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Abstract

Quantitative Methods for Improving Medical Decision-Making

Margret Erlendsdottir

2022

Innovation in causal inference and implementation of electronic health record systems are

rapidly transforming medical care. In this dissertation, we present three examples in which

use of methods in causal inference and large electronic health record data address existign

challenges in medical decision-making. First, we use principles of causal inference to examine

the structure of randomized trials of biomarker targets, which have produced divergent results

and controversial clinical guidelines for management of hypertension and other chronic dis-

eases. We discuss four key threats to the validity of trials of this design. Second, we use

methods in causal inference for adjustment of time-varying confounding to estimate the effect

of time-varying treatment strategies for hypertension. We report the results of a study which

used longitudinal electronic health record data from a prospective virtual cohort of veterans.

Third, we use individual-level electronic health record data to predict the need for critical care

resources during surges in COVID-19 cases, to aid hospital administrators with resource allo-

cation in periods of crisis.
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Chapter 1

Introduction

Modern statistical and computational methods for analyzing big data are rapidly transforming

medical care. First, a class of methodologies in the field of causal inference are at the fore-

front of statistical innovations. Causal inference provides a framework for rigorous evaluation

of biomedical interventions. Principles of causal inference can be used to evaluate the proper-

ties of experimental and observational study designs. Methods in causal inference also permit

us to create causal links between complex treatments and outcomes in large observational

datasets derived from electronic health records. Second, a major advance has arisen with

the implementation of electronic health record systems, which has increased the information

collected and stored about every patient. The plethora of available data has created an oppor-

tunity to examine trends and evaluate practices in medicine at an unprecedented scale and

scope. This data can be used in real time to inform and adjust decision-making to optimize the

delivery of medical care.

In this dissertation, we utilize electronic health record data and tools in causal inference to

address three unmet needs in medical decision-making. First, we use principles of causal

inference to examine the structure of a class of randomized trials, trials of biomarker targets,

which have produced divergent results and controversial clinical guidelines. We discuss our
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findings in the setting of randomized controlled trials of blood pressure targets. Because ran-

domized trials of blood pressure targets have not yielded coherent guidelines for management

of hypertension, the second part of the dissertation presents the results of an evaluation of

the effectiveness of common anti-hypertensives in a cohort of HIV-positive and matched HIV-

negative veterans. In this analysis, we use methods in causal inference for adjustment of

time-varying confounding to estimate the effect of these anti-hypertensives on the probability

of adverse cardiovascular outcomes. In the third part of the dissertation, we describe a model

of hospital capacity which we created to aid hospital administrators with critical care capacity

planning during the COVID-19 pandemic. We use individual-level electronic health record data

to simulate the expected need for critical care resources during surges in COVID-19 cases.

In Chapter 1, we describe four key threats to the validity of randomized controlled trials (RCT)

of biomarker targets. RCTs are usually used to evaluate an intervention, such as a drug or

procedure, which is used to treat a particular medical condition. However, RCTs of targets

compare goal biomarker measurements that a physician attempts to achieve using a variety of

treatment strategies. The choice of these treatment strategies is usually left to the physician.

RCTs of biomarker targets are common in medicine, but clinical guidelines based on RCTs

of biomarker targets have been controversial. One example is the controversy surrounding

guidelines of systolic blood pressure targets; national organizations of physicians disagree

regarding the optimal blood pressure target, despite the existence of many RCTs of systolic

blood pressure targets. We identify four reasons, from the perspective of causal inference,

that RCTs of biomarker targets might produce divergent results. We discuss these findings in

a case study consisting of nine randomized trials of systolic blood pressure targets.

In Chapter 2, we evaluate the effect of two major classes of anti-hypertensives, angiotensin

converting enzyme inhibitors (ACE-I) and hydrochlorothiazide (HCTZ), on cardiovascular out-

comes in a population of HIV-positive and matched HIV-negative veterans with hypertension.

The study population is selected from the Veterans Aging Cohort Study, a longitudinal and
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prospective virtual cohort of HIV-positive veterans and their matched controls. We selected

subjects from the VACS cohort who had hypertension as well as one or more additioanl cardio-

vascular risk factors. We use marginal structural Cox models with stabilized inverse probability

of treatment weights to adjust for baseline and time-varying confounding. We find that after

adjustment for possible confounders, treatment with ACE-I and HCTZ did not results in a de-

creased probability of occurrence of adverse cardiovascular events relative to other regimens

of anti-hypertensives.

In Chapter 3, we describe the creation of a model designed to help hospital administrators

meet the critical care needs of COVID-19 patients during surges in COVID-19 cases. The dy-

namic nature of the COVID-19 pandemic pose a substantial challenge for optimizing resource

allocation to critical care units in hospitals, especially given the high demand for critical care

resources among COVID-19 patients and mortality rates which would ensue if critical care

capacity is exceeded. We use individual-level electronic health record data to build a model

that simulates the movement of COVID-19 patients between the emergency department, the

floor departments, and the critical care units of a hospital. The model can be tailored to other

hospitals and hospital systems based on dynamics observed in those systems. We present

the model structure and dynamics and procedure for parameter estimation. We also imple-

mented the model in a publicly available web application and provide evidence that the model

is well-calibrated using patient trajectories observed at Yale-New Haven Hospital.
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Chapter 2

Randomized controlled trials of biomarker
targets

Abstract

Randomized controlled trials (RCTs) are used to estimate the causal effect of a treatment on

a health outcome of interest in a patient population. Often the specified treatment in an RCT

is a medical intervention – such as a drug or procedure – experienced directly by the patient.

Sometimes the “treatment” in an RCT is a target – such as a goal biomarker measurement

– that the patient’s physician attempts to reach using available medications or procedures.

Large RCTs of targets are common in clinical research, and trials have been conducted to

compare targets in the management of hypertension, diabetes, anemia, and acute respira-

tory distress syndrome. However, different RCTs intended to evaluate the same targets have

produced conflicting recommendations and meta-analyses that aggregate results of trials of

targets have been inconclusive. In this paper, we explain why RCTs of the same targets con-

ducted in different patient and physician populations can arrive at starkly different results. We

describe four key threats to the validity of trials of targets: 1) intention-to-treat analysis that

4



conflates the effects of assignment to a biomarker target with interventions delivered to the

patient; 2) incomparability in results across trials of targets; 3) time-varying adaptive treatment

strategies; and 4) Goodhart’s law, “when a measure becomes a target, it ceases to be a good

measure.” We illustrate these findings using evidence from nine RCTs of blood pressure tar-

gets for management of hypertension.

Keywords: Intention-to-treat, randomized controlled trial, causal inference, meta-analysis, hy-

pertension

2.1 Introduction

Randomized controlled trials (RCTs) reveal the effect of an intervention on health outcomes

of patients who receive it, compared to those who do not. Random assignment of patients to

treatments ensures that observed differences in patient outcomes following receipt of different

treatments can be attributed to the effect of treatment [6]. Often, treatments compared in

RCTs are well-defined clinical interventions, such as drugs or procedures, that are received

directly by the patient. These RCTs report an estimate of the causal effect of the interventions

tested in the trial. Other RCTs compare targets – such as biomarker measurements – that the

patient’s physician attempts to reach by administering drugs or procedures that may or may

not be specified in the trial protocol. Randomized trials of targets measure the causal effect of

assignment to a particular target, and not the effect of any particular intervention [7].

Trials of clinical targets are common in clinical medicine and have been used to establish man-

agement strategies in chronic diseases like hypertension, diabetes, and post-operative anemia

[1, 8, 9]. For example, hypertension is treated by lowering blood pressure to a systolic blood

pressure (SBP) target set in clinical guidelines published by national organizations [10, 11].

Large RCTs of SBP targets have been performed to determine the optimal blood pressure tar-
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get for managing hypertension [12]. These RCTs assign patients to “standard” or “intensive”

blood pressure targets. Physicians treating a patient assigned to a particular target choose

treatments, which may include lifestyle modifications and pharmacologic therapy, to bring the

patient’s SBP as close as possible to the assigned SBP target. Several studies have demon-

strated that blood pressure control decreases risk of poor cardiovascular outcomes, such as

stroke and myocardial infarction [13–18]. Similarly, RCTs of strategies for type 2 diabetes mel-

litus (T2DM) management have compared “standard” and “intensive” hemoglobin A1c (HbA1c)

targets of above 7% or below 7% [19]. Glucose control has been shown in some studies to

delay the development of complications due to diabetes mellitus [20–22]. For management of

patients with severe anemia requiring blood transfusion, RCTs comparing liberal and restric-

tive blood transfusion targets corresponding to hemoglobin concentrations of 10 g/dL and 8

g/dL have also been conducted, showing no difference between the two strategies [9].

However, trials of targets have generated controversy because different randomized trials of

the same targets have produced divergent results. Despite the existence of numerous RCTs

of SBP, HbA1c, and hemoglobin targets, the optimal target and treatment strategies for these

diseases remain unclear [8, 23]. For example, national organizations of physicians have pub-

lished conflicting clinical recommendations for SBP targets. The American College of Cardiol-

ogy (ACC) and the American Heart Association (AHA) published a new joint clinical guideline

in 2017 recommending that physicians target a SBP of <130 mmHg in patients over the age

of 60 with cardiovascular risk factors [10, 23]. The American College of Physicians (ACP)

and American Association of Family Physicians (AAFP) declined to endorse these guidelines

and continues to recommend targeting the previous target of SBP <140 mmHg in this patient

population [11]. Physicians have expressed concerns about the side effects of aggressive

treatment strategies for lowering blood pressure, including increased risk of falls in vulnerable

elderly patients and adverse renal events due to high doses of anti-hypertensives [23, 24].

Recently epidemiologists and physicians have described the potential pitfalls of trials in which

treatments are ill-defined [7, 25, 26].
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In this paper, we use principles of causal reasoning to explain why trials of targets can pro-

duce inconclusive or contradictory results. First, trials of targets are analyzed according to

the “intention-to-treat” principle to estimate the effect of a guideline – a biomarker target the

physician attempts to reach with available treatments – rather than the treatment actually de-

livered by the physician. Biomarker target values are not well-defined medical interventions

received by the patient, since physicians may choose a variety of treatment strategies in order

to reach them. Second, effect estimates from trials of targets may not be comparable across

studies and populations. Meta-analyses aggregating estimates from trials of targets into clini-

cal guidelines using standard statistical methods may yield invalid estimates of the effect of the

target, even when each trial is internally valid. Third, treatment regimens delivered to patients

in trials of targets are typically adaptive and time-varying: future treatments depend both on

past treatments and observed clinical response to past treatments. The adaptive treatment

strategies used by physicians are not compared in trials of targets, and may not be amenable

to comparison using randomization at all. Fourth, intervening to alter a clinical biomarker as a

therapeutic target may compromise the prognostic value of any subsequent observation of that

biomarker, including the achieved target value. Finally, we present a case study of evidence

from nine randomized trials of blood pressure targets to illustrate the pitfalls of creating clinical

guidelines using trials of targets.

2.2 Trials of targets are analyzed using the intention-to-treat

principle

The intention-to-treat (ITT) principle posits that pragmatic trials should be analyzed using the

randomized assignment to treatment as the exposure of interest [27, 28]. ITT analysis of ran-

domized trials is justified by several related arguments. First, ITT analysis recovers the effect

of the physician’s intention to subject the patient to a given intervention. Real-world complica-
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tions like non-compliance and protocol violations are built in to the estimate, possibly making

the results more relevant to what might occur if the intervention were incorporated into rou-

tine clinical practice [29–31]. Second, because assignment is randomized, the ITT effect is

unbiased in the sense that the comparison of outcomes under different assignments is un-

confounded by common causes of assignment and outcome. Third, ITT analysis frees the

investigator from the burden of collecting detailed information about actual treatments deliv-

ered to patients, and analysis consists of a simple comparison of outcomes under different

assignments. Fourth, in traditional placebo-controlled double-blind RCTs, compliance with the

assignment is not expected to differ across assignments, so ITT analysis has the additional

virtue of recovering a null effect if the treatment truly has no effect on the outcome [7]. In

placebo-controlled RCTs with differential noncompliance, ITT analysis is still expected to yield

a conservative estimate of the effect of treatment (biased toward the null hypothesis of no

treatment effect) because the group of patients assigned the active treatment is contaminated

with those who actually receive no treatment [32].

Trials of targets are usually conducted and analyzed according to the ITT principle. For exam-

ple, the Systolic Blood Intervention Trial (SPRINT), an influential trial of BP targets, randomly

assigned patients to systolic BP targets of 120 mmHg or 140 mmHg and was analyzed using

an ITT approach. Physicians targeted these BP goals by prescribing a combination of any

major class of antihypertensive agents. Use of classes with strong evidence for cardiovascular

benefits, like chlorthalidone and amlodipine, was encouraged but not required [17]. As pre-

scribed by the ITT principle, SPRINT compared patients according their random assignment

without regard for factors that could have affected the outcome, like compliance, loss to fol-

low up, or medication prescribed to achieve the target. This analysis, which does not exclude

any trial subjects, reveals the likely effect of the intervention if it were used outside of the trial

context and avoids compromising the balance in possible confounding factors achieved with

randomization [33].
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To illustrate, consider a hypothetical randomized trial of the effect of SBP targets on cardio-

vascular (CV) events in patients with hypertension. Let Z denote the randomly assigned SBP

target of 120 mmHg or 140 mmHg. Let Y denote the occurrence of an adverse CV event at a

suitable follow-up time. Let X be the actual treatment chosen by the physician, e.g. lifestyle

changes, anti-hypertensive medications, a procedure, or a combination of these. Let L de-

note physician and patient features that affect both the actual treatments delivered and the

patient’s eventual health outcomes. Patient features included in L could be demographics,

co-morbidities, and baseline laboratory measurements; physician features could be medical

specialty, patient load, or hospital affiliation.

Figure 2.1 shows a directed acyclic graph representing the causal structure of the variables Z,

X, Y , and L [34, 35]. In a trial of targets, the assigned target Z is a guideline interpreted and

implemented by the physician, who uses his or her discretion to choose the treatment regime

X with which to reach the target. This treatment regime X is therefore a causal consequence

of the randomized assignment Z to a SBP target and the patient and physician features L.

The CV outcome Y is determined by these features L, the actual treatment X delivered to

the patient, and possibly the assignment Z. The dashed arrow from Z to Y represents the

possibility that the assigned target Z exerts a direct causal effect on Y . In a trial of targets,

this Z → Y effect may exist because physicians are not blinded to the assignment Z, leaving

open the possibility that there is an effect of Z not mediated by the particular treatment X

received by the patient. ITT analysis of trials of targets amounts to comparison of Y under

different assigned targets Z, ignoring the treatment regimeX received by the patient. Typically

some elements of L, including baseline patient demographics, are measured but not used in

computing the primary ITT effect estimate.

Using principles of causal reasoning, critics of ITT analysis have pointed out that ITT anal-

yses of RCTs can suffer from serious pitfalls [25, 26]. First, ITT analysis may not recover

the causal effect of any particular intervention X [7, 27]. Second, subjects assigned to a
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particular target Z = z, but who never reached that target, are nevertheless included in the

“treated” group, despite the fact that they contribute no information about the effect of actually

reaching the target [28]. In trials of targets, physicians cannot be blinded to assigned target

Z because they must use this information to specify a treatment regime X. Moreover, trials

of targets usually implicitly involve two or more active treatments. For example, physicians

in SPRINT were encouraged to use chlorthalidone and amlodipine but were provided with all

major anti-hypertensive classes and permitted to use any combination according to their indi-

vidual judgment. As a result, physicians may employ starkly different treatment strategies for

patients assigned to one target or the other, so that differential treatment strategies between

assigned targets confound the ITT estimate. While the control arm in placebo-controlled RCTs

is usually not contaminated by patients receiving the active treatment, the group of patients

assigned to the control arm in a trial of targets may be treated using strategies also utilized in

the treatment arm. For this reason, ITT analysis of trials of targets may not enjoy the desirable

(conservative) properties of ITT analysis, as traditional placebo-controlled double-blind RCTs

of interventions do.

When assignment Z exerts no direct effect on the CV outcome Y (the Z → Y arrow is absent

in Figure 2.1, the ITT effect from a trial of targets is null when the treatment X has no effect on

Y . However, when Z has an effect on Y and the actual treatmentX delivered to the patient has

no effect whatsoever on the outcome Y , the ITT effect from a trial of targets can nevertheless

be non-null. Likewise, when biomarker target assignment directly affects the outcome but not

the delivered treatment, the ITT effect can still be non-null. Formal proofs of these facts are

given in Appendix 2.7.1.

Evidence from SPRINT suggests that differential direct effects of biomarker target on outcome

can arise in trials conducted to compare BP targets [23]. In SPRINT, the group assigned to the

“intensive” treatment arm had 30% more clinic visits during the study than the control arm. In-

creased frequency of clinic visits may affect health outcomes through mechanisms other than
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L

Figure 2.1: The causal structure of a hypothetical RCT of systolic blood pressure targets Z
on cardiovascular outcomes Y . Assignment Z to a target SBP (e.g. 120 mmHg versus 140
mmHg) is randomized by the experimenter. The treatment actually received by the patient is
X, and patient/physician features are represented by L. Trials of targets often collect limited
information on actual treatments X, and instead analyze the trial using the intention-to-treat
principle by comparing outcomes Y under different target assignments Z. The dashed arrow
represents the possible “direct” effect of the assignment Z on the outcome Y . In a trial of
targets, this Z → Y effect may exist because physicians are not blinded to the SBP target
assignment.

management of blood pressure. For example, many patients increase compliance with pre-

scribed treatments around the time of follow-up clinic visits and decrease compliance between

visits [36]. Patients with hypertension who have immediate follow-up appointments after ex-

periencing adverse effects of anti-hypertensives are significantly more likely to achieve blood

pressure goals [37], and patients with more frequent clinic appointments may be screened

more effectively. Assignment to the “intensive” arm of SPRINT could have affected patient

outcomes directly by increasing clinic visits, through mechanisms other than anti-hypertensive

medications.

2.3 Trials of targets in different populations may not be com-

parable

Consider two hypothetical trials of SBP targets Z (120 mmHg or 140 mmHg) on a CV outcome

Y . Assume that in both trials: 1) the same target biomarker levels are being compared, 2)
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randomization imposes an identical distribution on assignment Z to a target biomarker level,

3) the same outcome measure Y is used, and 4) the biological mechanism of the treatment

effect on the outcome is the same within strata of L, so the outcome Y given X and L has

the same distribution in both trials. In each trial, the investigators estimate the effect of the

randomized assignment Z on the CV outcome Y using the same outcome measure. In this

setting, each trial is internally valid, in the sense that it produces an unbiased estimate of

the causal effect of assignment Z on the outcome Y , for the particular patient and physician

group under study. But in what sense are the two estimates comparable? Can investigators

aggregate evidence from trials 1 and 2 via meta-analysis to compute a “combined” estimate of

the difference in average CV outcomes under the two SBP targets?

Unfortunately, the two trials of the same targets may not be comparable because of differences

in the patient and physician populations. It is well known that ITT analyses of different RCTs

may be incomparable, even when the biological effect of active treatment is the same [7,

38]. The patient and physician features are represented respectively by the distribution of L.

Underlying health conditions may influence the physician’s choice of X as well as outcome

Y , so these features are included in L. For example, the ACC/AHA guidelines for systolic BP

targets are based on trials which included patients with different co-morbidities. Some trials

included only diabetics, some trials excluded diabetics, and others included only patients with

chronic kidney disease [10, 14, 17, 39].

The distribution of X given Z and L represents the prescribing behavior of physicians in a

given trial. Trials of targets may not establish a protocol specifying the medications which

should be used. This flexibility allows physicians to use their individual judgment to tailor

treatments to individual patients, but as a result prescribing behavior may vary across trials.

However, assignment to a given target can obscure unmeasured variation in actual treatments

delivered to patients. In trials of targets, this “consistency” assumption may be violated when

there are multiple treatment mechanisms by which a given biomarker target z is reached, such
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that the observed outcome is different for the same target z under two different treatment

strategies x1 and x2 [40–43]. In the case of SBP targets, ACCORD and SPRINT compared

the same blood pressure targets: 120 mmHg vs. 140 mmHg. At the end of the trial period of

ACCORD, 41% of patients in the intensive treatment group and 16% in the standard treatment

group were taking 4 or more anti-hypertensives [14]. At the end of SPRINT, 24.3% of pa-

tients in the intensive treatment group and 6.9% in the standard treatment group were taking

that number [17]. Thus, patients in SPRINT were likely to receive a larger number of anti-

hypertensive medications than patients in ACCORD even though the targets being compared

were the same.

Because two trials of the same targets may be incomparable, aggregating or averaging re-

sults of trials of targets via meta-analysis may be misleading. Figure 2.2 shows an illustration

of two hypothetical trials of the same SBP targets in which the baseline distribution of age

L and physicians’ treatment strategies X differ across the trials. Here, X is a simplified bi-

nary treatment strategy representing, for example, intensive versus standard anti-hypertensive

medication. The patient populations in the two trials differ in their distributions of age L (top

row), and physicians in the two trials employ different treatment strategies by age, given the

assigned SBP target (second row). Physicians in Trial 1 are much more likely to treat patients

assigned to the SBP target Z =140 mmHg using the intensive (X = 1) strategy compared to

the standard (X = 0) strategy. The majority of patients in Trial 1 have ages L that lie in the

range where these treatment differences are largest. In Trial 2, there is only a small difference

in the probability of intensive treatment between SBP target assignments, in the age range

of patients in that trial. The expected outcome functions represent the biological effect of the

treatment within strata of L (third row). These outcome functions are the same in both trials for

each value of treatment X. However, the trial results, represented as risk differences (fourth

row) are starkly divergent: Trial 1 shows a clear beneficial effect, but Trial 2 shows a null result.
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Figure 2.2: Illustration of two hypothetical trials of the same targets producing different effect
estimates. Both trials seek to estimate the effect of the SBP target Z =140 mmHg versus
Z =120 mmHg on an adverse cardiovascular outcome Y . In the top panel, the distribution of
patient age L differs: participants in Trial 2 are older on average than those in Trial 1. In the
second panel, the probabilities of intensive treatment under assignment to Z differ across age
in the two trials. In the third row, the expected outcome functions, representing the biological
effect of interventions and risk factors, are the same in both trials. The fourth row shows that
the trials give starkly different results, shown as risk differences: Trial 1 shows a benefit of
assignment to 140 mmHg versus 120 mmHg, while trial 2 is inconclusive.
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Figure 2.3: Illustration of the causal structure of time-varying treatments in a simplified trial
of targets with two longitudinal time points. Biomarker measurements are taken at baseline
(B0) and following the first administration of treatment (B1). Treatments are represented by
X1 and X2, which are affected by prior biomarker measurements, prior treatments, and the
target assignment Z. The outcome Y is measured following administration of X2, and is a
function of all prior biomarker measurements and treatments. Covariates L are omitted for
simplicity. Because B1 is simultaneously a causal consequence of X0 and a cause of X1,
special adjustment approaches are required to estimate the effect of (X1, X2) on Y .

2.4 Trials of targets employ adaptive time-varying treatments

In trials of targets, physicians deliver a temporal sequence of treatments X whose types and

doses are adjusted over time based on patient response and biomarker target goals. In the

case of hypertension, physicians may initiate a regimen of anti-hypertensive medications using

information obtained in their evaluation of the patient at time of diagnosis. At subsequent clinic

visits, the dose, class, and number of medications prescribed to the patient may be adjusted by

the physician following observed changes in the patient’s health status and response to prior

treatments. Trials of targets almost always involve time-varying adaptive treatments because

the target biomarker measurement can only be reached through treatments that take time to

administer, and whose effects on the patient’s biomarker measurements take time to accrue.

