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Abstract

This thesis is motivated by the problem of studying the Ikeda lift via a converse theorem due

to R.Weissauer. We investigate a certain function; denoted by q(0; �), where 0 is a positive

integer and � is a symmetric positive-definite half-integral matrix; appearing in the Fourier

coefficient formulas of a linear version of the Ikeda lift due to W. Kohnen. We develop

new methods for computing q(0; �) via the extended Gross-Keating (EGK) datum of a

quadratic form and develop novel combinatorial interpretations for q(0; �) which involve

integer partitions with restrictions depending on the EGK datum attached to � at each prime.
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Introduction

Based on numerical examples of Hecke eigenvalues of Siegel cuspforms of genus two,

in 1978 H. Saito and N. Kurokawa [Kur78] independently conjectured a lifting of automor-

phic froms from SL2(Z) to Sp4(Z). The existence of this Saito-Kurokawa lift was quickly

proven by Maass, Andrianov, and Zagier using the theory of Jacobi forms [EZ85]. In 1996,

Duke and Imamoglu [DI96] proved the modularity of the Saito-Kurokawa lift using the

explicit formulas for its Fourier coefficients and converse theorem due to Imai. In 2001,

Ikeda [Ike01] generalized the Saito-Kurokawa lift to a lifting from SL2(Z) to Sp4= (Z) for

all =. Like the Saito-Kurokawa lift, this Ikeda lift was proven using the theory of Jacobi

forms. This thesis is motivated by the following two developments: (1) Kohnen [Koh02],

in 2002, developed a linear version of the Ikeda lift. Kohnen’s Fourier coefficient formu-

las for the Ikeda lift are a more direct generalization of the corresponding formulas for

the Saito-Kurokawa lift; (2) Weissauer [Wei84], in an unpublished manuscript from 1984,

proved a converse theorem for Sp2= (Z). As far as we know, this theorem has not yet seen

applications. The motivation for this thesis is to prove the modularity of the Ikeda lift using

Weissauer’s converse theorem and Kohnen’s linear version of the Ikeda lift. However, even

the first step of Duke and Imamoglu’s proof – namely, writing a certain Dirichlet series

attached to the lift as a Rankin-Selberg convolution – evades the author’s persistent attacks.

The difficulty arises due to the complicated terms – which we call Kohnen’s phi function

here – appearing in Kohnen’s linear lift. This thesis investigates these terms in greater depth.
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The Fourier coefficients of the Saito-Kurokawa lift are given as follows:

�(�) :=
∑

0 | cont �
2

(
|�� |
02

)
0: ,

cont(�) := gcd(111, 112, 122), �� := − det(2�) � =
©«

111 112/2

112/2 122

ª®®¬ .
Above, � is a positive-definite 2 × 2 half-integral matrix. These matrices index the Fourier

expansion of a Siegel cuspform of genus 2. The 2(=), = > 0 are the Fourier coefficients of a

modular form for a congruence subgroup Γ0(4) of SL2(Z). This is the form we are lifting.

Kohnen’s formulas for the Fourier coefficients of the Ikeda lift are given as follows:

�(�) =
∑
0 | 5�

2

(
|�� |
02

)
0:−1q(0; �), � ∈ S′2= (Z)

+,

where �� := (−1)= det(2�) = ��,0 5
2
� s.t. ��,0 is a fundamental discriminant.

Above, S′2= (Z)
+ denotes the set of positive-definite 2= × 2= half-integral matrices. These

matrices index the Fourier expansion of a Siegel cuspform of degree 2=. The term q(0; �)

is what we call Kohnen’s phi function. Kohnen [Koh02] proves that for = = 1, we have:

q(0; �) =


0 if 0 | cont �,

0 otherwise.

Thus, Kohnen’s formulas agree with the Saito-Kurokawa lift when = = 1. In this thesis, we

obtain more detailed information about q(0; �) for = > 1. First, we remark that q(0; �) is

multiplicative in the parameter 0. Thus, it suffices to study q(0; �) at prime powers 0 = ?`.

Our investigations of Kohnen’s phi function were driven by the following two developments:

2



(1) Kohnen and Choie [CK08], in 2008, showed that q(?`; �) is the coefficient of the ?-

local Siegel series �̃? (�; -) attached to � under a suitable basis. (2) More recently, Ikeda

and Katsurada [IK18] have developed the theory of extended Gross-Keating (EGK) data

attached to half-integral symmetric matrices (or, equivalently quadratic forms) over Z?.

They also develop inductive formulas [IK22b] for computing the Siegel series �̃? (�; -)

attached to � in terms of this EGK data of �. Although inductive formulas due to Katsurada

[Kat99] were available much earlier, the inductive formulas using EGK data are easier to

manipulate and they treat the dyadic (? = 2) and non-dyadic (? ≠ 2) cases uniformly. Using

these inductive formulas, conjectures about q(?`; �) obtained from numerical experiments,

and calculations based on Kohnen’s linear lift, we develop combinatorial interpretations of

Kohnen’s phi function. Namely, we prove that q(?`; �) is connected to integer partitions.

We now outline the contents of this thesis. Chapters 1, 2, and 3 are primarily expository.

In Chapter 1, we highlight essential aspects of the theory of quadratic forms and

automorphic forms. This chapter mostly serves to fix notation.

In Chapter 2, we detail the historical developments of the Saito-Kurokawa and Ikeda

lifts. At the end, we state Weissauer’s converse theorem for Sp2= (Z). Although we have

not yet applied this result, it will be helpful to state it explicitly here for future reference.

In Chapter 3, we describe the extended Gross-Keating data as developed by Ikeda and

Katsurada. When then connect the EGK data to classical invariants of quadratic forms.

The technical heart of this thesis lies in Chapters 4, 5, and 6.

In Chapter 4, we introduce the inductive formulas for the Siegel series. These inductive

formulas are expressed in terms of a Laurent polynomial in two variables - , . ; denoted

by F (�;., -); where � is an (abstract) naive EGK datum. This polynomial specializes

to �̃? (�; -) in a sense we will describe below. An (abstract) naive EGK datum of length

= is a tuple � = (01, . . . , 0=; Y1, . . . , Y=); where 08 ∈ Z≥0 and Y8 ∈ Z3 := {0, 1,−1}; with

certain restrictions enforced by Definition 3.10. The polynomial F (�;., -) for � a naive

3



EGK datum of length = is defined inductively in terms of the polynomial F (�′;., -),

where �′ := (01, . . . , 0=−1; Y1, . . . , Y=−1) is a naive EGK datum of length = − 1. The

inductive formulas depend only on the parity of the length =. The bulk of this chapter is

then devoted to making these induction formulas as explicit as possible. After this, we

give explicit formulas for F (�;., -) when � is a naive EGK datum of length 2 and 3.

Finally, we strategically reorganize these inductive formulas in a way which will unveil the

combinatorial aspects of q(?`; �) in Chapter 6. The point of these calculations is that the

Laurent polynomial F (�;., -) specializes to the ?-local Siegel series of � ∈ S′2= (Z)
+ via:

�̃? (�; -) = F (EGK(�) (?); ? 1
2 , -),

where EGK(�) (?) is the EGK datum attached to � viewed as an an element of S′= (Z?)+.

In Chapter 5, we formally introduce theKohnen’s phi function q(0; �). We then describe

the algorithm we used to calculate q(?`; �); ? an odd prime; to make conjectures. For a

� ∈ S′2= (Z)
+; = = 1, 2, 3, 4; and ` satisfying ` < ord? (cont�), we observed these trends:

` q(?`; �); where � ∈ S′2(Z)
+

0 1

2 ?2

4 ?4

6 ?6

4



` q(?`; �); where � ∈ S′4(Z)
+

0 1

2 ?(?2 + ?3)

4 ?2(?4 + ?5 + ?6)

6 ?3(?6 + ?7 + ?8 + ?9)

8 ?4(?8 + ?9 + ?10 + ?11 + ?12)

` q(?`; �); where � ∈ S′6(Z)
+

0 1

2 ?(?2 + ?4 + ?5)

4 ?2(?4 + ?6 + ?7 + ?8 + ?9 + ?10)

6 ?3(?6 + ?8 + ?9 + ?10 + ?11 + 2?12 + ?13 + ?14 + ?15)

8 ?4(?8 + ?10 + ?11 + ?12 + ?13 + 2?14 + ?15 + 2?16 + 2?17 + ?18 + ?19 + ?20)

` q(?`; �); where � ∈ S′8(Z)
+

0 1

2 ?(?2 + ?4 + ?6 + ?7)

4 ?2(?4 + ?6 + 2?8 + ?9 + ?10 + ?11 + ?12 + ?13 + ?14)

6 ?3(?6 + ?8 + 2?10 + ?11 + 2?12 + ?13 + 2?14 + 2?15 + ?16 + ?17 + ?18 + ?19 + ?20 + ?21)

The formulas for � ∈ S′2(Z)
+were, as stated above, already proven byKohnen. However,

the data for = = 2, 3, 4 is new. We were especially intrigued by the seemingly sporadic

appearance of the coefficient 2 in the data for = ≥ 3. Can we explain this phenomenon?

Indeed we can. Kohnen’s formula for q(?`; �) involves a sum over a set denoted byD? (�).

Under the assumption ` < ord? (cont�), this set is:

D? (�) = GL2= (Z?)\M2= (Z?) ∩ GL2= (Q?).

5



Let D? (�)a denote the subset of D? (�) 3 � with ord? det(�) = a ≥ 0. We can explicitly

express the size of this set as a sum indexed over the partitions of a. Specifically,

#D? (�)a :=
∑

(_8)∈[a]2=

2=∏
8=1

? (8−1)_8 .

where

[a]2= =
{
_ := (_1, . . . , _2=) ∈ Z2= : _8 ≥ 0,

2=∑
8=1

_8 = a

}
.

Using Kohnen’s formulas, the formula for #D? (�)a, and some combinatorics, we prove:

Proposition 5.11. Let � ∈ S′4(Z)
+. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X2 (`)

2
∑

(_8)∈[b`/2c]2

2∏
8=1

? (8+1)_8 ,

where,

X2(`) =


0 if ` even,

3 if ` odd.

Proposition 5.12. Let � ∈ S′6(Z)
+. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X3 (`)

2
∑

(_8)∈[b`/2c]4
_2=0

4∏
8=1

? (8+1)_8 .

6



where,

X3(`) =


0 if ` even,

5 if ` odd.

Proposition 5.13. Let � ∈ S′8(Z)
+. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X4 (`)

2
∑

(_8)∈[b`/2c]6
_2=_4=0

6∏
8=1

? (8+1)_8 .

where,

X4(`) =


0 if ` even,

7 if ` odd.

These formulas agree with our numerical data. From these three results, we (correctly)

conjectured and proved

Theorem 5.14. Let � ∈ S′2= (Z)
+, = > 1. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X= (`)

2
∑

(_8)∈[b`/2c]2=−2
_28=0, 8<=−1

2=−2∏
8=1

? (8+1)_8 .

where,

X= (`) =


0 if ` even,

(2= − 1) if ` odd.

We delay the proof of this result until Chapter 6. After this work, we introduce a

7



generalization of Kohnen’s phi function; denoted q(`, �;. ); attached to a naive EGK

datum �. This q(`, �;. ) is a Laurent polynomial in the variable . . It is related to

F (�;., -) in the same way that q(?`; �) is related to �̃? (-). In particular, we have:

q(?`; �) = q(`,EGK(�) (?); ? 1
2 ).

Continuing in Chapter 5, we develop a key lemma which allows us to compute q(`, �;. )

in terms of the coefficients of F (�′;., -), where �′ is the truncated version of �. By

specialization, this gives us a method to compute q(?`; �). We conclude this chapter by

applying this key lemma to reproduce some of the formulas we derived above for q(?`; �).

In Chapter 6, we combine all the technical results of Chapters 4 and 5 to prove and

extend our conjectures. At the start of the chapter, we prove a generalization of our earlier

conjecture. It is phrased in terms of q(`, �;. ), i.e. the (generalized) Kohnen’s phi function

attached to a naive EGK datum �. Specifically, we prove:

Theorem 6.1. Let � ∈ N�� 2=, with = > 1. Then for ` < e1,

q(`, �;. ) = . `+X= (`)
∑

(_8)∈[b`/2c]2=−2
_28=0, 8<=−1

2=−2∏
8=1

.2(8+1)_8 , (0.1)

where

X= (`) =


0 if ` even,

2= − 1 if ` odd.

The parameter e1 is the EGK analogue of the invariant ord? (cont �) for � ∈ S′2= (Z?)
+.

The proof of this conjecture requires all the technical results we developed in the previous

chapters. Upon specializing this result with � = EGK(�) (?) and . = ? 1
2 , we recover our

8



original conjecture for q(?`; �). The chapter ends with a technical result which shows that,

under the reorganization of the inductive formulas at the end of Chapter 4, we can connect

Kohnen’s phi function for � ∈ S′2= (Z)
+ at 0 = ?` to integer partitions with restrictions

depending on the datum EGK(�) (?) . To conclude, we note that our picture of Kohnen’s

phi function is incomplete. However, we have constructed the appropriate framework for

further developments of combinatorial descriptions of this somewhat mysterious function.

9



Chapter 1

Preliminaries

In this preliminary chapter, we review the basics of quadratic forms and automorphic forms.

We will highlight aspects of the theory which are needed to understand subsequent chapters.

1.1 Notation

We fix some common notation. For a ring ', let M= (') denote the = × = matrices over '.

For �,* ∈ M= ('), let C* denote the transpose of*, let �(8) denote the upper lefthand 8 × 8

submatrix of �, and let �[*] := C*�*. For a subset ( ⊆ M= ('), let (nd ⊆ ( be the subset

of non-degenerate matrices in (. For a symmetric matrix �, we write � ≥ 0 (resp. � > 0)

when � is positive-semidefinite (resp. positive-definite). Let bGc := max{0 ∈ Z : 0 ≤ G}.

LetZ3 := {0, 1,−1}.

10



1.2 Quadratic Forms

1.2.1 Quadratic Forms over Fields

Weoutline the theory of quadratic forms over fields. For a treatment of the odd characteristic,

see [Cas78], [Lam05], and [O’M00]. For arbitrary characteristic, we recommend [EKM08].

Let � denote a field of any characteristic. We first recall some basic definitions:

Remark 1.1. All vector spaces in this section are finite-dimensional over the base field �.

Definition 1.2. Let + be a �-vector space. A quadratic form on + is a map i : + → �

satisfying:

(1) i(0E) = 02i(E) for all E ∈ + , 0 ∈ �,

(2) The map 1i : + ×+ → � defined via:

1i (E, F) = i(E + F) − i(E) − i(F)

is an �-bilinear form. We call 1i the polar form of i.

For clarity, we sometimes write +i for the underlying vector space associated to i.

Definition 1.3. Let i and k be quadratic forms. An isometry is a linear map 5 : +i → +k

with i = k ◦ 5 . If such an isometry exists, we write i ' k and say i and k are isometric.

Definition 1.4. For a subspace , ⊆ + , the restriction of i on , is the quadratic form;

denoted by i |, ; whose polar form is given by 1i |, := 1i |, . i |, is called a subform on, .

Definition 1.5. Let i be a quadratic form on + . A vector E ∈ + is called anisotropic if

i(E) ≠ 0 and isotropic if E ≠ 0 but i(E) = 0. We call i anisotropic if there are no isotropic

vectors in+ and isotropic otherwise. A, ⊆ + is called totally isotropicwhenever i |, = 0.

11



Definition 1.6. For a quadratic form i on + , and a subspace , ⊆ + , let ,⊥ denote

the ortogonal complement of , relative to the polar form of i. Let k be a subform

of i on a subspace ,k ⊆ + . The restriction of i on (,k)⊥ is denoted by k⊥ and is

called the complementary form of k in i. If + = , ⊕ * is a direct sum of vector spaces

with , ⊆ *⊥, we write i = i|, ⊥ i |* and call it an internal orthogonal sum. Thus

i(F + D) = i(F) + i(D) for all F ∈ , and D ∈ *. Note that i |* is a subform of (i|, )⊥.

Definition 1.7. For a quadratic from i on + , define the radical of 1i by:

rad 1i := {E ∈ + : 1i (E, F) = 0 for all F ∈ +};

and define the quadratic radical of i by:

rad i = {E ∈ rad 1i : i(E) = 0}.

Definition 1.8. Let + be an �-vector space. Define the a quadratic form on + ⊕ +∗ by:

iH(E, 5 ) := 5 (E).

WewriteH(+) := iH and call it the hyperbolic form on+ . If i is a quadratic form isometric

to H(,) for some vector space, , i is called a hyperbolic form. The form H(�) is called

the hyperbolic plane and we denote it simply byH. If i ' H, two vectors 4, 5 ∈ + satisfying

i(4) = i( 5 ) = 0 and 1i (4, 5 ) = 1 are called a hyperbolic pair.

A cornerstone result on quadratic forms over fields isWitt’s Decomposition Theorem:

Theorem 1.9. ([EKM08, Theorem 8.5]) Let i be a quadratic form on a vector space + .

12



Then there exist subspaces +0 and +ℎ of + such that

i = i |radi ⊥ i|+0 ⊥ i|+ℎ , i|+0 anisotropic, i|+ℎ hyperbolic.

Moreover, i |+0 and i |+ℎ are unique up to equivalence.

1.2.2 Integral Quadratic Forms

With the theory covered, we describe a way to work with quadratic forms via matrices.

Specifically, we need to work with quadratic forms with coefficients lying in ' = Z and Z?.

Such a form can be written as a homogeneous multivariate polynomial of degree 2:

i = i(G1, . . . , G=) =
∑

1≤8, 9≤=
08 9G8G 9 , 08 9 ∈ '. (1.1)

We may associate to i a symmetric = × = matrix with coefficients in 1
2':

�i = (18 9 ), 18 9 :=
1
2
(08 9 + 0 98). (1.2)

The coefficients of � satisfy:

188 ∈ ', 1 ≤ 8 ≤ =

218 9 ∈ ', 1 ≤ 8 < 9 ≤ =. (1.3)

With this in mind we define:

Definition 1.10. Let S= (') denote the set of symmetric = × = matrices over '.

Definition 1.11. Let ' = Z or Z?. Let S′= (') denote the set of matrices � ∈ S= ( 12')

satisfying (1.3). We call S′= (') the set of = × = half-integral symmetric matrices over '.

13



Via the symmetrization trick (1.2), we have a correspondence:


=-ary

quadratic forms

over '

 ⇔

= × = half-integral

symmetric matrices

over '

 .
1.2.3 Local Quantities Attached to Quadratic Forms

Here, we collect some local quantities which we will frequently need in later chapters.

Definition 1.12. For � ∈ S′= (Z), we define the signed determinant as

�� := (−4) b=/2c det(�). (1.4)

We define ��,0, 5� ∈ Z via:

�� = ��,0 5
2
� , ��,0 is a fundamental discriminant. (1.5)

For a prime ?, we define

b? (�) = b?,� :=
(
��,0

?

)
=


1 if �� ∈ Q×2

? ,

−1 if Q? (
√
��)/Q? is unramified quadratic,

0 if Q? (
√
��)/Q? is ramified quadratic.

(1.6)

1.3 Automorphic Forms

In this section, we collect basic information about various types of automorphic forms:

specifically, Siegel modular forms, half-integral weight modular forms, and Maass forms.

14



1.3.1 Siegel Modular Forms

We now review the basic theory of Siegel modular forms. For a unital commutative ring ',

we define the symplectic group of similitudes via:

GSp2= (') :=

* ∈ GL2= (') : C*�* = `(*)�, `(*) ∈ '×, � =
©«

0 �=

−�= 0

ª®®¬
 .

We have the subgroup

Sp2= (') := {* ∈ GSp2= (') : `(*) = 1}.

Let

Γ(=) := Sp2= (Z).

For # ≥ 1, we define the congruence subgroups:

Γ(=) (#) := {* ∈ Γ(=) : * ≡ �2= mod #},

Γ
(=)
0 (#) :=


©«
� �

� �

ª®®¬ ∈ Γ(=) : � ≡ 0 mod #

 .

