
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 2022

Processor Microarchitecture Security Processor Microarchitecture Security

Shuwen Deng
Yale University Graduate School of Arts and Sciences, shuwen.deng@yale.edu

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Deng, Shuwen, "Processor Microarchitecture Security" (2022). Yale Graduate School of Arts and Sciences
Dissertations. 586.
https://elischolar.library.yale.edu/gsas_dissertations/586

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/586?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

Processor Microarchitecture Security

Shuwen Deng

2022

As computer systems grow more and more complicated, various optimizations can

unintentionally introduce security vulnerabilities in these systems. The vulnerabilities can

lead to user information and data being compromised or stolen. In particular, the ending of

both Moore’s law and Dennard scaling motivate the design of more exotic microarchitectural

optimizations to extract more performance – further exacerbating the security vulnerabilities.

The performance optimizations often focus on sharing or re-using of hardware components

within a processor, between different users or programs. Because of the sharing of the

hardware, unintentional information leakage channels, through the shared components, can

be created. Microarchitectural attacks, such as the high-profile Spectre and Meltdown attacks

or the cache covert channels that they leverage, have demonstrated major vulnerabilities of

modern computer architectures due to the microarchitectural optimizations.

Key components of processor microarchitectures are processor caches used for achieving

high memory bandwidth and low latency for frequently accessed data. With frequently

accessed data being brought and stored in caches, memory latency can be significantly

reduced when data is fetched from the cache, as opposed to being fetched from the main

memory. With limited processor chip area, however, the cache size cannot be very large.

Thus, modern processors adopt a cache hierarchy with multiple levels of caches, where the

cache close to processor is faster but smaller, and the cache far from processor is slower but

larger. This leads to a fundamental property of modern processors: the latency of accessing

data in different cache levels and in main memory is different. As a result, the timing of

i

memory operations when fetching data from different cache levels, e.g., the timing of fetching

data from closest-to-processor L1 cache vs. from main memory, can reveal secret-dependent

information if attacker is able to observe the timing of these accesses and correlate them

to the operation of the victim’s code. Further, due to limited size of the caches, memory

accesses by a victim may displace attacker’s data from the cache, and with knowledge, or

reverse-engineering, of the cache architecture, the attacker can learn some information about

victim’s data based on the modifications to the state of the cache – which can be observed

by the timing measurements.

Caches are not only structures in the processor that can suffer from security vulnerabilities.

As an essential mechanism to achieving high performance, cache-like structures are used

pervasively in various processor components, such as the translation lookaside buffer (TLB)

and processor frontend. Consequently, the vulnerabilities due to timing differences of

accessing data in caches or cache-like structures affect many components of the processor.

The main goal of this dissertation is the design of high performance and secure computer

architectures. Since the sophisticated hardware components such as caches, TLBs, value

predictors, and processor frontend are critical to ensure high performance, realizing this goal

requires developing fundamental techniques to guarantee security in the presence of timing

differences of different processor operations. Furthermore, effective defence mechanisms can

be only developed after developing a formal and systematic understanding of all the possible

attacks that timing side-channels can lead to.

To realize the research goals, the main main contributions of this dissertation are:

• Design and evaluation of a novel three-step cache timing model to understand theoret-

ical vulnerabilities in caches

• Development of a benchmark suite that can test if processor caches or secure cache

ii

designs are vulnerable to certain theoretical vulnerabilities.

• Development of a timing vulnerability model to test TLBs and design of hardware

defenses for the TLBs to address newly found vulnerabilities.

• Analysis of value predictor attacks and design of defenses for value predictors.

• Evaluation of vulnerabilities in processor frontends based on timing differences in the

operation of the frontends.

• Development of a design-time security verification framework for secure processor

architectures, using information flow tracking methods.

This dissertation combines the theoretical modeling and practical benchmarking analysis

to help evaluate susceptibility of different architectures and microarchitectures to timing

attacks on caches, TLBs, value predictors and processor frontend. Although cache timing

side-channel attacks have been studied for more than a decade, there is no evidence that

the previously-known attacks exhaustively cover all possible attacks. One of the initial

research directions covered by this dissertation was to develop a model for cache timing

attacks, which can help lead towards discovering all possible cache timing attacks. The

proposed three-step cache timing vulnerability model provides a means to enumerate all

possible interactions between the victim and attacker who are sharing a cache-like structure,

producing the complete set of theoretical timing vulnerabilities. This dissertation also

covers new theoretical cache timing attacks that are unknown prior to being found by the

model. To make the advances in security not only theoretical, this dissertation also covers

design of a benchmarking suite that runs on commodity processors and helps evaluate

their cache’s susceptibility to attacks, as well as can run on simulators to test potential

or future cache designs. As the dissertation later demonstrates, the three-step timing

vulnerability model can be naturally applied to any cache-like structures such as TLBs,

iii

and the dissertation encompasses a three-step model for TLBs, uncovering of theoretical

new TLB attacks, and proposals for defenses. Building on success of analyzing caches

and TLBs for new timing attacks, this dissertation then discusses follow-on research on

evaluation and uncovering of new timing vulnerabilities in processor frontends. Since security

analysis should be applied not just to existing processor microarchitectural features, the

dissertation further analyzes possible future features such as value predictors. Although not

currently in use, value predictors are actively being researched and proposed for addition

into future microarchitectures. This dissertation shows, however, that they are vulnerable to

attacks. Lastly, based on findings of the security issues with existing and proposed processor

features, this dissertation explores how to better design secure processors from ground up,

and presents a design-time security verification framework for secure processor architectures,

using information flow tracking methods.

iv

Processor Microarchitecture Security

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Shuwen Deng

Dissertation Director: Jakub Szefer

May, 2022

Copyright © 2022 by Shuwen Deng

All rights reserved.

Contents

Acknowledgements xiv

1 Introduction 1

1.1 Dissertation Contributions . 1

1.1.1 Microarchitectural Vulnerability Modeling 1

1.1.2 Cache and TLB Timing Vulnerabilities and Defenses 2

1.1.3 Vulnerabilities and Defenses of Value Predictors 4

1.1.4 Processor Frontend Vulnerabilities 4

1.1.5 Preliminary Study of Vulnerabilities in Accelerators Beyond CPUs . 5

1.1.6 Hardware Security Verification Framework 6

1.2 Dissertation Organization . 6

2 Background 10

2.1 Computer Microarchitecture . 10

2.1.1 Caches and TLBs . 11

2.1.2 Value Predictors . 14

2.1.3 Processor Frontend . 15

2.2 Side-Channel and Covert-Channel Attacks 17

2.2.1 Examples of Previously Discovered Timing Vulnerabilities 18

2.3 Formal Verification and Security Verification 20

3 Vulnerability Modeling of Timing Attacks on Caches 21

3.1 Three-Step Model . 21

iii

3.1.1 Introduction to the Three-Step Model 21

3.1.2 States of the Three-Step Model . 22

3.1.3 Derivation of All Cache Timing Vulnerabilities 25

3.1.4 Description of Attack Strategies . 31

3.1.5 Soundness Analysis of the Three-Step Model 34

3.1.6 Cache Three-Step Model Summary 41

3.2 Secure Caches Evaluation . 41

3.2.1 Different Types of Secure Caches . 42

3.2.2 Analysis of the Secure Caches . 51

3.2.3 Summary of Secure Cache Techniques 55

4 Evaluation of Timing Vulnerabilities of Caches and TLBs 62

4.1 Cache Timing Vulnerabilities and x86 Benchmark Suite 62

4.1.1 Modeling of Cache Timing Attacks 62

4.1.2 Derivation of All Vulnerabilities . 66

4.1.3 Benchmark Implementation . 70

4.1.4 Validation of the Three-Step Model 73

4.1.5 Evaluation and Security Discussion 74

4.2 Cache Timing Vulnerabilities and Arm Evaluation 80

4.2.1 Threat Model and Assumptions . 80

4.2.2 Arm Security Benchmarks . 81

4.2.3 Cloud-Based Framework . 85

4.2.4 Arm Benchmark Evaluation . 87

4.2.5 Sensitivity Testing of Benchmarks 94

4.2.6 Evaluation of Arm Secure Caches . 99

4.3 TLB Timing Vulnerabilities and Secure TLBs 105

4.3.1 Modeling TLB Timing Vulnerabilities 105

4.3.2 Secure TLB Designs . 111

4.3.3 TLB Security Evaluation . 115

4.3.4 Performance Evaluation . 122

iv

4.3.5 Soundness Analysis of TLB Vulnerabilities 126

4.3.6 Additional Attacks . 130

5 Vulnerability Evaluation of Value Predictors 132

5.1 Threat Model and Assumptions . 133

5.2 Attack Taxonomy . 134

5.3 New Value Predictor Attacks . 134

5.3.1 Train + Test Attack . 134

5.3.2 Test + Hit Attack . 136

5.3.3 Experimental Setup for Evaluation 137

5.3.4 Attack Evaluation and Results . 137

5.4 Derivation of All Expected Value Predictor Attacks 140

5.4.1 Modeling Results . 141

5.4.2 Value Predictor Attack Variants . 142

5.5 Secure Value Predictors . 144

5.5.1 Defense Techniques . 144

5.5.2 Defense Strategies Evaluation . 145

6 Processor Frontend Attacks 146

6.1 Threat Model and Assumptions . 146

6.2 Analysis of the Operation of the Frontend 147

6.3 Processor Frontend Vulnerabilities . 151

6.3.1 Eviction-Based Timing Attack with Multi-Threading 153

6.3.2 Misalignment-Based Timing Attack with Multi-Threading 154

6.3.3 Non-MT Eviction-Based Attack without Multi-Threading 155

6.3.4 Non-MT Misalignment-Based Attack without Multi-Threading . . . 157

6.3.5 Slow-Switch Attack without Multi-Threading 157

6.4 Evaluation of Timing-Channel Attacks . 158

6.4.1 Number of Iterations (p, q) for Attack Steps 158

6.4.2 Threshold for Detecting Transmitted Bit 159

6.4.3 Influence of (d,M) Parameters . 159

v

6.4.4 Influence of Message Patterns . 160

6.4.5 Transmission Rates and Error Rates 160

6.4.6 Power-Channel Attack Evaluation 161

6.5 SGX Attack Evaluation . 162

6.5.1 MT Timing SGX Attacks . 162

6.5.2 Non-MT Timing SGX Attacks . 163

6.5.3 Power-Based SGX Attacks . 164

6.6 Frontend and Instruction Cache-Based Spectre Attack Evaluation 164

6.7 Microcode Patch Detection Evaluation . 165

6.8 Evaluation of Side-Channel Attack and Fingerprinting of Applications . . . 166

6.8.1 Side Channel Design . 167

6.8.2 Fingerprinting of Mobile Applications 167

6.8.3 Fingerprinting of Machine Learning Algorithms 168

6.8.4 Defense about Frontend Attacks . 168

7 Preliminary Study of Vulnerabilities in Accelerators Beyond CPUs 170

7.1 GPU Covert-Channel Attacks . 170

7.1.1 Parallelism Features of GPU . 170

7.1.2 GPU Covert Channels . 171

7.2 Quantum Computing Crosstalk Attacks . 172

7.2.1 Crosstalk and Idle Tomography . 173

7.2.2 Fingerprinting Attack . 174

8 Hardware Security Verification 178

8.1 SecChisel Security Verification Framework 178

8.1.1 Verification Methodology . 179

8.1.2 The SecChisel Framework . 180

8.1.3 Evaluation of the Framework . 189

9 Conclusion and Future Directions 195

9.1 Conclusion . 195

vi

9.2 Future Directions . 198

Appendices 201

A List of Acronyms 201

B List of Publications 207

vii

List of Figures

2.1 Example software and hardware layers of today’s computer systems. 11

2.2 Critical microarchitectural states of processor. 12

2.3 Memory hierarchy (including caches) of a typical modern computer processor. . . 13

2.4 Simplified schematic of a Translation Look-aside Buffer (TLB). 13

2.5 Processor pipeline with a Value Prediction System (VPS). 14

2.6 Microarchitecture details of the frontend and the execution engine. 15

2.7 Typical covert channel setup. 17

2.8 General procedure for security verification. 20

3.1 The 17 possible states for a cache block in the three-step model. 24

3.2 Procedure to derive the effective types of three-step timing vulnerabilities. 25

3.3 Examples of relations between victim’s behavior and attacker’s observation. 25

4.1 Histograms of read, write, and flush operations’ timing under all possible data

movements considered in this work. 64

4.2 The derivation process of all the Strong andWeak types of L1 cache timing vulnerabilities. 68

4.3 Example pseudo code of #42 vulnerability Vu Aa Vu for read (Vu), write (Aa),

and write (Vu) case running in hyper-threading setting. 72

4.4 Evaluation of 88 Strong types of vulnerabilities on different machines. 74

4.5 Evaluation of 88 Strong types of vulnerabilities for all the benchmark tests. 75

4.6 Relationship of the 88 vulnerabilities and the benchmark tests. 83

4.7 Overview of the evaluation framework using the cloud-based testing platforms for

Android mobile devices. 86

viii

4.8 Evaluation of the 88 types of vulnerabilities on different Arm devices. 87

4.9 Evaluation of the 88 types of vulnerabilities on different cores of Google Pixel 2. . 89

4.10 Samples of different types of vulnerabilities’ timing histograms for different candidate

values for Vu. 90

4.11 Evaluation of 88 types of vulnerabilities on different number of write buffer (WB)

and Miss Status Handling Register (MSHR) sizes. 91

4.12 Timing histogram of a vulnerability case when changing the cache size. 98

4.13 PL cache replacement logic flow-chart, as proposed in [1]. 100

4.14 Evaluation results of security benchmarks on PL cache, RF cache, and a normal

set-associative cache, for comparison. 101

4.15 RF cache replacement logic flow-chart, as proposed in [2]. 102

4.16 SP TLB access handling procedure flow chart. 110

4.17 Sample block diagram of SP TLB with victim (ID1) and attacker (ID2) partition

being allocated 50% of the TLB space. 110

4.18 RF TLB access handling procedure flow chart. 113

4.19 RF TLB: (a) Random Fill Engine, (b) RF TLB block diagram. 114

4.20 Code sample for one of the variants of modular exponentiation from libgcrypt version

1.8.2 used in experiments. 116

4.21 Code sample for TLB Prime + Probe micro security benchmark. 117

4.22 Comparison of SA TLB, SP TLB and RF TLB simulation and theoretical results. 119

4.23 Evaluation of different configuration of TLBs. 122

5.1 Taxonomy of timing-window microarchitectural channels. 134

5.2 Proof-of-concept code and diagram of the value predictor’s state for a new Train +

Test attack presented in this work. 135

5.3 Proof-of-concept code and diagram of the value predictor’s state for a new Test +

Hit attack presented in this work. 136

5.4 Timing distribution results of Train + Test attacks using timing-window channel

and persistent channel. 137

5.5 Code of modular exponentiation from libgcrypt. 138

ix

5.6 Sequences of the receiver’s observation for each iteration when changing the secret

e_bit. 138

5.7 Timing distribution results of Test + Hit attacks using timing-window channel and

persistent channel. 139

6.1 Example time histogram of Intel Xeon Gold 6226 processor of using LSD, DSB, or

MITE+DSB paths. 148

6.2 Example of mapping instruction mix blocks to MITE, DSB, and LSD. 149

6.3 Intel Xeon Gold 6226 CPU performance counter readings for the different experiments.150

6.4 Overview of the MT Eviction-Based Attack. 153

6.5 Overview of the MT Misalignment-Based Attack. 155

6.6 Overview of Non-MT Stealthy Eviction-Based Attack. 156

6.7 Evaluation of MT Eviction-Based Attack for different values of parameter d. . . . 158

6.8 Example histogram of power consumption. 161

6.9 Example comparison of frontend timing and power for executing instruction mix

blocks less or greater than LSD capacity. 165

6.10 Fingerprinting results of machine learning model using frontend side-channel attacks. 166

6.11 Inter-distance and intra-distance of all the models. 166

7.1 A100 Streaming Multiprocessor (SM). 171

7.2 Circuit schematic of idle tomography circuits with single- and two-qubit drive. . . 173

7.3 The 9 IBM Q machines (backends) used in the evaluation. 174

7.4 Topologies of the 7 tomography circuits used in the evaluation. 175

7.5 Device- and locality-specific prediction accuracy on the last 3 batches. 176

8.1 SecChisel verification workflow. 179

8.2 Example from SHA and AES RISC-V Rocket Chip RoCC written in SecChisel code. 182

8.3 Block diagrams of AES-128 RoCC encryption modules without and with hardware

bugs or Trojans. 190

8.4 Evaluation of runtime of the SecChisel framework. 193

8.5 Runtime evaluation of parallelizing the SMT code. 193

x

List of Tables

3.1 The 17 possible states for a single cache block in the three-step model. 23

3.2 All the cache timing vulnerabilities where the last step is a memory access-related

operation. 29

3.3 Second part of the timing cache side-channel vulnerabilities where the last step is an

invalidation-related operation. 30

3.4 Rules for combining two adjacent steps. 37

3.5 Existing secure caches’ protection against all possible timing vulnerabilities where

the last step is a memory access-related operation. 53

3.6 Existing secure caches’ protection against all possible timing vulnerabilities where

the last step is an invalidation-related operation. 54

3.7 Existing secure caches’ implementation method, performance, power and area com-

parison. 60

4.1 All the L1 cache timing vulnerabilities . 67

4.2 Configurations of the experimental machines, which all have 64B L1 cache line size. 74

4.3 Percentage of vulnerability cases that are effective for different types of timing

observation steps for different machine configurations. 76

4.4 Percentage of vulnerability cases that are effective for the victim and the attacker

running the same core, different cores or within the victim for different machine

configurations. 77

4.5 Cache Timing Vulnerability Score (CTVS) for each of the tested processors. . . . 78

4.6 CPUs and SoC types found in the evaluated devices. 88

xi

4.7 Configuration test results for cache associativity, line size and cache size of Google

Pixel 2. 99

4.8 The 10 possible states for a single TLB block in the three-step model. 108

4.9 All the timing TLB vulnerabilities. 109

4.10 Probabilities of different victim behaviors B and attacker observations O. 118

4.11 Area overhead of the new secure additions. 124

4.12 The 7 specific-address-invalidation-related states for a single TLB block. 128

4.13 Additional possible timing TLB vulnerabilities when TLB invalidations are possible. 129

5.1 Possible actions for each step of value predictor attacks. 141

5.2 List of value predictor attacks and attack categories that each attack belongs to. . 143

5.3 Value predictor attack evaluation for all the attack categories. 143

6.1 Specifications of the tested Intel CPU models. 147

6.2 Transmission rates and error rates when changing message patterns. 158

6.3 Transmission rates and error rates when changing d. 159

6.4 Transmission rates and error rates of Slow-Switch Attacks. 160

6.5 Evaluation of Non-MT Power-Based attacks on Intel Xeon Gold 6226 processor when

setting d = 6. 162

6.6 Transmission rates and error rates of SGX attack. 162

6.7 L1 miss rates of new Spectre v1 version attack with variants of Spectre v1 that use

different covert channels. 164

8.1 System complexity of the SecChisel framework in terms of lines of code. 192

8.2 Effectiveness and designer effort in terms of lines of code of AES RoCC and SHA

RoCC within Rocket Chip. 192

xiii

Acknowledgements

I would like to thank my family, my friends, and my collaborators for their kind and strong

support to make this thesis and dissertation possible.

My deep gratitude goes first to my Ph.D. advisor, Professor Jakub Szefer, who guided me

and supported me throughout my Ph.D. study. I still remember the time when I chose Yale

six years ago, I made up my mind to work together with this young and full-of-aspiration

scholar. Life always works not as expected. I went through discouragement and failure but

I can always get strong backing from Jakub, who helped me digest the problem and start

over again. He is always full of passion to stick to the research and find potentials from the

seemingly impossible scenarios as well as explore totally new areas. I learn a lot from that

and he will always be my academic role model.

I would like to give the great appreciation to my committee members. Professor Rajit

Manohar is one of the smartest person I met. He is so devoted to the research and has

provided a lot of good suggestions to the research and academic lives. Professor Ruzica

Piskac is very kind to students and very passionate to the research. Every time I talk with

her, I feel like I am talking to my elder sister and she is very responsive and gave lots of

responses to my puzzles.

I want to express my gratitude to my CASLAB labmates Shanquan Tian, Bowen Huang,

Ilias Giechaskiel, Ferhat Erata, Chuanqi Xu, Sanjay Deshpande, Theodoros Trochatos,

Anthony Etim for their support. I enjoyed the research time being with you so much. I want

to thank my pre-labmates, Dr. Wenjie Xiong and Dr. Wen Wang. They are the best seniors

who support me a lot since I joined the lab. I missed the time of three girls in our lab a lot

and missed the Wen-ish line. As the women researchers, they show incredible power to their

xiv

research and stick to their mind, where I also learn a lot. I would like to also thank the

staff at Yale SEAS: Cara Gibilisco, Kevin Ryan, Annette Myers, Pamela DeFilippo, Vanessa

Epps, and Rebekka Blaha, for all their timely support.

I would like to also thank my awesome collaborators. Prof. Onur Demir and Doğuhan

Gümüşoğlu are sincerely nice people to work together. I still remember hard time in my first

research project when they helped me overcome the first obstacle I met in my Ph.D. to start

building up my strength. Nikolay Matyunin together with Prof. Stefan Katzenbeisser are

also powerful teammates. They are rigorous to the research and very reliable people. Allen

Mi is a very smart student and I learn a lot of quantum computing knowledge from him.

Prof. Xuehai Qian provides a lot of valueable suggestions to my thesis and applications and

lead me to the transition from a student to a new role in academia.

Now I want to express my special thanks to my intern managers and mentors Dr. Jin

Yang, Dr. Zhenkun Yang, Prof. Steve Keckler, and Dr. Michael Sullivan. Zhenkun and

Michael are very good mentors to provide considerate care for me when I joined the company.

During the intern time, I met them everyday to share thoughts and receive feedback from

the update. They guide me how to initialize the work in industry and propose valuable

suggestions for both the project and how to work in the company. My managers Jin and

Steve are very nice and inspiring. They help me build the confidence and encourage me to

achieve high with their solid research suggestions.

I want to thank my friends Wenxuan Deng, Chang Liu, Xiayuan Wen, Fengjiao Liu who

support me throught my Ph.D. life. I am also very lucky to know many other friends at

Yale: Rui Li, Yihang Yang, Zijun Tang, Yifan Chen, Chen Gu, Meredith Reba, Ann Cowlin,

Naijia Liu, Juanjuan Lu, Sihao Wang, and Mohan Shen. They make me feel I joined a new

family at New Haven and I really enjoyed and will miss the time spending with them. Out

of Yale, I also want to thank my lifelong friends Minghao Yin, Yiying Li, Jixin Guo, Tianqi

Li, Yijing Gao, Yuemeng Wang, Junhui Wu, Ziqi Liu, Miao Yu, Wenqi Yin, Boyi Zheng,

Xinyi Liu, Mengyun Liu, Yuting Hou, Qianru Li, Xueyin Yu. With their support, I finally

grasped the chance to join Yale and finish the study here. The last part of this module

belongs to my boyfriend Yuntao Xu. He is a determined person with his own will from

which I learn a lot. He cooks so well that he heals me every time when I miss home. We

xv

share the happiness and sorrow and grow up together.

Last but not least, I want to express my whole gratitude to my family. My mother, who

gave me life and always support me to be a stronger and happier person. I know every

footprint of mine brands in your heart so I hope next time your nightmare that was full of

child version of me and other bad memories which troubled you so much can be replaced

with sweet dream about our current happy life and fruitful future. My father is always like

a teacher of my life who gives me very valuable and instructive suggestions that drag me

out of the dilemmas. We two will keep exercising every day and stimulate each other to live

long from now on. My grandfathers and my grandmothers, who raised me starting from an

infant, gave their selfless and deepest love to me. Grandma, I miss you so much and I hope

you are happy long after and I wish you could help comb my hair again on our leisure Friday.

My grandfather, who is the most earnest person I have ever seen, built the foundation of me

since my childhood and fostered every single good habit of me. My family are my soft blood

and my hard bones. I could not achieve a single step without their support.

xvi

To my family, especially my grandmother.

Chapter 1

Introduction

The recent Spectre, Meltdown, and Foreshadow attacks [3, 4, 5, 6], which allow the attack-

ers to obtain secrets that cannot be revealed through non-speculative execution, exploit

fundamental design flaws existing in almost all modern processors at the microarchitecture

level. As another example, network structure and parameters of neural network models (i.e.,

weights) can also be leaked throughout the microarchitectural attacks targeting caches [7].

These and other numerous security attacks abuse microarchitectural features which were

initially designed to improve performance, but as an side-effect they open up timing channels

that can be used to leak information. Secrets that can be leaked can include passwords

stored in a password manager or browser, personal photos, emails, instant messages and

even business-critical documents [3, 4]. To solve these important security weaknesses, this

dissertation presents research that addresses and mitigates number of different types of

microarchitectural timing security vulnerabilities in computer processors.

1.1 Dissertation Contributions

This dissertation covers a number of research themes and contributions listed below.

1.1.1 Microarchitectural Vulnerability Modeling

In order to steal secret information from a computer system, the attacker only needs to find

one possible attack. On the other hand, to protect the system’s security, a defender needs

1

to prevent all possible types of attacks. However, there has so far been little research on

systematic analysis of how existing processors and secure hardware proposals can, or cannot,

protect against different types of the timing attacks and whether they cover all possible

types of attacks. To provide a means of the analysis, this dissertation presents research on

a systematic approach to finding all possible cache [8, 9] and translation look-aside buffer

(TLB) [10] timing vulnerabilities. To achieve this, a model is established based on two

observations that: 1) all existing cache timing attacks focusing on the data use three memory

operations and 2) timing attacks can be analyzed by checking the behavior of one cache

block, since all blocks are updated in the same manner by the cache logic. Following these

observations, a three-step model focusing on one cache block for evaluating all possible

timing attacks is presented in this dissertation. The model is validated with a soundness

analysis where we demonstrated that the three-step model can cover all possible cache

timing side-channel vulnerabilities: either a vulnerability can be expressed using three or

fewer steps, or if it is expressed using more than three steps, it can be reduced to a existing

vulnerability type that requires only three steps. Given all possible states and three-step

combinations of memory accesses by potential victim and attacker programs, the model then

demonstrated 88 types of theoretical timing vulnerabilities in processor L1 caches [9] and 24

types of theoretical timing vulnerabilities in the translation look-aside buffers [10].

1.1.2 Cache and TLB Timing Vulnerabilities and Defenses

Based on the success of the three-step model, a benchmark suite was developed for both

x86 and Arm. The goal of the benchmark suite is to evaluate all the vulnerabilities of

real processor caches to timing attacks by running the benchmarks on real hardware, and

analyzing their results. Any cache timing vulnerabilities found to be possible in a real

processor can be used, for example, by Spectre variants to extract sensitive information.

The benchmarks can also be run in simulation. With the benchmarks, it is possible to help

test processor caches or future secure cache designs, and understand which timing attacks

they are vulnerable to. In order to model the attacks in the real processors, the commercial

processor features need to be considered, including hyper-threading and time-slicing of

execution of programs, accessing memory using either read or write operations, invalidation

2

using flush instructions or via cache coherence protocol operations, etc. The x86 and the

Arm benchmark suite were tested on 9 commodity Intel and AMD processors and 34 mobile

devices with Arm processors to show how the differences in processor implementations and

microarchitectures can result in different types of potential vulnerabilities. Further, the

benchmarks can be ran in simulation to help designers of new secure processors and caches

evaluate their designs’ susceptibility to cache timing attacks and provide new insights about

processor features affecting security. As an example, the presented research has analyzed

secure cache designs to understand if they can enhance the security of devices. The work

shows the security of PL [1] and RF [2] caches but also uncovers new weaknesses.

Developing systematic approach to checking for attacks is necessary, not just for caches,

but TLBs and other cache-like structures since any cache-like structure with varying timing

in the microarchitecture can be vulnerable to timing attacks. This dissertation in particular

explores TLBs as another critical cache-like structure in modern processors. Comparing to

caches, TLB accesses are triggered by memory translation requests and TLBs may have

more complicated logic, e.g., since they the support various memory page sizes. In this

case, to systematically analyze TLB vulnerabilities, a modified three-step model had to

be developed. Based on the three-step model for TLBs, means to automatically generate

micro security benchmarks that can test for the TLB vulnerabilities were developed and

are presented in this dissertation. After showing the insecurity of standard TLBs using the

TLB micro security benchmarks, two new secure TLB designs were proposed and evaluated

on the RISC-V Rocket Core platform. Based on the analysis, the proposed secure TLBs

can defend not only against the previously publicized attacks but also against other new

timing attacks in TLBs found using the TLB three-step model. The performance overhead

was evaluated on an FPGA-based setup, and, for example, shows that a Random Fill (RF)

TLB which was introduced as one of the defenses to the new vulnerabilities, has less than

10% overhead while defending all the attacks from the TLB three-step model developed and

presented in this dissertation.

3

1.1.3 Vulnerabilities and Defenses of Value Predictors

Looking beyond caches and TLBs, this dissertation also explores security of value predictors.

Although not realized in silicon yet, value predictors are actively researched [11, 12], and

attacks and defenses should be analyzed at design time before new features are added to real

machines. Many existing attacks on real processors can be attributed to features that were

introduced without proper design-time security analysis. By exploring value predictor attacks

and defenses, the research presented in this dissertation fills in the missing understanding of

the security of value predictors. To address security of value predictors, the first, systematic

model for analyzing value predictor attacks to demonstrate different variants of attacks

that can leverage value predictors to leak information was developed. The work from this

dissertation also demonstrated the first, new attacks on value predictors, which can be used

to attack real applications and bypass existing protection schemes and further proposed and

evaluated security techniques for securing value predictors by randomizing, delaying the

prediction or always doing the prediction even if prediction confidence level is low.

1.1.4 Processor Frontend Vulnerabilities

The design of the processor frontend ensures that ideally it will not become a bottleneck, so

that the backend is always fed with sufficient instructions to process. Consequently, majority

of timing or power variations that can be observed in processors are due to components

in the backend, such as the caches or the execution units, as that is the bottleneck where

execution differences can be more easily observed. However, as this dissertation shows, new

timing and power covert channels were uncovered due to the processor frontend in modern

Intel processors. The root causes of new channels are the multiple paths in the processor

frontend that the micro-ops can take: through the Micro-Instruction Translation Engine

(MITE), through the Decode Stream Buffer (DSB), also called the Micro-op Cache, or

through the Loop Stream Detector (LSD). Each path has its own unique timing and power

signatures, which lead to the security threats such as fingerprinting running applications.

In addition, the switching between the different paths can also lead to observable timing

or power differences which could be exploited by attackers. Furthermore, the dissertation

4

research demonstrated new ways for leaking execution information about SGX enclaves

or a new in-domain Spectre variant. In addition, a new method for fingerprinting the

microcode patches of the processor by analyzing the behavior of different paths in the

frontend is possible and demonstrated. The frontend-based side channel can also be utilized

to fingerprinting what type of workloads that is co-located with it on a same SMT-core,

which demonstrates the user preference for mobile devices usage, for example, and can be

further utilized as the data input of advertisement recommendation.

Based on these findings, defending the frontend vulnerabilities will require new ap-

proaches for design of the frontend. One the one hand, partitioning can be used to prevent

interference between SMT threads. The LSD and DSB should be always partitioned, as well

as the MITE should be partitioned. On the other hand, some attacks can be defended by

randomizing MITE mapping or by adding random operations to MITE. Only by exploring

new vulnerabilities, as presented in this dissertation, can architects start to think about

proper defenses.

1.1.5 Preliminary Study of Vulnerabilities in Accelerators Beyond CPUs

Classical processors are not only ones vulnerable to side-channel attacks. Graphical Process-

ing Units (GPUs) are among most utilized accelerators that are used today. GPUs can be

used to accelerate machine learning, cryptographic, or other tasks. Similar to processors,

there is recent trend to share the GPUs among different programs or users. In such case,

it is desirable to isolate the different users and programs on these systems, such that one

program cannot extract information or data from another without explicit program-to-

program communication through supported channels. However, with GPU partitioning

features (Multi-instance GPU, or MiG) which might be exploited to transparently enable

co-operative multi-process GPU applications, covert-channel attacks become threats to the

security of the GPU architecture. This dissertation covers preliminary research on security

of MiG in GPUs.

Apart from accelerators such as GPUs, small quantum computers now are being deployed

as accelerators available for cloud-based access. Quantum computers based on the Noisy

Intermediate-Scale Quantum (NISQ) principles are being actively researched and developed

5

and made available to access over the internet. As bigger and bigger NISQ quantum comput-

ers are introduced, researchers have begun to explore architectures for multi-programming

and sharing such computers among different users and cloud-based access for remote users

to rent quantum computers will be a dominant use-case. The sharing of quantum com-

puters in a cloud-based setting, however, opens up new security and privacy threats that

need to be explored, as well as necessitates the development of defensive techniques. This

dissertation covers preliminary research on security of quantum computer systems used as

computation accelerators.

1.1.6 Hardware Security Verification Framework

A number of secure processor architectures have been designed over the last decade. They

all implemented some new security protection mechanisms in hardware, typically leveraging

encryption and hashing to protect user’s code or data. The ideas presented by these

architectures have been recently incorporated into commercial designs, such as AMD’s

SEV [13] or Intel’s SGX [14] processor architecture security extensions. Today, however,

most of these architectures have not been thoroughly and formally verified from the security

perspective. Any security flaws with the hardware will undermine the security of the whole

platform. There is then a need for security verification frameworks, such as presented in

this paper. To help performing security verification of such architectures, research presented

in this dissertation also presents a design-time security verification framework for secure

processor architectures. The SecChisel [15] framework was built upon the Chisel hardware

construction language and tools by adding security tags, and used information flow analysis

to verify the security properties of architecture at design-time. The framework performs

automatic security tag propagation analysis in a new SecChisel parser and information flow

checking using the Z3 SMT solver.

1.2 Dissertation Organization

This dissertation is organized as follows.

Chapter 1 - Introduction This chapter briefly summarized the dissertation work.

6

Motivation for the research was given and each research theme was summarized separately

before listing the dissertation organization.

Chapter 2 - Background This chapter introduces background knowledge required to

understand this dissertation work. First, the basic computer microarchitecture is introduced,

where caches and TLBs, value predictors, and frontend are separately explained. Second,

the concepts of side-channel and covert-channel attacks are introduced. Last, the definition

of formal verification and security verification is briefly discussed.

Chapter 3 - Vulnerability Modeling of Timing Attacks on Caches This chapter

is mainly composed of two parts: vulnerability modeling approach and secure cache evaluation

using the modeling approach. In order to systematically find all the effective timing

vulnerabilities, all the possible states for each cache block are first enumerated. Processed by

a cache three-step simulator and reduction rules, all the effective vulnerabilities are derived.

The model proves to be able to cover the data-based timing vulnerabilities in three steps

and focuses on one targeted cache block. Given all the effective vulnerabilities which are

found, a number of existing secure caches is tested and evaluated to check the effectiveness

of the secure caches against timing attacks derived from the three-step model. The secure

cache techniques are summarized accordingly. Finally the estimated performance and secure

tradeoffs are shown. Some ideal secure cache proposals are also given.

Chapter 4 - Evaluation of Timing Vulnerabilities of Caches and TLBs This

chapter describes how the theoretical three-step modeling approach was used to put it

into practice the evaluation on real hardware. To create benchmarks for real processors,

the research had to considered different real hardware settings, including memory access

timing, running victim and attacker threads in hyper-threading or time-slicing way, different

memory access operations and different invalidation-related operations. And further meta

C program was written to automatically generate binaries for each of the benchmark tests

with certain side-channel vulnerability-required techniques applied. The benchmark can

help evaluate different processors to quantify the security of the commodity machines and

help build customized defenses for the systems. The vulnerabilities found were validated

by running all the three-step combinations on the real hardware. This chapter also covers

how the vulnerability modeling and evaluation approach was further extended from x86 to

7

Arm; and set up a framework to evaluate mobile devices in a cloud testbed. This chapter

also presents work on implementation of two secure caches on gem5 to practically evaluate

benchmarks and the secure caches. Finally, the chapter covers how the cache three-step

model is extended to evaluate side-channel attacks on TLBs.

Chapter 5 - Vulnerability Evaluation of Value Predictors This chapter shows

the microarchitecture attacks can be found beyond caches or TLBs. The chapter focuses on

value predictors. Threat model and approach for evaluating the value predictor security is

presented. Then the new attacks on value predictors are demonstrated, which can be used

to attack applications and bypass existing protection schemes and develop the systematic

model for analyzing value predictor attacks. Finally three security techniques are proposed

to evaluate three security techniques for securing value predictors.

Chapter 6 - Processor Frontend Attacks This chapter covers frontend attacks

which were developed and which can covertly send bits between hyper-threads or on the

same thread in time-sliced setting using internal-interference. Both timing and power-based

variants are developed as well as attacks leveraging special instruction prefixes to force

frontend path switches. Frontend attacks’ ability to leak information from Intel SGX enclaves

and use of the frontend covert-channels as part of a new Spectre attack variant are also

shown. Finally, frontend fingerprinting to detect which microcode patch has been applied

and practical frontend-based side-channel used to leak information about victim application

type are demonstrated.

Chapter 7 - Preliminary Study of Vulnerabilities in Accelerators Beyond

CPUs This chapter shows microarchitectural attacks beyond CPUs. The chapter discusses

preliminary work on attacks on multi-tenant GPUs as well as quantum computers used as

accelerators in cloud-based setting.

Chapter 8 - Hardware Security Verification This chapter shows first security

verification framework based on the Chisel hardware construction language, which leverages

information flow tracking and an SMT solver. The framework supports verification of nested

modules, without having to check individual module separately, static and dynamic tags,

declassification mechanisms, and interference tables for third party modules. The framework

is evaluated using AES and SHA security RoCCs within a RISC-V Rocket Chip, showing

8

fast runtime and the ability to detect information leaks due to hardware bugs or Trojans.

Chapter 9 - Conclusion and Future Directions This chapter concludes the whole

dissertation. Each work is reviewed and potential future research directions are also given.

9

Chapter 2

Background

This chapter introduces the basic background knowledge that is needed to understand the

work of this thesis.

2.1 Computer Microarchitecture

As can be seen from Figure 2.1, within the computer system, overall design consists of different

layers. The typical software layers in a computer system include Application or Machine

Code which cover the software running on a commodity computing system today. The

typical hardware layers include ISA (Instruction Set Architecture), Microarchitecture, Gate

and Registers. Among them, operations of processor below the ISA layer is often hidden from

the users. For example, microarchitecture design below the ISA level is proprietary to each

vendor and not fully disclosed. Hidden or unknown functionality of the microarchitecture,

however, can lead to potential security vulnerabilities.

Typically microarchitecture contains registers, caches, TLBs, execution units, and periph-

erals such as memory controllers, and others, as has been shown in Figure 2.2. Execution

units contain arithmetic logic units (ALUs), floating point units (FPUs), load/store units,

branch prediction, and single instruction multiple data (SIMD) units, for example. In par-

ticular load/store units work with the memory hierarchy which is used to store information

for use in the computer. Caches and TLBs help improve the memory access latency and

assist with memory address translation, respectively.

10

Devices (Transistors)

Physics

Gates/Registers

Microarchitecture

Instruction Set Architecture

Machine Code

Assembly Language

Programming Language

Algorithm

Application

Layers of Abstraction

So
ftw

ar
e

H
ar

dw
ar

e

Figure 2.1: Example software and hardware layers of today’s computer systems.

2.1.1 Caches and TLBs

Modern memory stores data within memory cells built from transistors and other components

on an integrated circuit [16]. There are two main categories of memories, volatile and non-

volatile. Non-volatile memories include flash memory, ROM, PROM, EPROM, EEPROM,

etc. Examples of volatile memories are Dynamic Random-Access Memory (DRAM), which

is used for primary storage, and Static Random-Access Memory (SRAM), which is used for

processor caches and TLBs.

Caches in particular are smaller, faster memories located closer to a processor core. They

store data and instructions from frequently used main memory locations. As can be seen

in Figure 2.3, in general, processors have a hierarchy of multiple cache levels (L1, typically

with separate instruction-specific and data-specific storage, L2, and L3, also called last-level

cache). Higher-level caches, where L1 is the highest level and last-level cache is the lowest

level, have smaller but faster memory, and the lower-level caches have larger but slower

memories. “Locality” principle of cache indicates that a processor tends to access the same

set of memory locations repetitively over a short period of time, which are stored by the

cache and have high likelihood that the data can be reused so that higher performance is

gained by maintaining the data in the cache.

However, the caches are of a finite size, and not all data can fit in them. In this case,

data found in the cache (cache hit) can be accessed more quickly. On the other hand, if the

11

Retirement Unit

Frontend Out-of-Order Engine

Instruction
Predecode & Fetch

Instruction
Queue

Macro
Fusion

5-way DecoderC
om

plex

Sim
ple

Sim
ple

Sim
ple

Sim
ple

3-4 𝜇ops

𝜇op

𝜇 op

𝜇op

𝜇op 5𝜇ops

𝜇code
Sequencer

MS
ROM

6 𝜇 ops

Branch
Prediction Unit
Return Stack

Buffer
Branch Target

Buffer

Decode
Stream
Buffer4 𝜇ops

Multiplexer
Instruction Decode

Queue
Micro
Fusion

Loop Stream
Detector

L1i
Cache

L1i
TLB

Instruction
DSB Tags

L2 Cache

L1d
Cache

L1d
TLB

Line Fill
Buffer

Load Buffer

Store &
Forward Buffer

Branch Order
Buffer

Re-order
Buffer

4𝜇ops

loads

6𝜇ops Register Allocation
& Renaming

Register
Alias Table

Physical
Register File

Vector
Registers

Integer
Registers

stores

branches

𝜇op

Com
m

on Data Bus

Execution Unit

𝜇op Scheduler
Unified Reservation Station

STORE
AGU

INT ALU
LOAD

VEC STR
FP DIV
Branch

IVEC MUL
IVEC ALU
INK DIV

FP FMA
AES

AGU
INT ALU

VEC
SHUFFLE

Branch

IVEC MUL
FP FMA
Bit Scan

LEA
IVEC ALU

INT ALU
IVEC ALU CPU

Core
CPU
Core

CPU
Core

CPU
Core

LLC Slices

LLC Slices

LLC Slices

LLC Slices

System Agent

Memory
Controller

Display
Controller

PCIe

Memory Pipelined

L2TLB

Value
Predictor

Figure 2.2: Critical microarchitectural states that possibly contain timing and power variations
which can be utilized to perform side-channel or covert-channel attacks. Within the frontend, buffer-
related structures such as return stack buffer, branch target buffer, decode stream buffer, and loop
stream detector are all possible targets. For the out-of-order engine, there are load/store buffers,
branch order buffer, and re-order buffer, as well as port contention through the execution units.
Value predictor is not implemented on commercial processors but are actively developed. The whole
memory pipeline should be counted as potential targets of triggering side-channel or covert-channel
attacks. Microarchitectures filled with green are the targets studied in this dissertation.

data is not found (cache miss), it requires fetching data from the main memory and may

also need to evict data from the cache in order to store the incoming data. These timing

differences related to the memory operations involving caches, such as accesses resulting

in cache hits vs. misses, can reveal information about the addresses or even data in the

cache (for instruction caches it may be possible to reveal information about instructions

as well). The cache coherence protocol can also change the cache states and affect the

timing of the memory operations. The cache coherence may invalidate a cache block from

a remote core, resulting in a cache miss in the local core, for example. Also, the timing

of a cache flush operations varies depending on whether the data to be flushed is in the

cache or not. Flushing an address containing dirty (modified) data using clflush is slow as

it has to be moved back to the main memory, while flushing an address containing clean

(unmodified data, same as in the main memory) is fast, as the data can be simply discarded,

for example. From these timing differences of memory-related operations, the attacker can

infer a data’s specific memory address or corresponding cache index value, and thus learn

some information about the victim’s secrets.

Translation Look-aside Buffers (TLBs) are also cache-like structures. They store virtual

12

CPU
Core Core

L2 Cache L2 Cache

L1 Cache L1 Cache

register register

L3 Cache

Main Memory DRAM

Disk SSD/Flash
Hard Disk

Capacity

32 KB

256 KB – 1 MB

3 MB – 37.5 MB

4 GB – 6 TB

(32 GB – 4 TB) × N
(256 GB – 6 TB) × N

Latency

1 ns

3 ns

10 ns

15 – 90 ns

100K ns
7 – 15M ns

Lo
w

er
 la

te
nc

yLarger capacity

Figure 2.3: Memory hierarchy (including caches) of a typical modern computer processor.

CPU Page # Offset

Virtual Address

PTE

VPN PPN

TLB

Page Table

Physical Page #Physical Address Offset
TLB hit

TLB miss

Figure 2.4: Simplified schematic of virtual to physical memory address translation in modern
computer processors. VPN represents Virtual Page Number; PPN represents Physical Page Number;
PTE represents Page Table Entries.

address to physical address translation, as is shown in Figure 2.4. The virtual memory is the

memory space as seen from the perspective of a process; this space is often split into pages

of mixed page sizes (4KB and 2MB). The page table stored in main memory keeps track of

where the virtual pages are stored in the physical memory. This method of having virtual to

physical memory uses two or more memory accesses to access each memory location (first

one or more accesses to get the page table entry, and then one access for the actual data).

First, the page table is looked up based on the virtual page number to get the physical page

number. Second, the physical page number can be combined with the page offset to give

the actual physical address where the target data is located. To reduce the overheads of

the memory accesses, the TLB is often implemented to reduce the time taken to access

the memory locations by caching the virtual to physical translations so that the memory

accesses to obtain the page table entry can be avoided if the entry is already in the TLB.

Upon each memory reference, the hardware checks the TLB to see whether the virtual to

13

Memory System
TLBs main

memory …caches

Fetch Decode Rename Issue Execute Writeback CommitPC

Value Prediction System
no

prediction
index confidence usefulness value VHist

… … … … …

is load
instruction

Value Prediction Engine

load data

has
prediction

predicted
value

update

load
data

Value
Prediction

Verification

predicted
value

cached
data

correct

commit

incorrect

squash the
pipeline

forward speculated data

Figure 2.5: Processor pipeline with a Value Prediction System (VPS).

physical translation is there. If yes, it is a TLB hit, and the translation is read from the TLB.

The physical page number is returned and is used to access the memory. If the translation

is not in the TLB, it is a TLB miss and the page table must be checked by accessing main

memory, which results in a different access timing compared with a TLB hit. Similar to

caches, TLBs may have multiple levels.

2.1.2 Value Predictors

A processor pipeline with a value predictor is shown in Figure 2.5. A typical value predic-

tor [17] uses the instruction address (program counter) to keep track of the loaded values.

For each instruction, once a value is predicted correctly for more than a confidence number

of times, the predictor starts to use the previous (last) value when a cache miss occurs. This

allows instructions to proceed while the actual data value is still being fetched, providing

data with high confidence and preventing the performance penalty of a cache miss. Different

variants of value predictors have been demonstrated, which can improve the processors’

performance from 4.8% [11] to 11.2% [18].

For a typical predictor shown in Figure 2.5, for each load instruction, the Value Prediction

System (VPS) keeps track of the index, the data value to be predicted, and the past value

history (VHist). The index can be the program counter (PC), or the data address, depending

on the type of value predictor. The VPS typically further uses the full address as the index,

e.g., [12]. Using a subset of the address bits is possible, but will introduce conflicts between

different addresses and reduce the prediction rate. On each load, the value history and

predicted value are updated. If the predicted value is verified to be correct (after the actual

14

EU

ALU,
…

ALU,
…

ALU,
…

ALU,
…

AGU,
load

AGU,
load

store AGU

Branch Predictor
(BPU)

L1 Instruction
Cache

Decoded
Stream Buffer

(DSB) 5-Way Decode Unit

Instruction Queue

Instruction Fetch
& Predecode

Instruction
Decode Queue

(IDQ)

Loop Stream
Detector
(LSD)

6 micro-ops

Rename/ Allocate/ Retirement/ Scheduler

Register Alias
Table (RAT)

4 micro-ops 6 micro-ops

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

5 micro-ops

Frontend

Execution Engine

Mux

Micro-Instruction
Translation Engine (MITE)

Figure 2.6: Microarchitecture details of the frontend and the execution engine, based on [19].

load data is available), the confidence and usefulness values are increased and there are

no changes to the original load and dependent instructions. Meanwhile, a misprediction

will cause not only the predicted load but also dependent instructions to be squashed and

reissued. Within the VPS, if there are not enough entries, the entry with the smallest

usefulness value will be evicted.

2.1.3 Processor Frontend

Within the processor frontend, instruction decoding and delivery to the backend has multiple

paths: through the Micro-Instruction Translation Engine (MITE), the Decoded Stream

Buffer (DSB), also called the micro-op cache, and the Loop Stream Detector (LSD), as is

seen from Figure 2.6.

Given that MITE path has low throughput and high power consumption, the DSB has

been added and the micro-ops decoded by MITE are inserted into the DSB [19] in modern

Intel processors. If the micro-ops are available in the DSB, the micro-op stream is sent

directly from DSB to the Instruction Decode Queue (IDQ), bypassing the MITE, therefore

saving power and improving throughput. The instruction delivery path from DSB is also

shorter than MITE (shorter by 2 – 4 cycles), so the pipeline latency is reduced as well [19].

Further, there is also the LSD located within the IDQ. If the micro-op stream belongs to

a qualified loop (discussed in Section 6.2), all the micro-ops of the loop code can be issued

15

directly from LSD to the backend, bypassing DSB as well. The purpose of the LSD is to

help save power, but it also can help performance by providing higher instruction delivery

throughput. When branch mis-prediction occurs, e.g., at the end of the loop, or the number

of micro-ops within the loop exceeds the limit that the LSD can handle, LSD is not used and

micro-ops are delivered from the DSB. Furthermore, if the micro-ops exceed the DSB limit

or belong to a newly accessed micro-ops, they are processed by the MITE. We also note

that the DSB is inclusive of LSD, and MITE is inclusive of DSB as well [19], e.g., eviction

of micro-ops from DSB will cause their eviction from LSD. Although DSB and LSD are

partitioned in Intel processor when two hyper-threads are actively running, our analysis

indicates that DSB in Intel processors is fully assigned to one thread if the other is idle or

not executing. When the second thread becomes active, DSB becomes partitioned, which

forces DSB evictions of micro-ops of the first thread to occur. Further, MITE is a shared

resource, and activity of two threads mutually affects the micro-op decoding.

LSD Behavior. The LSD can continuously stream the same sequence of up to 64

micro-ops, directly from the IDQ to the backend [19]. While the LSD is active, the rest

of the frontend is effectively disabled. In order to generate detectable timing and power

difference between LSD vs. DSB and DSB vs. MITE, one can control micro-op number

within a loop to either make it fit in the LSD where instruction delivery starts with LSD

only, or exceed the LSD limit so the processor falls back to use DSB or MITE, creating

detectable timing and power changes.

DSB Behavior. The DSB is constructed as a cache-like structure with 32 sets and 8

ways per set [19] in recent Intel processors. Each line can store up to 6 micro-ops or 32 bytes

(so DSB can hold at most 1536 micro-ops in total). Based on our reverse engineering as well

as Intel manuals [19], we find that when there is only one thread running on the hardware

core, instructions’ virtual address bits addr[4:0] are used as the byte offset within the

32-byte window, and addr[9:5] are the set index bits into the 32 DSB sets. However, when

two threads are running in parallel on the hardware core, the DSB is set partitioned, and

half the sets are assigned to each thread based on our experimental results. This means that

although the DSB is partitioned by sets when two threads are running, if there is only one

thread being active, the thread is assigned to all the DSB sets. Whether the DSB is currently

16

Processor
Chip

1. “Sender”
application
runs.

2a. Physical change or
emanation is created

Cache
2b. Or a change is
made to the state of
the system, such as
modify cache contents

3. “Receiver”
observes the
emanation or
state change

Figure 2.7: Typical covert channel setup.

partitioned or not can be detected by an application by checking the increased MITE usage

(when DSB is partitioned, more instructions will conflict with each other causing DSB

evictions and increased MITE usage). The behavior was tested on Intel Xeon E-2174G with

LSD disabled to show the conflicts are not influenced by LSD. We also tested on Intel Gold

6226 with LSD enabled, and observe similar results. Further, we tested Intel Gold 6226 with

LSD enabled, but each test thread was set to access larger blocks of instructions which do

not fit in LSD (forcing processor to use DSB even if LSD is enabled), and similar results are

observed on this machine.

MITE Behavior. Regarding the MITE structure, the instruction cache, instruction

queue, and the decode unit are shared among the two threads. Typically the instruction

cache is 32 KB and 8-way associative and instruction queue contains 50 entries.

2.2 Side-Channel and Covert-Channel Attacks

A covert channel is a communication channel that was not originally proposed to transfer

information. As is shown in Figure 2.7, it can become an intentional communication between

a sender and a receiver by leveraging unusual methods for information communications.

Compared with a side channel, it is easier to establish a covert channel communication and

covert channel can be used as a precursor for the side-channel attacks.

A side channel is similar to a covert channel, but in a side channel the sender does not

intend to communicate to the receiver and transfer information. Instead, the sending (i.e.,

leaking) of data is a side effect of the sender’s behavior and implementation as well as the

hardware and the software used. In a side channel, we call the sender a “victim” and the

17

receiver an “attacker”.

The sender’s behavior that can be utilized by the side channels and the covert channels

to transfer information can be timing, power, thermal emanations, electro-magnetic (EM)

emanations, acoustic emanations, for example.

2.2.1 Examples of Previously Discovered Timing Vulnerabilities

Researchers have previously proposed to use the timing differences in memory-related

operations to attack software, e.g., [20, 21, 22, 23, 24]. Especially, the timing side-channel

attacks often focus on cryptographic applications, e.g., attacks on software using AES

encryption or decryption with table lookups [25]. Further, there are many timing covert-

channel attacks, where the sender and receiver cooperate to leak data. Previously, security

vulnerabilities have been uncovered in all the different levels of caches [22, 26, 27, 28], e.g.,

the last-level cache mentioned in study [28] and cross-core cache covert channels [29], as

well as due to port contention in the execution engine [30], branch predictors [31, 32], or

memory controllers [33], for example. Security community has especially focused on the

speculative execution attacks, following disclosure of Spectre [3] and Meltdown [4]. Other

recently explored vulnerabilities include attacks that abuse branch prediction, but not for

Spectre-like attacks. This includes BranchScope vulnerability [31] or Jump over ASLR

(address space layout randomization) type vulnerabilities [32]. There are also attacks that

leverage prefetchers [34] and value predictors [35]. Most recently, researchers have also

demonstrated microarchitectural replay attacks [36] and attacks abusing network-on-chip

(NoC) [37].

In modern processor caches, two types of memory-related operations exhibit timing

variations that can be abused for timing side or covert channel attacks in processor data

caches. First, memory access operations, such as loads and stores can be fast (e.g., a cache

hit) or slow (e.g., a cache miss). Second, invalidation-related operations, such as cache

flush, can be fast (e.g., there is no dirty data in cache so flush finishes quickly) or slow (e.g.,

there is dirty data in the cache so it has to be written back, resulting in longer timing).

These variations in timing have been exploited to leak sensitive information. Especially, a

large number of different cache timing side-channel and covert-channel attacks have been

18

presented in literature, e.g., [20, 21, 22, 23, 24]. And, there are many secure hardware cache

designs which aim to prevent these different attacks, e.g., [1, 38, 39, 40, 2, 41, 42, 43, 44, 45].

However, even if the cache-based attacks are mitigated, TLB-based attacks are the next

attack vector that malicious attackers might use.

Compared with caches for which there is large number of known attacks, there are

only two published TLB-based timing attacks1. TLBleed attack [48] uses timing channels

combined with machine learning to create attack which is able to leak bits of secret keys

from the RSA algorithm (they also show attack for the EdDSA algorithm). They leverage

the Prime + Probe [49] attack strategy previously applied in processor caches. Prior to

TLBleed, the Double Page Fault attack [50] leveraged the Cache Collision [23] attack strategy

previously applied in processor caches. It requires the victim to access some kernel memory

pages twice, and uses the fact that an access to a previously allocated kernel virtual pages

will bring in TLB entries, even if page fault is generated and accesses permission checks

failed. The timing of the second access thus reveals information on whether a inherent TLB

hit happened.

Besides memory systems and execution units, processor frontend can also be a potential

target for side- and covert-channel attacks. The existing security attacks [51, 52] focus on

studying eviction of DSB and how it can cause timing differences that attackers can exploit.

They used reverse-engineering to extract hidden features of the frontend and presented

attack scenarios by using frontend as a timing side-channel to transmit secret data as well

as proposed hardware mitigation with both security and performance analyses.

