
may provide important information on guiding treatment selection in settings where drug
resistance is a concern. However, it is important to note that lack of access to
microbiological testing and negative test results should not prevent children from
accessing antituberculosis treatment when clinical criteria are met. Furthermore, while
drug-resistant tuberculosis transmission is an important public health concern, the
relative importance of microbiological tests in children should be informed by the local
epidemiology of drug-resistant tuberculosis transmission.?® Given limitations in the
sensitivity of microbiological testing among children, obtaining a detailed exposure
history that includes the drug susceptibility test profile of any potential source cases

remains critical.
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Good performance of this algorithm among younger or low weight-for-age
children is encouraging, given a higher risk of severe tuberculosis in this group. The
children missed by this algorithm were generally older, had a higher weight-for-age Z-
score, and had a shorter cough duration. We believe that increased sensitivity of
treatment decisions, rather than precise diagnosis, is likely to have a greater impact on
child mortality given the high proportion of young children who are undiagnosed. It may
be necessary to accept some overtreatment with relatively safe antituberculosis therapy
to reduce the preventable morbidity and mortality of untreated tuberculosis.?%2°
Diagnostic vigilance and careful follow-up are critically important for all children,
regardless of the initial treatment-initiation decision, to consider competing diagnoses

and monitor for adverse drug events.

Although TSTs were used to establish the reference standard, we chose not to
include it in our analysis due to the many participants with missing TST data (120/478)
due to global tuberculin stockouts during the study. While immunological testing for M.tb
infection may improve the specificity of the algorithms, limitations in sensitivity among
young and malnourished children and lack of accessibility at peripheral health centers

may discourage their inclusion in treatment-decision algorithms.3!

A source of potential bias in this analysis arises from the fact that the clinical
evaluation, CR results, and Xpert results are included as predictors in the model and as
components of the clinical reference standard. We believe that this may not be a major
issue in this study given the high degree of microbiological confirmation. This is further
supported by the similar operational characteristics of the algorithms in the nested case-

control subpopulation as compared to in the development cohort (supplemental Tables

S7 & S8). Additionally, we must be careful not to overinterpret the generalizability of
these algorithms that were built from a cohort that was pre-screened for tuberculosis and
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sourced from a tertiary care center. While the entry criteria for this development cohort
reflects the WHO criteria for investigation for tuberculosis and a low value for cross-
validation suggest generalizability and external validity, the positive predictive value of
these algorithms may be lower where the baseline prevalence of tuberculosis is lower.
Further evidence is required to determine the pre-test probability of tuberculosis in
children identified as having a positive WHO symptom screen across different settings,
as this would have implications for the performance of this treatment-decision algorithm.
Furthermore, randomized, interventional investigation is necessary to evaluate the
morbidity and mortality impact of using data-driven, treatment-decision algorithms to

guide antituberculosis treatment initiation in different settings.

This analysis outlines an approach to interpret clinical data to inform treatment-
initiation decisions for children being evaluated for pulmonary tuberculosis. It is important
to recognize that this algorithm is context-specific and translation to other settings should
be undertaken cautiously. Ideally, treatment-decision algorithms should be constructed
locally to reflect the site-specific epidemiology, the quality and accessibility of diagnostic
imaging and testing, and the relative consequence of overtreatment versus untreated
child tuberculosis. Furthermore, these algorithms should be revised and recomputed as
circumstance change—for example, as local capacity to incorporate additional tools
changes or as improved diagnostic tools are discovered. Implementation of treatment-
decision algorithms must include programmatic support and mentorship for the
healthcare providers to use them effectively, as well as additional resources to support

the families of the children initiated onto treatment.”

We demonstrate that algorithms that incorporate evidence from a detailed clinical
history and physical examination could play an important role in guiding sensitive
treatment-initiation decisions for most children being evaluated for pulmonary
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tuberculosis. Data-driven treatment algorithms provide an important framework to

consider the contribution of additional investigation, after detailed clinical evaluation.

Algorithms that support rapid, decentralized antituberculosis treatment decision-making

are important tools to reduce the burden of childhood tuberculosis morbidity and

mortality.
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SUPPLEMENTARY INFORMATION

Available data for predictors in model and their definition

Data from the baseline clinical evaluation (clinical history and physical
examination) that were available for inclusion as predictors of tuberculosis included the
following: fever, cough duration, failure to thrive/weight loss, lethargy, poor appetite,
history of a known exposure to someone with tuberculosis, peripheral lymphadenopathy,
hepatomegaly, splenomegaly, wheeze, and stridor. Definitions of select variables are
presented below:

» Cough duration was recorded in days and collapsed into the following
categories: no cough, cough <1 week, cough 1-2 weeks, cough 2-3
weeks, cough >3 weeks.

+ Failure to thrive/weight loss was defined as poor growth over the
preceding three months or having a weight-for-age z-score <-2 in the
absence of previous weight measurements.

» History of exposure to tuberculosis was defined as having a family
member in the same household with tuberculosis or exposure for 24
hours with someone who had tuberculosis.

Scaling coefficients to form a score for treatment-decision algorithm

A general form of a multivariate logistic regression equation is given as follows:

logit(p) ::30 +ﬁ1 * Xq + [)’2 * Xy + o0+ ﬁn*xn

Where p is the probability of tuberculosis, x; ,, refers to the predictors and g, _,, refers to
the coefficients describing the relationship between the predictor and the logit-
transformed probability. We fit the prediction model to the data, and we identified the
probability corresponding to classification of tuberculosis with at least 90% sensitivity
compared to the retrospective reference standard. We obtained a threshold probability
by subtracting the intercept from the logit-transformed probability corresponding to

diagnosis with 90% sensitivity. We scaled the threshold to 100 by multiplying by a
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scaling factor, and we multiplied the coefficients for each predictor by that scaling factor
to obtain the score for that predictor. Thus, the score for each individual meeting entry
criteria was obtained by summing the scaled coefficients for each factor present in the
patient, and a total score of >100 constituted a diagnosis of tuberculosis using this

treatment-decision algorithm.

Table S1. Retrospective case definitions of childhood intrathoracic tuberculosis adapted from
Graham et al.?

Case Definition Criteria
Confirmed Bacteriological confirmation obtained
tuberculosis M.tb must be confirmed (culture or Xpert MTB/RIF from at least one respiratory specimen by
expectoration, sputum induction, gastric aspirate, nasopharyngeal aspirate, string test, or other
relevant respiratory specimens or stool)
Unconfirmed Bacteriological confirmation NOT obtained AND at least 2 of the following:
tuberculosis - Symptoms/signs suggestive of TB (defined in Graham et al.)[18]
- Chest radiograph consistent with TB
- Close TB exposure or immunologic evidence of M.tb infection
- Positive response to TB treatment (requires documented positive clinical response on TB
treatment)
o  With M.tb infection
L] Immunological evidence of Mtb infection (TST and/or IGRA positive)
o  Without M.tb infection
. No immunological evidence of M.tb infection

Unlikely Bacteriological confirmation NOT obtained AND criteria for “unconfirmed tuberculosis” NOT met
tuberculosis o  With M.tb infection
. Immunological evidence of M.tb infection (TST and/or IGRA
positive)

o  Without M.tb infection
. No immunological evidence of M.tb infection

M.tb — Mycobacterium tuberculosis, TB — tuberculosis, TST — tuberculin skin test, IGRA —
interferon-gamma release assay.

96



Table S2. Differences in demographic and candidate predictors from clinical evaluation and

diagnostic imaging/testing between the participants in/excluded from analysis due to missing

values for variables of interest.

Demographic

Clinical History at
Baseline

Clinical
Examination at
Baseline

Diagnostic
Testing/Imaging at
Baseline

Retrospective
Clinical Case
Definitions

MV — missing values, IQR — interquartile range, PTB — pulmonary tuberculosis, Xpert — Xpert

Sex
Male
Female
Age (months)
0-1 years
2-4 years
5 years and older
Weight (Z-score for age)
Z-score < -2
Cough Duration
No cough
Cough < 1 week
Cough 1-2 weeks
Cough 2-3 weeks
Cough > 3 weeks
Fever
Failure to thrive/weight loss
Poor appetite
Lethargy
History of tuberculosis contact
Lymphadenopathy
Stridor
Wheeze
Hepatomegaly
Splenomegaly
Chest radiography consistent
with PTB
Xpert-confirmed M.tb on
respiratory specimens
Confirmed TB
Unconfirmed TB
Unlikely TB

Included in Analysis

(n=478)
nor % or IQR
Median
255 0.53
223 0.47
16.21  9.821t0 30.9
316 0.66
122 0.26
40 0.08
-1.58  -2.69to -0.67
197 0.41
101 0.21
171 0.36
75 0.16
39 0.08
92 0.19
252 0.53
198 0.41
259 0.54
178 0.37
183 0.38
296 0.62
9 0.02
113 0.24
61 0.13
25 0.05
153 0.32
62 0.13
104 0.22
138 0.29
236 0.49

MTB/RIF, M.tb — Mycobacterium tuberculosis, TB — tuberculosis.

Excluded for MV

nor
Median

27
19
12.47
34
10

-1.74
18

7
12
27

(n=46)

% or IQR

0.59
0.41
7.89 to 26.56
0.74
0.22
0.04
-2.410-0.6
0.39

0.17
0.41
0.11
0.02
0.17
0.65
0.43
0.57

0.5
0.24
0.61
0.02
0.35
0.13
0.04
0.04

0.09
0.15

0.26
0.59

MV

01O O O0O0O0O0O0Oo

P OOO0OO0OO0OO0OO0OO0OO0OOo

I

o

[elele]
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Table S3. Description of demographics and candidate predictors from clinical evaluation and
diagnostic imaging/testing of the subpopulation at higher-risk for tuberculosis and severe disease
as defined as being <2 years old or having a weight-for-age Z-score of <2.

TB (n=194) Not TB (n=184)
nor % or IQR nor % or IQR
Median Median
Demographic = Sex
Male 102 0.53 103 0.56
Female 92 0.47 81 0.44
Age (months) 13.72  8.32to 1291  7.63to
22.42 18.17
0-1 year 155 0.8 161 0.88
2-4 years 28 0.14 18 0.1
5 years and older 11 0.06 5 0.03
Weight (Z-score for age) -2.13 | -3.28t0 - -1.98  -2.86to0-
0.96 0.97
Z-score < -2 105 0.54 92 0.5
Clinical Cough Duration
History at No cough 37 0.19 43 0.23
Baseline Cough < 1 week 58 0.3 77 0.42
Cough 1-2 weeks 37 0.19 26 0.14
Cough 2-3 weeks 12 0.06 10 0.05
Cough > 3 weeks 50 0.26 28 0.15
Fever 116 0.6 81 0.44
Failure to thrive/weight loss 97 0.5 80 0.43
Poor appetite 100 0.52 99 0.54
Lethargy 83 0.43 66 0.36
History of tuberculosis contact 109 0.56 40 0.22
Clinical Lymphadenopathy 113 0.58 106 0.58
Examination Stridor 5 0.03 3 0.02
at Baseline Wheeze 51 0.26 50 0.27
Hepatomegaly 40 0.21 17 0.09
Splenomegaly 18 0.09 5 0.03
Diagnostic Chest radiography consistent with PTB at 103 0.53 17 0.09
Testing/Imagi | baseline
ng at Xpert-confirmed M.tb on respiratory 50 0.26 0 0
Baseline specimens at baseline
Retrospective | Confirmed TB 80 0.41 0 0
Clinical Case Unconfirmed TB 114 0.59 0 0
Definitions Unlikely TB 0 0 184 1

TB — tuberculosis, IQR — interquartile range, PTB — pulmonary tuberculosis, Xpert — Xpert
MTB/RIF, M.tb — Mycobacterium tuberculosis.
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Table S4. Description of demographics and candidate predictors from clinical evaluation and
diagnostic imaging/testing of the subpopulation at lower-risk for tuberculosis and severe disease

as defined as being =2 years old and having a weight-for-age Z-score of 22.

Demographic

Clinical
History at
Baseline

Clinical
Examination
at Baseline

Diagnostic
Testing/Imagi
ng at Baseline

Retrospective
Clinical Case
Definitions

Sex
Male
Female

Age (months)
0-1 year
2-4 years
5 years and older

Weight (Z-score for age)
Z-score < -2
Cough Duration
No cough
Cough < 1 week
Cough 1-2 weeks
Cough 2-3 weeks
Cough > 3 weeks
Fever
Failure to thrive/weight loss
Poor appetite
Lethargy
History of tuberculosis contact
Lymphadenopathy
Stridor
Wheeze
Hepatomegaly
Splenomegaly
Chest radiography consistent with PTB at
baseline
Xpert-confirmed M.tb on respiratory
specimens at baseline
Confirmed TB
Unconfirmed TB
Unlikely TB

TB (n=48)
nor % or IQR
Median

25 0.52
23 0.48
45.5 31.92to
74.81
0 0
32 0.67
16 0.33
-0.79 -1.32to -
0.21
0 0
9 0.19
16 0.33
6 0.12
11 0.23
6 0.12
31 0.65
14 0.29
37 0.77
21 0.44
19 0.4
38 0.79
1 0.02
4 0.08
2 0.04
1 0.02
28 0.58
12 0.25
24 0.5
24 0.5
0 0

Not TB (n=52)

nor % or IQR
Median
25 0.48
27 0.52
4411 31.99 to
53
0 0
44 0.85
8 0.15
-0.63 -1.34 to
0.2
0 0
12 0.23
20 0.38
6 0.12
6 0.12
8 0.15
24 0.46
7 0.13
23 0.44
8 0.15
15 0.29
39 0.75
0 0
8 0.15
2 0.04
1 0.02
5 0.1
0 0
0 0
0 0
52 1

TB — tuberculosis, IQR — interquartile range, PTB — pulmonary tuberculosis, Xpert — Xpert
MTB/RIF, M.tb — Mycobacterium tuberculosis.
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Table S5. Description of demographics and candidate predictors from clinical evaluation and
diagnostic imaging/testing of the 24 participants with tuberculosis missed by the treatment-
decision algorithm built from the investigational model using initial evaluation data only.

Demographic

Clinical History at
Baseline

Clinical
Examination at
Baseline

Diagnostic
Testing/Imaging at
Baseline
Retrospective
Clinical Case
Definitions

n or Median
Sex
Male 16
Female 8
Age (months) 25.84
0-1 year 10
2-4 years 13
5 years and older 1
Weight (Z-score for age) -1.13
Z-score < -2 9
Cough Duration
No cough 5
Cough < 1 week 11
Cough 1-2 weeks 3
Cough 2-3 weeks 0
Cough > 3 weeks 5
Fever 11
Failure to thrive/weight loss 10
Poor appetite 16
Lethargy 11
History of tuberculosis contact 0
Lymphadenopathy 17
Stridor 0
Wheeze 1
Hepatomegaly 2
Splenomegaly 0
Chest radiography consistent with PTB at baseline 0
Xpert-confirmed M.tb on respiratory specimens at baseline 0
Confirmed TB 5
Unconfirmed TB 19
Unlikely TB 0

% or IQR

0.67

0.33

14.06 to 33.64
0.42

0.54

0.04

-2.29 t0 -0.33
0.38

0.21
0.46
0.12
0
0.21
0.46
0.42
0.67
0.46
0
0.71
0
0.04
0.08
0
0
0

0.21
0.79

TB — tuberculosis, IQR — interquartile range, PTB — pulmonary tuberculosis, Xpert — Xpert
MTB/RIF, M.tb — Mycobacterium tuberculosis.
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Table S6. Sensitivity, specificity, positive predictive value, and negative predictive value of the
algorithm developed from the clinical model given for the subpopulations of children at higher-

and lower-risk for tuberculosis and severe disease.

Sensitivity Specificity PPV
High-Risk Children
< 2 years old or 92.8% 34.3% 59.8%
weight-for-age Z-
score < -2
Low-Risk Children
> 2 years old and 81.3% 32.7% 52.7%

weight-for-age Z-
score = -2

PPV — positive predictive value, NPV — negative predictive value.

NPV

81.8%

65.4%

Table S7. Description of demographics and candidate predictors from clinical evaluation and
diagnostic imaging/testing of the nested case-control subpopulation. Cases were defined as
children with any bacteriological-confirmation over the study period and controls were defined as
children retrospectively classified as “unlikely tuberculosis” without ever receiving antituberculosis

treatment.
TB (n=104)
n or % or IQR
Median
Demographic Sex
Male 48 0.46
Female 56 0.54
Age (months) 18.56 9.4 t0 47.43
0-1 year 60 0.58
2-4 years 25 0.24
5 years and older 19 0.18
Weight (Z-score for age) -1.83 | -2.92t0-0.94
Z-score < -2 48 0.46
Clinical History Cough Duration
at Baseline No cough 16 0.15
Cough < 1 week 32 0.31
Cough 1-2 weeks 22 0.21
Cough 2-3 weeks 12 0.12
Cough > 3 weeks 22 0.21
Fever 65 0.62
Failure to thrive/weight loss 47 0.45
Poor appetite 60 0.58
Lethargy 48 0.46
History of tuberculosis contact 51 0.49
Clinical Lymphadenopathy 65 0.62
Examination at Stridor 2 0.02
Baseline Wheeze 21 0.2
Hepatomegaly 22 0.21
Splenomegaly 13 0.12
Diagnostic Chest radiography consistent with 80 0.77
Testing/Imaging = PTB at baseline
at Baseline Xpert-confirmed M.tb on respiratory 62 0.6
specimens at baseline
Retrospective Confirmed TB 104 1
Clinical Case Unconfirmed TB 0 0
Definitions Unlikely TB 0 0

Not TB (n=184)

n or Median = % or IQR
100 0.54
84 0.46
15.85 | 9.15t031.51
119 0.65
52 0.28
13 0.07
-1.44 | -2.44to0 -0.49
71 0.39
29 0.16
80 0.43
28 0.15
15 0.08
32 0.17
81 0.44
67 0.36
97 0.53
53 0.29
45 0.24
114 0.62
2 0.01
43 0.23
14 0.08
5 0.03
17 0.09
0 0
0 0
0 0
184 1

TB — tuberculosis, IQR — interquartile range, PTB — pulmonary tuberculosis, Xpert — Xpert

MTB/RIF, M.tb — Mycobacterium tuberculosis.

101



Table S8. Sensitivity and specificity of the algorithms developed from the clinical model (evidence
from baseline clinical evaluation only) and the investigational model (evidence from baseline
clinical evaluation, baseline chest radiography, and baseline Xpert MTB/RIF on respiratory
specimens) from the nested case-control subpopulation.

Sensitivity Specificity
Clinical model 88.5% 32.6%
Investigational model 95.2% 51.1%

Figure S1. Treatment-decision algorithm developed from the clinical model using baseline clinical
evidence only.
PTB — pulmonary tuberculosis, TB — tuberculosis.

Child £13 years being evaluated for PTB with:
Cough =2 weeks OR
Fever =1 weeks OR
Poor growth/weight loss in previous 3 months

Perform detailed clinical evaluation:
Cough 1 week -51
Cough 2 weeks +55
y NO Cough 3 weeks +110 Treat as
[ Known TB exposure? ]—> Cough =3 weeks  +109 appropriate and
Fever +84 reassess
YES Failure to thrive +67
Lethargy +44
Hepatomegaly +128
{ l 1 NO
Score =»1007? ]
YES
A A4
Initiate antituberculosis treatment
Reassess for persistence or resolution of symptoms and adverse drug events
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Figure S2. A) Depicts the changes in true positive (red), false positive (green), true negative
(purple), and false negative (blue) over the steps of the algorithm built from the investigational
model after clinical evaluation followed by CR then Xpert or Xpert then CR. CR reduces the false
negative more than Xpert when performed first after clinical evaluation. B) Using the treatment-
decision algorithm built from the clinical model, clinical evidence alone results in a sensitivity and
specificity of 90.5% and 52.1% respectively. Using the treatment-decision algorithm built from the
investigational model, meeting a score of >100 from clinical evidence alone has a sensitivity of
71.5% and specificity of 59.3%. Those participants not meeting criteria based on clinical evidence
alone are investigated further by CR and/or Xpert to result in the overall investigational model
algorithm sensitivity and specificity of 90.1% and 52.1% respectively. We suggest use of the
clinical model algorithm in settings where CR and Xpert are not available to maintain algorithm
sensitivity of at least 90%.

TP — true positive, FP — false positive, TN — true negative, FN — false negative, CR — chest
radiography, Xpert — Xpert MTB/RIF.

