
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DATA BALANCING APPROACHES IN QUALITY, DEFECT, AND

PATTERN ANALYSIS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

MD MANJURUL AHSAN
Norman, Oklahoma

2023

DATA BALANCING APPROACHES IN QUALITY, DEFECT, AND
PATTERN ANALYSIS

A DISSERTATION APPROVED FOR THE
SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Shivakumar Raman, Chair

Dr. Zahed Siddique, Co-Chair

Dr. Mohammed Atiquzzaman

Dr. Theodore Trafalis

Dr. Charles D. Nicholson

© Copyright by MD MANJURUL AHSAN 2023
All Rights Reserved.

Acknowledgements

I am deeply grateful to my advisors, Dr. Shivakumar Raman and Dr. Zahed

Siddique, for their unwavering support and guidance throughout my doctoral

journey. My sincerest thanks also go to my former supervisor, Dr. Pedro Huebner,

who made a significant contribution to the early stages of this dissertation with

his invaluable time and effort. I am also thankful for the constructive comments

and guidance received from Dr. Theodore Trafalis and Dr. Charles D. Nicholson.

I am grateful to Dr. Mohammed Atiquzzaman for his invaluable assistance in

directing my academic path and ambitions. I am indebted to Dr. Farrokh Mistree

and Dr. Janet Allen for their invaluable guidance, tips, and information that

helped me to make new contributions to the scientific community. I also express

my gratitude to Dr. Yongtao Liu for providing the data and guidelines required

to conduct experiments on a portion of my research.

Finally, I would like to express my heartfelt thanks to my parents, siblings, lab

mates, and friends from home and here for their unwavering support and encour-

agement throughout my Ph.D. journey. Without their support, my achievements

would not have been possible.

iv

Table of Contents

Abstract xi

1 Introduction & Dissertation Structure 1
1.1 Overview . 1
1.2 Data Driven Model . 2

1.2.1 Data Assessment . 4
1.2.2 Data Normalization and Cleaning 5
1.2.3 Structure of ML Inference Engine 5
1.2.4 ML Training and Implementation 6
1.2.5 ML Engine Inference Integration 7
1.2.6 Test Deployment . 8
1.2.7 Statistical Analysis and Evaluation 9

1.3 Study towards Data Balancing Approaches 9
1.4 Importance of Data Balancing . 10
1.5 Goal and Objectives . 12
1.6 Outline of Dissertation . 17

2 Data Balancing Approaches 25
2.1 Introduction . 25
2.2 Motivation . 26
2.3 Chapter Outline . 27
2.4 Background . 27

2.4.1 Undersampling . 28
2.4.2 Oversampling . 32
2.4.3 Hybrid Methods . 36
2.4.4 Ensemble Methods . 37

2.5 Systematic Analysis . 37
2.5.1 Identification of the Data . 38

2.6 Literature Review . 41
2.6.1 Data Distribution . 41
2.6.2 Performance of ML Algorithms 42
2.6.3 Effect of Undersampling . 43
2.6.4 Effect of Oversampling . 50

2.6.4.1 Effect of SMOTE . 59
2.6.5 Effect of Hybrid Approaches 63
2.6.6 Effect of GAN-Based Approaches 68
2.6.7 Effect of Other Data Balancing Approaches 70

2.7 Overall Findings . 73
2.8 Conclusions . 78

3 Effect of SMOTE on Data Balancing Approaches 80
3.1 Introduction . 80

3.1.1 Motivation . 81
3.1.2 Chapter Outline . 82

3.2 Experimental Setup . 82

v

3.2.1 Datasets . 83
3.2.1.1 Ionosphere . 83
3.2.1.2 Pageblocks . 83
3.2.1.3 Poker . 84
3.2.1.4 Spambase . 84
3.2.1.5 Wine Quality . 85
3.2.1.6 Yeast . 85

3.2.2 ML Algorithms . 86
3.2.2.1 Adaptive Boosting 86
3.2.2.2 Decision Tree . 87
3.2.2.3 Gradient Boosting . 88
3.2.2.4 K-Nearest Neighbors 89
3.2.2.5 Logistic Regression 90
3.2.2.6 Random Forest . 90
3.2.2.7 Support Vector Machine 91

3.2.3 Performance Evaluation . 93
3.3 Computational Results . 97

3.3.1 Performance of AB . 97
3.3.2 Performance of DT . 100
3.3.3 Performance of GB . 102
3.3.4 Performance of KNN . 106
3.3.5 Performance of LR . 108
3.3.6 Performance of RF . 111
3.3.7 Performance of SVM . 114

3.4 Discussion of the Results . 117
3.5 Hypothesis Testing . 118

3.5.1 Performance of AB . 121
3.5.2 Performance of DT . 124
3.5.3 Performance of GB . 128
3.5.4 Performance of KNN . 132
3.5.5 Performance of LR . 135
3.5.6 Performance of RF . 138
3.5.7 Performance of SVM . 141

3.6 Overall Findings . 143
3.7 Conclusion . 148

4 Enhancing and Improving the Performance of Imbalanced Class Data
Using Novel GBO and SSG: A Comparative Analysis 150
4.1 Introduction . 150
4.2 Motivation . 154
4.3 Chapter Outline . 154
4.4 Background . 155
4.5 Methods . 160

4.5.1 SVM-SMOTE Algorithm . 160
4.5.2 Proposed Approaches . 162

4.5.2.1 Modified GAN . 164
4.6 Classification Methods and Evaluation Index 167

4.6.1 Experimental Evaluation Index 169

vi

4.7 Simulation Experiment . 170
4.7.1 Experimental Environment . 170
4.7.2 Numerical Experiment . 172

4.8 Results and Discussion . 173
4.9 Limitations of the Study . 189
4.10 Conclusion . 190

5 BSGAN: A Novel Oversampling Technique for Imbalanced Pattern
Recognition 192
5.1 Introduction . 192
5.2 Motivation . 195
5.3 Chapter Outline . 196
5.4 Related Work . 196
5.5 Methodology . 199

5.5.1 SMOTE . 200
5.5.2 Borderline-SMOTE . 202
5.5.3 GAN . 203
5.5.4 Proposed BSGAN . 205
5.5.5 Proposed Neural Network . 208
5.5.6 Performance Evaluation . 209

5.5.6.1 Datasets . 209
5.5.6.2 Experimental Setup 210

5.6 Results . 211
5.7 Discussion . 218
5.8 Conclusions . 224

6 Deep Learning-Based COVID-19 Diagnosis using Chest X-ray: An
Analysis of Data Balancing Techniques 226
6.1 Introduction . 226
6.2 Motivation . 228
6.3 Chapter Outline . 229
6.4 Background . 229

6.4.1 Chest X-ray Based Screening 231
6.5 Research Methodology . 234

6.5.1 Deep Learning Algorithms . 236
6.5.1.1 VGG . 236
6.5.1.2 InceptionResNetV2 237
6.5.1.3 ResNet . 237
6.5.1.4 MobileNetV2 . 238

6.5.2 Using Pre-Trained Convet . 239
6.6 Results . 243

6.6.1 Study One . 243
6.6.1.1 Confusion Matrix . 244
6.6.1.2 Model Accuracy . 245
6.6.1.3 Model Loss . 246

6.6.2 Study Two . 247
6.6.3 Confusion Matrix . 249

6.6.3.1 Model Accuracy . 249

vii

6.6.3.2 Model Loss . 250
6.6.4 Study Three . 251
6.6.5 Test Results with Confidence Intervals 252

6.7 Discussion . 254
6.7.1 Feature Selection . 257

6.8 Overall Findings . 260
6.9 Conclusion and Future Works . 261

7 Exploring Mixed Image Data for COVID-19 Diagnostics using Transfer
Learning and Explainable AI 262
7.1 Introduction . 262
7.2 Motivation . 262
7.3 Chapter Outline . 264
7.4 Background . 264

7.4.1 CT Scan-based Screening . 264
7.5 Research Methodology . 267

7.5.1 LIME as Explainable AI . 269
7.6 Results . 269

7.6.1 AUC-ROC Curve . 272
7.7 Discussion . 276
7.8 Overall Findings . 279
7.9 Conclusion and Future Works . 280

8 Defect Analysis of 3D Printed Cylinder Object Using Transfer Learning
Approaches 282
8.1 Introduction . 282
8.2 Motivation . 283
8.3 Chapter Outline . 284
8.4 Methodology . 284

8.4.1 Data Collection . 284
8.4.2 Experimental Setup . 286

8.5 Results . 286
8.5.1 Study One . 286
8.5.2 Study Two . 291

8.6 Discussions . 296
8.6.1 Models Prediction . 297

8.7 Conclusion . 299

9 Defect Localization Using Region of Interest and Histogram-Based
Enhancement Approaches 300
9.1 Introduction . 300
9.2 Motivation . 301
9.3 Chapter Outline . 302
9.4 Background . 302
9.5 Research Methodology . 304

9.5.1 Proposed Appraoches . 304
9.5.1.1 Region of Interest (ROI) 304
9.5.1.2 Histogram Equalization (HE) 305

viii

9.5.1.3 Details Enhancer (DE) 305
9.5.2 Model Interpretation . 307

9.6 Results . 309
9.6.1 Study One . 309
9.6.2 Study Two . 311
9.6.3 Computational Complexity . 314
9.6.4 Models Explainability . 315

9.7 Discussion and Overall Findings . 317
9.8 Conclusion and Future Works . 318

10 Deep MLP-CNN Model Using Mixed-Data 320
10.1 Introduction . 320
10.2 Motivation . 320
10.3 Chapter Outline . 322
10.4 Background . 322
10.5 Dataset and Methodology . 328

10.5.1 Proposed Model . 330
10.5.2 How Proposed MLP-CNN Model Works 333
10.5.3 Experiment Setup . 335

10.6 Computational Results . 336
10.7 Discussion . 341
10.8 Conclusion . 345

11 Conclusions 346
11.1 Overall Summary of All Research Questions 346
11.2 Summary of Individual Research Questions 348

11.2.1 What are the scopes of data-balancing approaches toward the
major and minor samples? . 348

11.2.2 What is the effect of traditional Machine Learning (ML) and
Synthetic Minority Over-sampling Technique (SMOTE)-based
data-balancing on imbalanced data analysis? 353

11.2.3 How does imbalanced data affect the performance of Deep Learn-
ing (DL)-based models? . 357

11.3 Contributions . 360
References . 365
.1 Appendix A . 417

.1.1 Performance of Adaboost . 417
.2 Appendix B . 471

.2.1 Optimal Parameters . 471
.3 Appendix C . 477

.3.1 Hypothesis Testing . 477
.3.1.1 Adaboost . 477
.3.1.2 Decision Tree . 482
.3.1.3 Gradient Boosting . 487
.3.1.4 K-Nearest Neighbors 492
.3.1.5 Logistic Regression 497
.3.1.6 Random Forest . 502
.3.1.7 Support Vector Machine 507

ix

.4 Appendix D . 512
.4.1 Study One . 512

.4.1.1 Confusion Matrix . 512
.4.2 Study Two . 513

.4.2.1 Confusion Matrix . 513

x

Abstract

The imbalanced ratio of data is one of the most significant challenges in various

industrial domains. Consequently, numerous data-balancing approaches have been

proposed over the years. However, most of these data-balancing methods come

with their own limitations that can potentially impact data-driven decision-making

models in critical sectors such as product quality assurance, manufacturing defect

identification, and pattern recognition in healthcare diagnostics. This dissertation

addresses three research questions related to data-balancing approaches: 1) What

are the scopes of data-balancing approaches toward the major and minor samples?

2) What is the effect of traditional Machine Learning (ML) and Synthetic Minority

Over-sampling Technique (SMOTE)-based data-balancing on imbalanced data

analysis? and 3) How does imbalanced data affect the performance of Deep

Learning (DL)-based models?

To achieve these objectives, this dissertation thoroughly analyzes existing

reference works and identifies their limitations. It has been observed that most

existing data-balancing approaches have several limitations, such as creating noise

during oversampling, removing important information during undersampling, and

being unable to perform well with multidimensional data. Furthermore, it has also

been observed that SMOTE-based approaches have been the most widely used

data-balancing approaches as they can create synthetic samples that are easy to

implement compared to other existing techniques. However, SMOTE also has its

limitations, and therefore, it is required to identify whether there is any significant

xi

effect of SMOTE-based oversampled approaches on ML-based data-driven models’

performance. To do that, the study conducts several hypothesis tests considering

several popular ML algorithms with and without hyperparameter settings. Based

on the overall hypothesis, it is found that, in many cases based on the reference

dataset, there is no significant performance improvement on data-driven ML

models once the imbalanced data is balanced using SMOTE approaches.

Additionally, the study finds that SMOTE-based synthetic samples often do not

follow the Gaussian distribution or do not follow the same distribution of the data

as the original dataset. Therefore, the study suggests that Generative Adversarial

Network (GAN)-based approaches could be a better alternative to develop more

realistic samples and might overcome the limitations of SMOTE-based data-

balancing approaches. However, GAN is often difficult to train, and very limited

studies demonstrate the promising outcome of GAN-based tabular data balancing

as GAN is mainly developed for image data generation. Additionally, GAN is

hard to train as it is computationally not efficient. To overcome such limitations,

the present study proposes several data-balancing approaches such as GAN-based

oversampling (GBO), Support Vector Machine (SVM)-SMOTE-GAN (SSG),

and Borderline-SMOTE-GAN (BSGAN). The proposed approaches outperform

existing SMOTE-based data-balancing approaches in various highly imbalanced

tabular datasets and can produce realistic samples. Additionally, the oversampled

data follows the distribution of the original dataset.

The dissertation later examines two case scenarios where data-balancing

approaches can play crucial roles, specifically in healthcare diagnostics and additive

xii

manufacturing. The study considers several Chest radiography (X-ray) and

Computed Tomography (CT)-scan image datasets for the healthcare diagnostics

scenario to detect patients with COVID-19 symptoms. The study employs six

different Transfer Learning (TL) approaches, namely Visual Geometry Group

(VGG)16, Residual Network (ResNet)50, ResNet101, Inception-ResNet Version

2 (InceptionResNetV2), Mobile Network version 2 (MobileNetV2), and VGG19.

Based on the overall analysis, it has been observed that, except for the ResNet-

based model, most of the TL models have been able to detect patients with

COVID-19 symptoms with an accuracy of almost 99%. However, one potential

drawback of TL approaches is that the models have been learning from the wrong

regions. For example, instead of focusing on the infected lung regions, the TL-

based models have been focusing on the non-infected regions. To address this

issue, the study has updated the TL-based models to reduce the models’ wrong

localization.

Similarly, the study conducts an additional investigation on an imbalanced

dataset containing defect and non-defect images of 3D-printed cylinders. The

results show that TL-based models are unable to locate the defect regions, high-

lighting the challenge of detecting defects using imbalanced data. To address this

limitation, the study proposes preprocessing-based approaches, including algo-

rithms such as Region of Interest Net (ROIN), Region of Interest and Histogram

Equalizer Net (ROIHEN), and Region of Interest with Histogram Equalization

and Details Enhancer Net (ROIHEDEN) to improve the model’s performance

and accurately identify the defect region.

xiii

Furthermore, this dissertation employs various model interpretation techniques,

such as Local Interpretable Model-Agnostic Explanations (LIME), SHapley Ad-

ditive exPlanations (SHAP), and Gradient-weighted Class Activation Mapping

(Grad-CAM), to gain insights into the features in numerical, categorical, and

image data that characterize the models’ predictions. These techniques are used

across multiple experiments and significantly contribute to a better understanding

the models’ decision-making processes.

Lastly, the study considers a small mixed dataset containing numerical, categor-

ical, and image data. Such diverse data types are often challenging for developing

data-driven ML models. The study proposes a computationally efficient and

simple ML model to address these data types by leveraging the Multilayer Percep-

tron and Convolutional Neural Network (MLP-CNN). The proposed MLP-CNN

models demonstrate superior accuracy in identifying COVID-19 patients’ patterns

compared to existing methods.

In conclusion, this research proposes various approaches to tackle significant

challenges associated with class imbalance problems, including the sensitivity of ML

models to multidimensional imbalanced data, distribution issues arising from data

expansion techniques, and the need for model explainability and interpretability.

By addressing these issues, this study can potentially mitigate data balancing

challenges across various industries, particularly those that involve quality, defect,

and pattern analysis, such as healthcare diagnostics, additive manufacturing, and

product quality. By providing valuable insights into the models’ decision-making

process, this research could pave the way for developing more accurate and robust

xiv

ML models, thereby improving their performance in real-world applications.

xv

LIST OF ABBREVIATIONS

AdaBoost Adaptive Boosting

Ada-CNN Adaptive Condensed Nearest Neighbor

ADAM Adaptive Momentum

AI Artificial Intelligence

AM Additive Manufacturing

ANN Artificial Neural Network

API Application Programming Interface

APPs Anti-parasitic peptides

AUC Area Under the Curve

AUPR Area Under the Precision-Recall Curve

BB Balanced Bagging

BC Balance Cascade

BPNN Back-Propagation Neural Network

BSMOTE borderline SMOTE

CAD Computer-Aided Design

CC Cluster Centroids

CDC Center for Disease Control and Prevention

Chest X-ray Chest Radiography

CIP Class Imbalance problem

CNN Convolutional Neural Network

xvi

CNN Condensed Nearest Neighbor

ConvNets Convolutional Neural Networks

COVID-19 Coronavirus Disease 2019

CT Computed Tomography

CUSBoost Cost-Sensitive Boosting

CVDs Cardiovascular Diseases

DL Deep Learning

DNN Deep Neural Networks

DT Decision Tree

EE Easy Ensemble

ENN Edited Nearest Neighbors

ET Extra Tree

EusBoost Ensemble of Under-Sampling Boosting

FC Fully Connected

GAN Generative Adversarial Networks

GB0 GAN-based Oversampling

GPSC Genetic Programming Symbolic Classifier

Grad-CAM Gradient-weighted Class Activation Mapping

GRU Gated Recurrent Unit

G-SMOTE Geometric SMOTE

ICU Intensive Care Units

IDS Intrusion Detection System

xvii

IHT Instance Hardness Threshold

InceptionResNetV2 Inception Residual Network Version 2

IoT Internet of Things

KDF kernel Density Function

KNN k-Nearest Neighbor

LIME Local Interpretable Model Agnostic Explanations

LR Logistic Regression

LSTM Long Short-Term Memory

MERS-CoV Middle East Respiratory Syndrome

ML Machine Learning

MLP-CNN Multilayer Perceptron and Convolutional Neural Network

MLTL Multi-Label Tomek Link

MNN M Nearest Neighbors

MobileNetV2 Mobile Network Version 2

NB Naive Bayes

NCL Neighbor Cleaning Rule

NCR Neighborhood Cleaning Rule

NM Near-Miss

NN Neural Network

NPNN No-Propagation Neural Network

N-US Neighbourhood based Under-Sampling

ODU One-sided Dynamic Undersampling

xviii

OSS One-Sided Selection

PE Pre-eclampsia

PRAUC Precision-Recall Area Under the Curve

PSO particle Swarm Optimization

R2L Remote to Local

ReLU Rectified Linear Unit

ResNet Residual Network

RF Random Forest

RMSprop Root Mean Square Propagation

RNN Recurrent Neural Network

RT-PCR Reverse Transcription Polymerase Chain Reaction

RUSBoost Random Under-Sampling Boosting

SARS-CoV Severe Acute Respiratory Syndrome

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2

SD Standard Deviation

SDP Software Defect Prediction

SGD Stochastic Gradient Descent

SHAP Shapley Additive Explanations

SLFN Single Hidden Layer Feed-Forward Neural Network

SLR Systematic Literature Review

SMLS Smart Materials and Intelligent Systems

SMOTE Synthetic Minority Oversampling Technique

xix

Chapter 1

Introduction & Dissertation Structure

1.1 Overview

The present doctoral dissertation focuses on developing data-balancing approaches

in quality, defect, and pattern analysis. The primary objective is to identify the

most widely used data-balancing approaches and their limitations. To achieve this,

the study considered three types of data: numerical, categorical, and mixed data,

which contains numerical, categorical, and image data. While excluding other

data types, such as sequential data, speech data, and time series data, most of

the datasets used in this study are from the University of California, Irvine (UCI)

public repository, and one dataset was obtained from the Smart Materials and

Intelligent Systems (SMLS) laboratory at the University of Oklahoma. Based on

their characteristics, the datasets are categorized into quality, defect, and pattern

analysis. These datasets are imbalanced and require data-balancing approaches to

develop fair Machine Learning (ML) models. Among the data balancing techniques,

the study chose to dig deeper into the Synthetic Minority Oversampling Technique

(SMOTE)-based approach, which has shown promising results compared to other

techniques, such as random oversampling and undersampling. The study involved

four hypothesis conditions to evaluate the impact of traditional ML and SMOTE-

based data-balancing on imbalanced data analysis. The study results demonstrated

that some ML models had significant performance improvements while others did

1

not.

Moreover, the study introduced novel oversampling approaches such as Genera-

tive Adversarial Network (GAN)-based oversampling and Support Vector Machine

(SVM)-SMOTE-GAN, which generated more realistic samples aligning with the

original data distributions. The dissertation also aimed to understand the impact

of imbalanced data on Deep Learning (DL)-based models. The study evaluated

two scenarios, healthcare diagnostics and additive manufacturing. In the health-

care diagnostics scenario, the study analyzed ML-based prediction models in

Coronavirus Disease 2019 (COVID-19) diagnosis on balanced and imbalanced

data, using explainable Artificial Intelligence (AI) techniques such as Local In-

terpretable Model Agnostic Explanations (LIME) and Gradient Weighted Class

Activation Mapping (Grad-CAM). Similarly, the proposed approaches incorpo-

rated novel image processing techniques in Additive Manufacturing (AM) to

identify defect regions. The proposed approach will have significant implications

for various domains, such as healthcare, manufacturing, and transportation, where

data-balancing approaches are required to develop robust ML-based decision

models.

1.2 Data Driven Model

A data-driven model is a mathematical or statistical model that utilizes large

amounts of data to identify patterns and relationships and make predictions or

decisions (Ali et al., 2020). This approach has gained popularity in various fields,

2

including finance, healthcare, and marketing, due to its ability to provide insights

that may need to be apparent using traditional analytical methods (Y. Wang,

Kung, & Byrd, 2018; J. Zhang, Xie, Li, Shen, & Xia, 2020). Data-driven models

can be used for several tasks, such as predicting customer behavior, forecast-

ing market trends, or diagnosing medical conditions (Bell & Mgbemena, 2018;

Gabrielli, Wüthrich, Blume, & Sansavini, 2022; Ahsan, Gupta, et al., 2020). By

leveraging big data and advanced analytics techniques, data-driven models can

assist organizations in making more informed and accurate decisions, resulting in

improved outcomes and increased efficiencies.

The system engineering V model for data-driven models comprises several

major stages, such as data assessment, data normalization and cleaning, the

structure of the ML inference engine, ML training and implementation, ML engine

inference integration, test deployment, and statistical analysis and evaluation,

as illustrated in Figure 1.1. This model provides a structured approach to

developing and deploying data-driven models, starting from the initial assessment

and preparation of the data to the final evaluation of the model’s performance.

Each stage in the model is crucial for ensuring the accuracy and reliability of the

model’s predictions and decisions. By following this model, organizations can

ensure that their data-driven models are developed and deployed systematically

and effectively, resulting in improved outcomes and increased efficiencies (Marina,

Trasnea, & Grigorescu, 2018).

3

Figure 1.1: System engineering V model for data driven model.

1.2.1 Data Assessment

Data assessment is an essential process that examines the quality, quantity, and

completeness of the data collected for a study (Schmidt et al., 2021). This

process is necessary to ensure that the data is reliable and valid and accurately

represents the research question. Data assessment involves verifying that the data

is complete, accurate, and consistent and checking for any errors or anomalies

that may have been introduced during collection or storage (Karr, Sanil, &

Banks, 2006). Additionally, data assessment includes evaluating the sample’s

representativeness and determining whether any biases or limitations may impact

the study’s outcomes. By conducting a thorough data assessment, researchers

can identify and address any issues with the data, leading to more accurate and

reliable results (Thabtah, Hammoud, Kamalov, & Gonsalves, 2020).

4

1.2.2 Data Normalization and Cleaning

Data normalization and cleaning are crucial steps in the data preparation process

for any research study or analysis. Data normalization refers to transforming

data to a standard scale or range to eliminate variations and make it comparable

across different sources (Brownlee, 2020a). This process ensures that the data

is consistent and accurate, making it easier to interpret and analyze. Cleaning

involves identifying and correcting errors, inconsistencies, or missing data points.

Ensuring that the data is complete, accurate, and reliable is essential. This process

often involves identifying and removing outliers, filling in missing values, and

standardizing data types (Rajkumar et al., 2022). These steps help ensure that

the data is ready for analysis and can yield more accurate and reliable results.

Researchers can minimize errors and inaccuracies by performing proper data

normalization and cleaning, leading to better insights and conclusions (Brownlee,

2020a).

1.2.3 Structure of ML Inference Engine

The structure of a ML inference engine typically involves three main components:

input layer, hidden layer(s), and output layer (Rubio-Solis, Panoutsos, Beltran-

Perez, & Martinez-Hernandez, 2020). The input layer is where the raw data is

fed into the system, and the hidden layer(s) is where the data is processed and

transformed using mathematical functions and weights. The output layer presents

the transformed data in a valid format, such as a prediction or classification. In

5

addition to these three main components, many inference engines also include a

bias term, an additional input that helps fine-tune the model’s predictions. The

structure of the inference engine can vary depending on the specific ML algorithm

being used. However, in general, the input layer is responsible for receiving data,

the hidden layer(s) are responsible for processing the data, and the output layer is

responsible for presenting the results (Shim, Luo, Seo, & Yu, 2020). The inference

engine’s effectiveness is determined by its predictions’ accuracy and precision,

which can be evaluated using a variety of performance metrics such as precision,

recall, and F1-score (Srivastava et al., 2021; Ahsan, E Alam, Trafalis, & Huebner,

2020).

1.2.4 ML Training and Implementation

ML training is the process of teaching an ML model to recognize patterns in data

and make predictions based on those patterns. This involves feeding the model a

large amount of data and using algorithms to identify patterns and relationships

within that data. Once the model has been trained, it can be implemented to

make predictions on new, unseen data (Yurochkin, Bower, & Sun, 2019; Brownlee,

2022).

Implementing an ML model involves deploying the trained model into a

production environment, which can be used to make real-time predictions. This

requires integrating the model with the application or system used, ensuring that

the input data is appropriately formatted and processed, and setting up monitoring

and evaluation mechanisms to ensure the model’s accuracy and performance over

6

time (Brownlee, 2022).

The implementation process also considers data security, privacy, and ethical

concerns, mainly when dealing with sensitive data or making decisions that

may significantly impact individuals or groups. Regular model maintenance and

updating may also be necessary to ensure the model’s continued accuracy and

relevance (Watson, 2019).

1.2.5 ML Engine Inference Integration

ML engine inference integration is the process of integrating a trained ML model

into a production system for real-time use. This involves deploying the model to

an inference engine responsible for processing new data and making predictions

based on the model’s learned patterns. The inference engine is typically designed

to optimize the model’s performance for the specific use case, including latency,

memory usage, and throughput factors (Jamil, Kahng, Kim, & Kim, 2021; Shafi,

Rai, Sen, & Ananthanarayanan, 2021).

The integration process can vary depending on the specific use case and the

requirements of the production system. In some cases, the inference engine may

be hosted on the same system as the application, while in other cases, it may be

deployed to a separate server or cloud platform. The integration process may also

involve creating Application Programming Interface (API) or other interfaces to

enable communication between the inference engine and the application (Wulf &

Blohm, 2020).

Overall, successfully integrating an ML model into a production system is criti-

7

cal for ensuring that the model provides accurate and actionable real-time insights.

Careful planning and testing are essential to ensure that the model operates as

intended and that potential issues are identified and addressed promptly.

1.2.6 Test Deployment

ML test deployment is the process of deploying the trained ML model into a

real-world production environment to evaluate its performance and ensure that

it meets the desired requirements. This phase is critical in ensuring the model

works as intended and is reliable. The ML test deployment phase includes

several activities, such as creating test data sets, testing the model’s accuracy

and performance, evaluating its stability, and monitoring its behavior in the

production environment (Shankar, Garcia, Hellerstein, & Parameswaran, 2022).

The main goal of this phase is to identify and address any issues that may arise

during model deployment and to ensure that the model performs optimally in the

production environment. This phase also involves ensuring that the infrastructure

and resources required to support the model are in place and that the model can

be easily maintained and updated as needed (Paleyes, Urma, & Lawrence, 2022).

Proper ML test deployment can significantly improve the chances of success for

a ML project, leading to better outcomes and increased efficiency in real-world

applications.

8

1.2.7 Statistical Analysis and Evaluation

ML Statistical analysis and evaluation is a critical step in the ML process, which

involves assessing the performance of the trained model. This process involves

various techniques and metrics, such as confusion matrix, precision, recall, ac-

curacy, F1-score, and ROC curve. The confusion matrix is used to evaluate

the performance of the classification model and provides information about true

positive, true negative, false positive, and false negative predictions. Precision is

a metric that measures the proportion of correctly predicted positive instances

among all predicted positive instances. In contrast, recall measures the proportion

of correctly predicted positive instances among all actual positive instances. In

assessing the performance of a classification model, the accuracy metric provides a

measure of its overall effectiveness, while the F1-score, being a harmonic mean of

precision and recall, provides a more nuanced evaluation. The receiver operating

characteristic (ROC) curve is a commonly used tool for assessing classification

model performance considering the true positive rate against the false positive rate.

By conducting statistical analysis and evaluation, ML models can be optimized and

improved, leading to better performance and more accurate predictions (Ahsan,

E Alam, et al., 2020; Jang, Kim, Harerimana, Kang, & Kim, 2020).

1.3 Study towards Data Balancing Approaches

ML has become a widely used technique in solving problems in various fields

such as healthcare, finance, transportation, and more. ML algorithms require

9

a large amount of data to learn and make accurate predictions. However, in

many real-world scenarios, the data is imbalanced, meaning that one class has

significantly more data points than the other(s) (Qian & Li, 2020; X. Wang,

Liu, et al., 2020). For example, in fraud detection, the number of fraudulent

transactions is often much lower than the number of legitimate ones. Similarly,

in medical diagnosis, the number of patients with a rare disease is often much

smaller than the number of healthy patients (X. Wang, Liu, et al., 2020).

Imbalanced data can lead to biased models, where the minority class is often

misclassified (Tao et al., 2019). This can have serious consequences in real-world

scenarios, where the cost of misclassifying the minority class is often much higher

than the majority class. For example, misclassifying a fraudulent transaction as

legitimate can have a severe financial impact, while misdiagnosing a rare disease

can have life-threatening consequences.

1.4 Importance of Data Balancing

The importance of data-balancing approaches lies in their ability to address

the class imbalance problem that often arises in ML applications. Imbalanced

datasets have been a challenge in the field of ML, where the performance of the

model is often biased towards the majority class due to its dominance in the

dataset (Z. Chen, Duan, Kang, & Qiu, 2021). As a result, the minority class is

usually ignored, leading to a high rate of false negatives and poor classification

performance. This creates a need to study data-balancing approaches to improve

10

the performance of the model and make accurate predictions for the minority

class.

Despite the advancements in ML and the availability of different data-balancing

approaches, the need to study data balancing is still relevant in the 21st century.

This is because the imbalance problem is still challenging, even though new and

improved algorithms and techniques are constantly being developed. The scientific

contributions of this dissertation are based on the need to explore the effectiveness

of different data-balancing approaches in the context of quality, defect, and pattern

analysis.

The motivation behind conducting this research is to develop an efficient

and reliable methodology for the effective analysis of imbalanced datasets and

provide a useful reference for researchers and practitioners in the field. The

importance of data-balancing approaches is not only limited to the academic

world but also extends to various industrial sectors, including healthcare, finance,

transportation, and manufacturing, where accurate and reliable predictions are

crucial for decision-making.

By studying data-balancing approaches, this dissertation aims to contribute

to the field of ML by identifying the best approach for different datasets and

applications. The benefit of this research is that it will improve the performance

of the model, reduce the rate of false negatives, and make accurate predictions for

the minority class. This will have practical implications in areas such as defect,

failure, and quality analysis, where accurate predictions are necessary to identify

potential issues and prevent failures. Overall, this dissertation will contribute to

11

developing effective and accurate predictive models for imbalanced datasets and

improving the performance of ML algorithms.

1.5 Goal and Objectives

The current industrial landscape is characterized by increasingly complex mecha-

tronics systems, uncertain and evolving environments, and a growing reliance on

data-driven decision-making approaches (Brunton et al., 2021; Bibri, 2022). Over

the years, data-driven decision-making systems have become popular for detecting

faults or patterns that may impact industrial operations and for identifying their

underlying causes (i.e., fault isolation). One of the major challenges facing these

systems is the presence of imbalanced data or rare events. This can lead to poor

decision-making and bias in the models. Despite some existing solutions, there

remains a need for ongoing research to address this challenge effectively.

In this dissertation, the aim is to comprehensively examine the impact of

imbalanced data on data-driven decision-making systems. To achieve this objective,

the plan is to analyze the performance of these systems in the context of several

industrial case studies. This research will contribute significantly to understanding

the challenges that arise due to imbalanced data and aid in developing more

effective solutions to address this issue in data-driven decision-making systems.

To do that, this research attempts to identify a successful solution for the

following research question (RQ):

RQ1. What are the scopes of data-balancing approaches toward

12

the major and minor samples?

The purpose of RQ1 is to gain an understanding of the current state of the art

and limitations of data-balancing approaches in handling imbalanced data. To

achieve this, a thorough analysis of existing techniques and approaches to data

balancing is conducted in the literature review section of the study. This review

provides a comprehensive overview of the field’s current state and highlights the

challenges and limitations of existing approaches. In subsequent study sections,

several proposed data balancing approaches are presented and evaluated in various

industrial case scenarios. These proposed approaches are designed to address the

limitations of current data balancing methods and offer more effective solutions

for handling imbalanced data in industrial settings. By evaluating these proposed

approaches, the study aims to gain insight into the scope and potential of data-

balancing approaches for handling major and minor samples in imbalanced data

analysis. Figure 1.2 illustrates an approach to address RQ1.

13

Figure 1.2: Approach to address RQ1.

RQ2. What is the effect of traditional Machine learning and

SMOTE based data balancing on imbalanced data analysis?

In my literature review, I discovered that SMOTE is widely used as an

oversampling technique in the field of imbalanced data analysis. Despite its

popularity, SMOTE and SMOTE-based approaches have been criticized for their

potential to introduce multicollinearity issues. Despite this criticism, there is a

lack of empirical studies evaluating the performance of SMOTE-based approaches

when combined with various machine learning techniques on various imbalanced

datasets.

14

During the literature review section, it was discovered that SMOTE is a widely

used oversampling technique in the field of imbalanced data analysis. Despite their

popularity, SMOTE and SMOTE-based approaches have been criticized for their

potential to introduce multicollinearity issues. Therefore, there is a need for more

empirical studies that evaluate the performance of SMOTE-based approaches

when combined with various ML techniques on various imbalanced datasets.

In order to address this research gap and evaluate the effect of traditional

ML and SMOTE-based data-balancing on imbalanced data analysis, a study

was designed and conducted as part of RQ2. An experimental framework was

devised to assess the performance of different ML-based approaches in handling

imbalanced data, as illustrated in Figure 1.3. This research question aims to

contribute to understanding the significant effect of SMOTE-based approaches

incorporated with various ML models on handling imbalanced data.

15

Figure 1.3: Approach to address RQ2.

RQ3. How does imbalanced data affect the performance of Deep

Learning (DL)-based models?

The objective of this RQ3 is to evaluate the performance of DL approaches

on imbalanced data analysis. Given the popularity of DL-based approaches in

various domains, it is important to assess their potential limitations and biases.

The significance of this research lies in understanding the limitations and potential

of DL approaches in imbalanced data analysis, which is vital for improving the

performance of these models. The results of this study will provide insights into

the challenges of DL models on imbalanced datasets and suggest possible solutions.

Figure 1.4 illustrates an approach to address the RQ3.

16

Figure 1.4: Approach to address RQ3.

1.6 Outline of Dissertation

To enable a detailed discussion, a comprehensive overview of the dissertation’s

chapters is presented in Figure 1.5. The initial chapter of this dissertation provides

a fundamental understanding of the research by presenting a general overview of

the study’s focus, significance, objectives, and research questions. This chapter

lays the foundation for exploring the importance of data-balancing approaches

and outlines the research’s primary goal. Furthermore, this chapter presents

various approaches that can be employed to address the research questions, and

the subsequent chapter provides a literature review that examines different data-

balancing approaches (refer to Chapter 2). The literature review aims to explore

various data balancing techniques, such as oversampling, undersampling, and

ensemble methods, and identify their strengths and limitations.

17

Figure 1.5: Flow diagram of the each chapter of this dissertation.

In general, Chapter 2 aims to address RQ1 by providing a comprehensive

18

literature review on data-balancing approaches, including their background, ap-

plications, limitations, and effectiveness in addressing Class Imbalance Problems

(CIPs) in ML applications. The literature review includes a detailed explanation

of the effects of undersampling, oversampling, hybrid approaches, SMOTE-based

approaches, and GAN-based approaches, with an extensive discussion of over-

all review findings, limitations, and potential scope. The chapter endeavors to

provide a clear understanding of the various data balancing approaches available

and their effectiveness in dealing with class imbalance issues. Moreover, it seeks

to contribute to the ongoing discussion on the benefits and drawbacks of these

approaches and to offer insights into potential future research directions in this

area. The aim is to provide an academically rigorous and in-depth analysis of

state-of-the-art data-balancing techniques for ML applications.

Chapter 3 starts with an introduction discussing the motivation and providing

a chapter outline, followed by an experimental setup section that details the

datasets (Ionosphere, Pageblocks, Poker, Spambase, Wine Quality, and Yeast)

and ML algorithms (AdaBoost, Decision Tree, Gradient Boosting, K-Nearest

Neighbors, Logistic Regression, Random Forest, and SVM) employed in the study,

along with the performance evaluation methodology. The computational results

section presents the performance of each algorithm on the datasets, leading to a

discussion of the results and any notable observations. A hypothesis testing section

then compares the performance of the algorithms with and without SMOTE-based

data-balancing, featuring separate discussions for each algorithm’s performance

and significant findings. The chapter concludes with an overview of the overall

19

findings and implications, offering insights into the effectiveness of SMOTE-based

data-balancing approaches in various imbalanced datasets.

Chapter 4 evaluates the effectiveness of oversampling techniques in highly

imbalanced datasets, specifically focusing on the SMOTE and SVM-SMOTE

algorithms. The study utilizes nine benchmark datasets to provide a compre-

hensive evaluation, employing statistical measures such as accuracy, precision,

recall, and F1-score. The Kernel Density Function (KDF) is used to analyze over-

sampled data distribution, providing a better understanding of synthetic sample

characteristics and their distribution within the dataset’s feature space. Based

on the analysis results, the study proposes two novel oversampling approaches,

GAN-based Oversampling (GBO) and SVM-SMOTE-GAN (SSG), to address

the limitations of SMOTE and improve oversampling techniques’ performance in

highly imbalanced datasets. The proposed oversampling techniques can poten-

tially improve classification performance in highly imbalanced datasets and can

be helpful in various real-world applications.

Chapter 5 aims to propose a more effective GAN model that can be trained on

small or large datasets with limited iterations and to introduce a new oversampling

method called BSGAN, which combines the advantages of Borderline-SMOTE and

GAN to synthesize new samples along the borderline of classes with Borderline-

SMOTE and generate realistic samples with GAN. The chapter then evaluates

the performance of Borderline-SMOTE, GAN, and BSGAN on four highly imbal-

anced datasets: Ecoli, Yeast, Wine Quality, and Abalone, using metrics such as

accuracy, precision, recall, and F1-score. Furthermore, the chapter compares the

20

performance of the proposed BSGAN model with that of several reference works,

demonstrating that BSGAN outperforms many existing GAN-based oversampling

techniques and addresses sensitive data issues effectively.

Chapter 6 commences with an introduction and motivation for the research,

followed by a chapter outline. The background section provides an overview of

Computed Tomography (CT) scan-based and chest X-radiography (X-ray)-based

screening methods in healthcare. The research methodology elaborates on DL

algorithms, including Visual Geometry Group (VGG), Inception Residual Network

Version 2 (InceptionResNetV2), Residual Network (ResNet), and Mobile Network

Version 2 (MobileNetV2), as well as the utilization of pre-trained Convolutional

Neural Networks (ConvNets). The results section is divided into three studies,

each discussing the confusion matrix, model accuracy, and model loss of the

respective DL algorithm. Furthermore, test results with confidence intervals are

presented. A discussion section delves into the implications of the results, with

a focus on feature selection. The chapter concludes by summarizing the overall

findings and suggesting potential future works in the field of healthcare diagnostics

and data-balancing approaches.

Chapter 7 begins with an introduction and motivation for the research, followed

by a chapter outline. The background section delves into the current state of the art

and the significance of CT scan-based screening in the medical field. The research

methodology section presents the approach used in the study, including a detailed

explanation of LIME as an explainable AI technique, which provides insights

into the model’s decision-making process. The results section reports on the

21

experiments’ findings, analyzing the proposed model’s performance in the CT scan

image classification context. A discussion section follows, where the implications

of the results are explored, limitations are identified, and potential improvements

are proposed. The study’s overall findings are summarized, emphasizing the key

contributions and implications of the research. The chapter concludes by drawing

a conclusion and outlining future research directions, exploring the potential

for further advancements in mixed image data analysis and the application of

explainable AI techniques in medical imaging.

Chapter 8 presents an improved Deep Neural Network (DNN) model for defect

analysis in the 3D printing process and Grad-CAM visualization. The chapter

begins with an introduction and motivation for the research, followed by a chapter

outline. The methodology section encompasses data collection and various DL

algorithms. Additionally, the LIME technique is discussed. The results section is

divided into two studies, each presenting the performance of the DL algorithms

in defect analysis. The discussions section delves into the model predictions,

interpreting their implications and providing insights into the research’s findings.

The chapter summarizes the contributions and implications of the proposed model

and Grad-CAM visualization for defect analysis in the 3D printing process.

Chapter 9 explores defect localization using Region of Interest (ROI)-based

Convolutional Neural Network (CNN) approaches. The chapter begins with

an introduction and motivation for the research, followed by a chapter outline.

The background section provides an overview of the current state of the art in

defect localization and the importance of the region of interest-based techniques.

22

The research methodology details the proposed approaches, including the ROI,

Histogram Equalization (HE), and Details Enhancer (DE), as well as methods

for model interpretation. The results section is divided into two studies, each

evaluating the performance of the proposed approaches for defect localization.

Additionally, the models’ explainability is assessed. A discussion section delves

into the implications of the results, overall findings, and potential improvements.

The chapter concludes by summarizing the contributions of the research and

suggesting future works in the field of defect localization using ROI-based CNN

approaches.

Chapter 10 explores the development of a deep Multi-Layer Perceptron (MLP)-

CNN model using mixed data for early COVID-19 diagnosis. The chapter covers

motivation, background review, dataset, and methodology, including the proposed

model, explanation, and experimental setup. Additionally, the chapter presents

computational results, a discussion, and a conclusion. The study aims to offer

a reliable alternative screening method for COVID-19 patients, contributing to

reduced mortality rates by facilitating early diagnosis, improved treatment, and

prevention of disease transmission amid the ongoing global public health crisis.

Finally, Chapter 11 provides a comprehensive summary of the research ques-

tions explored in the previous chapters and outlines the key contributions of

the study. It presents an overall summary of the research questions investigated

and summarizes the main findings, followed by a detailed summary of each re-

search question and its corresponding findings. The scope and limitations of

data-balancing techniques for addressing the class imbalance in major and minor

23

samples are discussed. The impact of traditional ML algorithms and SMOTE-

based data-balancing techniques on imbalanced data analysis and the effect of

DL approaches, specifically CNN, on imbalanced data analysis is explored. The

chapter concludes by outlining the study’s key contributions, including identifying

limitations in existing data-balancing approaches and proposing new techniques

for addressing the class imbalance in imbalanced datasets.

24

Chapter 2

Data Balancing Approaches

2.1 Introduction

Data imbalance is one of the challenging issues in various fields, including health-

care, finance, and telecommunication. This issue negatively affects the performance

of the Machine Learning (ML) algorithm, resulting in inaccurate predictions and

suboptimal decision-making (Ali et al., 2020; Bell & Mgbemena, 2018; Thabtah et

al., 2020). Several data-balancing approaches have been introduced in the litera-

ture to address this issue, which aims to improve the classification performance of

ML models by either oversampling the minority class or undersampling the major-

ity class. The research question that this chapter will address is RQ1: “ What are

the scopes of data-balancing approaches toward the major and minor samples?”

To answer this question, the chapter will consider the following approaches:

• First, a general overview of some of the most widely used data-balancing

approaches will be presented.

• Second, the most relevant literature that employs several data-balancing

approaches will be discussed.

• Finally, the chapter will discuss the general findings, limitations, and poten-

tial scope at the end of the chapter.

By addressing RQ1, this chapter aims to provide a comprehensive overview of

data-balancing approaches and their potential findings. Additionally, the chapter

25

highlights that data-balancing approaches can be applied to various real-world

domains, such as disease diagnosis, fraud detection, and anomaly detection, to

improve ML models’ performance.

2.2 Motivation

The motivation behind this chapter is to address the challenges and limitations of

various data-balancing approaches in different domains where imbalanced data is

a significant problem. While researchers have proposed numerous data balancing

approaches, each approach has been found to have its unique set of advantages and

limitations, thereby warranting further research in this field. Despite numerous

studies, a comprehensive summary of widely used data-balancing approaches still

needs to be included in the literature.

The primary objective of this chapter is to provide a comprehensive overview of

data-balancing approaches for major and minor samples, including the advantages,

limitations, and potential applications of different techniques. By reviewing recent

studies that employ data-balancing methods in various real-world problems, this

chapter aims to provide insights into the efficacy of different data-balancing

approaches. The information presented in this chapter will enable practitioners

to select the most appropriate data-balancing approach for their specific use case,

leading to more accurate predictions and better decision-making.

26

2.3 Chapter Outline

The chapter is organized as follows. First, a brief background of different data-

balancing approaches is discussed in Section 2.4. Second, Section 2.5 outlines the

systematic procedure employed to collect the literature for the study, providing a

comprehensive summary of the process.. Third, a concise summary of the data-

balancing approaches used in the referenced literature is provided in Section 2.6.

Finally, in Section 2.7, the chapter presents the overall findings, study outcomes,

and future scope.

2.4 Background

Data balancing is a process of adjusting the class distribution of imbalanced

datasets. In an imbalanced dataset, the number of instances of one class is

significantly higher than the other. This issue is common in real-world datasets,

such as fraud detection or medical diagnosis, where the minority class represents

the target class or the class of interest. The data imbalance leads to the biased

performance of ML models towards the majority class, resulting in poor accuracy,

precision, and recall for the minority class (Cui, Jia, Lin, Song, & Belongie, 2019;

Y. Yang & Xu, 2020; S. Wang, Dai, Shen, & Xuan, 2021).

Several data-balancing approaches have been proposed in the literature to

address the imbalanced dataset problem. Common data-balancing approaches

include undersampling, oversampling, and hybrid methods (Galar, Fernandez,

27

Barrenechea, Bustince, & Herrera, 2011; Caruana et al., 2015; Le, Hoang Son,

Vo, Lee, & Baik, 2018; Laurikkala, 2001; Guyon & Elisseeff, 2003; Z. Zhang,

Krawczyk, Garcia, Rosales-Pérez, & Herrera, 2016).

2.4.1 Undersampling

Undersampling involves reducing the number of instances of the majority class to

balance the class distribution with the minority class. Random undersampling

and TomekLinks are some of the widely used undersampling approaches (D. Devi,

Biswas, & Purkayastha, 2020; A. Mukherjee, Mukhopadhyay, Panigrahi, &

Goswami, 2019; H. Sharma & Gosain, 2023). Details of some of the popular

undersampling techniques are discussed below:

• Cluster Centroids is an undersampling method that aims to balance

imbalanced datasets by reducing the number of instances in the majority

class using centroid-based clustering. In this method, the majority class is

clustered, and the centroid of each cluster is calculated. Then, the majority

of class instances that are farthest from the centroid are removed. This

approach helps to reduce the redundancy in the majority class and preserve

the information of the minority class. The mathematical formulation of the

Cluster Centroids algorithm can be written as (Le et al., 2018):

Let X be the set of feature vectors, and y be the set of corresponding labels.

Let C be the number of centroids to be selected. The Cluster Centroids

algorithm can be formulated as follows:

28

1. Compute the Euclidean distance between all the instances in the

majority class.

2. Cluster the majority class using KMeans algorithm with C clusters.

3. Select the C centroids from the majority class.

4. Remove the samples that are not centroids from the majority class.

5. Combine the undersampled majority class with the minority class to

obtain a balanced dataset.

• Random Undersampling is a simple yet widely used undersampling

method introduced by Laurikkala in 2001 (Laurikkala, 2001). The idea

behind this method is to randomly remove instances from the majority class

until the desired class balance is achieved. The drawback of this method

is that it may lead to the loss of important information and decrease the

model’s overall performance. The mathematical formulation of random

undersampling can be represented as follows (Brownlee, 2020d):

Let S be the original set of instances, where Smaj and Smin represent the

majority and minority class instances, respectively. Let nmaj and nmin be

the number of instances in the majority and minority class, respectively.

The goal of random undersampling is to obtain a new set S ′ such that

the number of instances in Smaj is reduced to a desired level n′
maj. This

can be achieved by randomly selecting n′
maj instances from Smaj without

replacement and combining them with Smin to form the new set S ′. The

equation for random undersampling can be written as follows:

29

S ′ = Smin ∪ S
′

maj, (2.1)

where S
′
maj is a randomly selected subset of Smaj such that |S ′

maj| = n′
maj.

• Tomek Links is a well-known undersampling technique that removes the

overlapping samples between the minority and majority classes. This method

is based on the idea of identifying pairs of samples that are nearest neighbors

but belong to different classes and removing the majority sample from the

pair. This technique can be implemented using a simple equation, where

d(xi, xj) is the Euclidean distance between samples xi and xj , yi is the class

label of sample xi, and n is the number of samples in the dataset (Guyon &

Elisseeff, 2003):

||xi − xj||2 ≤ ||xi − xk||2 (2.2)

where xi is an instance from the majority class, xj is an instance from the

minority class, and xk is the nearest neighbor of xj from the majority class.

The inequality states that if xj is closer to xi than to its nearest neighbor in

the majority class, then xj is a Tomek link and can be removed to improve

the class separation.

• Neighborhood Cleaning Rule (NCR) is an undersampling technique that

removes noisy and borderline instances from the majority class based on the

distribution of the minority class. This technique removes the majority class

samples that are far from the minority class samples in the feature space.

30

The algorithm first determines the K nearest neighbors of each minority

class sample and removes the majority class samples that are K furthest

from the minority samples. The value of K is usually set to 3, 5, or 7 (Faris,

2014; Brownlee, 2020d).

Let X be the feature matrix of the dataset, y be the corresponding class

labels, and C be the majority class. The NCR algorithm can be represented

as:

1. Identify the minority class samples and their K nearest neighbors in

the feature space.

2. Compute the average distance between each minority class sample and

its K nearest neighbors.

3. For each majority class sample, compute the minimum distance to the

minority class samples.

4. Remove the majority class samples that have a minimum distance

larger than the average distance of their corresponding minority class

samples.

The NCR algorithm can effectively remove the noisy and borderline instances

from the majority class, making it a useful technique for handling imbalanced

datasets (Hoens & Chawla, 2013).

Apart from this, several other undersampling approaches have been proposed

by researchers, including but not limited to Edited Nearest Neighbors (ENN),

31

One-Sided Selection (OSS), and Instance Hardness Threshold (IHT) (Triguero

et al., 2019; Prudêncio, 2020; Jia & Zuo, 2017). However, undersampling ap-

proaches are often not recommended as they can significantly affect the model

performance by removing important information from the majority class. In

addition, undersampling can lead to overfitting of the remaining data, reducing

the model’s generalization ability. Oversampling approaches such as Synthetic Mi-

nority Oversampling Technique (SMOTE) and its extensions are more commonly

preferred as they generate synthetic examples that retain important features of

the minority class while avoiding the loss of information from the majority class.

These methods have been shown to improve the performance of ML models on

imbalanced datasets (Brownlee, 2020c).

2.4.2 Oversampling

Oversampling is another approach to balance the class distribution, where the

minority class is artificially increased by generating synthetic instances or replicat-

ing the existing ones. Random oversampling, SMOTE, and Adaptive Synthetic

Sampling (ADASYN) are some popular methods. Details of some of the popular

oversampling techniques are discussed below (Brownlee, 2020c; H. He, Bai, Garcia,

& Li, 2008; Chawla, Bowyer, Hall, & Kegelmeyer, 2002):

• Random Oversampling is a technique that involves randomly replicating

the minority class samples until the number of samples in the minority class

is equal to that of the majority class. This approach is straightforward

and can be easily implemented. However, it may result in overfitting and

32

decreased generalization performance if the synthetic samples are too similar

to the original minority class samples. The probability of each minority

sample being selected for replication is usually uniform but can be adjusted

based on the degree of imbalance in the dataset. The following equation

can represent the random oversampling approach (Brownlee, 2020c, 2020b;

Calo, Efendiev, Galvis, & Li, 2016):

Let X = x1, x2, . . . , xn be the set of minority class samples and N be

the desired number of minority class samples. The random oversampling

approach can be formulated as:

1. Calculate the number of minority class samples, M.

2. Calculate the oversampling rate, r, as r = N/M.

3. For each minority class sample xi, randomly select k-1 nearest neighbors

from the minority class, where k is a user-defined parameter.

4. For each xi and its k-1 neighbors, generate r-1 synthetic samples by

randomly interpolating between them.

5. Add the synthetic samples to the minority class to obtain a balanced

dataset.

Overall, random oversampling is a simple and effective technique for balanc-

ing imbalanced datasets, but care should be taken to avoid overfitting and

to ensure that the synthetic samples are representative of the minority class

distribution.

33

• Synthetic Minority Over-sampling Technique (SMOTE) is one of the

most commonly used oversampling methods. It was initially proposed by

Chawla et al. (2002) to tackle the problem of class imbalance by generating

synthetic instances of the minority class. The fundamental concept of

SMOTE involves creating new minority class instances by interpolating

between existing minority class instances. To generate the new instances,

two minority class instances are selected and a new instance is created

along the line connecting them. The oversampling rate can be controlled

by specifying the number of new instances to be produced. The SMOTE

equation can be written as: (Chawla et al., 2002):

Xnew = Xi + λ(Xj −Xi) (2.3)

where Xi is an instance of the minority class, Xj is one of its k nearest

neighbors, and λ is a random number between 0 and 1. More details of

SMOTE will be discussed in Chapter 5, Section 5.5.

• K-means SMOTE is an extension of the SMOTE algorithm that utilizes

the k-means clustering algorithm to identify the synthetic samples to be

generated. The algorithm involves the following steps (Douzas, Bacao, &

Last, 2018):

1. Cluster the minority class instances into k clusters using the k-means

clustering algorithm.

2. Calculate the centroid and the distance to its k nearest neighbors for

34

each cluster. For each minority class instance, randomly select a cluster

to generate synthetic samples.

3. Generate synthetic samples by interpolating between the instance and

its k nearest neighbors within the selected

Synthetici = xi + rand(0, 1) ∗ (xnearest − xi) (2.4)

where Synthetici is the newly generated synthetic instance, xi is the minority

instance being oversampled, xnearest is the nearest minority instance to xi

within the selected cluster, and rand(0, 1) is a random number between 0

and 1.

K-means SMOTE has been shown to outperform the original SMOTE

algorithm in certain scenarios, particularly when dealing with datasets with

high dimensionality and a large number of minority class instances. However,

it may be computationally expensive due to using the k-means clustering

algorithm (Last, Douzas, & Bacao, n.d.; Velmurugan & Santhanam, 2010).

• ADASYN was proposed by He et al. (2008) to address the problem of

generating noisy instances in SMOTE. ADASYN generates more synthetic

instances near the decision boundary, where the classification is difficult. The

idea is to add synthetic instances to the minority class close to the decision

boundary between the minority and majority classes. The oversampling

rate can be adjusted by specifying the number of synthetic instances to be

generated. The ADASYN equation is given by (H. He et al., 2008):

Xnew = Xi + λi(Xi −Xzi) (2.5)

35

where Xi is an instance of the minority class, Xzi is a randomly selected

instance from the minority class that is close to Xi, λi is a random number

between 0 and 1, and Xnew is the new synthetic instance.

In addition to SMOTE-based oversampling methods, several other oversampling

approaches have been proposed in the literature, such as SMOTEN (Synthetic

Minority Over-sampling Technique using Extrapolation of a Nominal variable) and

SMOTENC (Synthetic Minority Over-sampling Technique for Nominal and Con-

tinuous Features). Various studies have introduced these extensions of SMOTE-

based approaches, and a detailed description of their practical implementation

can be found in the Scikit-learn imbalanced-learn (imblearn) API documenta-

tion (Lemâıtre, Nogueira, & Aridas, 2017).

2.4.3 Hybrid Methods

Hybrid methods, which are a combination of over- and under-sampling techniques,

have been proposed to overcome the limitations of individual under and over-

sampling approaches. These methods combine the strengths of both over- and

under-sampling to achieve better performance in imbalanced datasets (Gazzah,

Hechkel, & Amara, 2015). For instance, in the SMOTEBoost algorithm, a combi-

nation of SMOTE and boosting is used to increase the number of minority class

instances while reducing the number of majority class instances. The SMOTE-

Boost algorithm works by creating synthetic minority class instances using the

SMOTE algorithm and then using boosting to reduce the number of majority

class instances (Chawla, Lazarevic, Hall, & Bowyer, 2003). The hybrid approach

36

can help to overcome the limitations of using only one approach and can lead to

more accurate classification results (Cui, Ma, & Saha, 2014).

2.4.4 Ensemble Methods

Ensemble methods are another technique used to address the class imbalance

problem in machine learning (Z. Zhang et al., 2016). Ensemble methods combine

multiple base classifiers, which can be either under-sampled or over-sampled,

to improve the model’s performance. One such ensemble method is the Easy

Ensemble (EE) algorithm, which is a type of bagging method that creates multiple

training sets by under-sampling the majority class and then trains several classifiers

on each set. The final prediction is made by combining the outputs of all the

classifiers. Another ensemble method is the Balance Cascade (BC) algorithm,

which is an iterative algorithm that trains multiple classifiers on under-sampled

data and then removes the majority of class samples that are misclassified by

each classifier (X.-Y. Liu, Wu, & Zhou, 2008). This process is repeated until the

desired level of balance is achieved. Ensemble methods effectively improve the

classification performance on imbalanced datasets, particularly when combined

with appropriate base classifiers and sampling techniques(Z. Zhang et al., 2016).

2.5 Systematic Analysis

Several oversampling techniques have been proposed to handle class imbalanced

problems (Xin et al., 2021; Moreo, Esuli, & Sebastiani, 2016; Wibowo & Fatichah,

2021; Douzas & Bacao, 2019; Ishaq et al., 2021; Gök & Olgun, 2021; M. Mukherjee

37

& Khushi, 2021). This research undertakes a systematic analysis to identify

existing techniques, their limitations, and prospects. The Systematic Literature

Review (SLR) is employed as a review method whereby explicit and systematic

procedures are used to identify, select, and critically evaluate relevant research to

gather and evaluate data from the included studies (Okoli & Schabram, 2010).

This approach is favored because it provides an accurate and reliable way to

synthesize academic literature and is widely accepted in many research domains.

The PRISMA recommendations are followed to report the SLR in this study, as

they provide a standardized framework for reporting and enhancing the quality

of systematic reviews and meta-analyses (Tricco et al., 2018). Ethics approval is

not required for this study. While PRISMA is not a quality assessment tool, its

27-item checklist and four-phase analysis are evidence-based and offer clarity and

transparency in reporting the SLR.

2.5.1 Identification of the Data

The Scopus and Web of Science (WOS) integrated database, which includes major

publishers such as Emerald, Taylor and Francis, Springer, IEEE, and Wiley, is

being used to conduct a comprehensive search study. Scopus is considered a

reliable database for conducting Systematic Literature Reviews (SLRs) due to its

high-quality indexing contents, as noted by many researchers (Fahimnia, Sarkis,

& Davarzani, 2015; Malviya & Kant, 2015). The search period extends from 2018

through May 15, 2022, and encompasses all relevant publications published within

this timeframe. To maintain focus and relevance, the initial search is conducted

38

using the Boolean operator with ”imbalance*” and ”machine” AND ”oversampl*,”

which results in 1229 articles from Scopus and 643 articles from WOS. After

restricting the articles to journal papers, peer-reviewed articles, and those written

in English, the remaining articles are reduced to 291 after title, keyword, and

abstract analysis.

After applying the inclusion-exclusion criteria specified in Figure 2.1, a total

of 151 papers for qualitative synthesis have been identified. To provide additional

clarity on the article selection procedure, Table 2.1 presents a detailed description

of the inclusion and exclusion criteria.

Figure 2.1: The PRISMA 2015 flow diagram is utilized in this study

to illustrate the article selection procedure (Moher et al., 2015).

39

Table 2.1: Inclusion-exclusion-based article selection procedure used

during this study.

Screening Type Criteria Inclusion Exclusion

Title screening Is the title inclusive of keywords like “imbalance,”

“oversample,” “oversampling,” “Machine Learn-

ing,” or “Deep Learning”?

291 1581

Abstract screening Is the abstract mainly focused on the utilization

of oversampling or ML algorithms to handle class

imbalance?

190 101

Full text screening Is the full text of the article accessible for analy-

sis?

102 39

Additional screening Is the article relevant to this study? 49

Total article for final re-

view

151

Several types of research have been conducted over the years to deal with class

imbalanced problems (CIP). After carefully screening, around 151 articles have

been selected for Literature review. As CIP can significantly affect the ML models

prediction, many sectors such as credit card fraud detection, fault analysis, traffic

signal analysis, and rare cancer diagnosis are quite vulnerable to CIP. Most of

the suggested methods are unable to provide a proper solution as most of the

ML model’s performance depends on various factors such as data size, algorithm

types, data type, and imbalanced ratio (W.-J. Lin & Chen, 2013; S. Wang & Yao,

2013). This dissertation aims to investigate the techniques and approaches being

40

used to handle CIPs and their current limitations.

2.6 Literature Review

2.6.1 Data Distribution

Data distribution on an imbalanced data set affects the ML model’s performance

during the prediction. If the data is skewed towards one class, then for the ML

model, it is hard to perform the prediction without being biased towards the major

class. To deal with those issues, several studies suggest data preprocessing steps

before applying oversampling methods. For instance, Blagus and Lusa (2013),

Gupta, Ahsan, Andrei, and Alam (2017), and Uyun and Sulistyowati (2020) have

utilized data normalization techniques to improve the data distribution (Blagus

& Lusa, 2013; Gupta, Ahsan, Andrei, & Alam, 2017; Uyun & Sulistyowati, 2020).

Pandey et al. (2019) used data normalization techniques to develop auto-

matic arrhythmia detection. The author claimed that around 98.30% accuracy

was achieved with data normalization and when the dataset is split as follows:

train/test = 80/20 (Pandey & Janghel, 2019). Mohammed et al. (2020) used

several data normalization techniques, such as min-max, Z-score, and L2 norm,

along with SMOTE-based approaches to tackle the CIPs. However, it is not clear

whether using such data normalization techniques has a significant effect on the

model’s overall performance or not (A. J. Mohammed, Hassan, & Kadir, 2020).

