
EFFICIENT TECHNIQUES FOR STATISTICAL MODELING OF

CALIBRATION AND SPATIO-TEMPORAL SYSTEMS USING

GAUSSIAN PROCESSES

By

BABAK FARMANESH

Bachelor of Science in Industrial Engineering
Sharif University of Technology

Tehran, Iran
2014

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

August, 2018

COPYRIGHT c©

By

BABAK FARMANESH

August, 2018

EFFICIENT TECHNIQUES FOR STATISTICAL MODELING OF

CALIBRATION AND SPATIO-TEMPORAL SYSTEMS USING

GAUSSIAN PROCESSES

Dissertation Approved:

Dr. Arash Pourhabib

Dissertation Advisor

Dr. Balabhaskar Balasundaram

Committee Chair

Dr. Farzad Yousefian

Dr. Ramesh Sharda

iii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation and gratitude toward my advisor,

Dr. Arash Pourhabib, for his continuous support, superb guidance, constant encour-

agement, and patience during my PhD study. Of course, this dissertation would not

have been possible without his excellent supervision.

I would also like to greatly appreciate Dr. Balabhaskar Balasundaram for his

tremendous and priceless help during the past four years. I owe much to him for

his efforts to support my PhD study. Furthermore, I am truly grateful for the time,

considerations, and constructive comments I received from the rest of my committee

members, Dr. Farzad Yousefian and Dr. Ramesh Sharda, over these years.

I am sincerely thankful to the head of the IE&M department, Dr. Sunderesh

Heragu, for all his invaluable support. I also acknowledge Dr. Austin Buchannan,

Dr. Nagaraj Kalyani, Matthias Katzfuss, and Jianhua Huang for their help on various

parts of this dissertation. In addition, a very special thank to Laura Brown for her

flawless administrative assistance during my Ph.D journey.

Furthermore, I am thankful to all my friends, especially Solmaz Bastani, Ronny

Pacheco, Shahrouz Mohagheghian, and Akash Gupta, for their kindness, their sup-

port, the enjoyable memories we made together, and all the good times.

Finally, I would like to wholeheartedly express my love and gratitude toward my

parents and my sister. I am so blessed to have such a wonderful and supportive

family, and dedicate this dissertation to them.

Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University

iv

Name: BABAK FARMANESH

Date of Degree: August, 2018

Title of Study: EFFICIENT TECHNIQUES FOR STATISTICAL MODELING OF
CALIBRATION AND SPATIO-TEMPORAL SYSTEMS USING
GAUSSIAN PROCESSES

Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT

Gaussian processes (GPs) are one of the most widely used tools in statistical modeling
of various engineering systems. In this dissertation, we study three common types of
problems in statistical modeling, i.e., prediction, calibration, and forecasting, using
GPs and other related techniques.

First, we study the problem of prediction using Gaussian Process Regression (GPR)
in large-scale spatial systems that contain exogenous variables. We propose a Sparse
Pseudo-input Local Gaussian Process (SPLGP) that addresses the inefficiencies of
GPR, i.e., computational complexity and covariance heterogeneity, in dealing with
spatial systems in a unifying framework. We propose new theorems that form the
basis of our decomposition policy and develop an optimization procedure to find
the optimal policy. We also impose continuity constraints on the boundaries of the
subdomains to alleviate the problem of discontinuity of the global predictor.

Next, we study the calibration problem for expensive computational models (ECM),
i.e., computational models that cannot be evaluated a large number of times. We
propose a Bayesian Non-isometric Matching Calibration (BNMC) approach that al-
lows calibration of ECM. The proposed model uses GPs to embrace the restrictions of
ECM and makes inferences on the calibration parameters through a Bayesian frame-
work. We also present a geometric interpretation of calibration that enables us to take
advantage of combinatorial optimization techniques to extract necessary information
for constructing prior distributions of our Bayesian framework.

Finally, we study the problem of forecasting in complex spatio-temporal systems with
the primary focus on short-term wind speed forecasting in wind farms. We propose a
similarity-based forecasting model capable of taking any type of spatial and temporal
information into account to improve spatio-temporal forecasting, in particular wind
speed forecasting. The proposed model is inspired by the weighted averaging tech-
nique used in a class of regression models known as non-parametric linear smoothers
which includes GPR. We also equip our model with a variable selection and a pa-
rameter training procedure, so that it can be easily applied to any spatio-temporal
system.

We present a set of experimental results for each problem to demonstrate the efficiency
of our proposed models comparing to other existing models.

v

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 An introduction to Gaussian stochastic processes and related statistical

models . 1

1.1.1 Gaussian process regression 4

1.1.2 GPR and other non-parametric linear smoothers 6

1.2 Research projects and objectives . 9

1.2.1 Approximating GPR for spatial systems 9

1.2.2 Calibration of expensive computational models using GPs, Bayesian

statistics, and combinatorial optimization 10

1.2.3 An application of non-parametric linear smoothers in spatio-

temporal forecasting with a focus on wind-speed forecasting . 11

1.3 Organization of the dissertation . 12

2 SPARSE PSEUDO-INPUT LOCAL GAUSSIAN PROCESS RE-

GRESSION FOR LARGE NON-STATIONARY SPATIAL DATASETS

WITH EXOGENOUS VARIABLES 13

2.1 Introduction . 13

2.2 A few GPR approximation methods 16

2.3 Sparse pseudo-input local Guassian process 17

2.3.1 Mean and variance prediction 18

2.3.2 Subdomain selection . 22

2.3.3 Creating boundaries, control points, and boundary functions . 28

vi

2.3.4 Hyper-parameter learning . 30

2.4 Experimental results . 31

2.4.1 Datasets and evaluation criteria 31

2.4.2 Computation time and prediction accuracy 33

2.4.3 Sensitivity analysis . 38

2.5 Summary . 45

3 A BAYESIAN FRAMEWORK FOR LOCAL CALIBRATION OF

EXPENSIVE COMPUTATIONAL MODELS WITH A NON-ISOMETRIC

CURVE TO SURFACE MATCHING INTERPRETATION 47

3.1 Introduction . 47

3.2 General Setting: A Bayesian model for the calibration of expensive

computational models . 51

3.3 Calibration as a non-isometric curve to surface matching problem: A

special case . 55

3.3.1 A graph-theoretic approach for finding anchor points 57

3.4 Generalization of the non-isometric curve to surface matching problem

to higher dimensions . 60

3.4.1 Integer programming approach to GMST problem 62

3.5 Prior distributions . 66

3.6 Posterior distribution . 68

3.7 Prediction of the calibration and the response variables 69

3.8 Experimental results . 71

3.8.1 Synthetic problems . 72

3.8.2 Real problems . 75

3.9 Summary . 77

4 A SIMILARITY-BASED FORCASTING MODEL FOR SPATIO-

vii

TEMPORAL SYSTEMS WITH A FOCUS ON SHORT-TERM WIND

SPEED FORECASTING IN WIND FARMS 79

4.1 Introduction . 79

4.2 Why similarity-based models suit analysis of spatio-temporal systems

better than the kernel-based models 82

4.3 U.S. pacific northwest wind farm dataset 83

4.4 Similarity-based model for forecasting 83

4.4.1 Training the magnitude parameters 88

4.4.2 Variable selection . 90

4.5 Experimental results . 93

4.5.1 Notations . 93

4.5.2 Choices of m and n . 95

4.5.3 Forward variable selection . 96

4.5.4 Performance . 97

4.6 Summary . 102

5 CONCLUSION 103

5.1 Future research . 106

BIBLIOGRAPHY 108

A Proof of Theorems 122

A.1 Proof of Theorem 2.1 . 122

A.2 Proof of Theorem 2.2 . 123

A.3 Proof of Theorem 2.3 . 126

B A simulation study on the relation between expected error (2.22) and

EΩs(K2(x,x′)) 129

viii

C Solving optimization problem (2.29) 132

ix

LIST OF TABLES

Table Page

2.1 Effect of q on efficiency of SPLGP. S = 30 and κ = 4 across all the

datasets . 45

3.1 Properties of different local calibration models 71

3.2 RMSE of different models for the first synthetic problem 73

3.3 RMSE of different models for the second synthetic problem 74

3.4 RMSE of different models for the PVA problem 75

3.5 RMSE of different models for the spot welding problem 76

4.1 Sum of squares analysis. 91

4.2 Accuracy of the different models for last seven months of the dataset 98

4.3 Performance of the Similarity-based forecasting model without the

stepwise variable selection . 102

x

LIST OF FIGURES

Figure Page

1.1 A few random draws from different GPs withM(x) = 0 and covariance

function (1.3) with different values of γ 4

2.1 Local functions created by cutting orthogonally to directions [1, 0],

[0.43, 0.9] (optimal solution of (2.28)), and [0, 1] on a synthetic dataset 28

2.2 MSE versus computation time. For DDM,Q = 3 and S ∈ {100, 200, 300, 400, 500};

for PIC, S = 500 and m ∈ {100, 200, 300, 400, 500, 600}; for BCM,

S ∈ {200, 300, 400, 500, 600, 700}; for LPR, (S,m,R) ∈ {5, 10, 15, 20}⊗

{100, 200, 300} ⊗ {500, 1000, 1500}; and for BGP, S = 40 and m ∈

{500, 600, 700, 800, 900} . 37

2.3 NLPD versus computation time. For DDM,Q = 3 and S ∈ {100, 200, 300, 400, 500};

for PIC, S = 500 and m ∈ {100, 200, 300, 400, 500, 600}; for BCM,

S ∈ {200, 300, 400, 500, 600, 700}; for LPR, (S,m,R) ∈ {5, 10, 15, 20}⊗

{100, 200, 300} ⊗ {500, 1000, 1500}; and for BGP, S = 40 and m ∈

{500, 600, 700, 800, 900} . 38

2.4 MSE, NLPD, and computation time versus S. Each curve associates

with a particular value of κ . 41

2.5 MSE, NLPD, and computation time versus S. Each curve associates

with a particular value of κ . 42

2.6 Effects of cutting directions on MSE for the four datasets 44

xi

3.1 Non-isometric curve to surface matching perspective of local calibra-

tion. The computational model responses correspond to a two-dimensional

surface. The observed physical curve is the projection of the true phys-

ical curve that lies on this surface. 50

3.2 Non-isometric curve to surface matching perspective of local calibration

with incomplete data; compare with Figure 3.1. In practice, we observe

a scatter of data points sampled from the complete curve and surface,

which is depicted in this plot. 56

3.3 Illustration of the calibration digraph for the case where m = 4 and

n = 10. The vertices represent data points from the computational

model and the clusters C1 through Cm correspond to physical system

data points p1 through pm. Vertices denoted by dark circles with a

white border represent the anchor points, and the solid arrows identify

the edges in the shortest path found. 59

3.4 (a) A calibration graph where each black circle represents a vertex and

each two parallel lines represent edges between vertices of two clusters.

(b) A generalized spanning tree in the calibration graph 62

3.5 95% confidence interval predictions for calibration variables and re-

sponses of the test dataset of the first synthetic problem 73

3.6 95% confidence interval predictions for calibration variables and re-

sponses of the test dataset of the second synthetic problem 75

3.7 95% confidence interval predictions for the test responses of the PVA

problem . 76

3.8 95% confidence interval predictions for the test responses of the spot

welding problem . 77

xii

4.1 Illustration of searching and weighting similar historical observation

using two simple scenarios based on a univariate time series data with

the following settings: q = 2, m = 80, t = 100, and target z0
102.

Thickness of the circles indicates the weights assigned to each observation 87

4.2 Average wind speed in Vanscycle during each hour of day over the nine

months of measurement . 94

4.3 RMSE for different values of n during the last three months of the

dataset using constant pattern vector x0
i = [Lvi , L

k
i , L

g
i]
T . Each curve

corresponds to a fixed m. 96

4.4 Magnitude parameter estimates from May to November 2003 100

4.5 Monthly mean of the magnitude parameter estimates 101

B.1 Heat map of the approximation of expected error function (2.22) on

domain (B.1) and sampling distribution (B.2) for varying values of γ

and b and a fixed value of ms . 131

xiii

CHAPTER 1

INTRODUCTION

The extensive availability of data and computational power due to recent advance-

ments in computer technologies has offered opportunities for researchers to develop

statistical models to better understand the behavior of complex real world processes.

In this study, we are interested in statistical modeling of various engineering sys-

tems by using Gaussian Processes (GPs) and their variations. The current chapter

first introduces GPs and some of the related methods of interest, then overviews the

research topics included in this dissertation.

1.1 An introduction to Gaussian stochastic processes and related

statistical models

Gaussian Stochastic Processes or Gaussian Processes (GPs) in short provide a fully

probabilistic foundation based on the concept of normal (Gaussian) distribution for

various problems in statistical learning [39]. Specifically, many applications of GPs

can be found in the domain of supervised learning, where one seeks to find the re-

lationship between inputs and outputs of a system of interest. These applications

include regression, classification [88], time series analysis [90], and analysis of com-

puter experiment outputs [92]. Informally, GPs generalize the concept of multivariate

normal distribution to functions; therefore, any statistical learning problem that can

be reduced to a problem of recovering an underlying function governing the system

under study can be inferred by GPs.

We can trace back the early use of GPs to 1940’s for time series analysis [50].

1

Later on, GPs were introduced to geostatistics, statistics, and machine learning com-

munities [57, 67, 114]. Although, the emergence of GPs is credited to statisticians,

they are also a well known concept in the field of mathematics. In fact, GPs can

be studied from the mathematical point of view through the lens of functional anal-

ysis [111]. Therefore, most of the models developed based on GPs can be derived

from purely mathematical [75] as well as statistical perspectives [88]. GPs are also

closely connected to another well known class of machine learning methods known as

kernel machines, such as Support Vector Machines [15], and Neural Networks [65].

In some sense, GP can be thought of as an interdisciplinary concept that brings inde-

pendent studies of learning theory in statistics, mathematics, and machine learning

communities together.

We formally introduce GPs as follows: given a probability space (Ω,S,P), and

an index set T, where Ω is the sample space, S is a sigma-algebra, and P is a

probability measure, a Gaussian process (GP) is a stochastic process where for any

T′ = {t1, . . . , tN} as a finite subset of T, random vector [f1, . . . , fN]T follows a mul-

tivariate normal distribution [88], where fi is a realization of a measurable function

F : Ω → R for a given ti ∈ T′. Note that index set T can simply be time [112]

in processes involving time evolution, or can be a subset of Rp which is the case in

most of the statistical learning applications [39]. In the latter case, based on the

GP definition, for a given set {x1,x2, . . . ,xN} ⊂ Rp, random vector [f1, f2, . . . , fN]T

follows a multivariate normal distribution, where fi = F(xi) for any i ∈ [N]. In this

dissertation we denote by [n] the set of positive integers smaller than or equal to n,

i.e., [n] = {1, . . . , n}.

Analogous to multivariate normal distribution, a GP can be fully specified by

its mean and covariance function. In other words, when function F follows a GP

distribution with mean function M(·) and covariance function K(·, ·),

F ∼ GP
(
M(·),K(·, ·)

)
, (1.1)

2

then the mean vector and the covariance matrix of random vector f , i.e., µ = E(f)

and K = E
(
(f − µ)(f − µ)T

)
, where E(·) denotes the expectation operator, can

be specified by functions M(·) and K(·, ·). This means that µi = E(fi) = M(xi),

µj = E(fj) =M(xj), and kij = E ((fi − µi)(fj − µj)) = K(xi,xj).

We note that covariance function K(·, ·) is in fact a bi-argumental and real-valued

function which is denoted as a kernel function in mathematics. However, for K(·, ·)

to be a valid covariance function, it must be a symmetric and positive semidefinite

kernel, i.e., K(x,x′) = K(x′,x) and∫
K(x,x′)F(x)F(x′)ν(dx)ν(dx′) > 0, (1.2)

for any F ∈ L2(Rp, ν), where ν is a measure. Detailed explanation of the kernel

functions and their properties can be found in [111].

The most widely used symmetric positive semidefinite kernel function as the choice

of covariance function is the squared exponential kernel. This kernel in its simplest

form, known as isotropic squared exponential kernel, can be written as

K(x,x′) = exp
(
−γ||x− x′||22

)
, (1.3)

where || · ||2 is the Euclidean norm operator, and γ is the length-scale parameter

of K(·, ·) that controls the smoothness of the GP. Figure 1.1 shows a few random

draws from different GPs with mean function zero and covariance function (1.3) with

different values of the length-scale parameter.

3

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

x

F
(x

)

(a) γ = 0.01

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

F
(x

)

(b) γ = 0.1

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

x

F
(x

)

(c) γ = 1

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

x

F
(x

)

(d) γ = 10

Figure 1.1: A few random draws from different GPs with M(x) = 0 and covariance

function (1.3) with different values of γ

1.1.1 Gaussian process regression

In supervised learning, regression refers to finding a functional relationship between

the sets of inputs and outputs collected from a system, where the outputs are real-

valued continuous variables. Two main advantages make GPs popular in the domain

of regression. First, the non-parametric nature of GPs allows the handling of complex

and nonlinear functional structures. Second, GPs explain the relationship between

4

the sets of inputs and outputs probabilistically. The latter provides us with full

predictive distributions as apposed to most of the regression models that only obtain

point and confidence interval predictions.

We set up the regression problem by letting D = {(xi, yi) | i ∈ [N],xi ∈ Rp, yi ∈

R} be a training dataset containing N observations, where each observation consists of

a p-dimensional input vector xi and a corresponding output yi. The main assumption

in any regression modeling is the existence of an underlying function F that maps

each xi to yi, and the goal is to infer f∗ = F(x∗) for a given x∗ ∈ Rp. We call the

problem of finding the predictive distribution, f∗|y, i.e., the distribution of f∗ given

y = [y1, y2, . . . , yN]T , by assuming a GP on the regresion function, F , as the Gaussian

Process Regression (GPR).

In most practical settings, the training dataset consists of noise-contaminated

outputs. Assuming the noise is normally distributed with zero mean and the variance

σ2, the GPR model is written as

yi = F(xi) + εi i ∈ [N], (1.4)

where F ∼ GP
(
M(·),K(·, ·)

)
and each εi ∼ N (0, σ2).

There are equivalent ways to present the inference based on the GPR, for example

through regularized optimization [75], optimal spatial prediction [19], or an extension

of Bayesian linear regression. Here, we adopt a Bayesian treatment from [88], where

we specify a prior distribution for f = [F(x1), . . . ,F(xN)]T and then calculate the

predictive distribution at x∗. Assuming the prior distribution as f ∼ N (0,KXX)

implies y|f ∼ N (f , σ2I), where KXX is the N × N covariance matrix of pairwise

elements in X = {x1, . . . ,xN} and I is a N×N identity matrix. To find the marginal

distribution of y we integrate out f , i.e.,

p(y) =

∫
Ω

p(y|f)p(f)df , (1.5)

which results in another normal distribution, namely y ∼ N (0,KXX + σ2I). There-

5

fore, based on the joint normality assumption,

[y, f∗]
T ∼ N

0,

KXX + σ2I kXx∗

kx∗X kx∗x∗


 , (1.6)

where kXx∗ is the N × 1 vector of covariances between the input set X and x∗, and

kx∗x∗ is the variance at x∗. Hence, the predictive distribution of f∗ at x∗ is obtained

as the multivariate normal distribution,

f∗|y ∼ N
(
kx∗X(KXX + σ2I)−1y, kx∗x∗ − kx∗X(KXX + σ2I)−1kXx∗

)
. (1.7)

We note that prior to use the predictive distribution (1.7) for prediction, we should

train the hyper-parameters of the GPR, which are variance of the error and the

parameters of covariance function K. Maximizing the logarithm of the marginal

likelihood of the training data, p(y), is the most popular approach for learning the

hyper-parameters, that is

max
θ
−1

2
log |KXX + σ2I| − 1

2
yT (KXX + σ2I)−1y − N

2
log 2π, (1.8)

where θ denotes as the set of the hyper-parameters in the GPR model. The optimiza-

tion (1.8) can be done iteratively by numerical unconstrained optimization methods

such as the methods based on gradient descent [5].

1.1.2 GPR and other non-parametric linear smoothers

GPR can also be viewed as a member of a class of regression models known as non-

parametric linear smoothers [39]. This class contains the set of all flexible regression

models that let the training data determine the shape of the regression function, F ,

but restrict the point predictor for a given x∗, i.e., f̂∗, to satisfy

f̂∗ =
∑
i∈[N]

wi(x∗)yi = wT (x∗)y, (1.9)

that is f̂∗ should be a linear combination of outputs in the training dataset, where

wi(x∗) is a weight assigned to output yi given x∗ and X. Considering the mean of

6

predictive distribution (1.7) as the point predictor of GPR, i.e., f̂∗ = kx∗X(KXX +

σ2I)−1y, places the GPR model in the class of non-parametric linear smoothers with

the weight vector w(x∗) = kx∗X(KXX + σ2I)−1.

The simplest regression model in this class is k-Nearest-Neighbors Regression [102].

In this model, f̂∗ is inferred by taking the average of k nearest neighbors of x∗. In

other words, the weight wi(x∗) is defined as

wi(x∗) =


1
k

if xi is among the k nearest neighbors of x∗

0 otherwise.

(1.10)

Nadaraya-Watson Regression (NWR) [64, 110] is another non-parametric linear

smoother that uses a symmetric positive semidefinite kernel K to weight the outputs

by wi(x∗) = K(x∗,xi)∑
i∈[N]K(x∗,xi)

. This weighting scheme results in the NWR point predictor,

f̂∗ =

∑N
1=1K(x∗,xi)yi∑N
1=1K(x∗,xi)

= kx∗X(kx∗XJN)−1y, (1.11)

where JN is a vector of ones with length N . NWR is closely related to (or actually a

simplified version of) GPR. Superficially, we can see this relation where the two point

predictors differ only by their middle terms, i.e., the inverted matrix (KXX + σI)−1

in (1.7) and the fraction (kx∗XJN)−1 in (1.11); however, authors of [47] show that the

relation between GPR and NWR is more profound, and in fact, NWR converges to

GPR if we continue applying NWR on the residuals of each step, i.e.,

kx∗X(kx∗XJN)−1y + kx∗X(kx∗XJN)−1e1 + . . .+ kx∗X(kx∗XJN)−1eN−1 =

kx∗X(kx∗XJN)−1(y + e1 + . . .+ eN−1)→ kx∗X(KXX + σ2I)−1y as N →∞, (1.12)

where ej is the vector of residuals from the jth step.

Relaxing the restriction of NWR in using symmetric positive semidefinite kernels

leads to another group of non-parametric linear smoothers known as similarity-based

regression models. Similarity-based regression models have been developed indepen-

dently and fully axiomatized in the field of economics [29]. These models use a broader

7

class of bi-argumental and real-valued functions, so called similarity functions, for

weighting the outputs. Although, NWR and similarity-based regression look identi-

cal if one uses a symmetric positive semidefinite kernel for both, the system of axioms

discussed in [29] conceptually distinguishes these two models.

More sophisticated versions of NWR can be found in the literature of linear

smoother such as local linear and local polynomial NWR regression [20]. Also the fam-

ily of spline-based models such as Regression splines, Natural splines, and Smoothing

splines fit into the class of non-parametric linear smoothers [39] as well. However,

spline-based models have been originally designed for univariate regression problems,

and unlike kernel-based regression models cannot be easily extended to multivariate

case due to theoretical and computational barriers. Therefore, in this study, we do

not focus on this family.

More complex non-parametric linear smoothers use the method of regulariza-

tion [94] to obtain F . In the theory of statistical learning, regularization refers to the

method of training the parameters of a statistical model by optimizing a loss function

penalized by the norm of some parameters, which is known as regularizer. In other

words, considering θ as the set of the parameters of a model of interest, regularization

is defined as

arg min
θ
L(θ,y) + λR(θ), (1.13)

where L(θ,y) is a loss function, and λR(θ) is the regularizer or the penalty term

with R(θ) as its norm function, and λ as the magnitude of the penalty.

Kernel Ridge Regression (KRR) and Support Vector Regression (SVR) [94] are

two regression models in the class of linear smoothers that can be derived by (1.13).

The regularization problem associated with KRR and SVR in its primal variables

formulation is defined as

arg min
F∈H

∑
i∈[N]

(yi −F(xi))
2 + λ||F||2H, (1.14)

8

where H is a mathematical space of functions known as Reproducing Kernel Hilbert

Space (RKHS) [111] with an associated kernel K(·, ·), and || · ||H is the norm operator

on H. With the assumption that F ∈ H, the minimizer of optimization (1.14)

can be found by the well known representer theorem [93], which is one of the most

important theorems in statistical learning. It turns out that the optimal regression

function found by (1.14) results in exactly the same point predictor as that of GPR,

i.e., f̂∗ = kx∗X(KXX + σ2I)−1y. In fact, this is an example of how a GP model can

be derived from a completely different point of view as mentioned in Section 1.1.

However, we note that what makes GPR a superior model over SVR and KRR is the

ability of GPR to attain the full predictive distribution simply by its construction,

which is not the case in the other two models.

1.2 Research projects and objectives

This dissertation includes three research projects on statistical modeling of three

engineering systems. The common feature between all these three research projects

is the presence of GPs and their related techniques. The first research project directly

focuses on GPR and studies a set of treatments that enables GPR to handle a special

class of systems known as spatial systems. The second research project uses GPs to

address the problem of calibration of computational models. Finally, the last research

project investigates the potential of non-parametric linear smoothers in statistical

modeling of spatio-temporal systems. The rest of this section is dedicated to an

overview of each of these research projects.

1.2.1 Approximating GPR for spatial systems

GPR is a powerful tool in the analysis of spatial systems, i.e., systems whose data is

collected across space [2, 19]. However, GPR does not scale efficiently to large datasets

because its implementation entails inverting matrices of size N with computational

9

complexity of order O(N3). In addition, many spatial systems have highly non-

stationary covariance structures, i.e., the covariance structure varies in different parts

of the input domain, which cannot be modeled effectively with a single covariance

function. This problem is exacerbated when the spatial system contains additional

explanatory variables known as exogenous variables. Hence, despite the strengths of

GPR mentioned in Section 1.1, this regression model becomes inefficient in dealing

with most spatial systems.

In the first research topic of this dissertation, we propose an approximating model

that effectively captures the non-stationarity, and at the same time, speeds up the

GPR for large non-stationary spatial datasets with exogenous variables . The new

model is based on a decomposition method that partitions the domain of data and

builds a local model in each partition. Our study includes a solid theoretical frame-

work that instructs how to efficiently decompose a GPR model to smaller sub-models,

train the sub-models, and handle boundary conditions. We present a comprehensive

experimental study by applying our model to various real world datasets to indi-

cate its efficiency in handling massive spatial datasets comparing to other competing

models.

1.2.2 Calibration of expensive computational models using GPs, Bayesian

statistics, and combinatorial optimization

With the immense amount of computational power available in the twenty first cen-

tury, analysis of complex physical systems through computational models has become

an appealing approach for practitioners due to their computational and cost efficiency.

