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Abstract 
This paper presents Centinela, a system that combines acceleration data with 

vital signs to achieve highly accurate activity recognition. Centinela recognizes five 

activities: walking, running, sitting, ascending, and descending. The system includes 

a portable and unobtrusive real-time data collection platform, which only requires a 

single sensing device and a mobile phone. To extract features, both statistical and 

structural detectors are applied, and two new features are proposed to discriminate 

among activities during periods of vital sign stabilization. After evaluating eight 

different classifiers and three different time window sizes, our results show that 

Centinela achieves up to 95.7% overall accuracy, which is higher than current 

approaches under similar conditions. Our results also indicate that vital signs are 

useful to discriminate between certain activities. Indeed, Centinela achieves 100% 

accuracy for activities such as running and sitting, and slightly improves the 

classification accuracy for ascending compared to the cases that utilize acceleration 

data only. 

 



 

1. Introduction 
In the past decade, there has been a significant advance of mobile 

devices and sensors in regards to size, cost, and power. This has enabled new 

sources of data to study people’s daily activities and behaviors. Hence human-

centric sensing came into picture as a promising research area in computer science 

[1]. Particularly, the recognition of human physical activities has become a task of 

high interest within the field, especially for medical, military, and security 

applications. For instance, patients with dementia and other mental pathologies 

could be monitored to detect abnormal activities and thereby prevent undesirable 

consequences [2]. An interactive game might also require information about which 

activity the user is performing in order to respond accordingly. In tactical scenarios, 

the soldiers’ activities along with their location may be useful to send alerts in case 

of danger. 

All these applications need to solve the activity recognition problem, 

which from a practical point of view, can be defined as follows: given a time 

window W , defined within time instants ti and tj, which contains a set of time 

series S = {S0, . . . , Sk−1}, from each of the k measured attributes, the goal is to 

determine the activity performed during W from a predefined set of mutually 

exclusive activities (e.g., sitting, walking, eating, etc.). Now, recognizing human 

activities is not a trivial task. As a matter of fact, several challenges lie in this 

process, such as the selection of the attributes to be measured, the extraction of 

meaningful features, and the recognition of ambiguous activities. Energy consumption 

is also a critical issue in terms of deciding which sensors to turn on and off at any 

time, or setting the optimal sampling resolution [3]. 

Most of the previously proposed schemes in activity recognition collect 

data from either triaxial accelerometers, video sequences [4], or environmental 

variables. However, little work has been reported considering vital sign data. We 

believe there is a noticeable relationship between the behavior of the vital signs and 

the physical activity. When an individual begins running, for instance, it is expected 

that their heart rate and breath amplitude increase. Consequently, we 

hypothesize that higher human activity recognition accuracy can be achieved 



 

 

using both acceleration and vital sign data. To illustrate this, consider the 

situation in Fig. 1. Data from triaxial acceleration and vital signs were recorded 

while a subject was ascending after walking. Note that the acceleration signals 

within most time intervals are very similar for both activities. Instead, the heart 

rate time series exhibits a very clear pattern, as a person requires more physical 

effort to climb stairs than to walk. This might allow us to classify said activities 

more accurately. 

 

 
Fig. 1. Acceleration signals and heart rate for the activities walking and ascending. 

 

This paper presents Centinela, a human physical activity recognition system 

for five different activities: sitting, walking, running, ascending, and descending. The 

proposed methodology encompasses (1) collecting vital sign and acceleration data 

from human subjects; (2) extracting features from the measured attributes; (3) 

building supervised machine learning models for activity classification; and (4) 

evaluating the accuracy of the models under different parameter configurations. 

The main contributions of this work are listed below: 

• Centinela combines acceleration data with vital signs to achieve highly 

accurate activity recognition. In fact, it provides higher accuracy than other 

approaches under the same conditions. 

• Since vital signs are not expected to change abruptly, Centinela applies 

structure detectors [5], i.e., linear and non-linear functions, to extract 



 

features. 

• Two new features are proposed for vital signs: magnitude of change and 

trend, intended to discriminate among activities during periods of vital sign 

stabilization. 

• Centinela features a portable and unobtrusive real-time data collection 

platform, which allows not only for activity recognition but also for 

monitoring health conditions of target individuals. 

• Several classifiers are analyzed in the study, allowing other researchers 

and application developers to use the most appropriate classifiers for 

specific activities. 

The rest of the paper is organized as follows: Section 2 analyzes the state of 

the art in human activity recognition. Later, Section 3 introduces the global 

structure of Centinela. Section 3.1 describes the data acquisition architecture, 

as well as the data collection protocol. Section 3.2 covers the methods applied 

for feature extraction, i.e., statistical, structural, and transient features. Then, 

Section 4 presents the methodology of the experiments and the main results. 

Finally, Section 5 summarizes the most important conclusions and findings. 

 

2. Related work 
Although the first works in human activity recognition (HAR) date back to the late 

’90s [6], there are still many issues that motivate the development of new techniques 

to improve accuracy under more realistic conditions. These issues concern to four 

different phases: data collection, feature extraction, classification, and 

evaluation. 