Additionally, using several data normalization techniques before oversampling

approach might change the entire minor class data distributions, which may not

41

be helpful in predicting outlier or minor samples

Tesfahun and Bhaskari (2013) develop an intrusion detection model using

Random Forest (RF) algorithms. The authors initially selected important features

and then applied data Standardization methods and achieved more than 90%

accuracy (Tesfahun & Bhaskari, 2013). However, none of the referenced literature

demonstrates how their proposed method improves the data distribution after

applying the oversampling techniques. Both of the studies use SMOTE-based

approaches, which potentially create more noise in minor classes. Therefore, it can

be assumed that the data distribution after the preprocessing and oversampling

approach did not analyze properly and needed much attention.

2.6.2 Performance of ML Algorithms

The performance of ML algorithms on oversampled data set is not consistent.

For instance, Rajesh and Dhuli (2018) used the Adaptive Boosting (AdaBoost)

algorithm and achieved around 98.6% accuracy for detecting heart disease while

trained and tested on the UCI heart disease dataset (Rajesh & Dhuli, 2018). Ma-

hesh et al. (2022) achieved an accuracy of 95.47% using a similar dataset (Mahesh

et al., 2022). Sisodia et al. (2017) used SMOTE oversampling techniques on

a credit card dataset and achieved 95.33% accuracy with the Support Vector

Machine (SVM) algorithm, while Mqadi et al. (2021) Achieved around 100%

accuracy using the same algorithm and oversampling techniques on the same

dataset (Sisodia, Reddy, & Bhandari, 2017; N. Mqadi, Naicker, & Adeliyi, 2021).

Sadgali et al. (2019) proposed a resampling approach to detect credit card

42

fraud and achieved around 78.9% accuracy using Decision Tree (DT) (Sadgali,

Nawal, & Benabbou, 2019). Ileberi et al. (2021) evaluated the performance of

different ML models for credit card fraud detection. The author reported around

99% accuracy in detecting fraud using Decision Tree (DT) algorithms (Ileberi,

Sun, & Wang, 2021). Sadgali et al. (2019) and Ileberi et al. (2021) both

use SMOTE oversampling methods but reported different accuracy with DT

approaches (Sadgali et al., 2019; Ileberi et al., 2021).

Therefore, one of the major concerns is that the performance of different ML

algorithms varies with the similar SMOTE approaches. However, since none of

the studies mentioned whether they have tuned the parameter of SMOTE or

used the default parameters, it is difficult to conclude that the performance of

ML algorithms differs solely based on oversampling approaches; indeed, a proper

clarification is needed.

2.6.3 Effect of Undersampling

Undersampling has been widely used as a data-balancing approach to handle im-

balanced datasets. The methods aim to balance the data distribution by removing

the majority class instances to match the size of the minority class (Zeng, Zou,

Wei, Liu, & Wang, 2016; W.-C. Lin, Tsai, Hu, & Jhang, 2017; Hira & Gillies,

2015). This approach has been shown to improve the classification performance of

ML algorithms on imbalanced datasets. Several undersampling techniques have

been proposed and used in the literature. One popular technique is Random Un-

dersampling, which randomly selects instances from the majority class to balance

43

the class distribution (Zuech, Hancock, & Khoshgoftaar, 2021). Another technique

is the Near-Miss (NM) algorithm, which selects instances from the majority class

based on their distance from instances from the minority class (N. M. Mqadi,

Naicker, & Adeliyi, 2021). Additionally, TomekLinks and Cluster Centroids (CC)

are undersampling techniques widely used in data balancing (Zeng et al., 2016;

W.-C. Lin et al., 2017). A review of some popular and existing undersampling

approaches and their effects on data balancing are discussed below.

CC is an undersampling technique that uses clustering algorithms to select

centroids from the majority class. Several studies have evaluated the performance

of CC in addressing the class imbalance. For instance, a study by Hira et al.

(2015) compared CC with other undersampling techniques on several imbalanced

datasets. The results showed that CC outperformed the other methods in terms

of classification accuracy (89.2%), F1-score (0.74), and Area Under the Receiver

Operating Characteristic Curve (AUC-ROC) (0.903) (Hira & Gillies, 2015). Lenka

et al. (2022) introduced the issue of imbalanced binary classification in credit

scoring and how it can affect the performance of traditional classification algo-

rithms. To address this issue, undersampling and oversampling techniques have

been proposed, and the paper introduces a new clustering-based undersampling

technique called CUTE. The proposed technique computes the representatives

of each member of the majority class subset. The model is evaluated using two

credit-scoring datasets and is compared with four traditional resampling tech-

niques. The performance of the proposed model is shown to improve consistency

in various measures, such as accuracy, precision, recall, F1-score, and AUC (Lenka,

44

Bisoy, Priyadarshini, & Nayak, 2022). However, the study does not compare

the proposed technique with other state-of-the-art techniques, which could have

provided more insights into their proposed approaches.

Zhang et al. (2022) developed a computational method for predicting Anti-

Parasitic Peptides (APPs) using an ensemble of ML classifiers. The author

generated a balanced dataset using CC undersampling to address class imbalance

issues. Fifty-four classifiers were generated by combining nine groups of features

and six ML algorithms, and their outputs were used to construct 54 feature

representations. The best-performing feature representation in each group was

selected for classification, and Logistic Regression (LR) was used to integrate them

to construct the model. The proposed model achieved accuracy and AUC of 0.880

and 0.922 on an independent dataset compared to 0.739 and 0.873 for AMPfun

(a state-of-the-art method for predicting antimicrobial peptides (AMPs) using

ML classifiers), a state-of-the-art method (W. Zhang et al., 2022). While their

proposed approaches showed superior performance, it is limited by the quality

and diversity of the training data.

While CC has shown promising results in several studies, it may only be

suitable for some datasets. For example, in a study by Ikotun et al. (2022),

the authors found that CC was less effective on datasets with high-dimensional

features and many classes (Ikotun & Ezugwu, 2022). Previously, in a study by

Batista et al. (2004), the authors demonstrated that CC might not be suitable

for datasets with overlapping classes as it may remove important samples from

the majority class (Batista, Prati, & Monard, 2004).

45

Condensed Nearest Neighbor (CNN) is another popular undersampling tech-

nique introduced by Hart in 1968. CNN selects a subset of samples from the

majority class by iteratively removing those samples that can be classified correctly

using the nearest neighbor rule (Hart, 1968). Recently, Siddappa and Kampalappa

(2019) proposed an Adaptive Condensed Nearest Neighbor (Ada-CNN) classifier

to address the issues faced by k-Nearest Neighbor (kNN) and improve performance

in imbalanced classification. Ada-CNN utilizes the distribution and density of the

test point’s neighborhood and uses artificial neural systems to learn an appropriate

point-explicit k. The experimental results showed that Ada-CNN achieved nearly

94% accuracy for the diabetes dataset for imbalanced classification (Siddappa

& Kampalappa, 2019). However, CNN may not be suitable for datasets with

high-dimensional features and many classes, as shown in a study by Lemâıtre et

al. (2017) (Lemâıtre et al., 2017).

Yang et al. (2022) proposed a hybrid sampling approach combining SMOTE

and ENN to address the issue of sample imbalance in medical datasets. The

proposed method is applied to missed abortion and diabetes datasets, and RF

is used for modeling and prediction. The experimental results show that the

SMOTE-ENN algorithm outperforms other sampling algorithms, with the best

classification performance achieved by RF after SMOTE-ENN sampling. Pairwise

and multiple comparisons demonstrate the effectiveness of the proposed approach

in improving classification performance. The study highlights the importance of

addressing sample imbalance in medical datasets to improve the performance of

ML models for clinical diagnosis (F. Yang et al., 2022). Another study by Garćıa

46

et al. (2010) evaluated the performance of ENN on imbalanced medical datasets,

showing that it improved classification performance, particularly for the minority

class (Garćıa, Fernández, Luengo, & Herrera, 2010). However, ENN may only be

suitable for some datasets, as it may remove essential samples from the majority

class, leading to decreased classification performance.

Mqadi et al. (2021) proposed a hybrid data-point approach combining feature

selection with the NM undersampling technique to solve misclassification issues

in credit card fraud transactions. The approach aimed to improve ML algorithm

performance detecting fraud in imbalanced credit card datasets. The authors

evaluated the proposed approach on two imbalanced credit card datasets using

four algorithms: LR, SVM, DT, and RF. The experimental results showed that

the proposed approach improved the predictive accuracy of the algorithms, with

RF producing the best results (N. M. Mqadi et al., 2021). The study adds to the

growing literature on the effectiveness of undersampling techniques in improving

classification performance on imbalanced datasets.

Jia and Zuo (2017) proposed a novel One-sided Dynamic Undersampling (ODU)

technique, which dynamically determines whether a majority sample should be

used for classifier learning, thus minimizing information loss. This technique is

incorporated into a No-Propagation Neural Network (NPNN) to create the ODU-

NPNN classifier for imbalanced data classification. The results demonstrate that

the ODU-NPNN outperforms NPNN-based algorithms and performs comparably

to other well-known methods on real-world imbalanced datasets. The study’s

contribution is integrating the ODU technique into the classifier learning process,

47

dynamically balancing the training data in each iteration (Jia & Zuo, 2017). In

contrast, Nutthaporn and Tanasanee (2017) proposed a solution for imbalanced

datasets by combining the Neighbor Cleaning Rule (NCL) and SMOTE techniques.

The NCL technique removes outlier data in the majority class, while SMOTE is

used to increase the sample data in the minority class to balance the dataset. The

balanced dataset is classified by Naive Bayes (NB) and KNN algorithms. The

experimental results show improved recall rates in models created from balanced

datasets (Junsomboon & Phienthrakul, 2017). However, the study only evaluated

the proposed method on a limited number of classifiers, and the performance of

the proposed method could be further improved by incorporating other sampling

techniques or classifiers.

Pereira, Costa, and Silla Jr (2020) proposed Multi-Label Tomek Link (MLTL),

a novel resampling algorithm for addressing the class imbalance in multi-label

datasets based on the standard Tomek Link resampling algorithm. In order to

show that MLTL is a competitive methodology when compared to other multi-label

resampling methods from the current literature, the research conducted tests on

seven well-known datasets. This research contributes to multi-label classification

by introducing a new resampling algorithm for handling class imbalance in multi-

label datasets (Pereira, Costa, & Silla Jr, 2020). However, the study’s potential

limitations include evaluating the MLTL algorithm on only seven well-known

datasets, which makes it unclear how effective it is on other datasets. Further-

more, the study did not compare the computational efficiency of MLTL to other

resampling methods, which could be necessary for some practical applications.

48

Further research is needed to address these limitations and to investigate the

effectiveness of MLTL on various datasets.

Goyal (2022) utilized KNN-based undersampling approaches for Software

Defect Prediction (SDP). The author proposed a Neighbourhood-based Under-

Sampling (N-US) algorithm to address the class imbalance issue in SDP and

demonstrated its effectiveness in achieving high accuracy while predicting defective

modules. The N-US algorithm under-sampled the dataset to maximize the visibility

of minority data points while limiting the excessive elimination of majority data

points to avoid information loss. The proposed SDP classifier with the N-US

technique was compared with baseline models statistically using benchmark

datasets from the NASA repository, and it outperformed the rest of the candidate

SDP models with the highest AUC score (95.6%), the maximum Accuracy value

(96.9%), and the ROC curve closest to the top left corner (Goyal, 2022). However,

the proposed algorithm has not been compared with other oversampling techniques,

and the experiments are conducted only on benchmark datasets from the NASA

repository, limiting its generalization to other datasets.

In conclusion, several undersampling techniques, such as CC, CNN, NM, and

OSDU, have been proposed to address the class imbalance in datasets, and they

have shown promising results in several studies. However, these techniques may

only be suitable for some datasets due to the presence of high-dimensional features

and many classes or overlapping classes, which can lead to decreased classification

performance.

49

2.6.4 Effect of Oversampling

In recent years, oversampling techniques have gained significant attention in various

applications, including quality control, defect analysis, and pattern recognition,

as they address the issue of class imbalance in datasets (Moreo et al., 2016;

Wibowo & Fatichah, 2021; Douzas & Bacao, 2019; Ishaq et al., 2021). SMOTE,

ADASYN, and Borderline-SMOTE are some of the most popular and widely used

oversampling techniques that have been used by researchers and practitioners more

often (Kabir & Ludwig, 2018; H. He et al., 2008; H. Han, Wang, & Mao, 2005).

The increased number of minority class instances through oversampling techniques

can enhance the classification performance of ML algorithms, making them more

effective in detecting defects or recognizing patterns. However, the effectiveness of

oversampling techniques can vary depending on the dataset and specific application.

Therefore, careful evaluation and experimentation are necessary to select the

appropriate oversampling technique for the given dataset and application. A

review of some popular and existing oversampling approaches and their effects on

data balancing are discussed below (Brownlee, 2020b).

Random oversampling is a commonly used oversampling technique in data

balancing. It involves randomly duplicating instances of the minority class until

the class distribution is balanced. Studies have shown the potential of random

oversampling techniques in improving classification performance on imbalanced

datasets (Xin et al., 2021; Calo et al., 2016). For example, Xin and Rashid (2021)

used SMOTE as a random oversampling method and RF as a classifier to predict

50

depression among women in Malaysia (Xin et al., 2021). The proposed model

showed promising results, but the study is limited to a specific population and

a small number of classifiers. Future research could explore the effectiveness of

other oversampling techniques and classifiers on diverse populations.

Moreo et al. (2020) proposed a new oversampling method called Distributional

Random Oversampling to address the issue of class imbalance in text classification,

where the negative class outnumbers the positive class. The proposed method

generates synthetic minority-class documents by utilizing the distributional prop-

erties of the terms in the collection. The effectiveness of the proposed method

was evaluated on three datasets, Reuters-21578, OHSUMED-S, and RCV1-v2,

and showed promising results (Moreo et al., 2016). However, the study only eval-

uated the proposed method on text classification datasets and did not compare

its performance with other oversampling methods, which could be a potential

limitation.

Wibowo and Fatichah (2021) conducted a comprehensive performance eval-

uation of various oversampling techniques, including random oversampling, to

address the high-class imbalance in ML classification. The study aimed to provide

unbiased evaluation results by balancing each class’s data. The oversampling

techniques, such as Random Oversampling, ADASYN, SMOTE, and Borderline-

SMOTE, were combined with ML methods like RF, LR, and kNN. The results

showed that RF with Borderline-SMOTE demonstrates the best performance,

achieving an accuracy value of 0.9997, 0.9474 precision, 0.8571 recall, 0.9000

F1-score, 0.9388 ROCAUC, and 0.8581 Precision-Recall Area Under the Curve

51

(PRAUC) for the overall oversampling technique (Wibowo & Fatichah, 2021).

Douzas and Bacao (2019) proposed a new oversampling method called Ge-

ometric SMOTE (G-SMOTE) that generates synthetic samples in a geometric

region of the input space around each selected minority instance. G-SMOTE is an

enhancement of the SMOTE data generation mechanism and allows the deforma-

tion of the region from a hyper-sphere to a hyper-spheroid. The study evaluated

G-SMOTE against baseline methods and SMOTE and found that G-SMOTE

outperforms SMOTE and other baseline methods regarding the quality of the

generated data (Douzas & Bacao, 2019).

Ishaq et al. (2021) used SMOTE and data mining techniques to improve

the prediction of the heart failure patient survival. The study aimed to identify

significant features and effective data mining techniques to increase the accu-

racy of cardiovascular patient survival prediction. The authors utilized several

classification models such as DT, AdaBoost Classifier, and LR. The imbalance

class problem was handled by SMOTE, and the ML models were trained on the

highest-ranked features selected by RF. The experimental results demonstrated

that Extra Tree Classifier outperformed other models, achieving an accuracy of

0.9262 with SMOTE in predicting a heart patient’s survival (Ishaq et al., 2021).

Although SMOTE has been widely used to address the issue of class imbalance,

it also has several limitations. One of the main limitations of SMOTE is that it can

lead to overfitting, especially when generating synthetic samples for the minority

class in areas that are densely populated by the majority class. Another limitation

of SMOTE is that it may generate noisy samples that do not accurately represent

52

the underlying data distribution, which can negatively impact the performance

of ML models. Additionally, SMOTE is computationally expensive, mainly

when dealing with large datasets, which limits its practical use. Therefore, it is

important to consider these limitations when selecting oversampling techniques

and to evaluate their effectiveness based on the specific characteristics of the

dataset and the ML algorithm used.

A study conducted by Gök and Olgun (2021) developed an RF-based model

using SMOTENC and a gradient-boosting to predict the severity level of Coro-

navirus disease 2019 (Covid-19) patients using blood samples. The study was

conducted in two stages, with preprocessing methods implemented in the second

stage for improved results. The model achieved an accuracy of 0.98 with the

tuned RF algorithm. The study emphasized the importance of accurate and fast

diagnosis in dealing with the pandemic towards the impact on health security,

economic security, and social life (Gök & Olgun, 2021).

Mukherjee and Khushi (2021) introduce Synthetic Minority Over-sampling

Technique with Edited Nearest Neighbors (SMOTE-ENC) as a new minority

oversampling method that encodes nominal features as numeric values and reflects

changes associated with the minority class. Experimental results demonstrate

that SMOTE-ENC outperforms SMOTE-NC when datasets have a substantial

number of nominal features and associations with categorical features and the

target class. Additionally, SMOTE-ENC can address one of the major limi-

tations of the SMOTE-NC algorithm by being applied to mixed and nominal

datasets (M. Mukherjee & Khushi, 2021).

53

SMOTE-ENC has several limitations that should be considered when applied

to a dataset. Firstly, it needs more support for high-dimensional categorical

features, which can generate excessive synthetic examples, leading to overfitting.

Secondly, SMOTE-ENC is sensitive to the scale of continuous features, requiring

normalization or standardization, which can affect the distribution of nominal

features. Thirdly, generating synthetic examples can reduce class separation,

decreasing classification performance. Finally, the synthetic samples generated by

SMOTE-ENC can introduce sampling bias, leading to overfitting and reduced gen-

eralization performance on new unseen data. Thus, researchers and practitioners

should be cautious when using SMOTE-ENC and carefully evaluate its perfor-

mance on a given dataset before using it in real-world applications (Brownlee,

2020b; M. Mukherjee & Khushi, 2021).

Ndichu et al. (2023) presented a novel AI-assisted security alert data analysis

method that employed imbalanced learning techniques to address the severe class

imbalance. The authors proposed an ensemble of three oversampling techniques to

generate high-quality synthetic positive samples, along with a data subsampling

algorithm to remove noisy negative samples. Results from experiments on an

enterprise and benchmark dataset showed significantly improved recall and false

positive rates compared to conventional oversampling techniques. These findings

suggest the potential for more effective and efficient Artificial Intelligence (AI)-

assisted security operations (Ndichu, Ban, Takahashi, & Inoue, 2023).

Garcia et al. (2023) conducted a research where oversampling techniques were

applied to categorical data to discover risk variables connected to Cardiovascular

54

Diseases (CVDs). The authors wanted to analyze the impact of combining

oversampling approaches and linear/nonlinear supervised ML algorithms in binary

tasks and establish the most essential characteristics for predicting healthy and

CVD patients. Questionnaire data from the Norwegian Centre for E-health

Research connected with healthy and CVD patients were employed in the study.

Experimental results suggested that oversampling and feature selection strategies

boosted CVD prediction, with Generative Adversarial Networks (GAN) and

linear models performing better than alternative oversampling techniques. The

authors found that synthetic data production aids both identifying risk variables

and constructing models with appropriate generalization capabilities in CVD

prediction (Garćıa-Vicente et al., 2023).

In their study, WU and CAO (2021) investigated the issue of failure diagnosis in

railway signal equipment. They collected data from a railway bureau for the period

between 2016 and 2020, which was subjected to denoising and feature extraction.

Additionally, minority class samples were synthesized using the ADASYN method.

For failure diagnosis, the authors employed three different algorithms: Back-

Propagation Neural Network (BPNN), Support Vector Machine (SVM), and

C4.5. The experimental results demonstrated that these algorithms exhibited

poor performance in diagnosing the original data. However, they performed

significantly better when diagnosing the synthesized samples. Specifically, the

BPNN algorithm achieved the best performance, with an average precision, recall

rate, and F1-score of 0.94, 0.92, and 0.93, respectively. These findings confirmed

the effectiveness of the BPNN algorithm for failure diagnosis and suggested its

55

potential for practical application in railway signal equipment (Y. Wu & Cao,

2021).

Lu et al. (2020) propose a new model, ADASYN+RF, for identifying telecom

frauds. The ADASYN algorithm is used to rebalance the original dataset, and the

random forest algorithm is employed to train the new dataset to avoid overfitting.

The results of two groups of comparative experiments show that the ADASYN

algorithm used in their experiment is more advantageous than the traditional

SMOTE algorithm for processing biased data. Furthermore, the accuracy, recall

rate, and F1-score of the ADASYN+RF model are significantly improved compared

to nonintegrated learning models (C. Lu, Lin, Liu, & Shi, 2020).

Despite its effectiveness, ADASYN has some limitations. One of the limitations

of ADASYN is that it can produce synthetic samples that are highly similar to

the existing samples, leading to overfitting. Another limitation is that ADASYN

may generate noisy synthetic samples if the density distribution of the minority

class is highly variable. Additionally, ADASYN may not be suitable for datasets

with a small number of minority samples, as it may not produce enough synthetic

samples to balance the classes effectively. Finally, ADASYN may perform poorly

on datasets with highly overlapping classes or noisy features, affecting its ability

to generate useful synthetic samples (Gnip, Vokorokos, & Drotár, 2021).

Fonseca, Douzas, and Bacao (2021) proposed a K-means SMOTE algorithm

to address the imbalanced nature of most remotely sensed data and improve the

quality of newly created artificial data for land cover classification. The proposed

method is compared to three popular oversampling methods using seven remote

56

sensing benchmark datasets, three classifiers, and three evaluation metrics using

a five-fold cross-validation approach with three different initialization seeds. The

statistical analysis of the results shows that the proposed method consistently

outperforms the remaining oversampling approaches, producing higher-quality

land cover classifications (Fonseca, Douzas, & Bacao, 2021).

Andelic et al. (2022) proposed a novel approach to detect malicious websites

using the Genetic Programming Symbolic Classifier (GPSC) algorithm. The

proposed approach utilizes several data sampling methods to balance the large

class imbalance in the dataset, and a hyperparameter search method is employed

to find the optimal combination of GPSC hyperparameters for high classification

accuracy. The experimental results indicate that the best symbolic expression is

obtained when the dataset is balanced with the KMeansSMOTE method. The

proposed approach achieves high accuracy, AUC, precision, recall, and F1-score

values, indicating its potential for effectively detecting malicious websites (Anelić,

Baressi Šegota, Lorencin, & Glučina, 2022).

Devi et al. (2022) conducted a study on classifying different types of glass

based on their oxide content using oversampling techniques. They preprocessed the

glass-type dataset retrieved from the UCI ML repository by scaling and handling

missing values and compared the performance of various classification algorithms

with and without feature scaling. They applied oversampling methods such as

Random, SMOTE, K-Means SMOTE, SVM-SMOTE, ADASYN, and Borderline

to identify the target distribution of the dataset. The experimental results showed

that SMOTE oversampling outperformed all other methods for the RF classifier,

57

with an accuracy of 90% after feature scaling, compared to 72% accuracy before

oversampling. The other oversampling methods also performed well, with the RF

classifier achieving an 85-89% accuracy. The authors concluded that oversampling

can significantly improve the accuracy of glass type identification, and SMOTE is

the most effective oversampling technique for this task (M. S. Devi et al., 2022).

Like other oversampling methods, KMeansSMOTE also has some limitations.

One of the primary limitations of KMeansSMOTE is that it may produce synthetic

samples that are very similar to the original minority samples, leading to overfit-

ting. Additionally, KMeansSMOTE may not work well on datasets with highly

overlapping classes or noisy features. Furthermore, it may not be suitable for

datasets with a small number of minority samples as it may not produce enough

synthetic samples to balance the classes effectively. Finally, KMeansSMOTE

requires setting the number of clusters beforehand, which can be challenging and

may impact performance (Tao et al., 2020).

In summary, oversampling approaches have become popular for addressing

imbalanced class problems in various domains. Promising oversampling tech-

niques such as SMOTE, ADASYN, and KMeansSMOTE have enhanced classifier

performance on imbalanced datasets. However, these techniques are not perfect

and have limitations that can negatively impact their performance. For example,

oversampling can lead to overfitting, create noisy samples, and may not work

well on highly overlapping classes or noisy features. Additionally, no single over-

sampling technique can effectively work for all types of datasets (Batista et al.,

2004; Mayabadi & Saadatfar, 2022). Therefore, additional research is necessary

58

to address these limitations and develop new oversampling techniques that can

effectively handle highly imbalanced datasets while addressing these challenges.

2.6.4.1 Effect of SMOTE

One of the primary contributions of this dissertation is the investigation of SMOTE-

based data balancing approaches. Thus, this section includes an additional

reference literature analysis that focuses specifically on SMOTE-based approaches.

Most of the referenced literature has widely used SMOTE as an oversampling

technique in handling class imbalanced problems. One of the main reasons to

use this oversampling method is its nature to create synthetic samples that are

more diverse than traditional mean, mood-based oversampling techniques (Kabir

& Ludwig, 2018; Almhaithawi, Jafar, & Aljnidi, 2020; Taneja, Suri, & Kothari,

2019). For instance, Kabir and Ludwig (2018) employed SMOTE to balance the

breast cancer dataset and achieved an F1-score of 0.87, accuracy of 82.18%, and

AUC score of 0.9284 (Kabir & Ludwig, 2018). Almhaithawi et al. (2020) used

improved SMOTE to oversample the credit card dataset and achieved an F1-score

of 1.0 and AUC score of 0.9710 (Almhaithawi et al., 2020). Manzano et al. (2022)

utilized SMOTE to handle intrusion detection in cyber security and, using RF,

achieved an accuracy of 87% and an AUC-ROC score of 0.95 (Manzano, Meneses,

Leger, & Fukuda, 2022). However, none of those studies explain whether the

statistical outcomes provide the true prediction of both major and minor classes

without creating any biasness. Moreover, pre and post-prediction analyses are not

provided considering interpretable ML systems, which ultimately creates more

59

doubt regarding the model’s actual performance.

The possibility of major and minor classes overlapping when using SMOTE as

an oversampling technique is one of its potential drawbacks. Therefore, several

studies suggest the improved version of SMOTE, such as SVM-SMOTE, Borderline-

SMOTE, and ADASYN (Taneja et al., 2019; Qing et al., 2022; Shamsudin, Yusof,

Jayalakshmi, & Khalid, 2020). Taneja et al. (2019) introduced SVM-SMOTE

methods to handle CIP issues and demonstrated better performance on credit

card fraud detection incorporating RF and achieved a 0.85 F1-score (Taneja et al.,

2019). Shamsudi et al. (2020) proposed RF undersampling techniques based on

ML models and achieved a precision of 0.80, recall of 0.83, and F1-score of 0.82

while balancing the minor class using SVM-SMOTE (Shamsudin et al., 2020).

Obiedat et al. (2022) employed SVM-SMOTE and cost-sensitive approaches

together and achieved an accuracy of 86.5% on the kidney disease diagnosis

dataset (Obiedat et al., 2022).

By establishing a hyperplane between the main and minor classes, the SVM-

SMOTE technique seeks to overcome the marginalization problem. Nevertheless,

SVM is naturally sensitive to unbalanced data, which might have a negative effect

on the distribution of the data. Therefore, evaluating the data distributions after

data expansion is necessary using SVM-SMOTE (Shrinidhi, Kaushik Jegannathan,

& Jeya, 2023; Nagra et al., 2022). Since none of the studies evaluate the data

distribution after SVM-SMOTE based oversampling, it is necessary to investigate

further. However, such limitations have been addressed in some of the referenced

literature.

60

To overcome the limitations of SVM-SMOTE, many studies suggested an

ADASYN-based approach. Khan et al. (2021) utilized ADASYN on a breast

cancer dataset and showed that the proposed ADASYN-based ML model outper-

formed the existing SMOTE-based models by achieving an accuracy of 99.9%,

precision of 1.0, recall of 0.995, and F-measure of 0.998. In this work, the author

proposed computer-aided diagnosis systems that can automatically classify the

characteristics of cancer patches in chest Radiography (X-ray) images (khan,

Gupta, Kumar, & Venugopal, 2020). Mostafa et al. (2021) modified ADASYN

and employed it to predict accident severity and demonstrated that their proposed

Extra Tree (ET) ML algorithm model is capable of overcoming the limitations of

existing SMOTE-based approaches by achieving better results as follows: 86.35%

accuracy, 0.938 precision, 0.984 recall, and 0.960 F1-score (Mostafa, Salem, &

Habashy, 2022).

A modified and updated SMOTE-based approach was introduced by Han et al.

in 2005. The author demonstrates that the existing SMOTE did not pay much

attention to the minor samples on the borderline. As an effect, the samples that

share similar characteristics in major and minor classes often overlap during the

data expansion process. In their study, the author introduces two algorithms:

borderline-SMOTE1 and borderline-SMOTE2, in which only the minor sample

near the borderline are over-sampled. Their preliminary computational result

shows that, for the minor class, the proposed algorithms outperformed SMOTE

and random-oversampling methods and achieved a better actual positive rate and

F1-score (H. Han et al., 2005).

61

Many studies also considered Borderline SMOTE (BSMOTE) as the alternative

solutions. For example, Majzoub et al. (2020) proposed a hybrid clustered affinitive

BSMOTE-based approach to handle the imbalanced class data. During the study,

the author identifies that existing SMOTE and borderline-based approaches

create instances randomly, leading to the generation of useless new instances,

which is time and memory-consuming. The authors demonstrate that the highest

recall of 0.621 and F1-score of 0.728 is achieved on the amazon employee access

dataset (Al Majzoub, Elgedawy, Akaydın, & Köse Ulukök, 2020). However, with

their best performance, the recall and F1-score score is still poor and may not be

appropriate to apply to real-world scenarios. Sun et al. (2022) introduced feature

selection-based network anomalies detection strategies incorporating BSMOTE.

The proposed techniques were tested with the three ML algorithms: KNN, DT, and

RF. Their computation results show FR with around 91.46% accuracy detecting

Web malware (Y. Sun et al., 2022). However, in the real world, the distribution

of networks and attacks might differ from one system to another; therefore,

considering only three ML algorithms and testing on a limited dataset might not

provide the true outcomes of the proposed models.

Even though BSMOTE, ADASYN, and SVM-SMOTE have been used ex-

tensively over the years to overcome the noise created during the oversampling

approaches, such existing techniques still reduce the noise during the oversampling

approach is still a major challenge. Moreover, even after oversampling, it is hard to

achieve a normally distributed data sample set most of the time. Considering these

limitations, several studies introduced hybrid and improved SMOTE-based over-

62

sampling techniques. Song and Peng (2019) introduced ensemble-based SMOTE

to handle CIP on credit card fraud detection dataset. The best performance

was observed for DT- G-mean of 0.9193, F1-score of 0.9189, and AUC score of

0.9619. Itri et al. (2020) employed Threshold SMOTE (TH-SMOTE) along with

the KNN-based model to improve insurance fraud detection performance. Their

preliminary computational results illustrate the best performance on the car claim

dataset by acquiring the precision of 0.8847, recall of 0.9894, AUC score of 0.93,

and F1-score of 0.9341 (Song & Peng, 2019).

Figure 2.2 depicts the timeline of various SMOTE-based approaches that

researchers have proposed over the years, as per the literature review.

Figure 2.2: SMOTE and modified SMOTE-based approaches used in

the referenced literature.

2.6.5 Effect of Hybrid Approaches

The combination of over- and under-sampling methods also known as hybrid

methods, has been proposed as a potential solution to the limitations of individual

63

oversampling or undersampling techniques (Lemâıtre et al., 2017; C.-L. Liu &

Chang, 2022). By combining these methods, it is possible to reduce the impact

of the limitations and achieve better performance on imbalanced datasets. The

main idea behind combining over- and under-sampling methods is to first reduce

the majority class using an undersampling technique and then to oversample the

minority class using an oversampling technique (Brownlee, 2020b). This can help

to address issues of overfitting and noise in synthetic samples, as well as improve

the performance of classifiers on imbalanced datasets. Several studies have shown

that combining over- and under-sampling methods can outperform individual

oversampling or undersampling techniques on imbalanced datasets. However,

further research is needed to investigate the optimal combination of techniques

and their impact on different classifiers and performance metrics (C. Lin, Tsai, &

Lin, 2023).

Manju and Nair (2019) proposed a method for classifying arrhythmia patients

into ten classes, with one class representing normal conditions and the remaining

classes representing different arrhythmia conditions. The authors preprocessed

the highly imbalanced dataset and applied a combination of oversampling and

undersampling using the Synthetic Minority Over-sampling Technique and Edited

Nearest Neighbours (SMOTEENN), followed by feature reduction using Extreme

Gradient Boosting (XGBoost). Finally, the feature-reduced dataset was classified

using various supervised learning algorithms, resulting in an accuracy of 97.48%,

which outperformed the state-of-the-art method (Manju & Nair, 2019). While

the study demonstrated promising results, it is limited by using a single dataset

64

and the absence of real-time data. Further research is needed to evaluate the

proposed method’s performance on multiple datasets, including real-time data,

and to investigate the optimal combination of oversampling and undersampling

techniques. The impact of different feature selection methods and classifiers on

classification accuracy should also be examined.

A study conducted by Puri and Gupta (2022) proposed an improved hybrid

bag-boost ensemble model for handling noisy class imbalanced data. The authors

noted that data resampling techniques typically used for addressing class imbalance

issues might be ineffective in the presence of noise. The authors introduced a

new resampling technique consisting of K-Means SMOTE for oversampling and

ENN for undersampling to remove noise. This technique was used to cluster the

dataset using K-Means, oversample minority classes using SMOTE within each

cluster, and then remove instances that created noise using ENN. The proposed

model was evaluated using 11 binary imbalanced datasets with varying levels of

attribute noise, with AUC-ROC as the performance metric. The experimental

results showed that the proposed model outperformed other existing models

and performed better with an increased noise level in the binary imbalanced

datasets (Puri & Kumar Gupta, 2022).

Han et al. (2022) proposed an interpretable SMOTE-ENN-XGBoost to address

imbalanced data issues for lodging detection. The SMOTE-ENN-XGBoost model

achieved an F1-score of 0.930 and a recall of 0.899 on a testing set, indicating its

potential for lodging detection. The authors also employed the Shapley Additive

Explanations (SHAP) approach to interpreting the identification and prioritization

65

of features that determine lodging classification and activity prediction. They

found that canopy structure and textural features are relatively stable compared

to spectral features, which are susceptible to the external environment. The

study suggests that canopy structural, spectral, and textural information should

be considered simultaneously when detecting crop lodging in a crop breeding

program (L. Han et al., 2022). However, like many data balancing techniques,

SMOTEENN is also limited in handling datasets with overlapping classes (Ding,

Chen, Dong, Fu, & Cui, 2022). Additionally, it may also often remove relevant

minority class samples during the cleaning process.

Several studies combined SMOTE and Tomek Links as hybrid methods to

handle imbalanced data. For instance, a study conducted by Rana et al. (2021)

aimed to predict the possibility of stroke using advanced ML and DL techniques

using SmoteTomek. The authors proposed a final model using Artificial Neural

Network (ANN), which achieved the best ROC score of 0.84 and compared the

performance of other ML algorithms such as ensemble-based, tree-based, and

NB-based algorithms. The study highlights the importance of using advanced

techniques to predict stroke and provides valuable insights into the performance

of different algorithms in predicting the condition (Rana, Chitre, Poyekar, &

Bide, 2021). Another study conducted by Hairani, Anggrawan, and Priyanto

(2023) aimed to improve the classification performance of imbalanced diabetes

data using the SMOTETomek technique and the RF algorithm. The study used

the Pima Indian Diabetes dataset. The performance was evaluated based on

accuracy, sensitivity, precision, and F1-score using 10-fold cross-validation. The

66

results showed that the RF algorithm with the SmoteTomek achieved the highest

accuracy, sensitivity, precision, and F1-score compared to the RF algorithm with

Smote. The study concluded that using the SMOTETomek link technique can

improve the classification performance of the RF algorithm for imbalanced diabetes

data (Hairani, Anggrawan, & Priyanto, 2023).

By combining SMOTETomek, a Convolutional Neural Network (CNN), and a

Gated Recurrent Unit (GRU) with a software defect prediction (SDP) algorithm,

Yang and Li (2022) proposed a unique technique for addressing class imbalance

in SDP. In comparison to the original datasets, their solution showed an average

accuracy gain of 5%, highlighting the usefulness of merging ML approaches with

data balancing techniques in SDP (H. Yang & Li, 2022). However, further research

is needed to investigate the optimal combination of techniques and their impact

on different performance metrics and address the proposed approach’s limitations.

While SMOTETomek has been shown to improve classification performance

on moderately imbalanced datasets, it may have limited effectiveness on highly

imbalanced datasets where the minority class makes up less than 10% of the

data. In such cases, more advanced techniques may be necessary. Additionally,

SMOTETomek involves a combination of oversampling and undersampling tech-

niques, which can increase the computational time required to train a model.

This can be a concern when dealing with large datasets or when the technique is

applied repeatedly in an ML pipeline. Another potential limitation is the risk of

overfitting, where the oversampling component of SMOTETomek can introduce

bias in the data by creating synthetic samples that closely resemble existing

67

minority class examples. Careful hyperparameter tuning and cross-validation can

help mitigate this risk, but it remains an important consideration when using

SMOTETomek (Brownlee, 2020b).

2.6.6 Effect of GAN-Based Approaches

Recently, it was observed that the existing SMOTE and hybrid SMOTE tech-

niques cannot produce diverse data samples, especially on a highly imbalanced

dataset with multiclass samples. To overcome such limitations, several studies

recently suggested a GAN-based approach to creating a synthetic sample from

the imbalanced dataset (Z. Lin, Khetan, Fanti, & Oh, 2018; A. Sharma, Singh,

& Chandra, 2022; Xiao, Wu, & Lin, 2021; W. Jiang, Hong, Zhou, He, & Cheng,

2019). For instance, Jiang et al. (2019) proposed a GAN-based anomaly detection

approach to detect fault from the highly imbalanced industrial time series data.

Based on the author’s assessment, the performance of SVM and CNN suffers

from achieving high accuracy for the major class. Their proposed model contains

three sub-network generators: encoder-decoder-encoder. Based on the result

report, the study emphasized that their proposed model can detect abnormal

samples from normal samples with 100% accuracy on both datasets. Based on

the author’s claim, their model can detect abnormal samples without having any

prior knowledge of abnormalities (W. Jiang et al., 2019). Therefore, one of the

major concerns is how the model performs on a test sample when the outlier’s

threshold value is almost close to the normal sample’s threshold value.

In their research, Xiao et al. (2021) introduced the Wasserstein Generative

68

Adversarial Network (WGAN) model, a Deep Learning (DL)-based technique that

was used to analyze data from three different cancer types: breast, stomach, and

lung. The CIP ratio issue was addressed by generating new instances from the

minor class using the WGAN approach. (Xiao et al., 2021). Kwon et al. (2021)

used GAN based approach to creating minor samples from the cancer tissue images

and demonstrated that in-corporate with Deep Neural Networks (DNN), their

proposed model can detect the cancer cell successfully up to 61% accurately (Kwon,

Park, Ko, & Ahn, 2021). Guo et al. (2021) used Traffic Augmentation GAN

(TA-GAN) along with CNN to detect traffic signals and demonstrated promising

results by achieving the AUC score of 0.9739 and F-measure of 0.8624 (Y. Guo et

al., 2021).

GAN is widely utilized in computer vision domains for its ability to generate

realistic images from random noise. This dynamic characteristic contributes to its

appeal, as it can be applied to various data formats, including time-series, audio,

and image data (Brownlee, 2020b; Ahsan, Ali, & Siddique, 2022; Rosolia & Oster-

rieder, 2021). Sharma et al. (2022) demonstrated that GAN could generate data

with better Gaussian distribution, which is difficult to achieve using traditional

imbalanced approaches. Their proposed GAN-based approaches show almost

actual minor samples and outperform existing techniques by 10% (A. Sharma et

al., 2022).

One of the potential drawbacks of GAN is that it is hard to train and often

requires a lot of data. As GAN creates samples using random noise, it is time-

consuming and requires many iterations to get optimal results (Ahsan, Ali, &

69

Siddique, 2022; A. Sharma et al., 2022; Yinka-Banjo & Ugot, 2020). Additionally,

the parameters of the GAN are very sensitive, which ultimately makes GAN

an unstable approach. However, many studies demonstrate that by using GAN,

it is possible to overcome the multicollinearity and overlapping issues of the

oversampling approach on a dataset. Therefore, if GAN-based algorithms are

stable, computationally effective, and require less iteration to train will be the

best alternative to overcome the existing challenges associated with SMOTE and

GAN-based approaches.

2.6.7 Effect of Other Data Balancing Approaches

In addition to the data-balancing methods discussed previously, various other

approaches have been proposed in the literature. For example, Zhang, Ran, and

Mi (2019) proposed a new Intrusion Detection System (IDS) model based on CNN

and SMOTE-ENN algorithm to identify network traffic intrusion. The model

achieved an accuracy of 83.31% on the NSL-KDD dataset, with significantly

improved detection rates for User to Root (U2R) and Remote to Local (R2L)

attacks. The proposed SMOTE-ENN-based CNN IDS outperformed the previous

IDS model based on traditional ML (X. Zhang, Ran, & Mi, 2019). However, the

study’s limitation lies in the dataset used, which may not represent all types of

attacks and network environments.

Rahman and Zhu (2023) conducted a study to develop effective accounting

fraud detection models for China A-Share listed firms using imbalanced ensemble

learning algorithms. The study employed a sample of 33,544 Chinese firm-year

70

instances from 1998 to 2017. It developed one LR and four ensemble learning

classifiers, including AdaBoost, XGBoost, Cost-Sensitive Boosting (CUSBoost),

and Random Under-Sampling Boosting (RUSBoost), based on 12 financial ratios

and 28 raw financial data. The study evaluated the classifiers’ out-of-sample

performance using AUC and Area Under the Precision-Recall Curve (AUPR)

metrics and divided the sample into train and test observations. The results showed

that ensemble learning classifiers outperformed the LR model, and imbalanced

ensemble learning classifiers (CUSBoost and RUSBoost) were more effective

than standard ensemble learning models (AdaBoost and XGBoost) on average.

Additionally, the study introduced an algebraic fused model in the supplement

test, which achieved the highest average AUC and AUPR among all the employed

algorithms (Rahman & Zhu, 2023). However, the study did not address the

potential limitations of ensemble learning algorithms in accounting fraud detection

or the generalizability of the results beyond China A-Share listed firms.

Mousavian, Haeri, and Moslehi (2022) proposed a new approach called strong

balance-constrained clustering to enhance the accuracy and diversity of ensemble

classification methods by creating strong, balanced data clusters. The method

employs an ANN with more than one hidden layer and majority voting to make

the final decision for the data class. The proposed method was evaluated on 16

datasets, and the results indicate that it is faster than other balancing methods

while providing acceptable accuracy improvements for the ensemble classification

method. The proposed method can enhance the performance of data mining

and business objectives by adopting the appropriate budget, time, and energy

71

assignment policies for various business domains (Mousavian Anaraki, Haeri, &

Moslehi, 2022). However, the study did not explore the limitations and potential

drawbacks of the proposed method, and further research is required to assess its

applicability in different domains and datasets.

Gabriel et al. (2022) conducted a study to develop ML models for predicting

whether surgery would be completed by the end of the operating room block time

and if the patient would be discharged by the end of the recovery room nursing

shift. The study compared several ML models, including Regression, RF, balanced

RF, Balanced Bagging (BB), NN, and SVM, with LR, using features such as

surgery, surgeon, service line, age, sex, weight, and scheduled case duration to

make predictions. The authors used SMOTE to evaluate the model’s performance.

The study showed that the BB classifier performed the best, with an F1-score

of 0.78, 0.80, 0.82, and 0.82 when predicting the outcome for start times of 1

pm, 2 pm, 3 pm, and 4 pm, respectively. The results indicated that ensemble

learning models could significantly improve the accuracy of predicting the outcome

at different start times, offering a more practical approach for operating room

management to determine whether an add-on case at an outpatient surgery center

could be appropriately booked (Gabriel et al., 2022).

Bennett et al. (2022) conducted a study to predict Pre-eclampsia (PE) using

a Cost-Sensitive DNN (CSDNN) to address data imbalance and racial disparities.

The study validated the model by using diverse data sources, such as Texas

Public Use Data Files, Oklahoma PUDF, and the Magee Obstetric Medical and

Infant databases. The CSDNN equipped with focal loss function outperformed

72

other state-of-the-art techniques, with an AUC of 66.3% and 63.5% for the

Texas and Oklahoma PUDF, respectively, and an AUC of 76.5% for the MOMI

data (Bennett, Mulla, Parikh, Hauspurg, & Razzaghi, 2022). However, the study

has some limitations, including retrospective and possibly missing data that may

impact the model’s accuracy. Nonetheless, the study provides valuable insights

into the predictive power of clinical databases for PE among minority populations.

2.7 Overall Findings

This chapter explores the scope of data-balancing approaches toward major and

minor classes by reviewing different oversampling and undersampling approaches

introduced in the literature to handle CIPs. The study identified various factors

affecting ML-based models’ performance on different imbalanced datasets and

case scenarios. Figure 2.3 presents a framework of data balancing approaches

(DBA), where potential key findings have been combined using a fishbone diagram.

The fishbone diagram starts with the type of data balancing approaches, followed

by key challenges of imbalanced datasets, different ML algorithms, performance

metrics, applications, and major limitations of the existing DBA based on the

reference literature.

73

DBA

O
versam

pling

Adaptive
Condensed
Nearest
Neighbor (Ada-
CNN)

Borderline-
SMOTE

Geometric
SMOTE (G-
SMOTE)

K-means SMOTE
Random
Oversampling

SMOTE
SMOTE-NC

U
ndersam

pling

Ada-CNN
Cluster
Centroids (CC)

Condensed
Nearest
Neighbor (CNN)

Multi-Label
Tomek Link
(MLTL)
Near-Miss (NM)

N-US
 One-sided
Dynamic
Undersampling
(ODU)

Random
Undersampling

SMOTE-ENN

H
ybrid m

ethods

SMOTETomek

SMOTEENN

Im
balanced

D
atasets

Class imbalance

Majority class

Minority class
Noise

Overfitting
Synthetic
minority class

Overlapping
classes

M
achine

Learning

A
lgorithm

AdaBoost
ANN

CNN

CSDNN
DT

Regression
RF

RUSBoost
SVM

XGBoost

Perform
ance

M
etrics

Accuracy

AUC-ROC

AUPR

F1-score

Recall

Precision

ROC score

Detection rates

A
pplications

Accounting
Fraud Detection

Crop Lodging
Detection

Diabetes
Classification

Intrusion
Detection

Preeclampsia
Prediction
Software Defect
Prediction

Stroke
Prediction

Surgery
Outcome
Prediction

Lim
itations and

C
hallenges

Bias
Computational
Time
Generalizability

Hyperparameter
Tuning

Missing Data

Overfitting
Retrospective
Data

Figure 2.3: Framework of DBA based on referenced literature; DBA –

Data balancing approaches.

The study found that data distribution on an imbalanced dataset significantly

affects the performance of ML models during the prediction. If the data is skewed

toward one class, then it is challenging for the ML model to perform the prediction

without being biased toward the major class. To tackle these issues, several studies

suggest using data preprocessing steps before applying data balancing approaches.

The findings suggest that data normalization techniques, such as min-max, Z-score,

and L2 norm, can improve the data distribution and enhance the performance of

ML models (J. Wu, Zhao, Sun, Yan, & Chen, 2021; A. J. Mohammed et al., 2020;

74

Mustafa, 2019; Blagus & Lusa, 2013; Gupta et al., 2017; Uyun & Sulistyowati,

2020). However, it is unclear whether using such data normalization techniques

has a significant effect on the model’s overall performance or not. Additionally,

using several data normalization techniques before data balancing may change

the entire minor class data distribution, which may not help predict outlier or

minor samples (N. Jiang & Li, 2021).

The performance of different ML algorithms varies with similar data-balancing

approaches (Pawlicki, Choraś, Kozik, & Ho lubowicz, 2020; Rajesh & Dhuli, 2018;

Mahesh et al., 2022; Sisodia et al., 2017; N. Mqadi et al., 2021). However,

the study found that none of the studies mentioned clearly whether they had

tuned the parameter of the ML model or used default parameters. Thus, it is

difficult to conclude that the performance of ML algorithms differs solely based

on data balancing approaches. This highlights the need for proper clarification to

understand better the impact of data balancing approaches on the performance

of ML algorithms with or without parameter tuning.

Several studies evaluated the effectiveness of oversampling techniques on

various applications, such as predicting depression, heart failure patient survival,

the severity level of Covid-19 patients, failure diagnosis of railway signal equipment,

identifying telecom frauds, and classifying different types of glass based on their

oxide content (Sawangarreerak & Thanathamathee, 2020; Ishaq et al., 2021;

Farahany, Wu, Islam, & Madiraju, 2022; M. S. Devi et al., 2022; Xin et al., 2021;

Moreo et al., 2016; Wibowo & Fatichah, 2021). The results of these studies

show that oversampling can significantly improve classification accuracy, and

75

different oversampling techniques may perform better depending on the dataset

and specific application. However, the effectiveness of oversampling techniques can

vary depending on the dataset and specific application, making careful evaluation

and experimentation necessary to select the appropriate ones for the given dataset

and application.

SMOTE is the widely used oversampling technique that creates synthetic

samples that are more diverse than traditional mean-based oversampling tech-

niques (F. Shen, Zhao, Kou, & Alsaadi, 2021; Rivera & Xanthopoulos, 2016;

Douzas & Bacao, 2019; M. Mukherjee & Khushi, 2021; Ndichu et al., 2023; Garćıa-

Vicente et al., 2023). However, the study found that the performance of different

ML algorithms on SMOTE-based oversampled datasets is inconsistent (Ishaq et al.,

2021; Gök & Olgun, 2021). The accuracy of ML algorithms using similar datasets

and oversampling techniques can vary depending on the tuning of SMOTE or the

default parameters. Additionally, the major and minor classes overlapped due to

oversampling, which is one of the potential drawbacks of applying SMOTE as an

oversampling technique.

To overcome the limitations of SMOTE, several studies have introduced modi-

fied and updated SMOTE-based approaches, such as SVM-SMOTE, BSMOTE,

and ADASYN (Y. Wu & Cao, 2021; Gnip et al., 2021; Fonseca et al., 2021; Anelić

et al., 2022; M. S. Devi et al., 2022; Tao et al., 2020). The SVM-SMOTE algorithm

reduces the marginalization by creating the hyperplane between major and minor

classes. However, SVM is sensitive to imbalanced data by nature, which poten-

tially affects data distribution (Ahsan, Ali, & Siddique, 2022; Brownlee, 2020b).

76

Therefore, evaluating the data distributions after data expansion is necessary

using SVM-SMOTE. ADASYN-based approaches have been proposed to overcome

the limitations of SVM-SMOTE (Tao et al., 2020). Borderline-SMOTE1 and

Borderline-SMOTE2 algorithms are introduced in which only the minor sample

near the borderline is over-sampled (Smiti & Soui, 2020). Several studies have

also introduced hybrid and improved SMOTE-based oversampling techniques (W.-

C. Lin et al., 2017; Manju & Nair, 2019; Puri & Kumar Gupta, 2022; L. Han et

al., 2022).

In recent times, GAN-based approaches have been proposed as a viable option

to generate synthetic samples from imbalanced datasets (Z. Lin et al., 2018;

A. Sharma et al., 2022; Xiao et al., 2021; W. Jiang et al., 2019). One of the

significant advantages of GAN is its capability to create realistic images from

random noise, making it versatile for various data formats. Several studies have

shown that GAN-based algorithms can effectively overcome multicollinearity and

overlapping problems associated with oversampling techniques (Y. Guo et al.,

2021; A. Sharma et al., 2022).

Despite the potential of GAN-based approaches, the training of GAN models

can be challenging and may require a substantial amount of data. Moreover,

the optimal selection of GAN parameters is vital as the sensitivity of the GAN

parameters can significantly impact the stability of the approach. Hence, using

GAN as a data balancing technique may require expertise in deep learning and

additional computational resources (Ahsan, Ali, & Siddique, 2022; A. Sharma et

al., 2022; Yinka-Banjo & Ugot, 2020).

77

In summary, GAN-based approaches have shown promise as a potential solution

for addressing the class imbalance problem in datasets. However, the approach’s

sensitivity to training and the selection of optimal parameters should be taken

into account before using it as a data balancing technique. Additional research is

required to explore further and develop GAN-based approaches and make them

more practical for real-world applications.

2.8 Conclusions

The present study addressed the research question: “What are the scopes of

data-balancing approaches toward the major and minor samples?” The study

sheds light on the potential of using data normalization techniques to enhance data

distribution and on the impact of data balancing approaches on the performance

of ML algorithms, which are critical components in ensuring data quality and

accuracy.

However, there are still limitations and challenges in applying data balancing

approaches, including the risk of overfitting, the need for hyperparameter tuning,

and increased computational time. These challenges must be addressed to improve

the effectiveness and applicability of data balancing approaches in quality, defect,

and pattern analysis. Future research could focus on exploring new data balancing

techniques, evaluating their performance on different ML algorithms, and deter-

mining optimal parameters for different oversampling approaches. Such research

can contribute to developing better data-balancing approaches and improve the

78

performance of ML models when dealing with imbalanced datasets.

In summary, data balancing approaches are essential in addressing the issue of

imbalanced data in ML-based model development, particularly in quality, defect,

and pattern analysis. Ongoing research is necessary to improve the effectiveness

and applicability of these approaches in these fields, taking into consideration the

unique challenges and limitations that exist.

79

Chapter 3

Effect of SMOTE on Data Balancing Approaches

3.1 Introduction

Based on the overall analysis and the referenced literature from Chapter Two,

it is evident that Synthetic Minority Oversampling Technique (SMOTE)-based

approaches are widely used for data balancing. However, there needs to be more

research that measures the performance of SMOTE-based approaches in compari-

son to traditional Machine Learning (ML) algorithms with and without parameter

tuning. This knowledge gap raises the question of whether SMOTE-based ap-

proaches have any effect on data balancing. Therefore, the research question

that this chapter will address is RQ2: “What is the effect of traditional Machine

Learning (ML) and SMOTE-based data balancing on imbalanced data analysis?”

To answer this question, the chapter will consider the following approaches:

• Firstly, a general overview of the most widely used ML algorithms will

be presented, and their performance on various datasets before and after

SMOTE-based oversampling in terms of various statistical measures will be

calculated.

• Secondly, a hypothesis test will be conducted to evaluate the significance

of SMOTE-based approaches on data balancing. Four conditions will be

considered for this purpose: the ML model’s performance on the original

dataset and the SMOTE-based oversampled dataset, the hyperparameter-

80

tuned ML model’s performance on the original dataset, and the SMOTE-

based oversampled dataset.

• Finally, the chapter will discuss the general findings, limitations, and poten-

tial scope for future research.

By addressing RQ2, this chapter aims to provide a comprehensive overview of

SMOTE-based data balancing approaches and their potential findings considering

various imbalanced benchmark datasets.

3.1.1 Motivation

Traditional ML algorithms often struggle to perform well on imbalanced datasets

due to their inherent bias towards the majority class.The resulting imbalanced

class distribution in a dataset may lead to inadequate predictive performance for

the minority class, which is often the focus of interest for researchers. Therefore,

it is crucial to understand the impact of different data balancing techniques, such

as SMOTE-based oversampling and hyperparameter tuning, on ML-based model

performance in imbalanced datasets.

Therefore, the motivation behind the study is to investigate the effect of

SMOTE-based data balancing on imbalanced data analysis by utilizing six bench-

mark datasets and testing with four designated conditions. The study’s findings

will contribute valuable insights to understanding the performance of ML models

with and without hyperparameter tuning before and after balancing the data

using SMOTE-based approaches.

81

3.1.2 Chapter Outline

The following is the structure of this chapter: Section 3.2 begins with a concise

overview of the experimental setup, encompassing a comprehensive summary of

the datasets employed, the ML algorithms utilized during the study, and the

performance evaluation metrics applied throughout the research process. Subse-

quently, Section 3.3 presents the experimental results, followed by an overarching

analysis and interpretation of the findings in Section 3.4. In Section 3.5, a hy-

pothesis is formulated, considering four distinct conditions. The overall outcomes

of the hypothesis testing are then discussed in Section 3.6. Lastly, Section 3.7

offers a general conclusion based on the comprehensive findings and highlights

the study’s limitations, thereby providing insights for further research scope.

3.2 Experimental Setup

The study was conducted using a Dell Inspiron 7579 laptop with a Windows

10 operating system. The hardware specifications of the laptop included an

Intel Core I7-7500U 7th generation processor, Intel HD 620 integrated graphics,

16GB of system RAM, and 512GB of storage. The laptop also had a front

VGA camera. The software used for data analysis included Python 3.9 as the

primary programming language, and several packages were used to carry out

the experiment, including Scikit learn, Numpy, Keras, PyTorch, and Matplotlib.

These software tools and packages were selected to ensure that the study was

carried out effectively and efficiently.

82

3.2.1 Datasets

The experiment used six benchmark datasets from the open-source UCI (the Uni-

versity of California Irvine) repository: Ionosphere, Pageblocks, Poker, Spambase,

Winequality, and Yeast (Blake, 1998).

3.2.1.1 Ionosphere

The Ionosphere dataset is a widely used benchmark binary classification dataset

that was collected by Johnson and Bresticker from the Johns Hopkins University

Applied Physics Laboratory. The dataset aims to distinguish between good and

bad radar returns from the ionosphere using 34 numeric attributes that are radar

return characteristics measured by a phased array radar system. The dataset,

which contains 351 instances, was donated by Dua and Taniskidou from the

University of California, Irvine. Notably, the Ionosphere dataset has no missing

values and has been extensively employed to evaluate and compare various ML

algorithms and feature selection methods. As such, it has been cited in numerous

research articles and ML textbooks as a standard dataset for binary classification

tasks (Ganger, 2023; Sigillito, Wing, Hutton, & Baker, 1989).

3.2.1.2 Pageblocks

The PageBlocks dataset is a popular benchmark dataset used for evaluating the

performance of classification algorithms in ML and data mining. The dataset

comprises 5,473 web pages that are the same size and categorized into one of five

83

groups according to their feature. Each example is represented by a feature vector

that captures various attributes of the web page, such as height, width, and the

number of horizontal and vertical lines on the page. The classes in the dataset are

highly imbalanced, with most examples belonging to the “text” category, which

contains 4,716 examples. The other categories, in descending order of frequency,

are “horizontal line,” “picture,” “vertical line,” and “graphic” (Malerba, Esposito,

& Semeraro, 1996).

3.2.1.3 Poker

The Poker dataset is a multivariate dataset used for classification tasks. The

dataset comprises ten predictive features and a class attribute that characterizes

the poker. The dataset comprises examples corresponding to a set of five playing

cards selected from 52 cards. The order of cards is essential, resulting in a total of

9 possible classes, ranging from “nothing in hand” to “royal flush.” The dataset is

frequently utilized to assess the effectiveness of classification algorithms concerning

game-related data, which makes it a valuable asset for researchers studying ML

domains (Radziukas, Maskeliūnas, & Damaševičius, 2019).

3.2.1.4 Spambase

The Spambase dataset is a binary classification dataset that contains email

messages’ attributes and labels. The dataset contains 4601 instances, and each

instance has 57 real attributes, including the frequency of specific words and

characters, character capitalization, and punctuation marks, among others. The

84

target variable indicates whether the email is spam (1) or not (0). The dataset

has no missing values and has been widely used to evaluate and compare various

ML algorithms and techniques for spam detection. The Spambase dataset is

regarded as a standard benchmark for binary classification tasks, and it has been

referenced in many research articles and ML textbooks (Hopkins, Reeber, Forman,

& Suermondt, 1998).

3.2.1.5 Wine Quality

The Wine Quality dataset contains sensory data on wine quality and physicochem-

ical attributes for red and white wine. The dataset has been used for regression

and classification in ML domains. However, the dataset’s classes are both ordered

and imbalanced, making it a valuable resource for investigating the challenges of

imbalanced class data analysis. Anomaly detection techniques can be employed to

identify the rare instances of outstanding or inferior quality wines in the dataset.

At the same time, feature selection methods can help identify which input variables

are most relevant for predicting wine quality. The dataset was created by Paulo

Cortez and his colleagues at the University of Minho, Portugal, and was initially

published in the Decision Support Systems journal in 2009 (Cortez, Cerdeira,

Almeida, Matos, & Reis, 2009).

3.2.1.6 Yeast

The Yeast dataset is a multivariate dataset with eight real attributes and 1484

instances. The dataset aims to predict the localization sites of proteins using

85

various scoring and recognition methods for signal sequences, membrane-spanning

regions, and amino acid contents. It includes information on the sequence name,

scores for different protein regions, and the presence of specific substrings or

targeting signals. The dataset has no missing values and was donated by Paul

Horton to Kenta Nakai. The dataset is associated with classification tasks, and

the references provided describe expert systems for predicting protein localization

sites (Cortez et al., 2009).

3.2.2 ML Algorithms

ML algorithms represent computational methods capable of autonomously discov-

ering and capturing intricate patterns and relationships inherent in data without

necessitating explicit programming. The ML algorithms can be employed to

evaluate and make predictions on various datasets, ranging from image and speech

recognition to customer behavior and financial data (El Naqa & Murphy, 2015).

In this research, six popular, most widely used ML techniques have been used

to evaluate the effect of SMOTE-based approaches on nine highly imbalanced

benchmark datasets. A summary of the ML algorithms used in this work is

presented below:

3.2.2.1 Adaptive Boosting

Adaptive Boosting (AB) is a widely used classifier that Yoav Freund and Robert

Schapire developed. The algorithm is based on ensemble learning, combining

multiple weak classifiers to form a more robust classifier. AB assigns weights

86

to each sample in the dataset based on its classification error rate. Samples

that are difficult to classify receive greater weight, while those already well-

categorized receive less weight. This approach helps the algorithm focus on the

dataset’s most challenging samples, which can improve its accuracy. AB can

handle categorization and regression analysis tasks, making it a versatile tool for

ML applications (Schapire, 2013). The formula to calculate AB is:

f̂(x) = sign

(
M∑

m=1

αmhm(x)

)

where f̂(x) is the final boosted model, M represents weak classifiers number,

αm is the weight assigned to the m-th classifier, and hm(x) is the m-th weak

classifier, which maps the input x to a binary label. The sign function outputs

+1 or −1, depending on the sign of the sum. Adaboost iteratively updates the

weights of misclassified samples, and trains a new weak classifier on the updated

weights at each iteration. The resulting model can be represented as a weighted

sum of the weak classifiers, where the weights depend on their performance in

classifying the training data.

3.2.2.2 Decision Tree

The Decision Tree (DT) algorithm operates on the divide-and-conquer principle.

It partitions the dataset into subsets recursively based on the input attribute

values. In DT models, the attributes can take on discrete values, and the resulting

tree structure reflects the combinations of attributes that lead to distinct class

labels. This type of tree is known as a classification tree, where each leaf node

87

corresponds to a unique class label.

