
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Interdisciplinary Informatics Theses,
Dissertations, and Student Creative Activity School of Interdisciplinary Informatics

12-2022

Creating a Better Browser Fingerprint Creating a Better Browser Fingerprint

Scott Reiling
University of Nebraska at Omaha, sreiling.sr@gmail.com

Follow this and additional works at: https://digitalcommons.unomaha.edu/interdiscipinformaticsstudent

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Reiling, Scott, "Creating a Better Browser Fingerprint" (2022). Interdisciplinary Informatics Theses,
Dissertations, and Student Creative Activity. 1.
https://digitalcommons.unomaha.edu/interdiscipinformaticsstudent/1

This Thesis is brought to you for free and open access by
the School of Interdisciplinary Informatics at
DigitalCommons@UNO. It has been accepted for
inclusion in Interdisciplinary Informatics Theses,
Dissertations, and Student Creative Activity by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/interdiscipinformaticsstudent
https://digitalcommons.unomaha.edu/interdiscipinformaticsstudent
https://digitalcommons.unomaha.edu/interdiscipinformatics
https://digitalcommons.unomaha.edu/interdiscipinformaticsstudent?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsstudent%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/interdiscipinformaticsstudent/1?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsstudent%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Creating a Better Browser Fingerprint

A Thesis

Presented to the

School of Interdisciplinary Informatics

and the

Faculty of the College of Interdisciplinary Science & Technology

University of Nebraska

In Partial Fulfillment of the Requirements for the Degree

M.S. Cybersecurity

University of Nebraska at Omaha

By

Scott Reiling

December 2022

Supervisory Committee:

Dr. William Mahoney

Dr. George Grispos

Dr. Rui Zhao

Dr. Pei-Chi Huang

Creating a Better Browser Fingerprint

Scott Reiling, M.S. Cybersecurity

University of Nebraska at Omaha, 2022

Web browser fingerprinting is used to analyze client behavior through retrieval of

browser attributes unique to the user’s browser, network and hardware profile.

Third-party trackers are prevalent on the top Alexa sites and use JavaScript to

retrieve and store user machine information in a stateless fashion. Stateless

fingerprinting is performed through acquisition of client machine specifiers through

an embedded JavaScript, which then forwards the information to a server. The

client information is purportedly used to provide tailored advertising and enhance

the browsing experience. However, the depth of captured client information often

extends into the realm of personally identifiable information. The user is often

unaware of privacy issues and how their information is disseminated for profit, or

the risk of such data being used by hackers to exploit divulged vulnerabilities.

We review fingerprinting techniques from previous works that delineate

seminal methods and countermeasures, and present a novel fingerprinting

JavaScript that measure over 200 Windows and Navigator object properties. The

results reveal new parameters that can be used to generate unique user

identifiers, and accurately track individual browsing behavior. These findings may

be used by developers of anti-tracking software to improve efficacy and preserve

individual privacy.

i

Table of contents

Table of contents .. i

Introduction .. Error! Bookmark not defined.

Background ... 5

Previous Work .. 6

Evolution of Fingerprinting .. 10

Tracker Classification.. 11

Prevention ... 13

Prior Approaches to Fingerprinting .. 16

Previous techniques to identify key fingerprint elements. 16

Detection of Browser Fingerprinting .. 19

A New Method ... 21

Browser Fingerprinting .. 22

Browser Attribute Collection .. 23

Results .. 30

Discussion ... 34

Evaluation of the Raw Statistics .. 34

Which Elements are Useful for Fingerprinting? 36

Comparison to Previous Works .. 39

Contributions and Limitations .. 44

Conclusion and Future Works ... 46

References .. 47

1

1. Introduction

Web browser fingerprinting is a technique used to analyze client behavior

through retrieval of characteristics concerning the user’s software and hardware

profile through web browser Application Programming Interfaces (APIs). Third-

party tracking scripts are the primary means of fingerprinting, which use

algorithms to retrieve and store such parameters in a stateless or stateful

fashion.

Currently, there are two general methods used to do fingerprinting; these

use cookies, which are stored locally on a client machine, and browser

fingerprinting, which uses hyper-text transfer protocol (HTTP) requests to

measure browser and machine properties. Both are typically used

simultaneously to obtain an accurate fingerprint, even in presence of user-

installed obfuscation add-ons meant to defeat such techniques.

Cookies are text files websites store locally on a user’s computer and are

thus considered a “stateful” tracking tool; they are written with permission granted

by the browser settings. These files are advertised to enhance the browsing

experience by saving settings such as a session or user ID, so that upon an

ensuing visit, the user is spared the process of re-authentication. Another benign

use of cookies is to provide personalized content in the form of advertisements

tailored toward a user’s needs.

Nevertheless, the same local machine parameters contained within a

cookie may also be utilized to track users across websites. If an individual

accesses two or more websites hosting the same third-party tracking scripts from

2

the same advertising network, the scripts can check for a local cookie set by one

of the network scripts, and log the visit to its server.

Browser fingerprinting gathers data that can be used to identify an

individual’s web surfing behaviors even if the user takes basic precautions, such

as deleting cookies, clearing the browser cache, and using a browser’s stealth

mode (e.g. Firefox’s “private window”). The fingerprints are created using data

that websites can gather from one’s browser APIs, which is then stored on a

server, unlike cookies that are stored locally on client machines. As such, the

stealthily gathered information is untouchable by the user. This fingerprinting

mechanism is “stateless”, in that the information is collected via a JavaScript [1].

The JavaScript may be part of the website being visited, in which case it is

considered a “first-party” tracker. However, these websites may load “third-party”

trackers from another domain, whose scripts may also access the browser’s APIs

to garner data on its properties. Aside from traditional HTTP header request

information used for fingerprint attribute collection, the recent proliferation of

HTML5 allows for Canvas APIs to divulge even more specifying information such

as font metrics, network IP addresses, and audio signal processing output [2].

Cookie and fingerprint-based surveillance obtains client identity through

implementations of JavaScript. Most third-parties use both cookies and

fingerprinting to monitor web behaviors, often in a synergistic manner. The

simplest application combining the two is cross-referencing the user ID in a

cookie with the hash value of all the information cumulated from a JavaScript

running in the background [3]. Browser fingerprinting is more effective than

3

cookie-based identification, if only because it does not require permission to

store a local file. There are thousands of different fingerprinting scripts that are

effective in fingerprinting the popular browsers to the tune of 83% while

measuring only eight attributes [1], to 90% with the values of seventeen attributes

[2]. The percentage of success has remained high due to successively

advanced iterations of tracking applications that detect anti-tracking extensions,

and work synergistically with cookies to verify identity, regenerate deleted

cookies [4], and mask their own processes to appear benign [5].

The discussion of browser fingerprinting starts with a description of

fingerprinting attributes, many of which are DOM (Document-Object Model)

element values that are extracted via DOM APIs. The DOM is a logic tree

structure made of node objects that may be containers, functions, and fields.

The “navigator” and “screen” objects within the DOM yield useful information

such as screen resolution, browser version, OS version, and the installed

browser fonts.

Browser plugins and extensions are also integral to fingerprinting

algorithms, as they provide a different attack-surface for enumeration of potential

fingerprint fields. While HTML5 did away with the requirement of Flash Player

plugin installation within a browser, it is still widely used, and the most exploited

plugin for fingerprinting. Eckersley used Flash to show the installed fonts using a

Flash API that reveals this information [1]. Other Flash APIs give OS and screen

info, independent of the navigator DOM object. Plugins are similar to extensions

in that they extend browser functionality. Plugins differ because they aren’t

4

enumerable using browser APIs; yet, their presence can be detected secondary

to their side-effects. In other words, if they are anti-trackers, they can be

revealed according to the information they mask.

