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Web browser fingerprinting is used to analyze client behavior through retrieval of 

browser attributes unique to the user’s browser, network and hardware profile.  

Third-party trackers are prevalent on the top Alexa sites and use JavaScript to 

retrieve and store user machine information in a stateless fashion.  Stateless 

fingerprinting is performed through acquisition of client machine specifiers through 

an embedded JavaScript, which then forwards the information to a server.  The 

client information is purportedly used to provide tailored advertising and enhance 

the browsing experience.  However, the depth of captured client information often 

extends into the realm of personally identifiable information.  The user is often 

unaware of privacy issues and how their information is disseminated for profit, or 

the risk of such data being used by hackers to exploit divulged vulnerabilities. 

We review fingerprinting techniques from previous works that delineate 

seminal methods and countermeasures, and present a novel fingerprinting 

JavaScript that measure over 200 Windows and Navigator object properties.  The 

results reveal new parameters that can be used to generate unique user 

identifiers, and accurately track individual browsing behavior.  These findings may 

be used by developers of anti-tracking software to improve efficacy and preserve 

individual privacy. 
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1. Introduction 

 
Web browser fingerprinting is a technique used to analyze client behavior 

through retrieval of characteristics concerning the user’s software and hardware 

profile through web browser Application Programming Interfaces (APIs).  Third-

party tracking scripts are the primary means of fingerprinting, which use 

algorithms to retrieve and store such parameters in a stateless or stateful 

fashion.  

Currently, there are two general methods used to do fingerprinting; these 

use cookies, which are stored locally on a client machine, and browser 

fingerprinting, which uses hyper-text transfer protocol (HTTP) requests to 

measure browser and machine properties.  Both are typically used 

simultaneously to obtain an accurate fingerprint, even in presence of user-

installed obfuscation add-ons meant to defeat such techniques. 

Cookies are text files websites store locally on a user’s computer and are 

thus considered a “stateful” tracking tool; they are written with permission granted 

by the browser settings.  These files are advertised to enhance the browsing 

experience by saving settings such as a session or user ID, so that upon an 

ensuing visit, the user is spared the process of re-authentication.  Another benign 

use of cookies is to provide personalized content in the form of advertisements 

tailored toward a user’s needs.   

Nevertheless, the same local machine parameters contained within a 

cookie may also be utilized to track users across websites.  If an individual 

accesses two or more websites hosting the same third-party tracking scripts from 
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the same advertising network, the scripts can check for a local cookie set by one 

of the network scripts, and log the visit to its server. 

Browser fingerprinting gathers data that can be used to identify an 

individual’s web surfing behaviors even if the user takes basic precautions, such 

as deleting cookies, clearing the browser cache, and using a browser’s stealth 

mode (e.g. Firefox’s “private window”).   The fingerprints are created using data 

that websites can gather from one’s browser APIs, which is then stored on a 

server, unlike cookies that are stored locally on client machines.  As such, the 

stealthily gathered information is untouchable by the user.  This fingerprinting 

mechanism is “stateless”, in that the information is collected via a JavaScript [1].   

The JavaScript may be part of the website being visited, in which case it is 

considered a “first-party” tracker.  However, these websites may load “third-party” 

trackers from another domain, whose scripts may also access the browser’s APIs 

to garner data on its properties.  Aside from traditional HTTP header request 

information used for fingerprint attribute collection, the recent proliferation of 

HTML5 allows for Canvas APIs to divulge even more specifying information such 

as font metrics, network IP addresses, and audio signal processing output [2]. 

Cookie and fingerprint-based surveillance obtains client identity through 

implementations of JavaScript.  Most third-parties use both cookies and 

fingerprinting to monitor web behaviors, often in a synergistic manner.  The 

simplest application combining the two is cross-referencing the user ID in a 

cookie with the hash value of all the information cumulated from a JavaScript 

running in the background [3].  Browser fingerprinting is more effective than 
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cookie-based identification, if only because it does not require permission to 

store a local file. There are thousands of different fingerprinting scripts that are 

effective in fingerprinting the popular browsers to the tune of 83% while 

measuring only eight attributes [1], to 90% with the values of seventeen attributes 

[2].  The percentage of success has  remained high due to successively 

advanced iterations of tracking applications that detect anti-tracking extensions, 

and work synergistically with cookies to verify identity, regenerate deleted 

cookies [4],  and mask their own processes to appear benign [5]. 

The discussion of browser fingerprinting starts with a description of 

fingerprinting attributes, many of which are DOM (Document-Object Model) 

element values that are extracted via DOM APIs.  The DOM is a logic tree 

structure made of node objects that may be containers, functions, and fields.  

The “navigator” and “screen” objects within the DOM yield useful information 

such as screen resolution, browser version, OS version, and the installed 

browser fonts. 

Browser plugins and extensions are also integral to fingerprinting 

algorithms, as they provide a different attack-surface for enumeration of potential 

fingerprint fields. While HTML5 did away with the requirement of Flash Player 

plugin installation within a browser, it is still widely used, and the most exploited 

plugin for fingerprinting.  Eckersley used Flash to show the installed fonts using a 

Flash API that reveals this information [1].  Other Flash APIs give OS and screen 

info, independent of the navigator DOM object.  Plugins are similar to extensions 

in that they extend browser functionality. Plugins differ because they aren’t 
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enumerable using browser APIs; yet, their presence can be detected secondary 

to their side-effects.  In other words, if they are anti-trackers, they can be 

revealed according to the information they mask.  

The evolution of browser fingerprinting is only inferred from experts who 

have raised concerns as the web has morphed into its current incarnation. The 

dearth of mechanistic information concerning fingerprinting is consequent to 

commercial fingerprinting scripts being proprietary technology, thus preventing 

development of specific countermeasures.  Nevertheless, enough literature 

exists to highlight advances in the technology, as seen in figure 1.  

In this work, we present a novel project aimed at identifying new browser 

parameters that have not been used to identify clients during browsing sessions.  

The unveiling of these variables will be useful in devising a proactive defense 

against future third-party tracking applications. We first discuss, in section 2, the 

background of fingerprinting techniques.  We show various fingerprinting 

techniques by exploring previous works that delineate fingerprinting methods, 

and the countermeasures devised to defeat them.  
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Figure 1. Flow diagram demonstrating the timeline for browser fingerprint 

advancements. 

 

2. Background 

 
In this section we present a synopsis of the works that detail fingerprinting 

techniques from its earliest detection within browser requests, through its 

incorporation of more complex methods such as cross-site scripting and re-

spawning cookies.  The significance of fingerprint evolution lies within use of 



6 
 

protocols that are integral to the network and application layers, which can’t be 

disabled.  Therefore, an examination of known fingerprinting utilizations is critical 

to development of preventative tools discussed at the end of this section.   

2.1 Previous Work 

 
 The earliest publication on privacy issues discussed the information 

available to servers via HTTP v1.0 and v1.1 requests [6], well before coining of 

the term, “browser fingerprinting”.  The article described how entities could track 

user history via their HTTP cache control requests.  It wasn’t until 2009 that 

research into the prevalence of web trackers was conducted; Krishnamurthy and 

Willis found that between 2005 and 2008, the incidence of third-party trackers in 

the top Alexa sites increased from 40% to 70% [7]. 