The computational models are usually built upon mathematical models involving var-

ious variables that may or may not be controllable/observable in the physical systems.

Specifying those uncontrollable/unobservable variables, which are known as calibra-

tion variables, is crucial for building computational models capable of resembling their

10

associated physical systems. This problem is referred to as the calibration problem in

statistical learning. Most of the statistical/mathematical approaches in calibration

involve numerical optimization techniques requiring the computational models to be

executed a very large number of times. Therefore, in the case of having a limited

budget for evaluating the computational models, i.e., expensive computational model

assumption, these calibration approaches fail to perform efficiently.

In the second research topic of this dissertation, we address the calibration problem

under the assumption of having an expensive computational model. The proposed

model embraces this practical restriction by taking advantage of a unique combination

of combinatorial optimization, GPs, and Bayesian statistics. Our study discusses how

to model the calibration problem as a GP as well as a combinatorial optimization

problem, and how to bridge them by Bayesian statistics to make inferences on the

calibration variables. We include a set of numerical experiments on a few real and

synthetic datasets to demonstrate the efficiency of the proposed model comparing to

the other existing models under the assumption of expensive computational models.

1.2.3 An application of non-parametric linear smoothers in spatio-temporal

forecasting with a focus on wind-speed forecasting

Spatio-temporal systems refer to those systems whose data is collected across space

and time, such as weather and climate systems. Building statistical models for these

systems capable of making prediction over space as well as forecasting over time has

received a considerable attention in the last two decades in the literature of statistical

learning [18, 19, 101].

In the third research topic of this dissertation, we develop a forecasting model

for inference of complex spatio-temporal systems through the class of non-parametric

linear smoothers. The proposed model specifically adapts the idea of similarity-based

regression model introduced in Section 1.1.2 to the domain of forecasting to build

11

a flexible and fast, but accurate forecasting model that takes into account any type

spatial and temporal information.

Our primary spatio-temporal systems of interest are wind farms, which are used

to generate electricity out of wind energy. In particular, we are interested in short-

term wind speed forecasting that plays a critical role in making the wind energy a

reliable source of energy [30, 40]. However, we note that our methodology is general

and can be efficiently applied to any other spatio-temporal system. We conduct an

experimental study on a historical dataset of a wind farm to compare the ability of

the proposed model to other competing models.

1.3 Organization of the dissertation

Chapters 2, 3,and 4, are dedicated to the three research topic explained in Section 1.2,

respectively. Each chapter consists of a separate introduction followed by a methodol-

ogy, experimental results, and a summary section. Each introduction section includes

a literature review, stating the research gap, and an overview of the proposed method-

ology. The methodology sections contain the statements of the problems as well as all

the theoretical arguments and computational analysis. The methodology sections are

supported by the results in the experimental results sections. Finally, each research

topic is summarized in the closing section.

The final chapter of this dissertation, Chapter 5, concludes the dissertation by

summarizing the major contributions and presenting some interesting future research

directions.

12

CHAPTER 2

SPARSE PSEUDO-INPUT LOCAL GAUSSIAN PROCESS

REGRESSION FOR LARGE NON-STATIONARY SPATIAL

DATASETS WITH EXOGENOUS VARIABLES

2.1 Introduction

Building flexible, accurate, and fast predictive models is of paramount importance in

spatial systems that include environmental factors such as temperature or irrigation as

dependent variables [26, 118]. We call these environmental factors exogenous variables

to distinguish them from simple spatial information such as latitude, longitude, and

altitude.

The challenge in building predictive models for such systems arise because the

covariance structure changes for different locations in the space, i.e., the covariance is

non-stationary, primarily when the behavior of the response variable strongly depends

on the underlying geology [49]. This problem is exacerbated when the spatial data

contains exogenous variables. It is also challenging to manage the large number of

observations in a computationally efficient manner.

Theoretically, GPR can benefit from very large datasets since it is a non-parametric

model whose flexibility and performance generally increase by having more data

points [39]. However, the computational complexity of GPR is dominated by the

inversion of covariance matrices which is of O(N3), where N is the number of data

points. Hence, approximation techniques are generally employed to reduce the com-

putational cost and burden (see [115, 98, 99, 86, 83]).

One idea that improves GPR to tackle inhomogeneous covariance structures for

13

large datasets is through the class of local GPR methods that assume distinct co-

variance functions for each region of the domain of data. Local GPR methods use

various partitioning policies that decompose the domain into smaller subdomains and

apply local GPR in each subdomain [35, 70, 33]. Therefore, local GPR methods re-

duce the total computational complexity to O(Nn2), where n is the number of local

data points. This idea, however, presents two related problems: devising an efficient

partitioning policy, and ensuring continuity in prediction on the boundaries of the

subdomains.

The Domain Decomposition Method (DDM) [70], for example, uses uniform mesh,

which partitions the domain of the input data into rectangles, and then addresses the

discontinuity of GPR on the boundaries by defining a few control points and imposing

equality of neighboring local predictors at these points. While the superiority of DDM

over similar methods such as weighted average techniques [107, 87, 33, 104] emerged

as a result of its ability to effectively handle boundary conditions, it cannot handle

spatial datasets with exogenous variables, i.e., higher than two-dimensional input

domains. This limitation arises because the number of the boundaries required for

DDM’s implementation in higher dimensions reduces the efficiency of the method.

Motivated by these challenges, this study proposes a new method, Sparse Pseudo-

input Local Gaussian Process (SPLGP), which preserves the continuity of GPR in

higher dimensional spaces after partitioning the domain of data into subdomains.

SPLGP employs parallel hyperplanes to partition domains, thus minimizing the num-

ber of boundaries and simplifying the boundary conditions. This allows us to impose

the continuity constraints on boundaries of subdomains in higher dimensional spaces.

Our partitioning policy comes at the price of large-size subdomains, which makes

the application of the full GPR impractical in each subdomain. We overcome this

limitation by using covariance approximation methods for each region. We develop

an optimization algorithm that finds the optimal hyperplanes that result in lower

14

errors for the covariance approximations in each region. We provide the theoreti-

cal justification based on the analysis of covariance structure for the use of optimal

parallel hyperplanes to create the subdomains. Therefore, our proposed model seam-

lessly integrates a partitioning policy into local approximation to improve prediction

accuracy.

The computational complexity of SPLGP is in the order of O(Nm2 + S(∆3 +

Q3) + n3), where m is the average number of local pseudo-inputs in each subdomain,

Q is the average number of control points on each boundary, ∆ is the average number

of neighboring data points of each boundary, and n is the size of a small subset

of the training dataset. However, for most practical applications, the complexity

is dominated by Nm2 (similar to the most efficient existing methods) in moderate

dimensional spaces, since n and ∆ are less than a few hundreds. Moreover, although

SPLGP is motivated and developed to build predictive models for spatial data with

exogenous variables, the methodology is general and can be efficiently applied to any

large dataset with a moderate number of input variables. Our numerical studies

demonstrate that SPLGP outperforms, or performs as well as, the competing models

in terms of computation time or accuracy on spatial data with or without exogenous

variables and moderate dimensional non-spatial data.

The remainder of this chapter is organized as follows. Section 2.2 briefly in-

troduces few approximation methods that are relevant to SPLGP’s implementation.

Section 2.3 explains SPLGP including domain partitioning, training local models

subject to boundary conditions, and choosing directions of partitioning. Section 2.4

compares the proposed model to commonly used models, and Section 2.5 summarizes

the chapter.

15

2.2 A few GPR approximation methods

Low-rank covariance approximation methods [115, 86] reduce the computational com-

plexity of GPR by approximating the original covariance matrix by the Nyström

method,

KXX ≈ K̃XX = KXX̃K−1

X̃X̃
KX̃X, (2.1)

where X̃ is either a subset of X or a set of unobserved pseudo-inputs, which are a new

set of parameters used to approximate the original covariance matrix of GPR. This

approximation reduces the computational complxity of GPR to the order of O(Nm2),

where m is the size of X̃ and m� N .

In particular, Sparse Pseudo-input Gaussian Process (SPGP) [100] assumes that

observations y are conditionally independent, given the pseudo-outputs f̃ = [f̃1, . . . , f̃m]T

defined on pseudo-input set X̃ = {x̃1, . . . , x̃m}. This implies the joint Gaussian like-

lihood,

[y, f∗]
T ∼ N

0,

K̃XX + diag(KXX − K̃XX) + σ2I k̃Xx∗

k̃x∗X kx∗x∗


 , (2.2)

and the predictive mean and variance,

µ̂(f∗|y) = k̃x∗X(K̃XX + diag(KXX − K̃XX) + σ2I)−1y, (2.3)

σ̂2(f∗|y) = kx∗x∗ − (K̃XX + diag(KXX − K̃XX) + σ2I)−1k̃Xx∗ , (2.4)

where k̃Xx∗ is the low-rank covariance vector between X and the test data point x∗

calculated by (2.1).

Although low-rank approximation methods reduce the computational complexity

of GPR, they do not address the heterogeneity in the covariance structure. One

alternative is to use local GPR methods, which partition the domain of data into

smaller pieces, or subdomains, and train local predictors independently. Training

16

multiple local models instead of one global model enables local GPR methods to

use different covariance functions for each subdomain. Moreover, dealing with local

covariance matrices reduces the computational complexity of GPR to O(Nn2), where

n is the number of data points in each subdomain. Commonly used methods in this

class include Bayesian committee machine [104], local probabilistic regression [107],

mixture of Gaussian process experts [87], the treed Gaussian process model [33], and

Domain Decomposition Method (DDM) [70].

We are interested in DDM since it effectively addresses the discontinuity in pre-

diction on the boundaries of subdomains. DDM decomposes the domain of data into

S disjoint subdomains Ωs for all s ∈ [S], and uses a set of control points on its

boundaries to impose connectivity constraints. Denoting Xs as the set of training

data points belonging to Ωs, DDM obtains the local mean predictor,

µ̂s(f∗|y) = kx∗Xs(σ
2
sI + KXsXs)

−1ys + cs(x∗), (2.5)

where the first term is the standard local GPR mean predictor and the second term,

cs(x∗), is a correction term that appears because of the connectivity constraints, and

approaches to zero as the test data points move away from the boundaries. However,

DDM is applied only to two-dimensional datasets, because the boundary conditions

become more complex and calculating correction terms cs(x∗) becomes more difficult

for higher dimension problems.

2.3 Sparse pseudo-input local Guassian process

This section describes our proposed model, Sparse Pseudo-input Local Gaussian Pro-

cess (SPLGP), where we partition the domain of data into smaller subdomains with

simple boundary structures, train local predictors that utilize a low-rank covariance

matrix in each subdomain, and connect neighboring local predictors on their joint

boundaries to obtain a continuous global predictor. To partition the input domain,

17

we use parallel hyperplanes, i.e., (p− 1)-dimensional linear spaces embedded in a p-

dimensional space (see Section 2.3.3 for the details). This partitioning policy has two

main advantages: it minimizes the number of boundaries, because for S subdomains,

we only need S−1 parallel hyperplanes regardless of the dimension of the input space,

and it creates simple boundary conditions (see Section 2.3.1), because each boundary

is shared by exactly two subdomains. Hence, we only need to attach two local pre-

dictors on each boundary, however, the drawback is that the partitioning policy can

result in very large subdomains, where a full GPR is inefficient. We overcome this

problem by using covariance approximation techniques that utilize pseudo-inputs.

Among an infinite possible ways to partition a domain by parallel hyperplanes,

we seek those that result in more accurate local predictors, i.e., the covariance ap-

proximation in each subdomain has the smallest error. We present two theorems that

together determine the optimal policy for creating subdomains. We begin by present-

ing the local mean and variance calculations, assuming the subdomains have already

been determined. Then we discuss justifications for the proposed parallel hyperplanes

for creating subdomains. Finally, we explain practical aspects of SPLGP’s implemen-

tation such as constructing hyperplanes, hyper-parameter learning, and selection of

control points in Sections 2.3.3 and 2.3.4.

2.3.1 Mean and variance prediction

Let Ω ∈ Rp denote the input domain, i.e., x ∈ Ω. We partition Ω into S subdomains

Ωs for s ∈ [S] such that
⋃S
s=1 Ωs = Ω, and Ωs ∩ Ωs′ = ∅ for s 6= s′. We also denote

Xs = {xi ∈ X | xi ∈ Ωs} and ys as the vector of observations corresponding to Xs.

The partitioning scheme explained in Sections 2.3.2 and 2.3.3 can lead to subdomains

containing a large number of training data points, which makes the application of

a full GPR inefficient. Therefore, for each Ωs, we use ms local pseudo-inputs X̃s =

18

{x̃1, . . . , x̃ms} ∈ Ωs to form the local and low-rank covariance approximation,

K̃s
XsXs

= KXsX̃s
K−1

X̃sX̃s
KX̃sXs

. (2.6)

It is easy to check that among all the linear predictors µ(f∗|x∗) = u(x∗)
Ty, where

u(x∗) ∈ Rn and [y, f∗]
T follows distribution (1.6), the GPR mean predictor minimizes

the expected squared error, E
(
(µ(f∗|x∗)−f∗)2

)
. We extend this idea to find the local

and low-rank predictor for each subdomain by assuming that [ys, f∗]
T follows the

local version of SPGP’s joint likelihood distribution (2.2). As such, we solve

min
us(x∗)

E
(
(us(x∗)

Tys − f∗)2
)

s.t. [ys, f∗]
T ∼ N

0,

K̃s
XsXs

+ diag(KXsXs − K̃s
XsXs

) + σ2
sIs k̃sXsx∗

k̃sXsx∗ kx∗x∗


 ,

(2.7)

where us(x∗) is the local version of u(x∗), k̃sXsx∗ is the covariance vector between

the test data point x∗ ∈ Ωs and Xs using low-rank approximation formula (2.6).

Expanding the objective function with respect to the constraint in (2.7) and removing

kx∗x∗ , which does not depend on us(x∗), results in the unconstrained optimization

problem for each Ωs,

min
us(x∗)

us(x∗)
T (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)us(x∗)− 2us(x∗)
T k̃sXsx∗ .(2.8)

Note that setting the derivative of the objective function to zero gives

uopt
s (x∗) = (K̃XsXs + diag(KXsXs − K̃XsXs) + σ2I)−1k̃Xsx∗ ,

which is the SPGP’s mean predictor for subdomain Ωs. Next, we modify the opti-

mization problem to alleviate the problem of discontinuity in the predictions on the

boundaries.

To impose continuity on the boundaries, we use a small number of control points

on the boundaries of each subdomain [69]. Let Bs be the set of all the control points

19

located on the boundaries of Ωs. We intend to force local predictor us(x∗)
Tys to be

equal to the boundary values at the control point locations in Bs,

us(bi)
Tys = R(bi) ∀bi ∈ Bs, (2.9)

where R(bi) is a function that evaluates each bi (see Section 2.3.3 for the details).

Adding constraints (2.9) to local models (2.8) gives the constrained local optimization

for each Ωs,

min
us(x∗)

us(x∗)
T (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)us(x∗)− 2us(x∗)
T k̃sXsx∗

s.t. us(bi)
Tys = R(bi) ∀bi ∈ Bs.

(2.10)

Note that the objective function is a convex function of us(x∗) and that all of the

boundary constraints in (2.10) are affine; therefore, the duality gap is zero [5], which

allows maximizing the Lagrangian of (2.10) instead,

Ls(us(x∗),λs(x∗)) = us(x∗)
T (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)us(x∗)

−2us(x∗)
T k̃sXsx∗ −

∑
i=1:|Bs|

λis(x∗)(us(bi)
Tys −R(bi)), (2.11)

where |Bs| is the number of all the control points located on the boundaries of sub-

domain Ωs, and λs(x∗) = [λ1s(x∗), . . . , λ|Bs|s(x∗)]
T is the vector of the Lagrange

multipliers.

Assuming us(x∗) depends on the covariance between x∗ and Xs, and λis(x∗) de-

pends on the covariance of bi and x∗, we write us(x∗) = Hsk̃
s
Xsx∗ and λis(x

∗) =

βisk̃
s
bix∗

as suggested in [70], where Hj is a squared matrix with size equal to the

number of data points in Ωs, and βis is the Lagrange parameter associated with λis

that does not depend on x∗. Consequently, we rewrite Lagrangian (2.11) as

L(Hs,βs) = k̃sx∗Xs
HT
s (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)Hsk̃
s
Xsx∗

−2k̃sx∗Xs
HT
s k̃sXsx∗ − k̃sx∗Bs

βs(K̃
s
BsXs

HT
s ys − rs), (2.12)

20

where βs is a diagonal matrix with diagonal elements β1s, . . . , β|Bs|s, and rs is the

vector of boundary values of Ωs, i.e., rs = [R(b1), . . . ,R(b|Bs|)]
T

Due to convexity of function (2.12) we can calculate the optimal values of Hs and

βs analytically by writing out the first order necessary conditions,

dL(Hs,βs)

dHs

= 2(GsHs − Is)k̃
s
Xsx∗k̃

s
x∗Xs

− ysk̃
s
x∗Bs

βsK̃
s
BsXs

= 0, (2.13)

dL(Hs,βs)

dβis
= k̃biXsH

T
s yj − ris = 0 ∀i ∈ [|Bs|], (2.14)

where Gs = (K̃s
XsXs

+ diag(KXsXs − K̃s
XsXs

) + σ2
sIs), and ris is the ith element of the

vector rs. Reordering equation (2.13),

(k̃sx∗Xs
+ 0.5(k̃jx∗Xs

k̃jXsx∗
)−1k̃jx∗Xs

K̃j
XsBs

βsk̃
j
Bsx∗

yTs)G−1
s ys = k̃sx∗Xs

HT
s ys, (2.15)

and evaluating it at the boundary locations give the system of equations with |Bs|

equations and Lagrangian parameters,

(k̃sbiXs
+ 0.5(k̃sbiXs

k̃sXsbi
)−1k̃sbiXs

K̃s
XsBs

βsk̃
s
Bsbi

yTs)G−1
s ys = ris ∀i ∈ [|Bs|]. (2.16)

After some simple matrix algebra, we obtain the solution to the system of linear

equations (2.16),

βs =

Is(rs − K̃s
BsXs

G−1
s ys)

((
diag−1(K̃s

BsXs
K̃s

XsBs
)(K̃s

BsXs
K̃s

XsBs
)
)
◦Ks

BsBs

)−1

0.5yTs G−1
s ys

.(2.17)

Using the values of βs from (2.17) easily obtains the solution to u(x∗) from (2.13),

us(x∗) = Hsk̃
s
Xsx∗ = G−1

s (k̃sXsx∗ + ws), (2.18)

where ws = 0.5(k̃sx∗Xs
k̃sXsx∗)

−1ysk̃
s
x∗Bs

βsK̃
s
BsXs

k̃sXsx∗ . Consequently, we obtain the

local mean predictor for Ωs,

µ̂s(f∗|x∗) = k̃sx∗Xs
G−1
s ys + wT

s G−1
s ys. (2.19)

21

The objective function of local problem (2.8) is in fact the local variance predictor.

Therefore plugging us(x∗) into (2.8) obtains the predictive variance for Ωs,

σ̂2
s(f∗|x∗) = kx∗x∗ − k̃sx∗Xs

G−1
s k̃sXsx∗

+k̃jx∗Xs
G−1
s ws + wT

s G−1
s ws −wT

s G−1
s k̃sXsx∗ , (2.20)

where kx∗x∗ is the constant initially removed from the optimization. Note that in

both (2.19) and (2.20), the first term is exactly the predictive mean and variance of

local SPGP, and the following terms, which are amplified for local points close to the

boundaries, appear to maintain the continuity of the global predictive function.

Equations (2.19) and (2.20) imply inverting matrices of size ns × ns, which is

time consuming for large ns. However, using Woodbury, Sherman and Morrison

matrix inversion lemma [36] reduces the computational complexity from O(n3
s) to

O(nsm
2
s), where ms � ns. Consequently, the total computational complexity of

training the local models becomesO(Nm2), where m is the average number of pseudo-

inputs in each subdomain. Moreover, solving the system of linear equations (2.16)

involves inverting low rank covariance matrix Gs and boundary covariance matrix

[(diag(K̃s
BsXs

K̃s
XsBs

))−1(K̃s
BsXs

K̃s
XsBs

)] ◦Ks
BsBs

, which have computational complex-

ity of O(nsm
2
s) and O(|Bs|3), respectively. Therefore, the total complexity of solving

the system of linear equations (2.16) is O(S|B|3 + Nm2), where |B| is the average

number of control points for each subdomain. The next section describes our theo-

retical framework for creating subdomains Ωs using parallel hyperplanes.

2.3.2 Subdomain selection

Recall that each subdomain Ωs uses a low-rank approximation for its covariance

matrix. Therefore, a natural criterion is to look for subdomains such that the error

for this approximation is minimized. To this end, suppose the covariance function

K(·, ·) is a symmetric positive semidefinite kernel with the associated Reproducing

22

Kernel Hilbert Space (RKHS), H. With such a K(·, ·), optimization

min
c
L =

∥∥∥∥∥∥K(z, ·)−
∑
i∈[ms]

ciK(x̃i, ·)

∥∥∥∥∥∥
H

, (2.21)

where c = [c1, . . . , cms]
T , ‖ · ‖H is the norm in H, and z ∈ Ωs, has solution c∗ =

K−1

X̃sX̃s
kX̃sz

[98]. Using z = xi for all xi ∈ Xs in (2.21) and minimizing the sum over

all terms obtains KXsX̃s
K−1

X̃sX̃s
KX̃sXs

, which is the low-rank approximation of KXsXs

in (2.6).

In fact, the optimal value of (2.21) measures the error of approximating K(z, ·),

given X̃s. Assuming K(z, z) = h, this error is equal to h− kzX̃s
K−1

X̃sX̃s
kX̃sz

, which is

similar in form to the power function [109]. Here, the objective is to create subdomain

Ωs for which the expected error, i.e.,

EΩs(h− kzX̃s
K−1

X̃sX̃s
kX̃sz

), (2.22)

where the expectation operator is with respect to all z and X̃s over Ωs, is mini-

mized. Since the expected error has a complicated form and its direct calculation is

a challenging task, we seek an upper bound for this term and minimize that instead.

Theorem 2.1 Let K(·, ·) denote a stationary covariance function, and h = K(t, t) ∈

R be the evaluation of kernel K(·, ·) at an arbitrary point t ∈ Ωs. Then, hEΩs(K2(x,x′))

≤ EΩs(kzX̃s
K−1

X̃sX̃s
kX̃sz

), where x,x′, z, x̃1, . . . , x̃ms are i.i.d random vectors sampled

from subdomain Ωs according to some probability distribution P.

Theorem 2.1 provides an upper bound, i.e., h(1 − EΩs(K2(x,x′))), on expected

error (2.22) (See Appendix B for a simulation study showing that the relation between

EΩs(K2(x,x′)) and expected error (2.22) is more profound. In fact, under certain

conditions by increasing EΩs(K2(x,x′)), the expected error term itself monotonically

decreases). Therefore, we seek to construct the subdomains such that the expected

23

covariance squared is maximized, i.e., the upper bound of expected error (2.22) is

minimized.

For our theoretical framework, we consider a general scenario where, after stan-

dardizing the data, Ω is (or is inscribed in) a hypercube with edge length L, one

vertex is on the origin, and all of the edges are parallel to one axis of Rp. Also we

assume that the data points are uniformly sampled from Ω, specifically,

x1, . . . , xp
i.i.d∼ U(0, L) ∀x ∈ Ω. (2.23)

We call such an Ω a uniform straight hypercube.

Moreover, we consider the anti-isotropic squared exponential function as the choice

of the covariance function,

K(x,x′) = exp
(
− (x− x′)TΓ(x− x′)

)
, (2.24)

where Γ is a diagonal matrix with length-scale parameters γ1, . . . , γp on the diagonal,

and without loss of generality, assume γ1 ≤ . . . ≤ γp. We note that the squared

function of (2.24), i.e., K2(x,x′), is a new squared exponential covariance function

with the length scale parameters 2γ1 ≤ . . . ≤ 2γp. Hence, as EΩs

(
K(x,x′)

)
increases,

EΩs

(
K2(x,x′)

)
increases.

Recall the discussion in Section 2.3 that for computational efficiency, we only

consider the subdomains that are separated by parallel hyperplanes. We call these

hyperplanes as “cutting hyperplanes”, because each of them partitions or “cuts” Ω

into two non-overlapping sets on different sides of the hyperplane. Note that creating

S subdomains requires S − 1 cutting hyperplanes. Assuming that the cutting hyper-

planes are equidistant (with distant W = L/S from each other), we can characterize

the `th ∈ [S−1] cutting hyperplane on Ω with respect to kth primary axis of Rp using

the vector of angles θ = {θ1, . . . , θp}\{θk},

Hθ,k,W,` = {x ∈ Ω | xk −
∑

j∈[p]\{k}

tan(θj)xj − `W = 0} ∀` ∈ [S − 1]. (2.25)

24

Note that this cutting hyperplane is orthogonal to the axis k only if θ = 0, that is

θj = 0 for j ∈ [p]\{k}.

Denoting, respectively, the hyperplanes containing the “bottom” and the “top”

faces of Ω as

Hθ,k,W,0 = {x ∈ Ω | xk = 0} and Hθ,k,W,S = {x ∈ Ω | xk − L = 0},

we define the sth subdomain as the intersection of area between two consecutive

hyperplanes and Ω, specifically,

Ωθ,k,W,s = {x ∈ Ω | min
x′∈Hθ,k,W,s−1

||x− x′||2 ≤ W & min
x′∈Hθ,k,W,s

||x− x′||2 ≤ W},(2.26)

where ‖ · ‖2 denotes the Euclidean norm.

Theorem 2.2 Let Ω ⊂ Rp be a uniform straight hypercube with side length L, and

let K(·, ·) denote covariance function (2.24). Then, for a fixed W = L/S, s ∈ [S],

and k ∈ [p], Ω0,k,W,s gives the maximum expected covariance, i.e.,

arg max
θ

EΩθ,k,W,s

(
K(x,x′)

)
= 0.

While Theorem 2.2 shows that cutting orthogonally to the given axis k ∈ [p], i.e.,

θ = 0, maximizes the expected covariance compared to any other θ > 0, Theorem 2.3

further shows that among all the subdomains created by cutting orthogonally to a

primary axis, the one created by cutting orthogonally to the axis associated with the

fastest direction of change, i.e., the direction associated with the largest γ, has the

maximum expected covariance

Theorem 2.3 Let Ω ⊂ Rp be a uniform straight hypercube with side length L, and

let K(·, ·) denote covariance function (2.24). Then for a fixed W = L/S and s ∈ [S],

among all the subdomains Ω0,k,W,s for k ∈ [p], Ω0,p,W,s gives the maximum expected

covariance, i.e.,

arg max
k

EΩ0,k,W,s

(
K(x,x′)

)
= p.