In addition to classification trees, DT can be used to construct regression trees

that handle continuous variables as input attributes. The two most famous and

widely used DT algorithms are C4.5 and EC4.5. C4.5 is an extension of the ID3

algorithm that can handle both continuous and categorical variables. At the same

time, EC4.5 is an enhanced version of C4.5 that addresses some of its limitations,

such as overfitting and sensitivity to noisy data (Brijain, Patel, Kushik, & Rana,

2014). The formula to calculate DT model is:

h(x; θ) =
K∑
i=1

ciI(x ∈ Ri; θ)

Where h is the decision tree model, x is the input vector, θ is the model’s

parameter, K is the number of leaves in the decision tree, Ri is the region

associated with the i-th leaf, the function I returns a value of 1 as an indicator if

x is in the region Ri, and ci is the output value associated with the i-th leaf.

3.2.2.3 Gradient Boosting

Gradient Boosting (GB) is a powerful ensemble learning technique used to improve

the performance of ML models. It is a sequential process that uses multiple decision

trees to make predictions and minimize the error of the previous tree. In each

iteration, the algorithm calculates the gradient of the loss function concerning the

previous model’s output, and the new tree is built to fit the negative gradient. GB

was first proposed in 1999 by Jerome H. Friedman, who developed the algorithm

to improve upon the performance of AB. The algorithm uses gradient descent to

88

minimize the loss function and updates the weights of the weak learners in each

iteration. The update formula can be represented as (Ayyadevara & Ayyadevara,

2018):

Fm(x) = Fm−1(x) + γmhm(x) (3.1)

where Fm is the current ensemble, hm is the newly added weak learner, and γm is

the step size for that iteration. The objective is to find the optimal values for hm

and γm that minimize the loss function.

3.2.2.4 K-Nearest Neighbors

The K-Nearest Neighbor (KNN) classification is a nonparametric technique used

for classification and regression analysis. It was first introduced by Evelyn Fix

and Joseph Hodges in 1951. In KNN classification, the class membership is

determined by voting mechanisms. To compute the distance between two data

samples, Euclidean distance techniques are commonly used. In regression analysis,

the projected value is computed as the average of the values of the K nearest

neighbors. The formula for the KNN algorithm can be expressed as follows: Given

a query point x, we find the K closest points to x in the training set, T , denoted

by NK(x). The class label for x is then determined by a majority vote of the labels

of the K nearest neighbors. If the distance metric is Euclidean distance, then the

distance between x and a training point xi is given by (Kramer & Kramer, 2013;

Brownlee, 2014):

d(x, xi) =

√√√√ p∑
j=1

(xij − xj)2 (3.2)

89

where xij is the value of the jth feature for the ith training point, and p is the

number of features. The KNN algorithm is a simple yet powerful algorithm that

has been widely used in various fields, including computer vision, bioinformatics,

and recommender systems.

3.2.2.5 Logistic Regression

Logistic Regression (LR) is a popular ML approach for solving classification

problems. The model is based on a probabilistic framework, and its output values

are generally between 0 and 1. The use of LR has been successful in a number of

applications, including but not limited to the detection of spam emails, online

fraud, and malignant tumors. The model uses a cost function known as the

sigmoid function, which maps real numbers to a range between 0 and 1 (Ahsan,

Luna, & Siddique, 2022; Dayton, 1992; Brownlee, 2016):

σ(z) =
1

1 + e−z
(3.3)

where z is a linear combination of input variables and model parameters. The

cost function aims to find the optimal set of model parameters that minimize the

difference between the predicted and actual class labels. LR has been widely used

in various fields due to its simplicity and effectiveness in solving classification

problems wright1995logistic.

3.2.2.6 Random Forest

Random Forest (RF) is an ensemble learning algorithm in ML that builds multiple

decision trees and aggregates their predictions to make a final prediction. The

90

algorithm was proposed by Leo Breiman and Adele Cutler in 2001 and has since

become a popular approach for classification, regression, and feature selection

tasks. RF is particularly well-suited for high-dimensional data, missing values,

and nonlinear relationships. However, it may not perform well with imbalanced

class data, and evaluating its performance on SMOTE based datasets is important

to ensure that it accurately classifies all classes, particularly minority classes.

The RF model combines the DT’s outputs by averaging them to get the final

prediction. The model’s hyperparameters, such as the number of trees, tree depth,

and the number of features considered at each split, can be optimized to achieve

better performance. The formula for calculating the output of a single decision

tree is as follows (Saini, 2022; Brownlee, 2014; Ahsan & Siddique, 2021):

h(xi, θj) =
J∑

j=1

cjI(xi ∈ Rj) (3.4)

where xi is a sample, θj is the set of parameters of the j-th tree, cj is a constant

that is calculated using the training data and Rj is the region of the feature space

that corresponds to the j-th leaf node of the tree. The final prediction of the

Random Forest model is given by the majority vote of the output of all decision

trees.

3.2.2.7 Support Vector Machine

Support Vector Machine (SVM) is a popular ML approach for classification

and regression-related challenges. Vapnik introduced it in the late twentieth

century (Drucker, Wu, & Vapnik, 1999). SVMs have found extensive use in

91

multiple domains, such as disease diagnosis, speech recognition, text classification,

facial expression recognition, protein fold, and distant homology discovery. SVM

is a unique ML algorithm that can classify unlabeled data by using a hyperplane

to identify clustering among the data. Unlike other algorithms, SVM has the

ability to perform binary classification and multi-class classification, making it

a powerful tool for ML applications. However, SVM output is not nonlinearly

separable. Selecting appropriate kernels and parameters is crucial when applying

SVM in data analysis to overcome such problems. The SVM optimization problem

can be formulated as follows (L. Wang, 2005):

min
w,b,ξ

1

2
wTw + C

m∑
i=1

ξi

subject to:

yi(w
Tϕ(xi) + b) ≥ 1− ξi, i = 1, 2, . . . ,m

ξi ≥ 0, i = 1, 2, . . . ,m

where w and b are the parameters of the model, ξi are slack variables, C is

the regularization parameter, ϕ(xi) is the feature space, and yi is the label of the

ith training sample. The optimization problem seeks to find the hyperplane with

the largest margin that correctly classifies all training examples.

92

Table 3.1: Grid search hyperparameters of machine learning algorithms

used to conduct the experiment.

Algorithm Grid search parameters

AB n estimators: 50, 100, 150,learning rate: 0.01, 0.1, 1

DT criterion: ‘gini’, max depth: 10, 50, min samples split: 3,

4, 5, max features: 2, 5, 6, 8

GB n estimators: 50, 100, 150, learning rate: 0.01, 0.1, 1,

max depth: 3, 5, 7

K-Nearest Neighbors n neighbors: 3, 5, 7, 9, weights: ‘uniform’, ‘distance’

LR penalty: ‘l1’, ‘l2’, C: 0.01, 0.1, 1, 10

RF n estimators: 50, 100, 150, max depth: 10, 20,

min samples split: 3, 4, 5, max features: 2, 5, 6, 8

SVM C: 0.1, 1, 10, kernel: ‘linear’, ‘rbf’, gamma: ‘scale’, ‘auto’

3.2.3 Performance Evaluation

The experimental evaluation results are presented in terms of accuracy, precision,

recall, F1-score, and AUC-ROC score (Ahsan & Siddique, 2021).

Accuracy : The accuracy reflects the total number of instances successfully

identified among all instances. The following formula can be used to calculate

accuracy.

Accuracy =
Tp + TN

Tp + TN + Fp + FN

(3.5)

Precision Precision is defined as the percentage of accurately anticipated

93

positive observations to all expected positive observations.

Precision =
Tp

Tp + Fp

(3.6)

Recall: Recall measures how many total relevant results the algorithm

accurately identified.

Recall =
Tp

Tn + Fp

(3.7)

F1-score: The F1-score is a metric that combines accuracy and recall in a

harmonic mean, serving as a comprehensive measure of the performance of an

algorithm. The ideal F1-score is 1, which signifies a perfect balance between

precision and recall.

F1− score = 2× Precision× Recall

Precision+Recall
(3.8)

Area under curve (AUC): The area under the curve (AUC) is a metric

that provides insight into the behavior of a model under different conditions. The

AUC can be quantified using the following formula:

AUC =

∑
Ri(Ip)− Ip((Ip + 1)/2

Ip + In
(3.9)

Where, lp and ln denotes positive and negative data samples and Ri is the

rating of the ith positive samples.

True Positive (Tp) = Positive instances classified as Positive

False Positive (Fp) = Negative instances classified as Positive

True Negative (Tn) = Negative instances classified as Negative

False Negative (Fn) = Positive instances classified as Negative

94

Geometric mean (G-mean): The geometric mean (G-mean) is a perfor-

mance metric for classification models that is particularly useful when the classes

are imbalanced. It is calculated as the square root of the product of the sensitivity

and specificity of the model (Brownlee, 2016):

G−mean =
√

sensitivity× specificity (3.10)

The G-mean provides a balanced measure of the model’s ability to correctly

classify both the positive and negative instances. It takes into account both the

true positive rate (sensitivity) and true negative rate (specificity) and is a useful

measure when the data is imbalanced, as it does not give excessive weight to the

majority class.

The performance of the model was assessed using a 5-fold cross-validation

technique (refer to Figure 3.1), and the model’s overall performance was determined

by computing the average outcomes across all 5 folds.

Figure 3.1: A graphical representation of the 5-fold cross-validation

process for both the training and testing datasets (Ahsan, E Alam, et

al., 2020).

95

The model performance of ML models with default parameters and hyper-

parameters is observed for original and SMOTE-based oversampled datasets.

Table 3.2 summarizes the ML algorithms and their designated hyperparameters

used in this study. The default parameters are based on the built-in function

provided by Scikit learn open-source ML library.

Table 3.2: Grid search hyperparameters of ML algorithms used to

conduct the experiment.

Algorithm Grid search parameters

AB n estimatros: 50, 100, 150; learning rate: 0.01, 0.1, 1

DT criterion: ‘gini’; max depth: 10, 50; min samples split: 3,

4, 5; max features: 2,5,6,8

GB n estimators: 50, 100, 150; learning rate: 0.01, 0.1, 1;

max depth: 3, 4, 7

KNN n neighbors: 3, 5, 7, 9; weights: ‘uniform’, ‘distance’

LR penalty: ‘l1’, ‘l2’; C: 0.01, 0.1, 1, 10

RF n estimators: 50, 100, 150; max depth: 10, 20;

min samples split: 3, 4, 5; max features: 2, 5, 6, 8

SVM C: 0.1, 1, 10; kernel: ‘linear’, ‘rbf’; gamma: ‘scale’, ‘auto’

The ML model performance was measured under four conditions:

• Condition one: ML performance on the original dataset – (ML)

• Condition Two: ML performance after oversampled SMOTE dataset –

96

(ML + SMOTE)

• Condition Three: Optimal ML-based performance on the original dataset

– (ML(HP))

• Condition Four: Optimal ML performance on SMOTE-based oversampled

dataset – (ML(HP) + SMOTE)

3.3 Computational Results

The performance has been measured in terms of accuracy, precision, recall, F1-

score, ROC-AUC, and G-mean score using equations 6.1– 3.10.

3.3.1 Performance of AB

The results show that the model’s performance under condition 2 (ML performance

after oversampled SMOTE dataset) is the best among all conditions, with an

average accuracy of 0.9356, average recall of 0.9688, average ROC-AUC of 0.975,

and average G-mean of 0.9348. On the other hand, the performance of the model

under condition 1 (ML performance on the original dataset) is the worst among all

conditions, with an average accuracy of 0.9288, average recall of 0.9646, average

ROC-AUC of 0.9388, and average G-mean of 0.9128. It can be concluded that

oversampling the minority class using SMOTE might improve the performance of

the AB ML model on the Ionosphere dataset. The best performance is achieved

when the AB ML model is trained on the SMOTE-based oversampled dataset.

The results show that this approach outperforms the other conditions regarding

97

accuracy, recall, ROC-AUC, and G-mean.

Table 3.3: AB ML model performance evaluation on

Ionosphere dataset under four different conditions; AB–

Adaptive Boosting.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.873 0.957 0.914 0.943 0.957 0.9288

Precision 0.909 0.938 0.898 0.918 0.977 0.928

Recall 0.889 1 0.978 1 0.956 0.9646

F1-score 0.899 0.968 0.936 0.957 0.966 0.9452

ROC 0.92 0.936 0.884 0.961 0.993 0.9388

G-mean 0.867 0.938 0.884 0.917 0.958 0.9128

Two

Accuracy 0.889 0.956 0.933 0.967 0.933 0.9356

Precision 0.872 0.918 0.882 0.938 0.933 0.9086

Recall 0.911 1 1 1 0.933 0.9688

F1-score 0.891 0.957 0.938 0.968 0.933 0.9374

ROC 0.935 0.988 0.985 0.985 0.982 0.975

G-mean 0.889 0.955 0.931 0.966 0.933 0.9348

Three

Accuracy 0.873 0.957 0.914 0.943 0.957 0.9288

Precision 0.909 0.938 0.898 0.918 0.977 0.928

Recall 0.889 1 0.978 1 0.956 0.9646

F1-score 0.899 0.968 0.936 0.957 0.966 0.9452

98

Table 3.3 Cont.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.92 0.936 0.884 0.961 0.993 0.9388

G-mean 0.867 0.938 0.884 0.917 0.958 0.9128

Four

Accuracy 0.889 0.956 0.933 0.967 0.933 0.9356

Precision 0.872 0.918 0.882 0.938 0.933 0.9086

Recall 0.911 1 1 1 0.933 0.9688

F1-score 0.891 0.957 0.938 0.968 0.933 0.9374

ROC 0.935 0.988 0.985 0.985 0.982 0.975

G-mean 0.889 0.955 0.931 0.966 0.933 0.9348

Similarly, the outcome of the AB was also evaluated on other referenced highly

imbalanced datasets, including Pageblocks, Poker, Spambase, Winequality, and

Yeast. Comprehensive results of the overall performance of each of the datasets

can be found in Appendix .1.

Figure 3.2 presents the lowest and highest Receiver Operating Characteristic

(ROC) scores for the AB ML algorithm. The worst performance was observed for

AB on the Poker dataset (depicted in Figure 3.2 (a)) with default ML parameters.

In contrast, the best performance was achieved on the oversampled Pageblocks

dataset (depicted in Figure 3.2 (b)) with optimal ML parameters. The average of

the five-fold lowest ROC score was 0.57, and the highest ROC score was 1.

99

Figure 3.2: ROC score of Adaboost on (a) Poker dataset with default

ML parameters and (b) oversampled Pageblocks dataset with optimal

ML parameters.

3.3.2 Performance of DT

The DT ML model performance on the Pageblocks dataset was evaluated under

four conditions, with results presented in Table 3.4. The highest performance of

the DT ML model on the Pageblocks dataset was achieved under Conditions Two

and Four, with an average accuracy of 0.9978, average precision of 0.9956, average

recall of 1, average F1-score of 0.9978, average ROC of 1, and average G-mean

of 0.9978. The lowest performance was observed under Condition Three, with

an average accuracy of 0.9892, average precision of 0.9428, average recall of 0.7,

average F1-score of 0.817, average ROC of 0.91, and average G-mean of 0.9596.

100

Table 3.4: DT ML model performance evaluation on

Pageblocks dataset under four different conditions; DT–

Decision Tree.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.968 0.989 0.989 1 0.979 0.985

Precision 1 0.833 0.833 1 0.75 0.8832

Recall 0.5 1 1 1 1 0.9

F1-score 0.667 0.909 0.909 1 0.857 0.8684

ROC 0.75 0.994 0.994 1 0.989 0.9454

G-mean 0.707 0.994 0.994 1 0.989 0.9368

Two

Accuracy 1 1 1 1 0.989 0.9978

Precision 1 1 1 1 0.978 0.9956

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 0.989 0.9978

ROC 1 1 1 1 0.989 0.9978

G-mean 1 1 1 1 0.989 0.9978

Three

Accuracy 0.968 1 0.989 1 0.989 0.9892

Precision 1 1 0.714 1 1 0.9428

Recall 0.333 1 1 0.5 0.667 0.7

F1-score 0.667 0.909 0.909 1 0.6 0.817

101

Table 3.4 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.75 0.994 0.889 0.917 1 0.91

G-mean 0.816 0.994 0.994 1 0.994 0.9596

Four

Accuracy 1 1 1 1 0.989 0.9978

Precision 1 1 1 1 0.989 0.9978

Recall 1 0.989 1 1 1 0.9978

F1-score 1 1 1 1 0.989 0.9978

ROC 1 1 1 1 1 1

G-mean 0.994 1 1 1 0.989 0.9966

Figure 3.3 presents the lowest and highest ROC scores for the DT ML algorithm.

The worst performance was observed for DT on the Poker dataset (depicted in

Figure 3.3 (a)) with default ML parameters. In contrast, the best performance

was achieved on the oversampled Pageblocks dataset (depicted in Figure 3.3 (b))

with optimal ML parameters. The average of the five-fold lowest ROC score was

0.5, and the highest ROC score was 1.

3.3.3 Performance of GB

In the GB ML performance evaluation on the Poker dataset, conditions Two and

Four showed the highest average performance with accuracy, precision, recall,

F1-score, ROC, and G-mean scores of 0.9978. On the other hand, condition

102

Figure 3.3: ROC score of DT on (a) Poker dataset with default ML

parameters and (b) oversampled Pageblocks dataset with optimal ML

parameters.

One showed the lowest average performance with accuracy, precision, recall, F1-

score, ROC, and G-mean scores of 0.1732, 0.2, 0.15, 0.1714, 0.8164, and 0.1732,

respectively. Condition Three showed an average performance with accuracy,

precision, recall, F1-score, ROC, and G-mean scores of 0.9952, 0.6, 0.6, 0.7334,

0.989, and 0.7732, respectively.

Table 3.5: GB ML model performance evaluation on Poker

dataset under four different conditions; GB–Gradient

Boosting.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.986 0.99 0.99 0.99 0.997 0.9906

Precision 0 0 0 0 1 0.2

Recall 0 0 0 0 0.75 0.15

103

Table 3.5 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

F1-score 0 0 0 0 0.857 0.1714

ROC 0.805 0.445 0.837 0.995 1 0.8164

G-mean 0 0 0 0 0.866 0.1732

Two

Accuracy 0.995 0.997 0.997 1 1 0.9978

Precision 1 1 1 1 1 1

Recall 0.99 0.993 0.993 1 1 0.9952

F1-score 0.995 0.997 0.997 1 1 0.9978

ROC 0.997 1 1 1 1 0.9994

G-mean 0.995 0.997 0.997 1 1 0.9978

Three

Accuracy 0.986 0.99 1 1 1 0.9952

Precision 0 0 1 1 1 0.6

Recall 0 0 1 1 1 0.6

F1-score 0.667 0 1 1 1 0.7334

ROC 0.988 0.957 1 1 1 0.989

G-mean 0.866 0 1 1 1 0.7732

Four

Accuracy 0.995 0.995 1 1 1 0.998

Precision 1 1 1 1 1 1

Recall 0.99 0.99 1 1 1 0.996

F1-score 0.995 0.995 1 1 1 0.998

104

Table 3.5 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.998 1 1 1 1 0.9996

G-mean 0.995 0.993 1 1 1 0.9976

Figure 3.4 presents the lowest and ROC scores for the GB ML algorithm.

The worst performance was observed for GB on the oversampled Wine Quality

dataset (depicted in Figure 3.4 (a)) with default ML parameters. In contrast, the

best performance was achieved on the oversampled Yeast dataset (depicted in

Figure 3.4 (b)) with optimal ML parameters. The average of the five-fold lowest

ROC score was 0.70, and the highest ROC score was 1.

Figure 3.4: ROC score of GB on (a) oversampled Wine Quality dataset

with default ML parameters and (b) oversampled Yeast dataset with

optimal ML parameters.

105

3.3.4 Performance of KNN

Table 3.6 summarizes the performance evaluation of the KNN ML model on the

Spambase dataset under four different conditions. The results indicate that the

performance of the model varied under different conditions. The best average

performance was achieved under condition Three, with an average accuracy of

0.923, an average precision of 0.9138, an average recall of 0.889, an average F1-

score of 0.901, an average ROC of 0.9658, and an average G-mean of 0.9164. The

worst average performance was observed under condition Two, with an average

accuracy of 0.914, an average precision of 0.8978, an average recall of 0.9342, an

average F1-score of 0.9158, an average ROC of 0.9624, and an average G-mean of

0.9136. Overall, the results suggest that the KNN model’s performance is sensitive

to the specific conditions and evaluation metrics.

Table 3.6: KNN ML model performance evaluation on

Spambase dataset under four different conditions; KNN–

K-Nearest Neighbors.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.912 0.897 0.911 0.929 0.897 0.9092

Precision 0.915 0.866 0.927 0.914 0.878 0.9

Recall 0.857 0.873 0.84 0.906 0.856 0.8664

F1-score 0.885 0.87 0.881 0.91 0.867 0.8826

106

Table 3.6 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.951 0.953 0.955 0.964 0.94 0.9526

G-mean 0.901 0.892 0.896 0.925 0.889 0.9006

Two

Accuracy 0.893 0.924 0.919 0.917 0.917 0.914

Precision 0.878 0.914 0.909 0.895 0.893 0.8978

Recall 0.914 0.935 0.932 0.944 0.946 0.9342

F1-score 0.896 0.925 0.92 0.919 0.919 0.9158

ROC 0.95 0.967 0.964 0.968 0.963 0.9624

G-mean 0.893 0.924 0.919 0.916 0.916 0.9136

Three

Accuracy 0.926 0.913 0.924 0.938 0.914 0.923

Precision 0.925 0.888 0.935 0.92 0.901 0.9138

Recall 0.884 0.893 0.867 0.923 0.878 0.889

F1-score 0.904 0.89 0.9 0.921 0.89 0.901

ROC 0.963 0.965 0.968 0.976 0.957 0.9658

G-mean 0.918 0.909 0.913 0.935 0.907 0.9164

Four

Accuracy 0.911 0.943 0.927 0.935 0.922 0.9276

Precision 0.887 0.922 0.909 0.909 0.894 0.9042

Recall 0.943 0.968 0.95 0.966 0.957 0.9568

F1-score 0.914 0.944 0.929 0.936 0.925 0.9296

ROC 0.965 0.975 0.977 0.978 0.974 0.9738

107

Table 3.6 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.911 0.942 0.927 0.934 0.921 0.927

Figure 3.5 presents the lowest and highest ROC scores for the KNN ML

algorithm. The worst performance was observed for KNN on the Wine Quality

dataset (depicted in Figure 3.5 (a)) with default ML parameters. In contrast, the

best performance was achieved on the oversampled Pageblocks dataset (depicted

in Figure 3.5 (b)) with optimal ML parameters. The average of the five-fold lowest

ROC score was 0.66, and the highest ROC score was 1.

Figure 3.5: ROC score of KNN on (a) Wine Quality dataset with

default ML parameters and (b) oversampled Pageblocks dataset with

optimal ML parameters.

3.3.5 Performance of LR

The LR ML model performance on the Wine Quality dataset was evaluated under

four different conditions, with the results summarized in Table 3.7. The best

108

performance was achieved under conditions Four, with an average accuracy of

0.9018, an average precision of 0.8362, an average recall of 1, an average F1-score

of 0.9106, an average ROC of 0.9346, and an average G-mean of 0.8966. The

worst performance was observed under conditions One and Three, with an average

accuracy of 0.9662 and 0.9722, respectively, and all other evaluation metrics

having a value of 0.

Table 3.7: LR ML model performance evaluation on

Winequality dataset under four different conditions; LR–

Logistic Regression.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.977 0.969 0.962 0.954 0.969 0.9662

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.862 0.794 0.864 0.974 0.874 0.8736

G-mean 0 0 0 0 0 0

Two

Accuracy 0.933 0.933 0.906 0.925 0.941 0.9276

Precision 0.893 0.882 0.847 0.871 0.9 0.8786

Recall 0.984 1 0.992 1 0.992 0.9936

F1-score 0.936 0.937 0.914 0.931 0.944 0.9324

ROC 0.95 0.945 0.907 0.93 0.96 0.9384

109

Table 3.7 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.932 0.931 0.901 0.922 0.94 0.9252

Three

Accuracy 0.977 0.977 0.969 0.969 0.969 0.9722

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.812 0.76 0.844 0.967 0.902 0.857

G-mean 0 0 0 0 0 0

Four

Accuracy 0.898 0.914 0.89 0.898 0.909 0.9018

Precision 0.83 0.852 0.821 0.831 0.847 0.8362

Recall 1 1 1 1 1 1

F1-score 0.907 0.92 0.901 0.908 0.917 0.9106

ROC 0.931 0.951 0.914 0.925 0.952 0.9346

G-mean 0.893 0.91 0.883 0.892 0.905 0.8966

Figure 3.6 presents the lowest and highest ROC scores for the LR ML algorithm.

The worst performance was observed for LR on the Poker dataset (depicted in

Figure 3.6 (a)) with optimal ML parameters. In contrast, the best performance

was achieved on the oversampled Pageblocks dataset (depicted in Figure 3.6 (b))

with optimal ML parameters. The average of the five-fold lowest ROC score was

0.28, and the highest ROC score was 0.99.

110

Figure 3.6: ROC score of LR on (a) Poker dataset and (b) oversampled

Pageblocks dataset with optimal ML parameters.

3.3.6 Performance of RF

The RF ML model was evaluated on the Yeast dataset under four different

conditions. The best performance was seen in conditions Two and Four, where

the average accuracy was 0.9784 and the average F1-score was 0.9798 and 0.9776,

respectively. The worst performance was seen in conditions One and Three, where

the average accuracy was 0.9572 and 0.9552, and the average F1-score was 0.7638

and 0.7638, respectively. The results indicate that conditions Two and Four were

better performers, with high accuracy and F1-score, while conditions One and

Three showed lower accuracy and F1-score.

111

Table 3.8: RF ML model performance evaluation on

Yeast dataset under four different conditions; RF–Random

Forest.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.981 0.922 0.981 0.941 0.961 0.9572

Precision 0.833 0.625 0.833 0.714 0.875 0.776

Recall 1 0.5 0.909 0.5 0.7 0.7218

F1-score 0.909 0.556 0.87 0.706 0.778 0.7638

ROC 0.996 0.957 0.99 0.978 0.978 0.9798

G-mean 0.989 0.696 0.9 0.703 0.832 0.824

Two

Accuracy 0.973 0.973 0.984 0.978 0.984 0.9784

Precision 0.978 0.948 1 0.958 0.979 0.9726

Recall 0.967 1 0.989 0.978 0.989 0.9846

F1-score 0.973 0.974 0.984 0.979 0.989 0.9798

ROC 0.998 1 0.999 0.999 0.999 0.999

G-mean 0.973 0.973 0.989 0.978 0.978 0.9782

Three

Accuracy 0.981 0.932 0.961 0.941 0.961 0.9552

Precision 0.833 0.625 1 0.75 0.875 0.8166

Recall 1 0.5 0.909 0.7 0.7 0.7618

F1-score 0.909 0.556 0.87 0.706 0.778 0.7638

112

Table 3.8 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.998 0.956 0.992 0.979 0.979 0.9808

G-mean 0.989 0.696 0.948 0.775 0.832 0.848

Four

Accuracy 0.968 0.973 0.989 0.978 0.984 0.9784

Precision 0.978 0.939 0.989 0.979 0.978 0.9726

Recall 0.967 1 0.989 0.989 0.989 0.9868

F1-score 0.967 0.974 0.984 0.974 0.989 0.9776

ROC 0.998 0.999 0.998 0.999 0.998 0.9984

G-mean 0.967 0.973 0.989 0.967 0.989 0.977

Figure 3.7 presents the lowest and highest ROC scores for the RF ML algorithm.

The worst performance was observed for RF on the Winequality dataset (depicted

in Figure 3.7 (a)) with default ML parameters. In contrast, the best performance

was achieved on the oversampled Yeast dataset (depicted in Figure 3.7 (b)) with

optimal ML parameters. The average of the five-fold lowest ROC score was 0.84,

and the highest ROC score was 1.

113

Figure 3.7: ROC score of RF on (a) Winequality dataset with default

ML parameters and (b) oversampled Yeast dataset with optimal ML

parameters.

3.3.7 Performance of SVM

The SVM model performed well on the Ionosphere dataset under four different

conditions. The average accuracy across the five folds was 0.9512. The highest

accuracy was achieved under condition two, with an average accuracy of 0.9512.

Precision was also high under condition two, with an average precision of 0.9326.

Condition two also showed the highest average recall of 0.9734. The average

F1-score across all conditions was 0.9524. The highest average F1-score was

achieved under condition two, with an average F1-score of 0.9524. The average

ROC score was 0.9856, and the average G-mean score was 0.951.

114

Table 3.9: SVM ML model performance evaluation on

Ionosphere dataset under four different conditions; SVM–

Support Vector Machine.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.93 0.943 0.886 0.957 0.986 0.9404

Precision 0.955 0.918 0.863 0.938 0.978 0.9304

Recall 0.933 1 0.978 1 1 0.9822

F1-score 0.944 0.957 0.917 0.968 0.989 0.955

ROC 0.984 0.998 0.96 0.965 0.996 0.9806

G-mean 0.928 0.917 0.839 0.938 0.98 0.9204

Two

Accuracy 0.878 0.989 0.944 0.978 0.967 0.9512

Precision 0.854 0.978 0.917 0.957 0.957 0.9326

Recall 0.911 1 0.978 1 0.978 0.9734

F1-score 0.882 0.989 0.946 0.978 0.967 0.9524

ROC 0.969 0.997 0.978 0.986 0.998 0.9856

G-mean 0.877 0.989 0.944 0.978 0.967 0.951

Three

Accuracy 0.93 0.943 0.886 0.957 0.986 0.9404

Precision 0.955 0.918 0.863 0.938 0.978 0.9304

Recall 0.933 1 0.978 1 1 0.9822

F1-score 0.944 0.957 0.917 0.968 0.989 0.955

115

Table 3.9 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.984 0.998 0.96 0.965 0.996 0.9806

G-mean 0.928 0.917 0.839 0.938 0.98 0.9204

Four

Accuracy 0.878 0.989 0.944 0.978 0.967 0.9512

Precision 0.854 0.978 0.917 0.957 0.957 0.9326

Recall 0.911 1 0.978 1 0.978 0.9734

F1-score 0.882 0.989 0.946 0.978 0.967 0.9524

ROC 0.969 0.997 0.978 0.986 0.998 0.9856

G-mean 0.877 0.989 0.944 0.978 0.967 0.951

Figure 3.8 presents the lowest and highest ROC scores for the SVM ML

algorithm. The worst performance was observed for SVM on the Wine Quality

dataset (depicted in Figure 3.8 (a)) with default ML parameters. In contrast, the

best performance was achieved on the oversampled Pageblocks dataset (depicted

in Figure 3.8 (b)) with optimal ML parameters. The average of the five-fold lowest

ROC score was 0.74, and the highest ROC score was 1.

116

Figure 3.8: ROC score of SVM on (a) Wine Quality dataset with

default ML parameters and (b) oversampled Pageblocks dataset with

optimal ML parameters.

3.4 Discussion of the Results

The study evaluated the performance of various ML algorithms on six different

datasets and found that the accuracy, precision, recall, F1-score, ROC, and G-

mean scores varied depending on the specific dataset and conditions used in the

experiments. The study observed that in some cases, precision, recall, F1-score,

and G-mean score became almost zero for some folds, indicating that the model

was overly biased. However, the ROC score was still able to be calculated, and

the study concluded that selecting an appropriate evaluation metric and model

conditions is crucial for achieving better performance.

The study also demonstrated the importance of selecting the appropriate

evaluation metric, mainly when working with highly imbalanced datasets. The

ROC score was found to be a suitable metric for hypothesis testing, particularly

117

when comparing the performance of different ML models before and after SMOTE-

based oversampling.

Possible directions for future work include exploring other evaluation metrics

or optimizing the model conditions to improve the overall performance of the ML

algorithms. In Section 3.5, the study will consider the ROC score of each fold to

conduct hypothesis testing to evaluate significant performance improvements of

popular ML models regarding before and after SMOTE-based oversampling.

3.5 Hypothesis Testing

This study aims to investigate the impact of the Synthetic Minority Over-sampling

Technique (SMOTE) on data balancing in imbalanced benchmark datasets. Hy-

pothesis testing is used to evaluate the significance of SMOTE-based approaches

on data balancing. Four conditions are considered for this purpose:

• The performance of a ML model on the original dataset,

• The performance of an ML model on the SMOTE-based oversampled dataset,

• The performance of a hyperparameter tuned ML model on the original

dataset, and

• The performance of a hyperparameter tuned ML model on the SMOTE-based

oversampled dataset.

The six hypotheses that has been developed based on these four conditions are as

follows:

118

Hypothesis 1:

• H0: There is no significant difference in the performance of the ML model

with hyperparameter tuning on the original dataset and the SMOTE-based

oversampled dataset.

• H1: There is a significant difference in the performance of the ML model on

the original dataset and the SMOTE-based oversampled dataset.

Hypothesis 2:

• H0: There is no significant difference in the performance of the ML model

with hyperparameter tuning on the original dataset and the SMOTE-based

oversampled dataset.

• H1: There is a significant difference in the performance of the ML model

with hyperparameter tuning on the original dataset and the SMOTE-based

oversampled dataset.

Hypothesis 3:

• H0: There is no significant difference in the performance of the ML model

with and without hyperparameter tuning on the original dataset.

• H1: There is a significant difference in the performance of the ML model

with and without hyperparameter tuning on the original dataset.

Hypothesis 4:

119

• H0: There is no significant difference in the performance of the ML model

with and without hyperparameter tuning on the SMOTE-based oversampled

dataset.

• H1: There is a significant difference in the performance of the ML model

with and without hyperparameter tuning on the SMOTE-based oversampled

dataset.

Hypothesis 5:

• H0: There is no significant difference in the performance of the ML model

on the original dataset and the original dataset with hyperparameter tuning.

oversampled dataset.

• H1: There is a significant difference in the performance of the ML model on

the original dataset and the original dataset with hyperparameter tuning.

Hypothesis 6:

• H0: There is no significant difference in the performance of the ML model on

the SMOTE-based oversampled dataset and the SMOTE-based oversampled

dataset with hyperparameter tuning. oversampled dataset.

• H1: There is a significant difference in the performance of the ML model on

the SMOTE-based oversampled dataset and the SMOTE-based oversampled

dataset with hyperparameter tuning.

120

3.5.1 Performance of AB

The hypothesis testing results for the AB Algorithm on the Ionosphere dataset are

presented in Table 3.10. The testing aimed to evaluate the effect of applying the

SMOTE on the performance of the AB algorithm. The conditions compared in

the hypothesis testing were ML, ML+SMOTE, ML(HP), and ML(HP)+SMOTE,

based on their mean and Standard Deviation (SD).

A paired t-test has been conducted to compare the conditions, and the signifi-

cance level was set at 0.05. The results showed that the mean difference between

ML and ML+SMOTE and between ML(HP) and ML(HP)+SMOTE was -0.0362,

with a standard deviation difference of 0.016774. The t-value was -2.3246, and

the p-value was 0.06766, which was greater than 0.05. This result failed to reject

the null hypothesis, indicating that there was no significant difference between

the two conditions.

Similarly, the results showed that the mean difference between ML and ML(HP)

and between ML+SMOTE and ML(HP)+SMOTE was 0, with a standard devia-

tion difference of 0. The t-value was not computable (nan), and the p-value was

also not computable (nan), failing to reject the null hypothesis.

In conclusion, the hypothesis testing results indicated that there was no

statistically significant impact on the performance of the AB algorithm on the

Ionosphere dataset when SMOTE was applied to balance the dataset. These

results suggest that the use of SMOTE does not have a significant effect on the

AB algorithm’s performance.

121

Table 3.10: Results of hypothesis testing for AB algorithms on Iono-

sphere dataset. ML– Machine Learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9388 0.036864 ML
ML +

SMOTE

-0.0362 0.016774 -2.32466 0.06766
Fail to

reject H0

ML +

SMOTE

0.975 0.02009 ML ML(HP) 0 0
Fail to

reject H0

ML(HP) 0.9388 0.036864 ML
ML(HP) +

SMOTE

-0.0362 0.016774 -2.32466 0.06766
Fail to

reject H0

ML(HP) +

SMOTE

0.975 0.02009
ML +

SMOTE

ML(HP) 0.0362 -0.01677 2.324656 0.06766
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0 nan nan
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0362 0.016774 -2.32466 0.06766
Fail to

reject H0

Similarly, the performance of the AB algorithm was also evaluated on other

referenced highly imbalanced datasets, including Pageblocks, Poker, Spambase,

Wine Quality, and Yeast. Comprehensive results of the overall performance of

each of the datasets can be found in Appendix .3.

Table 3.11 presents the overall hypothesis testing outcome of AB algorithms

on six different benchmark imbalanced datasets. For all six datasets, the null

hypotheses were not rejected, indicating that the performance of AB algorithms

did not significantly differ from the baseline performance. However, for the Wine

122

Quality dataset, the null hypothesis was rejected for hypothesis five, indicating

that the performance of AB algorithms significantly differed from the baseline

performance.

The overall outcome of the hypothesis testing suggests that AB algorithms did

not significantly improve the performance of the classifiers in the six benchmark

imbalanced datasets. However, further investigations are needed to determine

the potential reasons for this outcome and to identify the scenarios where AB

algorithms might be effective in improving classifier performance in imbalanced

datasets with or without oversampling.

123

Table 3.11: Overall hypothesis outcome of AB algorithms on referenced

six benchmarks imbalanced dataset used in this study.

Dataset
Hypothesis

One Two Three Four Five Six

Ionosphere
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Pageblocks
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Poker Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0

Spambase
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Winequality
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

3.5.2 Performance of DT

Table 3.12 shows the results of hypothesis testing for DT algorithms on the

Pageblocks dataset. The table reports the mean ROC, standard deviation, mean

difference, standard difference, t-value, and p-value for each pair of algorithm

conditions. For all pairs of conditions, the null hypothesis was not rejected,

indicating that there was no statistically significant difference between the per-

124

formance of the decision tree algorithms. Specifically, the mean ROC of the ML

algorithm was 0.9454 with a standard deviation of 0.0978, and the mean ROC of

the ML+SMOTE algorithm was 0.893 with a SD of 0.0934. The mean ROC of the

ML(HP) algorithm was 0.9634 with a standard deviation of 0.0069, and the mean

ROC of the ML(HP)+SMOTE algorithm was 0.9122 with a standard deviation of

0.0864. These results suggest that the decision tree algorithms performed similarly

on the Pageblocks dataset, regardless of the algorithm conditions tested.

Table 3.12: Results of hypothesis testing for DT algorithms on Page-

blocks dataset. ML– Machine Learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9454 0.097762 ML
ML +

SMOTE

-0.0524 0.093362 -1.29864 0.250731
Fail to

reject H0

ML +

SMOTE

0.9978 0.0044 ML ML(HP) 0.0354 0.006937 1.787271 0.133935
Fail to

reject H0

ML(HP) 0.91 0.090825 ML
ML(HP) +

SMOTE

-0.0546 0.097762 -1.36804 0.229576
Fail to

reject H0

ML(HP) +

SMOTE

1 0
ML +

SMOTE

ML(HP) 0.0878 -0.08643 2.310452 0.068868
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0022 0.0044 -1.22474 0.27522
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.09 0.090825 -2.42724 0.059583
Fail to

reject H0

Table 3.13 presents the overall hypothesis testing outcome of DT algorithms

on six different benchmark imbalanced datasets. The study failed to reject H0

125

in all six hypotheses for the Ionosphere and Pageblocks datasets, indicating

that oversampling approaches did not significantly affect the DT algorithm’s

performance. For the Spambase and Yeast datasets, the algorithm’s performance

was not significantly impacted for all six hypotheses, as the study failed to reject

H0 in all cases.

In the case of the Poker dataset, the study rejected H0 for hypotheses One,

Three, Four, Five, and Six, indicating that the oversampled data significantly

impacted the performance of the DT algorithm. For the Wine Quality dataset,

the study rejected H0 for hypotheses One, Three, Four, and Six, suggesting that

the oversampled data in the dataset had a significant impact on the algorithm’s

performance in those cases.

126

Table 3.13: Overall hypothesis outcome of DT algorithms on referenced

six benchmarks imbalanced dataset used in this study.

Dataset
Hypothesis

One Two Three Four Five Six

Ionosphere
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Pageblocks
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Poker Reject H0

Fail to

reject H0

Reject H0 Reject H0 Reject H0 Reject H0

Spambase Reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Winequality Reject H0

Fail to

reject H0

Reject H0 Reject H0

Fail to

reject H0

Reject H0

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Similarly, the performance of the DT algorithm was also evaluated on other

referenced highly imbalanced datasets, including Ionosphere, Poker, Spambase,

Wine Quality, and Yeast. Comprehensive results of the overall performance of

each of the datasets can be found in Appendix .3.

127

3.5.3 Performance of GB

Table 3.14 displays the results of hypothesis testing for GB algorithms on the

Poker dataset. The table reports the mean ROC results, SD, mean difference,

standard difference, t-value, and p-value for each pair of algorithm conditions.

After conducting the hypothesis testing for all pairs of conditions, it was observed

that the null hypothesis cannot be rejected with a significance level of 0.05, as the

p-values were greater than 0.05. Specifically, the p-values for all conditions were

0.018284, 0.071443, 0.009755, 0.014172, and 0.049007. Since all these p-values

are greater than the significance level of 0.005, we can conclude that there is no

statistically significant difference in performance between the GB algorithms in

the given conditions. This result suggests that these algorithms perform similarly,

and one algorithm does not outperform the other significantly. After conducting

the hypothesis testing for all pairs of conditions, we found that the null hypothesis

cannot be rejected with a significance level of 0.05, as the p-values were greater

than 0.05. Specifically, the p-values for all conditions were 0.018284, 0.071443,

0.009755, 0.014172, and 0.049007. Since all these p-values are greater than the

significance level of 0.005, we can conclude that there is no statistically significant

difference in performance between the GB algorithms in the given conditions.

This result suggests that these algorithms perform similarly, and one algorithm

does not outperform the other significantly. Specifically, the mean ROC result for

the ML algorithm was 0.8746 with a SD of 0.0598, and the mean ROC result for

the ML+SMOTE algorithm was 0.783 with a SD of 0.0472. The mean ROC result

128

for the ML(HP) algorithm was 0.8382 with a SD of 0.0752, and the mean ROC

result for the ML(HP)+SMOTE algorithm was 0.977 with a standard deviation

of 0.0055. These findings suggest that the GB algorithms performed similarly on

the Poker dataset, regardless of the algorithm conditions tested.

Table 3.14: Results of hypothesis testing for GB algorithms on Poker

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.8746 0.059758 ML
ML +

SMOTE

-0.0916 0.047214 -3.44764 0.018284
Fail to

reject H0

ML +

SMOTE

0.9662 0.012544 ML ML(HP) 0.0364 -0.01543 2.281067 0.071443
Fail to

reject H0

ML(HP) 0.8382 0.075184 ML
ML(HP) +

SMOTE

-0.1024 0.054245 -4.05732 0.009755
Fail to

reject H0

ML(HP) +

SMOTE

0.977 0.005514
ML +

SMOTE

ML(HP) 0.128 -0.06264 3.688184 0.014172
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0108 0.007031 -2.58712 0.049007
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.1388 0.06967 -4.32801 0.007513
Fail to

reject H0

Table 3.15 presents the overall hypothesis testing outcome of GB algorithms

on six different benchmark imbalanced datasets. For the Ionosphere, Pageblocks,

Poker, and Yeast datasets, all six hypotheses failed to reject the null hypothe-

sis, indicating that there was no statistically significant difference between the

performance of the GB algorithms on before and after oversampled data. For

129

the Spambase dataset, the GB algorithm performed significantly better according

to the second and fifth hypotheses, but no significant difference was observed

according to the other four hypotheses. For the Wine Quality dataset, the GB

algorithm performed significantly better according to the fifth hypothesis, but no

significant difference was observed according to the other five hypotheses. Overall,

the results indicate that the performance of the GB algorithm was not significantly

improved for most datasets, with a few exceptions.

130

Table 3.15: Overall hypothesis outcome of GB algorithms on referenced

six benchmarks imbalanced dataset used in this study.

Dataset
Hypothesis

One Two Three Four Five Six

Ionosphere
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Pageblocks
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Poker
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Spambase
Fail to

reject H0

Reject H0

Fail to

reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Winequality
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Similarly, the performance of the GB algorithm was also evaluated on other

referenced highly imbalanced datasets, including Ionosphere, Pageblocks, Spam-

base, Wine Quality, and Yeast. Comprehensive results of the overall performance

of each of the datasets can be found in Appendix .3.

131

3.5.4 Performance of KNN

Table 3.16 shows the results of hypothesis testing for KNN algorithms on the

Spambase dataset. The table presents the mean, SD, mean difference, standard

difference, t-value, and p-value for each pair of algorithm conditions. The null

hypothesis for each test was that there was no significant difference in performance

between the KNN algorithms. The p-values for the pairwise comparisons were

used to determine whether to reject the null hypothesis. For the ML algorithm,

the mean ROC was 0.9526, with a standard deviation of 0.00771. The mean AUC

for the ML+SMOTE algorithm was 0.9428, with a standard deviation of 0.006468.

The mean AUC for the ML(HP) algorithm was 0.9658, with a standard deviation

of 0.006242, and the mean AUC for the ML(HP)+SMOTE algorithm was 0.9738,

with a standard deviation of 0.004622.

The hypothesis testing results indicate that the null hypothesis cannot be

rejected for the comparisons of ML vs. ML+SMOTE, ML(HP)+SMOTE vs.

ML(HP), and ML+SMOTE vs. ML(HP)+SMOTE. The p-values for these com-

parisons were 0.033825, 0.017546, and 0.27522, respectively, greater than the

significance level of 0.05. Therefore, there is no statistically significant difference

in performance between these algorithm conditions. However, the null hypothesis

was rejected for comparing ML+SMOTE vs. ML(HP) and ML(HP)+SMOTE vs.

ML+SMOTE. The p-values for these comparisons were 1.42E-05 and 8.52E-05,

respectively, smaller than the significance level of 0.05.

132

Table 3.16: Results of hypothesis testing for KNN algorithms on

Spambase dataset. ML– Machine Learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9526 0.00771 ML
ML +

SMOTE

-0.0098 0.001241 -2.89912 0.033825
Fail to

reject H0

ML +

SMOTE

0.9624 0.006468 ML ML(HP) -0.0132 0.001468 -16.6746 1.42E-05 Reject H0

ML(HP) 0.9658 0.006242 ML
ML(HP) +

SMOTE

-0.0212 0.003088 -7.08242 0.000869 Reject H0

ML(HP) +

SMOTE

0.9738 0.004622
ML +

SMOTE

ML(HP) -0.0034 0.000227 -1.22474 0.27522
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0114 0.001847 -11.5551 8.52E-05 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.008 0.00162 -3.48596 0.017546
Fail to

reject H0

Table 3.17 summarizes the overall hypothesis outcome of the KNN algorithms

on the referenced six imbalanced benchmark datasets. The table indicates that the

null hypothesis is rejected for most cases, indicating that oversampling significantly

impacts the performance of KNN algorithms. Specifically, the null hypothesis is

rejected for all six hypotheses for the Ionosphere, Poker, Spambase, and Winequal-

ity datasets. For the Pageblocks and Yeast datasets, the null hypothesis is rejected

for some of the hypotheses, indicating that the oversampled dataset significantly

positively impacts the KNN algorithm’s performance for some cases but not for

133

others.

Table 3.17: Overall hypothesis outcome of KNN algorithms on refer-

enced six benchmarks imbalanced dataset used in this study.

Dataset
Hypothesis

One Two Three Four Five Six

Ionosphere Reject H0

Fail to

reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Reject H0

Pageblocks
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Poker Reject H0

Fail to

reject H0

Reject H0 Reject H0

Fail to

reject H0

Reject H0

Spambase
Fail to

reject H0

Reject H0 Reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Winequality Reject H0 Reject H0 Reject H0 Reject H0

Fail to

reject H0

Reject H0

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Similarly, the performance of the Adaboost algorithm was also evaluated on

other referenced highly imbalanced datasets, including Ionosphere, Pageblocks,

Poker, Winequality, and Yeast. Comprehensive results of the overall performance

of each of the datasets can be found in Appendix .3.

134

3.5.5 Performance of LR

Table C72 presents the results of hypothesis testing for LR algorithms on the

Wine Quality dataset. The table displays the mean ROC results, standard

deviation, mean difference, standard difference, t-value, and p-value for each

pair of algorithm conditions. The null hypothesis was failed to rejected for all

pairs of conditions, with p-values greater than 0.05. Specifically, the p-values

were 0.056874, 0.185516, 0.07304, 0.046798, and 0.377733. As all these p-values

are higher than the significance level of 0.005, we can conclude that there is no

statistically significant difference in performance between the LR algorithms in the

given conditions. This finding suggests that these algorithms perform similarly,

and one algorithm does not outperform the other significantly.

Regarding the algorithm conditions tested, the mean ROC result for the ML

algorithm was 0.8736 with a standard deviation of 0.0577, and the mean ROC

result for the ML+SMOTE algorithm was 0.8088 with a standard deviation

of 0.0392. The mean ROC result for the ML(HP) algorithm was 0.857 with a

standard deviation of 0.0717, and the mean ROC result for the ML(HP)+SMOTE

algorithm was 0.9346 with a standard deviation of 0.0148. These findings suggest

that the LR algorithms performed similarly on the Winequality dataset, regardless

of the algorithm conditions tested.

135

Table 3.18: Results of hypothesis testing for LR algorithms on

Winequality dataset. ML– Machine Learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.8736 0.057694 ML
ML +

SMOTE

-0.0648 0.039249 -2.46506 0.056874
Fail to

reject H0

ML +

SMOTE

0.9384 0.018446 ML ML(HP) 0.0166 -0.01404 1.534408 0.185516
Fail to

reject H0

ML(HP) 0.857 0.071733 ML
ML(HP) +

SMOTE

-0.061 0.042854 -2.2634 0.07304
Fail to

reject H0

ML(HP) +

SMOTE

0.9346 0.01484
ML +

SMOTE

ML(HP) 0.0814 -0.05329 2.625297 0.046798
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0038 0.003605 0.967492 0.377733
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0776 0.056892 -2.46641 0.05678
Fail to

reject H0

Table 3.19 summarizes the overall hypothesis outcome of the LR algorithms on

the referenced six imbalanced benchmark datasets. The table shows the rejected

null hypothesis outcomes for LR algorithms in some cases, including Ionosphere,

Pageblocks, and Poker datasets, which indicates that oversampling improves

the performance of the LR model on these datasets. Contrarily, on Spambase,

Winequality, and Yeast datasets, LR model performance fails to reject the null

hypothesis implying that oversampling does not significantly improve performance

in these cases.

136

Table 3.19: Overall hypothesis outcome of LR algorithms on referenced

six benchmarks imbalanced dataset used in this study.

Dataset
Hypothesis

One Two Three Four Five Six

Ionosphere Reject H0

Fail to

reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Reject H0

Pageblocks
Fail to

reject H0

Reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Poker Reject H0

Fail to

reject H0

Reject H0 Reject H0 Reject H0 Reject H0

Spambase
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Winequality
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Similarly, the performance of the LR algorithm was also evaluated on other

referenced highly imbalanced datasets, including Ionosphere, Pageblocks, Poker,

Spambase, and Yeast. Comprehensive results of the overall performance of each

of the datasets can be found in Appendix .3.

137

3.5.6 Performance of RF

Table 3.20 presents the results of hypothesis testing for RF algorithms on the

Yeast dataset. The table reports the mean, standard deviation, mean difference,

standard difference, t-value, and p-value for each pair of algorithm conditions.

After conducting hypothesis testing for all pairs of conditions, the null hypothesis

was not rejected with a significance level of 0.05, indicating that there was no

statistically significant difference in performance between the RF algorithms.

The p-values for all conditions were greater than 0.05, ranging from 0.019853

to 0.075587. This result suggests that these algorithms perform similarly, and

one algorithm does not outperform the other significantly. Specifically, the mean

ROC result for the ML algorithm was 0.9798 with a standard deviation of 0.0134,

and the mean ROC result for the ML+SMOTE algorithm was 0.999 with a

standard deviation of 0.0006. The mean ROC result for the ML(HP) algorithm

was 0.9808 with a standard deviation of 0.0144, and the mean ROC result for

the ML(HP)+SMOTE algorithm was 0.9984 with a standard deviation of 0.0005.

These findings suggest that the RF algorithms performed similarly on the Yeast

dataset, regardless of the algorithm conditions tested.

138

Table 3.20: Results of hypothesis testing for RF algorithms on Yeast

dataset. ML– Machine Learning; HP– Hyper-parameter; Std– Stan-

dard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9798 0.013363 ML
ML +

SMOTE

-0.0192 0.01273 -3.37171 0.019853
Fail to

reject H0

ML +

SMOTE

0.999 0.000632 ML ML(HP) -0.001 -0.00108 -2.23607 0.075587
Fail to

reject H0

ML(HP) 0.9808 0.014442 ML
ML(HP) +

SMOTE

-0.0186 0.012873 -3.3172 0.021073
Fail to

reject H0

ML(HP) +

SMOTE

0.9984 0.00049
ML +

SMOTE

ML(HP) 0.0182 -0.01381 2.967041 0.031264
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0006 0.000143 3 0.030099
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0176 0.013952 -2.91025 0.03339
Fail to

reject H0

Table 3.21 summarizes the overall hypothesis outcome of the RF algorithms on

the referenced six imbalanced benchmark datasets. The table shows that for all

six datasets, the RF model failed to reject the null hypothesis in all six hypotheses

tested, indicating that there is no significant difference in the performance of the

RF model before and after oversampling the imbalanced datasets.

139

Table 3.21: Overall hypothesis outcome of RF algorithms on referenced

six benchmarks imbalanced dataset used in this study.

Dataset
Hypothesis

One Two Three Four Five Six

Ionosphere
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Pageblocks
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Poker
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Spambase
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Winequality Reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Similarly, the performance of the RF algorithm was also evaluated on other

referenced highly imbalanced datasets, including Ionosphere, Pageblocks, Poker,

Spambase, and Wine Quality. Comprehensive results of the overall performance

of each of the datasets can be found in Appendix .3.

140

3.5.7 Performance of SVM

Table 3.22 presents the results of hypothesis testing for SVM algorithms on the

Ionosphere dataset. The results suggest that there is no statistically significant

difference between the performance of the SVM algorithm and the SVM algorithm

with SMOTE oversampling technique. Similarly, there is no significant difference

between the SVM algorithm with hyper-parameter optimization and the SVM

algorithm with hyper-parameter optimization and SMOTE. The mean ROC score

for all four conditions is high, with values ranging from 0.9806 to 0.9856. All

the p-values are greater than the significance level of 0.05, leading to a “fail to

reject H0” conclusion, indicating that there is insufficient evidence to support the

alternative Hypothesis.

141

Table 3.22: Results of hypothesis testing for SVM algorithms on

Ionosphere dataset. ML– Machine Learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9806 0.015615 ML
ML +

SMOTE

-0.005 0.004505 -0.92848 0.395774
Fail to

reject H0

ML +

SMOTE

0.9856 0.01111 ML ML(HP) 0 0
Fail to

reject H0

ML(HP) 0.9806 0.015615 ML
ML(HP) +

SMOTE

-0.005 0.004505 -0.92848 0.395774
Fail to

reject H0

ML(HP) +

SMOTE

0.9856 0.01111
ML +

SMOTE

ML(HP) 0.005 -0.00451 0.928477 0.395774
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.005 0.004505 -0.92848 0.395774
Fail to

reject H0

Table 3.23 summarizes the overall hypothesis outcome of the SVM model on

the six referenced imbalanced benchmark datasets. The table demonstrates that

all six hypotheses failed to be rejected for the Ionosphere, Pageblocks, Poker,

and Yeast datasets. In contrast, for the Spambase dataset, hypotheses Two and

Five were rejected, while the other hypotheses failed to be rejected. For the

Wine Quality dataset, hypotheses One, Three, and Five were rejected, while

hypotheses Two, Four, and Six failed to be rejected. Based on these results, it

can be concluded that the null hypothesis (H0) failed to be rejected in most cases,

142

suggesting that there is no significant difference between the performance of the

SVM algorithms on the original and oversampled data.

Table 3.23: Overall hypothesis outcome of SVM algorithms on refer-

enced six benchmarks imbalanced dataset used in this study.

Dataset
Hypothesis

One Two Three Four Five Six

Ionosphere
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Pageblocks
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Poker
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Spambase
Fail to

reject H0

Reject H0

Fail to

reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Winequality Reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Reject H0

Fail to

reject H0

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

3.6 Overall Findings

Based on the results of Section 3.5, the following is a summary of the overall

outcomes for each hypothesis:

143

Hypothesis One Findings

The purpose of the hypothesis was to investigate whether there is a significant

difference in the performance of the ML model without hyperparameter tuning

on the original dataset and the SMOTE-based oversampled dataset. The findings

from Section 3.5.1 to Section 3.5.7 suggest that the null hypothesis cannot be

rejected for all algorithms except KNN and LR on Ionosphere and Spambase and

KNN on the Poker dataset. This indicates that there is no significant difference in

performance between the original and oversampled datasets. However, for KNN

and LR on Ionosphere and Spambase and KNN on Poker, the null hypothesis

can be rejected, suggesting that there is a significant difference in performance

between the original and oversampled datasets.

In summary, the hypothesis results suggest that the SMOTE-based oversampled

dataset does not significantly affect the performance of the ML models for most of

the algorithms and benchmarks evaluated in this study. However, the performance

of some algorithms on specific datasets may be impacted by the oversampling

technique.

Hypothesis Two Findings

This hypothesis aims to examine whether there is a significant difference in the

performance of the ML model with hyperparameter tuning on the original dataset

and the SMOTE-based oversampled dataset. The findings from Section 3.5.1 to

Section 3.5.7 suggest that for all algorithms, except for LR on Pageblocks, the null

hypothesis cannot be rejected, indicating that there is no significant difference

in performance between the original and oversampled datasets. However, for

144

LR on Pageblocks, the null hypothesis can be rejected, suggesting that there

is a significant difference in performance between the original and oversampled

datasets.

Hypothesis Three Findings

Hypothesis Three tests whether there is a significant difference in the perfor-

mance of the ML model with and without hyperparameter tuning on the original

dataset. The overall findings, as reported in Section 3.5.1 to Section 3.5.7, indicate

that the null hypothesis cannot be rejected for all algorithms and datasets. This

implies that there is no significant difference in performance between the models

with and without hyperparameter tuning on the original dataset, irrespective of

the algorithm used. Therefore, hyperparameter tuning does not necessarily lead

to a significant improvement in performance on the original dataset, at least not

for the algorithms tested in this study. It is important to note that the results

might differ for other algorithms and datasets, and additional research is required

to establish whether this conclusion is generalizable beyond the tested scenarios.

Hypothesis Four Findings

Hypothesis Four tests whether there is a significant difference in the per-

formance of the ML model with and without hyperparameter tuning on the

SMOTE-based oversampled dataset. The result in Section 3.5.1 to Section 3.5.7

shows that for all algorithms and datasets, the null hypothesis cannot be rejected,

indicating that there is no significant difference in performance between the models

with and without hyperparameter tuning on the oversampled dataset.

145

Hypothesis Five Findings

Hypothesis Five tests whether there is a significant difference in the perfor-

mance of the ML model on the original dataset and the original dataset with

hyperparameter tuning. The overall findings suggest that, for most datasets and

algorithms, the null hypothesis cannot be rejected, indicating that there is no

significant difference in performance between the original dataset and the original

dataset with hyperparameter tuning. However, for DT on Winequality, LR on

Poker, and SVM on Winequality, the null hypothesis can be rejected, indicating

that there is a significant difference in performance between the original dataset

and the original dataset with hyperparameter tuning.

Hypothesis Six Findings

Hypothesis Six tests whether there is a significant difference in the performance

of the ML model on the SMOTE-based oversampled dataset and the SMOTE-

based oversampled dataset with hyperparameter tuning. The overall findings

suggest that, for most datasets and algorithms, the null hypothesis cannot be

rejected, indicating that there is no significant difference in performance between

the oversampled dataset and the oversampled dataset with hyperparameter tuning.

However, for DT and KNN on Winequality and LR on Poker, the null hypothesis

can be rejected, indicating that there is a significant difference in performance be-

tween the oversampled dataset and the oversampled dataset with hyperparameter

tuning.

Table 3.24 presents the outcomes of the six hypotheses on the performance of

various ML algorithms across different imbalanced benchmark datasets.

146

Table 3.24: Hypothesis outcome from one to six of all algorithms on

referenced six benchmarks imbalanced dataset used in this study.

Dataset
Algorithms

AB DT GB KNN LR RF SVM

Ionosphere
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

except

hypothesis

One, Four,

and Six

Fail to

reject H0

except

hypothesis

One, Four, and

Six

Fail to

reject H0

Fail to

reject H0

Pageblocks
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

except

hypothesis

Two

Fail to

reject H0

Fail to

reject H0

Poker Reject H0

Reject H0

except

hypothesis

Two

Fail to

reject H0

Reject H0

except

hypothesis

Two and Five

Reject H0

except

hypothesis

Two

Fail to

reject H0

Fail to

reject H0

Spambase

Fail to

reject H0

except

hypothesis

One

Reject H0

Fail to

reject H0

except

hypothesis

Two and Five

Fail to

reject H0

except

hypothesis

Two, Three,

and Five

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

except

hypothesis

Two and Five

Winequality

Fail to

reject H0

except

hypothesis

Five

Reject H0

except

hypothesis

Two and Five

Fail to

reject H0

except

hypothesis

Five

Reject H0

except

hypothesis

Five

Fail to

reject H0

Fail to

reject H0

except

hypothesis

One and Three

Fail to

reject H0

except

hypothesis

One, Three,

and Five

Yeast
Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

Fail to

reject H0

147

3.7 Conclusion

The primary objective of the hypothesis testing was to address the research

question posed in RQ2, which is ’What is the effect of traditional Machine learning

and SMOTE-based data balancing on imbalanced data analysis?’ To achieve this,

six imbalanced benchmark datasets were used. Four conditions were tested: ML

on the original dataset, ML on the SMOTE-based oversampled dataset, ML with

hyperparameter tuning on the original, and ML with hyperparameter tuning on

the SMOTE-based oversampled dataset. The study tested six hypotheses, and

the results suggest that the Adaboost algorithm did not significantly improve

the performance of the ML models in the six benchmark imbalanced datasets.

However, further research is required to identify the scenarios where Adaboost

algorithms might be effective in improving classifier performance in imbalanced

datasets with or without oversampling.

The study found that the SMOTE-based oversampled dataset did not sig-

nificantly affect the performance of the ML models for most of the algorithms

and benchmarks evaluated in this study. However, the performance of some

algorithms on specific datasets may be impacted by the oversampling technique.

The results suggest that hyperparameter tuning does not necessarily lead to a

significant improvement in performance on the original dataset, at least not for

the algorithms tested in this study.

The results indicate that oversampling significantly impacts KNN algorithms’

performance for most datasets. In contrast, the performance of the LR model

148

is significantly improved by oversampling on the Ionosphere, Pageblocks, and

Poker datasets. The RF model was found to be unaffected by oversampling for

all six datasets. The SVM model’s performance was relatively unaffected by

oversampling for most of the datasets and algorithms tested.

The study has some limitations, such as the use of a limited number of imbal-

anced datasets and the use of a limited number of algorithms. Further research is

required to evaluate other oversampling techniques’ impact and investigate the

effect of hyperparameter tuning on other imbalanced datasets and algorithms.

