
INTEGER PROGRAMMING FORMULATIONS FOR

DISTANCE-CONSTRAINED NETWORK PROBLEMS

By

HOSSEINALI SALEMI

Bachelor of Science in Industrial and Systems
Engineering

Amirkabir University of Technology
Tehran, Iran

2013

Master of Science in Management Engineering
Politecnico di Milano

Milan, Italy
2015

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
June, 2020



COPYRIGHT c©

By

HOSSEINALI SALEMI

June, 2020



INTEGER PROGRAMMING FORMULATIONS FOR

DISTANCE-CONSTRAINED NETWORK PROBLEMS

Dissertation Approved:

Dr. Austin Buchanan

Dissertation Advisor

Dr. Balabhaskar Balasundaram

Dr. Sunderesh Heragu

Dr. Mahdi Asgari

iii



Dedicated to my parents and beloved wife.

Dedications reflect the views of the author and are not endorsed by committee members or Oklahoma
State University.

iv



ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude and appreciation to my advisor, Dr.

Austin Buchanan, for his unwavering support, valuable advice, and constant encouragement

during my PhD. He has been one of the most influential professors I have ever had. I have

learned a lot from his expertise, knowledge, and behavior. This dissertation would have not

been possible without his invaluable contribution, insightful suggestions, and guidance.

I would like to thank my committee members Dr. Balasundaram, Dr. Heragu, and Dr.

Asgari for their constructive comments and persistent help throughout my doctoral research.

I also wish to thank all the faculty and staff of the School of Industrial Engineering &

Management at Oklahoma State University.

Many thanks to my friends Hamidreza Validi, Hao Pan, and Yajun Lu whose friendship

has been valuable to me.

Finally, my deepest appreciation goes to to my lovely wife, Mahshid, and my parents for

their tremendous support and enormous help during all these years. It would have not been

possible to go through these eventful times without their assistance and companionship.

Acknowledgements reflect the views of the author and are not endorsed by committee members or
Oklahoma State University.

v



Name: HOSSEINALI SALEMI

Date of Degree: June, 2020

Title of Study: INTEGER PROGRAMMING FORMULATIONS FOR DISTANCE-
CONSTRAINED NETWORK PROBLEMS

Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT

Abstract: Network-based models (graphs) are among the most powerful tools for representing
relationships and communications between different elements of a system in science, engi-
neering, and business. In each of these scientific fields, nodes of a network represent distinct
objects, and edges show relationships or similarities between them. Due to the ability of
networks to model discrete objects in many different fields, network design and analysis have
encountered an explosive growth during recent years. The presence of distance constraints in
various network design and analysis problems such as detecting clusters and critical nodes,
has been problematic and challenging for many researchers. These NP-hard combinatorial
optimization problems are among the popular topics in network design and analysis and are
challenging to be solved—especially when the number of nodes and/or edges of a network is
large. Towards this end, we need to develop exact methods to identify low-diameter clusters
and critical nodes of a network efficiently. In this dissertation, we introduce new integer
programming formulations, algorithms, preprocessing techniques, and decomposition methods
that allow us to find low-diameter clusters and critical nodes in relatively large networks.

vi



Contents

Chapter Page

I Introduction 1

1.1 Graph Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Connectivity and Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Cluster Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Critical Nodes Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II Parsimonious Formulations for Low-diameter Clusters 9

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A Recursive Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The Path-Like Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 The hop-based case k = 3 . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 The hop-based case k = 4 . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 The Cut-Like Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Facet Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Formulation Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Separation Problem and Extended Formulations . . . . . . . . . . . . 36

2.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Heuristic and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Implementing the Cut-Like Formulation . . . . . . . . . . . . . . . . 43

vii



Chapter Page

2.6.3 Results for Real-Life Instances . . . . . . . . . . . . . . . . . . . . . . 45

2.6.4 Dealing with Too Many Conflicts . . . . . . . . . . . . . . . . . . . . 48

2.6.5 Results for Synthetic Instances . . . . . . . . . . . . . . . . . . . . . 51

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III Solving the Distance-based Critical Node Problem 55

3.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Partial Dominant of a Polyhedron . . . . . . . . . . . . . . . . . . . . 62

3.3 New Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 The Path-Like Formulation . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 The Thin Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.3 Formulation Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Variable Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.3 The Separation Problem . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.1 Results for Hop-Based Distances . . . . . . . . . . . . . . . . . . . . 98

3.5.2 Results for Edge-Weighted Distances . . . . . . . . . . . . . . . . . . 101

3.5.3 Critical Nodes of the Buffalo, NY Highway Network . . . . . . . . . . 102

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

IV A Benders Decomposition Algorithm to Solve Critical Node Problem 105

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.1 Restricted Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.2 Variable Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

V Conclusion and Future Work 116

ix



List of Tables

Table Page

2.1 Heuristics and preprocessing on DIMACS-10 graphs. For each k, we report

the heuristic’s objective (heur), the number of remaining vertices after prepro-

cessing (n′), and the total time in seconds for the heuristic and preprocessing

(time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Maximum 2-club sizes on DIMACS-10 graphs. We report the total number of

cut-like constraints to solve the k = 2 common neighbor formulation using CN

and CUT implementations. For each implementation, we also report the total

time in seconds (including preprocessing, heuristic, and model build time), or

the best lower and upper bounds [LB,UB] within a 3600 second time limit.

Cases where using an implementation leads to memory crashes are reported

as MEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Results for DIMACS-10 graphs. For each k = 3 and each formulation, we

report the total time in seconds (including preprocessing, heuristic, and model

build time), or the best lower and upper bounds [LB,UB] within a 3600 second

time limit. Cases where the LP relaxation were not solved within the time

limit (due either to build time or solve time) are reported as LPNS and cases

where using a formulation leads to memory crashes are reported as MEM. . . 47

x



Table Page

2.4 Results for DIMACS-10 graphs. For k = 4 and each formulation, we report

the total time in seconds (including preprocessing, heuristic, and model build

time), or the best lower and upper bounds [LB,UB] within a 3600 second time

limit. Cases where the LP relaxation were not solved within the time limit

(due either to build time or solve time) are reported as LPNS and cases where

using a formulation leads to memory crashes are reported as MEM. . . . . . 48

2.5 For each k ∈ {2, 3, 4}, we report the number of conflict constraints for each

instance after preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 We report the total time in seconds (including preprocessing, heuristic, and

model build time), or the best lower and upper bounds [LB,UB] within a 3600

second time limit. Cases where using a formulation leads to memory crashes

are reported as MEM. Instances solved to optimality by the heuristic and

preprocessing proposed in Section 2.6.1 are indicated by blank cells. . . . . . 52

2.7 Results for synthetic graphs with k ∈ {3, 4}. For each (n, ρ) we give the

average time over the 10 instances. If not all 10 were solved within the 1 hour

time limit, we only give the number solved (in parenthesis). . . . . . . . . . . 53

2.8 Results for synthetic graphs with k ∈ {5, 6, 7}. . . . . . . . . . . . . . . . . . 53

3.1 Heuristic and preprocessing for k = 3 and b ∈ {5, 10}. We report the heuristic’s

objective value (heur), the time spent by the heuristic in seconds (time), the

optimal objective (opt), the numbers of leaves (|L|), and the number of

simplicial vertices (|I|). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 The complexity of the integer and fractional separation problems, under hop-

based and edge-weighted distances. . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Running times, or bounds at termination, when (k, b) = (3, 5). . . . . . . . . 99

xi



3.4 Running times, or bounds at termination, when (k, b) = (3, 10). . . . . . . . 99

3.5 Running times, or bounds at termination, when (k, b) = (4, 5). . . . . . . . . 100

3.6 Running times, or bounds at termination, when (k, b) = (4, 10). . . . . . . . 101

3.7 Results for α = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.8 Results for α = 0.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 Running times, or bounds at termination, when (k, b) = (3, 5). . . . . . . . . 115

xii



List of Figures

Figure Page

1.1 The left graph is a star Sn of n vertices. The right graph is a path Pn of n

vertices. Although the number of connected vertex pairs in both graphs are

equal, the maximum distance between all pairs of nodes in Sn is 2, while this

number is n − 1 for Pn. As a result, the star might be more desirable for

decision-makers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The gray vertices on the right form a 2-club. The gray vertices on the left do

not, as vertex 4 and vertex 6 are distance 3 from each other in the induced

subgraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Under hop-based distances, the vertex subset {2, 4} is a length-3 1, 6-connector,

and the vertex subset {4} is a length-3 1, 6-separator. . . . . . . . . . . . . . 10

2.2 An illustration to explain the variable ytij. . . . . . . . . . . . . . . . . . . . 15

2.3 Examples of collection Ck
ab of minimal length-k a, b-connectors. On the left,

C3
ab = {{1}, {2, 3}}. On the right, C7

ab = {{1, 3}}. Edge weights are given next

to the edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Vertices (and edges) within minimal length-4 a, b-connectors. . . . . . . . . . 25

2.5 Construction of n different k-clubs in the proof of Theorem 4. . . . . . . . . 31

2.6 A matrix whose columns represent the k-clubs in the proof of Theorem 4. . . 32

2.7 When k ≥ 3, setting x∗0 = x∗k = 1 and x∗i = 1
2

for all other nodes is feasible

for the path-like formulation but not for the cut-like formulation. Indeed, the

length-k a, b-separator inequality x0 + xk ≤ 1 + x2 is violated. . . . . . . . . 34

xiii



Figure Page

3.1 Solutions for the Karate when b = 2 and k = 2 with unit values we, ce, and ai. 57

3.2 Under hop-based distances, the vertex subset {1, 5, 4} is a minimal length-2

1, 4-connector and the vertex subset {1, 2, 3, 4} is a minimal length-3 1, 4-

connector. The vertex subset {1, 2, 5, 4} is a length-3 1, 4-connector, but is not

minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Under hop-based distances, the vertex subset {5} is a length-2 1, 4-separator

and vertex subset {1} is a length-k 1, 4-separator for any k ∈ {1, 2, . . . }. . . . 72

3.4 The graph G = (V,E) used to show projx,y PATH 6= THIN. . . . . . . . . . 79

3.5 The graph G = (V,E) used to show projx,y R * projx,y PATH. . . . . . . . . 79

3.6 The graph G = (V,E) used to show THIN * projx,y R. . . . . . . . . . . . . 80

3.7 An illustration of the sets L and I. . . . . . . . . . . . . . . . . . . . . . . . 89

3.8 The graph used in the NP-hardness reduction. . . . . . . . . . . . . . . . . . 95

3.9 DCNP solutions for Buffalo network when α = 0.05 and b ∈ {5, 10}. . . . . . 103

3.10 DCNP solutions for Buffalo network when α = 0.10 and b ∈ {5, 10}. . . . . . 103

3.11 CNP solutions for Buffalo network when b ∈ {5, 10}. . . . . . . . . . . . . . . 104

4.1 Suppose k = 3, b = 2, and av = 1 for all v ∈ V . Power graph edge {1, 8} is well-

connected because distG−S(1, 8) ≤ 3 for any S ⊆ V \ {1, 8} of size b. However,

power graph edge {2, 3} is not well-connected because distG−{1,8}(2, 3) > 3.

Lastly, power graph edge {1, 5} is well-connected for CNP, but not for DCNP

since distG−{2,3}(1, 5) > 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 An illustration of variable fixing procedures for the critical node problem. . . 113

xiv



Chapter I

Introduction

Network-based models (graphs) are among the most powerful tools for representing relation-

ships and communications between different elements of a system in science, engineering,

and business. In each of these scientific fields, nodes of a network represent distinct objects,

and edges show relationships or similarities between them. Network models are widely

used in areas including but not limited to computer science, electrical and power systems,

social science, transportation and distribution, physics and chemistry, economics, biology,

telecommunication, stock market, and public health. Moreover, data of a system can be

represented by nodes of a network and, if some data points share similarities, the associated

nodes are connected by edges. Nowadays, in the world with growing amounts of Big Data,

the necessity of using these models is evident to everyone. In fact, we need network-based

models, techniques, and algorithms that enable us to mine these substantial amounts of data

and extract hidden knowledge from them. Due to the ability of networks to model discrete

objects in many different fields, network design and analysis have encountered an explosive

growth during recent years. Indeed, researchers have studied and analyzed electric networks,

social networks, biological networks, transportation networks, and others.

The presence of connectivity, distance, or diameter constraints in various network design

and analysis problems has been problematic and challenging for many researchers. Examples

are detecting clusters and critical nodes in a network. These NP-hard problems are among

the popular topics in network design and analysis and are challenging to be solved—especially

when the number of nodes and/or edges of a network is large. Towards this end, we need

1



to develop exact methods to identify clusters and critical nodes of a network efficiently. In

this dissertation, we introduce new Integer Programming (IP) formulations, algorithms, and

methodologies that allow us to solve relatively large instances of these problems. Before

proceeding with the definitions of these combinatorial problems and their applications, we

first start with graph notations and terminologies and then briefly discuss the importance of

“distance” in network design and analysis.

1.1 Graph Notations

Consider a simple, edge-weighted graph G = (V,E) with vertex set V and edge set E ⊆
(
V
2

)
,

where
(
V
2

)
:= {{u, v} | u, v ∈ V, u 6= v}. We often let n := |V | and m := |E|. Denote by

NG(v) := {u ∈ V | {u, v} ∈ E},

the neighbors of v in G; its cardinality is the degree denoted degG(v) := |NG(v)|. The subset

of edges incident to v is denoted

δG(v) := {{u, v} ∈ E | u ∈ NG(v)} .

The weight we of each edge e ∈ E is assumed to be nonnegative. The length of a path is the

sum of its edges’ weights. The distance from node a to node b in graph G is the length of a

shortest path from a to b and is denoted distG(a, b). In some cases, distances are “hop-based,”

meaning that each edge has weight one, and the length of a path is equal to its number of

edges. The diameter of G is the maximum of these pairwise distances and is denoted

diam(G) := max

{
distG(a, b)

∣∣∣∣ {a, b} ∈ (V2
)}

.
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The subgraph of G induced by the vertex subset S ⊆ V is denoted by G[S] := (S,E(S)),

where E(S) := E ∩
(
S
2

)
denotes the subset of edges with both endpoints in S. For the vertex

subset S ⊆ V , let G−S := G[V \S] represent the subgraph obtained by removing the vertices

of S (and any incident edges). Similarly, for the edge subset F ⊆ E, let G− F := (V,E \ F ).

The k-th power Gk = (V,Ek) of graph G = (V,E) has the same vertex set as G and edge set

Ek :=

{
{i, j} ∈

(
V

2

) ∣∣∣∣ distG(i, j) ≤ k

}
.

Observe that this definition applies regardless of whether distances are hop-based or

edge-weighted. A subset S ⊆ V of vertices is a clique if E(S) =
(
S
2

)
. A vertex v is simplicial

if its neighborhood N(v) is a clique.

1.2 Connectivity and Distance

Intuitively, a cluster in a network is a subset of nodes that are densely connected to each

other and sparsely connected to the nodes of other clusters. Clique, which is a subset of

pairwise adjacent nodes in a network, is an ideal case for a cluster because each node is

directly connected (by an edge) to all other nodes in the cluster. An example for a clique

is two friends in Facebook who have a mutual friend. These three friends form a clique.

However, the definition of clique is too restrictive in practice (for example due to possible

errors resulting in missing edges.) These types of restrictions have convinced and motivated

researchers to relax the definition of clique to a subset of vertices of diameter at most k,

yielding a k-club. Although the k-club definition allows vertices to be nonadjacent (when

k ≥ 2), it guarantees that all vertices in the k-club are connected and their pairwise distance

is at most k. It should be emphasized here that both clique and k-club models consider

distance between nodes as a key metric in identifying low-diameter clusters in a network.

Moreover, in social networks, if two connected nodes are far apart from each other, they

3



might be considered a disconnected pair because they may not be able to communicate

desirably or quickly if the connecting path is too long (Borgatti, 2006). The velocity and

quality of communications between different individuals depend on their actual distance. The

shorter the communication path, the better quality for the communication. This argument

holds for telecommunication applications as well. Take for instance the case in which there

are two same-size telecommunication networks: a star and a path. While they have the same

number of connected vertex pairs, the star might be more desirable, because each vertex is at

most two hops away from all other vertices, which is not the case in the path (see Figure

1.1.) Other examples are flow network applications where it is necessary that perishable

commodities do not flow through too many edges on their way to their destinations (Mahjoub

and McCormick, 2010), and biological networks where distances between nodes affect their

chemical interactions (Aringhieri et al., 2019). In these and many other real-world applications,

distance between nodes plays a major role when connectivity is considered.

1

n 2 3
4

5

· · ·1 2 3 4 5 n

Figure 1.1: The left graph is a star Sn of n vertices. The right graph is a path Pn of n vertices.
Although the number of connected vertex pairs in both graphs are equal, the maximum
distance between all pairs of nodes in Sn is 2, while this number is n− 1 for Pn. As a result,
the star might be more desirable for decision-makers.

1.3 Cluster Detection

Cluster detection has been widely applied to areas such as social sciences, business and

marketing, computer science, biology, bioinformatics, pattern recognition, and machine

learning, among others. Cluster detection is also used in data mining and statistical data

analysis. A “good” cluster is a one that has a small diameter. For example, possessing a

4



small diameter is key in social network analysis, where a cluster represents a group of people

who can quickly communicate with each other. One possible way to find clusters is to use

clique and k-club models. See Figure 1.2 for an illustration of k-clubs. The notion of a

k-club was originally introduced in sociology (Alba, 1973; Mokken, 1979), and has found

applications in the analysis of biological networks (Balasundaram et al., 2005), as well as

in text mining, terrorist networks, and network security (Shahinpour and Butenko, 2013b).

Essentially the same type of distance or diameter constraint appears in political districting

and wildlife reserve design applications where compactness is key. In Chapter II, we discuss

how to impose these length bounded constraints efficiently and how to identify maximum

k-clubs in relatively large networks.

1 2

3

4

5

6

7

1 2

3

4

5

6

7

Figure 1.2: The gray vertices on the right form a 2-club. The gray vertices on the left do not,
as vertex 4 and vertex 6 are distance 3 from each other in the induced subgraph.

1.4 Critical Nodes Detection

Networks are vulnerable to disruptive events caused by natural disasters or malicious attacks.

In order to have a better assessment of network vulnerability, one might identify the nodes

that are most important to its connectivity. These nodes, which are accountable for network

cohesion, are often referred to as critical nodes. The critical nodes of a network are typically

a small subset of vertices whose deletion maximally reduces some connectivity metric or

equivalently results in maximum graph fragmentation (Arulselvan et al., 2009). The problem

of optimally identifying critical nodes is known as critical node detection or critical node

problem (CNP), which belongs to the intersection of network interdiction problems and graph
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theory research (Shen and Smith, 2012). Decision-makers might have two different motives

for identifying critical nodes: to derive efficient defensive strategies for reducing impacts

of possible disruptions; or to design effective offensive strategies with the most possible

damage (Walteros et al., 2019). As an example, consider security issues for decentralized

types of wireless networks, e.g., ad hoc networks, where targeting few nodes results in huge

fragmentation. In such networks, one can find critical nodes to increase the network security

or to deteriorate its connectivity (Lalou et al., 2018). Another case is network immunization

where the objective is to reduce transmission of a virus with the constraint that not all

members of the network can be immunized due to high costs of mass vaccination. One

possible solution is to vaccinate the critical nodes, that is, the key humans on whom the

network depends substantially to maintain its connectivity (Borgatti, 2006; Arulselvan et al.,

2009). A further example is identifying critical nodes in transportation networks. Failure of

these nodes cause disruptions in transportation, especially when a disaster occurs in an area.

Identification of critical nodes informs decision-makers how to safeguard against possible

damages and plan emergency evacuations (Vitoriano et al., 2011). The problem of detecting

critical nodes, along with its similar versions, has been interesting to many researchers over

the years. Bavelas (1948) and Freeman (1978), who consider the centrality of nodes as a

measure of significance in social networks and human communications are among the first

researchers in this area. In recent years, CNP has found numerous applications in areas

such as network immunization (Cohen et al., 2003), transportation (Kutz, 2004), epidemic

control (Tao et al., 2006), telecommunication (Commander et al., 2007), evacuation (Matisziw

and Murray, 2009), and biology (Boginski and Commander, 2009). In general, CNP can be

applied to all areas in which networks are subject to random failures/errors, natural disasters,

and attacks. Borgatti (2006) shows that the criteria under which a node is considered to be

critical depend on the role that the node plays in the network; as a result, a critical node

under a specific measure might not be critical in terms of another metric. Consequently,
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based on how network connectivity is defined, there exist different classes of CNP. Shen et al.

(2012) and Shen and Smith (2012) consider maximizing the number of network components

and minimizing the largest component size in the remaining graph as two different metrics.

Arulselvan et al. (2009), Addis et al. (2013), and Veremyev et al. (2014) focus on minimizing

the total number of connected node pairs as a connectivity reduction criterion.

Considering whether two nodes of a network are connected or not (via a path) as the only

network connectivity metric does not address many practical problems (Veremyev et al., 2015).

As discussed in Section 1.2, distance between nodes should be taken into account in many

real-world cases to have a meaningful analysis of network connectivity. These observations

motivate researchers to consider distances between vertices of a network in order to find the

most critical nodes. In Chapters III and IV, we discuss how to identify distance-based critical

nodes of a network. Next, we briefly provide our contributions in this dissertation.

1.5 Our Contributions

In Chapter II, we propose formulations and techniques to identify tightly knit clusters,

modeled by k-clubs. We propose new path-like and cut-like integer programming formulations

for detecting these low-diameter subgraphs. They simplify, generalize, and/or dominate

several previously existing formulations. Our best-performing formulation uses only node

variables (quite unlike previous formulations) and imposes the diameter-at-most-k constraints

via an exponentially large class of cut-like inequalities. A relatively simple implementation of

the cut-like formulation easily outperforms previous approaches, solving dozens of instances of

the maximum k-club problem in a second or two that would take hours by other formulations.

Moreover, the cut-like formulation is more general in the sense that it applies even when

distances are not measured in terms of hops. While we consider only the k-club problem, the

proposed techniques may also be useful in other applications where compact solutions are

key (e.g., political districting and wildlife reserve design).
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In Chapter III, we propose new path-like and thin integer programming formulations to

model a class of critical node problems. In this class, we want to delete at most b nodes of a

network in order to minimize the number of node pairs that remain connected by a path of

length at most k. Our new formulations directly apply under hop-based and edge-weighted

distances, as opposed to an existing recursive formulation. We compare the strength of these

three formulations by introducing the notion of partial dominant of a polyhedron. While the

thin formulation has exponentially many constraints, we show that the integer and fractional

separation of violated inequalities can be done in polynomial time under hop-based distances.

When distances are edge-weighted, we show that integer separation still takes polynomial

time, although it is NP-hard to solve the fractional separation. In addition, we propose a

more general preprocessing procedure that, on average fixes three times as many variables

than before. The new proposed formulations and a preprocessing method enable us to solve

larger instances than previous works.

In Chapter IV, we propose a Benders decomposition algorithm with branch-and-cut

implementations of it to solve the (distance-based) critical node problem. In this chapter, we

show how to identity Benders optimality cuts in a combinatorial manner instead of solving

the dual subproblem as an LP. We also provide techniques to accelerate the convergence of

the Benders decomposition method.

Finally, we conclude in Chapter V and provide ideas for future works.

8



Chapter II

Parsimonious Formulations for Low-diameter Clusters

This chapter is based on work with Austin Buchanan (Salemi and Buchanan, 2020a)1. Cluster

detection is a common problem encountered in network analysis, and an oft-required property

of a “good” cluster is that it have a small diameter. A clique in a graph, which is a subset

S ⊆ V of vertices that induces a subgraph of diameter at most 1, is an ideal cluster. Relaxing

this definition to “induces a subgraph of diameter at most k” yields a k-club.

Definition 1 (k-club, essentially due to Mokken (1979)). A subset S ⊆ V of vertices in a

graph G = (V,E) is called a k-club if diam(G[S]) ≤ k.

Effectively enforcing these diameter-at-most-k (i.e., k-club) constraints in an integer

program (IP) has proven difficult for researchers. Notable techniques include introducing

a binary variable for (the interior of) each path of length at most k (Bourjolly et al., 2002;

Wotzlaw, 2014) and linearizing multilinear 0-1 formulations (Veremyev and Boginski, 2012;

Veremyev et al., 2015). A näıve implementation of the path-based formulation quickly

becomes impractical as the value of k increases, since its number of variables is Θ(nk−1),

under hop-based distances (Wotzlaw, 2014)—or size Θ(nk+1) if the path variables include

the path’s endpoints (Bourjolly et al., 2002). Any practical approach based on it would

require a complicated branch-and-price implementation even for moderate values of k. The

linearized multilinear 0-1 formulations of Veremyev et al. (Veremyev and Boginski, 2012;

Veremyev et al., 2015) use Θ(kn2) variables and typically solve real-life 200-node instances of

1Reprinted with permission from “Parsimonious formulations for low-diameter clusters” by H. Salemi and
A. Buchanan. Mathematical Programming Computation, (2020): 1-36, Copyright 2020 by Springer.
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the maximum k-club problem with k = 4 in ten minutes, but routinely fail to solve 300-node

instances with k = 5 in under one hour (Moradi and Balasundaram, 2018). One limitation of

these formulations is that they cannot be used to solve very large instances (with thousands of

nodes), as the variables will number in the millions. Also, they only apply when distances are

measured in terms of hops (cf. the pseudopolynomial formulation of Veremyev et al. (2015)).

In this chapter, we propose new path-like and cut-like formulations that generalize or

improve upon several previously existing formulations for k-clubs. We include “-like” in

their names to emphasize that they are not based on the usual notions of paths and cuts.

Instead, they are based on length-bounded connectors and length-bounded separators, which

are defined below. Examples to illustrate the definitions are given in Figure 2.1.

Definition 2 (Length-k a, b-connector). A subset C ⊆ V \ {a, b} of vertices is called a

length-k a, b-connector in an edge-weighted graph G = (V,E) if distG[C∪{a,b}](a, b) ≤ k.

Definition 3 (Length-k a, b-separator). A subset S ⊆ V \{a, b} of vertices is called a length-k

a, b-separator in an edge-weighted graph G = (V,E) if distG−S(a, b) > k.

1 2

3

4

5

6

Figure 2.1: Under hop-based distances, the vertex subset {2, 4} is a length-3 1, 6-connector,
and the vertex subset {4} is a length-3 1, 6-separator.

The path-like formulation that we propose generalizes the folklore k = 2 common

neighbor formulation (see constraints (2.11)), simplifies and dominates the chain formulations

of Bourjolly et al. (2002) and Wotzlaw (2014), and generalizes the k = 3 neighborhood

F N formulation of Almeida and Carvalho (2012). We observe that, when distances are

hop-based, the path-like formulation has O(m(k−1)/2) variables when k is an odd constant

and O(nm(k−2)/2) variables when k is an even constant. In particular, the formulation has
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size O(n+m) when k = 3 and size O(nm) when k = 4. This makes the path-like formulation

a reasonable option when k ≤ 4, distances are hop-based, and the graph is sparse.

However, we prefer the cut-like formulation for a number of reasons. First, it uses just n

binary variables, regardless of the edges’ weights or the value of k. This allows us to apply it

to large instances and to instances having non-unit edge lengths. Second, it is conceptually

simple, being defined by a single class of constraints:

(length-k a, b-separator inequality) xa + xb ≤ 1 + x(S). (2.1)

Here, xi is a binary variable representing the decision to include vertex i in the k-club, and x(S)

is shorthand for
∑

i∈S xi. These inequalities are written for every pair {a, b} of nonadjacent

vertices and every length-k a, b-separator S ⊂ V \ {a, b}. Third, our implementation of the

cut-like formulation handily outperforms all previous approaches for the maximum k-club

problem, solving dozens of instances in seconds that take hours by other formulations. This is

despite the fact that this formulation can have exponentially many inequalities (for which the

separation problem is generally hard). Other notable properties of the cut-like formulation

include: it is stronger than the path-like formulation; it generalizes the folklore k = 2 common

neighbor formulation; and it generalizes the k = 3 node cut set formulation F S of Almeida

and Carvalho (2012).