The evolution of browser fingerprinting is only inferred from experts who

have raised concerns as the web has morphed into its current incarnation. The

dearth of mechanistic information concerning fingerprinting is consequent to

commercial fingerprinting scripts being proprietary technology, thus preventing

development of specific countermeasures. Nevertheless, enough literature

exists to highlight advances in the technology, as seen in figure 1.

In this work, we present a novel project aimed at identifying new browser

parameters that have not been used to identify clients during browsing sessions.

The unveiling of these variables will be useful in devising a proactive defense

against future third-party tracking applications. We first discuss, in section 2, the

background of fingerprinting techniques. We show various fingerprinting

techniques by exploring previous works that delineate fingerprinting methods,

and the countermeasures devised to defeat them.

5

Figure 1. Flow diagram demonstrating the timeline for browser fingerprint

advancements.

2. Background

In this section we present a synopsis of the works that detail fingerprinting

techniques from its earliest detection within browser requests, through its

incorporation of more complex methods such as cross-site scripting and re-

spawning cookies. The significance of fingerprint evolution lies within use of

6

protocols that are integral to the network and application layers, which can’t be

disabled. Therefore, an examination of known fingerprinting utilizations is critical

to development of preventative tools discussed at the end of this section.

2.1 Previous Work

 The earliest publication on privacy issues discussed the information

available to servers via HTTP v1.0 and v1.1 requests [6], well before coining of

the term, “browser fingerprinting”. The article described how entities could track

user history via their HTTP cache control requests. It wasn’t until 2009 that

research into the prevalence of web trackers was conducted; Krishnamurthy and

Willis found that between 2005 and 2008, the incidence of third-party trackers in

the top Alexa sites increased from 40% to 70% [7].

The first seminal research paper referencing the mechanism of HTTP request

fingerprinting investigated the effectiveness of a fingerprinting algorithm that only

measured eight browser characteristics [1]. They constructed an algorithm

based on fingerprinting algorithms to “quantify how much of a privacy problem

fingerprinting may pose”, and found that only 17% of individuals visiting their

Panopticlick site could not be fingerprinted. They demonstrated that API

requests to Adobe Flash and the Java Virtual Machine, which the major browsers

had installed by default, were culpable.

 The combination of fingerprinting and tracking cookies reinforce the

process of surveilling browsing behavior, as shown by Yen et al [8]. They

collected a data set of millions, and concluded that trackers could identify users

7

using the IP prefix with a user agent string to the tune of 80% accuracy, which

increased to 88% in addition to one-time session cookies.

 Roesner, Kohno and Wetherall exhibited the concept of spying with

stateless fingerprinting and stateful cookies one step further, by classifying

trackers into five categories [9]. One of those types utilized novel mechanisms

by making use of third-party cookies that are updated according to cookies

stored locally, via HTML5s Local Storage API and Flash LSO objects. The latter

allowed for re-spawning of tracking cookies through Flash APIs that cross-

referenced the server user ID database with the user’s stateless fingerprint.

Another technique was to use cross-site trackers that forced user browsers to

redirect to a different domain via a popup, so that the third-party domain would

become a first-party domain, and thus be able to set its own cookie. Yet another

category of trackers made use of the two aforementioned approaches.

 Some trackers took a different approach to stateless tracking by invoking

a JavaScript algorithm to measure performance of the JS engine in performing

certain APIs, which yielded consistent hardware metrics [10]. They were capable

of accurately detecting the browser and its version; the operating system, and the

CPU only with performance metrics.

 Acar et al emphasized the importance of font-based fingerprinting being

an integral part of tracking JavaScripts, as represented by prevalence of

BlueCava scripts [11]. Their research showed 13 different font-probing scripts, of

which BlueCava’s was present in 250 of the top 500 Alexa sites. BlueCava

queried font sets based on retrieval of the user’s OS, and was able to

8

dynamically inject itself into the host page, and then remove itself after collecting

a fingerprint. The injection and removal of the script was a novel technique to

evade detection.

 Concurrently, Nikiforakis et al released a study on the top three

commercial fingerprinting vendors relating novel capabilities, including code

providing a backup font metric measurement, in case Flash was not present due

to being phased-out by HTML5 and Microsoft’s Silverlight [12]. The backup font

code block used CSS to attempt rendering of fonts. The second novelty lay in

the ability of these apps to execute Flash APIs to send an HTTP request instead

of the browser, which circumvented any HTTP proxies meant to hide the user IP

address. Finally, they exposed two vendors, BlueCava and ThreatMetrix, who

were leveraging the capacity of Java and Flash browser plugins to read Windows

registry values for OS type and installation date. These registry value strings

alone were enough to provide a strong fingerprint.

 The creation of “Evercookies” had already been unearthed by analysis of

client Flash storage vectors after clearing browser cookies, who then revisiting

sites with trackers that used Flash APIs to restore Flash tracking cookies [13]. A

new storage vector, HTML5s IndexedDB, was identified as another reservoir for

respawning these cookies. The IndexedDB vector was used to cross-reference

third-party databases to respawn Flash cookies, which in-turn was used to

restore HTTP cookies [4]. An added complexity was seen when third-party

vendors synchronized their user-ID databases to help one-another respawn

these Evercookies, and thus share their collective data.

9

 In 2016, Englehardt and Naranayan utilized a measurement analysis of

tracking on one-million sites and found two APIs used by the top ten scripts that

had not previously been reported [2]. The first API, WebRTC, is a Javascript

peer-to-peer function that collects the IP addresses of all available peers in a

target’s network. The second was the AudioContext interface, which returned a

digital signal processing metric to be incorporated into the fingerprint.

 Applications for recording browser behavior also extend into the sphere of

mobile devices. According to Statcounter’s website, mobile web browsing is

more commonly used than the desktop platform, as of the time of this writing

[14]. Approximately 56% of trackers incorporate code to operate on mobile and

desktop platforms, and do so by exploiting mobile-specific APIs, such as a

phone’s accelerometer and gyroscope [15]. These APIs are combined with

typical JavaScript APIs and HTTP cookies to make mobile fingerprints even more

unique than their desktop counterparts. The implication is that mobile tracking

may be more deleterious to user privacy for this reason, and also due to mobile

devices affording the geolocation of individuals.

 The latest approach heretofore unseen is the use of CNAME cloaking.

CNAME refers to the canonical name record for the pages of domains within

DNS. Third-party servers rotate the CNAMEs of their subdomains so as to

circumvent blacklists created by anti-tracking plugins, as one mode of masking.

However, another more nefarious procedure is to mask their subdomains as one

of those of the first-party domain the user is visiting, so as to be recognized as a

first-party tracker. While CNAME cloaking is does not fall under the subject-

10

matter of this work, it is worth mentioning because the elevation of third-party

tracking scripts to first-party privilege allows for greater flexibility in collecting

client browser and hardware attributes.

2.2 Evolution of Fingerprinting

 Fingerprinting continues to evolve as browsers become more complex,

and as the variety of plugins and extensions grows, so will the methods for

creating unique fingerprints, and surveyance of an individual’s behavior.

While our experimental focus is on fingerprinting, one cannot ignore its synergy

with stateful (cookie) based tracking, and any discussion herein of its erosive

effects on user privacy and security implicitly accounts for both modalities.

Approximately five-billion people world-wide use the internet, with the highest

penetration occurring within North America and Europe [14]. Benign uses for

fingerprinting exist such as confirming a user’s identity to prevent fraud, or to

tailor ads towards a person’s tastes. Yet, the financial incentive to advance this

technology stems from the market for PII that extends into the realms of

advertising, product sales, local law enforcement, and nation-state surveillance

[12].