Unfortunately trials of targets typically do not collect detailed information on the time-varying

adaptive treatment strategies that physicians use to reach an assigned target. SPRINT did not

specify which anti-hypertensives physicians should prescribe to patients to achieve the target

SBP, though the investigators did report aggregated data including the percentage of patients

who received medications in each anti-hypertensive class at the last trial visit [17].
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Figure 2.3 shows an illustration of the causal structure of a trial of targets in a simplified setting

with two follow-up time points. Baseline patient and physician characteristics L are omitted for

simplicity. Assignment to a biomarker target is represented by Z, which exerts an effect on

the treatments X1 and X2 delivered to the patient by the physician. The baseline biomarker

measurement B0 (e.g. SBP at the time of hypertension diagnosis) is unaffected by assign-

ment Z, but the follow-up biomarker measurement B1 is a consequence of B0 and the first

treatment X1. Because X1 is affected by the assignment Z, B1 is a causal consequence of Z

as well. Together, all the biomarker measurements and treatments affect the outcome Y . In

more complex scenarios with more time points, the target assignment may affect all treatment

variables.

The effect of the biomarker target assignment Z on the outcome Y is unconfounded and

estimable when Z is randomized, even if B0, B1, X1, and X2 are unobserved. But the effect of

any particular sequence of treatments (X1, X2) on Y requires observing B0, B1, X1, and X2,

and computing the causal effect of (X1, X2) on Y . This can be challenging when X1 and X2

do not arise in a sequentially randomized trial. Unfortunately, estimating the effect of a time-

varying treatmentX on Y by modeling Y as a function of the sequence of delivered treatments

(X1, X2) and biomarkers (B0, B1) may be biased when X1, B0, and B1 predict X2 [44, 45]. As

Figure 2.3 shows, B1 is both a cause of treatment X2 and a causal consequence of treatment

X1. The dual role of time-varying covariates like B1 induces bias in naïve estimates of the

causal effect of treatment regimens (X1, X2) on Y .

Fortunately, it is sometimes possible to estimate the effect of a time-varying treatment even

when the sequence of treatments is not sequentially randomized. Under certain unconfound-

edness assumptions, the G-formula and marginal structural models can be used to adjust

for time-varying covariates to evaluate the effects of time-varying treatment strategies when

detailed information about intermediate clinical measurements, outcomes, and treatments de-

livered to patients are available [46]. The g-formula decomposes the counterfactual causal
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estimand of interest into a weighted average of stratum-specific expected treatment effects,

conditional on both the treatment and covariate history of the patient. The weight for each

stratum-specific treatment effect is the propensity score, the joint density of the observed

covariate history conditional on treatment. Both the stratum-specific treatment effects and

weights can be estimated from data using a variety of approaches. The g-formula identifies

the probability that the event of interest occurs at a given time [47]. Marginal structural mod-

els use inverse probability of treatment weights (IPTW) to construct a “pseudo-population” in

which the treatment of interest is assigned as if it were random. IPTW are often the inverse of

the propensity score, such that subjects who are under-represented in either the intervention

or non-intervention arms of the study receive higher weights in the analysis. Pooled logistic

models or Cox regression approaches, weighted with IPTW, are also used to identify the haz-

ard of the event [48]. Extensions of these methods have been developed for survival analysis,

with the ability to account for censoring.

2.5 Goodhart’s law may explain contradictory findings in

trials of targets

The economist Charles Goodhart observed in the context of target measures for monetary

policy that “any observed statistical regularity will tend to collapse once pressure is placed

upon it for control purposes” [49]. The adage was later reformulated in its now-famous form,

“when a measure becomes a target, it ceases to be a good measure” [50]. In the context of

clinical medicine, we might rephrase Goodhart’s law as follows:

When the population distribution of a biomarker is forced to collapse onto a tar-

get value, the biomarker may cease to be a satisfactory predictor of the clinical

endpoint of interest.
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Figure 2.4: Illustration of Goodhart’s law when the value of a biomarker B is used as a target
for control. In the observational setting at left, larger values of B are associated with worse
outcome. Target values B = b0 and B = b1 are chosen to be tested in an RCT. At right,
successful targeting in the randomized trial means that physicians choose treatments X = x0

and X = x1 to achieve b0 and b1 respectively. The trial reports the risks evaluated at X =
x0, B = b0 versus X = x1, B = b1, leading to the seemingly contradictory result that lower
values of the biomarker cause worse outcome.

In observational (i.e. routine clinical) settings, lower (or higher) biomarker measures may

be associated with better prognosis in a particular group of patients, and so the biomarker

naturally becomes a target to be controlled. But the interventional means by which a target

biomarker measurement is reached need not always improve prognosis, because the causal

mechanism by which the intervention acts on the outcome need not pass solely through the

biomarker [51].

Figure 2.4 shows an illustrative example where the biomarker (such as systolic blood pres-

sure) is represented by B. It is affected by the treatment X, and affects the outcome Y . The

treatment X also directly affects the health outcome Y . The biomarker B is called a “medi-

ator” because it mediates the effect of X on Y via the pathway X → B → Y [52]. At left,

observational evidence suggests that the biomarker may be a good target for control because

the risk of the outcome Y increases with the value of the biomarker b. The natural distribution

18



of X in the observational setting is chosen by physicians, and is not assigned randomly. When

X takes its natural “observational” distribution, B appears to be a good predictor of Y . In other

words, B and Y exhibit an association, marginally across the distribution of X. In particular,

some biomarker measurements b1 and b0 (e.g. low and standard SBP targets) yield the risk

relationship E[Y |B = b1] < E[Y |B = b0]. To study the causal effect of low versus standard

biomarker measurements investigators would need to randomize B directly, but they do not

have the means to do so. Instead, they conduct an RCT of targets Z, represented by the trial

of targets b1 and b0 at right. In the trial, physicians use the randomization of the assignment Z

to assign patients to a target biomarker level b1 or b0.

In Figure 2.4, the causal structure of X, B, and Y remains the same in both settings, but the

distribution of the actual treatment delivered X is determined by Z in a trial of targets. Ideally,

the assignment Z results in physicians using different treatment strategies, say x0 and x1,

to successfully reach the target. As a result, patients assigned to b1 receive treatment x1 to

achieve B = b1; likewise patients assigned to b0 receive treatments x0 and achieve B = b0.

In other words, the physician’s treatment decision X in the trial of biomarker targets is tuned

to deliver these targets. But since X exerts a direct effect on Y that is not mediated by B,

this change in the distribution of X can have unintended consequences. On the lower right of

Figure 2.4, the risk under under B = b0 is indeed always greater than under B = b1 for every

particular value of treatment X = x. But because the trial alters the distribution of treatment X

depending on the target Z, the trial measures these risk curves at different places in the dose-

response function, resulting in the erroneous finding that “assignment to b1 results in higher

risk than assignment to b0”. This conclusion is false because the risk under B = b0 dominates

the risk under B = b1 for every value of X = x. A formal characterization of Goodhart’s law in

trials of targets is given in Appendix 2.7.2.

This paradoxical relationship between target and outcome is suggested by the case of HbA1c

targets and guidelines for management of diabetes. A lower HbA1c is associated with a lower
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risk of adverse cardiovascular events in large observational studies, such as UKPDS and

EPIC-Norfolk [53, 54]. RCTs of HbA1c targets have compared “intensive” and “standard”

HbA1c control for management of T2DM, and clinical guidelines published by the ACP dis-

agree with those published by the American Association of Clinical Endocrinologists (AACE)

and the American Diabetes Association (ADA) [55, 56]. The ACP recommends standard con-

trol, targeting HbA1c between 7% and 8%, while the AACE and the ADA recommend intensive

control targeting HbA1c below 7% or 6.5% [57]. However, recent evidence also demonstrated

increased risk of cardiovascular risk in patients with hypoglycemia and low HbA1c, suggesting

that there may be a J-shaped curve relating HbA1c control and CV events [58, 59]. Further-

more, some randomized trials have shown an increase in heart failure events following use

of one of the newer medications used for glucose control, dipeptidyl peptidase-4 inhibitors

[60, 61]. This increase in heart failure events occurred despite successful control of blood glu-

cose levels to the recommended targets [8]. Successfully achieving an HbA1c target may not

be sufficient to ensure improved outcomes, although some evidence for improved outcomes

at the lower target does exist [53, 54]. It is possible that the causal effects of treatments for

diabetes on cardiovascular events are mediated partly through lower HbA1c, but also that off-

target effects of these treatments at higher levels of HbA1c control are responsible for higher

risk of poor outcomes.

2.6 Case study: Trials of blood pressure targets

2.6.1 Existing controversy in hypertension guidelines

Clinical guidelines for management of hypertension published by the ACC/AHA in 2017 are

based on meta-analysis of fifteen randomized trials of blood pressure targets, finding a sig-

nificant effect of lower SBP target on major cardiovascular events (RR: 0.84, 95% CI: [0.73,
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0.99]) and stroke (RR: 0.82, 95% CI: [0.70, 0.96]) [1, 10]. Table 2.2 shows the endpoints re-

ported by the trials included in the meta-analysis and the definitions of those endpoints. The

meta-analysis also reported a “marginally significant reduction” in all-cause mortality and risk

of MI [1]. The effects of intensive treatment to a SBP target below 130 mmHg were mixed in

these trials. Of the trials that were included, only one – SPRINT – reported reductions in ma-

jor adverse cardiovascular events, all-cause mortality, cardiovascular death, and heart failure.

None of the trials reported reductions in the risk of myocardial infarction, and only ACCORD

reported a statistically significant reduction in the risk for stroke [1, 23]. Based on this meta-

analysis, the resulting ACC/AHA guidelines recommend that for patients over 60 years old with

cardiovascular risk factors, physicians target a SBP of 130 mmHg.

However, the ACP and AAFP declined to endorse these guidelines, and clinical experts have

expressed concerns about the possibility of adverse events of aggressive treatment. Intensive

treatment with anti-hypertensive medications to low SBP targets raises concern for increased

risk of falls due to hypotension and adverse renal events due aggressive anti-hypertensive

regimens [23, 62–64]. The meta-analysis did not assess an aggregate risk of falls and did

not identify an increased risk of renal events, despite reports in SPRINT that “intensive” blood

pressure control was associated with higher rates of acute kidney injury. In particular, some

studies have observed higher rates of adverse cardiovascular and renal events at both high

and low blood pressures, also called a J-curve, indicating that any benefits of lowering BP may

be outweighed by adverse effects of treatment or hypotension [64]. These risks are of especial

concern in elderly patients, who may be at risk of increased rates of myocardial infection with

low diastolic pressures [65].

21



2.6.2 Data

We constructed a dataset based on results from the fifteen trials included in the meta-analysis

of BP targets by Reboussin et al. [1] that informed the ACC/AHA guidelines. Table 2.1 shows

the number of subjects in the trial, key inclusion and exclusion criteria, the targets compared,

the primary outcome of interest, the percentage of women in the trial, the percentage of non-

white subjects, and baseline age, SBP, and DBP. Reboussin et al. [1] performed an additional

analysis to evaluate a strict SBP target less than 130 mmHg using a subset of nine of these

trials: ACCORD [14], SPRINT [17], Cardio-Sis [66], SPS3 [67], HALT-PKD [15], HOMED-BP

[16], REIN-2 [68], AASK [39], and MDRD [69]. These nine trials each included at least one

arm in which the SBP target was less than 130 mmHg. We calculated pooled estimates of the

mean and standard deviation of the age and baseline SBP and DBP for each trial population.

We calculated relative risks and 95% confidence intervals for each outcome using the number

of events reported by each study. We compared each of these relative risks to those found

in the Supplementary materials of the ACC/AHA meta-analysis [1] to identify any differences

in endpoint construction. We used principal components analysis and forest plots to examine

heterogeneity in the results reported by the trials.

We identified several instances in which our extracted dataset differed from that used in the

meta-analysis by Reboussin et al. [1]. AASK included both an experimental phase and a

period of observational follow-up [39]. The meta-analysis by Reboussin et al. [1] included

adverse events observed across both phases. We included only events which occurred in the

trial phase. Reboussin et al. [1] included only subjects with CKD at baseline in their estimate

of the risk of renal events in SPRINT. We included adverse renal events in both subjects with

and without CKD at baseline [17]. Reboussin et al. [1] included only ischemic strokes in the

estimate of risk of stroke in JATOS. We included both ischemic and hemorrhagic stroke events

to be consistent with the combined stroke endpoints in the other trials [1, 70]. We excluded
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the estimate of relative risk of MI in HOMED-BP because only the total number of MIs in the

trial, rather than the events per arm, were reported in the publication [16]. We were not able

to recover event definitions or to compute relative risks from REIN-2 for endpoints other than

all-cause mortality. Instead, we utilized those reported by Reboussin et al. [1] [68]. For unclear

reasons, our computed relative risk of adverse renal events in ACCORD, in which we included

development of ESRD or need for dialysis, differed from the relative risk reported by Reboussin

et al. [1] [14].

2.6.3 Heterogeneity in trial features, management strategies, and end-

points

We discovered substantial variation in the baseline health and co-morbidities of the subjects

included in the fifteen RCTs. Three of the trials - ABCD-N, ACCORD, and UKPDS - included

only subjects with diabetes (ABCDN, ACCORD, UKPDS). Two trials, Cardio-Sis and SPRINT,

excluded all diabetics. Three trials - AASK, MDRD, and REIN-2 - included only subjects with

nephropathies or chronic kidney disease, and HALT-PKD included only subjects with auto-

somal dominant polycystic kidney disease (ADPKD). The average age of subjects included

in the trials ranged from 36.6 to 76.6 years. The average baseline SBP of subjects ranged

from 126.7 to 169.5 mmHg. Only four of the fifteen studies were composed of predominantly

women. Eight trials reported the percentage of non-white subjects included in the trial, which

ranged from all white subjects (Cardio-Sis [66]) to all African-American subjects (AASK [39]).

MDRD did not report the total percentage of non-white participants, but 7.9% of the subjects

were African-American. VALISH [71] and the study by Wei, et al. [72] did not report the

racial composition of their sample, but were performed in Japanese and Chinese populations

respectively.

The fifteen trials reported only limited information about the treatment regimens utilized by
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physicians to achieve the targets. We discovered that the distribution of drug classes used

in each trial varied considerably. Many trials reported the percentage of patients on ACE-I,

diuretics, BB, and CCB, either one year post-randomization or at the end of the study. The

percentage of patients on an ACE-I, diuretic, BB, or CCB ranged from 2.1-100%, 8.9-54.9%,

5-92%, and 7-79% respectively. Furthermore, we found that the decision rules and algorithms

used to select the treatments varied substantially, and that treatment choices were often left

to the discretion of treating physicians. ACCORD, MDRD, SPS3, and SPRINT encouraged

treatment according to previously established guidelines but otherwise did not specify either

first-line drugs or randomize use of particular drugs [14, 17, 67, 69]. AASK, HOMED-BP, and

Wei et al. randomized both blood pressure target, and use of a combination of ACE-I, ARB,

BB, diuretics, or CCB as the first-line anti-hypertensive [16, 39, 72]. ACBD-N randomized pa-

tients in the intensive control group to either nisoldipine or enalapril as first-line treatment, and

those in the standard control group to placebo [13]. UKPDS randomized those in the intensive

treatment group to either captopril or atenolol at baseline, and those in the standard control

group were treated throughout the study without ACE-I or beta-blockers, if possible [18]. All

patients in HOT and JATOS received a dihydropyridine CCB at baseline, with addition of other

medications to achieve the desired BP control [70, 73]. All patients in REIN-2 received ramipril

at baseline, with addition of felodipine in the intensive treatment group [68]. HALT-PKD utilized

a factorial design in which patients were assigned to either intensive or standard control as

well as a regimen of either lisinopril and telmisartan or lisinopril and placebo [15]. Patients in

VALISH received valsartan as the first-line anti-hypertensive [71].

We also noted variation in the definition of cardiovascular endpoints across trials. Table 2.1

lists the endpoints analyzed by Reboussin et al. [1]: all-cause mortality, CV death, MACE,

MI, stroke, heart failure, and renal events. All the trials included reported ACM, and at least

half of the studies reported each of the other endpoints. The construction of the composite

endpoint, MACE, varied the most across trials. All of the studies included CV death and non-
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fatal MI in their definitions. Seven studies included non-fatal stroke, and five studies included

heart failure. CardioSis, JATOS, and SPRINTconsidered angina pectoris to be a MACE, and

JATOS additionally included any obstructive arterial disease, abdominal aortic aneurysm, aor-

tic aneurysm, and sudden death as MACE [17, 66, 70]. Definitions of renal events were simi-

larly variable. While all the trials included diagnosis of end-stage renal disease (ESRD) in their

definitions of renal events, three studies additionally included initiation of dialysis, and three

also included either 1.5 or 2-fold increases in serum creatinine. Renal endpoints in SPRINT

differed for subjects based on baseline renal health: in subjects with CKD, a decrease in esti-

mated glomerular filtration rate (eGFR) of >50% was considered a significant adverse event,

and in those without CKD, a decrease in eGFR of >30% was sufficient [17].

Reboussin et al. [1] reported a significant effect of lower SBP targets on the relative risk of sev-

eral cardiovascular endpoints, but the individual trials reported heterogeneous, and mostly null,

treatment effects. Reboussin et al. [1] reported that overall, lower BP targets protected against

stroke, MACE, and MI, with a marginally significant effect for ACM [1]. However, none of the

individual trials reported a significant improvement in rates of MI. In the subsample of nine

trials examining intensive SBP control below 130 mmHg, lower BP targets were significantly

associated with improvements in rates of stroke and MACE, but not MI. Of these nine trials,

ACCORD was the only trial which reported a significant improvement in stroke risk. SPRINT,

HALT-PKD and Cardio-Sis reported improvements in risk of MACE with intensive SBP control

below 130 mmHg. However, SPRINT and Cardio-Sis excluded diabetics from their study, a

population with increased risk of poor cardiovascular outcomes. In HALT-PKD, both trial arms

were assigned to targets <130 mmHg, and the patients were young and all had ADPKD. These

results may not be generalizable to a broader population.
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Trial N Criteria Targets Primary outcome Age SBP DBP %F %NW

AASK [39] 1094 HTN & CKD MAP: <92 v.
102-107

Progression of
CKD

60.1
(10.2)

148
(23.5)

94.5
(13.5)

27.1 100

ABCD-N [13] 480 T2DM & no
HTN

DBP: <75 v.
80-89

Change in 24-hr
Cr clearance

59.1
(0.6)

136.4
(0.9)

42.8
(60.1)

45.4 26.5

ACCORD [14] 4734 T2DM, risk
factors for
CVD

SBP: <120 v.
<140

C MI, non-MI
ACS, stroke, HF,
CV death

62.2
(6.9)

139.2
(15.8)

76
(10.4)

47.7 39.5

CardioSis [66] 1110 Without
T2DM

SBP: <130 v.
<140

LVH after 2 years 67
(7)

163.3
(11.2)

89.6
(8.8)

58.8 0

HALT-PKD [15] 558 ADPKD 120/70-
130/80 v.
95/60-110/75

% change in total
kidney volume

36.6
(8.3)

126.7
(13.9)

80.1
(11.1)

49.3 7.3

HOMED-BP [16] 3518 Mild-
moderate
HTN

125/90 v.
125-134/80-
84

C CV death,
non-fatal MI,
non-fatal stroke

59.6
(10.1)

151.6
(12.5)

90
(10.1)

50.1 NR

HOT [73] 18790 HTN,
elevated
DBP

DBP: <80/85
v. <90

C MI, stroke, CV
death

61.5
(7.5)

170
(98.8)

105
(98.8)

47.0 NR

JATOS [70] 4418 HTN, SBP >
160 mmHg

SBP: <140 v.
140-160

C Cerebral
hemorrhage or
infarction, TIA,
SAH

73.6
(5.3)

171.6
(9.8)

89.1
(9.5)

61.1 NR

MDRD [69] 840 CKD MAP: <92 v.
<107

Rate of decline of
GFR

51.7
(12.4)

130.5
(17)

80
(10)

39.5 NR

REIN2 [68] 335 Non-DM
nephropathy,
PU

DBP <90 v.
<130/80

C ESRD, GFR
decline, residual
proteinuria

53.8
(15.3)

136.7
(16.9)

84.1
(9.7)

25.1 NR

SPRINT [17] 9361 Without DM,
risk factors
for CVD

SBP: <120 v.
<140

C MI, non-MI
ACS, stroke, HF,
CV death

67.9
(9.5)

139.7
(15.6)

78.1
(12)

35.6 42.3

SPS3 [67] 3020 Lacunar
stroke

SBP: <130 v.
130-149

All stroke 63
(10.8)

143
(19)

78.5
(10.5)

37.0 49

UKPDS [18] 1148 T2DM <150/85 v.
<180/105

Adverse event or
death related to
DM, ACM

56.4
(8.1)

159.3
(19.3)

94
(9.7)

44.5 13.3

VALISH [71] 3079 HTN, age
70-85 years

SBP: 140 v.
140-149

C Sudden or CV
death, stroke, MI,
hospitalization,
renal dysfunction

76.1
(4.1)

169.5
(7.9)

81.5
(6.7)

62.5 NR

Wei [72] 724 HTN, age
>70 years

SBP: 140 v.
150

Stroke, MI, CV
death

76.6
(4.6)

159.5
(16.5)

84.2
(9.6)

33.7 NR

Table 2.1: Trials included in the ACC/AHA meta-analysis, including the number of subjects,
BP targets, primary outcome, average age, baseline SBP, baseline DBP, the percentage of
women, and the percentage of non-white (NW) participants in the trial. Abbreviations: CV -
cardiovascular; CKD - chronic kidney disease; MAP - mean arterial pressure; T2DM - Type 2
diabetes mellitus; CVD - cardiovascular disease; ACS - acute coronary syndrome; MI - my-
ocardial infarction; HF - heart failure; ADPKD - autosomal dominant polycystic kidney disease;
TIA - transient ischemic attack; SAH - subarachnoid hemorrhage; GFR - glomerular filtration
rate; ESRD - end-stage renal disease; ACM - all-cause mortality; LVH - left ventricular hy-
pertrophy, PU - proteinuria; NR - not reported. Superscript C: the primary outcome was a
composite of the endpoints listed.
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Endpoint ACC/AHA definition References

All-cause mortality
(ACM)

Death due to any cause [13–18, 39, 66–73]

Cardiovascular (CV)
death

Death due to cardiovascular causes [13, 14, 16, 17, 39, 67, 68,
70–73]

Major adverse
cardiovascular events
(MACE)

Composite including a combination of:
CV death, stroke, MI, heart failure

[14, 16, 17, 39, 66, 70–73]

Myocardial infarction Fatal or nonfatal MI, not including
angina pectoris

[13, 14, 16–18, 66–68, 70–
73]

Stroke Fatal and nonfatal stroke, not
including transient ischemic attacks

[13, 14, 16–18, 39, 66–
68, 70–73]

Heart failure Composite: any of acute
decompensated heart failure, CHF of
New York Heart Association class II or
higher, echocardiography determining
left ventricular ejection fraction <40%

[13, 14, 17, 18, 39, 66, 70, 72]

Renal events Composite: any of End-stage renal
disease, doubling of serum creatinine,
50% reduction in estimated glomerular
filtration rate, kidney transplantation,
progression of CKD, renal failure

[14, 17, 18, 39, 68–71]

Table 2.2: Endpoints analyzed by the ACC/AHA meta-analysis [1] and trials reporting these
endpoints.
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2.6.4 Principal components analysis

The trials did not reveal any obvious relationships between their underlying population and

design features and their reported results. We conducted principal components analysis to

investigate the trial features - the mean age, baseline systolic blood pressure, percentage of

women, and the SBP targets compared - and the relative risks of each endpoint. Figure 2.6

shows the projection of the first two principal components in relation to the trial results. The

first two principal components explained between 81.5 and 96.2% of the variance between

trials. Lower and upper SBP targets were highly correlated in all analyses, as expected. The

age and the percentage of women in the trial appear to vary independently, except in the case

of trials which reported stroke outcomes. The reported effect estimates from the trials are most

heterogeneous with respect to these trial features in the case of all-cause mortality. Although

most trials reported possible (but mostly not statistically significant) improvements in risk of

stroke, MACE and MI with a lower SBP target (Fig. 2.6C, 2.6D), the absence of clustering in

the data along any specific axis indicates that the observed features do not necessarily explain

the variance in the results.