Though we focus on the maximum k-club problem in this chapter, our broader intent is

to illustrate the potential of using “cut-like” formulations for diameter-constrained problems,

e.g., arising in political districting or wildlife reserve design. The k-club problem serves as a

well-studied, stylized problem on which to test the approach.

2.1 Literature Review

Mokken (1979) defined a k-club as an inclusionwise maximal subset of vertices whose induced
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subgraph has diameter at most k (in terms of hops). Nowadays, the maximality condition

is usually dropped from the definition. Still, much of the literature on k-clubs is devoted

to finding large k-clubs in graphs, particularly those that are maximum. The maximum

k-club problem is known to be NP-hard (Bourjolly et al., 2002), even in graphs of diameter

k + 1 (Balasundaram et al., 2005). Further, the problem of testing whether a given k-club is

inclusionwise maximal is coNP-complete for every k ≥ 2 (Mahdavi Pajouh and Balasundaram,

2012). For every k ≥ 2, the maximum k-club problem is approximable within a factor of

dn1/2e and essentially no better (Asahiro et al., 2018). For more, see the survey of Shahinpour

and Butenko (2013b).

To verify that a subset S ⊆ V of vertices is a k-club, one can create the subgraph G[S]

induced by S and then perform a single-source shortest paths computation from each node v

to ensure that all other nodes are no farther than k away. When distances are hop-based this

takes time O(|S|m) = O(nm) by BFS. When each edge length is a positive integer, this can

be done in time O(|S|m+ |S|2 log log |S|) = O(nm+ n2 log log n) by Thorup (2004). Under

the strong exponential time hypothesis (SETH) of Impagliazzo et al. (Impagliazzo et al.,

2001; Impagliazzo and Paturi, 2001), this is essentially best-possible, even in the simplest

nontrivial case of 2-clubs, see Theorem 1. SETH is an unproven complexity assumption that

is stronger than P6=NP, and, while not everyone believes that it is true, disproving it would

be a breakthrough and imply faster algorithms for many problems.

Theorem 1 (Roditty and Vassilevska Williams (2013)). If SETH holds, then for every

ε > 0 there is no time O(m2−ε) algorithm for checking whether a connected graph G has

diam(G) ≤ 2.

Previously, we mentioned the integer programming formulations for k-clubs given by Bour-

jolly et al. (2002) (cf. Wotzlaw (2014)). Another recent approach by Moradi and Balasundaram

(2018), cf. Lu et al. (2018), is to:
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• initialize a formulation with inequalities of the form xa + xb ≤ 1, where distG(a, b) > k;

• as necessary, cut off infeasible 0-1 vectors x∗ using the constraint:

∑
i∈V : x∗i =0

xi +
∑

i∈V : x∗i =1

(1− xi) ≥ 1. (2.2)

This is similar in spirit to what we propose, except that our length-k a, b-separator inequal-

ities (2.1) exploit the problem’s structure and are naturally stronger than the canonical

hypercube cuts (2.2) which only cut off x∗.

Almeida and Carvalho (2012) compare three different formulations for the 3-club problem:

(i) the chain formulation of Bourjolly et al. (2002) which uses a variable for each path of

length at most 3; (ii) a so-called neighborhood formulation (F N) which imposes linearized

versions of the following constraints for every pair {a, b} of nonadjacent nodes:

(constraints of F N) xa + xb ≤ 1 +
∑

c∈N(a)∩N(b)

xc +
∑

{i,j}∈Eab

xixj

where Eab is the subset of edges {i, j} ∈ E for which i ∈ N(a)\N(b) and j ∈ N(b)\N(a); and

(iii) a so-called node cut set formulation (F S) based on the exponential class of constraints:

(constraints of F S) xa + xb ≤ 1 +
∑

c∈N(a)∩N(b)

xc +
∑
i∈Sab

xi

where Sab ⊆ V is a vertex cover of the graph induced by the edge set Eab. We will see that

the formulations F N and F S are the special cases of our path-like and cut-like formulations,

respectively, when k = 3.

In a number of applications, one requires the selected vertices to induce a connected

subgraph, but with no specific bound on its diameter. This can be formulated using the

a, b-separator inequalities xa + xb ≤ 1 + x(S), where S ⊆ V \ {a, b} is an a, b-separator, i.e.,
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there is no path from a to b in G−S. These inequalities have been studied in detail by Wang

et al. (2017). Approaches based on a, b-separator inequalities have outperformed flow-based

formulations for imposing induced connectivity (Carvajal et al., 2013; Buchanan et al., 2015;

Fischetti et al., 2017a), and thus it is perhaps not surprising that our distance-constrained

generalization performs well. The separation problem for the a, b-separator inequalities is

polynomial-time reducible to max flow (see, e.g., Fischetti et al. (2017a)), implying that one

can optimize over the corresponding LP relaxation in polynomial time (Grötschel et al., 1993).

We will see that the separation problem for our cut-like formulation is similarly reducible to

max flow when k ∈ {2, 3, 4} but that separation is hard when k ≥ 5.

2.2 A Recursive Formulation

Here, we provide a “recursive” integer programming formulation for k-clubs in a directed

graph D = (V,A) when k ≥ 3 and distances are hop-based, similar to that of Veremyev and

Boginski (2012)2. If the input graph is undirected, first replace each undirected edge {u, v}

by its directed counterparts (u, v) and (v, u).

Denote by N−(i) := {j ∈ V | (j, i) ∈ A} the set of incoming neighbors to node i. The

binary variable xi represents the decision to include vertex i in the k-club. The binary

variable ytij equals one if and only if there exists a path from i to j of length exactly t whose

vertices (including i and j) belong to the chosen k-club. This variable is only defined when

t ≥ 1 and should not be confused with yij raised to the t-th power. In the formulation, we

should write constraints that impose the following condition:

ytiv = 1 ⇐⇒ xv = 1 and there exists j ∈ N−(v) such that yt−1
ij = 1.

In words, there is a path (across k-club nodes) from i to v of length t if and only if (i) node v

2Later, we use this “recursive” formulation in our implementation to solve the maximum k-club problem.
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belongs to the k-club, and (ii) there is a path (using only k-club nodes) of length t− 1 from

node i to some incoming neighbor j of v.

i j v
t− 1 1

ytiv = 1

Figure 2.2: An illustration to explain the variable ytij.

When t ≥ 2, this equivalence can be formulated as follows.

(⇐= ) yt−1
ij + xv ≤ ytiv + 1 ∀j ∈ N−(v)

( =⇒ ) ytiv ≤ xv and ytiv ≤
∑

j∈N−(v)

yt−1
ij .

For the case t = 1, we want to impose that y1
ij = 1 if and only if xi = xj = 1 and (i, j) ∈ A.

This can be formulated as follows, where the variable y1
ij is only defined when (i, j) ∈ A.

(⇐= ) xi + xj ≤ y1
ij + 1

( =⇒ ) y1
ij ≤ xi and y1

ij ≤ xj.

So far, the constraints impose that the ytij variables take their intended values. Now, to

enforce that the selected vertices form a k-club, if vertices i and j are both selected, then

there must be an i, j-path of length ≤ k, i.e.,

xi + xj ≤ 1 +
k∑
t=1

ytij.

Observe that this constraint can easily be modified to impose different distance requirements
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depending on i and j. In summary, the formulation is as follows, where T≥2 := {2, . . . , k}.

xi + xj ≤ y1
ij + 1 (i, j) ∈ A (2.3a)

y1
ij ≤ xi (i, j) ∈ A (2.3b)

y1
ij ≤ xj (i, j) ∈ A (2.3c)

yt−1
ij + xv ≤ ytiv + 1 i ∈ V \ {j, v}, (j, v) ∈ A, t ∈ T≥2 (2.3d)

ytiv ≤ xv i ∈ V \ {v}, v ∈ V, t ∈ T≥2 (2.3e)

ytiv ≤
∑

j∈N−(v)

yt−1
ij i ∈ V \ {v}, v ∈ V, t ∈ T≥2 (2.3f)

xi + xj ≤ 1 +
k∑
t=1

ytij i ∈ V \ {j}, j ∈ V (2.3g)

xi ∈ {0, 1} i ∈ V (2.3h)

ytij ∈ {0, 1} i ∈ V \ {j}, j ∈ V, t ∈ {1, . . . , k}. (2.3i)

Since MIP solvers use sparse matrix representation, the number of nonzeros in the

formulation is more indicative of its size than the quantity obtained by multiplying the

number of variables by the number of constraints.

Theorem 2. The above is a correct formulation for k-clubs in digraphs (under hop-based

distances) and has O(kn2) variables, O(knm) constraints, and O(knm) nonzeros.

Not all of these variables and constraints may be necessary. For example, if the input

graph is undirected we can assume ytij = ytji. If desired, the user can impose the constraints

ytij = ytji when implementing the formulation (as we do), and the solver will perform the

substitutions in presolve.

In a later work, Veremyev et al. (2015) made a small change to the variables’ definitions,

defining them for paths of length at most k, instead of for paths of length exactly k. They

also strengthened the formulation by disaggregating some big-M constraints, which was found

16



to perform better computationally despite the increase in the number of constraints. (This is

perhaps unsurprising given that this improvement in strength came at essentially no cost to

the formulation’s size measured with respect to the number of nonzeros.)

2.3 Our Contributions

In Section 2.4, we introduce the path-like formulation. It generalizes the folklore k = 2

common neighbor formulation, simplifies and dominates the chain formulations of Bourjolly

et al. (2002) and Wotzlaw (2014), and generalizes the k = 3 neighborhood F N formulation

of Almeida and Carvalho (2012). We also detail the formulation for the k = 4 case.

In Section 2.5, we propose the cut-like formulation, which is the first nontrivial formulation

for k-club that uses n variables, and prove its correctness—even when distances are not hop-

based. It generalizes the folklore k = 2 common neighbor formulation and the k = 3 node cut

set formulation F S of Almeida and Carvalho (2012). We provide the exact conditions under

which the formulation’s constraints induce facets, and show that the cut-like formulation is

stronger than the path-like formulation for every k ≥ 3, generalizing results of Almeida and

Carvalho (2012) who showed that F S is stronger than F N (i.e., the k = 3 case).

In Section 2.5.3, we examine some complexity issues relating to the cut-like formulation.

Namely, we observe that the associated separation problem is polynomial-time solvable when

k ∈ {2, 3, 4} (if distances are measured in terms of hops) and prove NP-hardness for every

k ≥ 5. Note that Almeida and Carvalho (2012) never addressed the complexity of separation

for their F S formulation (i.e., the k = 3 case of our cut-like formulation) and resorted to

heuristic separation in their implementation3. The polynomiality of separation for the case

k = 4 is intimately linked with observations of Lovász et al. (1978) on length-bounded cuts.

We also remark that these flow-based separation routines immediately lead to polynomial-size

3In later work, Almeida and Carvalho (2014) show that their node cut set formulation F S admits a size
O(n4) extended formulation which they call F EC, but the separation problem for F S is never explicitly
discussed.
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(but impractical) extended formulations when k ∈ {3, 4}.

In Section 2.6, we perform computational experiments. They demonstrate the superiority

of the cut-like formulation over all other formulations, including the path-like formulation

and the compact formulations of Veremyev et al. (Veremyev and Boginski, 2012; Veremyev

et al., 2015). In many cases, the differences in running time are dramatic, with the cut-like

formulation taking a second or two and the other approaches taking hours. This happens on

both real-life and synthetic testbeds that have been considered in the previous literature on

the maximum k-club problem. Taking inspiration from Moradi and Balasundaram (2018),

we also propose a decomposition procedure to handle the exorbitant number of conflict

constraints generated for some of the larger instances. Our code is publicly available (Salemi

and Buchanan, 2019).

Finally, we conclude in Section 2.7.

2.4 The Path-Like Formulation

Here we introduce the path-like formulation, which improves upon the chain formulation

of Bourjolly et al. (2002) (cf. Wotzlaw (2014)) and generalizes the k = 3 neighborhood

formulation F N of Almeida and Carvalho (2012). For completeness, we briefly review the

previous formulations.

Chain Formulation. The chain formulation of Bourjolly et al. (2002) has a binary variable

yP for each chain (or path) of length at most k and is a follows.
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max
∑
i∈V

xi (2.4a)

xa + xb ≤ 1 +
∑
P∈Pk

ab

yP ∀{a, b} ∈
(
V

2

)
\ E (2.4b)

yP ≤ xi ∀i ∈ V (P ), ∀P (2.4c)

xi ∈ {0, 1} ∀i ∈ V (2.4d)

yP ∈ {0, 1} ∀P. (2.4e)

Here, P k
ab is the collection of paths of length at most k between nodes a and b, and ∀P is

shorthand for all paths of length at most k. Constraints (2.4b) ensure that, for every pair of

nonadjacent vertices a and b in the chosen k-club, there is at least one path between them of

length at most k. Constraints (2.4c) ensure that these paths can be crossed only when all of

their nodes are selected in the k-club.

Observe that a path consisting of k edges crosses k − 1 interior nodes and two endpoints

for a total of k + 1 nodes. Thus, the number of path variables are of the order O(nk+1) when

distances are hop-based. And, when G is complete, the number of paths is indeed Ω(nk+1).

However, as observed by Wotzlaw (2014), the path variables can be defined with respect to

the interior nodes only, giving size O(nk−1). For example, if G is the path graph 1-2-3-4 with

an additional leaf node 5 attached to node 3 and k = 3, then the path 2-3 can connect the

a, b-pairs {1, 4} as well as {1, 5}; there is no need to define two variables for the paths 1-2-3-4

and 1-2-3-5.

It is unclear whether Bourjolly et al. intended for these path variables to include their

endpoints, but later papers claim that the chain formulation has size O(nk+1) (see Veremyev

and Boginski (2012); Almeida and Carvalho (2012)), and to our knowledge Wotzlaw was the

first to explicitly state a size bound of O(nk−1), albeit in a MAX-SAT formulation.
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Path-like formulation. In the “path-like” formulation, we actually define variables for

length-bounded connectors (and not for paths). We will see that this yields several benefits.

The formulation is as follows, where yC is a binary variable denoting whether to choose the

connector C ⊂ V , and Ck
ab is the collection of all minimal length-k a, b-connectors.

max
∑
i∈V

xi (2.5a)

xa + xb ≤ 1 +
∑
C∈Ck

ab

yC ∀{a, b} ∈
(
V

2

)
\ E (2.5b)

yC ≤ xi ∀i ∈ C, ∀C (2.5c)

xi ∈ {0, 1} ∀i ∈ V (2.5d)

yC ∈ {0, 1} ∀C. (2.5e)

Here, ∀C is shorthand for ∀C ∈
⋃
Ck
ab where the union is over {a, b} ∈

(
V
2

)
\ E. We note

that this formulation applies when distances are edge-weighted, although it seems that little

can be said about its size in this case.

There are several advantages of defining variables for length-bounded connectors (instead

of for paths) as follows.

• there is no confusion regarding whether the “endpoints” are part of the variable’s

definition or not;

• the order in which the vertices are visited in a path is stricken from the variable

definition, resulting in fewer variables;

• it allows us to define variables only for minimal connectors, which again reduces the

formulation’s size.

In fact, the restriction to minimal connectors is the key advantage of the k = 3 neighborhood

formulation F N of Almeida and Carvalho (2012) over the chain formulation (and over its
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no-endpoints variant).

Proposition 1. Suppose distances are hop-based, G is connected, and k ≥ 2 is a constant.

Then, the number of variables in the path-like formulation is:

• O
(
m(k−1)/2

)
when k is odd, and

• O
(
nm(k−2)/2

)
when k is even.

And, there are graphs requiring Ω(nk−1) variables.

Proof. Since distances are hop-based, every minimal length-k a, b-connector C ∈ Ck
ab induces

an a, b-path graph, say a = v0-v1-v2-· · · -vq = b, where q ≤ k. For such a connector C, define

f(C) as follows

f(C) :=



(
∅,
{
{v1, v2}, · · · , {vq−2, vq−1}

})
if |C| ≥ 2 is even (q odd)

(
v1,
{
{v2, v3}, · · · , {vq−2, vq−1}

})
if |C| ≥ 1 is odd (q even) and v1 < vq−1

(
vq−1,

{
{v1, v2}, · · · , {vq−3, vq−2}

})
if |C| ≥ 1 is odd (q even) and v1 > vq−1.

Observe that the function f maps a connector C to an ordered pair (vC , EC) where vC ∈

V ∪ {∅} and EC ⊆ E. See that, when |C| is even, f maps C to (q − 1)/2 edges; when |C| is

odd, f maps C to a vertex and (q − 2)/2 edges. Define C :=
⋃
Ck
ab where the union is over

{a, b} ∈
(
V
2

)
\ E and F := {f(C) | C ∈ C}. By assumption that G is connected and k is a

constant, nk = O(m). Then,

|C| = |F | ≤
k∑
q=2

(q even)

n

(
|E|

(q − 2)/2

)
+

k∑
q=3

(q odd)

(
|E|

(q − 1)/2

)
.
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So, when k ≥ 3 is odd,

|C| ≤ k − 1

2
n

(
|E|

(k − 3)/2

)
+
k − 1

2

(
|E|

(k − 1)/2

)
= O

(
k

(
|E|

(k − 1)/2

))
= O(m(k−1)/2),

and when k ≥ 2 is even,

|C| ≤ k

2
n

(
|E|

(k − 2)/2

)
+
k − 2

2

(
|E|

(k − 2)/2

)
= O

(
nk

(
|E|

(k − 2)/2

))
= O(nm(k−2)/2).

Since the number of variables in the path-like formulation is n+ |C|, the first claim holds.

The following construction shows the second claim. Consider a graph with the vertex set

V = {a}∪V1 ∪V2 ∪ · · · ∪Vk−1 ∪{b}, where each Vi has n−2
k−1

vertices. Connect a to all vertices

of V1, each vertex of V1 to all vertices of V2, . . . , and each vertex of Vk−1 to b. Picking one

vertex vi from each Vi gives a minimal length-k a, b-connector {v1, v2, . . . , vk−1}. So, number

of minimal length-k a, b-connectors is at least (n−2
k−1

)k−1, which is Ω(nk−1) when k is fixed.

a b

1

2 3

1

1

1 1

1 1

1

a b

1

2 3

4

6

1 2

1 1

4

Figure 2.3: Examples of collection Ck
ab of minimal length-k a, b-connectors. On the left,

C3
ab = {{1}, {2, 3}}. On the right, C7

ab = {{1, 3}}. Edge weights are given next to the edges.

Remark 1. Figure 2.3 shows that if distances are not hop-based, a minimal length-k a, b-

connector might not induce a path graph.

To better illustrate the reason for using connectors that are minimal, consider the graphs

obtained by removing an edge e = {a, b} from a complete graph, i.e., Kn − e, and suppose

distances are hop-based. For these graphs, the formulation of Wotzlaw (2014) would use a

variable for each of the
(
n−2
k−1

)
(k − 1)! paths of length k that connect a and b (not to mention
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the variables for the shorter paths). If the variables were defined for length-k a, b-connectors

(instead of for paths), this number would reduce to
(
n−2
k−1

)
. Enforcing that the connectors

be minimal further reduces the number of auxiliary variables to n− 2. Thus, these graphs

Kn−e provide examples where the path-like formulation is much smaller than the formulation

of Wotzlaw (2014).

2.4.1 The hop-based case k = 3

Here we detail the path-like formulation for the hop-based case k = 3, showing that it is

essentially the neighborhood formulation F N of Almeida and Carvalho (2012). A similar

analysis shows that it generalizes the folklore k = 2 common neighbor formulation.

To flesh out the formulation, we only need to identify the minimal length-3 a, b-connectors

C3
ab. So, suppose that vertices a and b are nonadjacent. Observe that if v ∈ N(a) ∩ N(b),

then {v} is a minimal length-3 a, b-connector. And, if {u, v} ∈ E and u ∈ N(a) \N(b) and

v ∈ N(b)\N(a), then {u, v} is a minimal length-3 a, b-connector. Finally, there are no others.

Thus, letting

Eab := {{u, v} ∈ E | u ∈ N(a) \N(b), v ∈ N(b) \N(a)},

we can write the constraints (2.5b) as

xa + xb ≤ 1 +
∑

v∈N(a)∩N(b)

y{v} +
∑
e∈Eab

ye. (2.6)

We can add constraints of the following form to the path-like formulation without changing

the feasible region in the space of x variables.

∑
i∈C

xi ≤ (|C| − 1) + yC . (2.7)
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Observing that constraints (2.7) and (2.5c) will force xv = y{v} for each v ∈ N(a)∩N(b), the

path-like formulation with constraints (2.7) reduces to4:

max
∑
i∈V

xi (2.8a)

xa + xb ≤ 1 +
∑

v∈N(a)∩N(b)

xv +
∑
e∈Eab

ye ∀{a, b} ∈
(
V

2

)
\ E (2.8b)

xu + xv ≤ 1 + ye ∀e = {u, v} ∈ E (2.8c)

ye ≤ xv ∀v ∈ e, ∀e ∈ E (2.8d)

xi ∈ {0, 1} ∀i ∈ V (2.8e)

ye ∈ {0, 1} ∀e ∈ E. (2.8f)

This is the neighborhood formulation F N of Almeida and Carvalho (2012).

2.4.2 The hop-based case k = 4

Here we detail the hop-based case k = 4 of the path-like formulation. For every pair {a, b} of

nonadjacent vertices, we partition the vertices of the graph G = (V,E) into sets Vij = Vij(a, b)

as follows.

Vij(a, b) := {v ∈ V | distG(a, v) = i, distG(v, b) = j}. (2.9)

Observe that if some vertex v belongs to a set Vij with i+ j > 4, then it cannot belong to a

minimal length-4 a, b-connector. Thus, every minimal length-4 a, b-connector is a subset of

V11 ∪ V12 ∪ V21 ∪ V13 ∪ V22 ∪ V31, as depicted in Figure 2.4.

Every minimal length-4 a, b-connector C ∈ C4
ab is one of the following six types.

4One possible caveat is that not all edges will be minimal length-3 a, b-connectors, meaning that the
path-like formulation may in fact have fewer variables and constraints than F N.
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a bV11

V12 V21

V13 V22 V31

Figure 2.4: Vertices (and edges) within minimal length-4 a, b-connectors.

1. {i} where i ∈ V11;

2. {p, q} where p ∈ V12, q ∈ V21, pq ∈ E;

3. {p, v, q} where p ∈ V12, v ∈ V22, q ∈ V21, pv ∈ E, vq ∈ E, pq /∈ E;

4. {p, v, w} where p ∈ V12, v ∈ V22, w ∈ V31, pv ∈ E, vw ∈ E;

5. {u, v, q} where u ∈ V13, v ∈ V22, q ∈ V21, uv ∈ E, vq ∈ E;

6. {u, v, w} where u ∈ V13, v ∈ V22, w ∈ V31, uv ∈ E, vw ∈ E.

Moreover, for a particular {a, b} pair, all minimal length-4 a, b-connectors can be enumerated

in time O(nm) using linear space. The interested reader can consult our C++ implementation

for the details (Salemi and Buchanan, 2019).

Remark 2. By Proposition 1, the path-like formulation for 4-club has O(mn) variables and

constraints when distances are hop-based.

2.5 The Cut-Like Formulation

Here we introduce the cut-like formulation for k-club, generalizing the k = 2 common neighbor

formulation and the k = 3 node cut set formulation F S of Almeida and Carvalho (2012). It

has only n variables, and its constraints are based on length-k a, b-separators.

Recall that a subset S ⊆ V \ {a, b} of vertices in a graph G = (V,E) is called a length-k

a, b-separator if the distance from node a to node b in the graph G− S is greater than k. In
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other words, each a, b-path of length ≤ k crosses at least one vertex of S. See Figure 2.1 for

an example.

Cut-like formulation. As before, there is a binary variable xi representing the decision

to include vertex i ∈ V in the k-club.

max
∑
i∈V

xi (2.10a)

xa + xb ≤ 1 + x(S) ∀(a, b, S) (2.10b)

xi ∈ {0, 1} ∀i ∈ V. (2.10c)

Here, ∀(a, b, S) is shorthand for all nonadjacent vertices a and b and all length-k a, b-separators

S ⊆ V \ {a, b}. Naturally, it is sufficient to consider only minimal length-k a, b-separators.

In the hop-based case k = 2, observe that the only minimal length-k a, b-separator is

N(a) ∩N(b) so constraints (2.10b) reduce to the folklore k = 2 constraints:

xa + xb ≤ 1 + x(N(a) ∩N(b)) ∀{a, b} ∈
(
V

2

)
\ E. (2.11)

Theorem 3. The cut-like formulation is correct, even when distances are edge-weighted.

Proof. We show that the vertex subset K ⊆ V is a k-club if and only if its characteristic

vector xK ∈ {0, 1}n satisfies all constraints (2.10b).

( =⇒ ) By the contrapositive. Let K ⊆ V and suppose xKa + xKb > 1 +
∑

i∈S x
K
i

for some length-k a, b-separator S ⊆ V \ {a, b}. This implies a, b ∈ K and |S ∩ K| = 0.

Since S is a length-k a, b-separator, distG−S(a, b) > k. Since G[K] is a subgraph of G− S,

distG[K](a, b) ≥ distG−S(a, b). Thus, diam(G[K]) ≥ distG[K](a, b) ≥ distG−S(a, b) > k, so K

is not a k-club.

( ⇐= ) By the contrapositive. Suppose that K ⊆ V is not a k-club. That is, there
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exist vertices a, b ∈ K such that distG[K](a, b) > k. Then, S := V \ K is a length-k

a, b-separator in G. So, xK violates the length-k a, b-separator inequality (2.10b) since

xKa + xKb = 2 > 1 + 0 = 1 +
∑

i∈S x
K
i .

2.5.1 Facet Characterization

Here we provide the exact conditions under which the length-k a, b-separator inequality (2.10b)

induces a facet of the k-club polytope CLUBk(G) = CLUBk(G,w) of graph G. To our

knowledge, this is the first known nontrivial facet of the edge-weighted k-club polytope,

besides the folklore inequalities mentioned in Proposition 2.

Proposition 2 (folklore, k = 2 by Balasundaram et al. (2005)). If S ⊆ V is a subset of

vertices whose pairwise distances are greater than k, then x(S) ≤ 1 is valid for CLUBk(G).

Moreover, if no proper superset of S satisfies this property, then x(S) ≤ 1 induces a facet.

We will take as given that CLUBk(G) is full-dimensional, which is well-known (say,

because it contains the zero vector and the unit vectors ei). For more on k-club polyhedra,

consult Balasundaram et al. (2005); Balasundaram (2007); Mahdavi Pajouh et al. (2016).

Lemma 1 (A way to lift). Let S ⊆ V \{a, b} be a length-k a, b-separator in graph G = (V,E).

If vertex d ∈ V \ S satisfies properties 1 and 2 below, then xa + xb + xd − x(S) ≤ 1 is valid

for CLUBk(G).

1. distG−S(a, d) > k and distG−S(b, d) > k;

2. for every s ∈ S, at least one of the following holds:

(a) distGs(d, s) + distGs(s, a) > k;

(b) distGs(d, s) + distGs(s, b) > k;

where Gs := G− (S \ {s}).
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Proof. By the contrapositive. Suppose there is a k-club K ⊆ V with xKa +xKb +xKd −xK(S) ≥ 2,

where xK is the characteristic vector of K.