 The malicious ramifications to the user include divulgence of browser

history; the collection of the user’s browser and hardware state, and the possible

exploitation of older browser version vulnerabilities. The first item is an

infringement upon one’s privacy; an individual may not want her or his browsing

history to be known for myriad reasons. The last two can be employed by

hackers to write scripts that compromise local clients and even networks, as

11

seen in a Google Chrome vulnerability patched in 2019, which allowed the

hacking group “WizardOpium” to embed a zero-day exploit to gain elevated

privileges on vulnerable machines [16]. A different vulnerability allowed hackers

to exploit a flaw in cookie-handling, consequently opening secure HTTPS

connections to man-in-the-middle attacks [17]. Such vulnerabilities have been

found, as seen in the Common Vulnerabilities and Exposures (CVE) database

[18]. We do not wish to expound upon every possible repercussion to an

individual, but only to reinforce potential harm with regards to user privacy and

security.

 In order to systemically apply mitigations to fingerprinting algorithms,

researchers have contrived to detect their modes of operation, especially over

the past decade. Although there are many significant contributions within this

time period, three key works have added greatly to the understanding of

fingerprinting through building custom-coded browser extensions and

autonomous platforms. These stem from Roesner et al, who made browser

extensions to classify third-party trackers[9]; Acar et al who wrote the

FPDetective script to detect fingerprinting heuristically [11], and Englehardt and

Naranayan, who made OpenWPM site surveying script [2].

2.3 Tracker Classification:

 Roesner’s group focused on detecting tracking mechanisms that assigned

unique identifiers, which was important because previous research explored

trackers that only inferred client identity[9]. Their extension revealed how real

tracking code interacted with the browser state. This allowed them to sort

12

tracking behaviors into five categories: 1) Trackers that perform third-party

analytics for a site, and can only track user within a site; 2) Trackers that use

third-party storage for track across sites; 3) Cross-site trackers that force users to

its domain via redirects and popups; 4) Trackers that rely on other trackers in

categories 1,2 or 5, to receive data, and 5) Cross-site trackers visited directly by

the user. They found only behaviors 2 and 5 are found stand-alone while most

trackers displayed a combination of behaviors. The classification system

provided a structure for future studies to investigate these third-party scripts.

The FPDetective framework was made to detect trackers without the aid of a

whitelist [11]; in other words it detected changes in browser function outputs to

ascertain their presence. It revealed new scripts and Flash objects used in the

top five-hundred Alexa sites, and was able to detect scripts injecting and then

removing themselves, to evade detection. The work provided a reliable heuristic

tool for others to detect malicious scripts that collect stateless data, as well as a

means to reverse-engineer those scripts based on the probable function calls

made to JavaScript APIs.

 The OpenWPM markedly built upon FPDetective by supporting stateful

and stateless measurements from tracking scripts while allowing researchers to

implement their own scripts in a modular fashion to monitor APIs of their interest.

OpenWPM also provided a plugin for automated crawling, easing the process of

data collection by eliminating the need for additional code. Finally, OpenWPM

integrated two other measurement points aside from that provided by the

browser extension, which included a network proxy, and a monitor for the hard

13

drive state. Engelhardt and Naranayan’s OpenWPM is an open source tool they

provided to developers of privacy applications, and has often been used as a

platform for such research [4].

2.4 Prevention:

 Prevention of fingerprinting is an endeavor requiring user diligence and

the innovation of anti-tracking software developers. Most users learn to clear

cookies, yet even that may be an identifier that enhances a fingerprint when

compared to the majority of individuals who do not; regardless, respawning

Evercookies renders it a futile undertaking. Another step is to use a proxy, but in

the face of JavaScript APIs to Flash and HTML5 queries regarding network IPs,

proxies are ineffective [8]. VPN services have multiple servers (with different

IPs), however, tracking scripts may also account for them. Any alteration to the

browser hat returns a false static value is still fingerprintable.

Individuals must take comprehensive measures to maintain web browsing

privacy. Disabling Flash is an important step thereto, because it would prevent

cross-checking of object values such as the user agent and IP address against

browser API call results.

 Laperdrix at al estimated if Flash were absent, it would reduce the number

of unique fingerprints by 13% [3]. They also calculated an additional 8%

reduction if HTTP headers were standardized across browsers, since each

browser vendor and version has header peculiarities.

Randomization, standardization, and blocking tools are also a necessity. For

instance, an extension that randomized one’s user agent string with each web

14

crawl would reduce the linkability of that person’s current browsing session, with

previous sessions [4]. The randomization would have to be applied to numerous

HTML objects to increase the likelihood of trackers recognizing a “new user”

upon a subsequent crawl.

 Masking the location of local storage vectors for HTML5 and Flash (if

present) is suggested to prevent Evercookies from reappearing [3]. Blocking

scripts is more difficult because it requires code tailored towards functions

executed within the script; that knowledge is usually proprietary. Standardization

is an attractive option because a generic response for fingerprinting attributes

would render user IDs useless. Unfortunately, this would require browser vendor

collaboration and agreement upon a protocol, and would also break many

websites that rely on fingerprinting to augment browsing. It would also affect ad

revenue.

 One of the earliest defenses against fingerprinting involved manipulation

of HTTP request structures through HTTPOS, which obfuscated the TCP MSS

and window resolution parameters, thus altering packet sizes [19]. HTTPOS split

HTTP requests into partial requests and used a pipelining technique to execute

incoming requests in a concurrent manner. Cai et al improved upon this by

implementing a modified BUFLO algorithm that reduced overhead, responded to

HTTP flow requests, and obscured application thread execution times metrics

[20].

 Roesner et al constructed ShareMeNot, a Firefox add-on that blocks

cookies from third-party requests to trackers that committed forced redirects [9].

15

This allowed for users to still interact with widgets linking Facebook profiles to a

given web page when a user clicked on the “Like” button, while disallowing

tracking, otherwise.

 Fifield and Egelman proposed a defense against font-based fingerprinting

via shipping a standard set of fonts with each browser, without allowance for any

future modification to the set [21]. They calculated this would reduce halve the

entropy given by font-based fingerprinting metrics.

 However, since browsers are unlikely to be standardized across vendors, others

have continued to develop applications that block or deceive fingerprinting apps.

PriVaricator was created to defeat fingerprinting by feeding false telemetry to

trackers [22]. PriVaricator is instrumented on the browser, and subtly alters DOM

elements to introduce a degree of uncertainty so that third-party fingerprinters

can’t link client IDs. Similarly, FP-Block prevents cross-site tracking by

generating a different “web identity” for a user, for each domain upon different

visits [23]. It alters elements of the browser, such as the user agent, browser

name and vendor; the system and user languages; the OS and CPU classes; the

screen resolution and color depth, and the time zone.

 Taking the results of these works as a whole, obfuscation at the network,

transport, link, and application layers are crucial to avert tracking. Other works

emphasize masking IPs, TLS session cookie IDs, and MAC addresses because

each of them tend to provide high entropy values, thus raising the chance for a

unique fingerprint [3], [5].

16

3 Prior Approaches to Fingerprinting

 Our work builds upon previous methods by including a wider and more

diverse set of collected elements for more precise and accurate fingerprinting.

We also identify new elements that could potentially be used by third-parties to

track user behaviors. The following sections elaborate established techniques

with subsequent discussion of how our project improves upon them.

3.1 Previous techniques to identify key fingerprint elements:

 The first large-scale examination of fingerprinting elements was conducted

by Eckersley, who looked at the effectiveness of browser fingerprinting

algorithms through sampling 470,000 browsers of informed clients to the

Panopticlick website [1]. He found that 83.6% of visitors had a unique fingerprint,

with an increase to 94.2% for those with Adobe Flash or Java Virtual Machine.

The algorithm collected results of HTTP and AJAX requests that included the

User Agent, Cookies Enabled, screen resolution, plugin lists, and font lists. The

results of which were concatenated into a fingerprint that also included a hash of

the visiting IP address.