CR

CR after clinical
evaluation
(Investigational model)

Xpert

Xpert CR

Clinical CR and Xpert MTB/RIF Clinical Clinical CR and Xpert MTB/RIF

evaluation only after clinical evaluation evaluation only evaluation only after clinical evaluation
(Investigational (Investigational model) (Clinical model) (Investigational (Investigational model)
model) model)

Xpert MTB/RIF after
clinical evaluation
(Investigational model)
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ABSTRACT

Background: Identifying children with pulmonary tuberculosis (PTB) is challenging due to
the paucibacillary nature of childhood tuberculosis and concentration of resources and
expertise to diagnose in tertiary or referral healthcare centers. Moving treatment initiation
decisions to peripheral healthcare settings may improve outcomes by increasing
treatment detection and reducing delays. Treatment-decision algorithms may empower
providers in these settings by relating information gained in the evaluation into an
assessment of tuberculosis disease risk. Recent advances in algorithm development
have used prediction modeling approaches; however, studies that have done so are
small and provide limited insight into generalizability. We describe the assembly of a
large, individual participant dataset (IPD) from child presumptive PTB cases to develop a
new data-driven algorithm.

Methods: Studies enrolling presumptive PTB cases aged <10 years old were identified
through referral from experts in pediatric TB and a World Health Organization (WHO)
call for data. We used clinical evaluation, bacteriology, and imaging IPD to
retrospectively evaluate the performance of existing treatment-decision algorithms for
PTB. We then used this IPD to develop a logistic regression model to predict PTB and
investigated generalizability using an internal-external cross-validation framework.
Findings: IPD from 4,718 children (38.3% with bacteriologically-confirmed and
unconfirmed PTB) were received from 13 studies in high TB-incidence settings. Existing
algorithms were found to have heterogeneous performance in classifying PTB. We
developed a prediction model with a sensitivity of 85% [95% credible interval (Crl): 0.78-
0.91] and specificity of 37% [95% Crl: 0.22-0.55] in classifying PTB with similarly
heterogeneous performance. With guidance from WHO, we operationalized this model
as a treatment-decision algorithm to guide evaluation of children with presumptive PTB
in peripheral health centers.
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Interpretation: We present a pragmatic and transparent approach for the development of
a data-driven algorithm, that can be revised as better data and technologies become
available. Treatment decision-algorithms represent an important tool that could, in
combination with improved health system investment, reduce child mortality.

Funding: World Health Organization, US National Institutes of Health
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INTRODUCTION

Mycobacterium tuberculosis (Mtb) is a leading cause of mortality among young
children, with estimates suggesting that nearly a quarter of a million children (<15 years)
die due to tuberculosis (TB) each year.! Mtb is responsible for ~2.5% of the 6 million
deaths that occur in children <5 years old annually.? Modeling suggests that that 96% of
child mortality due to TB occurs among children not on treatment.® The World Health
Organization (WHO) estimates suggest that nearly 50% of TB among children is
undiagnosed, with an even greater proportion undiagnosed among children <5 years
old.* Thus, efforts to improve TB case detection among children represents an important

opportunity to reduce the global burden of child mortality.*

Identifying children with TB can be challenging, in part as disease among
younger children (<10 years) tends to be paucibacillary, resulting in low sensitivity of
bacteriological investigations.® Furthermore, collection of respiratory specimens from
children who are unable to expectorate is invasive and requires resources that are
generally concentrated in tertiary or referral healthcare centers.® Thus, symptoms,
clinical examination, and history of Mtb exposure play a crucial role in the decision to
initiate TB treatment. However, expertise and resources to make clinical diagnoses
and/or initiate TB treatment are similarly concentrated at tertiary or referral centers. This
can lead to delays in care-seeking and treatment initiation, which are known to be
associated with worse outcomes.”® Moving treatment initiation decisions to more
peripheral healthcare settings may increase case detection and reduce child TB

mortality.

Treatment-decision algorithms or scores (referred to as algorithms in this article)
aim to empower healthcare workers in primary and peripheral health settings to make

treatment decisions for children with presumptive TB by relating information gained in
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the evaluation of children into an assessment of TB disease risk.® A study in Uganda
demonstrated that adopting an algorithmic approach improved case-detection in primary
and peripheral health settings.1° Other groups have developed algorithms to guide the
evaluation of children with TB,!*2 including an attempt by the International Union
Against TB and Lung Diseases to operationalize previous WHO guidance.*® Many of
these algorithms have been developed using expert opinion and have not been

validated.

There have been several recent attempts to develop algorithms using modeling
approaches, in which data from diagnostic TB evaluations of children or adults are used
to quantify the contribution of different characteristics to generate an algorithm.141¢
These data-driven approaches are more transparent and offer greater potential for
formal validation. While these approaches represent an important advance, previous
modeling studies have been small and have not allowed for assessment of
generalizability. In this study, we aimed to assemble individual patient-level data from
children with presumptive pulmonary TB from multiple cohorts in geographically diverse,
high TB-incidence settings. We then sought to use this individual patient data (IPD) to
evaluate the performance of diagnostic algorithms used in practice and cited in the
literature, as well as to develop a new data-driven algorithm. We further aimed to
operationalize this new algorithm to make it relevant for primary care settings to enable
inclusion into the updated 2022 WHO consolidated guidelines on tuberculosis in children

and adolescents and the accompanying operational handbook."18

METHODS
Establishment of individual-participant data
In collaboration with the Secretariat of the Child and Adolescent Tuberculosis

Working Group at the WHO, we identified potential sources for IPD from studies carried
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out within a geographically diverse set of high TB-burden countries. Studies were eligible
for inclusion if they consecutively enrolled children <10 years old brought to healthcare
facilities for clinical evaluation and meeting established criteria as a presumptive
pulmonary TB case.!® Investigators were identified to join this collaborative group
through referral from experts in the field of pediatric TB and from responses to the WHO

Public Call for Data on the Management of Children with TB in July 2020.

After identification of eligible primary studies, we requested IPD including details
from the initial clinical history and physical examination, readings from initial chest x-ray,
results from rapid confirmatory tests for Mtb performed on samples collected at the initial
encounter, and a final classification of pulmonary TB (that may have included data

collected from subsequent encounters). A full list of variables requested is provided in

supplemental Appendix A. Unpublished data meeting eligibility criteria for this analysis
were also acceptable. All data assembly and analysis described in this manuscript were
carried out using R software. To account for the uncertainty associated with missing
variables, we used 2-level multiple imputation by chained equations (MICE)
implemented in the MICE package to generate 100 imputed datasets (additional details

in supplemental Appendix B.%°

Existing algorithm evaluation

We identified existing algorithms used to guide the evaluation of children with
presumptive pulmonary TB through a literature search and through consultation with
members of the WHO Guideline Development Group formed to oversee the
development of the 2022 WHO consolidated guidelines on the management of TB in
children and adolescents. We retrospectively evaluated the performance of these
algorithms to inform treatment decisions using the IPD data from the baseline

investigation, against the final classification of TB, using both confirmed and all TB
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(confirmed and unconfirmed) as the reference standards. We used the "reitsma” function
from the mada package to pool study-level sensitivity and specificity using a bivariate

model (additional details in supplemental Appendix C).?122

Prediction model development and validation

We used logistic regression to develop a model to predict TB using baseline
evaluation data available in the IPD. We included all variables for which there was <50%
missing in the IPD to predict the binary outcome of TB, considering both all TB versus
unlikely TB. To account for possible heterogeneity in the relationship between the
predictors and the outcome among the different studies comprising the IPD, we used the
“metapred” function in package metamisc to fit the model at the level of each study
comprising the IPD and then pooled the study-level parameter coefficients and their
respective standard error estimates to generate a prediction model.?*2* To account for
the uncertainty introduced by missing data, we generated a prediction model (as
described before) from each of the 100 imputed datasets and used established methods
to pool the parameter coefficient and standard error estimates to generate a final, single

prediction model.?®

We used an internal-external cross-validation framework to validate the
prediction model by investigating discrimination and calibration.?® This framework uses a
leave-one-study-out approach, building a model on n-1 studies (n being the total number
of studies included in the IPD) and validating performance on the remaining n™ study,
repeating this such that n models have been built on n sets of n-1 studies and validated
on the holdout study. Specifically, we examined the c-statistic (also known as the area
under the receiver operating characteristic curve) to understand whether there were
studies in which the model had better or worse discrimination between TB and non-TB;

and we examined the observed: expected (O:E) slope as a measure of calibration to
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assess whether there were studies in which the model over- or under-classified TB.
Empiric evidence has shown that this internal-external cross-validation approach is a
more efficient use of available IPD to build prediction models as compared to methods
that arbitrarily divide into training and test sets. As above, we accounted for uncertainty
introduced by missing data, by pooling the c-statistic and O:E slope estimates from each

of the multiply imputed datasets.

Algorithm development

To generate an algorithm that was easily implementable in settings without
advanced computational power, we scaled the coefficient estimates for the parameters
in each of the final prediction models to develop a score such that a score of >10
corresponded to classification of TB at fixed sensitivities of 90%, 85%, 80%, 75%, and
70%. Additional details describing this method are specified in the supplemental
Appendix D. To estimate the sensitivity and specificity of the scaled score in classifying
TB (all TB vs. unlikely TB), study-level sensitivities and specificities were pooled using
the bivariate model of Reitsma et al. (implemented in the mada package) accounting for

uncertainty introduced by imputation of missing data.?!22

In conjunction with the Secretariat of the WHO Child and Adolescent TB Working
Group, we convened panel of experts to advise on the development of algorithms from
these prediction models. The composition of this panel is provided in the supplemental
Appendix E. Specifically, we sought advice on: 1) which features to include in the model
that are clinically relevant and easy to assess in peripheral health settings, 2)
modifications required to implement the models at peripheral health centers, given
development had used data from tertiary levels of care, and 3) selection of a

performance target for the final algorithm.
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Ethics

This analysis was approved by the Stellenbosch University Health Research
Ethics Committee (Ref No. X21/02/003) and the Yale Institutional Review Board (Ref
No. 2000028046) and did not require specific consent as it was a secondary analysis of
previously collected data. Collaborating investigators provided evidence of ethical

approval for original data collection.

ANALYSIS
Data Assembly

Eighteen studies were identified as having potentially appropriate data; two of
these studies were unable to provide data in the necessary timeline and an additional
three studies did not meet the inclusion criteria (Figure 1). This led to 4,718 IPD records
from children <10 years old with presumptive pulmonary TB from 13 studies,?¢-° of
which, 1,811 (38.3%) were found to have TB (541 confirmed, 1,270 unconfirmed), 2,818
(59.7%) were found not to have TB, and 89 (1.9%) were not given a final classification of

TB (Table 1). The data were predominantly collected from tertiary and referral settings.

Studies |dentified
n=18
Studies Excluded:
J n=2 —timeline not possible
Received IPD
n=16
N=6079 IPD records Studies Excluded:
n=3 - data not suitable for
- analysis
Studies Suitable for IPD N=1076 IPD records
Analysis
n=13
N=5003 IPD records IPD Records Excluded
E— N=285 — Missing
demographic characteristics
IPD Records from Children
Age 0-9 years
N=4718 IPD Records w/
== - Unclassified PTB Status
N=89
IPD Records Classified as TB IPD Records Classified as non-TB
N=1811 N=2818

Figure 1. Studies involved and data contributed to IPD. Flow-diagram
demonstrating how the eighteen studies that were identified as having potentially
appropriate data for this analysis led to inclusion of 4,718 IPD records from children
<10 years old with presumptive pulmonary TB (1,811 [38.3%)] were found to have
either bacteriologically-confirmed TB or unconfirmed TB). Note that 285 IPD records
from eligible studies were excluded due to missing age. TB — tuberculosis, IPD —
individual participant data, PTB — pulmonary tuberculosis.
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Table 1. Characteristics of studies contributing to IPD. Study-level descriptions
of data included in the IPD. HIV — human immunodeficiency virus, SAM — severely
acutely malnourished, TB- tuberculosis, BD — Bangladesh, BR — Brazil, KE — Kenya,
MM — Myanmar, Multi — Multi-country study (includes Burkina Faso, Cameroon,
Vietnam, and Cambodia), MZ — Mozambique, PK — Pakistan, UG — Uganda, VN —
Vietnam, ZA — South Africa.

Size Age histogram <2 years old HIV SAM  Confirmed TE Unconfirmed TB Unlikely TB TB status unknown
Study N 0-10 months N (%) N (%) N (%) N (%) N (%) N (%) N (%)

Aurilio/2020/BR 50 Oem=ee 21(042)  6(012) 0(0) 9(0.18) 11(0.22) 24(048) 6(012)
Bonnet/™iUG 27 . 157(072) 70(0.32) 108(0.5) 12(0.08) 58 (0.27) 125(0.58) 22(0.1)
Garcial2020/MZ 142 fdheeess  59(042) 70(049) 27(019) 5(004) 28(02) 109(077) 0(0)
Giang/2015/VN 113 O 86(0.78) 0(0) 8(0.07) 20(0.18) 77 (0.68) 16(0.14)  0(0)
Hamid/2019/PK 45 mdflm  41(0.09) 0(0) 26(0.08) 0(0) 29(0.07) 416(083) 0(0)
Kabir/2020/8D 02 e 219(054) 0(0) 93(0.23) 63(0.16) 36 (0.09) 303(0.75 0(0)
LopezVarelal2015/MZ 789 4l 548(0.7) 104 (0.13) 68(0.09) 13(0.02) 128 (0.16) 648(082) 0(0)
Marcy/2016/Multi 338 Mhomml  78(023)  338(1) 64(0.19) 41(012) 155 (0.46) 142(042) 0(0)
Myo/2018/MM 223 Mnmwome. 72(032) 27(0.12) 46(0.21) 27(0.12) 84 (0.38) 112(05) 0(0)
Orikirza/2018/UG 338 Mhmom 124(0.37)  101(0.3)  41(012) 12(0.04) 145(0.43) 167 (0.49) 14(0.04)
Song/2021/KE 300 dlllie 146 (049) 73(0.24) 8(0.03) 31(01) 85 (0.22) 170(0.57) 34 (0.11)
South_Africa_UCT 766 Moo 362(047) 137(0.18) 32(0.04) 189(0.25) 274 (0.36) 303(04) 0O
Walters/2017/ZA 505 Mhe.  389(065 70(0.12) 18(0.03) 119(0.2) 180 (0.3) 283(048) 13(0.02)

Though each study was required to include children with presumptive pulmonary

TB, there were heterogeneities in the inclusion criteria, definitions of variables, and

reference classification of TB. Details describing heterogeneities and the imputation

models to handle missing data are provided in the supplemental Appendices F-J.

Existing algorithm performance evaluation

We retrospectively evaluated the performance of eight existing algorithms to

guide treatment decision-making for presumptive pulmonary TB in children;10.13-1540-43

one of these algorithms was evaluated only on data from children living with HIV,** and

another was evaluated only on data from children without HIV.*® The data to develop

these latter two algorithms were included in the IPD; thus, their data were excluded from

the evaluation of the respective algorithms. We had to make modifications to the
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Gunasekera et al, Alzorithn®* —4p- 093 [085-097]
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B
Marais et al. Criteria | —p— 0.87 [0.78-0.93]
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Keith Edward Score _._. 0.23 [0.14-0.36]
Marcy et al. Algorithen* | —p— 0.33 [0.22-0.48]
Gumasekera et al. Alzorithm** —p— 0.16 [0.08-0.37]
0.00 025 050 075 100
Specificity

Figure 2. Performance of existing algorithms at classifying TB. Retrospective
estimates of the pooled (a) sensitivity and (b) specificity of eight algorithms to guide
treatment decision-making for children with presumptive pulmonary TB, had they been
used to evaluate the children for whom we have IPD records. The reference
classification of pulmonary TB included bacteriologically-confirmed pulmonary TB as
well as unconfirmed pulmonary TB. Modifications were made to the algorithms to
maximize the use of the available IPD. TB — tuberculosis, IPD — individual participant
data, HIV — human immunodeficiency virus, BD — Bangladesh, BR — Brazil, KE —
Kenya, MM — Myanmar, Multi — (PAANTHER) Multi-country study (includes Burkina
Faso, Cameroon, Vietnam, and Cambodia), MZ — Mozambique, PK — Pakistan, UG —
Uganda, VN — Vietnam, ZA — South Africa, MoH — (Brazil) Ministry of Health, NTLP —
(Uganda) National TB and Leprosy Program.

*Performance estimates of the Marcy et al. Algorithm were derived from only HIV-
positive children in the IPD that excludes data form the Marcy/2016/Multi cohort (from
which the algorithm was developed)

**Performance estimates of the Gunasekera et al. Algorithm were derived from only
HIV-negative children in the IPD that excludes data from the Walter/2017/ZA
population (from which the algorithm was developed).
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algorithms to evaluate their performance, given that not all features were available in the

IPD (details describing these modifications are provided in the supplemental Appendix

K). The overall performance of these algorithms is shown in Figure 2; the study-level

performance of each algorithm can be found in the supplemental Appendix L. A

sensitivity analysis evaluating algorithm performance to discriminate confirmed TB from
unlikely TB (excluding unconfirmed TB from this analysis) demonstrated generally higher
sensitivities and comparable specificities to the performance in the entire dataset
including those with unconfirmed TB; these results are provided in the supplemental
Appendix M.
Prediction model development and validation

The variables included in the prediction model included features from the
baseline clinical evaluation and baseline chest x-ray findings that were recommended by
the panel of experts to advise on algorithm development. The model fit with odds ratios
and 95% confidence intervals (Cl) are displayed in Table 2. The panel also
recommended building a model including only features from the baseline clinical
evaluation (without chest x-ray findings). We present the model fit with odds ratios and

95% CI of this model in supplemental Appendix N.

The summary estimate of the c-statistic for the prediction model including chest
x-ray features was 0.71 [95% CI: 0.66-0.76]; the c-statistic in each of the holdout studies
is included in Figure 3a. The summary estimate of the O:E slope for the prediction
model was 0.90 [95% CI: 0.28-2.98]; the O:E in each of the holdout studies is included in

Figure 3b.

Algorithm Development
The scaled prediction coefficient scores corresponding to classification of TB with

respective sensitivities of 90%, 85%, 80%, 75%, and 70% can be found in supplemental
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Appendix O. The study-level and summary performance of these scores in classifying

TB can be found in supplemental Appendix P.

Table 2. Estimates of logistic regression prediction model developed from IPD.
Odds ratio with 95% confidence interval and p-value estimates for each parameter
included in the logistic regression prediction model. The model parameter estimates
account for potential clustering at the study-level as well as uncertainty introduced by
missing data. IPD — individual participant data, OR — odds ratio, CXR — chest x-ray.

OR 2.5%ile 97.5%ile P-value
(Intercept) 0.147 0.075 0.285 0.000
Cough duration 2 2 weeks Absent -- -- -- --
(Absence is no cough or Present 1.185 0.913 1.537 0.856
<2 weeks)
Fever duration 2 2 weeks Absent - -- -- --
(Absence is no fever or <2
weeks) Present 1.568 1.178 2.087 0.245
Lethargy Absent -- -- -- --
Present 1.282 1.016 1.618 0.663
Weight loss Absent - -- -- --
Present 1.251 0.970 1.615 0.746
History of known TB Absent - - - -
exposure Present 4.195 2.385 7.377 0.000
Hemoptysis Absent - - - -
Present 1.404 0.690 2.857 0.788
Night sweats Absent -- -- -- --
Present 1.224 1.022 1.465 0.709
Peripheral Absent - -- -- --
lymphadenopathy Present 1.422 1.141 1.772 0.353
Temperature >38 Absent -- -- -- --
Present 1.004 0.776 1.299 1.000
Tachycardia Absent -- -- -- --
Present 1.159 0.879 1.529 0.896
Tachypnea Absent -- -- -- --
Present 0.949 0.766 1.176 0.983
Cavities on baseline CXR Absent -- -- -- --
Present 1.600 0.898 2.849 0.527
Intrathoracic Absent -- -- -- --
lymphadenopathy on
baseline CXR Present 4.323 2.727 6.854 0.000
Opacities on baseline Absent -- -- -- --
CXR Present 1.540 1.022 2.320 0.452
Miliary infiltrate on Absent -- -- -- --
baseline CXR Present 3.558 1.761 7.191 0.000
Pleural effusion on Absent -- -- -- --
baseline CXR Present 1.899 1.217 2.964 0.128
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Figure 3. Calibration and discrimination of prediction model to classify TB.
Study-level and pooled estimates of the (a) discrimination (c-statistic) and (b)
calibration (O:E slope) of the prediction model developed from the IPD in classifying
TB using an internal-external cross-validation framework (reference standard:
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB). c-Statistic
— concordance statistic, O:E — observed: expected slope, IPD — individual participant
data, TB — tuberculosis, BD — Bangladesh, BR — Brazil, KE — Kenya, MM — Myanmar,
Multi — Multi-country study (includes Burkina Faso, Cameroon, Vietnam, and
Cambodia), MZ — Mozambique, PK — Pakistan, UG — Uganda, VN — Vietnam, ZA —
South Africa.