In the first case, suppose xK(S) = 0. This implies that at least 2 vertices of {a, b, d}

belong to K, and a and b cannot both belong to K since S is a length-k a, b-separator. So,

without loss, suppose that a, d ∈ K and b /∈ K. Then,

distG−S(a, d) ≤ distG[K](a, d) ≤ k.

The first inequality holds because G− S is a supergraph of G[K], and the second inequality

holds because K is a k-club that contains a and d. This shows that property 1 fails.

In the other case, xK(S) ≥ 1. Pick s ∈ K∩S arbitrarily. Since xKa +xKb +xKd −xK(S) ≥ 2,

we have a, b, d ∈ K and so K ∩ S = {s}. Now, if distG−S(a, d) ≤ k or distG−S(b, d) ≤ k

then property 1 fails, in which case we are done. So, suppose that distG−S(a, d) > k and

distG−S(b, d) > k. By straightforward properties of distances, the following inequalities hold.

distGs(d, a) ≤ distGs(d, s) + distGs(s, a) (2.12)

distGs(d, b) ≤ distGs(d, s) + distGs(s, b). (2.13)

We claim that these inequalities (2.12) and (2.13) hold at equality. Suppose not. Then

at least one of them holds strictly; without loss, let it be the former, i.e., distGs(d, a) <

distGs(d, s) + distGs(s, a). This implies that distGs(d, a) = distG−S(d, a), in which case we

arrive at the contradiction

k < distG−S(d, a) = distGs(d, a) ≤ distG[K](d, a) ≤ k.

Here, the inequality near the middle holds because Gs is a supergraph of G[K], and the last

inequality holds becauseK is a k-club that contains a and d. This shows that inequalities (2.12)
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and (2.13) hold at equality, and so the following holds.

distGs(d, s) + distGs(s, a) = distGs(d, a) ≤ distG[K](d, a) ≤ k

distGs(d, s) + distGs(s, b) = distGs(d, b) ≤ distG[K](d, b) ≤ k.

This shows that property 2 fails.

Theorem 4. The length-k a, b-separator inequality xa + xb ≤ 1 + x(S) induces a facet of the

k-club polytope CLUBk(G) of G if and only if:

1. S is a minimal length-k a, b-separator; and

2. no vertex d ∈ V \ S satisfies properties 1 and 2 of Lemma 1.

Proof. ( =⇒ ) Suppose that xa+xb−x(S) ≤ 1 is facet-defining. If S is not minimal (i.e., there

is a S ′ ( S that is also a length-k a, b-separator), then the valid inequalities xa+xb−x(S ′) ≤ 1

and −x(S \ S ′) ≤ 0 imply xa + xb − x(S) ≤ 1, so it cannot induce a facet. So, S is minimal.

Similarly, if some vertex d satisfies properties 1 and 2 of Lemma 1, we can write the valid

inequalities xa + xb + xd − x(S) ≤ 1 and −xd ≤ 0 which imply xa + xb − x(S) ≤ 1, so it

cannot induce a facet.

(⇐= ) Suppose that S is a minimal length-k a, b-separator and that no vertex d ∈ V \ S

satisfies properties 1 and 2 of Lemma 1. We already know that the inequality xa+xb−x(S) ≤ 1

is valid. So, to show that it is facet-defining, we will give n different k-clubs whose characteristic

vectors are affinely independent and belong to the face where the inequality xa+xb−x(S) ≤ 1

holds at equality. To do so, we will need some notations. Define

D := {v ∈ V \ S | distG−S(a, v) > k, distG−S(b, v) > k}.

We refer to paths that start at vertex v ∈ V and end at some vertex of U ⊆ V as v-U paths. A

shortest v-U path has the shortest length among all v-U paths. Finally, denote by length(P ),
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hops(P ), and V (P ) as the (edge-weighted) length, number of edges, and the vertex set of

path P , respectively.

We construct n different k-clubs as follows. See Figure 2.5 for an illustration.

• For every vertex v ∈ V \ (S ∪D), do the following. Let R = {a, b}. Among the shortest

v-R paths in graph G− S, pick a path Pv having the fewest number of edges. Then,

order the vertices of V \ (S ∪D) as (v1, v2, ..., vq), where q := n− |S| − |D|, so that:

1. length(Pv1) ≤ length(Pv2) ≤ · · · ≤ length(Pvq), and

2. if i < j and length(Pvi) = length(Pvj), then hops(Pvi) ≤ hops(Pvj).

This can be obtained by sorting the vertices v ∈ V \(S∪D) by the lengths of their paths

Pv, breaking any ties by hops(Pv). This gives the k-club denoted by Ki := V (Pvi).

• For every vertex s ∈ S, do the following. Consider a shortest a-b path Ps in graph

Gs := G− (S \ {s}). Such a path exists and has length at most k by minimality of S.

This gives the k-club V (Ps).

• For every vertex d ∈ D, do the following. Let Sd ⊆ S be the set of vertices violating

property 2 of Lemma 1. Among the shortest d-Sd paths in graph G, pick a path Pd

that has the fewest number of edges. Then, order the vertices of D as (d1, d2, . . . , dt),

where t := |D|, so that:

1. length(Pd1) ≤ length(Pd2) ≤ · · · ≤ length(Pdt), and

2. if i < j and length(Pdi) = length(Pdj), then hops(Pdi) ≤ hops(Pdj).

This can be obtained by sorting the vertices d ∈ D by the lengths of their paths Pd,

breaking any ties by hops(Pd). This gives the k-club denoted by Ti := V (Pdi) ∪ V (Ps),

where s is the endpoint of Pdi that belongs to S, and Ps is defined as above.
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Figure 2.5: Construction of n different k-clubs in the proof of Theorem 4.

We claim that the characteristic vectors of the aforementioned k-clubs each belong to the

face where the inequality xa + xb − x(S) ≤ 1 holds at equality. This is true for the k-clubs

Ki as they contain precisely one vertex from R = {a, b} and no vertices from S. This is also

true for the k-clubs V (Ps) and Ti as they contain both a and b, as well as one vertex from S.

We claim that the characteristic vectors of the aforementioned k-clubs are linearly

independent and thus affinely independent. To see this, it is enough to show that these

(column) vectors, arranged from left to right in the order in which they were described,

form an upper triangular matrix with ones on the main diagonal, as depicted in Figure 2.6.

(The entries of each column are to be arranged so that the first q entries correspond to

(v1, v2, . . . , vq), the next |S| entries correspond to the vertices of S, and the last |D| entries

correspond to (d1, d2, . . . , dt).) By our construction of the k-clubs, it can be seen that the

center submatrix is the identity matrix and that the three submatrices near the lower-left

corner are zero matrices. So, all that is left to show is that the upper-left and lower-right

submatrices are themselves upper triangular.

To prove that the upper-left submatrix is upper triangular, we are to show that each

k-club Ki is a subset of {v1, v2, . . . , vi}. Suppose that this is not true for some k-club Ki.
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n−|S|−|D| |S| |D|

V \ (S ∪D)

1 ?
? ?1

0
. . .

1

S 0
1 0

?1

0
. . .

1

D 0 0
1 ?1

0
. . .

1

Figure 2.6: A matrix whose columns represent the k-clubs in the proof of Theorem 4.

Then, Ki contains a vertex vj ∈ V \ (S ∪D) with i < j. By construction of Ki, this implies

that vertex vj is on a shortest vi-R path in G− S, and by the construction of the ordering

(v1, v2, . . . , vq), this implies that length(Pvi) ≤ length(Pvj). Let P ′vj be the subpath of Pvi

that starts at vj and ends at (a vertex of) R. Then,

length(Pvi) ≤ length(Pvj) ≤ length(P ′vj) ≤ length(Pvi).

Here, the middle inequality holds by definition of Pvj , and the last inequality holds because

P ′vj is a subpath of Pvi and edges have nonnegative weights. Thus,

length(Pvi) = length(Pvj) = length(P ′vj),

which in turn implies that

hops(Pvi) ≤ hops(Pvj) ≤ hops(P ′vj) < hops(Pvi).

Here, the first inequality holds by the construction of the ordering in addition to the observation

that length(Pvi) = length(Pvj ), the middle inequality holds by definition of Pvj together with
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the fact that length(Pvj ) = length(P ′vj ), and the last inequality holds because P ′vj is a proper

subpath of Pvi . This has given us the contradiction hops(Pvi) < hops(Pvi), which means that

our assumption that vj ∈ Ki cannot hold. Thus, it is true that Ki ⊆ {v1, v2, . . . , vi}, and so

the upper-left submatrix is upper triangular.

To prove that the lower-right submatrix is upper triangular, we are to show that each

k-club Ti is a subset of V \ {di+1, . . . , dt}. Suppose that this is not true for some k-club Ti.

Then, Ti contains a vertex dj ∈ D with i < j. By construction of Ti, this implies that vertex

dj is on a shortest di-Sdi path in G, and by the construction of the ordering (d1, d2, . . . , dt),

this implies that length(Pdi) ≤ length(Pdj). Let P ′dj be the subpath of Pdi that starts at dj

and ends at (a vertex of) Sdi . Then,

length(Pdi) ≤ length(Pdj) ≤ length(P ′dj) ≤ length(Pdi).

Here, the middle inequality holds by definition of Pdj , and the last inequality holds because

P ′dj is a subpath of Pdi and edges have nonnegative weights. Thus,

length(Pdi) = length(Pdj) = length(P ′dj),

which in turn implies that

hops(Pdi) ≤ hops(Pdj) ≤ hops(P ′dj) < hops(Pdi).

Here, the first inequality holds by the construction of the ordering in addition to the observation

that length(Pdi) = length(Pdj ), the middle inequality holds by definition of Pdj together with

the fact that length(Pdj ) = length(P ′dj ), and the last inequality holds because P ′dj is a proper

subpath of Pdi . This has given us the contradiction hops(Pdi) < hops(Pdi), which means that

our assumption that dj ∈ Ti cannot hold. Thus, it is true that Ti ⊆ V \ {di+1, . . . , dt}, and
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so the lower-right submatrix is upper triangular. This concludes the proof.

2.5.2 Formulation Strength

Here we show that the cut-like formulation is at least as strong as the path-like formulation,

generalizing the k = 3 result of Almeida and Carvalho (2012). When k ≥ 3, we also

characterize the graphs for which the cut-like formulation is integral as those with no 3-vertex

independent set.

0

1

1’

2 3 k· · ·

Figure 2.7: When k ≥ 3, setting x∗0 = x∗k = 1 and x∗i = 1
2

for all other nodes is feasible for the
path-like formulation but not for the cut-like formulation. Indeed, the length-k a, b-separator
inequality x0 + xk ≤ 1 + x2 is violated.

Proposition 3. The cut-like formulation is (always) at least as strong as the path-like

formulation. This inclusion is strict for the hop-based cases k ≥ 3. They are equally strong

in the hop-based case k = 2.

Proof. First we show that the cut-like formulation is always at least as strong as the path-like

formulation. Suppose that x∗ satisfies the LP relaxation of the cut-like formulation. For

each minimal length-k a, b-connector C ∈ Ck
ab, let iC be a minimum-weight vertex of C, i.e.,

iC ∈ C and x∗iC = min{x∗i | i ∈ C}, and set y∗C = x∗iC . We show that (x∗, y∗) satisfies the

LP relaxation of the path-like formulation. Obviously, (x∗, y∗) satisfies the constraints (2.5c)

and the 0-1 bounds. So, consider constraint (2.5b) for some nonadjacent vertices a and b.

Observe that S := ∪C∈Ck
ab
{iC} is a length-k a, b-separator, so x∗a + x∗b ≤ 1 +

∑
s∈S x

∗
s. So,
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constraint (2.5b) is satisfied as

x∗a + x∗b ≤ 1 +
∑
s∈S

x∗s ≤ 1 +
∑
C∈Ck

ab

x∗iC = 1 +
∑
C∈Ck

ab

y∗C .

Note that some x∗v may make multiple appearances in the sum
∑

C∈Ck
ab
x∗iC but only once in

the sum
∑

s∈S x
∗
s, hence the middle inequality.

The equality of the path-like and cut-like LP relaxations is easy to see in the hop-based

case k = 2, since the IP formulations themselves are equivalent. Figure 2.7 shows that the

inclusion can be strict when k ≥ 3.

Recall that the independence number of a graph G, denoted by α(G), is the size of a

maximum independent set in G.

Proposition 4. Under hop-based distances and k ≥ 3, the cut-like formulation is integral

for graph G if and only if G has no 3-vertex independent set (i.e., α(G) ≤ 2).

Proof. Suppose k ≥ 3 and let Qk(G) be the LP relaxation of the cut-like formulation

(including the 0-1 bounds). Without loss of generality, suppose that k ≤ n− 1. Since the

formulation is correct, we are proving the statement that Qk(G) = CLUBk(G) if and only if

α(G) ≤ 2. Recall that Qk(G) and CLUBk(G) are both full dimensional and thus have unique

half-space representations up to scalar multiples.

( =⇒ ) By the contrapositive. Suppose there is an independent set I with three vertices.

Then, the inequality x(I) ≤ 1 induces a facet of CLUBk(G[I]). Lifting this seed inequality

shows that CLUBk(G) has a facet-defining inequality of the form x(I) +
∑

i∈V \I πixi ≤ 1

with at least three positive coefficients. But, this inequality is not part of the definition of

Qk(G), so Qk(G) 6= CLUBk(G).

( ⇐= ) Suppose α(G) ≤ 2. Observe that the subgraph G[S] induced by a vertex set

S is either disconnected or has diam(G[S]) ≤ 3. (Otherwise, if G[S] is connected with
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diam(G[S]) ≥ 4, then a 3-vertex independent set {v0, v2, v4} can be obtained from a diameter-

inducing path v0-v1-v2-v3-v4-· · · of G[S].) Thus, CLUBn−1(G) = CLUB3(G). Wang et al.

(2017) have shown that CLUBn−1(G) = Qn−1(G) when α(G) ≤ 2. So,

CLUB3(G) ⊆ CLUBk(G) ⊆ Qk(G) ⊆ Qn−1(G) = CLUBn−1(G) = CLUB3(G),

and thus Qk(G) = CLUBk(G).

2.5.3 Separation Problem and Extended Formulations

Here we discuss the separation problem for the length-k a, b-separator inequalities (2.10b),

particularly for the case that distances are measured in hops. Since there are only O(n2)

minimal inequalities when k = 2, we will ignore that case. We observe that separation is

polynomial-time solvable for k ∈ {3, 4} by reduction to min-cut, and show that separation is

hard for each k ≥ 5. By the equivalence of separation and optimization (Grötschel et al.,

1993), we can optimize over the LP relaxations of the cut-like formulation in polynomial time

when k ∈ {3, 4}, but this is hard when k ≥ 5.

By standard arguments, the cut-like formulation admits a polynomial-size extended

formulation when k ∈ {3, 4}. This follows because the separation problem can be written as

a (particular) min-cut problem, which can be solved via a linear program. By techniques

of Martin (1991), this immediately gives the polynomial-size extended formulations. However,

the resulting formulations are too large to be practical, so we do not discuss them further.

The interested reader is invited to consult Lovász et al. (1978) or Xu (2001) for more details

about the reduction to min-cut.

The separation problem for the cut-like formulation can be stated as follows.

Problem: Separation for length-k a, b-separator inequalities (2.10b).

Input: A graph G = (V,E), vertex weights x∗ ∈ [0, 1]n, positive integer k.
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Output: (if any exist) nonadjacent vertices a, b ∈ V and a length-k a, b-separator S ⊆

V \ {a, b} such that x∗a + x∗b −
∑

i∈S x
∗
i > 1.

This problem is closely related to the Length-Bounded Node-Cut problem, which is known

to be NP-hard for each L ≥ 5 and easy for L ∈ {2, 3, 4}. Hardness for L ≥ 5 was shown

by Baier et al. (2010), and polynomiality when L = 4 essentially follows by Lovász et al.

(1978). The optimization version of this problem is given below, and the associated decision

problem will be styled Length-Bounded Node Cut.

Problem: Length-Bounded Node-Cut.

Input: A graph G = (V,E), nonadjacent nodes p and q, a weight wv ≥ 0 for each v ∈

V \ {p, q}, and a positive integer L.

Output: A vertex subset S ⊆ V \{p, q} of minimum weight
∑

i∈S wi such that distG−S(p, q) >

L (with respect to hop-based distances).

Separation is hard for k ≥ 5

Here, we show that it is hard to separate the length-k a, b-separator inequalities when k ≥ 5

and distances are hop-based. As an easy consequence, separation is hard for all k > 0 under

weighted distances.

Theorem 5. For each k ≥ 5, it is coNP-complete to determine whether a given x∗ ∈ Rn

satisfies all length-k a, b-separator inequalities (2.10b).

Proof. Membership in coNP is clear, as a suitable witness for a “no” instance is given by

nonadjacent nodes a and b and a length-k a, b-separator S ⊆ V \ {a, b}. Consider an instance

of Length-Bounded Node-Cut given by graph G = (V,E), nodes p and q, and distance

threshold L ≥ 5 and a target weight W for the cut S. We suppose that the node weights wv

are all equal to one. This variant of Length-Bounded Node-Cut is NP-hard (Baier et al., 2010).
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Let k = L and n = |V |. We construct an x∗ ∈ [0, 1]n that violates a length-k a, b-separator

inequality (2.10b) for G if and only if G has a length-L-bounded node-cut of size W . Namely,

let x∗p = x∗q = 2n+1
4n

and x∗i = 1
2n(W+1)

for all other nodes i of G.

(⇐= ) Suppose G has a length-L-bounded node-cut S ′ ⊆ V of size W . Then x∗ violates

the inequality (2.10b) for a = p, b = q, and S = S ′, since

x∗a + x∗b −
∑
i∈S

x∗i = x∗p + x∗q −
∑
i∈S′

x∗i

=
2n+ 1

4n
+

2n+ 1

4n
−W

(
1

2n(W + 1)

)
= 1 +

1

2n(W + 1)
> 1.

( =⇒ ) Suppose that x∗ violates a length-k a, b-separator inequality (2.10b) with length-k

a, b-separator S ⊆ V \{a, b}. Then no vertex of V \{p, q} can belong to {a, b} since otherwise

x∗a + x∗b −
∑
i∈S

x∗i ≤ x∗a + x∗b ≤
2n+ 1

4n
+

1

2n(W + 1)
≤ 1,

and the inequality (2.10b) is satisfied. Thus, {a, b} = {p, q}. Then,

1 < x∗a + x∗b −
∑
i∈S

x∗i = x∗p + x∗q −
∑
i∈S

x∗i

=
2n+ 1

4n
+

2n+ 1

4n
− |S|

(
1

2n(W + 1)

)
.

So, |S| < W + 1, and S is a length-L-bounded node-cut of size ≤ W .

Separation is easy for k ∈ {2, 3, 4}

As noted above, the Length-Bounded Node-Cut problem is polynomial-time solvable for

L ∈ {2, 3, 4}. The cases L = 2 and L = 3 can be considered folklore, and the case L = 4 was
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essentially shown by Lovász et al. (1978) by reduction to min-cut. The min-cut instance that

is created has linear size with respect to the input graph, so Length-Bounded Node-Cut with

L = 4 can be solved in time O(mn) (Orlin, 2013).

Thus, to solve the separation problem for the length-k a, b-separator inequalities when

given x∗ ∈ [0, 1]n, one can solve, for each pair {a, b} of nonadjacent vertices, a Length-Bounded

Node-Cut problem to find a minimum-weight S and then check whether x∗a+x∗b−
∑

i∈S x
∗
i > 1.

Since there are
(
n
2

)
−m a, b-pairs, the total running time would be O(mn3).

There are some ways to speed up separation in practice. For example, if x∗a + x∗b ≤ 1,

then certainly all length-k a, b-separator inequalities will be satisfied. The same holds if

x∗a + x∗b ≤ 1 + x∗(N(a) ∩ N(b)) since every length-k a, b-separator has N(a) ∩ N(b) as a

subset. However, we are unaware of a way to achieve a better worst-case running time. For

these and other reasons (e.g., poor initial performance, simplicity of the approach, ease of

implementation), we do not employ fractional separation in our implementation. As such, we

do not bother detailing the Length-Bounded Node-Cut algorithms for L ∈ {3, 4} that are

implied by Lovász et al. (1978).

2.6 Computational Experiments

Here we evaluate the performance of the path-like and cut-like formulations with that of

existing formulations and approaches for solving the maximum k-club problem.

All of our experiments are conducted on a Dell Precision Tower 7000 Series (7810) machine

running Windows 10 enterprise, x64, with Intel R© Xeon R© Processor E52630 v4 (10 cores,

2.2GHz, 3.1GHz Turbo, 2133MHz, 25MB, 85W) – that is 20 logical processors – and 32 GB

memory. The IP formulations are implemented in Microsoft Visual Studio 2015 in C++ for

Gurobi version 7.5.1. We impose a time limit of 3600 seconds on each instance and set the

method parameter to concurrent.

First, we propose a heuristic for maximum k-club that is based on the k-clique and DROP
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heuristic of Bourjolly et al. (2000). Then, we describe a preprocessing procedure. Next, due

to the exponential number of constraints defining the cut-like formulation, we explain our

implementation of it. Then, we compare running times for the different formulations on test

instances considered by Shahinpour and Butenko (2013a) and Moradi and Balasundaram

(2018). We also propose a decomposition procedure to handle the exorbitant number of

conflicts generated for some of the larger instances. Lastly, we compare running times

on the synthetic instances considered by Veremyev and Boginski (2012) and Moradi and

Balasundaram (2018). For simplicity, we limit ourselves to hop-based distances in the

experiments. Accordingly, all discussion (for heuristics, preprocessing, and separation)

concerns only the hop-based case, although most, if not all, of the ideas straightforwardly

extend to the edge-weighted case.

2.6.1 Heuristic and Preprocessing

The heuristic used in our implementation is based on the k-clique and DROP heuristic

of Bourjolly et al. (2000). Recall the definition of a (distance) k-clique.

Definition 4 (k-clique). A subset S ⊆ V of vertices in a graph G = (V,E) is called a

(distance) k-clique if, for every two vertices i, j ∈ S, distG(i, j) ≤ k.

The following pseudocode for k-clique and DROP uses two notions that we have not

discussed yet. The first is the k-th power Gk = (V k, Ek) of a graph G = (V,E), which has

the same vertex set, i.e., V k = V , and two nodes u, v in Gk are adjacent if their distance

distG(u, v) in G is at most k. Thus, a k-clique in G is equivalent to a clique in Gk. The

second is the k-hop neighborhood Nk
G(v) = {w ∈ V | distG(v, w) ≤ k} of a vertex v. Observe

that v belongs to Nk
G(v), assuming k ≥ 0.

k-clique and DROP (Bourjolly et al. (2000)):

1. find a maximum k-clique S in G (i.e., a maximum clique in Gk);
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2. while S is not a k-club in G do

• pick v ∈ S with the fewest nearby nodes |Nk
G[S](v) ∩ S| in G[S];

• S ← S \ {v};

3. return S.

One possible problem is that step 1 of k-clique and DROP requires us to find a maximum

k-clique in G, which is NP-hard, even to approximate (Asahiro et al., 2018). This motivates

our modification, which is to heuristically find a large k-clique.

Our heuristic:

1. initialize S ← V and create Gk;

2. while S is not a clique in Gk do

• pick v ∈ S of minimum degree in Gk[S];

• S ← S \ {v};

3. while S is not a k-club in G do

• pick v ∈ S with the fewest nearby nodes |Nk
G[S](v) ∩ S| in G[S];

• S ← S \ {v};

4. return S.

Creating the k-th power graph Gk takes time O(nm) by running BFS from each node.

Step 2, which finds a maximal clique in Gk, can be implemented to run in time linear in

the size of Gk (Matula and Beck, 1983) and finds large cliques in practice (Walteros and

Buchanan, 2019). Step 3, which performs DROP, can take time O(nm) in each of the O(n)

iterations of the while loop. This gives a time bound of O(mn2), which is rather pessimistic

given that the number of iterations of the while loop in step 3 is often zero in practice.
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Moreover, the time bound O(nm) within each iteration is also pessimistic given that when

this loop is entered, S is much smaller than n. Indeed, as the results in Table 2.1 show, the

times for our heuristic are very reasonable in practice. The longest time of 22.73 seconds is

for the graph cs4 with k = 4. (This is the sum of the heuristic time and the preprocessing

time.) For context, our implementation takes 23 seconds to compute the diameter of this

graph using BFS.

k = 2 k = 3 k = 4
Graph n m heur n′ time heur n′ time heur n′ time
karate 34 78 17 31 0.00 25 25 0.00 33 33 0.00
dolphins 62 159 10 55 0.00 29 35 0.00 39 47 0.00
lesmis 77 254 37 37 0.00 58 58 0.00 75 75 0.00
polbooks 105 441 28 83 0.00 53 54 0.00 62 104 0.00
adjnoun 112 425 50 50 0.00 82 104 0.01 107 107 0.00
football 115 613 12 115 0.00 24 115 0.01 115 115 0.01
jazz 198 2742 102 157 0.01 174 181 0.01 192 192 0.01
celegansn 297 2148 135 135 0.01 243 274 0.03 295 295 0.02
celegansm 453 2025 238 238 0.03 371 389 0.04 432 433 0.03
email 1133 5451 47 747 0.08 192 991 0.51 642 1053 0.46
polblogs 1490 16715 288 928 0.28 767 1115 0.29 1126 1187 0.35
netscience 1589 2742 35 35 0.03 54 54 0.03 85 85 0.02
add20 2395 7462 124 124 0.22 671 671 0.29 1454 1454 0.35
data 2851 15093 14 2080 0.33 28 2171 0.41 46 2255 0.34
uk 4824 6837 4 4792 0.69 7 4709 0.70 9 4728 0.82
power 4941 6594 20 20 1.00 30 30 0.94 61 61 0.88
add32 4960 9462 32 64 0.74 99 99 0.69 268 268 0.77
hep-th 8361 15751 51 51 1.76 114 1330 1.90 318 2143 2.07
whitaker3 9800 28989 8 9800 3.95 10 9800 3.91 19 9800 4.05
crack 10240 30380 8 10240 4.94 15 10237 5.05 25 10237 5.52
PGPgiantc 10680 24316 206 206 5.27 422 536 5.27 1161 1161 5.57
cs4 22499 43858 5 22499 22.28 7 22499 22.42 9 22499 22.73

Table 2.1: Heuristics and preprocessing on DIMACS-10 graphs. For each k, we report the
heuristic’s objective (heur), the number of remaining vertices after preprocessing (n′), and
the total time in seconds for the heuristic and preprocessing (time).

Once the heuristic terminates, we remove many vertices from the graph in a preprocessing

step (that is, prior to invoking the MIP solver). Specifically, if the heuristic gives us a

k-club of size p, we can remove all vertices v that have fewer than p nodes in their k-hop

neighborhood Nk
G(v). This can be done iteratively, since a deleted vertex may impact the size
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of the remaining vertices’ k-hop neighborhoods. This is essentially the k-core peeling used

for the maximum clique problem (Abello et al., 1999; Verma et al., 2015) which is also used

for k-club (Veremyev and Boginski, 2012; Moradi and Balasundaram, 2018). We implement

it as follows, where the (p− 1)-core of a graph G is the (unique) inclusion-maximal subgraph

of G that has minimum degree at least p− 1 (Seidman, 1983).

Preprocessing when given a lower bound p on the k-club number:

1. create the k-th power graph Gk;

2. find the (p− 1)-core G′ = (V ′, E ′) of Gk;

3. return G[V ′].

As before, step 1 takes time O(nm) when distances are hop-based. Step 2 takes linear time

O(|V ′| + |E ′|) = O(n2) with respect to G′ by the algorithm of Matula and Beck (1983)5.