1. The Leaky Cauldron [46] attack is also related to TLB and targets Intel SGX. However, it does not
depend on hits and misses in the TLB, but instead it relies on the assumption that the attacker can evict the
enclave entries in the TLB, so an enclave’s memory access will trigger a page table walk, and the malicious
OS can get the page access pattern trace. The Malicious Management Unit [47] attack makes use of the
Memory Management Unit (MMU) to build eviction set of virtual addresses to allow the page table entries
to map to certain cache sets in the CPU caches (especially in the Last-Level Cache). In this case, eviction
sets which can bypass the software-based defenses are formed and can trigger cache timing attacks in LLC.
However, similar to the Leaky Cauldron [46] attack, this attack also does not depend on hits and misses in
the TLB.

19

Actual System

System
Representation

Security
Properties

Representation

Formal
Verification

(a) (b)

(c)

(d)

Threat
Model

Program or
Hardware Module

Security Property
Representation

System
Representation

Formal
Verification

Threat
Model

Figure 2.8: General procedure for security verification.

2.3 Formal Verification and Security Verification

For the software and hardware systems, formal verification is the process of proving or

disproving the correctness of the target program or hardware module using formal methods

of mathematics with certain formal specification or property.

A typical flow of the security verification process is shown at a high level in Figure 2.8.

The starting point is the target program or hardware module, either an already existing

system or a design of some new system whose security properties need to be verified. From

the target system, or design, a representation of the system needs to be obtained in the

verification tools, (a) in Figure 2.8. In parallel, the security properties of the target system

need to be specified, (b) in Figure 2.8. The security properties are closely tied to the system’s

assumed threat model. The security properties can be specified separately or together within

the representation of the system, in which case (a) and (b) would be done together. The final

step is the actual verification process which takes the system representation and security

properties as input, and returns whether the verification passed or failed, (c) in Figure 2.8.

If the verification fails, the design needs to be updated and re-evaluated, (d) in Figure 2.8.

20

Chapter 3

Vulnerability Modeling of Timing

Attacks on Caches

Research presented in this chapter focuses on ways to systematically analyze and obtain the

complete set of cache timing side-channel vulnerabilities, including known and new unknown

vulnerabilities. The work later combines the theory with the practice to create security

benchmarks based on the theoretical vulnerabilities. The chapter further shows evaluation

of secure caches’ effectiveness against the vulnerabilities. Prior research has mostly focused

on uncovering individual attacks, while to help to systematically protect whole computer

systems, this research aims to uncover all the theoretical vulnerabilities, so they can be

defended against.

3.1 Three-Step Model

This section explains how we developed the three-step modeling approach and used it

to model the behavior of the cache logic and to enumerate all the possible cache timing

vulnerabilities in caches.

3.1.1 Introduction to the Three-Step Model

We have observed that all of the existing cache timing attacks can be modeled with three

steps of memory-related operations. Here, “memory-related operation” refers to loads, stores,

21

or different flushes that can be done by the victim or the attacker on the same core or

different cores. When the victim and the attacker are on different cores, cache coherence

will also be triggered when one of the memory-related operations is performed.

The three-step model has three steps, as the name implies. In Step 1, a memory operation

is performed, placing the cache in an initial state known to the attacker (e.g., a new piece of

data at some address is put into the cache or the cache block is invalidated). Then, in Step 2,

a second memory operation alters the state of the cache from the initial state. Finally, in

Step 3, a final memory operation is performed, and the timing of the final operation Step 3

enables a receiver to learn how Step 2 has perturbed the state established by Step 1.

For example, in Flush + Reload [27] attack, in Step 1, a cache block is flushed by

the attacker. In Step 2, security critical data is accessed by, for example, victim’s AES

encryption operation. In Step 3, the same cache block as the one flushed in Step 1 will

be accessed and the time of the access will be measured by the attacker. If the victim’s

secret-dependent operation in Step 2 accesses the cache block, in Step 3 there will be a

cache hit and fast timing of the memory operation will be observed, and the attacker learns

the victim’s secret address.

We write the three steps as: Step 1 Step 2 Step 3, which represents a sequence of

steps taken by the attacker or the victim. To simplify the model, we focus on memory-related

operations affecting one single cache block (also called cache slot, cache entry, or cache

line). Cache block is the smallest unit of the cache. Since all the cache blocks are updated

following the same cache state machine logic, it is sufficient to consider only one cache block.

3.1.2 States of the Three-Step Model

When modeling the attacks, we propose that there are 17 possible states for a cache block.

Table 4.8 lists all the 17 possible states of the cache block for each step in the three-step

model and their definitions. Figure 3.1 graphically shows for each possible state how the

memory location maps to the cache block.

In each sub-figure of Figure 3.1, left-most part shows the state or states being described

in the sub-figure. Middle part shows the cache entries and their states. For all sub-figures,

the middle cache block (shown in bold) is the targeted cache block. Right-most part shows

22

Table 3.1: The 17 possible states for a single cache block in the three-step model.

State Description

Vu

A memory location u belonging to the victim is accessed and is placed in the cache block by the victim (V).
Attacker does not know u, but u is from a set x of memory locations, a set which is known to the attacker.
It may have the same index as a or aalias, and thus conflict with them in the cache block. The goal of the
attacker is to learn the index of the address u. The attacker does not know the address u, hence there is no
Au in the model.

Aa

or
Va

The cache block contains a specific memory location a. The memory location is placed in the cache block due
to a memory access by the attacker, Aa, or the victim, Va. The attacker knows the address a, independent
of whether the access was by the victim or the attacker themselves. The address a is within the range of
sensitive locations x. The address a is known to the attacker.

A
aalias

or
V

aalias

The cache block contains a memory address aalias. The memory location is placed in the cache block due to
a memory access by the attacker, A

aalias , or the victim, V
aalias . The address aalias is within the range x

and not the same as a, but it has the same address index and maps to the same cache block, i.e. it “aliases”
to the same block. The address aalias is known to the attacker. To note that aalias definition effectively
focuses on describing the index bits and this can represent leaking different subset of address bits through
the cache channel.

Ad or
Vd

The cache block contains a memory address d. The memory address is placed in the cache block due to a
memory access by the attacker, Ad, or the victim, Vd. The address d is not within the range x. The address
d is known to the attacker.

Ainv

or
V inv

The cache block is now invalid. The data and its address are “removed” from the cache block by the attacker,
Ainv , or the victim, V inv , as a result of cache block being invalidated, e.g., this represents a cache flush of
the whole cache.

Ainv
a

or
V inv

a

The cache block state can be anything except a in this cache block now. The data and its address are
“removed” from the cache block by the attacker, Ainv

a , or the victim, V inv
a . E.g., by using a flush instruction

such as clflush that can flush specific address, or by causing certain cache coherence protocol events that
force a to be removed from the cache block. The address a is known to the attacker.

Ainv

aalias

or
V inv

aalias

The cache block state can be anything except aalias in this cache block now. The data and its address
are “removed” from the cache block by the attacker, Ainv

aalias , or the victim, V inv

aalias . E.g., by using a flush
instruction such as clflush that can flush specific address, or by causing certain cache coherence protocol
events that force aalias to be removed from the cache block. The address aalias is known to the attacker.

Ainv
d

or
V inv

d

The cache block state can be anything except d in this cache block now. The data and its address are
“removed” from the cache block by the attacker Ainv

d or the victim V inv
d . E.g., by using a flush instruction

such as clflush that can flush specific address, or by causing certain cache coherence protocol events that
force d to be removed from the cache block. The address d is known to the attacker.

V inv
u

The cache block state can be anything except u in the cache block. The data and its address are “removed”
from the cache block by the victim V inv

u as a result of cache block being invalidated, e.g., by using a flush
instruction such as clflush, or by certain cache coherence protocol events that force u to be removed from
the cache block. The attacker does not know u. Therefore, the attacker is not able to trigger this invalidation
and Ainv

u does not exist in the model.

?
Any data, or no data, can be in the cache block. The attacker has no knowledge of the memory address in
this cache block.

the memory region in relation to the cache block. Note that the addresses a and aalias are

within the sensitive set of addresses x, while d is outside the set of sensitive addresses (for

simplicity the set is shown as a contiguous region, but it can be any set). Also, A represents

the operations performed by the attacker and V represents the victim’s operations.

Figure 3.1a shows the description of the possible state Vu, where address u is within

sensitive set and unknown to the attacker. Therefore, it can possibly map to any cache block

including the target cache block shown in the middle of the sub-figures. Since its position

in the cache and specific address is unknown, we show Vu in dashed lines. Meanwhile,

Figure 3.1e shows the description of the possible state V inv
u , which is result of the victim

invalidating data at the sensitive address u. Further, Figure 3.1f shows the description of

23

Cache Entries

memory region

sensitive
region 𝑥

non-
sensitive
region

𝑎

𝑎#$%#&

𝑑

possible
states:
𝑉)

𝑎

𝑎#$%#&

𝑑

𝑎

𝑎#$%#&

Cache Entries

memory region

sensitive
region 𝑥

non-
sensitive
region

𝐴# / 𝑉#

𝑎

𝑎#$%#&

𝐴#+,-+. /𝑉#+,-+.
𝑑

𝐴#/𝑉#/𝐴#+,-+. /𝑉#+,-+./𝐴0/𝑉0

𝐴# or 𝑉#
𝐴#+,-+.

or 𝑉#+,-+.

possible states:

𝐴0 or 𝑉0

(a) (b)

Cache Entries

memory region

sensitive
region 𝑥

non-
sensitive
region

𝑎

𝑎#$%#&

𝑑
flush back

𝐴%12 or 𝑉%12

𝐴%12/𝑉%12

𝑎

𝑎#$%#&

𝑑

𝑎

𝑎#$%#&

𝑑

Cache Entries

memory region

sensitive
region 𝑥

non-
sensitive
region

𝐴# / 𝑉#

𝑎

𝑎#$%#&

𝐴#+,-+. /𝑉#+,-+.
𝑑

𝐴#%12/𝑉#%12/𝐴#+,-+.
%12 /𝑉#+,-+.

%12 /𝐴0%12/𝑉0%12

𝐴#%12 or 𝑉#%12
possible states:

𝐴0%12 or 𝑉0%12

𝐴#+,-+.
%12 or
𝑉#+,-+.
%12

(c) (d)

Cache Entries

memory region

sensitive
region 𝑥

non-
sensitive
region

𝑎

𝑎#$%#&

𝑑

𝑉)%12

𝑎

𝑎#$%#&

𝑑

𝑎

𝑎#$%#&

Cache Entries

memory region

sensitive
region 𝑥

non-
sensitive
region

𝑎

𝑎#$%#&

𝑑

possible states:

possibly
map to

∗

∗

𝑎

𝑎#$%#&

𝑑

𝑎

𝑎#$%#&

𝑑

(e) (f)

possible
states:

possible
states:

Figure 3.1: The 17 possible states for a cache block in the three-step model: (a) Vu state; (b)
Aa/Va/Aaalias/Vaalias/Ad/Vd states; (c) Ainv/V inv states; (d) Ainv

a /V inv
a /Ainv

aalias/V
inv

aalias/A
inv
d /V inv

d

states; (e) V inv
u state; (f) ? state.

the possible state ∗, which represents the lack of knowledge of the address for the attacker

to this corresponding cache block. It can refer to any or no address in the memory.

Figure 3.1b shows the description of the possible state Aa/Va/Aaalias/Vaalias /Ad/Vd.

Their addresses are all known to the attacker and map to the same targeted cache block.

Both a and aalias are within the sensitive set of addresses x and aalias, as its name indicates,

is a different address than a but still within set x and maps to the same cache block as a.

Meanwhile, address d is outside of the set x. Next, Figure 3.1d shows the description of the

possible state Ainva /V inv
a /Ainv

aalias/V
inv
aalias/A

inv
d /V inv

d , which correspond to invalidation of the

address shown in the subscript of the state. Some additional possible invalidation states,

Ainv/V inv, are shown in Figure 3.1c. These states indicate no valid address is in the cache

block. Therefore, all the possible addresses that mapped to this cache block before the

invalidation, e.g., a, aalias, d and u (if it mapped to this block), will be flushed back to the

memory by the step Ainv/V inv.

24

Exhaustive List
of all possible

three-step
combinations

Cache
Three-Step
Simulator

Preliminary Strong
Vulnerability

Preliminary Weak
Vulnerability

Ineffective Three-Step

Reduction
Rules

Strong
Vulnerability

Weak
Vulnerability

Classification
Step

Reduction
Step

Vulnerability Types
Vulnerability Types

4913

132

572

4209

72

64

Figure 3.2: Procedure to derive the effective types of three-step timing vulnerabilities. Ovals refer
to the number of vulnerabilities in each category.

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Vd⤳ Vu ⤳ Aa

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

* ⤳ Vu ⤳ Aa
inv

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Vd⤳ Vu
inv ⤳ Vd

(a)

(c)

(e)

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Vu⤳ Ad ⤳ Vu
inv

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Aaalias
inv⤳ Vu

inv ⤳ Va

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Aa⤳ Vu ⤳ Ad

(b)

(d)

(f)

E.g.: E.g.:

E.g.: E.g.:

E.g.: E.g.:

Figure 3.3: Examples of relations between victim’s behavior (u) and attacker’s observation for
each vulnerability type: (a),(b) Strong Vulnerability; (c),(d) Weak Vulnerability; (e),(f) Ineffective
Three-Step.

3.1.3 Derivation of All Cache Timing Vulnerabilities

With the 17 candidate states for each step, there are in total 17∗17∗17 = 4913 combinations

of three steps. We developed a cache three-step simulator and a set of reduction rules to

process all the three-step combinations and decide which ones can indicate a real attack. As

is shown in Figure 3.2, the exhaustive list of the 4913 combinations will first be input to the

cache three-step simulator, where the preliminary classification of vulnerabilities is derived.

The effective vulnerabilities will then be sent as the input to the reduction rules to remove

the redundant three steps and obtain final list of vulnerabilities.

25

Algorithm 1 Pseudo code for the cache three-step simulator.
Input: state[]: a list containing 17 possible states for each of the step
Output: strong[]: a list containing all the vulnerabilities that belong to the Strong type

weak[]: a list containing all the vulnerabilities that belong to the Weak type
ineffective[]: a list containing all the ineffective type

1: for step1 ∈ len(state[]) do
2: for step2 ∈ len(state[]) do
3: for step3 ∈ len(state[]) do
4: steps = [state[step1], state[step2], state[step3]]
5: candidates = [] // array to store all possible candidate combinations of this three-step pattern
6: res = [] // array to store all possible timing observation regading different candidate combinations for

this three-step pattern
7: if (u_related(steps[0]) or u_related(steps[1]) or u_related(steps[2])) then
8: for possi_candidate ∈ 3 do
9: candidates.append((change_u(steps[0], possi_candidate),

change_u(steps[1], possi_candidate), change_u(steps[2], possi_candidate)))
10: // Vu’s candidates are Va, Vaalias and VNIB ; V inv

u ’s candidates are V inv
a , V inv

aalias and V inv
NIB . Both

candidate’s number is 3.
11: end for
12: for i ∈ 3 do
13: res.append(output_timing(candidates[i]))
14: end for
15: if judge_type(res) == Strong then
16: strong.append(steps)
17: else
18: if judge_type(res) == Weak then
19: weak.append(steps)
20: else
21: ineffective.append(steps)
22: end if
23: end if
24: else
25: ineffective.append(steps)
26: continue
27: end if
28: end for
29: end for
30: end for

Cache Three-Step Simulator

We developed a cache three-step simulator that simulates the state of one cache block and

derives the attacker’s observations in the last step of the three-step patterns that it analyzes,

for different possible u. Since u is in secure range x, the possible candidates of u for a cache

block are a, aalias and NIB (Not-In-Block). Here, NIB indicates the case that u does not

have same index as a or aalias and thus does not map to this cache block.

The cache three-step simulator is implemented as a Python script and it’s pseudo-

implementation is shown in Algorithm 1. Simulator’s inputs are 17 possible states for each

of the step. Outputs are all the vulnerabilities that belong to the Strong or the Weak type or

the Ineffective type. The simulator uses a nested for loop to check all possible combinations

(4913) of the three-step patterns. For each step of each pattern, if it is Vu, this step will be

26

extended to be one of three candidates: Va, Vaalias and VNIB. If it is V inv
u , this step will

be extended to be one of three candidates: V inv
a , V inv

aalias and V inv
NIB. We wrote a function

output_timing that takes three known memory access steps as input and output whether fast

or slow timing will be observed for the last step. In this case, for each of the u-related step’s

candidate, we can derive a timing observation. Using these timing observation, function

judge_type decides whether a three-step pattern is a potential vulnerability by analyzing

whether the attacker is able to observe different and unambiguous timing for different values

of u or not.

The simulator categorizes all the three-step patterns into three categories, as listed below.

Figure 3.3 shows two examples for the Strong Vulnerability (a, b), Weak Vulnerability (c, d)

and Ineffective Three-Step (e, f), categories respectively.

1. Strong Vulnerability: When a fast or slow timing is observed by the attacker, he or she

is able to uniquely distinguish the value of u (either it maps to some known address

or has the same index with some known address). In this case, the vulnerability has

strong information leakage (i.e. attacker can directly obtain the value of u based

on the observed timing). We categorize these vulnerabilities to be strong. E.g., for

Vd Vu Aa vulnerability shown in Figure 3.3a, if u maps to a, the attacker will

always derive fast timing. If u is aalias or NIB, slow timing will be observed. This

indicates that the attacker is able to unambiguously infer the victim’s behavior (u)

from the timing observation.

2. Weak Vulnerability: When fast or slow timing is observed by the attacker, he or she

knows it corresponds to more than one possible value of u (e.g., a or aalias). For

these vulnerabilities, timing variation can still be observed due to different victim’s

behavior. However, the attacker cannot learn the value of the index of the address

u unambiguously. E.g., for type ? Vu Ainva shown in Figure 3.3c, when fast

timing is observed, u possibly maps to aalias or NIB (the reason for the possibility

of u mapping to NIB to derive fast timing is that due to the ? in Step 1, the cache

have chances to not own a before the final step and then Ainva will receive an fast

invalidation). On the other hand, when slow timing is observed, u possibly maps to a

27

or NIB. This pattern leads to uncertain u guess about value of u based on timing

observation.

3. Ineffective Three-Step: The remaining types are treated to be ineffective. E.g., for

type Aa Vu Ad shown in Figure 3.3f, no matter what the value of u is, attacker’s

observation is always a slow timing.

After computing the type of all the three-step patterns, the cache three-step simulator

will output effective (Strong Vulnerability or Weak Vulnerability) three-step patterns. We

only list and analyze the Strong vulnerabilities in this work. Weak vulnerabilities are left for

future work when channels with smaller channel capacities are desired to be analyzed.

Reduction Rules

We also have developed rules that can further reduce the output list of all the effective three

steps from the cache three-step simulator. Figure 3.2 shows how the output of the simulator

is filtered through the reduction rules to get the final list of vulnerabilities. Reduction’s

goal is to remove vulnerabilities of repeating or redundant types from the lists to form

effective Strong Vulnerability or Weak Vulnerability output. A script was developed that

automatically applies below reduction rules to the output of the simulator to get the final

list of vulnerabilities. A three-step combination will be eliminated if it satisfies one of the

below rules:

1. Three-step patterns with two adjacent steps which are repeating, or which are both

known to the attacker, can be eliminated, e.g., Ad Aa Vu can be reduced to

Aa Vu, which is equivalent to ? Aa Vu. Therefore, Ad Aa Vu is a repeat

type of ? Aa Vu and can be eliminated.

2. Three-step patterns with a step involving a known address a and an alias to that address

aalias gives the same information. Thus three step combinations which only differ in

use of a or aalias cannot represent different attacks, and only one combination needs

to be considered. For example, Vu Aaalias Vu is a repeat type of Vu Aa Vu,

and we will eliminate the first pattern.

28

Table 3.2: The table shows all the cache timing vulnerabilities where the last step is a memory
access-related operation. For Step 3, fast indicates a cache hit must be observed to derive sensitive
address information, while slow indicates a cache miss must be observed.

Attack
Strategy

Vulnerability Type Macro
Type

Attack
Step 1 Step 2 Step 3

Cache
Internal
Collision

Ainv Vu Va (fast) IH Cache Internal Collision attack [23]
V inv Vu Va (fast) IH Cache Internal Collision attack [23]

Ad Vu Va (fast) IH Cache Internal Collision attack [23]
Vd Vu Va (fast) IH Cache Internal Collision attack [23]

A
aalias Vu Va (fast) IH Cache Internal Collision attack [23]

V
aalias Vu Va (fast) IH Cache Internal Collision attack [23]
Ainv

a Vu Va (fast) IH Cache Internal Collision attack [23]
V inv

a Vu Va (fast) IH Cache Internal Collision attack [23]

Flush
+ Reload

Ainv
a Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]

V inv
a Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]

Ainv Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]
V inv Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]

Ad Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]
Vd Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]

A
aalias Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]

V
aalias Vu Aa (fast) EH Flush + Reload attack [27, 53], Evict + Reload attack [54]

Reload
+ Time

V inv
u Aa Vu (fast) EH new

V inv
u Va Vu (fast) IH new

Flush
+ Probe

Aa V inv
u Aa (slow) EM SpectrePrime, MeltdownPrime attack [55]

Aa V inv
u Va (slow) IM new

Va V inv
u Aa (slow) EM new

Va V inv
u Va (slow) IM new

Evict
+ Time

Vu Ad Vu (slow) EM Evict + Time attack [49]
Vu Aa Vu (slow) EM Evict + Time attack [49]

Prime
+ Probe

Ad Vu Ad (slow) EM Prime + Probe attack [49, 21], Alias-driven attack [56]
Aa Vu Aa (slow) EM Prime + Probe attack [49, 21], Alias-driven attack [56]

Bernstein’s
Attack

Vu Va Vu (slow) IM Bernstein’s attack [22]
Vu Vd Vu (slow) IM Bernstein’s attack [22]
Vd Vu Vd (slow) IM Bernstein’s attack [22]
Va Vu Va (slow) IM Bernstein’s attack [22]

Evict
+ Probe

Vd Vu Ad (slow) EM new
Va Vu Aa (slow) EM new

Prime
+ Time

Ad Vu Vd (slow) IM new
Aa Vu Va (slow) IM new

Flush
+ Time

Vu Ainv
a Vu (slow) EM new

Vu V inv
a Vu (slow) IM new

3. Three-step patterns with steps Vu and Vuinv in adjacent consecutive steps with each

other will only keep the latter step and eliminate the first step. For example, Aa

Vu Vuinv can be reduced to Aa Vuinv and further equivalent to ? Aa Vuinv .

So Aa Vu Vuinv can be eliminated.

Categorization of StrongVulnerabilities

As is shown in Figure 3.2, after applying the reduction rules, there are remaining 72 types

of Strong vulnerabilities. In Section 3.1.5, we analyze the soundness of the three-step model

to demonstrate that the three-step model can cover all possible cache timing side-channel

vulnerabilities. And if there is a vulnerability, it can always be reduced to a model that

requires only three steps. Table 3.2 lists all the vulnerability types of which the last step is

a memory access and Table 3.3 shows all the vulnerability types of which the last step is an

29

Table 3.3: The table shows the second part of the timing cache side-channel vulnerabilities where
the last step is an invalidation-related operation. For Step 3, fast indicates no corresponding address
of the data is invalidated, while slow indicates invalidation operation makes some data invalid, causing
longer processing time.

Attack
Strategy

Vulnerability Type Macro
Type

Attack
Step 1 Step 2 Step 3

Cache Internal
Collision

Invalidation

Ainv Vu V inv
a (slow) IH new

V inv Vu V inv
a (slow) IH new

Ad Vu V inv
a (slow) IH new

Vd Vu V inv
a (slow) IH new

A
aalias Vu V inv

a (slow) IH new
V

aalias Vu V inv
a (slow) IH new

Flush + Flush

Ainv
a Vu V inv

a (slow) IH Flush + Flush attack [26]
V inv

a Vu V inv
a (slow) IH Flush + Flush attack [26]

Ainv
a Vu Ainv

a (slow) EH Flush + Flush attack [26]
V inv

a Vu Ainv
a (slow) EH Flush + Flush attack [26]

Flush + Reload
Invalidation

Ainv Vu Ainv
a (slow) EH new

V inv Vu Ainv
a (slow) EH new

Ad Vu Ainv
a (slow) EH new

Vd Vu Ainv
a (slow) EH new

A
aalias Vu Ainv

a (slow) EH new
V

aalias Vu Ainv
a (slow) EH new

Reload + Time
Invalidation

V inv
u Aa V inv

u (slow) EH new
V inv

u Va V inv
u (slow) IH new

Flush + Probe
Invalidation

Aa V inv
u Ainv

a (fast) EM new
Aa V inv

u V inv
a (fast) IM new

Va V inv
u Ainv

a (fast) EM new
Va V inv

u V inv
a (fast) IM new

Evict + Time
Invalidation

Vu Ad V inv
u (fast) EM new

Vu Aa V inv
u (fast) EM new

Prime + Probe
Invalidation

Ad Vu Ainv
d

(fast) EM new
Aa Vu Ainv

a (fast) EM new

Bernstein’s
Invalidation

Attack

Vu Va V inv
u (fast) IM new

Vu Vd V inv
u (fast) IM new

Vd Vu V inv
d

(fast) IM new
Va Vu V inv

a (fast) IM new
Evict + Probe

Invalidation
Vd Vu Ainv

d
(fast) EM new

Va Vu Ainv
a (fast) EM new

Prime + Time
Invalidation

Ad Vu V inv
d

(fast) IM new
Aa Vu V inv

a (fast) IM new
Flush + Time

Invalidation
Vu Ainv

a V inv
u (fast) EM new

Vu V inv
a V inv

u (fast) IM new

invalidation-related operation. The Attack Strategy column gives a common name for each

set of one or more specific vulnerabilities that would be exploited in an attack in a similar

manner. The Vulnerability Type column gives the three steps that define each vulnerability.

The Macro Type column proposes the categorization the vulnerability belongs to. “E” is for

external interference vulnerabilities. “I” is for internal interference vulnerabilities. “M” is

for miss-based vulnerabilities. “H” is for hit-based vulnerabilities.

To ease the understanding of all the vulnerability types, we group the vulnerabilities

based on attack strategies (left most column in Table 3.2 and Table 3.3), these strategies

correspond to well-known names for the attacks, if such exist, otherwise we provide a new

name. In Section 3.1.4 we provide description for each attack strategy to show the main

ideas behind them.

30

The list of vulnerability types can be further collected into four simple macro types

which cover one or more vulnerability types: internal interference miss-based (IM), internal

interference hit-based (IH), external interference miss-based (EM), external interference

hit-based (EH), as labeled in the Macro Type column of Table 3.2 and Table 3.3. All the

types of vulnerabilities that only involve the victim’s behavior, V , in the states in Step 2

and Step 3 are called internal interference vulnerabilities (I). The remaining ones are called

external interference (E). Some vulnerabilities allow the attacker to learn that the address

of the victim accesses map to the set the attacker is attacking by observing slow timing due

to a cache miss or fast timing due to invalidation of data not in the cache1. We call these

miss-based vulnerabilities (M). The remaining ones leverage observation of fast timing due

to a cache hit or slow timing due to an invalidation of an address that is currently valid in

the cache, and are called hit-based vulnerabilities (H).

Many vulnerability types have been explored before. E.g., the Cache Collision attack [23]

is effectively based on the Internal Collision. But we found many new ones as well. The

types labeled new correspond to new attack not previously discussed in literature. We

believe these 43 are new attacks not previously analyzed nor known.

3.1.4 Description of Attack Strategies

This subsection gives overview of the attack strategies from Section 3.1. For each attack

strategy, an overview of the three steps of the strategy is given. One advantage of the

three-step model is that it gives precise definition of each attack. The attack strategy names

used before (and added by us for strategies which did not have such names) may be useful

to recall the attacks’ high-level operation.

Cache Internal Collision: In Step 1, cache block’s data is invalidated by flushing or

eviction done by either the attacker or the victim. Then, the victim accesses secret data in

Step 2. Finally, the victim accesses data at a known address in Step 3, if there is a cache

hit, then it reveals that there is an internal collision and leaks value of u.

Flush + Reload: In Step 1, either the attacker or the victim invalidates the cache

1. Invalidation is fast when the corresponding address, which is to be invalidated, does not exist in the
cache since no operation is needed for the invalidation in this case.

31

block’s data by flushing or eviction. Then, the victim access secret data in Step 2. Finally,

the attacker tries to access some data in Step 2 using a known address. If a cache hit is

observed, then addresses from last two steps are the same, and the attacker learns the

secret address. This strategy has similar Step 1 and Step 2 as Cache Internal Collision

vulnerability, but for Step 3, it is the attacker who does the reload access.

Reload + Time (new name assigned in this work): In Step 1, secret data is

invalidated by the victim. Then, the attacker does some known data access in Step 2 that

could possibly bring back the invalidated the victim’s secret data in Step 1. In Step 3, if

the victim reloads the secret data, a cache hit is observed and the attacker can derive the

secret data’s address.

Flush + Probe (new name assigned in this work): In Step 1 the victim or the

attacker access some known address. In Step 2, the victim invalidates secret data. In Step 3,

reloading of Step 1’s data and observation of a cache miss will help the attacker learn that

the secret data maps to the known address from Step 1.

Evict + Time: In Step 1, some victim’s secret data is put into the cache by the victim

itself. In Step 2, the attacker evicts a specific cache set by performing a memory related

operation that is not a flush. In Step 3, the victim reloads secret data, and if a cache miss

is observed, the will learn the secret data’s cache set information. This attack has similar

Step 1 and Step 3 as Flush + Time vulnerability, but for Step 2, in Evict + Time, the

attacker invalidates some known address allowing it to find the full address of the secret

data, instead of evicting a cache set to only find the secret data’s cache index as in the

Flush + Time attack.

Prime + Probe: In Step 1, the attacker primes the cache set using data at address

known to the attacker. In Step 2, the victim accesses the secret data, which possibly evicts

data from Step 1. In Step 3, the attacker probes each cache set and if a cache miss is

observed, the attacker knowns the secret data maps to the cache set he or she primed.

Bernstein’s Attack: This attack strategy leverages the victim’s internal interference

to trigger the miss-based attack. For one case, the victim does the same secret data access

in Step 1 and Step 3 while in Step 2, the victim tries to evict one whole cache set’s data

by known data accesses. If cache miss is observed in Step 3, that will tell the attacker the

32

cache set is the one secret data maps to. For another case, the victim primes and probe a

cache set in Step 1 and Step 3 driven by the attacker while in Step 2, the victim tries to

access the secret data. Similar to the first case, observing cache miss in Step 3 tells the

attacker the cache set is the one secret data maps to.

Evict + Probe (new name assigned in this work): In Step 1, Victim evict the

cache set using the access to a data at an address known to the attacker. In Step 2, the

victim accesses secret data, which possibly evicts data from Step 1. In Step 3, the attacker

probes each cache set using the same data as in Step 1, if a cache miss is observed the

attacker knowns the secret data maps to the cache set he or she primed. This attack strategy

has similar Step 2 and Step 3 as Prime + Probe attack, but for Step 1, it is the victim

that does the eviction accesses.

Prime + Time (new name assigned in this work): In Step 1, the attacker primes

the cache set using access to data at an address known to the attacker. In Step 2, the victim

accesses secret data, which possibly evicts data from Step 1. In Step 3, the victim probes

each cache set using the same data Step 1, if a cache miss is observed the attacker knowns

the secret data maps to the cache set he or she primed in Step 1. This attack strategy has

similar Step 1 and Step 2 as Prime + Probe attack, but for Step 3, it is the victim that

does the probing accesses.

Flush + Time (new name assigned in this work): The victim accesses the same

secret data in Step 1 and Step 3; while in Step 2, the attacker tries to invalidate data at

a known address. If cache miss is observed in Step 3, that will tell the attacker the data

address he or she invalidated in Step 2 maps to the secret data.

Invalidation related (new names assigned in this work): Vulnerabilities that have

names ending with “invalidation” in Table 3.3 correspond to the vulnerabilities that have

the same name (except for the “invalidation” part) in Table 3.2. The difference between

each set of corresponding vulnerabilities is that the vulnerabilities ending with “invalidation”

use invalidation related operation in the last step to derive the timing information, rather

than the normal memory access related operations.

33

3.1.5 Soundness Analysis of the Three-Step Model

In this section we analyze the soundness of the three-step model to demonstrate that the

three-step model can cover all possible timing cache vulnerabilities in normal caches. If

there is a vulnerability that is represented using more than three steps, we show the steps

can be reduced to only three steps, or a three-step sub-pattern can be found in the longer

representation of the vulnerability.

In the below analysis, we use β to denote the number of memory related operations,

i.e., steps, in a representation of a vulnerability. We show that β = 1 is not sufficient to

represent a vulnerability, β = 2 covers some vulnerabilities but not all, β = 3 represents all

the vulnerabilities, and β > 3 can be reduced to only three steps, or a three-step sub-pattern

can be found in the longer representation. Known addresses refer to all the cache states that

interference with the data a, aalias and d Unknown address refers u. An access to a known

memory address is denoted as known_access_operation, and an invalidation of a known

memory address is denoted as known_inv_operation. The known_access_operation and

known_inv_operation together make up not_u_operations. An unknown memory related

operation (containing u) is denoted as u_operation.

Patterns with β = 1

When β = 1, there is only one memory related operation, and it is not possible to create

interference between memory related operations since two memory related operations are the

minimum requirement for an interference. Furthermore, β = 1 corresponds to the three-step

pattern with both Step 1 and Step 2 being ?, since the cache state ? gives no information,

and Step 3 being the one operation. These types of patterns are all examined by the cache

three-step simulator and none of these types are found to be effective. Consequently, a

vulnerability cannot exit when β = 1.

Patterns with β = 2

When β = 2, it satisfies the minimum requirement of an interference for memory related

operations and corresponds to the three-step cases where Step 1 is ?, and Step 2 and Step 3

34

are the two operations. These types are all examined by the cache three-step simulator and

some of them belong to Weak Vulnerabilities, like { ? Aa Vu}. Therefore, three-step

cases where Step 1 is ? have corresponding effective vulnerabilities shown in Table 3.2.

Consequently, β = 2 can represent some weak vulnerabilities, but not all vulnerabilities as

there exist some that are represented with three steps, as discussed next.

Patterns with β = 3

When β = 3, we have tested all possible combinations of three-step memory related operations

in Section 4.3.1 using the cache simulator for the three-step model. We found that there

are in total 72 types of Strong Vulnerabilities and 64 types of Weak Vulnerabilities that

are represented by patterns with β = 3 steps. Consequently, β = 3 can represent all the

vulnerabilities (including some weak ones where Step 1 is ?). Using more steps to represent

vulnerabilities is not necessary, as discussed next.

Patterns with β > 3

When β > 3, the pattern of memory related operations for a vulnerability can be reduced

using the following rules. First a set of subdivision rules is used to divide the long pattern

into shorter patterns, following the below rules. Each subdivision rule should be applied

recursively before applying the next rule.

Subdivision Rule 1: If the longer pattern contains a sub-pattern such as { ... ? ...},

the longer pattern can be divided into two separate patterns, where ? is assigned as Step 1

of the second pattern. This is because ? gives no timing information, and the attacker loses

track of the cache state after ?. This rule should be recursively applied until there are no

sub-patterns left with a ? in the middle or as last step (? in the last step will be deleted) in

the longer pattern.

Subdivision Rule 2: Next, if a pattern (derived after recursive application of the Rule 1

contains a sub-pattern such as { ... Ainv/Vinv ...}, the longer pattern can be divided

into two separate patterns, where Ainv/Vinv is assigned as Step 1 of the second pattern.

This is because Ainv/Vinv can be used as the flushing step for Step 1, e.g., vulnerability {

Ainv Vu Aa(fast)} shown in Table 3.2. Ainv/Vinv cannot be a candidate for middle

35

steps or the last step because it will remove all timing information, making the attacker

unable to deduce the final timing. This rule should be recursively applied until there are no

sub-patterns left with a Ainv/Vinv in the middle or the last step (Ainv/Vinv in the last step

will be deleted).

Next, for each of the patterns resulting from the subdivision of the original pattern, we

define Commute Rules, Union Rules and Reduction Rules for a each set of two adjacent steps

in these remaining patterns. In Table 3.4, we show the rules for combining adjacent steps,

regardless of the attacker’s access (A) or the victim’s access (V). The table shows whether

the corresponding two steps can be commuted, reduced or unioned (and the reduced or the

unioned result if the rules can be applied).

Commute Rules: Suppose there are two adjacent steps M and N for a memory sequences

{... M N ...}. If commuting M and N lead to the same observation result, i.e.,

{... M N ...} and {... N M ...} will have the same timing observation

information in the final step for the attacker, we can freely exchange the place of M and N

in this pattern. In this case, we have more chance to Reduce and Union the steps within

the memory sequence by the following rules. In the possible commuting process, we will try

every possible combinations to commute different pairs of two steps that are able to apply

the Commute Rules and then further apply Reduce Rules and Union Rules to see whether the

commute is effective, i.e., there can be steps reduced or unioned after the proper commuting

process. The following two adjacent memory related operations can be commuted:

• Commute Rule 1: For two adjacent steps, if one step is a known_access_operation

and another step is a known_inv_operation. and the addresses they refer to are

different, these two steps can be commuted no matter which position of the two

steps they are in within the whole memory sequence. It will show a “yes” for the

corresponding two-step pattern for the Commute Rule 1 column if these two can be

commuted in Table 3.4.

• Commute Rule 2: A superset of two-step patterns that can apply Commute Rule 1

can be commuted if the second step of these two adjacent steps is not the last step

in the whole memory sequence. There are some two adjacent steps that can only be

36

T
ab

le
3.
4:

R
ul
es

fo
r
co
m
bi
ni
ng

tw
o
ad

ja
ce
nt

st
ep
s.

F
ir
st

St
ep

Se
co
nd

St
ep

C
om

-
m
ut
e

R
ul
e
1

C
om

-
m
ut
e

R
ul
e
2

U
ni
on

R
ul
e
or

R
ed
uc
e

R
ul
e

C
om

bi
ne

d
St
ep

F
ir
st

St
ep

Se
co
nd

St
ep

C
om

-
m
ut
e

R
ul
e
1

C
om

-
m
ut
e

R
ul
e
2

U
ni
on

R
ul
e
or

R
ed
uc
e

R
ul
e

C
om

bi
ne
d
St
ep

a
a

ye
s

ye
s

ye
s

a
a

in
v

a
no

no
ye
s

a
a

a
a

li
a

s
no

no
ye
s

a
a

li
a

s
a

in
v

a
a

li
a

s
ye
s

ye
s

ye
s

a
a

li
a

s

a
d

no
no

ye
s

d
a

in
v

d
ye
s

ye
s

ye
s

d
a

u
no

no
no

−
a

in
v

u
no

no
no

−
a

a
in

v
no

no
ye
s

a
in

v
a

in
v

a
in

v
ye
s

ye
s

ye
s

a
in

v

a
a

a
li

a
s

in
v

ye
s

ye
s

ye
s

a
a

in
v

a
a

li
a

s
in

v
ye
s

ye
s

ye
s

U
n
io
n

(a
in

v
,a

a
li

a
s

in
v
)

a
d

in
v

ye
s

ye
s

ye
s

a
a

in
v

d
in

v
ye
s

ye
s

ye
s

U
n
io
n

(a
in

v
,d

in
v
)

a
u

in
v

no
no

no
−

a
in

v
u

in
v

no
ye
s

no
−

a
a

li
a

s
a

no
no

ye
s

a
a

a
li

a
s

in
v

a
ye
s

ye
s

ye
s

a

a
a

li
a

s
a

a
li

a
s

ye
s

ye
s

ye
s

a
a

li
a

s
a

a
li

a
s

in
v

a
a

li
a

s
no

no
ye
s

a
a

li
a

s

a
a

li
a

s
d

no
no

ye
s

d
a

a
li

a
s

in
v

d
ye
s

ye
s

ye
s

d

a
a

li
a

s
u

no
no

no
−

a
a

li
a

s
in

v
u

no
no

no
−

a
a

li
a

s
a

in
v

ye
s

ye
s

ye
s

a
a

li
a

s
a

a
li

a
s

in
v

a
in

v
ye
s

ye
s

ye
s

U
n
io
n

(a
in

v
,a

a
li

a
s

in
v
)

a
a

li
a

s
a

a
li

a
s

in
v

no
no

ye
s

a
a

li
a

s
in

v
a

a
li

a
s

in
v

a
a

li
a

s
in

v
ye
s

ye
s

ye
s

a
a

li
a

s
in

v

a
a

li
a

s
d

in
v

ye
s

ye
s

ye
s

a
a

li
a

s
a

a
li

a
s

in
v

d
in

v
ye
s

ye
s

ye
s

U
n
io
n

(d
in

v
,a

a
li

a
s

in
v
)

a
a

li
a

s
u

in
v

no
no

no
−

a
a

li
a

s
in

v
u

in
v

no
ye
s

no
−

d
a

no
no

ye
s

a
d

in
v

a
ye
s

ye
s

ye
s

a
d

a
a

li
a

s
no

no
ye
s

a
a

li
a

s
d

in
v

a
a

li
a

s
ye
s

ye
s

ye
s

a
a

li
a

s

d
d

ye
s

ye
s

ye
s

d
d

in
v

d
no

no
ye
s

d
d

u
no

no
no

−
d

in
v

u
no

ye
s

no
−

d
a

in
v

ye
s

ye
s

ye
s

d
d

in
v

a
in

v
ye
s

ye
s

ye
s

U
n
io
n

(a
in

v
,d

in
v
)

d
a

a
li

a
s

in
v

ye
s

ye
s

ye
s

d
d

in
v

a
a

li
a

s
in

v
ye
s

ye
s

ye
s

U
n
io
n

(d
in

v
,a

a
li

a
s

in
v
)

d
d

in
v

no
no

ye
s

d
in

v
d

in
v

d
in

v
ye
s

ye
s

ye
s

d
in

v

d
u

in
v

no
ye
s

no
−

d
in

v
u

in
v

no
ye
s

no
−

u
a

no
no

no
−

u
in

v
a

no
no

no
−

u
a

a
li

a
s

no
no

no
−

u
in

v
a

a
li

a
s

no
no

no
−

u
d

no
no

no
−

u
in

v
d

no
ye
s

no
−

u
u

ye
s

ye
s

ye
s

u
u

in
v

u
no

no
ye
s

u
u

a
in

v
no

no
no

−
u

in
v

a
in

v
no

ye
s

no
−

u
a

a
li

a
s

in
v

no
no

no
−

u
in

v
a

a
li

a
s

in
v

no
ye
s

no
−

u
d

in
v

no
ye
s

no
−

u
in

v
d

in
v

no
ye
s

no
−

u
u

in
v

no
no

ye
s

u
in

v
u

in
v

u
in

v
ye
s

ye
s

ye
s

u
in

v

37

commuted if the second step of these two adjacent steps is not the last step in the

whole memory sequence. There will be a “yes” for the corresponding two-step pattern

for the Commute Rule 2 column and a “no” for the corresponding two-step pattern for

the Commute Rule 1 column in Table 3.4.

Reduction Rules: If the memory sequence after applying Commute Rules have a sub-

pattern that has two adjacent steps both related to known addresses or both related to

unknown address (including repeating states), the two adjacent steps can be reduced to

only one following the reduction rules (if the two-step pattern has “yes” for the Column

“Union Rule or Reduce Rule” and has no Union result for the “Combined Step” column in

Table 3.4).

• Reduction Rule 1: For two u_operations, although u is unknown, both of the accesses

target on the same u so can be reduced to only keep the second access in the sequence

of steps.

• Reduction Rule 2: For two known adjacent memory access related operations (known_

access_operation), they always result in a deterministic state of the second memory

access related cache block, so these two steps can be reduced to only one step.

• Reduction Rule 3: For two adjacent steps, if one step is known_access_operation

and another one is known_inv_operation, no matter what order they have, and the

address they refer to is the same, these two can be reduced to one step, which is the

second step.

Union Rules: Suppose there are two adjacent steps M and N for a memory sequences

{... M N ...}. If combing M and N leads to the same timing observation result, i.e.,

{... M N ...} and {... Union(M,N) ...} will have the same timing observation

information in the final step for the attacker, we can combine step M and N to be a joint

one step for this memory sequence, defined as Union(M,N). Two adjacent steps that can

be combined are discussed in the following cases:

• Union Rule 1: Two invalidations to two known different memory addresses can be

applied Union Rule 1. known_inv_operation are two operations both invalidating

38

some known address, therefore, they can be combined to only one step. The Union Rule

can be continuously done to union all the adjacent invalidation step that invalidates

known different memory addresses.

Finally, each long memory sequence will recursively apply these three categorizations

of the rules in the order: Commute Rules first to put known_access_operations and

known_inv_operation that targets the same address as near as possible, as well as

u_operations and not_u_operations. The Reduced Rules are then checked and applied to

the processed sequence to reduce the steps. Then the Union Rule is applied to the processed

sequence of steps.

The recursion at each application to these rules should be always applied and reduce at

least one step until the resulting sequence matches one of the two possible cases:

• the long (β > 3) memory sequence with u_operation and not_u_operation is further

reduced to a sequence where there are at most three steps in the following patterns:

– u_operation not_u_operation u_operation

– not_u_operation u_operation not_u_operation

There might be possible extra ? or Ainv/V inv before these three-step pattern, where:

– An extra ? in the first step will not influence the result and can be directly

removed.

– If an extra Ainv/V inv in the first step:

∗ If followed by known_access_operation, Ainv/V inv can be removed due to

the actual state further put into the cache block.

∗ If followed by known_inv_operation or V inv
u , Ainv/V inv can also be removed

since the memory location is repeatedly flushed by the two steps.

∗ If followed by Vu, worst case will be Ainv/V inv Vu

not_u_operation u_operation, which is either an effective vulnerability

or Ainv/V inv Vu Ainvd /V inv
d u_operation, where Vu Ainvd /V inv

d

can further apply Commute Rule 2 to reduce and be within three steps.

39

In this case, the steps are finally within three steps and the checking is done.

• There exists two adjacent steps that cannot be affected by any rules anymore and

require additional checks listed below.

The only remaining two adjacent steps that cannot be applied by any of the three

categorizations of the rules are the following:

• {... Aa/Va/Aaalias/Vaalias/Ad/Vd/A
inv
a /V inv

a /Ainv
aalias/V

inv
aalias Vu ...}

• {... Aa/Va/Aaalias/Vaalias V inv
u ...}

• {... Vu ...Aa/Va/Aaalias/Vaalias/Ad/Vd/A
inv
a /V inv

a /Ainv
aalias/V

inv
aalias}

• {... V inv
u Aa/Va/Aaalias/Vaalias ...}

We manually checked all of the two adjacent step patterns above and found that adding

extra step before or after these two steps can either generate two adjacent step patterns that

be processed by the three rules, where further step can be reduced, or construct effective

vulnerability, where the corresponding pattern can be treated as effective.

Algorithm for Reducing and Checking Memory Sequence

The Algorithm 2 is used to: i) reduce a β-step (β > 3) pattern to a three-step pattern,

thus demonstrating that the corresponding β > 3 step pattern actually is equivalent to the

output three-step pattern and represents a vulnerability that is captured by an existing

three-step pattern, or ii) demonstrate that the β-step pattern can be mapped to one or

more three-step vulnerabilities. It is not possible for a β-step vulnerability pattern to not

be either i) or ii) after doing the Rule applications Key outcome of the analysis is that any

β-step pattern is not a vulnerability, or if it is a vulnerability it maps to either outputs i) or

ii) of the algorithm.

Inside the Algorithm 2, contain() represents a function to check if a list contains a corre-

sponding state, is_ineffective() represents a function that checks the corresponding memory

sequence does not contain any effective three-steps. has_interval_effective_ three_steps()

represents a function that check if the corresponding memory sequence can be mapped to

one or more three-step vulnerabilities.

40

Algorithm 2 β-Step (β > 3) Pattern Reduction
Input: β: number of steps of the pattern

step_list: a two-dimensional dynamic-size array. step_list[0] contains the states of each step of the original
pattern in order. step_list[1], step_list[2], ... are empty initially.

Output: reduce_list: reduced effective vulnerability pattern(s) array. It will be an empty list if the original pattern
does not correspond to an effective vulnerability.

1: reduce_list = []
2: while step_list.contain(?) and ?.index not 0 do
3: step_list = Subdivision_Rule_1 (step_list)
4: end while
5: while (step_list.contain(Ainv) and Ainv .index not 0) or (step_list.contain(Vinv) and Vinv .index not 0) do
6: step_list = Subdivision_Rule_2 (step_list)
7: end while
8: while !(step_list.set_list.is_ineffecitve or step_list.set_list.has_interval_effective_ three_steps) do
9: step_list = Commute_Rules (step_list)
10: step_list = Reduction_Rules (step_list)
11: step_list = Union_Rule (step_list)
12: if !(step_list.set_list.is_ineffecitve or step_list.set_list.has_interval_effective_ three_steps) then
13: reduce_list += Rest_Checking (step_list)
14: end if
15: end while
16: return reduce_list

3.1.6 Cache Three-Step Model Summary

In conclusion, the three-step model can model all possible timing cache vulnerability in

normal caches. Vulnerabilities which are represented by more than three steps can be always

reduced to one (or more) vulnerabilities from the three-step model; and thus, using more

than three step is not necessary.

3.2 Secure Caches Evaluation

To address the threat of the cache timing–based attacks, different secure cache designs have

been previously presented in academic literature. The secure processor caches are designed

with different assumptions and often address only specific types of timing side-channel

or covert-channel attacks. To help analyze the security of these designs, this work uses

the three-step modeling approach to reason about all the possible timing vulnerabilities.

Especially, since the work demonstrates a number of new timing attacks, the existing secure

caches have never been analyzed with respect to these new attacks before.

41

3.2.1 Different Types of Secure Caches

Various secure caches which have been presented in literature to date [38, 39, 1, 40, 2, 41, 42,

43, 45, 44, 57, 58, 59, 60, 61, 62, 63, 64]. Later, in Section 3.2.2 we will apply the three-step

model to check if the secure caches can defend some or all of the vulnerabilities in the model.

This section gives brief overview of the 18 secure cache designs that have been presented

in academic literature in the last 15 years. To the best of our knowledge, these cover all the

secure cache designs proposed to date. Most of the designs have been realized in functional

simulation, e.g., [42, 58]. Some have been realized in FPGA, e.g., [62], and a few have been

realized in real ASIC hardware, e.g., [65]. No specific secure caches have been implemented

in commercial processors to the best of our knowledge, however, CATalyst [57] leverages

Intel’s CAT (Cache Allocation Technology) technology available today in Intel Xeon E5

2618L v3 processors, and could be deployed today.

When the secure cache description in the cited papers did not mention the issue of using

flush or cache coherence, we assume the victim or the attacker cannot invalidate each other’s

cache blocks by using clflush instructions or through cache coherence protocol operations;

but they can flush or use cache coherence to invalidate their own cache lines. The victim

and the attacker also cannot invalidate protected or locked data. Further, if the authors

specified any specific assumptions (mainly about the software), we list the assumption as

part of the description of the cache. What’s more, when the level of cache hierarchy was

unspecified, we assume the secure caches’ features can be applied to all levels of caches,

including L1 cache, L2 cache and Last Level Cache (LLC). If the inclusivity of the caches

was not specified, we assume they target inclusive caches. Following the below descriptions

of each secure cache design, the analysis of the secure caches is given in Section 3.2.2.

SP∗ cache [43, 66]2 uses partitioning techniques to statically partition the cache ways

into High and Low partition for the victim and the attacker according to their different

process IDs. The victim typically belongs to High security and attacker belongs to Low

security. Victim’s memory accesses cannot modify Low partition (assigned to processes

2. Two existing papers give slightly different definitions for an “SP” cache, thus we selected to define a
new cache, the SP∗ cache, that combines secure cache features of the Secret-Protecting cache from [43] with
secure cache features of the Static-Partitioned cache from [66].

42

such as the attacker), while the attacker’s memory accesses cannot modify High partition

(assigned to the victim). However, the memory accesses of both the victim and the attacker

can result in a hit in either Low or High partition if the data is in the cache.

SecVerilog cache [39, 38] statically partitions cache blocks between security levels L

(Low) and H (High). Each instruction in the source code for programs using SecVerilog

cache needs to include a timing label which effectively represents whether the data being

accessed by that instruction is Low or High based on the code and this timing label can be

similar to a process ID that differentiates attacker’s (Low) instructions from victim’s (High)

instructions. The cache is designed such that operations in the High partition cannot affect

timing of operations in the Low partition. For a cache miss due to Low instructions, when

the data is in the High partition, it will behave as a cache miss, and the data will be moved

from the High to the Low partition to preserve consistency. However, High instructions are

able to result in a cache hit in both High and Low partitions, if the data is in the cache.

SecDCP cache [42] builds on the SecVerilog cache and uses partitioning idea from

the original SecVerilog cache, but the partitioning is dynamic. It can support at least two

security classes H (High) and L (Low), and configurations with more security classes are

possible. They use the percentage of cache misses for L instructions that was reduced

(increased) when L’s partition size was increased (reduced) by one cache way to adjust the

number of ways of the cache assigned to the Low partition. When adjusting number of ways

in the cache dedicated to each partition, if L’s partition size decreases, the process ID is

checked and L blocks are flushed before the way is reallocated to H. On the other hand, if

L’s partition size increases, H blocks in the adjusted cache way remain unmodified so as to

not add more performance overhead, and they will eventually be evicted by L’s memory

accesses. However, the feature of not flushing High partition data during way adjustment

may leak timing information to the attacker.

NoMo cache [44] dynamically partitions the cache ways among the currently “active”

simultaneous multithreading (SMT) threads. Each thread is exclusively reserved Y blocks in

each cache set, where Y is within the range of [0, bNM c], where N is the number of ways and

M is the number of SMT threads. NoMo-0 equals to traditional set associative cache while

NoMo-bNM c partitions cache evenly for the different threads and there are no non-reserved

43

ways. The number of Y assigned to each thread is adjusted based on its activeness. When

adjusting number of blocks assigned to a thread, Y blocks are invalidated for cache sets to

protect timing leakage. Eviction is not allowed within each thread’s own reserved ways while

it is possible for the shared ways. Therefore, to avoid eviction caused by the unreserved

ways, we assume NoMo-bNM c is used to fully partition the cache. When the attacker and the

victim share the same library, there will be a cache hit if accessing the shared data, and the

normal cache hit policy holds to guarantee the cache coherence.

SHARP cache [45] uses both partitioning and randomization techniques to prevent

victim’s data from being evicted or flushed by other malicious processes and it targets on the

inclusive caches. Each cache block is augmented with the core valid bits (CVB) to indicate

which private cache (process) it belongs to (similar to the Process ID), where CVB stores a

bitmap and i-th bit in the bitmap is set if the line is present in i-th core’s private cache.

Cache hit is allowed among different processes’ data. When there is cache miss and data

needs to be evicted, data not belonging to any current processes will be evicted first. If there

is no such data, data belonging to the same process will be evicted. If there is no existing

data in the cache that is in the same process, a random data in the cache set will be evicted.

This random eviction will generate an interrupt to the OS to notify it of a suspicious activity.

For pages that are read-only or executable, SHARP cache disallows flushing using clflush

in user mode. However, invalidating victim’s blocks by using cache coherence protocol is

still possible.

Sanctum cache [41] focuses on isolation of enclaves (equivalent to Trusted Software

Module in other designs) from each other and the operating system (OS). In terms of caches,

they implements security features for L1 cache, TLB and LLC. Cache isolation of LLC

is achieved by assigning each enclave or OS to different DRAM address regions. It uses

page-coloring-based cache partitioning scheme [67, 68] and a software security monitor that

ensures per-core isolation between OS and enclaves. For L1 cache and TLB, when there

is a transition between enclave and non-enclave mode, the security monitor will flush the

core-private caches to achieve isolation. Normal flushes triggered by the enclave or the OS

can only be done within enclave or not within enclave code. Also, timing side-channel attacks

exploiting cache coherence are explicitly not prevented, thus behavior on cache coherence

44

operations is not defined. This cache listed extra software assumptions as follows:

Assumption 1. Software security monitor guarantees that victim and attacker process

cannot share the same cache blocks. It uses page coloring [67, 68] to ensure that victim and

attacker’s memory is never mapped to the same cache blocks for the LLC.

Assumption 2. The software runs on a system with a single processor core where victim

and attacker alternate execution, but can never run truly in parallel. Moreover, security

critical data is always flushed by the security monitor when program execution switches

away from the victim program for the L1 cache and the TLB.

MI6 cache [62] is part of the memory hierarchy of the MI6 processor, which combines

Sanctum [41] cache’s security feature with disabling speculation during the speculative

execution of memory-related operations. During normal processor execution, for L1 caches

and TLB, the corresponding states will be flushed across context switches between software

threads. For the LLC, set partitioning is used to divide DRAM into contiguous regions.

And cache sets are guaranteed to be strictly partitioned (two DRAM regions cannot map to

the same cache set). Each enclave is only able to access its own partition. Speculation is

simply disabled when enclave interacts with the outside world because of small performance

influence based on the rare cases of speculation. This cache listed extra software assumptions

as follows:

Assumption 1. Software security monitor guarantees that the victim and the attacker

process cannot share the same cache blocks. It uses page coloring [67, 68] to ensure that

victim’s and attacker’s memory are never mapped to the same cache blocks for the LLC.