Given that the prediction models were developed on IPD largely sourced from
tertiary and referral healthcare settings and that the models are intended to be used in
primary and peripheral healthcare settings, the panel recommended additional selection

steps prior to using the prediction model. Specifically, it was recommended to stratify
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children by risk of mortality and progression of TB disease. Higher-risk children, defined
as children <2 years old, severely acutely malnourished, and/or living with HIV, would
enter the prediction model at the time of initial evaluation; the remaining lower-risk
children would be followed-up in 1-2 weeks, and only those with persistent/worsening
symptoms at follow-up would enter the prediction model. This stratification was intended
to enrich the probability of TB among the population of children proceeding through the
algorithm to the model such that the probability would more closely reflect the
preselected population producing the data from which the prediction model was built

while balancing the consequences of untreated TB among high-risk children.

To balance the consequences of untreated TB versus the consequences of
overtreatment, the panel recommended selecting a sensitivity threshold of 85% in
classifying TB (all TB vs. unlikely TB), resulting in the development of a score with a
sensitivity of 0.85 [95% credible interval (Crl): 0.78-0.91] and a specificity of 0.37 [95%
Crl: 0.22-0.55] (Figure 4). A sensitivity analysis of the performance of this score in
classifying confirmed TB vs. unlikely TB (excluding unconfirmed TB from this analysis)
demonstrated a sensitivity of 0.88 [95% Crl: 0.81-0.92] and specificity of 0.38 [95% Crl:

0.23-0.55] (supplemental Appendix Q).

Under the same sensitivity threshold of 85%, the score developed from the
model that including only features from the baseline clinical evaluation (without chest x-
ray findings) had a sensitivity of 0.84 [95% Crl: 0.76-0.89] and specificity of 0.30 [95%
Crl: 0.20-0.44] in classifying all TB vs. unlikely TB, and sensitivity of 0.86 [95% Crl: 0.78-
0.91] and specificity of 0.30 [95% Crl: 0.20-0.44] in classifying confirmed TB vs. unlikely

TB (excluding unconfirmed TB from this analysis; see supplemental Appendix R).
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Figure 4. Performance of scaled scores from prediction model to classify TB with
85% sensitivity. Study-level and pooled estimates of the (a) sensitivity and (b)
specificity of classifying TB (reference standard: bacteriologically-confirmed pulmonary

TB and unconfirmed pulmonary TB) of the scores derived from the prediction model
developed from the IPD to classify TB with 85% sensitivity. TB — tuberculosis, IPD —
individual participant data, BD — Bangladesh, BR — Brazil, KE — Kenya, MM —
Myanmar, Multi — Multi-country study (includes Burkina Faso, Cameroon, Vietham, and
Cambodia), MZ — Mozambique, PK — Pakistan, UG — Uganda, VN — Vietham, ZA —
South Africa.

These recommendations resulted in the development of the treatment-decision
algorithm presented in Figure 5, in which children <10 years with presumptive

pulmonary TB would be triaged by risk of mortality prior to entering the prediction model.
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Child <10 years with symptoms suggestive of pulmonary TB |

v
Presence of danger signs requiring | YES| Stabilise and/or transfer
. —>
urgent medical care? as needed

lNG RETAIN TRANSFER
Child <2 years old, living
with HIV, and/or severe Exit

acute malnutrition

YES NO

Treat most likely non-TB
condition(s)
Follow-up in 1-2 weeks

NO
Persistent/worsening symptoms.

lYES
A

Collect respiratory/stoal specimens for mWRD testing (e.g., Xpert
MTB/RIF or Ultra), including in CLHIV, urine LF-LAM, if available

v

| If performed, did mWRD or LF-LAM detect Mycobacterium tuberculosis? ‘

YES i NO /NOT PERFORMED /RESULT NOT YET AVAILABLE

| Close or household TB contact in the previous 12 months? |

YES l NO

‘ Score signs and symptoms and CXR features %7

Signs and symptoms Chest X-ray
Cough longer than 2 weeks +2 . »
Feverlonger than 2 weeks +5  Cavity/Cavities +6 Do not treat
Lethargy +3 Enlarged lymph nodes  +17 with TB
Weight loss +3 Opacities +5 4

- reatment.
Haemoptysis (cough up blood) ~ +4  Miliary Pattern +15 Follow-up
Night sweats +2 Effusion +8 in1-2
Swollen lymph nodes +4 weeks.
Tachycardia +2 T
Tachypnoea -1

SumA: SumB: _

NO
JEs s Sum A + Sum B > 107 }—

Initiate appropriate TB treatment ‘

Figure 5. Treatment-decision algorithm derived from prediction model.
Tuberculosis treatment-decision algorithm for use among children less than 10 years of
age with symptoms suggestive of pulmonary tuberculosis, reproduced from the
operational handbook accompanying the 2022 consolidated guidelines on the
management of TB in children and adolescents.'® Selection steps prior to entering
scoring system reflect recommendations from the WHO expert panel to enrich the
probability of TB among the population of children proceeding through the algorithm to
the model such that the probability would more closely reflect the preselected
population producing the data from which the prediction model was built while
balancing the consequences of untreated TB among high-risk children. Scores
associated with features from clinical history and physical exam and chest X-ray
translate to risk of TB and are scaled from the prediction model developed from the
IPD. WHO — World Health Organization, TB — tuberculosis, IPD — individual participant
data, HIV — human immunodeficiency virus, mMWRD — molecular WHO-recommended
rapid diagnostic test, CLHIV — children living with HIV, LF-LAM — lateral flow urine
lipoarabinomannan assay, CXR — chest X-ray.
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The clinical and chest x-ray features included in the model were given a score
corresponding to risk of TB such that a total score of >10 would result in classification of
TB with a sensitivity of 85%. The same parameters were used to construct the
treatment-decision algorithm from the model without chest x-ray features (supplemental
Appendix S), for use in settings in which chest x-ray is not available.
DISCUSSION

This work describes the assembly of a large IPD cohort of children with
presumptive pulmonary TB from geographically diverse, high-TB burden settings to
evaluate existing algorithms and to develop a novel, prediction model for children being
evaluated for pulmonary TB. We incorporated this prediction model into an algorithm to
assist the evaluation of children with presumptive pulmonary TB for the 2022 WHO
consolidated guidelines on the management of tuberculosis in children and adolescents.
This model-based, algorithm-building approach represents an important advance to
support uniform and rapid treatment decision-making for children being evaluated for

pulmonary TB in high TB-burden settings.

Modeling diagnostic IPD from children with presumptive pulmonary TB provides
guantitative evidence of which features from the clinical exam are sufficient to make
sensitive TB-treatment decisions. Reviews of existing diagnostic algorithms reveal that
many existing algorithms have been produced by expert opinion/consensus or from data
sourced from small cohorts of children being investigated for pulmonary TB.1112 Few
have been subject to any form of validation. Our modeling approach allows for validation
and interrogation of model performance in various settings and selection of a sensitivity
threshold to meet global TB treatment priorities. Notably, our approach is able to provide

clear guidance as to which features from the clinical evaluation, if present, justify
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treatment for TB, including suggesting when there is sufficient evidence to treat in the
absence of chest x-ray.

Our development of two models, both with the same features from the clinical
evaluation but one without features from baseline chest x-ray, is intended to
acknowledge the reality that chest x-ray is not uniformly available in all settings. As
demonstrated by the higher specificity (at a fixed sensitivity target) of the model that
includes chest x-ray features as compared to the model without chest x-ray features,
additional resources for testing/imaging would improve the specificity of treatment
decisions. We did not include results from baseline Xpert MTB/RIF completed on
respiratory specimens in our models to be consistent with the WHO recommendation to
perform recommended rapid molecular testing on respiratory specimens in child

presumptive TB cases whenever possible.

While it is true that inclusion of chest x-ray features still does not sufficiently raise
the specificity of the algorithms to meet the targets in the WHO Target Product Profile for
a triage test for TB, this provides pragmatic guidance driven by data to reduce the
burden of childhood mortality associated with untreated TB.** Studies have yet to
demonstrate evidence that any test for childhood pulmonary TB meets the performance
targets outlined in the Target Product Profile. In the absence of such a test, a panel of
experts convened by WHO identified that prioritizing the sensitivity of treatment
decisions, at the expense of reduced specificity, is necessary to mitigate the public
health crisis of untreated childhood TB. Antituberculosis treatment is relatively safe in
children and poses a low concern for selection of drug resistance,*® and many children
may now be treated with a shorter fourth-month treatment regimen.“® However,

overtreatment of TB is not without consequence.*’ Decision-analytic modeling of the
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relative weight of false positive and false negative classification of TB may provide

insight to select an appropriate sensitivity threshold.

Our cross-validation analyses found study-level heterogeneity in discrimination
and calibration. Though this IPD is the largest of its size compiled to date, there were not
enough studies to investigate the features that drive this heterogeneity, which may
include local prevalence of TB, heterogeneous population demographics,
heterogeneities in variable and outcome definitions, and uncertainty introduced by the
imputation. Given that the existing algorithms demonstrated similar heterogeneities in
performance as compared to the one we developed, we suggest that this data-driven
approach is superior as it offers the flexibility to further interrogate the sources of
heterogeneity as additional data is accumulated into the IPD to inform model

development.

Inclusion of children with unconfirmed pulmonary TB along with those that have
bacteriologically-confirmed pulmonary TB as the definition of TB in the primary analyses
is important, given the high burden of unconfirmed childhood TB presenting to
healthcare. The underlying pathology associated with individuals in the unconfirmed TB
group is unclear; it may represent either an early stage in TB disease, an alternative
disease process or (most likely) a heterogenous group in which some children have TB
and some have other causes for their symptoms.*®4° |rrespective, current guidelines
recommend treating children with unconfirmed TB. From an analytic perspective,
exclusion of children without bacteriological confirmation may introduce bias, artificially
inflating the estimates of the strength of the relationship for those features used by study
clinicians to determine whether a child had pulmonary TB in the absence of

bacteriological confirmation. A sensitivity analyses that restricted the definition of
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pulmonary TB to bacteriologically-confirmed TB demonstrated generally improved

sensitivity.

While there are many strengths to this data-driven algorithm-development
approach, there are limitations due to missingness in the data and the absence of data
from primary and peripheral health centers. The pre-test probability of TB (i.e., the
prevalence) is likely substantially lower at peripheral settings and the disease
presentation may be different as compared to tertiary and referral settings. We believe
that the risk-stratification and delayed entry of lower-risk children is a practical attempt to
raise the pre-test probability given that there is no perfect solution in the absence of
relevant data. Studies evaluating the implementation of other algorithms are currently
underway and are expected to provide important insight into how to support healthcare
workers to adopt algorithmic approaches to antituberculosis treatment-decisions into
clinical practice with high fidelity.>® Additional work to externally validate our newly
generated algorithm through a prospective, randomized investigation will be critical to
evaluating efficacy. Finally, we acknowledge that children face a disproportionately high
burden of extrapulmonary TB (EPTB). Given the highly varied presentation of EPTB, we
restricted this analysis to provide guidance for pulmonary TB only. Developing tools to

identify EPTB is an important area of future research.

A distinct advantage of the modeling approach to algorithm development is the
ability to revise and improve the models as additional data become available. High-
quality studies of new diagnostic tools, including biomarkers and those available at the
point-of-care, may improve the specificity of such algorithms while maintaining strong
sensitivity targets. Additionally, diagnostic studies that also stratify children with
pulmonary TB by disease severity may inform the development of algorithms that

determine first whether to treat a child for TB and then second, to stratify those with non-
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severe disease who may be eligible for shorter treatment will be important pragmatic

guidance to healthcare workers.

Treatment decision-algorithms represent an important pragmatic tool that could,
in combination with improved health system investment, reduce the morbidity/mortality of
this public health crisis. This work represents a pragmatic and transparent approach
using advanced analytic methods to develop an algorithm based on the best available

data that can be validated and further specified as additional becomes available.
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SUPPLEMENTARY INFORMATION

Abbreviations and shorthand

AUC — area under the receiver-operator curve
BCG - Bacille Calmette-Guérin vaccine

BD - Bangladesh

BR - Brazil

Cl — confidence interval

Crl — credible interval

c-Statistic — concordance statistic

CXR — chest X-ray

EPTB — extrapulmonary tuberculosis

ES — expectorated sputum

GA — gastric aspirate

ART —Antiretroviral therapy

HIV — human immunodeficiency virus

IPD — individual participant data

IS — induced sputum

KE — Kenya

LF-LAM — lateral flow urine lipoarabinomannan assay
MICE — multiple imputation by chained equations
MM — Myanmar

MoH — Ministry of Health

Mtb — Mycobacterium tuberculosis

Multi — (PAANTHER) Multi-country study (includes Burkina Faso, Cameroon, Vietnam,
and Cambodia)

mWRD — molecular WHO-recommended rapid diagnostic test
MZ — Mozambique

NTLP — National TB and Leprosy Program

O:E — observed: expected slope

OR - odds ratio

PAANTHER - Pediatric Asian African Network for Tuberculosis and HIV Research
PK — Pakistan

PPD - purified protein derivative

PTB — pulmonary tuberculosis

SAM - severely acutely malnourished

TB — tuberculosis

TST — tuberculin skin test

UG - Uganda

VN — Vietnam

WFAZ — weight-for-age Z-score

WHO — World Health Organization

Xpert — Xpert MTB/RIF

Xpert Ultra — Xpert MTB/RIF Ultra

ZA — South Africa
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Appendix A: Data Requested

Table S1. Data requested from studies and suggested format

FIELD VARIABLE DESCRIPTION FORM | CODE LABEL
AT
studyID Study ID Data source cohort int 1 Brazil
2 Kenya
3 Mozambique
ITACA
4 Mozambique
TOSSE
5 Myanmar
6 PAANTHER
7 Pakistan
8 South Africa
DTTC
9 Uganda 1
10 Uganda 2
11 Vietnam
12 Bangladesh
13 South Africa
UCT
age Age (months) | Age (months) at enrolment | num HHtt NA = unknown
sex Sex Participant sex int 0 Female
1 Male
NA Unknown
weight Weight (kg) Weight (kg) at initial num i NA = unknown
evaluation
height Height (cm) Height/length (cm) at initial | num i NA = unknown
evaluation
bcg_evidence BCG Evidence of BGC int 0 No evidence of
evidence vaccination (BCG scar or BCG
BCG recorded in vaccination
immunization record) at 1 Evidence of
initial evaluation BCG
vaccination
NA Unknown
HIV_status_ba_pk_no HIV-status Participant HIV status int 0 HIV-negative
1 HIV-positive
NA Unknown
cough_less2wk_gr2wk_gr3w | Cough Duration of cough at initial int 0 No cough
k_grdwk duration evaluation 1 Cough 0-13
days
2 Cough 14-20
days
3 Cough 21-27
days
4 Cough >28
days
NA Unknown
cough_greater_2wk Cough Presence of cough >2 int 0 Cough >2
duration weeks at initial evaluation weeks not
present
1 Cough >2
weeks present
NA Unknown
fever_less2wk_gr2wk_gr3wk | Fever Duration of fever at initial int 0 No fever
_grdwk duration evaluation 1 Fever 0-13
days
2 Fever 14-20
days
3 Fever 21-27
days
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4 Fever >28
days
NA Unknown
fever_greater_1wk Fever Presence of fever >1 week | int 0 Fever >1 week
duration at initial evaluation not present
1 Fever >1 week
present
NA Unknown
lethargy_any2wk Lethargy Presenting history of int 0 No lethargy
unusual lethargy or lack of
layfulness at initial
gva%uation 1 Lethargy
NA Unknown
weight_loss Weight loss Presenting history of poor int 0 No weight loss
growth over the preceding
3 months AND not
responding to nutritional
rehabilitation (or 1 Weight loss
antiretroviral therapy if HIV
infected)
NA Unknown
significant_tbc Known TB Known exposure to MTB at | int 0 No known TB
exposure initial evaluation in exposure in
previous 12 months previous 12
months
1 Known TB
exposure in
previous 12
months
NA Unknown
night_sweats Night sweats | Presenting history of night int 0 No night
sweats at initial evaluation sweats
1 Night sweats
NA Unknown
hemoptysis Hemoptysis Presenting history of int 0 No hemoptysis
hemopty&s at initial Hemoptysis
evaluation
NA Unknown
temp Temperature | Recorded temperature at num it NA=unknown
© initial evaluation
heart_rate Heart rate Heart rate (per minute) at num it NA=unknown
(per min) initial evaluation
respiratory_rate Respiratory Respiratory rate (per num it NA=unknown
rate (per min) | minute) at initial evaluation
peripheral_lad Peripheral Peripheral int 0 No peripheral
lymphadenop | lymphadenopathy (at lymphadenopa
athy cervical, submandibular, thy
and/or axillary nodes) at 1 Peripheral
initial evaluation lymphadenopa
thy
NA Unknown
first_xpertORculture_yn First Xpert Result from first Xpert int 0 Xpert negative
MTB/RIF MTB/RIF (not Ultra) for MTB
performed on ES/IS (or GA 1 Xpert positive
for young ch_ll(_jren) for MTB
collected at initial
evaluation NA Unknown/not
performed
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CXRcomb_TB_yn CXR Result of CXR performed int 0 CXR not
consistent at initial evaluation as consistent with
with TB assessed by reader B
performing clinical
evaluation/making TB-
treatment decision or by 1 CXR
reader to inform research consistent with
classification of TB if B
former not available
NA Unknown/not
assessed
CXRindex_opacity Opacities on Opacities (e.g., alveolar int 0 Opacities not
CXR consolidation and/or present on
bronchopneumonia) on CXR
CXR performed at initial
evaluation as assessed by
reader performing clinical
evaluation/making TB-
treatment decision or by 1 Opacities
reader to inform research present on
classification of TB if CXR
former not available
NA Unknown/not
assessed
CXRindex_cavity Cavities on Cavities on CXR performed | int 0 Cavities not
CXR at initial evaluation as present on
assessed by reader CXR
performing clinical
evaluation/making TB- 1 Cavities
treatment decision or by present on
reader to inform research CXR
classification of TB if
former not available NA Unknown/not
assessed
CXRindex_mili Miliary Miliary infiltrate on CXR int 0 Miliary infiltrate
infiltrate on performed at initial not present on
CXR evaluation as assessed by CXR
reader performing clinical 1 Miliary infiltrate
evaluation/making TB- present on
treatment decision or by CXR
reader to inform research NA Unknown/not
classification of TB if assessed
former not available
CXRindex_nodes Nodes on Nodes (e.g., perihilar int 0 Nodes not
CXR nodes, paratracheal nodes, present on
mediastinal nodes) on CXR CXR
performed at initial 1 Nodes present
evaluation as assessed by on CXR
reader performing clinical NA Unknown/not
evaluation/making TB- assessed

treatment decision or by
reader to inform research
classification of TB if
former not available
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CXRindex_effusion Pleural Pleural effusion on CXR int 0 Pleural
effusion on performed at initial effusion not
CXR evaluation as assessed by present on
reader performing clinical CXR
evaluation/making TB- 1 Pleural
treatment decision or by effusion
reader to inform research present on
classification of TB if CXR
former not available NA Unknown/not
assessed
TST_result Tuberculin Tuberculin skin test num 0 TST negative
skin test positive at initial evaluation 1 TST positive
NA Unknown/not
performed
TB_class B Final classification of TB int 0 Unlikely TB
classification 1 Bacteriological
ly-confirmed
B
2 Unconfirmed
TB
NA Unknown
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Appendix B: Information about multiple imputation by chained equations

Imputation of missing data was carried out using the multiple imputation by chained
equations (MICE) methods implemented in the mice package in R. MICE is a “fully conditionally
specified” modeling approach that first imputes the mean for missing data in each variable then
uses regression modeling to re-impute missing data in each variable by conditioning on the

remaining variables, and iteratively updating imputations using the newly imputed data.