Thus, the total time O(nm) is dominated by step 1.

Table 2.1 shows that the time spent on this preprocessing is reasonable and the reduction

in graph size can be substantial. On these 66 instances, our heuristic finds (what turn out to

be) 36 optimal solutions, and the preprocessing is able to prove optimality for 26 of them.

2.6.2 Implementing the Cut-Like Formulation

Since the cut-like formulation can have exponentially many constraints when k ≥ 3, we

add them on-the-fly only as needed. For this functionality, we invoke the Gurobi parameter

LazyConstraints. Our implementation proceeds roughly as follows.

Initialize the formulation with the conflict constraints xa + xb ≤ 1 for vertices a and b

that are far apart in G, i.e., distG(a, b) > k. We could instead add stronger cuts of the form

5See also the later implementation of Batagelj and Zaversnik (2003) which uses 3 arrays instead of linked
lists. Our implementation is the same as Walteros and Buchanan (2019), which uses 3 arrays and always pulls
off a vertex of minimum degree in the remaining graph. This second property is satisfied in the implementation
of Matula and Beck, but not of Batagelj and Zaversnik.
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x(I) ≤ 1, where I ⊆ V is an independent set in the k-th power graphGk. However, MIP solvers

detect these stronger cuts automatically and effectively through clique merging (Achterberg

et al., 2019).

Then, when the MIP solver encounters a possible solution x∗ ∈ {0, 1}n that satisfies the

initial constraints, we check if the selected vertices K = {i ∈ V | x∗i = 1} form a k-club. If

not, then for every pair of “far” vertices a and b in G[K] (i.e., distG[K](a, b) > k), we detect

and add a violated minimal length-k a, b-separator inequality. In particular, observe that in

this case S ′ = V \K will be a length-k a, b-separator and we could add the violated inequality

xa+xb ≤ 1+x(S ′). But, this inequality can and should be strengthened to xa+xb ≤ 1+x(S),

where S is a minimal subset of S ′ that is also a length-k a, b-separator. For this, we use

Minimalize as follows.

Minimalize:

1. initialize S ← S ′;

2. for s ∈ S do

• compute distGs(a, s) and distGs(s, b), where Gs = G− (S \ {s});

• if distGs(a, s) + distGs(s, b) > k, then update S ← S \ {s};

3. return S.

Observe that Minimalize returns a minimal length-k a, b-separator and that its running

time is O(|S ′|m) = O(nm) when distances are hop-based. In practice, one can speed up

Minimalize by first removing vertices v from S ′ that are not on a length-k path from a to b

in G, i.e., distG(a, v) + distG(v, b) > k; this takes linear time when distances are hop-based.

Also, a vertex v from S that neighbors both a and b will belong to every minimal length-k

a, b-separator and can be fixed in S, i.e., skipped in step 2.
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We experimented with a few alternative implementations but did not pursue them due

to relatively poor initial performance. For example, worse performance was observed when

adding a single violated inequality (instead of adding one violated inequality for every far

pair {a, b}). Attempts at fractional separation for k = 3 were also unsuccessful, although the

implementation was rather primitive. It is possible that more advanced implementations would

improve the results, e.g., using heuristic or approximate separation (Baier et al., 2010), but

we were already content with the performance of lazy integer separation. Experiments with

lifting (using Lemma 1 or using another quicker approach) did not improve the performance.

These unsuccessful attempts with lifting can be found in the commented portions of the

callback code.

In the case that the graph is disconnected after preprocessing, we still solve a single MIP.

Others, like Moradi and Balasundaram (2018), solve each component separately. This leads

to implementation questions such as: Which components should be solved first? Instead,

like Carvajal et al. (2013), we create a binary variable zj for each component Gj of G

representing the decision to pick the k-club from within component Gj. We impose that one

component is chosen (
∑

j zj = 1) and that a vertex i cannot be chosen if its component Gj is

not selected (xi ≤ zj). This adds only O(n) variables and constraints to the formulation and

avoids many implementation questions.

2.6.3 Results for Real-Life Instances

Here we compare running times on the instances considered by Shahinpour and Butenko

(2013a) and Moradi and Balasundaram (2018) that were drawn from the 10th DIMACS

Implementation Challenge on Graph Partitioning and Graph Clustering (DIMACS-10, 2017).

We exclude all instances that were solved by the heuristic and preprocessing from Section 2.6.1

as they would provide little insight. To make the comparisons as fair as possible, all

experiments are conducted using the same computer, MIP solver, heuristic solution, and
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preprocessing. We employ the connected component variables zj in each formulation.

We explore two different implementations of the k = 2 common-neighbor formulation. In

the first implementation, which we refer to as CN, we add all cut-like constraints initially.

Meanwhile, implementation CUT only adds the conflict constraints xa+xb ≤ 1 upfront; other

cut-like inequalities are added on-the-fly.

Table 2.2 gives the time to solve the k = 2 common-neighbor formulation (using CN and

CUT implementations), the maximum 2-club sizes, and the number of constraints added for

each implementation. As the table shows, implementation CUT avoids adding many of the

constraints defining the CN formulation and is faster. For example, for polblogs, it suffices

to add 171,237 out of 621,498 cut-like constraints, reducing the solve time from 19.49 seconds

to 4.93 seconds.

# constraints solve time, k = 2
Graph n m ω̄2 CN CUT CN CUT
karate 34 78 18 456 144+0 0.02 0.01
dolphins 62 159 13 1,670 927+16 0.06 0.03
polbooks 105 441 28 4,346 1,847+0 0.10 0.05
football 115 613 16 5,942 3,636+92 2.65 1.49
jazz 198 2742 103 12,652 1,326+1 0.33 0.06
email 1133 5451 72 519,948 227,841+0 11.41 3.94
polblogs 1490 16715 352 621,498 171,237+0 19.49 4.93
data 2851 15093 18 3,692,869 2,122,988+0 1947.13 1224.76
uk 4824 6837 5 11,576,836 11,459,801+0 3332.52 3266.55
add32 4960 9462 32 223,111 1,017+0 1.77 0.81
whitaker3 9800 28989 9 47,986,111 47,928,432+0 [8,18] [8,18]
crack 10240 30380 10 52,393,300 52,315,672+0 [9,18] [9,18]
cs4 22499 43858 6 253,047,393 252,937,499+0 MEM MEM

Table 2.2: Maximum 2-club sizes on DIMACS-10 graphs. We report the total number of
cut-like constraints to solve the k = 2 common neighbor formulation using CN and CUT
implementations. For each implementation, we also report the total time in seconds (including
preprocessing, heuristic, and model build time), or the best lower and upper bounds [LB,UB]
within a 3600 second time limit. Cases where using an implementation leads to memory
crashes are reported as MEM.

In Table 2.3 and Table 2.4, we compare the time to solve the maximum k-club problem

for k ∈ {3, 4} using the following formulations:
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• recursive (R), resembling (Veremyev and Boginski, 2012; Veremyev et al., 2015),

• canonical hypercube cut (CHC), by Moradi and Balasundaram (2018),

• path-like (PATH), and

• cut-like (CUT).

solve time, k = 3
Graph n m ω̄3 R CHC PATH CUT
dolphins 34 78 29 0.54 0.01 0.04 0.01
polbooks 105 441 53 1.01 0.01 0.07 0.01
adjnoun 112 425 82 6.48 0.03 0.39 0.01
football 115 613 58 [24,63] [24,67] 8.11 0.29
jazz 198 2742 174 69.43 0.03 3.14 0.03
celegansn 297 2148 243 96.85 5.03 4.41 0.07
celegansm 453 2025 371 337.12 0.08 6.44 0.07
email 1133 5451 212 LPNS [192,233] [208,239] 241.42
polblogs 1490 16715 776 LPNS 3.37 1132.06 1.67
data 2851 15093 32 LPNS [32,36] [28,47] [31,36]
uk 4824 6837 8 MEM [7,16] [7,17] [7,16]
hep-th 8361 15751 120 [114,124] [114,123] 2676.83 171.82
whitaker3 9800 28989 15 MEM [13,32] [13,32] [13,32]
crack 10240 30380 17 MEM [15,31] [15,31] [15,31]
PGPgiantc 10680 24316 422 633.09 5.84 27.63 5.82
cs4 22499 43858 12 MEM MEM MEM MEM

Table 2.3: Results for DIMACS-10 graphs. For each k = 3 and each formulation, we report
the total time in seconds (including preprocessing, heuristic, and model build time), or the
best lower and upper bounds [LB,UB] within a 3600 second time limit. Cases where the LP
relaxation were not solved within the time limit (due either to build time or solve time) are
reported as LPNS and cases where using a formulation leads to memory crashes are reported
as MEM.

Table 2.3 and Table 2.4 demonstrate that CUT performs the best among the four

formulations. It solves all of the instances that R, CHC, and PATH can solve, plus 7, 5, and 4

others, respectively. CUT’s best performance (relative to the other formulations) is on email

with k = 4, where it finishes in 1.82 seconds, while the others struggle. Moreover, formulations

R and CHC fail on some small instances such as on the 115-node graph football when k = 3.

Some of the larger instances like cs4 cause each of the formulations to crash. Investigating
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solve time, k = 4
Graph n m ω̄4 R CHC PATH CUT
dolphins 34 78 40 1.14 0.01 0.16 0.01
polbooks 105 441 68 13.99 0.03 1.09 0.03
celegansm 453 2025 432 207.38 0.09 42.78 0.06
email 1133 5451 651 LPNS [642,654] LPNS 1.82
polblogs 1490 16715 1127 LPNS 0.86 LPNS 0.74
data 2851 15093 52 MEM [49,58] [46,75] [49,58]
uk 4824 6837 14 MEM [11,26] [9,26] [11,26]
hep-th 8361 15751 344 LPNS [344,347] [336,347] 404.38
whitaker3 9800 28989 23 MEM [19,49] LPNS [19,49]
crack 10240 30380 31 MEM [28,61] LPNS [28,61]
cs4 22499 43858 18 MEM MEM MEM MEM

Table 2.4: Results for DIMACS-10 graphs. For k = 4 and each formulation, we report the
total time in seconds (including preprocessing, heuristic, and model build time), or the best
lower and upper bounds [LB,UB] within a 3600 second time limit. Cases where the LP
relaxation were not solved within the time limit (due either to build time or solve time) are
reported as LPNS and cases where using a formulation leads to memory crashes are reported
as MEM.

further, we find that CUT performs poorly on those instances that require a large number of

conflict constraints (more than 2 million), while performing quite well on all other instances

(never taking longer than 7 minutes). The number of conflict constraints for each instance is

reported in Table 2.5. These observations motivate the decomposition procedure given next.

2.6.4 Dealing with Too Many Conflicts

As discussed earlier, we initialize the cut-like formulation with the conflict constraints

xa + xb ≤ 1 for vertices a and b that are far apart in G. Sometimes this results in too many

conflicts for our computer to handle, as reported in Table 2.5. For example, whitaker3,

crack, and cs4 have more than 47 million, 52 million, and 252 million conflicts, respectively,

when k = 3. This leads to memory crashes (e.g., cs4) or difficulties solving the IP (uk). In

our experiments, instances with more than 2 million conflicts overburden the MIP solver. To

handle such instances, we developed the decomposition method given below, which we refer

to as ICUT.
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# conflicts
Graph n m k = 2 k = 3 k = 4
karate 34 78 144 0 0
dolphins 62 159 927 19 33
lesmis 77 254 0 0 0
polbooks 105 441 1,847 4 728
adjnoun 112 425 0 179 0
football 115 613 3,636 308 0
jazz 198 2742 1,326 26 0
celegansn 297 2148 0 411 0
celegansm 453 2025 0 193 1
email 1133 5451 227,841 216,781 42,340
polblogs 1490 16715 171,237 39,696 1,509
netscience 1589 2742 0 0 0
add20 2395 7462 0 0 0
data 2851 15093 2,122,988 2,276,728 2,410,756
uk 4824 6837 11,459,801 11,047,360 11,112,993
power 4941 6594 0 0 0
add32 4960 9462 1,017 0 0
hep-th 8361 15751 0 700,013 1,432,395
whitaker3 9800 28989 47,928,432 47,842,511 47,728,908
crack 10240 30380 52,315,672 52,167,356 52,009,002
PGPgiantc 10680 24316 0 8,919 0
cs4 22499 43858 252,937,499 252,715,995 252,330,477

Table 2.5: For each k ∈ {2, 3, 4}, we report the number of conflict constraints for each instance
after preprocessing.
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ICUT:

1. initialize K to be the k-club found by the heuristic and preprocessing of Section 2.6.1;

2. compute a minimum-degree ordering (v1, v2, . . . , vn) of Gk;

3. T ← ∅;

4. for i = n down to 1 do

• T ← T ∪ {vi};

• Si ← Nk
G[T ](vi);

• if |Si| ≤ |K| continue;

• Ki ← a maximum k-club in G[Si] that contains vi;

• if |Ki| > |K| then K ← Ki;

5. return K.

This method iteratively solves small subproblems, much like the Iterative Trim Decompo-

sition Branch-and-Cut (ITDBC) algorithm of Moradi and Balasundaram (2018). However,

ICUT uses the cut-like formulation instead of the CHC formulation and defines its subprob-

lems differently. This was motivated by the observation that ITDBC takes time Θ(n2m) just

to identify the subproblems, which ended up being a bottleneck in our initial experiments. To

address this, we borrowed ideas from the maximum clique literature to decompose the maxi-

mum k-club problem into n subproblems in time Θ(nm). In particular, we use a minimum

degree ordering, which, as defined by Nagamochi (2010), is a vertex ordering (v1, v2, . . . , vn)

in which vertex vi has minimum degree in the subgraph induced by {vi, vi+1, . . . , vn} for all

i ∈ [n]. This vertex ordering is closely related to k-cores and degeneracy orderings, and

can be found in linear time by an adaptation of the algorithms of Matula and Beck (1983);

Batagelj and Zaversnik (2003) as described, for example, by Walteros and Buchanan (2019).
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Similar to Moradi and Balasundaram (2018), we terminate a subproblem early (with the

Gurobi parameter Cutoff) if it has been determined that no solution better than |K| exists.

Proposition 5. Algorithm ICUT returns a maximum k-club in G.

Proof. Let K∗ be a maximum k-club in G and let K be the k-club returned by ICUT. Clearly,

|K| ≤ |K∗| since K is a k-club and K∗ is a maximum k-club. For the reverse inequality, let

vi∗ be the earliest vertex of K∗ in the vertex-ordering (v1, v2, . . . , vn). Observe that K∗ is

feasible for the subproblem that gives Ki∗ . Thus, |K| ≥ |Ki∗| ≥ |K∗|. Therefore |K| = |K∗|,

i.e., K is maximum.

Table 2.6 compares the time to solve the maximum k-club problem for k ∈ {2, 3, 4} using

CUT and ICUT. The results show that ICUT outperforms CUT when the instance has a

large number of conflict constraints (more than 2 million). While ICUT solves all instances

in under 9 minutes, CUT fails to solve 13 of them. As an example, when k = 3, ICUT

solves data in 5.01 seconds, while CUT cannot solve it to optimality. In a more extreme

example, ICUT solves each cs4 instance in under 2 minutes, while CUT cannot handle the

large number of conflicts, crashing on each of them.

However, for 13 instances that have a more reasonable number of conflicts, CUT performs

better. For example, when k = 4, CUT solves email in 1.82 seconds, while ICUT takes 28.90

seconds. Another example is polblogs with k = 3 where CUT finishes in 1.67 seconds, while

ICUT takes 37.84 seconds. Thus, CUT and ICUT both have their advantages, and either

one could be preferable depending on the instance and the number of conflicts.

2.6.5 Results for Synthetic Instances

In Tables 2.7 and 2.8, we compare running times on the synthetic instances considered

by Veremyev and Boginski (2012) and by Moradi and Balasundaram (2018). These instances

were randomly generated by Veremyev and Boginski with 10 graphs at each parameter setting
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k = 2 k = 3 k = 4
Graph n m ω̄2 CUT ICUT ω̄3 CUT ICUT ω̄4 CUT ICUT
karate 34 78 18 0.01 0.01
dolphins 62 159 13 0.03 0.03 29 0.01 0.01 40 0.01 0.01
lesmis 77 254
polbooks 105 441 28 0.05 0.03 53 0.01 0.01 68 0.03 0.08
adjnoun 112 425 82 0.01 0.08
football 115 613 16 1.48 0.32 58 0.29 1.14
jazz 198 2742 103 0.06 0.23 174 0.03 0.05
celegansn 297 2148 243 0.07 0.24
celegansm 453 2025 371 0.07 0.11 432 0.06 0.06
email 1133 5451 72 3.94 5.25 212 241.42 121.74 651 1.82 28.90
polblogs 1490 16715 352 4.93 37.06 776 1.67 37.84 1127 0.74 7.82
netscience 1589 2742
add20 2395 7462
data 2851 15093 18 1224.76 3.48 32 [31,36] 5.01 52 [49,58] 8.62
uk 4824 6837 5 3266.55 3.54 8 [7,16] 4.06 14 [11,26] 4.90
power 4941 6594
add32 4960 9462 32 0.81 0.80
hep-th 8361 15751 120 171.82 47.34 344 404.38 534.82
whitaker3 9800 28989 9 [8,18] 20.95 15 [13,32] 24.31 23 [19,49] 29.44
crack 10240 30380 10 [9,18] 25.84 17 [15,31] 28.93 31 [28,61] 37.34
PGPgiantc 10680 24316 422 5.82 5.76
cs4 22499 43858 6 MEM 83.84 12 MEM 89.99 18 MEM 113.10

Table 2.6: We report the total time in seconds (including preprocessing, heuristic, and model
build time), or the best lower and upper bounds [LB,UB] within a 3600 second time limit.
Cases where using a formulation leads to memory crashes are reported as MEM. Instances
solved to optimality by the heuristic and preprocessing proposed in Section 2.6.1 are indicated
by blank cells.
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(n, ρ) where n is the number of nodes and ρ is the edge density. We consider the same

diameter bounds k ∈ {3, 4, 5, 6, 7} considered by Veremyev and Boginski and by Moradi and

Balasundaram. However, for formulation PATH, we only give results for k ∈ {3, 4} due to

its prohibitively large size. The heuristic and preprocessing proposed in Section 2.6.1 are

employed in the following experiments.

k = 3 k = 4
n ρ (%) ω̄3 R CHC PATH CUT ω̄4 R CHC PATH CUT
100 2 12.2 0.56 0.02 0.05 0.02 21.1 2.56 0.02 0.15 0.02

3 16.2 6.18 0.14 0.25 0.09 32.3 52.42 (7) 1.29 0.13
4 21.1 41.34 (8) 1.33 0.29 52.4 550.42 (1) 1.88 0.11

200 1 12.6 2.54 0.12 0.27 0.12 23.8 6.29 0.14 0.72 0.16
1.5 16.6 16.42 0.70 1.35 0.75 34.8 285.07 34.95 6.04 0.70
2 20.4 201.70 2.60 8.00 2.09 48.6 (0) (0) 551.84 21.07

300 0.5 10.0 0.13 0.01 0.02 0.01 15.8 1.17 0.04 0.10 0.04
1 17.4 33.94 1.88 4.96 1.95 37.8 235.45 1.85 10.77 2.03
1.5 12.8 444.22 7.62 23.31 6.60 62.0 (0) (1) (7) 452.34

Table 2.7: Results for synthetic graphs with k ∈ {3, 4}. For each (n, ρ) we give the average
time over the 10 instances. If not all 10 were solved within the 1 hour time limit, we only
give the number solved (in parenthesis).

k = 5 k = 6 k = 7
n ρ (%) ω̄5 R CHC CUT ω̄6 R CHC CUT ω̄7 R CHC CUT
100 2 31.4 5.29 (9) 0.02 44.1 19.37 0.51 0.02 55.7 4.69 0.03 0.01

3 57.3 22.15 (7) 0.03 78.1 10.24 0.11 0.01 88.3 9.54 0.01 0.01
4 85.5 8.77 0.71 0.01 95.5 9.53 0.01 0.01 97.9 10.76 0.01 0.01

200 1 35.6 86.08 1.19 0.28 55.4 (9) (5) 0.23 80.5 (8) (5) 0.12
1.5 62.0 (2) (0) 1.02 117.0 (4) (1) 0.12 158.9 153.08 (8) 0.04
2 133.4 (4) (0) 0.17 183.2 46.08 0.03 0.02 193.3 59.00 0.02 0.02

300 0.5 21.3 1.46 0.04 0.04 29.2 7.68 0.04 0.05 36.5 9.67 0.05 0.05
1 60.8 (0) (0) 6.72 123.4 (0) (0) 2.23 207.4 (6) (2) 0.14
1.5 187.4 (0) (0) 1.41 275.4 (7) (9) 0.04 292.5 (6) 0.04 0.03

Table 2.8: Results for synthetic graphs with k ∈ {5, 6, 7}.

As Tables 2.7 and 2.8 show, formulation CUT is also the clear winner on synthetic graphs.

For example, when (n, k, ρ) = (300, 5, 1.5%), CUT solves all 10 instances in an average of

1.41 seconds, while the formulations R and CHC solve none of them (within the 1 hour time

limit). Even worse, formulations R and CHC fail on instances with as few as 200 and 100
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nodes, respectively. In fact, they solve none of the instances with (n, k, ρ) = (200, 4, 2%).

Recall that we test each formulation on 10*3*5*3 = 450 instances (180 for PATH).

Formulation CUT solves each of them in under 1 hour (actually in under 35 minutes).

Meanwhile, R and CHC cannot solve 84 and 117 of the synthetic instances, respectively,

within the 1 hour time limit.

The formulation CUT is at its worst when (n, k, ρ) = (300, 4, 1.5%), where it averages

452.34 seconds. However, this is still considerably better than the other formulations. The 10

times (in seconds) are: 2045.94, 161.31, 1.66, 25.33, 1731.26, 5.51, 278.74, 22.82, 206.40, 44.41.

These times are longer than the 1 or 2 seconds taken by CUT on most synthetic instances.

It may be interesting to see what properties these instances have (that others do not) that

make them so challenging.

2.7 Conclusion

In this chapter, we propose new path-like and cut-like formulations for detecting low-diameter

clusters in graphs. They simplify, generalize, and outperform several previous formulations.

Indeed, on the testbed of synthetic graphs developed by Veremyev and Boginski (2012), our

cut-like formulation for the maximum k-club problem never takes longer than 35 minutes,

while previously existing formulations fail to solve 84 instances (or more) in a 1 hour time limit.

Similar performance is observed on real-life instances that were considered by Shahinpour

and Butenko (2013a) and Moradi and Balasundaram (2018). We suspect that our cut-like

formulation will work well for problems in wildlife reserve design, political districting, and

others where compactness is key in a “good” solution. Our implementation is relatively

simple and publicly available, allowing these extensions to be done in future work.
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Chapter III

Solving the Distance-based Critical Node Problem

This chapter is based on work with Austin Buchanan (Salemi and Buchanan, 2020c). Some

nodes in a network are more important than others. Examples include a hub in an airline

network, a major train station in a rail network, or Paul Erdős in the mathematical collabo-

ration network. The removal of a small subset of nodes like these can dramatically disrupt

the connectivity of the network. By identifying those critical nodes whose deletion causes the

most disruption, one can better understand a network and its vulnerabilities. The associated

critical node problems (CNPs) have been studied across a variety of domains, from preventing

the spread of disease and computer viruses (Cohen et al., 2003; Tao et al., 2006; Charkhgard

et al., 2018) to inhibiting enemy wireless communication by locating jamming devices (Com-

mander et al., 2007). Other applications have been proposed in transportation (Kutz, 2004),

evacuation (Matisziw and Murray, 2009), and biology (Boginski and Commander, 2009).

Depending on the application, the way in which the “connectivity” of the network is defined

will differ, leading to different CNPs (Lalou et al., 2018).

A network’s connectivity is sometimes measured by the number of node pairs that are

connected via some path. In the associated CNP, the task is to delete from an undirected

graph G = (V,E) a subset of b critical nodes D ⊆ V so as to minimize the number of node

pairs that remain connected via a path in the interdicted graph G−D. This is perhaps the

most well-studied CNP variant (Arulselvan et al., 2009; Di Summa et al., 2012; Addis et al.,

2013; Veremyev et al., 2014).

However, it has been observed that the existence of a path between two nodes may be
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insufficient for them to be practically “connected”; the path should also be short. This

is especially true for social networks, collaboration networks, and airline networks. This

motivates the study of distance-based critical node problems (Borgatti, 2006; Veremyev et al.,

2015), including the particular variant that we consider in this chapter. For generality, we

consider a knapsack constraint for the deletion budget (instead of a cardinality constraint)

and edge-weighted distances (instead of hops).

Problem: Distance-Based Critical Node Problem (DCNP).

Input: Simple graph G = (V,E), edge weights we ≥ 0 for each edge e ∈ E, deletion budget

b, deletion cost ai for each vertex i ∈ V , connection cost ce for each pair of nodes e ∈
(
V
2

)
,

distance threshold k.

Output: A subset D ⊆ V satisfying the budget
∑

i∈D ai ≤ b that minimizes obj(D).

Here, the objective function obj(D) to be minimized sums the connection costs ce over

all node pairs e ∈
(
V
2

)
that are near to each other (distance ≤ k) in the interdicted graph

G−D. That is,

(DCNP objective function) obj(D) :=
∑

e∈E((G−D)k)

ce

where E((G−D)k) denotes the edge set of the k-th power of G−D.

To illustrate the difference between CNP and DCNP, let us consider the graph depicted

in Figure 3.1, which is the well-known karate club with 34 nodes and 78 edges (Zachary,

1977). Each node represents a member of the club, and if two members communicate outside

of the club, then there is an edge between them in the graph. Due to a conflict between the

administrator and instructor of the club over the price of karate lessons, the club split in

two. As the figure illustrates, the CNP identifies nodes 1 and 2 as critical, and the removal

of these nodes splits the graph into one large piece and several small pieces. Meanwhile, the
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DCNP identifies nodes 1 and 34 as critical, one node from each side of the split; these nodes

are in fact the administrator and the instructor.
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(b) DCNP solution

Figure 3.1: Solutions for the Karate when b = 2 and k = 2 with unit values we, ce, and ai.

The most notable exact approach for DCNP is an integer programming (IP) formulation

due to Veremyev et al. (2015). It uses O(k|V |2) variables and O(k|V ||E|) constraints when

distances are hop-based. Veremyev et al. also propose to extend their model to handle

(integer) edge lengths, at the cost of a pseudopolynomial number of variables and constraints.

Direct applications of these IP formulations are limited to instances with about 500 nodes;

however, variable fixing rules (e.g., based on leaf nodes) can sometimes stretch their ability

to sparse 1,500-node instances. Existing exact approaches for CNP are similarly limited.

3.1 Our Contributions

In this chapter, we propose new techniques that allow us to solve instances with up to 17,000

nodes. Key to the approach are two new IP formulations (thin and path-like), which we

compare with the formulation of Veremyev et al. To our surprise, we find that the three

formulations are equal in strength when the objective coefficients ce are nonnegative, but

the thin formulation is the strongest generally. Moreover, the thin formulation can handle

edge-weighted distances at no extra cost in terms of the number of variables. While the
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thin formulation generally has an exponential number of constraints, it admits an efficient

separation routine which we employ in a branch-and-cut algorithm. Also helpful for our

approach is a new variable fixing procedure based on simplicial nodes that, on average, fixes

three times as many variables than the leaf rule.