In conclusion, the findings suggest that SMOTE-based oversampling may

only sometimes lead to a significant improvement in ML model performance

in imbalanced datasets. However, oversampling can significantly impact the

performance of some algorithms on specific datasets. Hyperparameter tuning may

not necessarily lead to a significant improvement in performance on the original

dataset, but it may still be beneficial in certain scenarios. The findings can be

helpful for researchers and practitioners working in the field of imbalanced data

analysis, particularly those dealing with selecting appropriate ML algorithms and

data balancing techniques for imbalanced datasets.

149

Chapter 4

Enhancing and Improving the Performance of

Imbalanced Class Data Using Novel GBO and

SSG: A Comparative Analysis

4.1 Introduction

An imbalanced class ratio with datasets is a potential challenge in Machine

Learning (ML)-based model development systems (Y. Yang & Xu, 2020). Class

imbalance occurs when the total number of samples from one class is significantly

higher than the other classes (Cui et al., 2019). In both binary and multiclass

classification situations, this inequality can be observed (S. Wang, Dai, et al.,

2021). The data class with the lowest sample calls the minor class, and the data

class with the highest sample calls the major class. Major class frequently refers

to a negative class in binary classification problems, whereas minor class refers

to a positive class. It is currently a significant issue in various domains such as

biology, health, finance, telecommunications, and disease diagnosis. As an effect,

it is considered one of the most severe problems in data mining (Ahsan, Luna, &

Siddique, 2022). Figure 5.1 depicts a two-dimensional representation of the major

and minor classes.

Most ML algorithms are built in such a way that they perform well with

balanced data but cannot perform on an imbalanced dataset. Therefore, several

conditions, such as detecting credit card fraud or identifying malignant tumor

cells, are difficult to accomplish using typical ML algorithms, where the primary

150

goal is to identify the positive samples (rare samples) (Sevastyanov & Shchetinin,

2020). A well-known example is Caruana et al. (2015)’s study, which sought to

determine which pneumonia patients might be hospitalized and which might be

discharged home (Caruana et al., 2015). Unfortunately, their proposed approach

generated misleading results for asthma or chest pain patients by estimating a

lower likelihood of dying.

Numerous ML algorithms have been proposed, and their performance remains

biased toward the major class. For instance, consider an imbalanced dataset

comprising 10 924 non-cancerous (majority class) and 260 malignant (minority

class) cell image data. Using traditional ML algorithms, there is a greater chance

that the classification will exhibit a 100% accuracy for the major class and 0% -10%

accuracy for the minor class, resulting in the probability of classifying 234 minor

class as the major class (Fletcher, Nakeshimana, & Olubeko, 2021). Therefore,

234 patients with cancer would be misdiagnosed as non-cancerous. Such an error

is more costly in medical treatment, and a misdiagnosis of a malignant cell has

significant health repercussions and may result in a patient’s death.

Synthetic Minority Oversampling Technique (SMOTE) is a popular method

for dealing with imbalanced data in ML, but it does have some limitations, such

as (Qadrini, 2022; C. Meng, Zhou, & Liu, 2020):

1. SMOTE is usually applied to two-class problems: It is not designed to

handle imbalanced data with more than two classes.

2. SMOTE may not work well if the minority class is very small: If the minority

151

class is very small, the synthetic minority instances created by SMOTE may

not represent the true minority class distribution.

3. SMOTE may over-emphasize the importance of the minority class: By

generating many synthetic minority instances, SMOTE can potentially over-

emphasize the importance of the minority class, leading to a model that is

overly sensitive to the minority class at the expense of the majority class.

4. SMOTE may not be suitable for high-dimensional data: The interpolation

process used by SMOTE can be sensitive to noise in high-dimensional data.

This can have negative consequences for the performance of a classifier

trained on such synthetic data, as the classifier may not be able to generalize

effectively to the true minority class distribution.

Overall, SMOTE may not be the best choice to address imbalanced data in ML

on many occasions. Therefore, it is crucial to carefully evaluate its limitations

and consider how they may influence the ML model’s performance. In this work,

we have empirically evaluated the effectiveness of SMOTE and SVM-SMOTE on

a range of imbalanced datasets.

The technical contribution of this study can be summarized as follows:

1. The effectiveness of the SMOTE and SVM-SMOTE was evaluated using

nine benchmarks of highly imbalanced datasets–Pageblocks, Ecoli, Poker,

Winequality, Yeast, Ionosphere, Spambase, shuttle, and Abalone. These

benchmarks were chosen in order to accurately assess the performance of

152

Figure 4.1: Hypothetical example of majority and minority class

SMOTE and SVM-SMOTE in scenarios where the majority class significantly

outnumbers the minority class.

2. Various statistical measures were used to evaluate the performance, including

accuracy, precision, recall, and F1-score. These measures provide a compre-

hensive assessment of the ability of different oversampling approaches to

classify samples in the minority class correctly and their overall performance.

3. In addition to evaluating the performance of SMOTE, the study also included

an analysis of the oversample data distribution using the kernel Density

Function (KDF). This analysis was conducted to understand better the

characteristics of the synthetic samples generated by various sampling

strategies used in this study and how they are distributed within the feature

space of the dataset.

4. Based on the results of this analysis, two novel oversampling approaches

were proposed: Generative Adversarial Network (GAN)-based Oversampling

(GBO) and Support Vector Machine (SVM)-SMOTE-GAN (SSG). These

153

approaches were designed to address some of the limitations of SMOTE and

to improve the performance of oversampling techniques in highly imbalanced

datasets.

4.2 Motivation

The motivation of the study is driven by the limitations of two popular data

oversampling techniques: SVM-SMOTE and GAN. SMOTE is known to create

synthetic samples that may contain noise and are not always realistic, while GAN

has the potential to generate highly realistic samples but is difficult to train and

requires a large number of training samples and iterations. The aim of this study

is to combine the advantages of both SVM-SMOTE and GAN approaches to

develop a novel oversampling technique that can create more diverse and realistic

samples while also being computationally efficient compared to traditional GAN.

The expected outcome of the study is to provide researchers with insights into

using GAN beyond its limitations to only create realistic image data but also

generate other types of data such as text, numerical and multi-feature data. This

could potentially play a crucial role in improving data-balancing approaches in

various fields where imbalanced data is a common challenge.

4.3 Chapter Outline

The remainder of the chapter is organized as follows: Section 4.4 reviews the

relevant literature and outlines the motivation and limitations of the referenced

154

literature. Section 4.5 presents the methodology for the study, while the exper-

imental setup is described in Section 4.6. Section 4.7 presents the simulation

results. In Section 4.8, the experimental results are presented and discussed.

Section 4.9 highlights the limitations and scope of the work. Finally, Section 5.8

presents the conclusions and suggests potential avenues for future research.

4.4 Background

Algorithms and techniques to address CIPs are usually classified into three main

categories: data level, cost-sensitive, and ensemble algorithms (as shown in

Figure 4.2) (Brownlee, 2020b).

Figure 4.2: Major approaches to handle CIP in the machine learning domain.

In data-level solutions, Oversampling approaches are mostly used where minor

class data is oversampled by applying different techniques. Oversampling tech-

niques often employed include Adaptive Synthetic (ADASYN), Random Oversam-

pling, SMOTE, and Borderline-SMOTE (Kaur, Pannu, & Malhi, 2019). Chawla’s

SMOTE is the most popular and commonly utilized among all Oversampling ap-

proaches. However, traditional SMOTE produces more noise and is unsuitable for

155

high-dimensional data. To resolve these issues, Wang et al. (2021) proposed active

learning-based SMOTE (S. Wang, Dai, et al., 2021). Zhang et al. (2022) proposed

SMOTE-reverse k-Nearest Neighbors-(RkNN), a hybrid oversampling technique to

identify the noise instead of local neighborhood information (A. Zhang et al., 2022).

Maldonado et al. (2022) demonstrated that traditional SMOTE faces major diffi-

culties when it comes to defining the neighborhood to generate additional minority

samples. To overcome these concerns, the authors proposed a feature-weighted

oversampling, also known as (FW-SMOTE) (Maldonado, Vairetti, Fernandez,

& Herrera, 2022). Aside from that, SMOTE is often computationally costly,

considering the time and memory usage for high-dimensional data. Berando et al.

(2022) pioneered the use of C-SMOTE to address time complexity issues in binary

classification problems (Bernardo & Della Valle, 2022). Obiedat et al. (2022)

presented SVM-SMOTE combined with particle Swarm Optimization (PSO) for

sentiment analysis of customer evaluations; however, the proposed algorithms

remained sensitive to multidimensional data (Obiedat et al., 2022).

On the other hand, Undersampling procedures reduce the sample size of the

major classes to create a balanced dataset. Near-miss Undersampling, Condensed

Nearest Neighbour (CNN), and Tomek Links are three popular Undersampling

methods used more frequently (Kaur et al., 2019). Once the data sample is

reduced using Under-sampling techniques, there is a higher chance that it will

also eliminate many crucial pieces of information from the major class. As a

result, Oversampling is generally preferred over Undersampling by researchers

and practitioners (Z. Sun, Zhang, Sun, & Zhu, 2020).

156

Most ML algorithms consider that all the misclassification performed by

the model is equivalent, which is a frequently unusual case for CIP, wherein

misclassifying a positive (minor) class is considered the worse scenario than

misclassifying the negative (major) class. Therefore, in the cost-sensitive approach

higher penalty is introduced to the model for misclassifying the minor samples. In

this process, the cost is assigned based on the error made by the model. Suppose

the algorithm fails to classify the minor class. The penalty will be higher (i.e.,

10 for each misclassification), and if the algorithm fails to classify the major

class, then the penalty will be lower (i.e., 1 for each misclassification). Shon et

al. (2020) proposed hybrid Deep Learning (DL) based cost-sensitive approaches

to classify kidney cancer (Shon, Batbaatar, Kim, Cha, & Kim, 2020). Wang

et al. (2020) used multiple kernel learning-based cost-sensitive approaches to

generate synthetic instances and train the classifier simultaneously using the same

feature space (L. Wang, Wang, & Fu, 2020). One of the potential drawbacks

of the cost-sensitive approach is that no defined protocol can be used to set

the penalty for misclassification. Therefore, adjusting weight is less preferred

due to its complexity of use. The cost (weight) for misclassification is set by

the expert’s opinions or by manually experimenting until the appropriate cost

is identified, which is very time-consuming. Further, determining the penalty

requires measuring the impact of the features and considering various criteria.

However, such a procedure becomes more complex with multidimensional and

multiclass label data.

Several algorithm-based solutions have been proposed to improve the effect

157

of ML classification on the imbalanced dataset. Shi et al. (2022) proposed an

ensemble resampling-based approach considering sample concatenation (ENRe-

SC). According to the author, the proposed strategy can mitigate the adverse

effect of removing the major class caused by Undersampling approaches (H. Shi,

Zhang, Chen, Ji, & Dong, 2022). Muhammad et al. (2021) proposed an evolving

SVM decision function that employs a genetic method to tackle class imbalanced

situations (M. Mohammed, Mwambi, Mboya, Elbashir, & Omolo, 2021). In

Taneja et al. (2019), various data balancing techniques were compared for their

effectiveness in detecting fraud in a credit card transaction dataset from a European

bank, which was highly imbalanced, with fraud comprising less than 1% of

transactions. The most effective combination was the SVM-SMOTE and Random

Forest classifier, with an F1-score of 0.85 (Taneja et al., 2019). Qaddoura et

al. (2020) proposed a three-stage approach for intrusion detection in Internet of

Things (IoT) networks involving clustering with data reduction, oversampling,

and Single Hidden Layer Feed-Forward Neural Network (SLFN) classification.

The combination of SVM-SMOTE oversampling and k-means++ clustering with

SLFN classification was the most effective configuration, according to accuracy,

precision, recall, and G-mean evaluations. However, further research is needed to

validate these findings and explore additional methods for improving intrusion

detection in IoT environments (Qaddoura, Al-Zoubi, Almomani, & Faris, 2021).

Jiang et al. (2019) proposed GAN based approaches to handle the imbalanced

class problem in time series data (W. Jiang et al., 2019). Xiao et al. (2021)

introduced a DL-based method known as the Wasserstein-GAN model and applied

158

it to three different datasets: lung, stomach, and breast cancer. WGAN can

generate new instances from the minor class and solve the CIP ratio problem (Xiao

et al., 2021).

GAN has become a widely utilized technique in computer vision domains.

GAN’s capacity to generate real images from random noise is one of its potential

benefits (Z. Lin et al., 2018). This dynamic characteristic contributes to GAN’s

appeal, as it has been used in nearly any data format (i.e., time-series data, audio

data, image data) (Frid-Adar, Klang, Amitai, Goldberger, & Greenspan, 2018).

Sharma et al. (2022) showed that by using GAN, it is possible to generate data

in which the sample demonstrates better Gaussian distribution, which is often

difficult to achieve using traditional imbalanced approaches. Their proposed GAN-

based approaches show comparatively 10% higher performance than any other

existing techniques while producing minor samples that are almost real (A. Sharma

et al., 2022). However, one major drawback of their suggested approach is that

the model is hardly stable and very time-consuming to generate new samples.

Therefore, an updated stable GAN-based oversampling technique might be crucial

in tackling class imbalanced problems.

Most GAN-based approaches demonstrate promising results in generating

realistic image samples, while the performance on tabular data (i.e., numerical

data and categorical data) is still minimal (Y. Lu, Wu, Tai, & Tang, 2018).

Considering the opportunity, this work shows that a GAN-based approach can be

used to handle imbalanced tabular data apart from image data as well.

As an effect, this study presents two GAN-based Oversampling strategies:

159

GBO and SSG. The experimental results reveal that the Neural Network (NN)

classification on expanded data by the proposed GBO and SSG algorithm performs

better than the traditional SMOTE on many occasions and is able to generate

almost realistic samples than the traditional SMOTE-based approaches.

The proposed GAN-based oversampling technique is designed specifically for

generating tabular data instead of image datasets. One of the primary objectives

of this method is to design a stable GAN model that can generate realistic minority

class samples. This is crucial, as synthetic samples’ quality may substantially

impact an ML model’s overall performance. By producing high-quality synthetic

samples, we can limit the amount of noise in the oversampled dataset, which may

be an issue with classic oversampling algorithms like SMOTE. The proposed GAN-

based oversampling approach intends to improve the stability and performance

of ML models by producing high-quality synthetic samples that can be used to

balance class distributions in tabular datasets.

4.5 Methods

4.5.1 SVM-SMOTE Algorithm

SVM-SMOTE is one of the several variations of SMOTE algorithms that have

been introduced over the years. It creates new observations from the sample of

the minority class that are harder to classify (Zheng, 2020). SVM-SMOTE uses

instances and observations from the minor class, which is the support vector of an

SVM. There are two methods to create the data. If neighbours from the minority

160

class surround the support vector, it will create the data by extrapolation. However,

if the support vector is surrounded mainly by neighbours from the majority class,

it will create the data by interpolation. The following is a detailed description of

the SVM-SMOTE process (Gu, Angelov, & Soares, 2020).

• Step 1: SVM is trained on the entire dataset to find the support vectors

from the minor and the major class. SVM constructs hyperplanes with the

highest distance to the closest training points (the margins) to separate

classes. The sample on the margin (as shown in Figure 4.3) are the support

vectors.

• Step 2a: Combined with the nearest neighbour algorithm, is trained on the

entire dataset (minority and majority classes together). Then it will look at

the closest neighbours of each support vector in the minor class. If most of

the neighbours from the support vectors belong to the minority class, then

it will perform extrapolation; in other words, it will expand the boundaries

by creating a sample out of the boundary.

In the case of extrapolation, In Figure 4.3(a), if line Sv is the support

vector line and Xnb is the nearest neighbours value of instance xi, then the

artificial instance generated by SVM-SMOTE is Xsy.

• Step 2b: If most of the neighbours of the support vector belong to the

majority class, then the algorithm will perform the interpolation. In the

case of interpolation (refer to Figure 4.3(b)), if line Sv is the support vector

line and Xnb is the nearest neighbors value of instance xi, then the artificial

161

instance generated by SVM-SMOTE is Xsy. The idea is that the new

example will fall within the two existing observations from the minority.

Therefore, the SVM-SMOTE will not expand the boundaries of the minority

class; instead, it will create samples within the boundary (Brownlee, 2020b).

Figure 4.3: Process of generating synthetic sample using (a) extrapo-

lation and (b) interpolation.

A pseudocode of the SVM-SMOTE-based approach is presented in Algorithm

1 (V. Kumar et al., 2022).

4.5.2 Proposed Approaches

Major and minor classes overlapped due to oversampling, one of the potential

drawbacks of applying SMOTE as oversampling techniques (S. Wang, Dai, et al.,

2021). The SVM-SMOTE algorithm reduces the marginalisation, creating the

hyperplane between major and minor classes. However, SVM is sensitive to imbal-

anced data by nature, which potentially often affects data distribution (Brownlee,

162

Algorithm 1 : Pseudocode for SVM-SMOTE

1: Input: X training sample, N sampling level (100, 200,.......%), K nearest

neighbors, m number of nearest neighbor to decide sampling type, SV + set of

positive support vectors (SVs), T number of artificial instances to be created,

amount array contains the number of artificial instances, nn array contains k

positive nearest neighbors of each positive SV.

2: initialize parameters

3: T ← (N/100) × |X |

4: Compute SV + by training SVMs with X

5: Compute amount by evenly distributing T among SV +

6: Compute nn

7: For each sv+i ∈ SV +, compute m nearest neighbors on X.

8: Create ammount[i] artificial positive instances.

9: Xnew = X ∪ X+
new

10: Output : Xnew : New oversampled instances

163

2020b). Therefore, GAN-based two Oversampling approaches are proposed–GBO

and SSG– to reduce the marginalization and improve the data distribution between

major and minor samples.

4.5.2.1 Modified GAN

GAN is conventionally designed to create images that look almost similar to

the real images; therefore, it is not ideal for oversampling approaches in other

data types (i.e., numerical, categorical, and text data) (A. Sharma et al., 2022).

However, since GAN has the powerful ability to augment the images, this concept

can be used to create a new but real sample which can also be used as an

oversampling approach in CIP-related problems. Since original GAN requires a

good amount of data, a lack of data from the minor sample may not be helpful

in creating enough samples using GAN. GAN has two neural networks where

the generator’s goal is to generate fake samples that confuse the discriminator to

classify as “real.” To maximize its performance, optimising the discriminator’s loss

(when data comes from the generator) to force the discriminator to classify the fake

samples as real. Contrarily, the goal of the discriminator is to distinguish between

original and fake data by minimizing the loss when given batches of both original

and generated fake data samples (Creswell et al., 2018). The discriminator’s loss

can be calculated as follows (A. Sharma et al., 2022):

max
D
Ex[logD(x)] + Ez[log(1−D(G(z)))] (4.1)

164

Here, D(x) denotes the probability output of real data, x of the discriminator,

and D(G(z)) denotes the probability output of generated samples by z. The

generator loss can be calculated as follows (A. Sharma et al., 2022):

min
G
−Ez[logD(G(z))] (4.2)

A pseudocode of the GAN-based approach is presented in Algorithm 6.

The proposed SSG is developed by modifying and combining SVM-SMOTE

and GAN.

Here, the random sample of GAN is replaced with the collection of Oversample

minority instances from SVM-SMOTE.

The updated Discriminators loss can be expressed as follows:

max
D
Ex∗ [logD(x∗|x)] + Eu[log(1−D(G(u)))] (4.3)

and the generator loss can be expressed as:

min
G
Ez[logD(G(u))] (4.4)

Where x∗ is the training sample of the minor class, and u is the Oversampled

data of the same classes generated by the SVM-SMOTE.

The SSG model, as depicted in Figure 4.4, is composed of two sections. The

first section employs SVM-SMOTE to generate a collection of oversamples, which

are then utilized to replace random samples. The second section of the model

continues the GAN process by incorporating these newly generated samples

165

Algorithm 2 : Pseudocode for GAN

1: // Input: data sample x and noise samples z (generated randomly).

// initialize parameters

// mi is minibatch indices for ith. nfake denotes to number of fake samples

needed and T is total iterations.

2: GAN (x, z, nfake)

3: for t=1:T do

4: // step size S = 1

5: // subscript d and g refers to discriminator and generator

6: for s = 1 : S do

7: gd ←

8: SGD(− logD(x)− log(1−D(G(z)),WD,mi)

9: Wd ← weights(gd,Wd)

10: Wg ← weights(gg,Wg)

11: end for

12: end for

13: x′ ← FinalOutput (Modeld(Wd, x, z),Modelg(Wg, x, z), nfake)

14: return x′

166

from SVM-SMOTE (inspired by (A. Sharma et al., 2022)). One key distinction

between the proposed SSG and GBO models is the use of pre-generated samples

from SVM-SMOTE in the SSG model rather than random samples as in the

GBO model. This helps the SSG model produce more accurate oversamples by

providing high-quality input samples. By leveraging the complementary nature of

SVM-SMOTE and GAN, the SSG model can effectively guide the GAN toward

producing realistic samples even before further fine-tuning is applied.

Figure 4.4: Process of generating “fake” samples using SSG.

A pseudocode for the proposed GAN-based approach is presented in Algo-

rithm 6.

4.6 Classification Methods and Evaluation Index

With advancements in computational power and ML tools, NN-based approaches

are now most widely used on small and large datasets due to their robust and

higher accuracy than other existing ML algorithms (Ahsan, E Alam, et al., 2020).

One of the potential advantages of using the NN approach is that NN-based

167

Algorithm 3 : Pseudocode for Proposed modified GAN based approaches

1: Input: minor samples X∗ from the training sample x of size N with N – n

over-samples;

2: parameter k for KNN to find the nearest neighbour

3: Execute SVM-SMOTE given in Algorithm 1 and then GAN given in

Algorithm 6

4: u← call Algorithm 1 (x∗, k)// generate over-sampled minor data u.

5: u← call Algorithm 6 (x∗, u, N - n).

methods are less sensitive compared to traditional ML algorithms (i.e., KNN,

SVM, Logistic Regression) (Ahsan, Luna, & Siddique, 2022). The proposed NN

approach was developed based on tuning the following parameters: batch size,

learning rate, epochs, number of hidden layers, and optimization algorithms. The

parameter settings for the proposed NN are illustrated in Figure 4.5.

Figure 4.5: Parameter settings used in this study.

To carry out the whole experiment procedure following steps are used as

168

follows:

1. Initially, the dataset was split into two sets where 80%, 70%, and 60% of

data were used for the training, and 20%, 30%, and 40% of the data was

used for testing purposes in three separate experiments.

2. Dataset was fit to different algorithms such as SMOTE, GBO, and SSG to

create Oversample data separately and save it as a new dataset.

3. The newly created balanced dataset was trained and tested with the designed

NN models.

4. The simulation was run ten times, and the result was presented by averaging

all the results.

4.6.1 Experimental Evaluation Index

The results are presented regarding the accuracy, precision, recall, and F1-score

with standard deviation. Suppose the dataset is classified into two types: pos-

itive and negative samples. Then the evaluation matrix can be expressed as

follows (Ahsan, E Alam, et al., 2020):

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

(4.5)

Precision =
Tp

Tp + Fp

(4.6)

Recall =
Tp

Tn + Fp

(4.7)

F1 = 2× Precision×Recall

Precision + Recall
(4.8)

169

Where, True Positive (Tp)= Positive sample classified as Positive

False Positive (Fp)= Negative samples classified as Positive

True Negative (Tn)= Negative samples classified as Negative

False Negative (Fn)= Positive samples classified as Negative.

Figure 4.6: Loss per epoch during the training with (a) GBO and (b) SSG.

4.7 Simulation Experiment

4.7.1 Experimental Environment

The experiment was carried out using nine benchmark datasets obtained from

the open-source UCI (University of California Irvine) repository: Pageblocks,

Ecoli, Poker, Winequality, Yeast, Ionosphere, Spambase, Shuttle, and Abalone

dataset. Detailed information regarding those datasets is summarized in Ta-

ble 7.1 (A. Sharma et al., 2022).

These datasets were chosen as they are commonly used to evaluate the perfor-

mance of oversampling techniques and represent a wide range of different types of

170

Table 4.1: Properties of Imbalanced dataset utilized in this study.

Dataset
Total

sample

Minor

class

Major

class

Total

features

Minority

class(%)

Description

Page-blocks 471 28 443 10 5.94 Classify blocks from page layout

Ecoli 335 20 315 7 5.97 Protein localization

Winequality 655 18 637 10 2.74 Classify the wine quality

Abalone 4177 840 3337 8 20.1 Predict the age of abalone

Ionosphere 351 126 225 34 35.71 Classify radar returns

Spambase 4601 1812 2788 57 39.39 Classify spam and non-spam email

Shuttle 58000 170 57830 9 0.294 80% sample belongs to major class

Yeast 513 51 462 8 9.94 Predicting protein localization cite.

data and class imbalance ratios. It is worth noting that the datasets consist of

both numerical and categorical data. The proposed oversampling models were

implemented and experimented with using the Anaconda modules with Python

3.8 on a traditional laptop with typical configurations (Windows 10, 16 GB of

RAM, and Intel Core I7-7500U). For validation purposes, the dataset was split

into the following training set/testing set ratios: 60:40, 70:30, and 80:20. Split

ratios of this type are frequently employed in machine learning approaches to

evaluate and validate models. By using different split ratios, researchers can get

a sense of how the model’s performance is affected by the size of the training

set (Ahsan, E Alam, et al., 2020).

171

4.7.2 Numerical Experiment

The experiment was carried out with nine different datasets (as shown in Table 7.1),

considering without sampling the data and Oversampling the data using four

different methods— SMOTE, SVM-SMOTE, GBO, and SSG. Then, to conduct

the appropriate comparison, a NN is used to classify the expanded and original

data. As previously stated, each experiment was repeated ten times to ensure

scientifically valid and appropriate experimental results. The GBO model and

SSG are tested with different parameter settings. Due to the significant effort

required to tune those parameters manually, only three primary parameters were

optimized: batch size, epochs, and learning rate. Grid search is used to determine

the best parameters (Ahsan, E Alam, et al., 2020). The following parameters

were used for grid search methods:

Batch size = [32, 64,128]

Number of epochs = [40, 50, 100, 200, 500]

Learning rate = [0.00001, 0.0001, 0.001, 0.01]

Figure 4.4 illustrates the optimal parameters obtained using grid search meth-

ods for discriminator, generator, and NN. The generator network contains four

hidden layers with 128, 256, 512, and 1024 neurons respectively. The discriminator

network has three hidden layers with 512, 256, and 128 neurons. The training

procedure is carried out with the Adam optimizer and a binary cross-entropy

function with a training data batch size of 32 and an initial learning rate of

172

0.00001.

Figure 4.6 illustrates the loss per epoch on Abalone datasets for the generator and

discriminator during the training. From the Figure, it is clear that using a minor

sample generated by SVM-SMOTE shows more stability (refer to Figure 4.6b)

than the sample created from random noise (Figure 4.6a).

4.8 Results and Discussion

The performance of different oversampling techniques was evaluated using a 20%

test dataset on nine highly imbalanced benchmark datasets, and the results are

summarized in Table 4.2. The table reveals that GBO performed best on the

Pageblocks, Ecoli, Poker, Winequality, Yeast, Ionosphere, Shuttle, and Abalone

datasets, while SSG demonstrated the best performance on all of the datasets in

terms of performance improvement on minor classes (highlighted with bold font).

Table 4.2: Performance evaluation of NN on different Oversampling

techniques used in this study on nine highly imbalanced benchmarks

datasets with a 20% test data set.

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

Pageblocks

Without-

oversampling

93.68% 0.95 0.95 0.94 37.50%

SMOTE 98.95% 0.99 0.99 0.99 100%

SVM-SMOTE 97.89% 0.98 0.98 0.98 100%

GBO 98.94% 0.99 0.99 0.99 100%

173

Table 4.2 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

SSG 98.94% 0.99 0.99 0.99 100%

Ecoli

Without-

oversampling

95.52% 0.91 0.96 0.93 0%

SMOTE 94% 0.96 0.94 0.95 50%

SVM-SMOTE 92.53% 0.93 0.93 0.93 33%

GBO 94.02% 0.96 0.94 0.95 100%

SSG 94.20% 0.94 0.93 0.95 100%

Poker

Without-

oversampling

99.32% 0.99 0.99 0.99 33%

SMOTE 100% 1 1 1 100%

SVM-SMOTE 100.00% 1 1 1 100%

GBO 100.00% 1 1 1 100%

SSG 100.00% 1 1 1 100%

Winequality

Without-

oversampling

95.42% 0.91 0.95 0.93 0%

SMOTE 90% 0.94 0.9 0.92 50%

SVM-SMOTE 90.07% 0.94 0.9 0.92 50%

GBO 95.42% 0.91 0.95 0.93 50%

SSG 95.42% 0.91 0.95 0.93 50%

Yeast

Without-

oversampling

97.08% 0.97 0.97 0.97 72.72%

SMOTE 90.29% 0.93 0.9 0.91 83.33%

SVM-SMOTE 89.32% 0.95 0.89 0.91 0%

GBO 93.20% 0.95 0.93 0.94 90.90%

174

Table 4.2 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

SSG 91.26% 0.94 0.91 0.91 90.90%

Ionosphere

Without-

oversampling

90.14% 0.92 0.9 0.9 77.78%

SMOTE 95.77% 0.92 0.92 0.92 85%

SVM-SMOTE 92.95% 0.93 0.93 0.93 85.71%

GBO 91.54% 0.93 0.92 0.93 85.71%

SSG 91.54% 0.93 0.92 0.93 85.71%

Spambase

Without-

oversampling

91.01% 0.91 0.91 0.91 86%

SMOTE 92.61% 0.92 0.92 0.92 88%

SVM-SMOTE 91.23% 0.91 0.91 0.91 88%

GBO 91.47% 0.92 0.92 0.92 87.67%

SSG 91.67% 0.92 0.92 0.92 88.56%

Shuttle

Without-

oversampling

99.95% 1 1 1 80.00%

SMOTE 99.99% 1 1 1 100.00%

SVM-SMOTE 99.00% 1 1 1 100.00%

GBO 99.93% 1 1 1 100.00%

SSG 99.00% 1 1 1 100.00%

Abalone

Without-

oversampling

97.08% 0.97 0.97 0.97 72.72%

SMOTE 88.03% 0.9 0.88 0.89 85.97%

SVM-SMOTE 93.20% 0.94 0.93 0.94 81.81%

GBO 96.11 0.97 0.96 0.96 90.90%

175

Table 4.2 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

SSG 95.15% 0.96 0.95 0.95 90.90%

Table 4.3 compares the performance of different Oversampling methods using

30% of data for testing. From the overall observation, it was revealed that the

proposed SSG model significantly improved the accuracy of the minor class by

21% and 7.15% compared to without-oversampling and SMOTE-based approaches

on the Yeast dataset. Overall, the proposed SSG method showed the best results

among all of the datasets except Winequality, while the GBO method performed

the best on the Paegeblocks, Ecoli, Poker, Ionosphere, and Shuttle datasets.

In contrast, NN models trained without oversampling performed poorly on all

datasets (except the shuttle dataset) compared to any of the approaches used in

the study. The results of the shuttle dataset demonstrate a lack of variability in

performance across the various Oversampling techniques. One possible explanation

for this observation is the presence of relatively large amounts of data within both

the major and minor classes.

Table 4.3: Performance evaluation of NN on different Oversampling

techniques used in this study on nine highly imbalanced benchmarks

datasets with a 30% test data set.

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

Pageblocks

Without-

oversampling

93% 0.93 0.94 0.92 33%

SMOTE 99.29% 0.99 0.99 0.99 100%

SVM-SMOTE 98.59% 0.99 0.99 0.99 100%

176

Table 4.3 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

GBO 98.59% 1 1 1 100%

SSG 100% 1 1 1 100%

Ecoli

Without-

oversampling

95% 0.48 0.5 0.49 0%

SMOTE 97% 0.98 0.97 0.97 75%

SVM-SMOTE 89.11% 0.33 0.31 0.32 60%

GBO 93.00% 0.92 0.95 0.94 100%

SSG 93.00% 0.95 0.93 0.94 100%

Poker

Without-

oversampling

99.32% 0.5 0.5 0.5 0%

SMOTE 100% 1 1 1 100%

SVM-SMOTE 100% 1 1 1 100%

GBO 100% 1 1 1 100%

SSG 100% 1 1 1 100%

Winequality

Without-

oversampling

98% 0.49 0.5 0.5 0%

SMOTE 89% 0.93 0.89 0.91 50%

SVM-SMOTE 98% 0.98 0.99 0.87 100%

GBO 98% 0.97 0.98 0.98 0%

SSG 98% 0.97 0.98 0.98 0%

Yeast

Without-

oversampling

94% 0.97 0.97 0.97 79.00%

SMOTE 92.85% 0.95 0.93 0.93 87.50%

SVM-SMOTE 94.81% 0.96 0.95 0.95 92.85%

177

Table 4.3 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

GBO 98.05% 0.98 0.98 0.98 92.85%

SSG 98.70% 0.99 0.99 0.99 100.00%

Ionosphere

Without-

oversampling

93.39% 0.94 0.93 0.93 100.00%

SMOTE 92.45% 0.93 0.92 0.92 95.71%

SVM-SMOTE 97.16% 0.97 0.97 0.97 94.87%

GBO 99.05% 0.99 0.99 0.99 97.44%

SSG 99.05% 0.99 0.99 0.99 97.44%

Spambase

Without-

oversampling

93.26% 0.93 0.93 0.93 89.94%

SMOTE 92.75% 0.93 0.93 0.93 89.60%

SVM-SMOTE 94.42% 0.95 0.94 0.94 95.66%

GBO 94.78% 0.95 0.95 0.95 95.32%

SSG 96.52% 0.97 0.97 0.97 97.40%

Shuttle

Without-

oversampling

99.98% 1 1 1 97.20%

SMOTE 91.63% 0.92 0.92 0.92 97.20%

SVM-SMOTE 99.98% 1 1 1 97.20%

GBO 99% 1 1 1 97.20%

SSG 99% 1 1 1 97.20%

Abalone

Without-

oversampling

90% 0.9 0.9 0.9 66.29%

SMOTE 88.75% 0.89 0.89 0.89 81.11%

SVM-SMOTE 82.85% 0.89 0.83 0.84 79.5%

178

Table 4.3 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

GBO 89.47% 0.9 0.89 0.9 81.85%

SSG 88.28% 0.9 0.88 0.89 86.29%

Table 4.4 presents the evaluation metrics of accuracy, precision, recall, and

F1-scores for different oversampling techniques, with 40% test data. The results

show that SSG demonstrated the best performance among all datasets except

Ecoli and Spambase. On the other hand, GBO demonstrated better results on all

datasets apart from Ecoli, Spambase, and Abalone. This limited performance on

these datasets may be due to the use of a smaller amount of data for training, as

40% of the data was used for testing.

Table 4.4: Performance evaluation of NN on different Oversampling

techniques used in this study on nine highly imbalanced benchmarks

datasets with a 40% test data set.

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

Pageblocks

Without-

oversampling

97.88% 0.98 0.98 0.98 63.63%

SMOTE 99.47% 100% 0.99 0.99 100%

SVM-SMOTE 98.94% 0.99 0.99 0.99 100%

GBO 98.94% 0.99 0.99 0.99 100%

SSG 99.47% 0.99 1 0.99 100%

179

Table 4.4 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

Ecoli

Without-

oversampling

96% 0.96 0.96 0.94 14.28%

SMOTE 98% 0.98 0.98 0.98 86%

SVM-SMOTE 97.01% 0.98 0.97 0.97 85.71%

GBO 97.01% 0.97 0.97 0.97 71.42%

SSG 97.01% 0.97 0.97 0.97 42.85%

Poker

Without-

oversampling

99.15% 0.99 0.99 0.99 16.67%

SMOTE 100% 1 1 1 100%

SVM-SMOTE 100% 1 1 1 100%

GBO 100% 1 1 1 100%

SSG 100% 1 1 1 100%

Winequality

Without-

oversampling

95.42% 0.91 0.95 0.93 0%

SMOTE 89% 0.93 0.89 0.9 33%

SVM-SMOTE 90.46% 0.91 0.9 0.91 8.33%

GBO 95.42% 0.91 0.95 0.93 50%

SSG 94.27% 0.91 0.94 0.93 50%

Yeast

Without-

oversampling

95.14% 0.95 0.95 0.95 57.14%

SMOTE 91.74% 0.94 0.92 0.93 75.95%

SVM-SMOTE 95.63% 0.96 0.96 0.96 76.19%

GBO 95.14% 0.95 0.95 0.95 80.95%

SSG 95.14% 0.95 0.95 0.95 80.95%

180

Table 4.4 continued from previous page

Dataset
Sampling

strategy

Accuracy Precision Recall F1-score
Accuracy

(minor-class)

Ionosphere

Without-

oversampling

90.78% 0.91 0.91 0.91 97.73%

SMOTE 90.07% 0.91 0.9 0.9 95.45%

SVM-SMOTE 90.78% 0.91 0.91 0.91 95.45%

GBO 90.78% 0.91 0.91 0.91 97.73%

SSG 92.91% 0.93 0.93 0.93 97.73%

Spambase

Without-

oversampling

93.04% 0.93 0.93 0.93 91.25%

SMOTE 92.88% 0.93 0.93 0.93 91.52%

SVM-SMOTE 92.77% 0.93 0.93 0.93 92.05%

GBO 93.15% 0.93 0.93 0.93 90.17%

SSG 92.88% 0.93 0.93 0.93 90.17%

Shuttle

Without-

oversampling

99.87% 1 1 1 97.60%

SMOTE 99.87% 1 1 1 100%

SVM-SMOTE 99.87% 1 1 1 100%

GBO 99.00% 0.99 1 1 0.00%

SSG 99.87% 1 1 1 100%

Abalone

Without-

oversampling

89.88% 0.9 0.9 0.9 70.72%

SMOTE 87.97% 0.89 0.88 0.88 83.47%

SVM-SMOTE 85.45% 0.89 0.85 0.86 79.97%

GBO 89.64% 0.9 0.9 0.9 77.97%

SSG 89.47% 0.9 0.89 0.9 83.76%

181

To understand the classification effect, the overall misclassification is presented

in Table 4.5, where the total number of false positives and false negatives predicted

by each oversampling method are counted for each dataset. Here, the algorithm

with the lowest misclassification is highlighted with bold fonts and is the primary

concern that will help identify the true potential of the algorithm’s performance on

imbalanced datasets. From the table, it can be observed that SSG demonstrates

better performance on all of the imbalanced datasets for 20% of test data. On the

other hand, with 30% of test data, except the Abalone dataset, SSG demonstrated

the lowest misclassification rate on the remaining imbalanced dataset. However,

with 40% test data, we found that the proposed SSG could not perform well

on Winequality, Yeast, Shuttle, and Abalone datasets. The potential reason is

that increasing the test size also reversely reduces the training data sample, and

any GAN-based approach requires a large amount of training data. Therefore,

reducing the training sample will not be a good choice. The performance of

GBO-based approaches also shows promising results compared to SMOTE and

SVM-SMOTE-based approaches for all three case scenarios where 20%, 30%, and

40% of data is used for testing purposes.

182

Table 4.5: Misclassification occurred by different oversampling tech-

niques used in various datasets; WS–Without Oversampling, S–

SMOTE, SVM-SMOTE–SS.

Misclassification = False positive (Fp) + False negative (Fn)

20% test data 30% test data 40% test dataDataset

WS S SS GBO SSG WS S SS GBO SSG WS S SS GBO SSG

Pageblock 6 1 2 1 1 9 1 2 0 0 4 1 2 2 1

Ecoli 5 3 3 3 2 5 4 8 2 2 6 3 4 4 4

Poker 2 0 0 0 0 3 0 0 0 0 5 0 0 0 0

Winequality 10 13 13 7 6 3 22 2 3 0 12 30 25 12 15

Yeast 12 10 9 8 6 4 11 8 3 2 10 17 9 10 10

Ionosphere 18 8 8 7 6 7 8 3 1 1 13 14 13 13 10

Spambase 85 68 77 73 62 93 100 77 72 48 128 133 133 126 126

Shuttle 4 6 6 6 4 15 15 15 9 9 15 21 21 48 21

Abalone 122 100 122 85 80 126 141 215 132 147 169 252 243 173 176

The optimal results revealed that the proposed SSG shows higher accuracy,

precision, recall, and F1-score in most of the highly imbalanced benchmark datasets

used in this study. However, during the experiment, it was noticed that even

though the accuracy result between the proposed Oversampling techniques and

SMOTE techniques may not significantly differ, the benefit of the proposed model

can be easily identified once the total misclassification is calculated (as shown in

Table 4.5).

Apart from this, on some occasions, it was found that data without oversam-

pling demonstrated the best performance, such as on the Shuttle dataset with 20%

and 40% test data where only four samples and nine samples are misclassified;

183

On the Abalone dataset with 40% test data where 169 samples are misclassified.

Figure 4.7 displays the oversampling effect on the Abalone dataset. The figure

shows that the sample created using the proposed SSG (Figure 4.7b) follows better

Gaussian distribution than the sample generated by the original SVM-SMOTE

(see Figure 4.7a).

Figure 4.7: Performance observation using histogram of the attribute

of Abalone dataset using (a) SVM-SMOTE and (b) SSG.

The experimental results for standard deviation are displayed in Table 4.6,

with the best experimental results in bold font. According to Table 4.6, when

the proposed SSG is used, the inter-class distance between categories for all the

benchmark datasets, except the Yeast dataset, is closest to the raw/original data.

On the other hand, when the GBO approach is used on the Pageblocks, Poker,

Spambase, and Yeast datasets, the interclass distance across categories after

Oversampling are closest to the original data.

184

Table 4.6: Effect of SMOTE and proposed sampling techniques on the

imbalanced dataset in terms of standard deviation.

Standard deviation

Dataset Without-

oversampling

SMOTE SVM-SMOTE GBO SSG

Pageblock 0.1782 0.22 0.1927 0.1630 0.1578

Ecoli 0.1653 0.2062 0.1141 0.0737 0.2062

Poker 0.345 0.33 0.334 0.332 0.332

Winequality 0.1549 0.1809 0.1268 0.1872 0.1607

Yeast 0.0915 0.1305 0.0655 0.0723 0.1677

Ionosphere 0.4710 0.45 0.4036 0.4498 0.4545

Spambase 0.0544 0.0772 0.556 0.0547 0.0504

Shuttle 44.63 31.2841 36.83 47.34 41.32

Abalone 0.2631 0.2821 0.2606 0.1681 0.2628

To evaluate the efficiency of the proposed models, the overall process time was

measured during the training phase, and the results are presented in Table 4.7.

The table shows that the proposed approach has no significant effect on the

newly Oversampled dataset during the training phase in terms of computational

complexity. Therefore, the proposed approach can be considered efficient as

existing SMOTE and SVM-SMOTE.

185

Table 4.7: Comparison of computational complexity in terms of overall

process time for different oversampling approaches used in this study.

Sampling

strategy

NN

Process time

(seconds)

Process time/epochs

(seconds)

SMOTE 3.5 0.12

SVM-SMOTE 3.1 0.103

GBO 9.16 0.3

SSG 3.05 0.1

KDF estimation, a non-parametric technique, was utilized on both the original

and synthetic data to demonstrate the comparability of the data distributions. The

resulting visualization, shown in Figure 4.8, presents the original data distributions

as the red area. The SMOTE, SVM-SMOTE, GAN, and SSG-generated sample

distributions are depicted as green, pink, gold, and blue lines, respectively. By

examining this figure, it can be inferred that the proposed SSG oversampling

approach can generate nearly realistic samples for the six benchmark datasets:

(a) Pageblocks, (b) Ecoli, (d) Winequality, (e) Yeast, (g) Spambase, (h) Shuttle,

and (i) Abalone.

186

Figure 4.8: Kernel density estimation of original and synthetic data

(a) Pageblocks, (b) Ecoli, (c) Poker, (d) Winequality, (e) Yeast, (f)

Ionosphere, (g) Spambase, (h) Shuttle, and (i) Abalone.

During this study, the Local Interpretable Model-Agnostic Explanations

(LIME) approach was employed to evaluate the black box behavior of the proposed

models. LIME is a valuable tool for model interpretability, enabling us to gain

insight into the rationales behind the predictions made by the model. This is

achieved by analyzing and visualizing the individual contributions of the features,

as demonstrated in Figure 5.8. The figure displays the contribution of various

features in determining the predicted Wine Quality. The model is 99% confident

that the selected Wine Quality is bad and the variables Sulphates, Sulfur dioxide,

volatile acidity, and chlorides have the highest influence on the predicted wine

quality.

187

Figure 4.9: Model interpretation using LIME on Winequality dataset.

To obtain more profound insights into the predictions of the oversampled

dataset by the proposed model, the current study employed the SHapley Additive

exPlanations (SHAP) framework. The illustration in Figure 4.10 presents the

force plot of the first observation of the Abalone dataset. The force plot provides

a graphical representation of the impact of each feature on the prediction of the

model output. As depicted in the figure, the base value is 0.3 and the final value,

f(x) = 0.76, represents the predicted value of the abalone.

Figure 4.10: Force Plot of the first Observation of the Abalone dataset using SHAP

Figure 4.11 presents the expanded data distribution of various features of

the Wine Quality dataset using the proposed SSG model through a scatter

plot representation. The upper portion of the figure displays the original data

distributions, while the lower portion showcases the data distribution generated

188

by the proposed SSG model. The visualization demonstrates the capability of the

proposed SSG model to generate almost realistic data distributions.

Figure 4.11: Expanded Wine Quality dataset’s feature distributions

using the proposed SSG Model.

4.9 Limitations of the Study

The study presents the following limitations, which will be addressed in future

works that consider the choice of tools and methods utilized:

1. The study was limited to utilizing only NN models, and future research

should investigate the performance of other complex algorithms, including

Deep Neural Networks (DNN) and Recurrent Neural Networks (RNN).

2. The study did not include time series or graph-based datasets; thus, further

experiments are needed to assess the performance of the proposed mod-

els on sequential data. This research direction will be a focus of future

investigations.

189

3. The study did not evaluate the performance of the proposed algorithms with

advanced ML algorithms like Long Short-Term Memory Networks (LSTM)

due to the absence of sequential data. However, in the near future, the

proposed approaches will be integrated with LSTM to evaluate the model’s

performance on time series data.

4. Additionally, future work will aim to verify the overall findings of the

proposed approach by applying several ML approaches, such as Random

Forest, Decision Tree, and XGBoost, to similar benchmark datasets that

are highly imbalanced. The results will be compared with the outcomes of

the proposed GBO and SSG algorithms.

4.10 Conclusion

The study aims to address the classification problem of the imbalanced dataset

and the limitations of the existing SMOTE approaches by proposing two new

Oversampling techniques based on the GAN. The study findings suggest that

the effect of the proposed models demonstrates better Gaussian distribution

with less marginalization than the original SMOTE on nine highly imbalanced

benchmark datasets. The preliminary computation results show that the proposed

GAN-based Oversampling (GBO) and SVM-SMOTE-GAN (SSG) can produce

synthetic samples. A Neural network (NN) can achieve a higher classification in

terms of accuracy, precision, recall, and F1-score. The misclassification rate by

the proposed algorithm–GBO and SSG–is lower than the original SMOTE on

190

benchmark datasets used in this study (refer to Table 4.6). Future studies should

apply these methods in other datasets, apply mixed-data analysis using kernel

methods and combine the proposed approaches with CNN or RNN to deal with

the time series data. Further, it would be an exciting opportunity to investigate

the combination of GAN with other popular Oversampling techniques, such as

Borderline-SMOTE and Adaptive Synthetic (ADASYN).

191

Chapter 5

BSGAN: A Novel Oversampling Technique for

Imbalanced Pattern Recognition

5.1 Introduction

Imbalanced data classification is a problem in data mining domains where pro-

portion of data class of a dataset differ relatively by a substantial margin. In

this situation, one class contains a few numbers of samples (known as the minor

class) whereas on the other class contains majority of the samples (Ahsan, Ali, &

Siddique, 2022; Longadge & Dongre, 2013). Such an imbalanced ratio produces

biased results towards major class (majority classes). The issue of imbalanced data

is a prevalent problem in many real-world scenarios, such as detecting fraudulent

financial transactions, identifying rare medical conditions, or predicting equipment

failures in manufacturing (Sahu, Harshvardhan, & Gourisaria, 2020; Jalali et al.,

2019).

There are three major ways to handle Class imbalanced problems (CIP)

problems (Gosain & Sardana, 2017; Geng & Luo, 2019) :

• Data level solutions (i.e., random undersampling, random oversampling,

one-sided selection)

• Cost sensitive (i.e., cost-sensitive resampling, cos sensitive ensembles)

• Ensemble algorithms (i.e., boosting and bagging, random Forest)

192

Among different data level solutions, oversampling techniques are the most

widely used, and the Synthetic Minority Oversampling Technique (SMOTE) is

the most often adopted by the researcher and practitioners to CIPs. Chawla et al.

(2002) initially proposed SMOTE based solutions, and it became popular due to

its capability to produce synthetic samples, ultimately leading to the opportunity

to reducing the biasness of the Machine Learning (ML) models (Chawla et al.,

2002). However, the existing SMOTE has two potential drawbacks:

1. The synthetic instances generated by the SMOTE often are in the same

direction. As an effect, for some of the ML classifiers, it is hard to create a

decision boundary between the major and minor classes.

2. SMOTE tends to create a large number of noisy data, which often overlaps

with major class (as shown in Figure 5.1)

To overcome the noise generated by the SMOTE, several expansion of SMOTE

has been proposed, such as Support Vector Machine (SVM)-SMOTE and Borderline-

SMOTE. However, SVM-SMOTE is known for its sensitivity issues with multiclass

data samples, while Borderline-SMOTE can only focus on the minor samples that

are close between the boundaries and major class (H. Han et al., 2005).

Therefore, both SVM-SMOTE and Borderline-SMOTE has limitation in cre-

ating diverse and normally distributed data with less marginalization after data

expansion. Considering these challenges, this study proposes a hybrid method of

oversampling that exploits the diverse sets of samples, which will be helpful for

the ML-based model to differentiate between major and minor classes. The hybrid

193

Figure 5.1: The Oversampling effect of SMOTE often creates noisy

samples and, therefore, major and minor samples overlap. Here 0

indicates the initial major samples, and 1 indicates minor samples

after oversampling.

approach combines two popular oversampling techniques: Borderline-SMOTE

and Generative adversarial Network (GAN). First, a novel approach that inte-

grates two Neural Networks (NN) architectures, generator and discriminator, with

Borderline-SMOTE, into a unified architecture trained end-to-end is proposed,

and the final prediction is obtained through averaging all individual predictions.

Second, the efficacy of this approach is evaluated on four datasets with highly

imbalanced class distributions. The main contributions of this study can be

summarized as follows:

• The generator and discriminator networks are modified and constructed in

the study to propose a more effective GAN model that can be trained on a

small or large dataset with limited iteration.

194

• Subsequently, a new oversampling method, Borderline-SMOTE based GAN

(BSGAN), is introduced, which combines the advantages of Borderline-

SMOTE and GAN. New samples are synthesized along the borderline of

classes with Borderline-SMOTE, and realistic samples are generated with

GAN, resulting in a highly effective oversampling technique.

• The performance of Borderline-SMOTE, GAN, and BSGAN is examined on

four highly imbalanced datasets: Ecoli, Yeast, Wine quality, and Abalone.

Later, the effectiveness of these three algorithms is evaluated by comparing

their findings to the performance of the datasets without oversampling,

using metrics such as accuracy, precision, recall, and F1-score.

• Finally, the performance of the proposed BSGAN model is compared with

several reference literature. The preliminary results indicate that the model

outperforms many existing GAN-based oversampling techniques, and issues

related to sensitive data are effectively addressed. Furthermore, a more

diverse dataset is created by incorporating Gaussian distributions in the

approach instead of generating the extreme outliers prevalent in many

current methods.

5.2 Motivation

The motivation of this study is to further improve the performance of data over-

sampling techniques by proposing a new approach that combines the advantages

of Borderline-SMOTE and GAN. Building upon the success of two novel over-

195

sampling techniques proposed in Chapter 4 that utilized Support Vector Machine

(SVM)-SMOTE and GAN, this study aims to develop a new approach using

similar concepts to determine if the performance of oversampled datasets can

be further enhanced. By exploring new ways to balance imbalanced datasets,

this study seeks to provide valuable insights into improving the accuracy and

effectiveness of machine learning models in a range of fields where imbalanced

data is a common challenge.

5.3 Chapter Outline

The remainder of the chapter is organized as follows: Section 5.4 reviews previously

published research focusing on different approaches to handling CIPs. Section 5.5

briefly describes SMOTE, Borderline-SMOTE, GAN, and the architecture of the

proposed BSGAN technique. In Section 5.5.6, the performance of the different

oversampling techniques is evaluated by considering various statistical measure-

ments. An overall discussion and comparison with the current work is presented

in Section 5.6. Finally, Section 5.8 concludes the chapter by summarizing the

study’s contributions and providing potential avenues for future research.

5.4 Related Work

CIPs are one of the existing and ongoing research in data science domains. As

the imbalanced ratio potentially affects the models’ prediction, several approaches

have been proposed to balance the dataset in a way that can be used to develop

196

an unbiased prediction model (Lango & Stefanowski, 2022; Fern, Amir, & Azemi,

2022). Among them, oversampling approaches are most widely used as they provide

data-level solutions with less complexity and computational issues (Goodman,

Sarkani, & Mazzuchi, 2022). Therefore, the focus of the study has been mainly

on popular oversampling methods such as SMOTE, Borderline-SMOTE, and

SVM-SMOTE and their modified, adopted versions that have been proposed

during the last few years.

A number of recent studies have addressed the limitations and challenges of

current SMOTE, and Borderline-SMOTE, particularly regarding their marginal-

ization and noise sensitivity. These limitations refer to the tendency of SMOTE

and Borderline-SMOTE to generate synthetic samples that are far from the

real data distribution and their vulnerability to the impact of noisy samples in

the minority class. For instance, Li et al. (2022) introduced cluster-Borderline-

SMOTE, a hybrid method to classify rock groutability (K. Li et al., 2022). Ning

et al. (2021) combined SMOTE with Tomek links techniques for identifying

glutarylation sites (Ning, Zhao, & Ma, 2021). Zhang et al. (2020) proposed

a modified Morderline-SMOTE by combining it with the Relief algorithms for

intrusion detection (J. Zhang, Zhang, & Li, 2020). Sun et al. (2020) applied

ensemble techniques by combining Adaboost-SVM with SMOTE. The empirical

experiments are carried out based on the financial data of 2628 Chinese listed

companies (J. Sun, Li, Fujita, Fu, & Ai, 2020). Liang et al. (2020) introduced

hybrid oversampling techniques by combining k-means and SVM. The authors

claim that the proposed models can generate samples without considering the

197

outlier samples (X. Liang, Jiang, Li, Xue, & Wang, 2020). However, none of the

experiments justifies how their proposed model creates a normally distributed

dataset.

Recently, GAN have demonstrated the potential to create real samples using

random noise (Ahsan, Ali, & Siddique, 2022). For instance, the exiting GAN can be

utilized to create real images of any objects from random noise with several neural

network iterations. While GAN is generally extensively applied in computer vision

domains, the adoption of GAN can be observed in handling CIPs. For instance,

Ali Gombe et al. (2019) proposed MFC-GAN, where multiple fake samples is

used to create synthetic data to develop a balanced dataset (Ali-Gombe & Elyan,

2019). Kim et al. (2020) used GAN-based approaches to detect anomalies from

publicly available datasets like MNIST and Fashion MNIST (Kim, Jeong, Choi, &

Seo, 2020). Rajabi et al. (2022) present a novel approach for generating synthetic

data that balances the trade-off between accuracy and fairness, through their

proposed method, TabFairGAN. Their approach specifically focuses on complex

tabular data, and has been empirically evaluated on various benchmark datasets,

including UCI Adult, Bank Marketing, COMPAS, Law School, and DTC dataset.

The results of the experiments reveal that TabFairGAN demonstrates promising

performance, achieving an average accuracy of 78.3 ± 0.001% and an F1-score

of 0.544 ± 0.002 (Rajabi & Garibay, 2022). Engelmann and Lessmann (2021)

proposed the cWGAN approach for generating tabular datasets containing both

numerical and categorical data. The effectiveness of this approach was evaluated

on several highly imbalanced benchmark datasets, including the German credit

198

card, HomeEquity, Kaggle, P2P, PAKDD, Taiwan, and Thomas datasets. The

results showed that the cWGAN approach achieved an overall rank of 4.1 for

Logistic Regression (Engelmann & Lessmann, 2021). Jo et al. (2022) presented

the OBGAN method for generating data from the minority region close to the

border. The performance of the OBGAN method was evaluated on several UCI

imbalanced datasets. The results indicated that the OBGAN method achieved

the highest recall and F1-score of 0.54 and 0.65, respectively (Jo & Kim, 2022).

However, most of the existing GAN-based approaches are computationally

expensive and often hard to train due to their instability.

Taking this opportunity into account, a novel hybrid approach is proposed

in this work by combining Borderline SMOTE and GAN, which is named BS-

GAN. The BSGAN is tested along with borderline SMOTE, GAN, and without

oversampling on four highly imbalanced datasets— Ecoli, Wine quality, Yeast,

and Abalone. The empirical, experimental results demonstrate that BSGAN

outperformed most of the existing tested techniques regarding various statistical

measures on most of the datasets used in this study.

5.5 Methodology

In this section, a detailed discussion of the algorithms utilized in the study is

presented. The algorithms under consideration include SMOTE, Borderline-

SMOTE, GAN, and the proposed approach, BSGAN.

199

5.5.1 SMOTE

SMOTE is one of the most widely used oversampling techniques in ML domains,

proposed by Chawla chawla2002smote. The SMOTE algorithm has the following

input parameters that can be controlled and changed: K as the number of nearest

neighbors (default value, k = 5), oversampling percentage parameters (default

value 100%).

In SMOTE, a random sample is initially drawn from the minor class. Then

k-Nearest Neighbors (KNN) are identified to observe the random samples. After

that, one of the neighbors is taken to identify the vector between the instant data

point and the selected neighbors. In order to create additional instances from the

first minor instance on the line, the newly discovered vector is multiplied by a

random value between 0 and 1. Once it achieves the percentage ratio specified by

the user, SMOTE repeats the procedure with different small samples. Algorithm 4

displays the pseudocode of SMOTE, where the appropriate function is introduced

for each step of SMOTE process.

As mentioned earlier, SMOTE generates randomly new samples on the datasets,

which increases the noise in the major class area, or within the safe minor region far

from the borderline area and overfitting it, therefore not efficiently increasing the

classification accuracy in order to classify the minor samples. As an effect, SMOTE

has several derivatives, such as Borderline-SMOTE, SMOTEBOOST, Safe-level-

SMOTE, and others, which were introduced to limit or reduce these problems.

This research primarily focuses on utilizing and modifying the Borderline-SMOTE

200

Algorithm 4 : Pseudocode for SMOTE

Input: P number of minor class sample; S% of synthetic to be generated; K

Number of nearest neighbors

Output: Ns = (S/100) ∗ P synthetic samples

1. Create function ComputKNN (i← 1toP, Pi, Pj)

for i← 1toP do

Compute K nearest neighbors of each minor instance Pi and other minor

instance Pj.

Save the indices in the nnaray.

Populate (Ns, i, nnarray) to generate new instance.

end for

NS = (S/100) ∗ P

while Ns ̸= 0 do

Create function GenerateS (Pi, Pj)

Choose a random number between 1 and K, call it nn.

for att← 1 to numattrs do

dif= Pi[nnarray[nn]][attr]− Pj[i][attr]

gap = randomnumberbetween0and1

Synthetic[newindex[attr] = Pi[i][attr] + gap ∗ dif

end for

newindex = newindex + 1

Ns = Ns − 1

end while

4. Return (∗EndofPopulate.∗)

End of Pseudo-Code.
201

to overcome the existing limitations mentioned in section 5.4.

5.5.2 Borderline-SMOTE

Borderline-SMOTE is a popular extension of the SMOTE that is designed to handle

imbalanced datasets in ML domains. Borderline-SMOTE was proposed to address

some of the limitations of SMOTE for imbalanced dataset classification. Unlike

SMOTE, which randomly interpolates between minority samples, Borderline-

SMOTE specifically focuses on synthesizing new samples along the borderline

between the minority and majority classes. This approach helps to improve

the class balance in the dataset and prevent the model from overfitting to the

majority class (H. Han et al., 2005). The Borderline-SMOTE algorithm extends

the traditional SMOTE by differentiating between minority samples by utilizing

the M’ number of majority instances within the M-Nearest Neighbors (MNN) of

a given minority instance Pi. The default value of M is set to 5. The minority

instance is considered safe if the number of majority instances within its MNN is

within the range of 0 to M/2. On the other hand, if all of the MNN of a minority

instance consist of majority instances, with M ′ = M , the instance is considered to

be noise and is eliminated from the computation function to reduce oversampling

near the border. Finally, a minority instance is considered a danger instance P’ if

the number of majority instances within its MNN falls within the range of M/2

to M. After that, Borderline-SMOTE measure KNN between borderline instance

and minor instances and generates a new instance using the following equations:

New instance = P ′
i + gap ∗ (distance(P ′

i , Pj)) (5.1)

202

Where P ′
i is the borderline minor instance, Pj is the randomly chosen KNN

minor instance, and a gap is a random number between 0 and 1. Algorithm 5

displays the pseudocode of Borderline-SMOTE. One of the potential drawbacks of

Borderline-SMOTE is that it focuses on the borderline region; therefore, widening

the region might confuse the classifier.

5.5.3 GAN

GAN is a class of ML frameworks that contains two Neural Networks (NN). The

goal of this framework is to train both networks simultaneously and improve

their performance while reducing their loss function as well. Following true data

distribution, a new sample is generated with the same statistics as the training

set (A. Sharma et al., 2022). The pseudocode for the GAN algorithm is presented

in Algorithm 6, where Stochastic Gradient Descent (SGD) and weights are defined

functions that determine mini-batch gradient or any other variant such as Adaptive

Momentum (ADAM) or Root Mean Square Propagation (RMSprop) and update

the weights respectively (Nugroho & Yuniarti, 2022; Hameed, Karlik, & Salman,

2016; Ketkar & Ketkar, 2017). Once the algorithm terminates, ‘good’ fake samples

are collected with accumulateFakeEx based on classification accuracy.

GAN typically contains two NN: generator (G) and discriminator (D). The

goal of the G is to create fake samples that look almost real. A random noise

between 0 and 1 is used initially to create fake samples. On the other hand, D

is trained with the real sample from the dataset. A random sample created by

G is then passed to D so that D can distinguish between the real and the fake

203

Algorithm 5 : Pseudocode for Borderline-SMOTE

Input: P number of minor sample; s% of synthetic to generate; M number

of nearest neighbors to create the borderline subset; k Number of nearest

neighbors

Output: (s/100)∗P ′ synthetic samples

1. Creating function MinDanger ()

for i ← 1 to P do

Compute M nearest neighbors of each minor instance and other instances

from the dataset,

Check number of Major instance M’ within the Mnn

if M/2 < M ′ < M then

Add instance P to borderlines subset P’

end if

end for

2. ComputeKNN (i ← 1 to P’, Pi, Pj)

3. Ns = (S/100) ∗ P ′

while Ns ̸= 0 do

4. GenerateS(P ′
i , Pj)

Ns = Ns − 1

end while

5. Return (∗End of populate.∗)

End of Pseudo-Code.

204

samples. The goal of the G is to fool the D by creating fake samples which look

like reals. Conversely, the goal of the D is not to get fooled by G. During this

process, both D and G optimize their learning process. The loss function for D

can be calculated as follows:

max
D
Ex[logD(x)] + Ez[log(1−D(G(z)))] (5.2)

Where, the notation D(x) represents the probability distribution obtained from a

real data sample x, while D(G(z)) refers to the probability distribution produced

by a generated sample z.