Remark 1.13. For simpler notation in subsequent chapters, we denote:

Γ(#) := Γ(1) (#), Γ0(#) := Γ(1)0 (#),

Γ(=) := Γ(=) (1), for = > 1.
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The Siegel upper half space of genus = is:

H= := {/ = - + 8. ∈ M= (C) : C/ = /, . > 0}.

In particular, we denoteH := H1. This is the Poincaré upper half plane. Let

GSp2= (R)+ := {* ∈ GSp2= (R) : `(*) > 0}.

Then GSp2= (R)+ acts onH= via:

*〈/〉 := (�/ + �) (�/ + �)−1, * =
©«
� �

� �

ª®®¬ ∈ GSp2= (R)+, / ∈ H=. (1.7)

For : ≥ 1, the weight : slash operator on the space of complex functions onH= is:

( 5 |:*) = det(�/ + �)−: det(*) :2 � (*〈/〉), * =
©«
� �

� �

ª®®¬ ∈ GSp2= (R)+. (1.8)

Remark 1.14. The normalizing factor det(*) :2 in (1.8) differs from some sources; for

instance Equation (15) in [Pit19] uses `(*)=:−
=(=+1)

2 = det(*):−
(=+1)

2 . The choice is a matter

of convenience. In fact, [DS05] uses both normalizations in the SL2(Z) setting (i.e. = = 1).

We are now ready to define a Siegel modular form:

Definition 1.15. Fix integers :, = ≥ 1. A function � : H= → C is called a Siegel modular

form of weight : , genus = if it satisfies:

(1) � is holomorphic onH=,

(2) � |:" = � for " ∈ Γ(=) ,
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(3) If = = 1, � is bounded in . ≥ .0 for any .0 > 0.

The C-vector space of such functions is denoted by ": (Γ(=)).

A Siegel modular form � has a Fourier expansion of the form:

� (/) =
∑

�∈S′= (Z)
�≥0

�(�)42c8Tr(�/) , / ∈ H=.

The subspace of cuspforms, denoted by (: (Γ), consists of forms with �(�) = 0 unless

� > 0. The Fourier coefficients �(�) of a Siegel modular form have certain symmetries

with respect to Γ(=) and satisfy a growth condition. We summarize these properties below:

Definition 1.16. A sequence {�(�)}, � ∈ S= (Z)+, is called SL= (Z)-admissible if:

(1) |�(�) | � det(�)2 for a fixed constant 2,

(2) �(�[*]) = �(�) for all* ∈ SL2(Z).

A Siegelmodular formof genus 1 is called an (elliptic)modular form. For a congruence

subgroup Γ ⊆ Γ(1), the set of functions 5 : H → C satisfying Definition 1.15 – with the

modularity property (2) holding only for the subgroup Γ and the condition (3) replaced with

holomorphy at each cusp of Γ\H – is denoted ": (Γ). The subspace of cusps forms is

denoted by (: (Γ). See [DS05, Chapter 1] for further details on congruence modular forms.

1.3.2 Modular Forms of Half-Integral Weight

The theory of (elliptic) modular forms can bemeaningfully extended to half-integer weights.

The model example is the classical theta function:

\ (I) :=
∞∑

==−∞
42c8=2I, I ∈ H .
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Let

� (W, I) :=
\ (W(I))
\ (I) , W ∈ Γ0(4).

Definition 1.17. A function 5 : H → C is a modular form of half-integral weight : + 1/2

(where : ∈ Z) with respect to the congruence subgroup Γ0(4) =
{(

0 1
2 3

)
∈ Γ(1) : 4 | 2

}
if:

(1) 5 is holomorphic onH ,

(2) 5 (W(I)) = � (W, I)2:+1 5 (I),

(3) 5 is holomorphic at the cusps.

The space of such forms (resp. cuspforms) is denoted by ":/2(Γ0(4)) (resp. (:/2(Γ0(4))).

By "+
:/2(Γ0(4)) (resp. (+

:/2(Γ0(4))) we denote the subspace of ":/2(Γ0(4)) (resp.

(:/2(Γ0(4))) of formswith a Fourier expansion of the type 5 (I) = ∑
=≥0

(−1):=≡ 0,1 mod 4

2(=)42c8=I.

This is called Kohnen’s +-space.

1.3.3 Automorphic Forms onH

In this section, we follow the excellent exposition of [Iwa02].

The central object of this section is the hyperbolic Laplacian:

Δ := H2
(
m2

mG2 +
m2

mH2

)
.

This is a Γ(1)-invariant differential operator onH .
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Definition 1.18. A function 5 : H → C is called automorphic with respect to Γ(1) if:

5 (W(I)) = 5 (I), W ∈ Γ(1).

Thus, 5 may be viewed as a function on the Riemann surface Γ(1)\H [DS05, Chapter 2].

We denote the space of such functions by A(Γ(1)\H)

Definition 1.19. A function 5 ∈ A(Γ(1)\H) which is aΔ-eigenfunction is called an auto-

morphic form with respect to Γ(1). LetAB (Γ(1)\H) denote the subspace ofA(Γ(1)\H)

consisting of _-eigenfunctions for Δ, _ := B(1 − B). Thus AB (Γ(1)\H) = A1−B (Γ(1)\H).

We outline the spectral theory of the subspace !2(Γ(1)\H) ⊂ A(Γ(1)\H) of square-

integrable functions onΓ(1)\H . We have the orthogonal decompsition [Iwa02, Eq. (3.16)]:

!2(Γ(1)\H) = C(Γ(1)\H) ⊕ E(Γ(1)\H).

Here, the overline denotes the Hilbert space closure in !2(Γ(1)\H), and

C(Γ(1)\H) := space of cuspforms,

E(Γ(1)\H) := space of incomplete Eisenstein series.

We have the following spectral resolutions of these two spaces:

Theorem 1.20. ([Iwa02, Theorem 4.7]) The Laplacian Δ has pure point spectrum (con-

sisting of the so-called cuspforms) in C(Γ(1)\H). The eigenspaces are finite-dimensional.

Theorem 1.21. ([Iwa02, Theorem 7.2, Specialized to Γ(1)]) The space E(Γ(1)\H) splits

into Δ-invariant subspaces: E(Γ(1)\H) = R(Γ(1)\H) ⊕ E∞(Γ(1)\H). Here R(Γ(1)\H)

denotes the residual spectrum, which for Γ(1) simply coincides with the constant functions;
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the space E∞(Γ(1)\H) is spanned by the unitary Eisenstein series � (I, 1/2 + 8A), A ≥ 0;

where

� (I, B) :=
∑

W∈Γ∞\Γ(1)
(Im(W(I)))B, B ∈ C.

Remark1.22. In summary, !2(Γ(1)\H) is spanned as aHilbert space by theΔ-eigenfunctions:

(1) The constant function i0(I) :=
√

3/c,

(2) An orthonormal basis of cusp forms i1(I), i2(I), . . .,

(3) The unitary Eisenstein series � (I, 1/2 + 8A), A ≥ 0.

1.3.4 The Symmetric Space P=

We now study the space P= of positive-definite = × = real matrices:

P= = {. ∈ M= (R) : C. = ., . > 0}

This space is studied in thorough detail in [Maa71], [Ter16], and [JL05]. Let � = GL= (R).

Remark 1.23. P= is a homogeneous space for � via the �-equivariant diffeomorphism:

$= (R)\GL= (R) −→ P=

$= (R)* ↦−→ C**.

Due to longstanding tradition, the quadratic forms world thinks in terms of  \�; whereas

in the automorphic forms world, the standard is to think in terms�/ . In [JL05], Jorgenson

and Lang retabulate many of the classical results about P= in terms of the�/ perspective.
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Since we do not make any use of the modern adelic perspective, we opt to phrase results via

the classical “quadratic model” P= �  \� in spite of the “ongoing shift from right to left.”

Let . ∈ P= and 5 ∈ �∞(P=). Then � acts on P= and on �∞(P=) via:

. [*] = C*.*,

5* (. ) = 5 (. [*]), . ∈ P=,* ∈ �.

The �-invariant volume element 3`(. ) on P= is given by:

3`(. ) := det(. )− =+12
∏

1≤8≤ 9≤=
3H8 9 , . = (H8 9 ) ∈ P=. (1.9)

A differential operator X on P= is �-invariant if X commutes with the �-action. That is,

(X 5 )* = X 5* , * ∈ �, 5 ∈ �∞(P=).

Define

� (P=) = the C-algebra of �-invariant differential operators on P=.

The structure of � (P=) as a C-algebra is well-known. Let

m

m.
:=

(
1
2
(1 + X8 9 )

m

mH8 9

)
1≤8, 9≤=

, X8 9 =


1 if 8 = 9 ,

0 otherwise.
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Theorem 1.24. ([Maa71, §10],[Ter16, Theorem 1.1.2],[JL05, Theorem 4.2.3]) Let

X8 := Tr

((
.
m

m.

) 8)
, 8 = 1, . . . , =.

These X8, 8 = 1, . . . , =, form a basis for � (P=) viewed as a C-algebra. Therefore � (P=) can

be identified with the polynomial ring C[X1, . . . , X=]. In particular, � (P=) is commutative.

Remark 1.25. The above is a special case of the Harish-Chandra isomorphism [HC51].

1.3.5 Automorphic Forms on P=

We finally define automorphic forms living on the space P=:

Definition 1.26. A Maass Großencharacter with respect to SL= (Z) is a function D on P=

which satisfies:

(1) D ∈ �∞(P=),

(2) D is SL= (Z)-invariant. That is, D* = D for* ∈ SL= (Z),

(3) D is a simultaneous eigenfunction of � (P=),

(4) D is homogenous of degree zero. That is, X1D = 0,

(5) For each ℎ ≥ 0, there exist constants 21, 22, depending on ℎ, for which���� mℎD(. )m. · · · m.

���� ≤ 21 · Tr(. )22 , . ∈ P=, det(. ) = 1.

Remark 1.27. In modern parlance, Großencharacters are called Maass forms. Refer to

[Gol06] for an account of Maass forms via the generalized upper half-plane model (N.B.

this is not the same as the Siegel upper half space!). See [Ter16] for an account via the

positive-definitematrix spacemodel. Terras provides amap between thesemodels in §1.5.4.
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Chapter 2

Lifts of Siegel Modular Forms

In this chapter, we introduce the Saito-Kurokawa lift and the Ikeda lift. These provide

correspondences between classical cuspforms and a certain subspace of Siegel cuspforms.

The Saito-Kurokawa lift was originally conjectured based on numerical evidence of H. Saito

and N. Kurokawa from their investigations of the Euler factors of the standard !-function

attached to cuspidal Siegel eigenforms. For this reason, we first briefly define the standard

!-function attached to a Siegel modular form, so that we can state the relation between

the !-function of a classical cuspform 5 and the standard !-function of its lift � 5 . After

this, we detail the history of the Saito-Kurokawa lift: in particular, we outline the original

proof which uses the theory of Jacobi forms; then we outline the later proof by Duke and

Imamoglu with uses a converse theorem due to Imai. Then, we introduce the Ikeda lift

in two ways: first, we introduce Ikeda’s original formulation of the lift; then we introduce

Kohnen’s linear version of the Ikeda lift. We conclude by stating a converse theorem for

Γ(=) due to Weissauer which could be used to study the Ikeda lift from a novel perspective.
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2.1 Hecke Theory and !-functions

We recommend [Pit19] for further details on the Hecke theory of Siegel modular forms. For

� ∈ (: (Γ(=)) a Hecke eigenform and prime ?, there are = + 1 so-called Satake parameters

U0,?, U1,?, . . . , U=,? ∈ C depending on �. We use these Satake parameters to define:

Definition 2.1. Let � ∈ (: (Γ(=)) be a Hecke eigenform. The degree 2= + 1 standard

!-function of � is:

! (B, �, std) :=
∏
? prime

!? (B, �, std),

where

!? (B, �, std)−1 := (1 − ?−B)
=∏
8=1
(1 − U8,??−B) (1 − U−1

8,??
−B),

and U0,?, U1,?, . . . , U=,? are the Satake ?-parameters of �.

2.2 The Saito-Kurokawa Lift

The Saito-Kurokawa lift is a one-to-one correspondence between the space (2: (Γ(1)) and

a subspace of (:+1(Γ(2)) known as the Maass “Spezialschar.” With a aid of the Shimura

correspondence (recalled below) we express this lift concretely via Fourier expansions:

The Shimura Correspondence: Kohnen [Koh80] gave a correspondence between the

space (2: (Γ(1)) and the space (+:+1/2(Γ0(4)). This correspondence is a sharpening of a lift

due to Shimura [Shi73]; whence, it is historically also called the Shimura correspondence.

Theorem 2.2. (Saito-Kurokawa Lift) Given 5 ∈ (2: (Γ(1)). Let 6 ∈ (+:+1/2(Γ0(4)) be the
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form corresponding to 5 under the Shimura correspondence. Write 6(I) = ∑
=>0 2(=)42c8=I.

Define � 5 : H2 → C via � 5 (/) :=
∑
�>0 �(�)42c8Tr(�/) with:

�(�) :=
∑

0 | cont �
2

(
|�� |
02

)
0: , (2.1)

cont(�) := gcd(111, 112, 122), � =
©«

111 112/2

112/2 122

ª®®¬ .
Then � 5 ∈ (:+1(Γ(2)). If 5 is a Hecke eigenform, then so it � 5 and, in this case,

! (B, � 5 , std) = Z (B)! (B + :, 5 )! (B + : − 1, 5 ).

Here, ! (B, 5 ) :=
∑
=>0 0(=)=−B where 5 (I) =

∑
=>0 0(=)42c8=I.

This lift was originally constructed byMaass, Andrianov, and Zagier using intermediary

spaces of half-integral weight forms and so-called Jacobi forms. For a complete treatment

of Jacobi forms and an account of the origins of the Saito-Kurokawa lift, refer to [EZ85].

The Saito-Kurokawa lift is a composition of three isomorphisms:

Maass “Spezialschar” ⊂ (:+1(Γ(2))

Jacobi cuspforms of weight : + 1 and index 1

Kohnen’s +-space ⊂ (:+1/2(Γ0(4))

(2: (Γ(1)).

The bottom isomorphism is the Shimura correspondence. The remaining two are

explicitly constructed in [EZ85].

Lifting problems have also been studied with the aid of tools called converse theorems.
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For a survey of these applications, see [Cog07]. A converse theorem, roughly speaking, says

that for suitable class of functions � (defined on an algebraic group), there is an equivalence

between - on one side - the modularity of � and - on the other side - symmetries of !-

functions attached to �. We will detail one such converse theorem for Γ(2) , due to Imai,

which Duke and Imamoglu [DI96] applied to prove the modularity of Saito-Kurokawa lift.

2.3 Duke and Imamoglu’s Proof of the Saito-Kurokawa

Lift

We first develop Imai’s Converse Theorem:

Remark 2.3. InDefinitions 2.4 and 2.8, the notation
∑

�>0/SL= (Z)
denotes summation over the

classes of S= (Z)+ under the equivalence relation �1 ≡ �2 if �2 = �1 [*] for a* ∈ SL= (Z).

Definition 2.4. Given {�(�)}, with � ∈ S2(Z)+, an (!2(Z)-admissible sequence, and i

a Δ-eigenfunction in !2(Γ(1)\H), we define the Koecher-Maass Dirichlet series as:

/ (i; B) = / ({�(�)}, i; B) :=
∑

�>0/SL2 (Z)

�(�)i(I�)
4(�) det(�)B+(:−1)/2 , Re(B) large,

where the sum runs over the (!2(Z)-equivalence classes of S2(Z)+ (See Remark 2.3),

4(�) := #{* ∈ SL2(Z) : �[*] = �} < ∞,

and I� := G + 8H ∈ H is defined via the Iwasawa decomposition [Gol06, §1.2]:

� =
©«
H G

0 1

ª®®¬ ·  · �,  ∈ SO2(R), � ∈ R+.
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Theorem 2.5. ([Ima80]) Suppose {�(�)} is an (!2(Z)-admissible sequence. Define

� : H2 → C via � (/) :=
∑
�>0 �(�)42c8Tr(�/) . Let : ≥ 0. The following are equivalent:

(1) � ∈ (: (Γ(2)),

(2) For all Δ-eigenfunctions i in !2(Γ(1)\H) with the same parity as : , the function:

Λ(i; B) := (2c)−2BΓ(B + :/2 − 3/4 + 8A/2)Γ(B + :/2 − 3/4 − 8A/2)/ (i; B)

(where Δi = (1/4 + A2)i) is entire, bounded in vertical strips of C, and satisfies:

Λ(i; 1 − B) = (−1):Λ(i; B).

Duke and Imamoglu verify the modularity of the Saito-Kurokawa lift as follows:

(1) They start with a 5 ∈ (+
:+1/2(Γ0(4)) with Fourier expansion 5 (I) = ∑

=>0 2(=)42c8=I.

They define a Γ(2)-admissible sequence {�(�)} using (2.1).

(2) For i a Δ-eigenfunction in !2(Γ(1)\H), they rewrite the Dirichlet series / (i; B) as:

/ (i; B) = 22B+:
∑
=≥1

2(=)1(−=)
=B+(:−1)/2 ,

where 1(=) are the Fourier coefficients of a certain “modular” function; which we

denote by 6(I); which depends only on the data of the twisting eigenfunction i.

(3) Using the unfolding procedure, they derive a Rankin-Selberg convolution:

Λ(i; B) = 22B
∫

Γ0 (4)\H

H:/2+1/4 5 (I)6(I)�̃∞(I, B)
3G 3H

H2 ,

where �̃∞(I, B) is a certain normalization of an Eisenstein series for Γ0(4),
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(4) Using the functional equations of the Eisenstein series for Γ0(4) (with respect to the

change of variable B ↦→ 1− B), they prove the desired functional equation for Λ(i; B):

Λ(i; 1 − B) = (−1):Λ(i; B),

(5) They conclude that � 5 (/) :=
∑
�>0 �(�)42c8Tr(�/) is in (:+1(Γ(2)).

2.4 The Ikeda Lift

In [Ike01], Ikeda constructed a generalization of the Saito-Kurokawa lift conjectured by

Duke and Imamoglu. For = ≥ 1, the lift is from the space (2: (Γ(1)), : ≡ = mod 2 into the

space (:+= (Γ(2=)). To write the Fourier expansion of the Ikeda lift, we recall some local

quantities attached to � ∈ S′2= (Z). Our aim here is to rapidly define the Siegel series. For

further detauls, see [Ike01]. For each ?, let k? : Q? → C× be the unique additive character

such that k? (G) = exp((−1)=+12c8G) for G ∈ Z[?−1]. The Siegel series for � is defined by:

1? (�, B) :=
∑

'∈S2= (Q?)/S2= (Z?)
k? (Tr(�'))?−ord? (a('))B, Re(B) � 0

where

a(') := det(�) · Z?, where �, � ∈ M2= (Z?) are coprime with �−1� = '.

Recall the quanties ��, 5�, and b? (�) from Definition 1.12. Define W? (�; -) ∈ Z[-] by:

W? (�, -) := (1 − -) (1 − ?=b? (�)-)−1
=∏
8=1
(1 − ?28-2).
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There exists a polynomial �? (�; -) ∈ Z[-] such that

1? (�, B) = W? (�; ?−B)�? (�; ?−B)

Put

�̃? (�; -) := -−ord? 5��? (�; ?−=−1/2-).

Then �̃? (�; -) is a symmetric Laurent polynomial. That is,

�̃? (�; -) = �̃? (�; -−1)

We are ready to state Ikeda’s result:

Theorem 2.6. ([Ike01, Theorems 3.2 & 3.3]) Fix = ≥ 1 and : ≡ = mod 2. Suppose

5 ∈ S2: (Γ(1)) is a normalized Hecke eigenform with Satake parameters U±1
? at ?; that is,

(1 − ?:−1/2U?-) (1 − ?:−1/2U−1
? -) = 1 − 0(?)- + ?2:−1-2,

0(?) = ?th Fourier coefficient of 5 .

Let 6 ∈ (+
:+1/2(Γ0(4)) be the form corresponding to 5 under the Shimura correspondence.