Section 3.2 gives a brief overview of the literature, including the formulation of Veremyev

et al. (2015) which we call the recursive formulation. Section 3.3 introduces the new path-like

and thin formulations for DCNP. We prove their correctness (under hop-based and edge-

weighted distances) and establish that the three DCNP formulations are equal in strength

when the objective coefficients are nonnegative. To show this, we introduce the notion of the

partial dominant of a polyhedron, which generalizes a previously studied notion called the

dominant. Section 3.4 details our implementation, including the separation routines for the

thin formulation, a simple heuristic, and the improved variable fixing procedure based on

simplicial nodes. Section 3.5 reports on the computational experiments and shows that the

thin formulation outperforms the path-like and recursive formulations, handling instances

with up to 17,000 nodes. Finally, we conclude in Section 3.6.

3.2 Background and Related Work

As previously mentioned, one can measure the “connectivity” of a network in many different

ways and each one will lead to a different CNP problem definition (Lalou et al., 2018; Walteros

and Pardalos, 2012; Walteros et al., 2019). Practically any variant of CNP will be NP-hard,

which is typically straightforward to show. For example, a natural reduction comes from

Vertex Cover in which the task is to determine whether a graph G = (V,E) has a subset

D of b vertices such that G − D has no edges. For the variant of CNP discussed in the

introduction, hardness follows by observing that G has a vertex cover of size b if and only

if CNP has a solution with objective value zero, cf. Arulselvan et al. (2009). Consequently,

if Vertex Cover is NP-hard for a particular graph class, then CNP is also hard for that
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graph class. So, for example, CNP remains NP-hard for planar graphs and for unit disk

graphs (Garey and Johnson, 1979).

Interestingly, however, is that, while Vertex Cover is easy in trees, CNP is hard in

trees. Indeed, Di Summa et al. (2011) show that CNP is NP-hard in trees even with 0-1

connection costs ce ∈ {0, 1} and unit deletion costs ai = 1. Interested readers are encouraged

to consult Di Summa et al. (2011); Shen et al. (2013); Addis et al. (2013) for more results

about the complexity of CNP.

Many approaches have been proposed to solve the CNP. We will focus on exact approaches;

readers can refer to Lalou et al. (2018) for discussion about heuristics and approximation

algorithms. Arulselvan et al. (2009) propose an IP formulation with Θ(n2) variables and Θ(n3)

constraints. However, they observe that the commercial MIP solver CPLEX sometimes took

longer than 5,000 seconds to solve relatively small instances (n ≤ 150), while their heuristic

found optimal solutions in one second. Veremyev et al. (2014) propose formulations with Θ(n2)

variables and constraints and observe speedups over the model of Arulselvan et al. (2009).

With the help of variable fixing (e.g., based on the idea that a leaf should not be critical),

they are able to solve select instances with up to 1,612 vertices and 2,106 edges. Di Summa

et al. (2012) introduce a formulation with Θ(n2) variables and an exponential number of

path constraints. Other valid inequalities are also proposed. The resulting branch-and-cut

algorithm is tested on instances with up to 100 nodes. The base formulation of Di Summa

et al. (2012) is an important precursor to—and can be seen as a special case of—our thin

formulation (by choosing k sufficiently large).

Most variants of DCNP are NP-hard. Indeed, for the particular variant of DCNP that we

consider, the Vertex Cover reduction from above shows NP-hardness. That is, G has a

vertex cover of size b if and only if DCNP over G has a solution with objective value zero,

cf. Veremyev et al. (2015). However, some special cases of DCNP admit polynomial-time

algorithms (Aringhieri et al., 2019).
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Veremyev et al. (2015) identify several different important classes of DCNP in which the

objectives are to:

1. minimize the number of node pairs connected by a path of length at most k;

2. minimize the Harary index;

3. minimize the sum of power functions of distances;

4. maximize the generalized Wiener index;

5. maximize the distance between nodes s and t.

Hooshmand et al. (2019) propose a Benders approach for Class 4, while Veremyev et al.

(2015) propose the recursive formulation which is generic enough to handle all of the DCNP

classes mentioned above. In this chapter, we are particularly interested in Class 1, and in

this case the formulation of Veremyev et al. can be written more simply as follows. In their

formulation, yi is a binary variable that equals one if vertex i ∈ V is chosen to be in the

deletion set D, and usij is a binary variable that equals one if vertices i and j are not deleted

and the distance between them in G−D is at most s. To simplify future analysis, we also

introduce a binary variable xe for each edge e in the k-th power graph Gk, indicating whether

the distance between its endpoints in G−D is at most k.
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min
∑
e∈Ek

cexe (3.1a)

∑
i∈V

aiyi ≤ b (3.1b)

u1
ij + yi + yj ≥ 1 ∀{i, j} ∈ E (3.1c)

usij + yi ≤ 1 ∀i, j ∈ V, i 6= j, ∀s ∈ {1, 2, . . . , k} (3.1d)

usij = u1
ij ∀{i, j} ∈ E, ∀s ∈ {2, 3, . . . , k} (3.1e)

usij ≤
∑
t∈N(i)

us−1
tj ∀{i, j} /∈ E, ∀s ∈ {2, 3, . . . , k} (3.1f)

us−1
tj ≤ usij + yi ∀t ∈ N(i), ∀{i, j} /∈ E, ∀s ∈ {2, 3, . . . , k} (3.1g)

usij = usji ∀i, j ∈ V, i 6= j, ∀s ∈ {1, 2, . . . , k} (3.1h)

ukij = xe ∀e = {i, j} ∈ Ek (3.1i)

usij ∈ {0, 1} ∀i, j ∈ V, i 6= j, ∀s ∈ {1, 2, . . . , k} (3.1j)

yi ∈ {0, 1} ∀i ∈ V (3.1k)

xe ∈ {0, 1} ∀e = {i, j} ∈ Ek. (3.1l)

In this recursive formulation, it suffices to write the objective only over the variables whose

edges belong to the k-th power graph; other node pairs will always be far apart regardless of

the choice of D, so their x variables would equal zero and contribute nothing to the objective.

The reader is referred to Veremyev et al. (2015) for more information about the interpretation

of the constraints and how to extend this formulation to handle integer edge-weighted

distances at the cost of a pseudopolynomial number of variables and constraints.

Veremyev et al. (2015) suggested three enhancements to this formulation:

1. Since usij = usji it suffices to define just one of these variables, e.g., those with i < j.

2. The variables usij can be fixed to zero (or omitted from the model) when s < distG(i, j).
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3. A leaf vertex i can be fixed yi = 0 when its stem j satisfies degG(j) ≥ 2 and aj ≤ ai.

With enhancement 2, the number of variables reduces from Θ(k|V |2) to O(k|Ek|). Next we

will see that binary restrictions xe ∈ {0, 1} can be omitted and the constraints ukij = xe can

be relaxed to ukij ≤ xe when the connection costs ce are nonnegative.

3.2.1 Partial Dominant of a Polyhedron

Sometimes it is difficult to study the facial structure of a polyhedron P . This has motivated

some to study, not P , but a simpler polyhedron related to P . In this chapter, we refer to the

dominant of polyhedron P , typically denoted by P ↑ (Balas and Fischetti, 1996; Schrijver,

2003; Conforti et al., 2013).

Definition 5. The dominant P ↑ of a polyhedron P = {x ∈ Rn | Ax ≤ b} is the polyhedron

P ↑ := {x̂ ∈ Rn | ∃x ∈ P : x̂ ≥ x} = P + Rn
+.

Importantly, minimizing a linear objective over P is equivalent to minimizing over its

dominant P ↑ provided that the objective coefficients are nonnegative. That is, if c ∈ Rn
+,

then min{cTx | x ∈ P} = min{cTx | x ∈ P ↑}.

We will see a similar phenomenon with the recursive, path-like, and thin formulations.

Specifically, some of their constraints can safely be omitted when the connection costs ce are

nonnegative. The resulting formulations, which are smaller and more convenient to use, are

used in our computational experiments. For this reason, when we compare the strength of the

different DCNP formulations, we do not always compare the “full” formulations. Sometimes

we compare the strength of their partial dominants. The reason for studying their partial

dominants, as opposed to their dominants, is that the objective coefficients apply only to the

x variables, and so we will take the dominant only with respect to x. While the idea of a

partial dominant is straightforward, it has not appeared in the literature, to our knowledge.
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Definition 6. The partial dominant P ↑x of a polyhedron P =
{

(x, y) ∈ Rn × Rd
∣∣ Ax+Gy ≤ b

}
with respect to x is the polyhedron

P ↑x :=
{

(x̂, y) ∈ Rn × Rd
∣∣ ∃(x, y) ∈ P : x̂ ≥ x

}
= P + (Rn

+, 0
d),

where 0d is the d-dimensional vector of zeros.

Similar to before, minimizing a linear objective cTx+0Ty over P is equivalent to minimizing

over its partial dominant P ↑x provided that c is nonnegative. That is, if c ∈ Rn
+, then

min
{
cTx

∣∣ (x, y) ∈ P
}

= min
{
cTx

∣∣ (x, y) ∈ P ↑x
}

.

As a warm up, we first identify the partial dominant of the recursive formulation, where

the LP feasible region of the recursive formulation is denoted by R.

Lemma 2. The partial dominant R↑x of the recursive formulation can be obtained by omitting

constraints xe ≤ ukij and 0 ≤ xe ≤ 1 from the definition of R.

Proof. Let P be the polyhedron obtained by omitting constraints xe ≤ ukij and 0 ≤ xe ≤ 1

from the definition of R. We show that P = R↑x .

(P ⊆ R↑x). If P is empty then the inclusion is trivial, so suppose (x̂, ŷ, û) ∈ P . For

e = {i, j} ∈ Ek, let x̃e := ûkij. See that (x̃, ŷ, û) ∈ R and x̂ ≥ x̃, implying (x̂, ŷ, û) ∈ R↑x .

(P ⊇ R↑x). If R↑x is empty then the inclusion is trivial, so suppose (x̂, ŷ, û) ∈ R↑x . By

definition of partial dominant, there exists x̃ ≤ x̂ for which (x̃, ŷ, û) ∈ R. Recognize that

x̃e = ûkij holds for e = {i, j} ∈ Ek. Then, (x̂, ŷ, û) ∈ P , because each e = {i, j} ∈ Ek satisfies

ûkij = x̃e ≤ x̂e.

3.3 New Formulations

Here we propose two new formulations for DCNP which we call the path-like and thin

formulations. We prove that they correctly model the DCNP and that their partial dominants
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are equivalent in strength to that of the recursive formulation.

3.3.1 The Path-Like Formulation

This section introduces the path-like formulation. It relies on the notion of a length-bounded

connector, defined below. Figure 3.2 illustrates the definition.

Definition 7 (length-k i, j-connector1). A subset C ⊆ V of vertices that contains i and j is

called a length-k i, j-connector in an edge-weighted graph G = (V,E) if distG[C](i, j) ≤ k. If

no proper subset of C is a length-k i, j-connector, then C is said to be minimal.

1 2 3 4

5

Figure 3.2: Under hop-based distances, the vertex subset {1, 5, 4} is a minimal length-2

1, 4-connector and the vertex subset {1, 2, 3, 4} is a minimal length-3 1, 4-connector. The

vertex subset {1, 2, 5, 4} is a length-3 1, 4-connector, but is not minimal.

The collection of all minimal length-k i, j-connectors is denoted Ck
ij, and the union of

these sets over all {i, j} pairs is denoted C := ∪Ck
ij . In the lemma below, we prove that these

sets Ck
ij are disjoint, and so C can be defined as a disjoint union, which will be helpful later.

Lemma 3. If edge weights we are nonnegative, then every C ∈ C is a minimal length-k

i, j-connector for a unique pair of vertices {i, j}. This is not true when some edge weights

are negative.

Proof. Let i, j ∈ V be distinct vertices and let C ∈ Ck
ij be a minimal length-k i, j-connector.

Suppose that C is a minimal length-k u, v-connector. We are to show that {i, j} = {u, v}.

In the first case, suppose that the sets {i, j} and {u, v} have at least one vertex in common.

Without loss, suppose that i = u. We are to show that j = v. Consider a shortest paths tree

1This definition is slightly different from the one given in Chapter II. Here, we include the “endpoints” i
and j in any length-k i, j-connector.
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of G[C] that is rooted at i. Such a tree exists when the edge weights we are nonnegative.

Then, j must be a leaf of this tree; if otherwise, let L be the set of leaves of the shortest paths

tree that are not i and see that C \ L would be a smaller length-k i, j-connector. Further, j

must be the only leaf; if otherwise, C \ (L \ {j}) would be a smaller length-k i, j-connector.

By the same arguments, v must be the only leaf, and so j = v.

In the second case, suppose that the sets {i, j} and {u, v} have no vertices in common.

Again, consider a shortest paths tree of G[C] that is rooted at i. As before, j must be the

only leaf of this tree, and so the tree is in fact an i, j-path. Moreover, u and v, which are

distinct from i and j, must belong to this tree and thus are in the path’s interior. The

vertices belonging to its u, v-subpath form a length-k u, v-connector that is smaller than C,

contradicting the minimality of C. Thus, this case cannot happen.

For the last claim, consider the triangle on vertices {i, j, j′} where edges {i, j} and {i, j′}

have weight 2 and {j, j′} has weight −1. In this case, C = {i, j, j′} is a minimal length-1

i, j-connector and a minimal length-1 i, j′-connector.

The path-like formulation uses the following variables. As before, let yi be a binary

variable representing the decision to include i in the deletion set D ⊆ V , and let xe be a

binary variable representing whether the distance between the endpoints of e ∈ Ek is at most

k in G−D. Lastly, zC is a binary variable representing whether all vertices of C are intact

in G−D, i.e., whether D ∩C = ∅. Here, zC is defined for all {i, j} pairs and for all minimal

length-k i, j-connectors. The path-like formulation is then as follows.
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min
∑
e∈Ek

cexe (3.2a)

zC +
∑
v∈C

yv ≥ 1 ∀C ∈ C (3.2b)

zC + yv ≤ 1 ∀v ∈ C, ∀C ∈ C (3.2c)

xe ≥ zC ∀C ∈ Ck
ij, ∀e = {i, j} ∈ Ek (3.2d)

xe ≤
∑
C∈Ck

ij

zC ∀e = {i, j} ∈ Ek (3.2e)

∑
i∈V

aiyi ≤ b (3.2f)

xe ∈ {0, 1} ∀e ∈ Ek (3.2g)

yi ∈ {0, 1} ∀i ∈ V (3.2h)

zC ∈ {0, 1} ∀C ∈ C. (3.2i)

Constraints (3.2b) and (3.2c) ensure that a connector C is intact (zC = 1) if and only if

none of its vertices v ∈ C were chosen to be in the deletion set D (yv = 0 for all v ∈ C).

Constraints (3.2d) and (3.2e) ensure that the endpoints of e = {i, j} should be deemed close to

each other (xe = 1) if and only if there is an intact connector between them (
∑

C∈Ck
ij
zC ≥ 1).

Later we will see that constraints (3.2c) and (3.2e) can be omitted when the connection costs

ce are nonnegative.

Theorem 6. The path-like formulation is correct, even under edge-weighted distances.

Proof. Let x∗ ∈ {0, 1}|Ek| be a binary vector, D ⊆ V be a deletion set, and yD ∈ {0, 1}n be

its characteristic vector. To prove the claim, it suffices to show that there exists z∗ ∈ {0, 1}|C|
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such that (x∗, yD, z∗) satisfies (3.2b)-(3.2e) if and only if for all e− {i, j} ∈ Ek,

x∗e =


1 if distG−D(i, j) ≤ k

0 if distG−D(i, j) > k .

( =⇒ ) Suppose that there exists a binary vector z∗ ∈ {0, 1}|C| such that (x∗, yD, z∗)

satisfies constraints (3.2b)-(3.2e). In the first case, suppose the endpoints of power graph edge

e = {i, j} ∈ Ek satisfy distG−D(i, j) ≤ k. Then, there exists a minimal length-k i, j-connector

C with C ⊆ V \D, e.g., coming from a shortest i, j-path in G−D. Then, x∗e = 1 by

x∗e + 0 ≥ z∗C + 0 = z∗C +
∑
v∈C

yDv ≥ 1,

where the first inequality holds by constraints (3.2d) and the second inequality holds by

constraints (3.2b). In the other case, distG−D(i, j) > k. In this case, D hits every minimal

length-k i, j-connector C, i.e., for every C ∈ Ck
ij there exists a vertex from C that also belongs

to D. Then z∗C = 0 by z∗C + 1 = z∗C + yDv ≤ 1, where the inequality holds by constraints (3.2c).

Constraints (3.2e) then show that x∗e ≤
∑

C∈Ck
ij
z∗C ≤ 0, as desired.

( ⇐= ) Suppose that for each edge e = {i, j} ∈ Ek of the power graph, x∗e = 1 if and

only if distG−D(i, j) ≤ k. We construct a binary vector z∗ ∈ {0, 1}|C| such that (x∗, yD, z∗)

satisfies constraints (3.2b)-(3.2e). For each connector C ∈ C, define

z∗C :=


1 if D ∩ C = ∅

0 if D ∩ C 6= ∅.

By this definition, (x∗, yD, z∗) satisfies constraints (3.2b) and (3.2c).

Now, we show that each constraint (3.2d) is satisfied. Consider an edge e = {i, j} ∈ Ek of

the power graph and a minimal length-k i, j-connector C ∈ Ck
ij . In the first case, where x∗e = 1,
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the constraint is satisfied as x∗e = 1 ≥ z∗C . In the other case, where x∗e = 0, distG−D(i, j) > k

holds by the assumption. This implies that every length-k i, j-connector is hit by D. In

particular, this is true for C, so z∗C = 0. Thus, the constraint is satisfied as x∗e = 0 ≥ 0 = z∗C .

Lastly, we show that each constraint (3.2e) is satisfied. Consider power graph edge

e = {i, j} ∈ Ek. In the first case, where x∗e = 0, the constraint is obviously satisfied. In the

other case, x∗e = 1 and distG−D(i, j) ≤ k. This implies that at least one minimal length-k

i, j-connector is not hit by D, and the associated z∗ value equals one, so
∑

C∈Ck
ij
z∗C ≥ 1 = x∗e,

and the constraint is satisfied.

Next, we bound the size of the path-like formulation in Lemma 5 with help from the

following (easy) lemma.

Lemma 4. Suppose that distances are hop-based. A subset of vertices C is a minimal length-k

i, j-connector if and only if C induces an i, j-path graph.

Lemma 5. Suppose that distances are hop-based, k is constant, and G is connected. Then,

the number of minimal connectors |C| is

• O(m(k+1)/2) = O(nk+1) when k is odd, and

• O(nmk/2) = O(nk+1) when k is even.

Proof. To prove the claim, we construct an injective map f from the set of minmial connectors

C = ∪i,jCk
ij to a set F of appropriate size. By Lemma 4, every minimal length-k i, j-connector

C ∈ Ck
ij induces an i, j-path graph, say i = v0-v1-v2-· · · -vq = j, where q ≤ k. For such a

connector C, define f(C) as follows.
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f(C) :=



(
∅,
{
{i, v1}, . . . , {vq−1, j}

})
if |C| ≥ 2 is even (q odd)

(
i,
{
{v1, v2}, . . . , {vq−1, j}

})
if |C| ≥ 3 is odd (q even) and i < j

(
j,
{
{i, v1}, . . . , {vq−2, vq−1}

})
if |C| ≥ 3 is odd (q even) and i > j.

Observe that f maps a connector C to an ordered pair (vC , EC) where vC ∈ V ∪ {∅} and

EC ⊆ E. See that, when |C| is even, f maps C to (q+ 1)/2 edges; when |C| is odd, f maps C

to a vertex and q/2 edges. Define F := {f(C) | C ∈ C}. By assumption that G is connected

n = O(m), and since k is a constant, nk = O(m). Then,

|C| = |F | ≤
k∑
q=1

(q odd)

(
m

(q + 1)/2

)
+

k∑
q=2

(q even)

n

(
m

q/2

)
.

So, when k ≥ 1 is odd,

|C| ≤ k + 1

2

(
m

(k + 1)/2

)
+
k − 1

2
n

(
m

(k − 1)/2

)
= O

(
k

(
m

(k + 1)/2

))
= O(m(k+1)/2),

and when k ≥ 2 is even,

|C| ≤ k

2

(
m

k/2

)
+
k

2
n

(
m

k/2

)
= O

(
nk

(
m

k/2

))
= O(nmk/2).

Remark 3. The number of variables, constraints, and nonzeros in the path-like formulation

is O(m(k+1)/2) when k is an odd constant, and O(nmk/2) when k is an even constant.
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Let PATH denote the LP feasible region of the path-like formulation.

Lemma 6. The partial dominant PATH↑x of the path-like formulation can be obtained by

omitting constraints xe ≤
∑

C∈Ck
ij
zC and 0 ≤ xe ≤ 1 from the definition of PATH.

Proof. Let P be the polyhedron obtained by omitting constraints xe ≤
∑

C∈Ck
ij
zC and

0 ≤ xe ≤ 1 from the definition of PATH. We show that P = PATH↑x .

(P ⊆ PATH↑x). If P is empty then the inclusion is trivial, so suppose (x̂, ŷ, ẑ) ∈ P .

For e = {i, j} ∈ Ek, let x̃e := max
{
ẑC
∣∣ C ∈ Ck

ij

}
. See that x̃ ≤ x̂ and (x̃, ŷ, ẑ) ∈ PATH,

implying (x̂, ŷ, ẑ) ∈ PATH↑x .

(P ⊇ PATH↑x). If PATH↑x is empty then the inclusion is trivial, so suppose (x̂, ŷ, ẑ) ∈

PATH↑x . By definition of partial dominant, there exists x̃ such that x̃ ≤ x̂ and (x̃, ŷ, ẑ) ∈

PATH. See that x̂e ≥ x̃e ≥ ẑC holds for all e = {i, j} ∈ Ek and C ∈ Ck
ij, implying (x̂, ŷ, ẑ)

belongs to P .

The following lemma implies that the conflict constraints (3.2c), while needed for PATH↑x ,

are not needed for projx,y PATH↑x . Thus, they can be omitted in implementation when the

objective coefficients ce are nonnegative. Additionally, we will later use the inequalities (3.3)

to compare the strength of projx,y PATH↑x with that of projx,y R↑x .

Lemma 7. If a point (x̂, ŷ, ẑ) satisfies the constraints defining PATH↑x except perhaps (3.2c),

then there is a similar point (x̂, ŷ, z̃) ∈ PATH↑x that satisfies the following inequalities.

z̃C\{i} − ŷi ≤ z̃C ≤ z̃C\{i} ∀C ∈ Ck
ij with |C| ≥ 3,∀{i, j} ∈ Ek. (3.3)

Proof. For every minimal connector C ∈ C, let z̃C = max
{

0, 1−
∑

c∈C ŷc
}

. Clearly, the

point (x̂, ŷ, z̃) satisfies constraints (3.2b), constraint (3.2f), and the 0-1 bounds on the y and z

variables. To show that inequalities (3.2c) are satisfied, consider a minimal connector C ∈ C
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and a vertex v ∈ C and see that

z̃C + ŷv = max

{
0, 1−

∑
c∈C

ŷc

}
+ ŷv = max

ŷv, 1− ∑
c∈C\{v}

ŷc

 ≤ 1.

To show that each constraint (3.2d) is satisfied, consider a power graph edge e = {i, j} ∈

Ek and a minimal length-k i, j-connector C ∈ Ck
ij. Now, in the first case, where z̃C =

0, constraint (3.2d) is obviously satisfied. In the other case, where z̃C = 1 −
∑

c∈C ŷc,

constraint (3.2d) is satisfied by

x̂e ≥ ẑC ≥ 1−
∑
c∈C

ŷc = z̃C .

So, by Lemma 6, (x̂, ŷ, z̃) belongs to PATH↑x .

Finally, to show that inequalities (3.3) are satisfied, consider a power graph edge {i, j} ∈ Ek

and a minimal length-k i, j-connector C ∈ Ck
ij with at least three vertices, and see that

z̃C\{i} − ŷi = max

0, 1−
∑

c∈C\{i}

ŷc

− ŷi
= max

{
−ŷi, 1−

∑
c∈C

ŷc

}

≤ max

{
0, 1−

∑
c∈C

ŷc

}
(= z̃C)

≤ max

0, 1−
∑

c∈C\{i}

ŷc

 = z̃C\{i}.
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3.3.2 The Thin Formulation

Before stating the thin formulation, let us first define the notion of a length-bounded separator.

Figure 3.3 illustrates the definition.

Definition 8 (length-k i, j-separator2). A subset S ⊆ V of vertices is called a length-k

i, j-separator in an edge-weighted graph G = (V,E) if either

• S contains i or j (or both), or

• S contains neither i nor j and distG−S(i, j) > k.

If no proper subset of S is a length-k i, j-separator, then S is said to be minimal.

1 2 3 4

5

Figure 3.3: Under hop-based distances, the vertex subset {5} is a length-2 1, 4-separator and

vertex subset {1} is a length-k 1, 4-separator for any k ∈ {1, 2, . . . }.

We denote by Skij as the collection of all minimal length-k i, j-separators. Then, the thin

formulation, which uses the same x and y variables as before, is as follows.

2This definition is slightly different from the one given in Chapter II. Note that if one removes a vertex i
from a graph, then the distance from i to all other vertices is more than any given k. Therefore, vertex i or j
(or both) can form a length-k i, j-separator.
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min
∑
e∈Ek

cexe (3.4a)

xe +
∑
v∈S

yv ≤ |S| ∀S ∈ Skij, ∀e = {i, j} ∈ Ek (3.4b)

xe +
∑
v∈C

yv ≥ 1 ∀C ∈ Ck
ij, ∀e = {i, j} ∈ Ek (3.4c)

∑
i∈V

aiyi ≤ b (3.4d)

xe ∈ {0, 1} ∀e ∈ Ek (3.4e)

yi ∈ {0, 1} ∀i ∈ V. (3.4f)

Observe that there can be exponentially many constraints (3.4b) and (3.4c). Fortunately,

however, we will see that constraints (3.4b) can be omitted when the connection costs ce are

positive, and constraints (3.4c) can be separated in polynomial time.

Theorem 7. The thin formulation is correct, even under edge-weighted distances.

Proof. Let x∗ ∈ {0, 1}|Ek| be a binary vector, D ⊆ V be a deletion set, and yD ∈ {0, 1}n be

its characteristic vector. It suffices to show that

(x∗, yD) satisfies (3.4b) and (3.4c)⇐⇒ ∀e = {i, j} ∈ Ek, x∗e =


1 if distG−D(i, j) ≤ k

0 if distG−D(i, j) > k.

( =⇒ ) Suppose (x∗, yD) satisfies constraints (3.4b) and (3.4c). In the first case, suppose

that the endpoints of the power graph edge e = {i, j} ∈ Ek satisfy distG−D(i, j) ≤ k. In this

case, there exists a minimal length-k i, j-connector C with C ⊆ V \D, e.g., coming from a
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shortest i, j-path in G−D. Then,

x∗e + 0 = x∗e +
∑
v∈C

yDv ≥ 1,

where the inequality holds by constraints (3.4c). So, x∗e = 1, as desired. In the other case,

suppose that the endpoints of e = {i, j} ∈ Ek satisfy distG−D(i, j) > k. In this case, there

exists a minimal length-k i, j-separator S that is a subset of D. Then,

x∗e + |S| = x∗e +
∑
v∈S

yDv ≤ |S|,

where the inequality holds by constraints (3.4b). So, x∗e = 0, as desired.

( ⇐= ) Suppose that for each power graph edge e = {i, j} ∈ Ek, x∗e = 1 if and

only if distG−D(i, j) ≤ k. To show that constraints (3.4b) are satisfied, consider an edge

e = {i, j} ∈ Ek and a minimal length-k i, j-separator S ∈ Skij. In the first case, where

x∗e = 0, the constraint is obviously satisfied. In the other case, x∗e = 1 and distG−D(i, j) ≤ k.