The first seminal research paper referencing the mechanism of HTTP request 

fingerprinting investigated the effectiveness of a fingerprinting algorithm that only 

measured eight browser characteristics [1].  They constructed an algorithm 

based on fingerprinting algorithms to “quantify how much of a privacy problem 

fingerprinting may pose”, and found that only 17% of individuals visiting their 

Panopticlick site could not be fingerprinted.  They demonstrated that API 

requests to Adobe Flash and the Java Virtual Machine, which the major browsers 

had installed by default, were culpable. 

 The combination of fingerprinting and tracking cookies reinforce the 

process of surveilling browsing behavior, as shown by Yen et al [8].  They 

collected a data set of millions, and concluded that trackers could identify users 
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using the IP prefix with a user agent string to the tune of 80% accuracy, which 

increased to 88% in addition to one-time session cookies. 

 Roesner, Kohno and Wetherall exhibited the concept of spying with 

stateless fingerprinting and stateful cookies one step further, by classifying 

trackers into five categories [9].  One of those types utilized novel mechanisms 

by making use of third-party cookies that are updated according to cookies 

stored locally, via HTML5s Local Storage API and Flash LSO objects.  The latter 

allowed for re-spawning of tracking cookies through Flash APIs that cross-

referenced the server user ID database with the user’s stateless fingerprint.  

Another technique was to use cross-site trackers that forced user browsers to 

redirect to a different domain via a popup, so that the third-party domain would 

become a first-party domain, and thus be able to set its own cookie.   Yet another 

category of trackers made use of the two aforementioned approaches. 

 Some trackers took a different approach to stateless tracking by invoking 

a JavaScript algorithm to measure performance of the JS engine in performing 

certain APIs, which yielded consistent hardware metrics [10].  They were capable 

of accurately detecting the browser and its version; the operating system, and the 

CPU only with performance metrics. 

 Acar et al emphasized the importance of font-based fingerprinting being 

an integral part of tracking JavaScripts, as represented by prevalence of 

BlueCava scripts [11].  Their research showed 13 different font-probing scripts, of 

which BlueCava’s was present in 250 of the top 500 Alexa sites.  BlueCava 

queried font sets based on retrieval of the user’s OS, and was able to 
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dynamically inject itself into the host page, and then remove itself after collecting 

a fingerprint.  The injection and removal of the script was a novel technique to 

evade detection. 

 Concurrently, Nikiforakis et al released a study on the top three 

commercial fingerprinting vendors relating novel capabilities, including code 

providing a backup font metric measurement, in case Flash was not present due 

to being phased-out by HTML5 and Microsoft’s Silverlight [12].  The backup font 

code block used CSS to attempt rendering of fonts.  The second novelty lay in 

the ability of these apps to execute Flash APIs to send an HTTP request instead 

of the browser, which circumvented any HTTP proxies meant to hide the user IP 

address.  Finally, they exposed two vendors, BlueCava and ThreatMetrix, who 

were leveraging the capacity of Java and Flash browser plugins to read Windows 

registry values for OS type and installation date.  These registry value strings 

alone were enough to provide a strong fingerprint. 

 The creation of “Evercookies” had already been unearthed by analysis of 

client Flash storage vectors after clearing browser cookies, who then revisiting 

sites with trackers that used Flash APIs to restore Flash  tracking cookies [13].  A 

new storage vector, HTML5s IndexedDB, was identified as another reservoir for 

respawning these cookies.  The IndexedDB vector was used to cross-reference 

third-party databases to respawn Flash cookies, which in-turn was used to 

restore HTTP cookies [4].  An added complexity was seen when third-party 

vendors synchronized their user-ID databases to help one-another respawn 

these Evercookies, and thus share their collective data. 
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 In 2016, Englehardt and Naranayan utilized a measurement analysis of 

tracking on one-million sites and found two APIs used by the top ten scripts that 

had not previously been reported [2]. The first API, WebRTC, is a Javascript 

peer-to-peer function that collects the IP addresses of all available peers in a 

target’s network.  The second was the AudioContext interface, which returned a 

digital signal processing metric to be incorporated into the fingerprint.     

 Applications for recording browser behavior also extend into the sphere of 

mobile devices.  According to Statcounter’s website, mobile web browsing is 

more commonly used than the desktop platform, as of the time of this writing 

[14].  Approximately 56% of trackers incorporate code to operate on mobile and 

desktop platforms, and do so by exploiting mobile-specific APIs, such as a 

phone’s accelerometer and gyroscope [15].  These APIs are combined with 

typical JavaScript APIs and HTTP cookies to make mobile fingerprints even more 

unique than their desktop counterparts.  The implication is that mobile tracking 

may be more deleterious to user privacy for this reason, and also due to mobile 

devices affording the geolocation of individuals. 

 The latest approach heretofore unseen is the use of CNAME cloaking. 

CNAME refers to the canonical name record for the pages of domains within 

DNS.  Third-party servers rotate the CNAMEs of their subdomains so as to 

circumvent blacklists created by anti-tracking plugins, as one mode of masking.  

However, another more nefarious procedure is to mask their subdomains as one 

of those of the first-party domain the user is visiting, so as to be recognized as a 

first-party tracker.  While CNAME cloaking is does not fall under the subject-
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matter of this work, it is worth mentioning because the elevation of third-party 

tracking scripts to first-party privilege allows for greater flexibility in collecting 

client browser and hardware attributes.         

2.2  Evolution of Fingerprinting 

 

 Fingerprinting continues to evolve as browsers become more complex, 

and as the variety of plugins and extensions grows, so will the methods for 

creating unique fingerprints, and surveyance of an individual’s behavior.    

While our experimental focus is on fingerprinting, one cannot ignore its synergy 

with stateful (cookie) based tracking, and any discussion herein of its erosive 

effects on user privacy and security implicitly accounts for both modalities.  

Approximately five-billion people world-wide use the internet, with the highest 

penetration occurring within North America and Europe [14].  Benign uses for 

fingerprinting exist such as confirming a user’s identity to prevent fraud, or to 

tailor ads towards a person’s tastes. Yet, the financial incentive to advance this 

technology stems from the market for PII that extends into the realms of 

advertising, product sales, local law enforcement, and nation-state surveillance 

[12].  

 The malicious ramifications to the user include divulgence of browser 

history; the collection of the user’s browser and hardware state, and the possible 

exploitation of older browser version vulnerabilities.  The first item is an 

infringement upon one’s privacy; an individual may not want her or his browsing 

history to be known for myriad reasons.  The last two can be employed by 

hackers to write scripts that compromise local clients and even networks, as 
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seen in a Google Chrome vulnerability patched in 2019, which allowed the 

hacking group “WizardOpium” to embed a zero-day exploit to gain elevated 

privileges on vulnerable machines [16].  A different vulnerability allowed hackers 

to exploit a flaw in cookie-handling, consequently opening secure HTTPS 

connections to man-in-the-middle attacks [17].  Such vulnerabilities have been 

found, as seen in the Common Vulnerabilities and Exposures (CVE) database 

[18].   We do not wish to expound upon every possible repercussion to an 

individual, but only to reinforce potential harm with regards to user privacy and 

security. 