The limited data reported by the trials on the frequency of adverse events caused by intensive

blood pressure lowering makes it difficult to investigate the possible side effects of aggres-

sive blood pressure management. Clinical experts have identified possible adverse events at-

tributable to aggressive regimens of anti-hypertensives which include hypotention, myocardial

infarction, and other adverse cardiovascular and renal outcomes [62–65]. Eight trials reported

adverse renal events, none of which reported a significant increase in rates of progression

to end-stage renal disease, initiation of dialysis, or renal transplantation (Fig. 2.9) [1]. How-

ever, SPRINT did report an increased frequency of acute kidney injury, hypotension, syncope,

electrolyte abnormalities and kidney failure in the treatment arm, targeted to SBP 120 mmHg
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Trial ACM Stroke MACE MI
AASK* 0.89 (0.58, 1.35) 0.92 (0.549, 1.54) 0.93 (0.693, 1.26)
ABCDN 0.92 (0.50, 1.70) 0.32 (0.104, 0.95) 1.30 (0.676, 2.50)
ACCORD* 1.05 (0.84, 1.30) 0.58 (0.388, 0.88) 0.94 (0.800, 1.11) 0.87 (0.687, 1.09)
CardioSis* 0.79 (0.21, 2.94) 0.44 (0.137, 1.42) 0.53 (0.296, 0.94) 0.66 (0.188, 2.33)
HALTPKD* 0.26 (0.074, 0.91) 0.52 (0.047, 5.68)
HOMEDBP* 0.87 (0.52, 1.45) 1.25 (0.650, 2.40) 1.04 (0.603, 1.79)
HOT (80 vs. 85) 1.07 (0.88, 1.29) 0.80 (0.608, 1.06) 0.93 (0.774, 1.11) 0.95 (0.673, 1.35)
HOT (80 vs. 90) 1.10 (0.91, 1.34) 0.95 (0.710, 1.26) 0.94 (0.780, 1.12) 0.73 (0.523, 1.01)
HOT (85 vs. 90) 1.03 (0.85, 1.26) 1.18 (0.899, 1.55) 1.01 (0.844, 1.21) 0.76 (0.551, 1.05)
JATOS 1.28 (0.86, 1.91) 1.04 (0.687, 1.59) 0.93 (0.545, 1.57) 1.00 (0.322, 3.09)
MDRD* 1.62 (0.64, 4.07)
REIN2* 0.67 (0.11, 3.96) 1.01 (0.063, 15.95) 1.01 (0.063, 15.95)
SPRINT* 0.74 (0.60, 0.91) 0.89 (0.631, 1.24) 0.76 (0.649, 0.90) 0.84 (0.641, 1.09)
SPS3* 1.06 (0.82, 1.38) 0.83 (0.664, 1.04) 0.91 (0.584, 1.42)
UKPDS 0.83 (0.65, 1.06) 0.58 (0.368, 0.90) 0.80 (0.605, 1.05)
VALISH 0.79 (0.47, 1.35) 0.69 (0.366, 1.30) 1.24 (0.334, 4.61)
WEI13 0.58 (0.43, 0.80) 0.58 (0.346, 0.97) 0.59 (0.413, 0.85) 0.99 (0.399, 2.48)
ACC/AHA (<130) 0.92 (0.79, 1.06) 0.82 (0.700, 0.96) 0.84 (0.730, 0.99) 0.85 (0.730, 1.00)
ACC/AHA (all) 0.89 (0.77, 1.02) 0.77 (0.650, 0.91) 0.81 (0.700, 0.94) 0.86 (0.760, 0.99)

Table 2.3: Relative risks of the four major outcomes included in the ACC/AHA meta-analysis
with 95% confidence intervals. The relative risk is the ratio of the proportion of patients who
experienced the endpoint in the treatment arm (numerator, lower BP target) versus the control
arm (denominator, higher BP target). Starred (*) trials include at least one arm in which sub-
jects were targeted to SBP < 130 mmHg. Effects significantly different from the null value of 1
are bolded. Effect estimates not reported by a particular trial are left blank.

[17]. ACCORD reported a decrease in estimated glomerular filtration rate and an increase in

macroalbuminuria in the group targeted to SBP 120 mmHg, interpreted as “signals of possible

harm...but the implications of these changes..are uncertain” [14]. The estimate of overall ef-

fect reported by each trial of targets incorporates both the potential benefit of reaching a lower

blood pressure target and the potential harm arising from off-target effects of larger doses of

anti-hypertensives. These differing effects have not been sufficiently disentangled by trials of

targets, or a meta-analysis of these trials.
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ACM MACE MI Stroke

Trial
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Figure 2.5: Relative risks of four major outcomes for trials included in the ACC/AHA meta-
analysis [1]: all-cause mortality (ACM, black), stroke (red), major adverse cardiovascular
events (orange), and myocardial infarction (blue). The aggregated results reported by the
ACC/AHA meta-analyses are included in the last two entries. Trials are sorted by the magni-
tude of their average relative risk across the four outcomes (smallest to largest).
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Figure 2.6: Principal components analysis of trial average age, baseline SBP, percentage of
women, lower SBP target, and upper SBP target for trials comparing at least one SBP target
and reporting relative risk of all-cause mortality (A), stroke (B), major adverse cardiovascular
event (C), and myocardial infarction (D). Trials reporting relative risk less than one are shown
in red.
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2.7 Discussion

Trials of targets measure the effect of assignment to a biomarker target on a health outcome of

interest. In this paper, we have shown that trials of targets can give misleading or ambiguous

results and that estimated effects may not generalize to other patient populations. Randomized

trials of targets, such as blood pressure targets in the context of hypertension, are in fact ITT

trials which estimate the causal effect of a guideline on the outcomes of interest. For this

reason, trials of BP targets report an estimate of the causal effect of assignment to a BP

target, rather than the effect of treatments administered to achieve that target or the effect

of having that blood pressure as one’s baseline health state. We have demonstrated that an

ITT trial of targets can produce a non-null result even when the treatments delivered in the

trial are assumed to have no effect on the outcome. This problematic result occurs when

the distribution of treatments is different in each trial arm. Further, trials investigating the

effects of the same targets on the same health outcome in similar patient populations may

nevertheless yield different results when physicians’ treatment decisions or protocols differ.

We have also shown that trials of targets may not be comparable due to variation in the patient

and physician populations. Therefore the effect estimates reported by trials of targets are

valid estimates of the causal effect of assignment to a target, but are not generalizable to

another patient population or population of physicians with different treatment behavior. We

have described the role that time-varying treatments play in management of chronic conditions

and in trials of targets, and we have shown that the effects of time-varying treatment strategies

are not revealed by trials of targets. This phenomenon can also be explained as an illustration

of Goodhart’s law - “when a measure becomes a target, it ceases to be a good measure”

- in clinical practice. The continuing controversy surrounding management of hypertension,

encapsulated by the competing guidelines set forth by national organizations, serve as a case

study in which we can observe the ambiguities that arise when we base clinical decision-

making on evidence obtained from trials of targets.
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The weaknesses of trials of targets discussed here may be shared with any randomized trial

that shares the same structure, in which the unit of randomization is a guideline and practition-

ers are free to administer the intervention that they believe will be most useful in achieving the

goal. The criticisms set forth illustrate the importance of specifying a well-defined treatment,

even in the context of randomized experiments, which are usually considered to be free of

confounding biases due to randomization. However, trials without a well-specified treatment

protocol, like trials of targets, may remain subject to these biases, which persist due to the

multitude of ways that treatment may be assigned depending on characteristics of the popu-

lation of subjects and practitioners included in the trial. The four challenges to the validity of

trials targets listed here also explain the possible pitfalls of conducting randomized trials using

surrogate outcomes. For example, as illustrated in the discussion of Goodhart’s law, achieved

blood pressure could be considered to be a surrogate outcome for adverse cardiovascular

events due associations between blood pressure and cardiovascular health in population-level

observational studies. A randomized trial using achieved blood pressure targets as the out-

come of interest could illustrate that anti-hypertensives successfully lower blood pressure to

these targets. However, Figure 2.4B shows that this surrogate outcome is on the causal path

between treatment for hypertension and adverse cardiovascular outcomes. Achievement of

the target does not guarantee that we have identified an optimal treatment strategy for reduc-

ing adverse cardiovascular outcomes.

Addressing the weakness of trials of targets is possible through better trial data reporting,

better trial design, and use of modern methods for causal inference. First, future trials of tar-

gets should report stratum-specific effect estimates for clinically relevant patient strata. These

strata should be standardized as much as possible across trials. The trials should also report

detailed information regarding the treatments utilized by physicians in the trial for each stratum

of patients. The data reported by the trial should be sufficient to characterize the joint distri-

bution of treatments and patient features in each arm of the trial that meta-analytic methods

could control for relevant differences between trials.
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Second, treatment strategies, rather than targets, should be compared experimentally when

possible. While the reporting requirements discussed above may make aggregation of trials of

targets possible, they may pose an insurmountable logistical challenge in the design of future

randomized controlled trials of targets. Therefore, we consider careful specification of treat-

ment strategies as the randomized intervention to be a more desirable solution. Beyond data

from trials of targets, trials of first-line anti-hypertensive medications have been conducted to

compare first-line treatments. Current guidelines recommend initiation of thiazide diuretics,

angiotensin-converting enzyme inhibitors, and calcium channel blockers [10]. A large obser-

vational study of 4.9 million patients, LEGEND-HTN, compared monotherapies for incident

hypertension, concluding that thiazide and thiazide-like diuretics were superior to other thera-

pies [74]. While important, these findings do not guide physician prescribing choices after initi-

ation of treatment. While sequentially randomized trials are difficult and expensive to conduct,

several such trials have been implemented, including one which has been used to develop a

treatment algorithm for prostate cancer [75]. Four treatments were tested in this trial. Patients

were evaluated at 8-week intervals. Patients who responded to treatment were continued on

their treatments, and non-responders were randomly assigned to another treatment. Based on

this evidence, the researchers determined that a specific regimen of paclitaxel, estramustine,

and carboplatin was of interest for further Phase 3 studies. A sequentially randomized trial for

hypertension might similarly characterize responders and non-responders at pre-determined

clinic visits in a similar way; random assignment to different treatment regimes could occur

at these visits for non-responders. Such a study might efficiently identify characteristics of

responders, and treatments which are efficient for non-responders.

Third, methods in causal inference have been developed to observationally address the time-

varying confounding which results from the use of time-varying treatments. The accumulation

of large electronic health record databases increases the potential of these methods to pro-

vide meaningful causal conclusions. These databases allow extensive adjustment for sets of

possible confounders. Methods which have been used to adjust for time-varying confounding
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include inverse probability of treatment weighting [48] and the parametric g-formula [76–78].

These methods have been used in large observational datasets to compare sequences of

treatments. For example, Zhang et al. [79] used electronic health records (EHR) to compare

erythropoietin dosing strategies targeting low, middle, and high hematocrit targets in patients

with end-stage renal disease. The study replicated the findings of RCTs testing the low and

high targets. It also estimated the effects of the mid-range target on renal outcomes . IPTW

can also be used in the context of dynamic treatment regimes, and development of methods

for evaluation of dynamic treatment regimes is ongoing [80]. Application of these methods in

the context of hypertension could be used to identify algorithms for deciding on a course of

treatment while taking into account a patient’s previous response to prescribed medications.
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Appendix

2.7.1 Intention-to-treat analysis of trials of targets

In this Appendix we study ITT analysis of results from trials of targets under different hypothe-

ses about the causal relationships depicted in Figure 2.1.

No direct effect of Z on Y

When the biomarker assignment in a trial of targets exerts no direct effect on the outcome,

ITT analysis recovers the null hypothesis of no treatment effect when this hypothesis is true.

Suppose that there exists no direct effect of Z on Y , so the arrow Z → Y in Figure 2.1 is
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absent. Formally, this means that the distribution of Y given X and L is invariant to the value

of Z = z, or

E[Y |X = x, Z = z, L = l] = E[Y |X = x, L = l]

for all values of z, x, and l. Suppose further that the treatment X received by the patient has

no effect whatsoever on the outcome Y , or

E[Y |X = x, L = l] = E[Y |X = x′, L = l]

Then the ITT analysis of the effect of Z on Y is also null. The ITT effect is

µ = E[Y |Z = z1]− E[Y |Z = z0]

=
∑
l

(E[Y |Z = z1, L = l] Pr(L = l|Z = z1)− E[Y |Z = z0, L = l] Pr(L = l|Z = z0))

=
∑
l

(E[Y |Z = z1, L = l]− E[Y |Z = z0, L = l]) Pr(L = l))

=
∑
l

∑
x

(E[Y |X = x, Z = z1, L = l] Pr(X = x|Z = z1, L = l)

− E[Y |X = x, Z = z0, L = l] Pr(X = x|Z = z0, L = l)) Pr(L = l)

=
∑
l

∑
x

(E[Y |X = x, L = l] Pr(X = x|Z = z1, L = l)

− E[Y |X = x, L = l] Pr(X = x|Z = z0, L = l)) Pr(L = l)

=
∑
l

∑
x

E[Y |X = x, L = l](Pr(X = x|Z = z1, L = l)− Pr(X = x|Z = z0, L = l)) Pr(L = l)

But since E[Y |X = x, L = l] = E[Y |X = x′, L = l] for all l, then

µ =
∑
l

E[Y |X = x′, L = l] Pr(L = l)
∑
x

(Pr(X = x|Z = z1, L = l)− Pr(X = x|Z = z0, L = l))

=
∑
l

E[Y |X = x′, L = l] Pr(L = l)(1− 1)

= 0
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Therefore ITT analysis of a trial of targets recovers a null effect when neither the biomarker tar-

get assignment Z nor the treatment delivered to the patient X directly affects the CV outcome

Y .

Direct effect of Z on Y exists

When the treatment received by the patient has no effect whatsoever on the outcome, but the

assignment has an effect on the outcome, ITT analysis of a trial of targets can still produce a

non-null result. To understand why, note that if the treatment has no effect on the outcome, this

means that the distribution of the outcome Y given the assignment Z = z, treatment X = x,

and coviarate L = l is invariant to x within strata of L = l and Z = z. In particular, the

expected outcomes under two different treatments must be equal,

E[Y |Z = z,X = x, L = l] = E[Y |Z = z,X = x′, L = l]

where x 6= x′, for every value of z and l. The ITT analysis of the effect of Z on Y measures

µ = E[Y |Z = z1]− E[Y |Z = z0]

=
∑
l

(E[Y |Z = z1, L = l] Pr(L = l|Z = z1)− E[Y |Z = z0, L = l] Pr(L = l|Z = z0))

=
∑
l

(E[Y |Z = z1, L = l]− E[Y |Z = z0, L = l]) Pr(L = l))

=
∑
l

∑
x

(E[Y |X = x, Z = z1, L = l] Pr(X = x|Z = z1, L = l)

− E[Y |X = x, Z = z0, L = l] Pr(X = x|Z = z0, L = l)) Pr(L = l)

=
∑
l

∑
x

(E[Y |Z = z1, X = x, L = l] Pr(X = x|Z = z1, L = l)

− E[Y |Z = z0, X = x, L = l] Pr(X = x|Z = z0, L = l)) Pr(L = l)

=
∑
l

∑
x

E[Y |X = x, L = l](Pr(X = x|Z = z1, L = l)− Pr(X = x|Z = z0, L = l)) Pr(L = l)
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But since E[Y |Z = z,X = x, L = l] = E[Y |Z = z,X = x′, L = l] for all z and l, then

µ =
∑
l

(E[Y |Z = z1, X = x′, L = l]− E[Y |Z = z0, X = x′, L = l]) Pr(L = l)

where x′ is an arbitrary treatment. Now if E[Y |Z = z1, X = x′, L = l] 6= E[Y |Z = z0, X =

x′, L = l] for any x′ and l, then µ may not be equal to zero. In particular, if E[Y |Z = z1, X =

x′, L = l] > E[Y |Z = z0, X = x′, L = l] for every x′ and l for example, then µ > 0 even though

the actual treatment has no effect on the outcome.

Likewise, if the biomarker target assignment exerts no effect on the physician’s treatment de-

cisions, ITT analysis of a trial of targets can nevertheless produce a non-null result. Suppose

the probability of treatment X = x is invariant to the assignment Z = z, within strata of L, or

Pr(X = x|Z = z1, L = l) = Pr(X = x|Z = z0, L = l).

This means that physicians do not take the randomly assigned biomarker target into account

when deciding on a treatment strategy. Then the ITT result is

µ =
∑
l

∑
x

Pr(X = x|Z = z, L = l)(E[Y |Z = z1, X = x′, L = l]− E[Y |Z = z0, X = x′, L = l]) Pr(L = l)

where z is an arbitrary target assignment. Again, if E[Y |Z = z1, X = x′, L = l] 6= E[Y |Z =

z0, X = x′, L = l] for any x′ and l, then µ may not be equal to zero.

2.7.2 Goodhart’s law

To see why modifying treatments to successfully reach a biomarker target can have adverse

consequences, let b0 be the standard target, and let b1 be the aggressive target. Let the

assignment Z = 0 correspond to b0 and let Z = 1 correspond to b1. Suppose the assignment
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Z always results in the patient reaching the target, so sthat X = 0 implies B = b1 and X = 1

implies B = b0 deterministically. Then the expected outcomes become

E[Y (z = 1)] = E[Y |X = x1, B = b1]

and

E[Y (z = 0)] = E[Y |X = x0, B = b0].

The RCT therefore reveals the risk difference

δ = E[Y (z = 1)]− E[Y (z = 0)] = E[Y |X = x1, B = b1]− E[Y |X = x0, B = b0] (2.1)

in which the outcome is compared under x1 and b1 versus x0 and b0. Even if the aggressive

target is always beneficial

E[Y |X = x,B = b1] < E[Y |X = x,B = b0]

for every fixed value of x, the trial result need not show δ < 0.

2.7.3 Case study: Additional figures and tables

We present here several additional figures associated with the case study discussed in Sec-

tion 2.6. As described in Section 2.6, these figures demonstrate the heterogeneity in results

reported by trials included in the meta-analysis by Reboussin et al. [1]. Table 2.2 lists seven

endpoints analyzed in the meta-analysis by Reboussin et al. [1]. Four endpoints - ACM, MACE,

MI, and stroke - were included in the text. Here, we have included the results reported by the

trials for the other three outcomes: CV death, heart failure, and renal events. Figures 2.7,

2.8 and 2.9 show the relative risks for CV death, heart failure, and adverse renal events re-
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spectively reported by the trials and the meta-analysis by Reboussin et al. [1]. The relative

risks represent the ratio of risk in the lower target group (numerator) versus the higher target

group (denominator). Although the meta-analysis by Reboussin et al. [1] reported that target-

ing an SBP below 130 mmHg was beneficial in reducing the risk of heart failure, only AASK,

ACCORD, CardioSis, and SPRINT were included in this subgroup analysis. Of these trials,

only SPRINT found a significant benefit in reducing the risk of heart failure 2.8. While the

meta-analysis by Reboussin et al. [1] failed to find an increase in adverse renal events, a lim-

ited number of trials reported the risk of renal events at all. Of these trials, many included as

adverse renal outcomes only severe events such as development of ESRD, a need for kidney

transplantation, and initiation of dialysis [14, 17, 18, 39, 68–71]. As discussed in Section 2.6,

SPRINT reported an increased frequency of less severe renal events in the intensive treat-

ment group, such as acute kidney injury, hypotension, syncope, electrolyte abnormalities and

kidney failure, and ACCORD reported a decrease in estimated glomerular filtration rate and

an increase in macroalbuminuria in the intensive treatment group, interpreted as “signals of

possible harm” [14].

Figures 2.10, 2.11, and 2.12 present the results of principal components analysis investigating

the relationships between trial features and the results reported by the trials, for the outcomes

CV death, heart failure, and adverse renal events respectively. This analysis revealed an

absence of obvious relationships between trial features and the magnitude and direction of the

outcome. The trial features included in the analysis are the average age of the trial population,

baseline SBP, percentage of women, lower SBP target, and upper SBP target. The figure

displays the projection of these features into the plane of the first two principal components,

as well as the result reported by the trial and its direction.
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Relative Risk of Cardiovascular Death
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Figure 2.7: Relative risk of cardiovascular death reported by the trials (lower target (numerator)
versus higher target (denominator)).
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Relative Risk of Heart Failure
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Figure 2.8: Relative risk of heart failure reported by the trials (lower target (numerator) versus
higher target (denominator)).
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Relative Risk of Renal Events
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Figure 2.9: Relative risk of adverse renal events reported by the trials (lower target (numerator)
versus higher target (denominator)).
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Figure 2.10: Principal components analysis of trial average age, baseline SBP, percentage of
women, lower SBP target, and upper SBP target for trials comparing at least one SBP target
and reporting relative risk of CV death. Trials reporting relative risk less than one are shown
in red.
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Figure 2.11: Principal components analysis of average age, baseline SBP, percentage of
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get and reporting relative risk of heart failure. Trials reporting relative risk less than one are
shown in red.
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Chapter 3

Estimating the effect of angiotensin
converting enzyme inhibitors and

hydrochlorothiazide on cardiovascular
outcomes in HIV-positive and matched

HIV-negative veterans with hypertension

Abstract

Hypertension is a well-established risk factor for adverse cardiovascular outcomes and is of

especial importance in the HIV-infected and veteran populations, which are at increased risk

for adverse cardiovascular outcomes relative to the general population. The current guidelines

for hypertension provide blood pressure goals and recommendations for anti-hypertensives

with which to initiate treatment. However, the optimal choice of anti-hypertensives following

initiation remains unclear. In this paper, we present results of an analysis in which we evaluate

the effect of angiotensin converting enzyme inhibitors (ACE-I) and hydrochlorothiazide (HCTZ)

on adverse cardiovascular outcomes. The study population is selected from the Veterans

Aging Cohort Study, a longitudinal and prospective virtual cohort of HIV-positive veterans and
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their matched controls. We selected subjects from the VACS cohort who had hypertension

as well as one or more cardiovascular risk factors. We use marginal structural Cox models

with stabilized inverse probability of treatment weights to adjust for baseline and time-varying

confounding. We find that after large-scale adjustment for possible confounders, treatment

with ACE-I or HCTZ does not result in decreased probability of adverse cardiovascular events

relative to other regimens of anti-hypertensives.

Keywords: Hypertension, marginal structural Cox models, angiotensin converting enzyme

inhibitors, hydrochlorothiazide, time-varying confounding.

3.1 Introduction

Hypertension is a well-established risk factor for adverse cardiovascular outcomes [81, 82].