25

Theorems (2.1), (2.2), and (2.3) along with the property of covariance func-

tion (2.24), i.e., larger values of EΩs

(
K(x,x′)

)
imply larger EΩs

(
K2(x,x′)

)
, provide a

partitioning policy for the domain Ω. That is, cutting orthogonally to the direction

of fastest covariance decay reduces the upper bound of expected error (2.22), and

therefore, gives a more accurate covariance approximation in each subdomain.

However, we note that the direction of fastest covariance decay may not neces-

sarily be a primary axis of the input domain. To overcome this drawback, we relax

the restriction of choosing one of the primary axes as the direction of fastest covari-

ance decay by using a general form of the squared exponential covariance function,

K(x,x′) = exp(−(x−x′)TM(x−x′)), where M is a p×p positive definite matrix [88].

For the purpose of this discussion, we define M as aaT + γIp, where a is a unit direc-

tion vector in the input space with length p, and γ is a joint length-scale parameter,

to obtain the following covariance function,

Ka(x,x′) = exp(−(x− x′)T (aaT + γIp)(x− x′)), (2.27)

which involves a dot product (x − x′)Ta. This means that for a given distance

||x− x′||2, the angle between x− x′ and a determines the covariance. In particular,

the direction a itself has the relatively highest rate of covariance decay.

Although in practice, direction a may not exist, fitting covariance function (2.27)

to the data using Maximum Likelihood Estimation can find the best choice of a under

the MLE criterion. Therefore, under the GP assumptions, we maximize the logarithm

of the likelihood function to find the optimal value of vector a,

max
a,γ,σ2

−yT (Ka + σ2I)−1y − log|Ka + σ2I|, (2.28)

where Ka is the covariance matrix formed based on covariance function (2.27).

Here, since we only want to find direction a, the nuisance parameters are the vari-

ance and the length scale parameters, σ2 and γ. Therefore, to shrink the parameter

space, we set σ2 and γ to small values after standardizing the data.

26

Note that optimization problem (2.28) is of O(N3), which is the same order of

complexity as the original problem. However, since the output of optimization (2.28)

is merely used to find a desired direction, and is not used for prediction, we utilize a

small subset of data with size n� N . Further, since a is a unit direction vector, we

write a = [āT ,
√

1− āT ā]T , where ā = [a1, . . . , ap−1]T , and add the unity constraint,

āT ā ≤ 1, to the optimization problem. Consequently,

min
ā

L(ā) = yTn (Kā
n + σ2In)−1yn + log|Kā

n + σ2In|

subject to āT ā ≤ 1,

(2.29)

where yn is the response vector of the small subset of data and Kā
n is the covari-

ance matrix evaluated by covariance function (2.27) on the same small subset (See

Appendix C for solving optimization problem (2.29) by using Projected Gradient De-

scent [66]). Also note that the computational complexity of optimization (2.29) is

dominated by matrix inversion (Kā
n + σ2In)−1, which has the order O(n3).

Finally, the intuition behind the optimal direction a is that it results in subdomains

with “simpler” or “smoother” functions which can be more easily approximated. The

example in Figure 2.1 shows the 3-D presentations of three local functions created

by cutting global function f(x) = cos(0.05x1 + 0.1x2) orthogonally to each direction

[1, 0], [0.43, 0.9], and [0, 1]. Direction [0.43, 0.9] is the direction of fastest covariance

decay obtained by optimizing (2.29) on a small dataset sampled from the global

function. Observe that the local functions created by cutting orthogonally to the

optimal solution have smoother structures compared to directions [1, 0] and [0, 1].

27

(a) a = [1, 0]t (b) a = [0.43, 0.9]t (c) a = [0, 1]t

Figure 2.1: Local functions created by cutting orthogonally to directions [1, 0],

[0.43, 0.9] (optimal solution of (2.28)), and [0, 1] on a synthetic dataset

2.3.3 Creating boundaries, control points, and boundary functions

The focus of this section is on the practical implementation of SPLGP, and therefore,

the characterization of cutting hyperplanes differs from the discussion in Section 2.3.2.

Here, instead of using a vector of angles corresponding to primary axes of input space,

we use a given direction, which can be the solution to optimization (2.29) or any other

arbitrary direction, to define the cutting hyperplanes.

Recall that in our partitioning policy all the cutting hyperplanes are parallel to

each other, and therefore, orthogonal to a unique direction, which is characterized by

a vector a = [a1, . . . , ap]
T . Let Z = {xTi a | xi ∈ X} denote the projection of all the

input vectors onto a. Next, consider the ordered set {z1, . . . , zS−1}, where min Z < z1

and zS−1 < max Z, and z` < z`+1 for ` ∈ [S − 1].

Given the set {z1, . . . , zS−1} and direction a, which is in fact the normal vector

of all of the cutting hyperplanes, we define the `th cutting hyperplane orthogonal

to a as H`,a = {x ∈ Ω | a1x1 + . . . + apxp = z`} for ` ∈ [S − 1]. We use the

data points close to H`,a to locate the control points. To this end, we first define

∆` = {xi ∈ X| |xTi a − z`| < δ} as the set of training data points whose Euclidean

distance to H`,a is less than a predefined constant δ. Then, calculate the maximum

28

and minimum of the kth dimension of the data points in ∆`, respectively,

τ1,k,` = max
xi∈∆`

xTi ek and τ0,k,` = min
xi∈∆`

xTi ek, (2.30)

where ek is the unit vector along the kth primary axis of the space for k ∈ [p]. As

such, the set V` =
{

[τb,1,`, . . . , τb,p,`]
T |b = 0, 1

}
characterizes the vertices of the hyper-

rectangle inscribing ∆`. Next, we uniformly sample Q > 0 points from V` and denote

the set of all these points as U`. We obtain the set of control points on H`,a denoted

as C` by projecting the points in U` on H`,a,

C` = {(z` − uTa)a + u | ∀u ∈ U`}. (2.31)

There are several ways to choose the width of each subdomain, i.e., z`+1 − z` for

` ∈ [S − 1]. One way is to choose a fixed width for the subdomains; however, this

approach results in subdomains with different numbers of local data points depending

on their distribution on the domain. Also adaptive mesh generation techniques [6] can

be used to vary the widths to balance the error among the subdomains. In Section 2.4,

we use varying widths for the subdomains to balance the numbers of local data points

across the subdomains. This approach helps us to control the computation time of

the model, because it is evenly distributed among the subdomains.

Furthermore, to impose connectivity on the optimization procedure discussed in

Section 2.3.1, we need to specify the boundary values for each control point c ∈ C`.

To this end, we fit a boundary GPR over the hyper-rectangle defined by V` using

the data points in ∆`. We then use the predictive mean function of this GPR to

determine the boundary values. Letting R`(.) denote as the predictive mean function

of the GPR constructed by ∆`, the boundary value for each c ∈ C` is

R`(c) = kc∆`
(K∆`∆`

+ σ2
` I`)

−1y∆`
, (2.32)

where kc∆`
is the covariance vector between the control point c ∈ C` and the neigh-

boring data points in ∆`, and K∆`∆`
is the covariance matrix between the neighboring

29

data points in ∆` themselves. In Section 2.3.1, with a slight abuse of notation, we

denote R(.) as a function that takes a control point as an input and returns R`(.),

depending on the location of the control point.

Since the set of neighboring data points ∆` is a small set, we use a full GPR to

obtain functions (2.32). This results in O(S∆3) operations in training the boundary

functions, where ∆ is the average size of all ∆`. Moreover, due to our partitioning

policy each subdomain has two boundaries at most. Therefore, the number of control

points for each subdomain is twice the values of Q on average, i.e., |B| = 2Q. Hence,

we update the computational complexity derived in Section 2.3.1 as O(SQ3 +Nm2).

Considering the complexity of subdomain selection discussed in Section 2.3.2, we

calculate the total computational complexity of SPLGP as O(Nm2+S(∆3+Q3)+n3).

Note that this complexity is dominated by O(Nm2) for moderate dimensional spaces.

2.3.4 Hyper-parameter learning

In SPLGP, instead of one global marginal likelihood function (1.8), there are S local

functions, each of which can be trained independently. Recall that our local predictors

are in fact SPGP predictors that consider pseudo-inputs as parameters of the model.

Therefore, we have two types of parameters: one is the location of local pseudo-inputs

and the other is the hyper-parameters of the underlying covariance function. Maxi-

mizing the logarithm of the local SPGP marginal likelihood functions using gradient

descent with respect to local pseudo-inputs and hyper-parameters provides local op-

timal locations. Specifically, the logarithm of the marginal likelihood of SPLGP’s sth

local model is

log
(
p(ys)

)
= −1

2
log |Gs| −

1

2
yTs G−1

s ys −
ns
2

log 2π, (2.33)

where Gs is the same as that of Section 2.3.1. [99] shows that the cost of finding

the derivatives and maximizing (2.33) is in the order of O(nsm
2
s) for not very high

30

dimensional problems, and therefore, the total complexity of training the subdomains

becomes O(Nm2).

2.4 Experimental results

In this section, we apply SPLGP to four real datasets and compare its performance

with local probabilistic regression (LPR) [107] and Bayesian committee machine

(BCM) [104], bagged Gaussian process (BGP) [13], partial independent conditional

GP (PIC) [100], and DDM [71]. LPR and BCM are local GPR models, BGP is

a fast bootstrapping model, and PIC is a localized version of SPGP. We use the

BGP, LPR, BCM, and DDM implementations in the GPLP toolbox [71] and use the

BCM implementation provided by [96]. We also conduct sensitivity analysis of the

parameters in SPLGP and propose some guidelines for their selection.

2.4.1 Datasets and evaluation criteria

We implement SPLGP in MATLAB and test it on four real datasets:

1. The spatial dataset, TCO, which contains 65000 observations, collected by the

NIMBUS7 satellite for NASA’s Total Ozone Mapping Spectrometer (TOMS)

project (https://www.nodc.noaa.gov). The global measurement was con-

ducted on a two dimensional grid, i.e., latitude and longitude, from 1978 to

2003 on a daily basis. We select the measurements of “total column of ozone”

on this grid for the data collected on January 1, 2003. The dataset is highly

non-stationary and an appropriate dataset for comparing SPLGP and DDM

because it is constructed on a two-dimensional input space,

2. The spatial dataset, Levitus, which contains 56000 observations, is a part of the

world ocean atlas that measures the annual means of major ocean parameters

(http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94). The global mea-

31

surement was conducted on a three dimensional grid, i.e., latitude, longitude,

and depth, in 1994. We select the “apparent oxygen utilization” as the response

variable on this grid.

Recalling that handling exogenous variables in spatial datasets also motivates this

study, we use a third real dataset.

3. The spatial dataset, Dasilva, which contains 70000 observations, is a part of a

five-volume atlas series of Surface Marine Data (http://iridl.ldeo.columbia.

edu/SOURCES/.DASILVA/.SMD94/.halfbyhalf/.climatology/). The global

measurement was conducted on a two dimensional grid, i.e., latitude and lon-

gitude, on a monthly basis in 1994. We select three exogenous variables, “con-

strained outgoing heat flux”, “zonal heat flux”, and “sea minus air tempera-

ture”, and the objective is to predict “long wave Chi sensitivity” based on the

data collected on January 1994.

Although SPLGP was developed to handle spatial datasets, the model is general

and can be efficiently applied to non-spatial data that have a moderate number (say

ten or fewer) of exogenous variables. We use a forth dataset to demonstrate the

performance of SPLGP on non-spatial data.

4. The non-spatial dataset, Protein, which contains 46000 measurements, is a

collection of Physicochemical Properties of Protein Tertiary Structure (http:

//archive.ics.uci.edu/ml/datasets). This dataset contains nine “physic-

ochemical properties” of proteins as explanatory variables and “size of the

residue” as the response variable.

We randomly partition each dataset into 90% for training and 10% for testing.

We use three measures to evaluate the performance of each method. The first one

is the measure of prediction accuracy, which is assessed by the Mean Squared Error

32

(MSE),

MSE =
1

c

c∑
i=1

(yi∗ − µ̂i∗)2, (2.34)

where yi∗ is the noisy observation of the test location xi∗ and µ̂i∗ is the mean prediction

of this test location. The second measure is the Negative Log Predictive Density

(NLPD) that takes into account uncertainty in prediction in addition to accuracy,

specifically

NLPD =
1

c

c∑
i=1

(yi∗ − µ̂i∗)2

2σ̂i2∗
+ 0.5 log(2πσ̂i

2

∗), (2.35)

where σ̂i
2

∗ is variance of the predictor at the test location xi∗. The third measure is

the computation time, i.e., training plus testing time, that evaluates the SPLGP’s

success in speeding up GPR. Note that the computation time is not an appropriate

measure on its own and the corresponding MSE or NLPD should be taken into account

simultaneously, because a reduction in training time without an accurate prediction

is not useful.

2.4.2 Computation time and prediction accuracy

Here, we compare the computation time and the prediction accuracy of SPLGP with

those of the competing models. Specifically, we consider the MSE and NLPD as

functions of the computation time and plot the set of best results for each model.

Under this criterion, the model associated with the curve closest to the origin will be

superior. The parameter selection for each model is as follows.

The tuning parameters in SPLGP are Q, the number of control points on each

boundary; S, the number of subdomains; and m, the number of pseudo-inputs in each

subdomain. We set Q proportional to the dimension of the boundary,

Q = qp−1, (2.36)

33

where p is the dimension of the domain of data, and q determines the density of

control points on each boundary space. Our experiments in Section 2.4.3 suggest

that setting q to small values results in a satisfactory performance and increasing

it does not significantly affect the model’s accuracy. Therefore, we set q = 3, for

datasets TCO, Levitus, and Dasilva, and q = 2.2 for dataset Protein. We also set m

proportional to the average number of local data points,

m = κ

√
N

S
, (2.37)

where κ is a parameter that determines the density of pseudo-inputs in each subdo-

main. Moreover, we choose the direction of one of the primary axes of the datasets’

domains as the direction of the cuts (see Section 2.4.3 for a discussion of cuts in other

directions). We set κ to a fixed value and choose the size of the subdomains from

the set {20, 30, 40, 50, 60}, except for the dataset Levitus. For the latter, since we

cut the domain of data from the third direction with 33 distinct levels, we choose S

from the set {8, 11, 16, 33}. Note that as S increases, computation time decreases, so

the points with smaller computation times belong to larger values of S in Figures 2.2

and 2.3.

The tuning parameters for DDM are Q, the number of control points on each

boundary; and S, the number of subdomains. For the two-dimensional dataset TCO,

we set Q = 3 and choose the values of S from the set {100, 200, 300, 400, 500, 600}

to keep the average size of the subdomains between 100 to 600 as instructed in [70].

As expected, for smaller values of S, i.e., larger subdomains, the efficiency of the

model deteriorates in terms of computation time; therefore, the points with higher

computation times belong to smaller values of S in Figures 2.2 and 2.3.

PIC, which is the localized version of SPGP, has two tuning parameters, the

number of local models, S, and the number of pseudo-inputs, m. We use k-means

clustering to partition the domain of data into S local models. We note that m is the

major tuning parameter that affects the model’s computation time. Therefore, we fix

34

S to a reasonable value and choose the values of m from the set {100, 200, 300, 400, 500

, 600}. After testing various values of S in the range of 100 to 800, we find that

S = 500 is a reasonable choice for our experiments. Therefore, we set S = 500 for

all the four datasets. In Figures 2.2 and 2.3, those points with higher computation

times belong to larger values of m.

For BCM, we use k-means clustering to partition the domain of data into S local

experts similar to PIC and choose the values of S from the set {200, 300, 400, 500, 600

, 700}. The points with higher computation times belong to larger values of S in

Figures 2.2 and 2.3.

LPR has three major tuning parameters, which are S, the number of local experts;

m, the size of each local expert; and R, the size of the subset used for local hyper-

parameter learning. The location of R data points used for local hyper-parameter

learning can be chosen randomly or by clustering; however, for the sake of fair com-

parison, we use clustering to choose these locations. Moreover, we choose the values

of S, m, and R from the sets {5, 10, 15, 20}, {100, 200, 300}, and {500, 1000, 1500},

respectively. For each dataset, we fix S to a value that results in better performance

in terms of computation time and MSE, and choose five combinations out of the nine

possible combinations of m and R that have different computation times.

Last, BGP has two tuning parameters, the number of bags, S, and the number of

data points assigned to each bag, m. Based on our experiments, m is the major tuning

parameter affecting the model’s computation time; therefore, we vary the values of m

from the set {500, 600, 700, 800, 900} and fix the value of S to a reasonable number.

After varying the values of S in range 10 to 80, we chose 40 as the fixed value of S.

In Figures 2.2 and 2.3, those data points with higher computation times belong to

larger size bags.

For two-dimensional dataset TCO, SPLGP, DDM, and BCM perform almost the

same but they are faster and more accurate than the other models as shown in

35

Figure 2.2a. However, in terms of NLPD, SPLGP and DDM perform better than

BCM as shown in Figure 2.3a. We attribute the BCM’s higher NLPD values to

underestimating the predictive variance in the BCM model. Also, despite the fact

that SPLGP uses a low-rank covariance approximation, it outperforms DDM, mainly

because it creates fewer boundaries thus compensating for the inaccuracy of the low-

rank approximations in the subdomains. Note that for the other datasets, we cannot

compare the performance of DDM with the other competing models, because DDM’s

implementation is restricted to one- or two-dimensional spaces.

For three-dimensional dataset Levitus, LPR and SPLGP outperform the other

models in terms of MSE as shown in Figure 2.2b. However, in terms of NLPD,

SPLGP’s performance is superior (Figure 2.3b) meaning that SPLGP obtains a better

goodness of fit compared to LPR.

A significantly better performance of SPLGP can be observed for five-dimensional

dataset Dasilva. For this dataset, SPLGP reaches much lower values of MSE while

keeping the values of NLPD low compared to all the other competing models as shown

in Figures 2.2c and 2.3c.

Finally, for nine-dimensional dataset Protein, PIC and SPLGP perform much

better than the other models as shown in Figures 2.2d and 2.3d. However, similar to

the analysis of TCO and Levitus, the lower NLPD values of SPLGP makes our model

more desirable than PIC. We note that unlike the other datasets in this study, we do

not set the density parameter κ to 3, since 38 control points on each boundary slow

down the SPLGP’s performance without having a significant effect on accuracy (see

Section 2.4.3). Therefore, we set q to a smaller value of 2.2.

36

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Time

M
S

E

SPLGP
BCM
BGP
PIC
LPR
DDM

(a) TCO:κ = 6, S ∈ {20, 30, 40, 50, 60}, q = 3

100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

Time

M
S

E

SPLGP
BCM
BGP
PIC
LPR

(b) Levitus:κ = 8, N ∈ {8, 11, 16, 33}, q = 3

100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

Time

M
S

E

SPLGP
BCM
BGP
PIC
LPR

(c) Dasilva:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 3

100 200 300 400 500 600 700 800
10

20

30

40

50

60

70

80

90

100

Time

M
S

E

SPLGP
BCM
BGP
PIC
LPR

(d) Protein:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 2.2

Figure 2.2: MSE versus computation time. For DDM, Q = 3 and S ∈

{100, 200, 300, 400, 500}; for PIC, S = 500 and m ∈ {100, 200, 300, 400, 500, 600};

for BCM, S ∈ {200, 300, 400, 500, 600, 700}; for LPR, (S,m,R) ∈ {5, 10, 15, 20} ⊗

{100, 200, 300} ⊗ {500, 1000, 1500}; and for BGP, S = 40 and m ∈

{500, 600, 700, 800, 900}

37

0 100 200 300 400 500 600 700 800
2

3

4

5

6

7

8

9

Time

N
L

P
D

SPLGP
BCM
PIC
LPR
DDM

(a) TCO:κ = 6, S ∈ {20, 30, 40, 50, 60}, q = 3

100 200 300 400 500 600 700

2

4

6

8

10

12

14

16

Time

N
L

P
D

SPLGP
BCM
BGP
PIC
LPR

(b) Levitus:κ = 8, N ∈ {8, 11, 16, 33}, q = 3

100 200 300 400 500 600 700
1

2

3

4

5

6

7

8

9

Time

N
L

P
D

SPLGP
BCM
BGP
PIC
LPR

(c) Dasilva:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 3

100 200 300 400 500 600 700 800
2

2.5

3

3.5

4

4.5

5

5.5

6

Time

N
L

P
D

SPLGP
BCM
BGP
PIC
LPR

(d) Protein:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 2.2

Figure 2.3: NLPD versus computation time. For DDM, Q = 3 and S ∈

{100, 200, 300, 400, 500}; for PIC, S = 500 and m ∈ {100, 200, 300, 400, 500, 600};

for BCM, S ∈ {200, 300, 400, 500, 600, 700}; for LPR, (S,m,R) ∈ {5, 10, 15, 20} ⊗

{100, 200, 300} ⊗ {500, 1000, 1500}; and for BGP, S = 40 and m ∈

{500, 600, 700, 800, 900}

2.4.3 Sensitivity analysis

This section describes the sensitivity analysis we conduct on the tuning parameters

of SPLGP. Section 2.4.3 discusses some guidelines for selecting the size of the subdo-

mains and the density of local pseudo-inputs. Section 2.4.3 explains the significance

38

of cutting from various directions. Finally, Section 2.4.3 shows how the choice of the

number of the control points affects the model’s performance.

Number of cuts and local pseudo-inputs

A trade-off exists between accuracy and computation time. For SPLGP, having a

larger number of subdomains reduces computation time, but the local approxima-

tion in each subdomain can be less accurate. This section provides some guidelines

for selecting the parameters of SPLGP that help to balance computation time and

accuracy.

In our experiment, for each dataset, we vary the number of subdomains, S, and the

density of local pseudo-inputs, κ, and use the values of MSE, NLPD, and computation

time as the measures of efficiency. To illustrate the effect of various settings on the

model’s efficiency, we plot the values of MSE, NLPD, and computation time for

varying S and a fixed κ as shown by the curves in Figures 2.4 and 2.5.

Figures 2.4e, 2.4f, 2.5e, and 2.5f show that as S increases, i.e., the size of the

subdoamins decreases, SPLGP performs faster for a fixed value of κ. Moreover,

the curves belonging to smaller values of κ are always below the curves with larger

values of κ, meaning that as the density of the pseudo-inputs increases, the model

becomes slower. Consequently, the model takes longer to run by increasing the size

of subdomains or the number of local pseudo-inputs.

On the other hand, Figures 2.4a, 2.4b, 2.5a, and 2.5b show a positive correlation

between S and MSE, i.e., by fixing the value of κ, SPLGP performs more accurately in

terms of MSE, as the size of the subdomains increases. Moreover, the curves belonging

to larger values of κ are always above the curves with lower values of κ, i.e., as κ in-

creases, SPLGP becomes more accurate for a fixed value of S. Figures 2.4c, 2.4d, 2.5c,

and 2.5d show the same trend for the values of NLPD. Therefore, we conclude that

our model attains higher accuracy in terms of MSE and NLPD by increasing the

39

density of local pseudo-inputs or enlarging the size of the subdomains.

In summary, by increasing the size of the subdomains or the density of local

pseudo-inputs, the models accuracy improves, but computation time increases. There-

fore, we suggest using sufficiently large values of κ in smaller subdomains, because,

as shown in Figures 2.4 and 2.5, the MSEs are small even with a large number of

subdomains and computation times stay relatively low.

40

20 25 30 35 40 45 50 55 60
11

12

13

14

15

16

17

18

19

20

S

M
S

E

κ=2
κ=3
κ=4
κ=5

(a) TCO (MSE)

5 10 15 20 25 30 35
5

10

15

20

25

30

35

40

S

M
S

E

κ=2
κ=4
κ=6
κ=8

(b) Levitus (MSE)

20 25 30 35 40 45 50 55 60
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

S

N
L

P
D

κ=2
κ=3
κ=4
κ=5

(c) TCO (NLPD)

5 10 15 20 25 30 35
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

S

N
L

P
D

κ=2
κ=4
κ=6
κ=8

(d) Levitus (NLPD)

20 25 30 35 40 45 50 55 60
50

100

150

200

250

300

350

S

T
im

e

κ=2
κ=3
κ=4
κ=5

(e) TCO (Time)

5 10 15 20 25 30 35
0

100

200

300

400

500

600

S

T
im

e

κ=2
κ=4
κ=6
κ=8

(f) Levitus (Time)

Figure 2.4: MSE, NLPD, and computation time versus S. Each curve associates with

a particular value of κ

41

20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S

M
S

E

κ=2
κ=4
κ=6
κ=8

(a) Dasilva (MSE)

20 25 30 35 40 45 50 55 60
16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

S

M
S

E

κ=2
κ=4
κ=6
κ=8

(b) Protein (MSE)

20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

14

S

N
L

P
D

κ=2
κ=4
κ=6
κ=8

(c) Dasilva (NLPD)

20 25 30 35 40 45 50 55 60
2.64

2.66

2.68

2.7

2.72

2.74

2.76

2.78

2.8

2.82

S

N
L

P
D

κ=2
κ=4
κ=6
κ=8

(d) Protein (NLPD)

20 25 30 35 40 45 50 55 60
50

100

150

200

250

300

350

400

450

500

S

T
im

e

κ=2
κ=4
κ=6
κ=8

(e) Dasilva (Time)

20 25 30 35 40 45 50 55 60
50

100

150

200

250

300

350

400

450

S

T
im

e

κ=2
κ=4
κ=6
κ=8

(f) Protein(Time)

Figure 2.5: MSE, NLPD, and computation time versus S. Each curve associates with

a particular value of κ

42

Direction of cuts

This section demonstrates how cutting from different directions affects SPLGP’s per-

formance. To discuss the significance of cutting from the optimal direction obtained

from optimization (2.29), we fix the value of S and vary the values of κ and the

direction of cuts for each dataset, and measure the accuracy of prediction in terms of

MSE. In Figure 2.6, each curve shows the trend of changes in MSE for a particular

direction and the varying values of κ.

For dataset TCO, the optimal direction is the direction of the first primary axis

as shown in Figure 2.6a. Cutting from this optimal direction attains higher accuracy

for the varying values of κ compared to the direction of the second primary axis.

For dataset Levitus, the optimal direction is the direction of the third primary axis

as shown in Figure 2.6b. Cutting from this optimal direction attains higher accuracy

compared to the directions of the other primary axes.

For dataset Dasilva, the optimal direction is the direction of the first primary axis

as shown in Figure 2.6c. Cutting from this direction attains a much higher accuracy

compared to the directions of the third, fourth, and fifth primary axes. However,

the performance of cutting from the direction of the second primary axis is almost

the same as the optimal direction. This can be justified by considering the objective

values of optimization (2.29) for these two directions. In fact, the objective values

for the directions of the first and the second primary axes are very close and much

smaller than the other directions. Therefore, we observe such a similar and much

more accurate performance by cutting from these two directions compared to the

other directions.