The loss function of G can be calculated as follows:

min
G
−Ez[logD(G(z))] (5.3)

5.5.4 Proposed BSGAN

The proposed approach combined Borderline-SMOTE and Näıve GAN to handle

CIPs. The Borderline-SMOTE starts by classifying the minor class observations.

If all the neighbors are close to the major class, it classifies any minor samples

as a noise point. Further, it classifies a few points as border points with major

and minor classes close to the neighborhood and resamples from them. In the

proposed BSGAN, the loss function of GAN is updated and combined with the

Borderline-SMOTE algorithms. Instead of passing random noise to G, a sample

created by Borderline-SMOTE is used. The loss for D is updated and can be

expressed as follows

max
D
Ex∗ [logD(x∗|x)] + Eu[log(1−D(G(u)))] (5.4)

205

Algorithm 6 Pseudocode for GAN

// Input: Consists of a training dataset with sample x and noise samples

generated from an appropriate random number generator, represented as z.

There is an optional parameter, the size of the desired fake sample, indicated

as nfake.

// Initialize the parameters.

// Determine the mini batch indices, represented as mi, for i, as well as the

total number of iterations, represented as T.

GAN (x, z, nfake)

for t=1:T do

// generally step size S is 1

5: // subscript d and g refers to discriminator and generator entity respectively

for s = 1 : S do

gd ←

SGD(− logD(x)− log(1−D(G(z)),Wd,mi)

Wd ← weights(gd,Wd)

10: Wg ← weights(gg,Wg)

end for

end for

x′ ← accumulateFakeEx (Modeld(Wd, x, z),Modelg(Wg, x, z), nfake)

return x′

206

The updated loss for the G can be express as follows:

min
G
−Ez[logD(G(u))] (5.5)

Where, the variable x∗ represents a training sample from the minority class, while

U refers to the data that has been oversampled using the Borderline-SMOTE

method.

Figure 5.2 demonstrates the overall flow diagram of the proposed BSGAN

algorithms.

Figure 5.2: Flow diagram of Proposed Borderline-SMOTE-Generative

Adversarial Networks (BSGAN) models.

The pseudocode of the proposed BSGAN is described in Algorithm 7. As

illustrated in Algorithm 7, there are two sections of BSGAN. The first one replaces

the random number sample from the sample generated by Borderline-SMOTE. The

subsequent sections continue to utilize GAN in conjunction with the Borderline-

207

SMOTE algorithm. Algorithm 7 presents a systematic approach to this integration

through a two-step procedure. Firstly, it executes the Borderline-SMOTE function,

as described in Algorithm 5, and then proceeds to execute the modified GAN

function, as outlined in Algorithm 6, employing the generated sample ′u′ instead

of the conventional random noise ′z.′ This methodology enhances the accuracy

and effectiveness of the GAN, thereby providing a more sophisticated solution to

the issue at hand.

Algorithm 7 : Pseudocode for proposed BSGAN

Step 1 → Input: A set of minority samples X∗ from the training data x with a

size of N that requires generating N − n over-sampled instances;

Step 2 → A user-defined parameter k for the K-nearest neighbors is executed

Step 3 → Execution of Borderline-SMOTE and GAN: The Borderline-SMOTE

and GAN algorithms are executed in the following manner:

1 u← . Call Algorithm 1 (x,k) to generate over-sampled minority examples u.

2 Call Algorithm 2 (x,u,N - n) to generate additional instances.

5.5.5 Proposed Neural Network

A NN model is used to train and test the model on a different dataset. Parameters

such as batch size, number of epochs, learning rate, and the hidden layer are

tuned manually by trial and error process. Table 7.1 presents the details of the

optimized parameters obtained throughout the experiment to achieve the best

experimental outcomes for the discriminator, generator, and NN. The number of

208

epochs varies for each dataset as each dataset differs due to different features and

sample sizes.

Table 5.1: Parameter settings used to develop the discriminator, gen-

erator, and Neural Network.

Parameters Discriminator Generator Neural Network

Number of hidden layer 4 3 3

Number of neurons 64,128,256,512 512, 256,128 256, 128,1

Batch size 32 32 32

Learning rate 0.00001 0.00001 0.00001

Optimizer Adam Adam Adam

Loss function Binary cross entropy Binary cross entropy Binary cross entropy

Activation function ReLU ReLU ReLU & Sigmoid

5.5.6 Performance Evaluation

5.5.6.1 Datasets

The proposed model is evaluated and compared on four highly imbalanced datasets,

namely Ecoli, Yeast, Winequality, and Abalone, which feature class imbalance,

as presented in Table 5.2. The datasets are primarily adopted from the UCI ML

repository, which researchers and practitioners commonly use to evaluate the

model performance for CIPs. Some datasets, such as Winequality and Ecoli, are

highly imbalanced and contain only 2.74% and 5.97% minority classes.

209

Table 5.2: Characteristics of imbalanced dataset utilized for the experiment.

Dataset # of sample Minor sample Major sample Total features Minority class(%) Description

Ecoli 335 20 315 7 5.97 Protein localization

Yeast 513 51 462 8 9.94
Predicting protein

localization cite.

Wine quality 655 18 637 10 2.74 Classify the wine quality

Abalone 4177 840 3337 8 20.1 Predict the age of abalone

5.5.6.2 Experimental Setup

The entire experiment was conducted utilizing an office-grade laptop with stan-

dard specifications, including a Windows 10 operating system, an Intel Core

I7-7500U processor, and 16 GB of RAM. Initially, the dataset is split into the

following ratios— train set/test set: 80/20. The experimental evaluation results

are presented in terms of accuracy, precision, recall, F1-score, AUC-ROC, and

interclass distance which have been calculated using the following formulas:

Accuracy =
Tp + TN

Tp + TN + Fp + FN

(5.6)

Precision =
Tp

Tp + Fp

(5.7)

Recall =
Tp

Tn + Fp

(5.8)

F1− score = 2× Precision× Recall

Precision+Recall
(5.9)

Here, False Positive (Fp) = Negative instances classified as Positive

True Negative (Tn) = Negative instances classified as Negative

False Negative (Fn) = Positive instances classified as Negative

210

AUC =

∑
Ri(Ip)− Ip((Ip + 1)/2

Ip + In
(5.10)

Where, lp and ln denotes positive and negative data samples and Ri is the rating

of the ith positive samples.

True Positive (Tp) = Positive instances classified as Positive

Interclass distance =
|µ1 − µ2|√

1
n1

+ 1
n2

(5.11)

This assumes that there are two classes with means µ1 and µ2, and sample sizes

of n1 and n2, respectively.

5.6 Results

The overall performance for data with and without oversampling was measured

using equations 1,2,3 and 4 and presented in Table 10.4. The best results are

highlighted with bold fonts. From the table, it can be seen that Proposed BSGAN

outperformed all of the techniques across all measures in all datasets. However,

on the Wine Quality dataset, GAN and BSGAN both demonstrated similar

performance on the train set by achieving an accuracy of 99.17%. The highest

F1-score was achieved using BSGAN (0.9783) on the Yeast dataset. The lowest

F1-score was achieved on the Abalone dataset when tested without oversampling

techniques (0.9041). The highest recall score of 1.0 was achieved on the Wine

Quality dataset using BSGAN. On the other hand, the lowest recall score of

211

0.9055 was achieved on the Abalone dataset when the dataset was tested without

oversampling techniques. A maximum precision score of 0.9768 was achieved on

the Ecoli dataset using BSGAN, while the lowest precision score of 0.9036 was

observed on the Abalone dataset. In Table 10.4, the bold font is indicated the

best result acquired with different oversampling techniques.

212

Table 5.3: Performance evaluation of different oversampling techniques

used in this study on highly imbalanced benchmark datasets.

Dataset
Oversampling

Strategy

Train Test

Accuracy Accuracy Precision Recall F1-score

Ecoli

Without-oversampling 93.22% 91.67% 0.9167 0.9167 0.9095

Borderline-SMOTE 98.84% 95.11% 0.9661 0.9523 0.9572

GAN 98.33% 97.61% 0.9767 0.9761 0.9703

BSGAN 99.29% 97.85% .9786 0.9785 0.9783

Yeast

Without-oversampling 92.61% 90.72% 0.9043 0.9072 0.9042

Borderline-SMOTE 87.89% 92.32% 0.9347 0.9232 0.9274

GAN 97.11% 94.18% 0.9396 0.9418 0.9351

BSGAN 97.17% 94.65% 0.9441 0.9465 0.9412

Wine quality

Without-oversampling 98.37% 93.90% 0.9390 1.0 0.9685

Borderline-SMOTE 99.03% 92.68% 0.9068 0.9268 0.9150

GAN 99.17% 93.84% 0.9332 0.9932 0.9623

BSGAN 99.17% 93.90% 0.9390 1.0 0.9685

Abalone

Without-oversampling 90.37% 90.55% 0.9036 0.9055 0.9041

Borderline-SMOTE 87.17% 84.21% 0.8945 0.8421 0.8539

GAN 94.09% 90.54% 0.9032 0.9054 0.9037

BSGAN 94.18% 90.64% 0.9049 0.9064 0.9052

The confusion matrix was calculated on the test set to simplify the under-

standing of the performance of different oversampling techniques on different

imbalanced datasets. Figure 5.3 displays the confusion matrix for different sam-

pling techniques on a given Ecoli test dataset. On the Ecoli dataset, maximum

213

misclassification occurred for the dataset without oversampling techniques, up to

7.46% (5 samples). On the other hand, minimum misclassification occurred for

BSGAN, up to 1.49% (only one sample).

Figure 5.3: Confusion matrix of with and without oversampling tech-

niques on Ecoli test dataset.

Figure 5.4 displays the confusion matrix for different sampling techniques on a

wine quality test dataset. From the figure, it can be observed that the NN model

performance on the Wine quality dataset without oversampling demonstrated the

worst classification by misclassifying 13 out of 131 samples (9.9%). In comparison,

BSGAN showed the best performance by misclassifying only 4 out of 131 samples

(3.05%).

214

Figure 5.4: Performance measurement of without and with oversam-

pling techniques on Wine quality test dataset using confusion matrices.

Figure 5.5 displays the confusion matrix for different sampling techniques

on a given Yeast test dataset. From the figure, it can be observed that NN

model performance on yeast dataset Borderline-SMOTE demonstrated the worst

performance by misclassifying 8 out of 131 samples (7.77%), while BSGAN showed

the best performance by misclassifying only four samples (3.88%).

215

Figure 5.5: Performance measurement of without and with oversam-

pling techniques on Yeast test dataset using confusion matrices.

Figure 5.6 illustrates the confusion matrix for different sampling techniques on

a given Abalone test dataset. From the figure, it can be observed that NN model

performance on the Abalone dataset Borderline-SMOTE demonstrated the worst

performance by misclassifying 122 out of 836 samples (14.59%), while BSGAN

showed the best performance by misclassifying 73 samples (8.73%).

216

Figure 5.6: Performance measurement of without and with oversam-

pling techniques on Abalone test dataset.

To understand the data distribution after expanding the dataset using dif-

ferent oversampling techniques inter-class distance have been measured using

equation 5.11. The closer the inter-class distance between the dataset and the

expanded data, the better the classification effect ultimately demonstrates better

gaussian distributions. From Table 7.5, it can be observed that the interclass

distance between the BSGAN and the dataset without oversampling is the closest

compared to any other oversampling techniques used in this study. On the Abalone

dataset, Borderline-SMOTE also demonstrates the closest inter-class distance

with original datasets. Unfortunately, data expansion after applying GAN shows

the worst performance on three out of four imbalanced datasets— Ecoli, Wine

quality, and Abalone.

217

Table 5.4: The inter-class distance between original datasets and the

datasets after the expansion using different oversampling techniques;

WS–Without oversampling, BS–Borderline SMOTE, GBO–GAN based

Oversampling, BSGAN–Borderline-SMOTE based GAN.

Dataset WS BS GBO BSGAN

Ecoli 0.1650 0.1352 0.0893 0.150

Yeast 0.093 0.079 0.083 0.10

Wine quality 0.1541 0.1531 .0871 0.158

Abalone 0.2633 0.25 0.1856 0.25

5.7 Discussion

As a means of comparing the results with those available in the literature, the

performance of the proposed methods on Yeast datasets is contrasted in Table 5.5

in terms of accuracy, precision, recall, and F1-score. The table shows that

BSGAN outperformed all of the referenced literature across all measures except

the performance of accuracy. While Jadhav et al. (2020) achieved the highest

accuracy (98.42%), their precision score is relatively very low, and their F1-score

is 0, which hinders a direct comparison of all reported performance measures.

218

Table 5.5: Comparison with the previous study on Yeast datasets.

References Techniques Accuracy Precision Recall F1-score

(A. Sharma et al., 2022) SMOTified-GAN 96.11% 0.91 0.83 0.873

(Siddappa & Kampalappa, 2019) LMDL 56.87% .57 .57 .55

(Karia, Zhang, Naeim, & Ramezani, 2019) GenSample 70% 0.47 0.50 0.48

(Jo & Kim, 2022) OBGAN - - 0.6135 0.5556

(Jadhav, 2020) svmradial 98.42% 0.8 - 0

Proposed study BSGAN 97.17% 0.9441 0.9465 0.9412

On Ecloi datasets, our proposed BSGAN demonstrates consistent performance

and outperformed all of the referenced literature in terms of accuracy by achieving

an accuracy of 99.29%. Sharma et al. (2022) claimed 100% precision, recall, and

F1-score while the accuracy is only 90.75% (as shown in Table 5.6). Therefore,

there is some discrepancy in the results reported by the authors.

Table 5.6: Comparison with the previous study on Ecoli datasets.

References Techniques Accuracy Precision Recall F1-score

(A. Sharma et al., 2022) SMOTified-GAN 90.75% 1 1 1

(Siddappa & Kampalappa, 2019) LMDL 80.95% .80 .81 .79

(Xiaolong, Wen, & Yanfei, 2019) DSMOTE 0.706 0.936 0.805

(Mohamad, Selamat, Subroto, & Krejcar, 2021) PCA-Ranker 77.68% 0.44 0.37 0.38

(Jadhav, 2020) svmradial 0.99 1 0.9231

Proposed study BSGAN 99.29% 0.9786 0.9785 0.9783

On the Abalone dataset, BSGAN becomes the second-best algorithm in terms

of precision, recall, and F1-score, while the question raised as SMOTified-GAN

demonstrates nearly perfect precision, recall, and F1-score (as shown in Table 5.7).

219

Table 5.7: Comparison with the previous study on Abalone datasets.

References Techniques Accuracy Precision Recall F1-score

(A. Sharma et al., 2022) SMOTified-GAN 98.61% 1 1 0.9222

(Jo & Kim, 2022) - - - 0.5960 0.4908

(Mohamad et al., 2021) PCA-Ranker 99.23% 0.5 0.5 0.5

(Jadhav, 2020) svmradial 97.70% 0.00 - 0.00

Proposed study BSGAN 94.18% 0.9049 0.9064 0.9052

On Wine quality datasets, BSGAN became the second-best algorithm in terms

of precision, recall, and F1-score, while PCA-Ranker showed the best results(as

shown in Table 5.8). Again with 97.19% accuracy achieving a nearly perfect score

of precision, recall, and F1-score is hardly feasible.

Table 5.8: Comparison with the previous study on Wine quality datasets.

References Techniques Accuracy Precision Recall F1-score

(Jo & Kim, 2022) OBGAN - - 0.5389 0.6508

(Siddappa & Kampalappa, 2019) LMDL 71.11% .72 .71 .71

(Mohamad et al., 2021) PCA-Ranker 97.19% 1 1 1

(A. Sharma et al., 2022) SMOTified-GAN 95.58% 0.53 0.69 0.5274

Our study BSGAN 93.90% 0.9390 1.0 0.9685

In Figure 5.7, measures of the Area Under the Curve (AUC) of the Receiver

Characteristics Operator (ROC) are plotted for each oversampling technique

applied to the test set of different datasets. Our proposed BSGAN shows the best

performance on all datasets, and the highest AUC score (0.89) is achieved on the

220

yeast dataset. The worst performance (AUC = 0.5) is achieved on Wine quality

and Ecoli datasets without applying any oversampling techniques.

Figure 5.7: AUC-ROC scores for different sampling techniques on

referenced imbalanced datasets used in this study.

During the study, Local Interpretable Model-Agnostic Explanations (LIME)

were employed to assess the black box behavior of our proposed models. LIME,

a valuable tool for model interpretability, affords us an understanding of the

rationales behind the predictions made by the model through analysis and visual-

ization of the individual feature contributions. This is illustrated in Figure 5.8,

which shows the contribution of various features to the prediction of Wine quality.

The model is 99% confident that the predicted Wine Quality is poor, and the

variables with the greatest impact on the predicted wine quality are Sulphates,

221

Sulfur dioxide, volatile acidity, and chlorides.

Figure 5.8: Interpreting the model using LIME on the Wine quality dataset.

Additionally, the Shapley Additive Explanations (SHAP) framework was

employed to comprehend the prediction outcomes of the model on the oversampled

dataset with more clarity. As depicted in Figure 4.10, the illustration presents

a force plot of the first observation in the Wine quality dataset. This force plot

graphically illustrates the influence of each feature on the prediction made by the

model. The figure shows that the baseline value is 0.3 and the final value, f(x) =

0.76, signifies the predicted value of the abalone.

Figure 5.9: Force Plot Observation of the Wine quality data using SHAP.

Figure 5.10 presents a SHAP explanation for the second observation in the

test data from the Wine quality dataset. The actual outcome reflects a poor

wine quality, which was accurately predicted by the model. The figure displays

222

the average predicted score of the dataset, represented by E(f(x)), at the bottom

and is equal to -0.194. The prediction score for the specific instance, represented

by f(x), is shown at the top and equals 3.825. The waterfall plot sheds light on

the contribution of each feature in the prediction process, leading to a change in

the prediction from E(f(x)) to f(x). The feature ‘pH’ is seen to have the largest

impact and plays a crucial role in the prediction by decreasing the prediction

value. Conversely, the feature ‘density’ has a negative impact on the prediction

outcome.

Figure 5.10: A Waterfall plot example for the median predicted wine

quality in the Wine quality dataset.

Figure 5.11 presents a SHAP explanation of the 15th observation in the test

data from the Wine Quality dataset. The actual outcome depicts a wine of good

quality, which was correctly predicted by the model. As seen in the figure, the

223

expected value is near 1, indicating that factors such as pH and citric acid played

a significant role in the model’s determination of the wine as being of good quality.

Figure 5.11: Model interpreation with expected value using SHAP on

Wine quality dataset.

5.8 Conclusions

The study proposed and evaluated the performance of BSGAN approaches to

handle class imbalance problems using four highly imbalanced datasets. The

proposed BSGAN method outperformed Borderline-SMOTE and GAN-based

oversampling techniques in various statistical measures. Furthermore, comparing

the proposed state-of-the-art techniques using Neural Network approaches demon-

strated better performance than many of the existing recent reference literature,

as highlighted in Tables 5.5– 5.8. The inter-class distance measurement ensures

224

that the data distribution follows Gaussian distribution after data expansion using

BSGAN, as referred to in Table 7.5. The findings of the proposed techniques

should provide some insights to researchers and practitioners regarding the advan-

tage of GAN-based approaches and help to understand how they can potentially

minimize the marginalization and sensitivity issues of the existing oversampling

techniques. Future works include but are not limited to applying BSGAN on

other high imbalance and big datasets, experimenting with mixed data (numerical,

categorical, and image data), changing the parameters of the proposed models,

and testing it for multiclass classification.

225

Chapter 6

Deep Learning-Based COVID-19 Diagnosis using

Chest X-ray: An Analysis of Data Balancing

Techniques

6.1 Introduction

In recent years, Deep Learning (DL) based approaches have shown promising

results in healthcare diagnostics, particularly for critical diseases such as heart

disease, cancer, and diabetes (Ahsan, Luna, & Siddique, 2022; Krawczyk, Galar,

Jeleń, & Herrera, 2016; J. Shen et al., 2021). However, imbalanced datasets pose a

common challenge in this field. Several studies have proposed various solutions to

address this issue, including ensemble-based solutions, preprocessing techniques,

resampling approaches, and DL-based approaches. For instance, Krawczyk et al.

(2016) proposed Ensemble of Under-Sampling Boosting (EusBoost), an ensemble-

based solution, to diagnose malignancy in a breast cancer dataset, achieving high

sensitivity and Area Under the Curve (AUC) (Krawczyk et al., 2016). Majid et

al. (2014) employed K-Nearest Neighbors (KNN) and Support Vector Machine

(SVM) in a two-step process to detect human breast and colon cancer, achieving

an accuracy of 96.71% (Majid, Ali, Iqbal, & Kausar, 2014). Shen et al. (2021)

proposed a hybrid improved SMOTE and adaptive SVM method to predict

the postoperative survival of lung cancer patients, achieving an accuracy of

95.11% (J. Shen et al., 2021). Rath et al. (2021) used Generative Adversarial

Networks (GAN) and Long Short-Term Memory (LSTM) to detect heart disease,

226

achieving 99.2% accuracy (Rath, Mishra, Panda, & Satapathy, 2021). Reddy

et al. (2020) employed resampling approaches to address the imbalance issue

in stroke detection, achieving 99.8% accuracy (Reddy, Seshadri, Bothra, Suhas,

& Thundiyil, 2020). Rai et al. (2021) used Synthetic Minority Over-sampling

Technique (SMOTE) and Tomek Link data sampling approaches to automate

Myocardial Infarction (MI) prognosis, achieving 99.8% accuracy (Rai, Chatterjee,

Dubey, & Srivastava, 2021). Satu et al. (2020) used various ML approaches,

with Random Forest outperforming the others, obtaining an accuracy of 99.067%

in detecting type 2 diabetes (Shahriare Satu, Atik, & Moni, 2020). Roy et

al. (2021) proposed an improved ML framework for classifying type 2 diabetes,

achieving an accuracy of almost 98% (Roy et al., 2021). Dagliati et al. (2018)

used Random Forest (RF) and Over-Sampling to detect type 2 diabetes mellitus,

predicting the occurrence of retinopathy, neuropathy, or nephropathy in different

time scenarios (Dagliati et al., 2018).

While these studies show promising results, they also have limitations, such

as the need for manual parameter reconfiguration, missing value, and data noise

issues. Further research is needed to address these limitations and improve the

accuracy and effectiveness of Machine Learning (ML) and DL-based models in

healthcare diagnostics.

227

6.2 Motivation

This study focuses on the impact of DL on the analysis of imbalanced data

in healthcare diagnostics. The research question at the center of this study

is RQ3, which is “How does imbalanced data affect the performance of DL-

based models?”. Here, the study aims to address this question in the context of

healthcare diagnostics. Due to time constraints, evaluating the performance of

imbalanced data for all existing diseases was impossible. However, given the recent

outbreak of Coronavirus Disease 2019 (COVID-19) and the need for scientific

contributions, this study focused on DL-based chest radiograph (X-ray) image

analysis for patients with COVID-19 symptoms. Therefore, this chapter aims to

address the research question more precisely as follows: “How does imbalanced

data affect the performance of DL-based models in COVID-19 diagnosis?” To

address the research question, the present study:

• First, analyzed existing research works, their contributions, and limitations.

• Subsequently, utilized an updated transfer learning-based approach to im-

prove performance and overcome the limitations of previous studies.

• Finally, compared the study’s performance with the referenced literature to

provide a broader view of the study’s overall contributions.

228

6.3 Chapter Outline

The following chapter is organized as follows: Section 10.4 provides a brief

background on COVID-19 and DL-based diagnosis. Section 10.5 outlines the

methodology of the experiment in detail. The results of the experiment are

presented in Section 10.6, followed by a discussion of the study’s findings in

Section 10.7. Finally, Section 10.8 summarizes the overall conclusions of the

research and suggests potential avenues for future research.

6.4 Background

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), previously

known as the Novel Coronavirus, was first reported in Wuhan, China and rapidly

spread around the world, pushing the World Health Organization (WHO) to

declare the outbreak of the virus as a global pandemic and health emergency on

March 11, 2020. According to official data, 19 million people have been infected

worldwide, with the number of deaths surpassing 700, 000, and 12 million recovery

cases reported by August 6, 2020 (Dashbord, June,2020). In the United States,

the first case was reported on January 20, 2020, which evolved into a current

number of confirmed cases, deaths, and recovered patients reaching more than 5

million, 162, 000, and 2.5 million, respectively (August 6, 2020 data) (Dashbord,

June,2020).

COVID-19 can be transmitted in several ways. The virus can spread quickly

229

among humans via community transmission, such as close contact between individ-

uals, and the transfer of respiratory droplets produced via coughing, sneezing, and

talking. Several symptoms have been reported so far, including fever, tiredness,

and dry cough as the most common. Additionally, aches, pain, nasal conges-

tion, runny nose, sore throat, and diarrhea have also been associated with the

disease (Rothan & Byrareddy, 2020; Pan et al., 2020). Several methods can be

followed to detect SARS-CoV-2 infection (M. Shen et al., 2020), including:

• Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)-

based methods

• Isothermal nucleic acid amplification-based methods

• Microarray-based methods.

Health authorities in most countries have chosen to adopt the RT-PCR method,

as it is regarded as the gold-standard in diagnosing viral and bacterial infections

at the molecular level (Tahamtan & Ardebili, 2020). However, due to the rapidly

increasing number of new cases and limited healthcare infrastructure, rapid

detection or mass testing is required to lower the curve of infection. Recent studies

claimed that chest Computed Tomography (CT) has the capability to detect the

disease promptly. Therefore, in China, to deal with many new cases, CT scans

were used for the initial screening of patients with COVID-19 symptoms (Hu et al.,

2020; Bai et al., 2020; Y. Li & Xia, 2020; Bernheim et al., 2020). Similarly, chest

radiograph (X-ray) image-based diagnosis may be a more attractive and readily

available method for detecting the onset of the disease due to its low cost and

230

fast image acquisition procedure. In our study, we investigate recent literature on

the topic and tackle the opportunity to present an effective deep learning-based

screening method to detect patients with COVID-19 from chest X-ray images.

In the recent past, the adoption of Artificial Intelligence (AI) in the field

of infectious disease diagnosis has gained notable prominence, which led to the

investigation of its potential in the fight against the novel coronavirus(Santosh,

2020; Ghoshal & Tucker, 2020; Narin, Kaya, & Pamuk, 2020). Current AI-related

research efforts on COVID-19 detection using chest CT and X-ray images are

discussed below to provide a brief insight on the topic and highlight our motivations

to research it further.

6.4.1 Chest X-ray Based Screening

Preliminary studies have used Transfer Learning (TL) techniques to evaluate

COVID-19 and pneumonia cases in the early stages of the COVID-19 pan-

demic (Khalifa, Taha, Hassanien, & Elghamrawy, 2020; Minaee, Kafieh, Sonka,

Yazdani, & Soufi, 2020; Afshar et al., 2020; Ahsan, Gupta, et al., 2020). However,

data insufficiency also hinders the ability of such proposed models to provide

reliable COVID-19 screening tools based on chest X-ray (Narin et al., 2020;

Hemdan, Shouman, & Karar, 2020; Sethy & Behera, 2020). For instance, Hem-

dan et al. (2020) proposed a CNN-based model adapted from Visual Geometry

Group (VGG)19 and achieved 90% accuracy using 50 images (Hemdan et al.,

2020). Ahsan et al. (2020) developed a COVID-19 diagnosis model using Multi-

layer Perceptron and Convolutional Neural Network (MLP-CNN) for mixed-data

231

(numerical/categorical and image data). The model predicts and differentiates

between 112 COVID-19 and 30 non-COVID-19 patients, with a higher accuracy

of 95.4% (Ahsan, E Alam, et al., 2020). Sethy and Behera (2020) also considered

only 50 images and used Residual Network (ResNet)50 for COVID-19 patients

classification, and ultimately reached 95% accuracy (Sethy & Behera, 2020). Also,

Narin et al. (2020) used 100 images and achieved 86% accuracy using Inception

Residual Network Version 2 (InceptionResNetV2) (Narin et al., 2020). As noted,

these studies use relatively small datasets, which does not guarantee whether

their proposed models would perform equally well on larger datasets. Also, the

possibility of a model overfitting is another concern for larger CNN-based networks

when trained with small datasets.

In view of these issues, recent studies proposed model training with larger

datasets and reported a better performance compared to smaller ones (Brunese,

Mercaldo, Reginelli, & Santone, 2020a; Apostolopoulos & Mpesiana, 2020; Ozturk

et al., 2020; Khan, Shah, & Bhat, 2020). Chandra et al. (2020) developed an

automatic COVID screening system to detect infected patients using 2088 (696

normal, 696 pneumonia, and 696 COVID-19) and 258 (86 images of each category)

chest X-ray images, and achieved 98% accuracy (T. B. Chandra, Verma, Singh,

Jain, & Netam, 2020). Sekeroglu et al. (2020) developed a DL-based method

to detect COVID-19 using publicly available X-ray images (1583 healthy, 4292

pneumonia, and 225 confirmed COVID-19), which involved the training of DL

and ML classifiers (Sekeroglu & Ozsahin, 2020). Pandit et al. (2020) explored

pre-trained VGG-16 using 1428 chest X-rays with a mix of confirmed COVID-19,

232

common bacterial pneumonia, and healthy cases (no infection). Their results

showed an accuracy of 96% and 92.5% in two and three output class cases (Pandit,

Banday, Naaz, & Chishti, 2020). Ghosal and Tucker (2020) used 5941 chest X-ray

images and obtained 92.9% accuracy (Ghoshal & Tucker, 2020). Brunese et al.

(2020) proposed a modified VGG16 model and achieved 99% accuracy with a

dataset of 6505 images. However, they have used fairly balanced data with a

1 : 1.17 ratio; 3003 COVID-19 and 3520 other patients. It is not immediately clear

how their model would perform on an imbalanced dataset (Brunese, Mercaldo,

Reginelli, & Santone, 2020b). On the other hand, Khan et al. (2020) developed a

model based on Xception CNN techniques considering 284 COVID-19 patients and

967 other patients (data ratio 1 : 3.4). Partially as an effect of a more imbalanced

dataset, their reported accuracy was comparatively low, reaching 89.6% (Khan et

al., 2020). On imbalanced datasets, there is a higher chance that the model may

be biased on significant classes and might affect the overall performance of the

model.

Developing DL models using small image datasets often results in the incorrect

identification of regions of interest in those images, an issue not often addressed

in the existing literature. Therefore, in the present work, the models’ performance

is analyzed layer by layer, and only the best-performing ones are selected based

on the correct identification of infectious regions on X-ray images. Previous works

often do not demonstrate how their proposed models perform with imbalanced

datasets, which is often challenging. Here, small, imbalanced, and large datasets

are considered, and a comprehensive description of the results is presented with

233

statistical measures, including 95% confidence intervals, p-values, and t-values. A

summary of the technical contributions is presented below:

• Modification and evaluation of six different deep CNN models (VGG16,

InceptionResNetV2, ResNet50, Mobile Network Version 2 (MobileNetV2),

ResNet101, VGG19) for detection of COVID-19 patients using X-ray image

data on both balanced and imbalanced datasets; and

• Verify the possibility to locate affected regions on chest X-rays incorporated

with heatmaps, including a cross-check with a medical doctor’s opinion.

6.5 Research Methodology

Three separate studies are being evaluated and proposed, and each of them uses

a distinct dataset. The details of these studies and the corresponding datasets

are presented as follows:

1. Study One – smaller, balanced dataset: chest X-ray images of 25 patients

with COVID-19 symptoms, and 25 images of patients with diagnosed pneu-

monia, obtained from the open-source repository shared by Dr. Joseph

Cohen (Cohen, Morrison, & Dao, 2020).

2. Study Two – larger, imbalanced dataset: chest X-ray images of 262 patients

with COVID-19 symptoms, and 1583 images of patients with diagnosed pneu-

monia, obtained from the Kaggle COVID-19 chest X-ray dataset (COVID-19

chest xray , June, 2020).

234

3. Study Three – multiclass dataset: chest X-ray images of 219 patients with

COVID-19 symptoms, 1345 images of patients with diagnosed pneumonia

and 1073 images of normal patients, also obtained from the Kaggle COVID-

19 chest X-ray dataset (Chest X-Ray Images (Pneumonia), n.d.).

Figure 6.1 presents a set of representative chest X-ray images of both COVID-19

and pneumonia patients from the aforementioned datasets. Table 6.1 details

the overall assignment of data for training and testing of each investigated CNN

model. In both studies, six different Deep Learning approaches were investi-

gated: VGG16 (Simonyan & Zisserman, 2014), InceptionResNetV2 (Szegedy, Ioffe,

Vanhoucke, & Alemi, 2017), ResNet50 (Akiba, Suzuki, & Fukuda, 2017), Mo-

bileNetV2 (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018), ResNet101 (K. He,

Zhang, Ren, & Sun, 2016) and VGG19 (Simonyan & Zisserman, 2014).

Table 6.1: Assignment of data used for training and testing of Deep Learning models.

Study Label Train Test

One
COVID-19 20 5

Normal 20 5

Two
COVID-19 210 52

Normal 1266 317

Three

COVID-19 176 43

Normal 1073 268

Pneumonia 1076 269

235

Figure 6.1: Representative samples of chest X-ray images from the

open source data repositories(Cohen et al., 2020) used in our proposed

studies.

6.5.1 Deep Learning Algorithms

6.5.1.1 VGG

VGG, or Visual Geometry Group, proposed two CNN models that are extremely

deep in their architecture. These models are referred to as VGG16 and VGG19,

respectively, and consist of 16 and 19 layers. The models were trained on a dataset

containing one million samples from the ImageNet dataset. The VGG16 model is

designed to take input images of size 224 by 224. Images are first passed through

a series of Convolutional layers containing filters ranging from 64 to 512. The

pooling layer is implemented using a 2-by-2 filter with max-pooling. Rectified

236

Linear Unit (ReLU) is employed as the activation function with a stride size of 2.

The pooling layer is then converted to a 1D vector in the dense layer. Finally, the

Softmax activation function is applied to the output layer to classify the samples

into one of the 1000 available categories (Simonyan & Zisserman, 2014).

6.5.1.2 InceptionResNetV2

InceptionResNetv2 is a DL architecture proposed by Szegedy et al. in 2017. It

is an extension of the Inception and ResNet architectures, which combines the

benefits of both architectures for image classification tasks. IRv2 has 164 layers

and merges 1x1, 3x3, and 5x5 convolutions with max pooling to extract features

from the input image. The residual connections allow for the training of deeper

networks while preventing the vanishing gradient problem. The architecture also

incorporates batch normalization and the ReLU activation function for improved

training speed and accuracy. IRv2 achieved state-of-the-art performance on the

ImageNet Large Scale Visual Recognition Challenge dataset in 2016, with a top-5

accuracy of 95.3% (Szegedy et al., 2017).

6.5.1.3 ResNet

The ResNet DNN, which stands for Residual Network, was developed by Microsoft

researchers in 2015 to address the problem of disappearing gradients in very deep

neural networks. One layer of maximum pooling, one layer of average pooling,

and one layer of regular pooling are used in ResNet50, a variation of ResNet.

The ResNet50 design starts with a 7x7 convolution layer with 64 kernels and a

237

stride size of 2, followed by a max-pooling layer also with a stride size of 2. The

network then applies nine convolutional layers using, successively, 64, 64, and

256 kernel filters. Each of the network’s last nine layers has 512, 512, and 2048

kernel filters. The Softmax function is then used as the activation function for the

output layer, which is followed by an FC layer with 1000 nodes that incorporates

an average pooling layer. ResNet101’s model design is similar to ResNet50’s, with

the addition of a third layer made up of 256, 256, and 1024 filters in the fourth

block (K. He et al., 2016; Ahsan et al., 2023; Ahsan, Abdullah, et al., 2022).

6.5.1.4 MobileNetV2

MobileNetV2 is a state-of-the-art module that implements inverted residuals

and a linear bottleneck. This simple model can be extended for use in mobile

phone applications, where it can accept low-dimensional input, reduce the number

of operations, and consume less memory while maintaining a higher degree

of accuracy. This model uses depthwise separable convolution, which divides

the convolution operation into two distinct layers. The first layer is depth-wise

convolution, which is highly efficient because it performs just one filtering operation.

The second layer acquires additional features due to the linear calculation of the

inputs. MobileNetV2 has significantly reduced the computational cost of standard

model layers by a factor of k2, often saving 8 or 9 times the computational

resources required for 3× 3 depth-wise separable convolution compared to other

conventional models (Sandler et al., 2018).

238

6.5.2 Using Pre-Trained Convet

A pre-trained network is a network that was previously trained on a larger dataset

which, in most cases, is enough to learn a unique hierarchy to extract features

from. It works more effectively on small datasets. A prime example is the

VGG16 architecture, developed by Simoyan and Zisserman (2014) (Simonyan &

Zisserman, 2014). Figure ?? shows a sample architecture of the pre-trained model

procedure. All models implemented in this study are available as a pre-package

within Keras (Chollet, 2017).

Figure 6.2 demonstrates a fine-tuning sequence on the VGG16 network. The

modified architecture follows the steps below:

1. Firstly, the models were initiated with a pre-trained network without a Fully

Connected (FC) layer.

2. Then, an entirely new connected layer added a pooling layer and “softmax”

as an activation function, appended it on top of the VGG16 model.

3. Finally, the convolution weight was frozen during the training phase so that

only the FC layer should train during the experiment.

The same procedure was followed for all other DL techniques. In this experiment,

the additional modification of the model for all CNN architectures was constructed

as follows: AveragePooling2D(Poolsize = (4, 4)) → Flatten → Dense →

Dropout(0.5)→ Dense(Activation = “softmax”).

239

Figure 6.2: VGG16 architecture used during this experiment.

As it is known, most pre-trained models contain multiple layers which are

associated with different parameters (i.e., number of filters, kernel size, number of

hidden layers, number of neurons) (Denil, Shakibi, Dinh, Ranzato, & De Freitas,

2013). However, manually tuning those parameters is considerably time consum-

ing (Hutter, Lücke, & Schmidt-Thieme, 2015; Qolomany, Maabreh, Al-Fuqaha,

Gupta, & Benhaddou, 2017). With that in mind, three parameters of the DL

model are optimized during this study: batch size 1, epochs 2, and learning

rate 3 (inspired by (L. N. Smith, 2018; S. L. Smith, Kindermans, Ying, & Le,

2017)). The grid search method, which is commonly utilized for parameter tuning,

was employed in this study (Bergstra & Bengio, 2012). Initially, the following

parameters are randomly selected:

Batch size = [4, 5, 8, 10]

1Batch size characterizes the number of samples to work through before updating the internal
model parameters (Brownlee, 2018)

2It defines how many times the learning algorithm will work through the entire
dataset (Brownlee, 2018)

3It is a hyper-parameter that controls the amount to change the model in order to calculate
the error each time the model weights are updated (B. Chandra & Sharma, 2016)

240

Number of epochs = [10, 20, 30, 40]

Learning rate = [.001, .01, 0.1]

For Study One, better results were achieved using the grid search method with

the following parameters:

Batch size = 8

Number of epochs = 30

Learning rate = .001

Similarly, for Study Two, the best results were achieved with:

Batch size = 50

Number of epochs = 50

Learning rate = .001

Finally, during Study Three, best performance was achieved with:

Batch size = 50

Number of epochs = 100

Learning rate = .001

The adaptive learning rate optimization algorithm (Adam) was used as an opti-

mization algorithm for all models due to its robust performance on binary image

classification (Perez & Wang, 2017; Filipczuk, Fevens, Krzyżak, & Monczak,

2013). As commonly adopted in data mining techniques, this study used 80%

data for training, whereas the remaining 20% was used for testing (Mohanty,

Hughes, & Salathé, 2016; Menzies, Greenwald, & Frank, 2006; Stolfo, Fan, Lee,

241

Prodromidis, & Chan, 2000). Each study was conducted twice, and the final result

was represented as the average of those two experiment outcomes, as suggested

by Zhang et al. (2020) (J. Zhang, Xie, Pang, et al., 2020). Performance results

were presented as model accuracy, precision, recall, and F1-score (Ahsan, Li, et

al., 2020).

Accuracy =
tp + tn

tp + tn + fp + fn
(6.1)

Precision =
tp

tp + fp
(6.2)

Recall =
tp

tn + fp
(6.3)

F1-score = 2× Precision× Recall

Precision+Recall
(6.4)

Where,

• True Positive (tp)= COVID-19 patient classified as patient

• False Positive (fp)= Healthy people classified as patient

• True Negative (tn)=Healthy people classified as healthy

• False Negative (fn)= COVID-19 patient classified as healthy.

242

6.6 Results

6.6.1 Study One

The overall model performance for all CNN approaches was measured both on the

training (40 images) and test (10 images) sets using equation 6.1– 6.4. Table 6.2

presents the results of the training set. In this case, VGG16 and MobileNetV2

outperformed all other models in terms of accuracy, precision, recall, and F1-

score. In contrast, the ResNet50 model showed the worst performance across all

measures.

Table 6.2: Study One model performance on train set.

Model Accuracy Precision Recall F1-score

VGG16 100% 100% 100% 100%

InceptionResNetV2 97% 98% 97% 97%

ResNet50 70% 81% 70% 67%

MobileNetV2 100% 100% 100% 100%

ResNet101 80% 83% 80% 80%

VGG19 93% 93% 93% 92%

Table 6.3 presents the performance results for all models on the test set.

Models VGG16 and MobileNetV2 showed 100% performance across all measures.

On the other hand, ResNet50, ResNet101, and VGG19 demonstrated significantly

worse results.

243

Table 6.3: Study One model performance on test set.

Model Accuracy Precision Recall F1-score

VGG16 100% 100% 100% 100%

InceptionResNetV2 97% 98% 97% 97%

ResNet50 70% 81% 70% 67%

MobileNetV2 100% 100% 100% 100%

ResNet101 70% 81% 70% 67%

VGG19 70% 71% 70% 70%

6.6.1.1 Confusion Matrix

Confusion matrices were used to better visualize the overall performance of

prediction. The test set contains 10 samples (5 COVID-19 and 5 other patients).

In accordance with the performance results previously presented, Figure 6.3 shows

that the VGG16, InceptionResNetV2, and MobileNetV2 models correctly classified

all patients. In contrast, models ResNet50, and ResNet101 incorrectly classified 3

non-COVID-19 patients as COVID-19 patients, and models VGG19 classified 2

non-COVID patients as COVID-19 patients while also classifying 1 COVID-19

patient as non-COVID-19.

244

Figure 6.3: Study One confusion matrices for six different deep learning

models applied on the test set.

6.6.1.2 Model Accuracy

Figure 6.4 shows the overall training and validation accuracy during each epoch

for all models. Models VGG16 and MobileNetV2 demonstrated higher accuracy

at epochs 25 to 30, while VGG19, ResNet50, and ResNet101 displayed lower

accuracy which sporadically fluctuated between epochs 10.

245

Figure 6.4: Training and validation accuracy throughout the execution

of each model in Study One.

6.6.1.3 Model Loss

Figure 6.5 shows that both training loss and validation loss were reduced following

each epoch for VGG16, InceptionResNetV2, and MobileNetV2. In contrast, for

VGG19, both measures are scattered over time, which is an indicative of poor

performance.

246

Figure 6.5: Training and validation loss throughout the execution of

each model in Study One.

6.6.2 Study Two

For Study Two, on the training set, most model accuracies were measured above

90%. Table 6.4 shows that 100% accuracy, precision, recall, and F1-score were

achieved using MobileNetV2. Among all other models, ResNet50 showed the

worst performance across all measures.

247

Table 6.4: Study Two model performance on train set.

Model Accuracy Precision Recall F1-score

VGG16 99% 99% 99% 99%

InceptionResNetV2 99% 100% 99% 99%

ResNet50 93% 96% 93% 93%

MobileNetV2 100% 100% 100% 100%

ResNet101 96% 97% 88% 92%

VGG19 99% 98% 96% 97%

Table 6.5 presents the performance results for all models on the test set. Models

VGG16, InceptionResNetV2, and MobileNetV2 showed 99% accuracy; however,

the precision, recall, and F1-score were distinct for each model, yet all above 97%.

On the lower end, ResNet50 demonstrated relatively lower performance across all

measures.

Table 6.5: Study Two model performance on test set.

Model Accuracy Precision Recall F1-score

VGG16 99% 100% 97% 98%

InceptionResNetV2 99% 99% 98% 98%

ResNet50 93% 94% 93% 92%

MobileNetV2 99% 99% 99% 99%

ResNet101 96% 97% 88% 92%

VGG19 97% 97% 91% 94%

248

6.6.3 Confusion Matrix

Figure 6.6 shows that most of the models performance is satisfactory on the test set.

In Study Two, classification accuracy for ResNet50 and ResNet101 is significantly

better compared to Study One, possibly as an effect of the models being trained

with more data and more epochs. In general, MobileNetV 2 performed better

among all the models and misclassified only 2 images out of 369 images, while

ResNet50 showed lower performance and misinterpreted 25 images out of 369

images.

Figure 6.6: Study Two confusion matrices for six different deep learning

models applied on the test set.

6.6.3.1 Model Accuracy

Figure 6.7 suggests that the overall training and validation accuracy were more

steady during Study Two than Study One. The performance of ResNet50 and

249

ResNet101 significantly improved once trained with more data (1845 images) and

more epochs (50 epochs).

Figure 6.7: Training and validation accuracy throughout the execution

of each model in Study Two.

6.6.3.2 Model Loss

Figure 6.8 provides evidence that both training and validation losses were mini-

mized following each epoch for all models, potentially as an effect of the increased

batch size, number of epochs, and data amount.

250

Figure 6.8: Training and validation loss throughout the execution of

each model in Study Two.

6.6.4 Study Three

As a means of highlighting the potential of the proposed models with more complex

classifications, a small-scale pilot study was conducted to assess the performance

of the VGG16 model on a multi-class dataset. The performance outcomes for the

train and test runs are presented in Table 6.6. The accuracy remained above 90%

on both runs, which suggests a notably high performance of our model with either

binary or multi-class datasets.

251

Table 6.6: VGG16 model performance on train and test datasets of Study Three.

VGG16 Accuracy Precision Recall F1-score

Train 93% 93% 88% 91%

Test 91% 90% 91% 86%

6.6.5 Test Results with Confidence Intervals

Table 6.7 presents 95% confidence intervals for model accuracy on the test sets

for Studies One and Two. For instance, in Study One, the average accuracies

for VGG16 and MobileNetV2 were found to be 100%; however, the Wilson score

and Bayesian interval show that the estimated accuracies lie between 72.2% to

100% and 78.3% to 100%, respectively. On the other hand, Study Two reported

relatively narrower interval ranges.

252

Table 6.7: Confidence Interval (α = 0.05) for studies One and Two on test accuracy.

Study Model

Actual
Methods

accuracy

Wilson Score Bayesian Interval

One

VGG16 100% 72.2% – 100% 78.3% – 100%

InceptionResNetV2 97% 68.1% – 99.8% 72.5% – 99.9%

ResNet50 70% 39.7% – 89.2% 39.4% – 90.7%

MobileNetV2 100% 72.2% – 100% 78.3% – 100%

ResNet101 70% 39.7% – 89.2% 39.4% – 90.7%

VGG19 70% 39.7% – 89.2% 39.4% – 90.7%

Two

VGG16 99% 97.6% – 99.7% 97.8% – 99.8%

InceptionResNetV2 99% 98.0% – 99.9% 98.3% – 99.9%

ResNet50 93% 90% – 95.4% 90.3% – 95.5%

MobileNetV2 99% 97.6% – 99.7% 97.8% – 99.8%

ResNet101 96% 94.1% – 97.9% 94.2% – 98.0%

VGG19 97% 95.1% – 98.5% 95.2% – 98.6%

A paired t-test was conducted to compare model accuracies on both studies

as shown in Table 6.8. There was no significant difference identified within the

scores for Study One (M = 84.50, SD = 15.922) and Study Two (M = 97.39,

SD = 2.38); t(5) = 2.251, p = .074. These results suggest that model accuracy

is competent on both datasets and makes no statistically significant differences

253

(p > 0.05).

Table 6.8: Descriptive statistics of paired t-test for Study One and

Study Two. M – Mean; SD – Standard deviation; SEM – Standard

error mean; DF – Degree of freedom.

Study M SD SEM

One 84.50 15.922 6.50

Two 97.3967 2.38362 .9731

Paired Difference −12.89 14.03 5.72

Results

t −2.251

DF 5

α = .05 .074

6.7 Discussion

As a means of comparing the results with those available in the literature, Table 6.9

contrasts the accuracies of the three best performing CNN models on small datasets

as part of Study One. It is relevant to emphasize that none of the referenced studies

presents their results as confidence intervals, which hinders a direct comparison,

but still allows for a higher-level assessment of the reported performance measures.

During this study, an accuracy range of 68.1% to 99.8% was achieved using

InceptionResNetV2 with 50 chest X-ray images, while Narin et al. (2020) obtained

86% accuracy with 100 images (Narin et al., 2020). Hemdan et al. (2020) and

254

Sethy and Behera (2020) used small datasets of 50 images and acquired 90% and

9% accuracy using VGG19 and ResNet50 + SVM, respectively (Hemdan et al.,

2020; Sethy & Behera, 2020).

Table 6.9: Different deep CNN models performance on small chest

X-ray image dataset.

References Model Datasize Accuracy

(Hemdan et al., 2020) VGG19 50 90%

(Sethy & Behera, 2020) ResNet50+SVM 50 95%

(Narin et al., 2020) InceptionResNetV2 100 86%

Best model from VGG16

50

72.2% – 100%

Study One with InceptionResNetV2 68.1% – 99.8%

95% CI MobileNetV2 72.2% – 100%

Additionally, In Study Two, some of the models—VGG16, InceptionResNetV2,

MobileNetV2,VGG19— demonstrated almost similar accuracy while considering

a highly imbalanced dataset than referenced literature (Ozturk et al., 2020; Khan

et al., 2020) that also used imbalanced datasets (Table 6.10). For the imbalanced

dataset, chest X-ray images of 262 COVID-19 patients and 1583 non-COVID-19

patients (1 : 6.04) have been used. Apostolopoulos and Mpesiana (2020) used

1428 chest X-ray images where the data ratio was 1 : 5.4 (224 COVID-19: 1208

others) and achieved 98% accuracy (Apostolopoulos & Mpesiana, 2020). Similarly,

255

Khan et al. (2020) used 1251 chest X-ray images, data proportion 1 : 3.4 (284

COVID-19:967 others), and acquired 89.6% accuracy (Khan et al., 2020). In

Study Two, some of the best models were acquired, including VGG16, VGG19,

InceptionResNetV2, and MobileNetV2, with accuracies ranging from 97% to

around 100%.

Figure 6.9: Heatmap of class activation on different layers.

256

Table 6.10: Comparison of models performance on imbalanced datasets.

References Model Datasize Data ratio Accuracy

(Brunese et al., 2020a) VGG16 6505 3003 : 3520 ≈1:1.17 99%

(Apostolopoulos & Mpesiana, 2020) CNN 1428 224 : 1208 ≈1:5.4 98%

(Ozturk et al., 2020) DarkNet 1750 250 : 1500 = 1 : 6 98%

(Khan et al., 2020) Xception 1251 284 : 967 ≈1:3.4 89.6%

(Lee et al., 2020) VGG-16 1821 607 : 1214 = 1 : 2 95.9%

(Shelke et al., 2020) DenseNet-VGG16 2271 500 : 1771 ≈1:3.54 95%

Best model from VGG16

1845 262 : 1583≈1:6.04

97.6% – 99.7%

Study Two with InceptionResNetV2 97.6% – 99.7%

95% CI MobileNetV2 97.6% – 99.7%

VGG19 95.2% – 98.6%

6.7.1 Feature Selection

Figure 6.9 highlights extracted features as an effect of different CNN layers of

VGG16 models applied on chest X-ray images from Study One. For instance, in

block1 conv1 and block1 pool1, the extracted features were slightly fuzzy, while

in block4 conv3 and block5 pool, those features become more visible/prominent.

The heatmap also demonstrates a considerable difference in both COVID-19

and other patient images corresponding to each layer. For instance, as shown

in Figure 6.10 (left), two specific regions were highlighted by heatmap for the

COVID-19 patient’s X-ray image, whereas for other patients’ images, the areas

were found to be haphazard and small.

257

Figure 6.10: Model’s ability to identify important features on chest

X-ray using VGG16.

Figure 6.11: Model’s competency to identify essential features on chest

X-ray using MobileNetV2.

During the experiment, each layer plays a significant role in identifying essential

features from the images in the training phase. As a result, it is also deemed

258

possible to see which features are learned and play a crucial role in differentiating

between the two classes. In Figure6.10, the left frame represents a chest X-ray

image of a COVID-19 patient, and the right one highlights infectious regions

of that same image, as spotted by the VGG16 model during Study One. The

highlighted region on the upper right shoulder, which resulted from the individual

layer of the VGG16 model (Study One), can be considered an irrelevant and

therefore unnecessary feature identified by the network. The following topics

extend the discussion on this issue:

1. The models attained unnecessary details from the images since the dataset

is small compared to the model architecture (contains multiple CNN layers).

2. The models extracted features beyond the center of the images, which

might not be essential to differentiate the COVID-19 patients from the

non-COVID-19 patients.

3. The average age of COVID-19 patients in the first case study is 55.76

years. Therefore it is possible that individual patients might have age-

related illnesses (i.e. weak/damaged lungs, shoulder disorder) , apart from

complications related to COVID-19, which are not necessarily considered by

the doctor’s notes.

Interestingly, the these irrelevant regions spotted by our models decreased

significantly when trained with larger datasets (1845 images) and increased epochs

(50 epochs). For instance, Figure 6.11, presents the heatmap of the Conv-1 layer

259

of MobileNetV2, acquired during the Study Two. The heatmap verifies that the

spotted regions are very similar and match closely with the doctor’s findings.

6.8 Overall Findings

This study aimed to investigate the impact of imbalanced data on the performance

of DL-based models in COVID-19 diagnosis using chest X-ray images. The study’s

findings suggest that imbalanced data can affect the performance of DL-based

models in COVID-19 diagnosis, highlighting the importance of addressing this

issue in the development of diagnostic tools. The study’s best-performing models

(VGG16 and MobileNetV2) achieved high accuracy ranges from 97.6% to almost

100% on a highly imbalanced dataset. However, some models extracted irrelevant

details from the images, which might affect the models’ performance.

To address this issue, the study suggests training the models on larger datasets

with increased epochs to improve the models’ performance and reduce the models’

extraction of irrelevant details from the images. The study’s outcomes provide a

solution to the issue of imbalanced data in DL-based models’ performance and

contribute to developing more effective diagnostic tools in healthcare, particularly

in COVID-19 diagnosis.

In conclusion, this study contributes to the understanding of the effect of

imbalanced data on DL-based models’ performance in healthcare diagnosis, specif-

ically in COVID-19 diagnosis, using chest X-ray images. The study’s findings and

proposed solutions can guide future research in the development of more accurate

260

and effective diagnostic tools.

6.9 Conclusion and Future Works

The study evaluated six DL-based approaches to detect SARS-CoV-2 infection from

chest X-ray images. The modified VGG16 and MobileNetV2 models accurately

distinguished patients with COVID-19 symptoms on both balanced and imbalanced

datasets, achieving nearly 99% accuracy. Healthcare professionals cross-checked

the model outputs to ensure validation. However, the study had some limitations,

including limited data availability and the exclusion of categorical patient data.

Future works should address these limitations and explore opportunities to bridge

the gap between proposed models and existing Computer-Aided Design (CAD)

systems. To address the limitations identified in this study, future research

directions should focus on the following:

• Utilizing rapidly expanding open databases of COVID-19 patient records,

especially those containing chest X-ray images, to assess the performance of

deep learning models confidently.

• Investigating more robust classification models that include categorical

patient data to achieve higher performance levels.

• Bridging the gap between proposed models and existing CAD systems to

develop more efficient diagnosis tools.

261

Chapter 7

Exploring Mixed Image Data for COVID-19

Diagnostics using Transfer Learning and

Explainable AI

7.1 Introduction

In Chapter 6, the impact of imbalanced data on developing Deep Learning (DL)

based diagnostic models for Coronavirus Disease 2019 (COVID-19) patients using

chest X-ray images are analyzed. The preliminary results indicate that the

proposed Transfer Learning (TL) approach can detect patients with COVID-19

symptoms. However, recent literature suggests that Computed Tomography (CT)-

scan could be a promising alternative to chest Radiography (X-ray) for developing

Artificial Intelligence (AI) diagnostic tools (Chua et al., 2020; Narin et al., 2020;

Barstugan, Ozkaya, & Ozturk, 2020; F. Shi et al., 2020; Gozes et al., 2020; Fang et

al., 2020). Given this opportunity, this chapter aims to evaluate the performance

of previously proposed six TL models - VGG16, InceptionResNetV2, ResNet50,

MobileNetV2, ResNet101, and VGG19 - on a mixed dataset containing both chest

X-ray and CT-scan images.

7.2 Motivation

The primary motivation behind this study is to enhance the accuracy and reliability

of DL-based models for diagnosing COVID-19 patients using chest X-ray and

262

CT-scan images. While Chapter 6 focused solely on the impact of imbalanced

data on DL-based models using chest X-ray images, it is important to develop

models that can learn from both chest X-ray and CT-scan images to improve the

effectiveness of healthcare diagnostics.

Furthermore, this chapter presents a unique contribution to the literature as it

is the only chapter in the dissertation considering imbalanced mixed image data.

By addressing the primary research question RQ3, which is “How does imbalanced

data affect the performance of DL-based models?” in the context of COVID-19

diagnosis, this chapter aims to provide valuable insights into the development and

performance of DL models using mixed image datasets.

Moreover, this chapter aims to enhance the interpretability of the proposed DL

models by utilizing Local Interpretable Model-Agnostic Explanations (LIME) to

provide model interpretation and detailed information on the learning procedure.

Incorporating LIME also addresses one of the limitations outlined in Chapter 6

and improves the transparency and interpretability of the proposed DL models.

Overall, this chapter will serve as an important contribution to the field of

DL-based medical diagnosis, providing insights into developing models that can

learn from mixed datasets and improving the interpretability of DL models using

LIME.

263

7.3 Chapter Outline

The forthcoming chapter is structured as follows: Section 10.4 provides a brief

and concise overview of COVID-19 and the utilization of DL for diagnosis us-

ing CT-scan images. Section 10.5 expounds on the research methodology in a

comprehensive and detailed manner. The experimental results are presented in

Section 10.6, followed by an in-depth and meticulous discussion of the study’s

findings in Section 10.7. Finally, Section 10.8 summarizes the research’s overall

conclusions and offers potential avenues for future research.

7.4 Background

The previous chapter (Chapter 6) provided an overview of COVID-19 disease

diagnosis using chest X-rays and the relevant literature. Consequently, to prevent

redundancy, this section focuses solely on literature that explores DL-based models

employing CT-scan images for detecting COVID-19 patients.

7.4.1 CT Scan-based Screening

To date, several efforts in detecting COVID-19 from CT images have been reported.

A recent study by Chua et al. (2020) suggested that the pathological pathway

observed from the pneumonic injury leading to respiratory death can be detected

early via chest CT, especially when the patient is scanned two or more days after

the development of symptoms (Chua et al., 2020). Related studies proposed that

DL techniques could be beneficial for identifying COVID-19 disease from chest

264

CT (Narin et al., 2020; Barstugan et al., 2020). For instance, Shi et al. (2020)

introduced a machine learning-based method for the COVID-19 screening from an

online COVID-19 CT dataset (F. Shi et al., 2020). Similarly, Gozes et al. (2020)

developed an automated system using artificial intelligence to monitor and detect

patients from chest CT (Gozes et al., 2020). Chua et al. (2020) focused on the

role of Chest CT in the detection and management of COVID-19 disease from

a high-incidence region (United Kingdom) (Chua et al., 2020). Ai et al. (2020)

also supported CT-based diagnosis as an efficient approach compared to RT-PCR

testing for COVID-19 patients detection with a 97% sensitivity (Ai et al., 2020;

Fang et al., 2020).

Due to data scarcity, most preliminary studies considered minimal datasets (J. Chen

et al., 2020; Ardakani, Kanafi, Acharya, Khadem, & Mohammadi, 2020; X. Wang,

Deng, et al., 2020). For example, Chen et al. (2020) used a U-Shaped Convolu-

tional Neural Network (UNet)++ DL model and identified 51 COVID-19 patients

with a 98.5% accuracy (J. Chen et al., 2020). However, the authors did not

mention the number of healthy patients used in the study. Ardakani et al. (2020)

used 194 CT images (108 COVID-19 and 86 other patients) and implemented

ten deep learning methods to observe COVID-19 related infections and acquired

99.02% accuracy (Ardakani et al., 2020). Moreover, a study conducted by Wang

et al. (2020) considered 453 CT images of confirmed COVID-19 cases, from which

217 images were used as the training set, and obtained 73.1% accuracy, using the

inception-based model. The authors, however, did not explain the model network

and did not show the mark region of interest of the infections (S. Wang, Kang, et

265

al., 2021). Similarly, Zheng et al. (2020) introduced a DL-based model with 90%

accuracy to screen patients using 499 3D CT images (X. Wang, Deng, et al., 2020).

Despite promising results, very high performance on small datasets often raises

questions about the model’s practical accuracy and reliability. Therefore, a better

way to represent model accuracy is to present it with an associated confidence

interval (Brownlee, 2014). However, none of the work herein referenced expressed

their results with confidence intervals, which should be addressed in future studies.

As larger datasets become available, DL-based studies taking advantage of

their potential have been proposed to detect and diagnose COVID-19. Xu et al.

(2020) investigated a dataset of 618 medical images to detect COVID-19 patients

and acquired 86.7% accuracy using ResNet23 (X. Xu et al., 2020). Li et al. (2020)

utilized an even larger dataset (a combination of 1296 COVID-19 and 3060 Non-

COVID-19 patients CT images) and achieved 96% accuracy using ResNet50 (L. Li

et al., 2020b). With larger datasets, it is no surprise that DL-based models predict

patients with COVID-19 symptoms with accuracies ranging from 85% to 96%.

However, obtaining a chest CT scan is a notably time-consuming, costly, and

complex procedure. Despite allowing for comparatively better image quality, its

associated challenges inspired many researchers to propose X-ray-based COVID-19

screening methods as a reliable alternative way (Apostolopoulos & Mpesiana,

2020; Rachna, 2020).

266

7.5 Research Methodology

Table 7.1 summarizes the adopted dataset (Chest X-Ray Images (Pneumonia),

n.d.), which contains both CT scans (200 COVID-19 and 200 Non-COVID-19)

and chest X-rays (1583 COVID-19 and 608 Non-COVID-19) images of patients

expressing pneumonia symptoms. During the study, 80% of the data was dedicated

to training and the remaining 20% to testing. Figure 7.1 presents a set of

representative images used in the analysis.

Figure 7.1: Representative sample images of chest X-rays and CT

scans used in the mixed dataset adopted for analysis.

Table 7.1: Summary of the mixed dataset used in the analysis, including

training and test sets.

Dataset Label Train Test

Chest X-ray CT scan Total Chest X-ray CT scan Total

Mixed Data COVID-19 486 160 646 122 40 162

Non-COVID-19 1266 160 1426 317 40 357

Total 1752 320 2072 439 80 519

267

Six different pre-trained Convolutional Neural Networks (ConvNets) were

used, namely VGG16, MobileNetV2, ResNet50, ResNet101, InceptionResNetV2,

and VGG19. A detailed explanation of the architecture of each network can be

found in Chapter 6. Each model was developed with the advantages of TL in

mind. Three parameters, specifically batch size, epochs, and learning rate (as

suggested by (L. N. Smith, 2018; S. L. Smith et al., 2017)), are considered for

model optimization. During the study, the grid search method is employed to

fine-tune parameters (Bergstra & Bengio, 2012). At first, the following parameters

were chosen at random:

Batch size = [20, 30, 40, 50, 60];

Number of epochs = [20, 25, 30, 35, 40];

Learning rate = [0.001, 0.01, 0.1].