 In order to systemically apply mitigations to fingerprinting algorithms, 

researchers have contrived to detect their modes of operation, especially over 

the past decade.  Although there are many significant contributions within this 

time period, three key works have added greatly to the understanding of 

fingerprinting through building custom-coded browser extensions and 

autonomous platforms.  These stem from Roesner et al, who made browser 

extensions to classify third-party trackers[9]; Acar et al who wrote the 

FPDetective script to detect fingerprinting heuristically [11], and Englehardt and 

Naranayan, who made OpenWPM site surveying script [2].  

2.3 Tracker Classification: 

 Roesner’s group focused on detecting tracking mechanisms that assigned 

unique identifiers, which was important because previous research explored 

trackers that only inferred client identity[9].  Their extension revealed how real 

tracking code interacted with the browser state. This allowed them to sort 
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tracking behaviors into five categories: 1) Trackers that perform third-party 

analytics for a site, and can only track user within a site; 2) Trackers that use 

third-party storage for track across sites; 3) Cross-site trackers that force users to 

its domain via redirects and popups; 4) Trackers that rely on other trackers in 

categories 1,2 or 5, to receive data, and 5) Cross-site trackers visited directly by 

the user.  They found only behaviors 2 and 5 are found stand-alone while most 

trackers displayed a combination of behaviors.  The classification system 

provided a structure for future studies to investigate these third-party scripts. 

The FPDetective framework was made to detect trackers without the aid of a 

whitelist [11]; in other words it detected changes in browser function outputs to 

ascertain their presence.  It revealed new scripts and Flash objects used in the 

top five-hundred Alexa sites, and was able to detect scripts injecting and then 

removing themselves, to evade detection.  The work provided a reliable heuristic 

tool for others to detect malicious scripts that collect stateless data, as well as a 

means to reverse-engineer those scripts based on the probable function calls 

made to JavaScript APIs. 

 The OpenWPM markedly built upon FPDetective by supporting stateful 

and stateless measurements from tracking scripts while allowing researchers to 

implement their own scripts in a modular fashion to monitor APIs of their interest.  

OpenWPM also provided a plugin for automated crawling, easing the process of 

data collection by eliminating the need for additional code.   Finally, OpenWPM 

integrated two other measurement points aside from that provided by the 

browser extension, which included a network proxy, and a monitor for the hard 
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drive state.  Engelhardt and Naranayan’s OpenWPM is an open source tool they 

provided to developers of privacy applications, and has often been used as a 

platform for such research [4]. 

2.4 Prevention: 

 Prevention of fingerprinting is an endeavor requiring user diligence and 

the innovation of anti-tracking software developers.  Most users learn to clear 

cookies, yet even that may be an identifier that enhances a fingerprint when 

compared to the majority of individuals who do not; regardless, respawning 

Evercookies renders it a futile undertaking.   Another step is to use a proxy, but in 

the face of JavaScript APIs to Flash and HTML5 queries regarding network IPs, 

proxies are ineffective [8].  VPN services have multiple servers (with different 

IPs), however, tracking scripts may also account for them.  Any alteration to the 

browser hat returns a false static value is still fingerprintable.  

Individuals must take comprehensive measures to maintain web browsing 

privacy.  Disabling Flash is an important step thereto, because it would prevent 

cross-checking of object values such as the user agent and IP address against 

browser API call results.   

 Laperdrix at al estimated if Flash were absent, it would reduce the number 

of unique fingerprints by 13% [3].  They also calculated an additional 8% 

reduction if HTTP headers were standardized across browsers, since each 

browser vendor and version has header peculiarities.  

Randomization, standardization, and blocking tools are also a necessity.  For 

instance, an extension that randomized one’s user agent string with each web 
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crawl would reduce the linkability of that person’s current browsing session, with 

previous sessions [4].   The randomization would have to be applied to numerous 

HTML objects to increase the likelihood of trackers recognizing a “new user” 

upon a subsequent crawl. 

 Masking the location of local storage vectors for HTML5 and Flash (if 

present) is suggested to prevent Evercookies from reappearing [3].  Blocking 

scripts is more difficult because it requires code tailored towards functions 

executed within the script; that knowledge is usually proprietary.  Standardization 

is an attractive option because a generic response for fingerprinting attributes 

would render user IDs useless. Unfortunately, this would require browser vendor 

collaboration and agreement upon a protocol, and would also break many 

websites that rely on fingerprinting to augment browsing.  It would also affect ad 

revenue. 

 One of the earliest defenses against fingerprinting involved manipulation 

of HTTP request structures through HTTPOS, which obfuscated the TCP MSS 

and window resolution parameters, thus altering packet sizes [19].  HTTPOS split 

HTTP requests into partial requests and used a pipelining technique to execute 

incoming requests in a concurrent manner.  Cai et al improved upon this by 

implementing a modified BUFLO algorithm that reduced overhead, responded to 

HTTP flow requests, and obscured application thread execution times metrics 

[20]. 

 Roesner et al constructed ShareMeNot, a Firefox add-on that blocks 

cookies from third-party requests to trackers that committed forced redirects [9].  
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This allowed for users to still interact with widgets linking Facebook profiles to a 

given web page when a user clicked on the “Like” button, while disallowing 

tracking, otherwise.   

 Fifield and Egelman proposed a defense against font-based fingerprinting 

via shipping a standard set of fonts with each browser, without allowance for any 

future modification to the set [21].  They calculated this would reduce halve the 

entropy given by font-based fingerprinting metrics.  

 However, since browsers are unlikely to be standardized across vendors, others 

have continued to develop applications that block or deceive fingerprinting apps.  

PriVaricator was created to defeat fingerprinting by feeding false telemetry to 

trackers [22].  PriVaricator is instrumented on the browser, and subtly alters DOM 

elements to introduce a degree of uncertainty so that third-party fingerprinters 

can’t link client IDs.  Similarly, FP-Block prevents cross-site tracking by 

generating a different “web identity” for a user, for each domain upon different 

visits [23].  It alters elements of the browser, such as the user agent, browser 

name and vendor; the system and user languages; the OS and CPU classes; the 

screen resolution and color depth, and the time zone.   

 Taking the results of these works as a whole, obfuscation at the network, 

transport, link, and application layers are crucial to avert tracking.  Other works 

emphasize masking IPs, TLS session cookie IDs, and MAC addresses because 

each of them tend to provide high entropy values, thus raising the chance for a 

unique fingerprint [3], [5]. 
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3 Prior Approaches to Fingerprinting 
 

 Our work builds upon previous methods by including a wider and more 

diverse set of collected elements for more precise and accurate fingerprinting.  

We also identify new elements that could potentially be used by third-parties to 

track user behaviors.  The following sections elaborate established techniques 

with subsequent discussion of how our project improves upon them. 