All IPD (specified in Table S1) were included in the imputation models. We included a
cluster-specific random effects term in the imputation model for each variable whenever possible
to allow for study-level heterogeneities in the baseline distribution for each imputed variable. For
continuous variables and categorical variables, we used a two-level predictive mean matching
model implemented using the “2l.pmm” function in the miceadds package in R; for binary
variables, we used a two-level logistic model implemented using the “2I.bin” function. Few binary
variables gave a singular fit warnings using two-level methods; for these variables, we reflexed to
using a one-level logistic model implemented using the “logreg” function. MICE was run using the
“mice” function with 20 iterations to generate 100 imputed datasets. The methods used to impute
each variable are specified as follows:

2l.pmm: cough_less2wk_gr2wk_gr3wk_grdwk, fever_less2wk _gr2wk_gr3wk_gr4wk,

weight, temp, heart_rate, respiratory_rate, height

2l.bin: cough_greater_2wk, fever_greater_1wk, lethargy_any2wk, weight_loss,
night_sweats, peripheral_lad, tbc_yn, bcg_evidence, HIV_status_ba_pk_no,
CXRcomb_TB_yn, CXRindex_nodes, CXRindex_opacity, CXRindex_effusion,
TST_result, CXRindex_cavity, first_xpertORculture_yn

logreg: sex, hemoptysis, CXRindex_mili

Additional imputation specifications are as follows:

Cluster variable: studylD

No imputation method specified (fully complete data): studyID, age

Successful imputation was assessed by visual assessment of convergence of the mean

and standard deviation of each variable over the imputation iterations.
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Appendix C: Estimation of algorithm performance accounting for multiply imputed
data

For each algorithm, sensitivity and specificity estimates were computed at the
study-level and pooled using a bivariate model as implemented in the “reitsma” function
in the mada package in R. To account for the uncertainty associated with missing data,
we created 100 imputed datasets as specified in supplemental Appendix C. Study-level
and pooled estimates of sensitivity and specificity were computed for each of the 100
datasets. To obtain a point estimate for each study-level and pooled measure of
sensitivity and specificity, we determined the median value over the 100 estimates; to
obtain a 95% credible interval for each measure, we respectively determined the median
value of the upper and lower bounds of each estimate provided by the “reitsma” function

over the 100 estimates.
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Appendix D: Develop a score from models produced on multiply imputed data

A general form of a multivariate logistic regression equation is given as follows:

logit(p) = Bo + By *x1 + Brxx3+ 4 B xxy

Where p is the probability of tuberculosis, x,_,, refers to the predictors and 3, _, refers to the
coefficients describing the relationship between the predictor and the logit-transformed
probability. We fit the prediction model to the data, and we identified the probability
corresponding to classification of tuberculosis with a given sensitivity compared to the
reference standard. For example, let us specify an interest in classifying tuberculosis with a
sensitivity of at least 85%. We obtained a threshold probability by subtracting the intercept
from the logit-transformed probability corresponding to diagnosis with at least an 85%
sensitivity. We scaled the threshold probability to 10 by multiplying by a scaling factor, and
we multiplied the coefficients for each predictor by that scaling factor to obtain the score for
that predictor. Thus, the score for each individual meeting entry criteria was obtained by
summing the scaled coefficients for each factor present in the patient, and a total score of
>10 constituted a diagnosis of tuberculosis with a sensitivity of 85% using this treatment-
decision algorithm.

Given that we generated multiple imputed datasets, we had to take additional steps
to determine the probability threshold and pooled coefficient estimates. We used the
“metapred” function in package metamisc to fit a logistic regression model on each imputed
dataset, resulting in 100 logistic regression models. Note that the model generated by
“metapred” is a pooled model of models with the same specifications fit at the study-level. A
pooled estimate of each parameter coefficient was obtained by taking the mean of each of
the 100 coefficient estimates for each parameter. A pooled probability threshold was
determined by taking the mean of the probability threshold corresponding to classification of
tuberculosis with a given sensitivity compared to the reference standard of each model. The
pooled probability threshold and pooled coefficient estimates were used to produce the

scores as described above.
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Appendix E: Composition of WHO expert panel to inform algorithm development

— Anna Mandalakas; Global TB Program, Baylor College of Medicine and Texas
Children's Hospital, Houston, TX, USA

— Ben Marais; The Children’s Hospital at Westmead Clinical School, Faculty of
Medicine and Health, University of Sydney, Australia

— Farhana Amanullah; Indus Hospital & Health Network

— Moorine Sekkade; National Tuberculosis and Leprosy Program, Kampala,
Uganda.

— Olivier Marcy; University of Bordeaux, Inserm, Institut de Recherche pour le
Développement, Bordeaux, France

— Stephen Graham; Centre for International Child Health, University of Melbourne
Department of Paediatrics and Murdoch Children’s Research Institute, Royal
Children’s Hospital, Melbourne, Australia and International Union Against

Tuberculosis and Lung Disease (The Union), Paris, France
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Appendix F: Study Information
Table S2. Study information for Kabir/2020/BD

Geographic setting

Dhaka, Bangladesh

Healthcare setting Name Healthcare level Recruitment setting
Dhaka Medical College | Tertiary Inpatient
and Hospital
Sir Salimullah Medical | Tertiary Inpatient
College and Mitford
Hospital
Shaheed Suhrawardy Tertiary Inpatient
Medical College and
Hospital
icddr,b Dhaka Hospital | Tertiary Inpatient

Enrolment duration

22 January 2018 — 04 April 2019

Purpose for data
collection

Evaluate the performance of Xpert MTB/RIF Ultra assay on stool specimen
for the diagnosis of childhood TB

Study design

Cross-sectional study with follow-up of children diagnosed both
bacteriologically and clinically at every month over phone started on
antituberculosis therapy of 6 months

Inclusion criteria

Children aged 0-15 years with symptoms suggestive of pulmonary TB
based on any of the following: persistent non-remitting cough for >14 days
weeks not responding to antibiotics, persistent documented fever for >14
days, document weight loss or failure to gain weight over the preceding 3
months, or fatigue/reduced playfulness/decreased activity

Exclusion criteria

Children with serious co-morbid condition (e.g., in intensive care unit, co-
morbid heart condition, etc.); physician unable to collect respiratory
specimen; children started on anti-tuberculosis treatment; children
suspected clinically to have intestinal TB

Standardized form to
guide evaluation?

YES

Standardized form to
guide CXR evaluation?

NO: local treating physicians evaluated CXR

Standardized follow-up
for all children?

NO: only children diagnosed w/ TB and initiated on anti-tuberculosis
treatment were followed-up over phone to assess symptom resolution

Reference classification
of TB

Confirmed PTB — bacteriologically positive on culture/Xpert on induced
sputum or stool specimens;

Unconfirmed PTB — bacteriologically negative but diagnosed by managing
clinical team based on symptoms, CXR, TST, and contact history;

Unlikely PTB — not meeting criteria for confirmed TB or unconfirmed TB;
Classifications made by study team (separate from managing clinical team)
based on data from the initial evaluation

No. screened/No.
enrolled

454/447

Ethics review

Protocol no.PR#17072, Approved from Institutional Review Board, icddr,b
constitutes of two Committee Research Review Committee on RRC on 18
July 2017 and Ethical Review Committee on 28 August 2017

References

Kabir S, Rahman SMM, Ahmed S, et al. Xpert Ultra assay on stool to
diagnose pulmonary tuberculosis in children. Clin Infect Dis 2020.
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Table S3. Study information for Aurilio/2020/BR

Geographic setting

Rio de Janeiro, Brazil

Healthcare setting

Name Healthcare level Recruitment setting

Instituto de
Puericultura e
Pediatria Martagao
Gesteira

Tertiary Inpatient/Outpatient

Hospital Raphael de
Paula Souza

Tertiary Inpatient/Outpatient

Hospital Universitario
Antonio Pedro

Tertiary Inpatient/Outpatient

Enrolment duration

17 April 2014 — 27 July 2020

Purpose for data
collection

Evaluate Xpert MTB/RIF as diagnostic test for PTB in children

Study design

Prospective cohort study with baseline assessment and follow-up of all
children at 60 days. Assessment of treatment outcome at 6 months or upon
completion of treatment for those started on anti-TB treatment.

Inclusion criteria

Children aged 0-19 years with symptoms of respiratory infection for >14
days and abnormal CR

Exclusion criteria

Inappropriate samples for Xpert

for all children?

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB;
Retrospective classifications made by study team (separate from managing
clinical team) at the 2-month follow-up visit

No. screened/No.
enrolled

50/50 (among those children <10 years old)

Ethics review

Instituto de Puericultura e Pediatria Martagao Gesteira (24/02/2015,
number 961.452 and 07/11/2017 number 2.369.814) and Hospital
Universitario Anténio Pedro (28/07/2015 number 1.160.695)

References

Aurilio RB, Luiz RR, Land MGP, Cardoso CAA, Kritski AL, Sant Anna CC.
The clinical and molecular diagnosis of childhood and adolescent
pulmonary tuberculosis in referral centers. Rev Soc Bras Med Trop 2020;
53.
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Table S4. Study information for Song/2021/KE

Geographic setting

Kisumu County, Kenya

Healthcare setting

Name Healthcare level Recruitment setting

Jaramogi Oginga
Odinga Teaching and
Referral Hospital

Tertiary Inpatient/Outpatient

*Additional patients from unspecified secondary inpatient/outpatient, and
contact tracing

Enrolment duration

October 2013 — August 2015

Purpose for data
collection

Determine the performance of a wide panel of specimen types and
microbiological tests in children evaluated for TB

Study design

Prospective cohort study with baseline assessment and follow-up of all
children at 2 weeks, 2 months, and 6 months.

Inclusion criteria

Children aged 0-5 years and >2.5 kg with either parenchymal abnormality
on CXR or visible cervical lymph node mass persisting for >1 month
despite antibiotics and either 1) persistent cough not resolving after
treatment with antibiotics or 2) moderate or severe malnutrition

Exclusion criteria

Currently on anti-tuberculosis treatment or isoniazid preventive therapy or
history of anti-tuberculosis treatment or isoniazid preventive therapy in the
6 months prior to enrolment.

for all children?

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB;
Retrospective classifications made by study team (separate from managing
clinical team) using information from all visits up to the 2-month follow-up

No. screened/No.
enrolled

2564/300

Ethics review

US Centers for Disease Control and Prevention (#6334)

Kenya Medical Research Institute (#2343)

Jaramogi Oginga Odinga Teaching and Referral Hospital

Children’s Hospital Boston/Harvard Medical School (relied on the review
and oversight of the Centers for Disease Control and Prevention
institutional review board)

References

Song R, Click ES, McCarthy KD, et al. Sensitive and feasible specimen
collection and testing strategies for diagnosing tuberculosis in young
children. JAMA Pediatr 2021: e206069-e.
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Table S5. Study information for LopezVarela/2015/MZ

Geographic setting

Manhica District, Mozambique

Healthcare setting

Name Healthcare level Recruitment setting

Manhica District Secondary
Hospital (and
attached health
centre)

Inpatient/Outpatient

*1483 patients from Manhica District Hospital and Manhiga Health
Research Centre Health and Demographic Surveillance System peripheral
health centres (Palmeira, Maragra, Ilha, Josina, Taninga) and 180 contacts
through contact tracing

Enrolment duration

2011 - 2012

Purpose for data
collection

Estimate the annual minimum incidence of TB in children <3 in the Manhica
District

Study design

Prospective cohort study with baseline assessment and follow-up of all
children within 6 months of enrolment. Persistently symptomatic children
had additional evaluation and testing.

Inclusion criteria

Children aged 0-3 years with symptoms suggestive of PTB or EPTB or who
are close contacts of notified TB cases. Symptoms suggestive of PTB
included one or more of the following: cough >14 days not responding to
appropriate antibiotics, fever >14 days after excluding malaria/pneumonia,
chronic or acute malnutrition or failure to gain weight for more than 2
months, unexplained wheeze >14 months not responding to treatment,
lower respiratory tract infection >14 days not responding to antibiotics after
72 hours, contact with TB case in previous 12 months)

Exclusion criteria

Children aged >3 who reside outside the study area or with diagnosis of TB
at pre-enrolment

for all children?

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up NO

Reference classification
of TB

Graham 2012: Confirmed PTB, Probable PTB, Possible PTB, PTB Unlikely,
MTB infection;

Classification made by the managing clinical team using information from
the baseline visit and all available follow-up visits

No. screened/No.
enrolled

1663/789

Ethics review

The study protocol was approved by the Mozambican National Bioethics
Committee and the Hospital Clinic of Barcelona Ethics Review Committee.

References

Lépez-Varela E, Augusto OJ, Gondo K, et al. Incidence of tuberculosis
among young children in rural Mozambique. Pediatr Infect Dis J 2015;
34(7): 686-92.
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Table S6. Study information for Garcia/2020/MZ

Geographic setting

Manhica District, Mozambique

Healthcare setting

Name Healthcare level Recruitment setting

Manhica District Secondary
Hospital (and
attached health
centre)

Inpatient/Outpatient

*Manhi¢a Health Care Centre and Manhica District Hospital and 9
peripheral health care centre (Maluana, Munguine, Taninga, Maragra,
Malavela, Palmeiras, Chibututuine, Calanga, Chibucutzo)

Enrolment duration

20 August 2013 — 20 August 2014

Purpose for data
collection

Improve the quality of TB surveillance indicators using newly introduced
Xpert MTB/RIF

Study design

Cross-sectional study with baseline assessment. Digital CXR only if
clinician ordered. Two-week follow-up for children not initially started on TB
treatment. Follow-up of all children started on TB treatment at months 2
and 6.

Inclusion criteria

Children and adults with symptoms suggestive of PTB or EPTB or who are
close contacts of notified TB cases. Symptoms suggestive of PTB include
cough >2 weeks, night sweats, weight loss, fever, and/or hemoptysis.

Exclusion criteria

Children diagnosed with TB prior to enrolment.

for all children?

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up NO

Reference classification
of TB

Confirmed PTB — Bacteriologically positive on culture/Xpert on any
respiratory specimen;

Unconfirmed PTB - bacteriologically negative but diagnosed by managing
clinical team based on symptoms, CXR, TST, and contact history;
Unlikely PTB - not meeting criteria for confirmed TB or unconfirmed TB;
Classification made by the managing clinical team using information from
the initial visit and information gathered on follow-up at 2-weeks for those
not started on TB treatment and after first few weeks of follow-up for those
started on TB treatment

No. screened/No.
enrolled

UNKNOWN/142

Ethics review

The study was approved by CISM local bioethics committee (CIBS) and the
National Bioethics Committee (CNBS). Ref. 199/CNBS13

References

Garcia JI, Mambuque E, Nguenha D, et al. Mortality and risk of tuberculosis
among people living with HIV in whom TB was initially ruled out. Sci Rep
2020; 10(1): 15442-.
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Table S7. Study information for Myo/2018/MM

Geographic setting

Mandalay, Myanmar

Healthcare setting Name Healthcare level Recruitment setting
Children Hospital, Tertiary Inpatient and
Mandalay Casualty/Emergency

Enrolment duration

01 January 2015 — 21 March 2017

Purpose for data
collection

Evaluate Xpert MTB/RIF as diagnostic test for PTB in children

Study design

Prospective cohort study with baseline assessment and 8-week follow-up.

Inclusion criteria

Children aged 0-12 years with cough >14 days and one of the following:
fever >7 days, weight loss or failure to thrive, unexplained loss of appetite,
or lethargy.

Exclusion criteria

Receipt of anti-tuberculosis treatment for >72 hours before specimen
collection.

for all children?

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB;
Retrospective classifications made by study team (separate from managing
clinical team) at the 2-month follow-up visit

No. screened/No. 259/255

enrolled

Ethics review Research Ethics Committee, University of Medicine, Mandalay
References Myo K, Zaw M, Swe TL, et al. Evaluation of Xpert® MTB/RIF assay as a

diagnostic test for pulmonary tuberculosis in children in Myanmar. Int J
Tuberc Lung Dis 2018; 22(9): 1051-5.
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Table S8. Study information for Marcy/2016/Multi

Geographic setting

Bobo Dioulasso, Burkina Faso
Phnom Penh, Cambodia
Siem Reap, Cambodia
Yaounde, Cameroon

Ho Chi Minh City, Vietnam

Healthcare setting

Name Healthcare | Recruitment setting
level

Pediatric Department, Centre Hospitalier Tertiary Inpatient/Outpatient

Universitaire Souro Sanou, (Bobo

Dioulasso, Burkina Faso)

National Pediatric Hospital (Phnom Penh, | Tertiary Inpatient/Outpatient

Cambodia)

Angkor Hospital for Children (Siem Reap, | Tertiary Inpatient/Outpatient

Cambodia)

Centre Hospitalier de la Caisse d’Essos N/A Inpatient/Outpatient

(Yaounde, Cameroon)

Centre Mére et Enfant de la Fondation N/A Inpatient/Outpatient

Chantal Biya (Yaounde, Cameroon)

Pediatric Department, Pham Ngoc Thach | Tertiary Inpatient/Outpatient

Hospital (Ho Chi Minh City, Vietnam)

Infectious Diseases Department, Tertiary Inpatient/Outpatient

Pediatric Hospital No. 1 (Nhi Dong 1) (Ho

Chi Minh City, Vietnam)

Infectious Diseases Department, Tertiary Inpatient/Outpatient

Pediatric Hospital No. 2 (Nhi Dong 2) (Ho

Chi Minh City, Vietnam)

Enrolment duration

April 2011 — December 2014

Purpose for data
collection

Evaluate Xpert MTB/RIF performed on stool for MTB and to assess response to
antituberculosis treatment for children living with HIV

Study design

Prospective cohort study with baseline assessment and follow-up of all children
at months 1,2,3, and 6.

Inclusion criteria

Children aged 0-12 years with HIV-1 infection (irrespective of HAART) and one
or more of the following: cough >14 days, fever > 14 days, failure to thrive
(deviation from previous growth trajectory in previous 3 months or weight-for-age
Z-score <-2), failure to improve on broad spectrum antibiotics for pulmonary
infection, or CXR suggestive of PTB

Exclusion criteria

History of any anti-tuberculosis treatment in the 2 years prior to enrolment.

Standardized form to
guide evaluation?

YES

for all children?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB;
Retrospective classifications made by an algorithm following the Graham 2015
classification using information from all visits up to the 6-month follow-up visit

No. screened/No.
enrolled

XXX/438

Ethics review

Ethics Committee for Research in Health (Burkina Faso);

National Ethics Comity for Health and Research (Phnom Penh,

Cambodia);

National Ethics Committee (Cameroon);

Division of Health Operations Research Ministry of Public Health (Cameroon);
Pham Ngoc Thach Hospital Institutional Review Board (Vietnam);

Ho Chi Minh City Department of Health (Vietnam);

Ho Chi Minh City People’s Committee (Vietnam).

References

Marcy O, Ung V, Goyet S, et al. Performance of Xpert MTB/RIF and alternative
specimen collection methods for the diagnosis of tuberculosis in HIV-infected
children. Clin Infect Dis 2016; 62(9): 1161-8.
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Table S9. Study information for Hamid/2019/PK

Geographic setting

Karachi, Pakistan

Healthcare setting

Name Healthcare level Recruitment setting
Indus Hospital Ghauri | Tertiary/Referral Outpatient
Clinic

* Participants were referred from contact tracing program as well as from
other general physicians in the community, and family
physicians/pediatricians/ surgeons of the hospital.

Enrolment duration

01 January 2019 — 06 April 2020

Purpose for data
collection

Identify gaps in childhood TB care delivery and improve Pediatric TB
Program implementation

Study design

Cross-sectional study with baseline assessment and 1-month follow-up

Inclusion criteria

Children aged 0-10 years with any of the following: 2 symptoms of TB
(cough >14 days, fever, weight loss, lethargy, loss of appetite, night
sweats), a TB known TB exposure within the past 2 years with >1 symptom
suggestive of TB, swollen lymph node for >14 days, previous history of TB
and >1 symptom suggestive of TB

for all children?

Exclusion criteria N/A
Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Confirmed PTB - bacteriologically positive on culture/Xpert/ on any
respiratory specimen (including stool);

Unconfirmed PTB — bacteriologically negative but diagnosed by managing
clinical team based on symptoms, CXR, TST, and contact history;
Unlikely PTB — not meeting criteria for confirmed TB or unconfirmed TB;
Retrospective classification made at the 1-month follow-up visit

No. screened/No.
enrolled

XXXI447

Ethics review

N/A

References

Hamid M, Brooks MB, Madhani F, et al. Risk factors for unsuccessful
tuberculosis treatment outcomes in children. PLoS One 2019; 14(9):
e0222776.
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Table S10. Study information for Nicol/2017/ZA

Geographic setting

Cape Town, South Africa
Port Elizabeth, South Africa

Healthcare setting Name Healthcare level Recruitment setting
Red Cross War Tertiary/Referral Inpatient/Outpatient and
Memorial Children’s Emergency/Casualty
Hospital
Dora Nginza Tertiary/Referral Inpatient/Outpatient and
Provincial Hospital Emergency/Casualty

Enrolment duration

01 February 2010 — 31 January 2017

Purpose for data
collection

Novel tuberculosis diagnostics in HIV-infected and HIV-uninfected children.