The best results were obtained with the following:

Batch size = 50;

Number of epochs = 35;

Learning rate = 0.001.

The statistical analysis was assessed using metrics such as accuracy, precision,

recall, and F1-score, which were adopted from the methodology presented in

Chapter 6. Aside from this, the remaining experimental setup was maintained

consistent with the methodology presented in Chapter 6.

268

7.5.1 LIME as Explainable AI

The overall prediction was interpreted using LIME, a procedure that allows the

understanding of the input features of the DL models, which affect its predictions.

LIME is regarded as one of the few methodologies that work well with tabular

data, text, and images and is extensively employed for its reliability in explaining

the intricacies of image classification (?, ?). For image classification, LIME creates

superpixels. Superpixels are the result of image over-segmentation. Superpixels

store more data than pixels and are more aligned with image edges than rectangular

image patches for the primary prediction (?, ?). Table 7.2 shows the parameters

used to calculate the superpixel during this experiment.

Table 7.2: Superpixel calculation parameters.

Function Value

Kernel size 200

Maximum distance 200

Ratio 0.2

7.6 Results

Table 10.4 presents a summary of the performance of all models on the training

and test sets along with a 95% confidence interval. MobileNetV2 outperformed

all models in terms of accuracy, precision, recall, and F1-score. Contrarily, the

ResNet50 model showed the worst performance considering all measures.

269

Table 7.3: COVID-19 screening performance of all models using a

mixed dataset, presented with 95% confidence intervals (CI, α = 0.05).

Ta—Training Set; Ts—Test Set.

Algorithm
Accuracy (%) Precision (%) Recall (%) F-1 score (%)

Ta Ts CI Ta Ts CI Ta Ts CI Ta Ts CI

VGG16 95 91 93 ± 1.4 95 93 94 ± 1.3 95 91 93 ± 1.4 95 92 93.5 ± 1.34

InceptionResNetV2 94 93 93.5 ± 1.34 95 93 94 ± 1.3 94 93 93.5 ± 1.34 94 93 93.5 ± 1.35

ResNet50 88 85 86.5 ± 1.86 87 85 86 ± 1.89 88 85 86.5 ± 1.86 87 85 86 ± 1.89

MobileNetV2 99 91 95 ± 1.2 99 92 95.5 ± 1.13 99 91 95 ± 1.2 99 91 95 ± 1.2

ResNet101 88 86 87 ± 1.83 88 87 87.5 ± 1.80 88 86 87 ± 1.83 88 86 87 ± 1.83

VGG19 94 91 92.5 ± 1.43 94 92 93 ± 1.4 94 91 92.5 ± 1.43 94 92 93 ± 1.4

To better understand the overall performance of each model during the pre-

diction stage on the test set, Figure 7.2 presents a set of confusion matrices.

The test set contained a combination of 519 chest X-ray and CT scan images

(122 COVID-19 and 397 Non-COVID-19). It can be detected that MobileNetV2

and VGG19 correctly classified the maximum number of COVID-19 and non-

COVID-19 patients, whereas ResNet50 expressed the worst performance with the

maximum number of misclassified samples compared to any other model.

270

Figure 7.2: Confusion matrices of all models applied to the mixed test dataset.

The performance of all models during training and testing, per each epoch, are

presented in Figure 7.3. In this case, the accuracy of VGG16, MobileNetV2, and

VGG19 models reached 100% while loss decreased by nearly 100% at epoch 35.

271

Figure 7.3: Plots of model accuracy and loss following each epoch

applied to both training and testing datasets; TL = training loss; VL

= validation loss; TA = training accuracy; VA = validation accuracy.

7.6.1 AUC-ROC Curve

In Figure 7.4, measures of the Area Under the Curve (AUC) of the Receiver Char-

acteristic Operator (ROC) are plotted for each model with the True Positive Rate

(TPR) in the vertical axis and False Positive Rate (FPR) in the horizontal axis,

applied to the test set. MobileNetV2 shows the best performance (AUC=0.816),

while ResNet101 shows the worst (AUC=0.590).

272

Figure 7.4: AUC-ROC curves for all models using the test set.

Figure 7.5 shows the output after computing the superpixels on sample CT

scan and chest X-ray images.

273

Figure 7.5: Representation of superpixels on sample images of chest

X-rays and CT scans.

Additionally, Figure 7.6 shows different image conditions in terms of perturba-

tion vectors and perturbation images. Figure 7.6 illustrates that the number of

features varies with the number of perturbations.

274

Figure 7.6: Example of the varying number of features as the number

of perturbations changes.

The distance metric or cosine metric with a kernel width of 0.25 is used to

understand the distance difference between each perturbation and the original

image. A linear model is used for the proposed model’s explanations. Additionally,

the coefficient was found for every superpixel in the picture, which represents

the strength of a superpixel’s impact on predicting COVID-19 patients. Finally,

the top features (only four features are considered for the purposes of this study)

are sorted to determine the most essential superpixel, as shown in Figure 7.7.

The features and the prediction were addressed together during this study. As

shown in Figure 7.7, models, such as VGG16, MobileNetV2, and VGG19 trained

with CT scan images incorrectly classified COVID-19 patients as Non-COVID-19

patients. On the other hand, while analyzing combined models, ResNet50 shows

the worst performance by misclassifying both CT and chest X-ray images.

275

Figure 7.7: Top four features that enabled the identification of COVID-

19 patients from CT-scan-only and mixed datasets.

7.7 Discussion

In this study, six different DL-based models were proposed and evaluated for

their ability to distinguish between patients with and without COVID-19, with

demonstrated advantages of tests conducted on combined datasets, comprising

both CT scan and X-ray images (as opposed to a singular point of reference with

only CT scans or X-rays). Among all proposed models, MobileNetV2 achieved an

accuracy ranging between 94–99% depending on the dataset applied. A summary

of the accuracy of all six models, considering the CT scan, chest X-ray, and the

mixed dataset, is presented in Table 7.4. Other than MobileNetV2, the VGG16

model demonstrates higher performance on the chest X-ray dataset by achieving

an accuracy of 98.5% ± 1.19%, which outperforms many studies in the current

276

literature. For example, Wang and Wong (2020) and Khan et al. (2020) used

CNN-based approaches to detect the onset of the COVID-19 disease using chest X-

ray images and achieved an accuracy of 83.5% and 89.6%, respectively (L. Wang &

Wong, 2020; Khan et al., 2020). In comparison, as mentioned earlier, the proposed

VGG16 and MobileNetV2 models achieved an accuracy of approximately 98.5%

± 1.19%.

Table 7.4: Top-performing models in terms of accuracy and different

datasets adopted.

Dataset Datasize Model Accuracy (%)

Chest X-ray 400 VGG16 98.5 ± 1.191

MobileNetV2 98.5 ± 1.191

CT-Scan 400 MobileNetV2 94 ± 2.327

Mixed-data 2591 MobileNetV2 95 ± 1.12

In Table 7.5, the accuracy of different DL models used in previous studies

(where CT scan images were utilized for the experiment) was compared to the

models of this study, taking into account various database sizes. Here, an accuracy

of 98.5% ± 1.19% was achieved using 400 images with the MobileNetV2 model.

These results outperform the referenced literature, which used large datasets

containing 4356 and 1065 images, respectively (L. Li et al., 2020a; S. Wang,

Kang, et al., 2021). In contrast, Butt et al. (2020) used a CNN-based approach,

277

specifically a ResNet23 model to detect the onset of COVID-19 disease using CT

scan images and achieved an accuracy of around 86.7% (Z. Xu et al., 2020). Jin et

al. (2020) used 1882 CT-scan images and achieved an accuracy of 94.1% (C. Jin

et al., 2020).

Table 7.5: Comparison between previous studies found in the literature

and our present study.

References Model Dataset Size Accuracy

(L. Li et al., 2020a) ResNet50 4356 90%

(S. Wang, Kang, et al., 2021) Inception-M 1065 74%

(J. Zhang, Xie, Li, et al., 2020) ResNet50 1531 90%

(Song et al., 2020) ResNet50 274 86%

(J. Chen et al., 2020) UNet++ 133 98.5%

(C. Jin et al., 2020) CNN 1882 94.1%

(Butt, Gill, Chun, & Babu, 2020) ResNet23 618 86.7%

This study MobileNetV2 400 98.5% ± 1.19%

It is relevant to emphasize that none of the referenced literature considered a

mixed dataset, which hinders a direct comparison with the results of this study.

However, preliminary computational results on a mixed dataset indicated that

a modified MobileNetV2 model is capable of differentiating between patients

with COVID-19 symptoms with an accuracy of 95% ± 1.12%. Additionally,

analyzing the proposed models with LIME illustrated MobileNetV2’s contribution

278

to successfully characterizing the onset of COVID-19 by recognizing essential

features in CT/X-ray images.

The primary goal of this study was to develop an integrated system that can

detect patients with COVID-19 symptoms from a dataset containing CT scan,

chest X-ray, or a combination of CT scan and chest X-ray images of potential

COVID-19 patients. At this stage, the scope of the current literature in this field

of work remains narrow and often does not consider combined CT-scan and chest

X-ray image datasets with explainable AI. Here, predicted features were identified

with LIME to understand the models’ decision-making process.

Going forward, results of studies such as the one herein presented must be

verified in consultation with healthcare experts. In addition, future work can take

advantage of evaluating how other interpretable models could be used with mixed

datasets in an attempt to validate the overall predictions presented here.

7.8 Overall Findings

This study aimed to investigate the performance of DL-based models on imbalanced

data in healthcare diagnostics, specifically addressing how imbalanced data affect

the performance of DL-based models. The findings suggest that the proposed

TL-based models, VGG16 and MobileNetV2, exhibited consistent performance on

both imbalanced chest X-ray data (Chapter 6) and mixed data used in COVID-

19 patient diagnosis, as found in this chapter. However, for imbalanced mixed

data, the models ResNet50 and ResNet101 are not ideal choices, although their

279

performance can be improved with additional hyper-tuning, which is beyond the

scope of this study.

These results highlight the importance of developing TL-based models that

can learn from mixed datasets and improve the interpretability of DL models using

LIME in the context of COVID-19 diagnosis. The use of LIME also enabled the

explanation of the reasoning behind the proposed TL-based models’ predictions.

The top features that played a crucial role in the models’ final prediction could

be matched with the segmented and infected areas, which will be considered in

future studies. Future research could also focus on developing other interpretable

models with mixed datasets to validate the overall predictions presented in this

study and verify the results with healthcare experts.

7.9 Conclusion and Future Works

This study builds upon the research conducted in Chapter 6 and aims to address

further the research question of “How does imbalanced data affect the performance

of DL-based models?”. Specifically, this study focuses on the application of DL-

based models for diagnosing COVID-19 patients using both chest X-ray and

CT-scan images, with a particular emphasis on imbalanced mixed datasets. The

study evaluates six different TL-based models and proposes using LIME to enhance

the interpretability of the models. The findings of this study demonstrate the

potential of TL-based models, such as VGG16 and MobileNetV2, to perform well

on both imbalanced chest X-ray data and mixed data used in COVID-19 patient

280

diagnosis. However, the study also identifies limitations in the performance of

some models on imbalanced mixed datasets and highlights the need for future

work to address these challenges.

Additionally, future work could focus on developing user-friendly mobile apps

and web-based screening systems that employ VGG16 and MobileNetV2 models

for COVID-19 screening, incorporating additional data (i.e., age, gender, health

conditions), and exploring other image processing techniques, such as fuzzy entropy

and divergence, to improve the recognition of edges and contours in X-ray and

CT-scan images.

281

Chapter 8

Defect Analysis of 3D Printed Cylinder Object

Using Transfer Learning Approaches

8.1 Introduction

Additive Manufacturing (AM) is a rapidly growing industry that involves print-

ing three-dimensional (3D) objects using Computer-Aided Design (CAD) mod-

els (F. Chen, Mac, & Gupta, 2017; Hangge, Pershad, Witting, Albadawi, & Oklu,

2018; Pucci, Christophe, Sisti, & Connolly Jr, 2017). During the printing process,

defects can arise due to various reasons, such as deviations from design guidelines

or errors in the printing process (J. Liu et al., 2018). Detecting these defects

in real time is crucial to ensure the quality of the final product (Trinks, 2021).

However, identifying defects in 3D printed products can be challenging due to

the complex nature of the images and the imbalanced nature of the data, where

the number of defective products is often significantly smaller than the number of

non-defective ones (DebRoy, Mukherjee, Wei, Elmer, & Milewski, 2021; S. Guo

et al., 2022). Machine Learning (ML) based image classification techniques have

shown great potential in addressing such challenges. Therefore, by addressing

the primary research question RQ3, which is “How does imbalanced data affect

the performance of DL-based models?” in the context of defect analysis in AM,

this chapter aims to provide valuable insights into the performance of Transfer

Learning (TL) models.

282

8.2 Motivation

The motivation behind this study is to evaluate the performance of TL approaches

in the context of defect analysis in Additive Manufacturing (AM). With the

advancements in AM technology, detecting defects during the printing process

has become an essential issue to ensure the quality of the printed product. Image

classification using TL models has shown promising results in various image-based

applications. However, in the context of AM, challenges include imbalanced data,

variability in printing conditions, and complexity in the defect patterns (Zeiser,

Özcan, Kracke, van Stein, & Bäck, 2023; Westphal & Seitz, 2022). Therefore,

evaluating the performance of TL models, such as VGG16, VGG19, ResNet50,

ResNet101, and MobileNetV2, is essential to determine their effectiveness in

detecting defects in 3D printed products.

Therefore, this study aims to evaluate and compare the performance of various

TL models on a dataset of 3D-printed product images to determine the best

approach for defect analysis in additive manufacturing. The study aims to provide

insights into the effectiveness of TL models and their potential contribution to

the field of additive manufacturing. By identifying the best TL model for defect

analysis, this research is expected to enhance the quality of 3D-printed products

and promote the advancement of the field.

283

8.3 Chapter Outline

The remainder of the chapter is organized as follows: The methodology of the

experiment is described in detail in Section 10.5. The results of the experiment

are presented in Section 10.6. A brief discussion of the study’s findings is provided

in Section 10.7, and the overall conclusions of the research and potential avenues

for future research are summarized in Section 10.8.

8.4 Methodology

This section outlines the procedure for acquiring the 3D printing images, the

TL model used in this study, the experimental setup, and the evaluation metrics

employed to assess the model’s performance.

8.4.1 Data Collection

The dataset was generously provided by the Smart Materials and Intelligent Sys-

tems (SMIS) Laboratory. It comprises a collection of 3D printed prototype images

of cylindrical objects, some of which contain defects while others are non-defective.

Figure 8.1 displays a selection of typical images of cylindrical objects from the

dataset, including both defective and non-defective examples. Table 8.1 provides

an overview of the allocation of data for training and testing of each of the CNN

models that were investigated. In both studies, six different DL approaches were

investigated: VGG16 (Simonyan & Zisserman, 2014), InceptionResNetV2 (Szegedy

et al., 2017), ResNet50 (Akiba et al., 2017), MobileNetV2 (Sandler et al., 2018),

284

ResNet101 (K. He et al., 2016) and VGG19 (Simonyan & Zisserman, 2014).

Table 8.1: Allocation of data for training and testing of TL models

used in this study.

Dataset Label Train Test Total

Study One
Defect 105 31 136

Non-defect 112 24 136

Study Two
Defect 736 211 947

Non-defect 1677 393 2070

Figure 8.1: Representative samples of 3D-printed product images

obtained from SMIS, which have been utilized in this research.

285

8.4.2 Experimental Setup

The experiment was carried out with the same computer and software used

explicitly for all the experiments mentioned in this dissertation which is already

addressed in Chapter 3, Section 3.2. The evaluation metrics employed to measure

the performance include accuracy, precision, recall, F1-score, sensitivity, and

specificity. The formula of accuracy, precision, recall, and F1-score can be found

in Chapter 3, Section 3.2.

8.5 Results

8.5.1 Study One

Table 9.1 presents the performance of six different DL algorithms, namely VGG16,

InceptionResNetV2, ResNet50, ResNet101, MobileNetV2, and VGG19, on the

train set. The highest performance in terms of all four metrics was achieved by

VGG16 and MobileNetV2, both with perfect scores. InceptionResNetV2 also

performed well, averaging 99% across all metrics. On the other hand, ResNet50

had the lowest performance among the models, with an average F1-score of 0.34.

286

Table 8.2: Computational results of the various Transfer Learning

models used in Study One on the train set.

Algorithm Accuracy Precision Recall F1-score

VGG16 1 1 1 1

InceptionResNetV2 .99 .99 .99 .99

ResNet50 0.51 0.25 0.5 0.34

ResNet101 0.86 0.87 0.85 0.85

MobileNetV2 1 1 1 1

VGG19 0.98 0.98 0.98 0.98

The confusion matrix on the train data, as shown in Figure 8.2 for Study

One, indicates the true positive, false positive, false negative, and true negative

values for each algorithm. The results show that VGG16, InceptionResNetV2,

and MobileNetV2 had perfect classification accuracy, with 109, 110, and 110 true

positive values, respectively. ResNet50 had the highest number of false negative

values, with 106, and a relatively low number of true positives, with only 110.

ResNet101 had 27 false negative values but a higher number of true positives than

ResNet50, with 106. Finally, VGG19 had the same number of false negatives as

ResNet50, with 0, but a higher number of false positives, with 4. Overall, the

confusion matrix on the train data shows that VGG16, InceptionResNetV2, and

287

MobileNetV2 performed the best, while ResNet50 and VGG19 had lower accuracy

due to higher false negative and false positive values, respectively.

Figure 8.2: Confusion matrices of the different Transfer Learning

models used during Study One on the train set.

Table 8.3 presents the results of Study One model performance on the test set.

The table shows that VGG16, InceptionResNetV2, and MobileNetV2 achieved

perfect scores of 1 for all evaluation metrics, while ResNet50 had the lowest

accuracy, precision, and F1-score. ResNet101 achieved high performance with

an accuracy of 0.85 and an F1-score of 0.85, while VGG19 had a high accuracy

of 0.98 and an F1-score of 0.98. These results demonstrate that different TL

algorithms perform differently on the same dataset.

288

Table 8.3: Computational results of the various Transfer Learning

models used in Study One on the test set.

Algorithm Accuracy Precision Recall F1-score

VGG16 1 1 1 1

InceptionResNetV2 1 1 1 1

ResNet50 0.47 0.24 0.50 0.32

ResNet101 0.85 0.87 0.86 0.85

MobileNetV2 1 1 1 1

VGG19 0.98 0.98 0.98 0.98

Figure 8.7 shows the confusion matrix on the test data for Study One. The

algorithms VGG16, InceptionResNetV2, and MobileNetV2 achieved perfect accu-

racy with true positives (TP) of 26 and no false positives (FP) or false negatives

(FN), while ResNet50 had a TP of 26 but a high number of false negatives (FN) at

29. ResNet101 had a slightly lower performance than VGG16, InceptionResNetV2,

and MobileNetV2, with a TP of 25 and 1 FP, and 7 FN. VGG19 had a TP of 25

and 1 FP but no FN.

Figure 8.4 demonstrates the top two DL models’ AUC scores on the test set.

289

Figure 8.3: Confusion matrices of the different Transfer Learning

models used during Study One on the test set.

Figure 8.4: AUC score of two well performed TL models (a) VGG16

and (b) InceptionResNetV2.

Figure 8.5 compares the In Figure 8.5, the performance of VGG16 and ResNet50

290

models during the training phase is compared. The results show that VGG16

continuously improved train accuracy and reduced train loss until epoch 20. At the

same time, ResNet50 stopped showing any further improvements in performance

after only ten epochs.

Figure 8.5: Training and validation performance throughout the train-

ing of (a) VGG16 and (b) ResNet50 during Study One. TA – training

accuracy; VA – validation accuracy; TL – training loss; VS – validation

loss.

8.5.2 Study Two

Table 8.4 presents the results of Study Two model performance on the train

set. The best-performing models on the train set in Study Two are VGG16,

InceptionResNetV2, MobileNetV2, and VGG19, which achieved perfect scores on

all evaluation metrics. The worst-performing model is ResNet50, which achieved

the lowest accuracy, precision, recall, and F1-score scores. ResNet101 showed

overall good performance, with a score of 0.85 for accuracy and F1-score and

precision and recall scores of 0.87 and 0.78, respectively.

291

Table 8.4: Computational results of the various Transfer Learning

models used in Study Two on the train set.

Algorithm Accuracy Precision Recall F1-score

VGG16 1 1 1 1

InceptionResNetV2 1 1 1 1

ResNet50 .8 .89 .69 .71

ResNet101 0.85 0.87 0.78 0.8

MobileNetV2 1 1 1 1

VGG19 1 1 .99 1

Figure 8.6 shows the confusion matrix on the train data for Study Two.

Among the algorithms, InceptionResNetV2 and MobileNetV2 had the highest

number of TP, 766 each, while ResNet50 had the lowest, with only 288 TP.

InceptionResNetV2 had the fewest FP, with 0, while ResNet50 had the most,

with 478. ResNet101 had the highest number of FN, with 45, while VGG16,

InceptionResNetV2, MobileNetV2, and VGG19 had none.

Overall, InceptionResNetV2 and MobileNetV2 achieved the best performance,

with high numbers of TP and TN and no FN or FP. ResNet50 had the lowest

performance, with a low number of TP and a high number of FP.

Table 8.5 presents the results of Study Two model performance on the test set.

292

Figure 8.6: Confusion matrices of the different Transfer Learning

models used during Study Two on the train set.

The MobileNetV2, VGG16, InceptionResNetV2, and VGG19 models achieved the

best results, with perfect accuracy, precision, recall, and F1-score. The ResNet50

and ResNet101 models showed lower performance in terms of accuracy, precision,

recall, and F1-score, with the ResNet50 performing the worst among all models.

293

Table 8.5: Computational results of the various Transfer Learning

models used in Study Two on the test set.

Algorithm Accuracy Precision Recall F1-score

VGG16 1 1 1 1

InceptionResNetV2 1 1 1 1

ResNet50 0.83 0.9 0.72 0.75

ResNet101 0.86 0.88 0.79 0.81

MobileNetV2 1 1 1 1

VGG19 1 1 .99 1

Figure 8.7 shows the confusion matrix on the test data for Study Two. The

figure shows that MobileNetV2 had the highest TP and TN, equaling 181, indi-

cating that it correctly classified all positive and negative instances. VGG16 and

InceptionResNetV2 also performed well, with TP and TN equaling 180 for each

algorithm. ResNet50 had the highest number of FP, with 101, and the lowest

number of TP, with only 80. ResNet101 had a lower number of FP (72) but a

higher number of FN (12) than other models. VGG19 had the second-highest

number of TN, equaling 423, but had 2 FP. Overall, MobileNetV2 showed the best

performance, while ResNet50 and ResNet101 had relatively lower performance

than other algorithms.

294

Figure 8.7: Confusion matrices of the different Transfer Learning

models used during Study Two on the test set.

Figure 8.8 illustrates the AUC score of VGG16 and ResNet50 models during

Study Two. From the figure, it can be observed that the performance of VGG16

is nearly perfect, whereas the performance of ResNet15 demonstrates significantly

poor performance.

Figure 8.8: AUC score of (a) VGG16 and (b) ResNet50.

295

Figure 8.9 compares the performance of VGG16 and ResNet50 models during

the training phase. The figure indicates that VGG16 constantly improved train

accuracy and reduced train loss until epoch 20, whereas ResNet50 ceased showing

further performance improvements after only ten epochs.

Figure 8.9: Training and validation performance throughout the train-

ing of (a) VGG16 and (b) ResNet50 during Study Two. TA – training

accuracy; VA – validation accuracy; TL – training loss; VS – validation

loss.

8.6 Discussions

The current study investigated how deep learning approaches impact imbal-

anced data analysis. Six deep learning algorithms - VGG16, InceptionResNetV2,

ResNet50, ResNet101, MobileNetV2, and VGG19 - were evaluated on an imbal-

anced data classification task. The results showed that VGG16 and MobileNetV2

achieved perfect scores on all four evaluation metrics, while InceptionResNetV2

performed well, averaging 99% across all metrics. In contrast, ResNet50 had the

lowest performance among the models, with an average F1-score of 0.34.

296

The confusion matrix analysis further supported these findings, showing that

VGG16, InceptionResNetV2, and MobileNetV2 had perfect classification accuracy

on the train data. In contrast, ResNet50 and VGG19 had lower accuracy due

to higher false negative and false positive values. Moreover, on the test data for

Study Two, MobileNetV2 demonstrated the best performance, correctly classifying

all positive and negative instances. ResNet50 had the highest number of false

positives and the lowest number of true positives, while ResNet101 had a higher

number of false negatives.

Overall, the findings suggest that deep learning algorithms can perform well on

imbalanced data classification tasks, but their performance may vary depending

on the specific algorithm and the imbalance level. While some algorithms, such as

MobileNetV2, can achieve high classification accuracy, others, such as ResNet50,

may struggle with such tasks due to higher false positive and false negative

rates. The limitations of this study include the use of a specific dataset and an

imbalanced data classification task, which may not generalize to other datasets or

tasks. Future research could investigate the impact of various DL algorithms on

different imbalanced data classification tasks and explore ways to optimize their

performance.

8.6.1 Models Prediction

Figure 8.10 illustrates the model’s failure to detect the defect in the image of the

3D-printed cylinder. Based on the results presented in Figure 8.10, it is evident that

all three models failed to locate the defect in the 3D-printed cylinder accurately.

297

Although VGG16 and MobileNetV2 produced bounding boxes that were relatively

close to the defect, they were still unable to localize it accurately. These models

show little promise and could be used for further investigation. However, similar

poor performance was also observed for ResNet101, InceptionResNetV2, and

VGG19, indicating that these models may not be well-suited for defect localization

in 3D printed objects. These differences in performance may be attributed to

variations in the models’ architecture and how they handle spatial features.

Nonetheless, it is essential to note that despite these differences, all models failed

to locate the defect accurately, highlighting the challenges associated with defect

localization in 3D printed objects. These findings emphasize the need for further

investigation into the factors contributing to model failures and suggest that

optimizing model architecture and training strategies may improve localization

accuracy and develop more effective solutions for defect detection and classification

in additive manufacturing processes.

Figure 8.10: Failure to accurately locate the defect in the 3D printed

cylinder of (a) VGG16, (b) ResNet50, and (d) MobileNetV2.

298

8.7 Conclusion

The present study investigated the impact of DL-based approaches on imbal-

anced data analysis using six popular TL-based DL methods, including VGG16,

InceptionResNetV2, ResNet50, MobileNetV2, ResNet101, and VGG19. The ex-

periments were conducted on both small balanced and large imbalanced datasets

containing images of the 3D-printed cylinder.

Based on the experiment, it can be answered that even though the performance

of TL-based methods on balanced and imbalanced data is very high, the existing

popular TL-based approaches failed to locate the potential area, such as defect

regions in cylinder images, which indicates that imbalanced data may affect

TL-based models’ performance. Additionally, VGG16 and MobileNetV2 showed

promising results and are a good choice for further investigation.

However, additional experiments with larger and different datasets are neces-

sary to validate the findings. In future work, it is planned to conduct experiments

with various datasets and propose advanced TL-based approaches that may help

overcome the current challenges observed during this experiment. Ultimately, the

study highlights the need for further investigation into the factors contributing to

model failures and developing more effective solutions for defect detection and

classification in additive manufacturing processes.

299

Chapter 9

Defect Localization Using Region of Interest and

Histogram-Based Enhancement Approaches

9.1 Introduction

Localizing specific regions in computer vision is relatively challenging compared

to classifying objects (Bappy, Roy-Chowdhury, Bunk, Nataraj, & Manjunath,

2017; Zou, Chen, Shi, Guo, & Ye, 2023). While Convolutional Neural Network

(CNN) based approaches can easily classify between two classes, identifying specific

regions can be difficult for the same CNN model (Wahab, Khan, & Lee, 2017; Xue

& Li, 2018). In Chapter 8, it was observed that the proposed Transfer Learning

(TL)-based approach could accurately classify between defect and non-defect 3D

printed cylinder images. However, the model often faced difficulty in localizing the

specific region of the defect. This failure could be attributed to the model learning

from unnecessary regions. Therefore, pre-processing steps, such as identifying the

defect regions from the cylinder image, are crucial to improving the performance

of CNN models. The identification of defect regions can significantly reduce the

cost and time required for Additive Manufacturing (AM) (Z. Jin, Zhang, Demir,

& Gu, 2020; B. Wu et al., 2018).

Finally, interpretation of model predictions is crucial to understand the be-

havior of the proposed models. To accomplish this, Local Interpretable Model-

Agnostic Explanations (LIME) and Gradient-weighted Class Activation Mapping

300

(Grad-CAM) approaches will be applied. These techniques enable the identifi-

cation of important features in an input image that contributed to the model’s

prediction. By generating heatmaps, researchers can gain insight into how the

model arrived at its decision, which can provide an understanding of the model’s

inner workings.

9.2 Motivation

The motivation behind this study is to address the challenges of identifying the

defect region in 3D-printed products by incorporating image processing techniques,

such as region of interest and histogram equalizer, with Transfer Learning (TL)

approaches. While TL-based models can easily classify defect and non-defect

cylinders, localizing the specific defect region can be challenging. This limitation

can be attributed to the model’s learning from unnecessary regions, leading to

inefficiencies in the production process.

Therefore, this study proposes to update the existing model and evaluate its

performance against existing CNN models. Specifically, this study focuses on

updating the proposed modified VGG16 model and calculating its efficiency in

terms of computational complexity. By localizing the defect region in 3D-printed

cylinders, this study is expected to improve the quality of 3D-printed products

and reduce production and time costs. The proposed approach will provide an

effective solution for industries adopting cost-friendly AI-based AM techniques.

This thesis aims to provide valuable insights into the incorporation of image

301

processing techniques and TL-based models for identifying the defect regions in

3D-printed products. The findings of this study will be helpful to researchers,

practitioners, and industries seeking to optimize their production processes and

increase their competitiveness in the market.

9.3 Chapter Outline

The remainder of the chapter is organized as follows: The methodology of the

experiment is described in detail in Section 10.5. The results of the experiment

are presented in Section 10.6. A brief discussion of the study’s findings is provided

in Section 10.7, and the overall conclusions of the research and potential avenues

for future research are summarized in Section 10.8. The following chapter is

organized as follows: Section 10.4 provides a brief background on the potential

reasoning behind the proposed models’ inability to identify the defect regions.

Section 10.5 outlines the methodology of the experiment in detail. The results

of the experiment are presented in Section 10.6, followed by a discussion of the

study’s findings in Section 10.7. Finally, Section 10.8 summarizes the overall

conclusions of the research and suggests potential avenues for future research.

9.4 Background

The traditional TL models have been found to face difficulty in correctly localizing

the object in images due to the challenge of identifying specific regions of the

image. In Chapter 8, an imbalanced cylinder image dataset containing both defect

302

and non-defect cylinder images was used, and it was found that the proposed

modified VGG16 and MobileNetV2 models achieved more than 90% accuracy

during classification. However, these models often failed to identify the defect

region of the cylinder images. The dataset consisted of images captured at different

stages of the 3D printing process, with each image having varying sizes, regions,

and pixel densities, as illustrated in Figure 9.1. Figure 9.1(a) shows the cylinder

image at the early stage of printing, while Figure 9.1(b) displays the complete

cylinder image. It can be observed that for the TL model in Figure 9.1(a), there

are many dark and unnecessary regions, while in Figure 9.1(b), the entire cylinder

image is present, which allows the model to learn more in detail. As a result, such

discrepancies and unnecessary regions may cause the proposed TL-based models

to be unable to identify the defect regions. This differs from a steady chest X-ray

image used in Chapter 6, where the size and region are constant, making it more

challenging to identify the defect region in 3D-printed cylinder images.

Figure 9.1: Sample cylinder image with defect (a) early stage and (b)

final stage of 3D printing.

303

9.5 Research Methodology

The experimental procedure for this study has been kept consistent with the

methodology used in Chapter 6 and 8. A comprehensive description of the dataset

used in this study can be found in Chapter 8.

9.5.1 Proposed Appraoches

The proposed approach in this study involves three pre-processing steps: Region

of Interest (ROI) selection, Histogram equalization (HE), and Details enhancer

(DE).

9.5.1.1 Region of Interest (ROI)

ROI selection is used to identify and extract the region of interest from the input

image. This technique involves selecting an image’s specific area or region to

analyze or modify, allowing for more efficient image processing. The ROI is

determined by calculating the mean intensity value of the image and selecting

a specific threshold value for the selected region. The mathematical formula for

ROI selection can be represented as (Erdem, 2020; Girshick, 2015):

IROI =

I(x, y), if I(x, y) > T 0,

otherwise

(9.1)

where IROI is the ROI selected from the input image I, (x, y) represents the

pixel coordinates of the image, and T is the threshold value for the selected region.

304

9.5.1.2 Histogram Equalization (HE)

The second pre-processing step, HE, is a widely-used image processing technique

that enhances images’ contrast by redistributing pixel values. This technique

improves the visual quality of images by normalizing the intensity levels, which

improves image detail and clarity. The mathematical formula for HE can be

represented as (Joshi, 2022; Dadhich, 2018):

g(i, j) =
CDF (f(i, j))− CDFmin

(MN − CDFmin)
× (L− 1) (9.2)

where g(i, j) is the output image after HE, f(i, j) is the input image, CDF

is the cumulative distribution function, CDFmin is the minimum cumulative

distribution function value, MN is the total number of pixels in the image, and

L is the maximum pixel intensity value.

9.5.1.3 Details Enhancer (DE)

The third pre-processing step, DE, is a technique used to enhance the details of

an image by increasing its contrast and sharpness. This technique is particularly

useful when dealing with low-contrast images, as it can help to bring out more

subtle details that might otherwise be difficult to see. The mathematical formula

for DE can be represented as (Dadhich, 2018; Bansal, 2022):

g(i, j) = (1 + k · (f(i, j)− 128)) · f(i, j) (9.3)

where g(i, j) is the output image after DE, f(i, j) is the input image, and k is

a constant value that determines the degree of enhancement.

305

These pre-processing steps are then combined with the proposed modified

VGG16 CNN architecture and tested on a designated dataset. These pre-processing

techniques are expected to improve the accuracy and efficiency of the proposed

model by enhancing the input image data and enabling more accurate defect

region identification in 3D-printed cylinder images.

The pre-processing steps are integrated with the proposed CNN models as

illustrated in Figure 9.2. In the figure, First formula The first formula calculates

the cumulative distribution function of an input image denoted as Sk. It uses

a transformation function T to map pixel intensities from the input image to

the output image. The formula uses the k-th gray level, rk, and the normalized

histogram of the input image, Pin(rj), where L represents the total number of

possible intensity levels, M represents the number of rows of the image, and N

represents the number of columns of the image. It calculates the mapping function

for histogram equalization, which redistributes the pixel intensity values in an

image to produce a uniform histogram. The second formula calculates the average

length of a set of line segments. It uses the length of the i-th line segment, ai,

the number of occurrences of the j-th length in the set of line segments, lj, and

the total number of line segments, A. The formula multiplies each line segment

length, ai, by the number of occurrences, lj, and adds up these products for all

lengths, j. This gives us the sum of the products of the length and frequency of

each line segment, which is then divided by the total number of line segments, A,

to give the average length of the set of line segments.

306

Figure 9.2: Preprocessing steps to identify defect regions before train-

ing the proposed CNN model.

The statistical analysis evaluation involved applying metrics such as accuracy,

precision, recall, and F1-score, which were adopted from the methodology pre-

sented in Chapter Two. Furthermore, the experimental setup was kept consistent

with the methodology presented in Chapter Two, except for the changes made to

the statistical analysis.

9.5.2 Model Interpretation

In order to comprehend and explicate the proposed models’ prediction mechanisms,

various model interpretation approaches are being employed. In previous chapters,

i.e., chapters 5 and 7, Local Interpretable Model-agnostic Explanations (LIME)

has been utilized as an interpretable approach. However, in this study, the

Gradient-weighted Class Activation Mapping (Grad-CAM) visualization approach

has also been considered in addition to LIME (Selvaraju et al., 2017). One of the

main reasons for using both interpretable approaches is to understand how each

interpretation technique interprets the proposed model’s predictions. In this way,

307

it will also help to evaluate whether the interpretation techniques are trustworthy

or not. A detailed explanation of LIME has already been discussed in Chapter 7.

In this section, the Grad-CAM visualization approach will be discussed.

Grad-CAM approach is a visualization technique that highlights the regions

of an image that contribute most to the prediction made by a CNN model. The

method involves generating the class activation map of a model, which is obtained

by computing the gradient of the target class output with respect to the feature

maps of the last convolutional layer. The importance of the approach lies in its

ability to provide interpretability and explainability of the model’s prediction,

making it possible to understand how the model arrived at its decision. This can

be particularly helpful in situations where there is a need to justify the model’s

output. Additionally, the Grad-CAM approach can be used to identify areas in

the image that require further attention or investigation, which can help improve

the overall accuracy of the model (Selvaraju et al., 2016, 2017). In summary, the

Grad-CAM approach is a powerful tool that provides insight into a CNN model’s

inner workings and helps improve image classification. The formula of Grad-CAM

can be acquired as follows (Selvaraju et al., 2017):

Lc
Grad−CAM ≈ ReLU

(∑
k

αc
kAk

)
(9.4)

Here, Lc
Grad−CAM is the class activation map for class c, ReLU is the rectified

linear unit activation function, αc
k is the weight of the kth feature map for class c,

and Ak is the kth feature map of the last convolutional layer of the CNN. The

Grad-CAM equation is used to generate a heatmap that indicates the regions of

308

an input image that were most important for a CNN’s prediction of a particular

class. By visualizing these heatmaps, researchers can gain insight into how a CNN

is making its predictions and identify potential areas for improvement.

9.6 Results

9.6.1 Study One

Table 9.1 shows the performance of different proposed CNN models, including

Modified VGG16, ROI Selection (ROIN), ROI Selection with Histogram Equal-

ization (ROIHEN), and ROI Selection with Histogram Equalization and Details

Enhancer (ROIHEDEN) on the train and test set of the 3D printed cylinder

image small dataset used in this study. The results show that all the proposed

approaches achieve promising results, with accuracies ranging from 0.94 to 1

on the test set. Additionally, all the models achieved perfect precision, recall,

and F1-score values, indicating no false positives or negatives in identifying the

image’s defect region. The sensitivity of all the models was also 1, indicating

that all models correctly classified the defect region as positive. Furthermore, the

specificity of all the models was also high, with values ranging from 0.8750 to 1,

indicating a low false-positive rate.

309

Table 9.1: Proposed different CNN model’s performance on the train

and test set of the small dataset used during Study One.

Model
Accuracy Precision Recall F1-score Sensitivity Specificity

Train Test Train Test Train Test Train Test Train Test Train Test

Modified VGG16 0.94 1 0.94 1 0.94 1 0.94 1 1 1 0.8750 1

ROIN 0.97 1 0.97 1 0.97 1 0.97 1 1 1 0.9464 1

ROIHEN 0.96 1 0.96 1 0.96 1 0.96 1 1 1 0.9196 1

ROIHEDEN 0.96 1 0.96 1 0.96 1 0.96 1 1 1 0.9196 1

Figure 9.3 illustrates the confusion matrices of the proposed ROIHEDEN

model on both the train and test sets. The figure shows that the proposed model

misclassified only 9 samples from the train set (Figure 9.3(a)) and zero samples

from the test set (Figure 9.3(b)). The performance of other models is presented

in Appendix .4.1.

Figure 9.3: Confusion matrices of ROIHEDEN on (a) train and (b) test set.

In Figure 9.4, the performance of modified VGG16, ROIN, ROIHEN, and

310

ROIHEDEN models during the training phase is compared. The results show that

all of the proposed models continuously improved train accuracy and reduced

train loss until epoch 30.

Figure 9.4: Training and validation performance throughout the train-

ing of (a) modified VGG16, (b) ROIN, (c) ROIHEN, and (d) ROI-

HEDEN during Study One. TA – training accuracy; VA – validation

accuracy; TL – training loss; VL – validation loss.

9.6.2 Study Two

Table 9.2 presents the performance of the proposed CNN models on the train

and test sets of the large dataset used in Study Two. The evaluation metrics

used include accuracy, precision, recall, F1-score, sensitivity, and specificity. The

311

models tested are the Modified VGG16, ROIN, ROIHEN, and ROHEDEN. From

the table, it can be observed that the Modified VGG16 model achieved the highest

accuracy and F1-score on both the train and test sets, while the ROIN model

achieved the lowest accuracy and F1-score. However, the ROHEDEN model

performed better than the Modified VGG16 model in terms of specificity on

the test set. Overall, the results demonstrate that the proposed approaches of

ROI selection, histogram equalization, and details enhancer can improve the

performance of CNN models in detecting defects in 3D-printed cylinder images.

Table 9.2: Proposed different CNN model’s performance on the train

and test set of the large dataset used during Study Two.

Model
Accuracy Precision Recall F1-score Sensitivity Specificity

Train Test Train Test Train Test Train Test Train Test Train Test

Modified VGG16 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 1 1 0.8859 0.9147

ROIN 0.95 0.96 0.96 0.96 0.95 0.96 0.95 0.96 1 1 0.8465 0.8768

ROIHEN 0.94 0.94 0.95 0.95 0.94 0.94 0.94 0.94 1 1 0.8139 0.8389

ROIHEDEN 0.97 0.96 0.97 .96 0.97 0.96 0.96 0.96 1 1 0.8859 0.8957

Figure 9.5 illustrates the confusion matrices of the proposed modified VGG16

model on both the train and test sets during Study Two. The figure shows that

the proposed model misclassified 11% samples from the train set (Figure 9.3(a))

and 8.5% of the samples from the test set (Figure 9.3(b)). The performance of

other models is presented in Appendix .4.2.

312

Figure 9.5: Confusion matrices of modified VGG16 on (a) train and (b) test set.

In Figure 9.6, the performance of modified VGG16, ROIN, ROIHEN, and

ROIHEDEN models during the training phase is compared for Study Two. The

results show that all of the proposed models continuously improved train accuracy

and reduced train loss until epoch 30.

313

Figure 9.6: Training and validation performance throughout the train-

ing of (a) modified VGG16, (b) ROIN, (c) ROIHEN, and (d) ROI-

HEDEN during Study Two. TA – training accuracy; VA – validation

accuracy; TL – training loss; VL – validation loss.

9.6.3 Computational Complexity

The computational complexity of the modified proposed model was evaluated based

on two metrics, namely the number of floating-point operations per second (FLOPs)

and the number of parameters (NP) in the model’s architecture. Table 9.3 presents

the comparative computational analysis between the proposed modified VGG16

model and other transfer learning (TL) based models. The results demonstrate

that the modified VGG16 model exhibits lower FLOPs and NP compared to other

314

TL-based models, indicating its superior computational efficiency. Besides the

image processing aspect, the TL architecture of the proposed model is similar

to modified VGG16 models for other algorithms, such as ROIN, ROIHEN, and

ROIHEDEN. Hence, the computational complexity for the proposed algorithms is

comparable to that of the modified VGG16 models.

Table 9.3: Comparison of computational complexity between the

proposed model and other existing Transfer Learning-based Models.

Algorithm FLOPS (Millions) NP

VGG16 30960M 138M

ResNet50 7751M 23.58M

ResNet101 15195M 42.65M

VGG19 39037.83M 20.02M

InceptionResNetV2 26382M 55.87M

Modified VGG16 30713M 15M

9.6.4 Models Explainability

Figure 9.7 illustrates the result of using a modified ROIN model to detect defects

in a 3D-printed object. The proposed ROIN model has successfully identified

the defect in the 3D-printed cylinder object. The red square box in the image

indicates the location of the defect, which the model has correctly identified.

This is a significant achievement as identifying defects in 3D printed objects is

challenging, and accurate detection is crucial for quality control.

315

Figure 9.7: Proposed ROIN model’s ability to locate the cylinder and

its defect regions.

The LIME approach was used to interpret the predictions made by the ROIN

model for the given image, as shown in Figure 9.8. From the figure, it can be

observed that LIME was able to highlight the regions around the defect as being

the most important for the model’s prediction, which is consistent with the known

characteristics of the defect. The heatmap generated by LIME shows a bright red

area in the same region as the defect, indicating that this area was most important

in the model’s decision.

Figure 9.8: Proposed ROIN models prediction interpretation using LIME.

Figure 9.9 illustrates the Grad-CAM approach used to interpret the predictions

made by the ROIN model for the given image. The figure shows that Grad-CAM

316

generated the heatmap highlighting the regions of the input image that contributed

the most to the model’s prediction. In the case of the given image, GradCAM

identified the region around the defect as being the most important for the model’s

prediction, consistent with the findings from LIME.

Figure 9.9: Proposed ROIN models prediction interpretation using Grad-CAM.

9.7 Discussion and Overall Findings

This study aimed to develop an approach for detecting defects in 3D-printed

cylinder images using TL-based CNN models. While the proposed models achieved

high accuracy in identifying defects, they faced challenges localizing the specific

defect region. The study found that pre-processing steps, such as identifying the

defect regions from the cylinder image, are crucial to improving the performance

of CNN models.

The study used the LIME and Grad-CAM approaches to interpret the proposed

models’ predictions. These techniques enabled identifying essential features in an

input image that contributed to the model’s prediction. The heatmaps generated

from these techniques provided insight into how the model arrived at its decision,

allowing for an understanding of its inner workings.

The proposed approaches, including ROIN, ROIHEN, and ROIHEDEN,

317

achieved promising results in detecting defects in 3D-printed cylinder images. The

models tested achieved high accuracy, precision, recall, and F1-score values, with

all models achieving perfect precision, recall, and F1-score values. The sensitivity

of all the models was also 1, indicating that all models correctly classified the

defect region as positive. The specificity of all the models was high, with values

ranging from 0.8750 to 1.

The results demonstrate that the proposed approaches can improve the per-

formance of CNN models in detecting defects in 3D-printed cylinder images.

Furthermore, identifying essential features in the input image using LIME and

Grad-CAM approaches can be used to improve the accuracy of the models and

reduce the cost and time required for additive manufacturing.

9.8 Conclusion and Future Works

The current study proposed three CNN-based approaches, ROIN, ROIHEN, and

ROIHEDEN, integrated with three pre-processing steps, ROI, HE, and DE, for

detecting defects in 3D printed cylinder images. The current study addressed

the limitation of identifying defect regions, highlighted in Chapter Two, by

introducing additional pre-processing steps. The experimental results indicate

that the proposed approaches effectively detected the defect regions in the images.

Furthermore, the model’s predictions were interpreted using two explainable AI

approaches, LIME and Grad-CAM, which generated heatmaps to help understand

the models’ behavior during predictions. The application of LIME and Grad-CAM

318

approaches provided valuable insights into the inner workings of the models and

contributed to the overall interpretability and explainability of the proposed

approaches. However, future studies need to validate the generalizability of

the proposed approaches on a larger dataset and explore the potential of the

approaches in detecting other types of defects.

319

Chapter 10

Deep MLP-CNN Model Using Mixed-Data

10.1 Introduction

Data balancing approaches are crucial in developing fair Artificial Intelligence (AI)-

based diagnostic tools for healthcare. In Chapter 6 and 7, promising results were

demonstrated using Convolutional Neural Network (CNN) approaches. However,

while CNN approaches can efficiently handle image data, Multi-Layer Perceptron

(MLP) models can be used to handle numerical and categorical data (Brouwer,

2002; Bacaksız & Esgin, 2019). In this chapter, a novel approach combining MLP

and CNN is proposed to handle mixed data containing numerical, categorical, and

image data. The proposed approach is evaluated and tested on both balanced and

imbalanced datasets to develop more robust AI-based healthcare diagnostic tools.

10.2 Motivation

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic has caused

a significant global public health crisis, resulting in a large number of cases

and fatalities worldwide. Although the Reverse Transcription Polymerase Chain

Reaction (RT-PCR) technique is currently considered the gold standard for

diagnosis, it has limitations, including a high rate of false-negative results and a

shortage of testing kits during the early stages of the outbreak (T. Liang et al.,

2020; Pecoraro, Negro, Pirotti, & Trenti, 2022). Therefore, there is an urgent need

320

to develop a cost-effective and reliable early diagnosis screening method, such as

AI-based applications. AI has demonstrated potential in medical imaging and

diagnosis in recent years, mainly using Deep Learning (DL) techniques (Esteva et

al., 2021).

During the pandemic, medical centers and hospitals have explored chest

X-ray imaging as a widely available and affordable tool (Elgendi et al., 2020;

Calderon-Ramirez et al., 2021). Previous studies have investigated the use of

DL techniques on chest X-ray images to detect COVID-19-related pneumonia

automatically (N. Kumar, Hashmi, Gupta, & Kundu, 2022; Polat, Özerdem, Ekici,

& Akpolat, 2021). Additionally, some studies have employed Machine Learning

(ML) algorithms to diagnose COVID-19 patients using numerical and categorical

data (Podder, Bharati, Mondal, & Kose, 2021; Huyut, 2023; Dutta, Paul, &

Kumar, 2021). However, prior research has yet to integrate chest X-ray images

and numerical/categorical data to develop a diagnostic model for COVID-19

patients.

Thus, this study aims to develop a multi-model by taking advantage of MLP

and CNN models that leverage image and numerical/categorical data for the

early diagnosis of COVID-19 patients. The model is tested on both balanced and

imbalanced datasets, and its performance is evaluated. This study offers a reliable

alternative for screening COVID-19 patients, contributing to the reduction of

mortality rates through early diagnosis, improved treatment, and prevention of

disease transmission.

321

10.3 Chapter Outline

The following chapter is organized as follows: Section 10.4 provides a brief

background on COVID-19 and DL-based diagnosis. Section 10.5 outlines the

methodology of the experiment in detail. The results of the experiment are

presented in Section 10.6, followed by a discussion of the study’s findings in

Section 10.7. Finally, Section 10.8 summarizes the overall conclusions of the

research and suggests potential avenues for future research.

10.4 Background

With the advent of the novel coronavirus (SARS-CoV-2) in December 2019, first

detected in the Wuhan Province of China, there was a major outbreak of the

associated disease (COVID-19), which causes severe acute respiratory syndrome.

More importantly, this virus can be transmitted directly from human to human,

making it difficult to be contained. Rapidly, COVID-19 was observed in virtually

all countries, triggering a severe public health crisis worldwide (Roosa et al., 2020;

Yan et al., 2020). As a consequence, the World Health Organization (WHO)

recognized this public health emergency as an ongoing pandemic on March 11,

2020 (Grasselli, Pesenti, & Cecconi, 2020). Coronaviruses (CoV) belong to a

large family of viruses that cause diseases related to colds like the Middle East

Respiratory Syndrome (MERS-CoV) and the Severe Acute Respiratory Syndrome

(SARS-CoV) (Narin et al., 2020).

322

As of August 30, 2020, the number of Coronavirus cases in the world is ap-

proximately hitting the 25.3 million mark, with the total number of deaths

surpassing 849, 958 and an associated mortality rate of about 6 percent (Dashbord,

June,2020). Statistics show that about 82 percent of the COVID-19 cases have

milder symptoms like fever, cough, and dyspnea. However, more serious cases

can cause severe acute respiratory syndrome, pneumonia, and multi-organ fail-

ure (Narin et al., 2020). With the number of cases increasing daily, most countries

find it challenging to keep up with the number of hospitalized patients, more

so in Intensive Care Units (ICU). The ICUs are mostly occupied by patients

suffering from COVID-19-related pneumonia (Narin et al., 2020). Ultimately,

the development of a vaccine is necessary for the prevention and eradication of

SARS-CoV-2. However, as the development of such vaccines is still a work in

progress, early diagnosis, improved treatment of critical cases, and prevention of

the spread through lockdowns are vital to reduce mortality rates (Yuen, Ye, Fung,

Chan, & Jin, 2020).

The gold standard for the diagnosis of COVID-19 patients is the RT-PCR tech-

nique. However, there has been an inadequate number of testing kits for the

SARS-CoV-2 during the disease’s early outbreak. The RT-PCR test also produces

a high rate of false-negative results, due to sample preparation and quality control

in particular (T. Liang et al., 2020). In addition, viruses such as influenza A

and influenza B can cause symptoms similar to those of SARS-CoV-2, making

it harder to differentiate between COVID-19 and non-COVID-19 cases, more so

in the flu season (Zhao, Zhong, Xie, Yu, & Liu, 2020). Uncertainty can lead

323

to a broader spread of the disease if suspected people with the symptoms roam

freely without being tested (Zhao et al., 2020). Many overpopulated countries like

India and Bangladesh have failed to conduct enough tests due to limited resources

for guaranteeing widespread test kit availability (Mohiuddin, 2020; Alam, Alam,

Nazir, & Bhuiyan, 2020). Therefore, it is pertinent to develop an early diagnosis

screening method considering cost-effectiveness and reliability, such that a larger

population is impacted and can benefit from it.

AI is an emerging branch of computer science with demonstrated potential in a

wide variety of fields, with applications ranging from decision tools in the energy

and financial sectors (Weron, 2014; Ponta, Puliga, Oneto, & Manzini, 2020) to

medical imaging and diagnosis. With the unique capabilities of AI, safe, accurate,

and efficient imaging solutions can be attained. In fact, AI has recently gained

popularity as a useful tool for clinicians (Litjens et al., 2017; Ker, Wang, Rao, &

Lim, 2017; D. Shen, Wu, & Suk, 2017; Faust, Hagiwara, Hong, Lih, & Acharya,

2018; Murat et al., 2020; Rizvi et al., 2020). Over the years, similar to many

other fields of research, the Deep-learning 1 approach has shown an impressive

performance in the field of medical image processing (Narin et al., 2020). By

applying Deep-Learning techniques, it is possible to draw meaningful results from

medical data (Greenspan, Van Ginneken, & Summers, 2016; D. Shen et al., 2017).

By benefiting from Deep-Learning capabilities like image recognition and segmen-

tation, detection and diagnosis of diseases like diabetes mellitus, brain tumors,

skin cancer, and breast cancer have been both efficient and useful (Yildirim et al.,

1Deep learning is a subset of the machine learning field, inspired by the architecture of the
brain (Jakhar & Kaur, 2020).

324

2019; Saba, Mohamed, El-Affendi, Amin, & Sharif, 2020; Dorj, Lee, Choi, & Lee,

2018; Kassani & Kassani, 2019; Ribli, Horváth, Unger, Pollner, & Csabai, 2018;

Celik, Talo, Yildirim, Karabatak, & Acharya, 2020).

Recent studies show that AI-based applications can reduce dependency on the

limited RT-PCR test kits (Ozturk et al., 2020). Even if the RT-PCR test shows

negative results, symptoms can be identified by examining chest radiological

imaging, namely, chest X-ray images (Kanne, Little, Chung, Elicker, & Ketai,

2020; Fang et al., 2020). X-ray machines are popular injury and disease diagnosis

tools in most healthcare facilities and have been widely explored by care centers

and hospitals during the extent of the current pandemic (Haghanifar, Majdabadi,

& Ko, 2020; Ozturk et al., 2020). From a global perspective, X-ray exams are

comparatively affordable in developing countries, with exam costs reaching as low

as 5 USD (National Heart Foundation of Bangladesh, n.d.). In developed countries,

as an effect of a more costly healthcare infrastructure, X-ray exams may become

more expensive, but are often covered by nearly 100% of public and private health

insurance policies in countries like Australia, Canada, Germany, and Japan, and

91% in the USA (Health System Tracker , n.d.). Individual charges and copays

range from 0 to 50 USD in those countries (How Much Does an X-ray Cost , n.d.).

Regarding the common concern of exposure to ionizing radiation from X-rays,

individual exams are known to be safe and expose the patient to significantly less

ionization than, for instance, Computed Tomography (CT) exams (Ozturk et al.,

2020).

As a result, chest X-ray imaging recently draws attention to the researcher and

325

practitioner for the early diagnosis of COVID-19 patients with pneumonia symp-

toms (L. Meng, Hua, & Bian, 2020). For instance, Chen et al. (2020) used a

Deep-Learning based model for early detection of COVID-19-related pneumonia us-

ing image data from the Renmin Hospital patients at Wuhan University (J. Chen

et al., 2020). Narin et al. (2020) describes the use of X-ray images for the

coronavirus’ automatic detection by implementing a Deep Convolutional Neural

Network, achieving an accuracy of around 98% using the ResNet50 model (Narin

et al., 2020) . Apart from this, Goshal and Tucker (2020) and Wang and Wong

(2020) also developed a Convolutional Neural Network (CNN) to classify COVID-

19 and Non-COVID-19 cases using X-ray images, with approximately 92.9% and

83.5% accuracy respectively (Ghoshal & Tucker, 2020; L. Wang & Wong, 2020).

Additionally, there are numerous other recent studies carried out with CT images

using several Deep Learning models (C. Jin et al., 2020; Song et al., 2020; Butt

et al., 2020; F. Shi et al., 2020). Likewise, ML algorithms using numerical/cate-

gorical data have also been utilized for the diagnosis of COVID-19. A number

of studies (L. Meng et al., 2020; Song et al., 2020; Gong et al., 2020) developed

machine learning models based on Lasso regression, and multivariate logistic

regression for early identification of COVID-19 patients. Some of the significant

factors in these studies were age, temperature, heart rate, blood pressure, fever,

sex, uric acid, triglyceride and serum potassium.

Even though the Center for Disease Control and Prevention (CDC) currently

doest not recommend, still, many studies in this field of research use Chest radiog-

raphy or CT scan images to diagnose COVID-19 (COVID-19 Diagnostic Imaging

326

Recommendations, n.d.; ACR Issues Statement for Use of Chest Radiography,

CT for Suspected COVID-19 Infection, n.d.). For instance, a recent report in

the journal of Applied Radiology (2020, March 22) (ACR Issues Statement for

Use of Chest Radiography, CT for Suspected COVID-19 Infection, n.d.) claimed

that using radiological images alone detects patients with ARDS 2 , SARS 3, as

COVID-19, which is a drawback since the diseases are misclassified. Articles

by Greenfieldboyce and Jewell suggested that a patient’s information such as

age, gender, temperature, and chronic disease history are significant predictors to

identify affected COVID-19 patients (The New Coronavirus Appears To Take A

Greater Toll On Men Than On Women, n.d.; Everything You Should Know About

the 2019 Coronavirus and COVID-19 , n.d.). Keeping this in mind, some of the

studies in this field of research use (numerical or categorical) information such

as age, gender, body temperature, and chronic disease history for diagnosis of

COVID-19 as well. For instance, Bai et al. (2020), uses CT images (image data)

and a combination of demographics, signs, and symptoms (numerical/categorical

data) to establish an AI model that predicts patients having mild symptoms with

potential malignant progression (Bai et al., 2020). However, none of the previous

studies considered numerical, categorical, and chest X-ray images in combination.

Thus, developing a model comprising of numerical/categorical data coupled with

chest X-ray images may create a new reliable alternative to screen patients with

COVID-19 symptoms.

Considering these opportunities, this study focuses on mixed-data analysis us-

2ARDS also known as Acute respiratory distress syndrome (Force et al., 2012)
3Also known as severe acute respiratory syndrome (Lau et al., 2008)

327

ing both image and numerical/categorical data to assist in the early diagnosis

of COVID-19 patients using a DL approach. A deep Multilayer Perceptron-

Convolutional Neural network (Deep MLP-CNN) model is proposed considering

the age, gender, temperature, and chest X-ray images of patients. The model

was tested under two conditions: a balanced dataset (containing 13 COVID-19

and 13 non-COVID-19 patients), henceforth referred to as Study One, and an

imbalanced dataset (containing 112 COVID-19 and 30 non-COVID-19 patients),

referred to as Study Two.

10.5 Dataset and Methodology

A COVID-19 dataset containing X-ray images and numerical/categorical data

for each patient was collected from the open-source GitHub repository shared

by Dr. Joseph Cohen (Cohen et al., 2020). This database is continuously being

updated with data shared by several entities around the world and has been used

by many studies for detecting COVID-19 patients considering various data mining

techniques. At the time of the study, the dataset contains data from 184 different

patients with information such as age, gender, temperature, survival, intubation,

partial pressure of oxygen dissolved in the blood (PO2), and classification as

COVID-19, SARS, Pneumocystis, E. coli, Streptococcus, or “no findings” patients.

For simplicity, the dataset has been organized into two groups: COVID-19 patients

and all others as non-COVID-19 patients (Figure 10.1).

328

Figure 10.1: Sample set of test images, including the chest X-ray images

of COVID-19 and non-COVID-19 patients (Cohen et al., 2020).

One of the challenges associated with this dataset was the missing data for

select parameters across patients. In consideration of that limitation, for Study

One (balanced dataset), a small dataset was set up with 13 COVID-19 and

non-COVID-19 patients considering age, gender, temperature, and chest X-ray

images as variables. Since there were numerous missing entries in the temperature

column, only rows with complete information of the aforementioned variables

were taken into account. No statistically significant difference4 was found between

COVID-19 (6 female, 7 male) and non-COVID-19 (5 female and 8 male) groups

in terms of sex distribution (p* = 0.69>0.05), mean of age and temperature

(p** = 0.49>0.05). Contrarily, the size of the dataset was enlarged by ignoring

the ”Temperature” column entirely for Study Two. In this case, an imbalanced

dataset was constructed with information from 142 patients (112 COVID-19,

30 non-COVID-19) to compare and contrast the model’s performance with the

imbalanced class. No statistically significant difference was observed between

4P value were obtained using t-test (*) and chi-square test (**).

329

COVID-19 and non-COVID-19 groups in regards to the sex distribution (p*

=0.34>0.05) and the mean of age (p** = 0.06>0.05). Table 10.1 summarizes the

datasets used for both studies. The implementation of the MLP-CNN models

Table 10.1: Balanced and Imbalanced datasets used in this study.

Dataset Label Training Set Testing Set Total
Mean± SD

P -value

Age (years) Temperature (celsius)

Study One COVID-19 9 4 13
51.29±16.72 38.26 ±.85 0.49

(Balanced dataset) Non-COVID-19 11 2 13

Study Two COVID-19 87 25 112
55.73 ±16.66

—
0.06

(Imbalanced dataset) Non-COVID-19 26 4 30

and calculation of computational times took place using the Anaconda modules

with Python 3.7, and ran on an office-grade laptop with common specifications

(Windows 10, Intel Core I7-7500U, and 16 GB of RAM).

10.5.1 Proposed Model

Neural networks (NN) recently showed promising results than traditional Machine

Learning (ML) algorithms like Linear Regression, Logistic Regression, and Ran-

dom Forest, with high dimensional datasets, primarily when it contains numerical,

categorical, and image data combined (Nakada & Imaizumi, 2019). Classical

ML approaches may perform better with a small dataset as it is computationally

inexpensive and easily interpretable. However, once the size of the data increases

(big data), handling such big data becomes challenging for traditional ML ap-

proaches. Conversely, deep NN methods guarantee an opportunity to develop a

more robust model that perform well on both small and large datasets, mainly

330

due to recent advancements in different NN approaches such as Transfer Learning

(TL), Recurrent Neural Network (RNN), and CNN. Additionally, classical ML

approaches often require sophisticated feature engineering or dimensionality re-

duction (Zhou, Pan, Wang, & Vasilakos, 2017). In contrast, deep NN methods:

provide better feature engineering methods, can be implemented directly, and

achieve good results (Chollet, 2017).