Assumption 2. The software runs on a system with a single processor core where victim

and attacker alternate execution, but can never run truly in parallel. Moreover, security

critical data is always flushed by the security monitor when program execution switches

away from the victim program for the L1 cache and the TLB.

Assumption 3. When an enclave is interacting with the outside environment, the

corresponding speculation is disabled by the software.

InvisiSpec cache [61] is able to make speculation invisible in the data cache hierarchy.

Before a visibility point shows up, when all of its prior control flow instructions resolve,

unsafe speculative loads (USL) will be put into a speculative buffer (SB) without modifying

45

any cache states. When reaching the visibility point, there are two cases. In one case, the

USL and successive instructions will be possibly squashed because of mismatch of data in

the SB and the up-to-date values in the cache. In another case, the core receives possible

invalidation from the OS before checking of memory consistency model and no comparison

is needed. When speculative execution happens, the hardware puts the data into SB, as to

identify visibility point for dealing with final state transition of the speculative execution.

InvisiSpec cache targets on Spectre-like attacks and futuristic attacks. However, InvisiSpec

cache is vulnerable to all non-speculative side channels.

CATalyst cache [57] uses partitioning, especially Cache Allocation Technology (CAT) [69]

available in the LLC of some Intel processors. CAT allocates up to 4 different Classes of

Services (CoS) for separate cache ways so that replacement of cache blocks is only allowed

within a certain CoS. CATalyst first uses CAT mechanism to partition caches into secure

and non-secure parts (non-secure parts may map to 3 CoS while secure parts map to 1

CoS). Secure pages are assigned to virtual machines (VMs) at a granularity of a page,

and not shared by more than one VM. Here, attacker and victim reside in different VMs.

Combined with CAT technology and pseudo-locking mechanism which pins certain page

frames managed by software, CATalyst guarantees that malicious code cannot evict secure

pages. CATalyst implicitly performs preloading by remapping security-critical code or data

to secure pages. Flushes can only be done within each VM. And cache coherence is achieved

by assigning secure pages to only one processor and not sharing pages among VMs. This

cache listed extra software assumptions as follows:

Assumption 1. Security critical data is always preloaded into the cache at the beginning

of the whole program execution.

Assumption 2. Security critical data is always able to fit within the secure partition of

the cache. I.e. all data in the range x can fit in the secure partition.

Assumption 3. The victim and the attacker process cannot share the same memory space

between each other.

Assumption 4. Use pseudo-locking mechanism by software to make sure that victim and

attacker process cannot share the same cache blocks.

Assumption 5. Secure pages are reloaded immediately after the flush, which is done by

46

the virtual machine monitor (VMM) to make sure all the secure pages are still pinned in

the secure partition.

DAWG cache [60] (Dynamically Allocated Way Guard) partitions the cache by cache

ways and provides full isolation for hits, misses and metadata updates across different

protection domains (between the attacker and the victim). DAWG cache is partitioned for

the attacker and the victim and each of them keep their own different domain_id (which

is similar to process ID used in general caches). Each domain_id has its own bit fields,

one is called policy_fillmap, for masking fills and selecting the victim to replace, another

is called policy_hitmap, for masking hit ways. Only both the tag and the domain_id are

the same will a cache hit happen. Therefore, DAWG allows read-only cache lines to be

replicated across ways for different protection domain. For a cache miss, the victim can only

be chosen within the ways belonging to the same domain_id, recorded by the policy_fillmap.

Consistently, the replacement policy is updated with the victim selection and the metadata

derived from the policy_fillmap for different domains is updated as well. The work also

proposes the idea to dynamically partitions the cache ways following the system’s workload

changes but does not actually implement it.

RIC cache [59] (Relaxed Inclusion Caches) proposes a low-complexity cache to defend

against eviction-based timing side-channel attacks on the LLC. Normally for an inclusive

cache, if the data R is in the LLC, it is also in the higher level cache, and eviction of the R in

the LLC will cause the same data in the higher level cache, e.g., L1 cache to be invalidated,

making eviction-based attacks in the higher level cache possible (e.g., attacker is able to

evict victim’s security critical cache line). For RIC, each cache line is extended with a single

bit to set the relaxed inclusion. Once the relaxed inclusion is set for that cache line, the

corresponding LLC line eviction will not cause the same line in the higher-level cache to

be invalidated. Two kinds of data will be set relaxed inclusion bit: read only data and

thread private data when they are loaded into the cache. These two kinds of data are

claimed by the work to cover all the critical data for ciphers. Therefore, RIC will not prevent

writable in-private critical data, which is currently not found in any ciphers. Apart from

that, RIC requires flushing the corresponding cache lines in the cases that the RIC bits are

modified or for thread migration events to avoid the timing leakage during migration.

47

PL cache [1] provides isolation by partitioning the cache based on cache blocks. It

extends each cache block with a process ID and a lock status bit. The process ID and the

lock status bits are controlled by the extended load and store instructions (ld.lock/ld.unlock

and st.lock/st.unlock) which allow the programmer and compiler to set or reset the lock

bit through use of the right load or store instruction. In terms of cache replacement policy,

for a cache hit, PL cache will perform the normal cache hit handling procedure and the

instructions with locking or unlocking capability can update the process ID and the lock

status bits while the hit is processed. When there is a cache miss, locked data cannot be

evicted by data that is not locked and locked data among different processes cannot be

evicted by each other. In this case, the new data will be either loaded or stored without

caching. In other cases, data eviction is possible. This cache listed extra software assumption

as follows:

Assumption 1. Security critical data is always preloaded into the cache at the beginning

of the whole program execution.

RP cache [1] uses randomization to de-correlate the memory address accessing and

timing of the cache. For each block of RP cache, there is a process ID and one protection

bit P set to indicate if this cache block needs to be protected or not. A permutation table

(PT) stores each cache set’s pre-computed permuted set number and the number of tables

depends on number of protected processes. For memory access operations, cache hits need

both process ID and address to be the same. When a cache miss happens to data D of a

cache set S, if the to-be-evicted data and to-be-brought-in data belong to the same process

but have different protection bit, arbitrary data of a random cache set S′ will be evicted and

D will be accessed without caching. If they belong to different processes, D will be stored in

an evicted cache block of S′ and mapping of S and S′ will be swapped as well. Otherwise,

the normal replacement policy is executed.

Newcache cache [40, 65] dynamically randomizes memory-to-cache mapping. It intro-

duced a ReMapping Table (RMT), and the mapping between memory addresses and this

RMT is as in a direct mapped cache, while the mapping between the RMT and actual cache

is fully associative. The index bits of memory address are used to look up entries in the

RMT to find the cache block that should be accessed. It stores the most useful cache lines

48

rather than hold a fixed set of cache lines. This index stored in RMT combined with the

process ID is used to look up the actual cache where each cache line is associated with its

real index and process ID. Each cache block is also associated with a protection bit (P) to

indicate if it is security critical. For cache replacement policy, it is very similar to RP cache.

Cache hit needs both process ID and address to be the same. When cache miss happens

to data D, arbitrary data will be evicted and D will be accessed without caching if they

belong to the same process but either one of their protection bit is set. If the evicted data

and brought-in data have different process IDs, D will randomly replace a cache line since it

is fully associative in the actual cache. Otherwise, the normal replacement policy for direct

mapped cache is executed.

Random Fill cache [2] de-correlates cache fills with the memory access using random

filling technique. New instructions used by applications in Random Fill cache can control

if the requested data belongs to a normal request or a random fill request. Cache hits

are processed as in normal cache. For the security critical data accesses of the victim, a

Nofill request is executed and the requested data access will be performed without caching.

Meanwhile, on a Random Fill request, arbitrary data, from the range of addresses, will be

brought into the cache. In the paper [2], the authors show that random fill of spatially near

data does not hurt performance. For other processes’ memory accesses and normal victim’s

memory accesses, Normal request will be used to achieve normal replacement policy. Victim

and attacker are able to remove victim’s own security critical data including using clflush

instructions or cache coherence protocol since the flush will not influence timing side-channel

attack prevention (the random filling technique is used for this).

CEASER cache [63] is able to mitigate conflict-based LLC timing side-channel attacks

using address encryption and dynamic remapping. CEASER cache does not differentiate

whom the address belongs to and whether the address is security critical. When memory

access tries to modify the cache state, the address will first be encrypted using Low-Latency

BlockCipher (LLBC) [70], which not only randomizes the cache set it maps, but also

scatters the original, possibly ordered and location-intensive addresses to different cache sets,

decreasing the probability of conflict misses. The encryption and decryption can be done

within two cycles using LLBC. Furthermore, the encryption key will be periodically changed

49

to avoid key reconstruction. The periodic re-keying will cause the address remapping to

dynamically change.

SCATTER cache [64] uses cache set randomization to prevent timing attacks. It

builds upon two ideas. First, a mapping function is used to translate memory address

and process information to cache set indices, the mapping is different for each program or

security domain. Second, the mapping function also calculates a different index for each

cache way, in a similar way to the skewed associative caches [71]. The mapping function can

be keyed hash or keyed permutation derivation function – a different key is used for different

application or security domain resulting in a different mapping from address to cache sets for

each. Software (e.g., the operating system) is responsible for managing the security domains

and process IDs which are used to differentiate the different software and assign it different

keys for the mapping. For the hardware extension, a cryptographic primitive such as hashing

and an index decoder for each scattered cache way is added. SCATTER cache also stores

the index bits of the physical address to efficiently perform lookups and writebacks. There

is also one bit per page-table entry added to allow the kernel to communicate with the user

space for security domain identification.

Non Deterministic cache [58] uses cache access delay to randomize the relation

between cache block access and cache access timing. There is no differentiation of data

caching between different process ID or whether the data is secure or not. A per-cache-block

counter records the interval of its data activeness, and is increased on each global counter

clock tick when the data is untouched. When the counter reaches a predefined value, the

corresponding cache line will be invalidated. Non Deterministic Cache randomly sets the

local counters’ initial value that is less than the maximum value of the global counter. In this

case, the cache delay is changed to be randomized. Cache delay interval controlled by this

non-deterministic execution can lead to different cache hit and miss statistics because the

invalidation is determined by the randomized counter of each cache line, and therefore de-

correlates any cache access time from the address being accessed. However, the performance

degradation is tremendous.

50

3.2.2 Analysis of the Secure Caches

In this section, we manually evaluate the effectiveness of the 18 secure caches [38, 39, 1, 40,

2, 41, 42, 43, 45, 44, 57, 58, 59, 60, 61, 62, 63, 64]. We analyze how well the different caches

can protect against the 72 types of vulnerabilities defined before, which cover all the possible

Strong (according to the definition in Seciton 3.1) cache timing vulnerabilities. Following

the analysis, discuss what types of secure caches and features are best suited for defending

different types of timing attacks.

Effectiveness of the Secure Caches Against timing Attacks

Table 3.5 and Table 3.6 list the result of the analysis of which caches can prevent which

types of attacks. Some caches are able to prevent certain vulnerabilities, denoted by a

checkmark, X, and green color in the table. For example, SP∗ cache can defend against

Vu Ad Vu (slow) (one type of Evict + Time [49]) vulnerability. For some other caches

and vulnerabilities, the cache is not able to prevent the vulnerabilities and it is indicated by

× and red color. For example, SecDCP cache cannot defend against Vu Va Vu (slow)

(one type of Bernstein’s Attack [22]) vulnerability. A cache is judged to be able to prevent a

cache timing vulnerability if:

1. A cache can prevent a timing attack if the timing of the last step in a vulnerability is

always constant and the attacker can never observe fast and slow timing difference

for the given set of three steps. For instance, in a regular set-associative cache, the

Vd Vu Aa (fast) (one type of Flush + Reload [27]) vulnerability will allow the

attacker to know that address a maps to secret u when the attacker observes fast

timing, compared with observing slow timing in the other cases. However, in case of

the RP cache [1] will make the timing of the last step to be always slow because RP

cache does not allow data of different processes to derive cache hit between each other.

2. A cache can prevent a timing attack if the timing of last step is randomized and

cannot have original corresponding relation between victim’s behavior and attacker’s

observation. For instance, Ad Vu Ainvd (fast) (one type of Prime + Probe

Invalidation) vulnerability when executed on a normal set-associative cache will allow

51

the attacker to know that the address d has the same index with secret u when

observing fast timing, compared with slow timing in the other cases. However, when

executing this attacks on the Random Fill cache [2], for example a slow timing will

not determine that u and d have the same index as the secret, since in Random Fill

cache u would be accessed without caching and another random data would be cached

instead in the cache.

3. A cache can prevent a timing attack if it disallows certain steps from the three-step

model to be executed, thus prevents the corresponding vulnerability. For instance, when

PL cache [1] preloads and locks the security critical data in the cache, vulnerabilities

such as Ad Vu V inv
d (slow) (one type of Prime + Time Invalidation) will not be

possible since a preloaded locked security critical data will not allow Ad in Step 1 to

replace it. In this case, Ad cannot be in the cache, so this vulnerability cannot be

triggered in PL cache.

From the security perspective, the entries of the secure cache in Table 3.5 and Table 3.6

should have as many green colored cells as possible. If a cache design has any red cells, then

it cannot defend against that type of vulnerability – attacker using the timing vulnerability

that corresponds to the red cell can attack the system.

The third column in Table 3.5 and Table 3.6 shows a normal set associative cache, which

cannot defend against any type of timing vulnerabilities. Meanwhile, the last column of

Table 3.5 and Table 3.6 shows the situation where the cache is fully disabled. As is expected,

the timing vulnerabilities are eliminated and timing attacks will not succeed. Disabling

caches, however, has tremendous performance penalty. Similarly, second-to-last column

shows Nondeterministic Cache, which totally randomizes cache access time. It can defend

all the attacks, but again will have a tremendous cost.

For each of the entry that shows the effectiveness of a secure cache against a vulnerability,

there are two results listed. Left one is for normal execution, and the right one is for

speculative execution. Some secure caches such as InvisiSpec cache target timing channels in

speculative execution. For most of the caches that do not differentiate speculative execution

and normal execution, the two sub-columns for each cache are the same.

52

T
ab

le
3.
5:

Ex
ist

in
g
se
cu

re
ca
ch
es
’p

ro
te
ct
io
n
ag

ai
ns
t
al
lp

os
sib

le
tim

in
g
vu

ln
er
ab

ili
tie

s
w
he

re
th
e
la
st

st
ep

is
a
m
em

or
y
ac
ce
ss
-r
el
at
ed

op
er
at
io
n.

A
X

in
a

gr
ee
n
ce
ll
m
ea
ns

th
is

ca
ch
e
ca
n
pr
ev
en
t
th
e
co
rr
es
po

nd
in
g
vu

ln
er
ab

ili
ty
.
A
◦
in

a
pi
nk

ce
ll
m
ea
ns

th
is

ca
ch
e
ca
n
pr
ev
en
t
th
e
co
rr
es
po

nd
in
g
vu

ln
er
ab

ili
ty

in
so
m
e
de
gr
ee
.
A
×

in
a
re
d
ce
ll
m
ea
ns

th
is

ca
ch
e
ca
nn

ot
pr
ev
en
t
th
is

vu
ln
er
ab

ili
ty
.
Fu

rt
he
rm

or
e,

fo
r
ea
ch

ca
ch
e,

w
e
an

al
yz
e
no

rm
al

ex
ec
ut
io
n
(le

ft
co
lu
m
n

un
de
r
th
e
ca
ch
e
na

m
e)

an
d
sp
ec
ul
at
iv
e
ex
ec
ut
io
n
(r
ig
ht

co
lu
m
n
un

de
r
th
e
ca
ch
e
na

m
e)
.

1
[1
]
D
y
n
am

ic
ad

ju
st
m
en
t
of

w
ay
s
fo
r
d
iff
er
en
t
th
re
ad

s
is

as
su
m
ed

to
b
e
p
ro
p
er
ly

u
se
d
ac
co
rd
in
g
to

th
e
ru
n
n
in
g
p
ro
gr
am

’s
ca
ch
e
u
sa
ge
.

[2
]
S
om

e
so
ft
w
ar
e
as
su
m
p
ti
on

s
li
st
ed

in
th
e
en
tr
ie
s
in

th
is

co
lu
m
n
h
av
e
b
ee
n
im

p
le
m
en
te
d
b
y
th
e
ca
ch
e’
s
re
la
te
d

so
ft
w
ar
e.

[3
]
F
lu
sh

is
d
is
ab

le
d
,
b
u
t
ca
ch
e
co
h
er
en
ce

m
ig
h
t
b
e
u
se
d
to

d
o
th
e
d
at
a
re
m
ov
al
.

[4
]
F
or

L
1
ca
ch
e
an

d
T
L
B
,
fl
u
sh
in
g
is

d
on

e
d
u
ri
n
g
co
n
te
x
t
sw

it
ch
.

[5
]
T
h
e
te
ch
n
iq
u
es

ar
e
im

p
le
m
en
te
d
in

L
1
ca
ch
e,

T
L
B

an
d
la
st
-l
ev
el

ca
ch
e
w
h
ic
h

co
n
si
st

of
th
e
w
h
ol
e
ca
ch
e
h
ie
ra
rc
h
y,

w
h
er
e
L
1
ca
ch
e
an

d
T
L
B

re
q
u
ir
e
so
ft
w
ar
e
fl
u
sh

p
ro
te
ct
io
n
an

d
th
e
la
st
-l
ev
el

ca
ch
e
ca
n
b
e
ac
h
ie
ve
d
b
y
si
m
p
le

h
ar
d
w
ar
e
p
ar
ti
ti
on

in
g.

T
o
p
ro
te
ct

al
l
le
ve
ls

of
ca
ch
es
,
th
e
so
ft
w
ar
e
as
su
m
p
ti
on

s
n
ee
d
to

b
e
ad

d
ed
.

[6
]

T
h
e
te
ch
n
iq
u
e
is

n
ow

on
ly

im
p
le
m
en
te
d
in

la
st
-l
ev
el

ca
ch
e.

[7
]
T
h
e
te
ch
n
iq
u
e
n
ow

on
ly

ta
rg
et
s
sh
ar
ed

ca
ch
e.

[8
]
T
h
e
te
ch
n
iq
u
e
on

ly
ta
rg
et
s
in
cl
u
si
on

la
st
-l
ev
el

ca
ch
e.

[9
]
T
h
e
te
ch
n
iq
u
e
ta
rg
et
s
d
at
a
ca
ch
e
h
ie
ra
rc
h
y.

[1
0]

F
or

th
e
la
st
-l
ev
el

ca
ch
e,

ca
ch
e
is

p
ar
ti
ti
on

ed
b
et
w
ee
n
th
e
v
ic
ti
m

an
d
th
e
at
ta
ck
er
.

[1
1]

T
h
e
te
ch
n
iq
u
e
ca
n
co
n
tr
ol

th
e
p
ro
b
ab

il
it
ie
s
of

th
e
v
u
ln
er
ab

il
it
y
to

b
e
su
cc
es
sf
u
l
to

b
e
ex
tr
em

el
y
sm

al
l.

[1
2]

T
h
e
te
ch
n
iq
u
e
ca
n
w
or
k
in

sh
ar
ed
,
re
ad

on
ly

m
em

or
y
w
h
il
e
n
ot

w
or
k
in
g
in

sh
ar
ed
,

w
ri
ta
b
le

m
em

or
y.

[1
3]

R
an

d
om

d
el
ay

b
u
t
n
ot

ra
n
d
om

m
ap

p
in
g
ca
n
on

ly
d
ec
re
as
e
th
e
p
ro
b
ab

il
it
ie
s
of

at
ta
ck
er

in
so
m
e
li
m
it
ed

d
eg
re
e.

53

T
ab

le
3.
6:

Ex
ist

in
g
se
cu
re

ca
ch
es
’p

ro
te
ct
io
n
ag
ai
ns
t
al
lp

os
sib

le
tim

in
g
vu

ln
er
ab

ili
tie

s
w
he
re

th
e
la
st

st
ep

is
an

in
va
lid

at
io
n-
re
la
te
d
op

er
at
io
n.

A
X

in
a

gr
ee
n
ce
ll
m
ea
ns

th
is

ca
ch
e
ca
n
pr
ev
en
t
th
e
co
rr
es
po

nd
in
g
vu

ln
er
ab

ili
ty
.
A
◦
in

a
pi
nk

ce
ll
m
ea
ns

th
is

ca
ch
e
ca
n
pr
ev
en
t
th
e
co
rr
es
po

nd
in
g
vu

ln
er
ab

ili
ty

in
so
m
e
de
gr
ee
.
A
×

in
a
re
d
ce
ll
m
ea
ns

th
is

ca
ch
e
ca
nn

ot
pr
ev
en
t
th
is

vu
ln
er
ab

ili
ty
.
Fu

rt
he
rm

or
e,

fo
r
ea
ch

ca
ch
e,

w
e
an

al
yz
e
no

rm
al

ex
ec
ut
io
n
(le

ft
co
lu
m
n

un
de
r
th
e
ca
ch
e
na

m
e)

an
d
sp
ec
ul
at
iv
e
ex
ec
ut
io
n
(r
ig
ht

co
lu
m
n
un

de
r
th
e
ca
ch
e
na

m
e)
.

1
[1
]
D
y
n
am

ic
ad

ju
st
m
en
t
of

w
ay
s
fo
r
d
iff
er
en
t
th
re
ad

s
is

as
su
m
ed

to
b
e
p
ro
p
er
ly

u
se
d
ac
co
rd
in
g
to

th
e
ru
n
n
in
g
p
ro
gr
am

’s
ca
ch
e
u
sa
ge
.

[2
]
S
om

e
so
ft
w
ar
e
as
su
m
p
ti
on

s
li
st
ed

in
th
e
en
tr
ie
s
in

th
is

co
lu
m
n
h
av
e
b
ee
n
im

p
le
m
en
te
d
b
y
th
e
ca
ch
e’
s
re
la
te
d

so
ft
w
ar
e.

[3
]
F
lu
sh

is
d
is
ab

le
d
,
b
u
t
ca
ch
e
co
h
er
en
ce

m
ig
h
t
b
e
u
se
d
to

d
o
th
e
d
at
a
re
m
ov
al
.

[4
]
F
or

L
1
ca
ch
e
an

d
T
L
B
,
fl
u
sh
in
g
is

d
on

e
d
u
ri
n
g
co
n
te
x
t
sw

it
ch
.

[5
]
T
h
e
te
ch
n
iq
u
es

ar
e
im

p
le
m
en
te
d
in

L
1
ca
ch
e,

T
L
B

an
d
la
st
-l
ev
el

ca
ch
e
w
h
ic
h

co
n
si
st

of
th
e
w
h
ol
e
ca
ch
e
h
ie
ra
rc
h
y,

w
h
er
e
L
1
ca
ch
e
an

d
T
L
B

re
q
u
ir
e
so
ft
w
ar
e
fl
u
sh

p
ro
te
ct
io
n
an

d
th
e
la
st
-l
ev
el

ca
ch
e
ca
n
b
e
ac
h
ie
ve
d
b
y
si
m
p
le

h
ar
d
w
ar
e
p
ar
ti
ti
on

in
g.

T
o
p
ro
te
ct

al
l
le
ve
ls

of
ca
ch
es
,
th
e
so
ft
w
ar
e
as
su
m
p
ti
on

s
n
ee
d
to

b
e
ad

d
ed
.

[6
]

T
h
e
te
ch
n
iq
u
e
is

n
ow

on
ly

im
p
le
m
en
te
d
in

la
st
-l
ev
el

ca
ch
e.

[7
]
T
h
e
te
ch
n
iq
u
e
n
ow

on
ly

ta
rg
et
s
sh
ar
ed

ca
ch
e.

[8
]
T
h
e
te
ch
n
iq
u
e
on

ly
ta
rg
et
s
in
cl
u
si
on

la
st
-l
ev
el

ca
ch
e.

[9
]
T
h
e
te
ch
n
iq
u
e
ta
rg
et
s
d
at
a
ca
ch
e
h
ie
ra
rc
h
y.

[1
0]

F
or

th
e
la
st
-l
ev
el

ca
ch
e,

ca
ch
e
is

p
ar
ti
ti
on

ed
b
et
w
ee
n
th
e
v
ic
ti
m

an
d
th
e
at
ta
ck
er
.

[1
1]

T
h
e
te
ch
n
iq
u
e
ca
n
co
n
tr
ol

th
e
p
ro
b
ab

il
it
ie
s
of

th
e
v
u
ln
er
ab

il
it
y
to

b
e
su
cc
es
sf
u
l
to

b
e
ex
tr
em

el
y
sm

al
l.

[1
2]

T
h
e
te
ch
n
iq
u
e
ca
n
w
or
k
in

sh
ar
ed
,
re
ad

on
ly

m
em

or
y
w
h
il
e
n
ot

w
or
k
in
g
in

sh
ar
ed
,

w
ri
ta
b
le

m
em

or
y.

[1
3]

R
an

d
om

d
el
ay

b
u
t
n
ot

ra
n
d
om

m
ap

p
in
g
ca
n
on

ly
d
ec
re
as
e
th
e
p
ro
b
ab

il
it
ie
s
of

at
ta
ck
er

in
so
m
e
li
m
it
ed

d
eg
re
e.

54

3.2.3 Summary of Secure Cache Techniques

Among the secure cache designs presented in the prior section, there are three main techniques

that the caches utilize: differentiating sensitive data, partitioning, and randomization.

Differentiating sensitive data (columns for CATalyst cache to columns for Random

Fill cache in Table 3.5 and Table 3.6) allows the victim or attacker software or management

software to explicitly label a certain range of the data of victim which they think is sensitive.

The victim process or management software is able to use cache-specific instructions to

protect the data and limit internal interference between victim’s own data. E.g., it is possible

to disable victim’s own flushing of victim’s labeled data, and therefore prevent vulnerabilities

that leverage flushing. This technique allows the designer to have stronger control over

security critical data, rather than forcing the system to assume all of victim’s data is sensitive.

However, how to identify sensitive data and whether this identification process is reliable

are open research questions for caches that support differentiation of sensitive data.

This technique is independent of whether a cache uses partitioning or randomization

techniques to eliminate side channels between the attacker and the victim. Caches that are

able to label and identify sensitive data have the advantage in preventing internal interference

since they are able to differentiate sensitive data from the normal data and can make use of

special instructions to give more privileges to sensitive data. However, it requires careful use

when identifying the actual sensitive data and implementing corresponding security features

on the cache.

Comparing PL cache with SP∗ cache, although both of them use partitioning, flush

is able to be implemented to be disabled for victim’s sensitive data in PL cache, where

Vu V inv
a Vu (slow) (one type of Flush + Time) is prevented. Newcache is able to

prevent Vu Va Vu (slow) (one type of Bernstein’s Attack [22]) while most of the caches

without ability to differentiate sensitive data cannot because Newcache disallows replacing

data as long as either data to be evicted or data to be cached is identified to be sensitive.

However, permitting differentiation of sensitive data can potentially backfire on the cache

itself. For example, Random Fill cache cannot prevent Vu Ad Vu (slow) (one type

of Evict + Time [49]) which most of the other caches can prevent or avoid, because the

55

random fill technique loses its intended random behavior when the security critical data is

initially loaded into the cache in Step 1.

Partitioning-based caches usually limit the victim and the attacker to be able to

only access a limited set of cache block (columns for SP∗ cache to column for PL cache in

Table 3.5 and Table 3.6). E.g., either there is static or dynamic partitioning of caches which

allocates some blocks to High victim and Low attacker. The partitioning can be based not

just on whether the memory access is victim’s or attacker’s, but also on where the access

is to (e.g., High partition is determined by the data address) For speculative execution,

attacker’s code can be the part of speculation or out-of-order load or store, which is able

to be partitioned (e.g., using speculative load buffer) from other normal operations. The

partitioning granularity can be cache sets, cache lines or cache ways. Partitioning-based

secure caches are usually able to prevent external interference by partitioning but are weak

at preventing internal interference. When partitioning is used, interference between the

attacker and the victim, or data belonging to different security levels, should not be possible

and attacks based on external interference between the victim and the attacker will fail.

However, the internal interference of victim’s own data is hard to be prevented by the

partitioning based caches. What’s more, partitioning is recognized to be wasteful in terms

of cache space and inherently degrades system performance [1]. Dynamic partitioning can

help limit the negative performance and space impacts, but it could be at a cost of revealing

some information when adjusting the partitioning size for each part. It also does not help

with internal interference prevention.

In terms of the three-step model, the partitioning-based caches excel at making use

of partitioning techniques to disallow the attacker to set initial states (Step 0) of victim

partition by use of flushing or eviction, and therefore bring uncertainty to the final timing

observation made by the attacker.

SP∗ cache can prevent external miss-based interference, but it still allows the victim and

the attacker to get cache hits due to each other’s data, which makes hit-based vulnerabilities

happen, e.g., Vd Vu Va (fast) (one type of Cache Internal Collision [23]) vulnerability

is one of the examples that SP∗ cache cannot prevent. SecVerilog cache is similar to SP∗

cache but prevents the attacker from directly getting cache hit due to victim’s data for

56

confidentiality and therefore prevents vulnerabilities such as Ainva Vu Aa (fast) (one

type of Flush + Reload [27]). SHARP cache mainly uses partitioning combined with random

eviction to minimize the probability of evicting victim’s data and prevent external miss-based

vulnerabilities. It is vulnerable to hit-based or internal interference vulnerabilities such as

Vu Va Vu (slow) (one type of Bernstein’s Attack [22]) vulnerability. DAWG cache will

only allow the data to get a cache hit if both its address and the process ID are the same.

Therefore, compared with normal partitioning cache such as SP∗ cache, it is able to prevent

vulnerabilities such as Vd Vu Ainvd (fast) (one type of Prime + Flush).

SecDCP and NoMo cache both leverage dynamic partitioning to improve performance.

Compared to SecVerilog cache, SecDCP cache introduces certain side channels which manifest

themselves when the number of ways assigned to the victim and attacker changes, e.g.,

Vu Ainva Vu (slow) (one type of Flush + Time) vulnerability. NoMo cache behaves

more carefully when changing the number of ways during dynamic partitioning, however,

it requires victim’s sensitive data to fit into the assigned partitions, otherwise it will be

put into the unreserved way and allow eviction by the attacker. SecDCP does not have

unreserved way. All the space in the cache will be either belongs to High or Low partition.

Sanctum cache and CATalyst cache are both controlled by a powerful software monitor

and they disallow secure page sharing between victim and attacker to prevent vulnerabilities

such as Ad Vu Aa (fast) (one type of Flush + Reload [27]). Sanctum cache does not

consider internal interference while CATalyst cache is more carefully designed to prevent

different vulnerabilities with the implemented software system, so far supporting preventing

all of the vulnerabilities, but only works for LLC and with high software implementation

complexity and some assumptions that might be hard to achieve in other scenarios, e.g.,

assuming the secure partition is big enough to fit all the secure data. MI6 cache is the

combination of Sanctum and disabling speculation when interacting with the outside world.

Therefore, in normal execution, it behaves the same as Sanctum. For speculative execution,

because it will simply disable all the speculation when involving the outside world, the

external interference vulnerability such as Vd Vu Ad (slow) (one type of Evict + Probe)

vulnerability will be prevented.

InvisiSpec cache does not modify the original cache state but places the data in a

57

speculative buffer partition during the speculation or out-of-order load or store. Since

during speculation cache state is not actually updated, the speculative execution cannot

trigger any of the steps in the three-step model. RIC cache focuses on eviction based attack

and therefore are good at preventing even some internal miss-based vulnerability such as

Vu Va Vu (slow) (one type of Bernstein’s Attack [22]) but are bad at all hit-based

vulnerabilities. PL cache is line-partitioned and uses locking techniques for victim’s security

critical data. It can prevent many vulnerabilities because preloading and locking secure

data disallow the attacker or non-secure victim data to set initial states (Step 0) for victim

partition, and therefore brings uncertainty to the final observation by the attacker, e.g.,

Ad Vu Va (fast) (one type of Cache Internal Collision [23]) vulnerability is prevented.

Randomization-based caches (columns for SHARP cache, and columns for RP cache

to columns for Non Deterministic cache in Table 3.5 and Table 3.6) inherently de-correlate

the relationship between information of victim’s security critical data’s address and observed

timing from cache hit or miss, or between the address and observed timing of flush or cache

coherence operations. For speculative execution, they also de-correlate the relationship

between the address of the data being accessed during speculative execution or out-of-order

load or store and the observed timing from a cache hit or miss. Randomization can be used

when bringing data into the cache, evicting data, or both. Some designs randomize the

address to cache set mapping. As a result of the randomization, the mutual information

from the observed timing, due to having or not having data in the cache, could be reduced to

0, if randomization is done on every memory access. Some secure caches use randomization

to avoid many of the miss-based internal interference vulnerabilities. However, they may

still suffer from hit-based vulnerabilities, especially when the vulnerabilities are related

to internal interference. However, randomization is also likewise recognized to increase

performance overheads [58]. It also requires a fast and secure random number generator.

Most of the randomization is cache-line-based and can be combined with differentiation of

sensitive data to be more efficient.

RP cache allows eviction between different sensitive data, which leaves vulnerabilities

such as Vu Va Vu (slow) (one type of Bernstein’s Attack [22]) still possible, while

Newcache prevents this. Both of the RP cache and Newcache are not able to prevent hit-

58

based internal-interference vulnerabilities such as Ainva Vu Va (fast) (one type of Cache

Internal Collision [23]). Random Fill cache is able to use total de-correlation of memory

access and cache access of victim’s security critical data to prevent most of the internal

and external interference. However, when security critical data is initially directly loaded

into the cache block for Step 1, Random Fill cache will not randomly load security critical

data and allows vulnerabilities such as Vu V inv
a Vu (slow) (one type of Flush + Time)

vulnerability to exist. CEASER cache uses encryption scheme plus dynamic remapping to

randomize mapping from memory addresses to cache sets. However, this targets eviction

based attacks and cannot preventing hit-based vulnerabilities such as Va V inv
u V inv

a

(fast) (one type of Flush + Probe Invalidation). SCATTER cache encrypts both the cache

address and process ID when mapping into different cache index to further prevent more

hit-based vulnerabilities for shared and read only memory. Non Deterministic cache totally

randomizes timing of cache accesses by adding delays and can prevent all attacks (but at

tremendous performance cost).

Estimated Performance and Security Tradeoffs

Table 3.7 shows the implementation and performance results of the secure caches, as listed

by the designers in the different papers. At the extreme end, there is the Non Deterministic

cache: with random delay, the secure cache can prevent all the cache timing vulnerabilities

in some degree – while their paper reports only 7% degradation in performance, we expect

it to be much more for more complex application than AES algorithm. Disabling caches

eliminates the attacks, but at a huge performance cost. Normally, a secure cache needs to

sacrifice some performance in order to de-correlate memory access with the timing. The

secure caches that tend to be able to prevent more vulnerabilities usually have weaker

performance compared with other secure caches.

Towards an Ideal Secure Cache

Based on the above analysis, a good secure cache should consider all the 72 types of

Strong vulnerabilities, e.g., external and internal interference, hit-based and miss-based

vulnerabilities. Considering all factors and based on Table 3.5 and Table 3.6, we have several

59

T
ab

le
3.
7:

Ex
ist

in
g
se
cu
re

ca
ch
es
’i
m
pl
em

en
ta
tio

n
m
et
ho

d,
pe

rf
or
m
an

ce
,p

ow
er

an
d
ar
ea

co
m
pa

ris
on

.

60

suggestions and observations for a secure cache design which can defend timing attacks:

• Internal interference is important for caches to prevent timing attacks and is the weak

point of most of the secure caches. To prevent this, the following three subpoints

should be considered:

– Miss-based internal interference can be solved by randomly evicting data to de-

correlate memory access with timing information when either data to be evicted

or data to be cached is sensitive, e.g., Newcache prevents Vu Va Vu (slow)

(one type of Bernstein’s Attack [22]) vulnerability.

– Hit-based internal interference can be solved by randomly bringing data into the

cache, e.g., Random Fill cache prevents Ad Vu Va (fast) (Cache Internal

Collision) vulnerability.

– To limit internal interference at lower performance cost, rather than simply

assume all of victim’s data is sensitive, it is better to differentiate real sensitive

data from other data in the victim code. However, identification of sensitive

information needs to be carefully used, e.g., Random Fill cache is vulnerable to

Vu Ad Vu (fast) (one type of Evict + Time [49]) vulnerability which most

of the secure caches are able to prevent.

• Direct partitioning between the victim and the attacker, although may hurt cache

space utilization or performance, is good at disallowing attacker to set known initial

state to victim’s partition and therefore prevents external interference. Alternatively,

careful use of randomization can also prevent external interference.

It should be noted that some cache designs only focus on certain levels, e.g., CATalyst

cache only works at the last level cache. In order to fully protect the whole cache system

from timing attacks, all levels of caches in the hierarchy should be protected with related

security features. E.g., Sanctum is able to prevent all levels of caches from L1 to last-level

cache. Consequently, secure cache design needs to be realizable at all levels of the cache

hierarchy and not just one.

61

Chapter 4

Evaluation of Timing

Vulnerabilities of Caches and TLBs

Having presented the theoretical modeling approach in Chapter 3, this chapter presents

evaluation of the attacks on x86 commercial processors and Arm mobile devices. The chapter

further presents appliation of the three-step model to TLBs, which are cache-like structures,

and shows evaluation on RISC-V processor.

4.1 Cache Timing Vulnerabilities and x86 Benchmark Suite

To address the need to understand and evaluate all the different possible types of attacks,

this work presents both a theoretical model of all possible timing attacks in caches, and

a benchmark suite that can test for the theoretical vulnerabilities on real processors, or

simulations of new designs.

4.1.1 Modeling of Cache Timing Attacks

The goal of this work is to present the first set of benchmarks which can be used to evaluate

all the vulnerabilities of processor caches to timing attacks. Such attacks can be used, for

example, by Spectre variants, e.g., [3, 4, 72, 73], to extract sensitive information. For each

benchmark, if there is observable timing difference on a particular processor, it means that

the processor may be vulnerable to the corresponding attack.

62

Assumptions and Threat Model

We assume that there is a victim process running on the CPU core and performing secret-

dependent memory accesses. There is also a malicious attacker process on the same or

different CPU core, whose aim is to determine a secret memory address or address index

used by the victim. Both attacker’s and victim’s accesses affect a cache block in one of the

L1 data caches, through which a possible timing channel exists.

The goal of the benchmarks is to evaluate for which types of accesses by the victim and the

attacker there is indeed a timing vulnerability in caches. The presented benchmarks are not

actual security exploits, rather they implement memory-related operations that correspond

to all possible timing attacks. Each benchmark outputs whether there is a statistically

significant timing difference that the attacker could observe to extract information from the

timing channel about the secret and unknown address u of the victim.

The current model focuses on all possible timing attacks in the L1 data cache. The model

includes uses of any memory-related operations (load, store, flush) and cache coherence

protocol. The model assumes a multi-core and possibly hyper-threading processor, with a

cache hierarchy of local and remote L1 cache, L2 cache, and a shared L3 cache (which is

possibly divided into different cache slices).

Current benchmarks do not consider timing attacks of other levels in cache hierarchy

besides L1, but it should be straightforward to extend to the other levels. We do not consider

directory-related attacks [74] or attacks based on replacement policy [75], but it should be

possible to model these by adding more states to the model (and still keep an only total

of three steps). This work does not cover TLB attacks [48, 50], but there is already a

theoretical model for TLBs [76], and similar benchmarks can be developed for TLB attacks

(possibly merge with our benchmarks).

The work considers more than just “fast” and “slow” timings. This means that the

influence of structures such as Miss Status Handling Registers (MSHRs), load and store

buffers between processor and caches, and line-fill buffers between cache levels are accounted

for. However, benchmarks for timing attacks that are just due to these structures could

likely be developed. Our analysis is also general for all the cases of the three-step model and

63

(a) Timing of read access on Intel Xeon E5-1620
processor

(b) Timing of read access on Intel Xeon E5-2690
processor

(c) Timing of write access on Intel Xeon E5-1620
processor

(d) Timing of write access on Intel Xeon E5-2690
processor

(e) Timing of flush operation on Intel Xeon E5-
1620 processor

(f) Timing of flush operation on Intel Xeon E5-
2690 processor

Figure 4.1: Histograms of read, write, and flush operations’ timing (each contains 8 operations for
timing measurement) under all possible data movements considered in this work. The timing is for
the timing observation step, i.e. Step 3, in the tested three-step patterns. Note, different processors
have different timing, and not all different types of data movements can be distinguished on different
processors. The data is presented for Intel Xeon E5-1620 (a, c, e) and Intel Xeon E5-2690 (b, d, f)
processors. Numbers in the “{}” in the legend denote the different data movement types. {1} - {22}
correspond to read operation, {23} - {44} correspond to write operation, {45} - {66} correspond to
flush operation, to access clean L1 data, clean L2 data, clean L3 data, remote clean L1 data, remote
clean L2 data, remote clean L3 data, dirty L1 data, dirty L2 data, dirty L3 data, remote dirty L1
data, remote dirty L2 data, remote dirty L3 data, DRAM data, clean data in both L1 and remote
L1, clean data in both L1 and remote L2, clean data in both L1 and remote L3, clean data in both
L2 and remote L1, clean data in both L2 and remote L2, clean data in both L2 and remote L3,
clean data in both L3 and remote L1, clean data in both L3 and remote L2, clean data in both L3
and remote L3, respectively. Numbers in the “()” in the legend show the average cycles needed for
completing that type of memory operation. The x axis shows the access latency in cycles.

we do not differentiate if the access is from the instruction or a prefetcher.

The flush operation in this work refers to the clflush instruction in x86, which causes

data to be flushed from all levels of caches (including data in other cores) back to the main

memory. The timing are measured from when each of the memory-related operations is

issued until the instruction commits in the processor pipeline.

64

Improved Modeling of Real Processors

We expand the original model [8] by considering more realistic cases for a processor’s

memory-related operation. The expanded modeling allows us to cover all possible attacks,

and uncover new vulnerabilities. For example, some proposals [45] discuss disabling flush

instruction to prevent Flush+Reload [27] based attacks. However, because we consider

different flush operations, our benchmarks show that using remote access to invalidate (flush)

the cache could also result in a vulnerability.

Timing Observation on Local vs. Remote Core. Our cache attack model assumes

a multi-core system and possibly a hyper-threading system as well. We model such a system

using two cores: a “local” and a “remote” core, each with L1, L2, and shared L3 caches.

The target cache block is located in the local core. Remote core affects the target cache

block on the local core by using cache coherence protocol. E.g., perform write operations on

the remote core to invalidate the local core’s data using cache coherence protocol. As future

work, more detailed modeling of multi-core system can be done.

For each read, write or flush operation, it may target the data that is in the local L1

cache, L2 cache, or L3 cache slice, or that is in the remote L1 cache, L2 cache, or L3 cache

slice. The cache block can be either in a clean or dirty state for the above 6 locations

(6× 2 = 12 types). The clean data may also be in both local or remote core, which can be in

any cache hierarchy (L1, L2, or L3 cache) for both cores (3× 3 = 9 types). Otherwise, the

data is not in any level of the cache hierarchy, i.e., it is in the DRAM (1 type). We consider

all these 66 timings (3 operations × (12 + 9 + 1) = 66) to be different from each other and

use these 66 types of timings in our three-step cache simulator, discussed in Section 4.1.2, to

determine if a three-step combination can be used in an attack.

Figure 4.10 shows the histograms of these 66 types of timing observations for Intel

Xeon E5-1620 and E5-2690 processors. Based on the histograms, we found that some

operations are differentiable from each other, while some are not. In general, the timing is

processor-specific, so we need to consider and examine all various cache timings and cannot

just assume “fast” and “slow” timings as was done previously [8].

Hyper-Threading vs. Time-Slicing. We consider that the victim and the attacker

65

on one core can either run in time-slicing setting or run in parallel as two hyper-threads (if

there is hyper-threading support in the processor). For the case of accesses on “local” vs.

“remote” cores, the accesses on local and remote cores can be done in parallel.

Read (Load) Access vs. Write (Store) Access. For operations related to memory

accesses, our model considers that they can be either read (load) access or write (store)

access. The timing of writes is not well explored in attacks, except for one work [77]. For

example, for Flush + Reload attack, the previous attack [27] uses the load operation in

the final step to reload secret data and observe timing. In our model, we also test store

operation in the final step to access secret data and reveal that attacks with write in the

final step are also effective, for example.

Flush vs. Write Invalidation. In our model, we consider that a flush operation can

be achieved by a clflush type instruction, that flushes data from all caches back to main

memory, or that by writing the corresponding line in the remote core it will trigger cache

coherence and result in the local cache line being invalidated.

4.1.2 Derivation of All Vulnerabilities

In this work, we build a new cache three-step simulator based on the new model discussed in

Section 4.1.1. It considers different memory-related operations and differentiates among the

66 timing variations discussed in Section 4.1.1 that are related to L1 cache timing attack for

the final timing observation step. Further, we give categorizations of vulnerabilities to find

common features that attacks exploit.

Judging the Effectiveness of Three-Step Combination

In order for a three-step combination to be effective for an attack, at least the unknown

victim’s address u should be involved in one of the three steps since u is the unknown secret

the attacker tries to learn. In this case, the vulnerability will have Vu or V inv
u as one or more

of the three-steps to represent the operations on the secret u.

Based on the 17 states shown in Table 4.8, for the three-step model, the attacker tries to

learn the value of u by guessing if u equals to: a, aalias or NIB. a denotes the address that

is within the set of sensitive locations x and maps to the target cache line. aalias denotes

66

N. Vulnerability Type Type Attack Attack
StrategyS1 S2 S3

1 Ainv Vu Va I-A [23]
Cache

Collision
2 V inv Vu Va I-A [23]
3 Ainv

a Vu Va I-A [23]
4 V inv

a Vu Va I-A [23]
5 Ainv

a Vu Aa E-A [27, 54]
Flush

+ Reload
6 V inv

a Vu Aa E-A [27, 54]
7 Ainv Vu Aa E-A [27, 54]
8 V inv Vu Aa E-A [27, 54]
9 V inv

u Aa Vu E-A new [8] Reload
+ Time10 V inv

u Va Vu I-A new [8]
11 Aa V inv

u Aa E-A [55]
Flush

+ Probe
12 Aa V inv

u Va I-A new [8]
13 Va V inv

u Aa E-A new [8]
14 Va V inv

u Va I-A new [8]
15 Vu Ainv

a Vu E-A new [8] Flush
+ Time16 Vu V inv

a Vu I-A new [8]
17 Ainv V inv

u Aa E-A new
18 Ainv V inv

u Va I-A new
19 V inv V inv

u Aa E-A new
20 V inv V inv

u Va I-A new

Cache
Coherence

Flush
+ Reload

21 Ainv
a V inv

u Aa E-SA new
22 Ainv

a V inv
u Va I-SA new

23 V inv
a V inv

u Aa E-SA new
24 V inv

a V inv
u Va I-SA new

25 Ainv
d V inv

u Ad E-S new
26 Ainv

d V inv
u Vd I-S new

27 V inv
d V inv

u Ad E-S new
28 V inv

d V inv
u Vd I-S new

Cache
Coherence
Prime

+ Probe

29 V inv
u Ainv

a Vu E-SA new
30 V inv

u V inv
a Vu I-SA new

31 V inv
u Ainv

d Vu E-S new
32 V inv

u V inv
d Vu I-S new

Cache
Coherence

Evict
+ Time

33 Vu Va Vu I-SA [22] Bern-
stein’s
Attack

34 Vu Vd Vu I-S [22]
35 Vd Vu Vd I-S [22]
36 Va Vu Va I-SA [22]
37 Vd Vu Ad E-S new [8] Evict

+ Probe38 Va Vu Aa E-SA new [8]
39 Ad Vu Vd I-S new [8] Prime

+ Time40 Aa Vu Va I-SA new [8]
41 Vu Ad Vu E-S [49] Evict

+ Time42 Vu Aa Vu E-SA [49]
43 Ad Vu Ad E-S [49, 56] Prime

+ Probe44 Aa Vu Aa E-SA [49, 56]

(a) Timing vulnerabilities with Step3 as memory
access operation.

N. Vulnerability Type Type Attack Attack
StrategyS1 S2 S3

45 Ainv Vu V inv
a I-A new [8] Cache

Colli. Inv.46 V inv Vu V inv
a I-A new [8]

47 Ainv
a Vu V inv

a I-A [26]
Flush +
Flush

48 V inv
a Vu V inv

a I-A [26]
49 Ainv

a Vu Ainv
a E-A [26]

50 V inv
a Vu Ainv

a E-A [26]
51 Ainv Vu Ainv

a E-A new [8] Flush +
Reload Inv.52 V inv Vu Ainv

a E-A new [8]
53 V inv

u Aa V inv
u E-A new [8] Reload +

Time Inv.54 V inv
u Va V inv

u I-A new [8]
55 Aa V inv

u Ainv
a E-A new [8]

Flush +
Probe Inv.

56 Aa V inv
u V inv

a I-A new [8]
57 Va V inv

u Ainv
a E-A new [8]

58 Va V inv
u V inv

a I-A new [8]
59 Vu Ainv

a V inv
u E-A new [8] Flush +

Time Inv.60 Vu V inv
a V inv

u I-A new [8]
61 Ainv V inv

u Ainv
a E-A new

62 Ainv V inv
u V inv

a I-A new
63 V inv V inv

u Ainv
a E-A new

64 V inv V inv
u V inv

a I-A new

Cache
Coherence
Flush +

Reload Inv.
65 Ainv

a V inv
u Ainv

a E-SA new
66 Ainv

a V inv
u V inv

a I-SA new
67 V inv

a V inv
u Ainv

a E-SA new
68 V inv

a V inv
u V inv

a I-SA new
69 Ainv

d V inv
u Ainv

d E-S new
70 Ainv

d V inv
u V inv

d I-S new
71 V inv

d V inv
u Ainv

d E-S new
72 V inv

d V inv
u V inv

d I-S new

Cache
Coherence
Prime +
Probe Inv.

73 V inv
u Ainv

a V inv
u E-SA new

74 V inv
u V inv

a V inv
u I-SA new

75 V inv
u Ainv

d V inv
u E-S new

76 V inv
u V inv

d V inv
u I-S new

Cache
Coherence
Evict +
Time Inv.

77 Vu Va V inv
u I-SA new [8] Bernstein’s

Inv.
Attack

78 Vu Vd V inv
u I-S new [8]

79 Vd Vu V inv
d I-S new [8]

80 Va Vu V inv
a I-SA new [8]

81 Vd Vu Ainv
d E-S new [8] Evict +

Probe Inv.82 Va Vu Ainv
a E-SA new [8]

83 Ad Vu V inv
d I-S new [8] Prime +

Time Inv.84 Aa Vu V inv
a I-SA new [8]

85 Vu Ad V inv
u E-S new [8] Evict +

Time Inv.86 Vu Aa V inv
u E-SA new [8]

87 Ad Vu Ainv
d E-S new [8] Prime +

Probe Inv.88 Aa Vu Ainv
a E-SA new [8]

(b) Timing vulnerabilities with Step3 as invalidation
operation.

Table 4.1: The table shows all the L1 cache timing vulnerabilities. The N. column assigns each
type of vulnerability a number. The Vulnerability Type column shows the three steps that define each
vulnerability. The Type column proposes the categorization the vulnerability belongs to. “E” and
“I” are for internal and external interference types, respectively. “S”, “A” and “SA” are set-based,
address-based types and the types that are both set-based and address-based, respectively. The
Attack column shows if a vulnerability has been previously presented in the literature. The Attack
Strategy column gives a common name for each set of vulnerabilities that would be exploited in an
attack in a similar manner. Inv. means invalidation. Light-blue colored rows are the vulnerabilities
which are first presented in this work.

67

Figure 4.2: The derivation process of all the Strong andWeak types of L1 cache timing vulnerabilities.

any data address that belongs to sensitive locations x and also maps to the cache line but is

not a. Apart from all possible sensitive address mapping to the target cache line, u may

not map to the target cache line the attacker is measuring. We denote these addresses as

NIB (not-in-block). Therefore, u can be either a, aalias, or NIB. If the attacker is able to

find access time of one value significantly different from the other two values, he or she is

able to learn the value of u and the corresponding three-steps is a Strong type vulnerability.

Meanwhile, if the attacker is not able to clearly distinguish whether u is a, aalias, or NIB

based on the timing, but there are still timing differences observed, then the corresponding

attacks belong to Weak type of vulnerabilities. Otherwise, if the timing is always the same

regardless of different values of u, it will be an Ineffective three-step combination.

New Cache Three-Step Simulator

Figure 4.2 shows the derivation process of vulnerabilities. We wrote Python scripts to develop

the cache three-step simulator. The simulator takes all 4913 three-step combinations and 66

types of timing observations as input, checks and outputs the three-steps that belong to

Strong, Weak vulnerabilities, or Ineffective types, respectively. For the step that is u-related,

since u is in secure range x, the possible candidates of u for a cache block are a, aalias, and

NIB, so the simulator checks the timing when u is a, aalias, and NIB, respectively. The

timing variance exists if different possible values of u correspond to different timings of the

66 types. We enumerate all possible operations (read/write for access, remote write/flush

for invalidation) for a step and consider different timings for each operation. Therefore, each

three-step pattern may have different types of timing observations. The rules from our prior

three-step model work [8], on which the prior chapter was based, are used to remove repeat

68

and redundant three-step patterns.

As shown in Figure 4.2, based on the much finer-grained categorization of timing

differences, we derived in total 88 Strong effective vulnerabilities and 80 Weak effective

vulnerabilities after removing repeat three-step patterns. They are shown in Table 4.1,

where light-blue colored rows (in total 32 types) are the new vulnerabilities (compared to

study [8], also presented in the prior chapter) which we found through running of new cache

three-step simulator (16 types of the original Strong effective vulnerabilities [8] become

Weak vulnerabilities when considering multi-core systems). We provide new names for the

new attacks in Attack Strategy in Table 4.1 while re-use existing names if the attacks were

presented before. As validated in Section 4.1.4 through tests on real processors, there are no

other effective vulnerabilities except the types we derive in Table 4.1.

Categorizations of the Vulnerabilities

We first categorize different vulnerabilities as based on internal (I) or external (E) interference.

The types that only involve the victim’s behavior, V , in the states of Step 2 and Step 3 are

internal interference vulnerabilities (I). The remaining ones are external interference (E)

timing vulnerabilities.

In prior work [8, 78], cache vulnerabilities are categorized as hit-based and miss-based

vulnerabilities, based on the cache behaviors the attackers want to observe (cache misses or

hits). This definition does not fit our model since there are different types of timings for

L1 data hits and misses in the real machines. For example, attacks can derive information

using timing difference from two types of cache misses.

Therefore, we further categorize the vulnerabilities as address-based (A) if they are able

to derive the cache line address of u by observing cache hit of u and obtaining different

timing compared with other candidate data. Set-based (S) vulnerabilities are the ones

that can know the mapped set of u by conflicting and generating eviction between u and

candidate data addresses. The third type are the ones that potentially derive information

from set or address (SA) depending on timing differences derived for all the candidates of u.

For example, SA type #33 vulnerability Vu Va Vu can be set-based if a and u are not

the same but map to the same cache set, which differs in timing between {2}{8}{24}{30}, a

69

local L2 hit, and {1}{7}{23}{29}, a local L1 hit. Or it can be address-based if a maps to u

and Step 1 (Vu) and Step 2 (Va) are accessed by different operations (read or write), which

have different timing between reads of L1 clean data and dirty data, {1} and {7}, or writes

of L1 clean data and dirty data, {23} and {29}.

4.1.3 Benchmark Implementation

For each vulnerability, there are three steps, where each can be: read or write access for a

memory access operation, or flush or write in the remote core for an invalidation-related

operation. Thus, there are in total of 23 = 8 cases considering different types of operations.

Further, if the vulnerabilities have both the victim and the attacker running in one core,

these two parties can run either time-slicing or multi-threading. Based on that, one case may

be doubled for running in two settings. So for one vulnerability type, there are corresponding

8 - 16 cases depending on the specific vulnerability. In total, there are 1094 benchmarks

for all 88 Strong type vulnerabilities. We wrote C programs to automatically generate the

binaries for each of the 1094 benchmarks.

Evaluating Three-Step Combinations

For a specific benchmark that implements one case of the three-step combinations, following

the idea of the cache three-step simulator in Section 4.1.2, if the step is Vu, the benchmarks

separately test the timing when Vu is Va, Vaalias , or VNIB. If the step is V inv
u , the benchmarks

separately test the timing when V inv
u is V inv

a , V inv
aalias , or V inv

NIB. The timing of the last step in

the three-step pattern is measured. For each of the cases, there is RUN_NUM number of

trials, and Welch’s t-test [79] is used to distinguish the distributions of the measured timings.

We consider two distributions to be significantly different from each other if the probability

of observing the data given that they come from the same distribution is less than 0.05%.

For an effective vulnerability, one of the three candidates of Vu (or V inv
u) should generate

timing distribution that is statistically different from the other two candidates, which we

use to extract information from the runs. This is for the Strong vulnerability types which

are 88 types in total. The 80 Weak vulnerability types are not currently considered in the

benchmarks but can be straightforward to add if needed. At end of each benchmark run,

70

the benchmark outputs if there was significant timing difference – “vulnerability is found”,

or not – “vulnerability not found”.