Study design

Prospective cohort study with baseline assessment and follow-up of all
children at months 1, 2, and 6.

Inclusion criteria

Children aged 0-15 years with clinical suspicion of PTB based on cough
and one of (household TB contact within preceding 3 months, weight loss of
failure to gain weight for preceding 3 months, positive TST, or chest
radiograph suggestive of PTB) or clinical suspicion of EPTB

Exclusion criteria

Children who had received treatment for tuberculosis or TB prophylaxis for
>72 hours prior to enrolment; patients living outside the catchment area;
patients for whom adequate clinical samples could not be obtained; or
patients for whom informed consent or permission for HIV testing could not
be obtained

for all children?

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB;
Retrospective classifications made by study team (separate from managing
clinical team) using data from all visits up to the 3-month follow-up visit

No. screened/No.
enrolled

4548/1346

Ethics review

University of Cape Town Human Research Ethics Committee (HREC),
2008, Ref no. 045/2008.

References

Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert MTB/RIF ultra for
the diagnosis of pulmonary tuberculosis in children. Pediatr Infect Dis J
2018; 37(10).
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Table S11. Study information for Walters/2017/ZA

Geographic setting

Cape Town, South Africa

Healthcare setting

Name Healthcare level Recruitment setting

Tygerberg Hospital Tertiary/Referral Inpatient/Outpatient

Karl Bremer Hospital Secondary Inpatient/Outpatient

Enrolment duration

March 2012 — November 2017

Purpose for data
collection

Evaluate feasible strategies to improve and promote microbiological testing
of children with PTB and treatment response.

Study design

Prospective cohort study with baseline assessment and follow-up of all
children at months 1, 2, and 6.

Inclusion criteria

Children 0-12 with any of the following: cough >2 weeks, unexplained fever

>1 week, poor growth/weight loss over the preceding 3 months, or cough <1
week with a known TB exposure in the previous 12 months, a positive TST,

or a CXR suggestive of PTB

Exclusion criteria

Children who had received treatment for tuberculosis for >1 day or were
being evaluated for EPTB without being evaluated for PTB.

Standardized form to
guide evaluation?

YES

for all children?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB;
Retrospective classifications made by study team (separate from managing
clinical team) using information from all visits up to the 6-month follow-up
visit

No. screened/No.
enrolled

XXX/620

Ethics review

Health Research Ethics Committee of Stellenbosch University Faculty of
Health Sciences No. N11/09/282

References

Walters E, Demers AM, van der Zalm MM, et al. Stool culture for diagnosis
of pulmonary tuberculosis in children. J Clin Microbiol 2017; 55(12): 3355-
65.

Walters E, Scott L, Nabeta P, et al. Molecular detection of Mycobacterium
tuberculosis from stools in young children by use of a novel centrifugation-
free processing method. J Clin Microbiol 2018; 56(9).

Walters E, van der Zalm MM, Palmer M, et al. Xpert MTB/RIF on stool is
useful for the rapid diagnosis of tuberculosis in young children with severe
pulmonary disease. Pediatr Infect Dis J 2017; 36(9): 837-43.
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Table S12. Study information for Orikiriza/2018/UG

Geographic setting

Mbarara, Uganda

Healthcare setting

Name Healthcare level Recruitment setting

Mbarara Regional
Referral Hospital

Tertiary/Referral Inpatient/Outpatient
(includes children
referred from TB

contact screening)

Enrolment duration

12 April 2012 — 14 January 2014

Purpose for data
collection

Evaluate the performance of Xpert MTB/RIF on induced sputum and to
assess treatment outcome and safety of pediatric TB drug dosages.

Study design

Prospective cohort study with baseline assessment and follow-up at 3
months for children not started on TB treatment and follow-up at 12 months
for children started on TB treatment.

Inclusion criteria

Children aged 0-14 with any of: weight loss/failure to thrive/growth faltering
over preceding 3 months, non-remittent cough or wheeze >14 days, night
sweats in preceding 14 days, unexplained fever for >7 days, chest pain
within the preceding 2 weeks, unexplained
fatigue/weakness/apathy/lethargy in previous 2 weeks, or abnormal CXR
suggestive of TB

Exclusion criteria

Children who had received >3 days of treatment for tuberculosis or had
completed treatment within the past 6 months or with poor access to follow-
up evaluation.

enrolled

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES
for all children?

No. screened/No. 467/392

Reference classification
of TB

Graham 2012: Confirmed PTB, Probable PTB, Possible PTB, PTB Unlikely;
Retrospective classification made by blinded, independent endpoint review
committee at 3-month visit for children not started on TB treatment and 6-
month visit for children started on TB treatment

Ethics review

MUST Research Ethics Committee (MUST-REC), Uganda National Council
for Science and Technology (UNCST), Comité de Protection des
Personnes (CPP), lles de France Xl France.

References

Orikiriza P, Nansumba M, Nyehangane D, et al. Xpert MTB/RIF diagnosis
of childhood tuberculosis from sputum and stool samples in a high TB-HIV-
prevalent setting. Eur J Clin Microbiol Infect Dis 2018; 37(8): 1465-73.
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Table S13. Study information for Bonnet/**/UG

Geographic setting

Mbarara, Uganda

Healthcare setting

Name Healthcare level Recruitment setting

Mbarara Regional
Referral Hospital

Tertiary/Referral Inpatient

Enrolment duration

September 2015 — March 2018

Purpose for data
collection

Evaluate the performance of Xpert MTB/RIF on stool and urine AlereLAM
among children with increased risk of disseminated or severe TB.

Study design

Prospective cohort study with baseline assessment and follow-up at weeks
1, 2, 8, and 24 for all children.

Inclusion criteria

Children aged 0-1 year or HIV-infected or with severe malnutrition and
either 1) at least two of the following: cough >2 weeks, fever >1 week,
severe malnutrition, >2 lethargy >2 weeks, known exposure to TB within
preceding 2 years, or 2) any sign suggestive of TB meningitis or
disseminated/miliary TB

Exclusion criteria

Children who received anti-tuberculosis treatment

for all children?

Standardized form to YES
guide evaluation?

Standardized form to YES
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2015: Confirmed PTB, Unconfirmed PTB, Unlikely PTB;
Automated diagnostic algorithm for retrospective classification using
information from all visits up to the 6-month follow-up visit, review by
independent endpoint committee for cases not classified by the algorithm

No. screened/No.
enrolled

238/219

Ethics review

MUST Research Ethics Committee (MUST-REC), Uganda National Council
for Science and Technology (UNCST), Comité de Protection des
Personnes (CPP), lles de France Xl France.

References

N/A
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Table S14. Study information for Giang/2015/VN

Geographic setting

Ho Chi Minh City, Vietnam

Healthcare setting Name Healthcare level Recruitment setting
Pham Ngoc Thach Tertiary/Referral Inpatient
Hospital

Enrolment duration

01 April 2013 — 01 October 2013

Purpose for data
collection

Evaluate the performance of Xpert MTB/RIF for the diagnosis of TB in HIV-
uninfected children.

Study design

Prospective cohort study with baseline assessment and unspecified
minimum follow-up (consistent with routine clinical practice).

Inclusion criteria

HIV-uninfected children aged 0-15 years with 1 or more of: persistent
unexplained fever, cough >2 weeks, night sweats, weight loss, failure to
thrive, reduced playfulness/lethargy, and/or any of the following for infants
<60 days: neonatal pneumonia, unexplained hepatomegaly, or sepsis-like
illness

Exclusion criteria

Children who received anti-tuberculosis treatment prior to specimen
collection for MTB confirmation or children living with HIV.

for all children?

Standardized form to YES
guide evaluation?

Standardized form to NO
guide CXR evaluation?
Standardized follow-up YES

Reference classification
of TB

Graham 2012: Confirmed PTB, Probable PTB, Possible PTB, PTB Unlikely;
Retrospective classification made by the managing clinical team at 2-month
visit

No. screened/No.
enrolled

154/150

Ethics review

Pham Ngoc Thach Hospital Institutional review Board (IRB), the Oxford
Tropical Ethics Committee (OXTREC) and the Health services of Ho Chi
Minh City.

References

Giang do C, Duong TN, Ha DT, et al. Prospective evaluation of GeneXpert
for the diagnosis of HIV- negative pediatric TB cases. BMC Infect Dis 2015;
15: 70.
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Appendix H: Modifications to IPD received
Table S15. Modifications to IPD from Kabir/2020/BD

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
HIV-status Participant HIV status 0 HIV-negative HIV status was not collected as a
— part of this study. In consultation
1 HIV-positive with study authors, we assumed
NA Unknown that all children in this study were
HIV-negative.
Known TB Known exposure to MTB at initial | 0 No known TB An exposure was defined as
exposure evaluation in previous 12 months exposure in having a family member living
previous 12 with the child who was diagnosed
months with and received treatment for
TB in the previous 12 months.
1 Known TB
exposure in
previous 12
months
NA Unknown
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative Result from first Xpert performed
MTB/RIF (not Ultra) performed on ES/IS for Mtb on induced sputum specimens.
(or GA for young children)
collected at initial evaluation 1 Xpert positive for
Mtb
NA Unknown/not
performed
CXR Result of CXR performed at initial | O CXR not CXR assessment made by
consistent with | evaluation as assessed by reader consistent with managing clinical team.
B performing clinical B
evaluation/making TB-treatment
decision or by reader to inform
research classification of TB if 1 CXR consistent
former not available with TB
NA Unknown/not
assessed
TB Final classification of TB 0 Unlikely TB See note on reference
classification - - classification in study description
1 Bact_erlologlcally— table above.
confirmed TB
2 Unconfirmed TB
NA Unknown
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Table S16. Modifications to IPD from Aurilio/2020/BR

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Known TB Known exposure to MTB at initial | O No known TB An exposure was defined as a
exposure evaluation in previous 12 months exposure in mother, household member, or
previous 12 someone spending ~4 hours a
months day with the child having
documented or reported positive
Xpert or TB culture [or receiving
treatment for TB] in the previous
1 Known TB. 12 months).
exposure in
previous 12
months
NA Unknown
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative Result from first Xpert: mostly
MTB/RIF (not Ultra) performed on ES/IS for Mtb GAJ/ES/IS, some pleural effusion,
(or GA for young children) bronchalveolar lavage, and
collected at initial evaluation 1 Xpert positive for tracheal aspirate.
Mtb
NA Unknown/not
performed
CXR Result of CXR performed at initial | 0 CXR not All CXR assessments made by
consistent with | evaluation as assessed by reader consistent with the study team.
B performing clinical TB
evaluation/making TB-treatment
decision or by reader to inform
research classification of TB if 1 CXR consistent
former not available with TB
NA Unknown/not
assessed
Opacities on Opacities (e.g., alveolar 0 Opacities not Received data corresponding to
CXR consolidation and/or present on CXR | presence of alveolar opacification
bronchopneumonia) on CXR and bronchopneumonia; if either
performed at initial evaluation as 1 Opacities of these were positive, then the
as_s_essed by re_ader pe_rforming present on CXR CXR_v_vas said to demonstrate
clinical evaluation/making TB- opacities.
treatment decision or by reader
to inform research classification NA Unknowr&/ not
of TB if former not available assesse
Nodes on CXR | Nodes (e.g., perihilar nodes, 0 Nodes not Received data corresponding to
paratracheal nodes, mediastinal present on CXR | presence of perihilar
nodes) on CXR performed at lymphadenopathy, paratracheal
initial evaluatio_n as a_s_sessed by 1 Nodes present Iymphadenopathy, and calcified
reader performing clinical on CXR nodes; if any of these were
evaluation/making TB-treatment positive, then the CXR was said
decision or by reader to inform to demonstrate nodes.
research classification of TB if NA Unknown/not
former not available assessed
B Final classification of TB 0 Unlikely TB See note on reference
classification - - classification in study description
1 Bacteriologically- | ipie above.
confirmed TB
2 Unconfirmed TB
NA Unknown
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Table S17. Modifications to IPD from Song/2021/KE

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Known TB Known exposure to MTB at initial | O No known TB Tuberculosis exposure was
exposure evaluation in previous 12 months exposure in defined as caregiver-reported
previous 12 household contact with someone
months with TB within 24 months prior to
enrollment.
1 Known TB
exposure in
previous 12
months
NA Unknown
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative Result from first Xpert: all GA
MTB/RIF (not Ultra) performed on ES/IS for Mtb specimens.
(or GA for young children)
collected at initial evaluation 1 Xpert positive for
Mtb
NA Unknown/not
performed
CXR Result of CXR performed at initial | O CXR not CXR assessment made by the
consistent with | evaluation as assessed by reader consistent with study team.
B performing clinical TB
evaluation/making TB-treatment
decision or by reader to inform
research classification of TB if 1 CXR consistent
former not available with TB
NA Unknown/not
assessed
TB Final classification of TB 0 Unlikely TB See note on reference
classification - - classification in study description
1 Bacteriologically- | {5ple above.
confirmed TB
2 Unconfirmed TB
NA Unknown
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Table S18. Modifications to IPD from LopezVarela/2015/MZ

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Weight loss Presenting history of poor 0 No weight loss Used WAZ/HAZ for this
growth over the preceding 3 1 Weight loss definition.
months AND not responding to NA Unknown
nutritional rehabilitation (or
antiretroviral therapy if HIV
infected)
Known TB Known exposure to MTB at 0 No known TB Exposure to TB was defined as
exposure initial evaluation in previous 12 exposure in contact with someone
months previous 12 diagnosed as or being treated
months for TB. No time-limit, but given
1 Known TB that all kids were under the age
exposure in of 3, this would have included
previous 12 any exposure during lifetime.
months For those children identified
NA Unknown through active case finding, the
definition was contact with a
smear-positive adult with PTB
registered at the district
National TB Program (NTP) in
the previous 24 months.
Peripheral Peripheral lymphadenopathy (at | 0 No peripheral Received data corresponding to
lymphadenopathy | cervical, submandibular, and/or lymphadenopathy | presence of cervical
axillary nodes) at initial 1 Peripheral lymphadenopathy and axillary
evaluation lymphadenopathy | lymphadenopathy; if either of
NA Unknown these were positive, then the
child was said to have
peripheral lymphadenopathy.
Not all children were assessed
for this feature.
First Xpert Result from first Xpert MTB/RIF | O Xpert negative for | Xpert was not performed as a
MTB/RIF (not Ultra) performed on ES/IS Mtb part of this study. We assumed
(or GA for young children) 1 Xpert positive for | that a positive culture was
collected at initial evaluation Mtb equivalent to a positive Xpert
NA Unknown/not result. Preferentially used the
performed result from liquid culture or solid
culture of the first GA
specimen. If GA was not
available, then we took the
result of either liquid culture or
solid culture from the first ES
specimen.
CXR consistent Result of CXR performed at 0 CXR not All CXR assessments made by
with TB initial evaluation as assessed consistent with the study team, which was the
by reader performing clinical B same as the managing clinical
evaluation/making TB-treatment | 1 CXR consistent team.
decision or by reader to inform with TB
research classification of TB if NA Unknown/not
former not available assessed
Opacities on Opacities (e.g., alveolar 0 Opacities not Received data corresponding to
CXR consolidation and/or present on CXR presence of alveolar
bronchopneumonia) on CXR 1 Opacities present | opacification; if this was
performed at initial evaluation on CXR positive, then the CXR was said
as assessed by reader NA Unknown/not to demonstrate opacities.
performing clinical assessed
evaluation/making TB-treatment
decision or by reader to inform
research classification of TB if
former not available
TB classification Final classification of TB 0 Unlikely TB See note on reference
1 Bacteriologically- | classification in study
confirmed TB description table above.
2 Unconfirmed TB 'Probable TB' and 'possible TB'
NA Unknown were coded as 'unconfirmed

TB,' '"MTB infection' was coded
as 'unlikely TB.'
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Table S19. Modifications to IPD from Garcia/2020/MZ

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Known TB Known exposure to MTB at 0 No known TB An exposure was defined as a
exposure initial evaluation in previous 12 exposure in mother, household member, or
months previous 12 someone spending ~4 hours a
months day with the child receiving
1 Known TB treatment for TB in the previous
exposure in 12 months.
previous 12
months
NA Unknown
Peripheral Peripheral lymphadenopathy (at | O No peripheral Received data corresponding to
lymphadenopathy | cervical, submandibular, and/or lymphadenopathy | presence of cervical
axillary nodes) at initial 1 Peripheral lymphadenopathy; if if this was
evaluation lymphadenopathy | positive, then the child was said
NA Unknown to have peripheral
lymphadenopathy.
First Xpert Result from first Xpert MTB/RIF | O Xpert negative for | Result from first Xpert: all either
MTB/RIF (not Ultra) performed on ES/IS Mtb ES or IS specimens.
(or GA for young children) 1 Xpert positive for
collected at initial evaluation Mtb
NA Unknown/not
performed
CXR consistent Result of CXR performed at 0 CXR not All CXR assessments made by
with TB initial evaluation as assessed consistent with the managing clinical team.
by reader performing clinical B CXR was only performed for
evaluation/making TB-treatment | 1 CXR consistent children for whom the managing
decision or by reader to inform with TB clinical team determined that
research classification of TB if NA Unknown/not CXR was necessary; thus, not
former not available assessed all children had CXR performed.
Opacities on Opacities (e.g., alveolar 0 Opacities not Received data corresponding to
CXR consolidation and/or present on CXR presence of alveolar
bronchopneumonia) on CXR 1 Opacities present | opacification and
performed at initial evaluation on CXR bronchopneumonia; if either of
as assessed by reader NA Unknown/not these were positive, then the
performing clinical assessed CXR was said to demonstrate
evaluation/making TB-treatment opacities.
decision or by reader to inform
research classification of TB if
former not available
Nodes on CXR Nodes (e.g., perihilar nodes, 0 Nodes not Received data corresponding to
paratracheal nodes, mediastinal present on CXR presence of perihilar
nodes) on CXR performed at 1 Nodes present on | lymphadenopathy, paratracheal
initial evaluation as assessed CXR lymphadenopathy, and calcified
by reader performing clinical NA Unknown/not nodes; if any of these were
evaluation/making TB-treatment assessed positive, then the CXR was said
decision or by reader to inform to demonstrate nodes.
research classification of TB if
former not available
TB classification Final classification of TB 0 Unlikely TB See note on reference
1 Bacteriologically- | classification in study
confirmed TB description table above.
2 Unconfirmed TB
NA Unknown
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Table S20. Modifications to IPD from Myo/2018/MM

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Known TB Known exposure to MTB at initial | O No known TB Defined as a documented or
exposure evaluation in previous 12 months exposure in reported exposure to a case of
previous 12 tuberculosis (household or close
months contact) within the preceding 12
months
1 Known TB
exposure in
previous 12
months
NA Unknown
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative Result from first Xpert: all GA
MTB/RIF (not Ultra) performed on ES/IS (or for Mtb specimens.
GA for young children) collected
at initial evaluation 1 Xpert positive for
Mtb
NA Unknown/not
performed
CXR Result of CXR performed at initial | O CXR not CXR assessment made by the
consistent with | evaluation as assessed by reader consistent with study team.
B performing clinical TB
evaluation/making TB-treatment
decision or by reader to inform
research classification of TB if 1 CXR consistent
former not available with TB
NA Unknown/not
assessed
TB Final classification of TB 0 Unlikely TB See note on reference
classification - - classification in study description
1 Bact_erlologlcally— table above.
confirmed TB
2 Unconfirmed TB
NA Unknown
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Table S21. Modifications to IPD from Marcy/2016/Multi

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION

Fever duration Presence of fever 1 week at initial 0 Fever 1 week not Fever duration was not provided in
evaluation present granular enough detail to identify

1 Fever 1 week those with fever for greater than or
present equal to one week.
NA Unknown

Lethargy Presenting history of unusual 0 No lethargy Positive if the patient experienced
lethargy or lack of playfulness at 1 Lethargy lethargy in the previous 4 weeks.
initial evaluation NA Unknown

Weight loss Presenting history of poor growth 0 No weight loss Positive if the patient experienced
over the preceding 3 months AND 1 Weight loss weight loss in the previous 4 weeks.
not responding to nutritional NA Unknown
rehabilitation (or antiretroviral
therapy if HIV infected)

Known TB exposure Known exposure to MTB at initial 0 No known TB Exposure defined as having a
evaluation in previous 12 months exposure in previous | household contact with smear + TB

12 months in the previous 12 months.
1 Known TB exposure

in previous 12

months
NA Unknown

Night sweats Presenting history of night sweats at | 0 No night sweats Positive if the patient experienced
initial evaluation 1 Night sweats night sweats in the previous 4

NA Unknown weeks.