Write 6(I) = ∑
=>0 2(=)42c8=I. Define � 5 : H2= → C via � 5 (/) :=

∑
�>0 �(�)42c8Tr(�/) ,

where

�(�) := 2( |��,0 |) 5 :−1/2
�

∏
? | ��

�̃? (�;U?), � ∈ S2= (Z)+. (2.2)
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Then � 5 ∈ (:+= (Γ(2=)) and � 5 is a Hecke eigenform for which:

! (B, � 5 , std) = Z (B)
2=∏
8=1

! (B + : + = − 8, 5 ).

Here, ! (B, 5 ) :=
∑
=>0 0(=)=−B where 5 (I) =

∑
=>0 0(=)42c8=I.

Soon after Ikeda’s work, Kohnen provides a linear version of the lift:

Theorem 2.7. ([Koh02, Theorem 1 & Corollary]) With notation as in Theorem 2.6:

�(�) =
∑
0 | 5�

2

(
|�� |
02

)
0:−1q(0; �).

Here q(0; �) are certain integer-valued functions which we will introduce in Chapter 5.

The map

∑
=>0

(−1):=≡ 0,1 mod 4

2(=)42c8I ↦−→
∑

�∈S2= (Z)+

©«
∑
0 | 5�

2

(
|�� |
02

)
0:−1q(0; �)ª®¬ 42c8Tr(�/) ,

I ∈ H , / ∈ H2=.

maps (:+1/2(Γ0(4)) to (:+= (Γ(=)) and on Hecke eigenforms agrees with Ikeda’s lifting.

In the next section, we state a converse theorem due to Weissauer which could be used

to prove the modularity of the Ikeda lift in the spirit of Duke and Imamoglu’s proof for the

Saito-Kurokawa lift. To our knowledge, this converse theorem has not yet seen applications.

2.5 Weissauer’s Converse Theorem for Γ(=)

We now develop Weissauer’s Converse Theorem at full level:
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Definition 2.8. Given {�(�)}, with � ∈ S= (Z)+, an SL= (Z)-admissible sequence, and D

a Großencharacter with respect to SL= (Z), we define the Koecher-Maass Dirichlet series:

/ (=) (D; B) = / (=) ({�(�)}, D; B) :=
∑

�>0/SL= (Z)

�(�)D(�)
4(�) det(�)B+(:−1)/2 , Re(B) large,

where the sum runs over the SL= (Z)-equivalence classes of S= (Z)+ (See Remark 2.3), and

4(�) := #{* ∈ SL= (Z) : �[*] = �} < ∞.

Theorem 2.9. ([Wei84]) Suppose {�(�)} is an SL= (Z)-admissible sequence, = ≥ 1.

Define � (/) :=
∑
�>0 �(�)42c8Tr(�/) , / ∈ H=. Let : ≥ 0. The following are equivalent:

(1) � ∈ (: (Γ(=))

(2) For all Großencharacters D with respect to SL= (Z), the function:

Λ(=) (D; B) := (2c)−=B
(
=∏
8=1
Γ(B + (: − 1)/2 − U8)

)
/ (=) (D; B),

is entire, bounded in vertical strips of C, and satisfies the functional equation:

Λ(=) (D; B) = 8=:Λ(=) (E; 1 − B), E(. ) := D(.−1).

Note: By [Wei84, §2.1.3], E(. ) := D(.−1) is also a Großencharacter. The parameters

U1, . . . , U= depend only on the X8-eigenvalues of D. See Appendix A for more details.

Remark 2.10. This is precisely Imai’s Converse Theorem when = = 2. Indeed:

(1) Let i be a Δ-eigenfunction and D the corresponding Großencharacter for SL2(Z).
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Suppose Δi = (1/4 + A2)i. Then, by Appendix A, we have:

U1 = U2 = 1/4 + 8A/2.

(2) For . =
(
0 1
1 2

)
∈ P= and ( :=

( 0 −1
1 0

)
∈ Γ(1) , we have:

. [(] =
©«
−3 1

1 −0

ª®®¬ = (12 − 03) · .−1.

Hence by (2) and (3) of Definiton 1.26, we have E = D.

Remark 2.11. In [Wei84, §3.1.1], the right hand side of the functional equation (for level

Γ
(=)
0 (#)) has the form Λ

(=) (E; 1 − B), where the bar denotes complex conjugation. Indeed,

Weissauer’s results apply to a space of modular forms denoted by (: (Γ(=)0 (#), n), where

n : (Z/#Z)× → C× is a Dirichlet character. When # = 1, this character is trivial; hence

real; and the complex conjugation is not needed by the remark before §1.1.3 of Weissauer.
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Chapter 3

The Extended Gross-Keating Data

In 1993, Gross and Keating [GK93] introduced a certain invariant attached to a =-ary

quadratic form over Z? with an impetus towards applications in arithmetic geometry. The

invariant is easy to calculate for ? ≠ 2 via the Jordan splitting; while for ? = 2, the

Gross-Keating invariant was only well understood for = ≤ 3 until the foundational work

of Ikeda and Katsurada [IK18] on the so-called extended Gross-Keating (EGK) datum.

Ikeda and Katsurada [IK22b] later demonstrate that the Siegel series �̃? (�, -) attached

to a quadratic form � ∈ S′= (Z?) is completely determined by the EGK datum of �.

Moreover, in the same paper, they provide explicit inductive formulas for computing the

Siegel series via the EGK datum. While explicit formulas for the Siegel series due to

Katsurada [Kat99] were available much earlier, the formulas in [IK22b] treat the dyadic

(? = 2) and non-dyadic (? ≠ 2) settings uniformly. There has since been further work

towards understanding various theoretical and computational aspects of the EGK invariants;

for instance, [CIK+17], [CY20], [Cho20], and [IK22a]. In this chapter, we introduce Ikeda

and Katsurada’s formulation of the EGK datum. At the end of this chapter, we develop

a connection (which we will need in subsequent chapters) between the Gross-Keating

invariants and two basic invariants, 5� and cont�, attached to a quadratic form � ∈ S′= (Z?).
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3.1 ExtendedGross-Keating Invariant of aQuadraticForm

We now introduce the Gross-Keating invariant of a quadratic form � ∈ S′= (Z?). Let

[�] := {�[*] : * ∈ GL= (Z?)}, �[*] := C*�*

We call [�] the equivalence class of �.

Definition 3.1. For � ∈ S′= (Z?), define

(( [�]) :=
⋃
�′∈[�]

((�′),

where ((�′), for �′ = (1′
8 9
), is the set of non-decreasing sequences (01, . . . , 0=) ∈ Z=≥0

which satisfy

ord? (1′88) ≥ 08 (1 ≤ 8 ≤ =)

ord? (21′8 9 ) ≥ (08 + 0 9 )/2 (1 ≤ 8, 9 ≤ =).

Definition 3.2. Let � ∈ S′= (Z?). The Gross-Keating invariant of �, denoted by GK(�),

is the greatest element of the set (( [�]) with respect to the lexicographic order � on Z=≥0.

Definition 3.3. � ∈ S′= (Z?) is an optimal form if GK(�) ∈ ((�).

By Definition 3.1, a matrix � ∈ S′= (Z?) is equivalent to an optimal form.

34



Example 3.4. For ? ≠ 2, any � ∈ S′= (Z?)nd is equivalent to a diagonal matrix of the form:

) =

©«
C1

. . .

C=

ª®®®®®¬
, ord? (C1) ≤ · · · ≤ ord? (C=).

Then, according to [Bou07, Proposition 2.6]:

GK(�) = (ord? (C1), . . . , ord? (C=)).

We introduce the technical machinery needed to define the extended Gross-Keating

invariant. We need to recall some concepts from the classical theory of quadratic forms.

Definition 3.5. The Clifford invariant (see [Sch85, p. 333]) of � ∈ S′= (Z?) is the Hasse

invariant of the Clifford algebra (resp. even Clifford algebra) of � if = is even (resp. odd).

We denote the Clifford invariant of � by [(�) := [�.

Definition 3.6. Let 0 = (01, . . . , 0=) ∈ Z=≥0 be non-decreasing. Let 0
∗
1 < · · · < 0

∗
A denote

the distinct elements in 0. We define =B = #{8 | 08 = 0∗B} and =∗B =
∑B
8=1 =8 for B = 1, . . . , A .

In particular =∗A = =. By convention =∗0 = 0.

Definition 3.7. Let ) ∈ S= (Z?) be a diagonal matrix of the form:

) =

©«
C1

. . .

C=

ª®®®®®¬
, ord? (C1) ≤ · · · ≤ ord? (C=).
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We define

NEGK()) = (01, . . . , 0=; Y1, . . . , Y=),

where,

08 = ord? (C8),

and,

Y8 =


b) (8) if 8 is even,

[) (8) if 8 is odd,

We call NEGK()) the naive EGK datum attached to ) .

PutZ3 = {0, 1,−1}.

Definition 3.8. For an optimal form � ∈ S′= (Z?), we define:

EGK(�) := (=1, . . . , =A ; 0∗1, . . . , 0
∗
A ; Z1, . . . , ZA) ∈ ZA≥0 × Z

A
≥0 ×Z

A
3 .

Here, via Definition 3.6, the 0∗1, . . . , 0
∗
A are computed from the Gross-Keating invariants:

(01, . . . , 0=) = GK(�),

and

ZB =


b
� (=
∗
B ) if =∗B is even,

[
� (=
∗
B ) if =∗B is odd,
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and =1, . . . , =A , =∗1, . . . , =
∗
A are as in Definition 3.6. For any � ∈ S′= (Z?), we define

EGK(�) := EGK(�′),

�′ ∈ S′= (Z?) an optimal form such that �′ = �[*] for a* ∈ GL= (Z?).

We call EGK(�) the EGK invariant attached to �.

Remark 3.9. By [IK18, Theorem 0.4], Definition 3.8 is independent of the choice of �′.

3.2 Definition of Extended Gross-Keating Datum

In this section, we introduce an abstraction of the the extended Gross-Keating invariants.

Definition 3.10. An element � = (01, . . . , 0=; Y1, . . . , Y=) ∈ Z=≥0×Z
=
3 is said to be a naive

EGK datum of length = if the following conditions hold:

(N1) 01 ≤ · · · ≤ 0=,

(N2) Assume that 8 is even. Then Y8 ≠ 0 if and only if 01 + · · · + 08 is even,

(N3) If 8 is odd, then Y8 ≠ 0,

(N4) Y1 = 1,

(N5) If 8 ≥ 3 and 01 + · · · + 08−1 is even, then Y8 = Y8−2Y
08+08−1
8−1 .

We denote the set of naive EGK data of length = by N�� =.

Definition 3.11. Let � = (01, . . . , 0=; Y1, . . . , Y=) be a naive EGK datum of length =.

Given0 ≤ < < =, we define the<-truncation of� as� (<) := (01, . . . , 0=−<; Y1, . . . , Y=−<).

Observe� (<) ∈ N�� =−<. We denote� (1) ,� (2) as�′,�′′, respectively, for convenience.
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With ) as in Definition 3.8, we know via [IK18, Proposition 6.1] that, for ? ≠ 2,

NEGK()) ∈ N�� =; and conversely via [IK18, Remark 6.1] that for an � ∈ N�� =

there exists a diagonal matrix of the form in Definition 3.8 for which NEGK()) = �.

However, when ? = 2 and ) = diag(C1, . . . , C=) with ord? (C1) ≤ · · · ≤ · · · ord? (C=), we

might have NEGK()) ∉ N�� =. For an example, see [IK18, Remark 6.2]. Thus, the

naive EGK datum attached to a diagonal ) is not a robust invariant for a quadratic form.

There are still uses of naive EGK datum towards the computation of the Siegel series.

However, for now we introduce Ikeda and Katsurada’s more refined notion of EGK datum:

Definition 3.12. Let � = (=1, . . . , =A ;<1, . . . , <A ; Z1, . . . , ZA) ∈ ZA≥0 × Z
A
≥0 × Z

A
3 . Put

=∗B =
∑B
8=1 =8 for B ≤ A. We say that � is an EGK datum of length = if the following

conditions hold:

(E1) =∗A = = and <1 < · · · < <A ,

(E2) Assume that =∗B is even. Then ZB ≠ 0 if and only if <1=1 + · · · + <B=B is even,

(E3) Assume that =∗B is odd. Then ZB ≠ 0. Moreover, we have

(a) Assume that =∗
8
is even for any 8 < B. Then we have

ZB = Z
<1+<2
1 Z

<2+<3
2 · · · Z<B−1+<B

B−1 .

In particular, Z1 = 1 if =1 is odd.

(b) Assume that <1=1 + · · ·<B−1=B−1 + <B (=B − 1) is even and that =∗
8
is odd for

some 8 < B. Let C < B be the largest number such that =∗C is odd. Then we have

ZB = ZCZ
<C+1+<C+2
C+1 Z

<C+2+<C+3
C+2 · · · Z<B−1+<B

B−1 .

In particular, ZB = ZC if C + 1 = B.
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We denote the set of EGK data of length = by E� =.

Theorem 3.13. ([IK18, Theorem 6.1]) Let � ∈ S′= (Z)nd. Then EGK(�) ∈ E� =.

Proposition 3.14. ([IK18, Proposition 6.2]) Let � = (01, . . . , 0=; Y1, . . . , Y=) ∈ N�� =.

Let A, =B, =∗B , 1 ≤ B ≤ A, be as in Definition 3.6. For 1 ≤ B ≤ A, set <B = 0=∗B and ZB = Y=∗B .

Then,

� = (=1, . . . , =A ;<1, . . . , <A ; Z1, . . . , ZA) ∈ E� =. (3.1)

Via Proposition 3.14, we have a map:

Υ = Υ= : N�� = −→ E� = (3.2)

� ↦−→ � = Υ(�), (3.3)

where � is constructed via (3.1). By [IK18, Proposition 6.3]) we know that Υ is surjective.

3.3 Connection to the Invariants of 5� and cont �

Definition 3.15. We extend the greatest common denominator function to Q as follows.

For 0, 1 ∈ Q, we define:

gcd(0, 1) :=
∏
? prime

?min{ord? (0), ord? (1)} .

Given � = (18 9 ) ∈ S= (Q), we define a quantity:

cont � := gcd(111, . . . , 1==︸         ︷︷         ︸
= terms

, 2112, . . . , 21=,=−1︸                ︷︷                ︸
)=−1 terms

). (3.4)
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Here )= = =(=+1)
2 denotes the =th triangular number. We call cont � the content of �.

Definition 3.16. Let � ∈ S′2= (Z)
+. For prime ?, let GK(�) (?) = (0 (?)1 , . . . , 0

(?)
2= ) denote

the Gross-Keating invariant of � viewed as an element of S′2= (Z?)
nd. For 8 = 1, . . . , 2=, put

e
(?)
8,�

:=


0
(?)
1 + · · · + 0

(?)
8

if 8 is odd,

2b(0 (?)1 + · · · + 0
(?)
8
)/2c if 8 is even.

(3.5)

Let us first relate the local invariant e(?)2=,� to the global invariant 5�:

Lemma 3.17. ([IK22a, Lemma 6.3]) Let � ∈ S′2= (Z)
+. Then,

∏
? | 5� ?

e
(?)
2=,� = 5 2

�
.

Corollary 3.18. Let � ∈ S′2= (Z)
+. Then e(?)2=,� = 2ord? 5�.

Proof. This follows from the fundamental theorem of arithmetic. �

We also have a relation between the local invariant e(?)1,� and the global invariant cont �:

Lemma3.19. ([IK22a, Remark 4.5]) Let � = (18, 9 ) ∈ S′2= (Z)
+. Then e(?)1,� = min

1≤8, 9≤=
ord? (1 (1)8, 9 ),

where

1
(1)
8, 9
= 21−X8, 918, 9 , X8, 9 =


1 if 8 = 9 ,

0 if 8 ≠ 9 .

Corollary 3.20. Let � ∈ S′2= (Z)
+. Then e(?)1,� = ord? (cont �).

Proof. This follows immediately from the definition (3.4). We now provide a direct proof.

By [IK18, §2], e(?)1,� = 0 for � primitive ; i.e. when ?−1� ∉ S′2= (Z?)
+ ⇔ ord? (cont �) = 0.

For any � ∈ S′2= (Z)
+, write � = ?:�′, �′ primitive. Then,

e
(?)
1,� = : + e

(?)
1,�′ = : = : + ord? (cont �′) = ord? (cont �).
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�

Remark 3.21. This agrees with [CIK+17, Theorem 3.1]. The relevant cases in the state-

ment of Theorem 3.1, in their notation, are (1) and (2.1), b� [B−1] ≠ 0. The case (3) also

seems to apply, but according to condition (PO3) in the definition of a pre-optimal form,

the first block of a pre-optimal form must not be a diagonal unimodular matrix of degree 2.
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Chapter 4

Laurent Polynomial of an EGK Datum

Quite recently, Ikeda and Katsurada [IK22b] have shown that ?-local Siegel series �̃? (�, -)

attached to a quadratic form � ∈ S′= (Z) is completely determined by the EGK datum of

�, viewed as an element of S′= (Z?). Their proof uses deep facts about local densities of

quadratic forms. In ourwork, we are interested in the result of their calculations: an inductive

formula for a certain Laurent polynomial attached to an EGKdatum�; denotedF (�;., -);

in the variable - 1
2 with coefficients in Z[.,.−1]. Upon specializing to � = EGK(�) (?)

and . = ? 1
2 , one obtains the ?-local Siegel series �̃? (�, -). In this section, we develop a

wealth of technical tools for computing this Laurent polynomial efficiently. A novel feature

of our work is a strategic reorganization of the inductive formulas of Ikeda and Katsurada

which unveils a deeper combinatorial interpretation of the coefficients of F (�;., -). At

the end of this chapter, we provide explicit formulas for F (�;., -) in the case = = 2 and 3.

4.1 Definion of the Laurent Polynomial

We now define, à la Ikeda and Katsurada, the polynomial F (�;., -) attached to �:
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Definition 4.1. For 4, 4̃ ∈ Z, b ∈ R, we define rational functions in - 1
2 and . 1

2 via:

� (4, 4̃, b;., -) = .
4̃
2 -−

4−4̃
2 −1(1 − b.−1-)
-−1 − -

and

� (4, 4̃, b;., -) = .
4̃
2 -−

4−4̃
2

1 − b- .

For a positive integer 8, put

�8 (4, 4̃, b;., -) =


� (4, 4̃, b;., -) if 8 is even,

� (4, 4̃, b;., -) if 8 is odd.
(4.1)

Definition 4.2. For a sequence 0 = (01, . . . , 0=) of integers and 1 ≤ 8 ≤ =, we define

e8 = e8 (0) :=


01 + · · · + 08 if 8 is odd,

2b(01 + · · · + 08)/2c if 8 is even.

We also put e0 = 0.

Definition 4.3. For a naive EGK datum � = (01, . . . , 0=; Y1, . . . , Y=) of length =we define

a rational function F (�;., -) in - 1
2 and . 1

2 inductively as follows. First, if = = 1, we set

F (�;., -) =
01∑
8=0

-−
01
2 +8 . (4.2)

Let = > 1. Then �′ = (01, . . . , 0=−1; Y1, . . . , Y=−1) is a naive EGK datum of length = − 1.
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We define, inductively,

F (�;., -) = �= (e=, e=−1, b;., -)F (�′;.,.-) (4.3)

+ Z�= (e=, e=−1, b;., -−1)F (�′;.,.-−1),

where

b =


Y= if = is even,

Y=−1 if = is odd,
Z =


1 if = is even,

Y= if = is odd.

Although F (�;., -) is defined as a rational function in - 1
2 and . 1

2 , we know:

Proposition 4.4. ([IK22b, Proposition 4.2]) For� = (01, . . . , 0=; Y1, . . . , Y=) a naive EGK

datum of length =, F (�;., -) is a Laurent polynomial in - 1
2 with coefficients in Z[.,.−1].