 
3.1 Previous techniques to identify key fingerprint elements: 

 The first large-scale examination of fingerprinting elements was conducted 

by Eckersley, who looked at the effectiveness of browser fingerprinting 

algorithms through sampling 470,000 browsers of informed clients to the 

Panopticlick website [1].  He found that 83.6% of visitors had a unique fingerprint, 

with an increase to 94.2% for those with Adobe Flash or Java Virtual Machine.  

The algorithm collected results of HTTP and AJAX requests that included the 

User Agent, Cookies Enabled, screen resolution, plugin lists, and font lists. The 

results of which were concatenated into a fingerprint that also included a hash of 

the visiting IP address.   

 The results of Eckersley were seminal because they demonstrated the 

stability in identifying return visitors when combining the fingerprint with a locally 

stored cookie, even if one of the identifiers (e.g. screen resolution) had changed 

since the previous visit.  Eckersley also showed that each updated version of a 

plugin or extension produced a different output string, which significantly 

contributed to the uniqueness of a fingerprint. 
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 Eckersley’s work was continued by a group who analyzed the amount of 

information given by commonly queried DOM elements [8].  They used data sets 

comprised hundreds of millions of users from Hotmail and Bing searches, which 

showed that HTTP user-agent strings identified 60%-70% of hosts within a given 

dataset, and up to 80% when IP prefixes were included.  The authors also 

calculated 88% of users were accurately marked upon repeat visits with the use 

of one-time cookies, despite having 33% of them clear their cookies, or browse in 

private mode.   

 Mowery et al delved further into browser fingerprinting through delineation 

of two techniques that involve use of JavaScript [10].  They built upon 

Eckersley’s Panopticlick project by adding descriptors yielding the performance 

measures for operations within the JavaScript interpreter, through execution of a 

set of 39 functions via a customized version of V8 and SunSpider benchmark 

platforms.  They found the results could not only distinguish between browser 

versions, but also hardware architecture and installed components, such as the 

CPU and graphics unit.  The other technique probed for entries into NoScript 

whitelist; NoScript was a Firefox extension that blocked certain webpages from 

running scripts within the browser. Ironically, the whitelist provided a fingerprint of 

the client’s list of visited websites, and thus enhanced the profile of browsing 

behavior. 

 Cai et al constructed a web page fingerprinting attack that circumvented 

browser extensions masking HTTP packet header information [20].  They were 

even able to identify web pages loaded through an SSH tunnel, with 90% 
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accuracy, and furthermore identified web pages loaded through TOR with 80% 

accuracy.  This was possible even when packet size information was removed 

within the header. 

  Users may employ HTTP proxies to hide their true IP address, which aids 

in cloaking their identities from being fingerprinted. Nikiforakis et al analyzed 

three third-party browser fingerprinting scripts that circumvented such proxies to 

reveal an IP address [12].  The ActionScript tracker defeated the proxies by 

querying Flash to contact the third-party host directly.  In addition, these scripts 

had fall-back mechanisms to detect installed fonts in case Flash was absent, and 

did so in a browser-specific manner, since the most popular apps (e.g. Chrome, 

IE, and Firefox) have specific DOM function calls to query available fonts.  The 

scripts attempted to delete, add, and modify custom DOM containers with 

navigator and screen objects to identify applications and hardware installed on a 

client machine.  Execution of these scripts returned metrics indicating even more 

information about the browser and hardware versus if Flash were present on the 

client machine. 

 When above techniques are combined with cookie synching, even 

periodic clearance of local cookies doesn’t defeat re-spawning of individual 

tracking identifiers.  As Acar et al found, IDs are re-spawned by different tracking 

domains that communicate IDs to one-another so that even after cookies are 

cleared, these domains can merge records of pre and post-clearance browsing 

logs [4].  They further found that HTTP cookies can resurrect Flash cookies, and 

vice-versa.   
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 Laperdrix, Rudametkin and Baudry used the AmIUnique.org fingerprinting 

site to collect 118,934 fingerprints, and found 17 attributes could accurately 

identify each of them, and developed a JavaScript using them to fingerprint [3].  

Their results demonstrated its effectiveness for mobile platform fingerprinting with 

a unique identifier rate of 81%, despite mobile devices lacking plugins and font-

sets within their browsers.   

 Some HTTP and DOM query returns may change between initialization of 

browser instances for the same client.  FP-STALKER is an implementation of an 

algorithm that can link instances from the same user, even if those instances 

yield slightly different fingerprints [5].  Vastel et al collected 98,598 fingerprints 

from 1905 browser instances, and found that FP-STALKER is able, on average, 

to link browser fingerprints from the same user, for 51 days.   

3.2 Detection of Browser Fingerprinting 

 Detecting browser fingerprinting is important in the evolution of browser 

defenses that rely upon modular execution, so as to reduce computational 

overhead.  Conventional defenses include third-party cookie blocking add-ons, 

Do Not Track, client-side browser state clearance, pop-up blockers and private 

mode browsing.  None of these are secure against trackers on their own, or in 

combination.  An example of why is shown with Roesner et al, who developed a 

client-side algorithm called TrackingTracker that was outfitted within browsers, 

for detecting third-party trackers based on how they change browser parameters 

[9]. They detected over 500 unique trackers and discovered the top Alexa pages 

all had multiple trackers.  The behaviors of these trackers fell into a combination 
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of five categories involving analytics, storage, forced redirection, referrals (from 

one third-party tracker to another), and personal, which is a tracking site directly 

visited by a client. 

  Acar et al made FPDetective, a framework to detect and analyze 

fingerprinters [11].  It was outfitted on Chrome and PhantomJS browsers, which 

were also modified to automatically crawl certain sites. The results were 

presented in the form of logs that revealed which browser and device properties 

were accessed during the crawl, with an emphasis on JavaScript-based font 

detection.  In all cases, they found there were no visible effects of fingerprinting, 

thus leaving the user unaware of it.  Fifield and Egelman also highlighted font-

based fingerprinting in a different way; they showed that font-rendering 

techniques can be used to distinguish users through the results of drawing a 

glyph from a given font-set, within a box [21].  The slight difference in pixel output 

reveals not only the installed font sets, but the graphics card and the browser 

version.  

 Yang and Yue developed the WTPatrol platform to determine tracking 

behaviors on 23,310 websites with both mobile and desktop page versions [15].  

They further broke-down results to trackers using JavaScript API calls or HTTP 

cookies.  Their results yielded 5835 unique JavaScript trackers, with 13.1% of 

those specific to mobile sites and 30.6% to desktop sites.  They identified 5574 

HTTP cookie trackers with 12.5% and 27.6% being mobile and desktop specific, 

respectively.  WTPatrol is a critical new measurement platform because it gives 
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researchers the ability to monitor browser fingerprinting in-the-wild, and to 

discover novel trackers. 