This implies that at least one vertex in S remains intact, i.e.,
∑

v∈S y
D
v ≤ |S| − 1. Then,

constraint (3.4b) is satisfied, as

x∗e +
∑
v∈S

yDv = 1 +
∑
v∈S

yDv ≤ 1 + (|S| − 1) = |S|.

To show that constraints (3.4c) are satisfied, consider an edge e = {i, j} ∈ Ek and a

minimal length-k i, j-connector C ∈ Ck
ij. In the first case, where x∗e = 1, the constraint is

obviously satisfied. In the other case, x∗e = 0 and distG−D(i, j) > k. Because distG−D(i, j) > k,

D hits every length-k i, j-connector. In particular, D hits C, i.e.,
∑

v∈C y
D
v ≥ 1. Then,
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constraint (3.4c) is satisfied, as

x∗e +
∑
v∈C

yDv = 0 +
∑
v∈C

yDv ≥ 1.

Let THIN denote the LP feasible region of the thin formulation.

Lemma 8. The partial dominant THIN↑x of the thin formulation can be obtained by omitting

constraints xe +
∑

v∈S yv ≤ |S| and xe ≤ 1 from the definition of THIN.

Proof. Let P be the polyhedron obtained by omitting constraints xe +
∑

v∈S yv ≤ |S| and

xe ≤ 1 from the definition of THIN. We show that P = THIN↑x .

(P ⊆ THIN↑x). If P is empty then the inclusion is trivial, so suppose that (x̂, ŷ) ∈ P . Let

x̃e := max

{
0,max

{
1−

∑
v∈C

ŷv

∣∣∣∣∣ C ∈ Ck
ij

}}
.

Recalling that x̂e ≥ 0 for all e = {i, j} ∈ Ek and x̂e +
∑

v∈C ŷv ≥ 1 for all C ∈ Ck
ij, see that

x̃e = max

{
0,max

{
1−

∑
v∈C

ŷv

∣∣∣∣∣ C ∈ Ck
ij

}}
≤ x̂e.

Thus, since x̃ ≤ x̂, it now suffices to show that (x̃, ŷ) ∈ THIN. The connector constraints are

satisfied by (x̃, ŷ) because, for any C̃ ∈ Ck
ij,

x̃e +
∑
v∈C̃

ŷv ≥ max

{
1−

∑
v∈C

ŷc

∣∣∣∣∣ C ∈ Ck
ij

}
+
∑
v∈C̃

ŷv ≥ 1−
∑
v∈C̃

ŷv +
∑
v∈C̃

ŷv = 1,

where the first inequality holds by definition of x̃. Finally, we argue that the separator

constraints are satisfied. For contradiction purposes, suppose not, i.e., that there is a minimal

length-k i, j-separator S∗ for which x̃e +
∑

v∈S∗ ŷv > |S∗|. Then x̃e + ŷv > 1 for all v ∈ S∗
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since otherwise we arrive at the contradiction

|S∗| < x̃e +
∑
u∈S∗

ŷu = x̃e + ŷv +
∑

u∈S∗\{v}

ŷu ≤ 1 + (|S∗| − 1) = |S∗|.

Let C∗ be a minimal length-k i, j-connector C that maximizes 1 −
∑

v∈C ŷv. Since x̃e > 0

by x̃e +
∑

v∈S∗ ŷv > |S∗|, we have x̃e = 1−
∑

v∈C∗ ŷv. By minimality of S∗, there is a vertex

u ∈ S∗ ∩ C∗. This gives the contradiction x̃e + ŷu ≤ x̃e +
∑

v∈C∗ yv = 1 < x̃e + ŷv. So, (x̃, ŷ)

satisfies the separator constraints, thus (x̃, ŷ) ∈ THIN. So, (x̂, ŷ) ∈ THIN↑x , as desired.

(P ⊇ THIN↑x). If THIN↑x is empty then the inclusion is trivial, so suppose that (x̂, ŷ) ∈

THIN↑x . By definition of partial dominant, there exists x̃ such that x̃ ≤ x̂ and (x̃, ŷ) ∈ THIN.

See that x̂e +
∑

v∈C ŷv ≥ x̃e +
∑

v∈C ŷv ≥ 1 for all e = {i, j} ∈ Ek and C ∈ Ck
ij, implying

that (x̂, ŷ) ∈ P , as desired.

3.3.3 Formulation Strength

In this subsection, we compare the strength of the LP relaxations associated with the

three DCNP formulations: THIN, PATH, and R. First, we observe that THIN is stronger

than projx,y PATH, and that projx,y R is incomparable with THIN and with projx,y PATH.

However, when the objective coefficients are nonnegative, the appropriate objects to compare

are their partial dominants THIN↑x , projx,y PATH↑x , and projx,y R↑x which we find to have

equal strength.

Strength of Full Formulations

Theorem 8. For every instance of DCNP, the inclusion THIN ⊆ projx,y PATH holds.

Meanwhile, projx,y R is incomparable with projx,y PATH and with THIN.

Proof. This follows by Lemmata 9 and 10, which are shown below.
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Lemma 9. For every instance of DCNP, the inclusion THIN ⊆ projx,y PATH holds. More-

over, the inclusion can be strict for any k ≥ 2 under hop-based distances.

Proof. Suppose that (x∗, y∗) belongs to THIN. We construct a z∗ such that (x∗, y∗, z∗) belongs

to PATH. For each C ∈ C, let

z∗C := min

{
x∗e, 1−max

v∈C
y∗v

}
,

where e = {i, j} ∈ Ek is the unique pair of vertices for which C is a minimal length-k

i, j-connector (guaranteed by Lemma 3). Observe that (x∗, y∗, z∗) satisfies constraint (3.2f)

and the 0-1 bounds.

To show that constraints (3.2b) are satisfied, consider a connector C ∈ C and let e =

{i, j} ∈ Ek be the associated “endpoints” of this connector. In the first case, where z∗C = x∗e,

z∗C +
∑
v∈C

y∗v = x∗e +
∑
v∈C

y∗v ≥ 1,

where the inequality holds by constraints (3.4c). In the other case, z∗C = 1−max{y∗v | v ∈ C},

z∗C +
∑
v∈C

y∗v ≥ z∗C + max
v∈C

y∗v = 1−max
v∈C

y∗v + max
v∈C

y∗v = 1.

To show that constraints (3.2c) are satisfied, consider a connector C ∈ C and vertex v ∈ C.

Observe that

z∗C + y∗v = min

{
x∗e, 1−max

i∈C
y∗i

}
+ y∗v ≤ 1−max

i∈C
y∗i + y∗v ≤ 1− y∗v + y∗v = 1.

To show that constraints (3.2d) are satisfied, consider a power graph edge e = {i, j} ∈ Ek
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and a minimal length-k i, j-connector C ∈ Ck
ij. Then,

x∗e ≥ min

{
x∗e, 1−max

v∈C
y∗v

}
= z∗C .

To show that constraints (3.2e) are satisfied, consider a power graph edge e = {i, j} ∈ Ek.

In the first case, where at least one of the minimal length-k i, j-connectors C satisfies z∗C = x∗e,

the inequality x∗e ≤
∑

C∈Ck
ij
z∗C is clear. In the other case, all minimal length-k i, j-connectors

C satisfy z∗C = 1−max{y∗v | v ∈ C}. For each such connector C, let vC be a vertex v ∈ C

that maximizes y∗v . Then, S := ∪C∈Ck
ij
vC is a length-k i, j-separator, which we claim satisfies

|S| −
∑
s∈S

y∗s ≤ |Ck
ij| −

∑
C∈Ck

ij

y∗vC . (3.5)

To show inequality (3.5), let qs = |{C ∈ Ck
ij | vC = s}| for every separator vertex s ∈ S. This

(positive) value qs is the number of connectors C ∈ Ck
ij for which s is selected as vC . Then,

∑
C∈Ck

ij

y∗vC =
∑
s∈S

qsy
∗
s =

∑
s∈S

y∗s +
∑
s∈S

(qs − 1)y∗s ≤
∑
s∈S

y∗s +
∑
s∈S

(qs − 1) =
∑
s∈S

y∗s + |Ck
ij| − |S|,

thus proving inequality (3.5). Finally,

x∗e ≤ |S| −
∑
s∈S

y∗s ≤ |Ck
ij| −

∑
C∈Ck

ij

y∗vC =
∑
C∈Ck

ij

(1− y∗vC ) =
∑
C∈Ck

ij

z∗C ,

where the first inequality holds by constraint (3.4b) of the thin formulation, and the second

inequality holds by inequality (3.5). So, (x∗, y∗, z∗) satisfies constraints (3.2e), and thus

(x∗, y∗, z∗) ∈ PATH.

Figure 3.4 shows that the inclusion can be strict for any k ≥ 2 under hop-based distances.

We construct a DCNP instance and a point (x∗, y∗, z∗) that belongs to PATH but the point
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(x∗, y∗) dose not belong to THIN.

0

1

1′

2 . . . k

Figure 3.4: The graph G = (V,E) used to show projx,y PATH 6= THIN.

To complete the example, let ce = 1 for all e ∈ Ek, av = 1 for all v ∈ V , and b = n
2
. Also,

let y∗v = 1
2

for all vertices v, x∗e′ = 3
4

for the particular power graph edge e′ = {0, k} ∈ Ek, and

x∗e = 3
8

for all other power graph edges. Finally, let z∗C = 3
8

for all connectors C ∈ C. Note

that S = {2} is a length-k 0, k-separator. While (x∗, y∗, z∗) satisfies the path-like formulation,

the inequality xe′ + y2 ≤ 1 of type (3.4b) from the thin formulation is violated.

Lemma 10. projx,y R is incomparable with projx,y PATH and with THIN.

Proof. Since THIN ⊆ projx,y PATH by Lemma 9, it suffices to show that projx,y R *

projx,y PATH and THIN * projx,y R.

(projx,y R * projx,y PATH). We construct a DCNP instance and a point (x̂, ŷ, û) that

belongs to R and show there is no ẑ for which (x̂, ŷ, ẑ) belongs to PATH. Consider the graph

in Figure 3.5.

1 2 3

4

5

0.7 0.8 0.7

0.7

0.8

Figure 3.5: The graph G = (V,E) used to show projx,y R * projx,y PATH.

The ŷ values are given next to the nodes. Let k = 3, b = 5, and av = 1 for all v ∈ V .
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Also, for all s ∈ {1, 2, 3}, let

ûs1,2 = 0.2 ûs1,3 = 0.3 ûs1,4 = 0.0 ûs1,5 = 0.1 ûs2,3 = 0.1

ûs2,4 = 0.1 ûs2,5 = 0.0 ûs3,4 = 0.2 ûs3,5 = 0.0 ûs4,5 = 0.1

Finally, let x̂e = û3
ij for all e = {i, j} ∈ E3. Observe that (x̂, ŷ, û) belongs to R. We

claim that there is no ẑ for which (x̂, ŷ, ẑ) belongs to PATH. For contradiction purposes,

suppose (x̂, ŷ, ẑ) ∈ PATH. Consider the power graph edge e = {1, 3} and see that the only

minimal length-k 1, 3-connector is C = {1, 2, 3}. Constraints (3.2d) force ẑC ≤ x̂e = 0.3

and constraints (3.2e) force 0.3 = x̂e ≤ ẑC . This implies that ẑC = 0.3. This contradicts

ẑC + ŷ2 ≤ 1. Thus, no ẑ satisfies (x̂, ŷ, ẑ) ∈ PATH.

(THIN * projx,y R). We construct a DCNP instance and a point (x̂, ŷ) ∈ THIN for which

no û has (x̂, ŷ, û) ∈ R. Consider the graph in Figure 3.6.

1 2 3
0.1 0.6 0.4

Figure 3.6: The graph G = (V,E) used to show THIN * projx,y R.

The ŷ values are given next to the nodes. Let k = 3, b = 3, and av = 1 for all v ∈ V .

Also, let x̂{1,2} = 0.3, x̂{1,3} = 0.2, and x̂{2,3} = 0.4. Observe that (x̂, ŷ) belongs to THIN.

We claim that there is no û for which (x̂, ŷ, û) belongs to R. For contradiction purposes,

suppose (x̂, ŷ, û) ∈ R. Constraints (3.1e) and (3.1i) force x̂{2,3} = û3
2,3 = û2

2,3 = 0.4 and

x̂{1,3} = û3
1,3 = 0.2. This contradicts û2

2,3 ≤ û3
1,3 + ŷ1 of type (3.1g). Thus, no û satisfies

(x̂, ŷ, û) ∈ R.
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Strength of Partial Dominants

Theorem 9. For every (hop-based) instance of DCNP,

THIN↑x = projx,y PATH↑x = projx,y R↑x .

Proof. We show that the following three inclusions hold.

THIN↑x ⊆ projx,y PATH↑x ⊆ projx,y R↑x ⊆ THIN↑x .

(THIN↑x ⊆ projx,y PATH↑x) If arbitrary polyhedra P and Q satisfy P ⊆ Q, then P ↑x ⊆

Q↑x. So, the stated inclusion holds by Lemma 9.

(projx,y PATH↑x ⊆ projx,y R↑x) We prove the statement for hop-based distances, as the

recursive formulation only applies to this case. Suppose (x̂, ŷ, ẑ) belongs to PATH↑x . By

Lemma 7, there is a similar point (x̂, ŷ, z̃) ∈ PATH↑x that satisfies inequalities (3.3). We

construct a û such that (x̂, ŷ, û) belongs to R↑x . Specifically, for distinct vertices i, j ∈ V and

s ∈ {1, 2, . . . , k}, let

ûsij := max{z̃C | C ∈ Cs
ij}.

By Lemma 2, to show that (x̂, ŷ, û) belongs to R↑x , it suffices to show that (x̂, ŷ, û) satisfies

all constraints defining R except for the constraints xe ≤ ukij and the 0-1 bounds on x. First

see that (x̂, ŷ, û) satisfies constraints (3.1b) and (3.1h), as well as the 0-1 bounds on y and u.

To show that constraints (3.1c) are satisfied, consider an edge {i, j} ∈ E. Since C ′ := {i, j}

is the only minimal length-1 i, j-connector,

û1
ij + ŷi + ŷj = max{z̃C | C ∈ C1

ij}+ ŷi + ŷj = z̃C′ + ŷi + ŷj ≥ 1,
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where the inequality holds by constraint (3.2b) of the path-like formulation.

To show that constraints (3.1d) are satisfied, consider distinct vertices i, j ∈ V and

s ∈ {1, 2, . . . , k}. Letting C ′ ∈ Cs
ij be a minimal length-s i, j-connector C that maximizes z̃C ,

observe that

ûsij + ŷi = z̃C′ + ŷi ≤ 1,

where the inequality holds by inequality (3.2c).

To show that constraints (3.1e) are satisfied, consider an edge {i, j} ∈ E. The only

minimal length-s i, j-connector is C ′ = {i, j}, and this is true for all s ∈ {1, 2, . . . , k}, so

ûsij = max{z̃C | C ∈ Cs
ij} = z̃C′ = max{z̃C | C ∈ C1

ij} = û1
ij.

To show that constraints (3.1f) are satisfied, consider a “missing” edge {i, j} /∈ E and

s ∈ {2, 3, . . . , k}. Let C ′ ∈ Cs
ij be a minimal length-s i, j-connector C that maximizes z̃C ,

and let q be the vertex of C ′ that neighbors i. Then,

ûsij = z̃C′ ≤ z̃C′\{i} ≤ ûs−1
qj ≤

∑
t∈N(i)

ûs−1
tj .

Here, the first inequality holds by inequality (3.3), and the second holds because C ′ \ {i} is a

minimal length-(s− 1) q, j-connector and by definition of ûs−1
qj .

To show that constraints (3.1g) are satisfied, consider a “missing” edge {i, j} ∈ E,

a neighbor t ∈ N(i), and s ∈ {2, 3, . . . , k}. Let C̄ ∈ Cs−1
tj be a minimal length-(s − 1)

t, j-connector C that maximizes z̃C . Observe that C̄ ∪{i} is a length-s i, j-connector because

distG[C̄∪{i}](i, j) ≤ distG[C̄](t, j) + 1 = (s− 1) + 1 = s.
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Let C∗ be the vertices on a shortest i, j-path in G
[
C̄ ∪ {i}

]
. See that C∗ is a minimal length-s

i, j-connector because C∗ induces an i, j-path graph and distG[C∗](i, j) = distG[C̄∪{i}](i, j) ≤ s.

Further, Ĉ = C∗ \ {i} belongs to C. Observe that

ûs−1
tj − ŷi = z̃C̄ − ŷi ≤ z̃Ĉ − ŷi ≤ z̃C∗ ≤ ûsij,

where the first and second inequalities hold by inequality (3.3).

Finally, to show that the constraints ukij ≤ xe are satisfied, consider an edge e = {i, j} ∈ Ek.

Letting C ′ ∈ Ck
ij be a minimal length-k i, j-connector C that maximizes z̃C , observe that

ûkij = z̃C′ ≤ x̂e,

where the inequality holds by constraint (3.2d) of the path-like formulation.

(projx,y R↑x ⊆ THIN↑x) We prove the statement for hop-based distances, as the recursive

formulation only applies to this case. Suppose that (x̂, ŷ, û) belongs to R↑x . We show

(x̂, ŷ) ∈ THIN↑x . By Lemma 8, it suffices to show that (x̂, ŷ) satisfies all constraints defining

THIN except perhaps for constraints of the form xe +
∑

v∈S yv ≤ |S| and xe ≤ 1. First, see

that (x̂, ŷ) satisfies constraint (3.4d) and the 0-1 bounds on ŷ.

To show that constraints (3.4c) are satisfied, consider a power graph edge e = {i, j} ∈ Ek

and a minimal length-k i, j-connector C ∈ Ck
ij that, say, induces the path i = c0-c1-· · · -cs = j,

where s ≤ k. Then,
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x̂e +
∑
v∈C

ŷv ≥ ûkij +
∑
v∈C

ŷv

≥
(
ûk−1
c1j
− ŷi

)
+
∑
v∈C

ŷv

≥
(
ûk−2
c2j
− ŷc1 − ŷi

)
+
∑
v∈C

ŷv

≥ . . .

≥

(
û
k−(s−1)
cs−1j

−
s−2∑
t=0

ŷct

)
+
∑
v∈C

ŷv

= û1
cs−1j

+ ŷcs−1 + ŷj ≥ 1,

where the first inequality holds by xe ≥ ukij , the middle inequalities hold by constraints (3.1g),

the equality holds by constraints (3.1e), and the last inequality holds by constraints (3.1c).

Finally, to show x̂e ≥ 0 holds for power graph edges e = {i, j} ∈ Ek, observe that

x̂e ≥ ûkij ≥ 0.

3.4 Implementation Details

Here, we detail implementations of the recursive, path-like, and thin formulations, including:

• a procedure that identifies “non-critical” nodes i for which we can fix yi = 0,

• a heuristic used to provide warm start solutions,

• separation routines for the length-k i, j-connector inequalities (3.4c).

3.4.1 Variable Fixing

Recall the leaf fixing of Veremyev et al. (2015).
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Remark 4. Assume hop-based distances and unit connection costs ce = 1. If i is a leaf

vertex whose stem j satisfies degG(j) ≥ 2 and aj ≤ ai, then there is an optimal solution in

which yi = 0.

This remark follows by a swap argument: if a feasible solution D contains vertex i, then

the objective will be no worse when leaf i is swapped with its stem j. All such variables yi

can be fixed to zero when no two leaves are adjacent.

We generalize this remark by showing that yi can be fixed to zero when i is simplicial,

i.e., its neighborhood N(i) is a clique. A set of such variables {yi | i ∈ I} can simultaneously

be fixed to zero when I is independent. Further, we observe that a maximum cardinality

independent set of simplicial vertices can be found in time O(mn).

Proposition 6. Assume hop-based distances and ce ≥ 0 for e ∈ Ek. If a subset of vertices

I ⊆ V satisfies conditions 1 and 2 below, then there is an optimal deletion set D∗ ⊆ V with

D∗ ∩ I = ∅.

1. I is an independent set of simplicial vertices in G;

2. for every vertex i ∈ I and every one of its neighbors u ∈ N(i):

• ai ≥ au;

• ce ≤ ce′ for every e ∈ δGk(i) and e′ ∈ δGk(u).

Proof. Let be a vertex subset I ⊆ V satisfying conditions 1 and 2, and let D0 ⊆ V be a

feasible solution with D0 ∩ I 6= ∅. We claim that there is a feasible solution D1 ⊆ V , with

the properties:

1. D1 has one fewer vertex of I than D0 does, i.e., |D1 ∩ I| = |D0 ∩ I| − 1; and

2. the objective value of D1 is at least as good as that of D0, i.e., obj(D1) ≤ obj(D0).
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The proposition would then follow by repeated application of this claim.

To prove the claim, let i be a vertex from D0 ∩ I. In the first case, all neighbors of i

belong to D0 in which case D1 := D0 \ {i} proves the claim. In the other case, suppose that

a neighbor u ∈ N(i) of i does not belong to D0. Observe that u cannot belong to I, because

I is independent and contains i (a neighbor of u). So,

D1 := (D0 \ {i}) ∪ {u}

satisfies the first property |D1 ∩ I| = |D0 ∩ I| − 1. Also, D1 satisfies the budget constraint by

∑
v∈D1

av =
∑
v∈D0

av + au − ai ≤
∑
v∈D0

av ≤ b.

So, all that remains is to show that obj(D1) ≤ obj(D0). Using the shorthand

δ0 = δ(G−D0)k(u) δ1 = δ(G−D1)k(i)

E0 = E((G−D0)k) E1 = E((G−D1)k),

we argue that

obj(D1) =
∑
e∈E1

ce =
∑

e∈E1\δ1

ce +
∑
e∈δ1

ce ≤
∑

e∈E0\δ0

ce +
∑
e∈δ0

ce =
∑
e∈E0

ce = obj(D0).

To prove the middle inequality, we show that the following inequalities hold.

∑
e∈δ1

ce ≤
∑
e∈δ0

ce (3.6)

∑
e∈E1\δ1

ce ≤
∑

e∈E0\δ0

ce. (3.7)

The former inequality (3.6) holds because if {i, v} ∈ δ1 then {u, v} ∈ δ0 which holds

86



because if there is a short path from i to v in G − D1, then the same path—but with u

substituted for i—exists in G − D0; moreover, c{i,v} ≤ c{u,v} and all connection costs are

nonnegative. Meanwhile, the latter inequality (3.7) holds because E1 \ δ1 ⊆ E0 \ δ0 and by

the nonnegativity of the connection costs ce ≥ 0. To see the inclusion E1 \ δ1 ⊆ E0 \ δ0,

consider {v, w} ∈ E1 \ δ1. So, distG−D1(v, w) ≤ k and i, u /∈ {v, w}. Let Pvw be a shortest

v, w-path in G−D1. If this path does not cross i, then the same path exists in G−D0, and

thus distG−D0(v, w) ≤ k. Meanwhile, if Pvw crosses i, then a similar path P ′vw (of the same

length) can be obtained in G−D0 by replacing i with u, in which case distG−D0(v, w) ≤ k.

Thus, {v, w} ∈ E0 \ δ0.

Now, to use Proposition 6, we need a procedure that finds an independent set I of

simplicial nodes. For this task, we use the algorithm below. It finds a set I of maximum size,

thus maximizing the number of yi variables that can be fixed.

FindNoncriticalNodes()

1. find S := {v ∈ V | is simplicial in G};

2. find S ′ := {v ∈ S | v satisfies condition 2};

3. pick one vertex vi from each of the components G1, G2, . . . , Gp of G[S ′];

4. return I := {v1, v2, . . . , vp}.

In our computational experiments, instances have unit deletion costs av = 1 for all v ∈ V

and unit connection costs ce = 1 for all e ∈ Ek. Under these settings S ′ = S, allowing us to

skip step 2 in our implementation.

Proposition 7. The algorithm FindNoncriticalNodes finds a maximum independent set

of simplicial nodes (that satisfies condition 2 of Proposition 6) in time O(nm).
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Proof. First consider the running time. Checking whether vertex v is simplicial takes time

O(n+m). For example, store N(v) as a boolean n-vector and make one pass through the

edges, counting the number of the {i, j} ∈ E for which i and j both belong to N(v). This

number will be
(

deg(v)
2

)
if and only if N(v) is a clique. In this way, step 1 takes time O(nm).

Step 2 takes linear time O(m+n) by precomputing and storing the values max{ce | e ∈ δ(i)}

and min{ce | e ∈ δ(i)} for each vertex i. Then, to check condition 2, it suffices to check that

max{ce | e ∈ δ(i)} ≤ min{ce′ | e′ ∈ δ(u)} for each u ∈ N(i). Finally, steps 3 and 4 also take

linear time O(m + n). Thus, the total time is O(nm). This is not too costly given that

creating the power graph already takes time O(nm).

By steps 1 and 2, I ⊆ S ′ and so every vertex i ∈ I is simplicial and satisfies condition

2 of Proposition 6. Moreover, step 3 ensures that I is independent. Finally, to prove that

I is maximum, see that any independent set of simplicial nodes F must be a subset of S ′.

Further, we claim that each component Gi of G[S ′] is a complete graph, in which case no

more than one vertex can be selected from each in F , i.e., |F | ≤ p. To see this, observe that

each component G′ of G[S] is a complete graph. This holds because if G′ is not complete,

then it has q := diam(G′) ≥ 2, in which case a diameter-inducing path u0-u1-· · · -uq has a

vertex u1 that is not simplicial in G′ and thus not simplicial in G, which is a contradiction.

So, I is maximum.

Meanwhile, we take L to be a maximum independent set of leaves, which can be bound

in linear time O(m+ n). Note that there is always a choice for L and I for which L ⊆ I, so

the simplicial vertex fixing is always at least as powerful as the leaf fixing. On average, I is

three times the size of I, as reported in Table 3.1. For example, simplicial vertex fixing finds

2,484 and 4,846 more non-critical nodes on the instances hep-th and cond-mat, respectively.
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Figure 3.7: An illustration of the sets L and I.

3.4.2 Heuristic

Our heuristic is based on a CNP heuristic of Addis et al. (2016). Their heuristic, called

Greedy3, begins with a vertex cover D of the graph. Then, vertices are removed from D in a

greedy fashion until its size is sufficiently smaller than the deletion budget, at which point

vertices are added back to D in a greedy fashion until the budget is tight. We make two

changes. First, instead of beginning with a vertex cover, we begin with a set D of size 2b

containing the vertices of largest betweenness centrality. Second, we terminate the heuristic

as soon as the size of D reaches b. These changes are motivated in part by the expensive

DCNP objective function evaluations, which take time O(mn), as opposed to O(m+ n) for

CNP. In our experience, these changes have a negligible impact on DCNP solution quality,

but a noticeable impact on running time.

Definition 9 (Betweenness Centrality, Freeman (1977)). Let σij be the number of shortest

paths between vertices i and j, and let σij(v) be the number of shortest paths between i and j

that contain vertex v. The betweenness centrality of vertex v is defined as

CB(v) :=
∑

{i,j}∈(V \{v}
2 )

σij(v)/σij.

Brandes (2001) shows that all betweenness centrality values can be computed in time

O(mn) when distances are hop-based, and in time O(mn + n2 log n) when distances are

edge-weighted.
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Algorithm 1 Heuristic for DCNP

1: initialize D to be the 2b vertices with largest betweenness centrality values

2: for counter = 1, 2, . . . , b do

3: let v ∈ argmin{obj(D \ {u}) | u ∈ D}

4: D ← D \ {v}

5: return D

Proposition 8. Algorithm 1 takes time O(b2mn) when distances are hop-based, and time

O(b2(mn+ n2 log n)) when distances are edge-weighted.