Timing Measurement and Noise Minimization

We use rdtsc instruction in our benchmarks to do timing measurements, which is the most

effective method compared with hardware performance counters, which may be limited [26]

or lacking-determinism [80], or using a “counting” thread. AMD’s rdtsc instruction is not as

accurate as Intel machine’s, but there are many works [81, 50] showing that it is also able to

be used for cache timing attacks.

Noise and variation in the timing measurements could further result in false negatives (if

the time measurement was not accurate enough to distinguish different timings of accesses)

or false positives (if timing changes resulted in timing measurement differences even though

there is no timing difference). We isolate cores to reduce the software noise to minimize the

false positives. To reduce the false negatives from the noise, instead of measuring just one

cache block, we arbitrarily chose 8 cache blocks from different cache sets to do operation on.

Further, the measurements are all repeated RUN_NUM times and collect statistical data.

The fence instructions are added between each memory-related instruction to enforce an

ordering constraint for the attacks.

To reduce the variation of the timing among different cache sets and further minimize

the false negatives, the timing measurement of the last step is repeated for each test if the

last step is u-related step. Specifically, right after the third step’s timing measurement, we

trigger and measure the timing of this step again, which is guaranteed to result in an L1

cache hit timing or timing to invalidate the data that is not in the caches, depending on

the concrete memory operations. We then compare the timing of the third step with the

repeated third step. This eliminates any variations in timing among different cache sets.

Benchmark Code Example

Figure 4.3 shows an example pseudo code of #42 vulnerability Vu Aa Vu’s benchmark

for read (Vu), write (Aa), and write (Vu) access of the three steps and running in hyper-

threading setting.

71

1. #define LIM 0.0005
2. //mutex to sequence three-step operations
3. mutex = mmap(mutex_size, PROT_READ|PROT_WRITE, …)
4. init_array(arr); //initialize data array and load it into L1, L2, and L3
5. mutex[0] = NOONE_RUN;
6. if ((pid_l1=fork()) < 0) { exit(1); //fail to fork process} //local attacker
7. else if (pid_l1==0){
8. CPU_SET(att_num, &mycpuset);
9. sched_setaffinity(getpid(), sizeof(cpu_set_t), &mycpuset);
10. for (int m=0; m<RUN_NUM; m++){
11. for (int j=0; j<4; j++){
12. // before the attack, initialize mutex
13. if(mutex[0]==NOONE_RUN){ mutex[0]=STEP1_RUN;}
14. // step 2 Aa
15. while(mutex[0]!=STEP2_RUN) sched_yield;
16. attacker_write_8_access(a);
17. mutex[0]=STEP3_RUN;
18. }} exit(0);}
19. if ((pid_l2=fork()) < 0) { exit(1); //fail to fork process} //local victim
20. else if (pid_l2==0){
21. CPU_SET(vic_num, &mycpuset);
22. sched_setaffinity(getpid(), sizeof(cpu_set_t), &mycpuset);
23. for (int m=0; m<RUN_NUM; m++){
24. for (int j=0; j<4; j++){
25. // step 1 Vu
26. while(mutex[0]!=STEP1_RUN) sched_yield;
27. if(j==0) victim_read_8_access(a);
28. else if (j==1) victim_read_8_access(a_alias);
29. else if (j==2) victim_read_8_access(NIB);
30. else if (j==3) dummy_operation;
31. mutex[0]=STEP2_RUN;

32. // step 3 Vu and measure time
33. while(mutex[0]!=STEP3_RUN) sched_yield;
34. if(j==0) {victim_write_8_access_time(a, t);
35. victim_write_8_access_time(a, t_r);}
36. else if (j==1) {victim_write_8_access_time(a_alias, t);
37. victim_write_8_access_time(a_alias, t_r);}
38. else if (j==2) {victim_write_8_access_time(NIB, t);
39. victim_write_8_access_time(NIB, t_r);}
40. else if (j==3) dummy_operation;
41. // timing store
42. store_third_step_timing(j,t);
43. store_repeat_access_timing(j,t_r);
44. mutex[0]=STEP1_RUN;
45. }}
46. //timing analysis
47. if((p_value(a, a_alias)<LIM && p_value(a, NIB)<LIM)||(
48. p_value(a, NIB)<LIM&& p_value(a_alias, NIB)<LIM)||(
49. p_value(a, a_alias)<LIM&& p_value(a_alias, NIB)<LIM)
50. &&((!u_last_step) ||
51. ((pvalue(a_dif, a_alias_dif)<LIM&& pvalue(a_dif, NIB_dif)<LIM)||(
52. pvalue(a_dif, NIB_dif)<LIM && pvalue(a_alias_dif, NIB_dif)<LIM)||(
53. pvalue(a_dif, a_alias_dif)<LIM&& pvalue(a_alias_dif, NIB_dif)<LIM))))
54. printf(“Vulnerability is found”);
55. else printf(“Vulnerability not found”);
56. exit(0);}

Figure 4.3: Example pseudo code of #42 vulnerability Vu Aa Vu for read (Vu), write (Aa),
and write (Vu) case running in hyper-threading setting.

First, we define probability bound of Welch’s t-test (line 1) and initialize a shared array

(line 2-3) used by mutexes to control the sequence of the three-step accesses. Then, the

data (stored in the array) that will be accessed by the victim and the attacker is loaded into

the L1 cache (line 4), and consequently possibly brought into L2 and L3 caches. We use

fork() (line 6 and line 19) to create sub-process, one for the victim and one for the attacker

in this example. Each remote and local victim and attacker will have one sub-process

throughout the whole test. Each sub-process is assigned to a hardware thread (line 8-9, line

21-22). When running hyper-threading, two local or two remote sub-processes are run in

different hardware threads of one CPU, if applicable. If running time-slicing, sub-processes

are assigned to one hardware thread. Within each sub-process, the test will be run for a

certain predefined RUN_NUM (line 10 and line 23) times so the timing statistics can be

done based on a large number of runs. We set RUN_NUM at 600 to minimize noise and

maintain a suitable test set number for Welch’s t-test to measure distributions.

As discussed in Section 4.1.2, for all the effective vulnerabilities, there will be at least one

Vu step (or V inv
u). Within each test, the three candidate values (i.e., Va, Vaalias , or VNIB)

72

will be tested for the Vu or V inv
u (line 11 and line 24). The “dummy operation” branch is

used to avoid making the third branch to be the last branch, which we found experimentally

has an abnormal stable longer timing measurement result.

Figure 4.3 shows a test performing Step 1 (Vu, line 25-31), Step 2 (Aa, line 14-17) and

Step 3 (Vu, line 32-44). Last step Step 3 is performed twice and results are stored (line

41-43). The first access of Step 3 is done to measure if the attacker can observe timing

differences when running different values of u. The second access of the third step will

always be a hit (fast timing, and is used to obtain baseline “fast” timing for that cache set,

as we observed different cache sets can have different timing). In this case, we can collect

results of difference between the first access timing and the second access timing for each

candidate of u to limit the possibilities that timing difference is due to different cache sets

but not different values of u.

In the end, Welch’s t-test is first applied to each statistical distribution of candidate

values for Vu (or V inv
u) to see whether the attacker can observe different timing when Vu

refers to different addresses (line 47-49). If the three-step patterns have u-related step as

the last step (implemented by u_last_step in line 50), to remove the noise in the timing

among different cache sets, the second access timing is considered. Welch’s t-test is applied

to test the difference of the first and the second access of the last step Step 3. Only if one

candidate’s distribution has significant timing difference compared with the other two, the

cache sets’ noise is shown to be not the reason of timing difference and the corresponding

vulnerability is judged to be effective (line 51-53).

4.1.4 Validation of the Three-Step Model

To validate if there are any other vulnerabilities that are left out apart from all the effective

vulnerabilities we derived from our cache three-step simulator, we empirically ran benchmarks

for all the 173 = 4913 three-step combinations for 9 processor configurations.

We discovered a number of three-steps, besides the Strong, Weak and repeat types,

returned by the benchmarks to have timing variations but consider all of them as false

positives. The false positives that show up in every processor we tested all have the second

or the third step to be Ainv, V inv or ?. The corresponding types cannot be any effective

73

Figure 4.4: Evaluation of 88 Strong types of vulnerabilities on different machines. A dot means the
corresponding processor is vulnerable to the vulnerability type. Intel Xeon E5-2667 in our lab has
two sockets. Therefore, the local and remote core can be both in one socket, i.e., run on-chip; or
local and remote core can be in different sockets, i.e., run inter-chip.

Table 4.2: Configurations of the experimental machines, which all have 64B L1 cache line size. (1)
denotes the number of hardware threads sharing one L1 cache; (2) denotes the number of hardware
threads per socket; (3) denotes the number of sockets.

Model Name L1-D Cache L1-I Cache L2 Cache L3 Cache (1) (2) (3)
Intel Xeon E5-1620 32KB, 8-way 32KB, 8-way 256KB, 8-way 10MB, 20-way 2 8 1
Intel Xeon E5-2667 32KB, 8-way 32KB, 8-way 256KB, 8-way 15MB, 20-way 2 12 2
Intel Xeon E5-2690 32KB, 8-way 32KB, 8-way 256KB, 8-way 20MB, 20-way 2 16 1
Intel Core i5-4570 32KB, 8-way 32KB, 8-way 256KB, 8-way 6MB, 12-way 1 4 1
Intel Xeon E5-2686 32KB, 8-way 32KB, 8-way 1MB, 16-way 33MB, 11-way 1 4 1
Intel Xeon P-8175 32KB, 8-way 32KB, 8-way 256KB, 8-way 45MB, 20-way 2 8 1
AMD FX-8150 16KB, 4-way 64KB, 2-way 2MB, 16-way 8MB, 64-way 1 8 1

AMD EPYC 7571 32KB, 8-way 64KB, 4-way 512KB 8MB 2 4 1

vulnerabilities because these three types of states will make the attacker lose track of useful

information due to whole cache flush (Ainv, V inv) or zero-knowledge state inference (?) if

they are in Step 2 or Step 3. Reason of three-steps with the second or the third step as Ainv,

V inv to seem to be effective in the result of running the benchmarks is that whole cache flush

currently cannot be implemented under user-level privilege. We use approximate method to

implement these states in the benchmark by invalidating every address that is related to the

attacks. An approximate method is also used for ? to simulate the zero-knowledge state.

Therefore, the timings of Ainv, V inv and ? have extra noise leading to the false positives.

Overall, we found that there are no effective vulnerabilities that are not covered by the

vulnerabilities we derived.

4.1.5 Evaluation and Security Discussion

The experimental results reported for Intel processors were performed on Intel Core i5-4570,

Xeon E5-2690, E5-2667, E5-1620, P-8175 and E5-2686 CPUs. The AMD tests were on AMD

EPYC 7571 and AMD FX-8150. P-8175, E5-2686 and AMD EPYC 7571 instance are from

74

(a) #1 - #44 vulnerability testing results on different machines.

(b) #45 - #88 vulnerability testing results on different machines.

Figure 4.5: Evaluation of 88 Strong types of vulnerabilities for all the benchmark tests. A dot
means the corresponding processor is vulnerable to the vulnerability case. For each vulnerability, a
fixed number of cases (see Section 4.1.3) are tested according to the vulnerability type. And there
are in total 1094 cases for 88 Strong types of vulnerabilities.

Amazon EC2. Table 4.2 shows the processor configurations.

Vulnerability Evaluation on Commodity CPUs

We evaluated 88 Strong effective vulnerabilities shown in Table 4.1. Figure 4.4 lists the

experimental results when testing the 9 types of processor configurations upon 88 effective

vulnerabilities. For each type of processors, a dot showing up in the figure means that the

machine is vulnerable to this vulnerability. Apart from the 9 types of tested processors,

Figure 4.4 has a row showing if the vulnerability is found in at least one tested processor,

i.e., or result, and another row showing if the vulnerability is found in all tested processors,

i.e., and result.

Figure 4.4 shows that 88 effective vulnerabilities are mostly found in all the tested CPUs.

Since our new cache three-step simulator considers the ideal case where 66 types of timing

observations all have unique results, it outputs all the possible vulnerability types. For

commodity processors, a subset of them is shown to be effective. This is due to the actual

cache implementation and timing measurement methods, making some of the timing of

the 66 types not differentiable, as is shown in histograms of Figure 4.10. Figure 4.4 also

demonstrates that different machines are vulnerable to different types of attacks. The and

result of 9 types of processor configuration experiments have relatively small percentage of

75

Table 4.3: Percentage of vulnerability cases that are effective for different types of timing observation
steps for different machine configurations. The number on the right of “/” is the total cases of
vulnerabilities for the corresponding categorization; the number on the left of “/” is the number
of cases to which the corresponding processor is vulnerable. Machines labeled * do not support
hyper-threading in hardware.

Model Name Local Read Local Write Remote Write to Inv. Flush to Inv.
Intel Xeon E5-1620 137/277 118/277 127/277 129/263

Intel Xeon E5-2667 on-chip 121/277 117/277 80/277 119/263
Intel Xeon E5-2667 inter-chip 127/277 111/277 124/277 72/263

Intel Xeon E5-2690 128/277 101/277 77/277 107/263
Intel Core i5-4570* 82/277 66/277 57/277 63/263
Intel Xeon E5-2686* 87/277 74/277 69/277 80/263
Intel Xeon P-8175 124/277 120/277 75/277 105/263
AMD FX-8150* 68/277 65/277 89/277 65/263
AMD EPYC 7571 125/277 125/277 124/277 114/263

in all CPUs 49/277 34/277 10/277 30/263
at least one CPU 175/277 150/277 162/277 162/263

vulnerabilities to which machines are all vulnerable. We further list the statistical results as

CTVS for each machine in Section 4.1.5.

Analysis of Vulnerabilities Found

Figure 4.5 shows the results of benchmarks for all the cases of the 88 vulnerability types.

Machines not supporting hyper-threading have much fewer effective cases. Similar to

Figure 4.4, the dot means the related processor is vulnerable to the specific case. The gray

vertical lines are used to group all the cases per vulnerability (there are thus 88 vertical bars

and groupings). We further collect the data in Figure 4.5 and group them with different

Step 3 types as the timing observation steps in Table 4.3 to compare effects of different

operations on processor cache timing attacks.

Local read and local write of timing observation step. Previous attacks normally

used read access to implement the side-channel attacks, as analyzed in Section 4.1.1. However,

write access is shown in Figure 4.5 and Table 4.3 to be an effective method to implement

attacks as well. It has generally smaller rate compared with read access to trigger effective

vulnerabilities of different cases, especially for tested machine Intel Xeon E5-1620 and

E5-2690. For the 44 types of vulnerabilities (#1 - #44) that have access operation as timing

observation step, Figure 4.5 demonstrates that there are 38 out of 44 vulnerabilities to which

at least one machine is vulnerable when using read as the timing observation step. While

using write access as the timing observation step, 34 out of 44 vulnerabilities are vulnerable

76

Table 4.4: Percentage of vulnerability cases that are effective for the victim (Vic.) and the attacker
(Att.) running the same core (time-slicing or hyper-threading), running different cores or within
the victim for different machine configurations. The number on the right of “/” is the total cases
of vulnerabilities for the corresponding categorization; the number on the left of “/” is the number
of cases to which the corresponding processor is vulnerable. Machines labeled * do not support
hyper-threading.

Model Name Vic., Att. Same Core Vic., Att. on
Different Cores

Within
VictimTime-Slicing Hyper-Threading

Intel Xeon E5-1620 181/390 174/390 51/90 105/224
Intel Xeon E5-2667 on-chip 156/390 146/390 52/90 83/224
Intel Xeon E5-2667 inter-chip 151/390 146/390 49/90 88/224

Intel Xeon E5-2690 144/390 138/390 46/90 85/224
Intel Core i5-4570* 143/390 0/390 46/90 79/224
Intel Xeon E5-2686* 166/390 0/390 50/90 94/224
Intel Xeon P-8175 148/390 143/390 38/90 95/224
AMD FX-8150* 155/390 0/390 43/90 89/224
AMD EPYC 7571 159/390 171/390 55/90 103/224

in all CPUs 67/390 0/390 18/90 38/224
at least one CPU 223/390 217/390 61/90 148/224

to at least one machine.

Invalidation using cache coherence or flush for timing observation step. Ac-

cording to Table 4.3, the percentage of vulnerabilities to which the machine is vulnerable

mainly depends on processor types when comparing different invalidation-related operation

as the timing observation step. Among the tested processors, Intel Xeon E5-2667 running

inter-chip, AMD FX-8150 and AMD EPYC are more vulnerable to remote write as the

timing observation step. Intel Xeon E5-1620, E5-2667 running on-chip, E5-2690, E5-2686,

P-8175, and Core i5-4570 are more vulnerable to flush observation step. Overall, for the 44

types of vulnerabilities (#45 - #88) that have invalidation for timing observation, remote

write and flush operations both have 38 out of 44 vulnerabilities to which at least one

machine is vulnerable.

Running time-slicing or hyper-threading. Besides different kinds of operations,

we also collect results in Table 4.4 for running time-slicing and hyper-threading when the

victim and the attacker run on the same core (either local or remote core). There are also

vulnerabilities for which the victim and the attacker run on different cores, or vulnerabilities

only having victim steps. Based on the results, running time-slicing is more vulnerable

compared with running hyper-threading for Intel processors. While AMD processor EPYC

7571 shows that running hyper-threading is more vulnerable. Furthermore, hyper-threading

provides more choices for the attacker to exploit the corresponding vulnerability.

77

Table 4.5: Cache Timing Vulnerability Score (CTVS) for each of the tested processors. The number
on the right of “/” is the total cases of vulnerabilities for the corresponding categorization; the
number on the left of “/” is the number of types to which the corresponding processor is vulnerable.
Smaller is better. “I” and “E” are internal and external interference vulnerabilities, respectively. “S”
and “A” are set-based and address-based vulnerabilities, respectively. “SA” are the ones that are
both set-based and address-based.

Model Name CTVS I-A Vul. I-S Vul. I-SA Vul. E-A Vul. E-S Vul. E-SA Vul.
Intel Xeon E5-1620 73/88 20/20 6/12 12/12 20/20 5/12 10/12

Intel Xeon E5-2667 on-chip 66/88 20/20 3/12 11/12 20/20 3/12 9/12
Intel Xeon E5-2667 inter-chip 64/88 19/20 2/12 12/12 20/20 3/12 8/12

Intel Xeon E5-2690 62/88 20/20 1/12 10/12 20/20 2/12 9/12
Intel Core i5-4570 61/88 20/20 1/12 10/12 20/20 1/12 9/12
Intel Xeon E5-2686 66/88 20/20 2/12 11/12 20/20 3/12 10/12
Intel Xeon P-8175 73/88 20/20 5/12 12/12 20/20 5/12 11/12
AMD FX-8150 50/88 18/20 1/12 7/12 18/20 0/12 6/12

AMD EPYC 7571 62/88 20/20 2/12 10/12 20/20 1/12 9/12
in all CPUs 47/88 17/20 0/12 6/12 18/20 0/12 6/12

at least one CPU 79/88 20/20 9/12 12/12 20/20 7/12 11/12

Take-Aways and Need for Cache Timing Vulnerability Benchmarks

Table 4.5 shows the Cache Timing Vulnerability Score (CTVS) which represents the percent-

age of the vulnerabilities that are effective for the machine. The number on the right of “/”

is the total cases of vulnerabilities for the corresponding categorization; the number on the

left of “/” is the number of types to which the corresponding processor is vulnerable. For

CTVS number, smaller is better. For all the 88 Strong type vulnerabilities, AMD FX-8150

has relatively better CTVS compared with Intel machines. Xeon E5-1620 and P-8175 are

the most vulnerable ones among Intel processors. Otherwise, the Xeon family and AMD

EPYC 7571 are generally similar.

CTVS numbers vary by different machines and type of vulnerabilities. In

Table 4.5, CTVS numbers for in all CPUs are small, demonstrating that only a few attacks

can be effective in all the processors. These numbers are expected to be even smaller if more

processors are tested. CTVS numbers for at lest one CPU are large, confirming that nearly

all of the vulnerabilities derived by the new three-step model are found in real processors.

A type vulnerabilities generally have higher effective rates than S type vulnerabilities.

This is because that S type vulnerabilities normally differentiate timing between L1 cache

and L2 cache accesses, i.e., accessing or invalidating L1 or L2 data, which are shown in

the histograms in Figure 4.10 to be much smaller compared with the difference between L1

cache hit and DRAM hit, for example. Especially, the timing difference between remote

78

write to invalidate dirty L1 data and L2 data is almost non-differentiable, resulting in that

related vulnerabilities (especially #25 - #28) are found to be not effective in all tested

processors (shown in Figure 4.4). A type vulnerabilities generally rely on timing differences

between L1 cache hit and DRAM hit, or L1 cache hit and remote L1 cache hit; histograms in

Figure 4.10 demonstrate that these access types have large timing differences, making these

vulnerabilities much more effective. SA type vulnerabilities generally leverage the timing

differences between clean L1 data invalidation and dirty L1 data invalidation or between

local access of remote clean L1 data and remote dirty L1 data; histograms in Figure 4.10

again show large timing differences for these, and related vulnerabilities are found to be

very effective by CTVS. Meanwhile, for I and E type vulnerabilities, they do not have an

explicit distinction of CTVS numbers for the tested processors.

Use CTVS to build custom defenses. CTVS has shown that different processors are

vulnerable to different attacks. Consequently, customized software or hardware defenses can

be deployed for each processor based on the CTVS score, rather than defending vulnerabilities

not present in the specific processor’s caches. For software defenses, the access patterns from

the benchmarks could be used as a reference for scanning software to find if it has similar

patterns, e.g., to find malicious software that has such attack patterns.

Understand limits of existing defenses using three-step model. Further, CTVS

and our three-step model have shown new attack types which are unknown before, and thus,

not considered by defenses based on monitoring performance counters, e.g., study [82]. This

points to the requirement of using new or different performance counter types in works that

use active monitoring, for example.

Understand micro-architecture using CTVS. The vulnerability score can also be

used to help understand the implementation of different processors especially the micro-

architectures. For example, according to Figure 4.4, vulnerability #78 Vu Vd V inv
u

and #79 Vd Vu V inv
d fully show up on Intel E5-1620 while do not show up on Intel

E5-2690. As shown in Figure 4.10, flushing clean L1 data (L1cl) to DRAM and flushing

clean L2 data (L2cl) to DRAM have large timing differences for Intel E5-1620 (1036 vs. 985

average cycles shown in Figure 4.10(e)), but are non-differentiable for Intel E5-2690 (872 vs.

879 average cycles shown in Figure 4.10(f)). With the smaller difference, it is not possible

79

to distinguish the timing with high confidence and corresponding vulnerabilities are highly

likely unexploitable on this processor.

Diving deeper, the reason for the timing variation may due to the different clock speed

of Intel E5-1620 and Intel E5-2690 (3.6GHz vs. 2.9GHz), where faster clock speed will make

long memory-related operations more differentiable, even if the absolute timing differences

are the same. Besides that, Intel E5-1620 does not support Flex Memory Access, which

improves memory access efficiency. Intel E5-2690 supports it, making two operations less

differentiable on timing.

4.2 Cache Timing Vulnerabilities and Arm Evaluation

This work shows for the first time, a systematic, large-scale analysis of Arm devices and

the detailed results of attacks the processors are vulnerable to. Compared to x86, Arm uses

different architectures, microarchitectural implementations, cache replacement policies, etc.,

which affects how attacks can be launched, and how security testing for the vulnerabilities

should be done.

4.2.1 Threat Model and Assumptions

We assume that there is a victim that has secret data which the attacker tries to extract

through timing of memory-related operations. The victim performs some secret-dependent

memory accesses (Vu) and the goal for the attacker is to determine a particular memory

address (or cache index) accessed by the victim. The attacker is assumed to have some

additional information, e.g., he or she knows the algorithm used by the victim, to correlate

the memory address or index to values of secret data.

In addition to regular reads, writes, and flush operations, we assume that the attacker

can make use of cache coherence protocol to invalidate other core’s data, by triggering read

or write operations on the remote core as one of the steps of the that attack.

A negative result of a benchmark means there is likely no such timing channel in the

cache or the channel is too noisy to be observable. Meanwhile, a positive result may be

due to structures other than cache, such as prefetchers, Miss Status Handling Registers

80

(MSHRs), load and store buffers between processor and caches, or line fill buffers between

cache levels. Our benchmarks focuses on L1 data caches, but we consider that timing results

could be due to all the different structures. Detailed benchmarks for these structures or

other levels of caches are left for future work.

4.2.2 Arm Security Benchmarks

In this section, we present the first set of benchmarks which is used to evaluate L1 cache

timing vulnerabilities of Arm processors. To implement the security benchmarks on Arm, as

listed below, we developed solutions to key challenges accordingly.

Heterogeneous CPU Architectures

Arm processors implement the big.LITTLE architecture with big and little processor cores

having different cache sizes. This presents a new challenge, as the architecture is funda-

mentally different from multi-core systems where all cores have identical cache sizes and

configurations. This was not considered in our previous work [9] which only dealt with x86,

nor in previous studies [83, 84, 85, 86] which only tested attacks on one core type.

The local core is the one wherein is located the target cache line that the attacker wants

to learn. Meanwhile, the remote core is a different core where the target cache line is

not located, but which could affect the local core and its caches, e.g., via cache coherence

protocol. Thus, both cross-core and cross-CPU vulnerabilities are considered in our work

by testing the victim and attacker operations on different combinations of local and remote

cores. Especially, with different big and little processor cores, a local or remote core can be

either of big or little core type, resulting in four combinations.

Because we consider different core types, unlike prior work, and caches are not even

between the big and little cores, we define how to correctly specify the cache configurations

for the benchmarks when running the tests:

• If the first two steps of the three-step model describing a particular vulnerability both

occur in the remote core, use the remote core’s cache configuration.

• In all other cases, use the local core’s cache configuration.

81

In the three-step model, when testing for vulnerabilities, main interference (leading to

potential timing differences) occurs within the first two steps, while the final, third step is

used for the timing observation used to determine if there is possible attack or not. Therefore,

the above method of choosing the cache configuration focuses on where the main interference

is occurring in the three steps.

Random Replacement Policy in Arm

Modern Arm cores use the random replacement policy in the L1 cache [83]. This policy is

significantly different from the Least Recently Used (LRU) replacement policy, and poses

fundamental challenges for eviction and probing steps in 48 out of 88 vulnerability types.

In particular, this makes the set-only-based vulnerabilities (SO-Type) harder to im-

plement. The reason is that occupying a cache set in caches using a random replacement

policy is not as easy as in caches using LRU or similar policies, where accessing a cer-

tain number of ways (denoted as cache_associativity_num) of cache lines in a cache set

is able to evict all data in the set. In caches using the random replacement policy, the

cache set thrashing problem [87], referring to self-evictions within the eviction set, which

affects accessing all the ways of the cache set in eviction-based vulnerabilities. To avoid

this problem, we use a smaller set size to avoid set thrashing in our benchmarks. We set

the eviction set size to cache_associativity_num-1 and then repeat each step’s memory

operations 10 times. Using this technique, we are able to reduce set thrashing significantly

given the random replacement policy. However, in this case, exactly one way will not be

occupied after the repeated memory operations. This will cause victim’s access in one

out of cache_associativity_num ways to be not detectable, but this is acceptable as

vulnerabilities can still be detected as we show in our evaluation.

Measuring and Differentiating Timing

For benchmarking Arm cache timing vulnerabilities, this work is the first to utilize statistical

tests – Welch’s t-test [79] – to differentiate distributions of timings to check if vulnerabilities

can result in attacks. The pvalue is the threshold used to judge the effectiveness of the

vulnerabilities. Based on our evaluation, we select 0.00049 for the pvalue in our tests,

82

64kB 32kB

Three Steps:
Step1 ⟿ Step2 ⟿ Step3

88
Vulnerabilities:

#1, #2, #3, …

Sequence of instructions
in benchmark Execute on local

or remote cores

Each Vul.

Each Step
Each
Instr.

Figure 4.6: Relationship of the 88 vulnerabilities, each of which is described using three steps from
the three-step model. The steps are further translated into sets of assembly instructions for the
benchmarks, and the code can be run on either big or small cores in the tested systems.

improved from our previous work on x86 [9], and use this to determine if different timing

distributions are distinguishable. We chose Welch’s t-test since it is generally used in attack

evaluations [88, 89, 90]. There is also Kolmogorov-Smirnov’s two-sample test [91] that can

be used to differentiate distributions. However, in the case of cache timing side channel,

there is only two possible timing observations (i.e., hit or miss), t-test is sensitive to the

mean of distributions, and thus fit in this case.

The statistical tests are used to differentiate timings of memory related operations.

However, cycle-accurate timings are not accessible without root access on Arm, while x86

provides accurate assembly instructions to record timing (e.g., rdtsc). Consequently, we

developed code that can get reliable timing measurements in user-level applications using

the clock_gettime() system call. We experimented with other different performance

counters and thread timers, but these proved not to be applicable or accurate enough for

our benchmarks.

When performing timing measurements, in our experience, Arm devices further exhibit

a lot of system noise when running the tests on real devices in the cloud-based device farms,

possibly due to OS activity, or other background services. Therefore, we set the benchmarks

to run more than 30, 000 repetitions for each benchmark for each device to average out the

noise. Further, when running each step operated by either the victim or the attacker, we

isolate the core to avoid influence of other application processes from user-level applications.

83

Algorithm 3 Assembly code sequence for read or write accesses.
1: asm __volatile__ (
2: “DSB SY n”
3: “ISB n”
4: “LDR/STR %0, [%1] n”
5: “DSB SY n”
6: “ISB n”
7: : “=r” (destination)
8: : “r” (array[i]));

Algorithm 4 Assembly code sequence for flush.
1: asm __volatile__ (
2: “DSB ISH n”
3: “ISB n”
4: “DC CIVAC, %0 n”
5: “DSB ISH n”
6: “ISB n”
7: : : “r” (array[i]));

Summary of the Benchmark Structure

Following the above features, we developed benchmarks for all 88 vulnerabilities. As shown in

Figure 4.6, there are three steps for each vulnerability, and each step is realized by a sequence

of instructions. The instruction sequences from each step can execute on local or remote

cores. When performing the steps, there are two possible cases for the victim’s or attacker’s

memory related operation: read or write access for a memory access operation; and flush or

write in the remote core for an invalidation-related operation. Thus, for each vulnerability,

there are in total of 23 = 8 types considering different cases of each step’s operation. Further,

if a vulnerability being tested has both the victim and the attacker running on one core,

these two parties can run either time-slicing or multi-threading. Consequently, the 8 cases

are doubled to account for both time-slicing and multi-threading execution. Thus, for each

vulnerability being tested, there are correspondingly 8-16 cases depending on the specific

vulnerability. Each vulnerability is realized as a single benchmark program. In total there

are 1094 benchmarks for all 88 types of vulnerabilities.

The 1094 benchmarks are automatically generated. The basic code sequences, e.g., Alg. 3

and 4, are composed into programs, with one program for each benchmark. Additional

instructions are used in the benchmarks to pin execution of the code to different processor

cores when testing different configurations. The resulting 1094 programs are compiled and

executed on the devices under test as detailed in the next section.

84

4.2.3 Cloud-Based Framework

In this section, we report on the first cloud-based platform for testing cache channels on

Arm devices. Our prior work only considered x86 [9] with several processors manually set to

test, and work by others only manually tested only few Arm devices [83, 84, 85, 86].

Android Device Testbeds

We build our evaluation framework using testing platforms for mobile devices, namely the

Visual Studio App Center [92], the Amazon AWS Device Farm [93], and the Firebase Test

Lab [94]. We developed a framework which allows us to run custom binary benchmarks and

retrieve the results in an automated manner.

In these cloud deployments, it is not possible to execute benchmark files through a

remote shell and download the results. Instead, the entire functionality must be implemented

as a user-level native Android application. Consequently, the benchmark executables are

inserted into the application package (APK) of a custom Android application we developed.

Figure 4.7 illustrates the resulting test setup, which will be open-sourced.

Extracting Cache Configurations

To build the benchmark, cache and CPU configuration information are needed. The

configuration can be automatically identified by reading the corresponding system information

located at /sys/devices/system/cpu/cpux/ (where x stands for the CPU core number) on

each tested device. However, depending on the SELinux policies applied by the vendor and

Android version, access to these files is restricted on some devices [95]. For these device

models, we manually identify and verify their cache configurations from public resources.

Finally, we store both automatically- and manually-extracted cache configuration parameters

in a single database, and include this database into the APK, so that it can be used when

running the benchmarks.

85

Computer Cloud Testing Platform

Server

4. Upload APK

5. Run benchmarks

6. Send results

3. Package APK

1. Gather configurations
2. Precompile benchmarks

7. Analysis

Figure 4.7: Overview of the evaluation framework using the cloud-based testing platforms for
Android mobile devices.

Packaging Security Benchmarks

Starting from Android 9, the operating system does not allow to execute files from an

arbitrary writeable location on the filesystem [96]. Instead, only native library dependencies

within an Android application can be executed. Consequently, we pre-compile and place the

benchmark files in the resource subfolder of the APK package which contains native libraries

(src/main/resources/lib/arm64-v8a), as the OS grants read-and-execute permissions for all

binary files in this subfolder.

Running Benchmarks

We give an overview of our evaluation framework in Figure 4.7. Once the cache configuration

is extracted (step 1), the corresponding benchmarks are precompiled (step 2) and packaged

(step 3), we upload the application package to the cloud testing platforms (step 4). The

implemented application does not require any user interaction. Instead, it contains an

instrumented unit test which automates the execution of benchmarks. The tests can be

run simultaneously on multiple devices (step 5). The process of uploading and running the

application is automated using the APIs provided by the cloud platform provider.

On each device, the application first identifies the device model by accessing the

Build.MODEL property. This information is used to look up the corresponding cache

configuration parameters in the database. Afterwards, the application executes the precom-

piled benchmarks one by one, using the corresponding parameters. In order to automatically

retrieve the results of benchmarks from multiple devices, we implement an HTTP server

which can receive POST requests from Android applications. Each request contains the

86

I- I- I- I- E- E- E- E- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- I- I- I- I- E- E- I- I- E- E- E- E- I- I- I- I- E- E- E- E- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- I- I- I- I- E- E- I- I- E- E- E- E-
AO SA SA SA SA SO SO SO SO SA SA SO SO SA SO SO SA SO SA SO SA SO SA SO SA AO SA SA SA SA SO SO SO SO SA SA SO SO SA SO SO SA SO SA SO SA SO SA SO SA

Vulnerability Number

Corresponding Vulnerability Type

Figure 4.8: Evaluation of the 88 types of vulnerabilities on different Arm devices. We further
tested other Arm cores, including an X-Gene 2 core and a Neoverse core to test Arm processors
on servers. The results generally have similar patterns as the mobile devices so we show only
results for the mobile devices from the cloud-based testbeds. A solid dot means the corresponding
processor is found to be vulnerable to the vulnerability type. The “I-SO” (colored by dark red)
and “E-SO” (colored by light red) are internal-interference set-only-based and external-interference
set-only-based vulnerabilities, respectively. The “I-AO” (colored by dark red) and “E-AO” (colored
by light red) are internal-interference address-only-based and external-interference address-only-
based vulnerabilities, respectively. The “I-SA” (colored by dark red) and “E-SA” (colored by light
red) are internal-interference set-or-address-based and external-interference set-or-address-based
vulnerabilities, respectively. The devices are grouped according to their core types. Each device’s core
is labeled by a number shown after the device name, with corresponding cores shown in Table 4.6.
The order is from the most vulnerable core to least vulnerable among the cores. The last line shows
gem5 testing results of default gem5, to show that gem5 simulation gives similar results to real devices.

results in textual or binary format. As the execution time of the whole set of benchmarks on

a device can take several hours, the application periodically sends the intermediate results to

the server. In this way, we can precisely monitor the current state of the execution on each

device. Finally, the results are collected from the server (step 6) for further analysis (step 7).

4.2.4 Arm Benchmark Evaluation

We tested a number of different devices. The corresponding processor core types are shown

in Table 4.6 – note that some devices use the same processor or SoC configuration, as

shown in in Table 4.6. The results of the tests are shown in Figure 4.8, which shows the

vulnerabilities that can possibly be exploited on the device, based on sufficient timing

differences in the memory operations corresponding to each three-step attack. Figure 4.8

87

Table 4.6: CPUs and SoC types found in the evaluated devices. The Core Name (with corresponding
number used in Figure 4.8), Core Freq., and L1 Cache Config. columns show the processor core
names, their frequency ranges, and typical cache configurations. The Vul. Num. column shows the
average number (out of 88) of vulnerabilities that show up during tests; smaller value is better.

Core Name Core Freq. L1 Cache Config. SoC Name Vul. Num.

Kryo 585{1} Gold/ Silver 2.42-2.84/
1.8

64 KB 16-way/ 32
KB 4-way Qualcomm Snapdragon 865 88

Kryo 385{2} Gold/ Silver 2.5-2.8/
1.6-1.7

64 KB 16-way/ 32
KB 4-way Qualcomm Snapdragon 845 87

Kryo 360{3} Gold/ Silver 2.0-2.2/ 1.7 64 KB 16-way/ 32
KB 4-way Qualcomm Snapdragon 670/ 710 87

Cortex A53{4} 1.9-2.2 32 KB 4-way Nvidia Tegra X1/ Qualcomm
Snapdragon 625/ 630 81

Kryo 280{5} Gold/ Silver 2.35-2.5/
1.8-1.9

64 KB 16-way/ 32
KB 4-way Qualcomm Snapdragon 835 79

Kryo 260{6} Gold/ Silver 1.8-2.2/
1.6-1.8

64 KB 16-way/ 32
KB 4-way Qualcomm Snapdragon 636/ 660 76

consists of 88 columns, each corresponding to one of the three-step vulnerabilities. The

vulnerabilities are colored based on the different types.

In addition to smartphones, we further tested other Arm cores, leveraging Amazon

EC2 [97] with an X-Gene 2 core and Chameleon cloud [98] with a Neoverse core to test

Arm processors on servers. Arm server chip results generally have similar patterns as the

mobile devices. Therefore, in this work, we show only results for the mobile devices from

the cloud-based testbeds.

Microarchitectures’ Impacts on the Vulnerabilities

Below we list some of the observations gained from our evaluation. Only through the

extensive benchmarking of caches on a large set of devices, can such insights be discovered.

Store Buffer. The STB (STore Buffer) is used during write accesses to hold store

operations. This structure makes clean and dirty L1 data access timing easier to be

distinguished. For example, I − SA-Type vulnerability #33 differentiates timing between

reads of dirty L1 data and reads of clean L1 data, or between writes of dirty L1 data and

writes of clean L1 data, which is a typical vulnerability that allows STB to make it more

effective. From the evaluation results, Kryo 360 Gold/Silver cores are more susceptible to

vulnerabilities such as #33, compared to Cortex A53 core, which confirms the fact that

the STB is presented in Kryo 360 Gold/Silver cores but not in Cortex A53 core, based on

reference manuals.

88

I- I- I- I- E- E- E- E- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- I- I- I- I- E- E- I- I- E- E- E- E- I- I- I- I- E- E- E- E- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- I- I- I- I- E- E- I- I- E- E- E- E-
AO SA SA SA SA SO SO SO SO SA SA SO SO SA SO SO SA SO SA SO SA SO SA SO SA AO SA SA SA SA SO SO SO SO SA SA SO SO SA SO SO SA SO SA SO SA SO SA SO SA

Vulnerability Number

Corresponding Vulnerability Type

Figure 4.9: Evaluation of the 88 types of vulnerabilities on different cores of Google Pixel 2.
“big_big” means running both local and remote core on big cores, “big_little” means running local
core on the big core, remote core on the little core. Same naming is applied to “little_big” and
“little_little”. Dot coloring is the same as in Figure 4.8.

Snoop Control Unit. The Snoop Control Unit (SCU) contains buffers that can handle

direct cache-to-cache transfers between cores without having to read or write any data to the

lower cache by maintaining a set of duplicate tags that permit each coherent data request

to be checked against the contents of the other caches in the cluster. With the SCU, when

comparing the timing between remote writes to invalidate local L1 data and remote writes

to invalidate local L2 data, the SCU will accelerate the coherence operations. This makes

the different cache coherence influence non-differentiable in timing on the cores that have

the SCU.

For example, I−SO-Type vulnerabilities #78-#79 mainly use timing differences between

flushing of L1 data and flushing of L2 data, or between remote writes to invalidate local L1

data and remote writes to invalidate local L2 data. From the evaluation results, vulnerabilities

#78-#79 occur much less frequently on Kryo 280 Gold/Silver cores and Cortex A53 cores

compared to Kryo 360 and Kryo 385 Gold/Silver cores. This supports the observation that

the Kryo 280 Gold/Silver cores and Cortex A53 cores have a Snoop Control Unit (SCU),

which helps prevent these types of vulnerabilities, while Kryo 360 and Kryo 385 Gold/Silver

cores do not have it.

Transient Memory Region. Transient Memory Region allows for setting a memory

region as transient. Data from this region, when brought into L1 cache, will be marked as

transient. As result, during eviction, if this cache line is clean, it will be marked as invalid

instead of being allocated in the L2 cache.

Although this may help avoid polluting the cache with unnecessary data, internal and

external SO-Type vulnerabilities #33-#44 that we are able to differentiate between L1 and

L2 cache hits can now differentiate between an L1 cache hit and a data access from DRAM.

This makes this type of vulnerability more effective on cores that support this feature, which

89

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
Cycles

0%

10%

20%

30%

Fr
eq

ue
nc

y a a_alias NIB

(a) Sample histogram of AO-Type vulnerability

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
Cycles

0%

10%

20%

30%

Fr
eq

ue
nc

y a a_alias NIB

(b) Sample histogram of SO-Type vulnerability

Figure 4.10: Samples of different types of vulnerabilities’ timing histograms for different candidate
values for Vu.

are Kryo 360/385 Gold/Silver cores, compared to other cores, such as Cortex A53.

Heterogeneous Caches’ Impact on Vulnerabilities

We also evaluated how Arm’s big.LITTLE architecture impacts the attacks, where we set

local and remote core to be either big or little processor core. In Figure 4.9, we present

evaluation results for one example device, Google Pixel 2. A similar pattern was observed

for all other tested devices.

SO-Type and SA-Type vulnerabilities which differentiate L1 and L2 cache hit timings

(#41-#44) are mostly vulnerable to the case when the local core uses the big core. This is

mainly because the bigger cache (e.g., 64K 16-way vs. 32K 4-way) of the big core results in

larger timing differences for the vulnerabilities that require priming each cache set, reducing

the proportion of system noise at the same time. SO-Type and SA-Type vulnerabilities

which differentiate writing to remote dirty L1 and L2 cache data (#73-#76) are successful

when local and remote core both use the little core. Dirty data are usually not stored in

the cache line but stored in other locations such as write buffer. Write buffer is possibly

processed in an out-of-order way. Therefore, fewer number of writes due to fewer number

of ways in little core are more likely to have relatively differentiable timing. SO-Type and

SA-Type vulnerabilities which differentiate writing remote L1 and remote L2 cache data

(#77-#88) are mostly successful when local and remote cores use different core types (big

or little). This is due to the fact that big and little cores are often in different quad-core

clusters in the SoC, where coherence time across quad-core cluster results in higher timing

90

Vulnerability Number

(a) Benchmark gem5 simulation results for different MSHR sizes.

I- I- I- I- E- E- E- E- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- I- I- I- I- E- E- I- I- E- E- E- E- I- I- I- I- E- E- E- E- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- E- I- I- I- I- I- E- E- I- I- E- E- E- E-
AO SA SA SA SA SO SO SO SO SA SA SO SO SA SO SO SA SO SA SO SA SO SA SO SA AO SA SA SA SA SO SO SO SO SA SA SO SO SA SO SO SA SO SA SO SA SO SA SO SA

Vulnerability Number

Corresponding Vulnerability Type

(b) Benchmark gem5 simulation results for different write buffer sizes.

Figure 4.11: Evaluation of 88 types of vulnerabilities on different number of write buffer (WB)
and Miss Status Handling Register (MSHR) sizes. A solid dot means the corresponding processor is
found to be vulnerable to the vulnerability type. The “SO” (colored red) and “AO” (colored green)
are set-only-based and address-only-based vulnerabilities, respectively. “SA” (colored blue) are the
ones that are set-or-address-based. The “E” (colored in lighter color) and “I” (colored in darker
color) are internal- and external-interference vulnerabilities, respectively.

differences when accessing data located in the remote cluster.

Core Frequency’s Impact on Vulnerabilities

High clock frequency tends to make long memory operations more differentiable, and will

make timing attacks easier to exploit the difference. From the evaluation results, we found

that devices with higher clock frequency will likely have more effective timing-channel

vulnerabilities presented.

This is especially visible in SO-Type vulnerabilities, most of which differentiate between

L1 and L2 cache hits, which have a relatively small cycle difference, e.g., less than 10 cycles.

However, if the core’s frequency increases, the timing difference is also increased, which

makes cycle distributions more differentiable and an attack possibly easier to execute.

Influence of Write Buffer and MSHR Sizes

We design our benchmarks so they can also be used in simulation. We use the Arm

big.LITTLE configuration to run the benchmarks in Full System (FS) mode or Syscall Emu-

lation (SE) mode on gem5. The simulator is configured to use the Exynos [99] configuration

to model real Android devices and uses the O3CPU model with a 5-stage pipeline. The last

line of Figure 4.8 shows the benchmark results when using the default configuration on the

gem5 simulator. Overall, we find that baseline gem5 results have good correspondence with

real CPUs in terms of the cache timing vulnerabilities.

91

Next, we evaluate different configurations of the Miss Status Holding Register (MSHR)

and the write buffer (WB), both tested on gem5. Results are shown in Figure 4.11: A larger

MSHR size leads to more vulnerabilities to be observed. MSHR is a hardware structure for

tracking outstanding misses. Larger MSHR sizes lead to more outstanding misses that can

be handled, which may stabilize the memory access timings and give more consistent results.

Changing the size of WB does not have an explicit influence on the vulnerability results.

WB stores the write request, which frees the cache to service read requests while the write

is taking place. It is especially useful for very slow main memory, where subsequent reads

are able to proceed without waiting. We use the “SimpleMemory” option of gem5, which

is relatively simple compared with the implementation of real devices and may not have

the same slow memory timing in this case. As the result shows, bigger WB may improve

performance and can be added without degrading security, while bigger MSHR may improve

performance but at some cost to security.

Patterns in Vulnerability Types

It can clearly be observed from the colored dots in Figure 4.8 that AO-Type vulnerabilities are

observable in almost all devices and in the simulation, because these types of vulnerabilities,

e.g., differentiate L1 cache hits and DRAM hits, which have large timing differences. Such

timing distribution results can be observed in Figure 4.10a. SA-Type vulnerabilities also

occur relatively often, but are much more unstable compared with AO-Type vulnerabilities,

which shows that different devices have large but quite variable timing differences among

different memory operations, e.g., between clean abd dirty L1 data invalidation or between

local access of remote clean and dirty L1 data. SO-Type vulnerabilities are least effective.

This is because the timing differences between the observations such as L1 and L2 cache hits

are so small that they are sometimes indistinguishable due to system noise. For example,

timing distribution evaluation result shown in Figure 4.10b have small timing difference.

I-Type and E-Type vulnerabilities do not show explicit evaluation differences. In

this case, another take-away message is that protecting only the external-interference

vulnerabilities is not enough at all. Internal-interference vulnerabilities can be as effective as

the external-interference vulnerabilities for attacks.

92

Estimating the Real Attack Difficulty

To estimate the real attack difficulty, we can leverage the distance and likelihood (using

p-value) of different timing measurement distributions. As is shown in Figure 4.10 in

Section 4.2.4, AO-Type or SA-Type vulnerabilities are easier to exploit since they depend on

timing differences of L1 cache hits vs. DRAM accesses; meanwhile SO-Type vulnerabilities

are more difficult to exploit, since they depend on the timing differences between L1 and L2

cache hits, which are much smaller compared to the former.

Further, our benchmarks show the overall attack surface. If a motivated attacker only

needs to use one attack to derive sensitive information, he or she will likely start with AO-

Type or SA-Type vulnerabilities. However, the bigger the attack surface is, the more options

he or she has, and if there are defenses for AO-Type or SA-Type types of vulnerabilities,

attackers could still leverage SO-Type vulnerabilities. The goal of this work is to show the

whole attack surface on Arm devices, including vulnerabilities and attack types that are not

previously presented in the literature. Which attack could be used in practice depends on

the attacker’s motivation and resources, but thanks to this work, the overall attack surface

is better understood.

Results Compared with Other Work

For our benchmark results shown in Figure 4.8, strategies exploited by existing Arm

attacks – Evict+ Time (#41-#42 in the Figure), Prime+Probe (#43-#44 in the Figure),

Flush+Reload1 (#5-#8 in the Figure), and Flush+Flush (#47-#50 in the Figure) – all

indeed show up as effective vulnerabilities for mobile devices that were tested. This confirms

that our benchmarks can cover existing work. Note that the 5 types of vulnerabilities

explored by prior work, e.g., the Evict+ Time, etc., can be realized using more than one

vulnerability from the 88 types, thus prior work covers 12 types, leaving 76 types not

considered, for the total of 88 vulnerabilities that are possible.

1. Our Flush+Reload benchmarks test for a stronger variant of the Evict+Reload vulnerability shown
in [84, 83].

93

Summary of Vulnerability Trends

To summarize, the patterns of the vulnerabilities uncovered thanks to the systematic

benchmarking on the devices are:

• Microarchitectural features: performance increasing features such as the store buffer

can degrade security, while features such as the snoop control unit can be helpful,

indicating that security and performance are not always at odds with each other, and

some features can help both.

• Heterogeneous cache size: larger coherence timing for accesses involving cores in

different clusters, compared to within same cluster, may lead to more vulnerabilities

being effective.

• Core frequency: larger core frequency generally correlates with more vulnerabilities.

• WB and MSHR sizes: WB size does not impact security, while larger MSHR may

allow more vulnerabilities to be effective.

• Vulnerability type effectiveness: relations of number of effective vulnerabilities showed

are: AO-Type > SA-Type > SO-Type; meanwhile, I-Type and E-Type vulnerabilities

are similarly effective on the tested devices.

• Tested device results: relations of number of effective vulnerabilities showed are: Kryo

585 > Kryo 385 ≈ Kryo 360 > Core A53 > Kryo 280 > Kryo 260.

4.2.5 Sensitivity Testing of Benchmarks

To understand how the benchmarks are affected by possible misconfigurations, we performed

a number of sensitivity tests. In addition to evaluating how the benchmarks behave, the

sensitivity study allows us to understand how knowledge (or lack of knowledge) of the correct

cache configuration affects the attacker’s ability to attack the system.

Analysis of Sensitivity Testing

The most important cache parameters for sensitivity tests are: associativity, line size, and

total cache size. We use assod, lined, and totd to respectively denote the value of the

parameters of the actual target device. Meanwhile, assob, lineb, and totb denote the cache

94

parameters used by the benchmarks. The parameters used in the tests are varied and

are different from the actual, correct parameters to test the sensitivity of the results to

misconfiguration. As we show, setting the configuration incorrectly in the benchmarks

changes the mapping of the addresses used by the benchmarks, and influences the number

of vulnerabilities judged to be effective on a device.

We implement the sensitivity tests in the following way. A large array is maintained to

locate three different candidates of the secret value (a, aalias, or NIB). We consider two

addresses that only differ in the low log2(lineb) bits to belong to the same cache line, and

two addresses that are a distance of C × totb/assob (C is a integer) apart to map to the

same cache set. For each step, we access assob number of addresses for each cache set to

occupy or cause collision in the whole cache set. To increase the signal to noise ratio in

our measurements, rep cache sets are accessed in each of the steps of a benchmark (in our

setting this number is 8).

When assob, lineb, or totb deviates from assod, lined, or totd, the following situations

could happen: 1 the number of addresses being accessed in one cache set is less than assod,

so interferences that should happen are not observed; 2 the addresses that should map to

a target cache set actually map to several cache sets, and contention in the target cache

set might not happen or will become contention in several sets; and 3 the addresses that

should map to different cache sets actually map to the same cache set, introducing noise to

the channel. We show later that the total number of attacks judged to be effective is less

when an incorrect configuration is used – however, there are still attacks that are effectively

independent of the configuration setting.

In the following, we denote one L1 cache hit timing as tL1 and one L2 cache hit timing

as tL2. When the configuration of the benchmark is correct, if the secret maps to the same

cache set as some known address that was accessed, tL2 will be observed, while if they

are not mapped, tL1 will be observed. In this case, timing observations for mapped and

unmapped cases are assod × tL2 and assod × tL1.

Cache Associativity. Associativity usually influences the number of accesses that map

to a target cache set. We distinguish two cases:

95

• assob < assod: In this case, due to smaller number of ways accessed in each step, fewer

evictions will occur (situation 1). If a data address maps to the same set as the secret

data, timing observation will be n × tL2 + (assod − n) × tL1 instead of assod × tL2.

Here, 0 < n < assob. Due to the random replacement policy, only n (not all assob)

cache lines will be evicted. This will make the timing less distinguishable compared

with the unmapped case, in which timing should be equal to assod × tL1.

• assob > assod: When totb = totd, this setting will lead to accesses that should map to

one cache set actually mapping to several cache sets (situation 2). This will result in

measuring more than rep of cache sets for one step, which possibly introduces more

noise in the observation.

Cache Line Size. Line size generally influences which cache set is chosen within an

attack (benchmark) step. Again, we distinguish two cases:

• lineb < lined: In this setting, the accesses that should map to different cache sets in

the benchmark actually map to the same cache set (situation 3). This will lead to

the result that the benchmark measures less than rep cache sets effectively, causing

a reduced signal to noise ratio. For example, when choosing lineb = lined/2, then

two addresses that differ in lineb will map to the same cache line instead of different

lines in difference sets. This results in having more L1 cache hits, from assod × tL2

to assod/2× tL2 + assod/2× tL1, which makes it less distinguishable compared with

unmapped case where timing is assod × tL1.

• lineb > lined: In this setting, since we always access the first 64 bits in a cache

line, the addresses that should map to the same sets in the benchmark (with the

incorrect configuration) still map to the same set (if the correct configuration was

used). However, when lineb is larger or equal to cache_set/rep2 times of lined, the

address for NIB in the benchmark will wrap back and map to the same cache set as

a and aalias (situation 3), causing a false negative result.

Total Cache Size. Cache size mainly influences the data addresses accessed in each

2. In the example of Section 4.2.5, this number is equal to 128/8 = 16.

96

step of an attack (benchmark).

• totb < totd: In this setting, the accesses that should map to one cache set in the

benchmark actually map to several cache sets (situation 2), because totb/assod <

totd/assod. This further causes the number of data accesses in each set to be less

than the number of ways being accessed in the target cache set, i.e., assod (situation

1). Thus, for the mapped case, it is equivalent to observing n × tL2 timing instead

of assod × tL2 timing for this cache set, where 0 < n < totb/totd × assod due to the

random replacement policy. This could decrease the signal to noise ratio.

• totb > totd: Let C ′ = totb/totd. In most cases, C ′ will be an integer, assuming a cache

size (both totb and totd) of 2N bytes. In this setting, the cache addresses that are

different by totb/assod = C ′× totd/assod in the benchmark, will still map to a different

cache set in target device3. Further, if C ′ is too large, this will cause unexpected

system noise if prefetching, copy-on-write, etc., functions are enabled in the device.

Analysis by Vulnerabilities Types. For AO-Type and SA-Type Vulnerabilities, the

timing observation for Vu = a is different from Vu = aalias or Vu = NIB. In these types of

vulnerabilities, the attack does not rely on the interference between different cache lines in a

cache set. How the addresses map to the cache set does not affect the result, and the cache

configurations will not influence the effectiveness of the vulnerabilities. Also, these types

usually rely on relatively larger timing differences, so the signal to noise ratio is large.

SO-Type vulnerabilities usually derive the Vu information by observing evictions of

the originally accessed data in a prior attack step. For SO-Type vulnerabilities, we need

to access all the assod ways to prime the whole cache set in order to observe the timing

difference, therefore, SO-Type vulnerabilities will actually be influenced by the setting of

parameters including associativity, line size, and total cache size.

Summary. Based on the above, we make three observations about the configurations’

impact on the benchmarks and the corresponding attacks and how easy they are to perform:

3. When C′ is not an integer, e.g., C′ = 1.5, then the address to set mapping will be different than the
case when totb = totd, which is equivalent to having addresses mapped to other cache set, resulting in fewer
number of addresses mapped to the target cache set (situation 1).