Finally, for dataset Protein, the optimal direction, which is not the direction of

one of the primary axes of the input domain, is compared with the directions of the

second, third, and sixth primary axes as shown in Figure 2.6d. Cutting from the

optimal direction attains a much higher accuracy compared to the directions of the

43

second and the third primary axes, and slightly better than the direction of the sixth

primary axis.

2 2.5 3 3.5 4 4.5 5
11

12

13

14

15

16

17

18

19

20

κ

M
S

E

1st(optimal)

2nd

(a) TCO:S = 30, Q = 3

2 3 4 5 6 7 8
5

10

15

20

25

30

κ

M
S

E

1st

2nd

3rd(optimal)

(b) Levitus:S = 11, Q = 9

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

κ

M
S

E

1st(optimal)

2nd

3rd

4th

5th

(c) Dasilva:S = 40, Q = 81

2 3 4 5 6 7 8
16

17

18

19

20

21

22

23

24

25

26

κ

M
S

E

2nd

3rd

6th

Optimal

(d) Protein:S = 40, Q = 500

Figure 2.6: Effects of cutting directions on MSE for the four datasets

Control points density

The last parameter needing to be tuned in SPLGP is the number of control points

uniformly distributed on the boundaries of the subdomains. As the dimension of the

domain of data increases, we need to locate more control points to efficiently handle

the boundary conditions. As discussed in Section 2.4.2, we use a density parameter

and the dimension of the boundary space, i.e., q and p− 1 in (2.36), to determine the

44

Dataset q Time MSE NLPD

3 145.50 12.18 2.61

TCO 4 145.61 12.15 2.61

5 146.06 11.98 2.60

3 134.48 25.50 2.60

Levitus 4 134.47 25.44 2.59

5 135.36 25.25 2.59

3 157.62 0.42 4.01

Dasilva 4 159.98 0.38 3.30

5 167.79 0.38 3.05

2.2 147.53 17.41 2.67

Protein 2.5 202.09 17.39 2.66

3 3651.33 17.38 2.65

Table 2.1: Effect of q on efficiency of SPLGP. S = 30 and κ = 4 across all the datasets

number of control points to be uniformly located on each boundary.

Notably, our experiments show that setting q to small values usually results in sat-

isfactory performance, while increasing it does not significantly affect the prediction

accuracy, but increases the computational burden, particularly in higher dimensional

domains. The results of testing SPLGP on our four datasets with varying values of q

and all other parameters fixed are reported in Table 2.1. An increase in the value of

q slightly improves the prediction accuracy in terms of NLPD and MSE. Moreover,

as the dimension of the domain of data increases, an increase in the value of q results

in much longer computation time.

2.5 Summary

We proposed Sparse Pseudo-input Local Gaussian Process (SPLGP) that simultane-

ously addressed scalability and heterogeneity problems of GPR by partitioning the

data’s domain into subdomains. We used parallel hyperplanes in our partitioning to

45

create non-overlapping subdomains and fitted a sparse GPR to the data within each

subdomain. This allowed us to select subdomains having large numbers of data points

and as a result reduce the number of the boundaries. We addressed the problem of

discontinuity of the overall prediction surface by imposing connectivity constraints

through putting a few control points on the boundaries of the neighboring subdo-

mains. The parallel cuts, the sparse approximation scheme, and the procedure of

handling boundary conditions allowed us to apply SPLGP to spatial datasets with

higher dimensions, i.e., spatial data that included exogenous variables in addition

to the location information. We proposed three theorems, which together character-

ized the optimal direction of parallel hyperplanes in the sense that they resulted in

more accurate sparse approximation in each subdomain. We also developed an algo-

rithm to find these optimal hyperplanes. Our numerical experiments demonstrated

that SPLGP outperformed, or was comparable to, the competing models commonly

applied to spatial datasets.

46

CHAPTER 3

A BAYESIAN FRAMEWORK FOR LOCAL CALIBRATION OF

EXPENSIVE COMPUTATIONAL MODELS WITH A

NON-ISOMETRIC CURVE TO SURFACE MATCHING

INTERPRETATION

3.1 Introduction

Experimenting on computational models instead of actual physical systems has be-

come a popular practice ever since computers have become advanced enough to handle

complex mathematical models and intense computational procedures [22, 92]. This

popularity is due to the fact that a computational model can obtain the output of

an experiment in a cost-effective and timely manner in comparison to its associated

physical system. However, one challenge in utilizing computer models is their “ad-

justment.” In fact, computational models usually incorporate features which cannot

be observed or measured in physical systems, but they need to be correctly specified,

so that the computational model can faithfully resemble the physical system [48].

We refer to these unobservable/unmeasurable features as calibration variables, and

adjusting their values as calibration procedure. In addition, we call the input features

which are common between the computational models and the physical systems as

control variables.

For example, in buckypaper fabrication requiring Poly-vinyl Alcohol (PVA) treat-

ment, we are interested in understanding the relation between the response, the tensile

strength, and the control variable, the PVA amount [81]. Here, the calibration vari-

able is the percentage of PVA absorbed, which cannot be measured in the physical

47

system, but is required in the computational model.

Past studies on the calibration problem generally assume unique values for calibra-

tion variables, some times referred to as global calibration, and use different statistical

frameworks to estimate these values. For instance, authors of [48, 16, 89, 42, 41, 113,

4, 32] have devised various Bayesian models. Whereas authors of [55, 85] have used

Maximum Likelihood estimation, while [45, 38] have developed mixed models by com-

bining frequentist and Bayesian methodologies. More recently authors of [105, 106]

have developed models based on L2 distance projection to estimate true values of

global calibration variables.

By contrast, there are a few studies that assume the values of calibration variables

to depend on control variables, which we refer to as local calibration. [81] have shown

that an approach that considers a parametric functional relationship between the

amount of PVA and the percentage absorbed can outperform the global calibration

approach presented in [48]. Similarly, authors of [116] have used a simple linear

relationship to improve the calibration accuracy in a thermal challenge problem. Local

calibration approaches that are more general use non-parametric methods to build

functional relationships between the calibration and the control variables. These non-

parametric functional relationships have been constructed using Reproducing Kernel

Hilbert Spaces [93] and GPs by various authors [84, 74, 10].

All the aforementioned studies in local calibration and most studies in global

calibration require computational models that are “cheaply executable.” This as-

sumption is required since computational models need to be evaluated thousands of

times either to draw samples from posterior distributions in Bayesian approaches, or

to numerically optimize a loss or a likelihood function in other approaches. A com-

mon way to deal with expensive computational models is to initially draw a limited

number of random samples from the computational model, then fit a surrogate func-

tion based on these random samples and replace it with the computational model in

48

the calibration procedure. However, surrogate modeling itself creates an additional

source of error due to restrictions in drawing enough number of random samples from

the expensive computational model that results in deterioration of the calibration

accuracy.

In this study, we develop a new framework for the local calibration of expen-

sive computational models. Unlike conventional surrogate modeling that replaces the

computational model with a static, approximated surface, we employ a “dynamic”

GP distribution over the computational model. We call our GP distribution dy-

namic as the hyper-parameters of the GP’s covariance function are trained during

our calibration procedure. In our calibration procedure, we use Bayesian statistics to

simultaneously construct posterior distributions for the hyper-parameters of the GP’s

covariance function and the calibration variables associated with each of the physical

control vectors.

In fact, the focus of local calibration approaches available in the literature [10, 84]

are on the accurate estimation of the functional relationship between the control and

the calibration variables. Accurate estimation however, requires the evaluation of

the computational models a large number of times, which may not be feasible for

expensive computational models. This results in a poor retrieval of the relationship

between the control and the calibration variables. Therefore, in our approach, we

compensate this inaccurate retrieval by allowing the GP to tune its hyper-parameters

along with the calibration variables in a way that the computational model responses

become as close as possible to the physical responses.

We note that our Bayesian model suffers from unidentifiablity due to high dimen-

sionality of parameter space, therefore, we need to use informative prior distributions

to make the model identifiable. To obtain informative prior distributions we take ad-

vantage of an alternate geometric interpretation of calibration as non-isometric curve

to surface matching. We explain this in the case of a single control variable and a

49

single calibration variable. From a geometric perspective, all the possible values for

the control variable and the physical response constitute a plane curve in the control-

response space. By contrast, in the computational model, we can specify the values

of both the control and the calibration variables. Consequently, all the possible val-

ues of the control and calibration variables, and the computational response together

form a surface. The plane physical curve we observe in the control-response space

is a projection of a space curve in the three-dimensional control-calibration-response

space (see Figure 3.1).

The explanation lies in the nature of calibration variable in a physical process:

for each value of control variable there exists an (unknown) value for the calibration

variable, and these two features determine one single response. Since we do not

observe the actual value of the calibration variable in the physical process, we only

see a projected curve in control-response space. Hence, calibration aims to recover

the true physical curve, or in other words, determine a non-isometric match of a curve

to a surface.

Figure 3.1: Non-isometric curve to surface matching perspective of local calibration.

The computational model responses correspond to a two-dimensional surface. The

observed physical curve is the projection of the true physical curve that lies on this

surface.

50

The remainder of this chapter is organized as follows: In Section 3.2, we explain

our Bayesian model for handling expensive computational models. In Section 3.3, we

formally describe how the calibration problem can be interpreted as a non-isometric

curve to surface matching problem. In the same section, we show how we can uti-

lize this geometric perspective to construct informative prior distributions for our

Bayesian model using a graph-theoretic approach. We generalize the idea of non-

isometric curve to surface matching to higher dimensions in Section 3.4 and introduce

integer programming techniques to tackle the problem. In Section 3.5, we use the so-

lution approaches presented in Sections 3.3 and 3.4 to construct informative prior

distributions for our Bayesian model. In Section 3.6, we show how we draw samples

from the posterior distribution using Markov Chain Monte Carlo technique [28], and

we explain the prediction procedure in Section 3.7. Finally, we present our experi-

mental and comparative results in Section 3.8.

3.2 General Setting: A Bayesian model for the calibration of expensive

computational models

Consider a physical system that operates according to a set of (possibly unknown)

physical laws. In this system, there is a functional relationship between a group of

features and the response (output). We call those features of the system which can

be measured and specified as inputs of the physical system as control variables, and

denote by x ∈ Rdx , a vector containing specified values of these variables. We also

assume that once the control variables are set (either observed or specified) in the

physical system, the physical process Fp generates a real-valued response yp. That is

yp = Fp(x).

Although the response is a function of all the features of the physical system, we

write yp explicitly as a function of x as the rest of the features are hard to measure

51

or control, and hence we have no control over them in the physical system. We call

such features, calibration variables, and categorize them into the following two groups:

(i) global calibration variables, which have unique values regardless of the values of

control variables, and (ii) local calibration variables which are functions of control

variables.

We denote the vector of global calibration variables by ψ ∈ Rdψ , the vector of

local calibration variables by θ ∈ Rdθ , and the vector of functions that map x to each

element of θ by F θ = [F θ1 , ...,F θdθ]
T . With a slight abuse of notation, we denote the

vector map from x to θ using the vector of functions F θ as θ = F θ(x).

Suppose we have a computational model constructed according to the laws gov-

erning the physical system. Similar to the physical system, the response of our com-

putational model is determined by the interactions between the control and the cali-

bration variables. Since in a computational model we are not restricted to measuring

any physical features, we can set the values of all x, θ, and ψ arbitrarily. If we denote

the computational process as F s, then the response of the computational model can

be written as

ys = F s(x,ψ,θ). (3.1)

The goal of calibration is to adjust the variables ψ and θ, such that the compu-

tational model represents the physical system in the sense that the computational

model can predict the physical response at any input location x∗.

Mathematically, calibration can be translated as the estimation of vectors F θ and ψ,

such that for any given x∗, the function F s : Rdx × Rdψ × Rdθ −→ R generates a re-

sponse close to yp∗ up to an error:

yp∗ = F s(x∗, ψ̃, F̃ θ(x∗)) + ε∗, (3.2)

where ψ̃ and F̃ θ are estimations of F θ and ψ, and ε∗ exists due to assumptions and

simplifications made in the computational model and also due to the estimation of

52

the control variables.

To estimate ψ̃ and F̃ θ in (3.2) we initially obtain m responses from Fp at a set of

physical system inputs {xp1, ...,xpm} to create a dataset corresponding to that physical

system

P =
{
pi = (xpi , y

p
i) | x

p
i ∈ Rdx , ypi ∈ R, i ∈ [m]

}
.

We also create the counterpart of P in the computational model, i.e., the computa-

tional dataset, as

S = {sj = (xsj ,ψ
s
j ,θ

s
j , y

s
j) | xsj ∈ Rdx ,ψs

j ∈ Rdψ ,θsj ∈ Rdθ , j ∈ [n]},

based on a set of computational model inputs {(xs1,ψs
1,θ

s
1), . . . , (xsn,ψ

s
n,θ

s
n)}.

Denoting θpi = F θ(xpi) and ψp as true values of the calibration variables, which

we do not know yet, and assuming errors are i.i.d standard normal give the following

model

ypi = F s(xpi ,ψ
p,θpi) + εpi , where εpi ∼ N (0, σ2), ∀i ∈ [m]. (3.3)

Note that applying Bayesian statistics to construct posterior distributions for pa-

rameters of model (3.3), i.e., ψp, σ2 and θpi for all i ∈ [m], requires a large number of

evaluations of F s, which is not practical for expensive computational models. There-

fore, we model a GP distribution over F s,

F s ∼ GP
(
0,K(·, ·)

)
, (3.4)

where K(·, ·) is a covariance function. Here we use the following anti-isotropic squared

exponential covariance function

K(z, z′) = α exp
(
− (z− z′)TΓ(z− z′)

)
, (3.5)

where α is the magnitude parameter and Γ is a diagonal matrix of length-scale pa-

rameters. We denote the vector of the diagonal elements of Γ as γ with the length

equal to length of the input vectors z and z′.

53

Subsequently, we can obtain the likelihood of model (3.3) by the GP distribution

defined on F s in (3.4) as a multivariate normal distribution,

yp | Xp,Θp,Ψp,γ, α, σ2 ∼ N (0,Σ + σ2Im), (3.6)

where yp = [yp1, ..., y
p
m]T is the vector of physical responses, Xp = [xp1, ...,x

p
m]T , Ψp =

[ψp, ...,ψp]T , and Θp = [θp1, ...,θ
p
m]T are matrices of size m× dx, m× dψ, and m× dθ

respectively, and Σ is the m × m covariance matrix whose elements are calculated

by covariance function (3.5) with [xp
T

i ,θ
pT

i ,ψ
pT]T as input vectors with length (dx +

dθ + dψ).

Although in the process of deriving likelihood (3.6), we consider the columns of

Θp and Ψp as the input variables of model (3.3), we do not know the values of these

input variables, and we intend to estimate them. Therefore, in order to distinguish

the calibration variables, ψ and θ in (3.1) from the parameters in model (3.3), we

call Θp and Ψp as the calibration parameters.

We can estimate the parameters of model (3.3), i.e., the calibration parameters,

the parameters of covariance function (3.5), and the variance of error, simultaneously

using Bayesian statistics with the following posterior

π(Θp,ψp, `2, γ2, α, σ2 | yp,Xp)

∝ π(yp | Xp,Θp,ψp,γ, α, σ2)π(Θp)π(ψp)π(γ)π(α)π(σ2), (3.7)

where we substitute Ψp by ψp, since all columns of Ψp are essentially the same and

Ψp can be easily recovered by the following transformation: Ψp = 1m×dψdiag(ψp),

where 1m×dψ is a m× dψ matrix of ones.

Bayesian model (3.7) would be completed by specifying prior distributions for

the parameters. However, our model suffers from unidentifiablity in the absence of

week or uninformative priors due to the high-dimensionality of the parameter space.

Therefore, in Section 3.5 we explain our approach to constructing informative priors

54

for Θp and ψp by viewing the calibration as a non-isometric curve to surface matching

problem.

Note that one might misinterpret the replacement F s by GP
(
0,K(·, ·)

)
as a surro-

gate modeling approach used in the literature. However, our approach is fundamen-

tally different from surrogate modeling, wherein the computational model is replaced

by a fixed surrogate surface. This is in turn, trained based on a set of limited samples

drawn from the computational model prior to any calibration procedure. By contrast,

in our model, building and training the GP is a part of the calibration process.

3.3 Calibration as a non-isometric curve to surface matching problem:

A special case

In this section, we explain how the calibration problem can be viewed as a non-

isometric curve to surface matching problem for the special case when x ∈ R,θ ∈ R,

and ψ ∈ ∅, i.e. no global calibration variable. From a geometric perspective, all the

possible values for x and Fp(x) constitute the curve (x,Fp(x)) in a two-dimensional

space. In the computational model however, we can specify the values of both x

and θ. Consequently, all the possible values of x, θ, and F s(x,θ) together form

a surface (x,θ,F s(x,θ)) in a three-dimensional space. As we noted in Section 3.1,

the true physical curve lies on the three-dimensional computational model surface,

i.e., (x,F θ(x),Fp(x)). However, since we do not observe the actual values of the

calibration variables in the physical process, we only see a projected curve in x − y

space (see Figure (3.1)). Hence, the calibration problem is to recover the true physical

curve, or in other words, determine a non-isometric match of a curve to a surface.

The non-isometry is due to the fact that the curve (x,F θ(x,Fp(x)) on the three-

dimensional space x−θ−y has a different length than the projected curve (x, 0,Fp(x))

on a two-dimensional space x − y. Therefore, this is in principle, different from

isometric matching problems [34, 9, 1].

55

Furthermore, in practice we only have the finite physical system dataset P along

with a finite computational model dataset S, as we do not observe a complete curve or

surface, but a scatter of data points from P and S. Ideally, the data points from the

former lie on the projected curve we observe and the data from the latter lie on the

computational model surface (see Figure 3.2). Hence, what we observe is incomplete

data and we aim to match non-isometrically an incomplete curve to an incomplete

surface, which is equivalent to solving the calibration problem.

Figure 3.2: Non-isometric curve to surface matching perspective of local calibration

with incomplete data; compare with Figure 3.1. In practice, we observe a scatter of

data points sampled from the complete curve and surface, which is depicted in this

plot.

This geometric perspective that the calibration problem is a non-isometric curve

to surface matching problem, and that we are provided with a finite set of data points

from the curve and the surface, motivates us to view the problem through a discrete

combinatorial lens and model the problem using graph-theoretic approaches. Our

graph-based solution to the non-isometric curve to surface matching problem provides

us with a set of computational model data points, which carry information about the

calibration parameters. We call this set of computational data points anchor points.

56

These anchor points will then be used in Section 3.5 to construct prior distributions

for our Bayesian model.

We seek to identify a set of anchor points among the computational data points,

which intuitively are “close” to the points on the true physical curve. In other words,

the anchor points are positioned such that the true physical curve passes through

neighborhoods of those points. To find these anchor points, we desire two properties:

(i) the computational model response should be close to the physical response for a

given input x; and (ii) the parameter values for two consecutive anchor points should

be close to each other. The former drives our method to identify the anchor points

that have similar responses as that of the physical system, and the latter aims to

encourage the smoothness of the physical curve.

Note that we are only interested in identifying these “optimal” anchor points that

provide us with information about the true physical curve to be used in our prior dis-

tributions, and not the true physical curve itself. However, one could also directly use

the selected anchor points to approximate the true physical curve via interpolation.

Given our focus on expensive computational models wherein the number of compu-

tational model data points is limited, the approximation of the true physical curve

may not be accurate. In the next section, we formally define and address the problem

of finding anchor points with the desired properties using a rigorous graph-theoretic

approach, for the special case when x ∈ R and θ ∈ R and ψ ∈ ∅.

3.3.1 A graph-theoretic approach for finding anchor points

Without loss of generality, we assume that all the data points in the physical system

and the computational model datasets are strictly ordered such that xpi < xpi+1, for

all i ∈ [m − 1], and xsj < xsj+1, for all j ∈ [n − 1]. Then, we construct an edge-

weighted directed graph G = (V,E) where V = V0 ∪ {0, n + 1}, and the vertices in

V0 = [n] correspond to the computational model data points in S. We refer to G as

57

the calibration digraph (originally introduced in [79]).

We partition the V0 into m clusters C1, . . . ,Cm as follows: Consider any vertex

j ∈ V0 corresponding to sj ∈ S. Then, j is assigned to a unique cluster Ci for some

i ∈ [m] as follows

j ∈ Ci ⇐⇒ i = min

{
arg min
`∈[m]

{||xp` − xsj||2}

}
. (3.8)

Note that, if the inner minimum in (3.8) is not unique, then the tie is broken by

choosing the smallest index, by the outer minimum. As a consequence, each cluster

Ci is in 1-to-1 correspondence with the physical data point pi. We can now describe

the set of directed edges E as follows

E =
⋃

i∈[m−1]

{(u, v) | u ∈ Ci, v ∈ Ci+1}
⋃
{(0, u) | u ∈ C1}

⋃
{(u, n+ 1) | u ∈ Cm}.

(3.9)

This construction is illustrated in Figure 3.3.

The final critical step is assigning weights wuv to each edge (u, v) ∈ E. Consider

two consecutive clusters Ci and Ci+1 for any i ∈ [m] and let u ∈ Ci and v ∈ Ci+1.

Define wuv as follows

wuv = |ysu − ypu|+ λ||θsu − θsv||2, (3.10)

where λ > 0 is a scaling parameter. The weights w0,u for all u ∈ C1 and wu,n+1 for all

u ∈ Cm are identically zero. The edge-weight for any edge between two consecutive

clusters i and i + 1 consists of two parts: the first part represents the difference

between the model response and physical response; the second part represents the

difference between the calibration parameters of i and i + 1. On this digraph G, we

intend to solve the shortest (simple, directed) path problem from origin vertex 0 to

destination vertex n + 1. Every path from 0 to n + 1 in G has exactly m + 1 edges

by construction. Therefore, the m internal vertices on the shortest path that is found

will serve as the anchor points.

58

Figure 3.3: Illustration of the calibration digraph for the case where m = 4 and

n = 10. The vertices represent data points from the computational model and the

clusters C1 through Cm correspond to physical system data points p1 through pm.

Vertices denoted by dark circles with a white border represent the anchor points, and

the solid arrows identify the edges in the shortest path found.

Lemma 3.1 Calibration digraph G = (V,E) is acyclic with a topological ordering

〈0, 1, . . . , n, n+ 1〉.

Proof. It suffices to show that if (u, v) ∈ E, then u < v, which is trivially true when

u = 0 and v = n + 1. For distinct u, v ∈ V0, note that u < v ⇐⇒ xsu < xsv as we

have assumed the S to be strictly ordered. Suppose, u ∈ Ci and v ∈ Ci+1 for some

i ∈ [m− 1]. Hence, xpi < xpi+1, and by (3.8) we can conclude that the distinct points

xsu and xsv satisfy,

xsu ≤
1

2
(xpi + xpi+1) ≤ xsv.

SinceG is a directed acyclic graph, we can solve the shortest path problem using an

O(|E|) algorithm that scans out-going edges from each vertex in the topological order

and updating distance-labels as needed [7, 51] . Suppose 0−v1−v2−· · ·−vm−(n+1)

is the shortest path identified, then those sj corresponding to each v1 to vm serve as

the anchor points.

59

3.4 Generalization of the non-isometric curve to surface matching

problem to higher dimensions

In Section 3.3, we introduced the curve to surface matching interpretation of calibra-

tion with x ∈ R and θ ∈ R. This special case allowed us develop a graph-theoretic

approach to anchor point selection that admitted a linear-time algorithm. The geo-

metric perspective underlying that approach can be generalized to arbitrary dimen-

sions as a hyper-curve to hyper-surface matching problem. However, in the general

setting, there is no straightforward extension of the directed acyclic graph model.

Recall that the model hinges on the natural ordering of the computational and the

physical data points on the real line, which does not exist in higher dimensions. So in

this section, we introduce a different calibration graph model and an associated com-

binatorial optimization problem to find the anchor points in any arbitrary dimension.

As with the special case, the anchor points will subsequently be used in Section 3.5

to construct prior distributions for our Bayesian model.

For the general case, we construct a calibration graph G = (V,E) that is undi-

rected and edge-weighted, where V = [n]. We partition V intom clusters, C1, . . . ,Cm,

in correspondence with the m physical data points and assign vertex j to a unique

cluster Ci for some i ∈ [m] by the same rule in (3.8). The graph G is a complete

m-partite graph with partitions C1, . . . ,Cm with the edge set given by,

E =
⋃

i,`∈[m]
i<`

{{u, v} | u ∈ Ci, v ∈ C`} .

Figure 3.4 illustrates this construction.

Finally, before defining the edge-weights, we introduce two required concepts.

The calibration vector of the data point sj is given by [θs
T

j ,ψ
sT

j]T . It is desirable for

the calibration vectors of two neighboring anchor points to be close. For any two

data points sj, sj′ ∈ S, the computational dataset, are said to be neighbors if the

Euclidean distance of their control vectors is smaller than a predefined radius r, i.e.,

60

||xsj − xsj′ ||2 < r.

We assign the weight wuv to the edge {u, v} ∈ E, where u ∈ Ci and v ∈ C`, as

follows

wuv =

 |y
s
u − y

p
i |+ |ysv − y

p
` |+ λ||[θsTu ,ψsT

u]T − [θs
T

v ,ψ
sT

v]T ||2 if ||xsu − xsv||2 ≤ r

|ysu − y
p
i |+ |ysv − y

p
` |+M ||xsu − xsv||2 if ||xsu − xsv||2 > r,

(3.11)

where λ is a scaling parameter and M is a sufficiently large number. Note that the

weights assigned in (3.11) extend the ideas behind equation (3.10). Here, the edge-

weight between vertices u ∈ Ci and v ∈ C`, where su and sv are neighbors, consists of

two parts, similar to (3.10): the first part measures the distance between each vertex’s

response and the physical system response associated with the cluster to which it

belongs, i.e., |ysu−y
p
i | and |ysv−y

p
` |; the second part measures the distance between the

vertex’s calibration vectors, i.e., ||[θsTu ,ψsT

u]T−[θs
T

v ,ψ
sT

v]T ||2. Let E1 denote the set of

these edges that join neighbors. The remainder of the edges, E2 = E\E1 correspond to

edges between computational data points that are not neighbors. We assign relatively

large weights to these edges by setting M to a large value. Furthermore, the weight

on such edges increases as the distance between the control vectors of the end-points

increases.

61

(a) Calibration graph (b) Generalized minimum spanning tree

Figure 3.4: (a) A calibration graph where each black circle represents a vertex and

each two parallel lines represent edges between vertices of two clusters. (b) A gener-

alized spanning tree in the calibration graph

To identify the “optimal” anchor vertices on this calibration graph we use a min-

imum weight tree that selects exactly one vertex from each cluster to connect all

the clusters. In the combinatorial optimization literature, this problem is known as

the Generalized Minimum Spanning Tree (GMST) problem [63]. By construction, a

GMST will tend to include edges in E1 as they are lighter. However, if no GMST

exists that only uses edges in E1, it will be forced to include edges in E2.