 The results of Eckersley were seminal because they demonstrated the

stability in identifying return visitors when combining the fingerprint with a locally

stored cookie, even if one of the identifiers (e.g. screen resolution) had changed

since the previous visit. Eckersley also showed that each updated version of a

plugin or extension produced a different output string, which significantly

contributed to the uniqueness of a fingerprint.

17

 Eckersley’s work was continued by a group who analyzed the amount of

information given by commonly queried DOM elements [8]. They used data sets

comprised hundreds of millions of users from Hotmail and Bing searches, which

showed that HTTP user-agent strings identified 60%-70% of hosts within a given

dataset, and up to 80% when IP prefixes were included. The authors also

calculated 88% of users were accurately marked upon repeat visits with the use

of one-time cookies, despite having 33% of them clear their cookies, or browse in

private mode.

 Mowery et al delved further into browser fingerprinting through delineation

of two techniques that involve use of JavaScript [10]. They built upon

Eckersley’s Panopticlick project by adding descriptors yielding the performance

measures for operations within the JavaScript interpreter, through execution of a

set of 39 functions via a customized version of V8 and SunSpider benchmark

platforms. They found the results could not only distinguish between browser

versions, but also hardware architecture and installed components, such as the

CPU and graphics unit. The other technique probed for entries into NoScript

whitelist; NoScript was a Firefox extension that blocked certain webpages from

running scripts within the browser. Ironically, the whitelist provided a fingerprint of

the client’s list of visited websites, and thus enhanced the profile of browsing

behavior.

 Cai et al constructed a web page fingerprinting attack that circumvented

browser extensions masking HTTP packet header information [20]. They were

even able to identify web pages loaded through an SSH tunnel, with 90%

18

accuracy, and furthermore identified web pages loaded through TOR with 80%

accuracy. This was possible even when packet size information was removed

within the header.

 Users may employ HTTP proxies to hide their true IP address, which aids

in cloaking their identities from being fingerprinted. Nikiforakis et al analyzed

three third-party browser fingerprinting scripts that circumvented such proxies to

reveal an IP address [12]. The ActionScript tracker defeated the proxies by

querying Flash to contact the third-party host directly. In addition, these scripts

had fall-back mechanisms to detect installed fonts in case Flash was absent, and

did so in a browser-specific manner, since the most popular apps (e.g. Chrome,

IE, and Firefox) have specific DOM function calls to query available fonts. The

scripts attempted to delete, add, and modify custom DOM containers with

navigator and screen objects to identify applications and hardware installed on a

client machine. Execution of these scripts returned metrics indicating even more

information about the browser and hardware versus if Flash were present on the

client machine.

 When above techniques are combined with cookie synching, even

periodic clearance of local cookies doesn’t defeat re-spawning of individual

tracking identifiers. As Acar et al found, IDs are re-spawned by different tracking

domains that communicate IDs to one-another so that even after cookies are

cleared, these domains can merge records of pre and post-clearance browsing

logs [4]. They further found that HTTP cookies can resurrect Flash cookies, and

vice-versa.

19

 Laperdrix, Rudametkin and Baudry used the AmIUnique.org fingerprinting

site to collect 118,934 fingerprints, and found 17 attributes could accurately

identify each of them, and developed a JavaScript using them to fingerprint [3].

Their results demonstrated its effectiveness for mobile platform fingerprinting with

a unique identifier rate of 81%, despite mobile devices lacking plugins and font-

sets within their browsers.

 Some HTTP and DOM query returns may change between initialization of

browser instances for the same client. FP-STALKER is an implementation of an

algorithm that can link instances from the same user, even if those instances

yield slightly different fingerprints [5]. Vastel et al collected 98,598 fingerprints

from 1905 browser instances, and found that FP-STALKER is able, on average,

to link browser fingerprints from the same user, for 51 days.

3.2 Detection of Browser Fingerprinting

 Detecting browser fingerprinting is important in the evolution of browser

defenses that rely upon modular execution, so as to reduce computational

overhead. Conventional defenses include third-party cookie blocking add-ons,

Do Not Track, client-side browser state clearance, pop-up blockers and private

mode browsing. None of these are secure against trackers on their own, or in

combination. An example of why is shown with Roesner et al, who developed a

client-side algorithm called TrackingTracker that was outfitted within browsers,

for detecting third-party trackers based on how they change browser parameters

[9]. They detected over 500 unique trackers and discovered the top Alexa pages

all had multiple trackers. The behaviors of these trackers fell into a combination

20

of five categories involving analytics, storage, forced redirection, referrals (from

one third-party tracker to another), and personal, which is a tracking site directly

visited by a client.

 Acar et al made FPDetective, a framework to detect and analyze

fingerprinters [11]. It was outfitted on Chrome and PhantomJS browsers, which

were also modified to automatically crawl certain sites. The results were

presented in the form of logs that revealed which browser and device properties

were accessed during the crawl, with an emphasis on JavaScript-based font

detection. In all cases, they found there were no visible effects of fingerprinting,

thus leaving the user unaware of it. Fifield and Egelman also highlighted font-

based fingerprinting in a different way; they showed that font-rendering

techniques can be used to distinguish users through the results of drawing a

glyph from a given font-set, within a box [21]. The slight difference in pixel output

reveals not only the installed font sets, but the graphics card and the browser

version.

 Yang and Yue developed the WTPatrol platform to determine tracking

behaviors on 23,310 websites with both mobile and desktop page versions [15].

They further broke-down results to trackers using JavaScript API calls or HTTP

cookies. Their results yielded 5835 unique JavaScript trackers, with 13.1% of

those specific to mobile sites and 30.6% to desktop sites. They identified 5574

HTTP cookie trackers with 12.5% and 27.6% being mobile and desktop specific,

respectively. WTPatrol is a critical new measurement platform because it gives

21

researchers the ability to monitor browser fingerprinting in-the-wild, and to

discover novel trackers.

 Englehardt and Naryanan measured 15 elements that were part of stateful

and stateless tracking mechanisms via the Open WPM tool, for over one-million

websites [2]. They found 81,000 third-party trackers on two first-party domains:

Googleanalytics and Google. They further found that Google, Twitter, Facebook,

and AdNexus were the only third-party trackers present on approximately 10% of

the websites. The 81000 trackers were distinct scripts that had overlap with

regards to fingerprint variables attained via HTTP and DOM function requests,

however, a troubling finding was that 460 of the top 1000 most frequently found

tracking scripts communicated with one-another on the back-end to enable

cookie-synching, which defeats most user interventions to maintain web-

browsing privacy.

4 A New Method

 Fingerprinting intrinsically requires measurements of client hardware

performance metrics and browser element values. We wrote a Javascript

program to collect values from hundreds of Chrome and Firefox browser

attributes, with subsequent statistical analysis to determine the smallest subset

needed to yield the most accurate fingerprint for individual users.

 Our methods included construction of a second Javascript program that

enabled organization of those elements into a tree structure. The structure itself

was necessary for identification of repeat visitors through their fingerprints.

22

4.1 Browser Fingerprinting

We constructed fingerprints with hundreds of measurements from the browser

Windows and Navigator objects of Chrome and Firefox. Then, we attempted to

determine the smallest set of variables from within those objects that yielded a

unique user identity, which was linkable among browsing sessions from the same

user. This strategy will have two desired effects within the tracking and anti-

tracking communities. First, it will allow vendors to create scripts that use a small

number of measurements to serve the more benign uses of trackers, while

preserving “more” of the individual’s privacy in context of what data is revealed

about one’s machine specifications, browsing history, and location. Second, it

will impart elements that have not been used before by vendors, and allow anti-

tracking research to gain a head start on developing counter-methods.