Hemoptysis Presenting history of hemoptysis at 0 No hemoptysis Positive if the patient experienced

initial evaluation 1 Hemoptysis hemoptysis in the previous 4 weeks.
NA Unknown

Peripheral Peripheral lymphadenopathy (at 0 No peripheral Received data corresponding to

lymphadenopathy cervical, submandibular, and/or lymphadenopathy presence of cervical
axillary nodes) at initial evaluation 1 Peripheral lymphadenopathy, submandibular

lymphadenopathy lymphadenopathy, and axillary
NA Unknown lymphadenopathy; if any of these
were positive, then the child was
said to have peripheral
lymphadenopathy.

First Xpert MTB/RIF Result from first Xpert MTB/RIF (not 0 Xpert negative for Result from first Xpert: mostly ES,
Ultra) performed on ES/IS (or GA for Mtb with some IS and GA specimens.
young children) collected at initial 1 Xpert positive for
evaluation Mtb

NA Unknown/not
performed

CXR consistent with Result of CXR performed at initial 0 CXR not consistent All CXR assessments made by the

TB evaluation as assessed by reader with TB managing clinical team.
performing clinical 1 CXR consistent with
evaluation/making TB-treatment B
decision or by reader to inform NA Unknown/not
research classification of TB if assessed
former not available

Opacities on CXR Opacities (e.g., alveolar 0 Opacities not Received data corresponding to
consolidation and/or present on CXR presence of alveolar opacification; if
bronchopneumonia) on CXR 1 Opacities present on | this was positive, then the CXR was
performed at initial evaluation as CXR said to demonstrate opacities.
assessed by reader performing NA Unknown/not
clinical evaluation/making TB- assessed
treatment decision or by reader to
inform research classification of TB
if former not available

Nodes on CXR Nodes (e.g., perihilar nodes, 0 Nodes not present Received data corresponding to
paratracheal nodes, mediastinal on CXR presence of perihilar
nodes) on CXR performed at initial 1 Nodes present on lymphadenopathy and paratracheal
evaluation as assessed by reader CXR lymphadenopathy; if either of these
performing clinical NA Unknown/not were positive, then the CXR was
evaluation/making TB-treatment assessed said to demonstrate nodes.
decision or by reader to inform
research classification of TB if
former not available

TB classification Final classification of TB 0 Unlikely TB See note on reference classification

1 Bacteriologically- in study description table above.
confirmed TB

2 Unconfirmed TB

NA Unknown
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Table S22. Modifications to IPD from Hamid/2019/PK

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Age (months) Age (months) at enrolment Ht NA = unknown Age was reported as years old;
assumed to be at midpoint of
year and converted to months.
HIV-status Participant HIV status 0 HIV-negative HIV status was not collected as a
— part of this study. In consultation
1 HIV-positive with study authors, we assumed
NA Unknown that all chi!dren in this study were
HIV-negative.
Weight loss Presenting history of poor growth | 0 No weight loss Defined as subjective weight loss
over the preceding 3 months - reported by parents/guardians.
AND not responding to nutritional | 1 Weight loss
rehabilitgtion (Qr antiretroviral NA Unknown
therapy if HIV infected)
Known TB Known exposure to MTB at initial | O No known TB An exposure was defined as a
exposure evaluation in previous 12 months exposure in mother, household member, or
previous 12 someone spending ~4 hours a
months day with the child having
documented or reported positive
Xpert or TB culture (or receiving
treatment for TB) in the previous
1 Known TB. 24 months.
exposure in
previous 12
months
NA Unknown
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative Result from first Xpert: performed
MTB/RIF (not Ultra) performed on ES/IS (or for Mtb only on stool specimens. Not all
GA for young children) collected children received Xpert testing.
at initial evaluation 1 Xpert positive for
Mtb
NA Unknown/not
performed
CXR Result of CXR performed at initial | O CXR not All CXR assessments made by
consistent with | evaluation as assessed by reader consistent with the managing clinical team.
B performing clinical B
evaluation/making TB-treatment
decision or by reader to inform
research classification of TB if 1 CXR consistent
former not available with TB
NA Unknown/not
assessed
B Final classification of TB 0 Unlikely TB Eighteen children were given a
classification - - diagnosis of EPTB; these children
1 Bacteriologically- | \vere classified as unlikely PTB
confirmed TB given different presentation.
Otherwise, see note on reference
2 Unconfirmed TB | classification in study description
table above.
NA Unknown
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Table S23. Modifications to IPD from Nicol/2017/ZA

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Known TB Known exposure to MTB at initial | 0 No known TB An exposure was defined as a
exposure evaluation in previous 12 months exposure in mother, household member, or
previous 12 someone spending ~4 hours a
months day with the child having
documented or reported positive
Xpert or TB culture (or receiving
treatment for TB) in the previous
1 Known TB. 24 months.
exposure in
previous 12
months
NA Unknown
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative Result from first Xpert: performed
MTB/RIF (not Ultra) performed on ES/IS (or for Mtb only on IS specimens.
GA for young children) collected
at initial evaluation 1 Xpert positive for
Mtb
NA Unknown/not
performed
CXR Result of CXR performed at initial | 0 CXR not All CXR assessments made by
consistent with | evaluation as assessed by reader consistent with the study team; many were
B performing clinical B determined to be inconclusive for
evaluation/making TB-treatment PTB.
decision or by reader to inform
research classification of TB if 1 CXR consistent
former not available with TB
NA Unknown/not
assessed
Opacities on Opacities (e.g., alveolar 0 Opacities not Received data corresponding to
CXR consolidation and/or present on CXR | presence of alveolar
bronchopneumonia) on CXR opacification; if positive, then the
performed at initial evaluation as 1 Opacities CXR was said to demonstrate
assessed by reader performing present on CXR opacities.
clinical evaluation/making TB-
treatment decision or by reader to
inform research classification of NA Unknowr&/ not
TB if former not available assesse
Nodes on Nodes (e.g., perihilar nodes, 0 Nodes not Received data corresponding to
CXR paratracheal nodes, mediastinal present on CXR | presence of perihilar
nodes) on CXR performed at lymphadenopathy and
initial evaluatio_n as a_s_sessed by 1 Nodes present p_aratracheal Iymphaden_o_pathy; if
reader performing clinical on CXR either of these were positive, then
evaluation/making TB-treatment the CXR was said to demonstrate
decision or by reader to inform nodes.
research classification of TB if NA Unknown/not
former not available assessed
B Final classification of TB 0 Unlikely TB Removed data from 37
classification - - individuals with EPTB as not
1 Bacteriologically- | rg|evant to the analysis
confirmed TB population. Otherwise, see note
on reference classification in
2 Unconfirmed TB | study description table above.
NA Unknown
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Table S24. Modifications to IPD from Walters/2017/ZA

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Weight loss Presenting history of poor growth 0 No weight loss Weight loss was specifically
over the preceding 3 months AND 1 Weight loss defined as follows: Poor growth
not responding to nutritional NA Unknown documented over the preceding 3
rehabilitation (or antiretroviral months (clear deviation from the
therapy if HIV infected) child's previous growth trajectory
and/or static growth or weight loss
in the preceding 3 months;
alternatively, weight-for-age Z-
score (WFAZ) <2 in children with
no previous weight
measurements).
Known TB Known exposure to MTB at initial 0 No known TB Exposure to any identified adult TB
exposure evaluation in previous 12 months exposure in source case in the preceding 12
previous 12 months, where exposure was either
months within the household; or involved
1 Known TB the child's primary caregiver; or
exposure in occurred for >4 hours per day
previous 12 during the period of exposure.
months
NA Unknown
Peripheral Peripheral lymphadenopathy (at 0 No peripheral Received data corresponding to
lymphadenopathy | cervical, submandibular, and/or lymphadenopathy | presence of cervical
axillary nodes) at initial evaluation 1 Peripheral lymphadenopathy, submandibular
lymphadenopathy | lymphadenopathy, and axillary
NA Unknown lymphadenopathy; if any of these
were positive, then the child was
said to have peripheral
lymphadenopathy.
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative for | Result from first Xpert performed.
MTB/RIF (not Ultra) performed on ES/IS (or Mtb
GA for young children) collected at 1 Xpert positive for
initial evaluation Mtb
NA Unknown/not
performed
CXR consistent Result of CXR performed at initial 0 CXR not All CXR assessments made by the
with TB evaluation as assessed by reader consistent with study team.
performing clinical TB
evaluation/making TB-treatment 1 CXR consistent
decision or by reader to inform with TB
research classification of TB if NA Unknown/not
former not available assessed
Opacities on Opacities (e.g., alveolar 0 Opacities not Received data corresponding to
CXR consolidation and/or present on CXR presence of alveolar opacification
bronchopneumonia) on CXR 1 Opacities present | and bronchopneumonia; if either of
performed at initial evaluation as on CXR these were positive, then the CXR
assessed by reader performing NA Unknown/not was said to demonstrate opacities.
clinical evaluation/making TB- assessed
treatment decision or by reader to
inform research classification of TB
if former not available
Nodes on CXR Nodes (e.g., perihilar nodes, 0 Nodes not Received data corresponding to
paratracheal nodes, mediastinal present on CXR presence of perihilar
nodes) on CXR performed at initial 1 Nodes present on | lymphadenopathy, paratracheal
evaluation as assessed by reader CXR lymphadenopathy, and calcified
performing clinical NA Unknown/not nodes; if any of these were
evaluation/making TB-treatment assessed positive, then the CXR was said to
decision or by reader to inform demonstrate nodes.
research classification of TB if
former not available
TB classification Final classification of TB 0 Unlikely TB See note on reference
1 Bacteriologically- | classification in study description
confirmed TB table above.
2 Unconfirmed TB
NA Unknown
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Table S25. Modifications to IPD from Orikiriza/2018/UG

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Cough duration Duration of cough at initial evaluation 0 No cough Duration of cough was only provided a
1 Cough 0-13 days greater than or equal to 2 weeks or
2 Cough 14-20 days less than 2 weeks/no cough.
3 Cough 21-27 days
4 Cough 28 days
NA Unknown
Fever duration Duration of fever at initial evaluation 0 No fever Duration of fever was only provided as
1 Fever 0-13 days greater than or equal to 1 week or less
2 Fever 14-20 days than 1 week/no cough.
3 Fever 21-27 days
4 Fever 28 days
NA Unknown
Lethargy Presenting history of unusual lethargy 0 No lethargy Lethargy was positive if present for
or lack of playfulness at initial 1 Lethargy greater than or equal to 2 weeks;
evaluation NA Unknown negative if no lethargy or for less than
2 weeks.
Known TB Known exposure to MTB at initial 0 No known TB For children referred from another
exposure evaluation in previous 12 months exposure in contact study (any child who has lived
previous 12 in the same household with the index
months case continuously for at least 2 weeks
1 Known TB within the 3-month period immediately
exposure in preceding the diagnosis of smear-
previous 12 positive or culture-positive TB in the
months index case. For other children,
NA Unknown documented as reported contact with
a bacteriologically-positive case within
the preceding 12 months.
Night sweats Presenting history of night sweats at 0 No night sweats Night sweats coded using the
initial evaluation 1 Night sweats following scale: absent, mild,
NA Unknown moderate, severe, or life threatening.
Recoded absent = 0, and others = 1.
Peripheral Peripheral lymphadenopathy (at 0 No peripheral Location of peripheral
lymphadenopathy cervical, submandibular, and/or lymphadenopathy lymphadenopathy not specified.
axillary nodes) at initial evaluation 1 Peripheral
lymphadenopathy
NA Unknown
First Xpert Result from first Xpert MTB/RIF (not 0 Xpert negative for Result from first Xpert: performed on
MTB/RIF Ultra) performed on ES/IS (or GA for Mtb two pooled IS specimens.
young children) collected at initial 1 Xpert positive for
evaluation Mtb
NA Unknown/not
performed
CXR consistent Result of CXR performed at initial 0 CXR not All CXR assessments made by the
with TB evaluation as assessed by reader consistent with TB managing clinical team.
performing clinical evaluation/making 1 CXR consistent
TB-treatment decision or by reader to with TB
inform research classification of TB if NA Unknown/not
former not available assessed
Opacities on CXR Opacities (e.g., alveolar consolidation 0 Opacities not Received data corresponding to
and/or bronchopneumonia) on CXR present on CXR presence of alveolar opacification and
performed at initial evaluation as 1 Opacities present bronchopneumonia; if either of these
assessed by reader performing clinical on CXR were positive, then the CXR was said
evaluation/making TB-treatment NA Unknown/not to demonstrate opacities.
decision or by reader to inform assessed
research classification of TB if former
not available
Nodes on CXR Nodes (e.qg., perihilar nodes, 0 Nodes not present | Positive if mediastinal
paratracheal nodes, mediastinal on CXR lymphadenopathy was present.
nodes) on CXR performed at initial 1 Nodes present on
evaluation as assessed by reader CXR
performing clinical evaluation/making NA Unknown/not
TB-treatment decision or by reader to assessed
inform research classification of TB if
former not available
TB classification Final classification of TB 0 Unlikely TB See note on reference classification in
1 Bacteriologically- study description table above.
confirmed TB 'Probable TB' and 'possible TB' were
2 Unconfirmed TB coded as 'unconfirmed TB.'
NA Unknown
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Table S26. Modifications to IPD from Bonnet/**/UG

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
BCG evidence Evidence of BGC vaccination (BCG | 0 No evidence of If had a BCG-scar or a positive
scar or BCG recorded in BCG vaccination immunization card/verbal response,
immunization record) at initial 1 Evidence of BCG | then determined to have evidence
evaluation vaccination of BCG vaccination.
NA Unknown
Cough duration Duration of cough at initial 0 No cough Duration of cough was only
evaluation 1 Cough 0-13 days | provided a greater than or equal to
2 Cough 14-20 2 weeks or less than 2 weeks/no
days cough.
3 Cough 21-27
days
4 Cough 28 days
NA Unknown
Fever duration Duration of fever at initial 0 No fever Duration of fever was only provided
evaluation 1 Fever 0-13 days as greater than or equal to 1 week
2 Fever 14-20 days | or less than 1 week/no cough.
3 Fever 21-27 days
4 Fever 28 days
NA Unknown
Known TB Known exposure to MTB at initial 0 No known TB Contact of a household member
exposure evaluation in previous 12 months exposure in with positive Xpert or TB culture in
previous 12 the previous 12 months
months
1 Known TB
exposure in
previous 12
months
NA Unknown
Peripheral Peripheral lymphadenopathy (at 0 No peripheral Significant peripheral
lymphadenopathy | cervical, submandibular, and/or lymphadenopathy | lymphadenopathy on screening
axillary nodes) at initial evaluation 1 Peripheral (location unspecified).
lymphadenopathy
NA Unknown
First Xpert Result from first Xpert MTB/RIF 0 Xpert negative for | Result from first Xpert: performed
MTB/RIF (not Ultra) performed on ES/IS (or Mtb on GA specimens.
GA for young children) collected at 1 Xpert positive for
initial evaluation Mtb
NA Unknown/not
performed
CXR consistent Result of CXR performed at initial 0 CXR not All CXR assessments made by the
with TB evaluation as assessed by reader consistent with managing clinical team.
performing clinical B
evaluation/making TB-treatment 1 CXR consistent
decision or by reader to inform with TB
research classification of TB if NA Unknown/not
former not available assessed
Opacities on Opacities (e.g., alveolar 0 Opacities not Received data corresponding to
CXR consolidation and/or present on CXR presence of alveolar opacification
bronchopneumonia) on CXR 1 Opacities present | and bronchopneumonia; if either of
performed at initial evaluation as on CXR these were positive, then the CXR
assessed by reader performing NA Unknown/not was said to demonstrate opacities.
clinical evaluation/making TB- assessed
treatment decision or by reader to
inform research classification of TB
if former not available
Nodes on CXR Nodes (e.g., perihilar nodes, 0 Nodes not Received data corresponding to
paratracheal nodes, mediastinal present on CXR presence of Gohn focus and hilar
nodes) on CXR performed at initial 1 Nodes present on | lymphadenopathy (grouped
evaluation as assessed by reader CXR together) and mediastinal nodes; if
performing clinical NA Unknown/not either of these were positive, then
evaluation/making TB-treatment assessed the CXR was said to demonstrate
decision or by reader to inform nodes.
research classification of TB if
former not available
TB classification Final classification of TB 0 Unlikely TB See note on reference
1 Bacteriologically- | classification in study description
confirmed TB table above.
2 Unconfirmed TB
NA Unknown
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Table S27. Modifications to IPD from Giang/2015/VN

VARIABLE DESCRIPTION CODE | LABEL MODIFICATION
Cough duration Duration of cough at initial 0 No cough Duration of cough was only
evaluation 1 Cough 0-13 days | provided a greater than or
2 Cough 14-20 equal to 2 weeks or less than 2
days weeks/no cough.
3 Cough 21-27
days
4 Cough 28 days
NA Unknown
Fever duration Duration of fever at initial 0 No fever Duration of fever was only
evaluation 1 Fever 0-13 days provided as greater than or
2 Fever 14-20 days | equal to 1 week or less than 1
3 Fever 21-27 days | week/no cough.
4 Fever 28 days
NA Unknown
Weight loss Presenting history of poor 0 No weight loss Subjective weight loss and/or
growth over the preceding 3 1 Weight loss failure to thrive.
months AND not responding to | NA Unknown
nutritional rehabilitation (or
antiretroviral therapy if HIV
infected)
Known TB Known exposure to MTB at 0 No known TB Exposure was defined as a
exposure initial evaluation in previous 12 exposure in household or close contact with
months previous 12 a TB case (unspecified).
months
1 Known TB
exposure in
previous 12
months
NA Unknown
Peripheral Peripheral lymphadenopathy 0 No peripheral Received data corresponding
lymphadenopathy | (at cervical, submandibular, lymphadenopathy | to presence of cervical
and/or axillary nodes) at initial 1 Peripheral lymphadenopathy and
evaluation lymphadenopathy | submandibular
NA Unknown lymphadenopathy; if either of
these were positive, then the
child was said to have
peripheral lymphadenopathy.
First Xpert Result from first Xpert MTB/RIF | 0 Xpert negative for | Result from first Xpert:
MTB/RIF (not Ultra) performed on ES/IS Mtb performed on mostly GA
(or GA for young children) 1 Xpert positive for | specimens.
collected at initial evaluation Mtb
NA Unknown/not
performed
CXR consistent Result of CXR performed at 0 CXR not Unclear whether this data
with TB initial evaluation as assessed consistent with corresponds to result as
by reader performing clinical B assessed by the study team or
evaluation/making TB- 1 CXR consistent the managing clinical team.
treatment decision or by reader with TB
to inform research classification | NA Unknown/not
of TB if former not available assessed
TB classification Final classification of TB 0 Unlikely TB See note on reference
1 Bacteriologically- | classification in study
confirmed TB description table above.
2 Unconfirmed TB 'Probable TB' and ‘possible TB'
NA Unknown were coded as 'unconfirmed

TB.' One child unable to
classify as 'probable TB' or
'possible TB' in original data
was coded as 'unconfirmed TB'
for the purposes of this analysis
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Appendix I: Missingness in IPD received

Figure S1. Missingness in IPD received (note variables hames per Table S1)

weight_loss
weight
TST_result
temp

toc_yn
TB_class

sex
respiratory_rate
peripheral_|ad
night_sweats
lethargy_any2wk
HIV_status_ba_pk_no
hemoptysis
height
heart_rate

variable

first_xpertORculture_yn
fever_less2wk_ar2wk_grawk_grdwk
fever_greater_ 1wk

CXRindex_opacity

CXRindex_nodes

CXRindex_mili

CXRindex_effusion

CXRindex_cavity

CXRcomb_TB_yn
cough_less2wk_gr2wk_agr3wk_grdwk

gh_greater_2wk

bcg_evidence

% Miss
100

75
50
25
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Appendix J: Generate additional variables

After imputation, additional variables were computed from requested variables as

follows:

— Temperature >38°C

O

Objective temperature recorded as greater than 38°C

— Tachycardia

o Children <2 months old, heart rate >160
o Children 2-12 months old, heart rate >150
o Children 12 months — 5 years old, heart rate >140
o Children >5 years old, heart rate >120
— Tachypnea
o Children <2 months old, respiratory rate >60
o Children 2-12 months old, respiratory rate >50
o Children 12 months — 5 years old, respiratory rate >40
o Children >5 years old, respiratory rate >30

— Weight-for-age Z-score

O

O

Determined from sex, age, and weight as per WHO Child Growth
Standards

Implemented in function “addWGSR” in package zscorer

— Weight-for-height Z-score

O

O

Determined from sex, weight, and height as per WHO Child Growth
Standards

Implemented in function “addWGSR” in package zscorer

— Body-mass-index-for-height Z-score

O

e}

Determined from sex, weight, height, and age as per WHO Child Growth
Standards

Implemented in function “addWGSR” in package zscorer

— Severely acutely malnourished

e}

o

Children <5 years old, weight-for-height Z-score <-3

Children 25 years old, body-mass-index-for-height Z-score <-3
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Appendix K: Existing algorithms and modifications to make maximal use of IPD

Table S28. Modifications to Marais et al. Criteria

Algorithm
Persistent, nonremitting
cough > 2 weeks

' Variable in data
Cough duration

Differences

Cannot specify cough
characteristic (persistent
and nonremitting)

Objective weight loss Weight loss Definition of weight loss
(documented failure to was not specific to failure
thrive) during the preceding to thrive

3 months

Reported fatigue Lethargy

Marais BJ, Gie RP, Hesseling AC, Schaaf HS, Lombard C, Enarson DA, et al. A refined
symptom-based approach to diagnose pulmonary tuberculosis in children. Pediatrics.