 Englehardt and Naryanan measured 15 elements that were part of stateful 

and stateless tracking mechanisms via the Open WPM tool, for over one-million 

websites [2].  They found 81,000 third-party trackers on two first-party domains: 

Googleanalytics and Google.  They further found that Google, Twitter, Facebook, 

and AdNexus were the only third-party trackers present on approximately 10% of 

the websites.  The 81000 trackers were distinct scripts that had overlap with 

regards to fingerprint variables attained via HTTP and DOM function requests, 

however, a troubling finding was that 460 of the top 1000 most frequently found 

tracking scripts communicated with one-another on the back-end to enable 

cookie-synching, which defeats most user interventions to maintain web-

browsing privacy. 

4 A New Method 

 
  Fingerprinting intrinsically requires measurements of client hardware 

performance metrics and browser element values.  We wrote a Javascript 

program to collect values from hundreds of Chrome and Firefox browser 

attributes, with subsequent statistical analysis to determine the smallest subset 

needed to yield the most accurate fingerprint for individual users.    

 Our methods included construction of a second Javascript program that 

enabled organization of those elements into a tree structure.  The structure itself 

was necessary for identification of repeat visitors through their fingerprints. 
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4.1 Browser Fingerprinting 

We constructed fingerprints with hundreds of measurements from the browser 

Windows and Navigator objects of Chrome and Firefox.  Then, we attempted to 

determine the smallest set of variables from within those objects that yielded a 

unique user identity, which was linkable among browsing sessions from the same 

user.  This strategy will have two desired effects within the tracking and anti-

tracking communities.  First, it will allow vendors to create scripts that use a small 

number of measurements to serve the more benign uses of trackers, while 

preserving “more” of the individual’s privacy in context of what data is revealed 

about one’s machine specifications, browsing history, and location.  Second, it 

will impart elements that have not been used before by vendors, and allow anti-

tracking research to gain a head start on developing counter-methods. 

 We achieved our ends by writing a recursive JavaScript function that 

enumerates through client browser information on over 200 DOM elements from 

the Windows and Navigator objects.  The script separates each element as being 

a variable or function, and hierarchically assigns its characteristics and values to 

a node within an object tree, for which the root node is the Windows object.  The 

Navigator object has the most numerous useful elements to fingerprint, outside of 

Windows.  Navigator can be queried from Windows, which is why we choose 

Windows as our root.  The script was hosted on a LAMP (Linux, Apache, 

MySQL, PHP) server, and the webpage was advertised to University of Nebraska 

at Omaha students and faculty to garner their fingerprints upon visiting the page.  

LAMP was chosen due to its accessibility as an open-source tool, since it uses 
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the well-documented Apache server.  The server runs on the Linux OS 

backbone, and uses PHP script for source code interpretation; the PHP accesses 

MySQL databases for data manipulation. 

 The results were collected as a JavaScript Object Notation (JSON) object 

that was stored on the server.  JSON objects are strings formatted in a manner 

such that each object holds one or more key to value pairings, each of which is 

separated by a colon.  This format is heavily used to transmit data between client 

and server, but in this context, it also allows for its simple excerption according to 

key or value. 

 Next, the result files were input into another JavaScript to sort the 

acquired elements for subsequent statistical analysis, to find which 

measurements were most significant in generating a unique fingerprint.  The 

significance was quantified in bits of entropy, from which we calculated a set with 

the fewest elements possible that could accurately fingerprint an individual, and 

link a user identity across multiple visits to our webpage.   

 

4.2 Browser Attribute Collection 

 There are three main algorithms necessary to complete our project. The 

first is visualized in figure 2, denoting the steps for browser attribute collection, 

which must fulfill several requirements, starting with acquisition of HTML DOM 

element values that do not require custom function calls.  We choose to extract 

the Window object browser properties. To do this, the algorithm must iterate 

between two functions, the first of which evaluates the type of a given Window 
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property.  The type may be a string, number, Boolean, function, or object.  If the 

property is an object, a recursive call is made to find the property types within the 

nested object.  If the Window property is a function, a call is made to the second 

main function that determines the function identity and executes custom code to 

evaluate the function’s input variables from the browser environment.  The 

algorithm must also construct a hierarchical object tree representing the location 

and rank of an object within the results of the collection phase. 

 The attribute collection algorithm additionally collects user information in 

the least intrusive manner for Firefox and Chrome, which are the two most 

popular browsers in the world.  This is achieved through construction of a LAMP 

server running a JavaScript that only prompts the user to allow for obtainment of 

geolocation.  This is followed by a text box indicating completion of data 

procurement of browser window objects.  The latter is effected by means of 

coding for browser-specific functions for a given Window property.  The overall 

flow of the method is detailed in Figure 2. 
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Figure 2. Attribute collection flowchart 

 

 

 The pseudocode for attribute collection relays a concrete description of 

the corresponding JavaScript.  Lines 1-11 of figure 3 represent the process for 

evaluating a function within a Windows object container.  We only wish to 

evaluate Windows functions that yield the most information for user identity; lines 

2-3 whitelist for such functions.  Lines 5-6 add the name of the windows property 

to a set, and create a child-node for the property, respectively.  The “list” set in 

line 5 is to store the names of asynchronous functions that will not resolve in the 

order they are placed on the stack.  These functions must be periodically 
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checked for return values, after which they are deleted from the set, in line 9.  

Line 7 adds the name of the property to the “cache” array, while line 8 sets the 

evaluated Windows property values to the instantiated node from line 6.  The 

cache array is used to set the property name and then associate it with the 

appropriate node, such that the evaluation of the function may be associated with 

the proper node. 

  
 Figure 3: The pseudocode for browser attribute collection 

 The recursive “iterate” function beginning on line 12 iterates through all 

objects within a passed “aWindowNode” window object.  Lines 14 sets a string 

denoting the object name and property; line 15 computes the value of the current 
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property object, and line 16 assesses the object type, to be used in the following 

switch statement.  Lines 17-18 create a new node object set to the determined 

name and type from line 14 and 16.  The switch statement starting at line 19 will 

set the node value to the one from line 15 if the type is string, Boolean or 

number.  However, if the type is a function, the switch will call the 

evaluateWindowsFunction function to receive output values to be written to the 

node. If the type is an object, a recursive call is made to iterate through all of the 

nested objects therein.  Finally, at line 31, “aNode” is added to its parent node 

once the value (i.e. a function, string, number or Boolean type) is returned from 

the switch statement. 

 The results of the browser attribute collection are stored as a cookie that is 

named via a JavaScript random character generator.  The cookie values for the 

user Windows DOM element results are extracted via the second main algorithm.  

This script parses fields from the cookie to yield data, as seen in figure 4.  The 

program starts by taking all of the fingerprint files from the first algorithm and for 

each, garnering an ID (represented by a hash), the visitor IP address, and the 

contents of the fingerprint itself. Parsing creates three arrays for the following: 1) 

storage of the total number of user identities with each ID associated with its set 

of Window attribute collection, 2) storage of the total number of elements 

collected across the global set of users, associated with all values for each 

element, from the global set of users, and 3) storage of all elements mapped to 

incidence of each element, from the global set. In order to construct the first two 

arrays, the nodes from each JSON tree fingerprint object are “flattened”, meaning 
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that the information from each leaf is taken and allocated to its appropriate 

category within the array.  The information includes object name, type, index, and 

value.  The data for these arrays are then written to a comma separated value 

file for the third algorithm to process, as shown in figure 4. 