Hypertension is treated by using anti-hypertensive measures to lower blood pressure to a

target specified by clinical guidelines. Randomized controlled trials of blood pressure (BP)

targets have reported that lower systolic blood pressure (SBP) targets decrease risk of poor

cardiovascular (CV) outcomes, such as stroke and myocardial infarction [1, 10, 11]. Guide-

lines based on these targets have been controversial due to their conflicting recommendations

[23]. The American College of Cardiology (ACC) and the American Heart Association (AHA)

recommend that physicians target a SBP of <130 mmHg in patients over the age of 60 with

cardiovascular risk factors [10, 23]. The American College of Physicians (ACP) and Ameri-

can Association of Family Physicians (AAFP) recommend targeting an SBP <140 mmHg in

this patient population [11]. This controversy is due to divergent results among trial of blood

pressure targets, such as those reported in the Systolic Pressure Intervention Trial (SPRINT)

[17], which reported a benefit of targeting a lower systolic blood pressure, and ACCORD [14],

which reported a null result.
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Furthermore, the optimal regimen of anti-hypertensives for reaching a blood pressure target

remains unclear [74]. Some studies have compared therapies for initiation of treatment, and

current guidelines recommend initial therapy with thiazide diuretics, angiotensin-converting en-

zyme inhibitors, or calcium channel blockers [10]. A large observational study of 4.9 million

patients, LEGEND-HTN, concluded that thiazides and thiazide-like diuretics were optimal for

initiation of anti-hypertensives [74]. However, management of hypertension requires adminis-

tration of changing regimens of anti-hypertensives, where the regimen is adjusted according

at clinic visits according to additional clinical information. Thus, treatments for hypertension

are time-varying, and physicians require guidance regarding the optimal choice of treatment

following initiation of treatment.

Management of hypertension in HIV-infected individuals is of particular importance because

HIV-infected individuals are at higher risk than the general population for adverse cardiovas-

cular outcomes, such as acute myocardial infarction (MI) [83–85]. This effect may be due

to treatment with anti-retroviral medications, such as protease inhibitors, or due to increased

immune activation due to infection [86]. As the HIV-infected population has aged with the suc-

cess of anti-retroviral treatments, cardiovascular disease has become an important contributor

to mortality in this population [87, 88]. However, HIV-infected individuals are often treated

using the same strategies as non-HIV-infected individuals [85].

Methods in causal inference have made it possible to evaluate the effects of time-varying treat-

ments using observational data. Because management of hypertension involves adaptive,

time-varying treatment strategies, traditional adjustment by simply conditioning on longitudi-

nally observed confounders can introduce bias into the estimate of treatment effect [46]. This

bias occurs because measurements of blood pressure and other clinical data, as well as past

treatment, are used by physicians to choose future treatment. These intermediate measure-

ments of clinical data are called “time-varying confounders," and adjustment for time-varying

confounding requires utilizing g-methods, which are designed to identify the causal effect of
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a time-varying treatment regime. In particular, marginal structural models can be used to

evaluate the effects of time-varying treatment strategies when detailed information about inter-

mediate clinical measurements, outcomes, and treatments delivered to patients are available

[46]. Marginal structural models use inverse probability of treatment weights (IPTW) to con-

struct a “pseudo-population” in which the treatment of interest is assigned as if it were random

[48, 89, 90]. Marginal structural Cox models have been used in several instances to exam-

ine the clinical utility of treatments, such as in the setting of multiple sclerosis and opioid use

disorder [91, 92].

In this study, we use marginal structural Cox models, adjusted using stabilized IPTW, to evalute

the effect of frequently used anti-hypertensive medications on the risk of adverse cardiovas-

cular events in a cohort of non-diabetic veterans with cardiovascular risk factors. The medi-

cations of interest were angiotensin converting enzyme inhibitors (ACE-I) and hydrochloroth-

iazide (HCTZ). The study population was selected from an existing virtual cohort, the Veterans

Aging Cohort Study, which has prospectively enrolled HIV-positive and matched HIV-negative

patients since 1998. We adjusted for demographics, baseline measurements of blood pres-

sure and other clinical data, and longitudinal observations of clinical markers and treatment

with other anti-hypertensives to identify the difference in counterfactual survival probability un-

der treatment or no treatment with ACE-I and HCTZ.

3.2 Methods

3.2.1 Data sources

The Veterans Health Administration (VA) is the largest integrated healthcare system in the

United States and utilizes a nationally standardized EHR system [93]. Veterans Aging Cohort

Study (VACS) is a longitudinal virtual cohort that has been prospectively enrolling patients
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since 1998 [94]. The study includes HIV-infected veterans as well as non-infected veterans

matched by key demographics, including age and clinical site. The institutional review board

at the West Haven VA approved this study.

3.2.2 Subject selection

We selected subjects from the VACS virtual cohort for our study by applying a subset of the

inclusion and exclusion criteria used in SPRINT, a large and influential trial of blood pressure

targets [17]. These criteria were intended to select an older patient population with cardiovas-

cular risk factors, excluding diabetics. We included subjects who were at least age 50 between

October 1, 2007 and September 30, 2017. We required two SBP measurements greater than

130 mmHg within a 3 months-1 year period prior to enrollment. We followed the cohort until

April 26, 2018.

We identified subjects with cardiovascular risk factors by requiring one of: age greater than

75 years, a history of cardiovascular disease (CVD), high-risk Framingham Risk Score, or

chronic kidney disease (CKD). We used available demographic information to determine age,

International Classification of Diseases, Ninth Revision (ICD-9) codes to determine history

of cardiovascular disease, estimated glomerular filtration rate (eGFR) outside the range of

20-60 mL/min as computed by the CKD-epi equation to identify chronic kidney disease, and

available laboratory panels to calculate Framingham Risk Scores. We defined a history of

cardiovascular disease as observation of any ICD-9 code that corresponded to acute infarcts

of any level of severety. As per SPRINT’s inclusion criteria, all subjects with diabetes mellitus,

a history of ischemic or hemorrhagic stroke, and a heart failure event within 6 months of study

inclusion were excluded.
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Covariate Missing (%)

Mean ± SD
Age 61.7 ± 7.36 0
# of anti-hypertensive medications 1.13 ± 1.2 0
SBP 142 ± 10.9 0
DBP 83.8 ± 10.4 0
FHRS 6.88 ± 3.14 2.36
BMI 29.1 ± 5.57 7.8
Creatinine 1.14 ± 0.325 0
eGFR 77.6 ± 20.3 0
VACS Index 37.8 ± 11.6 10.8

Category Frequency (%)
Sex Female 1.76 0

Male 98.2
Race White 45.4 0

Black 44.2
d Hispanic 7.42

Other 3.01
HIV status HIV- 68.5 0

HIV+ 31.5
HCV status HCV- 67.8 0

Chronic HCV 13.8
HCV genotype 0.0787
HCV Ab+, RNA - 2.93
HCV Ab+, RNA unknown 0.837
HCV Ab unknown, RNA- 0.333
HCV ICD9 code 0.148
Never tested 14.1

Smoking Never smoked 24.8 1.12
Current smoker 53.3
Past smoker 20.8

Table 3.1: Summary of baseline features of the patients selected into this study from
the VACS virtual cohort. The table presents mean and standard deviation for continuous
variables, frequency of each category for categorical variables, and percentage of missing
observations of each variable. Age, number of anti-hypertensive medications, SBP, DBP, cre-
atinine, and eGFR were required to evaluate inclusion and exclusion criteria for the study and
thus have no missing values. SD: standard deviation; SBP: systolic blood pressure; DBP: dias-
tolic blood pressure; FHRS: Framingham Risk Score; BMI: body mass index; eGFR: estimated
glomerular filtration rate; HCV hepatitis C virus; Ab: antibody; RNA: ribonucleic acid.
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3.2.3 Definition of treatment

We identified anti-hypertensive medications dispensed using prescription fill and refill data.

The VACS virtual cohort data includes both medications dispensed through the VA Pharmacy

Benefits Management program as well as through United States Medicare claims data [95].

Days for which medication was prescribed were determined from the prescription informa-

tion. The medications which were considered to have anti-hypertensive effects are listed in

Table 3.2. Each anti-hypertensive was counted as a separate medication, and also classified

by mechanism of action. Anti-hypertensive classes of interest were angiotensin converting

enzyme inhibitors (ACE-I), angiotensin receptor blockers (ARB), beta blockers (BB), calcium

channel blockers (CCB), thiazide diuretics (of which hydrochlorothiazide (HCTZ) was the only

medication), and potassium-sparing diuretics. We show the percentage of patients prescribed

these classes of anti-hypertensives in Table 3.2. For the purposes of the analysis conducted

in this study, we defined treatment as binary: either receipt or no receipt of a particular class

at any given time.

3.2.4 Definition of outcomes

We based the outcome of interest in this study on the composite endpoint of SPRINT [17]. This

trial utilized the composite outcome including “first occurrence of MI, non-MI acute coronary

syndrome (non-MI ACS), stroke, heart failure (HF), or death attributable to CVD” [17]. The

last observation of this cohort occurred on April 26, 2018. We used ICD-9 and ICD-10 codes

recorded through this date to determine the first occurrence of MI, ACS, stroke, and heart

failure. We obtained death dates from the VA Vital Status File, which has been validated

through comparison with the National Death Registry [95, 96]. We defined censoring as the

absence of observation of any blood pressures for 18 months, suggesting that the patient was

no longer being regularly followed by a physician at the VA.
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Year 0 1 2 3 4 5 6 7 8 9 10
# of patients 21612 10697 7232 5107 4047 3286 2645 2111 1611 1031 184

Percentage (%) of patients on:
Alpha blocker 13 12 14 15 17 17 19 20 21 20 16
Doxazosin 0.94 0.78 0.83 0.84 0.79 0.85 1.1 1.2 0.93 1.1 0.54
Prazosin 1.4 1.6 1.8 2 2.3 2.4 2.2 2.1 2.7 2.1 1.6
Tamsulosin 4.6 4.3 4.6 5.5 7.2 7.3 8.8 9.8 11 9.5 6.5
Terazosin 6.5 5.8 6.8 7 7.2 7 7.3 7.6 7.4 7.8 7.1

ACE-I 27 22 25 26 28 27 26 27 28 26 22
Benazepril 0.74 0.63 0.73 0.78 0.86 0.76 0.45 0.24 0.37 0.58 0
Fosinopril 0.6 0.51 0.5 0.78 0.64 0.67 0.57 0.76 0.87 0.68 1.1
Lisinopril 24 21 23 24 25 25 24 26 26 24 19
Enalepril 0.97 0.64 0.62 0.76 0.79 0.79 0.91 0.57 0.68 0.58 1.6

ARB 4.6 4.6 4.8 5.3 6.2 6.5 7.3 7.5 8.8 10 9.2
Irbesartan 0.0046 0.0093 0.014 0 0.025 0 0 0 0 0 0
Losartan 3.6 3.7 3.9 4.4 5.4 5.7 6.4 6.5 7.5 8.4 7.1
Valsartan 1 0.93 0.91 0.96 0.84 0.79 0.98 0.99 1.2 1.6 2.2

Beta blocker 24 18 19 20 20 20 21 22 23 23 16
Atenolol 7.4 6.3 7.1 7.9 7.2 7.6 7.6 8.1 8 6.3 2.7
Carvedilol 2.6 1.6 1.6 1.4 1.6 1.8 1.8 1.7 2.6 2.9 2.7
Labetalol 0.24 0.22 0.29 0.22 0.35 0.21 0.38 0.33 0.37 0.39 0.54
Metoprolol 14 9.6 9.7 10 11 11 12 12 12 13 10

CCB 21 21 24 26 27 28 28 29 29 30 31
Amlodipine 16 17 19 20 21 22 22 23 23 24 24
Diltiazem 2 1.9 1.9 2 2.4 2.2 2.3 2.9 2.7 2.4 3.3
Felodipine 16 17 19 20 21 22 22 23 23 24 24
Nifedipine 2.1 1.7 1.8 2.1 1.7 2.1 2.1 1.9 1.6 2.3 1.6
Verapamil 1 1 1.1 1.3 1.3 1.4 1.2 1.6 2 1.7 2.2

HCTZ 20 19 22 22 23 22 21 20 22 19 9.8

K+ sparing 2.8 2.4 2.7 3 3 2.6 3 2.9 3 3.5 2.7
Spironolactone 1.1 0.71 0.76 0.9 1 0.76 1 1 1.1 1.4 1.6
Triamterene 1.8 1.7 1.9 2.1 2.1 1.8 2 1.9 1.9 2.2 1.1

Furosemide 4 2.9 3.1 3.3 3.4 3.3 3.7 3.4 4.5 4.2 3.8

Other
Clonidine 1.2 1.1 1.3 1.7 1.6 1.7 1.5 1.4 1.6 1.9 0
Hydralazine 0.73 0.58 0.71 0.8 1.1 1.4 1.3 1.4 1.8 2.2 1.1

Table 3.2: Table of anti-hypertensive medications. ACE-I: angiotensin converting en-
zyme inhibitor; ARB: angiotensin receptor blocker; CCB: calcium channel blocker; HCTZ:
hydrochlorothiazide; K+sparing: potassiume-sparing diuretic.
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3.2.5 Covariates

Observed covariates in this study included demographic variables, baseline and longitudinal

laboratory results, and the previously validated VACS Index [97, 98]. The VACS Index was

developed by the VACS group to predict risk of all-cause mortality in the veteran population.

The VACS Index aggregates several metrics of health, including HIV biomarkers and measures

of liver and renal function. The index has been validated both in HIV-infected and non-HIV-

infected individuals [99]. These variables were selected because of their potential role as

confounders of the effect of treatment with anti-hypertensive medications on the composite

cardiovascular outcome.

Table 3.1 shows mean values and observed frequencies of demographic and other variables

measured at baseline, the time of inclusion into the study (t=0). Demographic variables were

age, sex, and race (white, black, hispanic, or other). We also included smoking status (never

smoked, current smoker, or past smoker), HIV status and hepatitis virus C (HCV) status (neg-

ative, HCV diagnosed through antibody or RNA levels, or HCV diagnosed via ICD9 code).

Time-varyign covariates were SBP, DBP, VACS Index, hemoglobin A1c (hbA1c), cholesterol,

triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine, heart fail-

ure status, and body mass index (BMI) were obtained from laboratory test results and clinic

visit records. Heart failure status was defined by receipt of furosemide and a beta-blocker

simultaneously, since this combination is used to treat heart failure. Baseline covariates were

measured at baseline, summarized in Table 3.1, and time-varying covariates were taken both

at baseline and longitudinally, summarized in Figure 3.6 and the Appendix. Measurements

of baseline features were considered to be taken at time 0, time of entry into the study. All

observations of time-varying covariates were discretized into 30-day intervals. If multiple mea-

surements were observed within a 30-day interval, the average of these measurements was

taken to be the value for that interval. If no observation was obtained in an interval, the value
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at the previous time point was carried forward. Subjects were censored if no observation of

blood pressure occurred within 18 months, at which point the subject was considered lost to

follow-up.

3.2.6 Statistical Analysis

Our goal was to estimate the effect of treatment with each class of anti-hypertensives on

the counterfactual survival probability, with time to first adverse cardiovascular event as the

outcome of interest. We used marginal structural Cox models (MSCM) with inverse probability

of treatment weighting (IPTW) to estimate these counterfactual survival probabilities through

adjustment for both baseline and time-varying confounding. MSCMs, as described by Hernán

et al. [48], achieve this goal by reweighting the contribution of each patient to the risk set at

a given time using IPTW, creating a pseudo-population in which treatment at each time point

was assigned as if randomly.

Notation

Let T be the time to event. Let i denote an individual patient, with total sample size N . We

denote maximum follow up time with τ , and t denotes a particular time point. Let X t be the

time-varying sequence of treatments {X0, X1, ..., Xt} where t denotes the time at which the

treatment was delivered and t = 0, ..., τ . Let Lt be the time-varying sequence of covariates

{L0, L1, ..., Lt} where t denotes the time at which covariate was measured and T = 0, ..., τ .

Covariates measured at baseline are denoted using V . Let Ct be sequence of censoring

indicators {C1, C2, ..., Ct} where t denotes the time at which censoring status is observed.

Values of Xt and Lt for t < 0 take the values of X0 and L0 respectively, and Ct = 0 for t < 0.

For two sequences of treatments, x̄t and x̄∗t , we wish to estimate the counterfactual risk differ-
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ence:

Pr[T x̄t > t]− Pr[T x̄
∗
t > t] (3.1)

=
∑
v

(
Pr[T x̄t > t|V = v]− Pr[T x̄

∗
t > t|V = v]

)
Pr(V = v) (3.2)

=
∑
v

(
Pr[T > t|X t = x̄t, V = v]− Pr[T > t|X∗t = x̄∗t , V = v]

)
Pr(V = v)

(3.3)

=
1

N

∑
i

(
Pr[T > t|X t = x̄t, V = vi]− Pr[T > t|X∗t = x̄∗t , V = vi]

)
(3.4)

where Eq. (3.2) is identified by Eq. (3.3) if conditions for causal inference are satisfied. The

counterfactual T x̄t represents the time to event of interest, supposing that the treatment de-

livered had been x̄t. The difference in counterfactual survival probability is marginalized with

respect to baseline features, V . Using Cox proportional hazards regression, we obtain an

estimate of the conditional survival probability, Pr[T > t|X t = x̄t, V = vi]. The estimate of

conditional survival probability is also an estimate of the counterfactual conditional survival

probability Pr[T > t|X t = x̄t, V = v] after adjustment for time-varying confounding. This

adjustment is performed using the weighting strategy described in Section 3.2.6.

Marginal structural Cox model

The marginal structural Cox model, as described by Hernán et al. [48] provides a strategy for

estimating the hazard of an adverse cardiovascular event given treatment history and time-

varying confounders [48]. We denote the hazard of an adverse cardiovascular event occurring

for patient i at time t given treatment xit at time t and baseline covariates Vi as λi(t|xit, Vi). We
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model the hazard λi(t|xit, Vi) using a time-dependent Cox proportional hazard model [100]:

λi(t|xit, Vi; γ1, γ2) = λ0texp(γ1xit + γ2Vi) (3.5)

where λ0t is the baseline hazard, xit is the binary treatment delivered to subject i at time t,

γ1 its associated coefficient and γ2 is the vector of coefficients associated with the vector of

baseline coefficients Vi. We perform adjustment for time-varying confounders Lt by weighting

the contribution of each subject to the risk-set included in the partial likelihood of the Cox model

at each time point. These weights are subject specific and are typically stabilized inverse

probability of treatment weights. For subject i, the stabilized weight swi(t) is:

swi(t) =
t∏

k=0

Pr(Xik = xik|X i,k−1 = x̄i,k−1, Vi = vi)

Pr(Xik = xik|X i,k−1 = x̄i,k−1, Lik = l̄ik, Vi = vi)
(3.6)

Some of the subjects in the dataset were right-censored before their outcomes were ob-

served. To account for the effect of censoring, we used inverse probability of censoring weights

(IPCW), which we denote as swCi (t).

swCi (t) =
t∏

k=0

Pr(Cik = 0|Ci,k−1 = 0, X ik = x̄ik, Vi = vi)

Pr(Cik = 0|Ci,k−1 = 0, X ik = x̄ik, Lik = l̄ik, Vi = vi)
(3.7)

Fitting of the Cox proportional hazards regression model is then performed with a combined

weight, swi(t)× swCi (t).

We used logistic regression models to estimate the treatment and censoring weights for each

analysis comparing receipt of treatment to no treatment. All observations of time-varying co-
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variates and of treatment were discretized into 30-day intervals. The value of the covariate

was carried forward if no clinic visit occurred, and the mean of the observations was taken

if multiple observations occurred. In the logistic regression models, baseline covariates V

were: age, baseline number of anti-hypertensive medications medications, systolic and dias-

tolic blood pressure at time of inclusion into the study, sex, smoking status, age, Framingham

risk score, race, estimated GFR, creatinine, HIV status, hepatitis C virus status, body mass

index (BMI), and VACS index. The treatment variable x was binary, indicating receipt or no

receipt of the class of interest in each 30-day interval in the analysis. Time varying variables

Lt were systolic blood pressure, diastolic blood pressure, the VACS index, hbA1c, cholesterol,

triglycerides, HDL, LDL, creatinine, body mass index, and binary variables indicating whether

or not medications other than the class of interest were dispensed at each time point. For

example, if the treatment of interest in a particular analysis was ACE-Is, indicator variables

for receipt at each time point of alpha blockers, ARBs, beta-blockers, CCBs, HCTZ, potas-

sium sparing diuretics, furosemide, clonidine, and hydralazine were included as time-varying

covariates.

Thus, the risk difference estimated in each analysis reflects the causal effect of the assigned

treatment, adjusted for the effect of other anti-hypertensive medications. The logistic regres-

sion model used to estimate the denominator of the weight swi(t) in Eq. 3.6 had the form:

log

(
Pr(Xik = 1|X i,k−1 = x̄i,k−1, Lik = l̄ik, Vi = vi)

Pr(Xik = 0|X i,k−1 = x̄i,k−1, Lik = l̄ik, Vi = vi)

)
= βidZZZid

where the predictor, with individual index i dropped for simplicity, are represented by ZZZd and

the vector of coefficients is βd. The vector of predictors is ZZZd = {1, x̄k−1, l̄k, l̄∗k, v, v
∗}, with

v∗ and l̄∗k representing all pairwise interaction within the baseline covariates v and the time-

varying covariates l̄k respectively. Similarly, the model for the numerator of the IPTW, swi(t),

in Eq. 3.6 was fitted with predictors ZZZn = {1, x̄k−1, v, v
∗}, with fitted coefficients βn.
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The logistic regression model used to estimate the denominator of the IPCW, swCi (t), in Eq.

3.7 had the form:

log

(
Pr(Ci = 1|Ci,k−1 = 0, X ik = x̄ik, Lik = l̄ik, Vi = vi)

Pr(Ci = 0|Ci,k−1 = 0, X ik = x̄ik, Lik = l̄ik, Vi = vi)

)
= βcidZZZ

c
id (3.8)

where the predictors, again with individual index i dropped for simplicity, are ZZZc
d and the vector

of coefficients is βcd. In this model, the predictors are ZZZc
d = {1, c̄k−1, x̄k, l̄k, l̄∗k, v, v

∗}, with c̄k−1

representing the history of censoring. The analogous model for the numerator of the IPTW

was fitted with predictors ZZZc
n = {1, c̄k−1, x̄k, v, v

∗} and coefficients βcn.

We performed two separate analyses, investigating the effect of ACE-I and HCTZ. Missing

covariates in the dataset were imputed five times using multiple imputation with chained equa-

tions [101, 102]. We included all covariates and the treatment variable in the imputation model.

For each analysis, we truncated the most extreme weights at the following percentile thresh-

olds: (.5, 99.5), (1, 99), (10, 90), (50, 50), where truncation at the 50% percentile corresponds

to an unweighted analysis with no adjustment for time-varying confounding [89, 90]. We used

the survival package in R to fit the time-dependent Cox proportional hazards model presented

in Eq. 3.5, using these truncated weights and the Breslow estimator to compute the survival

curve conditional on baseline covariates [103, 104]. We computed the survival curve marginal-

ized with respect to the empirical distribution of baseline covariates to obtain an estimate of

the causal estimand of interest introduced in Eq. 3.4.

We used 50 bootstrap samples in each imputed dataset to generate 95% confidence intervals

at each time point and of the coefficients {γ1, γ2} used to model the hazard λi(t|xit, vi) in Eq.

3.5. Bootstrapped variance estimates have been shown to be less likely to be biased than

robust standard errors [105].
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3.3 Results

3.3.1 Descriptive statistics

We included 21,612 patients in the cohort at the initiation of the study who were eligible ac-

cording to the selection criteria. Table 3.1 shows summary statistics for the patient features

measured at baseline. Figure 3.1 shows the distribution of the continuous features. The mean

age of the cohort was 61.7, the mean baseline blood pressure at time of inclusion was 142/84

mmHg. Due to the inclusion criteria, the distribution of baseline systolic blood pressure and

age were truncated. Because this was a cohort of veterans, the patient were mostly male,

with 1.76% of the patients being female. Of the patients, 68.5% were HIV-infected, and 32.3%

were HCV infected by some metric. Figure 3.2 shows the point-wise mean and 95% confi-

dence interval of the systolic and diastolic blood pressures and the VACS index. The mean

systolic blood pressure remained stable throughout the course of the analysis, and diastolic

blood pressure decreased slightly. Mean VACS index increased throughout the study, indi-

cating an increase in mortality risk over time, as expected. Additional summary tables and

figures for other time-varying covariates, such as lipid panels and hbA1c, are included in the

Appendix.