 

2.1. Data collection 

With respect to data collection, it is crucial to make an appropriate 

selection of the attributes to be measured and the sensors to be used. Many 

previously proposed schemes use triaxial accelerometers on different parts of the 

body (e.g., wrist, thigh, leg, pocket, etc.) to recognize ambulation activities (e.g., 

walking, running, lying, etc.) [7–12]. Other methods are based upon 



 

 

environmental variables and utilize microphones, light sensors, and humidity 

sensors, among others [13,14]. Nevertheless, little work has been done using 

vital sign data. Tapia et al. [15] proposed an activity recognition system that 

combines data from five triaxial accelerometers and a heart rate monitor. 

However, they concluded that the heart rate is not useful to discriminate between 

activities. Their argument, which is valid, is that after performing physically demanding 

activities (e.g., running) the heart rate remains high for a while, even if the 

individual is lying or sitting. To deal with this issue, Centinela utilizes new feature 

extraction techniques that allow for activity recognition during periods of vital 

sign stabilization. 

It is also important to build an effective data collection system (i.e., 

hardware and software) in terms of portability, reliability, energy consumption, 

comfort, and cost. Some methods require four or five accelerometers in different 

parts of the body [12,15,16], or need the user to carry a heavy rucksack with a 

computer and other recording devices [14]. This might be invasive, uncomfortable, 

expensive, and hence not suitable for online activity recognition. Centinela requires 

one single sensing device, which is comfortable and unobtrusive (see Section 3.1), and 

a Java-enabled cellphone with Bluetooth connectivity. 

 

2.2. Feature extraction 

Existing HAR systems based on accelerometer data employ statistical 

feature extraction. Most of them apply either time- domain features such as mean, 

variance, energy, correlation between axes, etc. [11–17], or frequency-domain 

features, such as entropy and the coefficients of the Fourier transform. Discrete 

Cosine Transform (DCT) and Principal Component Analysis (PCA) have also been 

applied with promising results [10], as well as autoregressive model coefficients [7]. 

All these techniques are conceived to handle the high variability of acceleration 

signals. In contrast, vital signs fluctuate smoothly and are not expected to suddenly 

change in short periods of time. Therefore, structure detectors [5] are utilized in this 

work to approximate vital sign time series by means of linear and non-linear 

functions. Moreover, two new features are proposed: the magnitude of change and 



 

trend of vital signs, intended to discriminate among activities during periods of vital 

sign stabilization. 

 

2.3. Classification 

Many classification algorithms have been applied for activity recognition: 

decision trees, such as C4.5 and ID3 [9,12– 14,16,18]; Bayesian methods, such 

as Naïve Bayes (NB) and Bayesian Networks (BN) [12,15,18]; Nearest Neighbor 

[13,18], Fuzzy Logic [11,17], Neural Networks [19], and Support Vector 

Machines [7,8,10], among others. In this work we not only evaluate traditional 

classifiers, such as Naïve Bayes, Bayesian Networks, C4.5, and Multilayer Perceptron, 

but also classifier ensembles with methods such as Bagging and Boosting. The 

main idea behind these techniques is to make decisions based upon the output of 

a set of classifiers rather than considering one single learning method. Section 4 

shows the methodology and results of the classifier evaluation. 

 

2.4. Evaluation 

Two types of analyses have been proposed to evaluate activity 

recognition systems: subject-dependent and subject- independent evaluations 

[15]. In the first one, a classifier is trained and tested for each individual with 

his/her own data and the average accuracy for all subjects is computed. In the 

second one, only one classifier is built splitting the data of all individuals into a 

training set and a testing set. 

It is important to emphasize that each person may perform activities in a 

different manner, which makes subject- independent analysis more challenging. 

In practice, a real-time activity recognition system should be able to fit any 

individual. It would not be convenient to train the system for each new user, 

especially when (1) there are too many activities; (2) some activities are not 

desirable for the subject to carry out (e.g., falling downstairs); or (3) the subject 

would not cooperate with the data collection process (e.g., patients with 

dementia and other mental pathologies). Thus, a subject- independent analysis, 

as the one presented in this paper, is preferred. 



 

 

A comparison of the classification accuracy given by Centinela and other 

state-of-the-art approaches is included in Section 4.2.5. 

 

3. Description of the system 
Fig. 2 illustrates the process for activity recognition. First, data are 

collected from accelerometer and vital sign sensors, as described in Section 3.1. 

Then, time-domain and frequency-domain statistical feature extraction is applied 

to the acceleration signals (Section 3.2.1), as well as structural and transient 

features are extracted from vital signs (Sections 3.2.2 and 3.2.3). Next, the 

dataset with the extracted features is given as input to various classification 

algorithms and the classification accuracy of each one is calculated by means of 

cross validation (Section 4). Finally, the best classifier is selected as the result of a 

non-parametric statistical test. 

 

 
Fig. 2. Centinela’s system overview. 