 

Figure 4: Extraction of fingerprint elements for use in statistical analysis 

 

 The third algorithm calculates the entropy and surprisal, or “uniqueness” of 

the collected elements. The surprisal, I, is a measurement in bits for each 

element collected within a set for a single user, and indicates the amount of 
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information about a user’s identity.  It is dependent on the log2 of a discrete 

probability function P(fn), which represents the probability of a set of outputs 

comprising a fingerprint [1].  The entropy of I is represented by H, and is the 

expected surprisal value over all browser attribute sets collected.  Elements that 

are unique to a given browser, or which occur infrequently within a dataset have 

an inverse correlation with their bits of entropy.  When values of entropy and 

uniqueness of each element are combined, and such is performed among all 

elements, a resulting fingerprint is created that may be measured for accuracy.  

The accuracy of an element is expressed by computing precision and recall [8].  

Precision relates to how well an identifier can correctly correlate fingerprint to a 

single user ID, while recall measures how effective an identifier is for tracking a 

host across repeat visits.  The equation for precision takes the client ID count as 

a function of how many IDs can be mapped to a single fingerprint(f),  and the 

equation for recall requires the fingerprint count (fpcount) denoting the 

fingerprints belonging to which a hardware ID(m).  The data will then be 

normalized using a technique unseen in other literature.  We will take the hex 

value of each attribute index (i.e. node position it falls within the JSON tree) and 

value, add them together, and then take a rounded log10 to avoid excessively 

long decimal fractions.  These values will be used for calculation of each attribute 

surprisal; the entropy for each attribute, precision, and recall.  Entropy, surprisal, 

recall, and precision all give values between 0 and 1.  Accuracy will reflect the 

efficacy of our fingerprinting application through the calculation of f-measure, 

which is the weighted mean of precision and recall.   
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 Our algorithms must be able to collect Window object state values and 

calculate a fingerprint.  The entropy and uniqueness of each element are also 

determined.  Windows.timing objects are excluded from fingerprints due to their 

arbitrary values based on timestamps, which could lead to drastic increase in 

false negatives.  

 Data Collection is executed by having University of Nebraska at Omaha 

students and faculty visit our LAMP server, and happened over the span of 

several weeks.  Upon visiting the page hosting our script, a user’s identity is 

ascertained as being “first-time”, or “repeat” by checking for an existing cookie 

that contains the user’s string ID.  Delineation between desktop and mobile users 

is made by checking for return values of Window properties specific to mobile 

platforms, such as screen orientation and vibration. 

5 Results 
 

 The raw results of the algorithms are given in two parts.  The first is a 

filename string integrating a random ID of twenty characters, an IP address, and 

a timestamp for a client visitor.  The second component encapsulates the 

contents of the fingerprint, which are a collection of Window objects represented 

within a JSON file. 

 

Table 1. Statistical scores characterizing accuracy of fingerprint algorithm in 
identifying repeat visitors. TP, FP, TN and FN are true positives, false positives, 
true negatives and false negatives, respectively. 
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A total of 141 fingerprints gathered from visitors using computers at 

University of Nebraska Omaha were analyzed, and all were from Windows 

desktop machines.  In table 1, true positives are those clients categorized as 

being repeat visitors by our algorithm due to having fingerprints matched with 

corresponding IDs. False positives are clients whose fingerprints exist within our 

database, but who had different IDs, while false negatives have existing IDs but 

new fingerprints.  True negatives are visitors whose IDs and fingerprints are not 

within our database, and thus new visitors.    There were 42 (TP) repeat and 63 

(TN) new visitors detected.  The TNs correspond exactly upon manual inspection 

of the fingerprint file names, since there are 63 unique filename IDs among the 

141 total fingerprints.   

Recall was measured at 56%, and is a function of true positives versus all 

detected positives within the data.  Precision gives an estimate of confidence for 

a true positive actually being a positive, and was calculated to be 93%.  Our F-

measure or F-score gauged the accuracy of our model as a function of precision 

and recall, at 68%. 

 
Table 2. A sampling of window attributes with high combination of entropies and 
standard deviations. 
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The complete list is comprised of 665 different window objects across the 

set of fingerprints.  Table 2 displays a few attributes with a combination of high 

entropy and standard deviation; both of these values have a positive correlation 

with probability of identifying a unique fingerprint.  The first four entries are those 

yielding the time in milliseconds, to complete a task.  For example, the” 

window.performance.now” function returns the time to execute a function.   

The “window.clientinformation”, “window.application”, 

“window.navigator.mimeTypes”, and “window.navigator.plugins” nodes all scored 

among the lowest in entropy (h=0.25) and standard deviation (stddev=0), 

returning the exact same scores. 

There were 105 window nodes dependent on the presence of JavaScript, 

with a wide range of entropy and standard deviations.  The top four of these had 

entropies of 1.0, and standard deviations of 20.43459, while 73 had the entropy 

of 0.5 and standard deviation of 0. The greatest standard deviation was for 

window.navigator.appVersion, at 41.27527, which had an entropy of 0.463325.   

The average entropy for all nodes was 0.444395.  In figure 5, we see that many 

elements with entropies between 0.25 and 1.0 appeared in eight fingerprints.  A 

larger subset that was in 68 or more fingerprints had the same entropy range, but 

note that 489 fingerprints within this subset were between 0.46-0.50. 

The standard deviation average was 0.463616, with 554 of 665 elements 

yielding a value from 0 to 0.02121, with the remainder falling within 0.76-1.00.  

Figure 5 depicts standard deviation with a near flat-line at the bottom, and visible 

spikes for those nodes with a product well above the average.  
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Figure 5. Charts displaying entropies and standard deviations of collected 
elements across all fingerprints. The average entropy for all nodes was 
0.444395, and the average standard deviation was 0.463616. 
 

 



34 
 

6 Discussion 

 The results suggest our fingerprinting methodology is sound, and will be 

explained in several sections that cover the basic statistics and the most useful 

attributes.  A comparison of their significance to that of select previous works will 

follow, with a final section interpreting the method’s contributions to the science 

of fingerprinting, and its limitations. 

6.1 Evaluation of the Raw Statistics 

 The effectiveness of our fingerprint method is most reflected in the true-

negative and false-positive count, which is a direct measure of how accurately it 

identifies repeat visitors. In this experiment, there were 66 visitors contributing to 

the 141 fingerprints.  Of those, 63 were labeled as true-negatives, or completely 

new visitors.  Another 3 were given as false-positives, which refer to those who 

have their fingerprint in our database, but somehow have a different generated 

ID.  This is plausible because Firefox and Chrome have settings to clear browser 

cookies upon closing the browser windows.  Upon revisiting the fingerprint page, 

a new random 20-character ID would be generated and be in the filename of the 

same fingerprint taken previously for the respective machine.  Precision 

incorporates TP and FP to relay the algorithms’ ability for positive prediction.  

The experimental score was 93%; while the figure is impressive, giving 

confidence towards its efficacy on a larger scale. 