 We achieved our ends by writing a recursive JavaScript function that

enumerates through client browser information on over 200 DOM elements from

the Windows and Navigator objects. The script separates each element as being

a variable or function, and hierarchically assigns its characteristics and values to

a node within an object tree, for which the root node is the Windows object. The

Navigator object has the most numerous useful elements to fingerprint, outside of

Windows. Navigator can be queried from Windows, which is why we choose

Windows as our root. The script was hosted on a LAMP (Linux, Apache,

MySQL, PHP) server, and the webpage was advertised to University of Nebraska

at Omaha students and faculty to garner their fingerprints upon visiting the page.

LAMP was chosen due to its accessibility as an open-source tool, since it uses

23

the well-documented Apache server. The server runs on the Linux OS

backbone, and uses PHP script for source code interpretation; the PHP accesses

MySQL databases for data manipulation.

 The results were collected as a JavaScript Object Notation (JSON) object

that was stored on the server. JSON objects are strings formatted in a manner

such that each object holds one or more key to value pairings, each of which is

separated by a colon. This format is heavily used to transmit data between client

and server, but in this context, it also allows for its simple excerption according to

key or value.

 Next, the result files were input into another JavaScript to sort the

acquired elements for subsequent statistical analysis, to find which

measurements were most significant in generating a unique fingerprint. The

significance was quantified in bits of entropy, from which we calculated a set with

the fewest elements possible that could accurately fingerprint an individual, and

link a user identity across multiple visits to our webpage.

4.2 Browser Attribute Collection

 There are three main algorithms necessary to complete our project. The

first is visualized in figure 2, denoting the steps for browser attribute collection,

which must fulfill several requirements, starting with acquisition of HTML DOM

element values that do not require custom function calls. We choose to extract

the Window object browser properties. To do this, the algorithm must iterate

between two functions, the first of which evaluates the type of a given Window

24

property. The type may be a string, number, Boolean, function, or object. If the

property is an object, a recursive call is made to find the property types within the

nested object. If the Window property is a function, a call is made to the second

main function that determines the function identity and executes custom code to

evaluate the function’s input variables from the browser environment. The

algorithm must also construct a hierarchical object tree representing the location

and rank of an object within the results of the collection phase.

 The attribute collection algorithm additionally collects user information in

the least intrusive manner for Firefox and Chrome, which are the two most

popular browsers in the world. This is achieved through construction of a LAMP

server running a JavaScript that only prompts the user to allow for obtainment of

geolocation. This is followed by a text box indicating completion of data

procurement of browser window objects. The latter is effected by means of

coding for browser-specific functions for a given Window property. The overall

flow of the method is detailed in Figure 2.

25

Figure 2. Attribute collection flowchart

 The pseudocode for attribute collection relays a concrete description of

the corresponding JavaScript. Lines 1-11 of figure 3 represent the process for

evaluating a function within a Windows object container. We only wish to

evaluate Windows functions that yield the most information for user identity; lines

2-3 whitelist for such functions. Lines 5-6 add the name of the windows property

to a set, and create a child-node for the property, respectively. The “list” set in

line 5 is to store the names of asynchronous functions that will not resolve in the

order they are placed on the stack. These functions must be periodically

26

checked for return values, after which they are deleted from the set, in line 9.

Line 7 adds the name of the property to the “cache” array, while line 8 sets the

evaluated Windows property values to the instantiated node from line 6. The

cache array is used to set the property name and then associate it with the

appropriate node, such that the evaluation of the function may be associated with

the proper node.

 Figure 3: The pseudocode for browser attribute collection

 The recursive “iterate” function beginning on line 12 iterates through all

objects within a passed “aWindowNode” window object. Lines 14 sets a string

denoting the object name and property; line 15 computes the value of the current

27

property object, and line 16 assesses the object type, to be used in the following

switch statement. Lines 17-18 create a new node object set to the determined

name and type from line 14 and 16. The switch statement starting at line 19 will

set the node value to the one from line 15 if the type is string, Boolean or

number. However, if the type is a function, the switch will call the

evaluateWindowsFunction function to receive output values to be written to the

node. If the type is an object, a recursive call is made to iterate through all of the

nested objects therein. Finally, at line 31, “aNode” is added to its parent node

once the value (i.e. a function, string, number or Boolean type) is returned from

the switch statement.

 The results of the browser attribute collection are stored as a cookie that is

named via a JavaScript random character generator. The cookie values for the

user Windows DOM element results are extracted via the second main algorithm.

This script parses fields from the cookie to yield data, as seen in figure 4. The

program starts by taking all of the fingerprint files from the first algorithm and for

each, garnering an ID (represented by a hash), the visitor IP address, and the

contents of the fingerprint itself. Parsing creates three arrays for the following: 1)

storage of the total number of user identities with each ID associated with its set

of Window attribute collection, 2) storage of the total number of elements

collected across the global set of users, associated with all values for each

element, from the global set of users, and 3) storage of all elements mapped to

incidence of each element, from the global set. In order to construct the first two

arrays, the nodes from each JSON tree fingerprint object are “flattened”, meaning

28

that the information from each leaf is taken and allocated to its appropriate

category within the array. The information includes object name, type, index, and

value. The data for these arrays are then written to a comma separated value

file for the third algorithm to process, as shown in figure 4.

Figure 4: Extraction of fingerprint elements for use in statistical analysis

 The third algorithm calculates the entropy and surprisal, or “uniqueness” of

the collected elements. The surprisal, I, is a measurement in bits for each

element collected within a set for a single user, and indicates the amount of

29

information about a user’s identity. It is dependent on the log2 of a discrete

probability function P(fn), which represents the probability of a set of outputs

comprising a fingerprint [1]. The entropy of I is represented by H, and is the

expected surprisal value over all browser attribute sets collected. Elements that

are unique to a given browser, or which occur infrequently within a dataset have

an inverse correlation with their bits of entropy. When values of entropy and

uniqueness of each element are combined, and such is performed among all

elements, a resulting fingerprint is created that may be measured for accuracy.

The accuracy of an element is expressed by computing precision and recall [8].

Precision relates to how well an identifier can correctly correlate fingerprint to a

single user ID, while recall measures how effective an identifier is for tracking a

host across repeat visits. The equation for precision takes the client ID count as

a function of how many IDs can be mapped to a single fingerprint(f), and the

equation for recall requires the fingerprint count (fpcount) denoting the

fingerprints belonging to which a hardware ID(m). The data will then be

normalized using a technique unseen in other literature. We will take the hex

value of each attribute index (i.e. node position it falls within the JSON tree) and

value, add them together, and then take a rounded log10 to avoid excessively

long decimal fractions. These values will be used for calculation of each attribute

surprisal; the entropy for each attribute, precision, and recall. Entropy, surprisal,

recall, and precision all give values between 0 and 1. Accuracy will reflect the

efficacy of our fingerprinting application through the calculation of f-measure,

which is the weighted mean of precision and recall.

30

 Our algorithms must be able to collect Window object state values and

calculate a fingerprint. The entropy and uniqueness of each element are also

determined. Windows.timing objects are excluded from fingerprints due to their

arbitrary values based on timestamps, which could lead to drastic increase in

false negatives.

 Data Collection is executed by having University of Nebraska at Omaha

students and faculty visit our LAMP server, and happened over the span of

several weeks. Upon visiting the page hosting our script, a user’s identity is

ascertained as being “first-time”, or “repeat” by checking for an existing cookie

that contains the user’s string ID. Delineation between desktop and mobile users

is made by checking for return values of Window properties specific to mobile

platforms, such as screen orientation and vibration.

5 Results

 The raw results of the algorithms are given in two parts. The first is a

filename string integrating a random ID of twenty characters, an IP address, and

a timestamp for a client visitor. The second component encapsulates the

contents of the fingerprint, which are a collection of Window objects represented

within a JSON file.