97

8K
Fail

0.99587
0.68338
0.60230

16K
Fail

0.02863
0.24639
0.00000

32K
Succeed
0.00000
0.00004
0.24271

64K
Fail

0.64791
0.35129
0.01169

128K
Fail

0.62763
0.39192
0.84054

550

600

650

700

cy
cl

es

a
a_alias
NIB

Figure 4.12: Timing histogram of a vulnerability case when changing the cache size. The error bar
shows the range of timing distribution and the dot shows the average timing cycles. “Succeed” under
the configuration means the vulnerability is effective while “Fail” means not. Three values under
“Succeed” or “Fail” are the pvalue for each two timing distributions out of three. If it is smaller than
0.00049, we judge the two timing distributions to be differentiable, otherwise not.

1. Attackers can still attack the system even when they are uncertain about the cache

configuration. This is especially true for AO-Type or SA-Type attacks since they are

not impacted much by the (mis) configuration.

2. Most of the differences are due to SO-Type attacks, which do not work well when

incorrect setting is selected.

3. Setting correct configurations causes more vulnerabilities to be judged effective for

a device. Incorrect settings can cause an underestimation of the total number of

vulnerabilities presented.

Evaluation of Sensitivity Testing

We tested a wide range of devices and found similar trends among the results. Here we

give results for one example phone, Google Pixel 2, to show how the sensitivity test is

implemented and evaluated.

The L1 cache configuration of small core of Google Pixel 2 is 32KB, 4-way set-associative

with line size to be 64B. We test this configuration by changing one of the three parameters

(associativity, line size or cache size), while keeping the other two the same to avoid

interference between different parameters. The different configuration values we choose in

our evaluation are listed in Table 4.7.

In the example test case shown in Figure 4.12, timing distribution differences between

three candidates are larger for the correct configuration, compared to the wrong configurations.

The vulnerability is effective under the correct configuration while it fails for the incorrect

98

Table 4.7: Configuration test results for cache associativity, line size and cache size of Google Pixel
2. Black bold numbers show the largest effective number of vulnerabilities for each category. Middle
column shows the correct configuration values for this device, other columns show smaller (left side)
and bigger (left side) values that were tested for each parameter of the cache.

Config. Effective Vul. Number for Different Configuration

Assoc-
iativity

assob Value 1 2 4 8 16
Total Vul. Num. 75 78 82 75 75
SO-Type Num. 17 17 20 13 12

Line
Size

lineb Value 16 32 64 128 256
Total Vul. Num. 77 75 82 80 79
SO-Type Num. 14 12 18 17 17

Cache
Size

totb Value 8192 16384 32768 65536 98304
Total Vul. Num. 79 77 82 79 77
SO-Type Num. 16 15 20 16 14

configuration of the benchmark.

As shown in Table 4.7, we found that differences between the number of correct con-

figuration and incorrect configuration for all effective vulnerabilities and SO-Type only

effective vulnerabilities are roughly the same. For example, when changing the associativity,

difference of all effective vulnerability numbers between 4 (82) and 8 (75) is 7, which is the

same as difference of SO-Type numbers (between 4 (20) and 8 (13)). This also shows that

wrong configurations will still lead to AO-Type and SA-Type vulnerabilities to be effective

even if the configuration is wrong.

As shown in Table 4.7 as well, attacks are most effective under the correct configuration.

When setting the wrong value for either one of the three cache configurations, the number

of vulnerabilities that are effective decreases. On the other hand, this shows that hiding the

cache architecture information or giving wrong configurations on-purpose is not a reliable

defense against the attacks.

4.2.6 Evaluation of Arm Secure Caches

As shown in the previous sections, current commercial Arm architectures are indeed vulner-

able to most of the attack types. A potential defense are secure caches. To help understand

if existing secure cache designs could help defend the attacks in Arm processors, we im-

plemented and evaluated the Partition-Locked (PL) [1] and Random Fill (RF) [2] caches

together with our benchmarks in the gem5 simulator. We show that they can defend many

of the attacks, but we also uncover new vulnerabilities in the secure cache designs. In

99

Cache hit?
No

Yes

Choose victim based
on replacement policy

victim locked?

ld/st without
replacement

Update replacement
state of victim

Normal ld/st;
Update lock bit
if it is a lock req

Normal hit;
Update lock bit if it
is a lock/unlock req

Yes

No

end

Figure 4.13: PL cache replacement logic flow-chart, as proposed in [1].

this section, we focus on the security analysis of the secure cache designs. Performance

evaluations of PL cache and RF cache can be found in [1] and [2], where reasonable overhead

is shown.

PL Cache Design and Implementation

Cache replacement is considered as the root cause of many cache side-channel attacks, and

partitioned caches were proposed to prevent the victim’s cache line from being evicted by

the attacker. PL cache [1] is a flexible cache partitioning design, where the victim can choose

cache lines to be partitioned. In the PL cache, each cache line is extended with a lock bit to

indicate if the line is locked in the cache. When a cache line is locked, the line will not be

evicted by any cache replacement until it is unlocked. Figure 4.13 shows the replacement

logic of the PL cache. If a locked cache line is selected to be evicted, the eviction will not

happen, and the incoming cache line will be handled uncached. If the victim locks the

secret-related address properly and the cache is big enough to hold all the locked cache lines,

the PL cache is secure against all types of timing vulnerabilities, because the secret-related

address will always be in the cache.

To evaluate the PL cache against different vulnerabilities, we implement it in the L1 data

cache and add new instructions to lock (and unlock) cache lines in the gem5 simulator. The

evaluation in gem5 is run in SE mode using a single O3CPU core, where each benchmark

has an additional lock step for locking the victim’s cache line.

100

Cache
Collision

Flush+
Reload

Reload
+Time

Bernstein’s
Attack

Evict+
Probe

Prime+
Time

Evict+
Time

Prime+
Probe

Normal
Cache

PL
Cache
RF (S)
Cache
RF (L)
Cache

I- I- I- I- E- E- E- E- E- I- I- I- I- I- E- E- I- I- E- E- E- E-
AO AO AO AO AO AO AO AO AO AO SA SO SO SA SO SA SO SA SO SA SO SA

Vulnerability Number

Corresponding Vulnerability Type

r
w

r
w

r
w

r
w

Figure 4.14: Evaluation results of security benchmarks on PL cache, RF cache, and a normal
set-associative cache, for comparison. Solid dots, half solid dots or empty dot mean all of the, part of
the, or no vulnerability cases are vulnerable to the cache, respectively.

Security Evaluation of the PL Cache

Figure 4.14 shows the results of evaluation of the PL cache (and the RF cache, as well as the

baseline set-associative cache). For the PL cache, AO-Type vulnerabilities such as Flush+

Reload fail, because the sensitive data is locked in the cache, and cannot be evicted by the

benchmark steps that simulate the attacker. Without locking, a normal cache is vulnerable

to these attacks, as shown in Figure 4.14.

For SO-Type or SA-Type vulnerabilities such as Bernstein’s attack, theoretically the

PL cache should prevent all of them as well. However, from the experimental results we find

that when the steps are implemented using write (store), some of the attacks will still be

successful in the PL cache. This is mainly due to the write buffer structure, which is not

considered in original design of the PL cache [1]. These attack strategies all require conflicts

of known and unknown secret cache lines. Although being locked before the attack runs,

the secret cache lines may be further brought into the write buffer due to a write access and

then leave the cache structure to “bypass” the locking features, making the attack successful.

On the other hand, without the influence of the write buffer, we find that the attack cases

that have all three steps to be non-write accesses to be always prevented on PL cache, as

expected. The vulnerabilities leveraging the cache coherence states and multiple cores were

not considered in original PL cache design, but can be tested in future.

The PL cache evaluation highlights the need for systematic security evaluation using

101

Cache hit?
No

Yes
ld/st without
replacement

Fetches a cache line in
neighborhood window

(RF_start, RF_size)

Normal hit

end

Figure 4.15: RF cache replacement logic flow-chart, as proposed in [2].

benchmarks. Thanks to the approach, the original PL cache design is found to have a new

write-based attack. More importantly, our benchmarks can be useful for designing future

secure caches and testing them in gem5.

RF Cache Design and Implementation

To prevent interference caused by cache replacement, Random Fill (RF) cache [2] has been

proposed to de-correlate the cache fill that causes the cache replacement and the victim’s

cache access. On a cache miss, the missing cache line will be handled without being fetched

in the cache, instead a cache line in the neighborhood window [addr −RF_start, addr −

RF_start+RF_size] will be fetched, as shown in Figure 4.15. In this way, the memory

access pattern is de-correlated from the cache lines fetched in the cache. Since fetching cache

lines in the neighborhood window may still carry information about the original addr, the

security of RF cache depends on the parameters RF_start and RF_size.

We implement the RF cache in the L1 data cache, as suggested by the work [2]. Note

that here the cache line will still be fetched into L2 cache, but vulnerabilities targeting the

L1 cache should be defended. Parameters RF_start and RF_size can be configured in

gem5. The benchmark suite for evaluation is identical to the normal three-step benchmarks,

no additional step is required for the RF cache, e.g., no special locking step is needed.

Security Evaluation of the RF Cache

RF cache can potentially defend all attacks because the victim’s access to a secret address

will not cause the corresponding cache line to be fetched into cache, but a random cache

line in a neighborhood window will be fetched instead. However, fetching a cache line in the

102

neighborhood window still can transfer information about the victim’s cache access. We

tested two different RF cache configurations, one with small neighborhood window (5 cache

lines) and one with large neighborhood window (128 cache lines4).

To reduce noise in the tests, the benchmarks test 8 contiguous cache lines and measure

the total timing. When the neighborhood window of the RF cache is small, the cache line

fetched into the cache will be not far from the address being accessed, and can still be

observed by the third step of the benchmark with a high probability. As shown in Figure 4.14,

for a small neighborhood window (S), a number of vulnerabilities are still effective, such as

Flush+Reload and Prime+Probe.

For a large neighborhood window (L), no effective vulnerabilities are detected by the

benchmark. For SO-Type vulnerabilities, the large neighborhood window de-correlates the

memory access and the cache set to be accessed, so that the vulnerabilities can be prevented.

For AO-Type vulnerabilities, the channel capacity of the cache side channel decreases with

the window size due to the reduced probability of the desired cache line being fetched into

cache, as analyzed in [2]. The neighborhood window of 128 cache lines is enough to mitigate

the channel in our setting where there are 128 cache sets.

The evaluation of the RF cache shows how the benchmark suite can be used to help

choose the design parameter, and the benchmark can quickly evaluate the design prototypes.

Security Evaluation of Other Secure Caches

CEASER [63] is able to mitigate conflict-based LLC timing–based side-channel attacks using

address encryption and dynamic remapping. The CEASER cache does not differentiate

whom the address belongs to and whether the address is security critical. When a memory

access tries to modify the cache state, the address will first be encrypted using a Low-Latency

BlockCipher (LLBC) [100], which not only randomizes the cache set it maps to, but also

scatters the original, possibly ordered, and location-intensive addresses to different cache sets,

decreasing the probability of conflict misses. The encryption key will be periodically changed

to avoid key reconstruction. CEASER-S [101] allows CEASER to divide the cache ways into

4. There are 128 cache sets in the evaluated L1 cache.

103

multiple partitions of all the cache ways and allows the line to be mapped to a different set

in each partition via principles of skewing. The modified “skew” idea of CEASER-S cache

assigns each partition a different multiple instance of CEASER to determine the set mappings

to strengthen the random mapping. These two caches, focusing on randomizing cache set

mapping, targets SO-type or SA-type attacks and cannot prevent AO-type vulnerabilities.

ScatterCache [102] uses cache set randomization to prevent timing attacks. It builds

upon two ideas. First, a mapping function is used to translate memory addresses and process

information to cache set indices. The mapping is different for each program or security

domain. Second, the mapping function also calculates a different index for each cache

way. The mapping function can be keyed hash or keyed permutation derivation function

– a different key is used for each application or security domain resulting in a different

mapping from addresses to cache sets. Software (e.g., the operating system) is responsible for

managing the security domains and process IDs, which are used to differentiate the software

processes and assign them with different keys for the mapping. As hardware extension, a

cryptographic primitive such as hashing and an index decoder for each scattered cache way

is added. ScatterCache is able to prevent SO-type or SA-type vulnerabilities by assigning a

different index for each cache way and security domain. It encrypts both the cache address

and process ID when mapping into the cache index, therefore, ScatterCache is able to prevent

E-AO-type vulnerabilities such as Flush+Reload, but not I-AO-type vulnerabilities such as

Cache Collision vulnerabilities.

Time-Predictable Secure Cache (TSCache) [103] relies on random placement to exhibit

randomized execution times. To achieve side-channel attack robustness, random placement

must also decouple cache interference of the attacker from the victim. Memory addresses

from victim and attacker’s processes must not contend systematically in the same cache

set. Instead, each memory address from each process must be randomly and independently

placed in a set, thus randomizing interference. This is achieved by operating the address (tag

and index bits) together with a random number called random seed. Each task is forced to

have a different seed so that conflicts between attacker’s and victim’s cache lines are random

and independent across runs, thus defeating any contention-based attacks. The same seed

is given to allow the communication between runnables of a given software components of

104

an application via shared memory. TSCache exploits random placement to de-correlate set

mapping with the corresponding address index bits. Therefore, it can be used to prevent

SO-type or SA-type vulnerabilities but may not be able to prevent AO-type vulnerabilities.

4.3 TLB Timing Vulnerabilities and Secure TLBs

We now extend the three-step model to TLBs. We show how to automatically generate

security microbenchmarks that test for the TLB vulnerabilities. After showing the insecurity

of standard TLBs, two new secure TLB designs are presented to mitigate all the TLB

vulnerabilities found.

4.3.1 Modeling TLB Timing Vulnerabilities

To analyze all the possible timing TLB attacks, this section presents a three-step modeling

approach which can be used to reason about the behavior of the TLB logic and to derive all

the possible timing vulnerabilities.

Threat Model and Assumptions

A TLB timing attack involves an attacker and a victim. In many cases they are executing on

the same processor core, a set of cores, or a set of hyper-threads which share same physical

TLB, but this is not required for all types of the attacks. In this work, we use A and V to

denote the attacker and the victim with different process IDs. For the attacks where the

attacker and the victim are in the same address space, attacker is able to trigger some known

address memory operation as if it were the victim, e.g., states Va and Vaalias in Table 4.8

can be actually attackers.

We assume, in hardware, all memory operations are identified by the virtual memory

address, vaddr (including null address in case of certain TLB flush related operations) and

the process ID (including null process ID in case of certain TLB flush related operations),

e.g., ASID in RISC-V.

The victim is assumed to have some security critical memory range, x, within which the

access pattern depends on the secret the attacker wants to learn. An example of a security

105

critical region is the set of page entries accessed during execution of the RSA functions of

libgcrypt, where the value of the key bit (either 0 or 1) determines which specific memory

pages are accessed. The timing of the accesses to the security critical memory range is

affected by the timing of TLB related operations, and it can reveal information such as

cryptographic keys.

The attacker is assumed to know the victim software, e.g., what implementation of a

cryptographic algorithm it uses, but not the secret cryptographic keys. He or she is assumed

to know the size, ssize, and the location, sbase (in virtual memory) of the security critical

memory range x. And, the attacker is assumed to know the TLB state machine logic;

although during run-time of the processor the attacker cannot access the internal state of

the hardware TLB – he or she can only observe the timing of the memory operations and

try to deduce the state of the TLB from the timing.

The attacker can measure the timing of its own memory operations or operations of

the victim; but cannot access the actual sensitive data being processed by the victim. In

most cases, the attacker can also force the victim to execute specific operations, e.g., force

the victim to perform decryption while the attacker measures timing. Thus, even if some

operation is done by the victim, it is under control of the attacker so attacker can measure

the timing. The timing can be identified by the attacker as fast or slow.

The timing attacks can be both side-channel attacks and covert-channel attacks. The

difference between the two is that the victim in the side-channel scenario is the sender in

the covert-channel scenario. Regardless of the channel type, we use V for victim (or sender)

and A for attacker (or receiver).

Our threat model assumes that high-level OS page table related channels are already

mitigated. E.g., TLB miss can take variable amount of time depending on whether there

already exists a page table translation, or whether the OS has to create a new translation

entry during a page fault. We focus on address translation data of the TLB structure. We do

not consider possible TLB timing channels that are due to port contention, LRU replacement,

or any directory structures. We also do not consider Page Walk Cache [104, 105] effect on

storing intermediate translations of memory pages5.

5. So far Page Walk Cache does not exist in RISC-V architecture.

106

Introduction of the Three-Step Model

One observation we make is that all existing TLB timing attacks take three steps. In Step 1,

a memory operation is performed, placing the TLB block (also called TLB slot or TLB entry)

in a known initial state (e.g., a new translation is put into the block or block is invalidated).

Then, in Step 2, a second memory operation alters the state of the TLB block from the

initial state. Finally, in Step 3, a final memory operation is performed, and the timing of

the final operation reveals some information about the relationship among the addresses

from Step 1, Step 2 and Step 3. Attacks with more than three steps can be reduced to a

three-step attack, as shown in Appendix A.

We write the three steps as: Step 1 Step 2 Step 3 which indicates a sequence of

steps taken by the attacker or the victim. Table 4.8 lists all the 10 possible states of the

TLB block for each step of our three-step model.

Each step in the model represents a state of a TLB block, since all the TLB blocks

are updated following the same TLB state machine logic, it is sufficient to consider only a

TLB block as it is the smallest unit of the TLB. Different implementations of TLBs involve

different mapping functions for the TLB blocks. However, this does not affect the model, as

the steps target on only one single TLB block. Different TLBs may make it more difficult in

practice for attacker and victim to access the same block, but once they can achieve that

– qualifying the practical difficulty of achieving certain steps is not part of the model, the

model shows if there is a possibility of an attack or not.

Derivation of All TLB Vulnerabilities

Based on the states possible in each step there are in total 10 ∗ 10 ∗ 10 = 1000 combinations

of possible three-steps. We developed an algorithm that can process the list of all the

three-steps, and eliminates ones which cannot lead to an attack. A three-step combination

cannot become a vulnerability if it satisfies one of the below rules:

1. A ? is not possible in Step 2 or Step 3, having ? in the step means the TLB is in an

unknown state and this removes useful information for the attacker.

2. A Vu must be in one of the steps. If there is no unknown u in the steps, there is

107

Table 4.8: The 10 possible states for a single TLB block in the three-step model.

States Description

Vu

The TLB block contains translation for a memory address u, translation which is placed in the TLB block
due to a memory access by the victim. Attacker does not know u, but u is from a range x of memory
locations, range which is known to the attacker. The address u may have same page index as Aa or Va

and thus conflict with them in the TLB block. The goal of the attacker is to learn the page address or
index of Vu.

Aa

or
Va

The TLB block contains translation for a memory address a. The translation is placed in the TLB block
due to a memory access by the attacker, Aa, or the victim, Va. The attacker knows the address a,
independent of whether the access was by the victim or the attacker themselves. The address a is from
within the range of sensitive locations x. The address a may or may not be the same as the address u.

Aaalias

or
Vaalias

The TLB block contains translation for a memory address aalias. The translation is placed in the TLB
block due to a memory access by the attacker, Aaalias , or the victim, Vaalias . The address aalias is within
the range x. It is not the same as a, but it has same page index and can map to the same TLB block, i.e.
it “aliases” to the same block.

Ainv

or
Vinv

The TLB block previously containing translation for a memory address is now invalid. The translation is
“removed” from the TLB block by the attacker Ainv or the victim Vinv as the result of TLB block being
invalidated, e.g., due to synchronization updates to in-memory memory-management data structures or
due to context switch between processes which causes OS to flush per-core TLB entries.

Ad or Vd
The TLB block contains translation for a memory address d. The translation is placed in the TLB block
due to a memory access by the attacker, Ad, or the victim, Vd. The address d is not within the range x.

?
Any data, or no data, can be in the TLB block. The attacker has no knowledge of page address in this
TLB block.

nothing for the attacker to learn.

3. A ? in one step, followed by Vu in next step cannot lead to an attack, since the TLB

block needs to be in some known state before Vu is placed into it.

4. Three-step patterns with two adjacent steps repeating, or both known to the attacker,

can be eliminated6.

5. Steps involving a known address a and an alias to that address aalias, give same

information, thus three step combinations which only differ in use of a or aalias cannot

represent different attacks, and only one combination needs to be considered, e.g.,

Vu Aaalias Vu is a repeat type of Vu Aa Vu, and one of the two can be

eliminated from the model.

6. An inv related state cannot be in Step 2 or Step 3 because it is so far not possible

for most ISAs to allow flushing of the TLB from user space. (See more discussion in

Appendix B).

7. If measured timing corresponds to more than one possible sensitive address translation

of the victim, the corresponding vulnerability is removed. E.g., ? Aa Vu is

6. Some of the possible attacks involve only two steps, but these attacks are represented by three-step
model where first step is an explicit ?, i.e., they are represented by patterns ? · · · .

108

Table 4.9: The table shows all the timing TLB vulnerabilities. Attack Strategy column gives our
common name for each set of one or more specific vulnerabilities that would be exploited in an
attack in a similar manner (many of the names are borrowed from cache timing attacks in literature).
Vulnerability Type column gives the three steps that define each vulnerability. For Step 3, fast
indicates a TLB hit must be observed, while slow indicates a TLB miss must be observed. Macro
Type column proposes the categorization the vulnerability belongs to. “E” is for external interference
vulnerabilities. “I” is for internal interference vulnerabilities. “M” is for miss-based vulnerabilities.
“H” is for hit-based vulnerabilities. Attack column shows if a type of vulnerability has been previously
presented in literature.

Attack Strategy Vulnerability Type Macro Type Attack
Step 1 Step 2 Step 3

TLB Internal Collision

Ainv Vu Va (fast) IH (1)
Vinv Vu Va (fast) IH (1)
Ad Vu Va (fast) IH (1)
Vd Vu Va (fast) IH (1)

Aaalias Vu Va (fast) IH (1)
Vaalias Vu Va (fast) IH (1)

TLB Flush + Reload

Ainv Vu Aa (fast) EH new
Vinv Vu Aa (fast) EH new
Ad Vu Aa (fast) EH new
Vd Vu Aa (fast) EH new

Aaalias Vu Aa (fast) EH new
Vaalias Vu Aa (fast) EH new

TLB Evict + Time Vu Ad Vu (slow) EM new
Vu Aa Vu (slow) EM new

TLB Prime + Probe Ad Vu Ad (slow) EM (2)
Aa Vu Aa (slow) EM (2)

TLB version of
Bernstein’s Attack

Vu Va Vu (slow) IM new
Vu Vd Vu (slow) IM new
Vd Vu Vd (slow) IM new
Va Vu Va (slow) IM new

TLB Evict + Probe Vd Vu Ad (slow) EM new
Va Vu Aa (slow) EM new

TLB Prime + Time Ad Vu Vd (slow) IM new
Aa Vu Va (slow) IM new

(1) Double Page Fault attack [50]. (2) TLBleed attack [48].

removed because when observing a fast timing, u can possibly map to a, or first step’s

potential u that is included in ?.

After applying the script which implements our simplification algorithm, 34 three-step

access patterns remain as candidates for possible timing TLB attacks. By checking the

timing variation manually, these 34 access patterns are further reduced to a list of 24 types

of timing TLB vulnerabilities, listed in Table 4.9.

To summarize all the vulnerability types, Table 4.9 shows the list of all the 24 vulnera-

bility types, along with a more coarse-grained attack strategies, which cover one or more

vulnerability types. The list of vulnerability types can be further collected into four simple

macro types: internal interference miss-based (IM), internal interference hit-based (IH),

external interference miss-based (EM), external interference hit-based (EH).

109

MISS
YES

NO

HIT

Choose the block
to replace based

on LRU policy
among blocks in the

attacker partition

TLB
entry matches
address and

process
ID?

Process
ID indicates

victim?

Choose the block to
replace based on LRU
policy among blocks
in the victim partition

Normal TLB hit
handling procedure

End

Figure 4.16: SP TLB access handling procedure flow chart.

(1) Request from CPU

Processor

DCache

 TLB

(2) Choose the
 partition to fill
 victim or attacker

Page Table Walker

(3) Response
 to CPU

ID ID ID ID ID ID ID ID

ID ID ID ID ID ID ID ID

... ...

ID1 ID1 ID2 ID2

ID1 ID1 ID2 ID2

Figure 4.17: Sample block diagram of SP TLB with victim (ID1) and attacker (ID2) partition
being allocated 50% of the TLB space.

All types of vulnerabilities only involving the victim, V , in the states in Step 2 and

Step 3 are called internal interference vulnerabilities (I). The remaining ones are called

external interference (E). Some vulnerabilities allow attacker to learn that the page address

of the victim maps to the TLB set of the attacker by observing slow timing due to a TLB

miss. we call these miss-based vulnerabilities (M). The remaining ones leverage observation

of fast timing due to a TLB hit, and are called hit-based vulnerabilities (H).

Most of the vulnerability types have not been explored before, except for two groups.

The Double Page Fault attack [50] is effectively based on the Internal Collision, and it maps

to types labeled (1) in the Attack column in Table 4.9. The TLBleed attack [48] is effectively

based on the Prime+Probe strategy, and it maps to types labeled (2) in the Attack column in

Table 4.9. All other vulnerability types correspond to new attacks not previously discussed.

110

4.3.2 Secure TLB Designs

In order to prevent timing vulnerabilities, we designed two secure TLBs, the SP TLB and

the RF TLB. Designs of the secure TLBs follow the threat model discussed in Section 4.3.1.

We focus on L1 D-TLB in this work, but it can be applied to instruction TLBs as well as

other levels of TLB.

Static-Partition (SP) TLB

SP TLB is a SA TLB where certain ways are assigned to a victim process and other ways are

assigned to all remaining processes, which by default are assumed to be potential attacker

processes. The process ID, e.g., ASID in RISC-V, is used to differentiate the victim and the

attacker. The number of ways assigned to each is set at design time, but could be further

extended to be dynamic at run time.

SP TLB Access Handling Procedure

SP TLB isolates the accesses between the victim and the attacker. TLB hits are identical to

SA TLB, where both address and process ID must match. For TLB misses, the victim’s

address translations cannot cause replacement in the attacker’s partition, and the attacker’s

address translations cannot cause replacement in the victim’s partition. Each partition

maintains its own LRU policy, which can prevent some LRU attacks, but defense of LRU

related attacks is not focus of this work as discussed in the threat model. The SP TLB

access handling procedure is shown in Figure 4.16.

SP TLB Logic

The SP TLB (Figure 4.17) partitions the victim and the attacker by cache ways. The

allocation of different partitions is configurable during the design time. Assuming there are

M ways in total. The victim partition will take N (0 < N < M) ways while the attacker

partition will take the remaining M −N ways. In our implementation, the victim and the

attacker part are allocated 50% of TLB ways by default. Process ID field of each entry in the

TLB is reused by the SP TLB to determine whether a partition is victim’s or attacker’s. SP

111

TLB requires minimal changes to the TLB logic, and protects 14 out of the 24 vulnerabilities

shown in Section 4.3.3.

Random-Fill (RF) TLB

To protect all the vulnerabilities, we propose Random-Fill TLB, which is able to de-correlate

the requested memory access from actual TLB entries that are brought into the TLB, making

the attacker’s observations non-deterministic. For TLB hits, the behavior is the same as

the SA TLB. For TLB misses, depending on the memory address region, a random address

translation will be fetched into the TLB ("random fill"), while the originally requested

address is directly sent back to the CPU without filling the TLB ("no fill"). The RF TLB

also introduces the Sec bit which is used to identify certain memory translation entries are

belonging to secure data.

RF TLB Access Handling Procedure

RF TLB access handling procedure is shown in Figure 4.18. D denotes the requested address

translation. D′ is a random address translation to be filled in the TLB (D and D′ are

possibly the same because of the randomization). R is the TLB entry that would be evicted

by D, in TLB set S, according to the LRU replacement policy. R′ is the TLB entry evicted

by D′. SecR and SecD is the Sec bit of R and D, respectively, indicating whether the page

address is in the secure region.

If D maps to an existing entry in the TLB (page address and process ID matches), a

normal TLB hit handling procedure will occur. Otherwise:

• If SecR is 0 and SecD is 0, normal TLB miss occurs.

• If SecR is 1 and SecD is 0, then D′ is chosen as a random virtual non-secure page

address, within the same sets of TLB entries as the secure region, and filled in TLB,

evicting R′. Meanwhile, R will not be evicted and results of D request will be sent

to the processor directly. Thus an attacker cannot deterministically evict the secure

address chosen by the replacement policy.

112

YES

NO

NO

YES

MISS

Randomly select
page address D'

from normal region
 within the same

TLB set as
secure region and
 fill in TLB without

sending data
back to CPU

TLB
entry matches
address and

process
ID?

SecR== 0
and D is non-secure

page address?

Normal TLB
hit handling
procedure

HIT

End

Choose R
based on

replacement
policy

Normal TLB
miss handling

procedure

D is
secure page

address?

Randomly select
page address D'

from secure
region and fill TLB,

 without sending
data back to CPU

Request D and send to CPU
without modifying TLB

Figure 4.18: RF TLB access handling procedure flow chart.

• If SecD is 1, then D′ is chosen as a random virtual address within the secure region,

and filled in TLB, evicting R′. Results of D request will be sent to the processor

directly. Thus, an attacker cannot observe TLB state changes due to secure page

address D, but he or she instead observers TLB state changes due to random page

address D′.

RF TLB uses the randomization approach to randomly bring in data from specified

memory ranges to confuse the attacker. It does not randomize all of the TLB accesses so

as to limit the performance impact. The RF TLB is able to prevent all types of timing

vulnerabilities shown in Table 4.9, which are discussed in Section 4.3.3.

RF TLB Logic

RF TLB block diagram is shown in Figure 4.19b. All the bold lines and blocks are the added

hardware and logic extension. In the TLB array, an extra field (a secure bit Sec, either 0 or

1) is added to each of the TLB entries to indicate whether it contains an address translation

within the secure region. In addition, the existing process ID field (e.g., ASID in RISC-V)

in each TLB entry is used to differentiate the victim and the attacker process. By default,

we set specific process ID 1 for the victim program and all other ASIDs to be attackers.

An extra set of registers is added to store the process ID of the victim process and the

start address, sbase, and the size, ssize of the secure region (the base and size are defined

113

Processor

Random Fill
 Engine

DCache

TLB

(3) Send
 SecR
 signal (2) Probe

(5) Modify
Response

buffer

RNG Random Fill
Generation

demand
address

sbase ssize

To the
 Mux

(a) (b)

(1) Request from CPU

Page Table Walker

(4) Random
 Fill
(6) No
 Fill

(7) Response
 to CPU

Random Fill
Logic

Figure 4.19: RF TLB: (a) Random Fill Engine, (b) RF TLB block diagram.

in terms of pages, usually 4KiB). The registers can be managed by a trusted OS to change

the victim process ID and secure regions when different victim programs need protection.

An extra buffer is added which stores equivalent of one TLB entry. It is used as temporary

storage for translation data that is returned to the CPU, but which should not be placed in

the TLB. It will be cleaned up after the address is returned.

The Random Fill Engine (RFE), shown in Figure 4.19a is used to generate addresses

which should be used for TLB updates7. In Figure 4.19b, (1-2), the “no fill” fill_type will

first be sent to TLB. On a TLB miss, the TLB will probe the page address without filling

TLB entries to see if the chosen entry has a valid secure page address translation. Then, (3)

the SecR bit is set and sent back. Next, (4) if it is a request to the secure region or the SecR

bit is one, a random fill request will be triggered. If the original request is in the secure

region, a random virtual page address is derived from RFE within the secure region [sbase,

sbase+ssize], and a translation will be put into the TLB entry. If the original request comes

from the non-secure region, most of the higher bits of the requested address are remain the

same while the bits that correspond to the TLB set index8 will be randomized to make

7. We assume the OS has pre-generated page table entries that may correspond to the random virtual
address generated by the RFE, which may not be actually used by the original program, to prevent OS or
software-based timing attacks due to page faults when a page entry for a random address is looked up by the
TLB logic.

8. The TLB set index to be randomized has bit size Sn = log2[min(ssize, nsets)], where nsets is the
number of sets in TLB. A random set index will be generated within the region [sbase[Sn − 1, 0], sbase[Sn −

114

the eviction indeterministic. Next, (5) the Random Fill Logic will modify the response and

prevent the random fill result from being sent to the processor. Then, (6) the original page

address is finally requested, and “no fill” fill_type will be sent to the TLB to obtain the

translation. Finally, (7) this address will be stored in the buffer, without modifying TLB

entries, and be sent back to the processor.

RF TLB vs. RF Cache

As a possible alternative, the “random fill” part can be done asynchronously during the idle

cycles, as has been proposed for secure caches, e.g., [2]. However, using this way, programs

which are TLB intensive for accesses to the secure region will starve “random fill” and result

in no random entries being put into the TLB, which will negatively impact the security

offered by the TLB.

The proposed RF TLB differentiates victim and attacker, secure and non-secure region

and has a different random fill scheme for pages within or outside of the secure region for both

attacker and victim. That helps RF TLB prevent all types of TLB timing vulnerabilities.

Meanwhile, RF Cache [2] only differentiates victim and attacker and cannot prevent all

types of cache timing vulnerabilities [66].

4.3.3 TLB Security Evaluation

Most of the types of the attacks derived with the three-step model do not correspond to

already known attacks. Some exceptions include, for example, the TLBleed attack [48],

which was demonstrated using the libgcrypt’s RSA cryptographic implementation. In the

RSA implementation, whether the pointer tp is accessed depends on the secret e_bit in

_gcry_mpi_powm function (line 17, Figure 4.20). In TLBleed, the attacker can use the

TLB Prime + Probe attack strategy to deploy an attack which allows them to learn whether

tp is accessed, to know the secret bit. However, such examples for most of the other attacks

do not exist.

Thus, we developed micro security benchmarks which can be used to test TLBs to check

1, 0] + min(ssize, nsets)] for random fill.

115

1. void _gcry_mpi_powm (gcry_mpi_y_ res,
gcry_mpi_t base, gcry_mpi_t expom gcry_mpi_t_mod)

2. {
3. mpi_ptr_t rp, xp; /* pointers to MPI data */
4. mpi_ptr_t tp;
5. ...
6. for(;;) {
7. /* For every exponent bit in expo*/
8. _gcry_mpih_sqr_n_basecase(xp, rp);
9. if(secret_exponent || e_bit_is1) {
10. /* unconditional multiply if exponent is
11. * secret to mitigate FLUSH+RELOAD
12. */
13. _gcry_mpih_mul(xp, rp);
14. }
15. if(e_bit_is1) {
16. /*e bit is 1, use the result*/
17. tp = rp; rp = xp; xp = tp;
18. rsize = xsize;
19. }
20. }
21. }

Figure 4.20: Code sample for one of the variants of modular exponentiation from libgcrypt version
1.8.2 used in experiments. Pointers rp, xp and tp are defined (blue dashed square). rp and xp are
used for both e_bit is 1 or 0 (green dashed square). tp will only be accessed when e_bit is 1 (red
square).

if they are vulnerable to each of the attack types. To generate the micro security benchmarks,

we leverage a Python script that follows a three-step template to generate assembly code of

all the types of vulnerabilities showed in Table 4.9.

Figure 4.21 is a micro security benchmark example of the Ad Vu Ad (slow) variant

of TLB Prime + Probe vulnerability. Inside the benchmark, first there is standard prologue

with include statements (line 1-5), then the secure region (sbase, ssize) is set (line 7-8).

For the specific vulnerability, the three steps are executed in the order of Ad (line 10-15),

Vu (line 16-20) and Ad (line 22-26). Out-of-secure-address-region d will be accessed using

the norm type of memory access while inside-secure-address-region u will use rand type of

memory access, corresponding to the non-secure and secure page address accesses illustrated

in Section 4.3.2, respectively. Attacker measures the final step’s timing (line 21, 27-29). The

same script can be used to generate assembly tests for all SA TLB, SP TLB, and RF TLB.

Channel Capacity

An attacker gains knowledge about the secret address translation through TLB timing

channel by observing the timing of address translation in a TLB block. The observed timing

may depend on the victim’s prior behavior.

116

1. #include “riscv_test.h”
2. #include “test_macro.h”
3. RVTEST_RV64U # Define TVM used by program.
4. # Test code region.
5. RVTEST_CODE_BEGIN # Start of test code.
6.
7. csrw sbase, 3 # Set page base of secure region
8. csrw ssize, 3 # Set page size of secure region
9. ...
10. # Attacker primes the whole TLB/specific set
11. csrw process_id, 0 # Set current process for simulation
12. # 0 is attacker; 1 is victim
13. la x1, tdat2048
14. ldnorm x2, 0(x1)
15. ...
16. # Victim does serect data access/secure address translation
17. csrw process_id, 1
18. la x1, tdat1024
19. ldrand x2, 0(x1)
20. ...
21. csrr x3, tlb_miss_count # Read TLB miss counter
22. # Attacker probe the TLB set
23. csrw process_id, 0
24. la x1, tdat2048
25. ldnorm x2, 0(x1)
26. ...
27. csrr x4, tlb_miss_count # Read TLB miss counter again
28. beq x3, x4, no_tlb_miss # Compare and see if there is TLB
29. # miss (slow access)
30. ...
31. RVTEST_PASS # Signal success.
32.no_tlb_miss:
33. RVTEST_FAIL # Output info for no TLB miss
34. RVTEST_CODE_END # End of test code.
35.
36. # Data section.
37. RVTEST_DATA_BEGIN # Start of test data region.
38. TEST_DATA
39. tdat00: # A big array is initialized
40. tdat0: .dword 0
41. ...
42. tdat16489: .dword 16489
43. RVTEST_DATA_END # End of test data region.

𝐴"

𝐴"

𝑉$

check
TLB
miss
/hit

secure
region

info

data
array

for
testing

Figure 4.21: Code sample for TLB Prime + Probe micro security benchmark Ad Vu Ad

(slow) variant, used in simulation testing of Rocket Core-based RISC-V.

There are two possible victim’s behaviors B: whether the victim’s secret-dependent

memory access results in address translation, Vu, which maps to the TLB block tested by

the attacker or not. There are also two possible attacker’s observations O: whether attacker

observes slow access due to a TLB miss or fast access due to a TLB hit.

To evaluate the relation between the victim’s behaviors and the attacker’s observations,

we define p1 and p2 as listed next, and shown in Table 4.10: When the victim behavior

triggers a translation of an address that maps to the TLB block the attacker tests, we use

p1 to denote the probability the attacker observes a TLB miss, and 1− p1 as the probability

the attacker observes a TLB hit. When the victim’s behavior triggers a translation of an

address that does not map to the TLB block the attacker tests, we use p2 to denote the

probability the attacker observing a TLB miss, and 1− p2 for observing a hit.

117

Table 4.10: Probabilities of different victim behaviors B and attacker observations O.

Attacker’s observation O
Miss Hit

Victim’s behavior B

Memory access (or invalidation) maps to the
same address/index attacker tests p1 1− p1

Memory access (or invalidation) does not map to
the same address/index attacker tests p2 1− p2

To provide the optimal scenario for attacker, we assume the probability of victim’s access

Vu mapping to the TLB block tested by the attacker to be the same as the probability of Vu

not mapping to the block, i.e. both are 1
2 .

We use channel capacity [106] to quantify the amount of information about the secret

address translation that the attack gains from a specific timing attack as follows:

C ≡ I(B;O) ≡
∑
b,o

p(b, o)log p(b, o)
p(b)p(o)

≡ p1
2 log

2p1
p1 + p2

+ p2
2 log

2p2
p1 + p2

+ 1− p1
2 log

2(1− p1)
2− p1 − p2

+ 1− p2
2 log

2(1− p2)
2− p1 − p2

(4.1)

where I(B;O) denotes the mutual information between victim’s behavior B and attacker’s

observation O. The p(b) and p(o) are the marginal probability distribution functions of

victim’s behavior B and attacker’s observation O. The p(b, o) is the joint probability function

of victim’s behavior B and attacker’s observation O.

The p1 and p2 will have different values for each type of vulnerability, and also depend

on the type of the TLB. Especially, if a TLB is able to defend against a specific type of

an attack, the mutual information C should be zero for that attack type. Otherwise, the

attacker can gain some knowledge about the victim’s behavior. Below we analyze the C for

different TLB types, and compare with theoretical calculations.

Theoretical Result and Security Evaluation of the TLBs

We implemented SP TLB and RF TLB, as illustrated in Section 4.3.2, as well as a SA

TLB, in Chisel code and integrated them into the Rocket Core-based RISC-V processor9. In

9. Chisel commit ID: 980778b, Rocket Chip commit ID: aca2f0c

118

Figure 4.22: Comparison of SA TLB, SP TLB and RF TLB simulation and theoretical results.

addition to implementing the TLBs, new TLB miss performance counters were implemented

and are used by the simulation to determine slow or fast TLB accesses based on whether

miss occurs or not, respectively. The Chisel code for the whole processor with the new TLBs

was used to generate cycle-accurate simulations.

The simulated hardware was used to execute the micro security benchmarks previously

discussed in Section 4.3.3. For each benchmark, it was run 500 times each for “mapped” or

“not mapped” (shown in Table 4.10) victim address for the tested TLB block, therefore in

total 1000 times. Multiple runs are needed as the RF TLB leverages randomization and we

need to average results over many runs. For each TLB type, each of the benchmarks was

run, thus 24 vulnerability types × 1,000 simulations = 24,000 runs.

The security evaluation focused on 8-way 32-entry SA TLB as the example. With this

119

setup, the system software will take 4 out of 32 entries and distribute the 4 entries in different

sets, so 28 different user pages are sufficient to prime the TLB. We assume two cases for

the victim: one has 6 contiguous pages (3 pages out of the 6 are secure), another has 31

contiguous secure pages (to simulate contention between secure address translations).

Security of SA TLB, SP TLB and RF TLB

The theoretical and the simulation results of all the TLBs are listed and compared in

Figure 4.22. p1* and p2* represent probabilities based on simulation. p1 and p2 are

theoretical calculations. C* and C represent mutual information based on simulation and

theoretical calculation, respectively. nM,M and nN,M denote number of misses when the

victim’s secret address and test address map and do not map to each other, respectively.

Bold C* and C are the ones with value 0 or about 0, indicating that this TLB is able to

prevent the corresponding vulnerability. Small numbers are rounded up.

SA TLB. SA TLB has simulated and theoretical C = 0 for TLB Flush + Reload, TLB

Evict + Probe, and TLB Prime + Time attacks, thus it defends these attacks. SA TLB is

not able to prevent internal TLB Collision (p1 = 0, p2 = 1, C = 1) and TLB Evict+Time,

TLB Prime+Probe and TLB Bernstein’s Attack (p1 = 1, p2 = 0, C = 1).

SP TLB. For SP TLB, all the vulnerabilities that SA TLB can prevent are also prevented

by SP TLB. Further, TLB Evict + Time and TLB Prime + Probe vulnerability can be

prevented by SP TLB. For these two types of vulnerabilities, p1 = p2 = 0, C = 0.

On the other hand, SP TLB is still vulnerable to TLB version of Bernstein’s Attack

(p1 = 1, p2 = 0, C = 1) and TLB Internal Collision vulnerability (p1 = 0, p2 = 1, C = 1)

since victim’s own address contention and TLB hit due to its own accesses cannot be

defended by partitioning.

RF TLB. The RF TLB can defend all the vulnerabilities that SA TLB can defend.

There are then 14 vulnerabilities left to consider, which can be further reduced to simplify

the analysis: Va and Aa belong to a, similarly, Vaalias and Aaalias are aalias, Vd and Ad are d.

Following this way, we can simplify the 14 patterns into 6 patterns for RF TLB, which are

listed below. The sec_range stands for secure region, its value is 3 in the first 3 cases and

31, to simulate contention between secure address translations, in the last 3 cases. The nset

120

and nway stands for the number of sets and ways, whose value is 4 and 8 in the simulation

tests, respectively. prime_num stands for the virtual page address number that can prime

the whole 4-way 32-entry TLB in RISC-V. The theoretical probabilities p1 and p2 for the 6

combined patterns are:

• Vu d Vu (slow): p1=p2= 1
sec_range×

1
min(nset,sec_range)×nway=

1
3 ×

1
3×8=0.01.

• d/inv Vu a (fast): p1=p2=1- 1
sec_range=1− 1

3=0.67.

• d Vu d (slow): p1=p2= 1
sec_range=

1
3=0.33.

• Vu a Vu (slow): p1=p2=(nway
sec_range)

nway=(8
31)8=0.01.

• aalias Vu a (fast): p1=p2=1- 1
sec_range = 1− 1

31=0.97.

• a Vu a (slow): Because Vu cannot get hit due to Aa, there are two cases:

– Aa Vu Aa: p1=p2= nway
sec_range=

8
31=0.26.

– Va Vu Va: p1=p2= sec_range−prime_num
sec_range =31−28

31 =0.09.

All the mutual information derived derived based on the above probabilities for the RF

TLB is 0 for the theoretical calculations and about 0 for the simulation results as shown in

Figure 4.22, indicating RF TLB is secure against these attacks.

Comparison of the Different TLBs. As can be seen from Figure 4.22, the simu-

lation results match the theoretical values closely, indicating the actual hardware Chisel

implementation of TLBs matches the theoretical calculations we presented.

For the TLBs, normal SA TLB can prevent 10 types of timing vulnerabilities due to

requirement of deriving TLB hit for both address and process ID. For the SP TLB, it is

able to prevent external interference by partitioning but is weak at preventing internal

interference. Therefore, SP TLB is able to prevent 4 more types of vulnerabilities. However,

internal hit-based vulnerabilities, such as Vinv Vu Va (fast), can still happen in SP TLB.

For RF TLB, random fill technique is able to de-correlate the TLB fill with the memory

access. This is able to prevent all classes of timing vulnerabilities listed in Table 4.9.

121

Figure 4.23: Evaluation of different configuration of TLBs. (a)-(c) IPC of SA TLB, SP TLB and
RF TLB, respectively. (d)-(f) MPKI of SA TLB, SP TLB and RF TLB, respectively. Every set of
bars in the graph follows the order: (1E only for IPC of SA TLB), FA 32, 2W 32, 4W 32, FA 128,
2W 128 and 4W 128.

4.3.4 Performance Evaluation

The SP TLB and RF TLB were implemented in Chisel hardware construction language

and realized in the Rocket Core-based RISC-V processor. SP TLB related logic is about

300 lines of Chisel code, while RF TLB related logic is about 500 lines of Chisel code. The

same hardware code was used for simulation (Section 4.3.3) and the performance evaluation

(this Section), with minor changes for the FPGA version. Further, to allow for performance

evaluation under realistic settings and with use of Linux, the RISC-V with the secure TLBs

was synthesized on the Xilinx ZC706 and ZedBoard Evaluation FPGA boards.

To enable performance measurements, a TLB miss counter was added, and cycle counter

and instruction counters were enabled in user mode. The counters are used to collect data

during execution of the cryptographic program and benchmarks. The collected data were:

instructions per cycle (IPC) and TLB misses per kilo instructions (MPKI).

Two TLB sizes were selected for evaluation. 32-entry, 4-way SA TLB corresponds to

TLBs used in Intel’s Haswell processors [107], while the 128 entry corresponds to TLBs used

122

in Intel’s Nehalem microarchitecture [108].

The following L1 D-TLB configurations were tested. FA TLB with 32 entries (labeled

FA 32 in figures), SA TLB with 32 entries, 2-way (labeled 2W 32 in figures), SA TLB with

32 entries, 4-way (labeled 4W 32 in figures), and the same configurations, but for 128 entries

(labeled FA 128, 2W 128, and 2W 128, respectively in figures). All of these were used for

baseline Standard TLB, SP TLB and RF TLB. In addition, a naive solution to prevent all

TLB attacks is to disable the TLB. While in our RISC-V setup it is not possible to fully

disable the TLB, we include TLB with 1 entry (labeled 1E in figures) as closest possible

configuration to show its impact on performance. In total, 19 TLB configurations were

tested on our FPGA setup.

The SP TLB was tested with half the ways to be set victim partition. The RF TLB was

tested where the secure region was set by the software, see SecRSA discussion below.

For performance evaluation, we use the RSA implementation from TLBleed attack [48]10.

Further, we selected TLB-intensive SPEC 2006 integer and floating point benchmarks to

evaluate the overheads introduced by the secure TLB designs. The four selected bench-

marks are: 453.povray, 471.omnetpp, 483.xalancbmk, and 436.cactusADM11. The different

configurations are listed below.

RSA. The libgcrypt’s RSA decryption routine was run 50, 100 and 150 times in series to

simulate multiple uses of secret cryptographic key that the attacker may want to learn via

the timing channels. Each time the same hard-coded key was used. No security is enabled

for this configuration.

SecRSA. This is same as RSA configuration, except for SP and RF TLBs the security

features are enabled to protect the RSA. For SP TLB, the SecRSA’s process ID is set as the

“victim”, and all the address translations will be put in the victim partition in the SP TLB,

while other processes’ address translation will be in the attacker partition. For the RF TLB,

SecRSA’s .data section pages including the ones referenced by the tp, rp and xp pointers

(the number of these pages is 3, and the pointers are previously discussed in Section 4.3.3)

10. RSA from Libgcrypt 1.8.2: https://gnupg.org/ftp/gcrypt/libgcrypt/

11. The “ref” or “train” inputs to SPEC benchmarks were used, the “train” inputs were used if the
benchmark was not able to run with “ref” inputs on the FPGA setup due to memory size limitation.

123

Table 4.11: Area overhead of the new secure additions. ∆ Slice LUT and ∆ Slice Registers columns
show the the difference from the 32-entry, 4-way SA TLB baseline.

Configurations Slice LUTs ∆ Slice LUTs Slice Registers ∆ Slice
Registers

1E 35266 -777 18359 -4406

SA
TLB

FA 32 36395 352 22199 -566
2W 32 36298 255 23513 748
4W 32 36043 − 22765 −
FA 128 40177 4134 33815 11050
2W 128 39684 3641 38630 15865
4W 128 38107 2064 35694 12929

SP
TLB

FA 32 36499 456 22251 -514
2W 32 36387 344 23523 758
4W 32 36183 140 22798 33
FA 128 40568 4525 33824 11059
2W 128 38609 2566 38521 15756
4W 128 38049 2006 35659 12894

RF
TLB

FA 32 38281 2238 22697 -68
2W 32 38510 2467 25643 2878
4W 32 38266 2223 24018 1253
FA 128 42740 6697 34252 11487
2W 128 42509 6466 45823 23058
4W 128 41259 5216 39538 16773

are protected and accesses are randomized (see Section 4.3.2).

RSA with povray, omnetpp, xalancbmk and cactusADM. In order to better see

the performance impact on the whole system when a secure program is running, the RSA

as discussed above, was run in parallel with each of the selected TLB-intensive SPEC

benchmarks. The RSA continuously performs the decryption (50, 100 and 150 times), while

the SPEC benchmark runs in background.

SecRSA with povray, omnetpp, xalancbmk and cactusADM. Same as above, but

security is enabled for RSA, as discussed in SecRSA case.

Standard TLB Performance

Standard TLB’s IPCs and MPKIs are shown in Figure 4.23a and Figure 4.23d. Larger TLB

has smaller MPKI and better IPC. RSA routine is relatively small, so it experiences very

few MPKIs. When SPEC benchmarks are included, the MPKIs increase and IPC drops.

Interestingly, although cactusADM was specified as TLB-intensive in [109], it is not affected

much by TLB size. Additionally, in most of the cases, IPC and MPKI give similar result for

50, 100 and 150 runs. This is the same for SP TLB and RF TLB.

Note, the 1E configuration approximates no TLB scenario. This has on average 38.3%

124

worst performance, based on IPC. Thus, achieving security by disabling the TLB will impact

system performance significantly.

Further, FA TLB (i.e. FA 32 and FA 128) have as expected better performance than

SA configurations, and can prevent 8 more types of attacks compared with 10 types that

SA TLB can prevent. However, FA TLBs have area impact of about 0.6% more Slice LUTs

for 32 entries, and 3.3% more Slice LUT for 128 entries, see Section 4.3.4. The FPGA

runs slow enough at 50MHz for ZC706 and at 25MHz for ZedBoard that the impact of FA

configuration on the critical path is not observed.

SP TLB Performance

Performance evaluation results for the SP TLB are shown in Figure 4.23b and Figure 4.23e.

For the SP TLB, half the ways are set to the victim partition. When victim program RSA

(SecRSA) is run alone or run with a SPEC benchmark, the secure data of RSA is allocated

to half of the ways in the victim partition, and all other data and all SPEC data is in the

attacker partition. Overall, IPC is about 0.5% better compared to standard TLB. This may

be due to the system code getting invoked more often for the SP TLB, than for the standard

TLB, and the system code may have better overall IPC. From the evaluation result, SP

additions for the TLB do not influence IPC too much.

The MPKI is significantly higher than standard TLB (207.5% more or 3.07x), as again

the effective TLB size is one half. Assignment of different number of ways for victim and

attacker partitions, and its impact on performance could be further explored. Further, ideas

of coalescing in TLBs [109] could be explored to improve the effective TLB size for victim

and attacker partitions.

RF TLB Performance

Performance evaluation results for the RF TLB are shown in Figure 4.23c and Figure 4.23f.

The IPC is about 1.4% higher compared to SA TLB. Again, RF TLB may involve even more

system code, in which case a better IPC is derived. Meanwhile, comparing the corresponding

configurations, the MPKI of RF TLB is about 64.5% better than SP TLB, while 9.0% worse

than SA TLB. Thus, RF TLB provides both better performance and better security than

125

SP TLB, while being as good as standard TLB in performance. It has about 39.4% better

IPC than disabling TLB (approximated by the 1E configuration) while providing the same

security level.

Area Overhead

We further evaluate the area overhead of the new secure additions. We use the number of

Slice Look-Up Table (LUT), Slice Registers, Block RAMs and DSPs from the FPGA synthesis

reports for the Xilinx ZC706 FPGA as a proxy for the area. For all the configurations, the

Block RAM usage is 24 and the DSP usage is 15. Slice LUT and Registers numbers are

shown in Table 4.11. The baseline is again 32-entry, 4-way SA L1 D-TLB.

Comparing to 4-way 32-set SA TLB, 4-way 32-set SP TLB has 0.4% more Slice LUTs

and 0.1% more Slice Registers. 4-way 32-set RF TLB has 6.2% more Slice LUTs and 5.5%

more Slice Registers. On average for all the configurations of TLBs, SP TLB has about

0.2% less Slice LUTs and 1.3% less Slice Registers compared with SA TLB, while RF TLB

has about 6.5% more Slice LUTs and 7.9% more Slice Registers compared with SA TLB.

4.3.5 Soundness Analysis of TLB Vulnerabilities

In this section we analyze the soundness of the three-step model to demonstrate that

the three-step model can cover all possible SA TLB timing vulnerabilities. If there is a

vulnerability, it can always be reduced to a model that requires only three steps.

Let β denote the number of memory page related operations in a vulnerability.

When β = 1, there is only one memory page related operation, and it is not possible

to create interference between memory page related operations since two memory page

related operations are the minimum requirement for an interference. Furthermore, β = 1

corresponds to the three-step pattern with both Step 1 and Step 2 to be ? since the TLB

state ? gives no information. These types are not listed in Table 4.9, which shows all the

effective vulnerabilities. Therefore, attack cannot happen when β = 1.

When β = 2, it satisfies the minimum requirement of an interference for memory page

related operations and corresponds to the three-step cases where Step 1 is ?. Three-step cases

126

where Step 1 is ? does not have corresponding effective vulnerabilities shown in Table 4.9.

So β 6= 2.

When β = 3, we exhaustively list all possible three-step memory page related operations

in Section 4.3.1 and we conclude that there are in total 24 types of effective vulnerabilities,

of which 16 are new compared to what is known in literature. So β = 3.

When β > 3, the pattern of memory related operations for a vulnerability can be

deducted using the following rules:

• Rule 1: If there is a sub-pattern such as { ... ? ...}, the longer pattern can be

divided into two separate patterns, where ? is assigned as Step 1 of the second pattern.

This is because ? gives no timing information, and the attacker loses track of the cache

state after ?. This rule should be recursively checked until there are no sub-patterns

with a ? in the middle or last step (? in the last step will be deleted).

• Rule 2: If there is a sub-pattern such as { ... Ainv/Vinv ...}, the longer pattern

can be divided into two separate patterns, where Ainv/Vinv is assigned as Step 1 of

the second pattern. This is because Ainv/Vinv will flush all the timing information of

the current block and it can be used as the flushing step for Step 1, e.g., vulnerability

{ Ainv Vu Aa(fast)} shown in Table 4.9. It cannot be candidate for middle steps

or the last step because it will flush all timing information, making the attacker unable

to correspond the final timing with victim’s sensitive address translation information.

This rule should be recursively checked until there are no sub-patterns with a Ainv/Vinv

in the middle or last step (Ainv/Vinv in the last step will be deleted).

• Rule 3: If the remaining memory page related operations have a sub-pattern that

has two adjacent steps both related to known addresses or both related to unknown

address (including repeating states), the two adjacent steps can be reduced to only

one.

– For two unknown adjacent memory page related operations (containing u, denoted

as u_operation), although u is unknown, both of the accesses target on the same u

so can be reduced. E.g., {... Vu Vu ...} can be reduced to {... Vu ...}.

127

Table 4.12: The 7 specific-address-invalidation-related states for a single TLB block.