 Our method determined the 66 client machines repeatedly visited our 

page 42 times, as reflected in the true-positive count, with other clients that were 

also repeats, falling with the false-negative category. The false-negatives yielded 
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conflicting fingerprints for existing client IDs.  The discrepancies are explained by 

any browser update or alteration that would change one of the 665 window 

attribute values.  Even alteration of the browser window size, or acquisition of a 

new monitor with a different resolution would change the fingerprint, if only 

slightly.  However, if the client-stored cookie remains, then our scripts allow 

proper determination of those as effective positives, which also illustrates the 

potential of these scripts to be used on a larger scale.  The most important 

consideration is whether the TPs and FPs include repeat visitations, which is true 

within the bounds of our work upon manual inspection of the IDs and 

corresponding values within these fingerprints.  The recall, which is calculation of 

our algorithms to predict how many true positives are predicted among all 

positives within the dataset, was 56%.  The result seems poor until one considers 

the context within the scope of fingerprinting.  The script logic is strict in that if 

even one of the 665 window elements has a slightly different value for a repeat 

visitor with the same ID, it is considered to be a negative, and upon verification of 

the same IDs with incongruent fingerprints, further subcategorized as a FN. We 

can also inductively determine the visitor with two slightly different fingerprints 

are using the same machine, by inferring that it is highly improbable a completely 

different visitor would navigate to our page and have the exact same random 20-

character ID.  The likelihood of such an occurrence for a dataset of 141 

fingerprints is 3.96*10-17, using the formula for combination of elements with 

repetition: C'(n,r) = (r+n-1)!/(r! * (n-1)!) [27].  Here, C(n,r) is the total number of 

combinations, n is the number of selectable elements, which is 61 different 
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characters, and r is the number of chosen elements per ID.  Thus the low recall 

suggests a higher accuracy, since the rules for exclusion from being a TP are so 

strict that only those clients with unseen IDs and fingerprint values for all 

elements are considered TPs.   

   F-measure with the F-Beta modifier, is Fβ = (1+β2)  PR/ (β2 P)+R), and is 

a reflection of accuracy as a function of precision and recall.  Our F-measure was 

0.7, due to the gulf between precision and recall.  The score itself has no 

implication without understanding if FPs or FNs have more negative impact 

within our scope.  For fingerprinting machines from a computer lab, a false-

positive has the more detrimental effect since it is nearly impossible to verify if a 

visitor who has a different ID but the exact same fingerprint as another within our 

database, is that same person, or a new client who happens to have the same 

values for all 665 measured window nodes of said fingerprint.  In models where 

false-positives are more impactful, the beta modifier is set to zero, giving more 

weight to precision.  According to Simic, since our score of 0.7 is less than 1, 

recall is 0.7x less important than precision, which is more favorable to 

recognizing fingerprint values of repeat visitors who have cleared their locally 

stored cookies [24]. 

6.2 Which Elements are Useful for Fingerprinting? 

 There are 206 of the 665 window objects measured among all fingerprints 

that are present for only 10 to 17 of the 141 fingerprints.  However, of these, only 

16 have non-zero standard deviation values, and all have entropies of either 0.5 

or 1 due to each of these elements having a set of values comprised of the same 
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integer value, or two different values.  The greatest standard deviations for this 

group are for window.performance.toJSON().timing.unloadEventEnd, 

window.performance.toJSON().timing.unloadEventStart, 

window.performance.timing.unloadEventStart, and window.performance. 

timing.unloadEventEnd, all of which are equal to 20.43459 and occurred for 10 

fingerprints.  The entropies for all of them equal 1.0.  These four elements would 

lend the most to the uniqueness of a fingerprint due to their combination of 

maximum entropy and high standard deviations, but are not attractive within the 

context of our experiment because they appeared in 7% of fingerprints.  

 On the other end, 310 attributes contribute to the bulk of the set of 

fingerprints, occurring for 64-76 of the 141, with entropies ranging from 0.25-

0.721317.  Of these, 109 have entropy values of 0.25 and standard deviations of 

zero, and are the least informative towards a unique fingerprint, despite their 

prevalence within the set.  Nevertheless, within these 310, the top four elements 

are window.performance.timing.responseEnd (entropy = 0.480878, stddev = 

9.59472); window.performance.timing.toJSON().responseEnd (entropy = 

0.480878, stddev = 9.59468); window.navigator.vendor (entropy = 0.463325, 

stddev = 10.12415), and window.navigator.appVersion (entropy = 0.463325, 

stddev = 41.27527).  These elements are fit to be within a subset of fingerprinting 

window elements due to their standard deviations, despite their entropies that lie 

slightly above the mean entropy for the set.  

 The concept of surprisal, and by association entropy, comes from 

mathematician Claude Shannon.  In1948, Claude published an article in Bell 
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System Technical Journal discussing signals that rise above the “noise” (i.e. 

mean) in a “surprising” manner, and thus return more information [25].  

Accordingly, in table 3, the top 20 window attributes according to their 

combination of entropy and standard deviation, and the number of times they 

appeared in a fingerprint, as a suitable subset of the 665 measured.  These 20 

may be used in a future experiment against the global set to ascertain whether it 

gives enough information to verify a unique fingerprint.   

 
Table 3. Subset containing top 20 window attributes with high combination of 
entropies and standard deviations, with emphasis on choosing those that appear 
in 68 or more fingerprints. 
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There were other window elements with high entropy or standard deviation, but 

they occurred in too few fingerprints.  Conversely, there were many other 

elements nearly ubiquitously appearing within our set, but exhibited low entropy 

or standard deviation.  

6.3 Comparison to Previous Works 

 The method and results of this research will be compared to four seminal 

works with aim to delineate strengths of our work over their methods, and 

weaknesses that expose how we may improve our scripts. 

 Our algorithm looks for matches with respect to retrieved client cookie ID 

(if it exists) and the absolute value of fingerprint contents.  It is heavily reliant on 

the locally stored cookie to persist, thus informing our algorithm of a repeat visitor 

whose browser attributes have changed.  Therefore, it is naïve compared to 

other known algorithms, such as the seminal work of Eckersley’s Panopticlick [1], 

which returns a revisit match if string comparison of eight different attributes is 

greater than 85% between two fingerprints. If there are too many fingerprints that 

match the reference in this manner, then it assigns a new ID.  Their element set 

included user_agent, plugins, fonts, video, supercookies, http_accept, timezone, 

and cookies_enabled, with the following entropy values respectively (in bits): 

10.0, 15.4, 13.9, 4.83, 2.12, 6.09, 3.04, and 0.353.  They were able to label 

83.6% of fingerprints as unique within their sample set of 470,161.  They claimed 

their method to predict a revisit 65% of the time if Javascript were enabled, and 

correctly link it to a previous fingerprint at a 99.1% rate.  