Table 1. Statistical scores characterizing accuracy of fingerprint algorithm in
identifying repeat visitors. TP, FP, TN and FN are true positives, false positives,
true negatives and false negatives, respectively.

31

A total of 141 fingerprints gathered from visitors using computers at

University of Nebraska Omaha were analyzed, and all were from Windows

desktop machines. In table 1, true positives are those clients categorized as

being repeat visitors by our algorithm due to having fingerprints matched with

corresponding IDs. False positives are clients whose fingerprints exist within our

database, but who had different IDs, while false negatives have existing IDs but

new fingerprints. True negatives are visitors whose IDs and fingerprints are not

within our database, and thus new visitors. There were 42 (TP) repeat and 63

(TN) new visitors detected. The TNs correspond exactly upon manual inspection

of the fingerprint file names, since there are 63 unique filename IDs among the

141 total fingerprints.

Recall was measured at 56%, and is a function of true positives versus all

detected positives within the data. Precision gives an estimate of confidence for

a true positive actually being a positive, and was calculated to be 93%. Our F-

measure or F-score gauged the accuracy of our model as a function of precision

and recall, at 68%.

Table 2. A sampling of window attributes with high combination of entropies and
standard deviations.

32

The complete list is comprised of 665 different window objects across the

set of fingerprints. Table 2 displays a few attributes with a combination of high

entropy and standard deviation; both of these values have a positive correlation

with probability of identifying a unique fingerprint. The first four entries are those

yielding the time in milliseconds, to complete a task. For example, the”

window.performance.now” function returns the time to execute a function.

The “window.clientinformation”, “window.application”,

“window.navigator.mimeTypes”, and “window.navigator.plugins” nodes all scored

among the lowest in entropy (h=0.25) and standard deviation (stddev=0),

returning the exact same scores.

There were 105 window nodes dependent on the presence of JavaScript,

with a wide range of entropy and standard deviations. The top four of these had

entropies of 1.0, and standard deviations of 20.43459, while 73 had the entropy

of 0.5 and standard deviation of 0. The greatest standard deviation was for

window.navigator.appVersion, at 41.27527, which had an entropy of 0.463325.

The average entropy for all nodes was 0.444395. In figure 5, we see that many

elements with entropies between 0.25 and 1.0 appeared in eight fingerprints. A

larger subset that was in 68 or more fingerprints had the same entropy range, but

note that 489 fingerprints within this subset were between 0.46-0.50.

The standard deviation average was 0.463616, with 554 of 665 elements

yielding a value from 0 to 0.02121, with the remainder falling within 0.76-1.00.

Figure 5 depicts standard deviation with a near flat-line at the bottom, and visible

spikes for those nodes with a product well above the average.

33

Figure 5. Charts displaying entropies and standard deviations of collected
elements across all fingerprints. The average entropy for all nodes was
0.444395, and the average standard deviation was 0.463616.

34

6 Discussion

 The results suggest our fingerprinting methodology is sound, and will be

explained in several sections that cover the basic statistics and the most useful

attributes. A comparison of their significance to that of select previous works will

follow, with a final section interpreting the method’s contributions to the science

of fingerprinting, and its limitations.

6.1 Evaluation of the Raw Statistics

 The effectiveness of our fingerprint method is most reflected in the true-

negative and false-positive count, which is a direct measure of how accurately it

identifies repeat visitors. In this experiment, there were 66 visitors contributing to

the 141 fingerprints. Of those, 63 were labeled as true-negatives, or completely

new visitors. Another 3 were given as false-positives, which refer to those who

have their fingerprint in our database, but somehow have a different generated

ID. This is plausible because Firefox and Chrome have settings to clear browser

cookies upon closing the browser windows. Upon revisiting the fingerprint page,

a new random 20-character ID would be generated and be in the filename of the

same fingerprint taken previously for the respective machine. Precision

incorporates TP and FP to relay the algorithms’ ability for positive prediction.

The experimental score was 93%; while the figure is impressive, giving

confidence towards its efficacy on a larger scale.

 Our method determined the 66 client machines repeatedly visited our

page 42 times, as reflected in the true-positive count, with other clients that were

also repeats, falling with the false-negative category. The false-negatives yielded

35

conflicting fingerprints for existing client IDs. The discrepancies are explained by

any browser update or alteration that would change one of the 665 window

attribute values. Even alteration of the browser window size, or acquisition of a

new monitor with a different resolution would change the fingerprint, if only

slightly. However, if the client-stored cookie remains, then our scripts allow

proper determination of those as effective positives, which also illustrates the

potential of these scripts to be used on a larger scale. The most important

consideration is whether the TPs and FPs include repeat visitations, which is true

within the bounds of our work upon manual inspection of the IDs and

corresponding values within these fingerprints. The recall, which is calculation of

our algorithms to predict how many true positives are predicted among all

positives within the dataset, was 56%. The result seems poor until one considers

the context within the scope of fingerprinting. The script logic is strict in that if

even one of the 665 window elements has a slightly different value for a repeat

visitor with the same ID, it is considered to be a negative, and upon verification of

the same IDs with incongruent fingerprints, further subcategorized as a FN. We

can also inductively determine the visitor with two slightly different fingerprints

are using the same machine, by inferring that it is highly improbable a completely

different visitor would navigate to our page and have the exact same random 20-

character ID. The likelihood of such an occurrence for a dataset of 141

fingerprints is 3.96*10-17, using the formula for combination of elements with

repetition: C'(n,r) = (r+n-1)!/(r! * (n-1)!) [27]. Here, C(n,r) is the total number of

combinations, n is the number of selectable elements, which is 61 different

36

characters, and r is the number of chosen elements per ID. Thus the low recall

suggests a higher accuracy, since the rules for exclusion from being a TP are so

strict that only those clients with unseen IDs and fingerprint values for all

elements are considered TPs.

 F-measure with the F-Beta modifier, is Fβ = (1+β2) PR/ (β2 P)+R), and is

a reflection of accuracy as a function of precision and recall. Our F-measure was

0.7, due to the gulf between precision and recall. The score itself has no

implication without understanding if FPs or FNs have more negative impact

within our scope. For fingerprinting machines from a computer lab, a false-

positive has the more detrimental effect since it is nearly impossible to verify if a

visitor who has a different ID but the exact same fingerprint as another within our

database, is that same person, or a new client who happens to have the same

values for all 665 measured window nodes of said fingerprint. In models where

false-positives are more impactful, the beta modifier is set to zero, giving more

weight to precision. According to Simic, since our score of 0.7 is less than 1,

recall is 0.7x less important than precision, which is more favorable to

recognizing fingerprint values of repeat visitors who have cleared their locally

stored cookies [24].

6.2 Which Elements are Useful for Fingerprinting?

 There are 206 of the 665 window objects measured among all fingerprints

that are present for only 10 to 17 of the 141 fingerprints. However, of these, only

16 have non-zero standard deviation values, and all have entropies of either 0.5

or 1 due to each of these elements having a set of values comprised of the same

37

integer value, or two different values. The greatest standard deviations for this

group are for window.performance.toJSON().timing.unloadEventEnd,

window.performance.toJSON().timing.unloadEventStart,

window.performance.timing.unloadEventStart, and window.performance.

timing.unloadEventEnd, all of which are equal to 20.43459 and occurred for 10

fingerprints. The entropies for all of them equal 1.0. These four elements would

lend the most to the uniqueness of a fingerprint due to their combination of

maximum entropy and high standard deviations, but are not attractive within the

context of our experiment because they appeared in 7% of fingerprints.