States Description

V inv
u

The TLB block previously containing translation for a memory address u is now invalid.
Attacker does not know u, but u is from a sensitive memory range x of memory locations,
range which is known to the attacker. The address u may have same page index as a and
thus conflict with them in the TLB block.

Ainv
a or V inv

a

The TLB block previously containing translation for a memory address a is now invalid.
The attacker knows the address a, independent of whether the access was by the victim
or the attacker themselves. The address a is from within the range of sensitive locations
x. The address a may or may not be the same as the address u.

Ainv
aalias or V inv

aalias

The TLB block previously containing translation for a memory address aalias is now
invalid. The address aalias is within the sensitive memory range x. It is not the same as
a, but it has same page index and maps to the same TLB block, i.e. it “aliases” to the
same block.

Ainv
d or V inv

d
The TLB block previously containing translation for a memory address d is now invalid.
The address d is not within the sensitive memory range x.

– For two known adjacent memory related operations (denoted as not_u_operation),

these two operations result in a deterministic state of the cache block, so these

two steps can be reduced to only one step. E.g., {... Ad Va ...} can be

reduced to {... Va ...}.

The Rule 3 should be recursively checked until there are no two adjacent steps both

related to known addresses or both related to unknown address, i.e., the resulting

pattern must be of a format of u_operation and not_u_operation alternating.

• Rule 4: After recursive reductions of Rule 1, Rule 2 and Rule 3, either β ≤ 3 holds, or

the following sub-pattern still exists:

– ... u_operation not_u_operation u_operation

 ...

If the pattern contains this sub-pattern, the three-step sub-pattern must be an effective

vulnerability according to Table 4.9 and reduction rules shown in Section 4.3.1. The

corresponding pattern can be treated effective and the checking is done.

We make use of the four Rules in a way either i) to reduce a β-step (β > 3) pattern to

be within three steps or ii) demonstrate that the β-step pattern can be mapped to one or

more three-step vulnerabilities if it is effective.

128

Table 4.13: The table shows additional possible timing TLB vulnerabilities when TLB invalidations
are possible. The column headings are the same as in Table 4.9.

Attack
Strategy

Vulnerability Type Macro
Type Attack

Step 1 Step 2 Step 3
TLB Internal

Collision
Ainv

a Vu Va (fast) IH (1)
V inv

a Vu Va (fast) IH (1)
TLB Flush
+ Reload

Ainv
a Vu Aa (fast) EH new

V inv
a Vu Aa (fast) EH new

TLB Reload
+ Time

V inv
u Aa Vu (fast) EH new

V inv
u Va Vu (fast) IH new

TLB Flush
+ Probe

Aa V inv
u Aa (slow) EH new

Aa V inv
u Va (slow) IH new

Va V inv
u Aa (slow) EH new

Va V inv
u Va (slow) IH new

TLB Flush
+ Time

Vu Aainv Vu (slow) EH new
Vu Vainv Vu (slow) IH new

TLB Internal
Collision

Invalidation

Ainv Vu V inv
a (slow) IH new

V inv Vu V inv
a (slow) IH new

Ad Vu V inv
a (slow) IH new

Vd Vu V inv
a (slow) IH new

Aaalias Vu V inv
a (slow) IH new

Vaalias Vu V inv
a (slow) IH new

TLB Flush
+ Flush

Ainv
a Vu V inv

a (slow) IH new
V inv

a Vu V inv
a (slow) IH new

Ainv
a Vu Ainv

a (slow) EH new
V inv

a Vu Ainv
a (slow) EH new

TLB Flush
+ Reload

Invalidation

Ainv Vu Ainv
a (slow) EH new

V inv Vu Ainv
a (slow) EH new

Ad Vu Ainv
a (slow) EH new

Vd Vu Ainv
a (slow) EH new

Aaalias Vu Ainv
a (slow) EH new

Vaalias Vu Ainv
a (slow) EH new

TLB Reload +
Time Invalidation

V inv
u Aa V inv

u (slow) EH new
V inv

u Va V inv
u (slow) IH new

TLB Flush
+ Probe

Invalidation

Aa V inv
u Ainv

a (fast) EH new
Aa V inv

u V inv
a (fast) IH new

Va V inv
u Ainv

a (fast) EH new
Va V inv

u V inv
a (fast) IH new

TLB Evict +
Time Invalidation

Vu Ad V inv
u (fast) EM new

Vu Aa V inv
u (fast) EM new

TLB Prime +
Probe Invalidation

Ad Vu Ainv
d (fast) EM new

Aa Vu Ainv
a (fast) EM new

TLB
Bernstein’s
Invalidation

Attack

Vu Va V inv
u (fast) IM new

Vu Vd V inv
u (fast) IM new

Vd Vu V inv
d (fast) IM new

Va Vu V inv
a (fast) IM new

TLB Evict +
Probe Invalidation

Vd Vu Ainv
d (fast) EM new

Va Vu Ainv
a (fast) EM new

TLB Prime +
Time Invalidation

Ad Vu V inv
d (fast) IM new

Aa Vu V inv
a (fast) IM new

TLB Flush +
Time Invalidation

Vu Ainv
a V inv

u (fast) EH new
Vu V inv

a V inv
u (fast) IH new

(1) Double Page Fault attack [50].

129

Algorithm 5 β-Step (β > 3) Pattern Reduction
Input: β: number of steps of the pattern

step_list: a two-dimensional dynamic-size array. step_list[0] contains the states of each step of
the original pattern in order. step_list[1], step_list[2], ... is empty initially.

Output: reduce_list: reduced effective vulnerability pattern(s) array. It will be an empty list if
the original pattern does not correspond to an effective vulnerability.

1: while step_list.contain(?) and ?.index not 0 do
2: Rule_1 (step_list)
3: end while
4: while (step_list.contain(Ainv) and Ainv.index not 0) or (step_list.contain(Vinv) and
Vinv.index not 0) do

5: Rule_2 (step_list)
6: end while
7: while step_list.contain(adjacent not_u_operation or u_operation) do
8: Rule_3 (step_list)
9: end while

10: reduce_list = Rule_4 (step_list)
11: return reduce_list

In conclusion, the three-step model can model all possible timing SA TLB vulnerability

with any β steps. Attacks which are represented by more than three steps can be always

reduced to one (or more) vulnerabilities from our three-step model; and thus, using more

than three step is not necessary.

4.3.6 Additional Attacks

Table 4.13 shows additional possible timing TLB vulnerabilities when different types of

TLB invalidations are possible, which are listed in Table 4.12. The translation can be

“removed” from the TLB block by the victim or the attacker as the result of TLB block being

invalidated, e.g., through a dedicated TLB flush instruction. We are unaware of existing

RISC-V ISAs or systems which have such features, but future extensions may add such

features and they could cause security bugs. For example, invalidating a specific TLB entry

for some processors on Linux is possible by using mprotect() system call, which changes the

access protection bits for the calling process’s memory pages.

If it is possible for the attacker or the victim to trigger invalidation of a specific address

or entry in the TLB, then attacks such as TLB Flush + Time become possible. Invalidation

of a specific address or entry is needed in Step 2 to derive information about Vu in the last

step of the pattern.

130

If invalidation of TLB can be for a specific address or entry and has variable timing,

then attacks such as TLB Flush + Flush become possible. One performance improvement

to TLB could be that for each invalidation, check the TLB first. If TLB entry is already

invalid, the invalidation is done. If it is valid, then during the second cycle, update the TLB

entry to mark it as invalid. This may shorten each cycle, but would introduce fast or slow

timing differences that lead to the further attacks.

131

Chapter 5

Vulnerability Evaluation of Value

Predictors

This chapter focuses on on side- and covert-channel attacks beyond caches and TLBs.

Especially, this is the first work to focus on understanding a special type of predictor, the

value predictor, and demonstrating new security attacks on these predictors. Although not

implemented in the real hardware today, numerous value predictor architectures have been

proposed and are being considered for inclusion in future processors. Since the original last

value predictor [17], a number of improvements have been developed, e.g., [11], including

recent work in the last two years, e.g., [12]. These value predictors have demonstrated to

improve processor performance, however, as we show, they can contribute to new security

vulnerabilities in systems that may realize them.

By exploring value predictor attacks (and defenses), this work fills in the missing

understanding of the security of value predictors. Attacks and defenses should be analyzed at

design time before new features, such as the value predictors, are added to real machines. It

has been shown many times before [27, 31] that attacks are found due to features introduced

without proper design-time security analysis.

132

5.1 Threat Model and Assumptions

We present the first threat model for analyzing value predictors. The model assumes there

is a sender (victim) process that has access to a secret and a receiver (attacker) process

which aims to learn the secret. Two processes can execute on the same core or different

cores. Especially, in internal-interference attacks (which involve only the sender’s accesses),

two processes do not need to share the value predictor, as long as the receiver can observe

timing differences in the execution of the sender (as affected by the value predictor’s state or

use of the value predictor). The attacker is assumed to know the source code of the victim

process which is not secret by itself. The attacker further can trigger the value prediction by

meeting the right condition, e.g., making confidence number of accesses, or other condition

used by the Value Prediction System (VPS).

We assume predictors can be broadly PC-based predictor (use the program counter, i.e.,

instruction address, for indexing the predictor’s state) or data-address-based predictor (use

the address of the accessed data to index the predictor’s state) and we assume the address

is a virtual address1. The address can also incorporate other information, such as a process

identifier, pid, if the value predictor uses that for indexing the predictor’s state. We use the

term index to describe the information used to index the predictor’s state. I.e., in PC-based

predictors, the index is the PC plus any potential identifiers.

This work focuses on load-based VPS2, where 1) training3 or 2) modifying the value

predictor state, or 3) triggering the value predictor to make a prediction, requires a cache

miss. The miss is assumed to occur naturally as part of the code’s execution or can be forced

by a malicious attacker that invalidates or flushes the cache. Having value prediction at the

frontend or in the execution stage of the pipeline will not influence the attacks we propose

in this work, since the attack mechanism is independent of stages in the pipeline where the

VPS is used, as long as the prediction can happen before the actual value is obtained.

1. Physical-address-based attacks are also possible, but we focus on attacks using virtual address as most
value predictors we studied use virtual addresses.

2. Non load-based VPS is possible, where the attacks can be triggered without causing cache misses.

3. To train the predictor to make a prediction, we assume a confidence number of accesses are required.
Thus, the predictor will output a first prediction on the confidence + 1 access.

133

Attacks due to
Transient Execution

Attacks Leveraging
Transient Execution

Transient Execution
Attacks

using
Timing-Window

Channel:
Misprediction

vs. Correct Prediction

using
Timing-Window

Channel :
No prediction

vs. Correct Prediction

using
Timing-Window

Channel :
No prediction vs.

Incorrect Prediction
Branchscope [4],

Jump over ASLR [3],
This Work

This Work (No known
examples)

using
Persistent or

Volatile Channels:

Spectre variants [7],
This Work

New
Type!

Figure 5.1: Taxonomy of timing-window microarchitectural channels. We are the first to present a
no prediction vs. correct prediction timing attack.

5.2 Attack Taxonomy

Figure 5.1 shows the taxonomy of transient execution attacks and attacks leveraging transient

execution. Attacks leveraging transient execution modify transient execution behavior based

on the secret value. For this type, there are timing-window attacks that rely on misprediction

vs. correct prediction timing, e.g., Branchscope [31], Jump over ASLR [32], or one of our

attack variants. We also show a different attack variant that uses no prediction vs. correct

prediction timing-window attack, which is a different, new type of attack. No prediction vs.

incorrect prediction attacks theoretically exist but such types are not known. In addition, we

also show value predictor attack variants that can be used with regular transient execution

attacks as well.

5.3 New Value Predictor Attacks

In this section, we demonstrate two new proof-of-concept attacks on value predictors.

5.3.1 Train + Test Attack

The first new attack we present is the Train + Test attack, as is shown in Figure 5.2. In

this attack, the attacker (receiver) is able to derive the value predictor index accessed by

the victim (sender) during a load operation, and with the knowledge of the source code,

the receiver can correlate the index accessed to the secret value 1 or 0 they are trying to

learn. In this attack, first, the predictor is set to a known state in the train step by having a

confidence number of accesses to a known index. In the modify step a further confidence

134

// -- Sender (program A) ------------------------ //
PC:
 1. main() {
 2. for (i=0;i<C;i++) {
 3. if (secret) {
 4. flush(arr1); // 2) Modify step
 5. r1 = arr1; // modify val. pred.
 6. } // at PC index 5 if secret = 1
7. }

// -- Receiver (program B) -------------------- //
PC:
 1. access() {
 2. nop(); // pad to map to
 3. nop(); // sender’s index 5
 4. nop();
 5. r3 = arr3; // access maps to val.
 6. }. // pred. PC index 5
 7.
 8. main() {
9. for (i=0;i<C;i++) {

10. flush(arr3);
11. access(); // 1) Train step
12. } // set val. pred. at PC index 5
13. sleep(); // wait for sender to run
14.
15. flush(arr3);
16. fence(); // 4) Encode step
17. t1 = rdtscp();
18. access();// 3) Trigger step
19. dependent_alu_mem_ops()
20. fence();
21. t2 = rdtscp();
22. if (t2-t1 > threshold) // 5) Decode step
23. print(‘secret is 1’);
24. else
25. print(‘secret is 0 or index does not map’);
26. }

Value Prediction System
index confidence usefulness value
1
..

5 C 1 arr3

Train
(r3=arr3)

!!

1) Train

Value Prediction System
index confidence usefulness value
1
..

5 C 1 arr1

Modify

(r1=arr1)

2) Modify

Send secret = 1

Value Prediction System
index confidence usefulness value
1
..

5 C 1 arr3
No access

Send secret = 0

Value Prediction System
index confidence usefulness value
1
..

5 1 0 arr3

3) Trigger, 4) Encode and 5) Decode

Value Prediction System
index confidence usefulness value
1
..

5 C+1 1 arr3

secret = 0secret = 1

Trigger(r3=arr3)

Trigger(r3=arr3)
Wrong pred.

(slower access)
Correct pred.
(faster access)

!!!!

!!!!

Figure 5.2: Proof-of-concept code and diagram of the value predictor’s state for a new Train +
Test attack presented in this work.

number of secret-related access can be made to set a new valid predictor state or 1 access

can be made to cause the previously trained value to be invalidated. In the final trigger

step, there is 1 memory access to a known index, as in the first step.

If modify step involves confidence number of accesses, as is shown in Figure 5.2, there

will be a correct prediction in the last step if secret and known indices are different or secret

is 0, since the predictor state was not modified by the middle modify step.4 There will be a

misprediction if indices are the same and the secret is 1 (predictor state was modified by the

middle step that maps to the same index as the known index steps). If the modify step has

1 access and secret-dependent access by the sender maps to the same index as the known

index access, it resets the confidence value to 0 and leads to no prediction in the last step.

Otherwise, there will be a correct prediction as no modification of states in the middle step.

4. There can be a correct prediction also if the indices are the same and the secret data and known data
happen to be the same. However, for index-focused attacks there is no assumption about data knowledge
and the probability of this is approximately 1−64 for 64-bit data. Further, if this attack involves known data,
it becomes equivalent to the Test + Hit attack.

135

// -- Sender (program A) ----------------------------- //
PC:
 1. main() {
 2. for (i=0;i<C;i++) {
3. flush(secret_bit);
 4. r1 = secret_bit; // 1) Train step
5. // set pred. at PC index 4
6. }

// -- Receiver (program B) ------------------------- //
PC:
 1. check_hit() {
 2. nop(); // pad with nops
3. flush(known_bit);
 4. x = known_bit; // access maps to val.
5. return x; // pred. PC index 4
 6. }
 7.
 8. main() {
9. sleep(); // wait for sender to run

10.
11. flush(arr2);
12. x = check_hit(); // 3) Trigger step,
13. y = arr2[x*512]; // 4) Encode step,
14. // x will be accessed speculatively
15. // and modify cache based on x
16. sleep(); // wait for spec. exe.
17.
18. for (j=0;j<256;j++)
19. t1 = rdtscp(); // 5) Decode step,
20. r2 = arr2[j*512]; // check which
21. t2 = rdtscp(); // entry was modified
22.
23. if (t2-t1 < threshold)
24. print(‘secret_bit candidate is: %x’, j);
25. } // print secret read from cache channel
26. }

Value Prediction System
index confidence usefulness value
1
..

4 C 1 1
Train

(r1=secret_bit)

1) Train

Send secret_bit = 1

Value Prediction System
index confidence usefulness value
1
..

4 C 1 0
Train

(r1=secret_bit)

Send secret_bit = 0

Value Prediction System
index confidence usefulness value
1
..

4 1 0 0

3) Trigger

Value Prediction System
index confidence usefulness value
1
..

4 C+1 1 0

secret_bit = known_bit = 0secret_bit != known_bit

Trigger
(x=known_bit)

Trigger
(x=known_bit)

Correct
prediction

Wrong
prediction

L1 Data Cache
index tag value
1
f(0) xx
f(1) xx

4) Encode and 5) Decode

L1 Data Cache
index tag value
1
f(0) xx
f(1)

Slower
access

secret_bit
indexed access

!!!!

!!!!

secret_bit
indexed access

Faster access
to known_bit

Faster access
to secret_bit

Faster access
to known_bit/

secret_bit

Figure 5.3: Proof-of-concept code and diagram of the value predictor’s state for a new Test + Hit
attack presented in this work.

5.3.2 Test + Hit Attack

The second attack we present is a Test + Hit attack, shown in Figure 5.3. In this attack,

the receiver is able to derive the secret_bit value that was trained into the value predictor

state by the sender’s accesses. First, the sender accesses the secret at least a confidence

number of times to train the predictor. The receiver can for example force the sender to

repeatedly execute the code that uses the secret value and causes it to be trained into the

value predictor state. Next, the receiver makes access in the trigger step (no modify step

is used in this attack) to a known data at the same index as the sender did. The access

triggers the value predictor to make a prediction related to the secret value. When prediction

occurs, during transient execution the output of the value predictor can be encoded into the

persistent cache channel. Similar to Spectre attacks, array access is performed in Figure 5.3,

where the index is the value from the value predictor. To recover the secret value from the

cache channel, the receiver checks the timing of accessing the array elements, to learn which

one was previously placed into the cache and thus recover the secret.

136

pvalue=0.8169 pvalue=0.0420

pvalue=0.7521 pvalue=0.0000

Figure 5.4: Timing distribution results of Train + Test attacks using timing-window channel (1-2)
and persistent channel (3-4). Red pvalue means the related attack is effective, while black means it is
not effective.

5.3.3 Experimental Setup for Evaluation

To evaluate new value predictor attacks, we implemented value predictors in a modified

gem5 simulator [110], and run the code on the simulator. The gem5 simulator was used

in syscall emulation mode (SE) with the O3CPU model and Ruby cache for testing. We

implemented a baseline (non-secure) LVP [17] predictor. and an oracle VTAGE [111]. The

oracle value predictor makes predictions only for the target load instruction to maximize

the attacker’s advantage. To judge whether an attack is successful, we report averages over

100 runs for each attack, with a 95%-confidence interval [88] calculated using the Student’s

t-test [112] to distinguish measured timing distributions.

5.3.4 Attack Evaluation and Results

For our evaluation, we focus on analyzing if the receiver can distinguish two types of timings

– “mapped” vs. “unmapped” cases – as explained below. We use pvalue calculation result to

determine if two types of timings can be distinguished. If the pvalue is smaller than 0.05,

timing distributions are differentiable and the attack succeeds.

Train + Test Attack Results. For the timing-window channel, when the secret and

known indices map to each other and secret is 1, misprediction leads to longer timing in

the trigger step. Meanwhile, there will be a correct prediction in the trigger step when not

mapped, since the predictor state set in the train step was not modified.

We also evaluate a persistent channel variant of this attack, where mapped case means

137

1. void _gcry_mpi_powm (gcry_mpi_y_ res,
2. gcry_mpi_t base, gcry_mpi_t expom gcry_mpi_t_mod)
3. {
4. mpi_ptr_t rp, xp; /* pointers to MPI data */
5. mpi_ptr_t tp;
6. ...
7. for(;;) {
8. /* For every exponent bit in expo*/
9. _gcry_mpih_sqr_n_basecase(xp, rp);

10. if(secret_exponent || e_bit_is1) {
11. /* unconditional multiply if exponent is
12. * secret to mitigate FLUSH+RELOAD
13. */
14. _gcry_mpih_mul(xp, rp);
15. }
16. if(e_bit_is1) {
17. /*e bit is 1, use the result*/
18. tp = rp; rp = xp; xp = tp;
19. rsize = xsize;
20. }
21. }
22. }

Figure 5.5: Code of modular exponentiation from libgcrypt, adapted from [48]. The highlighted
red-colored part shows conditional access to the tp index which can be leaked through value predictor
attacks we present.

0 10 20 30 40 50 60
Iteration

250
270
290
310
330
350

C
yc

le
s

e_bit=0
e_bit=1

Figure 5.6: Sequences of the receiver’s observation for each iteration when the e_bit is 0 or 1 (line
16 shown in Figure 5.5).

two indices are the same and secret is 1, resulting in misprediction in the trigger step, which

encodes the data into the cache, and a cache hit is observed in the reload part of the covert

channel. Otherwise, the unmapped case results in a cache miss.

In Figure 5.4 (1) and (3) it can be seen that without value predictor (no VP), different

timing distributions cannot be distinguished, and the attacks are not possible. Meanwhile, in

Figure 5.4 (2) and (4) it can be seen that when (non-secure) LVP value predictor is enabled,

timing distributions for mapped and unmapped cases are different, and the secret value can

be leaked.

Our proof-of-concept code can be extended to real applications. For example, Figure 5.5

shows the RSA related portion of libgcrypt code with conditional memory access. The code

is already protected against Flush + Reload cache timing attacks [27]. However, when the

value predictor is trained through repeated accesses (due to repeated invocations of the code

with the same cryptographic key), the index of the tp access can be leaked through the value

predictor attack, leaking the value of e_bit_is1 as is shown in Figure 5.6. The success rate

138

pvalue=0.2630 pvalue=0.0072

pvalue=0.6111 pvalue=0.0000

Figure 5.7: Timing distribution results of Test + Hit attacks using timing-window channel (1-2)
and persistent channel (3-4). Red pvalue means the corresponding attack is effective, while black
means it is not effective.

of correctly transmitting e_bit is 95.7% for 60 runs, which is enough to reconstruct the

full key based on prior work [48]. Without further optimization, the transmission rate is

9.65Kbps.

Our attack is demonstrated on RSA modular exponentiation which does not use blinding

techniques. We do this because most related work in architecture does not consider blinding

and we target similar code for easier comparison. There are blinding techniques for both

RSA and ECC, and we leave this for future work and do not discuss blinding here. However,

we expect that a variant of our value prediction attack actually works if the blinding scheme

is used. If the secret is accessed by a load or similar instruction during the blinding operation,

we can use value prediction to extract the secret (it is not possible to extract the blinding

factor, as it is random each time, while the secret is constant and gets trained into the value

predictor). This type of attack is not possible with branch predictor or cache side channels

but is possible to value predictor attacks.

Test + Hit Attack Results. For the timing-window channel, mapped data means

that the data accessed in the train step and the trigger step are the same and a correct

prediction can be derived in the trigger step (faster timing), while in the unmapped case the

two data are different (slower timing). For the persistent channel, the mapped case means

the secret value encoded by the train step is brought to the cache, causing reloading a fast

timing. Therefore, the secret value can be observed through cache hits in the cache channel.

Otherwise, only cache misses can be observed for the unmapped case.

139

As is shown in Figure 5.7, when no value predictor is used, there is no attack due to no

significant difference in the timing distributions. Meanwhile, with (non-secure) LVP enabled,

the mapped and unmapped timing distributions are significantly different.

Value Predictor Type Influence. We further evaluate whether the type of value

predictor, e.g., LVP vs. VTAGE, has impacts on the attacks. For both predictor types,

timing distributions between mapped and unmapped cases are significantly different to leak

data. The VTAGE data and details are left for future work.

5.4 Derivation of All Expected Value Predictor Attacks

Based on the two proof-of-concept attacks, we further present the first model for analyzing

value predictor security. The model further points to additional attack types. The model is

based on exploring all possible steps that the victim or the attacker can perform to affect or

observe the value predictor state, and how that can leak information.

1) Train Step: In this step, the value predictor is trained using load access at a certain

index, to set up a deterministic predictor state for the PC’s or data address’s prediction

entry. This step can be secret-related if performed by the sender who is the only one with

logical access to the secret. In this case, this step is used to put the secret-related data

into the predictor state so it can be revealed by other steps. Otherwise, this step is used

to provide a known reference state that can be later used to derive secret information by

observing state changes, which can be performed by the sender or the receiver.

To train the value predictor, the loads usually need to be accessed at least confidence

number of times to set the predicted state. However, for certain attacks, the access is made

confidence− 1 number of times, so that the access in the next modify step can be detected

if it pushes the total accesses to the confidence number of times, and the prediction is

triggered to output a value during a cache miss.

2) Modify Step: In some attacks, the modify step is needed to alter the value predictor’s

state set in the first step before an observation is made. This step is useful if the first step

was to known data or index, and a state modification (due to secret-related access) is needed

to observe potential interferences. This step is also useful if the first step is secret-related,

140

Table 5.1: Possible actions for each step of value predictor attacks.

Action Description

SKD, SKI Sender makes access to data, or respectively index, that it knows.
RKD, RKI Receiver makes access to data, or respectively index, that it knows.

SSD′
, SSD′′ Sender makes access to secret data the receiver tries to learn. For attacks leveraging interference between

sender’s accesses, secret data D′ and D′′ may or may not be the same, which is what the receiver is
trying to learn. For attacks that involve known data, the goal is to learn if the known D is or is not the
same as the secret.

SSI′
, SSI′′ Sender makes access to secret-dependent index the receiver tries to learn. For attacks that involve the

known index, the goal is to learn if the known I is or is not the same as the secret index.
— This step is not used, this is only for the modify step for attacks that do not have any actions in the

modify step.

and the state modification is due to another (possibly the same) secret-related access, or

due to a known data or index access. For this step, most attacks will repeatedly execute

load more than confidence number of times to encode the value into the predictor’s state.

However, for some attacks, only 1 extra access in this step is needed if the train step uses

confidence− 1 accesses.

3) Trigger Step: A single access is required in this step to probe the value predictor

to observe the interference that can reveal the secret, or even directly observe the secret

through timing variations.

4) Encode and 5) Decode Step: The sensitive information obtained from predictor

states needs to be encoded into a channel to exfiltrate the information. This can be a

persistent channel (e.g., cache channel), a volatile channel (e.g., port contention channel), or

a timing-window channel (e.g., directly measure the timing of the load access and subsequent

instructions). Depending on the types of three possible channels used, related ways are used

to decode the secret.

5.4.1 Modeling Results

To understand possible attacks, we consider the first three steps, as the last two steps are

about exfiltrating the information, and are not specific to value predictors. The first three

steps can be performed by the sender S or the receiver R. The possible actions in each

step are shown in Table 5.1. With these actions, there are in total 576 possible three-step

combinations for the train, modify, and trigger steps: 8 step types for train step (SKD,

SKI , RKD, RKI , SSD′ , SSD′′ , SSI′ , and SSI′′) × 9 step types for modify step (the same as

141

train step plus “—” step) × 8 step types for trigger step (the same as train step) = 576

combinations. However, the majority of these 576 combinations do not represent attacks or

can be reduced to simpler patterns. We define rules to determine if a pattern corresponds to

a possible attack, and eventually show that there are exactly effective attacks, as discussed

in Section 5.4.2. Rule description and soundness analysis of the model are not detailedly

discuessed here.

5.4.2 Value Predictor Attack Variants

Following our analysis, there are value predictor attack variants. The attacks are summarized

below and shown in Table 5.2. If the predictor indexing function uses pid or another identifier,

and two known data or index steps are done by different processes (not both S nor both R),

then the known data or index has to come from the shared library so both can access the

same index. However, if the index is just based on the address and no pid (as is the case of

many known value predictors [111, 18, 11, 12]), then no shared library is needed.5

Train + Test. Details of this attack were given in Section 5.3.

Test + Hit. Details of this attack were given in Section 5.3.

Train + Hit. This is a two-step attack where in the train step the predictor state

is first set by the confidence number of accesses to a known data. Next, 1 secret-related

access is made. Correct prediction makes execution faster which shows that the known data

is the same as secret-related data, otherwise execution is slower and two data are different.

A timing-window channel can be used to observe the timing difference of correct prediction

vs. misprediction.

Spill Over. This type of attack aims to determine if two secret-related states are the

same or different. First, confidence− 1 number of accesses are made to secret data. Next,

1 access is made to possibly the same or different secret data. Finally, in the trigger step 1

access is made to the same secret data as in the first step. The last step will be predicted

correctly if all the secrets accessed are the same. Otherwise, the confidence value is not

reached (since the middle step accesses a different value) and there is no prediction. A

5. Using pid only increases difficulties for attacks but does not eliminate it.

142

Table 5.2: List of value predictor attacks and attack categories that each attack belongs to. Each
step is explained in Section 5.4.1. Each attack category is explained in Section 5.4.2.

Step 1
(Train)

Step 2
(Modify)

Step 3
(Trigger)

Attack Cateogry

SKD — SSD' Train + Hit
SKI SSI' SKI Train + Test
SKI SSI' RKI Train + Test
RKD — SSD' Train + Hit
RKI SSI' SKI Train + Test
RKI SSI' RKI Train + Test
SSD' SSD'' SSD' Spill Over
SSD' — SKD Test + Hit
SSD' — RKD Test + Hit
SSD' — SSD'' Fill Up
SSI' SKI SSI' Modify + Test
SSI' RKI SSI' Modify + Test

Table 5.3: Value predictor attack evaluation for all the attack categories. Red pvalue means the
corresponding attack is effective with transmission rate shown, while black means it is not effective.
Tran. Rate is the transmission rate, or bandwidth, of the attack.

Attack Category Timing-Window Channel Persistent Channel
No VP VP (Tran. Rate) No VP VP (Tran. Rate)

Train + Hit 0.1620 0.0086 (7.72Kbps) — —
Train + Test 0.8169 0.0420 (7.38Kbps) 0.7521 0.0000 (6.88Kbps)
Spill Over 0.2989 0.0000 (8.12Kbps) — —
Test + Hit 0.2630 0.0072 (7.81Kbps) 0.6111 0.0000 (7.43Kbps)
Fill Up 0.3734 0.0083 (8.22Kbps) 0.4677 0.0000 (6.85Kbps)

Modify + Test 0.2966 0.0000 (8.00Kbps) — —

timing-window channel can show the timing difference of correct prediction vs. no prediction,

to learn if the values are the same or not.6

Fill Up. This two-step attack has a confidence number of accesses to secret data in

the train step and 1 access to secret data in the trigger step, which is possibly the same

or different secret. The last step has correct prediction if two secrets match, otherwise a

misprediction is derived. A timing-window channel shows timing differences of correct and

incorrect prediction to learn the secret. The secret can also be extracted from transient

execution using a persistent or volatile channel since the predictor is trained on the secret.

Modify + Test. This is a flipped image of the Train + Test attack. First, a confidence

6. If all the data are the same, the secret value can be itself extracted from transient execution in the last
step, but this reduces to the Fill Up attack since confidence − 1 plus 1 access add up to confidence accesses
captured by the train step in the Fill Up attack. Further, this is a weaker version of Fill Up attack, since
it only leaks data if all the accesses are the same secret, while Fill Up leaks data in all the cases using a
persistent or volatile channel.

143

number of secret-related accesses is performed in the train step. In the modify step there are

confidence accesses or 1 access to a known index to change or invalidate the predictor state,

respectively. In the trigger step, there is 1 secret-related index access. A timing-window

channel shows the timing difference when correct vs. incorrect prediction is made or when

correct vs. no prediction is made.

All the attack variants discussed above can use a timing-window channel to observe the

timing difference due to prediction states. Further, 2) Train + Test, 4) Test + Hit, and

5) Fill Up can use a persistent or volatile channel to extract secret data from transient

execution since the predictor is trained on the secret before the trigger step. Evaluation

results of all the attack categories are shown in Table 5.3, which proves the effectiveness of

all the attack variants.

5.5 Secure Value Predictors

Security defenses such as InvisiSpec [61] can prevent existing transient execution attacks,

but have not considered value prediction in particular, and are not effective against our

new attacks. Consequently, we present value-predictor-specific defenses which shows an

estimation of possible defense value predictors can consider.

5.5.1 Defense Techniques

Always predict a value (A-type) defense makes the predictor always predict the value based

on a fixed value or on a history value regardless of whether confidence level is reached or not.

In this case, the attacks based on differentiating from prediction vs. no prediction timing are

protected. Delay side-effects (D-type) defense targets delaying the microarchitectural state

changes and can only be used for preventing value predictor attacks based on persistent

channels. Randomly predict a value (R-type) defense randomly predicts a value out of

a window around the actual accessed value. Assuming the window size is S, the rate of

randomly predicting the correct value is 1/S.

144

5.5.2 Defense Strategies Evaluation

When all the A-type, D-type, and R-type defenses are combined, all attacks we have

considered can be defended. Note that R-type defense has a (predictable) probability of

attacker learning the correct value based on the window size. This probability can be made

arbitrarily small at some cost to performance.

The Train+Test attack can be prevented as long as the R-type defense is applied. D-type

defense is effective only against the persistent-channel variant of Train+Test attack but not

others. The Modify+Test attack can be prevented when the R-type defense is applied as

well. The Test+Hit attack can be prevented by combining both A-type and R-type defense.

D-type defense is effective against only the persistent-channel type of Test+Hit attack. The

Train+Hit attack can be prevented by combining both A-type and R-type defense. The Spill

Over attack can be prevented by the A-type defense directly. The Fill-Up attack can be

prevented by R-type defense.

For the Train+Test attack, it will be prevented as long as the R-type defense is applied,

and optionally D-type can be applied for preventing persistent channel variants. We evaluated

the influence of the window size and found that a window size of 3 is the minimal size

for this type of attack to guarantee security (p-value larger than 0.05 in our experiments),

while at the same time maintaining the performance. Since Train+Test differentiates correct

prediction vs. misprediction, A-type defense will not work, so this defense is not helpful in

this case. For attack variants that use a persistent channel, D-type defense can be used.

For the Test+Hit attack, combining A-type and R-type defense can prevent the attack.

For the R-type defense, in our experiments, on Test+Hit attack, the evaluation shows that

window size of 9 is the minimal size for this type of attack to guarantee security (p-value

larger than 0.05). This will cause large degradation to the performance. Therefore, a smaller

window size is selected to maintain performance and partial security, e.g., size of 5. In

addition, adding A-type defense is required to assist in fully preventing the attacks. D-type

defense can be used for the persistent channel type of Test+Hit attack, but by itself will not

defend non-persistent-channel attack types, so both A-type and R-type should be used.

145

Chapter 6

Processor Frontend Attacks

This chapter expands the security analysis to the processor frontend. Compared to previous

work [51, 52], we are able to 1) present both eviction-based and misalignment-based attacks

that leverage the Decode Stream Buffer (DSB), Loop Stream Detector (LSD), and Micro-

Instruction Translation Engine (MITE), 2) show new power attacks, 3) evaluate SGX attacks,

4) analyze LSD influence, 5) use frontend behavior for microcode patch fingerprinting, 6)

analyze instruction prefixes causing switching in the frontend paths for new attacks, and 7)

present a new side-channel attack that identifies victim application type. The work presented

in this chapter complements existing work by providing new attacks and security insights,

including, to the best of our knowledge, fastest frontend attack reaching 1.4Mbps.

6.1 Threat Model and Assumptions

We assume there is one sender (victim) that holds security-critical information and one

receiver (attacker) that tries to extract the secret information by measuring timing or power

changes. For covert-channels, the sender and receiver cooperate and modulate usage of the

DSB, LSB, and MITE to achieve the covert transmission. For side-channels, the attacker

performs operations to interfere with the victim or monitor power or timing, while the victim

is unaware of the attacker and operates on sensitive data. Our attack on SGX assumes that

the attacker can trigger execution of the enclave and measure its timing or power. Our

Spectre attack assumes an in-domain attack scenario: the attacker is within same thread,

146

Table 6.1: Specifications of the tested Intel CPU models.

Model Gold 6226 Xeon E-2174G Xeon E-2286G Xeon E-2288G
Microarchitecture Cascade Lake Coffee Lake
Core Number 12 4 6 8

Thread Number 24 8 12 8a

L1D Configuration 32KB, 8-way, 64 byte line size, 64 sets
DSB Configuration 8-way, 32 byte window, 32 sets

LSD Entries 64 — b — b 64
Frequency 2.7GHz 3.8GHz 4.0GHz 3.7GHz

OS 18.04 Ubuntu
SGX Support No Yes

a We use Xeon E-2288G on Microsoft Azure cloud, this processor model is specific for Mi-
crosoft Azure and has hyper-threading disabled, although hyper-threading is supported by
other E-2288G processors. b LSD is disabled in these machines.

e.g., as a sandboxed code where the disclosure gadget is executed. Our fingerprinting attack

assumes attacker has prior access to the same CPU as the target one, so they can measure

frontend performance under different microcode patches. All of the timing attacks can be

performed fully from the user-level privilege using the rdtscp instruction for measuring

timing. The power channels require access to Intel’s RAPL [19] to get energy information.

Even if the RAPL access is disabled for user-level code, privileged code can still use the

power channels against SGX enclaves, for example.

6.2 Analysis of the Operation of the Frontend

Ensuring Observability of Frontend Timing

To achieve high backend throughput so that the frontend is the bottleneck, we do not want

to touch data-related operations such as load and store because memory system may cause

unpredictable timing differences, which are not due to frontend path changes. Load and store

operations would also likely leave traces in the caches which may make any attacks more

detectable. Based on our analysis, instruction mix sequence which maximizes the timing

signature of the frontend for our attacks should satisfy the following three requirements:

• Total bytes of one access block should not exceed a 32 byte window (e.g., 4 mov and 1

jmp use in total 25 bytes).

• Total micro-op number should not exceed 6 micro-op limit that DSB can process by

one DSB line (e.g., 4 mov and 1 jmp are decoded to total 5 micro-ops).

147

Differences mainly leveraging DSB
evictions through set collisions

Differences mainly
leveraging LSD

evictions through
misaligned accesses

Figure 6.1: Example time histogram of Intel Xeon Gold 6226 processor of using LSD, DSB, or
MITE+DSB paths. Timing difference between LSD/DSB and MITE+DSB are used for collision-based
attacks (see Section 6.3.1) and differences between LSD and DSB paths are used for misalignment-
based attacks (see Section 6.3.2).

• Avoid port contention. The 4 mov instructions exploit the ports as much as possible,

plus 1 jmp instruction to end the cache line block, while avoiding load, store, or

more complex instructions involved, which will cause influence or noise from other

microarchitectural units.

As the result, 4 mov plus 1 jmp sequence is the instruction mix block which fits the requirement.

Other instruction mix blocks are possible, although finding sufficient type and number of

instruction mix blocks in real code may be a limitation of the proposed attacks.

Exploiting Frontend Path Timing Differences

As can be seen from histogram of Intel Xeon Gold 6226 processor shown in Figure 6.1, the

timing difference of processing instruction mix blocks using DSB vs. MITE+DSB or LSD

vs. DSB are clearly visible. In our attacks discussed later, we will use DSB vs. MITE+DSB

timing differences to perform attacks related to DSB evictions through set collisions. On the

other hand, the timing difference of processing using LSD vs. DSB will be used to perform

attacks related to LSD evictions through misaligned accesses. Both of these also have power

differences that separately can be used for power-based attacks.

Generating DSB Evictions Through Set Collisions

To force frontend path changes, we set up a series of instruction mix blocks and align the

start of the instruction address of each block to map to the same DSB set, as shown in

Figure 6.2. We make the jmp instructions at the end of each instruction mix block jump

to the first instruction of next instruction mix block. In this case, executing the first mov

148

Address Instructions from the
instruction mix LSD (micro-ops)

DSB (micro-ops)

…

…

…

…

…

…

…
0041881C
00418818
00418814
00418810
0041880C
00418808
00418804
00418800

…
0041841C
00418418
00418414
00418410
0041840C
00418408
00418404
00418400

…
0041801C
00418018
00418014
00418010
0041800C
00418008
00418004
00418000

…
…
…

32 byte

… …

32 sets

8 ways

64 micro-op slots

MITE (instr. bytes)

1 6 11 16 36 41 64

… …

…

…

…
64 sets

8 ways

: mov single byte

: jmp single byte

: mov micro-ops

: jmp micro-ops

jump to mov

jump to mov

jump to mov jump to mov

jump to mov jump to mov

jump to mov

: mov all bytes

: jmp all bytes

jump to mov

Legend:

Figure 6.2: Example of mapping instruction mix blocks (Section 6.2) to MITE, DSB, and LSD.
Each instruction mix block is 5 micro-ops (4 mov plus 1 jmp). If the number of chained 5 micro-op
blocks is 8 then all will fit in LSD (since 8× 5 = 40 < 64 micro-op limit of LSD) and they can all
map to the same DSB set (since DSB is 8-way associative).

instruction of the first instruction mix block will trigger a series of instruction mix block

execution. If the chain of instruction mix blocks is less than 12, all the blocks should fit in

LSD. However, at the same time, each DSB set has 8 ways, so 8 blocks can map to same set.

Consequently, if the chain of blocks is set to 8 (rather than 12), they can both fit in LSD

and same DSB set. But, as soon as the chain is extended to 9 (or more) blocks that map to

same set, eviction occurs in DSB, and in turn force LSD eviction due to inclusive nature of

MITE, DSB, and LSD.

Inclusive feature of MITE, DSB, and LSD makes eviction of lines from DSB to cause

flush of the LSD unit. Furthermore, eviction from DSB redirects micro-ops to be processed

by MITE. Combing these, eviction from DSB will cause transition of micro-op delivery from

LSD to both DSB and MITE.

Note that changing the chain of instruction mix blocks from 8 to 9 will not cause eviction

or misses of L1 instruction cache. L1 instruction caches for the machines we tested are 8-way

associative and contain 64 sets of 64 bytes. Consequently, the size of the L1 instruction is 4

times of DSB and instruction mix blocks mapping to the same DSB set will be mapped to

different L1 instruction cache sets, as is shown in Figure 6.2. Changing chain length from 8

to 9 causes DSB and LSD eviction, but causes no misses in the L1 instruction cache.

149

MITE: 8.4*109

DSB: 1.2*109

LCP stall: 1.2*1010 cycles
Switch
penalty:
9.0*108

cycles

MITE: 8.7*109

DSB: 1.2*109

LCP stall: 1.4*1010 cycles
Switch
penalty:
1.5*106

cycles

IPC: 0.67 IPC: 0.59

(a) Mixed Issue (b) Ordered Issue

Figure 6.3: Intel Xeon Gold 6226 CPU performance counter readings for the different experiments
with ordered-issued or mixed-issued types of add instructions. The numbers in the call-out boxes are
the average micro-ops numbers for all the 200 rounds of experiments.

Generating LSD Evictions Through Misaligned Accesses

We further found that misaligned instructions will generate collisions in the LSD, even when

the number of total accessed instruction mix blocks does not exceed the DSB way number.

This can be achieved by setting up the initial addresses of instruction mix blocks to be

misaligned, e.g., by aligning them on 16 byte boundaries that are not multiple of 32 bytes.

The alignment or misalignment of the blocks will cause different frontend path changes

when processing micro-ops. When all the instruction mix blocks are misaligned, executing

4 chained instruction mix blocks that map to the same DSB set will trigger collisions in

LSD which causes the micro-op delivery change from LSD to DSB. At the same time, as we

discussed in Section 6.2, executing 4 chained aligned instruction mix blocks that map to the

same DSB set will use LSD unit since the size of the 4 blocks (of 5 micro-ops each) is less

than 64 micro-op limit of the LSD.

When considering accessing pattern, if accessing a chain of 7 instruction mix blocks

which are all aligned, the 8th access will determine the path used. If the 8th access is aligned,

all of the micro-ops will still be processed by the LSD. While if the 8th instruction mix

block is misaligned, LSD will be flushed and micro-ops will be redirected to use DSB in

the frontend. We found that {aligned + misaligned} instruction mix block access pairs

that will cause micro-ops to be changed from the LSD to the DSB paths are: {5 aligned

+ 2 misaligned}, {6 aligned + 2 misaligned}, {3 aligned + 3 misaligned}, {4 aligned + 3

misaligned}, and {5 aligned + 3 misaligned}. Similar to DSB evictions, misalignment will

not cause L1 instruction cache misses.

150

Generating Different DSB Switch Penalties

In x86, Length Changing Prefixes (LCPs) are designed and incorporated into the x86 ISA

to identify the instructions with non-default length, which may be used, e.g., with unicode

processing and image processing [19]. For example, an instruction starting with 0x66h

prefix means there would be an operand size override. Such prefix can force CPU to use

slower decoding MITE path and incur up to 3 cycles more penalty in addition to extra

DSB-to-MITE switch penalty.

To demonstrate that generating different switch penalties is feasible, we set up two

instruction mix blocks. The first instruction mix block is filled by 16 sets of two add

instructions, with one normal add instruction followed by one add instruction with length

changing prefixes (mixed issue), and repeating this alternating pattern to the end. The

second one is filled with 16 normal add instructions followed by 16 add instructions with

length changing prefixes (ordered issue), In both cases there are 32 instructions within the

loop and we iterate the loop for 800 million times. Figure 6.3 shows the results of the

measurement. The two instruction blocks generate similar number of micro-ops from MITE

and DSB, but with detectable difference in the final performance (measured in instructions

per cycle, or IPC), which is caused by different numbers of LCP stall cycles and DSB-to-

MITE switch penalty cycles. This shows that the same type of frequently-used instructions

can come with different front-end path switching penalties.

We also found other possibly useful, for an attacker, LCP behaviors including: a) use

of LCP will force the front-end to switch from issuing instructions from DSB to issuing

instructions from MITE, b) LCP instructions are only decoded sequentially and would incur

measurable performance difference. Therefore, it is feasible to establish a covert channel

based on instructions with LCPs.

6.3 Processor Frontend Vulnerabilities

In this section, we focus on implementation of the timing covert channels and attacks.

Evaluation of the timing channels is in Section 6.4. Power-based channels and attacks

are discussed in Section 6.4.6. Meanwhile, application of the attacks to SGX enclaves is

151

presented in Section 6.5, and for use with Spectre attacks in Section 6.6. Detection of the

microcode patches, which can use both timing or power, is presented in Section 6.7. Finally,

a new side-channel attack used to fingerprint applications is in Section 6.8.

Our timing covert-channel attacks can be differentiated based on the techniques used to

covertly send different bits by switching between different frontend paths: using eviction

(following ideas in Section 6.2), using misalignment (following ideas in Section 6.2), or using

LCP stalls and DSB-to-MITE switch penalties (following ideas in Section 6.2).

For our attacks, there are generally three steps that the attacks follow:

• Init Step: A series of instruction accesses are performed in this step to set the

micro-ops into certain frontend paths, for some attacks no initial step is needed, only

start timing (or power) measurements.

• Encode Step: The sender accesses certain instructions to change frontend paths of

micro-ops previously set in the initialization step according to the secret bit to be sent.

• Decode Step: The receiver accesses certain instructions and, depending on attack

type, timing or power is measured to observe what changes occurred in the frontend,

or for all three steps.

In addition, some of the attacks may require timing or power measurements in not just the

last step, but the attacks still follow the three-step pattern.

In the attack descriptions we use the following variables to describe parameters of the

system: N is the number of ways in the DSB. m is a 1-bit message to be transferred on

the channel. d is the different number of instruction mix blocks used for an attack step,

d < N + 1. M , only used for misalignment-based attacks, is the parameters of the receiver,

M < N + 1. p is the number of iterations the receiver runs for initialization step and also

for decoding step. q is the number of iterations the sender runs for encoding step. We note

that use of multiple iteration increases time, but helps to reliably observe timing result with

a low error rate. r, only used for attacks leveraging LCP, is the number of LCP instructions.

152

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=0
Execute

N+1-d way
of x set

instructions
Do nothingRS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQMux

MITE

Init and set up states

Execute d way of
x set instructions

(a) init (b) encode

(c) decode

RS

BPU

IDQ

LSD
Mux

Decode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Decode secret_bit=0

LSD

Execute d way
of x set

instructions,
measure

access timing
L1I Cache,

Decode
Unit, IFDSB

MITE

Execute d way
of x set

instructions,
measure

access timing

Fast
access

Slow
access

RS

Initiate and set
up states

Encode to
channel

Decode from
channel

Figure 6.4: Overview of the MT Eviction-Based Attack.

6.3.1 Eviction-Based Timing Attack with Multi-Threading

For the eviction-based attack, in a multi-thread (MT) setting, we deploy a sender thread

and a receiver thread on the same physical processor core, but different hardware threads,

which causes them to share the frontend. When the instruction stream from the sender

executes, the DSB will be partitioned and some of the receiver’s instructions will be evicted

from DSB, further triggering eviction from LSD so that the delivery of instructions falls

back from the LSD to DSB+MITE, therefore generating detectable timing signature that

the receiver can measure. When the instruction stream from the sender is not executing, the

receiver thread will use whole DSB and the evictions will not happen. This process leaves

no interference in traditional instruction and data caches.

In the MT Eviction-Based Attack, the sender and the receiver use in total N + 1

instruction mix blocks, denoted as lines 0 - N . For the MT eviction-based attack shown

in Figure 6.4, in the Init Step, d (d ≤ N) instruction mix blocks that map to a DSB set

x are accessed for p times by the receiver. In the Encode Step, the sender will execute

different instruction series according to the secret bit m. When sending m = 1, the sender

will execute N + 1− d instruction mix blocks q times, these blocks map to DSB set x. In

this case, the total number of ways accessed is larger than N , which causes eviction of DSB

within the receiver and directs the micro-op delivery from LSD to DSB and MITE. When

sending m = 0, the sender does nothing. In the Decode Step, the receiver will access the

153

same d instruction mix blocks accessed in the Init Step and time the Decode Step’s access

for p iterations. If eviction occurs, receiver’s micro-ops in the Decode Step will be delivered

from DSB and MITE, where longer timing will be measured, indicating message m = 1 was

sent from the sender. On the other hand, if no evictions happen, receiver’s micro-ops in

the Decode Step will still be delivered from LSD, where much shorter timing is observed

compared to the MITE+DSB path, indicating message m = 0 was sent from the sender.

For example, take d = 6 and N = 8, the instruction access sequences when sending

m = 1 and m = 0 are as follows:

• Init: access blocks 1− 6 mapping to set x

• Encode: access blocks 7− 9 mapping to set x (if m = 1); no access (if m = 0)

• Decode: access blocks 1− 6 mapping to set x (if m = 1, DSB and MITE are used; if

m = 0, LSD access is used)

6.3.2 Misalignment-Based Timing Attack with Multi-Threading

To achieve misaligned instruction access, sender and receiver first find virtual addresses of

instructions that map to the same target set as what eviction-based attacks do, and then

offset the initial address of every instruction mix block by 16 bytes (half of the DSB line

size), to misalign the address.

For this type of attack, the total number of instruction mix blocks of the sender and

the receiver are equal to or less than the N ways of the DSB, which has an advantage

as it reduces the number of accesses and increases the transmission rate compared with

eviction-based attacks.

The MT Misalignment-Based Attack is shown in Figure 6.5. Here, the sender and the

receiver use in total M (M ≤ N) instruction mix blocks. In the Init Step and the Decode

Step, the receiver will access in total d (where d < N) sets of instructions mix blocks that

map to one DSB set, this is repeated for p times. In this case, the receiver’s instructions

accessed in the Init Step will be processed by the LSD. For the sender, in the Encode Step,

when sending m = 1, the sender will execute (M − d) (where M < N + 1) sets of misaligned

instructions that map to the same DSB set as the receiver for q iterations. In this case,

154

RS

BPU

DSB

IDQ

LSD
Mux

Encode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=0

Do nothing
Execute M-d

way of
misaligned x set

instructions

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQMux

MITE

Init and set up states

Execute d way of
x set instructions

(a) init (b) encode

(c) decode

RS

BPU

IDQ

LSD
Mux

Decode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Decode secret_bit=0

LSD

Execute d way
of x set

instructions,
measure

access timing

DSB

Execute d way
of x set

instructions,
measure

access timing

Fast
access

Slow
access

RS

Initiate and set
up states

Encode to
channel

Decode from
channel

L1I Cache,
Decode
Unit, IF

MITE

L1I Cache,
Decode
Unit, IF

MITE

Figure 6.5: Overview of the MT Misalignment-Based Attack.

misalignment of the DSB causes the micro-op delivery to be redirected to DSB from LSD,

which leads to faster access of receiver’s instruction in the Decode Step. When sending

m = 0, the sender does nothing. In this case, all the micro-ops will still be delivered by the

LSD and the receiver’s instruction access in the Decode Step will observe slower access time.

We note that LSD is indeed slower in delivery which is demonstrated by the evaluation

shown in Figure 6.1.

For example, take d = 5, N = 8,M = 8, the access sequences when sending m = 1 and

m = 0 are as follows:

• Init: access instruction mix blocks 1− 5 mapping to set x

• Encode: access misaligned instruction mix blocks 6− 8 mapping to set x (if m = 1);

no access (if m = 0)

• Decode: access blocks 1− 5 mapping to set x (if m = 1, DSB access is used; if m = 0,

LSD access is used)

6.3.3 Non-MT Eviction-Based Attack without Multi-Threading

Our attack using internal-interference of the sender is shown in Figure 6.6. The number of

iterations (q) of sender’s encoding step and number of iterations (p) of receiver’s initialization

and decoding steps will be the same in this attack (i.e. p = q) in order to reliably observe

one timing result with a low error rate. For one iteration, in the Init Step, the receiver

155

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Encode secret_bit=0
Execute

N+1-d way
of x set

instructions

Execute
N+1-d way

of y set
instructions

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQMux

MITE

Init and set up states

Execute d way of
x set instructions

(a) init (b) encode

(c) decode

RS

BPU

IDQ

LSD
Mux

Decode secret_bit=1

RS

BPU L1I Cache,
Decode
Unit, IFDSB

IDQ

LSD
Mux

MITE

Decode secret_bit=0

LSD

Measure
total

access
timing

L1I Cache,
Decode
Unit, IFDSB MITE

Fast
access

Slow
access

RS

Initiate and set
up states

Encode to
channel

Decode from
channel

Start
timer

Start the
timer

Measure
total

access
timing

Execute d
way of x set
instructions

Execute d
way of x set
instructions

Figure 6.6: Overview of Non-MT Stealthy Eviction-Based Attack.

starts the timer in order to measure total time of the sender. The sender then executes d

(d ≤ N) instructions mix blocks that map to DSB set x. The instructions will be processed

by the LSD. In the Encode Step, When sending m = 1, the sender will execute N + 1− d

instruction mix blocks that map to the same DSB set as the receiver. When sending m = 0,

the sender will execute the same number of instruction mix blocks but ones that map to a

different DSB set y. (stealthier for security) or do nothing (faster for bandwidth). In the

Decode Step, the sender will access the same number d of instruction mix blocks accessed

in the Init Step. Then the receiver will end the timer and calculate the total timing of the

sender’s accesses to derive the information sent. If the Encode Step’s access causes evictions,

sender’s micro-ops in the Decode Step will be delivered from DSB and MITE, where longer

timing will be measured, indicating m = 1 was sent from the sender. Otherwise, m = 0 was

transmitted from the sender.

For example, take d = 6 and N = 8, the instruction access sequences when sending

m = 1 and m = 0 are as follows:

• Init: access instruction mix blocks 1− 6 mapping to set x

• Encode: access instruction mix blocks 7− 9 mapping to set x (if m = 1); 7− 9 of set

y (if m = 0) (Stealthy) / no access (Fast)

• Decode: access instruction mix blocks 1− 6 mapping to set x (if m = 1, DSB and

MITE are used; if m = 0, LSD access is used)

156

6.3.4 Non-MT Misalignment-Based Attack without Multi-Threading

Similar to eviction-based non-MT attack shown in Section 6.3.3, misalignment can also be

used to generate interference without multi-threading.

For example, take d = 5, N = 8,M = 8, the instruction access sequences when sending

m = 1 and m = 0 are as follows:

• Init: access instruction mix blocks 1− 5 mapping to set x

• Encode: access misaligned instruction mix blocks 6− 8 mapping to set x (if m = 1);

aligned instruction mix blocks 6− 8 mapping to set x (Stealthy) / no access (Fast) (if

m = 0)

• Decode: access instruction mix blocks 1− 5 mapping to set x (if m = 1, DSB access

is used; if m = 0, LSD access is used)

6.3.5 Slow-Switch Attack without Multi-Threading

We now also present a covert-channel attack making use of LCP instructions, which we

call the slow-switch attack. For slow-switch attack, the receiver (attacker) starts and ends

the timer in the Init and Decode Steps. Meanwhile, in the Encode Step, within the loop,

there will be in total r number of LCP instructions being executed and the number of loops

is p (or q, p = q as the same setting for non-MT eviction-based attacks). When sending

m = 1, the sender will alternatively execute one normal add instruction followed by one

add instruction with length changing prefix; this is repeated for r times. This new type of

instruction mix can enlarge the LCP stall cycles and maximize the LSD-to-DSB switches.