We also know that F (�;., -) has a symmetry with respect to the variable -:

Proposition 4.5. ([IK22b, Proposition 4.1]) For � = (01, . . . , 0=; Y1, . . . , Y=) ∈ N�� =,

F (�;., -) = [=F (�;., -−1),

where

[= :=


1 if = is even,

Y= if = is odd.

As mentioned in the previous chapter, although the naive EGK datum is not a robust

invariant for a quadratic form, it finds its use in the calculation of F (�;., -). Specifically,

the following result of Ikeda and Katsurada states that - although F (�;., -) is defined via
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an naive EGK datum - it depends only on the image of � in E� = under the Υ map (3.2).

That is,

Theorem 4.6. ([IK22b, Theorem 4.1]) Let � ∈ E� =; take � ∈ Υ−1
= (�) ⊆ N�� =.

Then F (�;., -) is uniquely determined by �; that is does not depend on the choice of �.

4.2 Technical Lemmas for Calculating the Laurent Poly-

nomial

We now initiate our in-depth analysis of the Laurent polynomial attached an a naive EGK

datum. The main results of this chapter are Propositions 4.8, 4.12, and 4.14. In these

propositions, we work out the induction step (4.3) as explicitly as possible. From them, we

obtain induction formulas for F (�;., -) involving no division in a rational function field.

We use these results heavily later to study individual coefficients of the Laurent polynomial.

Our induction formulas are phrased in terms of two distinct bases for the symmetric

Laurent polynomials of bounded degree in - . We now introduce these two bases formally.

LetQ(. ) denote the field of rational functions in the variable. with coefficients inQ. Let

+ denote the Q(. )-vector space of Laurent polynomials in the variable - with coefficients

in Q(. ). For ℓ ≥ 0, let +ℓ denote the following (ℓ + 1)-dimensional Q(. )-subspace of + :

+ℓ :=

{
ℓ∑
a=0

2a (. ) (-a + -−a) : 2a (. ) ∈ Q(. )
}
.

That is, +ℓ is the Q(. )-subspace of symmetric Laurent polynomials of degree ≤ ℓ. The set

1, - + -−1, -2 + -−2, . . . , -ℓ + -−ℓ is a Q(. )-basis of +ℓ, which we call the natural basis.
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We will also need to work in another basis of +ℓ. Specifically, we define:

k 9 (-) :=
- 9 − -− 9
- − -−1 = - 9−1 + - 9−3 + · · · + -− 9+3 + -− 9+1, 9 ≥ 0. (4.4)

Fix an Y ∈ Z3. As in [CK08, Lemma 1], we conclude that k 9+1(-) − Y.−1k 9 (-); for

9 = 0, . . . , ℓ; is aQ(. )-basis of+ℓ, which we call the Y-Kohnen-Choie basis. We calculate

a change-of-basis formula between the Y-Kohnen-Choie basis and the natural basis of +ℓ:

Lemma 4.7. Let � (., -) ∈ +ℓ. Write

� (., -) = �0(. )+
ℓ∑
8=1

�8 (. ) (- 8 + -−8),

�8 (. ) ∈ Q(. ), 8 = 0, . . . , ℓ.

and

� (., -) =
ℓ∑
9=0

� 9 (. )
(
k 9+1(-) − Y.−1k 9 (-)

)
, (4.5)

� 9 (. ) ∈ Q(. ), 9 = 0, . . . , ℓ.

Part I: To the Natural Basis:

For 8 = 0, . . . , ℓ, we have

�8 (. ) = �8,0(. ) − Y.−1�8,1(. ), �8,: (. ) :=
∑
8≤a≤ℓ

a−8≡: mod 2

�a (. ), : = 0, 1. (4.6)

Part II: From the Natural Basis:
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We have, inductively from 9 = ℓ to 0, the relation:

� 9 (. ) = � 9 (. ) − ( 9 ,0(. ) + Y.−1( 9 ,1(. ), ( 9 ,: (. ) :=
∑
9<a≤ℓ

a− 9≡: mod 2

�a (. ), : = 0, 1.

Proof of Part I. Observe

�8 (. ) (k8+1(-) − Y.−1k8 (-))

= �8 (. ) (- 8 − Y.−1- 8−1 + - 8−2 + · · · + -−8+2 − Y.−1-−8+1 + -−8).

Using Table 4.1, we calculate:

�8 (. ) =
∑
8≤a≤ℓ

a≡8 mod 2

�a (. ) − Y.−1
∑
8≤a≤ℓ

a.8 mod 2

�a (. ).

�

× -ℓ -ℓ−1 -ℓ−2 · · · - 8

�ℓ (. ) 1 −Y.−1 1 · · · · · ·
�ℓ−1(. ) 1 −Y.−1 · · · · · ·
�ℓ−2(. ) 1 · · · · · ·

... · · · 1
�8+1(. ) · · · −Y.−1

�8 (. ) · · · 1
�8−1(. ) · · ·∑

�ℓ (. ) �ℓ−1(. ) �ℓ−2(. ) · · · �8 (. )

Table 4.1: An visual aid for the proof of Part I of Lemma 4.7
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Proof of Part II. From Table 4.2, we that the 9 th unknown coefficient � 9 (. ) must satisfy:

� 9 (. ) =
∑
9≤a≤ℓ

a≡ 9 mod 2

�a (. ) − Y.−1
∑
9≤a≤ℓ

a. 9 mod 2

�a (. ).

This is a triangular system, so we assume � 9+1(. ), . . . , �ℓ (. ) have been computed already.

-ℓ
... - 9 - 9−1

�ℓ (ℓ)
...

...
...

...
...

...

... −Y.−1� 9+1(. ) � 9+1(. )
� 9 (. ) −Y.−1� 9 (. )

� 9−1(. )∑
�ℓ (. )

... � 9 (. ) � 9−1(. )

Table 4.2: An visual aid for the proof of Part II of Lemma 4.7

We thus have the a recursive relation for computing the unknown coefficient � 9 (. ) given

the known coefficient � 9 (. ) and the previously computed coefficients � 9+1(. ), . . . , �ℓ (. ):

� 9 (. ) = � 9 (. ) −
∑
9<a≤ℓ

a≡ 9 mod 2

�a (. ) + Y.−1
∑
9<a≤ℓ

a. 9 mod 2

�a (. ).

�

We now develop two fundamental results for performing the induction steps in (4.3).

Proposition 4.8 treats the case with = even and Lemma 4.10 treats the case with = odd.

Proposition 4.8. Fix ℓ2 ≥ ℓ1 ≥ 0 with ℓ1 ∈ 1
2Z, ℓ2 ∈ Z, Y ∈ Z3. Define< := min{2ℓ1, ℓ2}.
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Let � (., -) be a Laurent polynomial in - 1
2 with coefficients in Q[.,.−1] of the form:

� (., -) =
2ℓ1∑
8=0

�−ℓ1+8 (. )-−ℓ1+8 . (4.7)

Define

� (., -) := � (2ℓ2, 2ℓ1, Y;., -)� (.,.-) + � (2ℓ2, 2ℓ1, Y;., -−1)� (.,.-−1).

Then,

� (., -) = �+(-,. ) − �−(-,. ),

where

�+(., -) =
<∑
8=0
. 8�−ℓ1+8 (. )-−ℓ2+8

ℓ2−8∑
9=0

-2 9 − Y
<∑
8=0
. 8−1�−ℓ1+8 (. )-−ℓ2+8+1

ℓ2−8−1∑
9=0

-2 9 ,

(4.8)

�−(., -) =
2ℓ1∑

8=<+1
. 8�−ℓ1+8 (. )-ℓ2−8+2

−ℓ2+8−2∑
9=0

-2 9 − Y
2ℓ1∑

8=<+1
. 8−1�−ℓ1+8 (. )-ℓ2−8+1

−ℓ2+8−1∑
9=0

-2 9 .

(4.9)

Proof. We have

� (2ℓ2, 2ℓ1, Y;., -±1) = .
ℓ1-∓(ℓ2−ℓ1)∓1(1 − Y.−1-±1)

-∓1 − -±1 .
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We calculate

� (-,. )

=
. ℓ1-−(ℓ2−ℓ1)−1(1 − Y.−1-)

-−1 − -
� (.,.-)

+ .
ℓ1- (ℓ2−ℓ1)+1(1 − Y.−1-−1)

- − -−1 � (.,.-−1)

= . ℓ1
-−(ℓ2−ℓ1)−1� (.,.-) − - (ℓ2−ℓ1)+1� (.,.-−1)

-−1 − -

− Y. ℓ1−1 -
−(ℓ2−ℓ1)� (.,.-) − - (ℓ2−ℓ1)� (.,.-−1)

-−1 − -
.

Note

� (.,.-±1) =
2ℓ1∑
8=0

�−ℓ1+8 (. ) (.-±1)−ℓ1+8 = .−ℓ1
2ℓ1∑
8=0
. 8�−ℓ1+8 (. )-∓ℓ1±8 .
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Thus, for X ∈ {0, 1},

. ℓ1−X
-−(ℓ2−ℓ1)−1+X� (.,.-) − - (ℓ2−ℓ1)+1−X� (.,.-−1)

-−1 − -

=
.−X

-−1 − -

{ 2ℓ1∑
8=0
. 8�−ℓ1+8 (. )-−ℓ2+8−1+X −

2ℓ1∑
8=0
. 8�−ℓ1+8 (. )-ℓ2−8+1−X

}
=

2ℓ1∑
8=0
. 8−X�−ℓ1+8 (. )

{
-−ℓ2+8−1+X − -ℓ2−8+1−X

-−1 − -

}
=

2ℓ1∑
8=0
. 8−X�−ℓ1+8 (. )-−ℓ2+8+X

{
1 − -2ℓ2−28+2−2X

1 − -2

}
=

<∑
8=0
. 8−X�−ℓ1+8 (. )-−ℓ2+8+X

{
1 − -2ℓ2−28+2−2X

1 − -2

}
−

2ℓ1∑
8=<+1

. 8−X�−ℓ1+8 (. )-ℓ2−8+2−X
{

1 − -−2ℓ2+28−2+2X

1 − -2

}
=

<∑
8=0
. 8−X�−ℓ1+8 (. )-−ℓ2+8+X

ℓ2−8−X∑
9=0

-2 9

−
2ℓ1∑

8=<+1
. 8−X�−ℓ1+8 (. )-ℓ2−8+2−X

−ℓ2+8−2+X∑
9=0

-2 9 .

�

Remark 4.9. We may easily write �+(., -) in terms of the Y-Kohnen-Choie basis:

�+(., -) =
<∑
8=0
. 8�−ℓ1+8 (. ) (kℓ2−8+1(-) − Y.−1kℓ2−8 (-)).

We can also write:

�−(., -) =
2ℓ1∑

8=<+1
. 8�−ℓ1+8 (. ) (k−ℓ2+8−1(-) − Y.−1k−ℓ2+8 (-)).

However, the expression k−ℓ2+8−1(-) − Y.−1k−ℓ2+8 (-) is not in the Y-Kohnen-Choie basis.
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We call�+(., -) and�−(., -) the principal part and reflection, respectively, of� (., -).

Lemma 4.10. Fix integers : ≤ < ≤ ;; Y ∈ Z3. Given a Laurent polynomial of the form:

� (., -) =
<∑
8=:

�8 (. )- 8
;−8∑
9=0

-2 9 − Y
<∑
8=:

.−1�8 (. )- 8+1
;−8−1∑
9=0

-2 9 , (4.10)

define

�±(., -) :=
1

1 − Y-±1� (.,.-
±1).

Then,

�±(., -) =
<∑
8=:

�8 (. ) (.-±1)8
;−8−1∑
9=0
(.-±1)2 9 + .2;-±2;

1 − Y-±1

<∑
8=:

.−8�8 (. )-∓8 . (4.11)

In particular, for Y = 0, we have

�±(., -) =
<∑
8=:

�8 (. ) (.-±1)8
;−8∑
9=0
(.-±1)2 9 . (4.12)
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Proof. We calculate

1
1 − Y-±1� (.,.-

±1)

=
1

1 − Y-±1


<∑
8=:

�8 (. ) (.-±1)8
;−8∑
9=0
(.-±1)2 9

−Y
<∑
8=:

.−1�8 (. ) (.-±1)8+1
;−8−1∑
9=0
(.-±1)2 9


=

1
1 − Y-±1


<∑
8=:

�8 (. ) (.-±1)8
;−8∑
9=0
(.-±1)2 9

−Y-±1
<∑
8=:

�8 (. ) (.-±1)8
;−8−1∑
9=0
(.-±1)2 9


=

<∑
8=:

�8 (. ) (.-±1)8
;−8−1∑
9=0
(.-±1)2 9 + 1

1 − Y-±1

<∑
8=:

�8 (. ) (.-±1)8 (.-±1)2(;−8) ,

and

<∑
8=:

�8 (. ) (.-±1)8 (.-±1)2(;−8) = .2;-±2;
<∑
8=:

.−8�8 (. )-∓8 .

�

Remark 4.11. We can easily write � (., -) in terms of the Y-Kohnen-Choie basis:

.� (., -) = - ;
<∑
8=:

�8 (. ) (k;−8+1(. ) − Y.−1k;−8 (. )).

We will frequently need to switch between the natural basis and the Y-Kohnen-Choie basis.

4.3 Calculation of the Remainder Polynomial

In the next two results, we use Lemma 4.10 to finish the induction step of (4.3) for = odd.
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Proposition 4.12. Suppose � = (01, . . . , 02=+1; Y1, . . . , Y2=+1) ∈ N�� 2=+1, with = ≥ 1.

Write �′ := (01, . . . , 02=; Y1, . . . , Y2=) ∈ N�� 2=. Set ℓ = e2=+1/2, ℓ′ = e2=/2. Write

F (�′;., -) =
ℓ′∑
9=0

q(ℓ′ − 9 , �′;. ).−(ℓ′− 9)
(
k 9+1(-) − Y2=.

−1k 9 (-)
)
.

Above, q(`, �′;. ), for 0 ≤ ` ≤ ℓ′, is a rational function in Q(. ). Then,

F (�;., -) = � (�;., -) + Y2=+1� (�;., -−1) + Y2
2='(�;., -),

where

� (�;., -±1) = -∓
e2=+1

2

e2=
2∑
8=0

q(8, �′;. )-±8
e′2=
2 −8−1∑
9=0
(.-±1)2 9 ,

and

'(�;., -) = .
e2=-−

e2=+1
2 +e2=

1 − Y2=-

e2=
2∑
8=0

q(8, �′;. ) (.−2-−1)8

+ Y2=+1
. e2=-

e2=+1
2 −e2=

1 − Y2=-−1

e2=
2∑
8=0

q(8, �′;. ) (.−2-)8,

and

e′2= := 2
⌊
01 + · · · + 02= + 1

2

⌋
.

We call '(�;., -) the remainder of F (�;., -).
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Proof. First, via a change of variable:

F (�′;., -) =
ℓ′∑
8=0

q(8, �′;. ).−8
(
kℓ′−8+1(-) − Y2=.

−1kℓ′−8 (-)
)
. (4.13)

In the notation of Lemma 4.10, set

: = 0, < = ℓ′, ; = ℓ′, Y = Y2=, �8 (. ) = q(8, �′;. ).−8 .

With this choice of parameters, we see via Remark 4.11, that

� (., -) = -ℓ′F (�′;., -).

Thus,

�2=+1(e2=+1, e2=; Y2=;., -±1)F (�;.,.-±1)

=
. ℓ
′
-∓(ℓ−ℓ

′)

1 − Y2=-±1 (.-
±1)−ℓ′� (.,.-±1)

=
-∓ℓ

1 − Y2=-±1� (.,.-
±1).

Thus, in view of (4.3), we have

F (�;., -) = -−ℓ

1 − Y2=-
� (.,.-) + Y2=+1

-ℓ

1 − Y2=-−1� (.,.-
−1)

Case I: Suppose Y2= = 0. Then,

F (�′;., -) = -−ℓ� (.,.-) + Y2=+1-
ℓ� (.,.-−1)

By Condition (N2) of Definition 3.10, we have Y2= = 0 if and only if 01 + · · · + 02= is odd.
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Thus, e2=/2 = e′2=/2 − 1. Applying Lemma 4.10, we have

� (.,.-±1)

=

e2=
2∑
8=0

q(8, �′;. ).−8 (.-±1)8
e2=
2 −8∑
9=0
(.-±1)2 9 =

e2=
2∑
8=0

q(8, �′;. )-±8
e′2=
2 −8−1∑
9=0
(.-±1)2 9 .

Thus,

F (�;., -) = -−
e2=+1

2

e2=
2∑
8=0

q(8, �′;. )- 8
e′2=
2 −8−1∑
9=0
(.-)2 9

+ Y2=+1-
e2=+1

2

e2=
2∑
8=0

q(8, �′;. )-−8
e′2=
2 −8−1∑
9=0
(.-−1)2 9

Case II: Suppose Y2= ≠ 0. Then 01 + · · · + 02= is even by condition (N2) of Definition 3.10.

Therefore e2=/2 = e′2=/2 =: ℓ′. Using Lemma 4.10, we have

-∓
e2=+1

2

1 − Y2=-±1� (.,.-
±1)

= -∓
e2=+1

2

e2=
2∑
8=0

q(8, �′;. ).−8 (.-±1)8
e′2=
2 −8−1∑
9=0
(.-±1)2 9

+ .
e2=-

∓e2=+1
2 ±e2=

1 − Y2=-±1

e2=
2∑
8=0
.−8q(8, �′;. ).−8-∓8

= -∓
e2=+1

2

e2=
2∑
8=0

q(8, �′;. )-±8
e′2=
2 −8−1∑
9=0
(.-±1)2 9

+ .
e2=-∓

e2=+1
2 ±e2=

1 − Y2=-±1

e2=
2∑
8=0

q(8, �′;. ) (.−2-∓1)8

�
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Remark 4.13. The symbols e′2= and Y
2
2= are notational aids to unify Cases I and II.

We now calculate the remainder '(�;., -) in a more explicit form:

Proposition 4.14. With the setup of Proposition 4.12, let '(�;., -) be the remainder of

F (�;., -). Then '(�;., -) is a Laurent polynomial of degree ≤ e2=+1
2 −e1 in - satisfying:

'(�;., -) = Y2=+1'(�;., -−1).

Moreover,

'(�;., -)

= . e2=-−
e2=+1

2 +e2=

e2=
2∑
8=0

q(8, �′;. ) (.−2-−1)8
e2=+1−e2=−e1+8∑

9=0
(Y2=-) 9

− Y2=Y2=+1.
e2=-

e2=+1
2 −e2=+1

e2=
2∑
8=0

q(8, �′;. ) (.−2-)8
e2=−e1−8−1∑

9=0
(Y2=-) 9 .
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Proof. We calculate the '(�;., -) as a formal power series in - . That is,

'(�;., -)

=
. e2=-−

e2=+1
2 +e2=

1 − Y2=-

e2=
2∑
8=0

q(8, �′;. ) (.−2-−1)8

+ Y2=+1
. e2=-

e2=+1
2 −e2=

1 − Y2=-−1

e2=
2∑
8=0

q(8, �′;. ) (.−2-)8

=
. e2=-−

e2=+1
2 +e2=

1 − Y2=-±1

e2=
2∑
8=0

q(8, �′;. ) (.−2-−1)8

− Y2=Y2=+1-
. e2=-

e2=+1
2 −e2=

1 − Y2=-

e2=
2∑
8=0

q(8, �′;. ) (.−2-)8

= . e2=-−
e2=+1

2 +e2=

∞∑
9=0
(Y2=-) 9

e2=
2∑
8=0

q(8, �′;. ) (.−2-−1)8

− Y2=Y2=+1.
e2=-

e2=+1
2 −e2=+1

∞∑
9=0
(Y2=-) 9

e2=
2∑
8=0

q(8, �′;. ) (.−2-)8 .

In the notation of Proposition 4.12, we have

'(�;., -) = F (�;., -) − (� (�;., -) + Y2=+1� (�;., -−1)).