At time zero, the mean number of anti-hypertensives being prescribed to each patient was

1.13, increasing to a maximum of 1.7 ± 1.5 at 8.5 years. Table 3.2 shows the number of

patients remaining in the study at each year of follow-up, the percentage of patients on each

class of anti-hypertensives at each time point, and the medications included in each class.

Patients depart from the study either because they were lost to follow up or because they

experienced the composite outcome. The most common medications to be prescribed among

this cohort over all time points were ACE-inhibitors (25.0%), calcium channel blockers (24.2%),

and hydrochlorothiazide (20.4%). Lisinopril was the most commonly prescribed medication,
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Figure 3.1: Distribution of baseline features. We show histograms of baseline SBP, DBP,
age, creatinine, eGFR, and FHRS of patients selected into the study. As required by the
selection criteria, the distribution of baseline SBP and age are truncated at 130 mmHg and 50
years respectively.
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with 24% of patients receiving lisinopril at initiation of the study.

During the course of the 10-year follow-up, 7723 (35.7%) of patients incurred the compos-

ite outcome. Figure 3.3 shows descriptive Kaplan-Meier survival curves for the composite

outcome and its individual components: acute coronary syndrome, all-cause mortality, my-

ocardial infarction, heart failure, transient ischemic attack, and both ischemic and hemorrhagic

stroke. Of these adverse cardiovascular events, heart failure and acute coronary syndrome

were most common: 3,094 patients experienced a heart failure event as their first adverse

event, and 2,476 experienced acute coronary syndrome as their first adverse event. Among

patients who incurred a cerebrovascular event, 447 patients experienced temporary ischemic

attack, 276 patients experienced ischemic stroke, and 10 patients experienced a hemorrhagic

stroke. All-cause mortality was not a substantial contributor, with 182 patients; this was due

to the fact that most patients experienced either a heart failure or acute coronary event before

mortality.

3.3.2 Stabilized weights

We used several different logistic regression models with varying levels of complexity to de-

termine the model with which to generate stabilized weights. Appendix table 3.4 presents the

Akaike information criterion and deviance of each of the four models necessary to construct

the stabilized weight, the numerator and denominator of the stabilized IPTW described in Eq.

3.6, and the numerator and denominator of the stabilized IPCW described in Eq. 3.7. Specif-

ically, we evaluated four different model fits for the unstabilized IPTW and IPCW respectively:

1) a baseline model including only baseline features without any time-varying covariates, 2)

a model including baseline features and time-varying clinical covariates such as systolic and

diastolic blood pressure, lipid panels, hbA1C, and LDL, 3) a model with baseline features,

time-varying clinical covariates, and receipt of medications other than the treatment of interest
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included in the Appendix.
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included as time-varying covariates, and 4) all covariates included in model (3), as well as all

pairwise interactions between baseline covariates age, FHRS, eGFR, baseline # of medica-

tions, and creatinine, all pairwise interactions between the time-varying clinical covariates. We

observed decreasing model deviance with increasing model complexity, as expected. Impor-

tantly, we observed decreasing AIC with increased model complexity, suggesting that overfit-

ting of the data was not a concern. We did not attempt to fit more fully saturated models in this

analysis due to computational limitations arising from the necessity of utilizing both multiple

imputation to address missingness and bootstrapping for variance estimation.

Figure 3.8 and 3.9 show the untruncated distribution of the logarithm of the stabilized weights

computed using model (4), including all time points. As expected, the distribution of the stabi-

lized weights was mean 1. We observed substantial overlap in the distribution of the stabilized

weights for patients who received and did not receive an treatment in both analyses, sug-

gesting that the positivity assumption necessary for fitting marginal structural models in this

analysis was not obviously violated.

3.3.3 Marginal structure Cox model

The primary comparison of interest that we report is the pointwise difference in counterfactual

survival probability between two static treatment regimes: “always treatment" with the anti-

hypertensive of interest (x̄t = {1, 1, ..., 1}), or “never treatment" with the anti-hypertensive of

interest (x̄t = {0, 0, ..., 0}). We conducted two analysis in which we examined the effect of

ACE-I and HCTZ as the anti-hypertensive of interest. The counterfactual survival probability at

time t under “always treatment" should be interpreted as the expected value of the probability

that an individual has not experienced the composite outcome as of time t, under an anti-

hypertensive regimen that includes the treatment of interest as well as other anti-hypertensives

that patients in the cohort were prescribed alongside the treatment of interest. The counterfac-
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tual survival probability at time t under “never treatment" should be interpreted as the expected

value of the probability that an individual has not experienced the composite outcome as of

time t, under an anti-hypertensive regimen that does not includes the treatment of interest

at any point but includes other anti-hypertensives that subjects in the cohort received, in the

absence of the treatment of interest. For example, for ACE-I, the treatment comparison is

between anti-hypertensive regimens that must include an ACE-I and regimens that cannot

include an ACE-I. The regimens that do not include an ACE-I still consist of compensatory

regimens composed of other combinations of anti-hypertensive medications. A difference of 0

represents a null result, with regimens including and not including ACE-I exerting the same ef-

fect on the outcome. A difference greater than zero represents a benefit of regimens including

ACE-I, and a difference less than zero represents greater benefits from regimens not including

ACE-I.

In this section, we report the estimated pointwise counterfactual difference in survival prob-

ability for the overall population, the counterfactual difference in survival probability for the

subgroup of HIV-positive patients, and the estimated hazard ratios associated with the co-

variates included in the weighted Cox proportional hazards regression. We also include the

unadjusted risk difference, computed using weights all set to 1, to reflect the confounded dif-

ference in survival probability between the groups receiving and not receiving the treatment

of interest. All confidence intervals were based on bootstrapped samples for each imputed

dataset, combined using Rubin’s rule [106].

ACE inhibitors

The marginal counterfactual risk difference of the composite outcome between treatment with

ACE-I and no treatment with ACE-I was -0.035 (-0.47, 0.40) at 2 years and -0.065 (-0.62,

0.49) at 5 years. In comparison, the unadjusted risk difference was -0.06 (-0.14, 0.01) at

2 years and -0.09 (-0.12, -0.07) at 5 years. Figure 3.4A shows the adjusted risk difference
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for the entire population across all 10 years of follow up, with weights truncated at the 0.5%

and 99.5% percentiles, and Figure 3.4B shows the unadjusted risk difference. The results

obtained after adjustment suggest that regimens with ACE-I do not result in decreased risk

of the composite outcome relative to regimens without ACE-I. The unadjusted risk difference,

which indicates higher risk of the composite outcome under treatment, is likely evidence of

confounding, where patients with hypertension who are prescribed ACE-I have higher risk

of adverse cardiovascular outcomes than patients who are not prescribed medication. The

adjusted hazard ratio associated with treatment with ACE-I was 1.19 (0.06, 22.25), and the

unadjusted hazard ratio was 1.40 (1.28, 1.53).

We also conducted a subgroup analysis by computing the marginal counterfactual risk dif-

ference for the HIV-positive individuals in the cohort. Figure 3.4C and D show the adjusted

risk difference and unadjusted risk difference respectively. In the HIV-positive subgroup, the

adjusted risk difference was -0.09 (-0.71, 0.53) at 2 years and -0.03 (-0.51, 0.46) at 5 years.

The unadjusted risk difference was -0.12 (-0.14, -0.10) at 2 years and -0.06 (-0.19, 0.06) at 5

years. Thus, regimens with ACE-I did not show benefits relative to regimens without ACE-I af-

ter adjustment, while risk of the outcome was increased in the treated group at 2 years before

adjustment.

Hydrochlorothiazide

The marginal counterfactual risk difference of the composite outcome between treatment with

HCTZ and no treatment with HCTZ was 0.01 (-0.14 0.16) at 2 years and 0.02 (-0.15, 0.18) at

5 years. The unadjusted risk difference was -0.02 (-0.03, -0.004) at 2 years and -0.02 (-0.05,

0.001) at 5 years. Figure 3.5A shows the adjusted risk difference for the entire population

across all 10 years of follow up, with weights truncated at the 0.5% and 99.5% percentiles,

and Figure 3.5B shows the unadjusted risk difference. The results obtained after adjustment

suggest that regimens with HCTZ are not more beneficial than regimens without HCTZ. The
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Figure 3.4: Difference between the risk of counterfactual composite outcome under
treatment with ACE-I and no treatment with ACE-I. A: Adjusted risk difference in the whole
cohort, with weights truncated at the 0.05 and 99.5 percentiles. B: Unadjusted risk differ-
ence in the whole cohort. C: Adjusted risk difference in the HIV-positive patients, with weights
truncated at the 0.05 and 99.5 percentiles. D: Unadjusted risk difference in HIV-infected pa-
tients. The dotted grey line indicates the null, with risk of the outcome under treatment and
no treatment being the same.Positive risk difference indicates probability of survival is higher
under treatment. Negative risk difference indicates that probability of survival is higher under
no treatment.
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adjusted hazard ratio associated with treatment with HCTZ was 0.28 (0.02, 3.55), and the

unadjusted hazard ratio was 0.46 (0.21, 1.03).

As in the case of ACE-I, we also conducted a subgroup analysis by computing the marginal

counterfactual risk difference for the HIV-positive individuals in the cohort. Figure 3.5C and

D show the adjusted risk difference and unadjusted risk difference respectively. In the HIV-

positive subgroup, the adjusted risk difference was 0.02 (-0.15, 0.18) at 2 years and 0.02

(-0.16, 0.19) at 5 years. The unadjusted risk difference was -0.03 (-0.07, 0.003) at 2 years

and -0.02 (-0.03, -.003) at 5 years. Thus, regimens with HCTZ did not appear to decrease risk

of the composite outcome, but the analysis demonstrates adjustment for confounding. The

unadjusted results demonstrate increased risk of the outcomeat 5 years under treatment with

regimens containing HCTZ.

Additional estimated hazard ratios are included in the Appendix. Sensitivity analysis using

different thresholds for truncating the stabilized weights was also conducted at the (1, 99)

and (5,95) percentiles. Additional risk difference curves based on these different truncation

thresholds are also included in the Appendix.

3.4 Discussion

In this work, we have evaluated the effect of ACE-I and HCTZ in a cohort of non-diabetic

veterans with hypertension and cardiovascular risk factors. We have used stabilized IPTW

and IPCW to adjust for the effect of various time-varying confounders, including intermediate

blood pressure measurements which might have been used to adjust the treatment strategy

and treatment with other anti-hypertensive medications. The cohort consists of HIV-positive

veterans as well as matched HIV-negative controls, and we conducted a subgroup analysis

to evaluate the effect of these anti-hypertensives in the HIV-positive patients. The outcome of
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Figure 3.5: Difference between the risk of counterfactual composite outcome under
treatment with HCTZ and no treatment with HCTZ. A: Adjusted risk difference in the whole
cohort, with weights truncated at the 0.05 and 99.5 percentiles. B: Unadjusted risk differ-
ence in the whole cohort. C: Adjusted risk difference in the HIV-positive patients, with weights
truncated at the 0.05 and 99.5 percentiles. D: Unadjusted risk difference in HIV-infected pa-
tients. The dotted grey line indicates the null, with risk of the outcome under treatment and
no treatment being the same.Positive risk difference indicates probability of survival is higher
under treatment. Negative risk difference indicates that probability of survival is higher under
no treatment.
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interest was time to first occurrence of a composite endpoint of adverse cardiovascular events.

After adjustment, our analysis revealed that treatment regimens containing ACE-I and HCTZ

did not confer decreased risk of the composite outcome relative to regimens without ACE-I or

HCTZ respectively, either in the overall cohort or in the HIV-positive subgroup. These results do

not suggest that treatment with ACE-I and HCTZ are not useful, but rather that compensatory

regimens without ACE-I and HCTZ exist which exert a similar effect on the probability of the

composite outcome. The primary finding in this study is the difference in counterfactual survival

probability under two static treatment regimens: always treating with a particular medication,

and never treating with a particular medication. The survival probability at a specific time

represents the probability that an individual does not experience the outcome before that time.

The difference in counterfactual survival probabilities allow us to assess survival probabilities

under these two treatment regimens.

The interpretation of these results in the context of treatment with other anti-hypertensives

also warrants clarification. The presence of anti-hypertensives other than the treatment of

interest is considered to be a source of time-varying confounding, which might influence both

the choice of future treatment and the outcome. The counterfactual survival probability under a

particular time-varying treatment regimen assumes that the time-varying confounders take the

values that they would have under that treatment regimen. For example, in the comparison of

the counterfactual outcome under always treatment or never treatment with ACE-I, we adjust

for the effect of other anti-hypertensives, including HCTZ, which may vary while treatment with

ACE-I is held constant. If we estimate the effect of always treatment with ACE-I, the estimated

effect assumes that HCTZ was prescribed as it would have been had ACE-I been given at

every point.

We also report the estimated hazard ratios from the weighted Cox proportional hazards re-

gression. However, we caution against interpreting these hazard ratios as representative of

the casual effect of the treatments of interest because of selection bias inherent to any esti-
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mate of hazard ratio and the fact that the hazard ratio is averaged over the period of follow-up

[107].

As in all observational studies, the results reported in this study may be subject to some lim-

itations. The population of veterans is overwhelmingly male, and further study is required

to determine if the effects of anti-hypertensive treatment would be the same in women. Un-

measured confounding for which we would be unable to adjust may be present in this study.

For example, some aspects of a physician’s decision-making process may not be recorded

in the electronic health record, such as an assessment of a patient’s motivation to adhere

to medication or to lifestyle modifications to control blood pressure. While we observed both

medications prescribed by the VA and those covered by Medicare for patients over the age of

65, we may not have observed all medications taken by patients under the age of 65. Further-

more, observational work alone cannot be used to change or influence guidelines for treatment

of hypertension.

We encountered substantial methodological challenges during this work that should be ad-

dressed, providing motivation for innovation in the field of causal inference for time-varying

treatments. We encountered extreme instability in the estimated IPTW and IPCW. In addition

to logistic regression models, we attempted to utilized several other weighting models, includ-

ing computation of optimal probability weights [108], estimation with random forests [109],

and a weighted combination of estimated weights from logistic regression and random forests

[110]. The optimization procedure necessary to compute the optimal weights on a dataset of

this size was not a practical choice for analysis due to the computing time and resources re-

quired. Random forests yielded an estimate of probability zero for misclassified observations,

leading to infinite weights when occurring in the denominator of the IPTW and IPCW. Com-

bining the random forest and logistic regression estimates appeared to substantially stabilize

the weights while correcting estimates of probability zero generated by the random forests,

but computational limitations due to the combination of imputation and bootstrapping rendered
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this method impossible to use in this analysis. In addition, the estimated weights in general be-

come more unstable as we calculated the cumulative product of probabilities over many time

points, eventually preventing the successful fitting of the weighted Cox proportional hazard

models using the untruncated weights.

In parallel with addressing these methodological challenges, we recommend further evaluation

of these treatments and others for management of hypertension in the veteran population. We

excluded diabetic patients in this study and anticipate performing a similar analysis to deter-

mine if the results differ from those in non-diabetic patients. Many patients are initiated on mul-

tiple anti-hypertensives, and evaluation of different combinations of anti-hypertensives would

inform physicians regarding which combination may be optimal. We also recommend repeat-

ing the analysis for other subgroups, including women and groups stratified by differences in

the severity of baseline hypertension. Solving computational challenges described above will

allow us to use these methods in larger cohorts and to build more complex models for IPTW,

IPCW, and the weighted Cox proportional hazards outcome model. We anticipate that results

obtained using these methods will become more precise and clinically useful as these methods

improve and electronic health records become more comprehensive, with longer-term follow

up.
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Appendix

3.4.1 Data

We include several additional figures summarizing the features of the cohort included in the

study. Figure 3.6 shows the pointwise mean values, with 95% confidence intervals, of hemoglobin

A1c, cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, creatinine and

body mass index, which were used as time-varying predictors in the estimation of the stabilized

weights. Table 3.3 shows the mean values with 95% confidence intervals of these time-varying

covariates, as well as systolic blood pressure, diastolic blood pressure, and VACS index, at

each year of follow-up in the study. Figure 3.7 shows the longitudinal change in medications

prescribed: the pointwise mean number of medications, as well as the percentage of patients

who were prescribed each major class of anti-hypertensives during the study period, including

ACE-inhibitors, ARBs, beta blockers, CCBs, HCTZ, and potassium sparing diuretics.

3.4.2 Model Diagnostics

Figure 3.8 shows the distribution of estimated stabilized weights, including all weights from all

time points. The estimated weights for those receiving ACE-I are shown in blue, and those

for patients not receiving ACE-I are shown in red. The purple region indicates the area of

overlap. The distribution of weights of those receiving and not receiving ACE-I are similar,

suggesting that positivity violations may not pose a significant challenge in the dataset and

that some randomness in physician behavior is present. Figure 3.9 shows a similar overlap

in the distribution of estimated stabilized weights for those receiving HCTZ and not receiving

HCTZ. Thus, we can draw a similar conclusion regarding positivity violations in our assessment

of the effect of HCTZ.

74



0 2 4 6 8 10

80
12

0
16

0
20

0

Systolic blood pressure (mmHg)

Year

S
B

P

A

0 2 4 6 8 10

40
60

80
10

0
12

0

Diastolic BP (mmHg)

Year

D
B

P

B

0 2 4 6 8 10

20
40

60
80

VACS Index

Year

V
A

C
S

 In
de

x

C

0 2 4 6 8 10

−
5

0
5

10
15

Hemoglobin A1c

Year

H
bA

1c

D

0 2 4 6 8 10

10
0

15
0

20
0

25
0

30
0

Cholesterol

Year

C
ho

le
st

er
ol

E

0 2 4 6 8 10

−
20

0
0

20
0

40
0

Triglycerides

Year

T
G

F

0 2 4 6 8 10

20
40

60
80

High−density lipoprotein

Year

H
D

L

G

0 2 4 6 8 10

50
10

0
15

0
20

0

Low−density lipoprotein

Year

LD
L

H

0 2 4 6 8 10

−
10

0
5

10
15

Creatinine

Year

C
re

at
in

in
e

I

0 2 4 6 8 10

0
10

20
30

40
50

Body Mass Index

Year

B
M

I

J

Figure 3.6: Pointwise mean and 95% confidence intervals for time-varying covariates:
systolic blood pressure, diastolic blood pressure, VACS index, hemoglobin A1c, cholesterol,
triglycerides, high-density lipoprotein, low-density lipoprotein, creatinine and body mass index.
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Year 1 2 3 4 5 6 7 8 9 10 11

Systolic blood
pressure
(mmHg)

133.4
±
14.8

132.0
±
15.4

131.6
±
15.3

131.9
±
14.8

132.5
±
15.2

132.9
±
15.6

133.2
±
16.0

133.4
±
15.9

133.4
±
16.3

133.1
±
16.0

135.8
±
17.4

Diastolic blood
pressure
(mmHg)

79.5
±
10.4

78.8
±
10.6

78.4
±
10.6

78.1
±
10.1

78.1
±
10.5

77.8
±
10.1

77.4
±
10.4

77.3
±
10.0

76.8
±
10.2

76.1
±
10.1

75.0
±
10.4

Cholesterol 189.5
±
45.2

188.6
±
43.6

187.4
±
42.3

186.0
±
41.9

184.4
±
41.9

181.8
±
40.6

179.9
±
40.7

180.5
±
41.1

178.4
±
42.0

178.8
±
44.0

170.5
±
42.8

High-density
lipoprotein

47.1
±
16.0

48.0
±
16.2

48.3
±
16.0

48.7
±
16.2

49.1
±
16.4

49.1
±
16.5

49.4
±
16.8

49.6
±
16.9

49.8
±
17.2

49.6
±
16.9

50.0
±
13.8

Triglycerides 158.4
±
135.8

149.5
±
134.0

147.6
±
103.0

147.7
±
103.3

146.4
±
124.9

144.9
±
95.8

142.0
±
92.6

138.6
±
82.9

140.4
±
88.8

142.7
±
100.5

158.2
±
92.9

Low-density
lipoprotein

112.9
±
37.5

112.5
±
36.5

111.4
±
36.5

109.5
±
36.0

107.6
±
35.3

105.4
±
34.8

104.1
±
34.8

104.6
±
35.4

102.0
±
36.1

103.0
±
38.4

91.2
±
33.4

Hemoglobin
A1c

5.9
±
0.9

5.9
±
0.8

5.9
±
0.8

6.0
±
0.9

6.0
±
0.9

6.0
±
0.9

6.0
±
0.9

6.0
±
0.9

6.0
±
0.9

6.0
±
1.0

6.1
±
0.7

Creatinine 1.1
±
0.4

1.1
±
0.5

1.1
±
0.6

1.2
±
0.7

1.2
±
0.8

1.2
±
0.9

1.2
±
0.9

1.3
±
0.9

1.3
±
1.0

1.3
±
1.1

1.3
±
0.5

Body Mass
Index

28.3
±
5.7

28.8
±
5.7

28.9
±
5.8

29.1
±
5.8

29.0
±
5.9

29.1
±
5.9

29.0
±
5.9

29.0
±
5.9

29.0
±
5.8

28.9
±
5.8

29.0
±
5.6

VACS Index 42.7
±
14.3

39.9
±
12.3

40.1
±
12.1

40.2
±
11.7

40.9
±
12.0

41.6
±
11.9

42.3
±
11.7

43.1
±
12.0

44.0
±
11.8

44.9
±
12.2

47.0
±
12.3

Table 3.3: Mean and 95% confidence intervals for time-varying covariates during each
year of follow-up: systolic blood pressure, diastolic blood pressure, VACS index, hemoglobin
A1c, cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, creatinine and
body mass index.
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Figure 3.7: Pointwise mean number of medications, and the percentage during each time
interval of patients who were prescribed each major class or type of anti-hypertensives
during the study period: angiotensin converging enzyme-inhibitors (ACE-I), angiotensin re-
ceptor blockers (ARBs), beta blockers, calcium channel blockers (CCB), hydrochlorothiazide
(HCTZ), and potassium sparing diuretics (K+ sparing).
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Figure 3.8: Histogram of the logarithm of the estimated stabilized weights in the groups
receiving and not receiving ACE-I. This histogram shows the distribution of weights across
all time points. The estimated weights for those receiving ACE-I are shown in blue, and those
for patients not receiving ACE-I are shown in red. The purple region indicates the area of
overlap.
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Figure 3.9: Histogram of the logarithm of the estimated stabilized weights in the groups
receiving and not receiving HCTZ. This histogram shows the distribution of weights across
all time points. The estimated weights for those receiving HCTZ are shown in blue, and those
for patients not receiving HCTZ are shown in red. The purple region indicates the area of
overlap.
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Table 3.4 shows model diagnostics for weighting models of varying complexity; diagnostics

displayed are deviance and Akaike Information Criteron. Several models were fit with different

combinations of baseline covariates, baseline covariates with some interaction terms between

baseline covariates, baseline covariates with time-varying clinical covariates, baseline covari-

ates with time-varying clinical covariates and time-varying covariates for other medications,

and all of the above in addition to interaction terms between baseline covariates and time-

varying covariates.