 

3.1. Data collection 

Fig. 3 shows the system architecture for the data collection phase. The 

sensing device (see Section 3.1.1 for more details) communicates via Bluetooth 

with an Internet-enabled cellphone. There is a mobile application which decodes 

the packets and sends labeled data to the application server via the Internet. The 

server then receives these data and stores them into a relational database 



 

 
Fig. 3. Data collection system architecture. 

 

3.1.1. Sensing device 

We are using the BioHarnessTM BT chest sensor strap [20] manufactured 

by Zephyr shown in Fig. 3. This device features a triaxial accelerometer and 

allows for measuring vital signs as well. The strap is unobtrusive, lightweight, 

and can be easily worn by any person. The measured attributes are: heart rate, 

respiration rate, breath amplitude, skin temperature, posture (i.e., inclination of 

the sensor), electrocardiogram amplitude, and 3D acceleration. The 

accelerometer records measurements at 50 Hz, each one between −3g to 3g , 

where g stands for the acceleration due to gravity. Acceleration 

samples are aggregated in packets sent every 400 ms, so every packet 

contains twenty acceleration measurements in all three dimensions. On the other 

hand, the vital signs are sampled at 1 Hz, since they are not expected to change 

considerably in short periods of time. 

In the literature, accelerometers are commonly placed either on the wrist 

[12,14,16], ankle [12,16], or in the trouser’s pocket [7,8,10], yet a person might 

be moving his/her arms or legs while been seated. This fact may introduce noise 

to the data, thereby causing misclassification. We believe that placing the 

accelerometer on the chest makes our system more noise tolerant, and our results 

support this hypothesis. 

 



 

 

 
Fig. 4. Mobile application user interface [21]. 

 

Table 1 
Physical characteristics of the participants. 

 Avg Min Max 

Age (years) 24 9 34 

Weight (kg) 76.5 27 95 

Height (m) 1.74 1.35 1.88 

BMI 24.23 20.96 29 

3.1.2. Mobile application 

A mobile software application was built to collect training data under the Java 

ME platform. This allows Centinela to run on any mobile phone that supports Java, 

thereby avoiding the inconvenience of requiring the user to carry additional devices. 

The mobile application receives and decodes the raw data sent from the sensor via 

Bluetooth, visualizes the measurements (see Fig. 4(a)), and labels each 

measurement according to the option selected by the user, either: running, 

walking, sitting, ascending, or descending (see Fig. 4(b)). The samples are sent 

in real time, via UDP, to the application server, which stores the labeled data 

into a relational PostgreSQL database. 

 



 

3.1.3. Data collection protocol 

The data were collected in a naturalistic fashion, thus, no specific instructions 

were given to the participants. The speed, intensity, gait, and other environmental 

conditions were arbitrarily chosen by the subjects. Eight individuals, 7 males and 1 

female, participated in this study. Their physical characteristics, namely age, weight, 

height, and body mass index are shown in Table 1. 

Unlike accelerometer signals, vital signs do not abruptly vary after the 

person changes activities. On the contrary, the values of vital signs during time 

interval Ij depend of the activity during Ij−1. Therefore, the data should be collected 

so that the recognition of each single activity can be independent of the previous 

state. If we required, for instance, the individuals to be at rest before recording each 

session, the system would not be trained to recognize interleaving activities! 

Consequently, we have collected data from subjects while performing successive 

pairs of activities, e.g., running before sitting, walking before descending, and so 

on. This was carried out for all twenty possible combinations of pairs of 

consecutive activities. 

 

3.2. Feature extraction 

In general, two approaches have been proposed to extract features in 

time series data: statistical detectors and structure detectors [5]. Statistical 

detectors, such as the Fourier transform and the Wavelet transform, use 

quantitative characteristics of the data to extract features. On the other hand, 

structure detectors take into account the interrelationship among data. Hence, 

they have been widely used for image processing and time series analysis. Due to both 

acceleration and physiological signals being distinct in nature, we have employed 

methods from statistical and structural feature extraction. 

Now, to overcome the problem of detecting transitions between activities, 

all measured signals were divided into fixed size 50% overlap time windows 

[11,12]. Three different window sizes were tried: 5s, 12s, and 20s. For every time 

window, 90 features were extracted as follows: eight statistical features for 

each of the acceleration signals (i.e., 24 features), nine structural features for 



 

 

each of the physiological signals (i.e., 54 features), and two transient features 

for each of the physiological signals (i.e., 12 features). Table 2 summarizes the 

feature set computed from raw signals in this work. The definitions of these 

features are presented in the following subsections. 

 

Table 2 

Complete set of features extracted in this work. 

Measured signals Extracted features  

Statistical Structural Transient Total 

AccX (g) X 8 

AccY (g) X 8 

AccZ (g) X 8 

Heart rate X X 11 

Respiration rate X X 11 

Breath amplitude X X 11 

Skin temperature X X 11 

Posture X X 11 

ECG amplitude X X 11 

Total 24 54 12 90 

3.2.1. Statistical features 

Time-domain and frequency-domain features [11–17] have been extensively 

used to filter the relevant information of acceleration signals. In this work, eight 

features were calculated for all three acceleration signals (a total of 24 

features). These are: mean, variance, standard deviation, correlation between 

axes, interquartile range, mean absolute deviation, and root mean square, from 

the time domain; and, energy from the frequency domain. The interested reader 

might refer to [11] for the definition of all these features. 