 On the other end, 310 attributes contribute to the bulk of the set of

fingerprints, occurring for 64-76 of the 141, with entropies ranging from 0.25-

0.721317. Of these, 109 have entropy values of 0.25 and standard deviations of

zero, and are the least informative towards a unique fingerprint, despite their

prevalence within the set. Nevertheless, within these 310, the top four elements

are window.performance.timing.responseEnd (entropy = 0.480878, stddev =

9.59472); window.performance.timing.toJSON().responseEnd (entropy =

0.480878, stddev = 9.59468); window.navigator.vendor (entropy = 0.463325,

stddev = 10.12415), and window.navigator.appVersion (entropy = 0.463325,

stddev = 41.27527). These elements are fit to be within a subset of fingerprinting

window elements due to their standard deviations, despite their entropies that lie

slightly above the mean entropy for the set.

 The concept of surprisal, and by association entropy, comes from

mathematician Claude Shannon. In1948, Claude published an article in Bell

38

System Technical Journal discussing signals that rise above the “noise” (i.e.

mean) in a “surprising” manner, and thus return more information [25].

Accordingly, in table 3, the top 20 window attributes according to their

combination of entropy and standard deviation, and the number of times they

appeared in a fingerprint, as a suitable subset of the 665 measured. These 20

may be used in a future experiment against the global set to ascertain whether it

gives enough information to verify a unique fingerprint.

Table 3. Subset containing top 20 window attributes with high combination of
entropies and standard deviations, with emphasis on choosing those that appear
in 68 or more fingerprints.

39

There were other window elements with high entropy or standard deviation, but

they occurred in too few fingerprints. Conversely, there were many other

elements nearly ubiquitously appearing within our set, but exhibited low entropy

or standard deviation.

6.3 Comparison to Previous Works

 The method and results of this research will be compared to four seminal

works with aim to delineate strengths of our work over their methods, and

weaknesses that expose how we may improve our scripts.

 Our algorithm looks for matches with respect to retrieved client cookie ID

(if it exists) and the absolute value of fingerprint contents. It is heavily reliant on

the locally stored cookie to persist, thus informing our algorithm of a repeat visitor

whose browser attributes have changed. Therefore, it is naïve compared to

other known algorithms, such as the seminal work of Eckersley’s Panopticlick [1],

which returns a revisit match if string comparison of eight different attributes is

greater than 85% between two fingerprints. If there are too many fingerprints that

match the reference in this manner, then it assigns a new ID. Their element set

included user_agent, plugins, fonts, video, supercookies, http_accept, timezone,

and cookies_enabled, with the following entropy values respectively (in bits):

10.0, 15.4, 13.9, 4.83, 2.12, 6.09, 3.04, and 0.353. They were able to label

83.6% of fingerprints as unique within their sample set of 470,161. They claimed

their method to predict a revisit 65% of the time if Javascript were enabled, and

correctly link it to a previous fingerprint at a 99.1% rate.

40

 On the surface, our approach seems lacking compared to Eckersley’s

because we did not implement a prediction heuristic; their attributes have much

higher entropies than most of ours, and because they have a much larger

dataset to test. While implementation of a heuristic would be an important

addendum, our logic is more effective if the stored cookie persists either on the

client machine or our database, because we can detect 100% of FN as positives,

and thus catch all positives. Furthermore, our method does not rely on

JavaScript being enabled due to the much larger pool of measured window

nodes that includes all of theirs except supercookies and fonts. Although the

entropies of seven out of their eight attributes are much higher than those within

our set, this is due to their larger sample size that contains many more values for

their eight elements, thus calculating to increased and more accurate entropy

values for those elements.

Table 4. Duration attributes measured in FP-Stalker article remained constant
for the median, the 90th and the 96th percentile of days [5].

41

 Vastel et al created an application called FP-Stalker to track evolution of

fingerprints from visitors over time [5]. The aim of their work was more

encompassing than ours; however they overlap with Eckersley in choosing a set

of attributes to measure, and an algorithm for prediction. Unlike other works,

they construed entropy indirectly as a function of attribute value stability over

time, using machine learning heuristics.

Table 4 from Vastel’s work informs that Local Storage, Platform and Cookies

remain static indefinitely at all percentiles, while those elements above them vary

in stability. Our set contains all but the “Canvas”, “Font”, and “Renderer”

variables, although we do have values from screen height and width that give

resolution. It is not possible to make a direct comparison between their method

and ours, since Vastel et al used a hybrid machine learning algorithm to validate

and track changes in the elements. Moreover, those elements with low entropy

but long-term persistence are more important to their algorithm’s ability in

detecting repeat visitors. Nevertheless, their work suggests the installed fonts

set (accessible via Canvas functions) and the graphics chip model with

supported features (known by the WebGL API) would enhance the uniqueness of

our fingerprints due to the volume of divulged information, lending towards

greater entropies for each of those categories.

 Font measurements augment fingerprinting techniques and may be used

to distinguish between different browser instances on a given machine, which is

more specific, as seen in Fifield and Egelman’s work [21]. Therein, they analyze

font glyphs by rendering characters from various sets within boxes of different

42

sizes. The resultant data exposed more than installed browser fonts; it divulged

different versions of a given font, minimum font size, and even rendering options

such as anti-aliasing. They found that glyph rendering only 43 code point

measurements were necessary to determine presence among a set of 125,766

glyphs that comprise all font sets, as seen in table 5.

Table 5. The 43 code points from Vastel et al for glyphs that yield the most
information for a fingerprint [26].

 The top glyph with respect to conditional entropy is the Indian Rupee, at

4.9 bits of information. Conditional entropy describes the remaining entropy once

43

the other 42 glyphs have been evaluated in the order presented; there are

different measurements performed for each glyph. As such, the Rupee glyph is

the only one giving a result above 1.0, with 36 not even breaking 0.1. The

smallest entropy value for our set is 0.23, by comparison. It is notable their

method only reveals 34% of the fingerprints as unique, and must be augmented

with calculations on other elements. Our technique is more crudely effective in

that we identify all unique fingerprints, but would be enhanced by incorporating

appraisal of glyph code points. We would be remiss to not mention that their

application is proven on a much larger data set.

 Laperdrix et al looked at the utility of 17 attributes within a set of 118934

fingerprints, using a script on the AmIUnique.org site, with results seen in table 6

[3]. An asset to their work is in covering mobile device fingerprints, although our

method would have no problem evaluating such devices. Furthermore, they use

HTML5s Canvas and WebGL APIs to render given 2D and 3D shapes,

respectively, returning performance metrics and information on underlying

hardware and according software drivers. Another element found in their set but

not ours, is AdBlock, although the returned entropy for it seems inconsequential.

Laperdrix et al uniquely identified 89.4% of the fingerprints and used more recent

technologies in Canvas and WebGL, which is are major features our algorithms

do not employ, but will be in future versions. Nevertheless, they omitted 16% of

their initial data to exclude fingerprints without JavaScript, since HTTP headers

would be the only attribute of the 17 elements in table 6 that do not require

JavaScript. Our script measures nodes that require JavaScript, but also includes

44

hundreds that do not, and thus are not dependent upon it for measurement of a

unique fingerprint, or a repeat visitor. Notwithstanding, their work emphasizes

the attractiveness of assimilating Canvas and WebGL APIs in our scripts, going

forward.

Table 6. Normalized entropy measurements of AmIUnique fingerprints [3].

6.4 Contributions and Limitations

 The contributions to the greater body of browser fingerprinting applications

begin with the algorithm design for this project. We collected more attributes for

45

evaluation than seen in any other publication, and show timing based window

DOM objects have high entropy and standard deviation, and therefore contribute

strongly to unique fingerprints due to high variation in execution of their timed

functions. In addition, if the locally stored client cookie is present, we can

recognize re-visitors with 100% accuracy.