Baseline covariates are: age, baseline number of anti-hypertensive medications medications,

systolic and diastolic blood pressure at time of inclusion into the study, sex, smoking status,

age, Framingham risk score, race, estimated GFR, creatinine, HIV status, HCV status, body

mass index (BMI), and VACS index. Time varying covariates considered to be “Clinical(t),"

representing clinical data which may have been used to adjust treatment were: systolic blood

pressure, diastolic blood pressure, the VACS index, hbA1c, cholesterol, triglycerides, HDL,

LDL, creatinine, and body mass index. The terms “Meds(t)" represent binary variables indi-

cating whether or not medications other than the class of interest were dispensed at each

time point. For example, if the treatment of interest in a particular analysis was ACE-Is, indi-

cator variables for receipt at each time point of alpha blockers, ARBs, beta-blockers, CCBs,

HCTZ, potassium sparing diuretics, furosemide, clonidine, and hydralazine were included as

time-varying covariates. “Baseline variables, with interactions" indicates that the model was

fit with baseline covariates and all pairwise interactions between age, Framingham risk score,

estimated glomerular filtration rate, creatinine, and baseline number of anti-hypertensives. In-

teraction terms included in the most complex models were all pairwise interactions between

the time-varying clinical covariates as well as the pairwise interactions between baseline co-

variates enumerated previously.

Four models were assessed for estimation of the denominator of the IPTW and IPCW, and two

models were assessed for estimation of the numerator of IPTW and IPCW. AIC continued to
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Figure 3.10: The adjusted difference in survival probability between groups treated with
ACE-I and not treated with ACE-I, under weight truncation thresholds at (1,99) and (5,95)
percentile thresholds. Results for the entire study population are shown in A and B. Results
for the HIV positive subgroup are shown in C and D.

decrease with increasing model complexity across all four models, indicating an absence of

overfitting even with the most complex model.

3.4.3 Supplementary Results

We conducted several sensitivity analyses using different percentile truncation thresholds for

the stabilized weights: (1,99) and (5, 95). The adjusted difference in survival probability be-

tween groups treated with ACE-I and not treated with ACE-I, as well as subgroup analyses

in HIV-positive individuals, under these different thresholds are presented in Figure 3.10. The

results from analogous analyses of the effects of HCTZ are presented in figure 3.11. These

analyses demonstrate that with increasing truncation, the results approach those from the

unadjusted analyses presented in the main text.
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Medication Model DoF AIC Deviance

ACE-I IPTW (denominator) Baseline 29 528371 528313
Baseline + Clinical(t) 95 525354 525164
Baseline + Clinical(t) + Meds(t) 158 476063 475747
All, with interactions 213 473515 473089

IPTW (numerator) Baseline 29 528371 528313
Baseline, with interactions 39 527044 526966

IPCW (denominator) Baseline 29 130721 130663
Baseline + Clinical(t) 95 104914 104724
Baseline + Clinical(t) + Meds(t) 158 104296 103980
All, with interactions 213 104301 103875

IPCW (numerator) Baseline 29 130721 130663
Baseline, with interactions 39 130719 130641

HCTZ IPTW (denominator) Baseline 29 469826 469768
Baseline + Clinical(t) 95 466549 466359
Baseline + Clinical(t) + Meds(t) 158 417813 417497
All, with interactions 213 415499 415073

IPTW (numerator) Baseline 29 469826 469768
Baseline, with interactions 39 467875 467797

IPCW (denominator) Baseline 29 130695 130637
Baseline + Clinical(t) 95 104906 104716
Baseline + Clinical(t) + Meds(t) 158 104259 103943
All, with interactions 213 104263 103837

IPCW (numerator) Baseline 29 130695 130637
Baseline, with interactions 39 130694 130616

Table 3.4: Deviance and Akaike information criterion for several model fits of increasing
complexity for estimation of IPTW and IPCW in the analysis of ACE-I and HCTZ. Baseline
covariates are: age, baseline number of anti-hypertensive medications medications, systolic
and diastolic blood pressure at time of inclusion into the study, sex, smoking status, age, Fram-
ingham risk score, race, estimated GFR, creatinine, HIV status, HCV status, body mass index
(BMI), and VACS index. Time varying covariates (Clinical(t)): systolic blood pressure, diastolic
blood pressure, the VACS index, hbA1c, cholesterol, triglycerides, HDL, LDL, creatinine, and
body mass index. Time-varying medication covariates (Meds(t)): binary variables for receipt
of anti-hypertensives other than ACE-I and HCTZ respectively. Interactions between baseline
covariates: all pairwise interactions between age, Framingham risk score, estimated glomeru-
lar filtration rate, creatinine, and baseline number of anti-hypertensives. All, with interactions:
baseline covariates + Clinical(t) + Meds(t) + all pairwise interactions between the time-varying
clinical covariates and all pairwise interactions between age, Framingham risk score, estimated
glomerular filtration rate, creatinine, and baseline number of anti-hypertensives.
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Figure 3.11: The adjusted difference in survival probability between groups treated with
HCTZ and not treated with HCTZ, under weight truncation thresholds at (1,99) and (5,95)
percentile thresholds. Results for the entire study population are shown in A and B. Results
for the HIV positive subgroup are shown in C and D.
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Tables 3.5 and 3.7 present the estimated coefficients from the marginal structural Cox model,

weighted using the stabilized weights truncated at the (0.5, 99.5) percentiles, corresponding

to the results discussed in the main text. The standard error of these estimates and the esti-

mated hazard ratios, with bootstrapped 95% confidence intervals pooled across all 5 imputed

datasets, are also shown. Tables 3.6 and 3.8 present the estimated coefficients from the un-

adjusted Cox proportional hazards regression. Similarly, the standard error of these estimates

and the estimated hazard ratios with bootstrapped confidence intervals are shown.
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log(HR) sd(log(HR)) HR (95% CI)
ACE-I 0.17 1.50 1.19 (0.06, 22.25)
Sex (male) 0.29 1.26 1.33 (0.11, 15.61)
Smoking - Current smoker 0.14 0.78 1.15 (0.25, 5.36)
Smoking - Past smoker 0.03 1.06 1.03 (0.13, 8.17)
Age 0.02 0.16 1.02 (0.74, 1.40)
FHRS -0.09 0.78 0.91 (0.20, 4.23)
Race - Black -0.26 1.73 0.77 (0.03, 22.67)
Race - Hispanic -0.14 0.40 0.87 (0.40, 1.91)
Race - Other 0.01 1.05 1.01 (0.13, 8.00)
eGFR 0.01 0.10 1.01 (0.83, 1.23)
# HTN meds (t=0) 0.12 2.18 1.12 (0.02, 79.93)
Creatinine -0.43 6.10 0.65 (0.00, 100807.34)
HIV+ 1.44 2.05 4.24 (0.08, 234.61)
Chronic HCV -0.08 0.34 0.92 (0.47, 1.81)
HCV genotype -0.06 1.53 0.94 (0.05, 18.96)
HCV Ab+, RNA- -0.15 1.54 0.86 (0.04, 17.68)
HCV Ab+, RNA unknown 0.46 2.38 1.58 (0.01, 167.36)
HCV Ab unknown, RNA- -0.79 1.69 0.45 (0.02, 12.39)
HCV ICD9 -0.42 0.48 0.66 (0.26, 1.68)
HCV - never tested -0.02 0.28 0.98 (0.57, 1.69)
VACS Index 0.02 0.04 1.02 (0.94, 1.10)
SBP (t=0) 0.00 0.01 1.00 (0.98, 1.03)
DBP (t=0) 0.00 0.01 1.00 (0.99, 1.02)
Age*FHRS 0.00 0.00 1.00 (0.99, 1.01)
Age*eGFR 0.00 0.00 1.00 (1.00, 1.00)
Age*# HTN meds (t=0) -0.01 0.02 0.99 (0.95, 1.04)
Age*Creatinine 0.00 0.07 1.00 (0.86, 1.15)
FHRS*eGFR 0.00 0.01 1.00 (0.99, 1.01)
FHRS*# HTN meds (t=0) 0.01 0.03 1.01 (0.96, 1.06)
FHRS*Creatinine 0.11 0.18 1.12 (0.79, 1.60)
eGFR*# HTN meds (t=0) 0.00 0.01 1.00 (0.98, 1.02)
eGFR*Creatinine 0.00 0.08 1.00 (0.85, 1.16)
# HTN meds (t=0)*Creatinine 0.17 0.76 1.19 (0.27, 5.23)

Table 3.5: Coefficients and hazards ratios estimated using Cox proportional hazards
regression to evaluate the effect of ACE-I, adjusted using stabilized weights truncated
at the 0.5% and 99.5% percentiles.
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log(HR) sd(log(HR)) HR (95% CI)
ACE-I 0.34 0.05 1.40 (1.28, 1.53)
Sex (male) 0.01 0.17 1.01 (0.72, 1.41)
Smoking - Current smoker 0.16 0.18 1.17 (0.82, 1.68)
Smoking - Past smoker 0.12 0.04 1.13 (1.04, 1.22)
Age 0.02 0.04 1.02 (0.94, 1.11)
FHRS -0.15 0.18 0.86 (0.60, 1.22)
Race - Black -0.04 0.13 0.96 (0.74, 1.25)
Race - Hispanic -0.16 0.08 0.85 (0.73, 1.00)
Race - Other -0.19 0.12 0.83 (0.66, 1.05)
eGFR 0.03 0.01 1.03 (1.00, 1.06)
# HTN meds (t=0) 0.36 0.46 1.43 (0.58, 3.52)
Creatinine 0.32 0.74 1.38 (0.32, 5.91)
HIV+ 1.72 0.79 5.57 (1.19, 25.99)
Chronic HCV -0.19 0.19 0.83 (0.57, 1.21)
HCV genotype 0.07 0.61 1.07 (0.33, 3.54)
HCV Ab+, RNA- -0.06 0.08 0.94 (0.81, 1.10)
HCV Ab+, RNA unknown 0.12 0.26 1.12 (0.67, 1.87)
HCV Ab unknown, RNA- -0.19 0.22 0.82 (0.54, 1.27)
HCV ICD9 0.12 0.52 1.13 (0.41, 3.12)
HCV - never tested 0.04 0.04 1.04 (0.96, 1.13)
VACS Index 0.01 0.02 1.01 (0.97, 1.04)
SBP (t=0) 0.00 0.00 1.00 (0.99, 1.01)
DBP (t=0) 0.00 0.01 1.00 (0.99, 1.01)
Age*FHRS 0.00 0.00 1.00 (1.00, 1.00)
Age*eGFR 0.00 0.00 1.00 (1.00, 1.00)
Age*# HTN meds (t=0) 0.00 0.00 1.00 (0.99, 1.00)
Age*Creatinine 0.00 0.01 1.00 (0.98, 1.02)
FHRS*eGFR 0.00 0.00 1.00 (1.00, 1.00)
FHRS*# HTN meds (t=0) 0.00 0.00 1.00 (0.99, 1.00)
FHRS*Creatinine 0.06 0.05 1.06 (0.97, 1.17)
eGFR*# HTN meds (t=0) 0.00 0.00 1.00 (0.99, 1.00)
eGFR*Creatinine -0.01 0.01 0.99 (0.97, 1.02)
# HTN meds (t=0)*Creatinine -0.08 0.15 0.93 (0.69, 1.25)

Table 3.6: Coefficients and hazards ratios estimated using Cox proportional hazards
regression to evaluate the effect of ACE-I, unadjusted
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log(HR) sd(log(HR)) HR (95% CI)
HCTZ -0.12 0.66 0.89 (0.24, 3.28)

Sex (male) 1.14 3.37 3.13 (0.00, 2329.15)
Smoking - Current smoker 0.22 0.47 1.24 (0.49, 3.15)

Smoking - Past smoker 0.49 1.57 1.63 (0.08, 35.25)
Age -0.02 0.31 0.98 (0.53, 1.81)

FHRS 0.01 1.60 1.01 (0.04, 23.10)
Race - Black 0.36 1.20 1.43 (0.14, 15.11)

Race - Hispanic -0.12 0.55 0.89 (0.30, 2.60)
Race - Other -0.01 0.35 0.99 (0.50, 1.97)

eGFR -0.01 0.21 0.99 (0.66, 1.50)
# HTN meds (t=0) -0.91 5.89 0.40 (0.00, 41446.93)

Creatinine -0.80 10.23 0.45 (0.00, 229931903.21)
HIV+ 1.56 2.22 4.78 (0.06, 372.08)

Chronic HCV -0.22 0.30 0.80 (0.45, 1.43)
HCV genotype -0.94 1.43 0.39 (0.02, 6.52)

HCV Ab+, RNA- -0.19 0.51 0.83 (0.30, 2.27)
HCV Ab+, RNA unknown 0.15 0.79 1.16 (0.25, 5.47)
HCV Ab unknown, RNA- 0.11 0.58 1.11 (0.36, 3.49)

HCV ICD9 -0.09 0.65 0.92 (0.25, 3.31)
HCV - never tested -0.16 0.48 0.85 (0.33, 2.19)

VACS Index 0.01 0.03 1.01 (0.95, 1.08)
SBP (t=0) 0.01 0.03 1.01 (0.96, 1.06)
DBP (t=0) -0.01 0.06 0.99 (0.88, 1.11)

Age*FHRS 0.00 0.01 1.00 (0.99, 1.01)
Age*eGFR 0.00 0.00 1.00 (1.00, 1.00)

Age*# HTN meds (t=0) 0.00 0.03 1.00 (0.95, 1.06)
Age*Creatinine -0.01 0.10 0.99 (0.81, 1.20)

FHRS*eGFR 0.00 0.01 1.00 (0.98, 1.01)
FHRS*# HTN meds (t=0) -0.02 0.05 0.98 (0.90, 1.08)

FHRS*Creatinine -0.03 0.61 0.97 (0.30, 3.20)
eGFR*# HTN meds (t=0) 0.01 0.03 1.01 (0.96, 1.06)

eGFR*Creatinine -0.02 0.03 0.98 (0.93, 1.03)
# HTN meds (t=0)*Creatinine 0.36 2.02 1.43 (0.03, 75.58)

Table 3.7: Coefficients and hazards ratios estimated using Cox proportional hazards
regression to evaluate the effect of HCTZ, adjusted using stabilized weights truncated
at the 0.5% and 99.5% percentiles.
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log(HR) sd(log(HR)) HR (95% CI)
HCTZ 0.09 0.05 1.10 (0.99, 1.21)

Sex (male) 0.04 0.18 1.04 (0.72, 1.49)
Smoking - Current smoker 0.15 0.17 1.17 (0.83, 1.64)

Smoking - Past smoker 0.11 0.05 1.12 (1.02, 1.23)
Age 0.02 0.04 1.02 (0.95, 1.10)

FHRS -0.16 0.20 0.85 (0.57, 1.27)
Race - Black -0.04 0.11 0.96 (0.78, 1.19)

Race - Hispanic -0.16 0.09 0.85 (0.72, 1.01)
Race - Other -0.18 0.10 0.84 (0.69, 1.02)

eGFR 0.03 0.01 1.03 (1.00, 1.05)
# HTN meds (t=0) 0.39 0.39 1.47 (0.68, 3.18)

Creatinine 0.30 0.60 1.35 (0.41, 4.40)
HIV+ 1.73 0.78 5.62 (1.21, 26.05)

Chronic HCV -0.20 0.18 0.82 (0.58, 1.17)
HCV genotype 0.00 0.67 1.00 (0.27, 3.73)

HCV Ab+, RNA- -0.06 0.08 0.94 (0.81, 1.09)
HCV Ab+, RNA unknown 0.11 0.30 1.11 (0.62, 1.98)
HCV Ab unknown, RNA- -0.16 0.23 0.85 (0.54, 1.33)

HCV ICD9 0.08 0.59 1.09 (0.34, 3.46)
HCV - never tested 0.05 0.05 1.05 (0.96, 1.15)

VACS Index 0.01 0.02 1.01 (0.97, 1.04)
SBP (t=0) 0.00 0.01 1.00 (0.99, 1.01)
DBP (t=0) 0.00 0.01 1.00 (0.99, 1.01)

Age*FHRS 0.00 0.00 1.00 (1.00, 1.00)
Age*eGFR 0.00 0.00 1.00 (1.00, 1.00)

Age*# HTN meds (t=0) 0.00 0.00 1.00 (0.99, 1.00)
Age*Creatinine 0.00 0.01 1.00 (0.98, 1.02)

FHRS*eGFR 0.00 0.00 1.00 (1.00, 1.00)
FHRS*# HTN meds (t=0) 0.00 0.00 1.00 (0.99, 1.00)

FHRS*Creatinine 0.06 0.05 1.07 (0.96, 1.18)
eGFR*# HTN meds (t=0) 0.00 0.00 1.00 (1.00, 1.00)

eGFR*Creatinine -0.01 0.01 0.99 (0.97, 1.02)
# HTN meds (t=0)*Creatinine -0.09 0.13 0.92 (0.72, 1.17)

Table 3.8: Coefficients and hazards ratios estimated using Cox proportional hazards
regression to evaluate the effect of HCTZ, unadjusted
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Chapter 4

Modeling COVID-19 care capacity in a
major health system

Abstract

Hospital resources, especially critical care beds and ventilators, have been strained by addi-

tional demand throughout the COVID-19 pandemic. Rationing of scarce critical care resources

may occur when available resource limits are exceeded. However, the dynamic nature of the

COVID-19 pandemic and variability in projections of the future burden of COVID-19 infection

pose challenges for optimizing resource allocation to critical care units in hospitals. Connecti-

cut experienced a spike in the number of COVID-19 cases between March and June 2020.

Uncertainty about future incidence made it difficult to predict the magnitude and duration of

the increased COVID-19 burden on the healthcare system. In this paper, we describe a model

of COVID-19 hospital capacity and occupancy that generates estimates of the resources nec-

essary to accommodate COVID-19 patients under infection scenarios of varying severity. We

present the model structure and dynamics, procedure for parameter estimation, and publicly

available web application where we implemented the tool. We then describe calibration using
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data from over 3,000 COVID-19 patients seen at the Yale-New Haven Health System be-

tween March and July 2020. We conclude with recommendations for modeling tools to inform

decision-making using incomplete information during future crises.

Keywords: intensive care unit, emergency department, SARS-CoV-2

4.1 Introduction

The novel severe acute respiratory syndrome coronavirus (SARS COV-2), which causes coro-

navirus disease 2019 (COVID-19), emerged in 2019 in Hubei province in China. Early reports

from China suggested that people infected with COVID-19 are at high risk for severe respi-

ratory disease and serious complications [111]. Management of respiratory failure and acute

respiratory distress syndrome (ARDS) often requires mechanical ventilation managed in an

intensive care unit (ICU). A retrospective study of inpatients at the Jinyintan Hospital and

Wuhan Pulmonary Hospital reported that 54% of patients experienced respiratory failure, 31%

of inpatients developed ARDS, and 59% developed sepsis. Of the adults in this study, 26%

required critical care [112]. A large outbreak of COVID-19 also occurred in Lombardy, Italy,

which reported that 99% of critically ill patients required respiratory support, with mechanical

ventilation in 88% of patients [113].

In 2020 and the spring of 2021, the surge of COVID-19 patients in the United States revealed

that critical care resources available in some health systems were insufficient to address the

COVID-19 outbreak. Early models of hospital capacity in New York City, which experienced

a severe wave of COVID-19 infections beginning in March 2020, projected that the city would

require 40,000 ICU beds to handle the peak number of COVID-19 cases, with 3,000 ICU beds

available at baseline [114]. Subsequently, localized bed shortages occurred in parts of New

York City [115, 116], spurring hospital systems [117–119] and governors [120–123] to order
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immediate bed capacity expansion. This expansion was accomplished through the cancel-

lation of elective procedures[124], bed re-purposing for critical care [125], and the addition of

floor beds in overflow centers [123, 126, 127]. Failure to meet the critical care needs of COVID-

19 patients has dire consequences; in Italy, reports of rationing of ventilators based on age

cutoffs emerged from overwhelmed hospitals and ICUs [128–131]. During the fall and winter

of 2020 and spring of 2021, waves of new COVID-19 cases strained critical care resources at

hospitals across the United States and internationally. Rates of COVID-19 in the United States

skyrocketed to record levels, with over 160,000 new cases of COVID-19 reported in a single

day [132, 133]. Health systems across the country have reported that their critical care units

were either near or at full capacity due to a surge of COVID-19 patients [134–137]. Further-

more, the spread of COVID-19 has affected the availability of staff, with 900 healthcare workers

at Mayo Clinic testing positive and healthcare workers with asymptomatic COVID-19 contin-

uing to provide care in North Dakota due to staff shortages and a high burden of COVID-19

patients [135, 138].

The development and administration of vaccines such as Pfizer BNT162b2 and Modern mRNA-

1273 in high-income nations like the United States, Israel, and the United Kingdom has slowed

rates of infection with SARS-Cov-2, but critical care capacity continues to be overwhelmed by

the unvaccinated population and the development of aggressive variants. In the southern

United States, one in four ICUs are above 95% capacity, with COVID19 patients accounting

for approximately half of all ICU patients [139]. These high hospitalization rates are driven by

evolving variants of COVID-19, such as the Delta variant, which the CDC has deemed more

contagious than previous variants, more likely to cause severe illness, and capable of causing

breakthrough infections in vaccinated people [140].

Tools for managing hospital capacity during surges in COVID-19 cases will be required as long

as vaccination rates remain low in some countries and new variants continue to arise. Rapid

practice guidelines have recommended several steps to increase critical care capacity to meet
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the demands of COVID-19 patients [141]. Hospitals have increased their supply of ventilators

and developed protocols to reserve ventilators by utilizing non-invasive ventilation and high-

flow nasal oxygen [142–144]. Hospitals may also suspend elective medical and surgical pro-

cedures when necessary and re-allocate staff from other departments to serve in critical care

or COVID-19 specific units [145, 146]. Physicians and nurses trained in critical care medicine

have been given larger teams of non-critical care trained staff in an attempt to increase their

ability to manage as many patients simultaneously as possible [146]. Procedures for cleaning

and re-using personal protective equipment necessary to protect staff from infection, such as

N95 masks and air-purifying respirators, have also been developed, although the efficacy of

these procedures has not yet been rigorously studied [141].

Rapid practice guidelines recommend the use of mathematical modeling to guide surge capac-

ity planning in hospital systems which expect to encounter potential shortages in critical care

resources [141]. Guidelines state that the models should “be pragmatic and focus on the only

relevant question for surge capacity: how many patients will need hospital and ICU resources

on a given day?" More specifically, the models should provide early predictions, insight re-

garding both best and worst case scenarios, and the local rate of spread of infection and rate

of hospitalization. Many modeling tools were created at the beginning of the COVID-19 pan-

demic to assist with predictions of incident COVID-19 cases and hospitalizations [147–162]. A

comparison of four prominent models by Chin et al. [163] found that “for accuracy of prediction,

all models fared very poorly." These tools used population-level epidemic projections as inputs

to their model of hospital occupancy, which may have contributed to compounding errors in

forecasting hospital bed occupancy due to uncertainties in the early epidemiological models

of COVID-19. The authors concluded that “trustworthy models require trustworthy input data"

and that the models “need to be subjected to pre-specified real time performance tests."

In this paper, we present model of COVID-19 hospital occupancy that uses data from health

systems to generate its predictions. The model is independent of the uncertainty in population-
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level epidemiological predictions of infection and can flexibly accommodate local variations im-

portant to decision-makers, such as significant differences in patient demographic distributions

and hospital protocols. The model provides predictions of floor and ICU occupancy and mor-

tality for infection scenarios specified by the hospital administrator or decision-maker. These

infection scenarios can be informed both by observed presentations of COVID-19 patients to

the health care system and epidemiological predictions of infection. The model can predict

the effects of planned modifications to hospital capacity, and projections can be tailored to

the dynamics of a specific hospital system using several parameters, including age-specific

average lengths of stay in each hospital department, the probabilities of transitioning between

those departments, and probability of discharge and death. We introduce the model structure,

and describe both the model dynamics and the calibration procedure for the model param-

eters. The model was calibrated using observed patient trajectories from the 3000-bed Yale

New-Haven Hospital system, collected and processed during the surge in COVID-19 cases in

Connecticut between March and July 2020. We validate the model dynamics using the ob-

served hospital census during this time period. We conclude with recommendations to guide

scientists developing model-based recommendations for managing hospital capacity during

the COVID-19 pandemic.