 
 
 



 

Table 3 
Structure detectors evaluated in this work.  

Function Equation Paramet

ers 

Linear F(t) = mt + b {m, b} 

Polynomi

al 

F(t) = a0 + a1t + · · · + 

an−1 tn−1 

{a0, . . . , 

an−1 } 

Exponenti

al 

F(t) = a|b|t + c {a, b, c} 

Sinusoida

l 

F(t) = a ∗ sin(t + b) + c {a, b, c} 

 

3.2.2. Structural features 

Since vital signs have much lower variability than acceleration signals, 

structure detectors turn out to be a suitable approach to extract features from 

vital sign time series. Structure detectors use an arbitrary function f with a set of 

free parameters {a0, . . . , an} to fit the points of a given time series S [5]; these 

parameters are, in fact, the extracted features. In order to evaluate the goodness 

of fit of f to S, the sum of squared error (SSE) is computed. For each measured 

attribute, the goal was to find the function f ∗ with the smallest SSE, so that the 

feature extraction process relies on the calculation of the free parameters of f ∗. 

Table 3 summarizes the different types of functions that have been evaluated in this 

work. 

The median of the SSE was calculated for all time windows from all six 

physiological signals and all four structure detectors. The median was preferred 

over the mean to prevent noisy instances to bias the goodness of fit of the feature 

detectors. From the evaluation, polynomial functions of third degree had the lowest 

SSE for all six vital signs. Polynomials of degree higher than three were not 

considered to avoid overfitting due to Runge’s phenomenon [22]. A total of nine 

structural features were extracted from each vital sign time window, i.e., the 

coefficients of the polynomials of degree one, two, and three that best fit the points 



 

 

in the time window. 

 

3.2.3. Transient features 

Consider, for instance, that someone is running for one minute and then sits 

for two minutes. Even though the individual is seated, the vital signs (e.g., heart 

rate, respiration rate, etc.) remain as if he/she was running for an interval of time 

that we have called the transient period. To overcome this issue, two new 

features are proposed in this work, the trend τ , and the magnitude of change κ, 

intended to describe the behavior of the vital signs during transient periods. The 

trend indicates whether the time series is increasing, decreasing, or constant. Notice 

that, due to the nature of the human activities considered in this work, it is expected 

that vital signs are either strictly increasing, strictly decreasing, or remain 

constant while an individual is performing one single activity. 

 

Definition 1.  
Trend. 

Let m be the slope of the line that best fits the series S. Then, the trend τ(S, r) of 

S is defined as follows: 

 
where r is a positive real number that stands for the slope threshold. This value 

was set to tan(15°) after doing an experimental analysis over the entire the 

dataset. The trend can be computed in O(1), given that the slope of the line that 

best fits the data points was calculated beforehand as one of the structural 

features. 

Now, it is important not only to detect whether the vital signs increased or 

decreased, but also to measure how much they varied. For this purpose the 

magnitude of change feature is presented as follows: 

 

Definition 2.  



 

p 

Magnitude of change. 

Let S be a given time series define from tmin to tmax. Let 𝑆𝑆𝑝𝑝−   be a subset of S 

which contains all measurements between 

tmin and tmin + (tmax − tmin)p, where 0 < p < 1 is a percentage of the series. Let 

𝑆𝑆𝑝𝑝+ be a subset of S which contains all samples between tmin + (tmax − tmin)(1 − p) 

and tmax. Then, the magnitude of change κ(S, p) is defined as 

 
The value of p was set to 0.2 after doing an experimental analysis over 

the entire dataset. This implies that S− is the first 20% of the series and S+ 

would be the last 20% of the series. The purpose of the magnitude of change is 

to estimate the maximum deviation between the beginning and the end of the series, 

and it can be calculated in linear time. Fig. 5 illustrates the process of calculating 

this feature. 

Using transient features together, our hypothesis is that a classifier could 

generate rules such as: if κ(SHR, p) is large and τ(SHR, r) is increasing, then 

activity is running, for a given heart rate time series SHR. 

Even though both magnitude of change and trend are strongly related to 

the slope of the line that best fits a time series, they are different measures of 

the data shape. Section 4.2.4 analyzes the effectiveness of the two new features 

proposed in this work. 

 
Fig. 5. Calculation of the magnitude of change feature. 



 

 

 

4. Evaluation 
This section describes the methodology to evaluate the system and provides 

further analysis and discussion of our results and main findings. 