 Perhaps the most innovative aspect is our unique method, is to combine

each collected element’s node index and value, into a hex value, and then to

standardize it for calculation of surprisals, and derived entropies. No other

known work incorporates the index of an attribute within a JSON tree; the index

itself is a key identification variable because it provides a reference point defining

the two-dimensional structure of a fingerprint. Moreover, it allows for more

dynamic identification repeat client visits through development of our prediction

heuristic for a future version of our algorithm.

 The limitations start with the small sample size of fingerprints. The

consequences include being unable to apply proper parametric statistical

analyses, especially since only 66 clients created them. Another issue involves

too few values attained from all fingerprints, for each element, which skews

standard deviation and entropy due to less dense and narrow probability

distributions.

 The other glaring limitation stems from the local client cookie serving as

the only means to positively identify re-visitors. Since cookie clearance is a

common behavior of end-users, in future versions we must have a heuristic to

46

compare fingerprint similarities outside of looking for absolute equality between a

visitor, and those fingerprints in our database.

7 Conclusion and Future Work

 Our aim was to develop a method that contributed to the field of browser

fingerprinting by revealing new properties that could be used to identify and track

individuals, so that future counter-tracking mechanisms may be developed

against them. We succeeded in this endeavor by highlighting the greater

variations in window.performance objects, while reiterating the importance of

those attributes used in previous works, such as User-Agent and installed font

list. The novelty of leveraging element locations within a tree structure in synergy

with the other element characteristics (name, type, and value) to enhance

fingerprinting, cannot be overstated, as it adds a layer of specificity.

 Nevertheless, the algorithms must be improved in the future by adding a

prediction heuristic to increase the confidence of a revisit, especially considering

the most obvious weakness of our method is that we can only do so with acuity if

the client has not cleared local cookies. The newer HTML5 APIs within WebGL

and Canvas that are used in other works should also be assimilated because

they will lend to an increase in the average entropy of collected fingerprints.

Finally, while there is no reason to doubt the potential efficacy of this work, we

must prove the effectiveness of our method through mass data collection, for its

next iteration.

47

References

[1] P. Eckersley, “How Unique Is Your Web Browser?,” in Privacy Enhancing

Technologies, 2010, pp. 1–18. doi: 10.1007/978-3-642-14527-8_1.

[2] S. Englehardt and A. Narayanan, “Online Tracking,” Oct. 2016. doi:

10.1145/2976749.2978313.

[3] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast: Diverting

Modern Web Browsers to Build Unique Browser Fingerprints,” May 2016. doi:

10.1109/sp.2016.57.

[4] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz, “The Web

Never Forgets,” presented at the ACM SIGSAC Conference on Computer and

Communications Security, Scottsdale, AZ, 2014. doi: 10.1145/2660267.2660347.

[5] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “FP-STALKER: Tracking

Browser Fingerprint Evolutions,” May 2018. doi: 10.1109/sp.2018.00008.

[6] M. Pool, “meantime: non-consensual http user tracking using caches,”

www.sourcefrog.net, Mar. 29, 2000. https://www.sourcefrog.net/projects/meantime

(accessed Nov. 29, 2022).

[7] B. Krishnamurthy and C. Wills, “Privacy diffusion on the web,” 2009. doi:

10.1145/1526709.1526782.

[8] T.-F. Yen, Y. Xie, F. Yu, R. (Peng) Yu, and M. Abadi, “Host Fingerprinting and

Tracking on the Web:Privacy and Security Implications,” www.microsoft.com, Feb. 01,

2012. https://www.microsoft.com/en-us/research/publication/host-fingerprinting-and-

tracking-on-the-webprivacy-and-security-implications/ (accessed Nov. 29, 2022).

[9] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and Defending Against Third-

Party Tracking on the Web,” presented at the USENIX conference on Networked

Systems Design and Implementation, San Jose, CA, Apr. 2012.

[10] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting Information in

JavaScript Implementations,” in Proceedings of W2SP, Oakland, CA, May 2011, vol. 2,

no. 11. Accessed: Nov. 28, 2022. [Online]. Available:

https://search.iczhiku.com/paper/hgdOSDNQ7g2K8zv8.pdf

[11] G. Acar et al., “FPDetective: Dusting the Web for Fingerprinters,” 2013. doi:

10.1145/2508859.2516674.

[12] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna,

“Cookieless Monster: Exploring the Ecosystem of Web-Based Device Fingerprinting,”

48

presented at the IEEE Symposium on Security and Privacy, Berkeley, CA, May 2013.

doi: 10.1109/sp.2013.43.

[13] M. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J. Hoofnagle, “Flash

Cookies and Privacy II: Now with HTML5 and ETag Respawning,” SSRN Electronic

Journal, 2011, doi: 10.2139/ssrn.1898390.

[14] “Desktop vs Mobile vs Tablet Market Share Worldwide | StatCounter Global Stats,”

StatCounter Global Stats, 2019. https://gs.statcounter.com/platform-market-

share/desktop-mobile-tablet

[15] Z. Yang and C. Yue, “A Comparative Measurement Study of Web Tracking on

Mobile and Desktop Environments,” Proceedings on Privacy Enhancing Technologies,

vol. 2020, no. 2, pp. 24–44, Apr. 2020, doi: 10.2478/popets-2020-0016.

[16] S. Sista, “Stable Channel Update for Desktop,” Chrome Releases, Oct. 31, 2019.

https://chromereleases.googleblog.com/2019/10/stable-channel-update-for-

desktop_31.html (accessed Nov. 28, 2022).

[17] S. Khandelwal, “Exploiting Browser Cookies to Bypass HTTPS and Steal Private

Information,” The Hacker News, Sep. 25, 2015.

https://thehackernews.com/2015/09/https-cookies-hacking.html (accessed Nov. 28,

2022).

[18] “CVE - Common Vulnerabilities and Exposures (CVE),” Mitre.org, 2016.

https://cve.mitre.org/index.html (accessed Nov. 28, 2022).

[19] X. Luo, P. Zhou, Edmond, W. Lee, Rocky, and R. Perdisci, “HTTPOS: Sealing

information leaks with browser-side obfuscation of encrypted flows,” 2011.

[20] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance,” 2012.

doi: 10.1145/2382196.2382260.

[21] D. Fifield and S. Egelman, “Fingerprinting Web Users Through Font Metrics,”

Financial Cryptography and Data Security, pp. 107–124, 2015, doi: 10.1007/978-3-662-

47854-7_7.

[22] N. Nikiforakis, W. Joosen, and B. Livshits, “PriVaricator,” presented at the

International Conference on World Wide Web, Florence, Italy, May 2015. doi:

10.1145/2736277.2741090.

[23] C. F. Torres, H. Jonker, and S. Mauw, “FP-Block: Usable Web Privacy by

Controlling Browser Fingerprinting,” in Computer Security -- ESORICS 2015, Vienna,

Austria, 2015, pp. 3–19. doi: 10.1007/978-3-319-24177-7_1.

49

[24] M. Simic, “F-Beta Score | Baeldung on Computer Science,” www.baeldung.com,

Jun. 12, 2022. https://www.baeldung.com/cs/f-beta-score (accessed Nov. 19, 2022).

[25] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical

Journal, vol. 27, no. 3, pp. 379–423, 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.

[26] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-Scanner: The Privacy

Implications of Browser Fingerprint Inconsistencies,” presented at the Proceedings of the

27th USENIX Conference on Security Symposium, Baltimore, MD, Aug. 2018.

[27] B. Szyk and D. Czernia, “Combination Calculator (nCr) | Combinations Generator,”

www.omnicalculator.com. https://www.omnicalculator.com/statistics/combination

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

29999006

2023

	Creating a Better Browser Fingerprint
	Recommended Citation

	Microsoft Word - 949756_pdfconv_ff57df8c-ba96-4a69-8664-be8b611a5ab0.docx