40 
 

 On the surface, our approach seems lacking compared to Eckersley’s 

because we did not implement a prediction heuristic; their attributes have much 

higher entropies than most of ours, and because they have a much larger 

dataset to test.  While implementation of a heuristic would be an important 

addendum, our logic is more effective if the stored cookie persists either on the 

client machine or our database, because we can detect 100% of FN as positives, 

and thus catch all positives.  Furthermore, our method does not rely on 

JavaScript being enabled due to the much larger pool of measured window 

nodes that includes all of theirs except supercookies and fonts.  Although the 

entropies of seven out of their eight attributes are much higher than those within 

our set, this is due to their larger sample size that contains many more values for 

their eight elements, thus calculating to increased and more accurate entropy 

values for those elements. 

 

Table 4.  Duration attributes measured in FP-Stalker article remained constant 
for the median, the 90th and the 96th percentile of days [5]. 
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 Vastel et al created an application called FP-Stalker to track evolution of 

fingerprints from visitors over time [5]. The aim of their work was more 

encompassing than ours; however they overlap with Eckersley in choosing a set 

of attributes to measure, and an algorithm for prediction.  Unlike other works, 

they construed entropy indirectly as a function of attribute value stability over 

time, using machine learning heuristics. 

Table 4 from Vastel’s work informs that Local Storage, Platform and Cookies 

remain static indefinitely at all percentiles, while those elements above them vary 

in stability.  Our set contains all but the “Canvas”, “Font”, and “Renderer” 

variables, although we do have values from screen height and width that give 

resolution.  It is not possible to make a direct comparison between their method 

and ours, since Vastel et al used a hybrid machine learning algorithm to validate 

and track changes in the elements.  Moreover, those elements with low entropy 

but long-term persistence are more important to their algorithm’s ability in 

detecting repeat visitors.  Nevertheless, their work suggests the installed fonts 

set (accessible via Canvas functions) and the graphics chip model with 

supported features (known by the WebGL API) would enhance the uniqueness of 

our fingerprints due to the volume of divulged information, lending towards 

greater entropies for each of those categories. 

 Font measurements augment fingerprinting techniques and may be used 

to distinguish between different browser instances on a given machine, which is 

more specific, as seen in Fifield and Egelman’s work [21].  Therein, they analyze 

font glyphs by rendering characters from various sets within boxes of different 
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sizes.  The resultant data exposed more than installed browser fonts; it divulged 

different versions of a given font, minimum font size, and even rendering options 

such as anti-aliasing.  They found that glyph rendering only 43 code point 

measurements were necessary to determine presence among a set of 125,766 

glyphs that comprise all font sets, as seen in table 5.   

 

Table 5.  The 43 code points from Vastel et al for glyphs that yield the most 
information for a fingerprint [26]. 
 
 The top glyph with respect to conditional entropy is the Indian Rupee, at 

4.9 bits of information.  Conditional entropy describes the remaining entropy once 
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the other 42 glyphs have been evaluated in the order presented; there are 

different measurements performed for each glyph.  As such, the Rupee glyph is 

the only one giving a result above 1.0, with 36 not even breaking 0.1.  The 

smallest entropy value for our set is 0.23, by comparison.  It is notable their 

method only reveals 34% of the fingerprints as unique, and must be augmented 

with calculations on other elements.  Our technique is more crudely effective in 

that we identify all unique fingerprints, but would be enhanced by incorporating 

appraisal of glyph code points.  We would be remiss to not mention that their 

application is proven on a much larger data set. 

 Laperdrix et al looked at the utility of 17 attributes within a set of 118934 

fingerprints, using a script on the AmIUnique.org site, with results seen in table 6 

[3].   An asset to their work is in covering mobile device fingerprints, although our 

method would have no problem evaluating such devices.  Furthermore, they use 

HTML5s Canvas and WebGL APIs to render given 2D and 3D shapes, 

respectively, returning performance metrics and information on underlying 

hardware and according software drivers.  Another element found in their set but 

not ours, is AdBlock, although the returned entropy for it seems inconsequential.  

Laperdrix et al uniquely identified 89.4% of the fingerprints and used more recent 

technologies in Canvas and WebGL, which is are major features our algorithms 

do not employ, but will be in future versions.  Nevertheless, they omitted 16% of 

their initial data to exclude fingerprints without JavaScript, since HTTP headers 

would be the only attribute of the 17 elements in table 6 that do not require 

JavaScript.  Our script measures nodes that require JavaScript, but also includes 
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hundreds that do not, and thus are not dependent upon it for measurement of a 

unique fingerprint, or a repeat visitor.  Notwithstanding, their work emphasizes 

the attractiveness of assimilating Canvas and WebGL APIs in our scripts, going 

forward.  

 

Table 6. Normalized entropy measurements of AmIUnique fingerprints [3].  
  
6.4 Contributions and Limitations 

 The contributions to the greater body of browser fingerprinting applications 

begin with the algorithm design for this project.  We collected more attributes for 
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evaluation than seen in any other publication, and show timing based window 

DOM objects have high entropy and standard deviation, and therefore contribute 

strongly to unique fingerprints due to high variation in execution of their timed 

functions.  In addition, if the locally stored client cookie is present, we can 

recognize re-visitors with 100% accuracy. 

 Perhaps the most innovative aspect is our unique method, is to combine 

each collected element’s node index and value, into a hex value, and then to 

standardize it for calculation of surprisals, and derived entropies.  No other 

known work incorporates the index of an attribute within a JSON tree; the index 

itself is a key identification variable because it provides a reference point defining 

the two-dimensional structure of a fingerprint.  Moreover, it allows for more 

dynamic identification repeat client visits through development of our prediction 

heuristic for a future version of our algorithm.   

 The limitations start with the small sample size of fingerprints.  The 

consequences include being unable to apply proper parametric statistical 

analyses, especially since only 66 clients created them.  Another issue involves 

too few values attained from all fingerprints, for each element, which skews 

standard deviation and entropy due to less dense and narrow probability 

distributions. 

 The other glaring limitation stems from the local client cookie serving as 

the only means to positively identify re-visitors.  Since cookie clearance is a 

common behavior of end-users, in future versions we must have a heuristic to 
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compare fingerprint similarities outside of looking for absolute equality between a 

visitor, and those fingerprints in our database. 

 

7 Conclusion and Future Work 
 

 Our aim was to develop a method that contributed to the field of browser 

fingerprinting by revealing new properties that could be used to identify and track 

individuals, so that future counter-tracking mechanisms may be developed 

against them.  We succeeded in this endeavor by highlighting the greater 

variations in window.performance objects, while reiterating the importance of 

those attributes used in previous works, such as User-Agent and installed font 

list.  The novelty of leveraging element locations within a tree structure in synergy 

with the other element characteristics (name, type, and value) to enhance 

fingerprinting, cannot be overstated, as it adds a layer of specificity. 

 Nevertheless, the algorithms must be improved in the future by adding a 

prediction heuristic to increase the confidence of a revisit, especially considering 

the most obvious weakness of our method is that we can only do so with acuity if 

the client has not cleared local cookies.  The newer HTML5 APIs within WebGL 

and Canvas that are used in other works should also be assimilated because 

they will lend to an increase in the average entropy of collected fingerprints.  

Finally, while there is no reason to doubt the potential efficacy of this work, we 

must prove the effectiveness of our method through mass data collection, for its 

next iteration. 
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