When sending m = 0, the sender will execute r normal add instructions and then execute r

add instruction with length changing prefixes. This instruction mix has fewer LCP stalls,

thus minimizing the LSD-to-DSB switch penalties.

For example, take r = 16, the instruction access sequences when sending m = 1 and

m = 0 are as follows:

• Init: start the timer.

• Encode: access r = 16 groups of instructions, where each group has an add instruction

with a length changing prefix and then a normal add instruction (if m = 1); or access

157

1 2 3 4 5 6 7 8
Receiver Way Number (d)

50

100

150

200

250

Tr
an

sm
is

si
on

 R
at

e
(K

bp
s)

Gold 6226 trans. rate
Gold 6226 error rate
Gold 6226 effect. trans. rate
E-2174G trans. rate
E-2174G error rate
E-2174G effect. trans. rate
E-2286G trans. rate
E-2286G error rate
E-2286G effect. trans. rate

0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r R
at

e

Figure 6.7: Evaluation of MT Eviction-Based Attack for different values of parameter d.

Table 6.2: Transmission rates and error rates of the covert-channel MT Eviction-Based Attack when
setting d = 1 for for different message patterns: all 0s, all 1s, alternating 0s and 1s, and random.

All 0s Message All 1s Message Alternating 0s and 1s Random Message
G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G

Trans. Rate
(Kbps)

42.66 49.53 87.33 55.28 61.17 102.39 50.21 58.86 64.96 18.28 21.80 25.61

Error Rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.68% 10.69% 12.56% 22.57% 18.53% 19.83%

16 normal add instruction and then 16 add instruction with length changing prefixes

(if m = 0);

• Decode: stop the timer.

6.4 Evaluation of Timing-Channel Attacks

In this section, we evaluate the transmission rates and error rates of all the timing covert-

channel attacks discussed in Section 6.3. Power attacks, SGX attacks, use of new covert

channels in Spectre, microcode patch fingerprinting, and new side-channel attack are evalu-

ated later.

The evaluation is conducted on 4 recent x86_64 processors from Intel Skylake’s family.

The specifications of the processors is shown in Table 6.1. For each covert channel, the

transmitted data is compared with the received data to compute the error rates. To evaluate

the error rates of the channel, the Wagner-Fischer algorithm [113] is used to calculate the

edit distance between the sent string and the received string.

6.4.1 Number of Iterations (p, q) for Attack Steps

After careful tuning of the configurations, when sending each bit m of message, non-MT

attacks can have p = q = 10 (to repeat initialize, encode, and decode steps and still reliably

158

Table 6.3: Transmission rates and error rates of all the eviction-based and misalignment-based
attacks when setting d = 6 for eviction-based attacks and d = 5, M = 8 for misalignment-based
attacks. The transmitted message is alternating pattern of 0s and 1s. Transmission rates for the
fastest attack are shown in bold. Intel Xeon E-2288G machine we tested has hyper-threading disabled
so there is no MT attack possible.

Non-MT Stealthy Eviction. Non-MT Stealthy Misalign. MT Eviction.
G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G

Trans. Rate
(Kbps)

419.67 851.81 1182.55 1356.43 713.01 466.02 723.15 1094.39 115.97 113.02 161.63 —

Error Rate 6.48% 3.43% 3.45% 0.36% 22.56% 11.34% 16.56% 10.08% 15.52% 14.44% 13.93% —
Non-MT Fast Eviction. Non-MT Fast Misalign. MT Misalignment.

G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G G6226 2174G 2286G 2288G
Trans. Rate
(Kbps)

501.06 977.68 1205.90 1399.96 500.90 959.45 1228.35 1410.84 129.36 152.44 200.37 —

Error Rate 6.09% 0.00% 0.00% 0.00% 0.16% 0.00% 0.16% 0.00% 7.85% 2.77% 4.62% —

observe result with low error rates). To transmit each bit, the sender does one encoding

step and receiver does one decoding step and this pattern of activity is repeated in total 10

times, hence p = q = 10. For MT attacks, for each bit to be transmitted the receiver does 10

decoding measurements for each encoding step, while each encoding step has to be repeated

100 times, hence p/q = 10, where q = 100 (total encoding steps), p = 1000 (total decoding

steps). The q = 100 is due to more noise in the MT setting, compared to q = 10 for the

non-MT setting.

6.4.2 Threshold for Detecting Transmitted Bit

To establish decoding threshold for timing measurements, to determine m = 1 vs. m = 0,

an alternating pattern of 0s and 1s is sent, and the timing (measured in cycles using the

rdtscp instruction) is averaged for 0s and 1s to establish the threshold. Based on different

covert channels, if a measurement is 30− 70% or more above the threshold, it is judged to

be a “1”, otherwise it is judged to be a “0”. The simple encoding can be in future replaced

with other channel coding methods [114] for possibly faster transmission.

6.4.3 Influence of (d, M) Parameters

To help find the ideal transmission rate, we evaluate the influence of d (number of DSB

ways accessed by the receiver) and its impact on the transmission rate and error rates.1

1. This work is not aimed at achieving the highest bandwidth covert channel. To fully optimize the
transmission rate and error rate, techniques such as the ones used in [115] can be further exploited.

159

Table 6.4: Transmission rates and error rates of Slow-Switch Attacks. The transmitted message is
alternating 0s and 1s.

Non-MT Slow-Switch-Based
G6226 2288G

Tr. Rate (Kbps) 678.11 1351.43
Error Rate 6.74% 0.64%

The results of changing d for MT Eviction-Based Attack is shown in Figure 6.7. When

increasing d from 1 to 8 (DSB has N = 8 ways), the number of ways accessed by the sender

will decrease (number of sender’s ways accessed is N + 1− d). Receiver’s observation will

then become less stable (error rate increases) while on the other hand transmission rate

increases. Error rates of small d (e.g., d = 1, 2) are also large because when the number of

ways accessed by the receiver is small, timing difference of sending 0 and 1 is small, which

can be disrupted by the system noise. To find a balance between the transmission rate and

error rate, we choose d = 6 for eviction-based attacks. For misalignment-based attacks, we

choose d = 5, M = 8 (M is the total number of ways accessed by the sender and receiver for

misalignment-based attacks).

6.4.4 Influence of Message Patterns

A sample evaluation of MT Eviction-Based Attack for the four different message patterns

with d = 1 is shown in Table 6.2. From the results it can be seen that better transmission

rate and error rate are derived for all 0s and all 1s. This is possibly because when not

changing the bits (as is case for all 0s or all 1s), the frontend path used by the sender accesses

remains the same, generating less noise. The random messages are the worst due to the

frequent and unstable frontend path changes.

6.4.5 Transmission Rates and Error Rates

The bit transmission rates and error rates for all types of the timing attacks are presented in

Table 6.3 and Table 6.4, with d = 6 for eviction-based attacks, d = 5 for misalignment-based

attacks and r = 16 for slow-switch attacks. For the best attack, which is the Non-MT

Fast Misalignment-Based Attack, the transmission rate can be as high as 1410 Kbps (1.41

Mbps) with almost 0% error rate. Slow-switch attacks have generally similar transmission

160

50 60 70
Watt

0.0

0.5

1.0

1.5

D
en

si
ty

LSD delivery
DSB delivery
MITE+DSB delivery

Figure 6.8: Example histogram of power consumption when different frontend paths are used to
process micro-ops in Intel Xeon Gold 6226 processor.

rate compared with the non-MT misalignment-based attacks. Non-MT attacks have better

transmission rate than MT attacks due to smaller noise.

6.4.6 Power-Channel Attack Evaluation

Switching between LSD or DSB and the MITE will not only cause timing changes for

instruction processing, but also power changes. The power changes can be measured by

abusing unprivileged access to Intel’s Running Average Power Limit (RAPL) interface [116].2

Figure 6.8 shows example histogram of the power consumption of utilizing different

frontend paths for the micro-ops in Intel Xeon Gold 6226 processor. Based on the power

differences, we demonstrate a non-MT attack that can detect LSD or DSB vs. MITE frontend

path power differences caused by eviction or misalignment through observing the power

changes in RAPL. Configuration of the attack is similar to the non-MT attack demonstrated

in Section 6.3.3. To observe the power differences, for each bit transmission the initialize,

encode, and decode steps have to be iterated for p = q = 240, 000 times since RAPL interface

update interval is around 20kHz [117]. The power attack’s bandwidth is limited by the

update interval of RAPL, and is less than for the timing attacks.

Table 6.5 shows the evaluation results of two power-based non-MT attacks on Intel’s

Xeon Gold 6226 processor. The bandwidth of the power attacks is around 0.6 – 0.7 Kbps.

The transmission is still above 100 bps which is considered a high-bandwidth channel

by TCSEC [118]. The power attack bandwidth can possibly be further improved using

techniques such as the ones shown in recent PLATUPUS work [117].

2. In power attacks, if unprivileged RAPL accesses are prevented, we can still potentially use privilege
access and use power to attack SGX enclaves.

161

Table 6.5: Evaluation of Non-MT Power-Based attacks on Intel Xeon Gold 6226 processor when
setting d = 6.

Eviction-Based Misalignment-Based
Tr. Rate (Kbps) 0.66 0.63

Error Rate 18.87% 9.07%

Table 6.6: Transmission rates and error rates of covert channels for leaking information from an
SGX enclave when setting d = 6 for eviction-based attacks and d = 5, M = 8 for misalignment-based
attacks. The transmitted message is alternating 0s and 1s. Intel Xeon E-2288G machine we tested
has hyper-threading disabled so no MT attack data is provided for this machine.

SGX Attacks Non-MT Stealthy Eviction. Non-MT Stealthy Misalign. MT Eviction.
E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G

Trans. Rate
(Kbps)

18.96 19.56 21.20 23.93 24.70 27.10 7.85 14.89 —

Error Rate 0.16% 1.33% 2.18% 0.32% 0.76% 0.76% 6.74% 8.02% —

SGX Attacks Non-MT Fast Eviction. Non-MT Fast Misalign. MT Misalign.
E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G E-2174G E-2286G E-2288G

Trans. Rate
(Kbps)

29.35 32.01 34.48 30.36 31.18 35.20 6.39 13.62 —

Error Rate 0.04% 1.40% 0.40% 0.08% 1.08% 0.68% 2.56% 12.95% —

6.5 SGX Attack Evaluation

The goal of Intel Software Guard Extension (SGX) is to protect sensitive data against

the untrusted user, even on already compromised system, with the help of hardware-

implemented security and cryptographic mechanism inside the processor [19]. Unfortunately,

as we demonstrate, SGX is also vulnerable to frontend-related attacks.3

To demonstrate our attacks in an SGX environment, we assume a sender program is

running inside the SGX enclave and manipulates the use of the frontend paths to communicate

to a receiver outside of the SGX. We consider both non-MT and MT SGX attacks, but for

both there is only one SGX entry and one SGX exit, while attacker measures the execution

time from the outside. Consequently, instruction TLB flushing upon entry and exit does not

impact our attacks.

6.5.1 MT Timing SGX Attacks

For MT timing SGX attacks, the sender maintains its own thread and performs the covert

transmission from within the enclave. Meanwhile, the receiver decodes bits of the sender

by measuring the timing of its own operations. Under this scenario, the receiver is able to

3. We demonstrate attacks on SGX, although there is a newer SGX2 which extends SGX with dynamic
memory management and other features, we believe these features will not affect our attacks and our attacks
can be applied to SGX2 in future when machines with SGX2 are available.

162

detect the performance difference of its own instruction access based on the activity inside

the SGX. If SGX thread is running, then the receiver will observe the partitioned DSB. If

the SGX thread is idle, whole DSB is dedicated to the receiver thread. Receiver can observe

its own internal-interference and deduce the DSB state.

Evaluation of the MT timing SGX attacks is shown in Table 6.6. It can be seen from

the table that the transmission rates of SGX attacks can be roughly 6 Kbps – 15 Kbps with

iteration numbers p = 1, 000, q = 10, 000, while maintaining the similar error rates as the

MT non-SGX attacks.

6.5.2 Non-MT Timing SGX Attacks

For non-MT timing SGX attacks, the sender program is still inside the enclave, while the

receiver derives the information by measuring the timing of SGX operation from outside of

the enclave. Under this scenario, the receiver’s observations depend on ability to detect the

internal interference of the sender’s accesses within the enclave, to detect whether there are

frontend path changes caused by the eviction or misalignment of the micro-ops or not. The

non-MT SGX attacks, because they do not leverage multi-threading, are possible even when

multi-threading is disabled for security.

In the non-MT setup, we assume the attacker (receiver) is able to trigger the sender

and they both execute on the same hardware thread. To reduce overhead and noise of

enclave exits and entrances, for each transmission of a bit, there is only one entrance and

exit. Effectively the receiver starts time measurement, then allows the enclave to run, and

then finally measures the timing of the enclave as it was affected by the frontend paths.

Compared to non-SGX attacks, more iterations of initialization, encoding, and decoding are

necessary (p = q = 1, 000 − 5, 000 iterations for the SGX attack compared to p = q = 10

iterations for non-SGX attacks) in order to transmit one bit.

Evaluation of the non-MT timing SGX attacks is shown in Table 6.6. As the table

shows, the transmission rates of non-MT SGX attacks are roughly 1/25 to 1/30 of non-MT

non-SGX attacks, while still maintaining acceptable and even lower error rates.

163

Table 6.7: L1 miss rates of our Spectre v1 version attack (run on Intel’s Xeon Gold 6226 processor)
with variants of Spectre v1 that use different covert channels. MEM F+R, L1D F+R, and L1D LRU
attacks are from work [119]. L1 miss rates in [119] are L1D miss rates.

Others Our
MEM

F+R [119] L1D F+R [119] L1D LRU [119] L1I F+R L1I P+P Frontend

L1 Miss Rate 2.81% 4.79% 4.48% 0.45% 0.48% 0.21%

6.5.3 Power-Based SGX Attacks

Power-based attacks are also possible, but not discussed and leave for future work. We

remark, however, that even if RAPL is disabled for user-level code, power-based SGX attacks

are possible because RAPL can be accessed from the privileged, malicious OS.

6.6 Frontend and Instruction Cache-Based Spectre Attack

Evaluation

Speculative attacks leverage transient execution to access secret and then a covert channel to

pass the secret to the attacker [3, 4, 120]. In this section, we demonstrate our new variants

of Spectre v1. In our Spectre attacks, we assume an in-domain attack where the victim and

attacker code are in the same thread, so only one thread is running on the processor core.

The secret message is represented by 5 bit chunks (each chunk can have value from 0 to 31).

We then use one of the 32 DSB sets to represent each value. Similar to cache-based channels,

during the speculative execution, secret value is encoded by accessing the corresponding

set. Unlike other cache attacks, to access a DSB set, instruction mix block mapping to that

set has to be executed. We also implemented Spectre v1 attacks using L1I cache Flush +

Reload attack and L1I Prime + Probe attack, to compare to our frontend attacks.

Table 6.7 shows the L1 miss rate when using our channels compared to other channels.

While our Spectre v1 attacks have lower bandwidths than data cache-based Spectre attacks,

we are able to achieve lowest L1 miss rates. Especially, compared with recent cache-based

LRU [119] covert channels which target stealthy attacks without causing high data cache

miss rates, our frontend attack does not cause any cache misses at all, making the L1 miss

rate the smallest.

164

(a) Average Timing (b) Power

W
at
ts

C
yc
le
s

Figure 6.9: Example comparison of frontend timing and power for executing instruction mix blocks
less or greater than LSD capacity. All mix blocks map to the same DSB set. If LSD is disabled
execution falls back to DSB and MITE.

6.7 Microcode Patch Detection Evaluation

When evaluating the behavior of the processor frontend, we also found a new type of attack

where performance of the frontend can be used for fingerprinting the microcode updates

of the processor. In particular, we evaluated our Intel Xeon Gold 6226 test machine under

older 3.20180312.0ubuntu18.04.1 (patch1) and newer 3.20210608.0ubuntu0.18.04.1

(patch2) Intel microcode patches. While neither patch explicitly mentions LSD, we found

that with the newer patch2 LSD is disabled while with older patch1 the LSD is enabled. To

switch between the patches, the processor has to be restarted so the microcode in the CPU

can be updated.

To detect the changes in the LSD behavior, we can use both the timing difference and

the power difference when testing code sequences with number of instruction mix blocks less

than LSD capacity (so they would fit in LSD and be processed by LSD) or sequences with

number of instruction mix blocks greater than LSD capacity (so micro-ops would be forced

to be handled by DSB and MITE instead). The average timing and power difference for

LSD enabled (patch1) vs. disabled (patch2) are shown in Figure 6.9. Attackers can clearly

differentiate which patch has been applied, with timing being a more reliable indicator.

Attackers can leverage this to learn of vulnerabilities of the processor. For example,

patch2 protects against CVE-2021-24489: potential security vulnerability in some Intel

Virtualization Technology for Directed I/0 (VT-d) products that allows for escalation of

privilege.4 Knowing the patch is applied or not allows the attacker to exploit VT-d related

4. The patch2 also adds protections against CVE-2021-24489, CVE-2020-24511, CVE-2020-24512, and

165

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: AlexNet

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: SqueezeNet

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: VGG

0 25 50 75 100
Sample Number

1.8

2.0

2.2

A
tta

ck
er

's
 IP

C

Victim: DenseNet

Figure 6.10: Fingerprinting results of machine learning model using fron-
tend side-channel attacks. Baseline IPC of the attacker program is 3.58.
With two threads the IPC is roughly halved. Furthermore, due to different
patterns of the victim it fluctuates between the 1.8 and 2.2.

Figure 6.11: Inter-
distance and intra-
distance of all the
models.

attacks. The frontend timing thus cannot only be the target of attack itself, but help attacker

discover other vulnerabilities in the system.

6.8 Evaluation of Side-Channel Attack and Fingerprinting of

Applications

Based on the frontend characteristics, we developed a new frontend-based fingerprinting

technique utilizing a side-channel attack to demonstrate that frontend can be not only used

for covert communication, but also for side-channel information leakage. Our fingerprinting

technique is able to identify what type of workload a victim is running on a co-located

SMT thread. Moreover, our technique can achieve fingerprinting using low-frequency timing

measurements, therefore, it works on platforms where access to high-precision timers is

limited. The approach does not use any performance counters or privileged access, and

depends only on the attacker (receiver) measuring their own instructions per cycle (IPC).

The IPC is affected by the shared frontend, especially the shared MITE, and interference

between attacker and victim in the frontend are the sources of the information leakage.

The attacks were tested on same CPUs as the covert channels and work with current Intel

processors where DSB and LSD are partitioned between threads (but MITE is not).

When compared with previous fingerprinting techniques [121, 122], which are mostly

based on using performance counters or contention in the backend of the processor, our

side-channel attack has number of advantages. Our method 1) does not need to measure the

CVE-2020-24513.

166

performance of the victim workload, 2) does not require usage of any performance counters

but only a low-precision timer, 3) does not depend on eviction of lines in instruction and

data caches so it is robust against the existing defense measures on caches, and 4) it is also

robust against existing frontend resource hardware partitioning, including DSB partitioning

and LSD partitioning implemented on Intel microarchitectures.

6.8.1 Side Channel Design

To develop the side channel, we designed a modified receiver that uses a new mix block of

nop instructions instead of the prior instruction mix blocks used in the covert channels. We

use nop instructions in the x86 ISA to construct our attacker thread, which naturally triggers

frontend resources to decode the nops, but it does not generate any traffic in the backend.

The attacker thread used to perform fingerprinting loops through 100 nop instructions which

will not fit in LSD but are able to fit in DSB. The loop takes two cache lines, which never

get evicted from the cache because of the repeated loop access within the attacker program.

Victim program will slow down the decoding process of the MITE for the attacker which

causes timing variation of the attacker program, and when the attacker measures its own

performance variation, it is able to observe patterns that reveal type of victim application.

The attacker measures its own performance by computing the IPC based on the number of

nops executed and time reading from the rdtsc.

We measure only the instruction per second at a low frequency of 10Hz because existing

platforms limit the usage of high-precision timers [121]. Euclidean distance [123] is used to

calculate the distance of IPC measurement traces of two test results. If these two tests of the

attacker program run with the same victim benchmark, intra-distance is derived. Otherwise,

inter-distance is derived. Furthermore, we verified that the contention indeed happens in

the frontend by monitoring the performance counter changes. Note that the actual attack

does not use performance counters. They were only used to validate the results.

6.8.2 Fingerprinting of Mobile Applications

To demonstrate the fingerprinting and the side-channel attack on mobile application usage,

we performed the experiments using a popular Geekbench5 benchmark suite [124]. It consists

167

of a wide range of workloads including camera, navigation, speech recognition, etc.

We run the attacker thread along with a Geekbench5 thread on a single SMT-enabled core.

Unique IPC waveforms of the attacker are derived when running with different benchmarks.

We observe an average 0.232 intra-distance vs. 4.793 inter-distance for the 10 benchmarks

tested. Our results indicate that the IPC changes of the attacker thread can be used directly

to distinguish the type of the victim application that is running.

6.8.3 Fingerprinting of Machine Learning Algorithms

We also demonstrate the fingerprinting of different machine learning algorithms from the

TVM framework. Figure 6.10 shows the average IPC traces of the attacker program thread

when running with different CNN model inference threads on the same SMT core. Clear

differences in the traces are shown and these can be used to distinguish different machine

learning models based on the traces using different convolution layers. A set of traces can thus

be compared to reference traces to distinguish a network. Because of the frontend contention

in the MITE, even with partitioned LSD and DSB, the attacker can leak information about

type of victim machine learning model. As can be seen in Figure 6.11, the inter distance

and intra distance can be clearly differentiated. This shows that the fingerprinting results

can clearly differentiate machine learning model architectures. We observe an average 0.550

intra-distance vs. 1.937 inter-distance for tested 4 CNN models.

6.8.4 Defense about Frontend Attacks

The frontend vulnerabilities do not involve interference in traditional instruction or data

caches, and they do not involve speculation. Therefore, a large set of existing defense

mechanism will not be able to prevent them [61, 63, 125]. The major difficulty of dealing

with the security vulnerabilities of the frontend paths is that the frontend is designed to give

better performance or lower power for different execution scenarios, which inevitably creates

inherent timing or power signatures. Eliminating these timing or power signatures would

reduce the performance or power benefits. Since frontend components such as the MITE,

DSB, and LSD are widely used in modern architecture designs. Defending the frontend

vulnerabilities will require new approaches for the design of the frontend.

168

At the system-level, the SMT can be always disabled for security-critical applications,

which would eliminate the MT attacks. This should be probably already done due to other

prior attacks on caches, for example.

Even with SMT disabled, the non-MT attacks are possible. Defending these would

require careful design of the code so that there is no secret-dependent timing. This requires

writing of the code to make sure that the frontend switching or timing is always the same,

regardless of the secret data being processed. Instruction alignment, as shown by our

misalignment-based attacks, can also cause timing differences, so not just the code, but its

location in the address space needs to be considered.

Regarding Spectre attacks, the frontend state should not be updated due to speculative

execution. Existing defenses such as buffering cache updates could be applied to the DSB.

For power-based attack, the ability to monitor power of other users or SGX enclaves

needs to be disabled. For user-level code, existing patches from Intel should be applied to

disable access to the power monitors. For SGX, the power monitors can be enabled in debug

mode for development, but disabled in production mode.

Since patch detection is based on timing observation of whether some components are

enabled or disabled, there does not seem to exist an easy solution (unless all frontend

paths have same timing, which defeats the purpose of having different paths to get better

performance). System administrator should assume that potential attackers know exactly

which patches have been applied, and the patch level of the system should not be considered

a secret.

Although a number of attacks have been demonstrated in our work, we do note that to

perform some of the attacks we need to find specific instruction mix blocks to minimize the

contention in the backend to allow the attacks to be effective. The attacks may be difficult to

deploy in practice, for example, if the right instruction mix block is not available in the code.

Nevertheless, our other attacks such as the side-channel and application fingerprinting do

not depend on specific instruction mix blocks, but overall operation of the victim program.

The frontend then can impact the system security, and more evaluation of the defenses and

how to deploy them are needed.

169

Chapter 7

Preliminary Study of

Vulnerabilities in Accelerators

Beyond CPUs

This chapter presents preliminary work exploring security of accelerators, such as GPUs or

cloud-based quantum computers. As much computation is done on accelerators, not on just

the main processors, the security of these accelerators needs to be analyzed, attacks studied,

and defenses proposed.

7.1 GPU Covert-Channel Attacks

A GPU, or Graphics Processing Unit, is a specialized designed electronic circuit for rapid

manipulating and altering memory to accelerate the image creation in a frame buffer for

output to a display device. GPUs are broadly used in accelerating security and efficiency-

conscious systems, e.g., autonomous vehicles (AV), datacenters, game consoles, and cloud

gaming services.

7.1.1 Parallelism Features of GPU

Compared with CPU, GPU makes use of highly parallel structure to more efficiently process

large blocks of data in parallel. Take the most recent GPU microarchitecture Ampere [126]

170

Figure 7.1: A100 Streaming Multiprocessor (SM). The figure is a screen-capture from [126].

as an example. The A100 Tensor Core GPU implementation of GA100 GPU contains 7

GPU Processing Clusters (GPC), each GPC contains 7 or 8 Texture Processing Clusters

(TPC), and each TPC contains 2 Streaming Processors (SM). In this case, each full A100

GPU contains 108 SMs.

For each SM, each SM contains 4 Tensor Cores, 64 INT32 (integer 32-bit), 64 FP32

(floating point 32-bit), and 32 FP64 (floating point 64-bit) CUDA (Compute Unified Device

Architecture, a parallel computing platform and application programming interface of GPU)

cores, etc. These units can process the data in parallel to increase performance. However, if

we are able to establish covert channels in GPUs, these units could help boost the bandwidth

of data transmissions through the covert channel, forming a high-speed and high-fidelity

transmission channel.

7.1.2 GPU Covert Channels

In order to protect the security and increase performance, for the new generations of GPUs, a

new Multi-Instance GPU (MIG) capability is able to provide enhanced client and application

isolation for multi-tenant and virtualized GPU environments. This will be beneficial to

171

cloud service providers. On the other hand, this provides chances of running the victim

(sender) and the attacker (receiver) in parallel, where covert channels can be established.

As the microarchitecture shows in Figure 7.1, L0 instruction cache, Warp Scheduler,

Special Function Units (SFU), and L1 Data Cache is shared. The address space is shared

and the GPU programming model allows the creation of thousands of threads to execute the

same code. This provides the chance to set up the sender the receiver to different threads

that share the same functional units, where performance characteristics such as timing and

power can be observed through side effects of running the functional units. The preliminary

work is a collaborated with NVIDIA and the attack details are not further disclosed here.

7.2 Quantum Computing Crosstalk Attacks

Small quantum computers are already available today as cloud-based accelerators for classical

computers to use. Fingerprinting of such quantum computer accelerator devices is a new

threat that poses a challenge to shared, cloud-based quantum computers. Fingerprinting can

allow adversaries to map quantum computer infrastructures, uniquely identify cloud-based

devices which otherwise have no public identifiers, and it can assist other adversarial attacks.

This work shows idle tomography-based fingerprinting method based on crosstalk-induced

errors in NISQ quantum computers.

Quantum Computer Accelerators in a Cloud Setting

Quantum computers are machines that make use of the properties of quantum physics to

perform computations and store data. Especially for certain tasks, they can vastly outperform

the current best supercomputers and solve certain computational problems, such as integer

factorization (which is the key computation step of the RSA (Rivest–Shamir–Adleman)

encryption), in a substantially fast speed. In the next few years, expansion is expected

as the quantum computation shifts toward real-world use in the field of pharmaceutical,

data security and other applications. Quantum computer power scales exponentially with

quits. As the quantum hardware development is accelerating, larger quantum machines

are introduced, the throughput and utilization can be improved by multi-programming or

172

repeat s times

ŵ0

ŵn

|ϕ0〉 I

|ϕi = 0〉 H

|ϕn〉 I

(a) Single-qubit drive on qi with Hadamard
gates, other gates are idle (I).

repeat s times

ŵ0

ŵn

|ϕ0〉 I

|ϕi = 0〉

|ϕi+1 = 0〉

|ϕn〉 I

(b) Two-qubit drive on qi, qi+1 with
CNOT gates, other gates are idle (I).

Figure 7.2: Circuit schematic of idle tomography circuits with single- and two-qubit drive. Each
spectator qubit qj is initialized and measured accordingly.

running programs from different users in parallel through the server cloud. With cloud-based

access, the provider can decide which quantum computer to schedule the programs on, or it

can put two or more programs (users) on the same computer if the resources allow. Time

sharing of resources is not possible in quantum computers yet, but spatial sharing for the

quantum computers is possible.

However, the dominant user case of providing cloud-based access for remote users to

rent quantum computers lead to new security and privacy threats. Under the cloud-based

setting, researchers have been exploring how to allow the computers to be shared between

different users or tasks to improve the utilization of the resources and eventually provide

lower costs for users. However, allowing multiple users to share the quantum computers

provide the attacker to be co-located with the victim program, where crosstalk can be

exploited to perform fault injection. The remote users can in this case, e.g., try to learn the

infrastructure, and attack other users, or leak information from other users.

7.2.1 Crosstalk and Idle Tomography

Noise in quantum computers can be attributed to different types of errors, including gate

errors, decoherence errors, readout errors, and crosstalk errors. Among them, crosstalk

errors refers to that gate operations on one or two qubits (depending on the gate type)

173

0 1 2

3

4

0 1 2 3 40 1 2 3 4 0 1 2 3 4 0 1 2

3

4

0 1 2

3

4

0 1 2

3

4 5 6

0 1 2

3

4 5 6

0 1 2

3

4 5 6

(a) Santiago (b) Manila (c) Bogota (d) Quito (e) Belem (f) Lima (g) Casablanca (h) Lagos (i) Jakarta

Figure 7.3: The 9 IBM Q machines (backends) used in the evaluation. The figure shows the
qubits and physical topologies for each backend. The fingerprinting circuits are mapped onto these
topologies, or subgraphs of the topologies if not all qubits are used.

affect other, nearby qubits or gates. The crosstalk can be qubit-to-qubit, coupling-to-qubit,

qubit-to-coupling, or coupling-to-coupling. As this work shows, crosstalk is a feature of

NISQ quantum computer hardware that allows adversarial threats.

In order to measure the crosstalk, there are two different methods: Simultaneous

Randomized Benchmarking (SRB) [127] and Idle Tomography (IDT) [128]. We chose IDT

since it uses a comparably smaller number of circuits and relatively shorter circuits [128].

IDT characterizes the error accumulated by idle qubits over time. Figure 7.2 displays a

typical IDT setup, where one or two qubits are selected as drive qubits. These qubits are

prepared in the |0〉 state in the logical basis. The remainder of the qubits are spectator

qubits. After preparation, gate operations start to work on the drive qubits. In the typical

case, the Hadamard gate H and the controlled-not gate CNOT are used for single- and

two-qubit drive cases, respectively. In the meantime, spectator qubits are kept at idle.

Finally, we measure each spectator qubit and output the results, which are further used for

characterizing the error channels.

7.2.2 Fingerprinting Attack

In this work we utilize crosstalk to fingerprint the quantum computers in a multi-programming

setting. Given a subgraph typology, we can obtain its fingerprint without knowing the

actual device using certain quantum computing features. In that case, we can construct a

classifier to predict with high accuracy which device the subgraph belongs to and what is

the location the subgraph in the quantum device. Like the ML model extraction attack in

classical computers, we believe this fingerprinting attack can also serve as the foundation of

further quantum computing based attacks.

174

0 0 1 0 1 2 0 1 2

3

0 1 2

3

4
(a) 𝑃! (b) 𝐿" (c) 𝐿# (d) 𝐿$ (e) 𝑇$ (f) 𝐿% (g) 𝑇%

0 1 2 3 40 1 2 3

Figure 7.4: Topologies of the 7 tomography circuits used in the evaluation. These represent
attackers A circuits. These circuits are mapped onto the physical topologies of the backends shown
in Figure 7.3, by the provider P.

Threat Model

The threat model consists of an attacker A and a cloud provider P. What the attacker

A targets is to gather one or more full-device fingerprints for each directed graph of the

quantum machine during 1) enrollment. Later in the 2) inference phase, based on this

information, A will collect new fingerprint data and attempt to match it to specific devices

or localities on specific devices.

Fingerprint Enrollment

During the enrollment stage, the attacker A will run a set of full-device idle tomography

circuits to single- and two-qubit drive. For each qubit, set rest of single qubits as spectator

qubits to measure crosstalk. For each coupling between two arbitrary qubit in the circuit,

set rest of the coupling qubits as spectator qubits used for measuring crosstalk. Finally, two

sets of control-group experiments are performed with all qubits as spectator qubits and idle

gate delays corresponding to the single- and two-qubit drive respectively.

Fingerprint Matching

During the inference stage, the attacker requests the cloud provider to run a circuit with

topology dependency. If there exists some topology isomorphic to a subgraph derived during

the enrollment stage, the topology is determined to be satisfiable. The attacker will proceed

to run idle tomography circuits on the topology, while the cloud provider translates the

circuits on the topology. After the cloud provider returns the circuit measurement results to

the attacker, the latter computes a fingerprint.

The attacker A then attempts to infer if the typology belongs to a circuit or specific

location. To do this, A iterates through every enrollment result and identifies the set

175

2 4 6 8

0.5

1

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

0.5

1

0.5

1 Match specificity
Device
Embedding

Prediction Accuracy for Batches 6 - 8 on Various Topologies

Number of experiment batches in the training set

P
re

di
ct

io
n

ac
cu

ra
cy

P1 L2 L3 L4 T4 L5 T5

B
atch 8

B
atch 7

B
atch 6

Figure 7.5: Device- and locality-specific prediction accuracy on the last 3 batches, when the training
set contains the first n batches for n ∈ [1, 8].

isomorphic to the topology. The set is then used as a training set to train a classifier sensitive

to fingerprints of isomorphisms of the topology. Finally, A takes the prediction as the

inferred locality.

Evaluation Setup

The effectiveness of the fingerprinting scheme is evaluated on 9 IBM Q machines (backends)

shown in Figure 7.3. The machines were used to run 9 batches of tomography experiments

over 12 days. For idle tomography, we examine the idle sequence lengths 1, 2, 4 and 8. All

circuits are run and measured for 2048 shots. Each batch generates one full-device fingerprint

for each backend. Generating one full-device fingerprint takes less than an hour on 5-qubit

devices, and less than two hours on 7-qubit devices.

We evaluated 7 different subgraph topologies: P1, L2, L3, L4, T4, L5, T5, as is shown

in Figure 7.4. L5 and T5 are full-device topologies (i.e., they occupy whole backend on L5

and T5 devices respectively). For each subgraph topology, we consider all of its possible

embeddings across all devices. Each subgraph topology can be embedded (i.e., mappped to

the physical machines) in many ways, and the attacker will find out where their circuit was

mapped to.

176

Prediction Accuracy

To evaluate the prediction accuracy, we vary the size of the training set and derive the

corresponding prediction accuracy for various subgraph topologies on two levels of specificity:

• Device-specific. A prediction succeeds if and only if the predicted locality exists on

the same device.

• Embedding-specific. A prediction succeeds if and only if the predicted locality exactly

matches the true locality of the exact device.

As can be seen in Figure 7.5, as the number of batches in the training set increases, the

prediction accuracy values increase substantially. Complex subgraph topologies are easier to

pinpoint regardless of specificity apart from an outlier of L5 in batch 8. Observe that accuracy

values for most of the 4-qubit and 5-qubit topologies reach ∼ 100% when at least 3 batches

are in the training set. The device- and location-specific fingerprinting are demonstrated

with accuracy to be 99.1% and 95.3%, respectively. The excellent fingerprinting abilities

across machines are showed.

177

Chapter 8

Hardware Security Verification

Apart from microarchitectural attacks and defenses presented earlier in this dissertation,

this chapter introduces formal methods which can be used for hardware security verification,

e.g., verify if circuit implementation violates security and privacy rules or not.

8.1 SecChisel Security Verification Framework

This work presents a design-time security verification framework for secure processor ar-

chitectures. Our new SecChisel framework is built upon the Chisel hardware construction

language and tools, and uses information flow analysis to verify the security properties of an

architecture at design-time. To enforce information flow security, the framework supports

adding security tags to wires, registers, modules, and other parts of the design description,

as well as allows for defining a custom security lattice and custom information flow policies.

The framework performs automatic security tag propagation analysis in a new SecChisel

parser and information flow checking using the Z3 SMT solver. The same SecChisel codebase

is used to design hardware modules as well as to verify the security properties, ensuring that

the verified design directly corresponds to the actual design. This framework is evaluated on

RISC-V Rocket Chip expanded with AES and SHA modules. The framework was able to

capture information leaks in the hardware bugs or Trojans that it was tested with.

178

FPGA,
ASIC, or

simulation

Verilog
code for

the design

FIRRTL
parser

and Verilog
compiler

FIRRTL Code
(with security

tags)

SecChisel
Parser

= Modified for
SecChisel

= Unchanged
Chisel SMT

code

SMT
Code

Generator

3rd

Party
Module

Para-
lleliza-

tion

SecChisel
Code Synthesis

Z3 SMT
Solver

Interfe
-rence
Table
Gen.

Interfe-
rence
Table

= Optional

1 2 3

4 5 6 7

Figure 8.1: SecChisel verification workflow. Square boxes represent files or data, ovals represent
tools or processes. The unmodified Chisel tools (in white) can be used to generate the hardware
design, while the new SecChisel components (in turquoise blue) perform the security verification.
Black dotted line circles pre-existing baseline Chisel. Green dashed line includes whole SecChisel
verification flow. Because the security tags are embedded in the source code of the design, single
codebase can be used for both security verification as well as to generate the hardware design. The
use of third-party modules and interference table is optional in addition to help support use of
third-party IP within a design.

8.1.1 Verification Methodology

The goal of this work is to provide a design-time methodology to formally prove security

properties of a secure processor architecture (this Section) and a practical framework using

the methodology (Section 8.1.2). Works on run-time security checks, e.g., Sapper [129] or

GLIFT [130], are complementary to this work.

Assumptions and Threat Model

Either through a bug in a hardware code, or due to a malicious designer or an adversary,

some sensitive data may leak out to untrusted low-security outputs, a so-called “information

leak.” The framework checks, at design-time, if there are any such buggy or malicious flows

of information. Using the information flow tracking, policy violations such as confidentiality

violation or integrity violation can be detected. Information leaks via physical channels,

such as EM radiation, are not considered as they cannot be expressed in today’s hardware

description languages. Hardware bugs or Trojans at design time are considered, but after-

manufacturing bugs [131] are orthogonal to this work. The framework assumes a trusted

compiler and toolchains to convert Chisel to an HDL and then the actual hardware.

Information Flow Tracking Approach

Our work uses information flow tracking (IFT) approach. Information flow refers to the

transfer of information between different entities. Information flow can be explicit, e.g.,

179

a = b; where data or information in b goes to a; or it can be implicit, e.g., b = 0; if (a) then

b = 1; where the value of b reflects whether a is true, but there is not a direct assignment, or

copying of data, from a to b. Typically, when discussing information flow there are different

security levels, e.g., a lower-security level (“Low”) such as public data, a higher-security level

(“High”) such as secret key. Each data is associated with a security level, and information

flow tracking can be used to check the security properties, e.g., no transfer of “High” to

“Low” information (for confidentiality) or “Low” to “High” information (for integrity). Since

information flow tracking has inherent presence of false positive, the SecChisel framework

supports tagging at very fine granularity (individual bits) and using declassification and

dynamic tags to minimize the false positives.

8.1.2 The SecChisel Framework

The proposed methodology is realized in a new SecChisel framework. The framework extends

the existing Chisel language and tools with new security verification functionality. The

SecChisel workflow is shown in Figure 8.1. SecChisel extends data variables (e.g., various

wires, registers, or other parts of the design) of Chisel with security tags, allowing designers

to annotate the design with the security tags associated with variables. During compilation,

the SecChisel code is converted to a modified FIRRTL (Flexible Intermediate Representation

for RTL) [132] and then translated to logical statements that can be used with the Z3

SMT solver [133], which checks for information flow violations based on the security tags.

The SMT solver is used to assert that there are no data transfers between variables that

could violate the security policy. The security verification steps can be done in parallel with

compilation and simulation of a Chisel design. The whole SecChisel workflow consists of:

1. SecChisel Code – hardware description, including the security lattice description,

the new security tags, the dynamic tag-range functions, and declassification.

2. SecChisel Parser – tool for generating the modified FIRRTL that contains both

functional description of the design and information about the security tags.

3. FIRRTL Code – intermediate representation of the design with information about

the security tags.

4. SMT Code Generator – tool for parsing FIRRTL into a FIRRTL statement/expression

180

tree, which is then processed into SMT statements used by an SMT solver.

5. SMT Code – code describing the security lattice, the tags, the dynamic tag-range

functions, data flows, and the assertions for information flow checking.

6. Parallelization – tool that parallelizes the SMT code according to the number of

processor cores available.

7. Z3 SMT Solver – tool that does the actual information flow checking and generates

satisfiable or unsatisfiable result from the SMT code.

8. Interference Table – an optional step where third-party black-box modules can be

used as part of the verification.

SecChisel Code (1© in Figure 8.1)

SecCoreModule class extension and security policy. There is a new SecCoreModule

class that extends the CoreModule class from Chisel and allows modules to have security

lattices bound to them. Figure 8.2a shows the sample SecChisel code of a SHA-256 engine

realized as a Rocket Chip RoCC. The io.addend and io.accum are input ports. The module

is extended from the new base module SecCoreModule to allow its components to be tagged

(line 1), i.e., each basic variable can be associated with a security tag for information flow

analysis. All variables that are not tagged or within normal CoreModule modules have their

security tags set to undefined by default. Undefined tags are resolved in the SMT Code

Generator step.

The default security policy is for enforcing confidentiality: it is not allowed that variables

bound to higher security tags leak their data to the variables with lower security tags. The

policy is checked in Z3 SMT Solver, thus does not require additional specification. Integrity

can be verified in a similar manner.

Security lattice definition. The base Lattice class contains the simplest possible

security lattice with two levels: “High” and “Low”, where “High” has greater security level

than “Low”. Any new security lattice can be created by extending a new object with the base

Lattice class. Any two tags’ values in the security lattice have a greatest lower bound (the

meet) and least upper bound (the join). The meet or join operations are used to calculate

the resulting tag value when variables are processed (Case 2 of Section 8.1.2).

181

High

Low

Inte1 Inte2

1. class SHA256_init (implicit p: Parameters)
extends SecCoreModule()(p){

2. val io = IO (new Bundle {
3. val addend = UInt(64.W).asInput
4. val accum = UInt(64.W).asInput
5. val initReady = Bool()
6. val message_output = Vec(16, UInt(32.W)).asOutput})
7. val message_size = io.accum(SIZE_MSB,SIZE_LSB)
8. val process_id = io.accum(ID_MSB,ID_LSB)
9. val message_in = Cat(io.addend(M_PART_ONE_MSB,

M_PART_ONE_LSB),io.accum(M_PART_TWO_MSB,M_PART_TWO_LSB))
10.
11. // Specify use of custom lattice
12. override val lattice = SHA_Lattice
13.
14. // Define lattice structure
15. object SHA_Lattice extends Lattice {
16. val Inte1 = NewLatticeElement()
17. val Inte2 = NewLatticeElement()
18. LOW < Inte1 < HIGH
19. LOW < Inte2 < HIGH }
20.
21. // Dynamic value tag function
22. val SHA_TagRange =
23. createTagRange(lattice.LOW).add(0, 130, lattice.Inte1)
24. .add(131, 500, lattice.HIGH).add(501,1000,lattice.Inte2)
25.
26. // Dynamic value tags
27. message_in :> (SHA_TagRange, process_id)
28.
29. for (i <- 0 to 16-1){
30. io.message_output(i) :> (SHA_TagRange, process_id)}
31. …
32. }

(a) Example from SHA RISC-V Rocket Chip RoCC with cus-
tom security lattice shown in the sqaure box.
1. class KeyExpansion(implicit p: Parameters)

extends SecCoreModule()(p){
2. …
3. val roundkey = Mem(16, UInt(width = 8))
4. roundkey(0):= "h2b".U; …
5. roundkey :> lattice.HIGH
6. …
7. for(i<-0 to 176-1){
8. io.data_output(i) :> (roundkey_propagate, lattice.LOW)}

(b) Example from AES RISC-V Rocket Chip RoCC.

Figure 8.2: Example from SHA and AES RISC-V Rocket Chip RoCC written in SecChisel code,
new additions compared to base Chisel code are in bold. For the Chisel code not in bold, please refer
to Chisel specification [134]. A custom security lattice is shown, of which “Inte1” and “Inte2” are
extra security tags that have security level between “High” and “Low”.

182

For each SecCoreModule, the designer can define the module’s own security lattice or

implicitly use the default Lattice class. Sub-modules are allowed to have different security

lattices rather than use top module’s security lattice. Within the object, new security lattice

elements are defined, and the relationship among the elements is defined using the overloaded

less-than < operator to show security tag relations between each other. Figure 8.2a shows an

example of a designer-defined new security lattice (lines 14 - 19) including a visualization of

the security lattice for that class. The custom lattice will overwrite the default one (line 12).

Static tags. Static tags of variables in the design do not change their values throughout

the verification process and always have the fixed value assigned by the designer. They are

used when the designer is certain about a variable’s security level for the whole life cycle of

the system. In line 5 of Figure 8.2b, which shows SecChisel code for an AES engine realized

as a Rocket Chip RoCC, the encryption key of AES RoCC is tagged as “High” security

using the :> operator.

Dynamic tags. Dynamic tags are tags of which the value depends on the data value of

other variables (wires, registers, etc.), which are known as the dependent variables. The

value of the dynamic tag is a function of the dependent variables. The function outputs

one of the values from the security lattice, based on rules specified by the designer, called

“tag-range functions.” A tag-range function for dynamic tags in SHA RoCC is defined in

lines 21 - 24 of Figure 8.2a. The dynamic tags of message_input and message_output is

determined by process_id, and is assigned by the overloaded :> operator (line 26 - 30 of

Figure 8.2a) combined with the usage of tag-range function. In this case, the tag of the input

message and output hash value will be either “High” or “Low” determined by process_id

and all of the undefined tags in the sub-modules will resolve to have the same dynamic

tags. The tag-range function can also be made to support multiple dependent variables by

defining sets of ranges.

Declassification. Information flow will always report a violation if there is information

flow from “High” to “Low” (for confidentiality). Sometimes, however, this kind of information

flow should be allowed. For example, in lines 7 - 8 of Figure 8.2b, the final output data_output

of AES RoCC is declassified to be “Low” using :> operator. Although the output depends

on the secret key and will be tagged as “High”, since strong encryption is assumed, the

183

output conveys no information to the attacker, and thus, it can be declassified to “Low”

value output.

When using declassification, the system designer might overwrite some rules and use

declassification improperly, causing a false negative. Our tool reports the number of

declassifications used (to allow users to compare it with the expected number) and also gives

warnings about declassification.

Nested modules. Chisel and SecChisel both support describing a design with nested

modules. To analyze the information flow, the nested modules will be resolved in SMT Code

Generator described in Section 8.1.2.

SecChisel Parser (2© in Figure 8.1)

Given SecChisel code, it needs to be parsed into the modified FIRRTL code. The parser is

based on Chisel parser, but it includes the tags information for the variables (especially, it

marks untagged variables as undefined). Moreover, Chisel sometimes transparently defines

new temporary variables during compilation which are not in the original Chisel source code.

These will be tagged as undefined in the modified FIRRTL code.

FIRRTL Code (3© in Figure 8.1)

FIRRTL language was created to represent the standardized, elaborated circuit produced

from Chisel code [132]. It can be efficiently used to analyze the information flow. SecChisel

does not modify FIRRTL language’s syntax. Instead, the security information is embedded

in the comments section of each line of FIRRTL code. When analyzing the FIRRTL, Chisel’s

default tools will ignore the comments so that the hardware can be generated directly from

the SecChisel code without any changes to the back-end of the Chisel tool-chain. Meanwhile,

when FIRRTL is analyzed by the SMT Code Generator, the security information is included

to generate the SMT code. So the verification and the final hardware are based on the same

design in FIRRTL.

184

SMT Code Generation (4© in Figure 8.1)

SMT Code Generator converts FIRRTL into an expression/statement tree and then generates

SMT code. Processing the FIRRTL tree to SMT statements is the key part of the SecChisel

framework, especially when dealing with nested modules. The four phases for transforming

FIRRTL code into SMT code are:

(Phase 1) Parse the FIRRTL file and create LtaggedV ariable structure to store variables and

the corresponding explicit tag information in the structure, untagged variables

will have no tags associated with them yet.

(Phase 2) Create tags for all variables: apart from variables explicitly tagged by the designer

in SecChisel, variables with no tags are tagged with UndefinedTag, and all data

is stored in new Ldefault structure.

(Phase 3) Resolve all undefined tags in Ldefault through nested modules of the circuit and

store the data in the Lredefine structure.

(Phase 4) Output SMT code, FSMT , based on security lattice, tag-range functions and tag

information in Lredefine.

In Phase 1, data structure LtaggedV ariable is generated to store security information

derived from FIRRTL file. The data structure LtaggedV ariable contains the variables and

their tags’ information: “statically tagged variable” has explicit security tag defined by the

system designer, “dynamically tagged variable” has tag-range function and the dependent

variable(s) defined by the system designer, and “untagged variable” does not have any tags

assigned, i.e., such variables have no defined tags in the SecChisel code.

In Phase 2, tags for variables associated with the left-hand side (lhs), or the right-hand

side (rhs), of statements are created based on information from variables already tagged in

LtaggedV ariable. After this phase, all the tag information will be stored in Ldefault structure.

Especially, there are seven types of FIRRTL statements. In order to simplify tag assignment,

these seven types of FIRRTL statements can be classified into the following three cases:

(Case 1) Definitions: a variable is defined to be a constant,

e.g., a = 12.

(Case 2) Assignments: a variable is assigned the results of some operations of other variables,

185

Algorithm 6 redefineTags (statement, variable, curModule)
Input: statement: a line of FIRRTL code containing the variable of Ldefault, whose tag needs to be redefined

variable: the variable (e.g., Reg, Wire, etc.) whose tag needs to be redefined
curModule: the module that is being checked

Output: redefined tag for variable of Lredefine

1: if variable has been assigned defined tag then
2: return defined tag
3: else
4: for each statement x ∈ Ldefault of curModule do
5: if x.lhs == variable then
6: if tag of x.lhs is defined (or tag of x.rhs is defined) then
7: tag of statement.rhs ⇐ tag of x.lhs (⇐ tag of x.rhs)
8: return tag of statement.rhs
9: else
10: find submoduleList of current module
11: tag of statement.rhs ⇐ joinRedefineTags (statement, rhs, submoduleList, curModule)
12: tag of x.rhs ⇐ tag of statement.rhs
13: tag of x.lhs ⇐ tag of x.rhs
14: return tag of statement.rhs
15: end if
16: end if
17: end for
18: end if
19: if cannot find statement.rhs then
20: if curModule has outer module then
21: tag of statement.rhs ⇐ redefineTags (statement,

statement.rhs, outer module)
22: return tag of statement.rhs
23: else
24: tag of statement.rhs ⇐ lowest tag of its security lattice
25: return tag of statement.rhs
26: end if
27: end if

e.g., b = c+ d.

(Case 3) Connections: a variable is assigned to have the same value as a different variable,

e.g., e = f .

For Case 1 and Case 3, if the tag already has an static or dynamic tag value assigned,

the tag will be kept; otherwise, the UndefinedTag value will be assigned to the tag.

Exceptionally, port variables of top modules without tags are assigned to the default lowest

security level to guarantee no information will implicitly leak outside the circuit. For

Assignments (Case 2), rather than generate a specific static or dynamic tag, a join statement

following three ResRules defined next using tags of the rhs variables in the statement is

generated. The tag resolution rules (ResRule) for statements of variables A and B on the

right-hand side are:

(ResRule 1) (TagA, TagB) ⇒ (join TagA TagB)

(ResRule 2) (TagA, UndefinedTagB) ⇒ UndefinedTag

186

(ResRule 3) (UndefinedTagA, UndefinedTagB) ⇒

UndefinedTag

Here the (join TagA TagB) does not compute the join, but is an SMT statement that will

be evaluated in the SMT solver. The TagA or TagB could end up being resolved as join of

some other tags following tag relations defined in security lattice, so all the join operations

are computed in the SMT solver at the very end. They can be either static or dynamic.

In Phase 3, Ldefault will be used to generate list Lredefine, where all the UndefinedTags

stored in list Ldefault will be checked recursively using Algorithm 6 to go through nested

modules until there is an assignment statement that assigns some defined tag to the currently

UndefinedTag; this can be a static tag, a dynamic tag, or a generated join statement

following ResRules.

Nested modules support in SecChisel will resolve all the UndefinedTag first in the current

module and then in different sub-modules and outer modules. One variable can be referenced

in different layers of module hierarchy. In addition, dynamic tags are resolved to support

dependent variables which are in other parent modules or in sub-modules. Specifically, in

“redefineTags” – Algorithm 6, function “joinRedefineTags” will go through nest modules

(“submoduleList”) of the current module (“curModule”), find and calculate the tag of the

variable using “redefineTags” function recursively. Recall that the top-most SecCoreModule

must have its inputs and outputs explicitly tagged, so eventually, all variables that have some

connection to input or output will be assigned a definite tag. Only variables unconnected to

the rest of the circuit will remain with UndefinedTag, and these will be later synthesized

away anyway.

In Phase 4, the security lattice structure, tag-range functions and the Lredefined are used

to generate SMT format rules and assertions and output an SMT file FSMT .

SMT Code (5© in Figure 8.1)

The SMT code file, FSMT , contains the information flow assertions generated based on

the FIRRTL code following previous steps. To enable the assertions to work, it also needs

the security lattice and tag-range functions expressed as SMT statements. It contains tag

187

propagation rules which use join of multiple security tags when computing the right-hand

side variable’s security tag of statements discussed in Section 8.1.2. In order to speed up

verification in SMT solver, the SMT Code Generator pre-computes “join” results for the

variable pairs in the security lattice. Therefore, SMT solver can directly fetch the result

when “join” operation happens.

For dynamic tags, each tag-range function has a unique ID used to look up the function

in the SMT code. SMT solver will enumerate all the possible output (tag) values that the

tag-range function can generate for a dynamic tag, based on the dependent variable. Thus,

a join TagA TagB statement may resolve to many possible tag values, if either TagA or

TagB are dynamic tags.

SMT Code Parallelization (6© in Figure 8.1)

The Z3 SMT solver does the actual verification. Because of the very structured nature of

the SMT code the framework generates, it is possible to parallelize the assertion checking.

For the SMT code there are two parts in each SMT file: 1) the predefined rules for the

security tags, tag-ranges, security lattice, and 2) actual assertions used for checking every

operation’s information flow. The rules are needed for all assertions, but the assertions can

be checked independently of other assertions. The SMT code can be then parallelized by

converting source SMT file into n different files, where each file has the same rules, etc., but

the assertions are evenly split into the n files and can be processed in parallel.

Z3 SMT Solver (7© in Figure 8.1)

The SMT file is used as input to the Z3 SMT solver, but other solvers could be used as

long as they can parse the same SMT-lib syntax. The assertions check for violations of

information flow policy, thus somewhat counter-intuitively, if an assertion is “satisfied” there

is a violation of information flow policy. If an assertion is “unsatisfied” there is no violation

of information flow policy. The goal is to have all assertions be “unsatisfied”. E.g., Chisel

code “c := io.a”, assertions corresponded can be “(assert (< c io.a)) (check-sat)” to ensure

that assigned variable “c” should not have lower security level than “io.a”, in which case

information will be leaked.

188

Interference Table

Sometimes the design will make use of black-box third-party modules. It may not be possible

to directly analyze the information flow inside such modules (e.g., no source code is given).

The trusted creator of the third-party module can generate an interference table which lists

how the inputs interact with the outputs for the module, i.e., the information flow from

inputs to outputs. The interference table can then be used for the designers to reason about

information flow across black-box third-party modules included by the designer in his or her

design. The interference table can be generated directly using SecChisel code and done in

parallel with SecChisel Parser without influencing the main SecChisel flow. The table and

FIRRTL can both be used as input to SMT Code Generator.

8.1.3 Evaluation of the Framework

SecChisel framework is implemented upon Chisel [134]1 and the system complexity of the

new framework is shown in Table 8.1 for each of the core parts of SecChisel.

To evaluate the effectiveness and performance of SecChisel, an AES-128 and a SHA-256

accelerators were implemented as Rocket Custom Coprocessor Interface (RoCC) within

the Rocket Chip [135] RISC-V processor. The functionality and interoperability of AES

RoCC and SHA RoCC within the Rocket Chip were tested to ensure functional tests

pass. The SecChisel framework can process the whole Rocket Chip as it can handle both

SecCoreModules and the unmodified CoreModules. Since SecChisel is a superset of Chisel,

most of the code of Rocket Chip is unmodified, only the two accelerators and corresponding

sub-modules are written as SecCoreModules. We evaluate RoCC cores within a RISC-V

core. Our framework works with the whole Rocket Chip and can find improper information

flows due to bugs or hardware Trojans. The evaluation was done using a server with two

Intel Xeon E5 CPUs (total of 24 processor cores) running at 2.90GHz, with 64GB of memory.