Via Theorem 4.5, we have F (�;., -−1) = Y2=+1F (�;., -). Thus,

'(�;., -−1) = Y2=+1'(�;., -). (4.14)
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We observe, for 8 = 0, . . . , e2=/2 and 9 ≥ 0, we have the bounds:

−e2=+1
2
+ e2= + 9 − 8 ≥ −

e2=+1
2
+ e2=

2
≥ −e2=+1

2
+ e1,

e2=+1
2
− e2= + 1 + 9 + 8 ≥ −e2=+1

2
+ (e2=+1 − e2=) + 1 ≥ −e2=+1

2
+ e1.

Therefore, in view of (4.14), '(�;., -) is a Laurent polynomial of degree ≤ e2=+1
2 − e1.

Thus, in our calculation of '(�;., -), it suffices to compute the terms up to degree e2=+1
2 −e1.

That is,

'(�;., -)

= . e2=-−
e2=+1

2 +e2=

e2=
2∑
8=0

q(8, �′;. ) (.−2-−1)8
e2=+1−e2=−e1+8∑

9=0
(Y2=-) 9

− Y2=Y2=+1.
e2=-

e2=+1
2 −e2=+1

e2=
2∑
8=0

q(8, �′;. ) (.−2-)8
e2=−e1−8−1∑

9=0
(Y2=-) 9 .

�

Remark 4.15. This calculation '(�,. ; -) via a formal series was inspired by [IK22a].

4.4 Explicit Formulas for the Laurent Polynomial for = =

2, 3

In this section, we will calculate the Laurent polynomial for EGK data of lengths 2 and 3.

Example 4.16. Let� = (01, 02; 1, Y2) be a naive EGKdatumof length 2. Let�′ = (01; 1).
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Then �′ is a naive EGK datum of length 1 with

F (�′;., -) = -−
e1
2 + -−

e1
2 +1 + · · · + -

e1
2 −1 + -

e1
2 .

We apply Proposition 4.8 with � (., -) = F (�′;., -); ℓ8 = e8
2 , 8 = 1, 2; and �8 (. ) = 1,

|8 | ≤ ℓ1. Since e1 ≤ e2
2 , we have < := min{2ℓ1, ℓ2} = 2ℓ1 = e1. Therefore, in view of (4.3),

we have

F (�;., -) =
e1∑
8=0
. 8-−

e2
2 +8

e2
2 −8∑
9=0

-2 9 − Y2

e1∑
8=0
. 8−1-−

e2
2 +8+1

e2
2 −8−1∑
9=0

-2 9 . (4.15)

Using (4.15), we calculate

Proposition 4.17. Let � = (01, 02; 1, Y2) and F (�;., -) be an in Example 4.16. Write

F (�;., -) =
2ℓ∑
8=0

�
(2)
−ℓ+8 (. )-

−ℓ+8

Here ℓ = e2/2 ∈ Z. Then,

�
(2)
a (. ) = �(2)1,a (. ) − Y2�

(2)
2,a (. ) (4.16)
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where

�
(2)
1,a (. ) =



b e2/2−a2 c∑
8=0

.28 e2/2 − e1 ≤ |a | ≤ e2/2, a ≡ e2/2 (2),

.
b e2/2−a2 c∑
8=0

.28 e2/2 − e1 ≤ |a | ≤ e2/2, a . e2/2 (2),
b e12 c∑
8=0

.28 0 ≤ |a | ≤ e2/2 − e1, a ≡ e2/2 (2),

.
b e12 c∑
8=0

.28 0 ≤ |a | ≤ e2/2 − e1, a . e2/2 (2),

�
(2)
2,a (. ) =



b e2/2−1−a
2 c∑
8=0

.28 e2/2 − e1 − 1 ≤ |a | ≤ e2/2 − 1, a ≡ e2/2 (2),

.−1
b e2/2−1−a

2 c∑
8=0

.28 e2/2 − e1 − 1 ≤ |a | ≤ e2/2 − 1, a . e2/2 (2),
b e12 c∑
8=0

.28 0 ≤ |a | ≤ e2/2 − e1 − 1, a ≡ e2/2 (2),

.−1
b e12 c∑
8=0

.28 0 ≤ |a | ≤ e2/2 − e1 − 1, a . e2/2 (2).

Proof. Let X ∈ {0, 1}. We calculate:

e1∑
8=0
. 8−X-−

e2
2 +8+X

e2
2 −8−X∑
9=0

-2 9 =

e1∑
8=0
. 8−X

e2
2 −8−X∑
9=0

- 8+2 9−
e2
2 +X .

The calculation is completed with the aid of Figures 4.1 and 4.2. �
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8

9

8 +
9
=
e2 /2

8
=
e1

(e1, 0)

(0, e2/2)

(e1, e2/2 − e1)

8 + 2 9 − e2/2 = e2/2 − e1
8 + 2 9 − e2/2 = 0
8 + 2 9 − e2/2 = −e2/2 + e1

8

9

8 +
9
=
e2 /2 − 1

8
=
e1

(e1, 0)

(0, e2/2 − 1)

(e1, e2/2 − e1 − 1)

8 + 2 9 − e2/2 + 1 = e2/2 − e1 − 1

8 + 2 9 − e2/2 + 1 = 0

8 + 2 9 − e2/2 + 1 = −e2/2 + e1 + 1

Figure 4.1: Regions of summation: 0 ≤ 8 ≤ e1; 0 ≤ 9 ≤ e2
2 − 8 − X; X ∈ {0, 1}.

-

.

- +
.
=
e2 /2

-
− .
=
−e 2/2

(e2/2, 0)(−e2/2, 0)

(e2/2 − e1, e1)(−e2/2 + e1, e1)

-

.

- +
.
=
e2 /2 − 2

-
− .
=
−e 2/2

+ 2

(e2/2 − 1,−1)(−e2/2 + 1,−1)

(e2/2 − e1 − 1, e1 − 1)(−e2/2 + e1 + 1, e1 − 1)

Figure 4.2: Coefficient Polygons for
∑e1
8=0.

8−X ∑ e2
2 −8−X
9=0 - 8+2 9−

e2
2 +X; X ∈ {0, 1}.
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Example 4.18. Suppose that � = (01, 02, 03; 1, Y2, Y3) is a naive EGK datum of length 3.

Then �′ = (01, 02; 1, Y2) ∈ NEGK2. Let ℓ = e2/2. By Example 4.16, we have

F (�′;., -) =
e1∑
8=0
. 8 (kℓ−8+1(-) − Y2.

−1kℓ−8 (-)).

Via a change of variable:

F (�′;., -) =
ℓ∑
9=0

q(ℓ − 9 , �′;. ).−(ℓ− 9) (k 9+1(-) − Y2.
−1k 9 (-)),

where

q(`, �′;. ) =


.2` if 0 ≤ ` ≤ e1,

0 if e1 < ` ≤ ℓ.

Applying Proposition 4.12, we have

F (�;., -) = � (�;., -) + Y3� (�;., -−1) + Y2
2'(�;., -),

where

� (�;., -±1) = -∓
e3
2

e1∑
8=0
(.2-±1)8

e′2
2 −8−1∑
9=0
(.-±1)2 9 ,

and

'(�;., -) = .
e2-−

e3
2 +e2

1 − Y2=-

e1∑
8=0

-−8 + Y3
. e2-

e3
2 −e2

1 − Y2-−1

e1∑
8=0

- 8,
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and

e′2 := 2
⌊
01 + 02 + 1

2

⌋
.

To calculate '(�;., -), assume Y2 ≠ 0; for, otherwise, the term Y2
2'(�;., -) vanishes.

By condition (N2) of Definition 3.10, Y2 ≠ 0 if and only if 01 + 02 is even. In this case,

Y3 = Y
02+03
2 by condition (N5) of Definition 3.10. We now calculate '(�;., -) as follows:

. e2-−
e3
2 +e2

1 − Y2-

e1∑
8=0

-−8 + Y3
. e2-

e3
2 −e2

1 − Y2-−1

e1∑
8=0

- 8

=
. e2-−

e3
2 +e2

1 − Y2-

e1∑
8=0

-−8 − Y2Y3-
. e2-

e3
2 −e2

1 − Y2-

e1∑
8=0

- 8

= . e2-−
e3
2 +e2−e1

1 − Y02+03+1
2 -e3−2e2+e1+1

1 − Y2-

e1∑
8=0

- 8

= . e2-−
e3
2 +e2−e1

1 − (Y2-)e3−2e2+e1+1

1 − Y2-

e1∑
8=0

- 8

= . e2-−
e3
2 +e2−e1

e3−2e2+e1∑
9=0

(Y2-) 9
e1∑
8=0

- 8 .

Above, we have used

e3 − 2e2 + e1 + 1 = (01 + 02 + 03) − 2e2 + 01 + 1 ≡ 02 + 03 + 1 mod 2.
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Summary: We have

F (�;., -) = -−
e3
2

e1∑
8=0
(.2-)8

e′2
2 −8−1∑
9=0
(.-)2 9

+ Y3-
e3
2

e1∑
8=0
(.2-−1)8

e′2
2 −8−1∑
9=0
(.-−1)2 9 (4.17)

+ Y2
2.

e2-−
e3
2 +e2−e1

e3−2e2+e1∑
9=0

(Y2-) 9
e1∑
8=0

- 8 .

Using (4.17), we calculate

Proposition 4.19. Let � = (01, 02, 03; 1, Y2, Y3) and F (�;., -) be an in Example 4.18.

Write

F (�;., -) =
2ℓ′∑
8=0

�
(3)
−ℓ′+8 (. )-

−ℓ′+8

Here ℓ = e3/2 ∈ 1
2Z. Then,

�
(3)
a (. ) = �(3)1,a (. ) + Y2�

(3)
2,a (. ) + Y

2
2�
(3)
3,a (. ) (4.18)

where

�
(3)
2,a (. ) = �

(3)
1,−a (. ),

�
(3)
3,a (. ) = Y2�

(3)
3,−a (. ).
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with

�
(3)
1,a (. ) =



. a+e3/2
b a+e3/22 c∑
8=0

.28 0 ≤ a + e3/2 ≤ e1, a ≡ e3/2 (2),

. a+e3/2+1
b a+e3/22 c∑
8=0

.28 0 ≤ a + e3/2 ≤ e1, a . e3/2 (2),

. a+e3/2
b e12 c∑
8=0

.28 e1 ≤ a + e3/2 ≤ e′2 − e1 − 2, a ≡ e3/2 (2),

. a+e3/2+1
b e12 c∑
8=0

.28 e1 ≤ a + e3/2 ≤ e′2 − e1 − 2, a . e3/2 (2),

. a+e3/2
b
a+e3/2−e′2+2

2 c∑
8=0

.28 e′2 − e1 − 2 ≤ a + e3/2 ≤ e′2 − 2, a ≡ e3/2 (2),

. a+e3/2+1
b
a+e3/2−e′2+2

2 c∑
8=0

.28 e′2 − e1 − 2 ≤ a + e3/2 ≤ e′2 − 2, a . e3/2 (2),

and

�
(3)
3,a (. ) =


(
a+e3/2−e2+e1∑

8=0
Y82

)
. e2 0 ≤ a + e3/2 − e2 + e1 ≤ e1,(

Y
a+e3/2−e2
2

e1∑
8=0
Y82

)
. e2 0 ≤ a + e3/2 − e2 ≤ e3/2 − e2.

Proof. We calculate:

-∓
e3
2

e1∑
8=0
(.2-±1)8

e′2
2 −8−1∑
9=0
(.-±1)2 9 = -∓

e3
2

e1∑
8=0

e′2
2 −8−1∑
9=0

.2(8+ 9)-±(8+2 9) .

and

. e2-−
e3
2 +e2−e1

e3−2e2+e1∑
9=0

(Y2-) 9
e1∑
8=0

- 8 = . e2

e1∑
8=0

e3−2e2+e1∑
9=0

Y
9

2-
8+ 9− e32 +e2−e1 .

The calculation is completed with the aid of Figures 4.3, 4.4, and 4.5. �
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8

9

8 +
9
=
e ′
2 /2 − 1

8
=
e1

(e1, 0)

(0, e′2/2 − 1)

(e1, e
′
2/2 − 1 − e1)

8 + 2 9 = e ′
2 − e1 − 2

8 + 2 9 = e1

Figure 4.3: Region of summation: 0 ≤ 8 ≤ e1; 0 ≤ 9 ≤ e′2
2 − 8 − 1.

8

9

(0, 0)

(0, e3 − 2e2 + e1)

(e1, 0)

(e1, e3 − 2e2 + e1)

8 +
9 −
e3 /2 +

e2 −
e1 = −e3 /2 +

e2

8 +
9 −
e3 /2 +

e2 −
e1 =

e3 /2 −
e2

Figure 4.4: Region of summation: 0 ≤ 8 ≤ e1; 0 ≤ 9 ≤ e3 − 2e′2 + e1.
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-

.

−-
+ .
=
e 3/2

−2
-
+ .

=
e 3

−-
+ .
=
e 3/2
+ e

1

. = e′2 − 2

(−e3/2, 0)

(−e3/2 + e1, 2e1)

(−e3/2 + e′2 − e1 − 2, e′2 − 2) (−e3/2 + e′2 − 2, e′2 − 2)

-

.

- +
.
=
e3 /2

2
-
+
.
=
e3

- +
.
=
e3 /2 +

e1

. = e′2 − 2

(e3/2, 0)

(e3/2 − e1, 2e1)

(e3/2 − e′2 + e1 + 2, e′2 − 2)(e3/2 − e′2 + 2, e′2 − 2)

Figure 4.5: Coefficient Polygons for -∓
e3
2
∑e1
8=0(.

2-±1)8 ∑ e′2
2 −8−1
9=0 (.-±1)2 9 .

Remark 4.20. Formulas (4.15) and (4.17) agree with Example (1) in Section 8 of [IK22b]
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4.5 An Algorithm for Computing the Laurent Polynomial

We combine (4.3) with Propositions 4.8, 4.12, and 4.14 into an algorithm for computing

F (�;., -). This method involves a strategic reorganization of Ikeda and Katsurada’s

original induction formulas. Our method allows us to profitably investigate portions of the

Laurent polynomial in isolation. We will see later that our method also exposes combi-

natorial aspects of the coefficients of the Laurent series. We start with some definitions:

Definition 4.21. Let � = (01, . . . , 02=; Y1, . . . , Y2=) be a naive EGK datum of length 2=.

For = ≥ 1, define the (as Cartesian products) the sets:

(
(=)
1 := {1, 2, 3}=−1, (

(=)
2 := {1,−1}=−1.

Let

Z := (Z2, . . . , Z=) ∈ ((=
′)

1 , f := (f2, . . . , f=) ∈ ((=
′)

2 .

For 1 ≤ < ≤ =, we defineLaurent polynomials; denoted� (2<−1)
(Z,f) (�;., -) and� (2<)(Z,f) (�;., -);

in the variable - 1
2 with coefficients in Z[.,.−1] inductively as follows. For < = 1, we set:

�
(1)
(Z,f) (�;., -) =

e1∑
8=0

-−
e1
2 +8,

�
(2)
(Z,f) (�;., -) =

e1∑
8=0
. 8-−

e2
2 +8

e2
2 −8∑
9=0

-2 9 − Y2

e1∑
8=0
. 8−1-−

e2
2 +8+1

e2
2 −8−1∑
9=0

-2 9 .
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Let < ≥ 2. Write ℓ′′ = e2<−2/2, ℓ′ = e2<−1/2, and ℓ = e2</2. Write

�
(2<−2)
(Z,f) (�;., -) =

e2<−2
2∑
8=0

�8 (. ) (k8+1(-) − Y2<−2.
−1k8 (-)), �8 (. ) ∈ Q(. ).

We define

�
(2<−1)
(Z,f) (�;., -) =


� (�;., -) if Z< = 1,

Y2
2<−2'(�;., -) if Z< = 2,

Y2<−1� (�;., -−1) if Z< = 3,

where

� (�;., -±1) = -∓
e2<−1

2

e2<−2
2∑
8=0

�ℓ′′−8 (. ) (.-±1)8
e′2<−2

2 −8−1∑
9=0

(.-±1)2 9 ,

and

'(�;., -)

= . e2<−2-−
e2<−1

2 +e2<−2

e2<−2
2∑
8=0

�ℓ′′−8 (. ) (.−1-−1)8
e2<−1−e2<−2−e1+8∑

9=0
(Y2<−2-) 9

− Y2<−2Y2<−1.
e2<−2-

e2<−1
2 −e2<−2+1

e2<−2
2∑
8=0

�ℓ′′−8 (. ) (.−1-)8
e2<−2−e1−8−1∑

9=0
(Y2<−2-) 9 .

Write

�
(2<−1)
(Z,f) (�;., -) =

e2<−1∑
8=0

�−ℓ′+8 (. )-−
e2<−1

2 +8, �8 (. ) ∈ Q(. ).
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Let : := min{2ℓ′, ℓ}. We define

�
(2<)
(Z,f) (�;., -) =


�+(., -) if f< = 1,

�−(., -) if f< = −1,

where

�+(., -) =
:∑
8=0
. 8�−ℓ′+8 (. )-−ℓ+8

ℓ−8∑
9=0

-2 9 − Y2<

:∑
8=0
. 8−1�−ℓ′+8 (. )-−ℓ+8+1

ℓ−8−1∑
9=0

-2 9 ,

and

�−(., -) =
2ℓ′∑
8=:+1

. 8�−ℓ′+8 (. )-ℓ−8+2
−ℓ+8−2∑
9=0

-2 9 − Y2<

2ℓ′∑
8=:+1

. 8−1�−ℓ′+8 (. )-ℓ−8+1
−ℓ+8−1∑
9=0

-2 9 .

The point of this formality is the following:

Theorem 4.22. Let � = (01, . . . , 02=; Y1, . . . , Y2=) be a naive EGK datum of length 2=.

With the notation of Definition 4.21, we have, for 0 ≤ < < =:

F (� (2<);., -) =
∑

(Z,f)∈( (2(=−<))1 ×( (2(=−<))2

�
(2(=−<))
(Z,f) (�;., -). (4.19)

Here � (2<) denotes the 2<-truncation of � from Definition 3.11.

Proof. This follows from (4.3) and Propositions 4.8, 4.12, 4.14 using an induction argument.

We note especially that '(�;., -) is defined to hold terms up to degree e2(=−<)
2 − e1 at each

step < = = − 1, . . . , 0. This might be more terms than necessary; however, we need to

carry all these terms at each step since the cancellations guaranteed by the symmetry of

F (� (2<);., -) will not happen until the we compute the sum (4.19) at the very last step.

A more careful analysis would be needed to reduce the degree bound e2(=−<)
2 − e1. �
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Chapter 5

Kohnen’s Phi Function

In [Koh02], Kohnen introduced a certain integer-valued function, denoted q(0; �), where

� ∈ S′2= (Z)
+ and 1 ≤ 0 | 5�. Notably, this function appears in the formula (21) of [Koh02]

for the Fourier coefficients of the Ikeda lift. In this chapter, we first formally define

q(0; �) following Kohnen’s exposition. Then, we calculate q(0; �) explicitly under certain

simplifying conditions on 0 using Kohnen’s definition. We will see that calculating q(0; �)

for all 0 | 5� via Kohnen’s definition is likely intractable. We then introduce a novel method

for computing q(0; �) in terms of the Laurent polynomial attached to the datum EGK(�).

We then demonstrate the application of our method to the calculation of q(0; �) for = = 1, 2.

5.1 Definition of Kohnen’s Phi Function

In this section, à la Kohnen, we formally define the function q(0; �) mentioned above.

First, we introduce some local quantities attached to a matrix � ∈ S′2= (Z)
+. Fix a prime ?.

Let +�,? := (F2=
? , @) be the quadratic space over the finite field F? where @ is the quadratic
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form obtained from the quadratic form - ↦→ C-�- , - ∈ Z2=, by reducing modulo ?. Write

+�,? = +
iso
�,? ⊕ +

′
�,?