 

4.1. Design of the experiments 

Activity recognition was fulfilled by assessing three different datasets: the 

first one, Dacc , solely contains the features extracted from acceleration data; the 

second, Dnt , has statistical and structural features; and, the last one, Dvs, 

includes all features (i.e., statistical, structural and transient). This is with the 

purpose of measuring the impact of vital signs features in the classification 

accuracy. Eight classification algorithms were also evaluated for each dataset: 

1. Naïve Bayes (NB) [23]. 

2. Bayesian Network (BN) using K2 search algorithm [24]. 

3. J48 decision tree, which is an implementation of the C4.5 algorithm [25]. 

4. Multilayer Perceptron (MLP), which relies on a Backpropagation Neural Network 

[25]. 

5. Additive Logistic Regression (ALR) [26], performing Boosting with an ensemble 

of ten Decision Stump classifiers. 

6. Bagging using an ensemble of ten Naïve Bayes classifiers (BNB) and each bag 

having the same size than the training set. 

7. Bagging using an ensemble of ten Bayesian Network classifiers (BBN) and each 

bag having the same size than the training set. 

8. Bagging using an ensemble of ten J48 classifiers (BJ48) and each bag having 

the same size than the training set. 

We do not elaborate on the classification algorithms since they are not 

part of the contributions of this work. The interested reader may refer to [23–26] 

for a complete description of them. 

The evaluation encompasses two parts: first, the selection of the best 

classifier(s), and later the calculation of their accuracy. This process was 

completed for all three datasets. 



 

In order to determine whether a classifier is better than another, a 5 × 2 fold 

cross validation [25] was performed. In general, a 5 × 2 fold cross validation is 

preferred over other approaches (e.g., 10 fold cross validation or percentage split) 

because it has a smaller probability of concluding that one classifier is better than 

another when it is not the case. As we do not have information regarding the 

probability distribution of the accuracy of each classifier, the non-parametric 

Sign Test [27] was utilized. This test allows us to determine whether there is any 

statistical difference between the probability distribution functions of two 

independent random variables. The test is defined as follows: 

Definition 3. Sign test. 

• Let X , Y be two independent random variables. 

• Let H0 : P(X > Y ) = P(X < Y ) be the null hypothesis. 

• Let (xi, yi) be a set of n matched pairs from X and Y respectively. 

• Let n′ be the number of observations such that xi ̸= yi. 

• Let T be the number of observations such that xi > yi. T follows the binomial 

distribution under H0 with parameters n′ (i.e., the number of trials) and p = 0.5. 

The p-values for the test are as follows: 

• Lower: plow = P(T ≤ tobs). Alternative hypothesis: H1 : P(X > Y ) < P(X < Y ). 

• Upper: pupper = P(T ≥ tobs). Alternative hypothesis: H1 : P(X > Y ) > P(X < Y ). 

• Two-sided: p = 2 min(plow, pupper ). Alternative hypothesis: H1 : P(X > Y ) ̸= P(X 

< Y ). 

In our case, the random variables X and Y are the values from the accuracy 

of two classifiers, and there are five matched pairs for all different random seeds. A 

way to extend this test to deal with n random variables (since we are considering 

eight algorithms) is to make a k-rounds binary tournament among pairs of 

classifiers. If the null hypothesis is rejected, the best classifier (i.e., the winner) 

goes to the next round, and the other one (i.e., the loser) is discarded. If the null 

hypothesis is not rejected, both classifiers pass to the next round. The process 

repeats until no more classifiers can be discarded. At the very end, the classifiers 

which did not lose any match are selected as the best classifiers. 

All the classification algorithms were tested in the Waikato Environment for 



 

 

vs 

Knowledge Analysis (WEKA) [28]. This is a well-known software tool developed 

by the University of Waikato, New Zealand, which allows for easy evaluation of 

machine learning algorithms. Three window sizes were evaluated, namely 5s, 12s, 

and 20s. The significance level for all sign 

tests was fixed to α = 0.05. 

 

4.2. Results 

An interesting fact in machine learning is that the performance of a 

classification algorithm depends on which dataset it is applied to. As we are to 

decide on whether vital signs allow for more accurate classification, it is required 

to determine the best classifier for each dataset. 

 

4.2.1. Dataset with features from vital signs and acceleration 

The best classifiers on Dvs, according to the 5 × 2 cross validation 

tournament, are shown in Table 4, for all three different window sizes, and five 

random seeds si: 1, 128, 255, 1023, and 4095. As a notation, the name of the 

classifiers will be henceforth accompanied with the window size written as 

superscript and the dataset as subscript. For example, ALR12s stands for ALR 

over the Dvs dataset using 12s time windows. 

In order to select the most appropriate window size, the same concept of 

k-rounds binary tournament of sign tests was applied among the best eight 

classifiers. As a result, four of them were selected: 𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣5𝑣𝑣,  𝐵𝐵𝐵𝐵𝐵𝐵𝑣𝑣𝑣𝑣5𝑣𝑣,  𝐵𝐵𝐵𝐵48𝑣𝑣𝑣𝑣5𝑣𝑣,  and 

𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣.   Notice that having time windows as long as 20s considerably affected the 

accuracy of all the classifiers. This was expected since, in such a case, more than 

one activity might be performed within one single time window [29]. 