Proof. First consider the hop-based case. Line 1 takes time O(mn) by using the algorithm

of Brandes (2001). In line 3, we compute the objective value obj(D \ {u}) for at most 2b

vertices u, and each function evaluation takes time O(mn). This means that line 3 takes time

O(bmn). Since there are b iterations of the for loop, lines 2-4 take time O(b2mn). When

distances are edge-weighted, the analysis is similar, except that the betweenness centrality

computations and function evaluations take time O(mn+ n2 log n).

To obtain the running time O(mn+n2 log n) for the betweenness centrality computations

and function evaluations, Fibonacci heaps should be used. However, binary heaps typically

lead to faster implementations in practice, due to smaller hidden constants. For this reason,

our implementation uses binary heaps and has a slightly slower worst-case running time of

O(b2(mn log n+ n2 log n)).

Table 3.1 provides results for this heuristic on unweighted instances when k = 3 and

b ∈ {5, 10}. The heuristic solutions are often very good, and are in fact optimal for 12 of the

22 different instances where b = 5 and 5 of the instances where b = 10. Further, for most

instances, the running time is a few seconds; however, larger instances take minutes. The

largest instance cond-mat which has 16,726 vertices and 47,594 edges takes the most time:

496 seconds when b = 5, and 1709 seconds when b = 10. We expect that larger instances with,
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say, 100,000 vertices would require different techniques. However, our focus in this chapter is

on exact approaches, and instances like cond-mat lie at the boundary of tractability, so this

simple heuristic suffices for our purposes.

b = 5 b = 10 Preprocessing

Graph n m |E3| heur time opt heur time opt |L| |I|
karate 34 78 480 41 0.00 41 8 0.00 6 1 12
dolphins 62 159 1,107 678 0.01 662 340 0.02 335 9 9
lesmis 77 254 2,500 535 0.01 517 160 0.01 160 17 32
LindenStrasse 232 303 3,251 1,815 0.09 1,810 1,151 0.14 1,151 88 92
polbooks 105 441 3,510 2,673 0.04 2,555 1,867 0.11 1,715 0 4
adjnoun 112 425 5,634 3,719 0.06 3,719 2,501 0.15 2,501 10 12
football 115 613 6,247 5,362 0.06 5,362 4,590 0.15 4,523 0 0
netscience 1,589 2,742 13,087 8,898 0.31 8,390 7,026 0.84 6,785 205 680
jazz 198 2,742 18,461 18,461 0.22 16,136 14,306 0.75 14,216 5 14
SmallWorld 233 994 25,721 6,964 0.14 6,964 5,011 0.33 4,967 20 64
Erdos971 429 1,312 34,086 25,737 0.56 25,737 20,442 1.57 20,240 79 116
S.Cerevisae 1,458 1,948 39,091 25,190 2.84 25,190 19,861 8.57 19,861 722 770
USAir 332 2,126 46,573 29,486 0.30 29,486 19,628 0.95 19,157 55 122
power 4,941 6,594 53,125 52,456 39.36 50,410 51,782 136.21 48,602 1,226 1,414
H.pylori 706 1,392 62,028 37,626 0.93 37,626 28,204 3.06 27,807 263 268
Harvard500 500 2,043 83,993 19,241 0.41 16,448 9,951 1.12 8,581 79 134
homer 542 1,619 91,527 45,828 0.56 45,828 24,882 1.39 24,882 198 289
celegansm 453 2,025 91,531 44,967 0.63 44,967 26,830 2.10 25,556 6 95
email 1,133 5,451 289,259 263,409 3.36 263,409 241,144 11.74 241,128 151 197
hep-th 8,361 15,751 376,431 345,320 77.05 345,320 323,268 268.53 321,486 1,481 3,965
PGPgiant 10,680 24,316 1,145,492 860,319 240.60 857,035 769,350 795.27 744,908 4,229 5,299
cond-mat 16,726 47,594 1,761,969 1,637,445 496.13 1,633,299 1,561,855 1709.02 1,541,815 1,849 6,695

Table 3.1: Heuristic and preprocessing for k = 3 and b ∈ {5, 10}. We report the heuristic’s
objective value (heur), the time spent by the heuristic in seconds (time), the optimal objective
(opt), the numbers of leaves (|L|), and the number of simplicial vertices (|I|).

3.4.3 The Separation Problem

Since the thin formulation generally has exponentially many constraints (3.4c), we study the

associated separation problem so that violated inequalities can be added on-the-fly.

Problem: Separation problem for length-k i, j-connector inequalities (3.4c).

Input: An edge-weighted graph G = (V,E), a point (x∗, y∗) ∈ [0, 1]|E
k|+|V |, an integer k.

Output: (if any exist) An inequality (3.4c) of the type xe +
∑

v∈C yv ≥ 1 that the point

(x∗, y∗) violates.

We cover the case where distances are hop-based, and also when they are edge-weighted.
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In both cases, we consider integer separation where the given point (x∗, y∗) is assumed to be

integer, and fractional separation where no such assumption is made. Fractional separation

is important because of the well-known “separation=optimization” theorem (Grötschel

et al., 1993) which implies that the LP relaxation of the thin formulation can be solved in

polynomial-time if and only if the associated separation problem can be solved in polynomial

time. Meanwhile, the ability to perform integer separation provides no such theoretical

guarantees, but still can be practically useful in a branch-and-cut algorithm (Buchanan

et al., 2015; Fischetti et al., 2017b; Validi and Buchanan, 2019; Salemi and Buchanan, 2020a).

Table 3.2 summarizes the results.

integer separation fractional separation
hop-based O(nm) O(knm)

edge-weighted O(nm+ n2 log n) (weakly) NP-hard

Table 3.2: The complexity of the integer and fractional separation problems, under hop-based
and edge-weighted distances.

Integer Separation

Algorithm 2 solves the separation problem when given an integer point (x∗, y∗) ∈ {0, 1}|Ek|+|V |.

This algorithm applies to both the hop-based and edge-weighted cases, with the only difference

being the routine used for generating the shortest paths trees: time O(m+ n) versus time

O(m+ n log n) in line 3.
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Algorithm 2 IntegerSeparation(G,w, x∗, y∗, k)

1: D∗ ← {v ∈ V | y∗v = 1}

2: for i ∈ V \D∗ do

3: find a shortest paths tree of G−D∗ rooted at i with respect to w

4: for each power graph edge e = {i, j} ∈ Ek that is incident to i do

5: if distG−D∗(i, j) ≤ k and x∗e = 0 then

6: from the shortest paths tree, find a shortest path P from i to j in G−D∗

7: add xe +
∑

v∈V (P ) yv ≥ 1

8: break . optional, but needed for time bound

Remark 5. Algorithm 2 runs in time O(nm) when distances are hop-based and in time

O(nm+ n2 log n) when distances are edge-weighted.

The reason for adding the break in line 8 is to ensure that the algorithm does not spend

too much time generating the paths and associated inequalities. If the break is omitted, the

algorithm may add up to |Ek| violated inequalities, and each will be written with respect

to a path P . When distances are hop-based, each P will touch at most k + 1 vertices, and

so the time to write the inequalities is O(k|Ek|), which might be larger than the bound

O(nm), giving a total time that could be written O(knm). Meanwhile, when distances are

edge-weighted, the paths P may cross roughly n vertices, perhaps requiring us to increase

the time bound to O(n3).

However, our implementation omits the break (line 8). We find that the extra time spent

in the separation procedure is justified in practice. The intuition is as follows. Suppose

that the point (x∗, y∗) has x∗e = 0 even though its endpoints are close to each other in

G −D∗. Then it is likely that if no inequality that acts on xe is added, then the violated

inequality for xe will continue to be violated in the next separation call, eventually leading to

a larger number of branch-and-bound nodes. Moreover, many of our experiments consider
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the hop-based case where k is a small constant, in which case O(knm) = O(nm), and the

additional time is negligible.

Fractional Separation

When distances are hop-based, fractional separation takes time O(knm) by a straightforward

dynamic programming algorithm (Algorithm 3). With slight modifications, it can be applied

to the edge-weighted case assuming that the edge weights are integer-valued. This would give

a pseudo-polynomial running time. Meanwhile, fractional separation under edge-weighted

distances is generally NP-hard, as shown in Theorem 10.

For simplicity, Algorithm 3 is described with respect to a fixed vertex i. To solve the

“full” separation problem, it should be applied for each vertex i ∈ V . In the pseudocode,

d(v, s) stores, at termination, the cost of a cheapest at-most-s-hop path P from i to v (with

respect to vertex weights y∗v). We follow the convention that d(v, s) = +∞ when no such

path exists. The paths are stored in p via the typical predecessor idea. Specifically, p(v, s)

stores, at termination, the predecessor of vertex v in the cheapest path with at most s hops

from i to v.

Algorithm 3 FractionalSeparationHopBased(G, x∗, y∗, k, i)

1: for s = 0, 1, . . . , k do . initialization
2: d(i, s)← y∗i
3: for v ∈ V \ {i} do
4: d(v, s)← +∞
5: for s ∈ {1, 2, . . . , k} do . dynamic programming
6: for v ∈ NGk(i) do
7: for u ∈ NG(v) do
8: if d(v, s) > d(u, s− 1) + y∗v then
9: d(v, s)← d(u, s− 1) + y∗v

10: p(v, s)← u

11: for each power graph edge e = {i, j} ∈ Ek that is incident to i do . add cuts
12: if violation := 1− x∗e − d(j, k) > 0 then
13: let P be the cheapest path from i to j of length at most k that is stored in p
14: add xe +

∑
v∈V (P ) yv ≥ 1.
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Lines 5-10 are the most costly portion of Algorithm 3, taking time O(km). Thus, by

running the algorithm n times (once for each vertex i ∈ V ), these lines take a total time of

O(knm). Meanwhile, lines 11-14 take a combined time of O(k|Ek|) over the n different calls,

which is O(knm).

Remark 6. When distances are hop-based, fractional separation of the inequalities (3.4c)

takes time O(knm).

To enable Algorithm 3 to handle integer-weighted edges, one would need to adjust the

updates in lines 8-10. However, the resulting algorithm would be too slow for the instances

coming from our experiments, so we do not bother with this pseudo-polynomial time extension.

Theorem 10. Fractional separation for THIN↑x under edge-weighted distances is NP-hard.

Proof. We prove that it is NP-hard to determine whether a given point (x∗, y∗) violates an

inequality defining THIN↑x . The reduction is from Partition in which positive integers

p1, p2, . . . , pn and a target value ρ :=
∑n

v=1 pv/2 are given as input. From this, construct the

edge-weighted graph G = (V,E) shown in Figure 3.8. The edge weights {we}e∈E, and values

{y∗v}v∈V are given in the figure. Next, let k = ρ/(ρ + 1), b = n, and av = 1 for all v ∈ V .

Finally, let x∗{i,j} = 0 for the end vertices i and j, and let x∗e = 1 for all other power graph

edges e ∈ Ek \ {{i, j}}.

i

1

1′

h2

2

2′

h3 · · · hn

n

n′

j

p1
2(ρ+1)

0

p1
2(ρ+1)

0

p2
2(ρ+1)

0

p2
2(ρ+1)

0

pn
2(ρ+1)

0

pn
2(ρ+1)

0
y∗i = 0

y∗1 = 0

y∗1′ = p1
ρ+1

y∗h2 = 0

y∗2 = 0

y∗2′ = p2
ρ+1

y∗h3 = 0 y∗hn = 0

y∗n = 0

y∗n′ = pn
ρ+1

y∗j = 0

Figure 3.8: The graph used in the NP-hardness reduction.

Observe that (x∗, y∗) satisfies the budget constraint (3.4d), the 0-1 bounds on x and y,

and all connector constraints (3.4c) except perhaps for power graph edge {i, j}. We show that
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the Partition instance has a solution if and only if (x∗, y∗) violates one of the inequalities

defining THIN↑x .

( =⇒ ) Suppose that the Partition instance admits a solution T ⊂ [n] with
∑

v∈T pv = ρ.

Its complement T̄ = [n] \ T also has weight ρ. Let B = {v′ | v ∈ T̄} be the vertices v′ from

the bottom row whose top row counterpart v does not belong to T . We show that

C = {i, j} ∪ T ∪B ∪ {h2, h3, . . . , hn}

is a (minimal) length-k i, j-connector and that the associated connector inequality is violated,

x∗{i,j} +
∑

v∈C y
∗
v < 1. To wit, let Ê(G[C]) be the edges of E (G[C]) with positive weight and

observe that

distG[C](i, j) =
∑

e∈E(G[C])

we =
∑

e∈Ê(G[C])

we =

∑
v∈T pv

ρ+ 1
=

ρ

ρ+ 1
= k

x∗{i,j} +
∑
v∈C

y∗v = x∗{i,j} +
∑
v∈B

y∗v = 0 +

∑
v∈T̄ pv

ρ+ 1
=

ρ

ρ+ 1
< 1.

( ⇐= ) Suppose that (x∗, y∗) violates at least one of the inequalities defining THIN↑x .

By the discussion above, the violated inequality must be a connector inequality, say, for a

minimal length-k i, j-connector C, in which case x∗{i,j} +
∑

v∈C y
∗
v < 1. Since C is a minimal

i, j-connector,

∑
v∈C

y∗v +
∑

e∈E(G[C])

we =
2ρ

ρ+ 1
.

Moreover,
∑

v∈C y
∗
v =

∑
e∈E(G[C]) we = ρ

ρ+1
because

ρ

ρ+ 1
= k ≥

∑
e∈E(G[C])

we =
2ρ

ρ+ 1
−
∑
v∈C

y∗v ≥
ρ

ρ+ 1
,
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where the first inequality holds since C is a (minimal) length-k i, j-connector in the Figure 3.8

graph, and the last inequality holds because otherwise x∗{i,j} +
∑

v∈C y
∗
v ≥ 0 + ρ+1

ρ+1
= 1. Let T

be the subset of C that belongs to the top row of vertices {1, 2, . . . , n}, and let T̄ = [n] \ T .

Further, let B be the subset of C that belongs to the bottom row {1′, 2′, . . . , n′}. Then, T̄ is

a solution to Partition, as

∑
v∈T̄ pv

ρ+ 1
=
∑
v∈B

y∗v =
∑
v∈C

y∗v =
ρ

ρ+ 1
.

3.5 Computational Experiments

Here, we experiment with different implementations of the DCNP formulations, including

• R, a direct implementation of the recursive formulation by Veremyev et al. (2015);

• PATH, direct implementation of the path-like formulation;

• THIN, a direct implementation of the thin formulation;

• THINF, a branch-and-cut implementation of the thin formulation using fractional

separation for inequalities (3.4c);

• THINI, a branch-and-cut implementation of the thin formulation using integer separa-

tion for inequalities (3.4c).

Each implementation uses the heuristic and variable fixing procedure given in Section 3.4,

and all experiments were conducted on a Dell Precision Tower 7000 Series (7810) machine

running Windows 10 enterprise, x64, with Intel R© Xeon R© Processor E52630 v4 (10 cores,

2.2GHz, 3.1GHz Turbo, 2133MHz, 25MB, 85W) – that is 20 logical processors – and 32

GB memory. The code was written in Microsoft Visual Studio 2015 in C++ for Gurobi

version 7.5.1. The code and all instances are available at (Salemi and Buchanan, 2020b).
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The branch-and-cut implementations invoke the parameter LazyConstraints; the MIP time

limit is 3600 seconds; and the method parameter is set to concurrent.

3.5.1 Results for Hop-Based Distances

First, we report experimental results on DCNP instances in which distances are hop-based.

We consider all of real-life graphs considered by Veremyev et al. (2015), as well as some

other (often larger) instances. These graphs come from the Pajek dataset (Batagelj and

Mrvar, 2006), the University of Florida Sparse Matrix Collection database (Davis and Hu,

2011), and the 10th DIMACS Implementation Challenge (DIMACS-10, 2017). Veremyev

et al. (2015) ran experiments for k = 3, b ∈ {1, 2, . . . , 10}, and av = 1 for all v ∈ V . Given

that the performance may be sensitive to k, we consider k ∈ {3, 4}. Also, as DCNP can be

brute-forced for small b, we consider b ∈ {5, 10}.

Tables 3.3 and 3.4 report the total time in seconds (including preprocessing, heuristic,

and model build time), or the best lower and upper bounds [LB,UB] within a 3600 second

time limit. An entry of LPNS denotes that the LP relaxation was not solved within the time

limit (due to build time or solve time), while MEM denotes a memory crash.

The thin implementations perform the best and are often faster than R by an order of

magnitude. Implementation THIN solves all of the instances that R and PATH can solve,

plus 9 and 4 others, respectively. Some of the larger instances like hep-th, PGPgiant, and

cond-mat cause R to crash, while the other implementations do not. Surprisingly, however,

we find that the thin implementations fail to solve the 198-node instance jazz when b = 10.

Examination of the logs reveals that Gurobi is spending an inordinate amount of time to

solve the LP relaxations at its branch-and-bound nodes. We suspect that this behavior

results from the dual simplex method encountering degeneracy. To remedy the issue, we

forced Gurobi to solve the LP relaxations at every branch-and-bound node using the barrier

method. This enabled Gurobi to solve this instance in 3182.93 seconds. Another observation
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from Tables 3.3 and 3.4 is that THIN typically outperforms THINI and THINF when k = 3.

Indeed, THIN is quicker than THINI and THINF on 37 of these 44 instances. Tweaks to the

branch-and-cut implementations (e.g., varying the cut violation threshold, varying the initial

constraints, limits to the number of cuts per callback) did not change this.

Graph n m |Ek| obj R PATH THINI THINF THIN
karate 34 78 480 41 0.14 0.08 0.06 0.04 0.04
dolphins 62 159 1,107 662 5.22 3.73 0.65 0.66 0.74
lesmis 77 254 2,500 517 0.55 0.42 0.21 0.20 0.21
LindenStrasse 232 303 3,251 1,810 0.70 0.41 0.38 0.35 0.21
polbooks 105 441 3,510 2,555 15.10 7.12 3.41 3.09 2.56
adjnoun 112 425 5,634 3,719 2.68 2.76 1.48 1.32 0.97
football 115 613 6,247 5,362 235.46 266.76 139.49 97.13 86.48
netscience 1,589 2,742 13,087 8,390 15.56 1.90 2.44 2.49 1.19
jazz 198 2,742 18,461 16,136 [15732,16185] [16074,16136] 1840.59 1904.99 1081.24
SmallWorld 233 994 25,721 6,964 21.87 9.33 8.36 7.66 5.40
Erdos971 429 1,312 34,086 25,737 20.39 14.69 21.28 16.00 9.93
S.Cerevisae 1,458 1,948 39,091 25,190 22.19 10.09 9.41 9.62 5.68
USAir 332 2,126 46,573 29,486 54.13 50.70 39.57 40.26 26.09
power 4,941 6,594 53,125 50,410 188.23 64.64 57.42 77.24 46.13
H.Pylori 706 1,392 62,028 37,626 97.60 16.17 18.89 24.04 8.63
Harvard500 500 2,043 83,993 16,448 63.97 25.23 17.95 20.76 14.54
homer 542 1,619 91,527 45,828 408.50 365.28 63.53 63.70 32.51
celegansm 453 2,025 91,531 44,967 182.39 54.67 39.86 40.13 43.40
email 1,133 5,451 289,259 263,409 1545.02 198.05 184.24 190.21 114.46
hep-th 8,361 15,751 376,431 345,320 MEM 379.11 250.11 257.69 171.94
PGPgiant 10,680 24,316 1,145,492 857,035 MEM 2025.69 685.54 717.38 704.55
cond-mat 16,726 47,594 1,761,969 1,633,299 MEM LPNS 3688.16 3683.96 2385.66

Table 3.3: Running times, or bounds at termination, when (k, b) = (3, 5).

Graph n m |Ek| obj(D) R PATH THINI THINF THIN
karate 34 78 480 6 0.14 0.09 0.10 0.11 0.04
dolphins 62 159 1,107 335 4.84 2.23 1.49 1.36 1.00
lesmis 77 254 2,500 160 0.51 0.37 0.28 0.30 0.17
LindenStrasse 232 303 3,251 1,151 0.72 0.47 0.44 0.44 0.31
polbooks 105 441 3,510 1,715 20.52 10.44 7.21 5.86 3.44
adjnoun 112 425 5,634 2,501 2.99 2.98 2.95 2.84 1.10
football 115 613 6,247 4,523 2158.69 987.90 605.52 644.58 265.17
netscience 1,589 2,742 13,087 6,785 16.32 2.42 2.65 2.60 1.87
jazz 198 2,742 18,461 14,216 [13074,14306] [13020,14306] [13620,14306] [13500,14306] [13579,14306]
SmallWorld 233 994 25,721 4,967 1261.81 83.68 62.39 59.83 19.48
Erdos971 429 1,312 34,086 20,240 745.14 193.83 72.79 75.72 53.68
S.Cerevisae 1,458 1,948 39,091 19,861 29.36 15.71 18.00 17.88 11.13
USAir 332 2,126 46,573 19,157 2316.72 1086.97 319.18 321.08 289.04
power 4,941 6,594 53,125 48,602 272.93 165.39 153.16 149.06 142.85
H.Pylori 706 1,392 62,028 27,807 87.17 19.08 24.28 26.10 11.45
Harvard500 500 2,043 83,993 8,581 54.83 29.59 14.00 13.67 17.17
homer 542 1,619 91,527 24,882 42.07 33.38 33.59 32.94 20.35
celegansm 453 2,025 91,531 25,556 [25183,25556] 2325.78 103.66 115.01 129.35
email 1,133 5,451 289,259 241,128 [241060,241144] 1565.70 345.82 490.56 200.83
hep-th 8,361 15,751 376,431 321,486 MEM 572.07 458.58 457.04 357.96
PGPgiant 10,680 24,316 1,145,492 744,908 MEM [744769,748537] 1568.55 1838.73 1590.45
cond-mat 16,726 47,594 1,761,969 1,541,815 MEM LPNS 4778.22 4884.87 3390.20

Table 3.4: Running times, or bounds at termination, when (k, b) = (3, 10).

The results given in Tables 3.5 and 3.6 lead to similar conclusions for k = 4 and b ∈ {5, 10}.
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That is, the thin implementations perform the best, with THIN solving all of the instances

that R and PATH can solve, plus 6 and 5 others, respectively. However, the instances appear

to be more challenging when k = 4 as opposed to k = 3. In fact, the largest instances

PGPgiant and cond-mat cause R, PATH, and THIN to crash. This is explained by the large

numbers of variables and constraints. For PGPgiant, there are more than 4 million variables

and 25 million constraints. Meanwhile, cond-mat requires more than 7 million variables and

27 million constraints.

Graph n m |Ek| obj(D) R PATH THINI THINF THIN
karate 34 78 553 44 0.31 0.18 0.05 0.06 0.05
dolphins 62 159 1,459 764 15.61 42.77 1.27 0.85 1.51
lesmis 77 254 2,899 583 2.46 3.64 0.72 0.79 1.05
LindenStrasse 232 303 7,257 3,526 4.27 2.03 1.85 1.99 1.36
polbooks 105 441 4,685 3,333 61.86 153.33 11.18 14.59 22.70
adjnoun 112 425 6,178 4,777 316.60 1556.25 46.21 72.67 259.61
football 115 613 6,555 ? [5667,5987] [5657,5994] [5763,5984] [5759,5986] [5648,5987]
netscience 1,589 2,742 22,847 11,786 35.97 5.61 4.68 5.69 3.56
jazz 198 2,742 19,336 17,350 [16626,17799] LPNS [16802,17799] [16852,17799] [16597,17799]
SmallWorld 233 994 27,028 9,606 68.80 45.82 24.01 20.38 23.94
Erdos971 429 1,312 62,059 49,325 458.64 132.55 626.12 417.16 70.57
S.Cerevisae 1,458 1,948 117,958 66,402 57.62 47.10 52.80 52.64 28.85
USAir 332 2,126 53,447 33,795 [33390,33906] [33390,33906] 787.38 680.65 361.17
power 4941 6,594 105,233 97,949 312.64 136.98 78.32 77.88 97.41
H.Pylori 706 1,392 162,758 109,368 392.08 117.58 581.60 578.25 83.34
Harvard500 500 2,043 119,080 37,491 861.51 235.66 321.93 304.99 201.56
homer 542 1,619 133,947 76,068 968.86 246.72 1064.79 935.02 137.17
celegansm 453 2,025 100,476 71,463 [70233,71463] [70233,71463] [66186,71463] [70184,71463] 2602.32
email 1,133 5,451 548,801 ? LPNS LPNS [258207,522824] [258207,522824] LPNS
hep-th 8,361 15,751 1,340,125 1,216,604 MEM 2872.79 [329778,1216604] [329778,1216604] 1922.82
PGPgiant 10,680 24,316 4,211,853 ? MEM MEM [833432,3122094] [833432,3122094] MEM
cond-mat 16,726 47,594 7,586,150 ? MEM MEM [1586132,6976109] [1586132,6976109] MEM

Table 3.5: Running times, or bounds at termination, when (k, b) = (4, 5).
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Graph n m |Ek| obj(D) R PATH THINI THINF THIN
karate 34 78 553 6 0.31 0.23 0.29 0.12 0.10
dolphins 62 159 1,459 428 36.48 44.91 5.69 3.39 5.96
lesmis 77 254 2,899 178 2.81 4.65 1.01 0.45 1.13
LindenStrasse 232 303 7,257 1,913 2.25 2.19 3.91 1.93 1.33
polbooks 105 441 4,685 2,118 166.64 676.52 25.36 29.74 84.47
adjnoun 112 425 6,178 3,694 1262.93 [3364,3708] 216.16 252.27 1135.64
football 115 613 6,555 ? [4707,5356] [4664,5423] [4807,5423] [4774,5408] [4708,5419]
netscience 1,589 2,742 22,847 8,778 78.53 11.96 6.33 12.96 6.16
jazz 198 2,742 19,336 15,259 [13894,16036] LPNS [14234,15615] [14352,16036] [13888,16036]
SmallWorld 233 994 27,028 6,046 [6014,6048] [6024,6057] 95.76 107.22 239.14
Erdos971 429 1,312 62,059 41,097 [40360,41375] [40251,41375] 3542.00 3249.56 [40545,41097]
S.Cerevisae 1,458 1,948 117,958 47,324 64.38 54.37 47.74 49.04 36.66
USAir 332 2,126 53,447 24,935 [22916,27343] [22832,27343] [24762,24935] [24498,24958] [23569,25281]
power 4,941 6,594 105,233 92,522 554.98 286.08 188.65 241.37 188.63
H.Pylori 706 1,392 162,758 82,441 557.10 161.63 1721.81 1637.42 111.40
Harvard500 500 2,043 119,080 16,708 526.05 331.79 172.88 181.50 116.00
homer 542 1,619 133,947 46,396 961.41 256.87 3309.51 2478.75 171.59
celegansm 453 2,025 100,476 48,046 [47866,52157] [47866,52157] [38641,52157] [47861,48046] 857.29
email 1,133 5,451 548,801 ? LPNS MEM [236046,498364] [236046,498364] LPNS
hep-th 8,361 15,751 1,340,125 1,123,002 MEM 3078.12 [306113,1125603] [306113,1125603] 1802.32
PGPgiant 10,680 24,316 4,211,853 ? MEM MEM [721537,2673960] [721537,2673960] MEM
cond-mat 16,726 47,594 7,586,150 ? MEM MEM [1495035,6571710] [1495035,6571710] MEM

Table 3.6: Running times, or bounds at termination, when (k, b) = (4, 10).