Here, + iso
�,?

is a maximal isotropic subspace and + ′
�,?

is a complementary subspace. Define

B? = B? (�) := dim+ iso
�,? (5.1)

and

_? = _? (�) :=


1 if + ′

�,?
is a hyperbolic space or B? = 2=,

−1 otherwise.
(5.2)

Define a polynomial

�=,? (�; C) :=



1 if B? = 0
b B?−1

2 c∏
9=1
(1 − ?2 9−1C2) if B? > 0, B? odd

(1 + _? (�)?
B?−1

2 C)
b B?−1

2 c∏
9=1
(1 − ?2 9−1C2) if B? > 0, B? even

(5.3)

With 5� as in Definition 1.12, we define a function d� (?`), ` ≥ 0, via

∑̀
≥0
d� (?`)C` :=


(1 − C2)�=,? (�; C) if ? | 5�,

1 otherwise.
(5.4)

Define

D? (�) := GL2= (Z?)\{� ∈ M2= (Z?) ∩ GL2= (Q?) : �[�−1] is half-integral}. (5.5)
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Above, we recall �[�−1] := C�−1��−1. We now define Kohnen’s phi function:

Definition 5.1. For � ∈ S′2= (Z)
+, we define a function q(0; �) for 1 ≤ 0 | 5�, which we

call Kohnen’s phi function for �, as follows. For 0 = ?`, ? prime, and 0 ≤ ` ≤ ord? 5�, set

q(?`; �) := ?
`

2

b `2 c∑
a=0

∑
�∈D? (�)

ord? det(�)=a

d�[�−1] (?`−2a). (5.6)

We then extend q(0; �) multiplicatively to all 1 ≤ 0 | 5�.

5.2 Calculating Kohnen’s Phi Function via Brute Force

We now describe the algorithm we initially used to compute q(0; �) to develop conjectures.

Let ? be any prime.

Lemma 5.2. Fix a ≥ 0. A set of representatives � from GL2= (Z?)\M2= (Z?) ∩GL2= (Q?)

(where GL2= (Z?) acts by left multiplication) with ord? det(�) = a is given by:


� =

©«

?_1 01,2 · · · 01,2=

?_2
...

. . . 02=−1,2=

?_2=

ª®®®®®®®®¬
: _8 ≥ 0,

∑
8

_8 = a, 0 ≤ 08 9 < ?_ 9


. (5.7)

Proof. This is seen via Gaussian elimination and a routine calculation. �

Remark 5.3. Observe that the representatives in (5.7) all lie in M2= (Z) ∩ GL2= (Q).
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If ? is odd, we may assume that � takes a diagonal form:

� = ?`

©«
D1?

U1

. . .

D2=?
U2=

ª®®®®®¬
,

U1 ≤ · · · ≤ U2=,

D1, . . . , D2= ∈ Z×? .
(5.8)

We record a linear algebraic lemma:

Lemma 5.4. Let 1 ≤ = ≤ 4. Let

� =

©«
31

. . .

3=

ª®®®®®¬
, � =

©«
01,1 · · · 01,=

. . .
...

0=,=

ª®®®®®¬
.

Define,

�8,8 := 08,8 (1 ≤ 8 ≤ =).

Define recursively, in the lexicographic order � inherited from Z2,

�8, 9 := − ©«08, 9 +
∑
8<:< 9

�8,:0:, 9

0:,:

ª®¬ (1 ≤ 8 < 9 ≤ =)

Then,

� [�−1]8, 9 = �′8, 9 :=
1

08,80 9 , 9

8∑
:=1

�:,8�:, 9
3:

02
:,:

, (1 ≤ 8 ≤ 9 ≤ =) (5.9)

Remark 5.5. The formula for�8, 9 depends only on the quantities�8,: where (8, :) ≺ (8, 9).

Proof of Lemma 5.4. This was verified with the aid of SageMath. See Appendix B. �

75



Remark 5.6. This is likely true for arbitrary =. The algorithm we develop in this section

is prohibitively slow for = ≥ 4, so we opt to abstain from painstakingly verifying this result.

Corollary 5.7. Let 1 ≤ = ≤ 4. Let �, � be as in (5.7), (5.8), respectively. Define,

�8,8 := ?_8 (1 ≤ 8 ≤ 2=).

Define recursively, in the lexicographic order � inherited from Z2,

�8, 9 := − ©«08, 9 +
∑
8<:< 9

�8,:0:, 9

?_:

ª®¬ (1 ≤ 8 < 9 ≤ 2=)

Then,

�[�−1]8, 9 =
?`

?_8 ?_ 9

8∑
:=1

�:,8�:, 9
D: ?

U:

?2_:
, (1 ≤ 8 < 9 ≤ 2=). (5.10)

Proof. This follows immediately by specializing Lemma 5.7. �

5.3 Kohnen’s Phi Function for ` < ord? (cont�) − ord? (2)

Let’s calculate q(?`; �), ? any prime, = = 1, 2, 3, 4 in the case ` < ord? (cont�) − ord? (2).

We begin with the following observation:

Lemma 5.8. Suppose that � ∈ S′2= (Z) and � ∈ M2= (Z) ∩ GL2= (Q) (recall Remark 5.3).

If 2ord? det(�) < ord? (cont�) − ord? (2), then �[�−1] ≡ 0 mod ?.

Proof. Indeed, we have

�[�−1] := C�−1��−1 =
1

det(�)2
�[adj(�)] .
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Above, adj(�) := det(�) · �−1 denotes the adjugate of �. The adjugate lies in M2= (Z).

Thus ord? (cont�[adj(�)]) ≥ ord? (cont�). Therefore,

ord? (cont�[�−1]) = ord? (cont�[adj(�)]) − 2ord? det(�)

≥ ord? (cont�) − 2ord? det(�) > ord? (2).

Thus, looking at the definition (3.4), we see that �[�−1] ≡ 0 mod ?. �

We now introduce a combinatorial object related to the sets D? (�). Define

[a]3 :=

{
(_1, . . . , _3) ∈ Z3 : _8 ≥ 0,

∑
8

_8 = a

}
, (5.11)

and

D? (�)a := {� ∈ D? (�) : ord? det(�) = a}. (5.12)

We observe:

Lemma 5.9. Given � ∈ S′2= (Z) and 2a < ord? (cont�) − ord? (2), we have:

#D? (�)a =
∑

(_8)∈[a]2=

2=∏
8=1

? (8−1)_8 . (5.13)

Proof. Via Lemma 5.8, we know �[�−1] ≡ 0 mod ? for all � ∈ M2= (Z) ∩ GL2= (Q) with

ord? det(�) = a. FromRemark 5.3, and definitions (5.5) and (5.12), we see #D? (�)a equals

the size of the set (5.7). The result follows from the parameterization given in (5.7). �

We now are ready to calculate:
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Proposition 5.10. Let � ∈ S′2(Z)
+. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?` . (5.14)

Proof. We noted �[�−1] is zero modulo ? for all� ∈ D? (�) for which 2ord? det(�) ≤ `.

Thus B? (�[�−1]) = 2 and _? (�[�−1]) = 1 for all such �. We calculate

d(?a) := d�[�−1] (?a) =



1 if a = 0

?
1
2 if a = 1

−1 if a = 2

−? 1
2 if a = 3

0 otherwise.

Assume ` is even. By definition,

q(?`; �) :=?
`

2

(
#D? (�)`/2 · d(1) + #D? (�)`/2−1 · d(?2)

)
.

Using Lemma 5.9, the quantity is parentheses equals,

∑
(_8)∈[`/2]2

2∏
8=1

? (8−1)_8 −
∑

(_8)∈[`/2−1]2

2∏
8=1

? (8−1)_8 =
`/2∑
8=0

?8 −
`/2−1∑
8=0

?8 = ?
`

2 .

Thus,

q(?`; �) = ?
`

2 · ?
`

2 = ?`

The calculation is essentially the same when ` is odd. �
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Proposition 5.11. Let � ∈ S′4(Z)
+. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X2 (`)

2
∑

(_8)∈[b`/2c]2

2∏
8=1

? (8+1)_8 = ?
`+

⌊
`+1

2

⌋ b`/2c∑
8=0

?8, (5.15)

where,

X2(`) =


0 if ` even,

3 if ` odd.

Proof. We’ve noted �[�−1] is zeromodulo ? for all� ∈ D(�) forwhich 2ord? det(�) ≤ `.

Thus B? (�[�−1]) = 4 and _? (�[�−1]) = 1 for all such �. We calculate

d(?a) := d�[�−1] (?a) =



1 if a = 0

?
3
2 if a = 1

−(? + 1) if a = 2

−? 3
2 (? + 1) if a = 3

? if a = 4

?
3
2 ? if a = 5

0 otherwise.

Assume ` is even. By definition,

q(?`; �) := ?
`

2

(
#D? (�)`/2 · d(1) + #D? (�)`/2−1 · d(?2) + #D? (�)`/2−2 · d(?4)

)
.
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Using Lemma 5.9, the expression inside the parentheses equals

∑
(_8)∈[`/2]4

4∏
8=1

? (8−1)_8 − (? + 1)
∑

(_8)∈[`/2−1]4

4∏
8=1

? (8−1)_8 + ?
∑

(_8)∈[`/2−2]4

4∏
8=1

? (8−1)_8 .

Note, for : = 1, 2, we have

∑
(_8)∈[`/2−:]4

4∏
8=1

? (8−1)_8 =
∑

(_8)∈[`/2−:+1]4
_1≥1

4∏
8=1

? (8−1)_8 .

Thus

q(?`;)) = ?
`

2

©«
∑

(_8)∈[`/2]4
_1=0

4∏
8=1

? (8−1)_8 − ?
∑

(_8)∈[`/2−1]4
_1=0

4∏
8=1

? (8−1)_8
ª®®®¬

= ?
`

2
©«

∑
(_8)∈[`/2]3

3∏
8=1

?8_8 − ?
∑

(_8)∈[`/2−1]3

3∏
8=1

?8_8
ª®¬ .

Observe

?
∑

(_8)∈[`/2−1]3

3∏
8=1

?8_8 =
∑

(_8)∈[`/2]3
_1≥1

3∏
8=1

?8_8 .

Finally,

q(?`;)) = ?
`

2
∑

(_8)∈[`/2]3
_1=0

3∏
8=1

?8_8 = ?
`

2
∑

(_8)∈[`/2]2

2∏
8=1

? (8+1)_8

= ?
`

2

`/2∑
:=0

?2( `2 −:)+3: = ?
`

2

`/2∑
:=0

?`+: = ?`+
`

2 (1 + ? + · · · + ?
`

2 ).

The calculation is essentially the same when ` is odd. �
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We’ll see that for � ∈ S′6(Z)
+, q(?`; �) no longer has a closed form series expression.

The proof is quite satisfying for those who enjoy combinatorics.

Proposition 5.12. Let � ∈ S′6(Z)
+. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X3 (`)

2
∑

(_8)∈[b`/2c]4
_2=0

4∏
8=1

? (8+1)_8 . (5.16)

where,

X3(`) =


0 if ` even,

5 if ` odd.

Proof. We’ve noted �[�−1] is zeromodulo ? for all� ∈ D(�) forwhich 2ord? det(�) ≤ `.

Thus B? (�[�−1]) = 6 and _? (�[�−1]) = 1 for all such �. We calculate

d(?a) := d�[�−1] (?a) =



1 if a = 0

?
5
2 if a = 1

−(1 + ? + ?3) if a = 2

−? 5
2 (1 + ? + ?3) if a = 3

? + ?3 + ?4 if a = 4

?
5
2 (? + ?3 + ?4) if a = 5

−?4 if a = 6

−? 5
2 ?4 if a = 7

0 otherwise.
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Assume ` is even. By definition,

q(?`; �) := ?
`

2

(
#D? (�)`/2 · d(1) + #D? (�)`/2−1 · d(?2)

+#D? (�)`/2−2 · d(?4) + #D? (�)`/2−3 · d(?6)
)
.

Using Lemma 5.9, the expression inside the parentheses equals

∑
(_8)∈[`/2]6

6∏
8=1

? (8−1)_8 − (1 + ? + ?3)
∑

(_8)∈[`/2−1]6

6∏
8=1

? (8−1)_8

+ (? + ?3 + ?4)
∑

(_8)∈[`/2−2]6

6∏
8=1

? (8−1)_8 − ?4
∑

(_8)∈[`/2−3]6

6∏
8=1

? (8−1)_8 .

Note, for : = 1, 2, 3, we have

∑
(_8)∈[`/2−:]6

6∏
8=1

? (8−1)_8 =
∑

(_8)∈[`/2−:+1]6
_1≥1

6∏
8=1

? (8−1)_8
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Thus,

q(?`; �)

= ?
`

2

©«
∑

(_8)∈[`/2]6
_1=0

6∏
8=1

? (8−1)_8 − ?
∑

(_8)∈[`/2−1]6
_1=0

6∏
8=1

? (8−1)_8

−?3
∑

(_8)∈[`/2−1]6
_1=0

6∏
8=1

? (8−1)_8 + ?4
∑

(_8)∈[`/2−2]6
_1=0

6∏
8=1

? (8−1)_8
ª®®®¬

= ?
`

2
©«

∑
(_8)∈[`/2]5

5∏
8=1

?8_8 − ?
∑

(_8)∈[`/2−1]5

5∏
8=1

?8_8

−?3
∑

(_8)∈[`/2−1]5

5∏
8=1

?8_8 + ?4
∑

(_8)∈[`/2−2]5

5∏
8=1

?8_8
ª®¬

Note, for : = 1, 2, we have

?
∑

(_8)∈[`/2−:]5

5∏
8=1

?8_8 =
∑

(_8)∈[`/2−:+1]5
_1≥1

5∏
8=1

?8_8 .

Thus,

q(?`; �) = ?
`

2

©«
∑

(_8)∈[`/2]5
_1=0

5∏
8=1

?8_8 − ?3
∑

(_8)∈[`/2−1]5
_1=0

5∏
8=1

?8_8
ª®®®¬

= ?
`

2
©«

∑
(_8)∈[`/2]4

4∏
8=1

? (8+1)_8 − ?3
∑

(_8)∈[`/2−1]4

4∏
8=1

? (8+1)_8
ª®¬

83



Observe

?3
∑

(_8)∈[`/2−1]4

4∏
8=1

? (8+1)_8 =
∑

(_8)∈[`/2]4
_2≥1

4∏
8=1

? (8+1)_8 .

Thus,

q(?`; �) = ?
`

2
∑

(_8)∈[`/2]4
_2=0

4∏
8=1

? (8+1)_8 .

The calculation is essentially the same when ` is odd. �

We assume � ∈ S′6(Z)
+ and 0 ≤ ` < ord? (cont�) − ord? (2) in the table below:

` q(?`; �)

0 1

2 ?(?2 + ?4 + ?5)

4 ?2(?4 + ?6 + ?7 + ?8 + ?9 + ?10)

6 ?3(?6 + ?8 + ?9 + ?10 + ?11 + 2?12 + ?13 + ?14 + ?15)

8 ?4(?8 + ?10 + ?11 + ?12 + ?13 + 2?14 + ?15 + 2?16 + 2?17 + ?18 + ?19 + ?20)

We omit the proof of the next result, as the technique is the same as in Proposition 5.12.

Proposition 5.13. Let � ∈ S′8(Z)
+. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X4 (`)

2
∑

(_8)∈[b`/2c]6
_2=_4=0

6∏
8=1

? (8+1)_8 . (5.17)
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where,

X4(`) =


0 if ` even,

7 if ` odd.

We assume � ∈ S′8(Z)
+ and 0 ≤ ` < ord? (cont�) − ord? (2) in the table below:

` q(?`; �)

0 1

2 ?(?2 + ?4 + ?6 + ?7)

4 ?2(?4 + ?6 + 2?8 + ?9 + ?10 + ?11 + ?12 + ?13 + ?14)

6 ?3(?6 + ?8 + 2?10 + ?11 + 2?12 + ?13 + 2?14 + 2?15 + ?16 + ?17 + ?18 + ?19 + ?20 + ?21)

With Propositions 5.11, 5.12, and 5.13 in mind, we (correctly) conjecture:

Theorem 5.14. Let � ∈ S′2= (Z)
+, = > 1. For ` < ord? (cont�) − ord? (2), we have

q(?`; �) = ?
`

2 +
X= (`)

2
∑

(_8)∈[b`/2c]2=−2
_28=0, 8<=−1

2=−2∏
8=1

? (8+1)_8 . (5.18)

where,

X= (`) =


0 if ` even,

(2= − 1) if ` odd.

Remark 5.15. We will delay the proof of Theorem 5.14 to Chapter 6.
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5.4 Calculating Kohnen’s Phi Function via EGK Data

In the previous section, we introduced Kohnen’s phi function q(0; �) as a sum over a rather

unwieldy space of matrices denotedD? (�)a. We saw that, under a certain simplifying con-

dition; namely ` < ord? (cont�) −ord? (2); we may compute q(?`; �) using the cardinality

formula for D? (�)a in Lemma 5.9 (which applies for only 2a ≤ ` with the simplifying

condition on ` above) and then applying some combinatorial identities. Unfortunately,

calculating q(0; �) in general via Definition 5.1 seems intractable. In this section, we will

introduce an alternative way to compute q(0; �) for all 0 | 5�. We start with the following

two results which connect q(0; �) to the Laurent polynomial for EGK(�). Firstly, Kohnen

and Choie relate q(0; �) to the Siegel series as follows:

Theorem 5.16. ([CK08, Main Result]) Let � ∈ S2= (Z)+. For ? | 5�, we have

�̃? (�; -) =
ℓ?+1∑
9=1

q(?ℓ?− 9+1; �)?−
ℓ?− 9+1

2

(
k 9 (-) −

(
��,0

?

)
?−

1
2k 9−1(-)

)
, (5.19)

where ℓ = ℓ? := ord? 5� and

k 9 (-) =
- 9 − -− 9
- − -−1 = - 9−1 + - 9−3 + · · · + -− 9+3 + -− 9+1. (5.20)

.

Secondly, Ikeda and Katsurada connect the Siegel series to the Laurent polynomial via:

Theorem 5.17. ([IK22b, Theorem 1.1]) Let � ∈ S′2= (Z?)
nd. Then,

�̃? (�; -) = F (EGK(�); ? 1
2 , -).
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We recall from (1.6) and Definition 3.8 that:

Y2= := b (�) :=
(
��,0

?

)
. (5.21)

With Theorems 5.16, 5.17, Corollary 3.18, and (5.21) in mind, we define:

Definition 5.18. Let � = (01, . . . , 02=; Y1, . . . , Y2=) be a naive EGK datum of length 2=.

We define a function q(`, �;. ), for 0 ≤ ` ≤ ℓ := e2=/2, implicitly from the relation:

F (�;., -) =
ℓ+1∑
9=1

q(ℓ − 9 + 1, �;. ).−(ℓ− 9+1)
(
k 9 (-) − Y2=.

−1k 9−1(-)
)
. (5.22)

We call q(`, �;. ) Kohnen’s phi function attached to �.

Remark 5.19. q(`, �;. ) is well-defined via Proposition 4.5 and Lemma 1 of [CK08].

Remark 5.20. Note, by comparing Definition 5.18 with (5.19), we have:

q(?`; �) = q(`,EGK(�) (?); ? 1
2 ). (5.23)

Thus q(`, �;. ) captures far more data than q(?`; �) about �. In future chapters, we will

study q(`, �;. ) in more detail. For now, we explore applications to computing q(?`; �):

The following key result allows us to compute q(`, �;. ) in terms of F (�′;., -).

Theorem 5.21. Let � = (01, . . . , 02=; Y1, . . . , Y2=) be a naive EGK datum of length 2=.

Let �′ := (01, . . . , 02=−1; Y1, . . . , Y2=−1) and set ℓ′ := e2=−1/2, ℓ := e2=/2. Write

F (�′;., -) =
2ℓ′∑
8=0

�
(2=−1)
−ℓ′+8 (. )-

−ℓ′+8
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Then,

q(`, �;. ) = .2` (� (2=−1)
−ℓ′+` (. ) − � (`, �−;. )), 0 ≤ ` ≤ ℓ.

Here, �− is the symmetric Laurent polynomial in - of degree < −ℓ + 2ℓ′ ≤ ℓ defined via:

�−(., -) :=
2ℓ′∑

8=<+1
. 8�−ℓ′+8 (. ) (k−ℓ+8−1(-) − Y2=.