3.4.1 Integer programming approach to GMST problem

GMST problem was introduced by the authors of [63] who showed that it is NP-

hard and does not admit a polynomial-time constant-factor approximation algorithm

unless P=NP. Since, comprehensive studies of the problem were undertaken in [78, 23].

For instance, the problem is known to be NP-hard even when restricted to trees

and admits a dynamic programming algorithm that is exponential in the number of

clusters, but quadratic in the number of vertices [76].

Consequently, considerable amount of work developing integer programming (IP)

62

formulations for this problem and studying the associated LP relaxations has been

undertaken by various authors [63, 24, 76, 77]. In addition to integer programming

approaches, heuristic approaches for solving the GMST problem are proposed in [78,

31]. Our focus in this section is on two strong formulations, one with exponentially

many constraints and the other compact, with polynomially many constraints and

variables, and using them to solve the anchor point selection problem in general

dimensions.

Cutset and subtour elimination formulations for this problem, analogous to those

available for the traveling salesperson problem and the minimum spanning tree prob-

lem (see for instance [8]), were first introduced by [63] and subsequently advanced by

others [78, 23]. These formulations also have directed counterparts, based on the ob-

servation that GMST problem is a special case of the generalized minimum spanning

arborescence (GMSA) problem, wherein we seek an arborescence of minimum weight

in a directed graph that is rooted at some vertex in a specified cluster and containing

exactly one vertex per cluster. We can transform the GMST problem to the GMSA

problem by replacing each undirected edge {i, j} of graph G with anti-parallel arcs

(i, j) and (j, i), also known as the complete orientation of G, with each arc assigned

the same weight as the undirected edge, and by arbitrarily choosing one of the clusters

to contain the root.

In addition to the aforementioned formulations with exponentially many con-

straints, multi-commodity flow based compact formulations for the problem are also

available that use polynomially many constraints and variables [63, 24, 76, 77]. For

a detailed review of the IP formulations available for this problem and a comparison

of the strength of the LP relaxations, we refer the reader to [24].

Authors of [24] showed that a strengthening of the directed counterpart of the sub-

tour elimination formulation, what they call the directed cluster subpacking (DCSUB)

formulation, is among the strongest in terms of the tightness of the LP relaxation, but

63

uses exponentially many constraints. For the remainder of this discussion we assume

we have the complete orientation of the weighted calibration graph G = (V,E), that

we denote by ~G = (V,A), on which we wish to formulate the GMSA problem. The

arc weights wuv for each (u, v) ∈ A are assigned by duplicating the corresponding

undirected edge-weights in G as described above and we require the arborescence to

be rooted at some vertex in the first cluster, C1. Recall that the vertex set V is parti-

tioned into clusters C1, . . . ,Cm. In the formulations that follow, we use the notations:

A(Q) = {(u, v) ∈ A | u, v ∈ Q ⊂ V}, δ+(u) = {a ∈ A | u is the tail of a}, and

δ−(u) = {a ∈ A | u is the head of a}. We use binary decision vectors q ∈ {0, 1}|A|

and b ∈ {0, 1}|V| to denote the incidence vectors of the arcs and vertices included in

the arborescence.

min
∑
a∈A

waqa (3.12a)

s.t.
∑
v∈Ci

bv = 1 ∀i ∈ [m] (3.12b)

quv + qvu ≤ 1 ∀{u, v} ∈ E (3.12c)∑
a∈A

qa = m− 1 (3.12d)

∑
a∈A(Q)

qa ≤
∑
v∈Q

bv − 1 ∀Q ⊂ V such that Q ⊃ Ci for some i ∈ [m] (3.12e)

∑
a∈δ−(v)

qa = bv ∀v ∈ V\C1 (3.12f)

b ∈ {0, 1}|V|, q ∈ {0, 1}|A| (3.12g)

Constraints (3.12b) enforce that the model choose exactly one vertex from each

cluster, constraints (3.12d) ensure that exactly m − 1 arcs from A are selected and

constraints (3.12c) ensure that these correspond to m−1 distinct edges in E. Cluster

subpacking constraints (3.12e) prevent solutions that contain cycles and were shown

by the authors of [24] to dominate the more familiar subtour elimination constraints

64

introduced in [63]:∑
a∈A(Q)

qa ≤
∑

v∈Q\{u}

bv ∀u ∈ Q ⊂ V such that 2 ≤ |Q| ≤ |V| − 1.

Finally, constraints (3.12f) ensure that every non-root vertex selected by the solution

has exactly one incoming edge and every vertex outside C1 that is not selected will

have no incoming arcs; along with the requirement that we choose exactly m vertices

and m− 1 arcs without creating cycles, this ensures that we obtain an arborescence

rooted at some vertex inside C1.

Next we present the multi-commodity flow (MCF) formulation for the GMSA

problem that avoids using exponentially many constraints, but uses an additional

set of variables. The MCF formulation treats every vertex v ∈ C1 to have supply

bv for each commodity i ∈ {2, . . . ,m} corresponding to the remaining clusters; it

treats every v ∈ Ci to have a demand of bv for commodity i. Suppose bv = 1 for some

v ∈ Ci, then a path must be traced from the root selected in C1 to deliver commodity

i. We use the additional set of commodity-flow variables f ia to denote the amount of

commodity i ∈ {2, . . . ,m} flowing on arc a ∈ A.

min
∑
a∈A

qawa (3.13a)

s.t. (3.12b), (3.12c), (3.12d), (3.12g)

∑
a∈δ+(v)

f ia −
∑

a∈δ−(v)

f ia =


bv, v ∈ C1

−bv, v ∈ Ci

0, v /∈ C1 ∪Ci

 ∀i ∈ {2, . . . ,m} (3.13b)

0 ≤ f ia ≤ qa ∀a ∈ A, i ∈ {2, . . . ,m} (3.13c)

Constraints (3.13b) are flow balance constraints for each commodity and constraints

(3.13c) prevent flows on the edges that are not selected.

Formulations (3.13) and (3.12) are both equally good in terms of the tightness of

the LP relaxations as the projection of the LP relaxation of the former on to the (b, q)-

65

space is the same as the LP relaxation of the latter [24]. As noted before, the former

is compact while the latter has exponentially many cycle elimination constraints.

Consequently, a direct monolithic implementation of formulation (3.12) is impractical

even for small scale problems.

Nonetheless, a delayed constraint generation approach could be effective in prac-

tice [12, 61]. This approach starts by relaxing formulation (3.12) by omitting con-

straints (3.12e). During the normal progress of an LP relaxation based branch-and-

bound algorithm to solve the relaxed IP, whenever integral solutions are detected, it

is necessary to verify if any violated constraint exists among those that were initially

excluded, and add them to the model. This ensures the overall correctness of the

algorithm. An effective implementation of such an algorithm is possible using the

“lazy cut” feature of most state-of-the-art commercial IP solvers as long as separa-

tion of the violated cycle constraints can be accomplished quickly. In Section 3.8, we

use DCSUB formulation along with delayed constraint generation for selecting anchor

points.

3.5 Prior distributions

In this section we describe how the information about the true physical curve carried

by the anchor points, which were found in Sections 3.3 and 3.4, can be utilized to

construct our prior distributions for the calibration parameters.

Suppose θai ,ψ
a
i be the calibration vectors of the anchor point associated with the

ith physical data point, i.e., the anchor vertex selected from the ith cluster. Define

the matrix Θa = [θa1, ...,θ
a
m]T of size m × dθ and the mean vector ψa = 1

m

∑m
i=1ψ

a
i

of length dψ. Note that for the mean vector, we take the average since we assume

that the global calibration parameters are constant regardless of the values of control

vectors.

For each component of ψp, we consider a univariate normal distribution centered

66

at the corresponding element in ψa with an unknown variance as the choice of the

prior distribution. Therefore, we have the following prior distribution for ψp:

ψp | ψa, τ 2 ∼ N (ψa, diag(τ 2)), (3.14)

where τ 2 is the vector of variances in the normal distributions with length dψ.

Applying the same procedure for constructing prior distributions for the local

calibration parameters increases the dimension of the parameter space, since we need

to define mdθ variance parameters, while these parameters are nuisance parameters

and not of interest to our model. Therefore, in order to shrink the parameter space,

we use the fact that the kth column of Θp, i.e. Θp
k, is actually a realization of

the functional relationship F θk . Therefore, kth column of Θa, i.e., Θa
k, is a rough

estimator of this realization. With this logic, we use a single variance parameter for

all the elements in Θp
k, and construct the prior distribution for Θp

k as:

Θp
k | Θ

p
k, ν

2
k ∼ N (Θa

k, ν
2
kIm), (3.15)

where ν2
k is the kth element of the vector of variances ν2 with length dθ.

The correctness of the normality assumptions in (3.14) and (3.15) is a legitimate

concern. In fact, there is no guarantee that the anchor points embrace the true phys-

ical curve because of the limited number data points from the computational model.

However, we note that we only make the normality assumptions in (3.14) and (3.15)

for constructing the prior distributions, and the Bayesian model will adjust these pri-

ors by likelihood (3.6). Moreover, in order to construct stronger and more accurate

prior distributions we recommend drawing samples from the computational model

only at the locations of the physical system inputs {xp1, ...,xpm}, as this increases the

likelihood of finding anchor points close to the true physical curve on the computa-

tional model surface.

67

3.6 Posterior distribution

In this section we complete posterior distribution (3.7) using the prior distributions

constructed in Section 3.5, and define proper prior distributions for the rest of the

parameter of the model as

p(Θp,ψp,ν2, τ 2,γ, α, σ2 | yp,Xp,Θa,ψa) ∝

p(yp | Xp,Θp,ψp,γ, α, σ2)p(Θp | Θa,ν2)p(ψp | ψa, τ 2)p(ν2)p(τ 2)p(γ)p(α)p(σ2),

where

yp | Xp,Θp,ψp,γ, α, σ2 ∼ N (0,Σ + σ2Im)

Θp
k | Θ

a
k, ν

2
k ∼ N (Θa

k, ν
2
kIm) ∀k ∈ [dθ]

ψp | ψa, τ 2 ∼ N (ψa, diag(τ 2))

ν2
k ∼

1

ν2
k

∀k ∈ [dθ]

τ 2
h ∼ Inv-Gamma(ατ , βτ) ∀h ∈ [dψ]

γj ∼ Log-Gamma(αγ, βγ) ∀j ∈ [dx + dθ + dψ]

α ∼ Log-Uniform

σ2 ∼ Log-Uniform.

For each ν2
k we use a flat Jeffreys prior [44], which is an inverse gamma distribution

with zero value for both of the shape and the scale parameter. For each τ 2
h we

choose a weak inverse gamma distribution, i.e., an inverse gamma with large variance,

with ατ = 2.1 and βτ = 10 as its parameters. Note that both of these priors are

conjugate for their associated parameters in the posterior distribution. Moreover, as

recommended in [28], to improve the identifiability of the model, we use the prior

distributions on the logarithmic scale for parameters of the GP part of the model.

Therefore, for σ2 and α we use a flat log-uniform distribution and for each γ2
j we

68

use a log-gamma distribution with the parameters α` = β` = 2. Hence, we have the

following full posterior distribution

p(Θp,ψp,ν2, τ 2,γ, α, σ2 | yp,Xp,Θa,ψa)

∝ |Σ + σIm|−0.5 exp{−1

2
ypT (Σ + σIm)−1yp}

×
∏
k

(ν2
k)−m/2−1 exp{−1

2ν2
k

(Θp
k −Θa

k)
T (Θp

k −Θa
k)}

×
∏
h

(τ 2
h)−1/2−ατ−1 exp{−1

2τ 2
h

(ψh − ψah)2} exp{−βτ
τ 2
h

}

×
∏
j

1

γ2
j

log(γ2
j)
αγ−1 exp{−βγ log(γ2

j)}

× 1

α
× 1

σ2
(3.16)

We use Gibbs sampling [27] to sequentially sample from the full conditional pos-

terior distributions. Note that the full conditional posterior distributions of all the

parameters except ν2
k and τ 2

h , which have inverse gamma distributions, require tak-

ing Metropolis-Hastings [58] steps due to their unknown forms. In next section we

explain how the samples drawn from the posterior distribution (3.16) can be used for

prediction of the calibration and response values of a new control vector.

3.7 Prediction of the calibration and the response variables

In order to make prediction for a new control vector x∗, first we need to predict its

associated local calibration vector θ∗ = F θ(x∗). We estimate the kth element of θ∗,

i.e., θ∗k, by fitting a GPR on F θk using the samples drawn form posterior distribu-

tion (3.16). First let the Θp(t) be tth draw from posterior distribution (3.16) after

some burn in period, where t ∈ [T]. Since Θp
k(t) is in fact one realization of F θk at

design locations {xp1, ...,xpm}, so we can write

Θp
k(t) = [F θk (x1), ...,F θk (xm)]T + [εθ1, ..., ε

θ
m]T , (3.17)

69

where [εθ1, ..., ε
θ
m]T ∼ N (0, σθkIm).

By assuming a GP distribution on each F θk , i.e., F θk ∼ GP
(
0,K(·, ·)

)
, we have the

following normal distribution for Θp
k(t)

Θp
k(t) ∼ N (0,ΣXpXp + σθkIm), (3.18)

where we use the notation ΣZZ′ as the covariance between columns of matrices Z and

Z′.

Moreover, we can write the joint distribution of Θp
k(t) and the prediction of θ∗k for

the tth draw, i.e., θ∗k(t), asΘp
k(t)

θ∗k(t)

 ∼ N
0,

ΣXpXp + σθkIm ΣXpx∗

Σx∗Xp Σx∗x∗


 . (3.19)

By conditioning on Θp
k(t) in (3.19), the point prediction of θ∗k(t) is obtained,

θ∗k(t) = Σx∗xp(ΣXpXp + σθkIm)−1Θp
k(t). (3.20)

Note that for each tth prediction in (3.20), we need to tune the hyper-parameters

of the covariance function used in (3.18), which can be obtained by maximizing the

following logarithm of likelihood corresponding to (3.18) [88],

log

(
p
(
Θp
k(t)
))
∝ − log |ΣXpXp + σθkIm| −ΘpT

k (t)(ΣXpXp + σθkIm)−1Θp
k(t). (3.21)

To find point and interval predictions for the new response y∗, we make T predic-

tions based on the T samples we drew from posterior (3.16) and the T predictions we

made for the vector θ∗ using (3.20). To this end let ψp(t),γ(t), α(t), σ2(t) be tth sam-

ples from posterior (3.16), and θ∗(t) = [θ∗1(t), ..., θ∗
dθ

(t)]T be the prediction of the local

calibration vector obtained from (3.20). Since we have assumed a GP distribution on

F s, we can use the GP predictive distribution to derive the tth prediction,

y∗(t) ∼ N
(

Σv∗(t)V(t)

(
ΣV(t)V(t) + σ2(t)Im

)−1
yp,

Σv∗(t)v∗(t) −Σv∗(t)V(t)

(
ΣV(t)V(t) + σ2(t)Im

)−1
ΣV(t)v∗(t)

)
, (3.22)

70

where v∗(t) = [xT∗ ,θ
∗T (t),ψpT (t)]T , V(t) = [XP ,ΘP (t),1m×dψdiag(ψp(t))]T , and the

covariance matrices are calculated by the tth sample of the covariance parameters,

i.e., γ(t), α(t). Note that the trasformation 1m×dψdiag(ψp(t)) uses the m×dψ matrix

of ones, 1m×dψ , to construct a m× dψ matrix whose rows are ψpT (t).

Finally, we derive our prediction using predictive distribution (3.22),

µ̂∗ =
1

T

T∑
t=1

(
Σv∗(t)V(t)

(
ΣV(t)V(t) + σ2(t)Im

)−1
yp
)
,

σ̂2
∗ =

1

T 2

T∑
t=1

(
Σv∗(t)v∗(t) −Σv∗(t)V(t)

(
ΣV(t)V(t) + σ2(t)Im

)−1
ΣV(t)v∗(t)

)
.

3.8 Experimental results

We evaluate the performance of the proposed model by testing it on two synthetic

and two real calibration problems and compare the results with the competing local

calibration models, i.e., Non-parametric Functional Calibration (NFC) [84], Para-

metric Functional Calibration (PFC) [81], and Non-parametric Bayesian Calibration

(NBC) [10]. We also refer to our model as Bayesian Non-isometric Matching Calibra-

tion (BMNC), and summarize the properties of all the four models in Table 3.1:

Model Main method Confidence interval Surrogate modeling

NFC Risk minimization in Repro-

ducing Kernel Hilbert Spaces

(RKHS)

No Yes

PFC Risk minimization in Repro-

ducing Kernel Hilbert Spaces

(RKHS)

No Yes

NBC Bayesian inference and GPs Yes Yes

BMNC Bayesian inference and GMST Yes No

Table 3.1: Properties of different local calibration models

Moreover, for evaluating the accuracy of predictions, we use the Root Mean

71

Squared Error (RMSE),

RMSE =

√√√√1

c

c∑
i=1

(yi∗ − µ̂i∗)2 (3.23)

where yi∗ is the true response for a given xi∗ and µ̂i∗ is its predicted value.

3.8.1 Synthetic problems

The first synthetic problem we examine has two control variables and one local cali-

bration variable. We define

F s(x, θ) = 0.4(x2
1 + x2

2) sin2(0.7x2)
x1 + x2

θ2 + 1

and

Fp(x) = 0.4(x2
1 + x2

2) sin2(0.7x2),

where F θ(x) = (x1 + x2− 1)0.5. We locate m = 16 control vectors, i.e., xpi , uniformly

on the square [0, 3.5]× [0, 3.5]. Then for each xpi , we sample 10 calibration variables

randomly from the interval [0, 5]; therefore, we have total of n = 160 computational

data points. Finally, we sample 10 random x∗ from the same square [0, 3.5]× [0, 3.5]

to form a test dataset. We also set λ = 0.5 and r = 0.9.

Figure 3.5 shows the 95% confidence interval predictions for the responses and the

calibration variables for the test dataset of the first synthetic problem. Since xp ∈ R2,

we plot the predicted values against their indices, and connect the data points to each

other for better a demonstration in Figure 3.5.

As noted in Section 3.2, due to the limited number of samples we have from the

computational model, we cannot accurately recover F θ, but the way we train the

hyper-parameters of the GP compensates for this inaccuracy. We can observe this

fact in Figure 3.5, where prediction of responses have more accuracy and tighter

confidence intervals comparing to those of calibration variables.

72

(a) (b)

Figure 3.5: 95% confidence interval predictions for calibration variables and responses

of the test dataset of the first synthetic problem

Finally, Table 3.2 compares the accuracy of our results with the other competing

models, and shows that BNMC obtains the best prediction accuracy. Also note that

overall, the Bayesian-based models, i.e., NBC and BNMC, perform better than RKHS

based models.

Model RMSE

NFC 0.2387

PFC 0.4122

NBC 0.1317

BNMC 0.0756

Table 3.2: RMSE of different models for the first synthetic problem

The second synthetic problem was originally used in [10] and has one control, one

local calibration, and one global calibration variables. The computational and the

physical models are defined as

F s(x, θ, ψ) = θ + ψx2,

73

and

Fp(x) = 2
√
x+ 2.5x2.

Therefore, the true calibration variables are ψ = 2.5 and F θ(x) = 2
√
x. We locate

m = 15, and five physical control variables for training and testing at locations

{0, 0.05, 0, 1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95} and {0.45, 0.50,

0.55, 0.60, 0.65}, respectively. Following the same procedure as the previous example,

we sample 10 calibration vectors for each physical control variable randomly from the

square [0, 5] × [0, 5]; therefore, we have total of n = 150 computational data points.

We also set λ = 1 and r = 0.16.

Figure 3.6 shows the 95% confidence interval predictions for the responses and the

calibration variables for the test dataset of the second synthetic problem. Observe

that similar to the previous example, confidence intervals are tighter for the responses

compared to those of calibration variables.

For the second synthetic problem, we just compare the results of NBC and BNMC,

since NFC and PFC only apply to univariate calibration variables. Table 3.3 shows

that BNMC outperforms NBC in terms of RMSE. Note that the reported RMSE

in [10] for this problem under the cheap computational code assumption, which we

refer to as NBC(cheap), has a better accuracy than BNMC, however, here BNMC is

superior when NBC uses surrogate modeling.

Model RMSE

NBC 0.1732

NBC(cheap) 0.0538

BNMC 0.0631

Table 3.3: RMSE of different models for the second synthetic problem

74

(a) (b)

Figure 3.6: 95% confidence interval predictions for calibration variables and responses

of the test dataset of the second synthetic problem

3.8.2 Real problems

The first real problem, PVA, has one control variable and one calibration variable [81]

. We use m = 11 physical and n = 150 computational data points, and use a 4-fold

cross validation to form the training and test datasets. Also, we set λ = 0.5 and

choose r = 0.5.

Table 3.4 shows the results of applying all the local calibration models to the PVA

problem, where BNMC and NBC perform better than the RKHS-based models.

Model RMSE

NFC 0.379

PFC 0.450

NBC 0.281

BNMC 0.296

Table 3.4: RMSE of different models for the PVA problem

Moreover, since we do not know the true calibration values, in Figure 3.7 we only

75

show the 95% confidence interval predictions for the responses and compare them

with the true values of responses.

Figure 3.7: 95% confidence interval predictions for the test responses of the PVA

problem

Spot welding is the second real problem originally used in [84] with three control

variables and one calibration variable. This dataset contains n = 35 computational

and m = 12 physical data points. We use 4-fold cross validation to form the training

and test datasets. Also, we set λ = 2 and r = 4

Table 3.5 shows the prediction accuracy of all the models, where BNMC outper-

forms all the competing models. In fact, since BNMC is designed to handle expensive

computational models with small number of computational data points, it performs

much better on the small spot welding training dataset in comparison to the compet-

ing models.

Model RMSE

NFC 0.683

PFC 1.115

NBC 0.516

BNMC 0.409

Table 3.5: RMSE of different models for the spot welding problem

76

Finally, similar to PVA, since we do not know the true calibration values, we only

illustrate the 95% confidence interval predictions for the responses and compare them

with the true response values in Figure 3.8. Note that similar to the first synthetic

problem, we plot the prediction values against their indices, due to the dimensionality

of xp.

Figure 3.8: 95% confidence interval predictions for the test responses of the spot

welding problem

3.9 Summary

We proposed a Bayesian Non-isometric Matching Calibration model for calibration

of expensive computational models. We addressed the restriction of having a limited

budget to evaluate computational models by replacing the computational function by

a GP, which was trained during the calibration procedure. We used a Bayesian frame-

work to simultaneously train the hyper-parameters of the GP’s covariance function

and make inferences on the calibration variables associated with the physical data

points. To construct informative prior distributions for BNMC we used a geometric

interpretation of calibration based on non-isometric curve to surface matching. This

point of view enabled us to use graph-based approaches to address the problem of

finding a set of anchor points used in constructing informative prior distributions. For

77

a special case, i.e., single control and calibration variables, we introduced the shortest

path model on a directed acyclic calibration graph to tackle the problem of find-

ing anchor points, while for the general case, we introduced the GMST model. Our

numerical experiments conducted on four calibration problems showed that BNMC

outperformed the existing calibration models under the assumption of expensive com-

putational models.

78

CHAPTER 4

A SIMILARITY-BASED FORCASTING MODEL FOR

SPATIO-TEMPORAL SYSTEMS WITH A FOCUS ON SHORT-TERM

WIND SPEED FORECASTING IN WIND FARMS

4.1 Introduction

Wind energy has been hailed as a promising source of renewable energy. The increas-

ing consumption of wind energy over the past two decades in developed countries as-

serts the significance of this source (http://energy.gov/eere/wind/wind-program).

Although advances in technology have enabled wind farms to harness wind power ex-

tensively, a significant potential exists to fully utilize the available wind power. One

challenge for utilizing this potential is caused by a lack of cost effective technologies

capable of saving the wind energy for future demands. Hence, as wind blows, we need

to convert it to wind energy and flow it to power grids. However, real time integration

of wind farms into power grids has been hindered by the volatility of wind, which in

turn results in a high degree of uncertainty for power generated by wind farms. This

uncertainty can exert additional costs on power grids by failing to meet the power de-

mand, through underestimating or overestimating the available wind power. Hence,

wind power systems will greatly benefit from models that can accurately forecast the

available wind power, specifically, in short intervals.

Physical and data-driven modeling are two main approaches for wind power fore-

casting. Physical approaches use physical specifications of wind farms and surround-

ing areas to build computational fluid dynamic (CFD) models based on physical

principles [97, 73]. These CFD models are then used to simulate wind farms and

79

forecast the wind speed and the wind power in future. On the other hand data-

driven models use historical wind speed, wind power, and other weather conditions

data to build statistical forecasting models [14].

One key element in both physical and data-driven wind power forecasting in short

intervals is forecasting the wind speed. There is a rich body of literature in statistical

short-term wind speed forecasting, which can be generally categorized into two classes

of autoregressive-based and kernel-based models. In autoregressive-based models,

conventional time series analysis techniques, i.e., techniques developed by autoregrs-

sion, are utilized [11, 103, 68]. These models have been improved by incorporating spa-

tial information to predictive models using vector autoregressive approaches [80, 119].

The state-of-the-art autoregressive-based models, Regime-switching Space-Time Di-

urnal (RSTD)[30], Trigonometric Direction Diurnal (TDD), and Bivariate Skew-T

(BST) [40], are used in this chapter as the competing models. The second class

of models, kernel-based models, use supervised machine learning approaches to im-

prove the forecasting accuracy [62, 54, 21, 52]. These models first convert the time

stamped observations to regression type datasets and then apply modified versions of

kernel-based learning algorithms for wind speed forecasting.

In this study, we take a similarity-based approach to tackle the problem of short-

term wind speed forecasting. As mentioned in Section 1.1.2, similarity-based models

are a group of non-parametric linear smoothers introduced and fully axiomatized in

the field of economics [29]. These models make prediction by taking weighted average

of historical observations based on the similarity of the input variables. However, in

our similarity-based forecasting model, we redefine the notion of similarity as degree

of resemblance between two sequences of consecutive observations, which we call pat-

tern vectors, in two periods of time. Under the assumption that future observations

of similar patterns resemble each other, we use an average of historical observations

weighted based on the similarity of their pattern vectors to forecast the future obser-

80

vation.

Similarity-based models use similarity functions to assign weights to observations

in the weighted averaging procedure. These functions are in fact biargumental, sym-

metric, and positive valued functions that take two input vectors and measure the

similarity between them by a positive value. Similarity functions can take any rea-

sonable form under the axioms stated in [53]. Following [29], we use the empirical

similarity function, which is in fact a version of the squared exponential kernel func-

tion (1.3), to non-linearly search for similar pattern vectors and weight observations.