2006;118(5):e1350-9.
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Figure S2. The Union’s Desk Guide

TB is suspected on basis of typical and persistent symptoms

. .

Sputum smear/Xpert
negative or not done

I

« Positive contact history
« Physical signs suggestive of PTB*
« Chest radiograph (CXR) suggestive of PTB

v !

Sputum smear or Xpert positive

If only one or none of Make a diagnosis of TB
the features are present if two or more of these
l l features are present

IF CHILD SICK, ADMITTO IF CHILD WELL,

HOSPITAL FOR FURTHER REVIEW AFTER

INVESTIGATION 2-4 WEEKS TREAT FORTB

Graham S. The Union's desk guide for diagnosis and management of TB in children. 3
ed. Paris, France: International Union Against Tuberculosis and Lung Disease; 2016.
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Table S29. Modifications to The Union’s Desk Guide

Algorithm
Strict Symptom Criteria

' Variables in data

Persistent, non-remitting
cough or wheeze for more
than 2 weeks not responding
to standard therapy

Cough duration

Differences

Cannot specify cough
characteristic (persistent and
nonremitting)

Documented loss of weight or | Weight loss Definition of weight loss was
failure to thrive during past 3 not specific to failure to thrive
months especially if not

responding to food and/or Weight/Height/Age Use weight/height/age to
micronutrient determine if severely acutely
supplementation, or severe malnourished

malnutrition

Fatigue/reduced playfulness Lethargy

Persistent fever >10 days

Fever duration

Evaluated as fever >7 days

TB contact in the preceding
year

Known TB exposure

Some studies defined known
TB exposure as within the
previous 24 months

HIV

HIV-status

Physical signs

Weight loss or poor weight
gain, evidence of growth
faltering

Weight loss

Definition of weight loss was
not specific to failure to thrive

Fever

Temperature (C)

Increased respiratory rate

Respiratory rate (per min)

Signs of respiratory distress

N/A

N/A

Auscultation and percussion

N/A

CXR

Enlarged hilar lymph nodes

Nodes on CXR

N/A

Opacification in lung tissue

Opacities on CXR

Miliary mottling

Miliary infiltrate on CXR

Cavitation

Cavities on CXR

Pleural or pericardial effusion

Pleural effusion on CXR

Did not evaluate pericardial
effusion

Marked abnormality on CXR
in child with no signs of
respiratory distress (no fast
breathing or chest indrawing)
is supportive of TB

N/A

N/A

Sputum Xpert

First Xpert MTB/RIF

Sputum smear

N/A

N/A
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Figure S3. Stegen-Toledo Score

Finding Score
Positive culture result 7
Tuberculous granuloma 4
Paositive PPD test result® 3

Known contact with a person with TB
during past 2 years

Radiographic results suggestive of TB .
Clinical presentation suggestive of TB® 2

NOTE. Highly probable tuberculosis was denoted
by a Stegen-Toledo score of =7; probable tuberculosis,
by a score of 546; suspected tuberculosis, by a score
of 3—4; and unlikely tuberculosis, by a score of 0-2. PPD,
tuberculin punfied protein denvative,

? Induration =10 mm.,

® Duration of cough =2 weeks,

Montenegro SH, Gilman RH, Sheen P, Cama R, Caviedes L, Hopper T, et al. Improved
Detection of Mycobacterium tuberculosis in Peruvian Children by Use of a Heminested
1IS6110 Polymerase Chain Reaction Assay. Clin Infect Dis. 2003;36(1):16-23.
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Table S30. Modifications to Stegen-Toledo Score (using cutoff of 5 points to classify

TB)

Algorithm
Positive culture result

Variables in data
First Xpert MTB/RIF

Differences

Used Xpert MTB/RIF
rather than culture given
practical advantage of
Xpert

Tuberculosis granuloma

N/A

N/A

Positive PPD test result

TST result

Known contact with a
person with TB during past
2 years

Known TB exposure

Some studies defined
known TB exposure as
within the previous 12
months

Radiological results
suggestive of TB

CXR consistent with TB

Clinical presentation
suggestive of TB (defined
as duration of cough >2
weeks)

Cough duration
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Figure S4. Uganda NTLP Algorithm

ALGORITHM FOR THE DIAGNOSIS OF TB IN CHILDREN

[ SCREEN ALL CHELDREMN AT ALL ENTRY POINTS FOR TB USING THE INTENEIFIED TE CASE FINDING GUIDE ]

COMSIDER — Pesusmpiiee TE {from KOF Guide] in a Ohild
weithany cne of the follo wing symp toms:

& Persistent cough for 2weeks or more] Assessior coug hof any
ahusratiom in ko HIW posithee patients)

& Parsistent fewver for 2 woels or maong
& Poor wosighit gain in the la st cnae monyvthor mone
& His tory of FTE contact
@ Sl lineg 5 i thee neencll, anmnpit, groin

-~

* Remamb o to oo HIVtest for allchildoen with presuem plive
L aned d iagrosed TE )

L 2

| CONDUCT A CLINICAL EXAMINATION ||

ARE YOU ABLE TO DETAIN A& SAMPLE
FOR GENEXPERT OR MICROSCOPY 7
[RatsrioA')

DS THE HIW MEGAT VE CHILD HAYE
2 O0RMIAEF g FOLLOWE RCT
DOES THE MY FEITIVE CHILDHAYE

1 ORMORE OF THEFOLLOWMG T

1.2 of mone Sy Mpodrs. Suggestive of TE
Fefer m"?‘:‘u

2 Pesitivn hiskery of contact witha FTE case
3_Any physical Sgns suggestive ol TBA e C)

4.CHR suggestive of PTBRaer 1o T7

GIVE APPROPRIATE
TREATMENT ACCORDING
TO IMCI GUIDELINES AND

RE-ASSESS AFTER 1-2
WEEHS

TREAT FORTB
AND REFER TO
ART GUIDELINES
IF THE CHILD IS
HIV POSITIVE
b 2

IF CHILD IS STILL UNWELL
REFER FOR FURTHER
EVALUATION.

Uganda Ministry of Health, Uganda National Tuberculosis and Leprosy Control

Programme. Manual for management and control of tuberculosis and leprosy in Uganda.

Kampala, Uganda: MoH, 2017.
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Table S31. Modifications to Uganda NTLP Algorithm

Algorithm
Xpert or microscopy

Variables in data ' Differences

Symptoms suggestive
of TB (=2 of the
following)

First Xpert MTB/RIF Did not evaluate
microscopy

Persistent cough >2 wks

Cough duration

Persistent fever for >2
wks

Fever duration

Poor weight gain in the
last >1 month

Weight loss

CXR findings
suggestive of PTB

Miliary picture

Miliary infiltrate on CXR

Hilar adenopathy

Nodes on CXR

Cavitation

Cavities on CXR

Physical signs
suggestive of TB

|

Severe malnutrition

Weight/Height/Age Use weight/height/age
to determine if severely

acutely malnourished

Enlarged lymph nodes
around neck or arm pit

Peripheral lymphadenopathy

Acute pneumonia not N/A N/A
responding to complete

course of appropriate

antibiotics

Recurrent pneumonias N/A N/A
Persistent wheeze not N/A N/A
responding to

bronchodilators

Persistence of swelling N/A N/A
on the back (Gibbus)

Signs of meningitis in N/A N/A

child with symptoms
suggestive of TB
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Figure S5. Brazilian Ministry of Health Score

Diagnosis of pulmonary tuberculosis in children and adolescents with negative smear
microscopy or undetected RMT 2 .

Clinical condition

Radiological patterns

Contact
with adult
with TB*

TST*  Nutritional
status

Fever or symptoms
such as cough,
adynamia,
expectoration,
slimming, sweating
> 2 weeks 15 points

Asymptomatic or
with symptoms < 2

weeks 0 points

Respiratory infection
that improved after
using antibiotics for
common germs or
without antibiotics
(=10 points)

Hilar adenomegaly or miliary pattern and/or
condensation or infiltrate (with or without cavitation)
unchanged by > 2 weeks and/or condensation or
infiltrate (with or without excavation) for > 2 weeks,
progressing with worsening or without improvement

with antibiotics for common germs 15 points

Condensation or infiltrate of any type for less than 2

weeks 5 points

Normal radiography (-5 points)

Close
contact in
he last 2
years 10

points

Occasional
or
negative 0

points

TST Serious
between malnutrition
Sand9 5 points
mm S
points
TST
>10 mm
10
points
TST<5 Weight>10
mm 0 fin percentile

points 0 points

RMT = rapid molecular test; TB = tuberculosis: TST = tuberculin skin test. At least 40 points (very likely diagnosis) =
it is recommended to start TB treatment; 30- 35 points (possible diagnosis) = indicative of TB; it is advised to initiate
treatment, at medical discretion: Less than 25 points (diagnosis is unlikely) = investigation of the child should be

continued.

Brasil. Ministério da Saude. Secretaria de Vigilancia em Saude. Departamento de

Vigilancia das Doencgas Transmissiveis. Manual de recomendacgfes para o controle da

tuberculose no Brasil. 2 2 ed. atual. Brasilia: Ministério da Saude; 2019.
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Table S32. Modifications to Brazilian Ministry of Health Score (using cutoff of 30

points to classify TB)

Algorithm
Fever >2 wks

' Variables in data
Fever duration

Differences

Cough >2 wks

Cough duration

Adynamia >2 wks Lethargy Duration not specified in
data

Expectoration >2 wks N/A N/A

Slimming >2 wks Weight loss Duration not specified in

data

Sweating >2 wks

Night sweats

Duration not specified in
data

Respiratory infection that
improved after using
antibiotics for common
germs or without antibiotics

N/A

Hilar adenomegaly or
miliary pattern and/or
condensation or infiltrate
(with or without cavitation)
unchanged by = 2 weeks
and/or condensation or
infiltrate (with or without
excavation) for =2 2 weeks,
progressing with worsening
or without improvement
with antibiotics for common
germs

Nodes on CXR

Miliary infiltrate on CXR
Opacities on CXR
Cavities on CXR

CXR abnormalities
consistent with TB of
unknown duration

Condensation or infiltrate N/A No data on duration of
of any type for less than 2 CXR abnormalities
weeks consistent with TB
Normal radiography N/A No data to indicate CXR

Close contact in the last 2
years (with adult with TB)

Known TB exposure

Some studies defined
known TB exposure as
within the previous 12
months

(weight <10™ percentile)

TST diameter TST result TST diameter not
specified in data, only
whether result was
positive or not

Serious malnutrition Weight/age Weight and age used to

compute weight-for-age
z-score
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Figure S6. Keith-Edwards Score

Taste 1. Keith Edwards Score for Diagnosis of Tuberculosis in

Children
Feature Score
0 1 3
Duration of illness (weeks) <2 24 >4
Nutrition (% of weight for age) > 80 60-80 <60
Family history of tuberculosis ~ None Reported  Proven
by family  sputum
positive
Score for Other Features if Present
Feature Score
Unexplained fever, night sweats, no response to 2
malaria treatment
Positive tuberculin test 3
Lymph nodes: large, painless, firm, soft sinus 3
in neck/axilla
Malnutrition, not improving after 4 weeks 3
Central nervous system : change in temperament, 3
fits with or without abnormal cerebrospinal fluid findings
Joint swelling, bone swelling, sinuses 3
Unexplained abdominal mass, ascites 3
Angle deformity of spine 4

A score of 7 or more is indicative of tuberculosis

Edwards K. The diagnosis of childhood tuberculosis. P N G Med J. 1987;30(2):169-78.
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Table S33. Modifications to Keith-Edwards Score

Algorithm ' Variables in Data Differences
Duration of iliness Cough duration Used the max of cough or
Fever duration fever duration to represent

duration of illness

Nutrition (% of weight for | Weight/age Weight and age used to

age) compute weight-for-age z-
score

Family history of Known TB exposure Data unavailable on

tuberculosis whether TB exposure was
bacteriologically-confirmed

Fever Temperature (C)

Night sweats Night sweats

No response to malaria N/A N/A

treatment

Lymph nodes: large, Peripheral

painless, firm, soft sinus lymphadenopathy

in neck/axilla

Malnutrition, not Weight loss Cannot specify whether

improving after 4 weeks malnutrition did not
improve after 4 weeks

Central nervous system: Lethargy Unable to evaluate fits or

change in temperament, abnormal cerebrospinal

fits with or without fluid findings

abnormal cerebrospinal

fluid findings

Joint swelling, bone N/A N/A

swelling, sinuses

Unexplained abdominal N/A N/A

mass, ascites

Angle deformity of spine N/A N/A
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Figure S7. Gunasekera et al. Algorithm

Child €13 years being evaluated for PTB with:
Cough =2 weeks OR
Fever 21 weeks OR
Poor growth/weight loss in previous 3 months

Perform detailed clinical evaluation:
Cough 1 week -37
Cough 2 weeks +20
2 NO Cough 3 weeks +23 Treat as
[ Known TB exposure? ] » Cough >3 weeks  +71 appropriate and
Fever +41 reassess
YES Failure to thrive ~ +46
Lethargy +40
Hepatomegaly +13
YES l
Score >100? )
| NO
Pursue Chest Radiography
YES l
4[ Consistent with PTB? ]
| NO
Pursue Xpert MTB/RIF
+
Identified M.tb on ] NO
respiratory specimens? |
. I ! } YES
Initiate antituberculosis treatment
Reassess for persistence or resolution of symptoms and adverse drug events

Gunasekera KS, Walters E, van der Zalm MM, Palmer M, Warren JL, Hesseling AC, et
al. Development of a treatment-decision algorithm for human immunodeficiency virus—
uninfected children evaluated for pulmonary tuberculosis. Clin Infect Dis. 2021.
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Table S34. Modifications to Gunasekera et al. Algorithm. Given that we had access
to the Walters/2017/ZA data from HIV-negative children used to develop this algorithm,
we refit the logistic regression model using a complete case analysis of variables
available in the IPD before any imputation; thus, this algorithm is modified from the
originally stated algorithm (we do not include hepatomegaly and fever is defined as =1
week). This model had an AUC of 0.85. The model parameter coefficients were scaled
to produce a score such that a sum of the scores resulted in classification of TB with a
sensitivity of 90% -- this resulted in an algorithm with a sensitivity of 91% and a

specificity of 49%.
OR 250 975 p- Scaled
% % | value | score

(Intercept) 0.10, 0.04| 0.21 0.00 --
No cough -- --
Cough < 2 weeks 081 037 1.78 0.60 -22
Cough 2 weeks 1.14| 040 3.18 0.81 13
Cough 3 weeks 156 | 046 5.25 0.47 46
Cough >3 weeks 3.60 149 | 9.01 0.01 132
No fever or fever <1 week - -
Fever =21 week 2.12 0.87 5.33 0.10 78
No weight loss -- --
Weight loss 1.98 1.06 | 3.76 0.03 71
No lethargy - -
Lethargy 143 071 288 0.32 37
No history of known TB - --
contact

History of known TB contact 6.64 3.53 12.99 0.00 195
CXR not consistent with TB -- --
CXR consistent with TB 11.02  5.39 23.90 0.00 248
Xpert negative for MTB -- --
Xpert positive for MTB 13927274.1 | 0.00 | Inf 0.98 1698

5

183



Figure S8. Marcy et al. Algorithm

Clinical suspicion of TB in a HIV-infected child
Cough > 2 weeks

Fever > 2 weeks

Deviation in the growth curve or a WAZ <-25D
Failure of antibiotics for a pulmonary infection
Suggestive chest radiography

Consent form Routine follow up;
. NO
signed

not enrclled in study

Samples for Xpert

MTB/RIF Ultra

History of contact NO | | Detailed assessment of Treat as appropriate
with smear+ TB ! symptoms and signs and reassess
\L Score
Fever lasting > 2 wks 66

s | Unremitting cough 39

core i L .

YES 118 ! Hemoptysis in previous 4 wks 79
| Weight loss in previous 4 wks 24
1 Tachycardia 54

H J’
YES v Score > 100
|
| |
‘ Ultra results | | Chest radiograph | Abdominal Us

Score Score l Score
Positive Xpert 241 Miliary 90 Abdominal lymph nodes 73
Alveoclar opacity 74
Lymph nodes 100
| i J
Score > 100 /I;I_O

| Initiate TB Treatment |

Marcy O, Borand L, Ung V, Msellati P, Tejiokem M, Huu KT, et al. A treatment-decision
score for HIV-infected children with suspected tuberculosis. Pediatrics.
2019;144(3):€20182065.
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Table S35. Modifications to Marcy et al. Algorithm. Given that we had access to the
Marcy/2016/Multi data from HIV-positive children used to develop this algorithm, we refit
the logistic regression model using a complete case analysis of variables available in the
IPD before any imputation; thus, this algorithm is modified from the originally stated
algorithm (we use cough 22 weeks rather than remitting cough, and we do not include
abdominal ultrasound results). This model had an AUC of 0.80. The model parameter
coefficients were scaled to produce a score such that a sum of the scores resulted in
classification of TB with a sensitivity of 90% -- this resulted in an algorithm with a
sensitivity of 91% and a specificity of 40%.

odds- 250 | 97.50 | p- scaled_coe

ratio % % | value | ff
(Intercept) 0.19| 0.07 0.44 0.00 --
No cough or cough <2 weeks -- --
Cough 22 weeks 1.11| 0.52 2.37 0.78 9
No fever or fever <1 week - -
Fever 21 week 294 | 1.72 5.39 0.00 95
No weight loss -- --
Weight loss 1.79| 1.01 3.37 0.05 52
No hemoptysis -- --
Hemoptysis 3.29 | 0.62| 93.23 0.23 105
No tachycardia -- --
Tachycardia 203 | 0.91 5.12 0.09 62
No history of known TB contact -- --
History of known TB contact 1.71| 0.60 5.59 0.33 47
Miliary infiltrate not present on - --
CXR
Miliary infiltrate present on CXR 256 | 0.77| 10.36 0.14 83
Opacities not present on CXR -- --
Opacities present on CXR 236 | 1.32 453 0.00 76
Nodes not present on CXR -- --
Nodes present on CXR 541| 2.84| 11.83 0.00 149
Xpert negative for MTB -- --
Xpert positive for MTB 29.18 | 3.40 | Inf 0.03 298
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Appendix L: Performance of existing algorithms against reference classification of

all TB

Figure S9. Performance of Marais et al. Criteria. Study-level and pooled estimates of

the (a) sensitivity and (b) specificity of classifying TB (reference standard:

bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB).