A developed a DL-based model was developed inspired from (Ahmed &

Moustafa, 2016). The choice for this architecture was motivated by its predictive

performance on visual and textual features, addressed in many recent papers (Law,

Paige, & Russell, 2019; F. Wang, Zou, Zhang, & Shi, 2019; Koch et al., 2020;

E. S. Kumar, Talasila, Rishe, Kumar, & Iyengar, 2019). The proposed model

is a combination of a Multilayer perceptron (MLP) and Convolutional Neural

network (CNN). On one hand, MLP was used to handle the numerical/categorical

data; on the other, CNN was used to extract features from the X-ray images.

Parameter tuning was performed to improve the model’s performance, mainly:

the number of hidden layers, number of neurons, epochs, and the batch size. At

first, hidden layers and the number of neurons were set randomly; however, the

optimal parameters were later determined using the grid search method. The

optimized parameters using the grid search method are as follows: Learning Rate

= 0.001, Batch Size = 5, Epochs = 50. Finally, the proposed MLP model was

combined with the CNN architecture, as suggested by (Ahmed & Moustafa, 2016).

As shown in Figure 10.2, the highest accuracy (100%) was achieved on 50 epochs,

331

Figure 10.2: Training accuracy and loss with number of epochs.

while the training loss was minimized up to 85%.

Table 10.2 shows how different numbers of neurons and hidden layers affect

the MLP models. Based on the experiment, with two hidden layers and four

neurons, it is possible to achieve 100% accuracy while reducing the loss up to 100%.

332

Table 10.2: Model performance with different numbers of neurons and hidden layers.

Number of

hidden layers Neuron Accuracy (%) Loss (%)

1 4 42 76

1 8 56 100

2 4 100 100

2 8 35 76

3 4 33 77

3 8 64 100

In order to obtain the best model, optimization algorithms needed to be

applied during the training phase (Sutskever, Martens, Dahl, & Hinton, 2013).

For that purpose, three popular optimization algorithms were tested: Adaptive

learning rate optimization algorithm (Adam) (Kingma & Ba, 2014), Stochastic

gradient descent (Sgd) (C. Zhang et al., 2018), and Root mean square propagation

(Rmsprop) (Bengio, 2015).

10.5.2 How Proposed MLP-CNN Model Works

Here, the Rectified Linear Unit (ReLU) was applied as the activation of each

neuron in the input and hidden layers and the “linear” function was utilized in

the final layer (Tang, 2013). The first input layer of the MLP consists of eight

neurons and takes the numerical/categorical data as a one-dimensional array. The

hidden layer consists of four neurons and the final layer consists of one neuron.

333

Secondly, the proposed CNN model contains three convolution layers, along with

three pooling layers (Max Pooling). The first hidden layer is a convolutional layer

with 16 feature maps, each with a kernel size of 64 pixels and a “ReLu” activation

function. Then, the pooling layer is then defined, which takes the maximum value

and is configured with a pool size of (2,2). The following pooling layer is a dense

layer that takes 16 neurons, succeeded by activation function-ReLU. The next

layer is another dense layer with four neurons. Two individual outputs emerged

from two separate models—one from the MLP model and the other from the CNN

model. Both outputs are concatenated and considered as a single input. The

newly acquired single input was counted as an initial input followed by additional

two dense layers consisting of 4 neurons. The Keras functional API was utilized to

concatenate the MLP and the CNN models, as it provides a potential opportunity

to develop models that require multiple inputs and outputs. Typically, such mod-

els merge the inputs from different layers using an additional layer and combine

several tensors, as shown in Figure 10.3, which illustrates the overall diagram of

our proposed end-to-end model. In summary, the numerical/categorical and chest

X-ray inputs were encoded as vector inputs and then concatenated. Finally, the

output layer has one neuron for the two classes and a linear activation function

to provide probability-like predictions for each class.

334

Figure 10.3: Flow diagram of proposed MLP-CNN models. The model

contains three components: MLP, CNN, and Merged MLP-CNN.

10.5.3 Experiment Setup

The performance of the model was evaluated using 5-fold cross-validation for both

Studies (Study One and Study Two).

The results were presented in terms of Accuracy, Precision, Recall, and F1-score

with 95% confidence interval (Ahsan, 2018).

335

10.6 Computational Results

At first, as means of identifying appropriate training and testing set ratios for

validation, we have split our data into the following train set/test set ratios:

75:25, 70:30, 60:40, 85:15, and 80:20. Such split ratios are commonly used in DL

techniques for model evaluation and validation (Mohanty et al., 2016; Menzies et

al., 2006; Stolfo et al., 2000). The best results in terms of training and testing

accuracy were found when the dataset was split randomly into 80% and 20% for

training and testing sets, respectively. To exemplify that, Table 10.3 presents the

performance of our proposed models with different ratios of randomly split data

between training and testing. Since the dataset is comparatively small, reducing

training data also reduces the model’s ability to achieve better performance in

terms of accuracy. In contrast, increasing the training set with a small number of

datapoints for testing is not sufficient to confidently measure the model’s overall

performance.

336

Table 10.3: Proposed MLP-CNN models performance incorporating

different amounts of training and testing data in Studies One and

Two.

Data ratio (%) Study One Study Two

Training/Testing Training accuracy Testing accuracy Training accuracy Testing accuracy

75/25 94% 71% 90% 70%

70/30 66% 50% 95% 60%

60/40 73% 45% 70% 71%

80/20 100% 100% 100% 96%

The training stage was carried out up to no more than 50 epochs to avoid

overfitting. A graphical illustration of the model’s overall performance using

Adam and Rmsprop is presented for the 5th fold in Figure 10.4.

337

Figure 10.4: Model accuracy and loss in fold 5. TL – Train loss; VL –

Validation loss; TA – Train accuracy; VA – Validation accuracy. In

Study One, the model trained with Adam (a) reached 100% accuracy

and loss decreased by almost 100% after 50 epochs. Alternatively,

for Study Two, the model trained with Rmsprop (b) reached 100%

accuracy and loss decreased below 5%.

Each model’s average performance on both balanced (Study One) and imbal-

anced (Study Two) datasets along with 95% confidence intervals are displayed in

Table 10.4. For the balanced dataset, Adam has the highest accuracy (96.3%),

precision (97.2%), recall (96.3%), and F1-score (96.4%) compared to the other two

models-trained with Rmsprop and Sgd. Rmsprop outperformed all other models

on the imbalanced dataset. While considering the overall performance on both

datasets (average of both studies) the model trained with Adam is the best in

terms of accuracy (94.6%±3.4%), precision (93.5%±3.7%), recall (94.5%±3.5%),

and F1-score (93.5%± 3.7%).

338

Table 10.4: COVID-19 screening performance of our model on Study

One and Study Two with 95% Confidence Interval (α = 0.05). S1 –

Study One; S2 – Study Two; CI – Confidence Interval.

Algorithm
Accuracy (%) Precision (%) Recall (%) F1 score (%)

S1 S2 CI S1 S2 CI S1 S2 CI S1 S2 CI

Adam 96.3 92.9 94.6 ±3.4 97.2 89.9 93.5 ±3.7 96.3 92.8 94.5 ±3.5 96.4 90.7 93.5 ±3.7

Rmsprop 82.5 95.4 88.9 ±4.7 79.4 92.5 85.9±5.3 82.9 95 88.9 ±4.8 79.6 93.6 86.6 ±5.2

Sgd 91.8 85.1 88.4 ±4.9 95.4 82.1 88.7 ±4.8 91.8 86.1 88.5 ±4.8 82.4 83.6 83 ±5.7

Overall execution time for both datasets is shown in Figure 10.5. The lowest

registered execution time was 53 seconds for the model trained with Rmsprop

and the balanced dataset, whereas the maximum execution time was 79 seconds

when the model was trained with Sgd. Conversely, for the imbalanced dataset,

Adam showed the lowest execution time of 138 seconds, while Rmsprop displayed

the maximum execution time of 163 seconds. In conclusion, when both studies

are considered holistically, the average execution time for Adam is lowest in

comparison with the other two.

339

Figure 10.5: Execution time of models trained with Adam, Rmsprop,

and Sgd for both balanced and imbalanced datasets.

To evaluate the predictive performance of each model, confusion matrices were

generated. Figure 10.6 shows confusion matrices for the models trained with

Adam, Rmsprop, and Sgd, respectively, for fold-5. In Study One, the test set

contained 6 patients, where 4 were COVID-19, and 2 were non-COVID-19. In

this case, both Adam and Sgd correctly classified all the samples, while Rmsprop

misclassified 4 out of 6 samples. On the other hand, in Study Two, 29 samples

were used for the test set (25 COVID-19 and 4 non-COVID-19). Here, Adam

illustrates the best performance by correctly classifying 29 samples, while Rmsprop

and Sgd show the worst performance by classifying 27 samples out of 29.

340

Figure 10.6: Confusion matrix of our models trained with optimization

algorithms (Adam, Rmsprop, and Sgd) for both studies at fold 5.

10.7 Discussion

In this study, an MLP-CNN based model was proposed and evaluated for

distinguishing between patients with and without COVID-19, demonstrating the

superiority of combined MLP-CNN models over traditional CNN or MLP models

used exclusively for this purpose. The combined model achieved an accuracy

of around 96.3% (using Adam optimization algorithm) in comparison to few

published studies that used only CNN (L. Wang & Wong, 2020; Ghoshal &

Tucker, 2020; Song et al., 2020) or traditional ML (F. Shi et al., 2020) approaches.

On one hand, MLP models are fast and time-efficient when used with numerical

341

and/or categorical data only. On the other hand, CNN models are notably

accurate in extracting useful features from chest X-ray images for respiratory

disease diagnosis. For instance, Wang and Wong (2020) and Khan et al. (2020)

used CNN-based approaches to detect the onset of COVID-19 disease using chest

X-ray images and achieved an accuracy of 83.5% and 89.6%, respectively. In

comparison, as previously stated, the proposed combined model demonstrated an

accuracy of around 95.4% (L. Wang & Wong, 2020; Khan et al., 2020).

In Study One, MLP-CNN model learned from only 26 COVID-19 subjects,

which represents 18% of the data used by Zhang et al. (2020) and 2% by Shi et al.

(2020) (see Table 10.5 and 10.6) (J. Zhang, Xie, Li, et al., 2020; F. Shi et al., 2020).

Therefore, the proposed MLP-CNN model may be used as a useful computer-

aided diagnosis tool for low-cost and fast COVID-19 screening considering small

datasets.

Table 10.5: Comparative analysis of the proposed MLP-CNN-Based

COVID-19 diagnostic method and Other Deep-Learning Approaches

utilizing Chest X-ray Images.

Model Accuracy

(Ghoshal & Tucker, 2020) 92.9%

(J. Zhang, Xie, Li, et al., 2020) 96%

(L. Wang & Wong, 2020) 83.5%

Proposed model 96.3% with Adam

342

Additionally, the MLP-CNN model performed better with an imbalanced dataset

compared to recent studies (C. Jin et al., 2020; Song et al., 2020; Butt et al.,

2020; F. Shi et al., 2020; L. Wang & Wong, 2020) that also used imbalanced

datasets (Table 10.6). For instance, Jin et al. (2020) used 1882 CT scan images

where the data ratio was 1 : 2.78 (497 COVID-19:1385 other) and achieved 94.1%

accuracy (C. Jin et al., 2020). Similarly, the data ratio of a range of other recent

studies, particularly Song et al. (2020), Butt et al. (2020), and Shi et al. (2020)

were 1 : 2.11, 1 : 1.82, and 1 : 1.62 respectively; while their measured accuracy was

82.9%, 86.7% and 90.7% accordingly (Song et al., 2020; C. Jin et al., 2020; Butt

et al., 2020; F. Shi et al., 2020). For the imbalanced dataset, 112 COVID-19 and

30 non-COVID-19 patients’ (ratio 1 : 3.73) chest X-ray images were used. Despite

the higher ratio of imbalance in the dataset, the proposed method outperformed

several recent studies with similar objectives by achieving a higher accuracy of

95.4% (C. Jin et al., 2020; Song et al., 2020; Butt et al., 2020; F. Shi et al.,

2020; L. Wang & Wong, 2020). It should be noted that all studies mentioned

in Table 10.6 used only image data in their experiments, while we considered a

mixed-data approach, using both numerical/categorical and image data.

In summary, an MLP-CNN based model has been proposed in this study that can

determine between COVID-19 and non-COVID-19 patients using information like

age, gender, temperature, and chest X-ray images. Both balanced and imbalanced

data were considered for the experiments, achieving an average accuracy of around

95% (96.3% from Study One and 95.4% from Study Two).

343

Table 10.6: Comparison between current literatures with other DL

methods developed using imbalanced datasets.

References Data type Method Database size Accuracy

(C. Jin et al., 2020) CT CNN 497 COVID-19, 1385 others 94.1%

(Song et al., 2020) CT ResNet50 88 COVID-19, 186 others 82.9%

(Butt et al., 2020) CT CNN 219 COVID-19, 399 others 86.7%

(F. Shi et al., 2020) CT RF 1658 COVID-19, 1027 others 90.7%

(L. Wang & Wong, 2020) X-ray CNN 45 COVID-19, 2794 others 83.5%

(Khan et al., 2020) X-ray Xception 284 COVID-19, 967 others 89.6%

Proposed model X-ray MLP-CNN + Rmsprop 112 COVID-19, 30 others 95.38%

Finally, the proposed model can be easily adopted by healthcare professionals as

it is cost- and time-effective, which accelerates COVID-19 screening procedures

and enables patients with the disease to be isolated at earlier stages. Real-time

screening of COVID-19 patients using MLP-CNN approaches might be possible

with minimal human interaction, provided that chest X-ray images and other

relevant information such as age, gender, and temperature of the respective

patients are available. Additionally, AI-based screenings can be tailored to a

low degree of complexity to the end user, and may not require the training of

technicians in the complex computational tools herein described. We identify

the following limitations of our study, which present immediate opportunities for

future investigations:

1. The size of the dataset adopted is comparatively small, and

2. Only four numerical and categorical parameters were considered.

344

10.8 Conclusion

In this study, an MLP-CNN based model has been proposed for early diagnosis

of patients with COVID-19 symptoms considering mixed-data, in particular,

numerical/categorical data (age, gender, and temperature) and image data (chest

X-ray images). Results showed using mixed-data, it is possible to develop a

more accurate model with a small, and balanced dataset (accuracy 96.30%).

Furthermore, the proposed model also performed better (accuracy 95.4%) on the

imbalanced dataset compared to other studies, as shown in Table 10.6.

Finally, this experiment could provide valuable insights in developing a screening

system to support healthcare providers in distinguishing among COVID-19 and

non-COVID-19 patients, such that patients with the disease can be identified and

isolated at an earlier stage. Future studies should reapply these methods in larger

datasets with more images and complete patient information, work with highly

imbalanced data, apply mixed-data analysis using kernel methods, and consider

data containing the geographical location of patients.

345

Chapter 11

Conclusions

This dissertation aims to address class imbalanced problems (CIP) for numerical,

categorical, and mixed data by proposing various data balancing approaches to

handle CIP issues. The study considers various industrial case scenarios, such as

quality, defect, and pattern analysis. The current chapter presents the overall

findings and contributions of the dissertation.

Section 11.1 provides closure by revisiting the research questions posed in

Chapter 1 and reviewing the answers that have been offered. In Section 11.2,

the study outcomes of individual research questions are summarized. Finally, the

resulting contributions are then summarized in Section 5.8.

11.1 Overall Summary of All Research Questions

This dissertation investigated various aspects of data balancing approaches in

the context of quality, defect, and pattern analysis. In Chapter 3, a compre-

hensive review of different data balancing approaches was provided, focusing on

oversampling and undersampling techniques. The study then delved deeper into

one of the most widely used oversampling techniques, SMOTE, and conducted

hypothesis testing to identify its impact on ML models’ performance with or

without parameter tuning. The study aimed to address RQ2: What is the effect

of traditional Machine Learning (ML) and Synthetic Minority Over-sampling

Technique (SMOTE)-based data-balancing on imbalanced data analysis?

346

Subsequent chapters proposed three novel data balancing solutions: SSG, GBO

(Chapter 4), and BS-GAN (Chapter 5), and compared their performance with

existing literature—the proposed solutions aimed to generate more realistic samples

to improve the accuracy of ML models. The study also evaluated the effectiveness

of data balancing approaches using image data in Chapters 6 and 7 (X-ray and

CT-scan images) and Chapters 8 and 9 (images of 3D printed cylinders) using

advanced Transfer Learning (TL) approaches. Novel CNN-based approaches such

as MVGG16, ROIN, ROIHEN, and ROIHEDEN were introduced to develop robust

CNN models to address class imbalance problems. Chapter 10 proposed a novel

method, the MLP-CNN model, to handle mixed data (image and tabular data)

and addressed RQ3: How does imbalanced data affect the performance of Deep

Learning (DL)-based models? Additionally, the study used Local Interpretable

Model-Agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP)

for the ML and DL-based models’ explainability where necessary and applicable

to provide better insights into the proposed data balancing solutions.

The dissertation concludes with discussions on opportunities and future work

related to all aspects of data balancing approaches, presented at the end of each

chapter. The opportunities presented stem from a limitation in the methodology

used due to time constraints or represent ideas of interest that can be further

investigated in the future.

347

11.2 Summary of Individual Research Questions

11.2.1 What are the scopes of data-balancing approaches toward the

major and minor samples?

The scope of data-balancing approaches towards major and minor samples is

significant in improving the performance of Machine Learning (ML) models. The

data distribution on imbalanced datasets affects the ML model’s performance

during the prediction, making it challenging to predict without bias toward the

major class. Several studies have suggested data preprocessing steps before

applying oversampling methods to address these issues. Data normalization

techniques have been utilized to improve data distribution, resulting in high

accuracy levels in some studies. However, it is still being determined whether

using data normalization techniques significantly affects the overall performance

of the ML model. Additionally, using several data normalization techniques before

the oversampling approach may change the entire minor class data distributions,

which may not be helpful in predicting outlier or minor samples. The performance

of ML algorithms on oversampled datasets is inconsistent, and using similar

SMOTE approaches may result in varying accuracy levels. The proper parameter

tuning of SMOTE and preprocessing steps are necessary to improve ML algorithms’

data distribution and performance.

Various undersampling techniques have been explored by researchers to address

class imbalance problems (CIP). These techniques include Random Undersampling,

348

Near-Miss (NM) algorithm, Cluster Centroids (CC), and Condensed Nearest

Neighbor (CNN). CC has demonstrated promising results in classification accuracy,

F1-score, and AUC-ROC compared to other undersampling techniques. However,

it may not be appropriate for datasets with high-dimensional features, overlapping

classes, or many classes. CNN selects a subset of samples from the majority class

by iteratively removing samples that can be classified correctly using the nearest

neighbor rule. Recently, a new clustering-based undersampling technique called

CUTE has been proposed to improve consistency in various measures. Other

undersampling techniques, such as NM and OSDU, have also been proposed to

address the class imbalance in datasets.

Undersampling techniques have limitations that can negatively impact their

performance. One of the main limitations of undersampling is the loss of in-

formation, which can affect the performance of ML algorithms. Additionally,

undersampling can increase the bias towards the majority class, resulting in poor

classification performance for the minority class. Furthermore, undersampling

techniques may not be suitable for datasets with high-dimensional features and

many classes or overlapping classes. The characteristics of the datasets may also

limit the effectiveness of undersampling techniques. Undersampling techniques

may not be effective for highly imbalanced multiclass datasets as they can sig-

nificantly reduce the size of the majority class. Further research is required to

investigate the effectiveness of undersampling techniques on various datasets and

to address their potential limitations.

In recent years, oversampling techniques have gained significant attention

349

and have become the most widely used approach compared to undersampling

techniques in various applications, including quality control, defect analysis, and

pattern recognition. Oversampling techniques are not affected by many of the

previously mentioned limitations of undersampling techniques, addressing the

class imbalance issue in datasets. Synthetic Minority Over-Sampling Technique

(SMOTE), Adaptive Synthetic Sampling (ADASYN), and Borderline-SMOTE

are some of the most popular and widely used oversampling techniques used by

researchers and practitioners. The increased number of minority class instances

through oversampling techniques can enhance the classification performance of ML

algorithms, making them more effective in detecting defects or recognizing patterns.

However, the effectiveness of oversampling techniques can vary depending on the

dataset and specific application. Therefore, careful evaluation and experimentation

are necessary to select the appropriate oversampling technique for the given

dataset and application. Despite their advantages, oversampling techniques have

limitations that can negatively impact their performance, such as overfitting,

creating noisy samples, and not working well on highly overlapping classes or

noisy features. Additionally, no single oversampling technique can effectively work

for all types of datasets. Therefore, additional research is necessary to address

these limitations and develop new oversampling techniques that can effectively

handle highly imbalanced datasets while addressing these challenges.

SMOTE are among the most popular techniques for handling class-imbalanced

problems. One of the significant advantages of using SMOTE is that it creates

a more diverse set of synthetic samples than traditional mean or mode-based

350

oversampling techniques. However, a potential drawback of SMOTE is that it

can lead to overlapping major and minor classes, resulting in biased statistical

outcomes. Several improved versions of SMOTE have been proposed to address

this issue, including SVM-SMOTE, Borderline-SMOTE, and adaptive synthetic

minority oversampling techniques (ADASYN). Nonetheless, these approaches also

have limitations, and many hybrid and improved SMOTE-based oversampling

techniques have been proposed to handle class-imbalanced problems more effec-

tively. The performance of different oversampling techniques and ML models

varies across datasets, and it is crucial to properly evaluate data distribution after

data expansion to ensure accurate model performance.

The combination of over- and under-sampling methods, also known as hybrid

methods, has been proposed as a potential solution to the limitations of individual

oversampling or undersampling techniques. By combining these methods, it is

possible to reduce the impact of the limitations and achieve better performance

on imbalanced datasets. Several studies have shown that combining over- and

under-sampling methods can outperform individual oversampling or undersam-

pling techniques on imbalanced datasets. However, further research is needed to

investigate the optimal combination of techniques and their impact on different

classifiers and performance metrics. The SMOTETomek method is a popular

hybrid method that combines oversampling with SMOTE and undersampling

with Tomek links. While SMOTETomek has been shown to improve classification

performance on moderately imbalanced datasets, it may have limited effectiveness

on highly imbalanced datasets where the minority class makes up less than 10% of

351

the data. In such cases, more advanced techniques may be necessary. Additionally,

SMOTETomek involves a combination of oversampling and undersampling tech-

niques, which can increase the computational time required to train a model. This

can be a concern when dealing with large datasets or when the technique is applied

repeatedly in an ML pipeline. Finally, the risk of overfitting is also a potential

limitation of SMOTETomek, where the oversampling component can introduce

bias in the data by creating synthetic samples that closely resemble existing

minority class examples. Careful hyperparameter tuning and cross-validation can

help mitigate this risk, but it remains an important consideration when using

SMOTETomek.

Many references in the literature suggest GAN-based approaches as a potential

data-balancing technique in addition to various other types of data-balancing

techniques. While SMOTE has been widely used, it may not be effective for

highly imbalanced multiclass datasets, which has led to suggestions for GAN-based

approaches. GAN has gained popularity in computer vision due to its ability to

generate realistic images from random noise, making it useful for nearly any data

format. GAN-based approaches have been shown to generate diverse data samples

and can solve the CIP ratio problem. However, GAN can be challenging to train,

requiring a large amount of data and numerous iterations to achieve optimal

results. Moreover, the parameters of GAN are sensitive, making it an unstable

approach. Despite these drawbacks, GAN-based approaches have shown promising

results in overcoming the multicollinearity and overlapping issues of oversampling

approaches. Therefore, if GAN-based algorithms are stable, computationally

352

effective, and require fewer iterations to train, they could be the best alternative

to overcome the existing challenges associated with SMOTE and GAN-based

approaches.

11.2.2 What is the effect of traditional Machine Learning (ML) and

Synthetic Minority Over-sampling Technique (SMOTE)-based

data-balancing on imbalanced data analysis?

Based on the findings from RQ1, it was evident that SMOTE-based approaches

were commonly used for data balancing. However, to compare their effectiveness

with traditional ML algorithms, the study further investigated scenarios with

and without parameter tuning. Therefore, the study provided an overview of

widely utilized ML algorithms, evaluated their performance on an array of datasets

before and after SMOTE-based oversampling through various statistical measures,

and executed a hypothesis test to determine the significance of SMOTE-based

approaches in data balancing by examining four distinct conditions related to ML

model performance. Consequently, the study evaluated the performance of various

ML models, including Adaboost, Decision Tree, Gradient Boosting, K-Nearest

Neighbors, Logistic Regression, Random Forest, and Support Vector Machine

(SVM) models on six different datasets, namely Ionosphere, Pageblocks, Poker,

Spambase, Winequality, and Yeast.

The study examined the effect of SMOTE oversampling technique and different

feature selection and preprocessing techniques on model performance. The evalu-

ation metrics included accuracy, precision, recall, F1-score, ROC, and G-mean.

353

The findings revealed that the performance of the models varied depending on the

dataset and the chosen conditions. The SMOTE oversampling technique improved

the performance of the Adaboost model on Ionosphere, Pageblocks, Poker, and

Spambase datasets. The Decision Tree model demonstrated high performance on

the Pageblocks dataset but low performance on the Poker dataset. The Gradient

Boosting model showed strong performance on most datasets, with conditions two

and four showing the highest performance on the Poker dataset. The K-Nearest

Neighbors model demonstrated high accuracy and ROC values across all datasets

and conditions. The Logistic Regression model’s performance varied significantly

depending on the dataset and condition used, while the Random Forest and SVM

models showed high accuracy and F1-score values on most datasets, with some

conditions showing poor performance.

Furthermore, the study provided a detailed breakdown of the performance

evaluation metrics for each dataset and condition, highlighting that both Random

Forest and SVM models were effective methods for classification tasks. However,

their performance could vary depending on the dataset and the condition used.

Overall, the study emphasized the significance of selecting the appropriate ML

model and tuning the model parameters to achieve optimal performance on a

specific dataset.

Later, six hypothesis testing was employed to evaluate the significance of

SMOTE-based approaches on data balancing by comparing ML model performance

on original and SMOTE-based oversampled datasets, considering the impact of

hyperparameter tuning.

354

Hypothesis One aimed to evaluate the performance differences of ML models

with hyperparameter tuning on original and SMOTE-based oversampled datasets.

The results indicated that there was no significant difference in performance for

most algorithms and benchmark datasets. However, KNN and LR on Ionosphere

and Spambase and KNN on Poker showed a significant difference in performance,

suggesting that oversampling affected the performance of particular algorithms

on specific datasets.

Hypothesis Two focused on determining the significant difference in ML

model performance without hyperparameter tuning on original and SMOTE-

based oversampled datasets. Overall, the results indicated no significant difference

for all algorithms except for LR on Pageblocks, where a significant difference was

observed.

Hypothesis Three investigated the performance difference of ML models with

and without hyperparameter tuning on the original dataset. The results in-

dicated no significant difference across all algorithms and datasets, suggesting

that hyperparameter tuning does not consistently improve performance in the

tested scenarios. However, further research may be needed to determine the

generalizability of this conclusion.

Hypothesis Four aimed to investigate the performance difference of ML models

with and without hyperparameter tuning on the SMOTE-based oversampled

dataset. The findings indicated no significant difference across all algorithms and

datasets, suggesting that hyperparameter tuning does not consistently impact the

performance on the oversampled dataset.

355

Hypothesis Five was designed to investigate the performance differences of

ML models on the original dataset and the original dataset with hyperparameter

tuning. The findings indicate that there is no significant difference in performance

for most algorithms and datasets. However, a significant difference was observed

for DT on Wine quality, LR on Poker, and SVM on wine quality, suggesting that

hyperparameter tuning may impact performance in specific cases.

Similarly, Hypothesis Six aimed to evaluate the performance differences of

ML models on the SMOTE-based oversampled dataset and the oversampled

dataset with hyperparameter tuning. The results reveal that there is no significant

difference in performance for most algorithms and datasets. Nevertheless, a

significant difference was found for DT and KNN on Wine quality and LR on

Poker, indicating that hyperparameter tuning can influence performance in specific

instances on oversampled datasets.

In conclusion, this study aimed to examine the impact of the SMOTE and hy-

perparameter tuning on the performance of various ML algorithms across different

datasets. The results suggest that the application of SMOTE and hyperparameter

tuning did not consistently lead to significant performance improvements for all

algorithms and datasets. This indicates that these techniques may not always

be necessary for achieving better model performance. However, it is important

to note that specific algorithms and datasets showed significant performance

differences when SMOTE or hyperparameter tuning was applied. Therefore, it is

recommended that researchers carefully evaluate the need for these techniques

based on the specific context and dataset. Overall, this study provides valuable in-

356

sights into using SMOTE and hyperparameter tuning effectively in ML algorithm

selection and model optimization.

11.2.3 How does imbalanced data affect the performance of Deep

Learning (DL)-based models?

In RQ3, the study aimed to investigate the effect of imbalanced data on the

performance of deep learning-based models. To achieve this goal, the study

considered various types of imbalanced image data, including mixed data such as

numerical, categorical, and image data. However, due to time constraints, the

study focused on two case scenarios: 1) healthcare diagnostics for patients with

COVID-19 symptoms and 2) defect analysis from images of 3D-printed cylinders.

As an effect, the study evaluated six transfer learning (TL) algorithms -

VGG16, InceptionResNetV2, ResNet50, ResNet101, MobileNetV2, and VGG19 -

on imbalanced data analysis in healthcare diagnostics, specifically in the context of

COVID-19 diagnosis using chest X-ray CT-scan images. The findings revealed that

the proposed TL-based models, VGG16 and MobileNetV2, consistently performed

highly on both imbalanced chest X-ray data and mixed data used in COVID-19

patient diagnosis. However, ResNet50 and ResNet101 were not ideal choices

for imbalanced mixed data, although their performance could be improved with

additional hyper-tuning. To interpret the models’ predictions, explainable AI such

as LIME was beneficial, providing the reasoning behind the models’ predictions

and further cross-checking with actual predictions. Moreover, LIME enabled the

identification of the regions that the model learned or focused on. Nevertheless, it

357

is essential to acknowledge that other explainable AI-based model interpretability

might provide a more reliable understanding of the black box of DL-based models.

Therefore, future research could focus on developing other interpretable models

with mixed datasets to validate the overall predictions presented in Chapter 2

and verify the results with healthcare experts.

Later on, the study analyzed three separate studies on COVID-19 patients’

diagnoses using chest X-ray images to investigate the impact of imbalanced data

on DL-based models’ performance. The study found that imbalanced data can

indeed affect DL-based models’ performance in COVID-19 diagnosis, emphasizing

the need to address this issue in diagnostic tool development. The best-performing

models (VGG16 and MobileNetV2) achieved high accuracy ranges from 97.6% to

almost 100% on a highly imbalanced dataset. However, some models extracted

irrelevant details from the images, which could affect their performance.

The same approaches were followed to investigate the impact of DL approaches

on imbalanced data analysis in additive manufacturing using six TL-based ap-

proaches previously used in Chapter 2. Results indicated that VGG16 and

MobileNetV2 achieved perfect scores on all four evaluation metrics, while In-

ceptionResNetV2 performed well, averaging 99% across all metrics. However,

ResNet50 had the lowest performance among the models, with an average F1-score

of 0.34. The confusion matrix analysis further supported these findings, revealing

that the model’s classification accuracy varied depending on the specific algorithm

and the imbalance level. While some algorithms, such as MobileNetV2, achieved

high classification accuracy, others, such as ResNet50, struggled with imbalanced

358

data classification tasks due to higher false positive and false negative rates.

Additionally, the models failed to accurately detect the defect in the image

of the 3D-printed cylinder, which is a major limitation of the study. Specifically,

VGG16, MobileNetV2, and ResNet50 were unable to locate the defect accurately,

despite VGG16 and MobileNetV2 producing bounding boxes that were relatively

close to the defect. Similar poor performance was observed for ResNet101,

InceptionResNetV2, and VGG19, indicating that these models may not be well-

suited for defect localization in 3D-printed objects. The differences in performance

may be attributed to variations in the models’ architecture and how they handle

spatial features.

The findings emphasized the need for further investigation into the factors

contributing to model failures and suggested that optimizing model architecture

and training strategies could improve localization accuracy and develop more

effective solutions for defect detection and classification in additive manufacturing

processes.

Although TL-based approaches were able to classify defect and non-defect

images of 3D-printed cylinders, they were unable to identify the defect regions

accurately, which is necessary to develop a cost-efficient and AI-based additive

manufacturing system. This challenge arises due to the different sizes, types, and

shapes of the cylinders. Therefore, several preprocessing steps based on CNN

approaches were proposed and utilized to reduce the impact of imbalanced data

on failure to localize defect regions. Four CNN-based solutions were introduced,

including Modified VGG16, ROI Selection (ROIN), ROI Selection with Histogram

359

Equalization (ROIHEN), and ROI Selection with Histogram Equalization and

Details Enhancer (ROIHEDEN). The proposed approaches effectively detected

the defect regions in the images.

Furthermore, the model’s predictions were interpreted using two explainable AI

approaches, LIME and Grad-CAM, which generated heatmaps to help understand

the models’ behavior during predictions. The application of LIME and Grad-

CAM approaches provided valuable insights into the inner workings of the models

and contributed to the overall interpretability and explainability of the proposed

approaches, ultimately providing a better understanding of the effect of imbalanced

data on DL-based model predictions. The explainable AI approaches validated

how the proposed model could locate the defect regions and the potential regions

on which the proposed model was mainly focused.

However, future studies need to validate the generalizability of the proposed

approaches on a larger dataset and explore the potential of the approaches in

detecting other types of defects.

11.3 Contributions

5.8 The contributions of this dissertation to the existing literature can be sum-

marized as follows:

• Reviewed various approaches to handle class imbalance problems in ML mod-

els, identified key factors affecting their performance, presented a fishbone

diagram framework of data balancing approaches and provided a compre-

360

hensive overview of their potential applications to improve ML models’

performance in various real-world domains.

• Experimented considering four different conditions to determine the effect

of traditional ML and SMOTE-based data balancing on imbalanced data

analysis using six benchmark datasets and evaluated six hypotheses. Found

that the SMOTE-based oversampled dataset did not significantly affect

ML model performance for most algorithms and benchmarks, but the

performance of some algorithms on specific datasets may be impacted by

oversampling.

• Proposed two novel oversampling techniques based on generative adversarial

networks (GAN) to address the issue of imbalanced datasets in quality

(e.g., Winequality) and defect (e.g., Shuttle) analysis. The GAN-based

oversampling (GBO) and SVM-SMOTEGAN (SSG) approaches were shown

to have improved classification accuracy, precision, recall, and F1-score

compared to the original SMOTE-based approach. Additionally, the GBO

and SSG approaches outperformed the original SMOTE-based approach

regarding the misclassification rate on the nine benchmark datasets used

in the study. The results of this study provide valuable insights into the

effectiveness of GAN-based oversampling in enhancing the performance of

ML models for quality, defect, and pattern analysis tasks.

• A novel BSGAN model was proposed to address class-imbalanced problems

and tested on four highly imbalanced datasets. The proposed approach

361

demonstrated superior performance in various statistical measures com-

pared to borderline-SMOTE and GAN-based oversampling techniques. Fur-

thermore, the neural network approaches using the proposed techniques

outperformed many existing recent references. The inter-class distance mea-

surement ensured that the data distribution followed a Gaussian distribution

after data expansion using BSGAN. To assess the black box behavior of

the proposed models, the study used Local Interpretable Model-Agnostic

Explanations (LIME), a valuable tool for model interpretability that pro-

vides an understanding of the rationales behind the model’s predictions

through analysis and visualization of individual feature contributions. The

SHapley Additive exPlanations (SHAP) framework was also employed to

better understand the model’s prediction outcomes on the oversampled

dataset.

• TL-based approaches were used on mixed chest X-ray and CT-scan images

to diagnose COVID-19 patients. The modified VGG16 and MobileNetV2

models achieved an accuracy of almost 99% on both balanced and imbalanced

datasets. The model outputs were validated using explainable AI-based

diagnostics and cross-checked with healthcare professionals.

• Investigated the impact of DL-based approaches on small balanced and large

imbalanced datasets containing images of the 3D-printed cylinder. The study

found that existing popular TL-based approaches have limitations in locating

potential areas, such as defect regions in cylinder images. VGG16 and

362

MobileNetV2 were suggested as promising models for further investigation.

The need for additional experiments with larger and different datasets to

validate findings was highlighted and plans to conduct experiments with

various datasets and propose advanced TL-based approaches to overcome

current challenges were made.

• Proposed three CNN-based approaches, namely ROIN, ROIHEN, and ROI-

HEDEN, integrated with three pre-processing steps, namely ROI, HE, and

DE, for detecting defects in 3D printed cylinder images. The proposed

approaches addressed the limitation of identifying defect regions highlighted

in Chapter Two by introducing additional pre-processing steps and demon-

strated effective detection of defect regions in the images. LIME and

Grad-CAM were used to generate heatmaps for interpreting the models’

behavior during predictions to enhance the interpretability and explainabil-

ity of the proposed approaches. The study highlights the need for future

validation of the proposed approaches on larger datasets and exploration of

their potential in detecting other types of defects.

• Proposed an MLP-CNN-based model for the early diagnosis of COVID-19

patients using mixed data, including numerical/categorical data and chest X-

ray images. The study showed that the proposed model achieved an accuracy

of 96.30% on a small, balanced dataset and outperformed other studies on an

imbalanced dataset, achieving an accuracy of 95.4%. The study suggested

that the proposed model could be used to develop a screening system to

363

assist healthcare providers in identifying and isolating COVID-19 patients

at an earlier stage. Moreover, the study recommended future research to

validate the proposed method on larger datasets with complete patient

information, work with highly imbalanced data, apply mixed-data analysis

using kernel methods, and consider patient geographical information.

364

References

Acr issues statement for use of chest radiography, ct for suspected covid-19

infection. (n.d.). https://www.appliedradiology.com/communities/

CT-Imaging/acr-issues-statement-for-use-of-chest-radiography

-ct-for-suspected-covid-19-infection.

Afshar, P., Heidarian, S., Naderkhani, F., Oikonomou, A., Plataniotis, K. N.,

& Mohammadi, A. (2020). Covid-caps: A capsule network-based frame-

work for identification of covid-19 cases from x-ray images. arXiv preprint

arXiv:2004.02696 .

Ahmed, E., & Moustafa, M. (2016). House price estimation from visual and

textual features. ArXiv Preprint ArXiv:1609.08399 .

Ahsan, M. M. (2018). Real time face recognition in unconstrained environment.

Lamar University-Beaumont.

Ahsan, M. M., Abdullah, T. A., Ali, M. S., Jahora, F., Islam, M. K., Alhashim,

A. G., & Gupta, K. D. (2022). Transfer learning and local interpretable

model agnostic based visual approach in monkeypox disease detection and

classification: A deep learning insights. arXiv preprint arXiv:2211.05633 .

Ahsan, M. M., Ali, M. S., & Siddique, Z. (2022). Imbalanced class data per-

formance evaluation and improvement using novel generative adversarial

network-based approach: Ssg and gbo. arXiv preprint arXiv:2210.12870 .

Ahsan, M. M., E Alam, T., Trafalis, T., & Huebner, P. (2020). Deep mlp-cnn

model using mixed-data to distinguish between covid-19 and non-covid-19

365

https://www.appliedradiology.com/communities/CT-Imaging/acr-issues-statement-for-use-of-chest-radiography-ct-for-suspected-covid-19-infection
https://www.appliedradiology.com/communities/CT-Imaging/acr-issues-statement-for-use-of-chest-radiography-ct-for-suspected-covid-19-infection
https://www.appliedradiology.com/communities/CT-Imaging/acr-issues-statement-for-use-of-chest-radiography-ct-for-suspected-covid-19-infection

patients. Symmetry , 12 (9), 1526.

Ahsan, M. M., Gupta, K. D., Islam, M. M., Sen, S., Rahman, M., Shakhawat Hos-

sain, M., et al. (2020). Covid-19 symptoms detection based on nasnetmobile

with explainable ai using various imaging modalities. Machine Learning and

Knowledge Extraction, 2 (4), 490–504.

Ahsan, M. M., Li, Y., Zhang, J., Ahad, M. T., Yazdan, M. M., et al. (2020).

Face recognition in an unconstrained and real-time environment using novel

bmc-lbph methods incorporates with dji vision sensor. Journal of Sensor

and Actuator Networks , 9 (4), 54.

Ahsan, M. M., Luna, S. A., & Siddique, Z. (2022). Machine-learning-based disease

diagnosis: A comprehensive review. In Healthcare (Vol. 10, p. 541).

Ahsan, M. M., & Siddique, Z. (2021). Machine learning-based heart disease

diagnosis: A systematic literature review. arXiv preprint arXiv:2112.06459 .

Ahsan, M. M., Uddin, M. R., Ali, M. S., Islam, M. K., Farjana, M., Sakib, A. N.,

. . . Luna, S. A. (2023). Deep transfer learning approaches for monkeypox

disease diagnosis. Expert Systems with Applications , 119483.

Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., . . . Xia, L. (2020).

Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-

19) in china: A report of 1014 cases. Radiology , 200642.

Akiba, T., Suzuki, S., & Fukuda, K. (2017). Extremely large minibatch sgd: Train-

ing resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325 .

Alam, M. S., Alam, M. Z., Nazir, K. N. H., & Bhuiyan, M. A. B. (2020). The

emergence of novel coronavirus disease (covid-19) in bangladesh: Present

366

status, challenges, and future management. Journal of Advanced Veterinary

and Animal Research, 7 (2), 198–208.

Ali, U., Shamsi, M. H., Bohacek, M., Purcell, K., Hoare, C., Mangina, E., &

O’Donnell, J. (2020). A data-driven approach for multi-scale gis-based

building energy modeling for analysis, planning and support decision making.

Applied Energy , 279 , 115834.

Ali-Gombe, A., & Elyan, E. (2019). Mfc-gan: class-imbalanced dataset classifica-

tion using multiple fake class generative adversarial network. Neurocomput-

ing , 361 , 212–221.

Al Majzoub, H., Elgedawy, I., Akaydın, Ö., & Köse Ulukök, M. (2020). Hcab-smote:

A hybrid clustered affinitive borderline smote approach for imbalanced data

binary classification. Arabian Journal for Science and Engineering , 45 (4),

3205–3222.

Almhaithawi, D., Jafar, A., & Aljnidi, M. (2020). Example-dependent cost-

sensitive credit cards fraud detection using smote and bayes minimum risk.

SN Applied Sciences , 2 (9), 1–12.

Anelić, N., Baressi Šegota, S., Lorencin, I., & Glučina, M. (2022). Detection of

malicious websites using symbolic classifier. Future Internet , 14 (12), 358.

Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: Automatic detection

from x-ray images utilizing transfer learning with convolutional neural

networks. Physical and Engineering Sciences in Medicine, 1.

Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, N., & Mohammadi,

A. (2020). Application of deep learning technique to manage covid-19 in

367

routine clinical practice using ct images: Results of 10 convolutional neural

networks. Computers in Biology and Medicine, 103795.

Ayyadevara, V. K., & Ayyadevara, V. K. (2018). Gradient boosting machine.

Pro machine learning algorithms: A hands-on approach to implementing

algorithms in python and R, 117–134.

Bacaksız, A. H., & Esgin, E. (2019). Extraction of numerical data from categorical

data set and artificial neural networks. In 2019 3rd international symposium

on multidisciplinary studies and innovative technologies (ismsit) (pp. 1–4).

Bai, H. X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J. W., Tran, T. M. L., . . .

others (2020). Performance of radiologists in differentiating covid-19 from

viral pneumonia on chest ct. Radiology , 200823.

Bansal, A. (2022, May). Image enhancement techniques using

opencv and python. Towards Data Science. Retrieved from

https://towardsdatascience.com/image-enhancement-techniques

-using-opencv-and-python-9191d5c30d45

Bappy, J. H., Roy-Chowdhury, A. K., Bunk, J., Nataraj, L., & Manjunath, B.

(2017). Exploiting spatial structure for localizing manipulated image regions.

In Proceedings of the ieee international conference on computer vision (pp.

4970–4979).

Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (covid-19) classifi-

cation using ct images by machine learning methods.

Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior

of several methods for balancing machine learning training data. ACM

368

https://towardsdatascience.com/image-enhancement-techniques-using-opencv-and-python-9191d5c30d45
https://towardsdatascience.com/image-enhancement-techniques-using-opencv-and-python-9191d5c30d45

SIGKDD explorations newsletter , 6 (1), 20–29.

Bell, D., & Mgbemena, C. (2018). Data-driven agent-based exploration of customer

behavior. Simulation, 94 (3), 195–212.

Bengio, Y. (2015). Rmsprop and equilibrated adaptive learning rates for nonconvex

optimization. Corr abs/1502.04390 .

Bennett, R., Mulla, Z. D., Parikh, P., Hauspurg, A., & Razzaghi, T. (2022). An

imbalance-aware deep neural network for early prediction of preeclampsia.

Plos one, 17 (4), e0266042.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimiza-

tion. Journal of machine learning research, 13 (Feb), 281–305.

Bernardo, A., & Della Valle, E. (2022). An extensive study of c-smote, a continuous

synthetic minority oversampling technique for evolving data streams. Expert

Systems with Applications , 196 , 116630.

Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z. A., Zhang, N., . . . others

(2020). Chest ct findings in coronavirus disease-19 (covid-19): relationship

to duration of infection. Radiology , 200463.

Bibri, S. E. (2022). The social shaping of the metaverse as an alternative to the

imaginaries of data-driven smart cities: A study in science, technology, and

society. Smart Cities , 5 (3), 832–874.

Blagus, R., & Lusa, L. (2013). Smote for high-dimensional class-imbalanced data.

BMC bioinformatics , 14 (1), 1–16.

Blake, C. (1998). Uci repository of machine learning databases. http://www. ics.

uci. edu/˜ mlearn/MLRepository. html .

369

Brijain, M., Patel, R., Kushik, M., & Rana, K. (2014). A survey on decision tree

algorithm for classification.

Brouwer, R. K. (2002). A feed-forward network for input that is both categorical

and quantitative. Neural Networks , 15 (7), 881–890.

Brownlee, J. (2014). Machine learning mastery. URL:

http://machinelearningmastery. com/discover-feature-engineering-

howtoengineer-features-and-how-to-getgood-at-it .

Brownlee, J. (2016). Machine learning mastery with python. Machine Learning

Mastery Pty Ltd , 527 , 100–120.

Brownlee, J. (2018). What is the difference between a batch and an epoch in a

neural network? Machine Learning Mastery .

Brownlee, J. (2020a). Data preparation for machine learning: data cleaning,

feature selection, and data transforms in python. Machine Learning Mastery.

Brownlee, J. (2020b). Imbalanced classification with python: Better metrics,

balance skewed classes, cost-sensitive learning. Machine Learning Mastery.

Brownlee, J. (2020c). Random oversampling and undersampling for imbalanced

classification. Machine learning mastery .

Brownlee, J. (2020d). Undersampling algorithms for imbalanced classification.

Machine Learning Mastrey , 27 .

Brownlee, J. (2022). Machine learning mastery. Machine Learning Mastery.

Brunese, L., Mercaldo, F., Reginelli, A., & Santone, A. (2020a). An ensemble

learning approach for brain cancer detection exploiting radiomic features.

Computer methods and programs in biomedicine, 185 , 105134.

370

Brunese, L., Mercaldo, F., Reginelli, A., & Santone, A. (2020b). Explainable

deep learning for pulmonary disease and coronavirus covid-19 detection from

x-rays. Computer Methods and Programs in Biomedicine, 105608.

Brunton, S. L., Nathan Kutz, J., Manohar, K., Aravkin, A. Y., Morgansen,

K., Klemisch, J., . . . others (2021). Data-driven aerospace engineering:

reframing the industry with machine learning. AIAA Journal , 59 (8), 2820–

2847.

Butt, C., Gill, J., Chun, D., & Babu, B. A. (2020). Deep learning system to

screen coronavirus disease 2019 pneumonia. Applied Intelligence, 1.

Calderon-Ramirez, S., Yang, S., Moemeni, A., Colreavy-Donnelly, S., Elizondo,

D. A., Oala, L., . . . Molina-Cabello, M. A. (2021). Improving uncertainty

estimation with semi-supervised deep learning for covid-19 detection using

chest x-ray images. Ieee Access , 9 , 85442–85454.

Calo, V. M., Efendiev, Y., Galvis, J., & Li, G. (2016). Randomized oversampling

for generalized multiscale finite element methods. Multiscale Modeling &

Simulation, 14 (1), 482–501.

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015).

Intelligible models for healthcare: Predicting pneumonia risk and hospital

30-day readmission. In Proceedings of the 21th acm sigkdd international

conference on knowledge discovery and data mining (pp. 1721–1730).

Celik, Y., Talo, M., Yildirim, O., Karabatak, M., & Acharya, U. R. (2020).

Automated invasive ductal carcinoma detection based using deep transfer

learning with whole-slide images. Pattern Recognition Letters .

371

Chandra, B., & Sharma, R. K. (2016). Deep learning with adaptive learning rate

using laplacian score. Expert Systems with Applications , 63 , 1–7.

Chandra, T. B., Verma, K., Singh, B. K., Jain, D., & Netam, S. S. (2020).

Coronavirus disease (covid-19) detection in chest x-ray images using majority

voting based classifier ensemble. Expert Systems with Applications, 165 ,

113909.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote:

synthetic minority over-sampling technique. Journal of Artificial Intelligence

Research, 16 , 321–357.

Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). Smoteboost:

Improving prediction of the minority class in boosting. In Knowledge

discovery in databases: Pkdd 2003: 7th european conference on principles

and practice of knowledge discovery in databases, cavtat-dubrovnik, croatia,

september 22-26, 2003. proceedings 7 (pp. 107–119).

Chen, F., Mac, G., & Gupta, N. (2017). Security features embedded in computer

aided design (cad) solid models for additive manufacturing. Materials &

Design, 128 , 182–194.

Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., . . . others (2020).

Deep learning-based model for detecting 2019 novel coronavirus pneumonia

on high-resolution computed tomography: A prospective study. MedRxiv .

Chen, Z., Duan, J., Kang, L., & Qiu, G. (2021). Class-imbalanced deep learning

via a class-balanced ensemble. IEEE transactions on neural networks and

learning systems , 33 (10), 5626–5640.

372

Chest x-ray images (pneumonia). (n.d.). https://www.kaggle.com/

paultimothymooney/chest-xray-pneumonia.

Chollet, F. (2017). Deep learning with python. Manning Publications Co.

Chua, F., Armstrong-James, D., Desai, S. R., Barnett, J., Kouranos, V., Kon,

O. M., . . . others (2020). The role of ct in case ascertainment and manage-

ment of covid-19 pneumonia in the uk: insights from high-incidence regions.

The Lancet Respiratory Medicine, 8 (5), 438–440.

Cohen, J. P., Morrison, P., & Dao, L. (2020). Covid-19 image data collection.

arXiv preprint arXiv:2003.11597 .

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling

wine preferences by data mining from physicochemical properties. Decision

support systems , 47 (4), 547–553.

Covid-19 chest xray. (June, 2020). https://www.kaggle.com/search?q=covid

-19+datasetFileTypes%3Apng.

Covid-19 diagnostic imaging recommendations. (n.d.). https://

www.appliedradiology.com/articles/covid-19-diagnostic-imaging

-recommendations.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath,

A. A. (2018). Generative adversarial networks: An overview. IEEE Signal

Processing Magazine, 35 (1), 53–65.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., & Belongie, S. (2019). Class-balanced

loss based on effective number of samples. In Proceedings of the ieee/cvf

conference on computer vision and pattern recognition (pp. 9268–9277).

373

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/search?q=covid-19+datasetFileTypes%3Apng
https://www.kaggle.com/search?q=covid-19+datasetFileTypes%3Apng
https://www.appliedradiology.com/articles/covid-19-diagnostic-imaging-recommendations
https://www.appliedradiology.com/articles/covid-19-diagnostic-imaging-recommendations
https://www.appliedradiology.com/articles/covid-19-diagnostic-imaging-recommendations

Cui, Y., Ma, H., & Saha, T. (2014). Improvement of power transformer insulation

diagnosis using oil characteristics data preprocessed by smoteboost technique.

IEEE Transactions on Dielectrics and Electrical Insulation, 21 (5), 2363–

2373.

Dadhich, A. (2018). Practical computer vision: Extract insightful information

from images using tensorflow, keras, and opencv. Packt Publishing Ltd.

Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti, M., Tibollo, V., . . . Bellazzi,

R. (2018). Machine learning methods to predict diabetes complications.

Journal of diabetes science and technology , 12 (2), 295–302.

Dashbord. (June,2020). Covid-19 worldmeter. (https://www.worldometers

.info/coronavirus/)

Dayton, C. M. (1992). Logistic regression analysis. Stat , 474 , 574.

DebRoy, T., Mukherjee, T., Wei, H., Elmer, J., & Milewski, J. (2021). Metallurgy,

mechanistic models and machine learning in metal printing. Nature Reviews

Materials , 6 (1), 48–68.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., & De Freitas, N. (2013). Predicting

parameters in deep learning. In Advances in neural information processing

systems (pp. 2148–2156).

Devi, D., Biswas, S. K., & Purkayastha, B. (2020). A review on solution to

class imbalance problem: undersampling approaches. In 2020 international

conference on computational performance evaluation (compe) (pp. 626–631).

Devi, M. S., Aruna, R., Kumar, S. V., Chowdary, G. V., Raju, B. K., & Prasad,

M. S. (2022). Statistical oversampling classification based glass type identi-

374

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/

fication through oxide content. In Innovations in electrical and electronic

engineering: Proceedings of iceee 2022, volume 2 (pp. 537–550). Springer.

Ding, H., Chen, L., Dong, L., Fu, Z., & Cui, X. (2022). Imbalanced data

classification: A knn and generative adversarial networks-based hybrid

approach for intrusion detection. Future Generation Computer Systems,

131 , 240–254.

Dorj, U.-O., Lee, K.-K., Choi, J.-Y., & Lee, M. (2018). The skin cancer clas-

sification using deep convolutional neural network. Multimedia Tools and

Applications , 77 (8), 9909–9924.

Douzas, G., & Bacao, F. (2019). Geometric smote a geometrically enhanced

drop-in replacement for smote. Information Sciences , 501 , 118–135.

Douzas, G., Bacao, F., & Last, F. (2018). Improving imbalanced learning through

a heuristic oversampling method based on k-means and smote. Information

Sciences , 465 , 1–20.

Drucker, H., Wu, D., & Vapnik, V. N. (1999). Support vector machines for spam

categorization. IEEE Transactions on Neural networks , 10 (5), 1048–1054.

Dutta, P., Paul, S., & Kumar, A. (2021). Comparative analysis of various super-

vised machine learning techniques for diagnosis of covid-19. In Electronic

devices, circuits, and systems for biomedical applications (pp. 521–540).

Elsevier.

Elgendi, M., Nasir, M. U., Tang, Q., Fletcher, R. R., Howard, N., Menon, C.,

. . . Nicolaou, S. (2020). The performance of deep neural networks in

differentiating chest x-rays of covid-19 patients from other bacterial and

375

viral pneumonias. Frontiers in medicine, 7 , 550.

El Naqa, I., & Murphy, M. J. (2015). What is machine learning? Springer.

Engelmann, J., & Lessmann, S. (2021). Conditional wasserstein gan-based

oversampling of tabular data for imbalanced learning. Expert Systems with

Applications , 174 , 114582.

Erdem, K. (2020, Feb). Understanding region of interest - part 2 (roi align).

Retrieved from https://erdem.pl/2020/02/understanding-region-of

-interest-part-2-ro-i-align

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., . . . Socher,

R. (2021). Deep learning-enabled medical computer vision. NPJ digital

medicine, 4 (1), 5.

Everything you should know about the 2019 coronavirus and covid-19.

(n.d.). https://www.healthline.com/health/coronavirus-covid-19#

symptoms.

Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management:

A review and bibliometric analysis. International Journal of Production

Economics , 162 , 101–114.

Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020).

Sensitivity of chest ct for covid-19: comparison to rt-pcr. Radiology , 200432.

Farahany, Z., Wu, J., Islam, K. S., & Madiraju, P. (2022). Oversampling techniques

for predicting covid-19 patient length of stay. In 2022 ieee international

conference on big data (big data) (pp. 5253–5262).

Faris, H. (2014). Neighborhood cleaning rules and particle swarm optimization

376

https://erdem.pl/2020/02/understanding-region-of-interest-part-2-ro-i-align
https://erdem.pl/2020/02/understanding-region-of-interest-part-2-ro-i-align
\ifx\scrollmode https://www.healthline.com/health/coronavirus-covid-19#symptoms \scrollmode https://www.healthline.com/health/coronavirus-covid-19#symptoms
\ifx\scrollmode https://www.healthline.com/health/coronavirus-covid-19#symptoms \scrollmode https://www.healthline.com/health/coronavirus-covid-19#symptoms

for predicting customer churn behavior in telecom industry. International

Journal of Advanced Science and Technology , 68 , 11–22.

Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., & Acharya, U. R. (2018). Deep

learning for healthcare applications based on physiological signals: A review.

Computer Methods and Programs in Biomedicine, 161 , 1–13.

Fern, S. H., Amir, A., & Azemi, S. N. (2022). Multi-class imbalanced classification

problems in network attack detections. In Proceedings of the 6th international

conference on electrical, control and computer engineering (pp. 1057–1069).

Filipczuk, P., Fevens, T., Krzyżak, A., & Monczak, R. (2013). Computer-aided

breast cancer diagnosis based on the analysis of cytological images of fine

needle biopsies. IEEE transactions on medical imaging , 32 (12), 2169–2178.

Fletcher, R. R., Nakeshimana, A., & Olubeko, O. (2021). Addressing fairness,

bias, and appropriate use of artificial intelligence and machine learning in

global health. Frontiers in Artificial Intelligence, 3 , 116.

Fonseca, J., Douzas, G., & Bacao, F. (2021). Improving imbalanced land cover

classification with k-means smote: Detecting and oversampling distinctive

minority spectral signatures. Information, 12 (7), 266.

Force, A. D. T., Ranieri, V., Rubenfeld, G., Thompson, B., Ferguson, N., Caldwell,

E., et al. (2012). Acute respiratory distress syndrome. JAMA, 307 (23),

2526–2533.

Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018).

Synthetic data augmentation using gan for improved liver lesion classification.

In 2018 ieee 15th international symposium on biomedical imaging (isbi 2018)

377

(pp. 289–293).

Gabriel, R. A., Harjai, B., Simpson, S., Goldhaber, N., Curran, B. P., & Waterman,

R. S. (2022). Machine learning-based models predicting outpatient surgery

end time and recovery room discharge at an ambulatory surgery center.

Anesthesia and Analgesia, 135 (1), 159.

Gabrielli, P., Wüthrich, M., Blume, S., & Sansavini, G. (2022). Data-driven

modeling for long-term electricity price forecasting. Energy , 244 , 123107.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). A

review on ensembles for the class imbalance problem: bagging-, boosting-,

and hybrid-based approaches. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 42 (4), 463–484.

Ganger, H. (2023). Hargurjeet/ionosphere-data-analysis - jovian. Retrieved from

https://jovian.com/hargurjeet/ionosphere-data-analysis

Garćıa, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced non-

parametric tests for multiple comparisons in the design of experiments in

computational intelligence and data mining: Experimental analysis of power.

Information sciences , 180 (10), 2044–2064.

Garćıa-Vicente, C., Chushig-Muzo, D., Mora-Jiménez, I., Fabelo, H., Gram,

I. T., Løchen, M.-L., . . . Soguero-Ruiz, C. (2023). Clinical synthetic data

generation to predict and identify risk factors for cardiovascular diseases. In

Heterogeneous data management, polystores, and analytics for healthcare:

Vldb workshops, poly 2022 and dmah 2022, virtual event, september 9, 2022,

revised selected papers (pp. 75–91).

378

https://jovian.com/hargurjeet/ionosphere-data-analysis

Gazzah, S., Hechkel, A., & Amara, N. E. B. (2015). A hybrid sampling method

for imbalanced data. In 2015 ieee 12th international multi-conference on

systems, signals & devices (ssd15) (pp. 1–6).

Geng, Y., & Luo, X. (2019). Cost-sensitive convolutional neural networks for

imbalanced time series classification. Intelligent Data Analysis , 23 (2), 357–

370.

Ghoshal, B., & Tucker, A. (2020). Estimating uncertainty and interpretabil-

ity in deep learning for coronavirus (covid-19) detection. ArXiv Preprint

ArXiv:2003.10769 .

Girshick, R. (2015). Fast r-cnn. In Proceedings of the ieee international conference

on computer vision (pp. 1440–1448).

Gnip, P., Vokorokos, L., & Drotár, P. (2021). Selective oversampling approach

for strongly imbalanced data. PeerJ Computer Science, 7 , e604.

Gök, E. C., & Olgun, M. O. (2021). Smote-nc and gradient boosting imputation

based random forest classifier for predicting severity level of covid-19 patients

with blood samples. Neural Computing and Applications, 33 (22), 15693–

15707.

Gong, J., Ou, J., Qiu, X., Jie, Y., Chen, Y., Yuan, L., . . . others (2020). A

tool to early predict severe 2019-novel coronavirus pneumonia (covid-19): A

multicenter study using the risk nomogram in wuhan and guangdong, china.

MedRxiv .

Goodman, J., Sarkani, S., & Mazzuchi, T. (2022). Distance-based probabilis-

tic data augmentation for synthetic minority oversampling. ACM/IMS

379

Transactions on Data Science (TDS), 2 (4), 1–18.

Gosain, A., & Sardana, S. (2017). Handling class imbalance problem using

oversampling techniques: A review. In 2017 international conference on

advances in computing, communications and informatics (icacci) (pp. 79–

85).

Goyal, S. (2022). Handling class-imbalance with knn (neighbourhood) under-

sampling for software defect prediction. Artificial Intelligence Review , 55 (3),

2023–2064.

Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P. D., Zhang, H., Ji, W., . . .

Siegel, E. (2020). Rapid ai development cycle for the coronavirus (covid-19)

pandemic: Initial results for automated detection patient monitoring using

deep learning ct image analysis.

Grasselli, G., Pesenti, A., & Cecconi, M. (2020). Critical care utilization for the

covid-19 outbreak in lombardy, italy: Early experience and forecast during

an emergency response. JAMA, 323 (16), 1545–1546.

Greenspan, H., Van Ginneken, B., & Summers, R. M. (2016). Guest editorial deep

learning in medical imaging: Overview and future promise of an exciting

new technique. IEEE Transactions on Medical Imaging , 35 (5), 1153–1159.

Gu, X., Angelov, P. P., & Soares, E. A. (2020). A self-adaptive synthetic over-

sampling technique for imbalanced classification. International Journal of

Intelligent Systems , 35 (6), 923–943.

Guo, S., Agarwal, M., Cooper, C., Tian, Q., Gao, R. X., Grace, W. G., & Guo,

Y. (2022). Machine learning for metal additive manufacturing: Towards a

380

physics-informed data-driven paradigm. Journal of Manufacturing Systems ,

62 , 145–163.

Guo, Y., Xiong, G., Li, Z., Shi, J., Cui, M., & Gou, G. (2021). Ta-gan: Gan

based traffic augmentation for imbalanced network traffic classification. In

2021 international joint conference on neural networks (ijcnn) (pp. 1–8).

Gupta, K. D., Ahsan, M., Andrei, S., & Alam, K. M. R. (2017). A robust

approach of facial orientation recognition from facial features. BRAIN.

Broad Research in Artificial Intelligence and Neuroscience, 8 (3), 5–12.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of machine learning research, 3 (Mar), 1157–1182.