Moreover, our similarity-based forecasting model allows the pattern vectors to be

more complex than just what was defined. In fact, in addition to prior consecutive ob-

servations at each time, these vectors can contain any necessary explanatory variables

such as spatial information in other locations and temporal component. Therefore, we

use a variable selection procedure to select efficient variables for the pattern vectors.

The proposed model can also be viewed as an autoregressive approach whose order

is equal to number of historical observations, and the parameters are estimated by

the similarity of the patterns. However, a fundamental difference between these two

approaches is the following: autoregressive models assume only recent observations

suffice to forecast the future, but in the similarity-based approach, observations in a

distant past may be very informative for prediction due to the similarity in patterns.

Note that this interpretation does not mean that we disregard time dependence of

observations in our model, since the variable selection procedure gives us the flexibility

to add any necessary temporal components to pattern vectors.

The idea of similarity-based forecasting for short-term wind forecasting was ini-

tially proposed in [91] using a Bayesian paradigm to estimate the magnitude param-

eters. However, the use of Markov Chain Monte Carlo simulation techniques make

this approach computationally inefficient. Here, we take a frequentist approach (akin

to that of [117]) and estimate the parameters of the model using the method of Least

81

Squared Errors, which is computationally much more efficient. Moreover, the pro-

posed model is equipped with a variable selection procedure which makes it flexible

to be easily applied to other spatio-temporal systems.

We apply our model to the dataset used in [30] and [40] to forecast 2-hours-ahead

wind speed. The numerical results show a great improvement in forecasting accuracy

compared with competing vector autoregressive-based models, i.e., TDD, BST, and

RSTD.

The remainder of this chapter is organized as follows. Section 4.2 discusses what

makes the similarity-based models suitable for spatio-temporal analysis. Section 4.3

briefly explains the U.S. pacific northwest wind farm dataset used in this study.

Section 4.4 explains our similarity-based forecasting model including the parameter

training and variable selection procedures. Section 4.5 illustrates the experimental

results, and Section 4.6 summarizes the chapter.

4.2 Why similarity-based models suit analysis of spatio-temporal

systems better than the kernel-based models

Despite the relationship between the similarity-based models and the kernel-based

models, specifically GPR and NWR, in the class of nonparametric linear smoothers

discussed in Section 1.1.2, here we point out two fundamental differences that make

the similarity-based model more suitable for spatio-temporal forecasting than the

kernel-based models.

First, kernel-based models assume that an underlying functional relationship be-

tween inputs and outputs exists, whereas similarity function used in the simlarity-

based model is itself a part of the data generating process, which has been rigorously

justified by the axioms of [29]. The latter is in fact a more realistic assumption in time

series analysis, since there might be no valid functional relation between previous and

future observations in a stochastic process changing over time.

82

Second, parameters in kernel functions have statistical interpretations that de-

termine the behavior of the underlying function being estimated. For instance, in

squared exponential kernel (1.3), parameter γ determine smoothness of the underly-

ing function. On the other hand, the values of magnitude parameters in the empirical

similarity function represent the extent of contribution of each variable in searching

for similarities. In other words, similar to parametric regression models [59], magni-

tude parameters signify the importance of the variables used in modeling; therefore,

these parameters allow us to rank and select significant variables as well as carry out

hypothesis testing.

4.3 U.S. pacific northwest wind farm dataset

In this study, we use the same meteorological dataset used and fully explained in [30].

This dataset contains wind speed and wind direction measured every 10 minute at

three meteorological towers along the Columbia river in the U.S. Pacific Northwest:

Vansycle, Kennewick and Goodnoe Hills, during a period of nine months from March

1, 2003 to November 30, 2003. In addition to these two pieces of information for

each location, we add three more attributes to the dataset by computing the hourly

average of wind speed using the 10-minute measurements for each meteorological

tower, and our goal is to predict the hourly average of wind speed in 2-hours-ahead

at Vansycle. In Section 4.5, we apply our model explained in Section 4.4 to this

dataset and compare the results with competing methods.

4.4 Similarity-based model for forecasting

Given a training dataset containing N observations, D = {(xi, yi) | i ∈ [N],xi ∈

Rp, y ∈ R}, authors of [29] proposed and fully axiomatized a similarity-based predic-

tion model, wherein for a new input vector x∗, the corresponding y∗ can be predicted

by taking the weighted average of the training data points weighted by a similarity

83

function,

ŷ∗ =

∑n
i=1 S(xi,x∗)yi∑n
i=1 S(xi,x∗)

, (4.1)

where S : Rp×Rp → R is an empirical similarity function that measures the closeness

between two observations in terms of their input vectors. Empirical similarity function

can take any reasonable form under a few conditions stated in [53]. Following [29],

we choose the anti-isotropic squared exponential function used in Chapters 2 and 3

as our similarity function,

S(x,x′) = exp

(
−

p∑
r=1

wr(xr − x′r)2

)
. (4.2)

In the context of similarly-based modeling, we distinguish the parameters of

the empirical similarity function from the length-scale parameters in anti-isotropic

squared exponential function, by denoting them as magnitude parameters, w =

[w1, . . . , wp]
T (See Section 4.4.1 for further discussion on the magnitude parameters).

We modify the idea of similarity-based prediction to use it for forecasting by in-

troducing pattern vectors as follows: Given a time series data, which is a sequence

of observations of a system indexed by time labels [t], i.e., {z0
i | i ∈ [t]}, we prelim-

inarily define a pattern vector corresponding to time i as a vector of l consecutive

observations ending at i, i.e, [z0
i−l+1, . . . , z

0
i]. Subsequently, we define similarity as the

rate of resemblance between two pattern vectors corresponding to time i and j that

is measured by similarity function (4.2), S([z0
i−l+1, . . . , z

0
i]
T , [z0

j−l+1, . . . , z
0
j]
T).

In fact, pattern vectors indicate most recent trend of observations up to a specific

time, so it is reasonable to assume that if two pattern vectors resemble each other,

then their immediate futures are similar. Based on this assumption, to forecast the

future observation in q time units ahead at time t, i.e., z0
t+q, we find the patterns

similar to the most recent pattern that is [z0
t−l+1, . . . , z

0
t]
T , and use q time units ahead

observations of the similar patterns to forecast z0
t+q. In other words, in this approach,

we associate each observation z0
i with a unique pattern vector ending at q time units

84

before i, i.e., [z0
i−q−l+1, . . . , z

0
i−q]

T ; subsequently, the weighted average (4.1) is modified

to

ẑ0
t+q =

∑t
i=l+q S([z0

i−l−q+1, . . . , z
0
i−q]

T , [z0
t−l+1, . . . , z

0
t]
T)z0

i∑t
i=l+q S([z0

i−l−q+1, . . . , z
0
i−q]

T , [z0
t−l+1, . . . , z

0
t]
T)

. (4.3)

Moreover, to take the time dependence between the observations into account, we

expand the pattern vector corresponding to time i by adding temporal components,

such as time index, periodical components, etc., as [z0
i−l+1, . . . , z

0
i , T Ti−l+1, . . . , T Ti]T ,

where each Ti is a vector of temporal component belonging to time i.

The pattern vectors can be further augmented in the presence of additional vari-

ables. For instance, if the spatio-temporal dataset, {zi | i ∈ [t]}, is available,

where each zi is a vector of observations at time i in multiple locations, i.e., zi =

[z0
i , z

1
i , ..., z

r
i]
T , we can replace the single observation z0

i by the vector of observation

zi in the pattern vector. We call the pattern vectors containing all the temporal and

additional variables initial pattern vector and denote it by xi,

xi = [zTi−l+1, . . . , z
T
i , T Ti−l+1, . . . , T Ti]T . (4.4)

Considering all the variables in (4.4) can result in large pattern vectors causing

lengthy training time (see discussed Section 4.4.1), thus, we select an effective subset

of variables among the variables included in the initial pattern vector through a

variable selection procedure (see Section 4.4.2). We call the vector of the selected

variables as truncated pattern vector and denote it as x0
i .

Finally, since the observations have a chronological order, we can use a search

length parameter m to search for similar patterns in the last m observations, as such

equation (4.3) is modified to

ẑ0
t+q(m) =

∑t
i=t−m+1 S(x0

i−q,x
0
t)z

0
i∑t

i=t−m+1 S(x0
i−q,x

0
t)

. (4.5)

85

Figures 4.1a and 4.1b illustrate two simple scenarios based on a univariate time

series from the dataset discussed in Section 4.3. In both figures, we set q = 2, m = 80,

t = 100, so the target is z0
102. Circles in each of the figures show those z0

i s whose

assocciated patterns are close to the last pattern x0
100, and the thickness of each circle

indicates the weight assigned to each data point. For Figure 4.1a, we construct x0
i = z0

i

which is a univariate pattern; subsequently, the empirical similarity function with an

arbitrary w can be superimposed on the center line going through the last pattern x0
100,

so those data points whose patterns are closer to the center line gain higher weights,

and those outside the two threshold lines are assigned almost zero weights. Note that

the choice of w determines the width of weighting area. Moreover, for Figure 4.1b, we

add a diurnal component with the period of 24, which is the inherent diurnal period

for this time series, to the pattern vectors, i.e., x0
i = [z0

i , Ti = mod(i, 24)]T , and assign

arbitrary but relatively equal magnitudes to each of the dimensions, so that both the

dimensions have equal impact on the pattern searching process.

We can observe that selected z0
i s and their assigned weights are different in the

two figures. To determine which pattern vector is more effective and what the optimal

values of the magnitude parameters are for each model, we need to devise procedures

for variable selection and training parameters which will be discussed in the next two

section, respectively.

86

(a) First Scenario: x0
i = z0

i . The height of the bell curve indicates the weight assigned to

each data point by the empirical similarity function with an arbitrary magnitude w. The

weights assigned to the data points outside the threshold lines are almost zero.

(b) Second scenario: xi = [z0
i , Ti = mod(i, 24)]T . Curvy lines indicate the beginning of each

diurnal period. Magnitude of both of the dimensions are selected arbitrarily but relatively

equal, so both of the dimensions in the pattern vectors have equal impact on the weighting

process

Figure 4.1: Illustration of searching and weighting similar historical observation using

two simple scenarios based on a univariate time series data with the following settings:

q = 2, m = 80, t = 100, and target z0
102. Thickness of the circles indicates the weights

assigned to each observation

87

4.4.1 Training the magnitude parameters

Magnitude parameters show the relative significance of the variables included in the

pattern vectors. A relatively large value of a wr magnifies the weighted Euclidean

distance in the exponent of (4.2) even with a small deviation of the variable asso-

ciated with wr. This large value of the weighted Euclidean distance rapidly takes

the similarity value to zero regardless of proximity of other variables. In other words,

the variables with relatively small magnitude parameters become important given the

variables with larger magnitude parameters are close enough. Consequently, Magni-

tude parameters play key roles in finding the real similar observations, and should be

trained prior to forecasting.

For accurate forecasting of z0
t+q at time t, we train the model based on the n last

observations prior to t, i.e., {z0
t−n+1, . . . , z

0
t }, by using the method of Least Squared

Errors (LSE). In this method, we minimize the sum of squared errors in forecasting

of n last observations, with a constant search length period parameter (m), and with

respect to magnitude vector w. We first define the sum of squared errors function as

SSE(t,m, n,w) =
t∑

j=t−n+1

(ẑ0
j (m)− z0

j)
2, (4.6)

where z0
j is the actual observation at time j and ẑ0

j (m) is the forecasted value of this

observation with respect to the magnitude vector w,

ẑ0
j (m) =

∑j−q
i=t−m−q+1 S(x0

i−q,x
0
j−q)z

0
i∑j−q

i=t−m−q+1 S(x0
i−q,x

0
j−q)

. (4.7)

Consequently, we define the following LSE optimization problem,

w∗ = argmin
w

SSE(t,m, n,w). (4.8)

Optimization problem (4.8) can result in negative optimal weights which is mean-

ingless in terms of the similarity between observations. These negative optimal

88

weights can occur either by collinearity between variables, i.e., redundancy, or ir-

relevancy of some variables to the response variable z0
j . In both cases including such

variables to the model causes not only difficulty to interpret the model, but also

overfitting. For instance, in the wind speed dataset, the last 10-minute and the last

hourly average wind speed are highly collinear, where the R-square statistics is about

95%; therefore, if both variables enter the pattern vector, one of them obtains a nega-

tive magnitude in the optimization procedure. Consequently, to prevent the negative

weights problem, we force the model to assign a positive value to each wr by adding

the following constraint to (4.8),

min
w

SSE(t,m, n,w)

s.t. w ≥ 0,

(4.9)

where w ≥ 0 means every components of w should be non-negative.

There are several ways to solve constrained optimization problem (4.9). For in-

stance, one can use projected gradient descent [66] to find the optimal solution. How-

ever, here we convert problem (4.9) to an unconstrained optimization by introducing

a penalty term [5]. In this method we relax the constraints by adding a penalty term

to the objective function that penalizes the objective for negative values of the mag-

nitude parameters. By this transformation, we can use unconstrained optimization

techniques to obtain the optimal values of the magnitude parameters in a time effi-

cient manner. The penalty term used here has the exponential form
∑|x0|

r=1 exp(−λwr),

where λ is a sufficiently large positive number, and |x0| is the length of the pattern

vectors. This penalty function assumes large values for negative values of wr, and

therefore, increases the objective value, whereas positive values of wr does not af-

fect the objective (4.6), since the penalty term drops rapidly to zero. Therefore, we

minimize the following penalized function instead,

PSSE(t, n,m,w, λ) = SSE(t, n,m,w) +

|x0|∑
r=1

exp(−λwr). (4.10)

89

To minimize the function (4.10) we use the method of gradient descent, which is

an iterative numerical optimization procedure [56]. In this technique, starting from

an arbitrary point in the domain of the function, we gradually reach a local optimum

by moving along the negative gradient vector at each step. Therefore, calculating the

partial derivatives at each point is necessary.

∂

∂ wr
(PSSE(t, n,m,w, λ)) =

− λ exp(−λwr) + 2
t∑

j=t−n+1

(ẑ0
j (w,m)− z0

j)
∂

∂ wr
ẑ0
j (w,m),

where

∂

∂ wr
ẑ0
j (w,m) =

j−q∑
i=t−m−q+1

Srijz0
i

j−q∑
i=t−m−q+1

Sij −
j−q∑

i=t−m−q+1

Sijz0
i

j−q∑
i=t−m−q+1

Srij

(
j−q∑

i=t−m−q+1

Sij)2

,

Sij = S(x0
i−q,x

0
j−q),

Srij = S(x0
i−q,x

0
j−q)(x

r
i−q − xrj−q)2,

and xri−q is the rth element of vector x0
i−q.

4.4.2 Variable selection

Along with the negative magnitude parameters and over-fitting problems discussed

in Section 4.4.1, presence of many variables in the similarity-based forecasting model

increases the training time, since calculating each similarity weight is order of O(|x0|)

so evaluating the SSE function in (4.6) takes asymptotically O(mn|x0|) for each

iteration of the optimization procedure. Consequently, by shrinking the initial pattern

vectors prior to running the training procedure, we can reduce the training time. In

this section, we use a stepwise variable selection procedure to truncate the initial

pattern vectors.

90

We follow the stepwise variable selection method used in ordinary least squares

regression for our purpose. As such, if we denote the SSE of the full model with pf

number of parameters as SSEf , and SSE of the nested reduced model with pr number

of parameters as PSSEr, under the ε
i.i.d∼ N (0, σ2) assumption, SSEf , SSEr, and

(SSEr−SSEf) follow the chi-square distribution with (n−pf), (n−pr), and (pf −pr)

degrees of freedom, respectively [60]; consequently, (
SSEr−SSEf
pf−pr

)/(
SSEf
pf

) follows the F

distribution with (pf − pr) and (n− pf) degrees of freedom. In the forward selection,

if the calculated F statistic exceeds the predetermined F value, the extra variables

in the full model are significant and can enter the model. Table 4.1 summarizes this

procedure.

Name SSE df MSE

Full model SSEf n− pf MSEf =
SSEf

n−pf

Reduced model SSEr n− pr MSEr = SSEr

n−pr

Difference SSEd = pf − pr MSEd = SSEd

(pf−pr)

SSEr − SSEf

F statistics (pf − pr, n− pf) MSEd/MSEf

Table 4.1: Sum of squares analysis.

Authors of [3] showed that although the calculated sum of squares ratio does not

follow the exact F distribution for non-linear models, we still can apply the same

setting, since the effect of the non-linearity in parameters is negligible in the F ratio;

therefore, Table 4.1 can be used in our non-linear model by replacing SSE by PSSE

values.

In practice, we take the following steps for variable selection:

1. Consider the initial pattern vector containing all the potential variables, i.e.,

xi = [zTi−l+1, . . . , z
T
i , T Ti−l+1, . . . , T Ti]T . This vector can be very large depending

on the dimension of each, zi, the number of lags, l, and choice of the temporal

91

component, T .

2. Decide on the type of the stepwise approach, i.e., forward, backward, or hybrid,

and the level of significance, α, for allowing variable to enter or leave the pattern.

Note that in the forward selection, x0
i = [], and in backward selection, x0

i = xi,

initially.

3. Calculate the PSSEr and PSSEf and the subsequent F statistics at each step.

4. Decide which variable(s) should leave or enter the model by comparing the F

statistics and the F value determined in step 3.

5. Recalculate PSSEr and PSSEf with the updated patter vectors.

6. Continue until no variable can leave or enter the pattern.

We note that due to the dynamic nature of many spatio-temporal systems the

importance of the variables changes over time. Therefore, these systems benefit from

executing the variable selection procedure before each forecasting. However, the vari-

able selection is a time consuming procedure, which makes this approach impractical

for the systems in which forecasting in short intervals is required.

Moreover, in addition to the variable selection procedure, the exponential penalty

term in the PSSE function (4.10) can be used for variable selection as well, since it

sets the magnitude parameters of many of the potentially irrelevant and redundant

variables, which could obtained negative values, exactly to zero. However, it is not

reasonable to merely rely on the penalty function to find the significant variables,

because we need to train a larger number of parameters which result in lengthy

training times.

Consequently, based on the foregoing discussion, we suggest running the variable

selection procedure to refresh the truncated pattern vectors on a daily, weakly or

92

monthly basis, depending on the system of interest, while using the penalty term to

avoid the problem of negative magnitudes.

4.5 Experimental results

In this section, we apply our similarity-based forecasting model to the wind dataset

explained in Section 4.3. Section 4.5.1 introduces the notations and the variables

involved in the initial pattern vectors, Section 4.5.2 explains the numerical procedure

of choosing proper values of the training length and the search length parameters,

Section 4.5.3 discusses the variables selected for the pattern vectors through the vari-

able selection procedure, and Section 4.5.4 compares the results with the competing

models.

4.5.1 Notations

Let zi denote the vector of observations during the ith hour that contains the following

information associated with each of the locations Vansycle (v), GoodnoeHills (g), and

Kennewick (k):

• Hourly wind speed average: Avi , A
k
i , and Agi , where Avi = z0

i .

• Last 10-minute wind speed: Lvi , L
k
i , and Lgi

• Hourly wind speed standard deviation : σvi , σ
k
i , and σgi

• Trigonometric transformation of the last 10-minute wind direction: Dv
i , D

k
i , and Dg

i ,

where each Di is in fact a pair of variables. For instance, if we denote the last

10-minute wind direction at Vansycle as dvi , then Dv
i = [sin(dvi), cos(dvi)]

T

• Interaction between the last 10-minute of the wind speed and the wind direction:

LDv
i , LD

k
i , and LDg

i , where for instance, LDv
i = [Lvi ∗ sin(dvi), L

v
i ∗ cos(dvi)]

T

93

Note that we could include more variables to zi such as rest of the 10-minute wind

speeds and direction measurements or other interaction terms; however, these vari-

ables are highly correlated with the variables mentioned in the above list; therefore,

adding them does not help to improve the performance of the model.

Moreover, as discussed in [30], a diurnal periodicity exists in the data. This diur-

nality can be illustrated by taking the average wind speed in Vanscycle during each

hour of day over the nine months of measurement. Figure 4.2 shows that during

afternoon and evening wind speed is lower than the night and morning on average.

Note that in the absence of diurnality, this curve would be a flat line. This phenom-

ena has been taken into account in the models developed in [30] and [40] through

approximating a diurnal curve by a trigonometric transformation and removing it

from the actual observations.

0 5 10 15 20 25
5.5

6

6.5

7

7.5

8

8.5

9

Hour of day

W
in

d
 s

p
ee

d
 a

ve
ra

g
e

Figure 4.2: Average wind speed in Vanscycle during each hour of day over the nine

months of measurement

However, here, we consider the diurnality of the data by adding a duirnal com-

ponent to the pattern vectors. This diurnal component assigns the same diurnal

value to observations at a same time of day. We use a trigonometric transformation

of function mod (i, 24) to give the model the flexibility of having two parameters

94

associated with diurnality,

Ti = [sin(
2π mod(i, 24)

24
), cos(

2π mod(i, 24)

24
)]T . (4.11)

Finally, we construct the initial pattern vector xi for 2-hours-ahead forecasting by

considering only the last vector of observations zi and the associated Ti,

xi = [zTi , T Ti]T , (4.12)

which contains 23 variables including 9 single variablesAvi , A
k
i , A

g
i , L

v
i , L

k
i , L

g
i , σ

v
i , σ

k
i , σ

g
i

and seven pairs of variablesDv
i , D

k
i , D

g
i , LD

v
i , LD

k
i , LD

g
i , Ti. In Section 4.5.3, we shrink

this vector xi to a smaller vector x0
i with respect to the target variable Avi by the

variable selection procedure introduced in Section 4.4.2.

4.5.2 Choices of m and n

The training length, n, and the search length, m, are the critical parameters of our

similarity-based forecasting model that should be specified prior to variable selection

and training the magnitude parameters. As mentioned in Section 4.4.2, evaluating

the SSE function in (4.10) takes asymptotically O(mn|x0
i |) for each iteration of the

optimization procedure; therefore, choosing large values for m and n causes lengthy

training time, while small m and n may lead to a bias in estimation of the magnitude

parameters.

To choose proper values for m and n we take an empirical approach and compare

the forecasting power of the model with different values of m and n while keeping

the other factors constant. To this end, we consider a constant pattern vector, x0
i =

[Lvi , L
k
i , L

g
i]
T , and train the magnitude parameters with different values of m and n as

explained in Section 4.4.1. Then, we make hourly forecasts for the last three months

of the dataset, i.e., 91 ∗ 24 = 2184 forecasts, using the magnitude parameters trained

for each pair of m and n . Different pairs of m and n obtain different forecasting

95

accuracy, which is measured by the Root Mean Squared Error,

RMSE =

√
1

2184

∑
i∈last three months

(Avi − Âvi)2. (4.13)

Note that the reason why we choose the last three months of the dataset for this

empirical procedure is to have enough historical observations to increase the values

of m and n to large numbers. Figure 4.3 shows the RMSE values for different values

of n, where each curve corresponds to a fixed m.

0 200 400 600 800 1000 1200
1.86

1.88

1.9

1.92

1.94

1.96

1.98

n

R
M

S
E

m=50
m=100
m=200
m=300
m=500
m=700
m=900
m=1100

Figure 4.3: RMSE for different values of n during the last three months of the dataset

using constant pattern vector x0
i = [Lvi , L

k
i , L

g
i]
T . Each curve corresponds to a fixed

m.

Observe that for the large values of n, i.e, n ≥ 500, all the curves converge to

a constant RMSE, and also, the curves associated with larger m, i.e., m ≥ 500,

converge faster with less fluctuation; consequently, we set n = m = 500 for the

variable selection procedure and training the magnitude parameters

4.5.3 Forward variable selection

As mentioned in Section 4.4.2, considering all the variables in (4.12) deteriorates the

efficiency of the model; therefore, we use the first two months of the dataset, March

96

and April, which are not used in testing the performance in Section 4.5.4, for variable

selection.

Here, we take the forward selection approach by applying the six steps procedure

explained in Section 4.4.2 with level of significance α = 1%. The selected pattern

vector obtained from this variable selection contains six variables (two single and two

pairs of variables),

x0
i = [Lvi , A

g
i , LD

kT

i , T Ti]T . (4.14)

Observe that in addition to the diurnal component Ti, the variable selection procedure

has selected one variable corresponding to each meteorological location, i.e., last 10-

minute wind seed in Vansycle, Lvi , hourly wind speed average in GoodnoeHills, Agi ,

and interaction between the last 10-minute wind speed and the wind direction in

Kennewick, LDk
i .

We note that in the variable selection procedure, we either let both of the variables

in a pair enter the model or keep them out of the model. Consequently, a full model

containing a component with a pair of variables has two degrees of freedom less than

the nested reduced model.

4.5.4 Performance

To assess the forecasting power we apply our model to the last seven months of the

dataset from May to November, 2003, which were disregarded in the variable selection

procedure, and compare the results with the Persistence approach as the benchmark

and the competing models, i.e., RSDT, TDD, and BST.

For each 2-hours-ahead wind speed forecasting during May to November, 2003,

we train the magnitude parameters associated with the selected pattern vector (4.14)

using the last n = 500 hours with m = 500 as discussed in Section 4.5.2. Also, we

set m = t− 2 for forecasting, since calculating equation (4.5) is not computationally

97

expensive even with large values of m, whereas as m increases, more similar points

can be found.

For measuring the prediction accuracy, we use Mean Absolute Error (MAE),

1
c

∑c
i=1 |Avi − Âvi |, and Rout Mean Squared Error (RMSE),

√
1
c

∑c
i=1(Avi − Âvi)2.

Table 4.2 shows the values of RMSE and MAE for Persistence, RSDT, TDD,

BST, and the proposed similarity-based forecasting model separated by month, in

which the similarity-based forecasting model obtains more accurate results than the

competing autoregressive-based models.

Measure Model May Jun Jul Aug Sep Oct Nov Average

Persistence 2.14 1.97 2.37 2.27 2.17 2.38 2.11 2.21

RSTD 1.73 1.56 1.68 1.78 1.77 2.07 1.87 1.79

RMSE TDD 1.74 1.56 1.68 1.78 1.75 2.03 1.86 1.78

BST 1.69 1.59 1.64 1.81 1.85 2.09 2.00 1.82

Similarity-based 1.66 1.48 1.48 1.71 1.67 1.89 1.84 1.68

Persistence 1.60 1.45 1.74 1.68 1.59 1.68 1.51 1.61

RSTD 1.31 1.19 1.32 1.31 1.36 1.48 1.38 1.34

MAE TDD 1.34 1.18 1.31 1.33 1.33 1.48 1.38 1.34

BST 1.26 1.19 1.27 1.37 1.42 1.51 1.50 1.36

Similarity-based 1.24 1.12 1.10 1.23 1.31 1.39 1.39 1.26

Table 4.2: Accuracy of the different models for last seven months of the dataset

In addition, the importance of the variables involved in the pattern vectors vary

over time due to the dynamic nature of the wind system. This is the reason for training

the magnitude parameters prior to each hourly forecast to increase the forecasting

power of our model. We visualize the trends of the magnitude parameter estimates

during the testing period in Figure 4.4. Note that to make these values comparable

we standardize each variable in the pattern vectors, and also for each of the variables

LDk
i and Ti, we unify their associated magnitude parameters using the Euclidean

98

norm.