4.2 Methods

4.2.1 Model structure

In this model, we describe the flow of COVID+ patients through a hospital system using a

system of ordinary differential equations. By COVID+ patients presenting to ED, we refer to

patients who have either tested positive for COVID-19 prior to admission or those that test

positive for COVID-19 within 14 days of admission. Thus, we exclude two ways patients within
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the hospital could be COVID-19 positive, namely through nosocomial infection and through

transfers from other hospitals post-triage. We model transitions between eight different com-

partments: 1) presentations to the health system or emergency department, where triage oc-

curs P , 2) floor beds F , 3) ICU beds C, 4) MS, corresponding to a state post-discharge from

the emergency department (ED) for those patients with mild symptoms, 5)R, corresponding to

recovery post-discharge for patients admitted to the hospital, 6) WF , the queue for floor beds

which would develop if floor beds are not available, 7) WC, the queue for ICU beds which

would develop if ICU beds are not available, and 8) death. We model the following events in

the health system.

• Presentation to the health system: COVID+ patients can present to their health sys-

tem for asymptomatic COVID-19 screening, following a positive COVID-19 test, or fol-

lowing initial onset of symptoms. They may present either to outpatient clinics or to the

ED of their local hospital. At these locations, triage occurs, such that patients are either

discharged with mild symptoms, admitted to the floor, or admitted to the ICU.

• Following admission to the floor: Patients admitted to the floor can be discharged

directly from the floor, require stepping up to an ICU due to a deterioration in their condi-

tion, or die on the floor. Patients may arrive on the floor from the ED or after leaving the

ICU following an improvement in their condition.

• Following admission to the ICU: Patients in the ICU require frequent monitoring and

intensive interventions. COVID+ patients are especially at risk of requiring critical care

due to high rates of pneumonia and acute respiratory distress syndrome (ARDS) re-

ported in COVID+ patients [2–5, 112, 130]. Following recovery, ICU patients step down

to the floor for discharge. Patients may also die in the ICU.

• Following discharge from the ED: If a patient’s condition is not severe, COVID+ pa-

tients are instructed to return home and to self-isolate. Most patients with mild disease
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recover during their isolation. Some patients return to the ED in worsened condition, and

a small number may die after discharge.

• If the floor has reached capacity: If floor beds are not available, patients may have to

wait in the ED or elsewhere until a bed becomes available. During this time, patients are

often monitored or receive care. They may be discharged if they recover, or die.

• If the ICU has reached capacity: If ICU beds are not available, patients may have to

wait on the floor, in the ED, or elsewhere until a bed becomes available. Because these

patients are critically ill, the probability of death if no care if received is high.

The rate parameters associated with each step of the model are shown in Table 4.1.

We stratify incoming patients into age tiers, based on known differences in patient outcomes

by age [2]. Dynamics for each age group are governed by the following system of ordinary

differential equations. The dynamics for each age group are coupled by the constraint on total

hospital floor beds L and total ICU beds M . For age group i,

dPi
dt

= ξMSi
MSi − (σMSi

+ σCi
+ σFi

+ µPi
)Pi

dMSi
dt

= σMSi
Pi − (φ+ µMSi

+ ξMSi
)MSi

dWCi
dt

= (σCi
Pi + θFi

Fi + θWFi
WFi)

(
1− 1

1 + es(C−M)

)
− µWCi

WCi − ηWCi

(
1

1 + es(C−M)

)
dCi
dt

= (σCi
Pi + θFi

Fi + θWFi
WFi + ηWCi)

(
1

1 + es(C−M)

)
− (µCi

+ χCi
)Ci

dWFi
dt

= (σFi
Pi + χCi

Ci)

(
1− 1

1 + es(F−L)

)
− ζWFi

(
1

1 + es(F−L)

)
− (µWFi

+ θWFi
)WFi

dFi
dt

= (σFi
Pi + ζWFi + χCi

Ci)

(
1

1 + es(F−L)

)
− (χFi

+ µFi
+ θFi

)Fi

dRi

dt
= φMSi + χFi

Fi

dDi

dt
= µMSi

MSi + µWCi
WCi + µCi

Ci + µWFi
WFi + µFi

Fi,
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Table 4.1: Rate parameters included in the model of hospital capacity

Parameter Description

Rates of departure from ED
σMS Rate at which ED patients are triaged as having mild symptoms
σC Rate at which ED patients are triaged to the ICU (boarding)
σF Rate at which ED patients are triaged to the floor

Rates of departure from the floor or floor queue
θF Rate of stepping up from the floor to the ICU
χF Rate of stepping down from the floor (discharge)
ζ Rate at which patients are moved to the floor from the floor queue
χWF Rate of stepping down from the floor queue (discharge)
θWF Rate of stepping up from the floor queue to the ICU

Rates of departure from the ICU or ICU queue
χC Rate of stepping down from the ICU to the floor or the floor queue
η Rate at which patients are moved to the ICU from the ICU queue

Rates for those with mild symptoms
φ Rate of recovery of patients triaged as having mild symptoms
ξMS Rate at which patients with mild symptoms return to the ED

Death rates
µMS Death rate of patients triaged as having mild symptoms
µC Death rate of patients in the ICU
µF Death rate of patients on the floor
µWC Death rate of patients waiting for an ICU bed
µWF Death rate of patients waiting for a floor bed
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Figure 4.1: Model structure and parameters. Simplified dynamics are presented here for the
case of one age-group for clarity. Patients present to the hospital system via the ED, where
they are triaged and either discharged or admitted to the hospital. Patients who are admitted
may go to the floor or directly to the ICU. The model captures patient flow from the floor to
the ICU and back, as well as discharge dynamics from both the ED and the floor to recovery.
Rate parameters which capture the speed at which patients transition between compartments
are included here and described in Table 4.1. Arrows in red and blue represent patient-flow
over-flow dynamics in the ICU and floor, respectively. Olive-colored arrows represent death
rates from each compartment.
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where Ii(t) represents initial COVID+ presentations to the ED of age group i, F =
∑

i Fi

is the occupied floor capacity, C =
∑

iCi is the occupied ICU capacity, L and M are their

respective available capacities, and D is the state of death. The exponential sigmoidal terms

in the above system of equations represent approximations to the ideal on-off switch, i.e.,

f(x) = 1x≥i ≈ (1− 1
1+es(x−i) ), with the parameter s controlling the fidelity of the approximation,

the higher, the better. The use of sigmoids speeds up the computation of the solution of the

system of equations significantly, allowing the user to rapidly observe the effect of changes in

inputs on the outputs of the model with minimal error. A graphical depiction of these dynamics

is shown in Figure 4.1.

4.2.2 Specifying dynamics and capacity scenarios

The following features of the model are modifiable by the user in the web application in which

the model is implemented.

The user begins by specifying an infection scenario: the number of COVID+ patients that

present to a health system per day during a specified time horizon. The user chooses a num-

ber of days between 2 and 60 during which to generate capacity projections. They also select

the initial number of COVID+ presentations at day zero of the projection and the expected

behavior of the change in the number of COVID+ presentations during the time of the projec-

tion. For example, the user could choose an initial number of presentations of 50 patients,

“exponential" change in patients, a doubling time of 14 days, and a time horizon of 14 days.

This scenario translates to an exponential increase in the number of COVID+ presentations

per day, such that 100 COVID+ patients present to the health system on day 14. Choices for

the type of increase were: exponential, linear, saturated, and flat (no increase).

The goal of the model is to allow hospitals to look at projections of their occupancy and ex-

pected clinical outcomes. We allow the user to specify both the baseline number of available
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beds in the ICU and on the floor and a possible policy response, an increase their number

of floor and ICU beds dedicated to COVID+ patients. For this purpose, we allow the user to

specify a one-time linear ramping of capacity for either/both type(s) of beds in an interval within

the time-frame. In terms of the system of differential equations laid out above, in that case L

and M would be replaced with the piece-wise linear L(t) and M(t) respectively.

The user may also modify several key parameters which reflect the patient population in a

specific catchment area, allowing the user to tailor the model to their particular needs. These

parameters include the age distribution of admitted COVID+ patients, the average length of

stay of COVID+ patients in the ICU and on the floor, and the probability of death of COVID+

patients in the ICU and on the floor. The user may only specify length of stay and probability

of death for two age groups: adults between 18-64 years old and 65 years and above. We

assume that the proportion of COVID+ patients under the age of 18 is small. Thus, the output

of the model should not be sensitive to variation in these parameters for this age group. Default

values in the web application are based on the YNHHS patient population.

Key outputs of the model which inform decision-marking regarding resource allocation are: the

number of days to overflow, extra beds needed for COVID+ patients, number of deaths in each

compartment of the model, and predicted case-fatality rate. Time to overflow and number of

extra beds needed for COVID+ patients are important metrics for hospital decision-makers.

Increasing the number of beds dedicated to COVID-19 patients is one of the most significant

policy levers available to hospital management. The ability to predict overflow could lead to

dedication of non-COVID resources to COVID+ patients or the acquisition of additional space,

for example. It is also clinically important, especially as the outcomes of patients that need

ICU care are significantly worse if there are no available beds (a surge scenario). The pre-

dicted number of deaths among COVID+ patients helps decision-makers with understanding

the possible consequences of allocating beds and resources in different ways. The number of

deaths expected under the prescribed infection scenario and capacity limits are broken down
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by location: deaths in the ICU, on the floor, and in the floor and ICU queues. The case fatal-

ity rate is computed using the number of predicted deaths and the total number of COVID+

patients entering the system during the time of the simulation.

4.2.3 Model calibration

Data sources

We used data from the Yale-New Haven Hospital System (YNHHS) collected between March

2020 and July 2020 to calibrate the model. YNHHS consists of five hospitals: Yale-New

Haven Hospital (1,608 beds), Bridgeport Hospital (719 beds), Greenwich Hospital (304 beds),

Lawrence and Memorial Hospital (260 beds), and Westerly Hospital (81 beds). For parameters

which could not be estimated using available YNHHS data, we used population-level estimates

from the Center for Disease Control’s Morbidity Mortality Weekly Report (CDC MWWR) [2–5].

This study received approval from the Institutional Review Board of Yale University’s Human

Research Protection Program (IRB ID: 2000028666).

We used three YNHHS data sources to calibrate the model: individual-level records for pa-

tients who had tested positive for COVID-19 in the YNHHS Emergency Departments (ED),

individual-level records for patients who had been admitted to the hospital, and hospital-level

summaries of capacity. For patients presenting to a YNHHS ED, we had access to ED ar-

rival time, the primary chief complaint, age, ED departure time, admission status, admission

department, the time of the positive COVID-19 laboratory test, and the date and time of pre-

vious presentation to the ED. For patients who were admitted, we had access to daily records

including inpatient departments, location, age, and the dates at which they were moved be-

tween departments, admitted to the ICU, initiated on ventilation, discharged, or died. Using

these data, we reconstructed patient trajectories through the YNHHS hospitals. Figure 4.2A
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shows the total census of hospitalized COVID+ patients in YNHHS, as well as the census

on the floor and ICU specifically. Figures 4.2B-E show the survival probabilities of death and

departure from the floor and ICU, without accounting for competing hazards.

Procedure for calibration of parameters

To fit the model, we used survival analysis with competing risks to estimate the following pa-

rameters governing rates of transition between hospital departments using the patient records

available in the YNHHS dataset. We estimated three parameters describing rates of departure

from the ED: from the ED to discharge (σMS), the ED to admission to the floor (σF ), and the

ED to admission to the ICU (σC). We used inpatient data to estimate the rate of transition

from the floor to the ICU (θF ), rate of discharge from the floor (χF ), rate of transition from

the ICU to the floor (χC), death while on the floor (µF ) and death while in the ICU (µC). We

performed a primary analysis in which time to all competing events were assumed to follow a

gamma distribution. We estimated parameters in three age groups (0-17 years, 18-64 years,

65+ years). We used bootstrapping with 1,500 samples to generate estimates of the variance

of these parameters. We performed two secondary analyses with simpler parameterizations

to assess the performance of the estimated model parameters under different distributional

assumptions: 1) time to each competing event is exponentially distributed, or 2) time to dis-

charge follows a gamma distribution, and time to all other events is exponentially distributed.

Additional statistical details of the procedure are described in the Supplementary Appendix.

Several parameters could not be estimated from available YNHHS data. In most cases, these

parameters were estimated using data published in the CDC MMWR [2–5]. The YNHHS data

did not provide information regarding probabilities or times to full recovery among individuals

after they were discharged. Therefore, rates of recovery (φ), and death rates among indi-

viduals with mild symptoms (µMS) were calculated in each age group from population-level

proportions provided by CDC MMWR [2]. Because queues for floor beds and ICU beds did
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Figure 4.2: A: The census of hospitalized patients throughout YNHHS. The total census is
shown with gray points, the census on the floor is shown in black, and the census in the ICU
is shown in red. B and D: Kaplan-Meier curves describing the probability of remaining on the
floor or ICU given time since arrival to the floor or ICU respectively. Patients are considered
to be right-censored if they are still on the floor or in the ICU at the end of the observation
period. Departure includes discharge, transfer to another department, and death. C and E:
Kaplan-Meier curves describing the probability of survival, and not death, on the floor and in
the ICU given time since arrival to the floor or ICU respectively. Patients are considered to be
right-censored if they are transferred to another department, are discharged, or remain in the
floor or in the ICU at the end of the observation period.
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not occur at YNHHS hospitals at the time of model implementation, we were required to make

several assumptions to generate the remaining parameters. We estimated that the rate of

death, discharge, and step up to the ICU from the floor queue (µWF , χWF , and θWF , respec-

tively) would be the same as death and discharge rates from the floor, due to the fact that

many hospitals are able to provide care to patients who are waiting for a floor bed before one

becomes available. We set the average time of death in the ICU queue without access to criti-

cal care resources to be 6 hours. We set the probability of movement from the floor queue to

an open floor bed and the ICU queue to an open ICU bed to be 0.9, reflecting a 90% chance

that a patient would move from the queue to an open bed before discharge, death, or transition

to another department. Rates of movement out of the queues were calculated accordingly.

4.2.4 Parameter estimates

The observed time-series of patients entering each department included both COVID-19 pa-

tients admitted directly to each department and direct transfers from other hospitals. Figure

4.2A shows the total census of COVID-19 patients admitted to all YNHHS hospitals during the

observation period. Parameter estimation used all observed YNHHS patient trajectories, and

model fit was evaluated using the the largest hospital, YNHH, where decision-making regard-

ing resource allocation was most critical. In total, 2,275 COVID-19 patients who met criteria

were admitted or transferred to YNHH during the observation period. The estimated capacity

of YNHH for COVID-19 patients was 180 beds in the ICU and 578 beds on the floor. YNHH

neither reached capacity nor ran out of ventilators during the surge in COVID-19 cases. (Fig-

ure 4.2) We used individual-level patient trajectories and time-stamped transitions between

departments to calculate the time spent by each patient in the ED, on the floor, and in the

ICU. We determined the destination of each patient after each of their stays in these depart-

ments; discharge, death, or another hospital department. We also identified patients whose

trajectories and outcomes were right-censored by the end of the observation period.
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The results of one analysis, in which model parameters were estimated assuming that time to

each event follows a gamma distribution, are listed in Table 4.2. Additional results are included

in the Appendix. Using these estimated rates, we computed transition probabilities between

the ED, floor, and ICU, and lengths of stay in each department; we include these transformed

values in Table 4.3. As expected, a large percentage (73%, 95% CI: 56%-90%) of those under

the age of 18 years were discharged from the ED with mild symptoms, while a majority (68%,

95% CI: 65%-71%) of those over the age of 65 were admitted to the floor. About 21% (95%

CI: 19-24%) of patients over the age of 65 were admitted directly to the ICU from the ED. We

estimate similarly that 20% of patients between 19-64 years were admitted directed to the ICU,

but the variability in the estimate is higher than that of the older age group (95% CI: 9.5-31%).

Of patients who completed their trajectories, 13% of adults between 18-64 years requiring

critical care died in the ICU, and 27% of adults over 65 years requiring critical care died in the

ICU. Average length of stay (LOS) on the floor was 10 days (95% CI: 9.0, 11) for those over

the age of 64, as opposed to 3.3 days (95% CI: 2, 4.6) and 7.6 days (95% CI: 7.1, 8.1) for

those between 0-18 years and between 18-64 years respectively. LOS in the ICU was longest

on average, 14 days (95% CI: 12, 116)) for adults between 19-64 years, 11 days (95% CI: 9.7,

13) for adults over 65 years, and 8.5 days (95% CI: 1.5-15) for children under the age of 18.

4.2.5 Model fit

Accurate predictions of occupancy were the most important output of the model, as a tool to

help hospital administrations with surge planning. We evaluated the ability of the model to

generate predictions of hospital occupancy at YNHH that matched the observed occupancy

during a surge in COVID-19 patients at Yale-New Haven Hospital (YNHH), the largest of the

five hospitals in YNHHS. These predictions were generated using the observed time series of

patients admitted to each YNHH department between March 8 and June 12, 2020, and were

compared to the observed occupancy in each department during this time. Parameters were
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0-18 years 18-64 years 65+ years

Estimated parameters
σMS 1.1 (0, 4.1) 0.081 (0, 1.9) 0.55 (0.43, 0.68)
σC 0.017 (0, 0.32) 0.075 (0, 0.67) 1.1 (0.87, 1.2)
σF 0.37 (0, 2.3) 0.035 (0, 2.4) 3.4 (3.2, 3.6)
χC 0.12 (0.011, 0.27) 0.061 (0.05, 0.072) 0.064 (0.052, 0.076)
χF 0.28 (0.17, 0.4) 0.11 (0.11, 0.12) 0.071 (0.068, 0.075)

χWF 0.28 (0.17, 0.4) 0.11 (0.11, 0.12) 0.071 (0.068, 0.075)
θF 0.0095 (0, 0.041) 0.014 (0.011, 0.017) 0.013 (0.011, 0.016)

θWF 0.0095 (0, 0.041) 0.014 (0.011, 0.017) 0.013 (0.011, 0.016)
ζ 2.7 (1.5, 4) 1.2 (1.1, 1.3) 0.87 (0.79, 0.95)

ξMS 0.012 (0.012, 0.012) 0.0054 (0.0054, 0.0054) 0.0039 (0.0039, 0.0039)
µMS 0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066)
µC 0.0035 (0.0023, 0.0048) 0.0083 (0.0038, 0.013) 0.024 (0.018, 0.03)
µF 0.002 (0.0018, 0.0022) 0.00033 (0, 0.001) 0.012 (0.0092, 0.015)

µWF 0.002 (0.0018, 0.0022) 0.00033 (0, 0.001) 0.012 (0.0092, 0.015)

Fixed parameters
φ 0.088* 0.094* 0.095*

µWC 4 4 4
η 36 36 36

Table 4.2: Model parameters: Included in this table are both estimated rates of transition
with 95% confidence intervals, rates taken from external sources [2–5] and rates which we set
after being unable to determine then either from data or the literature. The estimated rates
are based on the assumption that the time to each competing risk follow a two-parameter
gamma distribution, where the product of the two parameters yield the estimated mean of the
distribution. These parameters were estimated separately for each age group. Rates labeled
with (*) were taken from CDC MMWR [2].
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0-18 yrs 19-64 yrs 65+ yrs
Age distribution in ED, % 0.02 (0.02, 0.02) 0.58 (0.58, 0.58) 0.4 (0.4, 0.4)

% discharged from ED 0.73 (0.56, 0.9) 0.54 (0.33, 0.75) 0.11 (0.09, 0.13)
% admitted from ED to floor 0.25 (0.1, 0.4) 0.26 (-0.053, 0.57) 0.68 (0.65, 0.71)
% admitted from ED to ICU 0.037 (-0.02, 0.052) 0.2 (0.095, 0.31) 0.21 (0.19, 0.24)

% death on the floor 0.024 (0.015, 0.033) 0.0052 (-0.00013, 0.011) 0.13 (0.1, 0.15)
% death in the ICU 0.01 (0.0069, 0.013) 0.13 (0.069, 0.18) 0.27 (0.22, 0.32)

% step up from floor to ICU 0.52 (0.22, 0.81) 0.79 (0.73, 0.85) 0.65 (0.59, 0.7)
% step down to the floor 0.042 (-0.034, 0.12) 0.11 (0.089, 0.13) 0.14 (0.12, 0.16)
Triage time in ED (days) 0.81 (-0.17, 1.8) 4 (-1.2, 9.3) 0.2 (0.18, 0.21)

Average LOS on floor (days) 3.3 (2, 4.6) 7.6 (7.1, 8.1) 10 (9.6, 11)
Average LOS in ICU (days) 8.5 (1.5, 15) 14 (12, 16) 11 (9.7, 13)

Table 4.3: Probabilities of transition between the ED, Floor, and ICU, and lengths of
stay: Included in this table are both estimated probabilities of transition with 95% confidence
intervals, and lengths of stay in each hospital department. As with the estimated rates in
Table 4.2, the estimated probabilities and lengths of stay are based on the assumption that
the time to each competing risk follow a two-parameter gamma distribution, where the product
of the two parameters yield the estimated mean of the distribution. These parameters were
estimated separately for each age group.

estimated assuming gamma-distributed time to departure from a department. Figure 4.3 show

the observed occupancy and occupancy predicted by the model according to this analysis.

Appendix figures 4.4 and 4.5) show similar results for the secondary analyses using simpler

distributional assumptions.

The model accurately predicts occupancy in YNHH. Figure 4.3B shows that the ICU occupancy

predicted by the model closely matches the increase in the observed YNHH ICU occupancy

between March and April, the period of peak occupancy between April and May, and the

decrease in occupancy between May and June. Similarly, Figure 4.3A demonstrates that the

model also accurately predicts the increase in floor occupancy between March and April and

the date of peak occupancy, April 18, 2020. The model predicts that floor occupancy on April

18 would be 343 patients (95% CI: 323, 365). The observed YNHH occupancy on April 18

was 405 patients. The model’s prediction for deaths among COVID-19 patients on the floor

and in the ICU were also reasonable but are not shown for privacy reasons.
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Figure 4.3: Inpatient predicted and observed COVID19 floor occupancy (A) and ICU occu-
pancy (B). Parameters describing rates of transition between hospital departments were es-
timated assuming gamma-distributed time to event. The dotted line represents occupancy at
YNHH. The solid red line represents model output based on parameters calculated using our
fitting procedure and capacity estimates from YNHH. The dotted red lines represent estimated
occupancy according to the bounds of 95% confidence intervals for each parameter.
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4.3 Discussion

In this paper, we have presented a model of hospital capacity which was utilized by YNHHS

to inform decision-making regarding resources which would be necessary to handle the surge

in COVID-19 patients at YNHHS. As requested by rapid response guidelines [141], the model

predicts the number of patients requiring hospital resources under a variety of scenarios. We

have described the process that we used to fit the model using data from YNHHS collected as

the surge in COVID-19 patients was occurring. We have provided evidence that our estimation

procedure provides a reasonable estimate of the true dynamics in a system by comparing the

performance the model to the observed dynamics in YNHH during the surge in COVID-19

cases.

The model successfully predicted the most important quantity: occupancy in the ICU, which

is the most scarce resource and most important for helping severely ill COVID-19 patients.

However, this method may have several weaknesses. The model slightly underpredicted floor

occupancy. This could be due to inaccurate assumptions used to estimate the model parame-

ters. The model parameters were estimated for 3 age groups. The model fit could be improved

in future versions by creating additional subgroups according to age and other risk factors for

hospitalization and severe disease in COVID-19 patients. The model also assumes that rates

of transition between departments remains constant over time. However, several factors, in-

cluding changing hospital protocols for triage and treatment, may have resulted in fluctuations

in the rates of transition over time. Such non-stationary behavior is challenging to replicate

and would not be captured by the model or parameter estimation procedure. In addition, the

model is deterministic, and the estimates of variance in occupancy are based on uncertainty

in parameter estimation rather than inherent stochasticity in the model. Improved estimates of

variance might be achieved by making the model fully stochastic.