3.5.2 Results for Edge-Weighted Distances

Now, we turn to DCNP instances in which distances are edge-weighted. Test instances

(including edge weights we) were collected from the Transportation Networks Repository (Sta-

bler et al., 2019) and the Hazmat Network Data of STOM-Group (2019). As before, we take

av = 1 for all v ∈ V , and b ∈ {5, 10}. The distance threshold k is chosen so that the number

of vertex pairs {i, j} with distG(i, j) ≤ k is approximately α
(
n
2

)
. Tables 3.7 and 3.8 provide

results when α ∈ {0.05, 0.10}. We only provide results for the THINI implementation, as the

other implementations would require an exponential number of initial constraints or have an

NP-hard separation problem (Theorem 10). The tables also report the heusistic’s objective

(heur) and the time spent by the heuristic (htime).

We see that the THINI implementation is able to solve edge-weighted instances with up

to 1,000 nodes. Instances with fewer than 500 nodes are solved in a few seconds. Meanwhile,

instances with more than 1,000 nodes pose quite a challenge, certainly due in part to the

large number of power graph edges |Ek| and associated variables {xe}e∈Ek .
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b = 5 b = 10
Graph n m k |Ek| heur opt htime time heur opt htime time
Albany 90 149 44 204 139 136 0.08 0.19 94 91 0.19 0.27
Buffalo 90 149 260 205 127 127 0.06 0.10 94 89 0.18 0.22
DC-NY-BOS 317 509 5,286 2,505 1967 1910 0.84 2.68 1636 1510 2.96 4.99
Korean 324 440 50 2,619 2227 2038 0.80 1.16 1918 1724 2.65 3.16
Anaheim 416 634 7,709 4,348 3587 3540 1.48 2.43 3055 3012 5.34 6.80
Barcelona 930 1,798 127 21,778 20640 20259 7.08 147.83 19674 18977 28.05 [18871,19100]
Rome 3,353 4,831 2,888 281,058 259481 ? 98.00 [253268,259481] 251184 ? 381.45 [222668,251184]
Austin 7,388 10,591 464 1,368,735 1352766 ? 594.11 [30408,1352766] 1336801 ? 2289.14 [30275,1336801]
Chicago 12,979 20,627 889 4,213,117 4190256 ? 1970.02 [65083,4190256] 4168480 ? 7650.10 [64922,4168480]

Table 3.7: Results for α = 0.05.

b = 5 b = 10
Graph n m k |Ek| heur opt htime time heur opt htime time
Albany 90 149 65 403 256 247 0.06 0.20 158 157 0.20 0.38
Buffalo 90 149 410 402 272 269 0.07 0.18 195 179 0.15 0.25
DC-NY-BOS 317 509 8,641 5,010 4224 3848 0.78 4.68 3394 3154 2.47 10.16
Korean 324 440 78 5,308 4521 4025 0.78 1.58 3669 3154 2.19 3.70
Anaheim 416 634 11,036 8,637 7161 7009 1.38 3.92 6251 5977 4.21 8.30
Barcelona 930 1,798 185 43,449 41644 40126 7.30 [38374,41104] 39344 ? 25.89 [33164,38674]
Rome 3,353 4,831 4,189 561,987 524792 ? 96.60 [462892,524792] 506983 ? 386.29 [13502,506983]
Austin 7,388 10,591 716 2,729,813 2698516 ? 598.36 [30793,2698516] 2678413 ? 2249.78 [30660,2678413]
Chicago 12,979 20,627 1,325 8,428,119 8386922 ? 2095.49 [65187,8386922] 8350868 ? 8214.38 [65026,8350868]

Table 3.8: Results for α = 0.10.

3.5.3 Critical Nodes of the Buffalo, NY Highway Network

To illustrate the differences between CNP and DCNP on edge-weighted instances, consider

the Buffalo network. The edges of this network represent segments of the major highways

near Buffalo, New York and are weighted based on their length. Roughly 5% of node pairs

are within 2.6 miles of each other, and 10% of node pairs are within 4.1 miles of each other3.

Figures 3.9, 3.10, and 3.11 provide optimal solutions for DCNP (α = 0.05), DCNP (α = 0.10),

and CNP, respectively, when b ∈ {5, 10}. As expected, the CNP solutions split the network

into multiple pieces with whatever nodes work. For example, both CNP solutions split Grand

Island (the wheel-like subgraph near the upper-left) off from the mainland along I-190, but

the DCNP solutions do not. Meanwhile, the DCNP solutions tend to favor “hubs” that have

many neighbors and other nearby nodes. For example, when b = 5, both DCNP solutions

select a node from downtown Buffalo (just below the center of the graph), while the CNP

solution does not. Another observation is that the DCNP solutions appear more stable as

3The edge weights are originally provided rounded to the nearest hundredth mile; we multiply them by
100 so that each weight we is an integer, so k = 410 represents 4.1 miles.
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the budget increases. Specifically, as the budget doubles from b = 5 to b = 10, four of the

five initial DCNP nodes remain selected. For CNP, the solutions change more, with only two

of the five initial nodes remaining selected.

Figure 3.9: DCNP solutions for Buffalo network when α = 0.05 and b ∈ {5, 10}.

Figure 3.10: DCNP solutions for Buffalo network when α = 0.10 and b ∈ {5, 10}.
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Figure 3.11: CNP solutions for Buffalo network when b ∈ {5, 10}.

3.6 Conclusion

In this chapter, we propose new path-like and thin integer programming formulations for the

distance-based critical node problem. Under hop-based distances (and nonnegative connection

costs), these new formulations are equivalent in strength to the previously existing recursive

formulation of Veremyev et al. (2015). To prove this equivalence, we introduce the notion of

the partial dominant of a polyhedron. The newly proposed thin formulation is the fastest

formulation on real-life graphs, often taking a tenth of the time of the recursive formulation,

and solving larger instances than were solvable before. A branch-and-cut implementation of

the thin formulation is also able to handle instances in which distances are edge-weighted.

This enables us to solve road network instances of the distance-based critical node problem;

such instances could not have been handled with previous formulations.
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Chapter IV

A Benders Decomposition Algorithm to Solve Critical Node Problem

This chapter is based on work with Austin Buchanan. Here we provide a different approach

to solve the (Distance-based) Critical Node Problem. Indeed, we use the thin formulation

as introduced in Chapter III and develop a Benders decomposition algorithm to solve it

efficiently. Benders decomposition algorithm was initially proposed by Benders (1962) to

solve mixed variables programming problems such as MIP formulations. The basic idea in the

classical version of Benders algorithm is to decompose a problem by partitioning its variables.

4.1 Literature Review

Over the years, Benders decomposition methods have been used to solve optimization problems

in diverse areas such as production planning (Behnamian, 2014), power management (Jenabi

et al., 2015), vehicle routing (Corréa et al., 2007), and network design (Botton et al., 2013),

among others. Moreover, different types of optimization problems have been solved by

Benders decomposition approaches. Some examples are pure binary problems (Cordeau et al.,

2001), mixed-integer nonlinear problems (De Camargo et al., 2011), robust optimization

problems (Emami et al., 2017), and bilevel problems (Fontaine and Minner, 2014). The

interested readers are encouraged to consult the literature review of Rahmaniani et al. (2017)

for a more comprehensive list of applications and optimization problems solved by Benders

decomposition approaches.

In the context of critical node problems, Hooshmand et al. (2019) propose a Benders

decomposition method to maximize the generalized Wiener index. This index considers the
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total distances between all pairs of vertices in the remaining graph as a (dis)connectivity

metric. Moreover, Naoum-Sawaya and Buchheim (2016) propose a Benders decomposition

method to solve a general class of robust critical node problems (RCNP), where the connection

costs ce belong to an uncertainty set U . They basically use a formulation that is identical

to the one proposed by Di Summa et al. (2012) and decompose it into a subproblem and a

master problem: The subproblem deals with realizations of the connection costs in the set

U and contains binary variables indicating whether two nodes are connected by a path in

the remaining graph. Meanwhile, the master problem includes binary variables indicating

whether a node is chosen to be deleted or not. In this chapter, we present a Benders algorithm

to solve a class of CNP and DCNP in which the the task is to delete a subset of b critical

nodes to minimize the number of node pairs that remain connected by a path of any length

and by a path of length at most k, respectively. We use thin as our original formulation.

4.2 Benders Decomposition

Recall from Chapter III that yi is a binary variable representing the decision to include i in

the deletion set D ⊆ V , and xe is a binary variable representing whether the endpoints of

e ∈ Ek are distance at most k apart in G−D. Also, for any e = {i, j} ∈ Ek, let ce denote

the connection cost and b denote the deletion budget. As before, Ck
ij is the set of all minimal

length-k-i, j connectors, as defined in Chapter III. Recall that when ce ≥ 0 for all e ∈ Ek,

then the thin formulation for the (distance-based) critical node problem is as follows.
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min
∑
e∈Ek

cexe (4.1a)

xe +
∑
v∈C

yv ≥ 1 ∀C ∈ Ck
ij, ∀e = {i, j} ∈ Ek (4.1b)

∑
i∈V

aiyi ≤ b (4.1c)

xe ≥ 0 ∀e ∈ Ek (4.1d)

yi ∈ {0, 1} ∀i ∈ V. (4.1e)

This formulation has |Ek|+ n variables and exponentially many constraints. Throughout

this chapter, we assume that ce ≥ 0 for all e ∈ Ek.

By partitioning the initial continuous variables x and integer variables y of the thin

formulation, we can obtain two problems: a subproblem and a master problem. Our

subproblem includes the x variables and fixed values of the y variables. A solution to the

subproblem provides feasibility and optimality cuts that should be added iteratively to the

master problem in pursuit of finding an optimal solution. The master problem, which is a

relaxed version of the original problem, only contains y variables. The objective values of the

subproblem and master problem provide an upper bound and a lower bound on the optimal

objective value of the original problem, respectively. The Benders algorithm terminates when

these two bounds are equal. In what follows, we present our subproblem and master problem.

We also explain how to generate optimality cuts.

Define Y :=
{
y ∈ [0, 1]n

∣∣ ∑
i∈V aiyi ≤ b

}
. We can restate our thin formulation as follows.

min
y∈Y ∩{0,1}n

{
min
x≥0

{∑
e∈Ek

cexe

∣∣∣∣∣ xe ≥ 1−
∑
v∈C

yv ∀C ∈ Ck
ij, ∀e = {i, j} ∈ Ek

}}
.

Define a dual variable πC,e for each constraint of the inner minimization problem (primal
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subproblem). Then, the above problem can be restated as

min
y∈Y ∩{0,1}n

max
π≥0

 ∑
e={i,j}∈Ek

∑
C∈Ck

ij

(
1−

∑
v∈C

yv

)
πC,e

∣∣∣∣∣∣
∑
C∈Ck

ij

πC,e ≤ ce ∀e = {i, j} ∈ Ek


 ,

which is equivalent to

min
y∈Y ∩{0,1}n;

z∈R

z
∣∣∣∣∣∣ z ≥

∑
e={i,j}∈Ek

∑
C∈Ck

ij

(
1−

∑
v∈C

yv

)
πC,e ∀πC,e ∈ Π

 ,

where Π is the set of all feasible solutions to the inner maximization problem (dual subproblem).

Observe that the feasible region of the dual subproblem, which is always feasible and bounded,

does not depend on y. This implies that no feasibility cut is needed to be added to our

master problem.

Theorem 11 shows how to solve the primal and dual subproblems combinatorially when

given a vector ỹ ∈ Y .

Theorem 11. Let ỹ ∈ Y and define

Ek(ỹ) :=

{
e = {i, j} ∈ Ek

∣∣∣∣∣ there exists C ∈ Ck
ij such that

∑
v∈C

ỹv < 1

}
.

For every power graph edge e = {i, j} ∈ Ek(ỹ), let Ce be a minimal length-k i, j-connector

C with minimum
∑

v∈C ỹv. Define C := {Ce | e ∈ Ek(ỹ)}. The points x̃ and π̃ are optimal

solutions for the primal and dual subproblems, respectively, where
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x̃e =


1−

∑
v∈Ce

ỹv if e ∈ Ek(ỹ)

0 if e /∈ Ek(ỹ)

∀e ∈ Ek

π̃C,e =


ce if C ∈ C

0 if C /∈ C

∀C ∈ Ck
ij, ∀e = {i, j} ∈ Ek.

Proof. Observe that x̃ and π̃ are feasible for the primal and dual subproblems, respectively.

Then, the objective values of x̃ and π̃, denoted obj(x̃) and obj(π̃) satisfy

obj(x̃) =
∑
e∈Ek

cex̃e =
∑

e∈Ek(ỹ)

ce

(
1−

∑
v∈Ce

ỹv

)
=

∑
e={i,j}∈Ek(ỹ)

∑
Ce∈Ck

ij

π̃C,e

(
1−

∑
v∈Ce

ỹv

)
= obj(π̃).

Thus, by weak duality, x̃ and π̃ are optimal for the primal and dual subproblems, respectively.

Given a ỹ ∈ Y and by finding optimal dual multipliers π̃, the Benders optimality cuts

can be generated (see for example (Rei et al., 2009)) as follows.

z ≥
∑

e={i,j}∈Ek

∑
C∈Ck

ij

π̃C,e

(
1−

∑
v∈C

yv

)
=

∑
e∈Ek(ỹ)

ce

(
1−

∑
v∈Ce

yv

)
.
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Finally, the Benders master problem is as follows.

min z (4.2a)

z ≥
∑

e∈Ek(ỹ)

ce

(
1−

∑
v∈Ce

yv

)
∀ỹ ∈ Y (4.2b)

∑
i∈V

aiyi ≤ b (4.2c)

yi ∈ {0, 1} ∀i ∈ V, (4.2d)

where Y is defined as before. This formulation has n+ 1 variables and might have very

large number of constraints (4.2b).

Before detailing the implementations of the master problem, we show how to generate

valid inequalities that dominate constraints of the type (4.1b). To do this, we first need to

define well-connected power graph edges as follows. An example to illustrate this definition

is given in Figure 4.1.

Definition 10 (Well-connected power graph edge). The set of well-connected power graph

edges Ek
w of a graph G = (V,E) is

Ek
w :=

{
{i, j} ∈ Ek

∣∣∣∣∣ distG−S(i, j) ≤ k ∀S ⊆ V \ {i, j} with
∑
v∈S

av ≤ b

}
.

Proposition 9. Let e = {i, j} ∈ Ek
w be a well-connected power graph edge. Then,

xe + yi + yj ≥ 1

is valid for the DCNP feasible region.

Proof. We show that the inequality is satisfied by every feasible point of the DCNP. Suppose

not. This implies that there is a feasible point (x̂, ŷ) where x̂e+ ŷi+ ŷj = 0. Since power graph
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edge e = {i, j} is well-connected, there is at least one intact minimal length-k i, j-connector

C ∈ Ck
ij (i.e.,

∑
v∈C ŷv = 0) after deleting any feasible subset of vertices S ⊆ V \ {i, j}. So

x̂e +
∑
v∈C

ŷv = 0,

which contradicts x̂e +
∑

v∈C ŷv ≥ 1 of the type (4.1b).

1

2

3

4

5

6 7

8

Figure 4.1: Suppose k = 3, b = 2, and av = 1 for all v ∈ V . Power graph edge {1, 8} is
well-connected because distG−S(1, 8) ≤ 3 for any S ⊆ V \ {1, 8} of size b. However, power
graph edge {2, 3} is not well-connected because distG−{1,8}(2, 3) > 3. Lastly, power graph
edge {1, 5} is well-connected for CNP, but not for DCNP since distG−{2,3}(1, 5) > 3.

Remark 7. Let ỹ ∈ Y and define Ek
w(ỹ) := Ek

w ∩ Ek(ỹ). Then, the Benders optimality cuts

can be written as follows.

z ≥
∑

e={i,j}∈Ek
w(ỹ)

ce (1− yi − yj) +
∑

e∈Ek(ỹ)\Ek
w(ỹ)

ce

(
1−

∑
v∈Ce

yv

)
.

4.3 Implementation

Since the master problem might have very large number of constraints (4.2b), we add them

on-the-fly, as lazy constraints. Basically, we initialize the formulation with the budget

constraint (4.2c) and a subset of the constraints (4.2b). Then, at a branch-and-bound node,

if the MIP solver finds a possible solution ỹ that satisfies the initial constraints, we separate

the inequalities of the type (4.2b). In what follows, we detail two possible procedures to

generate high-quality initial optimality constraints. We also discuss how to fix some of the y

variables to reduce the size of instances.
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4.3.1 Restricted Problem

In order to obtain a pool of initial optimality cuts, we can first solve a restricted problem

(RP) and then add all the optimality cuts generated while solving RP to the full problem as

an initialization. Let B ⊆ V of size 2b be a subset of vertices with the largest betweenness

centrality. One possible way of restricting the problem is to fix yv = 0 for all vertices v ∈ V \B.

Another way of generating a set of initial constraints is to restrict the full problem by adding

a classical trust region or local branching constraint (Fischetti and Lodi, 2003; Santoso et al.,

2005; Baena et al., 2020) as follows.

∑
i:ȳi=1

(1− yi) +
∑
i:ȳi=0

yi ≤ r.

Here, ȳ is a stability point and r is the radius of the trust region. Adding this constraint

leads to focusing on a part of the feasible region that is a neighborhood of ȳ. Let D ⊆ V be

a deletion set and ȳ be its characteristic vector. We can solve two restricted problems by

adding disjunctive constraints
∑

i:ȳi=1 (1− yi) +
∑

i:ȳi=0 yi ≤ r to one and
∑

i:ȳi=1 (1− yi) +∑
i:ȳi=0 yi ≥ r + 1 to the other. Then, the optimal solution will be the optimal deletion set of

that restricted problem with smaller objective function value.

4.3.2 Variable Fixing

Here, we discuss variable fixing procedures for the critical node problem. See Figure 4.2 for

an illustration. In our discussion, we use a definition of a k-vertex connected graph as follows.

Definition 11 (k-vertex connected graph). A graph G = (V,E) is k-vertex connected (or

k-connected) if |V | ≥ k + 1 and it remains connected after deleting any fewer than k vertices.

Consider a graph G = (V,E) and let H be a (b+ 1)-connected component. Define V int to

be the vertices v for which N(v) ⊆ V (H), V ext := V (H) \ V int, and q := max {0, b− |V ext|}.
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Let D0 be a deletion set with vertices from V int. If there exists another (b + 1)-connected

component H ′ of size at least
∣∣V int

∣∣+ q, then one can safely swap all vertices in D0∩V int with

intact vertices of V ext ∪ V (H ′) to obtain a feasible deletion set D1. The objective value of D1

is at least as good as that of D0 because deleting vertices from V ext disconnects component

H from the rest of the graph, as opposed to deleting vertices from V int. In addition, after

deleting vertices from V ext, the number of intact vertices in H ′ is still more than or equal to

that of vertices in H. So, deleting vertices from H ′ causes more disconnectivity compared

to deleting vertices from H. By this argument, gray vertices {1, 2, 4, 5} are not critical in

Figure 4.2. This implies that we can fix yv = 0 for all v ∈ {1, 2, 4, 5}.

Another procedure is to pick q vertices from V int and let them be S. Define I := V int \ S.

Now, if there is a deletion set D0 with D0 ∩ I 6= ∅, one can swap vertices of D0 ∩ I with

intact vertices of S ∪ V ext to obtain a feasible deletion set D1. The objective value of D1 is

at least as good as that of D0: Swapping vertices of I with vertices of S does not change the

objective value. Meanwhile, swapping vertices of I with vertices of V ext might improve the

objective value since this swapping might disconnect the (b+ 1)-connected component from

the rest of the graph. By this argument, gray nodes {9, 10, 11} are not critical in Figure 4.2.

This implies that we can fix yv = 0 for all v ∈ {9, 10, 11}.

1

2

3

45

6

7 8

9

1011

Figure 4.2: An illustration of variable fixing procedures for the critical node problem.

In the future, we intend to generalize these variable fixing procedures and incorporate

them in our implementations.
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4.4 Computational Experiments

In this section we provide preliminary computational results of solving hop-based instances

that were given on Section 3.5.1 when (k, b) = (3, 5). We use the following implementations

of the master problem.

• BENI, an implementation of the master problem using integer separation.

• BENF, an implementation of the master problem using fractional separation.

• BENR, an implementation of the master problem that solves a restricted problem

initially. In the restricted problem yv = 0 if v is not among the 2b vertices with the

largest betweenness centrality.

• BENTR, an implementation of the master problem that solves two restricted problems

obtained by adding disjunctive trust region constraints where the heuristic solution is

considered as the stability point and r = 2.

Each implementation uses the heuristic and variable fixing procedure given in Section 3.4,

and all experiments were conducted on a Dell Precision Tower 7000 Series (7810) machine

running Windows 10 enterprise, x64, with Intel R© Xeon R© Processor E52630 v4 (10 cores,

2.2GHz, 3.1GHz Turbo, 2133MHz, 25MB, 85W) – that is 20 logical processors – and 32 GB

memory. The code was written in C++ programming language for Gurobi version 9.0.0.

The preliminary results, as reported in Table 4.1, show that implementation BENR

typically performs the best compared to the others. Implementations BENI and BENR fail

to solve the 115-node instance football. Meanwhile, it takes more than 38 minutes for

implementations BENR and BENTR to solve this instance. To reduce the computational time

for this instance, we used a variable fixing method: we iteratively fixed yv = 1 for a v ∈ V

and then solve the LP-relaxation of the thin formulation. If LP optimal was more than a

known upper bound (for example the heuristic solution), then we could safely fix yv = 0.
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By implementing this variable-fixing procedure, we could fix 107 nodes and solve football

in 30.83 seconds. In the future, we intend to study how we can find lower bounds on the

optimal objective value without solving the LP relaxation directly. Another observation from

Table 4.1 is that the direct implementation of the thin formulation (THIN), as discussed

in Chapter III, typically outperforms the current implementations of the Benders master

formulation. However, Benders implementations solve 5 instances faster. Specifically, they

perform much better on the instances jazz and celegansm. We suspect that variable fixing

procedures, stabilization techniques, and other Benders acceleration methods will help our

Benders implementations to converge to the optimal solution quicker.

Graph n m |Ek| obj BENI BENF BENR BENTR THIN
karate 34 78 480 41 0.08 0.04 0.06 0.07 0.04
dolphins 62 159 1,107 662 20.57 21.90 6.61 25.99 0.74
lesmis 77 254 2,500 517 0.19 0.30 0.30 0.44 0.21
LindenStrasse 232 303 3,251 1,810 1.22 0.85 1.01 1.27 0.21
polbooks 105 441 3,510 2,555 16.52 56.86 11.48 102.75 2.56
adjnoun 112 425 5,634 3,719 1.40 3.86 2.32 3.87 0.97
football 115 613 6,247 5,362 [5085,5362] 2307.86 [5312,5362] 2345.10 86.48
netscience 1,589 2,742 13,087 8,390 2.40 146.74 8.21 94.96 1.19
jazz 198 2,742 18,461 16,136 113.83 316.52 155.18 335.74 1081.24
SmallWorld 233 994 25,721 6,964 0.47 0.53 0.71 1.47 5.40
Erdos971 429 1,312 34,086 25,737 54.65 413.56 28.58 923.63 9.93
S.Cerevisae 1,458 1,948 39,091 25,190 8.30 49.60 10.41 15.62 5.68
USAir 332 2,126 46,573 29,486 9.40 71.92 12.80 99.77 26.09
power 4,941 6,594 53,125 50,410 2674.26 [49889,50458] 460.81 248.10 46.13
H.Pylori 706 1,392 62,028 37,626 5.25 31.28 6.04 8.88 8.63
Harvard500 500 2,043 83,993 16,448 1.22 2.25 2.43 4.34 14.54
homer 542 1,619 91,527 45,828 14.15 86.78 22.14 107.62 32.51
celegansm 453 2,025 91,531 44,967 3.17 10.03 8.76 14.09 43.40
email 1,133 5,451 289,259 263,409 [259426,263409] [250171,263409] 2431.18 [251133,263409] 114.46
hep-th 8,361 15,751 376,431 345,320 [338982,345320] [331215,345320] 1635.06 [342228,345320] 171.94
PGPgiant 10,680 24,316 1,145,492 857,035 710.49 [845870,857035] 892.58 3105.35 704.55
cond-mat 16,726 47,594 1,761,969 1,633,299 [1601472,1637445] [1593891,1637445] 6646.09 [1598525,1637445] 2385.66

Table 4.1: Running times, or bounds at termination, when (k, b) = (3, 5).

4.5 Conclusion

In this chapter, we propose a Benders decomposition algorithm and branch-and-cut imple-

mentations of it to solve the (distance-based) critical node problem. We show how to identify

Benders optimality cuts in a combinatorial way rather than solving the dual subproblem as an

LP. We also provide procedures to accelerate the convergence of the Benders decomposition.
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Chapter V

Conclusion and Future Work

In this dissertation we introduce new integer programming formulations, techniques, and

algorithms to solve NP-hard network optimization problems with distance constraints. We

propose simpler formulations for these problems and provide algorithms to solve larger

instances to optimality that could not be solved previously. Moreover, our techniques and

algorithms typically improve the running times. Below, we review our contributions and

provide possible future works.

In Chapter II, we introduce new integer programming formulations, which we refer to as

path-like and cut-like formulations, to find low-diameter clusters. Our cut-like formulation has

only n variables and imposes diameter-at-most-k constraints by using length-k a, b-separator

inequalities. These constraints appear in many other distance-based network problems where

compactness is key to decision-makers. We show that length-k a, b-separator inequalities

perform well on different instances of k-club problem, which is a positive sign for using them

for other distance-based combinatorial problems. Also, we show that these inequalities are

valid even when distances are not hop-based. In an ongoing work with Yajun Lu, Balabhaskar

Balasundaram, and Austin Buchanan, we study fault-tolerant variants of k-clubs, like the

r-robust k-clubs of Veremyev and Boginski (2012) and the h-hereditary k-clubs defined

by Pattillo et al. (2013). Indeed, the latter can be formulated by modifying the length-k

a, b-separator inequalities to hxa + hxb ≤ h + x(S). Based on experience here and in the

past (Buchanan et al., 2015; Validi and Buchanan, 2019), we expect this to be a practical

approach for small values of h.
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In Chapter III, we propose new integer programming formulations, which we call thin

and path-like, to solve a class of critical node problems. In this class of problems, the task

is to delete at most b nodes of a network so as to minimize the number of nodes that are

remained connected via a path of length at most k. Our thin formulation uses only |Ek|+ n

variables and enables us to solve large instances that could not be solved to optimality before.

We compare our formulations with an existing recursive formulation. We show that all three

formulations are equal in strength when the objective coefficients are nonnegative, but the

thin formulation is the strongest generally. In addition, while our proposed formulations

directly work under edge-weighted distances, the recursive model needs to be extended to

a formulation with a pseudopolynomial number of variables and constraints. For the thin

formulation, we devise efficient integer and fractional separation routines that we employ

in a branch-and-cut algorithm. We also propose a preprocessing technique that allow us

to identify nodes that are not critical and thus fix them initially in the IP formulations. A

potential topic for future work is to study the applications of the distance-based critical node

problem in mitigating the spread of infectious diseases; see (Charkhgard et al., 2018) for an

example. Other possible topics are to study other variants of the critical node problem. For

example, the variants that ask to delete at most b nodes of a network to minimize the size of

the largest connected component, or to maximize the distance between two specified nodes.

In Chapter IV, we propose a Benders decomposition algorithm to solve the thin formulation

that models the (distance-based) critical node problem. We show how to find Benders

optimality cuts in a combinatorial manner rather than solving the dual subproblem as an LP.

We also provide methods to accelerate the convergence of the Benders decomposition. Can

we introduce other acceleration techniques? In the future, we intend to study variable fixing

methods, stabilizing techniques, and/or preprocessing procedures to address this question.
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