A
LopezVirela2015/MZ —_— 0.04 [0.02-0.08]
Hamid 2019/FF —_— 0.08 [0.03—0.24]
Sang/2021/KE —_— 0.09 [0.05-0.16]
Walters/ 201 7/Z4 - —_ 0.10 [0.07-0.14]
Amilio/2030ER - _— 0.10 [0.03—0.28]
Bomet'**/1G _— 0.12 [0.07-0.21]
Garcia2020/MZ _— 0.16 [0.07-0.32]
Giamg/2015/VH- _— 0.18 [0.12-0.27]
Nicol 2017/ZA — 0.18 [0.15-0.22]
Orikiriza2018/UG _ 0.30 [0.24-0.38]
Mo/ 2018/MM- _ 0.33 [0.25-0.42]
Marcy/ 201 6/Multi- _ 0.38 [0.32-0.45]
Eahir2020/BD - _— 0.62 [0.53-0.71]
pocun{ —p— 0.17 [0.11-0.27]
0.00 035 050 075 100
Sensitivity
B
LopezVirela2015/MZ ~ (.97 [0.95-0.98]
Hamid 2019/FF -+ 100 [0.99-1.00]
Sang/2021/KE 0.95 [0.90-0.97]
Walters/ 201 7/Z4 - 0.94 [0.91-0.96]
Amilio/2030ER - ——— (.98 [0.84-1.00]
Bomet'**/1G 0.88 [0.81-0.92]
Garcia2020/MZ _ 0.84 [0.76-0.90]
Giamg/2015/VH- 0.85 [0.62-0.95]
Nicol 2017/ZA 0.86 [0.82-0.90]
Orikiriza2018/UG _ 0.78 [0.71-0.83]
Mo/ 2018/MM- S — 0.73 [0.64-0.80]
Marcy/ 201 6/Multi- — . 0.66 [0.58-0.73]
Eahir2020/BD - 0.39 [0.33-0.44]
pocun{ 0.87 [0.78-0.93]
0.00 035 050 075 100
Specificity
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Figure S10. Performance of Stegen-Toledo Score (using cutoff of 5 points to classify
TB). Study-level and pooled estimates of the (a) sensitivity and (b) specificity of
classifying TB (reference standard: bacteriologically-confirmed pulmonary TB and

unconfirmed pulmonary TB).

A
Eomet'** /UG 0.15 [0.09-0.24]
LopezVarela 201 5/MZ —_— 0.19 [0.14-0.26]
Marcy/ 2016/ Maulti —_— 023 [0.17-0.29]
Garria2020/MZ - 0.41 [0.26-0.58]
Song/2021/KE- _— 0.47 [0.38-0.56]
Myo/2018MM _— 0.50 [0.40-0.59]
Walters2017/Z.4 — 0.52 [0.47-0.58]
Crikiriza 2018/UG _— 0.55 [0.48-0.63]
Eahir2020/BD - _— 0.62 [0.52-0.71]
Awilio/2020/BR . 0.69 [0.49-0.84]
Nicol 201724 —_— 0.75 [0.71-0.79]
Hlamid 2019/PK | 0.78 [0.61-0.89]
Gianz2015/ VN 0.87 [0.78-0.92]
P'I}DLED-I L 0.51 [0.37-0.65]
0.00 025 0.50 075 100
Sensitivity
B
Eomet'**/1G —+ 059 [0.95-1.00]
LopezVarela2015/MZ - 0.96 [0.94-0.97]
Marcy/2016/Multi 0.89 [0.83—0.93]
Garria2020/MZ - _— 0.82 [0.74-0.88]
Song/2021/KE- 0.88 [0.82-0.92]
Mya/2018.0M - 0.86 [0.78-0.91]
Walters2017/Z4 0.90 [0.86-0.93]
Crikiriza 2018/UG —=  097[0.93-0.99]
Eahir2020/BD —_— 0.77 [0.72-0.82]
Anmilio/2000/BE _ 0.89 [0.72-0.96]
Nicol/2017/Z4 | —_ 0.79 [0.74-0.83]
Hamid 2019/0K | —_— 0.73 [0.69-0.77]
Giang2015/VN 0.44 [0.23-0.67]
poom:{ 0.87 [0.79-0.93]
0.00 035 050 075 100
Specificity

187



Figure S11. Performance of Uganda NTLP Algorithm. Study-level and pooled
estimates of the (a) sensitivity and (b) specificity of classifying TB (reference standard:
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB).

A
LapezVarela2015/MZ - —_— 031 [0.24-0.39]
Giang2015/VH - _ 0.46 [0.36-0.56]
COmikiriza2018/1G - —_— 0.47 [0.40-0.53]
Songy2021/KE- N — 0.54 [0.45-0.63]
Bomet'** UG- S — 0.55 [0.44-0.65]
Walters2017/Z4 — 0.58 [0.52-0.63]
Anritio/ 2020BE.+ 0.63 [0.43—0.80]
Nicol 201 7/ZA —_— 0.69 [0.64-0.73]
Hamid 2019/ TE - + 0.69 [0.51-0.83]
Mo/ 2018 MM N 0.74 [0.65-0.81]
Eabir2020BD - —_ 0.79 [0.70-0.86]
Garcia 202 0MZ - _ 0.88 [0.73—0.95]
Marcy/2016/Multi ] — 097 [093-0.99]
pooLED —p— 0.66 [0.53-0.77]
000 025 050 075 100
Sensitivity
B
LapezVrela2015/MZ - 0.85 [0.82-0.88]
Giang 2015 VH1 0.81 [0.57-0.93]
Orikiviza/ 2018 UG - —_— 0.73 [0.66—0.79]
Song2021/KE —_— 0.81 [0.75-0.86]
Bomet**UGA _— 0.62 [0.54-0.70]
Walters2017/Z4 0.85 [0.80—0.88]
Anrilio/ 2020BF.+ 0.61 [0.42-0.76]
Nicol 201 7/ZA - —_— 0.47 [0.42-0.53]
Hamid 2019 TE - 0.86 [0.82—-0.89]
Do 2018/ - —_— 0.42 [0.33-0.51]
Eabir2020BD - e —— 0.42 [0.37-0.48]
Garria2020MZ - —_— 0.42 [0.33-0.52]
Marcy 2006 Mt 0.15 [0.10—0.22]
PooLED | & 0.64 [0.46-0.77]
0.00 025 050 075 100
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Figure S12. Performance of The Union’s Desk Guide. Study-level and pooled
estimates of the (a) sensitivity and (b) specificity of classifying TB (reference standard:
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB).
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Figure S13. Performance of Brazilian Ministry of Health Score (using cutoff of 30
points to classify TB) Study-level and pooled estimates of the (a) sensitivity and (b)
specificity of classifying TB (reference standard: bacteriologically-confirmed pulmonary
TB and unconfirmed pulmonary TB).
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Figure S14. Performance of Keith-Edwards Score. Study-level and pooled estimates
of the (a) sensitivity and (b) specificity of classifying TB (reference standard:
bacteriologically-confirmed pulmonary TB and unconfirmed pulmonary TB).
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Figure S15. Performance of Marcy et al. Algorithm. Performance estimates of the
Marcy et al. Algorithm were derived from only HIV-positive children in the IPD that
excludes data form the Marcy/2016/Multi cohort (from which the algorithm was
developed). Study-level and pooled estimates of the (a) sensitivity and (b) specificity of
classifying TB (reference standard: bacteriologically-confirmed pulmonary TB and
unconfirmed pulmonary TB).
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Figure S16. Performance of Gunasekera et al. Algorithm. Performance estimates of
the Gunasekera et al. Algorithm were derived from only HIV-negative children in the IPD
that excludes data from the Walter/2017/ZA population (from which the algorithm was
developed). Study-level and pooled estimates of the (a) sensitivity and (b) specificity of
classifying TB (reference standard: bacteriologically-confirmed pulmonary TB and
unconfirmed pulmonary TB).

A
LopesVarela/ 201 5/MZ _— 0.73 [0.63—0.81]
Bomet'*+* /TG - —_— 0.75 [0.62—0.85]
Garcia2020/Mz - 0.88 [0.62-0.97]
Anrilio/2020/BR - —_— 0.89 [0.65-0.96]
Nicol2017/ZA — 0.91 [0.87-0.93]
Cilkiriza/ 301 8/1GH —_— 0.92 [0.85-0.96]
Hamid 2019/PE — = 085[081-099]
Song2021/KE ——— 096 [0.89-099]
Mo/ 2018/MM - —  089[094-1.00]
Griamg/2015/VH - —s .99 [0.95-1.00]
Eahir2020B0 - —  LO0[0.95-1.00]
poomn{ — ) 093[085-097]
0.00 035 050 075 100
Sensitivity
B
LopesVarela/ 201 5/MZ —_ 0.44 [0.40-0.48]
Bomet'*+* /TG - — . 0.43 [0.34-0.53]
Garcia2020/Mz - S — 0.27 [0.17-0.41]
Anrilio/2020/BR - - 0.31 [0.16-0.53]
Nicol2017/ZA —_— 0.13 [0.10-0.18]
Cilkiriza/ 301 8/1GH —_— 0.26 [0.19-0.34]
Hamid 2019/PE —_— 0.53 [0.48-0.57]
Song2021/KE —_—— 0.13 [0.08—0.20]
Mo/ 2018/MM - _— 0.07 [0.03-0.15]
Gimg 2015V, ~— —e——————— 0.03 [0.00-0.23]
Eshir2020B0{ - 0.01 [0.00-0.03]
poomn{ —p—— 0.16 [0.08-0.32]
0.00 035 050 075 100
Specificity

193



Appendix M: Performance of existing algorithms against reference classification
of bacteriologically-confirmed TB

Figure S17. Performance of existing algorithms at classifying confirmed TB
(excluding data from children with unconfirmed TB). Retrospective estimates of the
pooled (a) sensitivity and (b) specificity of eight algorithms to guide treatment decision-
making for children with presumptive pulmonary TB, had they been used to evaluate the
children for whom we have IPD records. The reference classification of pulmonary TB
included bacteriologically-confirmed pulmonary TB only (children with unconfirmed TB
are excluded from this analysis).

A
Marais et al. Criteria —ap— 0.24 [0.16—0.36]
Uganda NTLP Alzorithm | —dp— 0.78 [0.71—0.84]
Stegen-Toledo Score (cutoff 5 —p— 0.79 [0.68—0.57]
Diesk Guide — 0.80 [0.74-0.533]
Brailian MoH Score {umf 30 —dp— 0.89 [0.82-0.94]
Keith Edward Score ._.. 0.93 [0.86—0.96]
Marcy et al. Algorifhen® | —p— 0.88 [0.77-0.94]
Grumasekera et al. Alzoritim** —dp- 093 [087-0.9¢]
0.00 03 050 07s 100
Sensitivity
B
Marais et al. Criteria | — 0.86 [0.76—0.92]
Uganda NTLP Alzorithm | - & | 0.64 [0.46—-0.77]
Stagen-Toledo Score (cutoff 5) —ip— 0.87 [0.78—0.93]
Desk Guide | — 0.45 [0.31-0.60]
Brazilian MoH Scare (cutaf 30) —yp— 0.34 [0.22-0.50]
Eith Edward Score - + 024 [0.15-0.37]
Marcy et al. Alporithen® —p— 0.34 [0.22-0.47]
Grumassker ot al. Alzoriftm®* - —p— 0.18 [0.10-0.32]
040 015 050 073 100
Specificity

194



Appendix N: Logistic regression model developed form IPD without CXR features

Table S36. Estimates of logistic regression prediction model developed from IPD
without CXR features. Odds ratio with 95% confidence interval and p-value estimates
for each parameter included in the logistic regression prediction model that does not
include CXR features. The model parameter estimates account for potential clustering at

the study-level as well as uncertainty introduced by missing data. IPD — individual

participant data, OR — odds ratio.

Cough duration 2 2 weeks
(Absence is no cough or <2 weeks)
Fever duration 2 2 weeks
(Absence is no fever or <2 weeks)
Lethargy

Weight loss

History of known TB exposure
Hemoptysis

Night sweats

Peripheral lymphadenopathy
Temperature >38

Tachycardia

Tachypnea

OR

(Intercept)
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present

0.257
1.24-8-
1.57-6-
1.22-?:
1.27-6-
3.76-1;
1.48-6;

1.329

2.5%ile

0.144
0.97—2—
1.20-?:
0.98;
1.00-7-
2.24—1;
0.76—5;
1.12—1;

1.128
0.801
0.919

0.836

97.5%ile

0.458
1.60-(;
2.06-6-
1.51-3-
1.61-2;
6.31-2[
2.88-7-
1.57-2It

1.685

1.264

1.600

1.387

P-value

0.000
0.74-7-
0.20-7-
0.75;
0.68_(;
0.00-(;
0.69-6;
0.42-8-

0.395

1.000

0.825

0.971
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Appendix O: Prediction model fit and scaled scores at different sensitivity thresholds

Table S37. OR and 95% CI of prediction model developed from IPD and corresponding scaled scores.

Cough duration 2 2 weeks
(Absence is no cough or <2 weeks)
Fever duration 2 2 weeks
(Absence is no fever or <2 weeks)
Lethargy

Weight loss

History of known TB exposure
Hemoptysis

Night sweats

Peripheral lymphadenopathy
Temperature >38

Tachycardia

Tachypnea

Cavities on baseline CXR

Intrathoracic lymphadenopathy on
baseline CXR

Opacities on baseline CXR
Miliary infiltrate on baseline CXR

Pleural effusion on baseline CXR

(Intercept)
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent

Present

Absent
Present
Absent
Present
Absent
Present

OR

0.147
1.18-5-
1.56_9:
1.28_2_
1.25-1:
4.19-5-
1.40-4;
1.22_4;
1.42_2_
1.00-4‘:
1.15-9-
0.94_9;
1.60_(;
4.32;
1.546
3.55-5;

1.899

2.5%ile
0.075
0.91—3:
1.17-5;
1.01-6-
0.97-(;
2.38-5-
0.69-(;
1.02-2-
1.14-1-.
0.77-(;
0.87-9-
0.76_(;
0.89_5;
2.72-7-
1.02_2_

1.761

1.217

97.5%ile
0.285
1.53-7-
2.08-7-
1.61-9:
1.61-5-
7.37-7-
2.85-7-
1.46-5-
1.77-2-
1.29-9-
1.52-9-
1.17_6;
2.84_9;
6.85-4‘:
2.326

7.191

2.964

P-value
0.000
0.85-6;
0.24-5-
0.66-?:
0.74-6;
0.00-(;
0.785
0.70-2;
0.35-:;
1.00-(;
0.89-(;
0.98_:;
0.52_7_
0.00-(;
0.45_2_
0.00-(;

0.128

Score at
90% sens.

Score at
85% sens.

Score at
80% sens.

Score at
75% sens.
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Score at
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Table S38. OR and 95% CI of prediction model without chest x-ray features developed from IPD and corresponding scaled

scores.

Cough duration 2 2 weeks
(Absence is no cough or <2 weeks)
Fever duration 2 2 weeks
(Absence is no fever or <2 weeks)
Lethargy

Weight loss

History of known TB exposure
Hemoptysis

Night sweats

Peripheral lymphadenopathy
Temperature >38

Tachycardia

Tachypnea

OR

(Intercept)
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present
Absent
Present

0.257
1.24-6;
1.57-6-
1.22-1;
1.27-6;
3.76-1;
1.48-6-
1.32-5;
1.37-5;
1.00-6;
1.21-2-

1.077

2.5%ile

0.144
0.97-2-
1.20-1;
0.98;
1.00-7-
2.24-1;
0.76-5-
1.12-?:
1.12-5;
0.80-]-.
0.91;

0.836

97.5%ile

0.458
1.60-(;
2.06-6-
1.51-1;
1.61-8-
6.31-]-.
2.88-7-
1.57-1-
1.68-5-
1.26-4;
1.60-(;

1.387

P-value

0.000
0.74-7-
0.20-7-
0.75-3-
0.68-(;
0.00-(;
0.69-6;
0.42-2;
0.39-5-
1.00-(;
0.82-5-

0.971

90% sens.

85% sens.

80% sens.

75% sens.

Score at
75% sens.



Appendix P: Performance of scores from prediction model at different sensitivity

thresholds

Figure S18. (a) sensitivity and (b) specificity of score developed from prediction
model to classify TB with 90% sensitivity.
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Figure S19. (a) sensitivity and (b) specificity of score developed from prediction
model to classify TB with 85% sensitivity. Presented in the main text.
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Figure S20. (a) sensitivity and (b) specificity of score developed from prediction
model to classify TB with 80% sensitivity.
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Figure S21. (a) sensitivity and (b) specificity of score developed from prediction
model to classify TB with 75% sensitivity.
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Figure S22. (a) sensitivity and (b) specificity of score developed from prediction
model to classify TB with 70% sensitivity.
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Appendix Q: Performance of scores from prediction model to classify TB with 85%
sensitivity

Figure S23. Performance of scaled scores from prediction model to classify TB
with 85% sensitivity. Presented in the main text.
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Figure S24. Performance of scaled scores from prediction model to classify
confirmed TB with 85% sensitivity. Analysis excludes data from children with
unconfirmed TB.
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Appendix R: Performance of scores from prediction model without chest X-ray
features to classify TB with 85% sensitivity

Figure S25. Performance of scaled scores from prediction model without chest x-
ray to classify TB with 85% sensitivity.
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Figure S26. Performance of scaled scores from prediction model without chest x-
ray to classify confirmed TB with 85% sensitivity. Analysis excludes data from

children with unconfirmed TB.
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Appendix S: Inspire algorithm without CXR features

Figure S27. Treatment-decision algorithm derived from prediction model without
CXR features.
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Conclusions

Childhood tuberculosis is a public health crisis that contributes substantially to
the global burden of child mortality. This body of work describes analyses to address two
major priorities in childhood tuberculosis: 1) preventing tuberculosis transmission to

children and 2) improving case detection for children with tuberculosis.

The work in Chapter 1 described the application of a Bayesian spatial model to
use accessible, age-disaggregated tuberculosis notification data to identify potential
hotspots of tuberculosis transmission. A unique strength of this study was its ability to
compare inference from the proposed application of disease mapping methodology on
routinely-available notification data against conclusive molecular evidence of
transmission from a prospective cohort study in the same setting. The concordance of
transmission inference obtained using different methods and datasets provided
compelling evidence in support of the concept that children are sentinels for community-
transmission of tuberculosis. This finding suggests that the use of models that leverage
widely available notification data should be explored as tools for targeting case-finding
and treatment efforts in high-transmission locations, in the hope of maximizing the direct

and indirect protective benefits of active screening approaches.

The work in Chapter 2 investigated subclinical tuberculosis, a poorly understood
form of tuberculosis that may frustrate symptom-based active screening approaches to
limit tuberculosis transmission. This study contributed to the growing body of evidence
that has revealed that subclinical tuberculosis is more common than previously
appreciated. The findings that subclinical tuberculosis was more common among active

cigarette smokers and individuals living with HIV may inform the design of more effective
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case-finding interventions. This work also suggests that efforts to screen individuals
based on self-reported symptoms may not be sufficient to rule out tuberculosis,
especially among individuals who smoke and/or who are living with HIV. While this study
provided additional support for claims of the potential importance of subclinical disease,
the epidemiological significance of subclinical disease remains unclear. Future studies
are required to investigate the natural history and transmission potential of subclinically-

infected individuals.

The work in Chapter 3 and Chapter 4 aimed to improve case detection for
children with pulmonary tuberculosis by leveraging diagnostic evaluations data to build
prediction models that may guide treatment decision-making among children with
presumptive pulmonary tuberculosis. These works demonstrated that for symptomatic
children being investigated for tuberculosis disease in resource-limited settings, an
algorithmic approach may be sufficient to guide tuberculosis treatment initiation, even in

the absence of chest x-ray or confirmatory testing.

The work in Chapter 3 outlined an approach to interpret clinical data to inform
treatment-initiation decisions for children being evaluated for pulmonary tuberculosis.
Diagnostic evaluations data from children in Cape Town, South Africa were used as the
substrate to develop a prediction model that was operationalized as a treatment-decision
algorithm to support decision-making for children with presumptive pulmonary
tuberculosis. This work demonstrated that algorithms that incorporate evidence from a
detailed clinical history and physical examination could play an important role in guiding
sensitive treatment-initiation decisions for most children being evaluated for pulmonary
tuberculosis. Additionally, this demonstrated that sensitive treatment-decisions for

children with tuberculosis could be made based on clinical evidence alone.
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The work in Chapter 4 arose from the desire to formally validate and investigate
the generalizability of models to predict tuberculosis from diagnostic evaluations data.
Thus, this work established the largest known cohort of individual participant diagnostic
evaluations data from children being investigated for childhood pulmonary tuberculosis.
These data were used to evaluate existing algorithms for pulmonary tuberculosis and to
develop a model to predict pulmonary tuberculosis. This work, carried out in conjunction
with the World Health Organization, described how this model was operationalized as a
new treatment-decision algorithm to include in upcoming guidelines on the management

of tuberculosis in children.

Treatment decision-algorithms represent an important pragmatic tool that could,
in combination with improved health system investment, reduce the morbidity/mortality of
this public health crisis. These works represent a pragmatic and transparent approach,
using advanced analytic methods, to develop an algorithm based on the best available

data that can be validated and further specified as additional becomes available.

Though the causes of the childhood tuberculosis public crisis are multifactorial,
major challenges arise from the paucibacillary nature of childhood tuberculosis and from
limited public health resources available to curtail this epidemic. In spite of these
limitations, this body of work describes pragmatic attempts to address critical challenges
that may have an impact on reducing the burden of child morbidity and mortality

associated with tuberculosis.
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