We expect hospital dynamics for COVID-19 patients to continue to evolve in the future with
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wide-spread vaccination and the rise of new variants. Rates of transition between depart-

ments, lengths of stay on the floor and in the ICU, and rates of death are likely to be substan-

tially different in the current era of widespread vaccination relative to the early days of the pan-

demic due to decreased risk of severe illness in vaccinated individuals and well-established

treatment protocols developed since the beginning of the pandemic. Thus, we recommend

continual re-estimation of the model parameters using patient trajectories observed in the set-

ting of wide-spread vaccination. Hospital dynamics with the development of a new variant

would likely revert suddenly to dynamics similar to those observed in the beginning of the pan-

demic. Model parameters estimated using the dataset described here could be used to predict

model capacity until enough new data are observed to re-estimate model parameters specific

to the new variant.

The urgency of the crisis caused by surging COVID-19 patients contributed substantially to

the challenge of developing a useful model. We would like to conclude to providing a few

recommendations for creating a model in a crisis. First, early collaboration with end-users of

the product was essential. After creation of the model structure and early implementation of

model as an interactive web application, we met several times with administrators at YNHHS

who were in charge of capacity planning. They provided feedback on the model and the web

application, in addition to crucial perspective on the most urgent unmet needs which could be

addressed by the model. Second, we recommend reducing the dependence of these models

on unverifiable assumptions. Instead of constructing a population-level model which would

predict hospitalizations without explicitly modeling dynamics within a hospital, we chose to

use observed ED visits at YNHH to project best and worst case scenarios and individual-level

patient trajectories to capture observed patient dynamics in the model. Therefore, almost

all of the parameters used to fit this model are based on observable data from electronic

health records. Despite using observable data to construct the model, we still had to carefully

consider the implications of the incomplete nature of the dataset. The model was sensitive to

differences in parameters that were estimated using different procedures. The fidelity in the
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predictions of ICU occupancy was only achieved after we took into account right-censoring of

patient trajectories, with sicker patients remaining in the hospital at the time of the analysis.

Third, interactive implementations of any model results should be streamlined to involve the

smallest possible number of parameters for ease of use, and the rest should be reasonable

defaults. Despite the large number of parameters necessary to use the model, we included

only a limited number for users of the web application to manipulate.
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Appendix

4.3.1 Parameter estimation

To estimate model rate parameters, we estimated the exit rate of patients from each compart-

ment of the model, assuming exponentially-distributed or gamma-distributed length of stay

(LOS) in each compartment. We estimated exit rates for each competing hazard.

We estimated the rates of each of these competing hazards by constructing a likelihood func-

tion in the following way. For each competing hazard k, k = 1, .., K, the time until event k is

Tk, and is exponentially distributed with rate λk. We assume independence between all Tk.

We observe T = mink Tk, an indicator δ which takes value k if the subject experienced event

k, and a censoring indicator C which takes value 1 if a subject remains in the hospital at the

end of the study period and is 0 otherwise. We have N total subjects in our dataset, and for

each individual i, i = 1, ..., N , the observed data Oi = (ti, δi, Ci).

We constructed a likelihood function to estimate the rate parameters λk for each of Tk ∼

exp(λk) or shape and scale parameters αk and βk if Tk ∼ Gamma(αk, βk). Each set of

distributional assumptions utilizes a different set of parameters, so we denote generally the

vector of parameters used in a particular likelihood with Θ and the parameters describing

the distribution of Tk with θk. We performed three analyses using different distributional as-

sumptions for the density fk(t; θk). The first analysis assumed that all Tk were exponentially

distributed. The second analysis assumed that all Tk were exponentially distributed, except for

those corresponding to discharge, which were gamma distributed. The third analysis assumed

two-parameter gamma distributions for all Tk. As is typical in survival analysis, the density of

time to event Tk is fk(t; θk), the survival function for event type k is Sk(t; θk) = (1− Fk(t; θk)),

the hazard of event k is hk(t; θk) = fk(t; θk)/Sk(t; θk), the overall survival function given inde-
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pendence between events is S(t; Θ) =
K∏
k=1

(1 − Fk(t; θk)). The contribution of an uncensored

individual i with an observed outcome is:

fk(ti; θk) = hk(ti; θk)
K∏
k=1

Sk(ti; θk) = fk(ti; θk)
∏
j 6=k

(1− Fj(ti; θk))

The contribution of a censored individual is simply
K∏
k=1

(1− Fj(ti; θk)).

Thus, the likelihood function for the observed data is:

L(t1, ..., tN ,Θ) =
N∏
i=1

[ K∏
k=1

fk(ti; θk)
∏
j 6=k

(1− Fj(ti; θk))
]I(δi=k)(1−Ci)

K∏
k=1

(1− Fj(ti; θk))Ci (4.1)

For all instances in which a gamma distribution was assumed, we computed the estimated

mean of each Tk using the maximum likelihood parameter estimates. These estimates, in

addition to estimates obtained assuming exponential distributions, were together used to es-

timate the probability of transition out of each department and length of stay in the ICU and

on the floor in the following away. We assumed all Tk to be exponentially distributed random

variables with rate λk, including those parameters estimated assuming gamma distribution in

the log likelihood. If X is the random variable which denotes the event which occurs, the prob-

ability of transition to a particular event k is P(X = k) = λk∑
k λk

. The length of stay within a

department is also exponentially distributed, withE[T ] =E[mink Tk] = 1∑
k λk

. For the purposes

of parameter estimation, discharge from the ICU and step down from the ICU were considered

to be separate competing hazards. The estimated probability of step down from the ICU used

to parameterize the model is the sum of the probabilities of step down and discharge. Due to

the relatively small number of people discharged directly from the ICU, we considered this to

be a reasonable modification.
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Figures and tables for alternative distributional assumptions in parame-

ter estimation procedure.

1. Exponential model:

0-18 years 18-64 years 65+ years
φ 0.088 (0.088, 0.088) 0.094 (0.094, 0.094) 0.095 (0.095, 0.095)

σMS 1.4 (0, 5) 2.4 (2.2, 2.6) 0.43 (0.36, 0.49)
σC 0.072 (0, 0.33) 0.4 (0.34, 0.47) 0.48 (0.42, 0.55)
σF 0.48 (0, 1.8) 2.1 (2, 2.3) 3.1 (2.9, 3.2)
χC 1.6 (1.6, 1.6) 0.071 (0.06, 0.081) 0.072 (0.061, 0.082)
χF 1.6 (1.6, 1.6) 0.11 (0.1, 0.12) 0.065 (0.062, 0.068)

χWF 1.6 (1.6, 1.6) 0.11 (0.1, 0.12) 0.065 (0.062, 0.068)
θF 7 (7, 7) 0.017 (0.014, 0.02) 0.015 (0.014, 0.017)

θWF 7 (7, 7) 0.017 (0.014, 0.02) 0.015 (0.014, 0.017)
η 36 36 36
ζ 78 (78, 78) 1.2 (1.1, 1.3) 0.86 (0.8, 0.92)

ξMS 0.012 (0.012, 0.012) 0.0054 (0.0054, 0.0054) 0.0039 (0.0039, 0.0039)
µMS 0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066)
µC 2.7e-07 (0, 1.1e-06) 0.0083 (0.0061, 0.011) 0.03 (0.025, 0.035)
µF 5.1e-07 (4.7e-07, 5.6e-07) 0.0024 (0.0015, 0.0033) 0.016 (0.014, 0.018)

µWC 4 4 4
µWF 5.1e-07 (4.7e-07, 5.6e-07) 0.0024 (0.0015, 0.0033) 0.016 (0.014, 0.018)

Table 4.4: Parameters assuming exponential distributions for each competing risk.

0-18 yrs 19-64 yrs 65+ yrs
Age distribution in ED 0.02 (0.02, 0.02) 0.58 (0.58, 0.58) 0.4 (0.4, 0.4)

% discharged from ED 0.71 (0.62, 0.81) 0.49 (0.47, 0.51) 0.11 (0.092, 0.12)
% admitted from ED to floor 0.25 (0.16, 0.34) 0.43 (0.41, 0.45) 0.77 (0.75, 0.79)
% admitted from ED to ICU 0.037 (-0.0032, 0.078) 0.081 (0.07, 0.092) 0.12 (0.11, 0.14)

% death on the floor 9.6e-07 (8.6e-07, 1.1e-06) 0.019 (0.012, 0.025) 0.16 (0.15, 0.18)
% death in the ICU 1.5e-07 (4.6e-08, 2.5e-07) 0.11 (0.079, 0.13) 0.29 (0.25, 0.33)

% step up from floor to ICU 0.46 (0.46, 0.46) 0.72 (0.68, 0.76) 0.59 (0.54, 0.63)
% step down to the floor 0.014 (0.014, 0.014) 0.13 (0.11, 0.15) 0.16 (0.14, 0.18)
Triage time in ED (days) 0.51 (-0.19, 1.2) 0.2 (0.19, 0.22) 0.25 (0.24, 0.26)

Average LOS on floor (days) 2.2 (2.2, 2.2) 7.5 (7.1, 8) 10 (9.9, 11)
Average LOS in ICU (days) 0.13 (0.13, 0.13) 12 (11, 14) 9.7 (8.7, 11)

Table 4.5: Probabilities of transition and lengths of stay assuming exponential distributions on
time to each competing risk.

113



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●

●

●
●
●

●
●●

●

●
●

●

●

●
●

●

●●

●
●
●
●

●

●
●

●
●●

●
●
●
●

●

●
●
●●●

●

●

●

●●

●●
●

●

●

●
●●

●
●

●●

●●
●●

●

●
●

●
●●●

●

●
●
●
●
●
●

●●
●
●
●
●●●●

Mar Apr May Jun

0
10

0
20

0
30

0
40

0

YNHH floor occupancy

Date

P
at

ie
nt

s

● Observed

Predicted

A

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●

●

●

●

●●
●

●
●

●
●

●●

●
●

●

●●●●●●
●

●
●

●

●●

●●

●

●●

●

●●

●●

●

●

●●●

●

●
●●●●

●●●●
●

●

Mar Apr May Jun

0
20

40
60

80
10

0

YNHH ICU occupancy

Date

P
at

ie
nt

s

● Observed

Predicted

B

Figure 4.4: Inpatient predicted and observed COVID19 floor occupancy (A) and ICU occu-
pancy (B). Parameters describing rates of transition between hospital departments were esti-
mated assuming exponentially distributed time to event. The dotted line represents occupancy
at YNHH. The solid red line represents occupancy predicted by the model based on parame-
ters calculated using our fitting procedure and capacity estimates from YNHH. The dotted red
lines represent estimated occupancy according to the bounds of 95% confidence intervals for
each parameter.
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2. Gamma distribution for time to discharge from ED, floor, or ICU; exponential other-

wise:

0-18 years 18-64 years 65+ years
φ 0.088 (0.088, 0.088) 0.094 (0.094, 0.094) 0.095 (0.095, 0.095)

σMS 1.1 (0, 5) 0.37 (0, 2.3) 0.55 (0.42, 0.68)
σC 0.072 (0, 0.32) 4.1 (1.7, 6.6) 0.48 (0.42, 0.55)
σF 0.48 (0, 1.7) 4 (1.4, 6.6) 3.1 (2.9, 3.2)
χC 0.13 (0.13, 0.13) 0.063 (0.055, 0.071) 0.066 (0.057, 0.075)
χF 0.027 (0, 0.098) 0.11 (0.11, 0.12) 0.071 (0.068, 0.075)

χWF 0.027 (0, 0.098) 0.11 (0.11, 0.12) 0.071 (0.068, 0.075)
θF 0.52 (0.52, 0.53) 0.017 (0.014, 0.02) 0.015 (0.014, 0.017)

θWF 0.52 (0.52, 0.53) 0.017 (0.014, 0.02) 0.015 (0.014, 0.017)
η 36 4 36 36
ζ 5 (4.7, 5.6) 1.2 (1.1, 1.3) 0.92 (0.86, 0.99)

ξMS 0.012 (0.012, 0.012) 0.0054 (0.0054, 0.0054) 0.0039 (0.0039, 0.0039)
µMS 0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066) 0.00066 (0.00066, 0.00066)
µC 6.3e-07 (6.1e-07, 6.6e-07) 0.0083 (0.0061, 0.011) 0.03 (0.025, 0.035)
µF 7.6e-08 (0, 3.4e-06) 0.0024 (0.0015, 0.0033) 0.016 (0.014, 0.018)

µWC 4 4 4
µWF 7.6e-08 (0, 3.4e-06) 0.0024 (0.0015, 0.0033) 0.016 (0.014, 0.018)

Table 4.6: Parameters assuming exponential distributions for each competing risk, except for
gamma distributed time to discharge.

4.3.2 Design and construction of the R shiny web application

A version of the model described in this report was implemented in the R shiny web applica-

tion, deployed at https://forrestcrawford.shinyapps.io/covid19_icu/. Fig-

ure 4.6 shows the default page of the web application. This interactive web application was

intended to be a tool for scenario analysis, used by hospital administrators and departments

involved in capacity planning during the COVID-19 pandemic. This tool takes as an input an

infection scenario which can be specified by the user, the capacity and current occupancy of

the hospital system, and parameters describing basic features of the patient population served

by the hospital. The tool allows the user to specify a strategy for capacity expansion, observing

the effect of adding beds to the system. The outputs of the tool include projections of expected
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Figure 4.5: Inpatient predicted and observed COVID19 floor occupancy (A) and ICU occu-
pancy (B). Parameters describing rates of transition between hospital departments were esti-
mated assuming exponentially-distributed time to event, except for time to discharge in the ICU
and on the floor, which were assumed to be gamma-distributed. The dotted line represents
either occupancy or cumulative observed at YNHH. The solid red line shows occupancy pre-
dicted by the model based on parameters calculated using our fitting procedure and capacity
estimates from YNHH. The dotted red lines represent estimated occupancy according to the
bounds of 95% confidence intervals for each parameter.
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0-18 yrs 19-64 yrs 65+ yrs
Age distribution in ED 0.02 (0.02, 0.02) 0.58 (0.58, 0.58) 0.4 (0.4, 0.4)

% discharged from ED 0.69 (0.56, 0.81) 0.17 (-0.26, 0.59) 0.13 (0.11, 0.16)
% admitted from ED to floor 0.27 (0.16, 0.39) 0.56 (0.41, 0.71) 0.75 (0.72, 0.78)
% admitted from ED to ICU 0.037 (-0.0043, 0.086) 0.27 (-0.00055, 0.54) 0.12 (0.1, 0.13)

% death on the floor 9.4e-07 (-2.5e-07, 2.1e-06) 0.018 (0.012, 0.024) 0.15 (0.14, 0.17)
% death in the ICU 5.4e-07 (-1.2e-07, 1.2e-06) 0.12 (0.089, 0.15) 0.31 (0.27, 0.35)

% step up from floor to ICU 0.28 (0.28, 0.28) 0.8 (0.77, 0.83) 0.62 (0.58, 0.66)
% step down to the floor 0.31 (0.3, 0.31) 0.13 (0.11, 0.14) 0.15 (0.13, 0.17)
Triage time in ED (days) 0.59 (-0.22, 1.4) 0.16 (0.074, 0.24) 0.24 (0.23, 0.26)

Average LOS on floor (days) 0.35 (0.34, 0.36) 7.3 (6.9, 7.8) 9.6 (9.2, 10)
Average LOS in ICU (days) 23 (23, 23) 14 (12, 15) 10 (9.2, 11)

Table 4.7: Probabilities of transition and lengths of stay assuming exponential distributions on
time to each competing risk, except for gamma-distributed time to discharge.

occupancy, deaths, an estimate of the time at which the system would reach capacity, and an

estimate of the number of extra beds which would be necessary to relieve the overflow.

Because exact time series of COVID-19 presentations were not always easily accessible, we

created an opening dashboard on the “Scenario" tab which allows the user to specify an infec-

tion scenario (Fig. 4.7). On this dashboard, the user can specify a time horizon for projections,

the shape of the infection curve, and parameters which control the shape of this curve. The

infection curve represents the number of new COVID-19 presentations to the health system

each day, rather than the number of new COVID-19 infections in the population. Thus, the

inputs to this model could be based on model fits to observed COVID-19 ED presentations at

a particular hospital. This feature allows users to test various scenarios without having access

to exact time series of ED presentations. Furthermore, these scenarios can be studied without

knowledge of highly uncertain dynamics of new infections in the population.

ED presentation dynamics

The functions for ED presentations and capacity are intentially left unspecified and can be set

by the user. The user can choose among the following options:

117



Figure 4.6: Home page: The default page of the web application, available at https://
forrestcrawford.shinyapps.io/covid19_icu/

• Exponential increase: The number of ED presentations rises exponentially over the

time-period in question from its initial value, with an exponent of ln(2)
Tdoubling

, with Tdoubling being

the user-specified doubling time. This is especially relevant early-on in the epidemic.

• Linear increase: The number of ED presentations rises linearly over the time-period

in question from its initial to its final value. This is relevant when the epidemic has not

peaked but is being kept somewhat in check by various interventions.

• Saturating: In this case, the number of ED presentations plateaus to its final value at

the end of the time-horizon, rising as a logistic function centered in the middle of the time

period under study. This is relevant when the epidemic is close to peaking.

• Flat: The number of ED presentations remains equal to day zero across the time-frame.

The user can also model the effect of exponential, linear, and saturating decrease in ED pre-
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Figure 4.7: Scenario tab: allows the user to select a timeseries of daily COVID-19 presenta-
tions to a health system.

sentations using the tool, for example due to the implementation of non-pharmaceutical inter-

ventions.

On the “Capacity” and “Strategy” tabs, the user can specify the capacity of their healthcare

system and a strategy for capacity expansion. Defaults in the web application are based on

YNHH capacity. The “Capacity" tab includes inputs for the number of floor and ICU beds avail-

able at baseline, as well as the percentage occupied at time zero for the intended simulation

(Fig. 4.8). The “Strategy" tab can be toggled on and off depending on whether a strategy for

further surge is planned (Fig. 4.9). When on, the user can specify a target number of beds for

the floor and ICU, as well as the time frame within which the capacity expansion is expected

to occur.

The “Parameters" tab allows the user to adjust several parameters which we determined to

be easily estimated and important for tailoring model dynamics to specific patient populations.

For example, overall admission and death rates are significantly different between age groups,
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Figure 4.8: Capacity tab: allows the user to specify the number of beds available to COVID-19
patients, and the number of beds occupied at time zero.

Figure 4.9: Strategy tab: allows the user to specify whether or not the health system plans to
surge, when the surge would occur, and the number of beds planned.
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and we have included a two-part slider which allows the user to control the age distribution

of the population in the simulation. Furthermore, average LOS on the floor and in the ICU is

tracked by hospitals and influences both occupancy and the time at which the hospital would

reach capacity.

The model outputs are presented on the “Plots" and “Summary” tabs. We included “Key point”

which include the most important outputs to hospital administrators, chosen based on feed-

back from YNHHS administrators. Of especial interest were the time to full capacity and the

number of additional beds, if any, which would be necessary to accommodate all COVID-19

patients. On the “Plots” tab (Fig. 4.10), Plots A and B show daily and cumulative COVID-19

presentations to the health system. Plots B and C show cumulative deaths predicted by the

model, as well as a breakdown of these deaths by department. Plot D shows the occupancy

in the ICU and the floor predicted by the model, as well as flags which denote the time at

which capacity is reached, if it is exceeded during the simulation. Exact values for anticipated

deaths, days to ICU and floor overflow, extra beds needed, and predicted case-fatality rates

are summarized on the “Summary” tab.

To aid new users in the use of the model, we have included three tabs - “Input”, “Outputs”, and

“About” - which qualitatively describe the model inputs, outputs, and structure.
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Figure 4.10: Plots tab: These plots are the main output of the model. Plot A shows the time
series of presentations to the ED, Plot B shows cumulative ED presentations and projected
cumulative deaths, and Plot C shows cumulative deaths by location. Plot D demonstrates
projected occupancy on the floor and in the ICU, as well as a flag which appears with the time
at which capacity of the healthcare system would be overwhelmed given the scenario and
capacity settings entered by the user.
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Chapter 5

Conclusion

In the dissertation, we have presented three cases in which the causal inference and elec-

tronic health record data have allowed us to reexamine the way that we evaluate the effects

of medical interventions and the system by which we deliver medical care. We used princi-

ples of causal inference to demonstrate that trials of biomarker targets may not be the optimal

study design by which to establish clinical guidelines for hypertension. We attempted to rem-

edy this problem by employing electronic health records and methods from causal inference

simultaneously to assess time-varying strategies for managing hypertension. We also used

electronic health record data to address challenges in resource allocation during the COVID-

19 pandemic, demonstrating that such a data-driven strategy could be used to successfully

meet the needs of hospital administrators in crisis.

Two main themes emerged during the completion of this work. First, we demonstrate the im-

portance of writing down a clear and unambiguous causal estimand when the goal is to draw

causal conclusions about an intervention. Second, we demonstrate the importance of ad-

dressing computational limitations in order to successfully conduct analyses and build models

using individual-level electronic health record data.
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In Chapters 2 and 3, we demonstrate that rigorous assessment of treatments for hypertension

requires a clear definition of a target causal estimand. In medical practice, treating to a target

may be useful because the target is associated with improvements in some other outcome.

There are some cases in which this is obviously true. For example, management of HIV

involves administrating anti-retroviral therapy until viral load falls below a threshold, such that

viral replication and chances of transmission become vanishingly small. Therefore, regardless

of the other effects of the anti-retroviral therapies themselves, reaching this target is beneficial.

However, treating to a target in management of chronic diseases like hypertension, in which the

target has a complex “J-shaped" relationship with outcome and the medications themselves

may have some adverse effects, may not be the best strategy. Use of a directed acyclic

graph allowed us to clearly delineate the difference between the randomized target and the

multitude of treatments used to achieve the target, as well as to describe the limitations of

randomization in this setting. Furthermore, our work on assessing the effects of time-varying

treatments required that we define a counterfactual difference in survival probability and an

adjustment strategy which would allow us to estimate that estimand. We could not simply

report a hazard ratio, even after appropriate adjustment, due to ambiguity in the interpretation

of that ratio. In both these projects, rigor in causal inference was necessary to ensure that

studies and analyses generate estimates of the true causal quantities of interest.

In Chapters 3 and 4, we encountered substantial challenges which demonstrate the impor-

tance of both obtaining sufficient computational resources to carry out analyses using elec-

tronic health records and innovating to reduce the computational burden of these analyses.

While statistical innovations will continue to be essential, the obvious limitation on our anal-

ysis in Chapter 3 was computational power, rather than the absence of available statistical

methodology or data. Existing methods in regression analysis, such as multinomial regression

modeling, and machine learning, such as boosted classification and regression trees, could

have been used to build more complex models for estimation of stabilized weights and enable

additional treatment comparisons. However, we were unable to implement these methods due
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to the computational demands of imputation and bootstrapping for variance estimation. Over

time, as patient follow-up in electronic health records increases and methods for extracting ad-

ditional information from written physician records improves, the available data will only grow

in size. In Chapter 4, we encountered similar challenges. Estimation of the model parameters

and their variances also required that we use bootstrapping. Thus, continuous updating of the

parameters based on new electronic health records data, essential to ensuring that the model

reflects current hospital dynamics, was limited by the speed with which we could perform this

estimation. Furthermore, the current implementation of the model described in this work in-

cludes variance estimates based on uncertainty in the parameter estimates. An assessment

of the variance of our capacity predictions taking into account stochasticity in the transitions

between model compartments is computationally intensive. This analysis would have required

computational resources which were not available to us in the early days of the COVID-19

pandemic, when rapid generation of predictions of hospital capacity was required.
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