Let us emphasize that the 5×2 fold cross validation is not intended to measure 

classification accuracy but to discriminate whether or not there is a statistically 

significant difference among them! This is because a 5 × 2 fold cross validation 

only uses half of the data as training set. Now, the actual accuracy of the four 

classifiers is measured by a 5 × 10 fold cross validation for each activity. The 

average accuracies are shown in Table 5. Classifiers using time windows of five 



 

vs 

seconds had the lowest overall accuracy. This is reasonable since vital signs 

cannot properly describe activity patterns in time intervals as short as five 

seconds. Instead, Table 5 suggests that features extracted from vital signs 

within a window of 12s allow the system to discern among activities that might 

be ambiguous for accelerometers, such as walking and ascending (see Fig. 1).  

Although there is no sufficient statistical evidence to assure that any of 

the classifiers is better than the others, we have chosen 12s as the best window 

size, and ALR as the best classifier for the Dvs dataset. This is not only because it 

reaches the highest accuracy in the 5 × 10 fold cross validation, but also because 

of how each activity was classified. Observe that 𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣(i.e., ALR with 12s time 

windows over the Dvs dataset) classified activities such as running, ascending, 

and descending with the highest accuracy. For real applications in health care or 

tactic scenarios, it may be more important to detect these types of activities. 

 

4.2.2.    Dataset with features from acceleration only 

The same procedure was carried out over the dataset that only contains features 

from the accelerometer data. That is, a tournament of 5 × 2 fold cross validations and 

sign tests for all eight algorithms. Table 6 contains the results from the best classifiers 

given by the 5 × 2 fold cross validation over the Dacc dataset, namely 〖ALR〗_acc^5s  

and 〖MLP〗_acc^5s. Their accuracy was computed by means of a 5 × 10 fold cross 

validation (see Fig. 6). 

 

Table 4  
Percentage classification accuracy for the best classifiers given by the 5 × 2 fold 

cross validation on Dvs . Five different random seeds si were utilized. 

 

 

 

 

 

 

s1 s2 s3 s4 s5 Average 

𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣5𝑣𝑣  89.22 89.49 91.91 94.34 92.18 91.98 

   𝐵𝐵𝐵𝐵𝐵𝐵𝑣𝑣𝑣𝑣5𝑣𝑣  90.84 90.57 91.64 90.03 89.76 90.57 

𝐵𝐵𝐵𝐵48𝑣𝑣𝑣𝑣5𝑣𝑣  88.41 90.03 93.53 87.6 88.14 89.54 

𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣  92.857 92.86 87.857 95 88.57 91.43 

𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣12𝑣𝑣  84.286 87.86 89.286 91.43 90.71 89.82 

𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣20𝑣𝑣  80.822 84.931 84.931 80.82 82.19 82.74 

       

       

 



 

 

 
Table 5 
Per-class mean percentage accuracy of the 5 × 10 fold cross validation among the 

best classifiers for the Dvs . si dataset. 

Activity                      𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣5𝑣𝑣                   𝐵𝐵𝐵𝐵𝐵𝐵𝑣𝑣𝑣𝑣5𝑣𝑣                    𝐵𝐵𝐵𝐵48𝑣𝑣𝑣𝑣5𝑣𝑣                  𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣 

 

Table 6  
Percentage classification accuracy for the best classifiers given by the 5×2 fold 

cross validation using accelerometer data only. Five different random seeds si were 

ultilized 

 

4.2.3. Analyzing the impact of vital signs 

To quantify the improvement achieved by incorporating vital sign data, the 

best classifiers for each dataset are now compared. Fig. 6 summarizes the 

classification accuracy per activity for 𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣, 𝐴𝐴𝐴𝐴𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎5𝑣𝑣 , and𝑀𝑀𝐴𝐴𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎5𝑣𝑣 . Note that 𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣 

reached the highest overall accuracy (i.e., 95.7%), perfectly classifying activities 

such as sitting and running. The activity labeled as ascending reported the most 

significant improvement (between 10% and 13%). This was expected as acceleration 

signals are similar for ascending and walking whereas vital signs provide more 

clear patterns to distinguish between these activities (see Fig. 1). 

Walking 92.98 97.62 94.72 94.3 

Running 98.56 98.8 98.32 100 

Ascending 83 69.24 86.56 92.84 

Descending 91.06 80.4 89.52 91.36 

Sitting 100 95.58 96.36 100 

Total 93.12 88.328 94.24 95.7 

 s1 s2 s3 s4 s5 Average 

𝑀𝑀𝐴𝐴𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎5𝑣𝑣  92.45 91.11 94.61 88.14 92.99 91.86 

𝐴𝐴𝐴𝐴𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎5𝑣𝑣  88.95 91.37 90.84 92.45 91.91 91.105 

 



 

Notice that 𝑀𝑀𝐴𝐴𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎5𝑣𝑣  yields higher mean accuracy than 𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣 for descending 

(roughly 6%). This brings a new point to the discussion: depending on the 

application and the activities that are to be recognized, it might (or might not) be 

useful to consider vital sign data to recognize human activities. According to our 

results, if the target activities are descending or walking, the data from 

accelerometers would be sufficient to discover activity patterns. On the other 

hand, if activities such as running, sitting, or ascending need to be recognized, 

vital signs would definitely provide the system with a more reliable output. 