−1k−ℓ+8 (-)), < := min{2ℓ′, ℓ}.

The � (`, �−;. ) ∈ Q(. ) are so that, in the Y2=-Kohnen-Choie basis, we have:

�−(., -) =
ℓ∑
8=0
. 8� (8, �−;. ) (kℓ−8+1(-) − Y2=.

−1kℓ−8 (-)).

Proof. This follows from Proposition 4.8, Remark 4.9, and Definition 5.18. �

Remark 5.22. The statement of Theorem 5.21 suffers from awkward indexing. The issue

arises as q(`, �;. ) evaluated at ` = 0 corresponds to the coefficient of -−ℓ′ in F (�′;., -).

Remark 5.23. Ikeda and Katsurada have used a similar type of induction formula to obtain

estimates of the Fourier coefficients of the Ikeda lift. Refer to [IK22a, Theorems 5.6 & 5.7].

As a corollary, we obtain a new tool for computing q(?`; �).

Corollary 5.24. Let � ∈ S′2= (Z)
nd. Let � := EGK(�) (?); take � ∈ Υ−1(�) ⊆ N�� =.

Let � = (01, . . . , 02=; Y1, . . . , Y2=). Let �′ := (01, . . . , 02=−1; Y1, . . . , Y2=−1) ∈ N�� =−1.

Set ℓ′ := e2=−1/2, ℓ := e2=/2. Write

F (�′; ? 1
2 , -) =

2ℓ′∑
8=0

�
(2=−1)
−ℓ′+8 -

−ℓ′+8 .
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Then,

q(?`; �) = ?` (� (2=−1)
−ℓ′+` − � (`, �−)), 0 ≤ ` ≤ ℓ,

Here, �− is the symmetric Laurent polynomial in - of degree < −ℓ + 2ℓ′ ≤ ℓ defined via:

�−(-) :=
2ℓ′∑

8=<+1
?
8
2�−ℓ′+8

(
k−ℓ+8−1(-) −

(
��,0

?

)
?−

1
2k−ℓ+8 (-)

)
, < := min{2ℓ′, ℓ}.

The � (`, �−) ∈ Q are so that, in the basis k 9+1(-) −
(��,0
?

)
?−1/2k 9 (-), we have:

�−(-) =
ℓ∑
8=0

?
8
2� (8, �−)

(
kℓ−8+1(-) −

(
��,0

?

)
?−

1
2kℓ−8 (-)

)
.

Proof. This follows from Theorems 5.16, 5.17, 5.21, Corollary 3.18, and (5.21). �

Remark 5.25. We recall that q(?`; �) is defined only for 0 ≤ ` ≤ ord? 5� = e2=/2 =: ℓ.

The proofs below implicitly assume ` ≤ ℓ.

5.5 Explicit Formulas for Kohnen’s Phi Function for = =

1, 2

We may now compute Kohnen’s phi function with our new tools:

Proposition 5.26. (Confer Proposition 5.10 and [Koh02, Proposition 3]) Let � ∈ S′2(Z?)
+.

Then,

q(?`; �) =


?` if ` ≤ ord? (cont�),

0 otherwise.
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Proof. Write � := EGK(�) = (01, 02; 1, Y2). We recall that ord? (cont�) = e1 = 01 ≤ 02;

we also recall ord? 5� = b(01 + 02)/2c =: e2/2 =: ℓ. Therefore 01 ≤ ℓ. From (4.2), we have

F (�′; ? 1
2 , -) =

2ℓ′∑
8=0

-−ℓ
′+8, ℓ′ :=

e1
2
, e1 = 01.

Since 01 ≤ 02, we have:

ℓ + 1 =
e2
2
+ 1 =

⌊01 + 02
2

⌋
+ 1 ≥ 01 + 02 − 1

2
+ 1 > 01 = 2ℓ′.

In the notation of Corollary 5.24, this implies �−(-) = 0. Thus,

q(`; �) = ?`� (1)−ℓ′+` .

From the expression for F (�′; ? 1
2 , -) above, we have:

�
(1)
−ℓ′+` =


1 if ` ≤ 01,

0 otherwise.

The result follows immediately. �

We may generalize the vanishing phenomenon of Proposition 5.26:

Proposition 5.27. Let � ∈ S′2= (Z)
+. Then q(?`; �) = 0 for e2=−1 < ` ≤ e2=/2.

Proof. Write ℓ := e2=/2, ℓ′ := e2=−1/2. Then ` > 2ℓ′. If 2ℓ′ ≥ ℓ, the statement is vacuous.

Thus, we may assume 2ℓ′ < ℓ. In the notation of Corollary 5.24, this implies �−(-) = 0.

Thus,

q(`; �) = ?`� (1)−ℓ′+` .
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Moreover, since −ℓ′ + ` > −ℓ′ + 2ℓ′ = ℓ′ ≥ 0, we have � (2=−1)
−ℓ′+` = 0. Hence the claim. �

Remark 5.28. While we have e1 ≤ e2/2, in general, e2=−1 � e2=/2.

We now record elementary estimate:

Lemma 5.29. For (01, . . . , 02=) ∈ Z=≥0 non-decreasing and e8 as in Definition 4.2:

e2= − e2=−1 ≥ max{01, 02= − 1} ≥ 01.

Proof. In the case 01 = · · · = 02=, we have

e2= − e2=−1 := 2
⌊01 + · · · + 02=

2

⌋
− (01 + · · · + 02=−1) = 02= = 01.

Otherwise, when 02= ≥ 01 + 1, we have

e2= − e2=−1 := 2
⌊01 + · · · + 02=

2

⌋
− (01 + · · · + 02=−1)

≥ (01 + · · · + 02= − 1) − (01 + · · · + 02=−1)

≥ 02= − 1 ≥ 01.

�

Proposition 5.30. ([See Proposition 5.11]) Let � ∈ S′4(Z?)
+. For ` < ord? (cont�),

q(?`; �) = ?`+
⌊
`+1

2

⌋ b`/2c∑
8=0

?8 .
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Proof sketch. We use the notation of Proposition 4.19. As in Proposition 5.26,we have:

�
(3)
−ℓ′+` (. ) = �

(3)
1,−ℓ′+` = .

`+X1 (`)
b`/2c∑
8=0

.28 .

Via Lemma 5.29, we have:

ℓ − (−ℓ + 2ℓ′) = 2ℓ − 2ℓ′ = e4 − e3 ≥ 01.

In the notation of Corollary 5.24, this means �− does not contribute to q(?`; �), ` < 01.

That is, �− is a polynomial of degree < −ℓ + 2ℓ′ ≤ ℓ − 01 in -; but q(?`; �), ` < 01

depends on the coefficients of -a for a > ℓ − 01. Thus, using Corollary 5.24, we calculate:

q(?`;)) = ?`� (3)−ℓ′+` (?
1
2 ) = ?`?

`

2 +
X1 (`)

2

b`/2c∑
8=0

?8 = ?
`+

⌊
`+1

2

⌋ b`/2c∑
8=0

?8 .

�

Remark 5.31. We have omitted details (principally, that the remaining coefficients �(3)2,a

and �(3)3,a of Proposition 4.19 do not contribute to q(?`; �) for ` < 01) from the proof of

Proposition 5.30 since we will generalize this calculation in Proposition 6.2 with full details.
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Chapter 6

Combinatorial Aspects of F (�;., -)

In this chapter, we fruitfully combine the results of Chapters 4 and 5 to study certain

combinatorial interpretations of Kohnen’s phi function (attached to an EGK datum). These

combinatorial aspects; which were foreshadowed in Propositions 5.11, 5.12, 5.13 and

Theorem 5.14; will be extended as far as possible with the aid of algorithm in Section 4.5.

6.1 Proof of Theorem 5.14

In this section, we prove the following generalization of Theorem 5.14:

Theorem 6.1. Let � ∈ N�� 2=, with = > 1. Then for ` < e1,

q(`, �;. ) = . `+X= (`)
∑

(_8)∈[b`/2c]2=−2
_28=0, 8<=−1

2=−2∏
8=1

.2(8+1)_8 , (6.1)
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where

X= (`) =


0 if ` even,

2= − 1 if ` odd.

Now, we prove the base case of of Theorem 6.1:

Lemma 6.2. Let � ∈ N�� 4. For ` < e1, we have

q(`, �;. ) = . `+X2 (`)
∑

(_8)∈[b`/2c]2

.4_1+6_2 , (6.2)

-

.

-
=
−ℓ

-
=
ℓ

-
=
−ℓ
+
0

1 -
=
ℓ
−
0

1

Figure 6.1: Coefficient Polygon for F (�′;., -) Shifted for Application of Theorem 5.21

Proof. Our calculation relies on Proposition 4.19, which gives an explicit formula for

F (�′;., -), where �′ ∈ N�� 3 is the 1-truncation of �, and Theorem 5.21, which
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connects the coefficients of F (�′;., -) to Kohnen’s phi function for �. First, we note

that the terms � (`, �−;. ) do not contribute to q(`, �;. ) for ` < e1, via the argument

used in the proof of Proposition 5.30. In brief, �− is a symmetric Laurent polynomial in

- of degree < ℓ − e1; but q(`, �;. ) for ` < e1 depends on the coefficients of -a for

|a | > ℓ− e1. We now show that the the coefficients �(3)2,a (. ) and �
(3)
3,a (. ) in Proposition 4.19

do not contribute to q(`, �;. ) for ` < e1. In view of Theorem 5.21, we must show that the

coefficients �(3)2,a (. ) and �
(3)
3,a (. ) vanish when −ℓ

′ ≤ a < −ℓ′ + e1. We proceed as follows:

Claim I: �(3)2,a (. ) = 0 for −ℓ′ ≤ a < −ℓ′ + e1.

Via Proposition 4.19, �(3)2,a (. ) = 0 except possibly when ℓ′ − e′2 + 2 ≤ a ≤ ℓ′. Now,

−ℓ′ + e1 < ℓ
′ − e′2 + 2,

since

2ℓ′ − e′2 + 2 = (01 + 02 + 03) − 2
⌊
01 + 02 + 1

2

⌋
+ 2 ≥ 03 + 1 > 01 =: e1.

Hence Claim I holds.

Claim II: �(3)3,a (. ) = 0 for −ℓ′ ≤ a < −ℓ′ + e1.

Via Proposition 4.19, �(3)3,a (. ) = 0 except possibly when −ℓ′+ e2 − e1 ≤ a ≤ ℓ′− e2 + e1.

We estimate

−ℓ′ + e1 ≤ −ℓ′ + e2 − e1,

since, via Lemma 5.29, we have

e2 − e1 ≥ 01 =: e1.
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Hence Claim II holds.

Therefore, as claimed, q(`, �;. ) depends only on the coefficients �(3)1,a (. ) for ` < e1.

Thus, in view of Theorem 5.21:

q(`, �;. ) = .2`�
(3)
1,−ℓ′+` (. ).

Using the formulas in Proposition 4.19, we calculate

q(`, �;. ) = .2`. `+X1 (`)
b`/2c∑
8=0

.28 = . `+X2 (`)
b`/2c∑
8=0

.2`+28+(X1 (`)−X2 (`)) .

On the other hand, we have:

∑
[b`/2c]2

.4_1+6_2 =

b`/2c∑
8=0

.4(b `2 c−8)+68 =
b`/2c∑
8=0

.4b `2 c+28 =
b`/2c∑
8=0

.2`+28+(X1 (`)−X2 (`)) .

Above, we have used the identity:

4
⌊ `
2

⌋
= 2` + (X1(`) − X2(`)).

�

We will now complete the induction argument. For `, a ≥ 0, define

Π
(2<)
(`,a) :=

{
(_1, . . . , _2<) ∈ [`]2< : _28 = 0, 8 < < − 1;

∑
8

(8 + 1)_8 = a;
}
. (6.3)

Our induction argument requires the following combinatorial lemma:
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Lemma 6.3. We have

#Π(2=)(b`/2c,a/2+(2b`/2c−`)) =
b`/2c∑
8=0

#Π(2=−2)
(8,a/2−`) .

Proof. This result follows from the bijection: for 0 ≤ 8 ≤ b`/2c,

Π
(2=−2)
(8,a/2−`) ⇔ Subset of Π(2=)(b`/2c,a/2+(2b`/2c−`)) 3 (_

′
8) with _′1 =

⌊ `
2

⌋
− 8.

To see this, let (_1, · · · , _2=−2) ∈ #Π(2=−2)
(8,a/2−`) with 0 ≤ 8 ≤ b`/2c. That is,

2=−2∑
9=1

_ 9 = 8,

2=−2∑
9=1
( 9 + 1)_ 9 =

a

2
− `.

Define (_′1, . . . , _
′
2=) ∈ Z

2= via:

_′1 =
⌊ `
2

⌋
− 8; _′2 = 0; _′9 = _ 9−2, 9 > 2.

Then

2=∑
9=1
_′9 = _

′
1 + _

′
2 +

2=∑
9=3
_′9 =

( ⌊ `
2

⌋
− 8

)
+

2=−2∑
9=1

_ 9 =

⌊ `
2

⌋
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and

2=∑
9=1
( 9 + 1)_′9 = 2_′1 + 3_′2 +

2=−2∑
9=1
( 9 + 3)_ 9

= (2_′1 + 3_′2) + 2
2=−2∑
9=1

_ 9 +
2=−2∑
9=1
( 9 + 1)_ 9

= 2
( ⌊ `

2

⌋
− 8

)
+ 28 +

( a
2
− `

)
=
a

2
+

(
2
⌊ `
2

⌋
− `

)
Thus (_′

9
) ∈ #Π(2=)(b`/2c,a/2+(2b`/2c−`)) with _

′
1 =

⌊ `
2
⌋
− 8. The reverse direction is clear. �

We will now prove Theorem 6.1:

Proof of Theorem 6.1. The base case is Lemma 6.2. Assume the claim holds for all � ∈

N�� 2= for a fixed = > 1. Fix ` < e1. Let � ∈ N�� 2=+2. Therefore �′′ ∈ N�� 2=.

Here�′′ denotes the 2-truncation of�. Via the induction hypothesis we have, for 0 ≤ 8 ≤ `,

q(8, �′′;. ) = . 8+X= (8)
∑

(_: )∈[b8/2c]2=−2
_2:=0, :<=−1

2=−2∏
:=1

.2(:+1)_: = . 8+X= (8)
∑
9≥0

�
(2=)
(8, 9).

9 ,

where,

�
(2=)
(8, 9) := #Π(2=−2)

(b8/2c, 9/2) .

From Proposition 4.12, we have

F (�′;., -) = � (�′;., -) + Y2=+1� (�′;., -−1) + Y2
2='(�

′;., -).
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where

� (�′;., -) = -−
e2=+1

2

e2=
2∑
8=0

q(8, �′′;. )- 8
e′2=
2 −8−1∑
9=0
(.-)2 9 . (6.4)

As in the proof of Lemma 6.2, we will show that the coefficients of the latter two Laurent

polynomials � (�′;., -−1) and '(�′;., -) do not contribute to q(`, �;. ) for 0 ≤ ` < e1.

Before this, we briefly note, that, as in the proofs of Proposition 5.30 and Theorem 6.2, the

terms � (`, �−;. ) of Theorem 5.21 do not contribute to q(`, �;. ) for 0 ≤ ` < e1. Now,

Claim I: � (�′;., -−1) does not contribute to q(`, �;. ) for 0 ≤ ` < e1.

The coefficients of -a in � (�′;., -−1) vanishes except when e2=+1
2 −e

′
2=+2 ≤ a ≤ e2=+1

2 .

We estimate:

−e2=+1
2
+ e1 <

e2=+1
2
− e′2= + 2,

since

e2=+1 − e′2= + 2 = (01 + · · · + 02= + 02=+1) − 2
⌊
01 + · · · + 02= + 1

2

⌋
+ 2 ≥ 02=+1 + 1 > 01 =: e1.

Hence Claim I holds.

Claim II: '(�′;., -) does not contribute to q(`, �;. ) for 0 ≤ ` < e1.

Indeed, by Proposition 4.14, we know '(�′;., -) is a polynomial of degree ≤ e2=+1
2 −e1.

Hence Claim II holds.

Now, write

� (�′;., -) =
2ℓ′∑
8=0

�
(2=+1)
−ℓ′+8 (. )-

−ℓ′+8, �
(2=+1)
−ℓ′+8 (. ) ∈ Q(. ).

99



Using (6.4), we calculate the coefficient

�
(2=+1)
−ℓ′+` (. ) =

∑
0≤8≤`

8≡` mod 2

q(8, �′′;. ). `−8 .

Above, we have used the fact that, for 0 ≤ 8 ≤ ` with 8 ≡ ` mod 2, we have:

8 ≤ e2=
2
,

` − 8
2
≤
e′2=
2
− 8 − 1.

Indeed, 8 ≤ ` < e1 ≤ e2=/2. Moreover, the latter inequality is equivalent to 8 ≤ e′2= − ` − 2.

We estimate:

8 ≤ ` < e1 ≤ e′2= − e1 < e
′
2= − `.

As two of the inequalities are strict, we get the desired estimate. Now, from Theorem 5.21:

q(`, �;. ) = .2`�
(2=+1)
−ℓ′+` (. ) = .

2`
∑

0≤8≤`
8≡` mod 2

q(8, �′′;. ). `−8 .

Plugging in the expression for q(8, �′′;. ) and noting X= (8) = X= (`) for 8 ≡ ` mod 2 yields:

q(`, �;. ) = .2`
∑

0≤8≤`
8≡` mod 2

©«. 8+X= (8)
∑
9≥0

�
(2=)
(8, 9).

9ª®¬. `−8 = . `+X= (`)
∑

0≤8≤`
8≡` mod 2

∑
9≥0

�
(2=)
(8, 9).

2`+ 9 .
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Swapping the order of summation and making the change of variable a = 2` + 9 :

q(`, �;. ) = . `+X= (`)
∑
a≥2`

©«
∑

0≤8≤`
8≡` mod 2

�
(2=)
(8,a−2`)

ª®®®¬.
a

= . `+X=+1 (`)
∑
a≥2`

©«
∑

0≤8≤`
8≡` mod 2

�
(2=)
(8,a−2`)

ª®®®¬.
a+2(2b`/2c−`)

Above, we have used that X=+1(`) = X= (`) + 2(` − 2b`/2c), which follows from:

2(` − 2b`/2c) =


0 if ` even,

2 if ` odd.

Now, via the definition of � (2=)(8,a−2`) and a change of variable:

∑
0≤8≤`

8≡` mod 2

�
(2=)
(8,a−2`) =

∑
0≤8≤`

8≡` mod 2

#Π(2=−2)
(b8/2c,a/2−`) =

b`/2c∑
8=0

#Π(2=−2)
(8,a/2−`) . (6.5)

Thus, via Lemma 6.3, we have:

q(`, �;. ) = . `+X=+1 (`)
∑
a≥2`

#Π(2=)(b`/2c,a/2+(2b`/2c−`)).
a+2(2b`/2c−`) (6.6)

We calculate an alternate expression for this series. The definition of Π(2=)(b`/2c, 9/2) gives:

∑
(_8)∈[b`/2c]2=
_28=0, 8<=

2=∏
8=1
.2(8+1)_8 =

∑
9≥0

#Π(2=)(b`/2c, 9/2).
9 .
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By definition, we know Π(2=)(b`/2c, 9/2) is empty unless:

2
⌊ `
2

⌋
= 2

∑
8

_8 ≤
∑
8

(8 + 1)_8 =
9

2
.

Thus,

∑
(_8)∈[b`/2c]2=
_28=0, 8<=

2=∏
8=1
.2(8+1)_8 =

∑
9≥4b`/2c

#Π(2=)(b`/2c, 9/2).
9

Making the change of variable a = 9 + 2(` − 2b`/2c), we have

∑
(_8)∈[b`/2c]2=
_28=0, 8<=

2=∏
8=1
.2(8+1)_8 =

∑
a≥2`

#Π(2=)(b`/2c,a/2+(2b`/2c−`)).
a+2(2b`/2c−`) .