Moreover, to compare the importance of the variables we aggregate the data shown

in Figure 4.4 by taking the monthly average of each of the parameters. Figure 4.5

shows that Lvi is the most valuable variable and the significance of the Agi and LDk
i

decreases and increases, respectively, during the testing period. Note that although

we do not apply the variable selection procedure dynamically during the testing period

to ensure a fair comparison with the other competing models, Figure 4.5 indicates

that the significance of some of the variables might not hold over these nine months.

For instance, very small values of the parameter estimates of the variable Agi in the

last month, i.e., November, signal that this variable can potentially be replaced by

new variables if we run the variable selection procedure.

99

May Jun Jul Aug Sep Oct Nov
0

5

10

15

20

25

30

35

40

Month

P
ar

am
te

r
va

lu
e

(a) Lvi

May Jun Jul Aug Sep Oct Nov
0

5

10

15

20

25

30

35

40

Month

P
ar

am
te

r
va

lu
e

(b) Agi

May Jun Jul Aug Sep Oct Nov
0

5

10

15

20

25

30

35

40

Month

P
ar

am
te

r
va

lu
e

(c) LDK
i

May Jun Jul Aug Sep Oct Nov
0

5

10

15

20

25

30

35

40

Month

P
ar

am
te

r
va

lu
e

(d) Ti

Figure 4.4: Magnitude parameter estimates from May to November 2003

100

May Jun Jul Aug Sep Oct Nov
0

2

4

6

8

10

12

14

Month

P
ar

am
et

er
 m

o
n

th
ly

 m
ea

n

A

g
i

Lv
i

LDk
i

Ti

Figure 4.5: Monthly mean of the magnitude parameter estimates

Finally, to observe how the penalty function introduced in (4.4.2) selects the

important variables without the stepwise variable selection procedure, we rerun our

model once again using the initial pattern vector (4.12). Table 4.3 shows the results

of this experiment for each month of the testing period. It can be observed that the

average size of the pattern vectors in Table 4.3 is larger than the pattern vector (4.14).

This means that although the penalty function shrinks the initial pattern vector (4.12)

by 42.5% on average, it cannot perform as parsimoniously as the stepwise variable

selection procedure. On the other hand, the accuracy of both the similarity-based

forecasting models in Tables 4.2 and 4.3 is almost the same. Consequently, we prefer

the model with fewer variables, i.e., pattern vector (4.14), due to its lower training

time that is crucial to short-term wind speed forecasting. Moreover, Table 4.3 contains

the five most important variables in each month, where Lvi has always the highest

value, while the rest of the variables vary from month to month.

101

May Jun Jul Aau Sep Oct Nov Average

Average size of the profile 8.7 8.5 10.3 8.9 11.4 9.4 6.8 9.1

RMSE 1.66 1.46 1.46 1.71 1.67 1.94 1.81 1.68

MAE 1.23 1.11 1.08 1.23 1.29 1.42 1.36 1.25

1 Lv
i Lv

i Lv
i Lv

i Lv
i Lv

i Lv
i

2 Lg
i Ag

i Lk
i Ag

i Lk
i Lk

i LDk
i

Important variables 3 Dv
i Lk

i LDv
i Ti Ag

i LDv
i Dk

i

4 Lk
i LDv

i LDk
i LDv

i Ti Dk
i LDv

i

5 LDv
i Ti Ti LDk

i LDk
i LDk

i Ak
i

Table 4.3: Performance of the Similarity-based forecasting model without the stepwise

variable selection

4.6 Summary

We proposed a similarity-based forecasting model for spatio-temporal forecasting with

the primary focus on wind speed forecasting in wind farms. We constructed the vec-

tors of spatial and temporal information belonging to each time, which we called

pattern vectors. Then we used a similarity function to weight the observations based

on their associated pattern vectors and made forecasts by a weighted averaging tech-

nique. We discussed a constrained least squared error optimization approach to train

the parameters of the model, and a variable selection procedure to construct parsimo-

nious pattern vectors for the purpose of fast forecasting. Our numerical experiment

conducted on a historical dataset collected from a wind farm showed that the proposed

model outperformed commonly used forecasting methods.

102

CHAPTER 5

CONCLUSION

This dissertation discussed three well known problems in statistical modeling, namely,

prediction, calibration, and forecasting, using GPs and their variations in the context

of three engineering systems .

In Chapter 2, a Sparse Speudo-input Local Gaussian Process model was developed

to simultaneously address the problems of scalability and covariance heterogeneity of

GPR in dealing with spatial systems with exogenous variables. SPLGP used parallel

hyperplanes to partition the domain of data into smaller subdomains, and then con-

structed independent local predictors in each subdomain. This partitioning policy

resulted in a reduction of the number of boundaries and also simplified the boundary

structures. However, this could lead to large size subdomains, which made the local

application of the full GPR impractical. Therefore, a sparse approximation of the

full GPR was applied to the subdomains. Moreover, independent training of the local

predictors results in discontinuity of the global predictor on the boundaries. The

small number of the boundaries and their simple structure enabled SPLGP to ad-

dress this discontinuity by imposing connectivity constraints on the boundaries of the

neighboring subdomains in a cost effective manner. SPLGP was also equipped with

an optimization procedure capable of finding the best direction for the parallel hy-

perplanes. The optimization procedure was based on three theorems that developed

an upper bound for covariance approximation error. SPLGP was applied to a spatial

dataset with exogenous variables, two spatial datasets without exogenous variables,

and a non-spatial dataset. The latter was used to demonstrate that the methodol-

103

ogy was general and was not restricted to spatial systems. The results showed that

SPLGP maintained a good balance between prediction accuracy and computation

time for data with stationary or non-stationary covariance structures. We list the

major contributions of this study as follows:

• Proposed a local GPR model capable of maintaining the continuity of the global

predictor for spatial datasets with exogenous variables in a time efficient man-

ner.

• Addressed the discontinuity of the global predictor by transforming the GPR

model to an optimization problem and solving it analytically.

• Proposed three theorems to characterize the best direction for the parallel hy-

perplanes based on the covariance structure of the domain of data.

• Developed an optimization procedure to find the best direction of applying

parallel hyperplanes characterized by the theorems.

In Chapter 3, a Bayesian Non-isometric Matching Calibration for local calibra-

tion of expensive computational models was developed. The proposed calibration

model replaced the computational function by a dynamic GP whose parameters were

trained in the calibration producer, unlike conventional surrogate modeling tech-

niques. BNMC utilized a Bayesian framework which used the constructed GP as

its likelihood term to simultaneously make inferences on the parameters of the GP

and the calibration parameters. Making inferences by the Bayesian framework was

impractical without informative prior distributions on the calibration parameters. To

construct informative prior distributions, the calibration problem was viewed as a

non-isometric curve to surface problem. With this point of view, the concept of cali-

bration graph was developed to find a set of computational data points which carried

the information required for constructing the prior distributions. Two formulations

104

were introduced for the associated combinatorial optimization problem on the cali-

bration graph, and necessary techniques for solving the formulations were discussed.

With the construction of the prior distributions, the Bayesian framework was com-

plete, and MCMC techniques were employed to build the posterior distribution for

the calibration parameters. BNMC was applied to two real and two synthetic cal-

ibration problems. The results demonstrated that the proposed calibration model

outperformed all the existing models under the assumption of expensive computa-

tional models. We list the major contributions of this study as follows:

• Proposed a novel model for local calibration of expensive computational models

without any use of surrogate modeling.

• Presented a unique approach for combining combinatorial optimization, includ-

ing graph theory and integer programming, with Bayesian statistics and GPs.

In Chapter 4, a similarity-based forecasting model was developed for short-term

wind speed forecasting. The similarity-based forecasting model adapted the idea

of weighted averaging prediction used by non-parametric linear smoothers, specifi-

cally similarity-based regression models, to the domain of forecasting. The proposed

model introduced the concept of pattern vector as the vector of spatial and temporal

information belonging to each time label, and redefined the notion of similarity as

the degree of resemblance between two pattern vectors at two different times. The

similarity-based forecasting model used a similarity function to search for similar

pattern vectors and made forecasts by taking a weighted average of these similar pat-

terns. Due to the need for forecasting in short intervals in many applications, the

model was equipped with a variable selection procedure to choose only significant

temporal and spatial information for forecasting. Also, a constrained least squared

errors optimization problem was introduced to train the parameters of the proposed

model. This optimization problem was solved by transforming it to an unconstrained

105

optimization problem by using a penalty function. Although the model was primar-

ily developed for short-term wind speed forecasting, it could be efficiently applied

to any spatio-temporal system. The similarity-based forecasting model was applied

to a wind-farm dataset. The results demonstrated that the model outperformed the

forecasting models that were based on conventional time series forecasting methods.

We list the major contributions of the study as follows:

• Proposed a forecasting model for spatio-temporal systems capable of forecasting

in short intervals by utilizing any type of spatial and temporal information.

• Equipped the forecasting model with a variable selection and an optimization

procedure to choose significant variables and train parameters, respectively.

5.1 Future research

We suggest the following research paths to further improve the methodologies pro-

posed in Chapters 2, 3 and 4.

In Chapter 2, SPLGP only considered parallel hyperplanes for partitioning the

domain of data, however, more flexible cuts could be considered. Parallel hyper-

curves or concentric hyper-spheres that would give the same number of boundaries

created by the parallel hyperplanes could be alternative choices. Moreover, from

a theoretical perspective, theories should be developed to establish a relationship

between the expected covariance function and the expected error in the low-rank

covariance approximation. This would be an improvement over the lower bound and

simulation study developed for SPLGP.

In Chapter 3, BNMC only considered a single computational data point to con-

struct a prior distribution for each calibration parameter, however, information of

multiple computational data points could be taken into account. An implementation

of this idea, of course, requires developing new combinatorial optimization techniques

106

capable of choosing an appropriate number of computational data points. Another

interesting research path would be to consider uncertainty of data within the calibra-

tion graph instead of using a deterministic calibration graph model and then using

Bayesian inference to deal with the uncertainty in the data.

In Chapter 4, the similarity-based forecasting model made minimal distributional

assumptions to keep the model as general as possible. However, probability distribu-

tions on some parameters and variables of the model could be assumed to construct

confidence intervals for forecasts. Furthermore, the current model was unable to han-

dle very large values for m and n or very long pattern vectors due to computational

inefficiencies in short intervals. This could be improved by using stochastic gradient

descent techniques to train the magnitude parameters in the optimization procedure.

Also, an analytical procedure should be developed for choosing proper values of m and

n to replace the empirical procedure used in the similarity-based forecasting model.

107

BIBLIOGRAPHY

[1] Emmanuel Baltsavias, Armin Gruen, Henri Eisenbeiss, Li Zhang, and Lars T

Waser. High-quality image matching and automated generation of 3D tree

models. International Journal of Remote Sensing, 29(5):1243–1259, 2008.

[2] Sudipto Banerjee, Alan E Gelfand, Andrew O Finley, and Huiyan Sang. Gaus-

sian predictive process models for large spatial data sets. Journal of the Royal

Statistical Society, 70(4):825–848, 2008.

[3] Douglas M Bates and Donald G Watts. Nonlinear Regression: Iterative Esti-

mation and Linear Approximations. John Wiley & Sons, New York, 1988.

[4] Maria J Bayarri, James O Berger, Rui Paulo, Jerry Sacks, John A Cafeo, James

Cavendish, Chin-Hsu Lin, and Jian Tu. A framework for validation of computer

models. Technometrics, 49(2):138–154, 2007.

[5] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. Nonlinear

Programming: Theory and Algorithms. John Wiley & Sons, New York, 2013.

[6] Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori

error estimation in finite element methods. Acta Numerica, 10:1–102, 2001.

[7] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,

16(1):87–90, 1958.

[8] D. Bertsimas and R. Weismantel. Optimization Over Integers. Dynamic Ideas,

Belmont, Massachusetts, 2005.

108

[9] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Three-

dimensional face recognition. International Journal of Computer Vision,

64(1):5–30, 2005.

[10] Andrew Brown and Sez Atamturktur. Nonparametric functional calibration of

computer models. arXiv preprint arXiv:1602.06202, 2016.

[11] Barbara G Brown, Richard W Katz, and Allan H Murphy. Time series models

to simulate and forecast wind speed and wind power. Journal of Climate and

Applied Meteorology, 23(8):1184–1195, 1984.

[12] Austin Buchanan, Je Sang Sung, Sergiy Butenko, and Eduardo L. Pasiliao. An

integer programming approach for fault-tolerant connected dominating sets.

INFORMS Journal on Computing, 27(1):178–188, 2015.

[13] Tao Chen and Jianghong Ren. Bagging for Gaussian process regression. Neu-

rocomputing, 72(7-9):1605–1610, 2009.

[14] Ilhami Colak, Seref Sagiroglu, and Mehmet Yesilbudak. Data mining and wind

power prediction: A literature review. Renewable Energy, 46:241–247, 2012.

[15] Corinna Cortes and Vladimir Vapnik. Support vector machine. Machine learn-

ing, 20(3):273–297, 1995.

[16] Peter S Craig, Michael Goldstein, Jonathan C Rougier, and Allan H Seheult.

Bayesian forecasting for complex systems using computer simulators. Journal

of the American Statistical Association, 96(454):717–729, 2001.

[17] Noel Cressie. The origins of kriging. Mathematical Geology, 22(3):239–252,

1990.

109

[18] Noel Cressie and Hsin-Cheng Huang. Classes of nonseparable, spatio-temporal

stationary covariance functions. Journal of the American Statistical Associa-

tion, 94(448):1330–1339, 1999.

[19] Noel Cressie and Christopher K Wikle. Statistics for Spatio-temporal Data.

John Wiley & Sons, New York, 2011.

[20] Jianqing Fan. Design-adaptive nonparametric regression. Journal of the Amer-

ican statistical Association, 87(420):998–1004, 1992.

[21] Shu Fan, James R Liao, Ryuichi Yokoyama, Luonan Chen, and Wei-Jen Lee.

Forecasting the wind generation using a two-stage network based on meteoro-

logical information. IEEE Transactions on Energy Conversion, 24(2):474–482,

2009.

[22] Kai-Tai Fang, Runze Li, and Agus Sudjianto. Design and Modeling for Com-

puter Experiments. CRC Press, Boca Raton, FL, 2005.

[23] Corinne Feremans. Generalized Spanning Trees and Extensions. PhD thesis,

Universite Libré de Bruxelles, Belgium, 2001.

[24] Corinne Feremans, Martine Labbé, and Gilbert Laporte. A comparative analysis

of several formulations for the generalized minimum spanning tree problem.

Networks, 39(1):29–34, 2002.

[25] Gerald B Folland. Real Analysis: Modern Techniques and Their Applications.

John Wiley & Sons, New York, 2013.

[26] Shengguo Gao, Zhongli Zhu, Shaomin Liu, Rui Jin, Guangchao Yang, and Lei

Tan. Estimating the spatial distribution of soil moisture based on Bayesian max-

imum entropy method with auxiliary data from remote sensing. International

Journal of Applied Earth Observation and Geoinformation, 32:54–66, 2014.

110

[27] Alan E Gelfand, Susan E Hills, Amy Racine-Poon, and Adrian FM Smith.

Illustration of Bayesian inference in normal data models using gibbs sampling.

Journal of the American Statistical Association, 85(412):972–985, 1990.

[28] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian

Data Analysis. Chapman and Hall/CRC, London, 1995.

[29] Itzhak Gilboa, Offer Lieberman, and David Schmeidler. Empirical similarity.

The Review of Economics and Statistics, 88(3):433–444, 2006.

[30] Tilmann Gneiting, Kristin Larson, Kenneth Westrick, Marc G Genton, and Eric

Aldrich. Calibrated probabilistic forecasting at the stateline wind energy center:

The regime-switching space–time method. Journal of the American Statistical

Association, 101(475):968–979, 2006.

[31] Bruce Golden, Subramanian Raghavan, and Daliborka Stanojević. Heuristic

search for the generalized minimum spanning tree problem. INFORMS Journal

on Computing, 17(3):290–304, 2005.

[32] Michael Goldstein and Jonathan Rougier. Reified Bayesian modelling and in-

ference for physical systems. Journal of Statistical Planning and Inference,

139(3):1221–1239, 2009.

[33] Robert B Gramacy and Herbert K H Lee. Bayesian treed Gaussian process

models with an application to computer modeling. Journal of the American

Statistical Association, 103:1119–1130, 2008.

[34] Armin Gruen and Devrim Akca. Least squares 3D surface and curve matching.

ISPRS Journal of Photogrammetry and Remote Sensing, 59(3):151–174, 2005.

[35] Timothy C Haas. Kriging and automated variogram modeling within a moving

window. Atmospheric Environment, 24(7):1759–1769, 1990.

111

[36] William W Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–

239, 1989.

[37] James Douglas Hamilton. Time Series Analysis. Princeton University Press,

Princeton, London, 1994.

[38] Gang Han, Thomas J Santner, and Jeremy J Rawlinson. Simultaneous de-

termination of tuning and calibration parameters for computer experiments.

Technometrics, 51(4):464–474, 2009.

[39] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and

R Tibshirani. The Elements of Statistical Learning. Springer, New York, 2009.

[40] Amanda S Hering and Marc G Genton. Powering up with space-time wind

forecasting. Journal of the American Statistical Association, 105(489):92–104,

2010.

[41] Dave Higdon, James Gattiker, Brian Williams, and Maria Rightley. Computer

model calibration using high-dimensional output. Journal of the American Sta-

tistical Association, 103(482):570–583, 2008.

[42] Dave Higdon, Marc Kennedy, James C Cavendish, John A Cafeo, and Robert D

Ryne. Combining field data and computer simulations for calibration and pre-

diction. SIAM Journal on Scientific Computing, 26(2):448–466, 2004.

[43] Dave Higdon, Charles Nakhleh, James Gattiker, and Brian Williams. A

Bayesian calibration approach to the thermal problem. Computer Methods in

Applied Mechanics and Engineering, 197(29):2431–2441, 2008.

[44] Harold Jeffreys. An invariant form for the prior probability in estimation prob-

lems. Proc. R. Soc. Lond. A, 186(1007):453–461, 1946.

112

[45] Roshan Joseph and Shreyes N Melkote. Statistical adjustments to engineering

models. Journal of Quality Technology, 41(4):362, 2009.

[46] Jaesung Jung and Robert P Broadwater. Current status and future advances for

wind speed and power forecasting. Renewable and Sustainable Energy Reviews,

31:762–777, 2014.

[47] Lulu Kang and V Roshan Joseph. Kernel approximation: From regression to

interpolation. SIAM/ASA Journal on Uncertainty Quantification, 4(1):112–

129, 2016.

[48] Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer

models. Journal of the Royal Statistical Society, 63(3):425–464, 2001.

[49] Hyoung-Moon Kim, Bani K Mallick, and Chris C Holmes. Analyzing nonsta-

tionary spatial data using piecewise Gaussian processes. Journal of the Ameri-

can Statistical Association, 100(470):653–668, 2005.

[50] Andrey Kolmogoroff. Interpolation und extrapolation von stationaren zufalligen

folgen. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 5(1):3–

14, 1941.

[51] Eugene L Lawler. Combinatorial Optimization: Networks and Matroids. Holt,

Rinehart, and Winston, New York, 1976.

[52] Gong Li and Jing Shi. On comparing three artificial neural networks for wind

speed forecasting. Applied Energy, 87(7):2313–2320, 2010.

[53] Offer Lieberman. Asymptotic theory for empirical similarity models. Econo-

metric Theory, 26(04):1032–1059, 2010.

[54] Heping Liu, Jing Shi, and Ergin Erdem. Prediction of wind speed time series

using modified Taylor kriging method. Energy, 35(12):4870–4879, 2010.

113

[55] Jason L Loeppky, Derek Bingham, and William J Welch. Computer model cali-

bration or tuning in practice. Technical report, University of British Columbia,

Vancouver, BC, CA, 2006.

[56] David G Luenberger and Yinyu Ye. Linear and Nonlinear Programming.

Springer, New York, 1984.

[57] Georges Matheron. The intrinsic random functions and their applications. Ad-

vances in Applied Probability, 5(3):439–468, 1973.

[58] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-

gusta H Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[59] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction

to Linear Regression Analysis. John Wiley & Sons, New York, 2015.

[60] Douglas C Montgomery and George C Runger. Applied Statistics and Proba-

bility for Engineers. John Wiley & Sons, New York, 2010.

[61] Esmaeel Moradi and Balabhaskar Balasundaram. Finding a maximum k-club

using the k-clique formulation and canonical hypercube cuts. Optimization

Letters, November 2015. See also: Y. Lu, E. Moradi, and B. Balasundaram.

Correction to: Finding a maximum k-club using the k-clique formulation and

canonical hypercube cuts. Optimization Letters, DOI: 10.1007/s11590-018-1273-

7, 2018.

[62] Hiroyuki Mori and Eitaro Kurata. Application of Gaussian process to wind

speed forecasting for wind power generation. In Sustainable Energy Technolo-

gies, 2008. ICSET 2008. IEEE International Conference on, pages 956–959.

IEEE, 2008.

114

[63] Young-Soo Myung, Chang-Ho Lee, and Dong-Wan Tcha. On the generalized

minimum spanning tree problem. Networks, 26(4):231–241, 1995.

[64] Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its

Applications, 9(1):141–142, 1964.

[65] Radford M Neal. Bayesian Learning for Neural Networks, volume 118. Springer

Science & Business Media, New York, 2012.

[66] Yurii Nesterov and Arkadii Nemirovskii. Interior-point Polynomial Algorithms

in Convex Programming. SIAM, Philadelphia, 1994.

[67] Anthony O’Hagan and John Frank Charles Kingman. Curve fitting and op-

timal design for prediction. Journal of the Royal Statistical Society. Series B

(Methodological), 40(1):1–42, 1978.

[68] Jose C Palomares-Salas, Juan J G De la Rosa, Jose G Ramiro, Jose Melgar,

Agustn Aguera, and Antonio Moreno. Arima vs. neural networks for wind

speed forecasting. In Computational Intelligence for Measurement Systems and

Applications, 2009. CIMSA’09. IEEE International Conference on, pages 129–

133. IEEE, 2009.

[69] Chiwoo Park and Daniel Apley. Patchwork kriging for large-scale Gaussian

process regression. arXiv preprint arXiv:1701.06655, 2017.

[70] Chiwoo Park, Jianhua Z. Huang, and Yu Ding. Domain decomposition ap-

proach for fast Gaussian process regression of large spatial data sets. Journal

of Machine Learning Research, 12:1697–1728, 2011.

[71] Chiwoo Park, Jianhua Z Huang, and Yu Ding. GPLP: Alocal and parallel com-

putation toolbox for Gaussian process regression. Journal of Machine Learning

Research, 13:775–779, 2012.

115

[72] Johan Philip. The probability distribution of the distance between two random

points in a box. Technical report, Department of Mathematics, Royal Institute

of Technology, Stockholm, Sweden, 2007.

[73] Rui Filipe Carneiro Barbosa Pinto. Wind power forecasting uncertainty and unit

commitment. PhD thesis, Electrical and Computers Engineering, University of

Porto, Porto, Portugal, 2014.

[74] Matthew Plumlee, Roshan Joseph, and Hui Yang. Calibrating functional pa-

rameters in the ion channel models of cardiac cells. Journal of the American

Statistical Association, 111(514):500–509, 2016.

[75] Tomaso Poggio and Federico Girosi. Networks for approximation and learning.

Proceedings of the IEEE, 78(9):1481–1497, 1990.

[76] Petrica C. Pop. New models of the generalized minimum spanning tree problem.

Journal of Mathematical Modelling and Algorithms, 3(2):153–166, Jun 2004.

[77] Petrica C. Pop, W. Kern, and G. Still. A new relaxation method for the gen-

eralized minimum spanning tree problem. European Journal of Operational

Research, 170(3):900–908, 2006.

[78] Petrica Claudiu Pop. The generalized minimum spanning tree problem. PhD

thesis, University of Twente, 2000.

[79] Arash Pourhabib and Balabhaskar Balasundaram. Non-isometric curve to sur-

face matching with incomplete data for functional calibration. arXiv preprint

arXiv:1508.01240, 2015.

[80] Arash Pourhabib, Jianhua Z Huang, and Yu Ding. Short-term wind speed fore-

cast using measurements from multiple turbines in a wind farm. Technometrics,

58(1):138–147, 2016.

116

[81] Arash Pourhabib, Jianhua Z Huang, Kan Wang, Chuck Zhang, Ben Wang, and

Yu Ding. Modulus prediction of buckypaper based on multi-fidelity analysis

involving latent variables. IIE Transactions, 47(2):141–152, 2015.

[82] Arash Pourhabib, Jianhua Z Huang, Kan Wang, Chuck Zhang, Ben Wang, and

Yu Ding. Modulus prediction of buckypaper based on multi-fidelity analysis

involving latent variables. IIE Transactions, 47(2):141–152, 2015.

[83] Arash Pourhabib, Faming Liang, and Yu Ding. Bayesian site selection for fast

Gaussian process regression. IIE Transactions, 46(5):543–555, 2014.

[84] Arash Pourhabib, Rui Tuo, Shiyuan He, Yu Ding, and Jianhua Z Huang. Local

calibration of computer models, 2014. Manuscript.

[85] Matthew T Pratola, Stephan R Sain, Derek Bingham, Michael Wiltberger, and

E Joshua Rigler. Fast sequential computer model calibration of large nonsta-

tionary spatial-temporal processes. Technometrics, 55(2):232–242, 2013.

[86] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view

of sparse approximate Gaussian process regression. The Journal of Machine

Learning Research, 6:1939–1959, 2005.

[87] Carl Edward Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussian

process experts. Advances in Neural Information Processing Systems, 2:881–

888, 2002.

[88] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes

for Machine Learning. MIT Press, Cambridge, MA, 2006.

[89] Shane Reese, Alyson G Wilson, Michael Hamada, Harry F Martz, and Ken-

neth J Ryan. Integrated analysis of computer and physical experiments. Tech-

nometrics, 46(2):153–164, 2004.

117

[90] Stephen Roberts, Michael Osborne, Mark Ebden, Steven Reece, Neale Gibson,

and Suzanne Aigrain. Gaussian processes for time-series modelling. Phil. Trans.

R. Soc. A, 371(1984):20110550, 2013.

[91] Maximilian Ruhland. Similarity-based probabilistic forecasting of wind speed.