 

4.2.4. Analyzing the impact of transient features 

To evaluate the effectiveness of transient features, an additional 5 × 2 fold 

cross validation tournament was applied to a new dataset Dnt (where the subscript 

nt stands for no transient) which only includes statistical features from 

acceleration data and structural features from vital signs. After evaluating all eight 

classification algorithms and all three window sizes, two classifiers were chosen, 

𝐴𝐴𝐴𝐴𝑅𝑅𝑛𝑛𝑛𝑛5𝑣𝑣 and 𝐴𝐴𝐴𝐴𝑅𝑅𝑛𝑛𝑛𝑛12𝑣𝑣. These are now compared to 𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣 (which does include 

transient features), and the results are in Fig. 7. Despite the overall accuracy 

improvement was between 3% and 4%, transient features enhanced between 4% 

and 10% for ascending. We believe this improvement is worthwhile as transient 

features are inexpensive, computationally speaking. Finally, Table 7 shows the 

average of the confusion matrices from the 5 × 10 fold cross validation using the 

𝐴𝐴𝐴𝐴𝑅𝑅𝑣𝑣𝑣𝑣12𝑣𝑣 classifier. Confusions are, on average, less than 5% and only among three 

activities: walking, ascending, and descending. This is reasonable since these 

three activities might have similar patterns depending on the intensity at which 

they are performed by the individual. 

 

 



 

 

 
Fig. 6. Average accuracy of the 5 × 10 fold cross validation for the best classifiers 

in each dataset: Dvs and Dacc . 

 

Fig. 7. Average accuracy of the 5 × 10 fold cross validation for the best classifiers 

in each dataset: Dvs and Dnt . 

 

4.2.5. Centinela vs. other state-of-the-art approaches 

It is worth mentioning that we cannot directly compare Centinela to all other HAR 

systems. This is mainly because each approach carries out a different experimental 

setup in terms of (1) the physical characteristics of the individuals the data were 

collected from, (2) the activities to be recognized, and (3) the evaluation 

methodology. However, to have a general idea of the benefits provided by 

Centinela, Table 81 is presented to compare our system to three others working 



 

vs 

with the same set of activities. 

 

Table 7 
Average of the confusion matrices from the 5 × 10 fold cross validation using 

ALR12s. 

Walking Sitting

 Ascending 

Descendi

ng 

Runnin

g 

Walking 94.28 0 7.16 3.64 0 

Sitting 0 100 0 0 0 

Ascendin

g 

2.71 0 92.84 5 0 

Descend

ing 

3.01 0 0 91.36 0 

Running 0 0 0 0 100 

 

Firstly, eWatch is introduced in [13] as an online activity recognition system 

which embeds sensors and a microcontroller within a device that can be worn as a 

sport watch. Four sensors are included, namely accelerometer, light sensor, 

thermometer, and microphone. Although eWatch features up to 92.5% overall 

accuracy, it achieves less than 70% of accuracy for activities such as descending 

and ascending. Centinela reduces the misclassification of these activities by 

considering vital signs and it reaches 91.36% and 92.84% respectively. Also, in 

eWatch, data were collected under controlled conditions, thus, a lead experimenter 

supervised and gave specific guidelines to the subjects on how to perform the 

activities [13]. In 1999, Foerster et al. [6] demonstrated 95.6% of accuracy for 

ambulation activities in a controlled data collection experiment, but in a natural 

environment, the accuracy dropped to 66%! 

 

 

 

 



 

 

Table 8 
Per-activity percentage accuracy of Centinela and other state-of-the-art 

approaches for human activity recognition. 

 Centinela eWatch 

[13] 

HAAR [9] HMM 

[30] 

Walking 94.28 92* 94.43 90.3 

Running 100 93* 99.89 87.01 

Ascending 92.84 68* 84.12 89.15 

Descendi

ng 

91.36 67* 86.42 92.5 

Sitting 100 99* 99.15 N/A 

Total 95.7 92.8* 93.91 89.74 

 

Secondly, the system proposed in [9] uses HAAR filters to extract 

features and the C4.5 algorithm for classification purposes. In activities such as 

running, walking and sitting, their results are fairly close to Centinela’s; yet for 

ascending and descending, Centinela is slightly better. Furthermore, only four 

individuals with unknown physical characteristics participated in the study 

presented in [9]. Collecting data from such number of people might be 

insufficient to provide flexible recognition of activities on new users. 

Finally, the system presented in [30] applies Hidden Markov Models and 

Neural Networks resulting in almost the same accuracy than Centinela’s for 

ascending and descending. But, Centinela recognizes the activities running and 

walking more accurately. In addition, data collected in [30] are from one single 

individual, which implies that a subject-dependent analysis was performed (refer to 

Section 2.4 for the definition and disadvantages of a subject-dependent analysis). 