1. Commit id: bb12fe7 from Chisel repository at https://github.com/ucb-bar/chisel.

189

https://github.com/ucb-bar/chisel

A

d
d

K
e

y

S
h

if
tR

o
w

s

SubBytes
Lookup
Tables

M
ix

C
o

lu
m

n
s

AddKey
Key

Expansion

Key

Input
data

Output
data

A
d

d
K

e
y

S
h

if
tR

o
w

s

SubBytes
Lookup
Tables

M
ix

C
o

lu
m

n
s

AddKey

Key
Expansion

Key

Input
data

Output
data

FSM Cmp

HBT Trigger

A
d

d
K

e
y

S
h

if
tR

o
w

s

SubBytes
Lookup
Tables

M
ix

C
o

lu
m

n
s

AddKey

Key
Expansion

Key

Input
data

Output
data

Cmp

HBT Trigger

A
d

d
K

e
y

S
h

if
tR

o
w

s

SubBytes
Lookup
Tables

M
ix

C
o

lu
m

n
s

AddKey

Key
Expansion

Key

Input
data

Output
data

Cmp

HBT
TriggerC

o
u

n
te

r

(a) (b)

(c) (d)

Figure 8.3: Block diagrams of AES-128 RoCC encryption modules without and with hardware bugs
or Trojans. HBT components are shown in lighter color in the figures. (a) Basic AES encryption
module. (b-d) Encryption module with HBT1, HBT2, and HBT3 hardware bugs or Trojans.

AES RoCC Implementation & Verification

Firstly, a full 10-round AES-128 was implemented as an RoCC of Rocket Chip. AES-128

RoCC encryption block diagram is shown in Figure 8.3a, note decryption process is symmetric

to encryption. In our sample AES RoCC implementation, security lattice structure used

can be seen in Figure 8.2a. In the first sub-module – KeyExpansion of encryption process,

the encryption Key is bound to have tag “High”. Other variables in the AES RoCC are

untagged in the design.

Without use of declassification (“AES RoCC v1” in Table 8.2), running the whole

verification of AES RoCC results in detection of a possible information leak, where the

encrypted output is tagged “High” because of the interaction with the secret key, but

connects to the “Low” output of the RoCC module. In order to remove this false positive,

declassification is used (“AES RoCC v2” in Table 8.2). Especially, the encrypted output can

be declassified from “High” to “Low”, because assuming AES is a cryptographically strong

algorithm, the encrypted data cannot be used to learn the plaintext. Now, there will be no

more violation of information flow policy and there will be no false positives. Verification

results illustrated above are shown in Column “Formal Verification Result” of Table 8.2.

The decryption module can be verified similarly.

In order to further prove the effectiveness of our framework, we insert three kinds of

hardware bugs or hardware Trojans into AES RoCC (denoted as “HBT"), as shown in

190

Figure 8.3 (b-d) and “AES RoCC v2 with HBT1/HBT2/HBT3” in Table 8.2. HBT1 outputs

the key when a special input data trigger is sent to the AES RoCC. HBT2 inserts a register

and a time counter inside AES RoCC and the key will be output when counter is added to

some trigger value. HBT3 inserts a finite state machine inside AES RoCC: when a series

of special input data triggers is processed by AES RoCC in a specific order, HBT3 will

output the key. These HBTs all send “High” security key to the output. Table 8.2 shows

that SecChisel is able to detect all of the HBTs as it finds information flows from “High”

data to “Low” outputs of the modules.

SHA RoCC Implementation & Verification

SHA-256 RoCC was implemented in Rocket Chip to test static tags (“SHA RoCC v1” in

Table 8.2) and dynamic tags (“SHA RoCC v2” in Table 8.2) of SecChisel. SHA-256 is a

secure hash algorithm that is used to generate digests of messages to detect if the message

has been changed. The inputs are message, message size and process_id. Initialization

vector and other constants are hardcoded in the SHA-256 RoCC. The output is the hash

value that is computed.

SHA can process both secret and public information (there is no secret key, just hash

function). Therefore, if only using static tags for SHA RoCC, there are possibilities that

input message is tagged “High” and output hash value is tagged “Low”, where false positives

will be detected (Table 8.2). Using dynamic tags, the input and output of the SHA RoCC

are both tagged with a dynamic tag, which depends on a process_id sent from input.

This process_id represents the ID provided by the system and will determine whether this

message can be open to public or not (process_id is assumed to be securely provided). In

this case the tag of input message and output hash value will be either “High” or “Low”

determined by process_id. When propagating tags in the inner sub-modules, all of the

undefined tags will resolve to have the same dynamic tags, ensuring no false positives as

shown in Table 8.2.

191

Table 8.1: System complexity of the SecChisel framework in terms of lines of code.

Modified Added Total
SecChisel Parser 377 77 454

SMT Code Generator 4 2442 2446
Interference Table Generation — 239 239
SMT Code Parallelization — 28 28

Table 8.2: Effectiveness and designer effort in terms of lines of code of AES RoCC and SHA RoCC
within Rocket Chip. “Formal Verification Result” shows effectiveness. FP represents False Positive
verification result. “Chisel” column shows complexity of design in Chisel, without any security
features. “SecChisel” column shows extra lines of code added to include information of security tags.

Module
SecChisel Features Used Formal

Verification Chisel SecChiselStatic
Tag

Dynamic
Tag

Declass-
ification

AES RoCC v1 w/ static tags X × × found FP 1097 +14
AES RoCC v2 w/
declassification X × X verified 1097 +17

AES RoCC v2 w/ HBT1 X × X found HBT 1107 +17
AES RoCC v2 w/ HBT2 X × X found HBT 1110 +17
AES RoCC v2 w/ HBT3 X × X found HBT 1121 +17

SHA RoCC v1 w/ static tags X × × found FP 1127 +25
SHA RoCC v2 w/ dynamic tags × X × verified 1127 +28

Designers’ Effort

SecChisel requires the system designers to add extra code to describe information flow policy

and tags, as illustrated in Section 8.1.2. Table 8.2 Column “Chisel” shows the lines of code

designer needs to write to implement AES RoCCs (including ones with HBTs) and SHA

RoCC. Column “SecChisel” shows that tested modules require only tens of lines of code

in order to do verification based on the original Chisel design. SecChisel implementation

requires system designer to explicitly add security tags to critical variables, however, most of

the variables in a module will have default (undefined) tags and the tags will be automatically

resolved in SMT code generation step, and require no designer effort to specify such tags.

Security Verification Performance

Figure 8.4 shows compilation plus simulation runtime and verification time as well as different

parts of verification runtime for AES RoCC and SHA RoCC using different SecChisel features,

and compares it with the runtime of unmodified Chisel tools for reference. Compilation

includes all original Chisel flow before simulation shown in Figure 8.1. Verification consists of

whole SecChisel verification flow circled by green dashed line in Figure 8.1. The verification

runtime is in all cases slightly less than the compilation plus simulation runtime and the

two can be done in parallel. The plain AES and SHA RoCC written in Chisel have no

192

1 5 0 0 . 1 1 1 4 3 6 . 6 0 1 5 5 3 . 6 9 1 5 9 1 . 2 1 1 6 0 8 . 9 8 1 6 6 8 . 1 3 1 6 7 2 . 2 7 1 5 2 8 . 5 9 1 4 7 4 . 7 8

6 9 3 . 8 3 6 6 1 . 4 9 7 0 5 . 3 6 7 0 4 . 1 5 7 1 4 . 3 5 7 2 3 . 9 5 7 2 6 . 7 9 6 5 3 . 2 6 6 4 2 . 2 3

0 . 0 0 0 . 0 0

2 0 3 8 . 9 9 1 8 9 1 . 2 3 2 0 1 9 . 8 3 2 1 3 4 . 7 6 2 1 1 4 . 0 5

6 0 7 . 0 5 6 3 3 . 8 4

P l a i n A E S R o C C
(1) P l a i n S H A R o C C

(2) A E S R o C C u s i n g
s t a t i c t a g c h e c k i n g o n l y

(3)
A E S R o C C u s i n g

d e c l a s s i f i c a t i o n
(4)

A E S R o C C w i t h H B T 1

u s i n g d e c l a s s i f i c a t i o n
(5)

A E S R o C C w i t h H B T 2

u s i n g d e c l a s s i f i c a t i o n
(6)

A E S R o C C w i t h H B T 3

u s i n g d e c l a s s i f i c a t i o n
(7)

S H A R o C C u s i n g
s t a t i c t a g c h e c k i n g o n l y

(8)
S H A R o C C u s i n g

d y n a m i c t a g c h e c k i n g
(9)

0

1 0 0 0

2 0 0 0

3 0 0 0

0 . 0 0

Tim
e (

s)

 C o m p i l a t i o n S i m u l a t i o n V e r i f i c a t i o n

0 . 0 0

(a)

0 . 0 0 0 . 0 0

3 3 . 5 7 3 5 . 7 1 3 6 . 9 7 3 7 . 9 0 4 2 . 9 5 3 3 . 6 7 3 8 . 0 6

0 . 0 0 0 . 0 0

2 0 0 3 . 5 0 1 8 5 3 . 6 7 1 9 8 0 . 6 7 2 0 9 4 . 6 7 2 0 6 8 . 6 7
5 7 2 . 3 8 5 9 4 . 7 8

0 . 0 0 0 . 0 0

1 . 9 2 1 . 8 5 2 . 1 9 2 . 1 8 2 . 4 2 1 . 0 0 1 . 0 0

P l a i n A E S R o C C
(1) P l a i n S H A R o C C

(2) A E S R o C C u s i n g
s t a t i c t a g c h e c k i n g o n l y

(3)
A E S R o C C u s i n g

d e c l a s s i f i c a t i o n
(4)

A E S R o C C w i t h H B T 1

u s i n g d e c l a s s i f i c a t i o n
(5)

A E S R o C C w i t h H B T 2

u s i n g d e c l a s s i f i c a t i o n
(6)

A E S R o C C w i t h H B T 3

u s i n g d e c l a s s i f i c a t i o n
(7)

S H A R o C C u s i n g
s t a t i c t a g c h e c k i n g o n l y

(8)
S H A R o C C u s i n g

d y n a m i c t a g c h e c k i n g
(9)

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4
(b)

0 . 0 00 . 0 00 . 0 0

Tim
e (

s)

 S e c C h i s e l P a r s e r S M T C o d e G e n e r a t o r Z 3 S M T S o l v e r

0 . 0 0 0 . 0 0 0 . 0 0

Figure 8.4: Evaluation of runtime of the SecChisel framework, times shown are averages of multiple
runs. (a) Comparison of total compilation and simulation time vs. verification time for the different
designs. (b) Runtime of SecChisel parser, SMT Code Generator, and Z3 SMT solver for the different
designs.

1 . 7 7
1 . 0 40 . 8 9

0 . 4 10 . 3 9
0 . 2 00 . 2 1 0 . 1 40 . 1 5 0 . 1 00 . 1 4

0 . 0 8
0 . 1 5 0 . 1 1

A E S - 1 2 8 C h e c k i n g S H A - 2 5 6 C h e c k i n g
1 0 - 1

1 0 0

1 0 1

Tim
e (

s)

 1 P r o c e s s 2 P r o c e s s e s 4 P r o c e s s e s 8 P r o c e s s e s 1 6 P r o c e s s e s 3 2 P r o c e s s e s 6 4 P r o c e s s e s

Figure 8.5: Runtime evaluation of effects of parallelizing the SMT code for different number of
processors, on a server with 24 cores.

SecChisel features, so no related verification performance. Some small differences are due to

the variation in performance of the server.

Shown in Figure 8.4a, SecChisel verification will not cause extra overhead to the original

Chisel design. Verification can be hidden in normal compilation and simulation since the

total verification time is always smaller than the compilation plus simulation time and the

verification can be done in parallel with compilation and simulation. SecChisel’s performance

time overhead of changing RoCC to a secure module class is relatively small (AES RoCC’s is

around 3.8%, SHA RoCC’s is around 2.5% by comparing Design 1, 2 with the other Designs

in Figure 8.4a, respectively). As shown in Figure 8.4b, there is no significant performance

time difference for the different cases. Finding the existence of an information leak by HBTs

(Design 5, 6, 7 in Figure 8.4b) only introduced small time overhead comparing with Design

4 that does not have HBTs in it, for example.

193

Interference Table Evaluation

Interference table (IT) can be created during FIRRTL generation and will on average require

0.41s for AES RoCC and SHA RoCC, which is negligible compared with FIRRTL generation

time shown in the SecChisel parser time in Figure 8.4b. SMT code generation with and

without IT do not change much on the total runtime, but is offered a solution for use of

trusted third-party modules for which source code is not available.

Z3 SMT Solver and Parallelization

Verifying the AES RoCC v2 and SHA RoCC v2 in Z3 SMT solver without parallelization cost

1.77s, 1.04s, respectively (Figure 8.5). For reference, AES RoCC generates 20832 lines of SMT

code and SHA RoCC generates 9044 lines of SMT code, which is fully automatically generated

based on the SecChisel code. Therefore, there is an approximately linear relationship between

lines of SMT code and run time, including using different SecChisel features like dynamic

tags, as shown in Figure 8.4b. Based on our experience with AES and SHA RoCC, we can

estimate that one million of lines of Chisel code (far more than the current Rocket Chip

code) will require around acceptable 2000s SMT runtime.

Parallelizing the SMT checks and running on multi-core system, as discussed in Sec-

tion 8.1.2, can further reduce the run time of the SMT solver, as shown in Figure 8.5. For

evaluation on a 24-core processor, the average improvement is about 20x.

Hardware Performance

The final design generated using the SecChisel code is identical to a design that would

not contain any security tags or other SecChisel modifications. Specifically, SecChisel does

not add any run-time components to the design as all the security verification is done at

design-time. Therefore, the verified design will not add any performance overhead compared

with the original design.

194

Chapter 9

Conclusion and Future Directions

This dissertation presented research on processor microarchitecture security, with a special

focus on covert-channel and side-channel attacks and defenses.

9.1 Conclusion

Chapter 3 first proposed a new three-step model in order to model all possible cache timing

vulnerabilities. It further provided a cache three-step simulator and reduction rules to derive

effective vulnerabilities, allowing us to find ones that have not been exploited in literature.

With the exhaustive effective vulnerability types listed, this work presented analysis of 18

secure processor cache designs with respect to how well they can defend against these timing

vulnerabilities. It showed that vulnerabilities based on internal interference of the victim

application are difficult to protect against and many secure cache designs fail to protect

against them. A summary of secure processor cache features may also provided that could

be integrated to make an ideal secure cache that is able to defend timing attacks.

Chapter 4 combined three works that put theoretical modeling approach into the practice.

The first work further improved the three-step model and provided the first benchmark

suite for evaluating all 88 possible Strong cache timing attacks types in processors. The

model allowed us to find 32 new timing attack types. Further, scripts were implemented to

auto-generate the 1094 benchmark tests from our three-step model’s 88 theoretical attack

types for testing different combinations and types of instructions that can lead to attacks

195

on real processors. The benchmarks were run on a number of commodity processors to

gave each machine the Cache Timing Vulnerability Score (CTVS) to measure the degree

of the machine’s robustness against cache timing vulnerabilities. The three-step model,

benchmarks, and the CTVS can be used to measure existing systems and help design future

secure caches and other defense mechanisms. The second work presented for the first time

a large-scale evaluation of 34 Arm devices against the 88 types of vulnerabilities. In total,

three different cloud platforms were leveraged for the evaluation, and gem5 was used for

further analysis of certain microarchitectural features. Based on the evaluation results, the

work uncovered a number of components of the microarchitectual design that influence the

effectiveness of different types of the vulnerabilities. Further, sensitivity tests were used to

understand impacts of possible misconfiguration on the outcome of the benchmarks, and

also showed that even with uncertain cache configuration, number of attack types can be

successful. To help defend the attacks, the PL and RF secure caches were implemented and

evaluated on gem5. Based on the benchmarking results of the secure caches, a new attack on

PL cache, and possible issues due to small window size in the RF cache were uncovered. The

third work further extended the three-step modeling approach to exhaustively enumerate all

possible TLB timing vulnerabilities. It showed how to automatically generate micro security

benchmarks that test for the TLB vulnerabilities. It gave details of two new hardware secure

TLB designs: a Static-Partition (SP) TLB and a Random-Fill (RF) TLB. The simulations

confirmed the theoretical channel capacity calculations and full system performance on

FPGA showed that the new secure TLBs are as good as regular TLBs, while protecting

against the various attacks. The proposed secure TLBs can defend not only against the

previously publicized attacks, but also other possible timing attacks in TLBs found using

our three-step modeling approach.

Chapter 5 demonstrated microarchitectural attacks beyond caches and TLBs. The

attacks focused on understanding a special type of predictor, the value predictor, and

demonstrated new security attacks on these predictors. The systematic model for analyzing

value predictor attacks demonstrated different variants of attacks utilizing value predictors to

leak information. Security techniques were discussed for securing value predictors. Defenses

were suggested to be used when value prediction is implemented in real processors.

196

Chapter 6 demonstrated attacks on the processor frontend. It evaluated new security

threats due to the processor frontend in modern Intel processors. Each frontend path has

its own unique timing and power signatures, which lead to the side- and covert-channel

attacks presented in this work. Especially, the switching between the different paths lead to

observable timing or power differences which, as this work demonstrated, could be exploited

by attackers. Because of the different paths, the switching, and way the components are

shared in the frontend between hardware threads, two separate threads are able to be

mutually influenced and timing or power can reveal activity on the other thread. The

security threats are not limited to multi-threading, and this work further demonstrated new

ways for leaking execution information about SGX enclaves or a new in-domain Spectre

variant. Finally, this work demonstrated a new method for fingerprinting the microcode

patches and applications running in parallel of the processor by analyzing the behavior of

different paths in the processor frontend.

Chapter 7 introduces two microarchitectural attacks that exists in accelerators beyond

the classical processors. The first type of attack targeted GPUs. Because of the hardware

parallelism features and multi-context sharing setting, GPUs are also under the threats of

side- and covert-channel attacks. The second type of attack focused on quantum computers,

used as cloud-based accelerators, where potential security threats were also detected. It

demonstrated the new threat of fingerprinting of quantum computers using crosstalk, and

evaluated the approach on IBM Q cloud-based quantum computers. The device- and

location-specific fingerprinting were demonstrated with accuracy to be 99.1% and 95.3%,

respectively. We showed excellent fingerprinting abilities across many machines and across

different calibration periods.

Chapter 8 showed the hardware security verification framework called SecChisel, which

is the first hardware security verification framework based on Chisel that is also the first

hardware security verification framework supporting nested modules, without having to

check individual module separately. SecChisel was tested by implementing and verifying

AES-128 and SHA-256 RoCC accelerators within a Rocket Chip RISC-V processor. We

showed that SecChisel is able to detect information leaks due to hardware bugs or Trojans,

and that SecChisel is fast and scalable when verifying designs.

197

9.2 Future Directions

To achieve the vision of designing high performance and secure computer architectures, the

work on systematic hardware security analysis and the microarchitectural vulnerability study

of various structures is only an initial step. Looking forward, there are a wider range of

hardware security problems to be explored.

Further customization of three-step model for other structures. As the next

future step in this direction, it is possible to customize the model to other microarchitectures

for systematic analysis of the side-channel vulnerabilities, such as the branch target buffer

or cache directory. Since more and more microarchitectures are shown to be vulnerable to

side-channel attacks, it is important to consider the security holistically among different

microarchitectures. An interesting problem is that, when combining different security

protection schemes, how to guarantee these schemes do not interference and backfire,

jeopardizing system security? For example, recent Spectre LVI attack makes use of line fill

buffer to load value injection. Line fill buffer, on the other hand, inclusively or exclusively

work with the cache to store data and instruction for different machines. In this case,

line fill buffer and cache should be analyzed together to systematically explore the related

side-channel vulnerabilities.

Design of frontend defence techniques. Based on the current understanding of

real processor frontend, the next research step is to propose effective defense solutions to

mitigate all frontend attacks known to date. Defending the frontend vulnerabilities will

require new approaches for the frontend design. Common techniques such as partitioning to

prevent interference among SMT threads could be a way to begin designing a more secure

frontend. In principle, LSD, DSB, and MITE pipeline should all be partitioned to ensure

isolation, however, it is not done in the current commercial processors. The likely reason is

that partitioning would largely wipe out the performance benefits that are brought by these

components in the first place. As a step to preserve performance benefits while ensuring

security, it may be possible to introduce randomness into MITE mapping or add random

operations to MITE. For the side-channel fingerprinting attack we developed, randomly

inserting instructions into MITE pipeline could de-correlate the access patterns.

198

Study of side-channel vulnerabilities in GPUs. GPUs are used to accelerate

security-critical and efficiency-conscious systems, including data centers, autonomous vehicles

(AV), cloud gaming services, and game consoles. System isolation guarantees that different

users and programs cannot extract information or data from another without explicit

communication through supported channels. However, GPU partitioning features, e.g.,

Multi-instance GPU or MiG, can be potentially exploited to enable the transparent co-

operation among multi-process GPU applications, making GPUs vulnerable to covert-channel

attacks. It is possible to keep exploring covert channels constructed over memory systems

of GPU and functional unit contention. It is an important problem because, with the

parallelism feature of GPU hardware, the bandwidth of covert channel can be generally

increased much more than the CPU covert-channel attacks to create high-speed and high-

fidelity covert channels. Specifically, it could be possible to extend the three-step model to

GPUs as well and find new timing channels, attacks, and develop defenses.

Securing integrated and heterogeneous systems. The current trend in systems-

on-chip (SoCs) designs are system-level integration of heterogeneous components onto the

same chip in mobile devices and other systems, including different types of processors such

as CPU, GPU, and Accelerated Processing Unit, known as APU. Such diverse processing

elements may come from different providers and vendors, e.g., Google, Microsoft, and Intel.

On the other side, the application executable codes typically have varying levels of security

and trust. Thus, executing them together on the same compute platform with many shared

resources creates an extremely fertile attack ground. Nowadays, the conventional approaches

and software-only add-on schemes have failed to provide sufficient security protections and

trustworthiness for such integrated and heterogeneous systems. Without the protection,

while the user applications are running on the platform, the offloaded data from the cloud

to the devices can lead to potential side-channel issues. The future research can extend the

research methodology and construct benchmarks to systematically analyze timing attacks in

the integrated and heterogeneous systems.

Securing AI accelerators. Many companies such as Google and NVIDIA are deploying

domain-specific accelerators for AI. The most well-known instance is TPU [136], which can

outperform GPU in the inference stage of DNN execution. Despite the intensive interests from

199

both academia and industry, there has been no existing systematic approach to analyzing

the side channels of AI accelerators. Similar to GPU, TPU also requires high bandwidth

for use of very large effective batch sizes and current TPU does not have local caches. In

this case, it is expected that the similar high-speed and high-fidelity timing channels will be

applicable in TPU and require systematic analysis and defense. One particular challenge is

to study the SoC of AI ASICs. For example, network-on-chip communication can potentially

introduce different types of timing variances compared with timing channels within the

processor. One may need to develop a theoretically different modeling approach in order to

systematically study the timing channels of SoC, for example.

Securing quantum computing systems. In the current Noisy Intermediate-Scale

Quantum (NISQ) era, the capability of a quantum machine is limited by the decoherence

time, gate fidelity and the number of qubits. As NISQ machines exhibit high error-rates,

only programs that require a few qubits can be executed reliably. Therefore, NISQ machines

tend to underutilize its resources. As larger NISQ machines are introduced, the throughput

and utilization can be improved with multi-programming or running programs from different

users. However, the dominant use-case of providing cloud-based access for remote users to

rent quantum computers opens up new security and privacy threats. Future work can further

explore the crosstalk influence upon quantum computer architectures. Apart from that, the

preliminary analysis of quantum computer control logic [137], typically implemented using

classical FPGAs, reveals that there are potential security issues with the design. Timing

channels seem to exist regarding different qubit reset behavior for the quantum computer

control units. Future research can focus on the control algorithms running on the classical

FPGAs, which configure and measure the quantum qubits. It would be an important topic

to study since qubit reset is generally used for normal quantum circuits and hard to directly

avoid or mitigate.

200

Appendix A

List of Acronyms

AES Advanced Encryption Standard.

AI Artificial Intelligence.

ALU Arithmetic Logic Units.

ASIC Application-Specific Integrated Circuit.

ASLR Address Space Layout Randomization.

CNN Convolutional Neural Network.

CNOT Controlled-NOT gate.

CPU Central Processing Unit.

CTVS Cache Timing Vulnerability Score.

CUDA Compute Unified Device Architecture.

201

CVE Common Vulnerabilities and Exposures.

DRAM Dynamic Random-Access Memory.

DSB Decode Stream Buffer.

EdDSA Edwards-curve Digital Signature Algorithm.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EM Electro-Magnetic.

EPROM Erasable Programmable Read-Only Memory.

FIRRTL Flexible Intermediate Representation for RTL.

FP Floating Point.

FPU Floating Point Units.

FPGA Field Programmable Gate Arrays.

GPC GPU Processing Cluster.

GPU Graphics Processing Unit.

HBT Hardware Bugs or Trojans.

HDL Hardware Description Language.

202

IDQ Instruction Decode Queue.

IDT IDle Tomography.

IDQ Instruction Decode Queue.

IFT Information Flow Tracking.

INT Integer.

IP Intellectual property.

IPC Instructions Per Cycle.

ISA Instruction Set Architecture.

IT Interference table.

L1 Cache Level-1 Cache.

L2 Cache Level-2 Cache.

LCP Length-Changing Prefix.

LLC Last-Level Cache.

LRU Least Recently Used.

LSD Loop Stream Detector.

203

LVI Load Value Injection.

MIG Multi-Instance GPU.

MITE Micro-Instruction Translation Engine.

ML Machine Learning.

MT Multi-Threading.

NISQ Noisy Intermediate-Scale Quantum.

OS Operating System.

PC Program Counter.

PL Partition-Locked.

PROM Programmable Read-Only Memory.

RAPL Running Average Power Limit.

RAT Register Alias Table.

RF Random Fill.

RISC-V Reduced Instruction Set Computer, fifth generation.

RoCC Rocket Custom Coprocessor.

204

ROM Read-Only Memory.

RSA Rivest–Shamir–Adleman, is a public-key cryptosystem.

RTL Register Transfer Level.

SFU Special Function Units.

SGX Software Guard Extensions.

SHA Secure Hash Algorithms.

SIMD Single Instruction Multiple Data.

SM Streaming Processor.

SMT Simultaneous MultiThreading.

SMT Solver Satisfiability Modulo Theories Solver.

SoC Systems-on-Chip.

SP Static-Partition.

SRAM Static Random-Access Memory.

SRB Simultaneous Randomized Benchmarking.

SSD Solid State Drives.

205

TLB Translation-Lookaside Buffer.

TPC Texture Processing Cluster.

TPU Tensor Processing Unit.

VHist Value History.

VPS Value Prediction System.

206

Appendix B

List of Publications

• Shuwen Deng, Bowen Huang, and Jakub Szefer. “Leaky Frontends: Micro-Op Cache

and Processor Frontend Vulnerabilities”. Accepted by the the 28th IEEE International

Symposium on High-Performance Computer Architecture (HPCA), 2022.

• Shuwen Deng, Nikolay Matyunin, Wenjie Xiong, Stefan Katzenbeisser, and Jakub

Szefer. “Evaluation of Cache Attacks on Arm Processors and Secure Caches”. Accepted

by IEEE Transactions on Computers (IEEE TC), 2021.

• Shuwen Deng and Jakub Szefer. “New Predictor-Based Attacks in Processors”.

Accepted by the 58th Design Automation Conference (DAC), 2021. Acceptance rate

of 23%.

• Shuwen Deng, Wenjie Xiong, and Jakub Szefer. “Understanding Insecurity of

Processor Caches Due to Cache Timing-Based Vulnerabilities”. In Journal of IEEE

Security & Privacy, 2021.

• Shuwen Deng, Wenjie Xiong, and Jakub Szefer. “A Benchmark Suite for Evaluating

Caches’ Vulnerability to Timing Attacks”. Proceedings of the 25th International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2020. Acceptance rate of 18.10%.

• Shuwen Deng, Wenjie Xiong, and Jakub Szefer. “Secure TLBs”. Proceedings of the

46th International Symposium on Computer Architecture (ISCA), 2019. Acceptance

207

rate of 16.98%. (Top Picks in Hardware and Embedded Security 2021)

• Shuwen Deng, Wenjie Xiong, and Jakub Szefer. “Analysis of Secure Caches using a

Three-Step Model for Timing-Based Attacks”. In Journal of Hardware and Systems

Security (JHSS), 2019.

• Shuwen Deng, Doğuhan Gümüşoğlu, Wenjie Xiong, Sercan Sari, Y. Serhan Gener,

Corine Lu, Onur Demir, and Jakub Szefer. “SecChisel Framework for Security Verifica-

tion of Secure Processor Architectures”. Proceedings of the 8th International Workshop

on Hardware and Architectural Support for Security and Privacy (HASP), 2019.

• Shuwen Deng, Wenjie Xiong, and Jakub Szefer. “Cache Timing Side-Channel Vulner-

ability Checking with Computation Tree Logic”. Proceedings of the 7th International

Workshop on Hardware and Architectural Support for Security and Privacy (HASP),

2018.

• Allen Mi, Shuwen Deng, and Jakub Szefer. “Device- and Locality-Specific Finger-

printing of Shared NISQ Quantum Computers”. the 10th International Workshop on

Hardware and Architectural Support for Security and Privacy (HASP), 2021.

• Ferhat Erata, Shuwen Deng, Faisal Zaghloul, Wenjie Xiong, Onur Demir, and Jakub

Szefer. “Survey of Approaches for Security Verification of Hardware/Software Systems.”

Cryptology ePrint Archive (2022).

• Wen Wang, Bernhard Jungk, Julian Walde, Shuwen Deng, Naina Gupta, Jakub

Szefer, and Ruben Niederhagen. “XMSS and Embedded Systems - XMSS Hardware

Accelerators for RISC-V”. Proceedings of the 34th International Conference on Selected

Areas in Cryptography (SAC), 2019.

208

Bibliography

[1] Z. Wang and R. B. Lee. New cache designs for thwarting software cache-based side

channel attacks. In ACM SIGARCH Computer Architecture News, volume 35, pages

494–505. ACM, 2007.

[2] F. Liu and R. B. Lee. Random fill cache architecture. In Microarchitecture (MICRO),

2014 47th Annual IEEE/ACM International Symposium on, pages 203–215. IEEE,

2014.

[3] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting Speculative

Execution. ArXiv e-prints, January 2018.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,

P. Kocher, D. Genkin, et al. Meltdown: Reading kernel memory from user space. In

USENIX Security Symposium, 2018.

[5] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the keys to the

intel {SGX} kingdom with transient out-of-order execution. In USENIX Security

Symposium, 2018.

[6] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

R. Strackx, T. F. Wenisch, and Y. Yarom. Foreshadow-NG: Breaking the Virtual

Memory Abstraction with Transient Out-of-Order Execution. Technical Report, 2018.

See also USENIX Security paper Foreshadow [138]. http://ForeshadowAttack.com.

209

http://ForeshadowAttack.com

[7] M. Yan, C. Fletcher, and J. Torrellas. Cache telepathy: Leveraging shared resource

attacks to learn dnn architectures. arXiv preprint arXiv:1808.04761, 2018.

[8] S. Deng, W. Xiong, and J. Szefer. Analysis of secure caches using a three-step model

for timing-based attacks. Journal of Hardware and Systems Security, Nov 2019.

[9] S. Deng, W. Xiong, and J. Szefer. A Benchmark Suite for Evaluating Caches’ Vul-

nerability to Timing Attacks. In Proceedings of 25th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 683–697, 2020.

[10] S. Deng, W. Xiong, and J. Szefer. Secure TLBs. In 2019 ACM/IEEE 46th Annual

International Symposium on Computer Architecture (ISCA), pages 346–359. IEEE,

2019.

[11] R. Sheikh, H. W. Cain, and R. Damodaran. Load Value Prediction via Path-based

Address Prediction: Avoiding Mispredictions due to Conflicting Stores. In International

Symposium on Microarchitecture, pages 423–435, 2017.

[12] R. Sheikh and D. Hower. Efficient Load Value Prediction using Multiple Predictors

and Filters. In International Symposium on High Performance Computer Architecture,

pages 454–465, 2019.

[13] D. Kaplan, J. Powell, and T. Woller. Amd memory encryption. White paper, 2016.

[14] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and

U. R. Savagaonkar. Innovative instructions and software model for isolated execution.

Hasp@ isca, 10(1), 2013.

[15] S. Deng, D. Gümüşoğlu, W. Xiong, Y. S. Gener, O. Demir, and J. Szefer. Secchisel

framework for security verification of secure processor architectures. In Proceedings of

the Workshop on Hardware and Architectural Support for Security and Privacy, HASP,

June 2019.

[16] J. Atalla and D. Kahng. Metal oxide semiconductor (mos) transisto r demonstrated.

the silicon engine. Computer History Museum, 1960.

210

[17] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value Locality and Load Value

Prediction. In International Conference on Architectural Support for Programming

Languages and Operating System, pages 138–147, 1996.

[18] A. Perais and A. Seznec. BeBoP: A Cost Effective Predictor Infrastructure for

Superscalar Value Prediction. In International Symposium on High Performance

Computer Architecture, pages 13–25, 2015.

[19] Intel 64 and ia-32 architectures software developer’s manual: Volume 3.

https://www.intel.com/content/www/us/en/architecture-and-technology/64-

ia-32-architectures-software-developer-system-programming-manual-

325384.html.

[20] D. Gullasch, E. Bangerter, and S. Krenn. Cache games–bringing access-based cache

attacks on aes to practice. In Security and Privacy (SP), 2011 IEEE Symposium on,

pages 490–505. IEEE, 2011.

[21] C. Percival. Cache missing for fun and profit, 2005.

[22] D. J. Bernstein. Cache-timing attacks on aes. 2005.

[23] J. Bonneau and I. Mironov. Cache-collision timing attacks against aes. In International

Workshop on Cryptographic Hardware and Embedded Systems, pages 201–215. Springer,

2006.

[24] O. Acıiçmez and Ç. K. Koç. Trace-driven cache attacks on aes (short paper). In

International Conference on Information and Communications Security, pages 112–121.

Springer, 2006.

[25] J. Daemen and V. Rijmen. AES Proposal: Rijndael. 1999.

[26] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+ Flush: a Fast and Stealthy

Cache Attack. In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 279–299. Springer, 2016.

211

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html

[27] Y. Yarom and K. Falkner. FLUSH+ RELOAD: A High Resolution, Low Noise, L3

Cache Side-Channel Attack. In USENIX Security Symposium, pages 719–732, 2014.

[28] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel

attacks are practical. In Security and Privacy (SP), 2015 IEEE Symposium on, pages

605–622. IEEE, 2015.

[29] C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5: Cross-Cores Cache Covert

Channel. In International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, pages 46–64, 2015.

[30] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri. Port contention

for fun and profit. In 2019 IEEE Symposium on Security and Privacy (SP), pages

870–887. IEEE, 2019.

[31] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev. BranchScope:

A New Side-Channel Attack on Directional Branch Predictor. In International Con-

ference on Architectural Support for Programming Languages and Operating Systems,

pages 693–707, 2018.

[32] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Jump Over ASLR: Attacking

Branch Predictors to Bypass ASLR. In International Symposium on Microarchitecture,

2016.

[33] Y. Wang, A. Ferraiuolo, and G. E. Suh. Timing channel protection for a shared memory

controller. In International Symposium on High Performance Computer Architecture,

2014.

[34] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch side-channel attacks:

Bypassing smap and kernel aslr. In Conference on Computer and Communications

Security, 2016.

[35] S. Deng and J. Szefer. New predictor-based attacks in processors. In Proceedings of

the Design Automation Conference, DAC, December 2021.

212

[36] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W. Fletcher.

Microscope: enabling microarchitectural replay attacks. In 2019 ACM/IEEE 46th

Annual International Symposium on Computer Architecture (ISCA), pages 318–331.

IEEE, 2019.

[37] R. Paccagnella, L. Luo, and C. W. Fletcher. Lord of the ring(s): Side channel attacks

on the cpu on-chip ring interconnect are practical. In USENIX Security Symposium,

2021.

[38] D. Zhang, A. Askarov, and A. C. Myers. Language-based control and mitigation of

timing channels. ACM SIGPLAN Notices, 47(6):99–110, 2012.

[39] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A hardware design language for

timing-sensitive information-flow security. In ACM SIGARCH Computer Architecture

News, volume 43, pages 503–516. ACM, 2015.

[40] Z. Wang and R. B. Lee. A novel cache architecture with enhanced performance and

security. In Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International

Symposium on, pages 83–93. IEEE, 2008.

[41] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal hardware extensions

for strong software isolation. In USENIX Security Symposium, pages 857–874, 2016.

[42] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh. Secdcp: secure dynamic

cache partitioning for efficient timing channel protection. In Design Automation

Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[43] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang. Architecture for pro-

tecting critical secrets in microprocessors. In ACM SIGARCH Computer Architecture

News, volume 33, pages 2–13. IEEE Computer Society, 2005.

[44] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev. Non-

monopolizable caches: Low-complexity mitigation of cache side channel attacks. ACM

Transactions on Architecture and Code Optimization (TACO), 8(4):35, 2012.

213

[45] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas. Secure hierarchy-aware cache

replacement policy (sharp): Defending against cache-based side channel attacks. In

Proceedings of the 44th Annual International Symposium on Computer Architecture,

pages 347–360. ACM, 2017.

[46] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and

C. A. Gunter. Leaky cauldron on the dark land: Understanding memory side-channel

hazards in sgx. In Conference on Computer and Communications Security, 2017.

[47] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi. Malicious management unit: Why

stopping cache attacks in software is harder than you think. In USENIX Security

Symposium, pages 937–954, 2018.

[48] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation Leak-aside Buffer: Defeating

Cache Side-channel Protections with TLB Attacks. In USENIX Security Symposium,

pages 955–972, 2018.

[49] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the case

of aes. In Cryptographers’ Track at the RSA Conference, pages 1–20. Springer, 2006.

[50] R. Hund, C. Willems, and T. Holz. Practical timing side channel attacks against

kernel space aslr. In 2013 IEEE Symposium on Security and Privacy, pages 191–205.

IEEE, 2013.

[51] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and A. Venkat. I see dead

µops: Leaking secrets via intel/amd micro-op caches. In International Symposium on

Computer Architecture, 2021.

[52] J. Kim, H. Jang, H. Lee, S. Lee, and J. Kim. Uc-check: Characterizing micro-operation

caches in x86 processors and implications in security and performance. In International

Symposium on Microarchitecture, 2021.

[53] F. Yao, M. Doroslovacki, and G. Venkataramani. Are Coherence Protocol States

Vulnerable to Information Leakage? In High Performance Computer Architecture

(HPCA), 2018 IEEE International Symposium on, pages 168–179. IEEE, 2018.

214

[54] D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks: Automating Attacks

on Inclusive Last-Level Caches. In USENIX Security Symposium, pages 897–912, 2015.

[55] C. Trippel, D. Lustig, and M. Martonosi. MeltdownPrime and SpectrePrime:

Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence Protocols.

arXiv preprint arXiv:1802.03802, 2018.

[56] R. Guanciale, H. Nemati, C. Baumann, and M. Dam. Cache storage channels: Alias-

driven attacks and verified countermeasures. In Security and Privacy (SP), 2016 IEEE

Symposium on, pages 38–55. IEEE, 2016.

[57] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee. Catalyst:

Defeating last-level cache side channel attacks in cloud computing. In High Performance

Computer Architecture (HPCA), 2016 IEEE International Symposium on, pages 406–

418. IEEE, 2016.

[58] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras. Non deterministic

caches: A simple and effective defense against side channel attacks. Design Automation

for Embedded Systems, 12(3):221–230, 2008.

[59] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-Ghazaleh, D. Pono-

marev, and A. Jaleel. RIC: relaxed inclusion caches for mitigating LLC side-channel

attacks. In Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE,

pages 1–6. IEEE, 2017.

[60] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer. DAWG: A Defense

Against Cache Timing Attacks in Speculative Execution Processors.

[61] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas. InvisiSpec:

Making Speculative Execution Invisible in the Cache Hierarchy. In 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 428–441.

IEEE, 2018.

[62] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas, et al. MI6: Secure Enclaves

in a Speculative Out-of-Order Processor. arXiv preprint arXiv:1812.09822, 2018.

215

[63] M. K. Qureshi. CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-

Address and Remapping. In 2018 51st Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 775–787. IEEE, 2018.

[64] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard.

Scattercache: Thwarting cache attacks via cache set randomization. In 28th USENIX

Security Symposium (USENIX Security 19), Santa Clara, CA, 2019. USENIX Associa-

tion.

[65] F. Liu, H. Wu, K. Mai, and R. B. Lee. Newcache: Secure cache architecture thwarting

cache side-channel attacks. IEEE Micro, 36(5):8–16, 2016.

[66] Z. He and R. B. Lee. How secure is your cache against side-channel attacks? In Pro-

ceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 341–353. ACM, 2017.

[67] R. E. Kessler and M. D. Hill. Page placement algorithms for large real-indexed caches.

ACM Transactions on Computer Systems (TOCS), 10(4):338–359, 1992.

[68] G. Taylor, P. Davies, and M. Farmwald. The TLB slice-a low-cost high-speed address

translation mechanism. In Computer Architecture, 1990. Proceedings., 17th Annual

International Symposium on, pages 355–363. IEEE, 1990.

[69] C. Intel. Improving Real-Time Performance by Utilizing Cache Allocation Technology.

Intel Corporation, April, 2015.

[70] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,

G. Leander, V. Nikov, C. Paar, C. Rechberger, et al. Prince–a low-latency block cipher

for pervasive computing applications. In International Conference on the Theory and

Application of Cryptology and Information Security, pages 208–225. Springer, 2012.

[71] A. Seznec. A case for two-way skewed-associative caches. ACM SIGARCH computer

architecture news, 21(2):169–178, 1993.

[72] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss. Netspectre: Read arbitrary memory

over network. arXiv preprint arXiv:1807.10535, 2018.

216

[73] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh. Spectre Returns!

Speculation Attacks using the Return Stack Buffer. 2018.

[74] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas. Attack

Directories, Not Caches: Side Channel Attacks in a Non-inclusive World. In USENIX

Security Symposium (USENIX), page 0, 2019.

[75] W. Xiong and J. Szefer. Leaking information through cache lru states. In International

Symposium on High-Performance Computer Architecture (HPCA), February 2020.

[76] S. Deng, W. Xiong, and J. Szefer. Secure TLBs. In Proceedings of the 46th International

Symposium on Computer Architecture, ISCA ’19, pages 346–259, New York, NY, USA,

2019. ACM.

[77] Speculative Store Bypass Bug CVE, 2018. CVE 2018-3639., 2018.

[78] T. Zhang and R. B. Lee. New models of cache architectures characterizing information

leakage from cache side channels. In Proceedings of the 30th Annual Computer Security

Applications Conference, pages 96–105. ACM, 2014.

[79] B. L. Welch. The Generalization of Student’s Problem When Several Different Popula-

tion Variances are Involved. Biometrika, 34(1/2):28–35, 1947.

[80] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose. SoK: The

Challenges, Pitfalls, and Perils of Using Hardware Performance Counters for Security.

In Symposium on Security and Privacy (S&P), 2019.

[81] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross Processor Cache Attacks. In Asia

Conference on Computer and Communications Security (AsiaCCS), pages 353–364,

2016.

[82] J. Nomani and J. Szefer. Predicting program phases and defending against side-channel

attacks using hardware performance counters. In International Workshop on Hardware

and Architectural Support for Security and Privacy (HASP), June 2015.

217

[83] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. Armageddon: Cache

attacks on mobile devices. In 25th {USENIX} Security Symposium ({USENIX}

Security 16), pages 549–564, 2016.

[84] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and T. Eisenbarth.

Autolock: Why cache attacks on {ARM} are harder than you think. In 26th {USENIX}

Security Symposium ({USENIX} Security 17), pages 1075–1091, 2017.

[85] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou. Truspy: Cache side-channel

information leakage from the secure world on arm devices. IACR Cryptology ePrint

Archive, 2016:980, 2016.

[86] X. Zhang, Y. Xiao, and Y. Zhang. Return-oriented flush-reload side channels on arm

and their implications for android devices. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 858–870. ACM, 2016.

[87] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks on aes, and counter-

measures. Journal of Cryptology, 23(1):37–71, 2010.

[88] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti, B. Falsafi,

M. Payer, and A. Kurmus. Smotherspectre: exploiting speculative execution through

port contention. arXiv preprint arXiv:1903.01843, 2019.

[89] S. Bhattacharya and I. Verbauwhede. Exploring micro-architectural side-channel

leakages through statistical testing. yet to receive the details, 2020.

[90] S. A. Crosby, D. S. Wallach, and R. H. Riedi. Opportunities and limits of remote

timing attacks. ACM Transactions on Information and System Security (TISSEC),

12(3):1–29, 2009.

[91] N. V. Smirnov. On the estimation of the discrepancy between empirical curves of

distribution for two independent samples. Bull. Math. Univ. Moscou, 2(2):3–14, 1939.

[92] Microsoft corp. Visual Studio App Center. https://appcenter.ms/, accessed online.

218

https://appcenter.ms/

[93] Amazon.com Inc. AWS Device Farm. https://aws.amazon.com/device-farm/, ac-

cessed online.

[94] Google LLC. Google Firebase. https://firebase.google.com/, accessed online.

[95] Android Open Source Project. Security-Enhanced Linux in Android. https://

source.android.com/security/selinux, accessed online.

[96] Android Issue Tracker. [Android Q Beta] Apps can no longer execute binaries in their

home directory. https://issuetracker.google.com/issues/128554619, accessed

online.

[97] Amazon.com. Elastic Compute Cloud (EC2). Cryptology ePrint Archive, Report

2019/167. http://aws.amazon.com/ec2.

[98] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik,

J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach,

A. Rocha, and J. Stubbs. Lessons learned from the chameleon testbed. In Proceedings

of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20). USENIX

Association, July 2020.

[99] B. Burgess. Samsung exynos m1 processor. In 2016 IEEE Hot Chips 28 Symposium

(HCS), pages 1–18. IEEE, 2016.

[100] J. Borghoff, A. Canteaut, T. Güneysu, E. Kavun, M. Knezevic, L. Knudsen, G. Leander,

V. Nikov, C. Paar, C. Rechberger, et al. A low-latency block cipher for pervasive

computing applications-extended abstract. Asiacrypt, 2012.

[101] M. K. Qureshi. New attacks and defense for encrypted-address cache. In 2019

ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA),

pages 360–371. IEEE, 2019.

[102] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard.

Scattercache: Thwarting cache attacks via cache set randomization. In 28th {USENIX}

Security Symposium ({USENIX} Security 19), pages 675–692, 2019.

219

https://aws.amazon.com/device-farm/
https://firebase.google.com/
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://issuetracker.google.com/issues/128554619
http://aws.amazon.com/ec2

[103] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla. Cache side-channel attacks and

time-predictability in high-performance critical real-time systems. In Proceedings of

the 55th Annual Design Automation Conference, pages 1–6, 2018.

[104] P. Guide. Intel® 64 and ia-32 architectures software developer‘s manual. Volume 3B:

System programming Guide, Part, 2, 2011.

[105] A. Virtualization. Amd-v nested paging. White paper, 2008.

[106] A. J. Goldsmith and P. P. Varaiya. Capacity of fading channels with channel side

information. IEEE Transactions on Information Theory, 43(6):1986–1992, 1997.

[107] E. Rotem and S. P. Engineer. Intel architecture, code name skylake deep dive: A new

architecture to manage power performance and energy efficiency. In Intel Developer

Forum, 2015.

[108] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar. Next generation intel® micro-

architecture (nehalem) clocking architecture. In Symposium on VLSI Circuits, pages

62–63. IEEE, 2008.

[109] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. Colt: Coalesced large-

reach tlbs. In Proceedings of the 2012 45th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 258–269. IEEE Computer Society, 2012.

[110] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM SIGARCH

Computer Architecture News, 39(2):1–7, 2011.

[111] A. Perais and A. Seznec. Practical Data Value Speculation for Future High-End

Processors. In International Symposium on High Performance Computer Architecture,

pages 428–439, 2014.

[112] W. S. Gosset. The Probable Error of a Mean. Biometrika, pages 1–25, 1908.

[113] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys,

33(1):31–88, 2001.

220

[114] J. L. Massey. Foundation and methods of channel encoding. In International Conference

on Information Theory and Systems, volume 65, pages 148–157. NTG-Fachberichte,

1978.

[115] G. Saileshwar, C. W. Fletcher, and M. Qureshi. Streamline: a fast, flushless cache

covert-channel attack by enabling asynchronous collusion. In International Conference

on Architectural Support for Programming Languages and Operating Systems, 2021.

[116] C. Gough, I. Steiner, and W. Saunders. Energy efficient servers: blueprints for data

center optimization. Springer Nature, 2015.

[117] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and D. Gruss.

Platypus: Software-based power side-channel attacks on x86. In Symposium on Security

and Privacy, 2021.

[118] DoD 5200.28-STD, Department of Defense Trusted Computer System Evaluation

Criteria, 1983. http://csrc.nist.gov/publications/history/dod85.pdf.

[119] W. Xiong and J. Szefer. Leaking information through cache lru states. In International

Symposium on High Performance Computer Architecture, 2020.

[120] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner, F. Piessens,

D. Evtyushkin, and D. Gruss. A systematic evaluation of transient execution attacks

and defenses. In USENIX Security Symposium, 2019.

[121] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and Y. Yarom.

Robust website fingerprinting through the cache occupancy channel. In USENIX

Security Symposium, 2019.

[122] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. The spy in the

sandbox: Practical cache attacks in javascript and their implications. In Conference

on Computer and Communications Security, 2015.

[123] P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and image process-

ing, 14(3):227–248, 1980.

221

http://csrc.nist.gov/publications/history/dod85.pdf

[124] Introducing Geekbench 5, 2021. https://www.geekbench.com/.

[125] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer. Dawg: A defense

against cache timing attacks in speculative execution processors. In 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 974–987.

IEEE, 2018.

[126] N. NVIDIA. NVIDIA A100 Tensor Core GPU Architecture. Volume 1.0: Whitepaper,

Part, 1:82, 2020.

[127] J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M.

Chow, C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, M. B. Ketchen, and M. Steffen.

Characterization of addressability by simultaneous randomized benchmarking. Physical

Review Letters, 109(24):240504, 2012.

[128] R. Blume-Kohout, E. Nielsen, K. Rudinger, K. Young, M. Sarovar, and T. Proctor.

Idle tomography: Efficient gate characterization for n-qubit processors. In APS March

Meeting Abstracts, 2019.

[129] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner, T. Sher-

wood, B. Hardekopf, and F. T. Chong. Sapper: A language for hardware-level security

policy enforcement. In ACM SIGARCH Computer Architecture News, volume 42,

pages 97–112. ACM, 2014.

[130] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and T. Sherwood.

Complete information flow tracking from the gates up. In ACM Sigplan Notices,

volume 44, pages 109–120. ACM, 2009.

[131] R. S. Chakraborty, S. Narasimhan, and S. Bhunia. Hardware trojan: Threats and

emerging solutions. In International High-Level Design Validation and Test Workshop,

pages 166–171. IEEE, 2009.

[132] P. S. Li, A. M. Izraelevitz, and J. Bachrach. Specification for the firrtl language.

Technical Report UCB/EECS-2016-9, EECS Department, University of California,

Berkeley, Feb 2016.

222

https://www.geekbench.com/

[133] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340.

Springer, 2008.

[134] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,

and K. Asanović. Chisel: constructing hardware in a scala embedded language. In

Proceedings of the Annual Design Automation Conference, pages 1216–1225. ACM,

2012.

[135] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,

D. Dabbelt, J. Hauser, A. Izraelevitz, et al. The rocket chip generator. EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,

2016.

[136] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI

16), pages 265–283, 2016.

[137] A. Mi, S. Deng, and J. Szefer. Device- and locality-specific fingerprinting of shared nisq

quantum computers. In Proceedings of the Workshop on Hardware and Architectural

Support for Security and Privacy, HASP, October 2021.

[138] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the Keys to the

Intel SGX Kingdom with Transient Out-of-Order Execution. In Proceedings of the 27th

USENIX Security Symposium. USENIX Association, August 2018. See also Technical

Report Forshadow-NG [6]. http://ForeshadowAttack.com.

223

http://ForeshadowAttack.com

	Processor Microarchitecture Security
	Recommended Citation

	Acknowledgements
	Introduction
	Dissertation Contributions
	Microarchitectural Vulnerability Modeling
	Cache and TLB Timing Vulnerabilities and Defenses
	Vulnerabilities and Defenses of Value Predictors
	Processor Frontend Vulnerabilities
	Preliminary Study of Vulnerabilities in Accelerators Beyond CPUs
	Hardware Security Verification Framework

	Dissertation Organization

	Background
	Computer Microarchitecture
	Caches and TLBs
	Value Predictors
	Processor Frontend

	Side-Channel and Covert-Channel Attacks
	Examples of Previously Discovered Timing Vulnerabilities

	Formal Verification and Security Verification

	Vulnerability Modeling of Timing Attacks on Caches
	Three-Step Model
	Introduction to the Three-Step Model
	States of the Three-Step Model
	Derivation of All Cache Timing Vulnerabilities
	Description of Attack Strategies
	Soundness Analysis of the Three-Step Model
	Cache Three-Step Model Summary

	Secure Caches Evaluation
	Different Types of Secure Caches
	Analysis of the Secure Caches
	Summary of Secure Cache Techniques

	Evaluation of Timing Vulnerabilities of Caches and TLBs
	Cache Timing Vulnerabilities and x86 Benchmark Suite
	Modeling of Cache Timing Attacks
	Derivation of All Vulnerabilities
	Benchmark Implementation
	Validation of the Three-Step Model
	Evaluation and Security Discussion

	Cache Timing Vulnerabilities and Arm Evaluation
	Threat Model and Assumptions
	Arm Security Benchmarks
	Cloud-Based Framework
	Arm Benchmark Evaluation
	Sensitivity Testing of Benchmarks
	Evaluation of Arm Secure Caches

	TLB Timing Vulnerabilities and Secure TLBs
	Modeling TLB Timing Vulnerabilities
	Secure TLB Designs
	TLB Security Evaluation
	Performance Evaluation
	Soundness Analysis of TLB Vulnerabilities
	Additional Attacks

	Vulnerability Evaluation of Value Predictors
	Threat Model and Assumptions
	Attack Taxonomy
	New Value Predictor Attacks
	Train + Test Attack
	Test + Hit Attack
	Experimental Setup for Evaluation
	Attack Evaluation and Results

	Derivation of All Expected Value Predictor Attacks
	Modeling Results
	Value Predictor Attack Variants

	Secure Value Predictors
	Defense Techniques
	Defense Strategies Evaluation

	Processor Frontend Attacks
	Threat Model and Assumptions
	Analysis of the Operation of the Frontend
	Processor Frontend Vulnerabilities
	Eviction-Based Timing Attack with Multi-Threading
	Misalignment-Based Timing Attack with Multi-Threading
	Non-MT Eviction-Based Attack without Multi-Threading
	Non-MT Misalignment-Based Attack without Multi-Threading
	Slow-Switch Attack without Multi-Threading

	Evaluation of Timing-Channel Attacks
	Number of Iterations (p, q) for Attack Steps
	Threshold for Detecting Transmitted Bit
	Influence of (d, M) Parameters
	Influence of Message Patterns
	Transmission Rates and Error Rates
	Power-Channel Attack Evaluation

	SGX Attack Evaluation
	MT Timing SGX Attacks
	Non-MT Timing SGX Attacks
	Power-Based SGX Attacks

	Frontend and Instruction Cache-Based Spectre Attack Evaluation
	Microcode Patch Detection Evaluation
	Evaluation of Side-Channel Attack and Fingerprinting of Applications
	Side Channel Design
	Fingerprinting of Mobile Applications
	Fingerprinting of Machine Learning Algorithms
	Defense about Frontend Attacks

	Preliminary Study of Vulnerabilities in Accelerators Beyond CPUs
	GPU Covert-Channel Attacks
	Parallelism Features of GPU
	GPU Covert Channels

	Quantum Computing Crosstalk Attacks
	Crosstalk and Idle Tomography
	Fingerprinting Attack

	Hardware Security Verification
	SecChisel Security Verification Framework
	Verification Methodology
	The SecChisel Framework
	Evaluation of the Framework

	Conclusion and Future Directions
	Conclusion
	Future Directions

	Appendices
	List of Acronyms
	List of Publications