Bachelor’s thesis, University of Heidelberg, 2014.

[92] Thomas J Santner, Brian J Williams, and William I Notz. The Design and

Analysis of Computer Experiments. Springer Science & Business Media, New

York, 2013.

[93] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer

theorem. In International Conference on Computational Learning Theory, pages

416–426. Springer, 2001.

[94] Bernhard Schölkopf and Alexander J Smola. Learning with Kernels: Support

Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cam-

bridge, MA, 2001.

[95] Alexander Schrijver. Combinatorial optimization: Polyhedra and Efficiency,

volume 24. Springer Science & Business Media, New York, 2002.

[96] Anton Schwaighofer and Volker Tresp. Transductive and inductive methods for

approximate Gaussian process regression. In Advances in Neural Information

Processing Systems, pages 977–984, Cambridge, MA, 2003. MIT Press.

[97] Nils Siebert. Development of methods for regional wind power forecasting. PhD

thesis, École Nationale Supérieure des Mines de Paris, Paris, France, 2008.

[98] Alex J Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for

machine learning. In Proceedings of the Seventeenth International Conference

on Machine Learning. Citeseer, 2000.

118

[99] Edward Snelson. Flexible and Efficient Gaussian Process Models for Machine

Learning. PhD thesis, Gatsby Computational Neuroscience Unit, University

College London, London, England, 2007.

[100] Edward Snelson and Zoubin Ghahramani. Local and global sparse Gaussian

process approximations. In International Conference on Artifical Intelligence

and Statistics 11. Society for Artificial Intelligence and Statistics, 2007.

[101] Michael Stein. A simple model for spatial-temporal processes. Water Resources

Research, 22(13):2107–2110, 1986.

[102] Charles J Stone. Consistent nonparametric regression. The Annals of Statistics,

5(4):595–620, 1977.

[103] Jose Luis Torres, Almudena Garcia, Marian De Blas, and Adolfo De Francisco.

Forecast of hourly average wind speed with arma models in Navarre (Spain).

Solar Energy, 79(1):65–77, 2005.

[104] Volker Tresp. A Bayesian committee machine. Neural Computation,

12(11):2719–2741, 2000.

[105] Rui Tuo and Chien-Fu J Wu. Efficient calibration for imperfect computer mod-

els. The Annals of Statistics, 43(6):2331–2352, 2015.

[106] Rui Tuo and Chien-Fu J Wu. A theoretical framework for calibration in

computer models: parametrization, estimation and convergence properties.

SIAM/ASA Journal on Uncertainty Quantification, 4(1):767–795, 2016.

[107] Raquel Urtasun and Trevor Darrell. Sparse probabilistic regression for activity-

independent human pose inference. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–8. IEEE, 2008.

119

[108] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer science

& business media, New York, 1999.

[109] Wenjia Wang, Rui Tuo, and CF Wu. Universal convergence of kriging. arXiv

preprint arXiv:1710.06959, 2017.

[110] Geoffrey S Watson. Smooth regression analysis. The Indian Journal of Statis-

tics, Series A, pages 359–372, 1964.

[111] Holger Wendland. Scattered Data Approximation, volume 17. Cambridge Uni-

versity Press, Cambridge, MA, 2004.

[112] Norbert Wiener. Extrapolation, Interpolation, and Smoothing of Stationary

Time Series. MIT Press, Cambridge, MA, 1949.

[113] Brian Williams, Dave Higdon, Jim Gattiker, Leslie Moore, Michael McKay, and

Sallie Keller-McNulty. Combining experimental data and computer simulations,

with an application to flyer plate experiments. Bayesian Analysis, 1(4):765–792,

2006.

[114] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes

for regression. In Advances in Neural Information Processing Systems, pages

514–520. MIT Press, 1996.

[115] Christopher KI Williams and Matthias Seeger. Using the Nyström method

to speed up kernel machines. In Advances in Neural Information Processing

Systems, pages 682–688. MIT Press, 2001.

[116] Ying Xiong, Wei Chen, Kwok-Leung Tsui, and Daniel W Apley. A better

understanding of model updating strategies in validating engineering models.

Computer Methods in Applied Mechanics and Engineering, 198(15):1327–1337,

2009.

120

[117] Zhuohua Xu. Similarity based probabilistic forecasting with an application to

wind speeds. Diploma thesis, University of Heidelberg, Germany, 2011.

[118] Jialin Zhang, Xiuhong Li, Qiang Liu, Long Zhao, and Baocheng Dou. An

extended kriging method to interpolate soil moisture data measured by wireless

sensor network. Sensors, 17(6):1390, 2017.

[119] Xinxin Zhu, Kenneth P Bowman, and Marc G Genton. Incorporating

geostrophic wind information for improved space–time short-term wind speed

forecasting. The Annals of Applied Statistics, 8(3):1782–1799, 2014.

121

APPENDIX A

Proof of Theorems

A.1 Proof of Theorem 2.1

Proof. For any i ∈ [ms], let ui denote the covariance vector between z and the

first i members of X̃s, and let vi denote the covariance vector between the (i + 1)th

member of X̃s and the first i members of X̃s. That is, ui = [K(z, x̃1), . . . ,K(z, x̃i)]
T ,

and vi = [K(x̃i+1, x̃1), . . . ,K(x̃i+1, x̃i)]
T . Also let Ki denote the covariance matrix

between the first i members of X̃s themselves. We now prove by induction on i. For

the base case, i.e, i = 1, the claim clearly holds,

EΩs(u
T
1 K−1

1 u1) = EΩs(K(z, x̃1)K(x̃1, x̃1)K(z, x̃1)) = hEΩs(K2(z, x̃1)) (A.1)

Suppose the claim holds for ms − 1, we show that it also holds for ms. Expanding

uTmsK
−1
msums gives

uTmsK
−1
msums =

[
uTms−1 K(z, x̃ms)

]Kms−1 vms−1

vTms−1 h


−1  ums−1

K(z, x̃ms)

 (A.2a)

=

[
uTms−1 K(z, x̃ms)

]K−1
ms−1 + cK−1

ms−1vms−1v
T
ms−1K

−1
ms−1 −cK−1

ms−1vms−1

−cvTms−1K
−1
ms−1 c


 uTms−1

K(z, x̃ms)


(A.2b)

= uTms−1K
−1
ms−1ums−1 +

(vTms−1K
−1
ms−1ums−1)2 +K2(z, x̃ms)− 2vTms−1K

−1
ms−1ums−1K(z, x̃ms)

c

(A.2c)

= uTms−1K
−1
ms−1ums−1 +

(vTms−1K
−1
ms−1ums−1 −K(z, x̃ms))

2

c
(A.2d)

≥ uTms−1K
−1
ms−1ums−1. (A.2e)

122

where equality (A.2b) follows from the block matrix inversion lemma [36], and c =

(h− vTms−1K
−1
ms−1vms−1)−1, which is always non-negative.

By (A.2) and the induction step,

EΩs(u
T
msK

−1
msums) ≥ EΩs(u

T
ms−1K

−1
ms−1ums−1) ≥ hEΩs(K2(x,x′)). (A.3)

A.2 Proof of Theorem 2.2

First, we prove the following lemma

Lemma A.1 For the random variables z1 ∼ U(a, a+ d) and z2 ∼ U(b, b+ d), where

a ≤ b and a, b, d ≥ 0, define v = (z1 − z2)2. Let v0 denote a special case of v when

a = b. Then Ev(exp(−cv)) ≤ Ev0(exp(−cv0)) for any c > 0.

Proof. Let z = z1 − z2, then by convolution of probability distributions, we derive

the PDF of z as

fz(t) =


1
d2 (t+ b− a+ d) a− b− d ≤ t < a− b,

−1
d2 (t+ b− a− d) a− b ≤ t ≤ a− b+ d.

(A.4)

Hence, Fv(t) = p(v ≤ t) = p(z2 ≤ t) = p(
√
t ≤ z ≤

√
t), which can be written as

Fv(t) =



2
√
t

d2 (a− b+ d) 0 ≤
√
t < b− a,

1
d2 (2
√
td− t− (a− b)2) b− a ≤

√
t < a− b+ d,

1− 1
2d2 (
√
t+ a− b− d)2 a− b+ d ≤

√
t ≤ b− a+ d.

(A.5)

Note that for the case of v0, CDF (A.5) reduces to

Fv0(t) =
1

d2
(2
√
td− t) 0 ≤

√
t ≤ d. (A.6)

Comparing Fv0(t) and Fv(t) for all possible values of t gives

123

•
√
t < 0: Fv0(t) = Fv(t) = 0.

• 0 ≤
√
t < b− a: then Fv(t)− Fv0(t) = 1

d2 (2
√
t(a− b) + t). Since

√
t < b− a⇒

t <
√
t(b − a) ⇒ t +

√
t(a − b) < 0 ⇒ t + 2

√
t(a − b) < 0 ⇒ Fv(t) − Fv0(t) <

0⇒ Fv(t) < Fv0(t).

• b− a ≤
√
t < a− b + d: then Fv(t)− Fv0(t) = − (a−b)2

d2 < 0⇒ Fv(t)− Fv0(t) <

0⇒ Fv(t) < Fv0(t).

• a−b+d ≤
√
t < d: then Fv(t)−Fv0(t) = 1− 1

2d2 (
√
t+a−b−d)2 + 1

d2 (t−2
√
td).

Note that
d(Fv(t)−Fv0 (t))

dt
= 1

2d2 (1− a−b+d√
t

) > 0, and therefore, Fv(t)− Fv0(t) is a

monotonically increasing function. Due to the monotonicity of Fv(t) − Fv0(t),

the maximum occurs at d, so maxt Fv(t)−Fv0(t) = Fv(d)−Fv0(d) = − (a−b)2

d2 < 0.

Therefore, Fv(t)− Fv0(t) ≤ Fv(d)− Fv0(d) < 0⇒ Fv(t) ≤ Fv0(t).

• d ≤
√
t < b− a+ d: in this case Fv0(t) is always 1, hence, Fv(t) ≤ Fv0(t).

• b− a+ d ≤
√
t: in this case Fv0(t) = Fv(t) = 1.

We conclude that

p(v ≤ t) ≤ p(v0 ≤ t) ∀t ∈ R⇒ p(−cv ≥ t′) ≤ p(−cv0 ≥ t′) ∀t′ ∈ R and c > 0,

which implies −cv is stochastically less than −cv0, i.e., −cv �st −cv0. Consequently,

the expectation of any non-decreasing function of these two variables are ordered, i.e.,

Ev(exp(−cv)) ≤ Ev0(exp(−cv0)) for any c > 0.

Proof. [Proof of Theorem 2.2] Let x{k} = {x1, . . . , xp}\{xk} for any x ∈ Ω. Then,

based on how each Ωθ,k,W,s in (2.26) is constructed and considering the distribution

of the data points in Ω according to (2.23), all variables xj ∈ x{k} are independent

and have the uniform distribution U(0, L). Moreover, by the definition of the hyper-

planes in (2.25), and given x{k}, the corresponding values of the variable xk on the

124

hyperplanes Hθ,k,W,s−1 and Hθ,k,W,s are∑
j∈[p]\{k}

tan(θj)xj + (s− 1)w &
∑

j∈[p]\{k}

tan(θj)xj + sw. (A.7)

Therefore, the conditional distribution xk|x{k} in the parallelogram subdomain Ωθ,k,W,s

has a uniform distribution whose support is bounded by the values calculated in (A.7).

Consequently, given a parallelogram subdomain Ωθ,k,W,s, for any x ∈ Ωθ,k,W,s−1,

xj ∼ U(0, L) ∀j ∈ [p]\{k}, (A.8a)

xk|x{k} ∼ U
(∑
j∈[p]\{k}

tan(θj)xj + (s− 1)w,
∑

j∈[p]\{k}

tan(θj)xj + sw

)
. (A.8b)

Now that we have the distribution (A.8) we can expand EΩθ,k,W,s

(
K(x,x′)

)
by condi-

tioning, that is

EΩθ,k,W,s

(
K(x,x′)

)
= Ex{k},x

′
{k}

(
Exk,x′k

(
K(x,x′) | x{k},x′{k}

))
(A.9a)

= Ex{k},x
′
{k}

(
exp

(
−

∑
j∈[p]\{k}

γj(xj − x′j)2
)
Exk,x′k

(
exp

(
− γk(xk − x′k)2

)
| x{k},x′{k}

))
(A.9b)

= Ex{k},x
′
{k}

(
g(x{k},x

′
{k})h(x{k},x

′
{k})
)
. (A.9c)

Note that the function g(x{k},x
′
{k}) is always positive and independent of θ, and

function h(x{k},x
′
{k}) is positive that attains its maximum for any given x{k},x

′
{k} at

θ = 0 by Lemma (A.1). Therefore, by denoting h0 as the special case of function h,

where θ = 0,

g(x{k},x
′
{k})h(x{k},x

′
{k}) ≤ g(x{k},x

′
{k})h0(x{k},x

′
{k}) ∀x{k},x′{k},

which results in

EΩθ,k,W,s

(
K(x,x′)

)
≤ EΩθ,k,W,s

(
K(x,x′) | θ = 0

)
⇒ arg max

θ
EΩθ,k,W,s

(
K(x,x′)

)
= 0.

125

A.3 Proof of Theorem 2.3

First, we prove the following lemma

Lemma A.2 Ez1,z2
(

exp
(
−c(z1−z2)2

))
=
∫ b2

0
exp(−ct)(1

b
√
t
− 1

b2
)dt, where z1, z2

i.i.d∼

U(a, a+ b).

Proof. Let v = (z1 − z2)2, then [72] shows that v has the following PDF:

fv(t) =
1√
tb
− 1

b2
∀ 0 ≤ t ≤ b2;

therefore,

Ez1,z2
(

exp
(
− c(z1 − z2)2

))
= Ev

(
exp(−cv)

)
=∫ b2

0

exp(−ct)fs(t)dt =

∫ b2

0

exp(−ct)(1

b
√
t
− 1

b2
)dt.

Proof. [Proof of Theorem 2.3] By the assumptions of uniform distribution of points

in Ω (2.23), and independence of the dimensions due to geometry of Ω0,k,W,s, for any

x ∈ Ω0,k,W,s,

xk ∼ U
(
(s− 1)W, sW

)
& xj ∼ U

(
0, L

)
∀j ∈ [p]\{k}. (A.10)

Letting Gk = EΩ0,k,W,s
(K(x,x′)), and using distribution (A.10),

Gk = Exk

(
exp

(
− γk(xk − x′k)2

)) ∏
j∈[p]\{k}

Exj
(

exp
(
− γj(xj − x′j)2

))
(A.11a)

= Evk

(
exp(−γkvk)

) ∏
j∈[p]\{k}

Evj
(

exp(−γjvj)
)

(A.11b)

=

(∫ W 2

0

exp(−γkt)(
1

W
√
t
− 1

W 2
)dt

)(∏
j∈[p]\{k}

(∫ L2

0

exp(−γjt)(
1

L
√
t
− 1

L2
)dt

))

(A.11c)

=

(∫ W 2

0

gWk (t)dt

)(∏
j∈[p]\{k}

(∫ L2

0

gLj (t)dt

))
, (A.11d)

126

where equality (A.11a) follows from the independence of dimensions in each Ω0,i,W,s,

equalities (A.11b) and (A.11c) follow from Lemma (A.2) with fvk(t) = 1√
tW
− 1

W 2 0 ≤

t ≤ W 2 and fvj(t) = 1√
tL
− 1

L2 0 ≤ t ≤ L2, and gm` (t) = exp(−γ`t)(1
m
√
t
− 1

m2)

in (A.11d).

To show that Gp −Gk ≥ 0 for any k ∈ [p], We first expand Gp −Gk,

Gp −Gk =

(∫ W2

0

gWp (t)dt

)(∏
j∈[p]\{p}

(∫ L2

0

gLj (t)dt

))
−

(∫ W2

0

gWk (t)dt

)(∏
j∈[p]\{k}

(∫ L2

0

gLj (t)dt

))

=

(∏
j∈[p]\{k,p}

(∫ L2

0

gLj (t)dt

))(∫ W2

0

gWp (t)dt

∫ L2

0

gLk (t)dt−
∫ W2

0

gWk (t)dt

∫ L2

0

gLp (t)dt

)
= A ∗B.

Note that A is always positive, since each
∫ L2

0
gLj (t)dt is the expectation of the random

variable exp(−γjvj) which is positive. Hence, it is enough to show that B is positive.

Expanding B further,

B =

(∫ W2

0

gWp (t)dt

)(∫ W2

0

gLk (t)dt+

∫ L2

W2

gLk (t)dt

)
−
(∫ W2

0

gWk (t)dt

)(∫ W2

0

gLp (t)dt+

∫ L2

W2

gLp (t)dt

)
(A.12a)

=

∫ W2

tk:0

∫ W2

tp:0

gWp (tk)g
L
k (tp)dtkdtp +

∫ W2

tk:0

∫ L2

tp:W2

gWp (tk)g
L
k (tp)dtkdtp

−
∫ w2

tk:0

∫ w2

tp:0

gwk (tk)g
L
p (tp)dtkdtp −

∫ w2

tk:0

∫ L2

tp:w2

gwk (tk)g
L
p (tp)dtkdtp (A.12b)

=

∫ W2

tk:0

∫ W2

tp:0

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)(1

W
√
tk
− 1

W 2

)(1

L
√
tp
− 1

L2

)
dtkdtp

+

∫ W2

tk:0

∫ L2

tp:W2

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)(1

W
√
tk
− 1

W 2

)(1

L
√
tp
− 1

L2

)
dtkdtp (A.12c)

=

∫ W2

tk:0

∫ W2

tp:0

c(tk, tp)dtkdtp +

∫ W2

tk:0

∫ L2

tp:W2

c(tk, tp)dtkdtp. (A.12d)

Note that for any member of set

{(W,L, tp, tk, γp, γk) | 0 < W < L, 0 < γk < γp, 0 ≤ tk ≤ W 2, W 2 ≤ tp ≤ L2},(A.13)

we have

(1

w
√
tk
− 1

w2

)(1

L
√
tp
− 1

L2

)
> 0, (A.14)

127

and also

(−γptk − γktp)− (−γktk − γptp) = (γp − γk)(tp − tk) > 0, (A.15)

where the latter results in

exp(−γptk − γktp)− exp(−γktk − γptp) > 0. (A.16)

Therefore, by (A.14) and (A.16), the integrand c(tk, tp) in (A.12d) is positive for

any member of set (A.13), so is integral
∫W 2

tk:0

∫ L2

tp:W 2 c(tk, tp)dtkdtp. Hence, to complete

the proof we need to show integral
∫ w2

tk:0

∫ w2

tp:0
c(tk, tp)dtkdtp in (A.12d) is also positive.

To show this, we expand the integral,

∫ W2

tk:0

∫ W2

tp:0

c(tk, tp)dtkdtp =

∫ W2

tk:0

∫ W2

tp:tk

c(tk, tp)dtkdtp +

∫ W2

tp:0

∫ W2

tk:tp

c(tk, tp)dtpdtk (A.17a)

=

∫ W2

tk:0

∫ W2

tp:tk

c(tk, tp)dtkdtp +

∫ W2

tk:0

∫ W2

tp:tk

c(tp, tk)dtkdtp =

∫ W2

tk:0

∫ W2

tp:tk

(
c(tk, tp) + c(tp, tk)

)
dtkdtp

(A.17b)

=
1

wL

∫ W2

tk:0

∫ W2

tp:tk

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)
(

1√
tk
− 1√

tp
)(

1

W
− 1

L
)dtkdtp. (A.17c)

Similar to (A.13)-(A.16), for any member of set

{(W,L, tp, tk, γp, γk) | 0 < W < L, 0 < γk < γp, 0 ≤ tk ≤ W 2, tk ≤ tp ≤ W 2},(A.18)

we have

(
1√
tk
− 1
√
tp

)(
1

W
− 1

L
) > 0 (A.19)

and

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)
> 0. (A.20)

Hence the integrand in (A.17c) is positive for any member of set (A.18), so is inte-

gral (A.17c), and the proof is complete.

128

APPENDIX B

A simulation study on the relation between expected error (2.22) and

EΩs(K2(x,x′))

Consider the squared exponential Gaussian kernel K(x, x′) = exp(−γ(x − x′)2) with

γ > 0 defined on

Ωs = {x ∈ R|a ≤ x ≤ a+ b} (B.1)

with uniform sampling distribution

x ∼ U(a, a+ b) ∀x ∈ Ωs. (B.2)

To have a general simulation study, we need the following lemma.

Lemma B.1 Ez1,z2
(

exp
(
− c(z1 − z2)2

))
, where z1, z2

i.i.d∼ U(a, a + b), is a mono-

tonically decreasing function of c and b.

Proof. We need to show that ∇g(b, c) = [∂g(b,c)
∂b

, ∂g(b,c)
∂c

]T < 0 for all [b, c]T > 0, where

g(b, c) = Ez1,z2
(

exp
(
− c(z1 − z2)2

))
=

∫ b2

0

exp(−ct)(1

b
√
t
− 1

b2
)dt

by Lemma A.2.

We can write ∂g(b,c)
∂b

as

∂g(b, c)

∂b
=

1

b2

∫ b2

0

exp(−ct)(2

b
− 1√

t
)dt (B.3a)

=
1

b2

([
exp(−ct)(2t

b
− 2
√
t)

]b2
0

−
∫ b2

0

−c exp(−ct)(2t

b
− 2
√
t)

)
(B.3b)

=
2c

b2

∫ b2

0

exp(−ct)(t
b
−
√
t), (B.3c)

129

where equalities (B.3a) and (B.3b) follow from the Leibniz integral differentiation

and the integration by part rules, respectively. It is easy to check that integrand

exp(−ct)(t
b
−
√
t) is always negative for any member of set {(b, c, t) | 0 < b, 0 < c, 0 ≤

t ≤ b2}; therefore, we always have ∂g(b,c)
∂b

< 0.

Moreover, for ∂g(b,c)
∂c

,

∂g(b, c)

∂c
=

∫ b2

0

−t exp(−ct)(1

b
√
t
− 1

b2
)dt =

−1

b

∫ b2

0

t exp(−ct)(1√
t
− 1

b
)dt.

It is again easy to check that the integrand t exp(−ct)(1√
t
− 1

b
) is positive for any

member of set {(b, c, t) | 0 < b, 0 < c, 0 ≤ t ≤ b2}. Therefore, ∂g(b,c)
∂c

is always

negative.

By Lemma B.1, expectation function

EΩs(K2(x,x′)) = Ex,x′(exp(−2γ(x− x′)2) (B.4)

is a monotonically decreasing function of γ and b. This means that there are only

two ways to increase expectation EΩs(K2(x,x′)), which are either decreasing γ or

decreasing b. The approximation of expected error function (2.22) on domain (B.1)

and sampling distribution (B.2) for varying values of γ and b and a fixed value of ms

using a heat map plot is shown in Figure B.1. We observe that as the values of γ or b

decrease, or equivalently, EΩs(K2(x,x′)) increases, the approximation of the expected

error function decreases.

130

Figure B.1: Heat map of the approximation of expected error function (2.22) on

domain (B.1) and sampling distribution (B.2) for varying values of γ and b and a

fixed value of ms

Our simulation study can be used to infer a more general case. Consider the covari-

ance function as K(x,x′) = exp(−
∑p

k=1 γk(xk−x′k)) defined on Ωs as a p-dimensional

hyper-rectangle with side lengths b1, . . . , bp with a uniform sampling distribution, i.e.,

xk ∼ U(ak, ak + bk) ∀x ∈ Ωs. With this setup, we can write

EΩs(K2(x,x′)) =

p∏
k=1

Exk,x′k(exp(−2γk(xk − x′k)), (B.5)

which is a monotonic function in each bk and γk by lemma B.1. Therefore, our

simulation results are valid for this generalized case as well.

131

APPENDIX C

Solving optimization problem (2.29)

Let first write the partial derivatives of objective function in (2.29),

∂L(ā)

∂ak
= −yTn (Kā

n + σ2In)−1∂Kā
n

∂ak
(Kā

n + σ2In)−1yn + tr((Kā
n + σ2In)−1∂Kā

n

∂ak
), (C.1)

where ∂Kā
n

∂ak
is the matrix of element-wise derivatives with respect to the kth element of

ā. Note that each element of ∂Kā
n

∂ak
involves the term 1√

1−āT ā
. Therefore, the gradient

of the objective function in (2.29) does not exist on the boundary of the feasible

region, i.e., ∇L(ā) → ∞ as āT ā → 1. Therefore, to avoid an undefined gradient

on the boundary, we modify the optimization by making the feasible region slightly

tighter, i.e.,

min
ā

L(ā) = yTn (Kā
n + σ2In)−1yn + log|Kā

n + σ2In|

subject to āT ā ≤ 1− ε,
(C.2)

where ε is a very small number. In our experiments, we set ε = 0.001.

Due to the simple convex structure of constraint āT ā ≤ 1 − ε, i.e., a p − 1-

dimensional hypersphere, optimization (C.2) can be solved by the Projected Gradient

Descent algorithm [66]. In this projection algorithm, the (j+1)th decent step is defined

by

āj+1 = P
(
āj − α

||∇L(āj)||
∇L(āj)

)
, (C.3)

where α
||∇L(āj)|| is a normalized length step, and

P(z) = argminw||w − z||

subject to wTw ≤ 1− ε.
(C.4)

132

P(z) = z, when zTz ≤ 1−ε, otherwise the solution to P(z) occurs at the point that

the line defined by z and the center of the hypersphere, (0), crosses the boundary

of the hypersphere, i.e, intersection of w1

z1
= w2

z2
= . . . = wp−1

zp−1
and wTw = 1 − ε.

Therefore, the solution to P(z) has the closed form,

P(z) =


z zTz ≤ 1− ε

[z1√
zT z

, . . . , zp−1√
zT z

]T zTz > 1− ε.
(C.5)

133

VITA

Babak Farmanesh

Candidate for the Degree of

Doctor of Philosophy

Dissertation: EFFICIENT TECHNIQUES FOR STATISTICAL MODELING OF
CALIBRATION AND SPATIO-TEMPORAL SYSTEMS USING
GAUSSIAN PROCESSES

Major Field: Industrial Engineering and Management

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Industrial Engi-
neering and Management at Oklahoma State University, Stillwater, Oklahoma
in August, 2018.

Completed the requirements for the Bachelor of Science in Industrial Engineering
at Sharif University of Technology, Tehran, Iran in 2014.

Experience:

Research Assistant, Industrial Engineering and Management, Oklahoma State
University, Stillwater, Oklahoma, Fall 2014-Summer 2018

Intern, Support and services, DELL EMC, Austin, Texas, Summer 2017

Professional Memberships:

Institute of Operations Research and the Management Sciences (INFROMS)

Institute of Industrial and System Engineering (IISE)

Alpha Pi Mu