 

 

1 Values marked with an asterisk (*) are approximated. They were obtained from a 

chart included in [13]. 



 

In the present work, all the data were collected under naturalistic 

conditions and a subject-independent analysis was applied for the evaluation. 

Next, Centinela is qualitatively compared to other approaches that recognize a 

different set of activities: 

In 2002, Randel et al. [19] introduced a system to recognize ambulation 

activities which makes use of Root Mean Square for feature extraction and 

Backpropagation Neural Networks for classification. The authors claim to have 

reached up to 95% of accuracy but also emphasize that results were analyzed after 

further person specific training. This implies a subject- dependent analysis which, 

again, might not be convenient for real applications. Additionally, the paper does not 

include information regarding the characteristics of the subjects, the data 

collection protocol, and the confusion matrix. 

In [15], the authors claim that the average classification accuracy for 

ambulation activities is 94.6%, but this is only for subject-dependent analysis. 

They hardly reach 56% of accuracy in the subject-independent evaluation. The 

same situation occurs in the system proposed in [18]. They compare different 

classification algorithms to recognize ambulation activities with a 95% subject-

dependent accuracy, but only reach 86% of accuracy for the subject-

independent analysis. 

Ermes et al. [16] developed an online system that reaches 94% overall 

average accuracy but they only applied a subject- dependent evaluation. Besides, 

their data were collected from only three subjects. Kao et al. [17] also present an 

online system with 94.71% overall accuracy, but they include other activities such 

as hitting, knocking, working at PC, and brushing teeth. The activities descending 

and ascending, included in this work, are not considered there. He et al. [7,8,10] 

achieved up to 97% of accuracy but only considered four activities: running, being 

still, jumping, and walking. These activities are quite different in nature, which 

considerably reduces the level of uncertainty thereby enabling higher accuracy. 

In this work, we consider other activities such as ascending and descending stairs 

which open new possibilities for real applications and require a higher level of 

discrimination. 



 

 

In 2010, Berchtold et al. introduced ActiServ as an activity recognition 

service for mobile phones [31]. They make use of a fuzzy inference system to 

classify daily activities, achieving up to 97% of accuracy. However, this requires a 

runtime duration in the order of days! When their algorithms are executed to meet a 

feasible response time, the accuracy drops to 71%. ActiServ can also reach up to 

90% after personalization, in other words, a subject-dependent analysis. 

The approach proposed in [11] exhibits high recognition accuracy (about 93%). 

Nonetheless, all the data were collected inside the laboratory, under controlled 

conditions. 

4.3. Beyond the recognition of human activities 

Centinela can be visualized as a general tool for pattern recognition in 

time series data. As a matter of fact, it could be extended to provide inference 

not only on the individual’s activity, but also their gender and other personal 

information. While Centinela can accurately make statements such as the 

individual is running, it would be even more useful to deliver additional 

information, such as a female individual between 130 and 150 pounds is 

running. However, in order to achieve gender, weight, and activity recognition, 

these new attributes have to be included as goal attributes in the classification 

context as well. And, in this case, instead of a single attribute classification 

problem, we would be dealing with a multiattribute classification problem (activity, 

gender, and weight). As most classification algorithms only support a single class 

attribute, this problem becomes quite challenging. One possible solution might 

be to create a composite class attribute whose domain is the Cartesian product 

of the atomic class attributes (i.e., all possible combinations of activities, weights, 

and genders). Of course, many more confusions are expected due to additional 

uncertainty being introduced to the system. Moreover, it would be required to acquire 

greater amount of data from individuals throughout the entire spectrum of possible 

values, i.e., females and males, from all possible weights, heights, ages, and so 

forth. Such a multiattribute classification problem is beyond the goals of this 

paper, but is part of our current research work. 

 



 

5. Conclusions 
This paper presents Centinela, a human activity recognition system based 

upon acceleration and vital sign data. An extensive evaluation was performed 

for three feature sets (i.e., statistical, structural, and transient), eight 

classification algorithms, and three different window sizes. Overall, the highest mean 

accuracy achieved was 95.7% for the Additive Logistic Regression algorithm with a 

window size of 12s and considering both vital signs and acceleration data. This 

fact supports the hypothesis that vital signs together with acceleration data can 

be useful for recognizing certain human activities more accurately than by 

considering acceleration data only. There are some activities, however, for which 

acceleration data are enough to perform accurate classification. 

Ensembles of classifiers turned out to have the highest accuracy, yet they 

require more training and testing time. This introduces new challenges to 

achieve online activity recognition. Another important point of discussion is the 

placement of the sensor. We believe that placing the accelerometer on the 

chest of the person avoids confusions that may arise if it is placed on the wrist 

[17]. As a matter of fact, Centinela reaches 92.84% of accuracy with 

acceleration data only, which is better than most of the previously proposed 

approaches. Centinela also features a portable and unobtrusive real-time data 

collection platform, which allows not only for activity recognition but also for 

monitoring health conditions of target individuals. 
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