Comparing this with (6.6), we conclude

q(`, �;. ) = . `+X=+1 (`)
∑

(_8)∈[b`/2c]2=
_28=0, 8<=

2=∏
8=1
.2(8+1)_8 .

This completes the induction. �

We have thus verified a stronger version (without the ord? (2) term) of Theorem 5.14:

Theorem 6.4. Let � ∈ S′2= (Z?)
+, = > 1. For ` < ord? (cont�), we have

q(?`; �) = ?
`

2 +
X= (`)

2
∑

(_8)∈[b`/2c]2=−2
_28=0, 8<=−1

2=−2∏
8=1

? (8+1)_8 . (6.7)
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where,

X= (`) =


0 if ` even,

2= − 1 if ` odd.

Proof. This follows immediately from (5.23) and Theorem 6.1. �

We can express these results in a cleaner form (by removing the parts with _28 = 0):

Remark 6.5. Given _ := (_8) ∈ Z=, define the partition weight function:

F= (_) :=
=−1∑
8=1

28_8 + (2= − 1)_=.

Then, in Theorem 6.1, we have:

q(`, �;. ) = . `+X= (`)
∑

_∈[b`/2c]=

.2F= (_) , (6.8)

and, in Theorem 6.4, we have:

q(?`; �) = ?
`

2 +
X= (`)

2
∑

_∈[b`/2c]=

?F= (_) .

These formulas cover the case = = 1 as well. We introduce these expressions after the

proofs above as it would be awkward to keep track of the lone part which is weighted by an

odd integer in F= (_). This is apparent upon examining (6.11) and the proof of Lemma 6.3.
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6.2 Restricted Integer Partitions

We now extend our results by studying the Laurent polynomial � (2=)(1n,1n) from Section 4.5.

Here 1= = (1, . . . , 1)︸      ︷︷      ︸
= entries

∈ ((=)1 , (
(=)
2 . The coefficients of � (2=)(1n,1n) involve restricted partitions.

We start by formally introducing the necessary combinatorial objects:

Definition 6.6. Let � = (01, . . . , 02<; Y1, . . . , Y2<) be a naive EGK datum of length 2<.

We define, for X ∈ {0, 1}, the sets

�[b, X]�, res
< :=


_ ∈ [b]< :

_<−8+1 ≥ b′<−8+1 − (e
′
2=−2/2 − 1), 1 < 8 ≤ <,

b′
<−8+1 ≤ e28/2, 1 < 8 < <,

b′< ≤ e1(≤ e2/2);

where b′
<−8+1 := 2(∑<

:=<−8+1 _: ) + X


, (6.9)

[b, X]�, res
< :=

_ ∈ �[b, X]�,res
< :

b′1 ≤ e2</2;

where b′1 := 2(∑<
:=1 _: ) + X

 , (6.10)

and

Π̃
�, res
( [b,X],a) :=

{
_ ∈ �[b, X]�, res

< : F< (_) = a
}
, (6.11)

Π
�, res
( [b,X],a) :=

{
_ ∈ [b, X]�, res

< : F< (_) = a
}
. (6.12)

The e8 are as in Definition 4.2.

Remark 6.7. In our applications, we always plug in b = b`/2c and X = X1(`). Thus,

b′1 := 2

(
<∑
8=1

_8

)
+ X = 2

⌊ `
2

⌋
+ X1(`) = `.
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It was essential to upgrade our notation like this to maintain consistency with the previous

results. In Theorem 6.1, we were able to write q(`, �;. ) as a sum over integer partitions of

b`/2c. However, for our next result, q(`, �;. ) is written as a sum over integer partitions

of b`/2c with restrictions which depend critically on the parity of `. This information is

lost in the quantity b`/2c; hence we must include the extra parameter X in our new notation.

Theorem 6.8. Let � = (01, . . . , 02=; Y1, . . . , Y2=) ∈ N�� 2=. Write

�
(2=)
(1n,1n) (�;., -) =

ℓ∑
9=0

q(1n,1n) ( 9 ;�,. ).− 9 (k;− 9+1(-) − Y2=k;− 9 (-)),

q(1n,1n) ( 9 ;�,. ) ∈ Q(. ), ℓ :=
e2=
2
.

Then,

q(1n,1n) (`, �;. ) = . `+X= (`)
∑

_∈[b`/2c,X1 (`)]�,res
=

.2F= (_) , ` ≤ ℓ, (6.13)

where

X= (`) =


0 if ` even,

2= − 1 if ` odd.

We first prove the base case:

Lemma 6.9. Let � = (01, 02; Y1, Y2) ∈ N�� 2. Write

�
(2)
(1n,1n) (�;., -) =

ℓ∑
9=0

q( 9 ;�,. ).− 9 (kℓ− 9+1(-) − Y2.
−1kℓ− 9 (-)), ℓ :=

e2=
2
.
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Then,

q(`, �;. ) = . `+X1 (`)
∑

_∈[b`/2c,X1 (`)]�,res
1

.2F= (_) , ` ≤ ℓ.

Proof. By Definition 4.21, we have

�
(2)
(1n,1n) = F (�;., -) =

e1∑
9=0
. 9 (kℓ−8+1(-) − Y2.

−1kℓ− 9 (-)).

Thus,

q(`;�,. ) =


.2` if ` ≤ e1,

0 otherwise.

On the other hand, we have [b`/2c]1 = {(b`/2c)} and

2
⌊ `
2

⌋
+ X1(`) ≤ e1 ⇔ ` ≤ e1.

Thus, [b`/2c, X1(`)]�,res
1 = {(b`/2c)} if ` ≤ e1. Otherwise, [b`/2c, X1(`)]�,res

1 is empty.

Note that F1(_) := _1 for _ = (_1). Thus,

. `+X1 (`)
∑

_∈[b`/2c,X1 (`)]�,res
<

.2F= (_) =


. (`+X1 (`))+2b`/2c if ` ≤ e1,

0 otherwise.

We are done since 2b`/2c + X1(`) = `. �

We are now ready to prove Theorem 6.8:

Proof of Theorem 6.8. This proof is mostly a refinement of the proof of Theorem 6.1. The

base case is Lemma 6.9. Assume the claim holds for all � ∈ N�� 2= for a fixed = ≥ 1.
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Let � ∈ N�� 2=+2. Thus �′′ ∈ N�� 2=, where �′′ denotes the 2-truncation of �.

Write

�
(2=)
(1n,1n) (�

′′;., -) =
ℓ∑
8=0

q(1n,1n) (8;�′′, . ).−8 (k;−8+1(-) − Y2=k;−8 (-)),

q(1n,1n) (8;�′′, . ) ∈ Q(. ), ℓ :=
e2=
2
.

By the induction hypothesis, for 0 ≤ 8 ≤ e2=/2, we have:

q(1n,1n) (8, �′′;. ) = . 8+X= (8)
∑

_∈[b8/2c,X1 (8)]�
′′,res

=

.2F= (_) = . 8+X= (8)
∑
9≥0

�
(2=)
(8, 9).

9 , (6.14)

where

�
(2=)
(8, 9) := #Π�

′′, res
( [b8/2c,X1 (8)], 9/2) .

By Definition 4.21, we have

�
(2=+1)
(1n+1,1n+1) (�;., -) = -−

e2=+1
2

e2=
2∑
8=0

q(1n,1n) (8, �′′;. ) (.-)8
e′2=
2 −8−1∑
9=0
(.-±1)2 9 . (6.15)

Now, write

�
(2=+1)
(1n+1,1n+1) (�;., -) =

2ℓ′∑
8=0

�
(2=+1)
−ℓ′+8 (. )-

−ℓ′+8, ℓ′ =
e2=+1

2
, �

(2=+1)
−ℓ′+8 (. ) ∈ Q(. ).
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8

9

(e′2=/2 − 1, 0)

(0, e′2=/2 − 1)

8 +
9
=
e ′
2= /2 − 1

8 + 2 9 = e ′
2= − 2

8 + 2 9 = e2=+2/2 Restricted Region

�−

�+

Figure 6.2: Region of summation: 0 ≤ 8 ≤ e2=
2 ; 0 ≤ 9 ≤ e′2=

2 − 8 − 1.

The first essential difference in the proof is here. Using (6.15) and Figure 6.2, we calculate:

�
(2=+1)
−ℓ′+` (. ) =

∑
0≤8≤�(`)
8≡` mod 2

q(1n,1n) (8, �′′;. ). `−8,

where

�(`) := e′2= − 2 − `.

This �(`) is the 8-coordinate of the intersection of the lines:

8 + 2 9 = `

8 + 9 = e′2=/2 − 1.
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The proof is exactly the same until we derive the identity:

�
(2=+1)
−ℓ′+` (. ) = .

−`+X= (`)
∑
a≥2`

©«
∑

0≤8≤�(`)
8≡` mod 2

�
(2=)
(8,a−2`)

ª®®®¬.
a+2(2b`/2c−`) .

As before, by a change of variable:

∑
0≤8≤�(`)
8≡` mod 2

�
(2=)
(8,a−2`) =

∑
0≤8≤�(`)
8≡` mod 2

#Π�
′′, res
( [b8/2c,X1 (8)],a/2−`) =

b�(`)/2c∑
8=0

#Π�
′′, res
( [8,X1 (`)],a/2−`) .

Above, we have used the facts that<(`) ≡ ` mod 2 and that X1(8) = X1(`) for 8 ≡ ` mod 2.

By the same argument used in the proof of Lemma 6.3, we have:

b�(`)/2c∑
8=0

#Π�
′′, res
( [8,X1 (`)],a/2−`) = #Π̃�, res

( [b`/2c,X1 (`)],a/2+(2b`/2c−`)) .

That is, we have the following restriction on _1:

_1 ≥
⌊ `
2

⌋
−

⌊
�(`)

2

⌋
,

and

⌊ `
2

⌋
−

⌊
�(`)

2

⌋
=

(
`

2
− X1(`)

2

)
−

(
�(`)

2
− X1(�(`))

2

)
=

(
`

2
− X1(`)

2

)
−

(
e′2= − 2 − `

2
− X1(`)

2

)
= ` − (e′2=/2 − 1) = b′1 − (e

′
2=/2 − 1),
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where

b′1 := 2(_1 + · · · + _=+1) + X1(`) = `.

Thus,

�
(2=+1)
−ℓ′+` (. ) = .

−`+X= (`)
∑
a≥2`

#Π̃�, res
( [b`/2c,X1 (`)],a/2+(2b`/2c−`)).

a+2(2b`/2c−`) .

Now that we have calculated the coefficients � (2=+1)−ℓ′+` (. ) of �
(2=+1)
(1n+1,1n+1) (�;., -), we will

use Definition 4.21 to calculate � (2=+2)(1n+1,1n+1) (�;., -). The polynomial �+(., -) defining

�
(2=+2)
(1n+1,1n+1) (�;., -) is designed to forget all the coefficients � (2=+1)−ℓ′+` (. ) for ` > e2=+2/2.

This is where we pick up the second new restriction:

b′1 = ` ≤
e2=+2

2
.

Now, from Remark 4.9, we obtain:

q(1n+1,1n+1) (`, �;. ) = . `+X= (`)
∑
a≥2`

#Π�, res
( [b`/2c,X1 (`)],a/2+(2b`/2c−`)).

a+2(2b`/2c−`) .

The remainder of this proof is, mutatis mutandis, identical to the proof of Theorem 6.1. �

Remark 6.10. Figure 6.2 aids in understanding the two types of restrictions we obtain at

each step of the proof of Theorem 6.8. The first region, labeled “Restricted Region” are

restrictions obtained by due to the limits of the sum (6.15) defining � (2=+1)(1n+1,1n+1) (�;., -).

The second region, labeled “�−” comes from the way we have constructed the polynomial

�+(., -) in Definition 4.21 to forget all the higher order coefficients of � (2=+1)(1n+1,1n+1) (�;., -).

Recall, in this regime we no longer have an obvious Y2=+2-Kohnen-Choie basis expression.
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Appendix A

Maass’s U8 Parameters

In this appendix, we follow the exposition of [Maa71].

We first describe the parameters U1, . . . , U= in the Γ-factors of the functional equations

appearing in Weissauer’s Converse Theorem. Let D be a Großencharacter on P= with:

X8D = _8D, 8 = 1, . . . , =; _8 ∈ C.

By condition (4) of Definition 1.26, _1 = 0. Maass introduces a differential operator:

M= (. ) := |. |
���� mm. ���� .

On p. 88, Maass proves the operator identity:

|. |−BM= (.̂ ) |. |B = (−1)= 5 (B, X1, X2, . . . , X=), .̂ := .−1.

Here, 5 (B, G1, . . . , G=) is a multivariate polynomial in the = + 1 variables B, G1, G2, . . . , G=.
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In the variable B, 5 is monic of degree =. We define the parameters U1, . . . , U= via:

5 (B, 0, _2, . . . , _=) =
=∏
8=1
(B − U8).

Wenow calculate U1, U2 for the case = = 2. We first remark that the hyperbolic Laplacian

Δ onH and the differential operator X2 := Tr
((
. m
m.

)2
)
on P2 are related via X2 = −1

2Δ. For

more details see [Ter16, pp. 34-37]. Let i be aMaass form onH withΔi = (1/4+A2)i. Let

D be the corresponding Maass Großencharacter on P2 with X2D = −1
2ΔD = −(1/8 + A

2/2)D.

We fix two coordinate systems on P2:

. =
©«
0 1

1 2

ª®®¬ , .̂ =
©«
0′ 1′

1′ 2′

ª®®¬ .
These are related via:

0′ =
2

|. | , 1′ =
−1
|. | , 2′ =

0

|. | , |. | := 02 − 12 =
1

0′2′ − (1′)2
.

We calculate:

©«
m0
m0′

m0
m1′

m0
m2′

m1
m0′

m1
m1′

m1
m2′

m2
m0′

m2
m1′

m2
m2′

ª®®®®®¬
= −

©«
02 201 12

01 02 + 12 12

12 212 22

ª®®®®®¬
.
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Thus,

m

m0′
= −02 m

m0
− 01 m

m1
− 12 m

m2
m

m1′
, = −201

m

m0
− (02 + 12) m

m1
− 212

m

m2
,

m

m2′
= −12 m

m0
− 12 m

m1
− 22 m

m2
.

Remark A.1. The identities that follow are at the level of differential operators.

We calculate ���� m
m.̂

���� :=
m

m0′
m

m2′
− 1

4
m

m1′
m

m1′
.

Via the product rule:

m

m0′
m

m2′
= 0212 m

m0

m

m0
+ (0212 + 013) m

m0

m

m1
+ (0222 + 14) m

m0

m

m2

+ 0122
m

m1

m

m1
+ (0122 + 132) m

m1

m

m2
+ 1222 m

m2

m

m2

+ 2012 m

m0
+ (012 + 13) m

m1
+ 2122

m

m2
,

and

m

m1′
m

m1′
= (201)2 m

m0

m

m0
+ 2(201) (02 + 12) m

m0

m

m1
+ 2(201) (212) m

m0

m

m2

+ (02 + 12)2 m
m1

m

m1
+ 2(02 + 12) (212) m

m1

m

m2
+ (212)2 m

m2

m

m2

+ (6012 + 2022) m
m0
+ (6012 + 213) m

m1
+ (6122 + 2022) m

m2
.
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After some routine calculation, we obtain:���� m
m.̂

���� = |. |2 (
m

m0

m

m2
− 1

4
m

m1

m

m1

)
− 1

2
|. |

(
0
m

m0
+ 1 m

m1
+ 2 m

m2

)
.

Via the product rule:

m

m0
|. |B = 2B |. |B−1+|. |B m

m0
,

m

m2
|. |B = 0B |. |B−1 + |. |B m

m2
,

m

m1
|. |B = −21B |. |B−1 + |. |B m

m1
.

and

m

m0

m

m2
|. |B = m

m0

(
0B |. |B−1 + |. |B m

m2

)
=

(
B |. |B−1 + 02B(B − 1) |. |B−2

)
+ 0B |. |B−1 m

m0
+ 2B |. |B−1 m

m2
+ |. |B m

m0

m

m2
,

m

m1

m

m1
|. |B = m

m1

(
−21B |. |B−1 + |. |B m

m1

)
=

(
−2B |. |B−1 + 412B(B − 1) |. |B−2

)
− 41B |. |B−1 m

m1
+ |. |B m

m1

m

m1
.

After some routine calculation, we obtain:

M= (.̂ ) |. |B = |. |B (B2 + �B + �),

where

� =

(
0
m

m0
+ 1 m

m1
+ 2 m

m2

)
− 1

2
,

� = |. |
(
m

m0

m

m2
− 1

4
m

m1

m

m1

)
− 1

2

(
0
m

m0
+ 1 m

m1
+ 2 m

m2

)
.
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Now we calculate the �-invariant differential operators:

X1 = Tr
(
.
m

m.

)
, X2 = Tr

((
.
m

m.

)2
)
.

Observe:

.
m

m.
=

©«
0 1

1 2

ª®®¬
©«

m
m0

1
2
m
m1

1
2
m
m1

m
m2

ª®®¬ =
©«
0 m
m0
+ 1

21
m
m1

1
20

m
m1
+ 1 m

m2

1 m
m0
+ 1

22
m
m1

1
21

m
m1
+ 2 m

m2

ª®®¬ .
We calculate, using the product rule:

X1 = 0
m

m0
+ 1 m

m1
+ 2 m

m2
,

X2
1 = 0

2 m

m0

m

m0
+ 12 m

m1

m

m1
+ 22 m

m2

m

m2

201
m

m0

m

m1
+ 202

m

m0

m

m2
+ 212

m

m1

m

m2

+ 0 m
m0
+ 1 m

m1
+ 2 m

m2
,

and

X2 = 0
2 m

m0

m

m0
+ 1

2
(02 + 12) m

m1

m

m1
+ 22 m

m2

m

m2

201
m

m0

m

m1
+ 212 m

m0

m

m2
+ 212

m

m1

m

m2

+ 3
2

(
0
m

m0
+ 1 m

m1
+ 2 m

m2

)
.
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By comparing the coefficients � and � with the operators X1, X2
1, and X2, we see:

� = X1 −
1
2
,

� =
1
2
(X2

1 − X2) −
1
4
X1.

Thus,

M= (.̂ ) |. |BD(. ) =
(
B2 − (1/2)B + (1/16 + A2/4)

)
|. |BD(. ).

Now,

B2 − (1/2)B + (1/16 + A2/4) = (B − U1) (B − U2),

where

U1 = U2 = 1/4 + 8A/2.
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Appendix B

Proof of Lemma 5.4

Here, we provide the Python code we used to verify Lemma 5.4 for 1 ≤ = ≤ 4.

1 # Initialize symbolic matrices D and G

2 var(’d1,d2,d3,d4’)

3 D = matrix(SR, 4, 4, [d1,0,0,0,\

4 0,d2,0,0,\

5 0,0,d3,0,\

6 0,0,0,d4])

7

8 var(’a11,a12,a13,a14,a22,a23,a24,a33,a34,a44’)

9 G = matrix(SR, 4, 4, [a11,a12,a13,a14,\

10 0,a22,a23,a24,\

11 0,0,a33,a34,\

12 0,0,0,a44])

13

14 # Calculate matrix product S := D[G^{-1}]

15 Ginv = G.inverse()

16 S = Ginv.transpose()*D*Ginv

17

18
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19 # Calculate C_{i,j} Parameters

20 C = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]

21 for i in range(0,4):

22 C[i][i] = G[i][i]

23 for j in range (i+1,4):

24 C[i][j] = -G[i][j]

25 for k in range(i+1,j):

26 C[i][j] -= C[i][k]*G[k][j]/G[k][k]

27

28 # Calculate D_{i,j}^{\prime} Coefficients

29 Dp = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]

30 for i in range(0,4):

31 for j in range (i,4):

32 for k in range(0,i+1):

33 Dp[i][j] += C[k][i]*C[k][j]*D[k][k]/G[k][k]^2

34 Dp[i][j] /= (G[i][i]*G[j][j])

35

36 # Verify correctness of formulas

37 for i in range(0,4):

38 for j in range (i,4):

39 assert(S[i][j] == C[i][j])
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