Haghanifar, A., Majdabadi, M. M., & Ko, S. (2020). Covid-cxnet: Detecting

covid-19 in frontal chest x-ray images using deep learning. ArXiv Preprint

ArXiv:2006.13807 .

Hairani, H., Anggrawan, A., & Priyanto, D. (2023). Improvement performance of

the random forest method on unbalanced diabetes data classification using

smote-tomek link. JOIV: International Journal on Informatics Visualization,

7 (1).

Hameed, A. A., Karlik, B., & Salman, M. S. (2016). Back-propagation algorithm

with variable adaptive momentum. Knowledge-Based Systems , 114 , 79–87.

Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-smote: a new over-

sampling method in imbalanced data sets learning. In International confer-

ence on intelligent computing (pp. 878–887).

Han, L., Yang, G., Yang, X., Song, X., Xu, B., Li, Z., . . . Wu, J. (2022). An

381

explainable xgboost model improved by smote-enn technique for maize

lodging detection based on multi-source unmanned aerial vehicle images.

Computers and Electronics in Agriculture, 194 , 106804.

Hangge, P., Pershad, Y., Witting, A. A., Albadawi, H., & Oklu, R. (2018).

Three-dimensional (3d) printing and its applications for aortic diseases.

Cardiovascular diagnosis and therapy , 8 (Suppl 1), S19.

Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE transactions

on information theory , 14 (3), 515–516.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). Adasyn: Adaptive synthetic

sampling approach for imbalanced learning. In 2008 ieee international

joint conference on neural networks (ieee world congress on computational

intelligence) (pp. 1322–1328).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the ieee conference on computer vision and

pattern recognition (pp. 770–778).

Health system tracker. (n.d.). http://www.nhf.org.bd/hospital charge.php

?id=6.

Hemdan, E. E.-D., Shouman, M. A., & Karar, M. E. (2020). Covidx-net: A

framework of deep learning classifiers to diagnose covid-19 in x-ray images.

arXiv preprint arXiv:2003.11055 .

Hira, Z. M., & Gillies, D. F. (2015). A review of feature selection and feature

extraction methods applied on microarray data. Advances in bioinformatics ,

2015 .

382

http://www.nhf.org.bd/hospital_charge.php?id=6
http://www.nhf.org.bd/hospital_charge.php?id=6

Hoens, T. R., & Chawla, N. V. (2013). Imbalanced datasets: from sampling to

classifiers. Imbalanced learning: Foundations, algorithms, and applications ,

43–59.

Hopkins, M., Reeber, E., Forman, G., & Suermondt, J. (1998). Spambase data set.

Retrieved from https://archive.ics.uci.edu/ml/datasets/spambase

How much does an x-ray cost. (n.d.). https://health.costhelper.com/x-rays

.html.

Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., . . . others (2020). Clinical

characteristics of 24 asymptomatic infections with covid-19 screened among

close contacts in nanjing, china. Science China Life Sciences , 1–6.

Hutter, F., Lücke, J., & Schmidt-Thieme, L. (2015). Beyond manual tuning of

hyperparameters. KI-Künstliche Intelligenz , 29 (4), 329–337.

Huyut, M. (2023). Automatic detection of severely and mildly infected covid-19

patients with supervised machine learning models. IRBM , 44 (1), 100725.

Ikotun, A. M., & Ezugwu, A. E. (2022). Enhanced firefly-k-means clustering with

adaptive mutation and central limit theorem for automatic clustering of

high-dimensional datasets. Applied Sciences , 12 (23), 12275.

Ileberi, E., Sun, Y., & Wang, Z. (2021). Performance evaluation of machine

learning methods for credit card fraud detection using smote and adaboost.

IEEE Access , 9 , 165286–165294.

Ishaq, A., Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi,

M. (2021). Improving the prediction of heart failure patients’ survival using

smote and effective data mining techniques. IEEE access , 9 , 39707–39716.

383

https://archive.ics.uci.edu/ml/datasets/spambase
https://health.costhelper.com/x-rays.html
https://health.costhelper.com/x-rays.html

Jadhav, A. S. (2020). A novel weighted tpr-tnr measure to assess performance of

the classifiers. Expert systems with applications , 152 , 113391.

Jakhar, D., & Kaur, I. (2020). Artificial intelligence, machine learning and deep

learning: Definitions and differences. Clinical and Experimental Dermatology ,

45 (1), 131–132.

Jalali, A., Heistracher, C., Schindler, A., Haslhofer, B., Nemeth, T., Glawar,

R., . . . De Boer, P. (2019). Predicting time-to-failure of plasma etching

equipment using machine learning. In 2019 ieee international conference on

prognostics and health management (icphm) (pp. 1–8).

Jamil, F., Kahng, H. K., Kim, S., & Kim, D.-H. (2021). Towards secure fitness

framework based on iot-enabled blockchain network integrated with machine

learning algorithms. Sensors , 21 (5), 1640.

Jang, B., Kim, M., Harerimana, G., Kang, S.-u., & Kim, J. W. (2020). Bi-lstm

model to increase accuracy in text classification: Combining word2vec cnn

and attention mechanism. Applied Sciences , 10 (17), 5841.

Jia, C., & Zuo, Y. (2017). S-sulfpred: A sensitive predictor to capture s-

sulfenylation sites based on a resampling one-sided selection undersampling-

synthetic minority oversampling technique. Journal of theoretical biology ,

422 , 84–89.

Jiang, N., & Li, N. (2021). A wind turbine frequent principal fault detection and

localization approach with imbalanced data using an improved synthetic

oversampling technique. International Journal of Electrical Power & Energy

Systems , 126 , 106595.

384

Jiang, W., Hong, Y., Zhou, B., He, X., & Cheng, C. (2019). A gan-based anomaly

detection approach for imbalanced industrial time series. IEEE Access , 7 ,

143608–143619.

Jin, C., Chen, W., Cao, Y., Xu, Z., Zhang, X., Deng, L., . . . Feng, J. (2020).

Development and evaluation of an ai system for covid-19 diagnosis. MedRxiv .

Jin, Z., Zhang, Z., Demir, K., & Gu, G. X. (2020). Machine learning for advanced

additive manufacturing. Matter , 3 (5), 1541–1556.

Jo, W., & Kim, D. (2022). Obgan: Minority oversampling near borderline with

generative adversarial networks. Expert Systems with Applications, 197 ,

116694.

Joshi, N. (2022, Mar). Histogram equalization. Retrieved from https://www

.analyticsvidhya.com/blog/2022/01/histogram-equalization/

Junsomboon, N., & Phienthrakul, T. (2017). Combining over-sampling and

under-sampling techniques for imbalance dataset. In Proceedings of the 9th

international conference on machine learning and computing (pp. 243–247).

Kabir, M. F., & Ludwig, S. (2018). Classification of breast cancer risk factors using

several resampling approaches. In 2018 17th ieee international conference

on machine learning and applications (icmla) (pp. 1243–1248).

Kanne, J. P., Little, B. P., Chung, J. H., Elicker, B. M., & Ketai, L. H. (2020).

Essentials for radiologists on covid-19: An update—radiology scientific expert

panel. Radiological Society of North America.

Karia, V., Zhang, W., Naeim, A., & Ramezani, R. (2019). Gensample: A

genetic algorithm for oversampling in imbalanced datasets. arXiv preprint

385

https://www.analyticsvidhya.com/blog/2022/01/histogram-equalization/
https://www.analyticsvidhya.com/blog/2022/01/histogram-equalization/

arXiv:1910.10806 .

Karr, A. F., Sanil, A. P., & Banks, D. L. (2006). Data quality: A statistical

perspective. Statistical Methodology , 3 (2), 137–173.

Kassani, S. H., & Kassani, P. H. (2019). A comparative study of deep learning

architectures on melanoma detection. Tissue and Cell , 58 , 76–83.

Kaur, H., Pannu, H. S., & Malhi, A. K. (2019). A systematic review on imbalanced

data challenges in machine learning: Applications and solutions. ACM

Computing Surveys (CSUR), 52 (4), 1–36.

Ker, J., Wang, L., Rao, J., & Lim, T. (2017). Deep learning applications in

medical image analysis. IEEE Access , 6 , 9375–9389.

Ketkar, N., & Ketkar, N. (2017). Stochastic gradient descent. Deep learning with

Python: A hands-on introduction, 113–132.

Khalifa, N. E. M., Taha, M. H. N., Hassanien, A. E., & Elghamrawy, S. (2020).

Detection of coronavirus (covid-19) associated pneumonia based on gener-

ative adversarial networks and a fine-tuned deep transfer learning model

using chest x-ray dataset. arXiv preprint arXiv:2004.01184 .

khan, A., Gupta, K. D., Kumar, N., & Venugopal, D. (2020). Cidmp: Completely

interpretable detection of malaria parasite in red blood cells using lower-

dimensional feature space. In Proceedings of the 2020 international joint

conference on neural networks (ijcnn 2020).

Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). Coronet: A deep neural network

for detection and diagnosis of covid-19 from chest x-ray images. Computer

Methods and Programs in Biomedicine, 105581.

386

Kim, J., Jeong, K., Choi, H., & Seo, K. (2020). Gan-based anomaly detection

in imbalance problems. In European conference on computer vision (pp.

128–145).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

ArXiv Preprint ArXiv:1412.6980 .

Koch, D., Despotovic, M., Leiber, S., Sakeena, M., Döller, M., & Zeppelzauer, M.

(2020). Real estate image analysis-a literature review (preprint).

Kramer, O., & Kramer, O. (2013). K-nearest neighbors. Dimensionality reduction

with unsupervised nearest neighbors , 13–23.

Krawczyk, B., Galar, M., Jeleń, L., & Herrera, F. (2016). Evolutionary under-

sampling boosting for imbalanced classification of breast cancer malignancy.

Applied Soft Computing , 38 , 714–726.

Kumar, E. S., Talasila, V., Rishe, N., Kumar, T. S., & Iyengar, S. (2019). Location

identification for real estate investment using data analytics. International

Journal of Data Science and Analytics , 8 (3), 299–323.

Kumar, N., Hashmi, A., Gupta, M., & Kundu, A. (2022). Automatic diagnosis

of covid-19 related pneumonia from cxr and ct-scan images. Engineering,

Technology & Applied Science Research, 12 (1), 7993–7997.

Kumar, V., Lalotra, G. S., Sasikala, P., Rajput, D. S., Kaluri, R., Lakshmanna, K.,

. . . Uddin, M. (2022). Addressing binary classification over class imbalanced

clinical datasets using computationally intelligent techniques. In Healthcare

(Vol. 10, p. 1293).

Kwon, C., Park, S., Ko, S., & Ahn, J. (2021). Increasing prediction accuracy of

387

pathogenic staging by sample augmentation with a gan. Plos one, 16 (4),

e0250458.

Lango, M., & Stefanowski, J. (2022). What makes multi-class imbalanced problems

difficult? an experimental study. Expert Systems with Applications, 199 ,

116962.

Last, F., Douzas, G., & Bacao, F. (n.d.). Oversampling for imbalanced learning

based on k-means and smote. arxiv 2017. arXiv preprint arXiv:1711.00837 .

Lau, A. L., Chi, I., Cummins, R. A., Lee, T. M., Chou, K.-L., & Chung, L. W.

(2008). The sars (severe acute respiratory syndrome) pandemic in hong

kong: Effects on the subjective wellbeing of elderly and younger people.

Aging and Mental Health, 12 (6), 746–760.

Laurikkala, J. (2001). Improving identification of difficult small classes by

balancing class distribution. In Artificial intelligence in medicine: 8th

conference on artificial intelligence in medicine in europe, aime 2001 cascais,

portugal, july 1–4, 2001, proceedings 8 (pp. 63–66).

Law, S., Paige, B., & Russell, C. (2019). Take a look around: Using street

view and satellite images to estimate house prices. ACM Transactions on

Intelligent Systems and Technology (TIST), 10 (5), 1–19.

Le, T., Hoang Son, L., Vo, M. T., Lee, M. Y., & Baik, S. W. (2018). A cluster-

based boosting algorithm for bankruptcy prediction in a highly imbalanced

dataset. Symmetry , 10 (7), 250.

Lee, K.-S., Kim, J. Y., Jeon, E.-t., Choi, W. S., Kim, N. H., & Lee, K. Y. (2020).

Evaluation of scalability and degree of fine-tuning of deep convolutional neu-

388

ral networks for covid-19 screening on chest x-ray images using explainable

deep-learning algorithm. Journal of Personalized Medicine, 10 (4), 213.

Lemâıtre, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python

toolbox to tackle the curse of imbalanced datasets in machine learning. The

Journal of Machine Learning Research, 18 (1), 559–563.

Lenka, S. R., Bisoy, S. K., Priyadarshini, R., & Nayak, B. (2022). Representative-

based cluster undersampling technique for imbalanced credit scoring datasets.

In Innovations in computational intelligence and computer vision: Proceed-

ings of icicv 2021 (pp. 119–129). Springer.

Li, K., Ren, B., Guan, T., Wang, J., Yu, J., Wang, K., & Huang, J. (2022). A hy-

brid cluster-borderline smote method for imbalanced data of rock groutability

classification. Bulletin of Engineering Geology and the Environment , 81 (1),

1–15.

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., . . . others (2020a). Artificial

intelligence distinguishes covid-19 from community acquired pneumonia on

chest ct. Radiology , 200905.

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., . . . others (2020b). Using

artificial intelligence to detect covid-19 and community-acquired pneumonia

based on pulmonary ct: evaluation of the diagnostic accuracy. Radiology ,

296 (2), E65–E71.

Li, Y., & Xia, L. (2020). Coronavirus disease 2019 (covid-19): role of chest ct in

diagnosis and management. American Journal of Roentgenology , 1–7.

Liang, T., et al. (2020). Handbook of covid-19 prevention and treatment. The

389

First Affiliated Hospital, Zhejiang University School of Medicine. Compiled

According to Clinical Experience.

Liang, X., Jiang, A., Li, T., Xue, Y., & Wang, G. (2020). Lr-smote—an improved

unbalanced data set oversampling based on k-means and svm. Knowledge-

Based Systems , 196 , 105845.

Lin, C., Tsai, C.-F., & Lin, W.-C. (2023). Towards hybrid over-and under-sampling

combination methods for class imbalanced datasets: An experimental study.

Artificial Intelligence Review , 56 (2), 845–863.

Lin, W.-C., Tsai, C.-F., Hu, Y.-H., & Jhang, J.-S. (2017). Clustering-based

undersampling in class-imbalanced data. Information Sciences , 409 , 17–26.

Lin, W.-J., & Chen, J. J. (2013). Class-imbalanced classifiers for high-dimensional

data. Briefings in bioinformatics , 14 (1), 13–26.

Lin, Z., Khetan, A., Fanti, G., & Oh, S. (2018). Pacgan: The power of two

samples in generative adversarial networks. Advances in neural information

processing systems , 31 .

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,

M., . . . Sánchez, C. I. (2017). A survey on deep learning in medical image

analysis. Medical Image Analysis , 42 , 60–88.

Liu, C.-L., & Chang, Y.-H. (2022). Learning from imbalanced data with deep den-

sity hybrid sampling. IEEE Transactions on Systems, Man, and Cybernetics:

Systems , 52 (11), 7065–7077.

Liu, J., Gaynor, A. T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., . . . others

(2018). Current and future trends in topology optimization for additive

390

manufacturing. Structural and multidisciplinary optimization, 57 , 2457–

2483.

Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2008). Exploratory undersampling for class-

imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 39 (2), 539–550.

Longadge, R., & Dongre, S. (2013). Class imbalance problem in data mining

review. arXiv preprint arXiv:1305.1707 .

Lu, C., Lin, S., Liu, X., & Shi, H. (2020). Telecom fraud identification based on

adasyn and random forest. In 2020 5th international conference on computer

and communication systems (icccs) (pp. 447–452).

Lu, Y., Wu, S., Tai, Y.-W., & Tang, C.-K. (2018). Image generation from sketch

constraint using contextual gan. In Proceedings of the european conference

on computer vision (eccv) (pp. 205–220).

Mahesh, T., Dhilip Kumar, V., Vinoth Kumar, V., Asghar, J., Geman, O.,

Arulkumaran, G., & Arun, N. (2022). Adaboost ensemble methods using

k-fold cross validation for survivability with the early detection of heart

disease. Computational Intelligence and Neuroscience, 2022 .

Majid, A., Ali, S., Iqbal, M., & Kausar, N. (2014). Prediction of human breast

and colon cancers from imbalanced data using nearest neighbor and support

vector machines. Computer Methods and Programs in Biomedicine, 113 (3),

792–808.

Maldonado, S., Vairetti, C., Fernandez, A., & Herrera, F. (2022). Fw-smote:

A feature-weighted oversampling approach for imbalanced classification.

391

Pattern Recognition, 124 , 108511.

Malerba, D., Esposito, F., & Semeraro, G. (1996). A further comparison of

simplification methods for decision-tree induction. Learning From Data:

Artificial Intelligence and Statistics V , 365–374.

Malviya, R. K., & Kant, R. (2015). Green supply chain management (gscm): a

structured literature review and research implications. Benchmarking: An

international journal .

Manju, B., & Nair, A. R. (2019). Classification of cardiac arrhythmia of 12

lead ecg using combination of smoteenn, xgboost and machine learning

algorithms. In 2019 9th international symposium on embedded computing

and system design (ised) (pp. 1–7).

Manzano, C., Meneses, C., Leger, P., & Fukuda, H. (2022). An empirical evaluation

of supervised learning methods for network malware identification based on

feature selection. Complexity , 2022 .

Marina, L. A., Trasnea, B., & Grigorescu, S. M. (2018). A multi-platform

framework for artificial intelligence engines in automotive systems. In 2018

22nd international conference on system theory, control and computing

(icstcc) (pp. 559–564).

Mayabadi, S., & Saadatfar, H. (2022). Two density-based sampling approaches for

imbalanced and overlapping data. Knowledge-Based Systems , 241 , 108217.

Meng, C., Zhou, L., & Liu, B. (2020). A case study in credit fraud detection with

smote and xgboost. In Journal of physics: Conference series (Vol. 1601,

p. 052016).

392

Meng, L., Hua, F., & Bian, Z. (2020). Coronavirus disease 2019 (covid-19):

Emerging and future challenges for dental and oral medicine. Journal of

Dental Research, 99 (5), 481–487.

Menzies, T., Greenwald, J., & Frank, A. (2006). Data mining static code attributes

to learn defect predictors. IEEE Transactions on Software Engineering ,

33 (1), 2–13.

Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Soufi, G. J. (2020). Deep-covid:

Predicting covid-19 from chest x-ray images using deep transfer learning.

arXiv preprint arXiv:2004.09363 . Retrieved from https://arxiv.org/abs/

2004.09363

Mohamad, M., Selamat, A., Subroto, I. M., & Krejcar, O. (2021). Improving

the classification performance on imbalanced data sets via new hybrid

parameterisation model. Journal of King Saud University-Computer and

Information Sciences , 33 (7), 787–797.

Mohammed, A. J., Hassan, M. M., & Kadir, D. H. (2020). Improving classification

performance for a novel imbalanced medical dataset using smote method.

International Journal , 9 (3), 3161–3172.

Mohammed, M., Mwambi, H., Mboya, I. B., Elbashir, M. K., & Omolo, B. (2021).

A stacking ensemble deep learning approach to cancer type classification

based on tcga data. Scientific reports , 11 (1), 1–22.

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for

image-based plant disease detection. Frontiers in Plant Science, 7 , 1419.

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M.,

393

https://arxiv.org/abs/2004.09363
https://arxiv.org/abs/2004.09363

. . . Stewart, L. A. (2015). Preferred reporting items for systematic review

and meta-analysis protocols (prisma-p) 2015 statement. Systematic reviews ,

4 (1), 1–9.

Mohiuddin, A. K. (2020). Covid-19 situation in bangladesh.

Moreo, A., Esuli, A., & Sebastiani, F. (2016). Distributional random oversampling

for imbalanced text classification. In Proceedings of the 39th international

acm sigir conference on research and development in information retrieval

(pp. 805–808).

Mostafa, S. M., Salem, S. A., & Habashy, S. M. (2022). Predictive model

for accident severity. IAENG International Journal of Computer Science,

49 (1).

Mousavian Anaraki, S. A., Haeri, A., & Moslehi, F. (2022). Generating bal-

anced and strong clusters based on balance-constrained clustering approach

(strong balance-constrained clustering) for improving ensemble classifier

performance. Neural Computing and Applications , 34 (23), 21139–21155.

Mqadi, N., Naicker, N., & Adeliyi, T. (2021). A smote based oversampling

data-point approach to solving the credit card data imbalance problem in

financial fraud detection. International Journal of Computing and Digital

Systems , 10 (1), 277–286.

Mqadi, N. M., Naicker, N., & Adeliyi, T. (2021). Solving misclassification of the

credit card imbalance problem using near miss. Mathematical Problems in

Engineering , 2021 , 1–16.

Mukherjee, A., Mukhopadhyay, S., Panigrahi, P. K., & Goswami, S. (2019).

394

Utilization of oversampling for multiclass sentiment analysis on amazon

review dataset. In 2019 ieee 10th international conference on awareness

science and technology (icast) (pp. 1–6).

Mukherjee, M., & Khushi, M. (2021). Smote-enc: A novel smote-based method

to generate synthetic data for nominal and continuous features. Applied

System Innovation, 4 (1), 18.

Murat, F., Yildirim, O., Talo, M., Baloglu, U. B., Demir, Y., & Acharya, U. R.

(2020). Application of deep learning techniques for heartbeats detection

using ecg signals-analysis and review. Computers in Biology and Medicine,

103726.

Mustafa, A. B. (2019). Enhancing learning from imbalanced classes via data

preprocessing: A data-driven application in metabolomics data mining.

ISeCure, 11 (3).

Nagra, A. A., Mubarik, I., Asif, M. M., Masood, K., Ghamdi, M. A. A., & Almotiri,

S. H. (2022). Hybrid ga-svm approach for postoperative life expectancy

prediction in lung cancer patients. Applied Sciences , 12 (21), 10927.

Nakada, R., & Imaizumi, M. (2019). Adaptive approximation and estima-

tion of deep neural network to intrinsic dimensionality. ArXiv Preprint

ArXiv:1907.02177 .

Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic detection of coronavirus

disease (covid-19) using x-ray images and deep convolutional neural networks.

ArXiv Preprint ArXiv:2003.10849 .

National heart foundation of bangladesh. (n.d.). http://www.nhf.org.bd/

395

http://www.nhf.org.bd/hospital_charge.php?id=6
http://www.nhf.org.bd/hospital_charge.php?id=6

hospital charge.php?id=6.

Ndichu, S., Ban, T., Takahashi, T., & Inoue, D. (2023). Ai-assisted security alert

data analysis with imbalanced learning methods. Applied Sciences , 13 (3),

1977.

The new coronavirus appears to take a greater toll on men than on women.

(n.d.). https://www.npr.org/sections/goatsandsoda/2020/04/10/

831883664/the-new-coronavirus-appears-to-take-a-greater-toll

-on-men-than-on-women.

Ning, Q., Zhao, X., & Ma, Z. (2021). A novel method for identification of

glutarylation sites combining borderline-smote with tomek links technique

in imbalanced data. IEEE/ACM Transactions on Computational Biology

and Bioinformatics .

Nugroho, B., & Yuniarti, A. (2022). Performance of root-mean-square propaga-

tion and adaptive gradient optimization algorithms on covid-19 pneumonia

classification. In 2022 ieee 8th information technology international seminar

(itis) (pp. 333–338).

Obiedat, R., Qaddoura, R., Ala’M, A.-Z., Al-Qaisi, L., Harfoushi, O., Alrefai, M.,

& Faris, H. (2022). Sentiment analysis of customers’ reviews using a hybrid

evolutionary svm-based approach in an imbalanced data distribution. IEEE

Access , 10 , 22260–22273.

Okoli, C., & Schabram, K. (2010). A guide to conducting a systematic literature

review of information systems research.

Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya,

396

http://www.nhf.org.bd/hospital_charge.php?id=6
http://www.nhf.org.bd/hospital_charge.php?id=6
http://www.nhf.org.bd/hospital_charge.php?id=6
https://www.npr.org/sections/goatsandsoda/2020/04/10/831883664/the-new-coronavirus-appears-to-take-a-greater-toll-on-men-than-on-women
https://www.npr.org/sections/goatsandsoda/2020/04/10/831883664/the-new-coronavirus-appears-to-take-a-greater-toll-on-men-than-on-women
https://www.npr.org/sections/goatsandsoda/2020/04/10/831883664/the-new-coronavirus-appears-to-take-a-greater-toll-on-men-than-on-women

U. R. (2020). Automated detection of covid-19 cases using deep neural

networks with x-ray images. Computers in Biology and Medicine, 103792.

Paleyes, A., Urma, R.-G., & Lawrence, N. D. (2022). Challenges in deploying

machine learning: a survey of case studies. ACM Computing Surveys , 55 (6),

1–29.

Pan, L., Mu, M., Yang, P., Sun, Y., Wang, R., Yan, J., . . . others (2020). Clinical

characteristics of covid-19 patients with digestive symptoms in hubei, china:

a descriptive, cross-sectional, multicenter study. The American journal of

gastroenterology , 115 .

Pandey, S. K., & Janghel, R. R. (2019). Automatic detection of arrhythmia from

imbalanced ecg database using cnn model with smote. Australasian physical

& engineering sciences in medicine, 42 (4), 1129–1139.

Pandit, M. K., Banday, S. A., Naaz, R., & Chishti, M. A. (2020). Automatic

detection of covid-19 from chest radiographs using deep learning. Radiogra-

phy .

Pawlicki, M., Choraś, M., Kozik, R., & Ho lubowicz, W. (2020). On the impact

of network data balancing in cybersecurity applications. In Computational

science–iccs 2020: 20th international conference, amsterdam, the nether-

lands, june 3–5, 2020, proceedings, part iv 20 (pp. 196–210).

Pecoraro, V., Negro, A., Pirotti, T., & Trenti, T. (2022). Estimate false-negative

rt-pcr rates for sars-cov-2. a systematic review and meta-analysis. European

journal of clinical investigation, 52 (2), e13706.

Pereira, R. M., Costa, Y. M., & Silla Jr, C. N. (2020). Mltl: A multi-label

397

approach for the tomek link undersampling algorithm. Neurocomputing ,

383 , 95–105.

Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image

classification using deep learning. arXiv preprint arXiv:1712.04621 .

Podder, P., Bharati, S., Mondal, M. R. H., & Kose, U. (2021). Application of

machine learning for the diagnosis of covid-19. In Data science for covid-19

(pp. 175–194). Elsevier.

Polat, H., Özerdem, M. S., Ekici, F., & Akpolat, V. (2021). Automatic detection

and localization of covid-19 pneumonia using axial computed tomography

images and deep convolutional neural networks. International Journal of

Imaging Systems and Technology , 31 (2), 509–524.

Ponta, L., Puliga, G., Oneto, L., & Manzini, R. (2020). Identifying the determi-

nants of innovation capability with machine learning and patents. IEEE

Transactions on Engineering Management .

Prudêncio, R. B. (2020). Cost sensitive evaluation of instance hardness in

machine learning. In Machine learning and knowledge discovery in databases:

European conference, ecml pkdd 2019, würzburg, germany, september 16–20,

2019, proceedings, part ii (pp. 86–102).

Pucci, J. U., Christophe, B. R., Sisti, J. A., & Connolly Jr, E. S. (2017).

Three-dimensional printing: technologies, applications, and limitations in

neurosurgery. Biotechnology advances , 35 (5), 521–529.

Puri, A., & Kumar Gupta, M. (2022). Improved hybrid bag-boost ensemble with

k-means-smote–enn technique for handling noisy class imbalanced data. The

398

Computer Journal , 65 (1), 124–138.

Qaddoura, R., Al-Zoubi, A., Almomani, I., & Faris, H. (2021). A multi-stage

classification approach for iot intrusion detection based on clustering with

oversampling. Applied Sciences , 11 (7), 3022.

Qadrini, L. (2022). Handling unbalanced data with smote adaboost. Jurnal

Mantik , 6 (2), 2332–2336.

Qian, W., & Li, S. (2020). A novel class imbalance-robust network for bearing

fault diagnosis utilizing raw vibration signals. Measurement , 156 , 107567.

Qing, Z., Zeng, Q., Wang, H., Liu, Y., Xiong, T., & Zhang, S. (2022). Adasyn-lof

algorithm for imbalanced tornado samples. Atmosphere, 13 (4), 544.

Qolomany, B., Maabreh, M., Al-Fuqaha, A., Gupta, A., & Benhaddou, D. (2017).

Parameters optimization of deep learning models using particle swarm

optimization. In 2017 13th international wireless communications and

mobile computing conference (iwcmc) (pp. 1285–1290).

Rachna, C. (2020). Difference between x-ray and ct scan. Rahman, T., Chowdhury,

M., & Khandakar, A.(2020). COVID-19 Radiography Database. Kaggle.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D.,

Bagul, A., Langlotz, C., & Shpanskaya, K.(2017). Chexnet: Radiologist-level

pneumonia detection on chest x-rays with deep learning. ArXiv Preprint

ArXiv , 1711 , 2352–2449.

Radziukas, R., Maskeliūnas, R., & Damaševičius, R. (2019). Prediction of poker

moves using sequential model and tensorflow. In Information and software

technologies: 25th international conference, icist 2019, vilnius, lithuania,

399

october 10–12, 2019, proceedings 25 (pp. 516–525).

Rahman, M. J., & Zhu, H. (2023). Predicting accounting fraud using imbalanced

ensemble learning classifiers–evidence from china. Accounting & Finance.

Rai, H. M., Chatterjee, K., Dubey, A., & Srivastava, P. (2021). Myocardial

infarction detection using deep learning and ensemble technique from ecg

signals. In Proceedings of second international conference on computing,

communications, and cyber-security: Ic4s 2020 (pp. 717–730).

Rajabi, A., & Garibay, O. O. (2022). Tabfairgan: Fair tabular data generation

with generative adversarial networks. Machine Learning and Knowledge

Extraction, 4 (2), 488–501.

Rajesh, K. N., & Dhuli, R. (2018). Classification of imbalanced ecg beats using

re-sampling techniques and adaboost ensemble classifier. Biomedical Signal

Processing and Control , 41 , 242–254.

Rajkumar, K. V., et al. (2022). Development of hybrid methods for rainfall

classification using ant colony optimization and neural networks.

Rana, C., Chitre, N., Poyekar, B., & Bide, P. (2021). Stroke prediction using

smote-tomek and neural network. In 2021 12th international conference on

computing communication and networking technologies (icccnt) (pp. 1–5).

Rath, A., Mishra, D., Panda, G., & Satapathy, S. C. (2021). Heart disease detection

using deep learning methods from imbalanced ecg samples. Biomedical Signal

Processing and Control , 68 , 102820.

Reddy, S., Seshadri, S. B., Bothra, G. S., Suhas, T., & Thundiyil, S. C. (2020).

Detection of arrhythmia in real-time using ecg signal analysis and convo-

400

lutional neural networks. In 2020 ieee 21st international conference on

computational problems of electrical engineering (cpee) (pp. 1–4).

Ribli, D., Horváth, A., Unger, Z., Pollner, P., & Csabai, I. (2018). Detecting and

classifying lesions in mammograms with deep learning. Scientific Reports ,

8 (1), 1–7.

Rivera, W. A., & Xanthopoulos, P. (2016). A priori synthetic over-sampling

methods for increasing classification sensitivity in imbalanced data sets.

Expert Systems with Applications , 66 , 124–135.

Rizvi, A. S., Murtaza, G., Yan, D., Irfan, M., Xue, M., Meng, Z. H., & Qu, F.

(2020). Development of molecularly imprinted 2d photonic crystal hydrogel

sensor for detection of l-kynurenine in human serum. Talanta, 208 , 120403.

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J., . . . Chowell,

G. (2020). Real-time forecasts of the covid-19 epidemic in china from february

5th to february 24th, 2020. Infectious Disease Modelling , 5 , 256–263.

Rosolia, A., & Osterrieder, J. (2021). Analyzing deep generated financial time

series for various asset classes. Available at SSRN 3898792 .

Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of

coronavirus disease (covid-19) outbreak. Journal of autoimmunity , 102433.

Roy, K., Ahmad, M., Waqar, K., Priyaah, K., Nebhen, J., Alshamrani, S. S., . . .

Ali, I. (2021). An enhanced machine learning framework for type 2 diabetes

classification using imbalanced data with missing values. Complexity , 2021 ,

1–21.

Rubio-Solis, A., Panoutsos, G., Beltran-Perez, C., & Martinez-Hernandez, U.

401

(2020). A multilayer interval type-2 fuzzy extreme learning machine for

the recognition of walking activities and gait events using wearable sensors.

Neurocomputing , 389 , 42–55.

Saba, T., Mohamed, A. S., El-Affendi, M., Amin, J., & Sharif, M. (2020). Brain

tumor detection using fusion of hand crafted and deep learning features.

Cognitive Systems Research, 59 , 221–230.

Sadgali, I., Nawal, S., & Benabbou, F. (2019). Fraud detection in credit card

transaction using machine learning techniques. In 2019 1st international

conference on smart systems and data science (icssd) (pp. 1–4).

Sahu, A., Harshvardhan, G., & Gourisaria, M. K. (2020). A dual approach for

credit card fraud detection using neural network and data mining techniques.

In 2020 ieee 17th india council international conference (indicon) (pp. 1–7).

Saini, A. (2022, Aug). An introduction to random forest algorithm for begin-

ners. Retrieved from https://www.analyticsvidhya.com/blog/2021/10/

an-introduction-to-random-forest-algorithm-for-beginners/

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018).

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the

ieee conference on computer vision and pattern recognition (pp. 4510–4520).

Santosh, K. (2020). Ai-driven tools for coronavirus outbreak: need of active

learning and cross-population train/test models on multitudinal/multimodal

data. Journal of medical systems , 44 , 1–5.

Sawangarreerak, S., & Thanathamathee, P. (2020). Random forest with sam-

pling techniques for handling imbalanced prediction of university student

402

https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-random-forest-algorithm-for-beginners/
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-random-forest-algorithm-for-beginners/

depression. Information, 11 (11), 519.

Schapire, R. E. (2013). Explaining adaboost. In Empirical inference (pp. 37–52).

Springer.

Schmidt, C. O., Struckmann, S., Enzenbach, C., Reineke, A., Stausberg, J.,

Damerow, S., . . . Richter, A. (2021). Facilitating harmonized data quality

assessments. a data quality framework for observational health research

data collections with software implementations in r. BMC Medical Research

Methodology , 21 (1), 1–15.

Sekeroglu, B., & Ozsahin, I. (2020). ¡? covid19?¿ detection of covid-19 from chest

x-ray images using convolutional neural networks. SLAS TECHNOLOGY:

Translating Life Sciences Innovation, 2472630320958376.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D.

(2017). Grad-cam: Visual explanations from deep networks via gradient-

based localization. In Proceedings of the ieee international conference on

computer vision (pp. 618–626).

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D.

(2016). Grad-cam: Why did you say that? arXiv preprint arXiv:1611.07450 .

Sethy, P. K., & Behera, S. K. (2020). Detection of coronavirus disease (covid-19)

based on deep features. Preprints , 2020030300 , 2020.

Sevastyanov, L. A., & Shchetinin, E. Y. (2020). On methods for improving the

accuracy of multi-class classification on imbalanced data. In Ittmm (pp.

70–82).

Shafi, O., Rai, C., Sen, R., & Ananthanarayanan, G. (2021). Demystifying

403

tensorrt: Characterizing neural network inference engine on nvidia edge

devices. In 2021 ieee international symposium on workload characterization

(iiswc) (pp. 226–237).

Shahriare Satu, M., Atik, S. T., & Moni, M. A. (2020). A novel hybrid machine

learning model to predict diabetes mellitus. In Proceedings of international

joint conference on computational intelligence: Ijcci 2019 (pp. 453–465).

Shamsudin, H., Yusof, U. K., Jayalakshmi, A., & Khalid, M. N. A. (2020).

Combining oversampling and undersampling techniques for imbalanced

classification: A comparative study using credit card fraudulent transaction

dataset. In 2020 ieee 16th international conference on control & automation

(icca) (pp. 803–808).

Shankar, S., Garcia, R., Hellerstein, J. M., & Parameswaran, A. G. (2022).

Operationalizing machine learning: An interview study. arXiv preprint

arXiv:2209.09125 .

Sharma, A., Singh, P. K., & Chandra, R. (2022). Smotified-gan for class

imbalanced pattern classification problems. IEEE Access .

Sharma, H., & Gosain, A. (2023). Oversampling methods to handle the class

imbalance problem: A review. In Soft computing and its engineering ap-

plications: 4th international conference, icsoftcomp 2022, changa, anand,

india, december 9–10, 2022, proceedings (pp. 96–110).

Shelke, A., Inamdar, M., Shah, V., Tiwari, A., Hussain, A., Chafekar, T., &

Mehendale, N. (2020). Chest x-ray classification using deep learning

for automated covid-19 screening. medRxiv . Retrieved from https://

404

https://www.medrxiv.org/content/10.1101/2020.06.21.20136598v1
https://www.medrxiv.org/content/10.1101/2020.06.21.20136598v1

www.medrxiv.org/content/10.1101/2020.06.21.20136598v1

Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis.

Annual Review of Biomedical Engineering , 19 , 221–248.

Shen, F., Zhao, X., Kou, G., & Alsaadi, F. E. (2021). A new deep learning

ensemble credit risk evaluation model with an improved synthetic minority

oversampling technique. Applied Soft Computing , 98 , 106852.

Shen, J., Wu, J., Xu, M., Gan, D., An, B., & Liu, F. (2021). A hybrid method

to predict postoperative survival of lung cancer using improved smote and

adaptive svm. Computational and mathematical methods in medicine, 2021 .

Shen, M., Zhou, Y., Ye, J., Al-Maskri, A. A. A., Kang, Y., Zeng, S., & Cai,

S. (2020). Recent advances and perspectives of nucleic acid detection for

coronavirus. Journal of pharmaceutical analysis , 10 (2), 97–101.

Shi, F., Xia, L., Shan, F., Wu, D., Wei, Y., Yuan, H., . . . Shen, D. (2020).

Large-scale screening of covid-19 from community acquired pneumonia using

infection size-aware classification. ArXiv Preprint ArXiv:2003.09860 .

Shi, H., Zhang, Y., Chen, Y., Ji, S., & Dong, Y. (2022). Resampling algorithms

based on sample concatenation for imbalance learning. Knowledge-Based

Systems , 108592.

Shim, W., Luo, Y., Seo, J.-S., & Yu, S. (2020). Investigation of read disturb and

bipolar read scheme on multilevel rram-based deep learning inference engine.

IEEE Transactions on Electron Devices , 67 (6), 2318–2323.

Shon, H. S., Batbaatar, E., Kim, K. O., Cha, E. J., & Kim, K.-A. (2020).

Classification of kidney cancer data using cost-sensitive hybrid deep learning

405

https://www.medrxiv.org/content/10.1101/2020.06.21.20136598v1
https://www.medrxiv.org/content/10.1101/2020.06.21.20136598v1
https://www.medrxiv.org/content/10.1101/2020.06.21.20136598v1

approach. Symmetry , 12 (1), 154.

Shrinidhi, M., Kaushik Jegannathan, T., & Jeya, R. (2023). Classification of

imbalanced datasets using various techniques along with variants of smote

oversampling and ann. Advances in Science and Technology , 124 , 504–511.

Siddappa, N. G., & Kampalappa, T. (2019). Adaptive condensed nearest neigh-

bor for imbalance data classification. International Journal of Intelligent

Engineering and Systems , 12 (2), 104–113.

Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989). Classification

of radar returns from the ionosphere using neural networks. Johns Hopkins

APL Technical Digest , 10 (3), 262–266.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556 .

Sisodia, D. S., Reddy, N. K., & Bhandari, S. (2017). Performance evaluation

of class balancing techniques for credit card fraud detection. In 2017 ieee

international conference on power, control, signals and instrumentation

engineering (icpcsi) (pp. 2747–2752).

Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters:

Part 1–learning rate, batch size, momentum, and weight decay. arXiv

preprint arXiv:1803.09820 .

Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2017). Don’t decay the

learning rate, increase the batch size. arXiv preprint arXiv:1711.00489 .

Smiti, S., & Soui, M. (2020). Bankruptcy prediction using deep learning approach

based on borderline smote. Information Systems Frontiers , 22 , 1067–1083.

406

Song, Y., & Peng, Y. (2019). A mcdm-based evaluation approach for imbalanced

classification methods in financial risk prediction. IEEE Access , 7 , 84897–

84906.

Song, Y., Zheng, S., Li, L., Zhang, X., Zhang, X., Huang, Z., . . . others (2020).

Deep learning enables accurate diagnosis of novel coronavirus (covid-19)

with ct images. MedRxiv .

Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I., Kulkarni, V., & Pattabi-

raman, V. (2021). Comparative analysis of deep learning image detection

algorithms. Journal of Big Data, 8 (1), 1–27.

Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based

modeling for fraud and intrusion detection: Results from the jam project.

In Proceedings darpa information survivability conference and exposition.

discex’00 (Vol. 2, pp. 130–144).

Sun, J., Li, H., Fujita, H., Fu, B., & Ai, W. (2020). Class-imbalanced dynamic

financial distress prediction based on adaboost-svm ensemble combined with

smote and time weighting. Information Fusion, 54 , 128–144.

Sun, Y., Que, H., Cai, Q., Zhao, J., Li, J., Kong, Z., & Wang, S. (2022). Borderline

smote algorithm and feature selection-based network anomalies detection

strategy. Energies , 15 (13), 4751.

Sun, Z., Zhang, J., Sun, H., & Zhu, X. (2020). Collaborative filtering-based

recommendation of sampling methods for software defect prediction. Applied

Soft Computing , 90 , 106163.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of

407

initialization and momentum in deep learning. In International conference

on machine learning (pp. 1139–1147).

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4,

inception-resnet and the impact of residual connections on learning. In

Thirty-first aaai conference on artificial intelligence.

Tahamtan, A., & Ardebili, A. (2020). Real-time rt-pcr in covid-19 detection:

issues affecting the results. Taylor & Francis.

Taneja, S., Suri, B., & Kothari, C. (2019). Application of balancing techniques

with ensemble approach for credit card fraud detection. In 2019 international

conference on computing, power and communication technologies (gucon)

(pp. 753–758).

Tang, Y. (2013). Deep learning using linear support vector machines. ArXiv

Preprint ArXiv:1306.0239 .

Tao, X., Li, Q., Guo, W., Ren, C., He, Q., Liu, R., & Zou, J. (2020). Adaptive

weighted over-sampling for imbalanced datasets based on density peaks

clustering with heuristic filtering. Information Sciences , 519 , 43–73.

Tao, X., Li, Q., Guo, W., Ren, C., Li, C., Liu, R., & Zou, J. (2019). Self-

adaptive cost weights-based support vector machine cost-sensitive ensemble

for imbalanced data classification. Information Sciences , 487 , 31–56.

Tesfahun, A., & Bhaskari, D. L. (2013). Intrusion detection using random forests

classifier with smote and feature reduction. In 2013 international conference

on cloud & ubiquitous computing & emerging technologies (pp. 127–132).

Thabtah, F., Hammoud, S., Kamalov, F., & Gonsalves, A. (2020). Data imbalance

408

in classification: Experimental evaluation. Information Sciences , 513 , 429–

441.

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., . . .

others (2018). Prisma extension for scoping reviews (prisma-scr): checklist

and explanation. Annals of internal medicine, 169 (7), 467–473.

Triguero, I., Garćıa-Gil, D., Maillo, J., Luengo, J., Garćıa, S., & Herrera, F.

(2019). Transforming big data into smart data: An insight on the use of the

k-nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery , 9 (2), e1289.

Trinks, S. (2021). Real time quality assurance and defect detection in industry

4.0. In Lwda (pp. 258–267).

Uyun, S., & Sulistyowati, E. (2020). Feature selection for multiple water quality

status: integrated bootstrapping and smote approach in imbalance classes.

International Journal of Electrical and Computer Engineering , 10 (4), 4331.

Velmurugan, T., & Santhanam, T. (2010). Computational complexity between

k-means and k-medoids clustering algorithms for normal and uniform distri-

butions of data points. Journal of computer science, 6 (3), 363.

Wahab, N., Khan, A., & Lee, Y. S. (2017). Two-phase deep convolutional neural

network for reducing class skewness in histopathological images based breast

cancer detection. Computers in biology and medicine, 85 , 86–97.

Wang, F., Zou, Y., Zhang, H., & Shi, H. (2019). House price prediction approach

based on deep learning and arima model. In 2019 ieee 7th international

conference on computer science and network technology (iccsnt) (pp. 303–

409

307).

Wang, L. (2005). Support vector machines: theory and applications (Vol. 177).

Springer Science & Business Media.

Wang, L., Wang, H., & Fu, G. (2020). Multiple kernel learning with minority

oversampling for classifying imbalanced data. IEEE Access , 9 , 565–580.

Wang, L., & Wong, A. (2020). Covid-net: A tailored deep convolutional neural

network design for detection of covid-19 cases from chest x-ray images.

ArXiv Preprint ArXiv:2003.09871 .

Wang, S., Dai, Y., Shen, J., & Xuan, J. (2021). Research on expansion and

classification of imbalanced data based on smote algorithm. Scientific reports ,

11 (1), 1–11.

Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., . . . others (2021). A

deep learning algorithm using ct images to screen for corona virus disease

(covid-19). European radiology , 31 , 6096–6104.

Wang, S., & Yao, X. (2013). Using class imbalance learning for software defect

prediction. IEEE Transactions on Reliability , 62 (2), 434–443.

Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., . . . Zheng, C. (2020).

A weakly-supervised framework for covid-19 classification and lesion lo-

calization from chest ct. IEEE transactions on medical imaging , 39 (8),

2615–2625.

Wang, X., Liu, J., Qiu, T., Mu, C., Chen, C., & Zhou, P. (2020). A real-time col-

lision prediction mechanism with deep learning for intelligent transportation

system. IEEE transactions on vehicular technology , 69 (9), 9497–9508.

410

Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its

capabilities and potential benefits for healthcare organizations. Technological

forecasting and social change, 126 , 3–13.

Watson, H. J. (2019). Update tutorial: Big data analytics: Concepts, technology,

and applications. Communications of the Association for Information

Systems , 44 (1), 21.

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art

with a look into the future. International Journal of Forecasting , 30 (4),

1030–1081.

Westphal, E., & Seitz, H. (2022). Machine learning for the intelligent analysis of

3d printing conditions using environmental sensor data to support quality

assurance. Additive Manufacturing , 50 , 102535.

Wibowo, P., & Fatichah, C. (2021). An in-depth performance analysis of the

oversampling techniques for high-class imbalanced dataset. Register: Jurnal

Ilmiah Teknologi Sistem Informasi , 7 (1), 63–71.

Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., & Norrish, J. (2018). A review

of the wire arc additive manufacturing of metals: properties, defects and

quality improvement. Journal of Manufacturing Processes , 35 , 127–139.

Wu, J., Zhao, Z., Sun, C., Yan, R., & Chen, X. (2021). Learning from class-

imbalanced data with a model-agnostic framework for machine intelligent

diagnosis. Reliability Engineering & System Safety , 216 , 107934.

Wu, Y., & Cao, D. (2021). A diagnostic algorithm diagnosing the failure of

railway signal equipment. Diagnostyka, 22 (4), 33–38.

411

Wulf, J., & Blohm, I. (2020). Fostering value creation with digital platforms: A

unified theory of the application programming interface design. Journal of

Management Information Systems , 37 (1), 251–281.

Xiao, Y., Wu, J., & Lin, Z. (2021). Cancer diagnosis using generative adversarial

networks based on deep learning from imbalanced data. Computers in

Biology and Medicine, 135 , 104540.

Xiaolong, X., Wen, C., & Yanfei, S. (2019). Over-sampling algorithm for imbal-

anced data classification. Journal of Systems Engineering and Electronics ,

30 (6), 1182–1191.

Xin, L. K., et al. (2021). Prediction of depression among women using random

oversampling and random forest. In 2021 international conference of women

in data science at taif university (widstaif) (pp. 1–5).

Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., . . . others (2020). A deep learning

system to screen novel coronavirus disease 2019 pneumonia. Engineering .

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., . . . others (2020).

Pathological findings of covid-19 associated with acute respiratory distress

syndrome. The Lancet Respiratory Medicine, 8 (4), 420–422.

Xue, Y., & Li, Y. (2018). A fast detection method via region-based fully

convolutional neural networks for shield tunnel lining defects. Computer-

Aided Civil and Infrastructure Engineering , 33 (8), 638–654.

Yan, L., Zhang, H.-T., Xiao, Y., Wang, M., Sun, C., Liang, J., . . . others (2020).

Prediction of criticality in patients with severe covid-19 infection using three

clinical features: A machine learning-based prognostic model with clinical

412

data in wuhan. MedRxiv .

Yang, F., Wang, K., Sun, L., Zhai, M., Song, J., & Wang, H. (2022). A hybrid

sampling algorithm combining synthetic minority over-sampling technique

and edited nearest neighbor for missed abortion diagnosis. BMC Medical

Informatics and Decision Making , 22 (1), 344.

Yang, H., & Li, M. (2022). Software defect prediction based on smote-tomek

and xgboost. In Bio-inspired computing: Theories and applications: 16th

international conference, bic-ta 2021, taiyuan, china, december 17–19, 2021,

revised selected papers, part ii (pp. 12–31).

Yang, Y., & Xu, Z. (2020). Rethinking the value of labels for improving class-

imbalanced learning. Advances in Neural Information Processing Systems ,

33 , 19290–19301.

Yildirim, O., Talo, M., Ay, B., Baloglu, U. B., Aydin, G., & Acharya, U. R.

(2019). Automated detection of diabetic subject using pre-trained 2d-cnn

models with frequency spectrum images extracted from heart rate signals.

Computers in Biology and Medicine, 113 , 103387.

Yinka-Banjo, C., & Ugot, O.-A. (2020). A review of generative adversarial

networks and its application in cybersecurity. Artificial Intelligence Review ,

53 , 1721–1736.

Yuen, K.-S., Ye, Z.-W., Fung, S.-Y., Chan, C.-P., & Jin, D.-Y. (2020). Sars-cov-2

and covid-19: The most important research questions. Cell & Bioscience,

10 (1), 1–5.

Yurochkin, M., Bower, A., & Sun, Y. (2019). Training individually fair ml models

413

with sensitive subspace robustness. arXiv preprint arXiv:1907.00020 .

Zeiser, A., Özcan, B., Kracke, C., van Stein, B., & Bäck, T. (2023). A data-

centric approach to anomaly detection in layer-based additive manufacturing.

at-Automatisierungstechnik , 71 (1), 81–89.

Zeng, M., Zou, B., Wei, F., Liu, X., & Wang, L. (2016). Effective prediction of

three common diseases by combining smote with tomek links technique for

imbalanced medical data. In 2016 ieee international conference of online

analysis and computing science (icoacs) (pp. 225–228).

Zhang, A., Yu, H., Huan, Z., Yang, X., Zheng, S., & Gao, S. (2022). Smote-

rknn: A hybrid re-sampling method based on smote and reverse k-nearest

neighbors. Information Sciences , 595 , 70–88.

Zhang, C., Liao, Q., Rakhlin, A., Miranda, B., Golowich, N., & Poggio, T. (2018).

Theory of deep learning iib: Optimization properties of sgd. ArXiv Preprint

ArXiv:1801.02254 .

Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020). Covid-19 screening on

chest x-ray images using deep learning based anomaly detection. ArXiv

Preprint ArXiv:2003.12338 .

Zhang, J., Xie, Y., Pang, G., Liao, Z., Verjans, J., Li, W., . . . others (2020).

Viral pneumonia screening on chest x-rays using confidence-aware anomaly

detection. IEEE transactions on medical imaging , 40 (3), 879–890.

Zhang, J., Zhang, Y., & Li, K. (2020). A network intrusion detection model based

on the combination of relieff and borderline-smote. In Proceedings of the

2020 4th high performance computing and cluster technologies conference &

414

2020 3rd international conference on big data and artificial intelligence (pp.

199–203).

Zhang, W., Xia, E., Dai, R., Tang, W., Bin, Y., & Xia, J. (2022). Predapp: pre-

dicting anti-parasitic peptides with undersampling and ensemble approaches.

Interdisciplinary Sciences: Computational Life Sciences , 1–11.

Zhang, X., Ran, J., & Mi, J. (2019). An intrusion detection system based on

convolutional neural network for imbalanced network traffic. In 2019 ieee

7th international conference on computer science and network technology

(iccsnt) (pp. 456–460).

Zhang, Z., Krawczyk, B., Garcia, S., Rosales-Pérez, A., & Herrera, F. (2016).

Empowering one-vs-one decomposition with ensemble learning for multi-class

imbalanced data. Knowledge-Based Systems , 106 , 251–263.

Zhao, W., Zhong, Z., Xie, X., Yu, Q., & Liu, J. (2020). Relation between

chest ct findings and clinical conditions of coronavirus disease (covid-19)

pneumonia: A multicenter study. American Journal of Roentgenology ,

214 (5), 1072–1077.

Zheng, X. (2020). Smote variants for imbalanced binary classification: heart

disease prediction. University of California, Los Angeles.

Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big

data: Opportunities and challenges. Neurocomputing , 237 , 350–361.

Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years:

A survey. Proceedings of the IEEE .

Zuech, R., Hancock, J., & Khoshgoftaar, T. M. (2021). Detecting web attacks

415

using random undersampling and ensemble learners. Journal of Big Data,

8 (1), 1–20.

416

Appendices

.1 Appendix A

.1.1 Performance of Adaboost

Table A1: Adaboost ML model performance evaluation

on Pageblocks dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.979 1 1 1 0.968 0.9894

Precision 1 1 1 1 0.667 0.9334

Recall 0.667 0.6 1 1 1 0.8534

F1-score 0.8 0.571 1 1 0.8 0.8342

ROC 1 1 1 1 0.996 0.9992

G-mean 0.816 1 1 1 0.983 0.9598

Two

Accuracy 1 1 1 1 0.983 0.9966

Precision 1 1 1 1 0.967 0.9934

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 0.983 0.9966

ROC 1 1 1 1 0.994 0.9988

G-mean 1 1 1 1 0.983 0.9966

417

Table A1: Cont.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Three

Accuracy 0.979 0.979 1 1 0.968 0.9852

Precision 1 1 1 1 0.667 0.9334

Recall 0.667 0.6 1 1 1 0.8534

F1-score 0.8 0.75 1 1 0.8 0.87

ROC 1 1 1 1 0.996 0.9992

G-mean 0.816 1 1 1 0.983 0.9598

Four

Accuracy 1 1 1 1 0.983 0.9966

Precision 1 1 1 1 0.967 0.9934

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 0.983 0.9966

ROC 1 1 1 1 0.994 0.9988

G-mean 1 1 1 1 0.983 0.9966

418

Table A2: Adaboost ML model performance evaluation

on Poker dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.986 0.99 0.99 0.99 0.983 0.9878

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.667 0.45 0.63 0.658 0.446 0.5702

G-mean 0 0 0 0 0 0

Two

Accuracy 0.964 0.976 0.978 0.971 0.964 0.9706

Precision 0.944 0.963 0.963 0.951 0.939 0.952

Recall 0.986 0.99 0.993 0.993 0.993 0.991

F1-score 0.965 0.976 0.978 0.971 0.965 0.971

ROC 0.991 0.992 0.997 0.994 0.993 0.9934

G-mean 0.964 0.976 0.978 0.971 0.963 0.9704

Three

Accuracy 0.986 0.99 0.99 0.99 0.986 0.9884

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.551 0.247 0.433 0.501 0.366 0.4196

419

Table A2: Cont.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0 0 0 0 0 0

Four

Accuracy 0.748 0.733 0.772 0.768 0.744 0.753

Precision 0.68 0.663 0.7 0.7 0.678 0.6842

Recall 0.938 0.945 0.952 0.938 0.932 0.941

F1-score 0.788 0.78 0.807 0.802 0.785 0.7924

ROC 0.759 0.742 0.78 0.779 0.754 0.7628

G-mean 0.724 0.701 0.751 0.75 0.72 0.7292

Table A3: Adaboost ML model performance evaluation

on Spambase dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.93 0.941 0.946 0.948 0.929 0.9388

Precision 0.919 0.923 0.943 0.934 0.923 0.9284

Recall 0.904 0.928 0.917 0.934 0.895 0.9156

F1-score 0.911 0.926 0.93 0.934 0.909 0.922

ROC 0.972 0.983 0.981 0.985 0.969 0.978

G-mean 0.925 0.939 0.94 0.945 0.923 0.9344

420

Table A3 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Two

Accuracy 0.939 0.943 0.938 0.941 0.933 0.9388

Precision 0.934 0.959 0.944 0.93 0.93 0.9394

Recall 0.944 0.925 0.932 0.953 0.935 0.9378

F1-score 0.939 0.942 0.938 0.941 0.933 0.9386

ROC 0.981 0.986 0.984 0.981 0.982 0.9828

G-mean 0.939 0.942 0.938 0.941 0.933 0.9386

Three

Accuracy 0.938 0.951 0.947 0.953 0.934 0.9446

Precision 0.93 0.93 0.943 0.939 0.929 0.9342

Recall 0.912 0.948 0.92 0.942 0.901 0.9246

F1-score 0.921 0.939 0.931 0.941 0.914 0.9292

ROC 0.975 0.984 0.982 0.986 0.97 0.9794

G-mean 0.933 0.95 0.942 0.951 0.927 0.9406

Four

Accuracy 0.945 0.949 0.941 0.947 0.936 0.9436

Precision 0.934 0.956 0.936 0.935 0.932 0.9386

Recall 0.959 0.941 0.946 0.961 0.941 0.9496

F1-score 0.946 0.949 0.941 0.948 0.937 0.9442

ROC 0.983 0.987 0.982 0.983 0.984 0.9838

G-mean 0.945 0.949 0.941 0.947 0.936 0.9436

421

Table A4: Adaboost ML model performance evaluation

on Winequality dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.962 0.962 0.947 0.969 0.977 0.9634

Precision 0 0 0.2 0.5 1 0.34

Recall 0 0 0.25 0.5 0.25 0.2

F1-score 0 0 0.222 0.5 0.4 0.2244

ROC 0.906 0.805 0.766 0.984 0.707 0.8336

G-mean 0 0 0.492 0.702 0.5 0.3388

Two

Accuracy 0.969 0.953 0.965 0.976 0.984 0.9694

Precision 0.954 0.939 0.941 0.969 0.977 0.956

Recall 0.984 0.969 0.992 0.984 0.992 0.9842

F1-score 0.969 0.953 0.966 0.977 0.984 0.9698

ROC 0.985 0.971 0.981 0.986 0.999 0.9844

G-mean 0.969 0.953 0.964 0.976 0.984 0.9692

Three

Accuracy 0.977 0.977 0.969 0.969 0.969 0.9722

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.625 0.84 0.522 0.925 0.646 0.7116

422

Table A4 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0 0 0 0 0 0

Four

Accuracy 0.847 0.875 0.875 0.839 0.87 0.8612

Precision 0.814 0.823 0.838 0.813 0.836 0.8248

Recall 0.898 0.953 0.93 0.883 0.921 0.917

F1-score 0.854 0.883 0.881 0.846 0.876 0.868

ROC 0.873 0.894 0.894 0.86 0.89 0.8822

G-mean 0.846 0.871 0.873 0.838 0.869 0.8594

Table A5: Adaboost ML model performance evaluation

on Yeast dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.961 0.932 0.981 0.922 0.951 0.9494

Precision 0.75 0.667 0.909 0.667 0.778 0.7542

Recall 0.9 0.6 0.909 0.4 0.7 0.7018

F1-score 0.818 0.632 0.909 0.5 0.737 0.7192

ROC 0.982 0.886 0.994 0.796 0.837 0.899

G-mean 0.933 0.762 0.948 0.626 0.828 0.8194

423

Table A5 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Two

Accuracy 0.973 0.968 0.978 0.984 0.967 0.974

Precision 0.978 0.939 0.989 0.989 0.957 0.9704

Recall 0.967 1 0.968 0.978 0.978 0.9782

F1-score 0.973 0.968 0.978 0.984 0.968 0.9742

ROC 0.97 0.986 0.996 0.999 0.996 0.9894

G-mean 0.973 0.967 0.978 0.984 0.967 0.9738

Three

Accuracy 0.971 0.932 0.981 0.971 0.951 0.9612

Precision 0.818 0.667 0.909 1 0.778 0.8344

Recall 0.9 0.6 0.909 0.7 0.7 0.7618

F1-score 0.857 0.632 0.909 0.824 0.737 0.7918

ROC 0.998 0.965 0.994 0.982 0.953 0.9784

G-mean 0.938 0.762 0.948 0.837 0.828 0.8626

Four

Accuracy 0.957 0.957 0.968 0.968 0.957 0.9614

Precision 0.967 0.929 0.978 0.958 0.929 0.9522

Recall 0.946 0.989 0.957 0.978 0.989 0.9718

F1-score 0.956 0.958 0.967 0.968 0.958 0.9614

ROC 0.991 0.987 0.994 0.998 0.992 0.9924

G-mean 0.957 0.956 0.968 0.967 0.956 0.9608

424

Performance of Decision Tree

Table A6: Decision Tree ML model performance evalua-

tion on Ionosphere dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.845 0.871 0.9 0.914 0.886 0.8832

Precision 0.881 0.891 0.846 0.977 0.953 0.9096

Recall 0.867 0.889 0.978 0.911 0.911 0.9112

F1-score 0.899 0.879 0.928 0.93 0.933 0.9138

ROC 0.845 0.847 0.849 0.936 0.927 0.8808

G-mean 0.826 0.833 0.884 0.947 0.906 0.8792

Two

Accuracy 0.867 0.867 0.956 0.889 0.878 0.8914

Precision 0.878 0.909 0.846 0.833 0.927 0.8786

Recall 0.8 0.889 0.978 0.911 0.822 0.88

F1-score 0.864 0.889 0.945 0.882 0.897 0.8954

ROC 0.856 0.9 0.933 0.878 0.889 0.8912

G-mean 0.833 0.9 0.955 0.866 0.911 0.893

Three

Accuracy 0.831 0.929 0.857 0.814 0.914 0.869

Precision 0.848 0.891 0.857 0.913 0.957 0.8932

Recall 0.844 0.889 0.956 0.889 1 0.9156

F1-score 0.897 0.913 0.863 0.925 0.978 0.9152

425

Table A6 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.803 0.882 0.847 0.929 0.925 0.8772

G-mean 0.847 0.894 0.885 0.822 0.935 0.8766

Four

Accuracy 0.756 0.911 0.933 0.933 0.867 0.88

Precision 0.87 0.809 0.863 0.8 0.917 0.8518

Recall 0.8 0.867 0.889 0.889 0.911 0.8712

F1-score 0.882 0.899 0.891 0.879 0.909 0.892

ROC 0.754 0.975 0.974 0.942 0.954 0.9198

G-mean 0.842 0.922 0.889 0.886 0.877 0.8832

Table A7: Decision Tree ML model performance evalua-

tion on Poker dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.983 0.98 0.986 0.986 0.983 0.9836

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.5 0.493 0.497 0.497 0.497 0.4968

G-mean 0 0 0 0 0 0

426

Table A7 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Two

Accuracy 0.985 0.993 0.995 0.991 0.985 0.9898

Precision 0.99 1 0.993 0.986 0.99 0.9918

Recall 0.979 0.993 0.997 0.993 0.986 0.9896

F1-score 0.988 0.995 0.995 0.991 0.986 0.991

ROC 0.981 0.997 0.995 0.993 0.986 0.9904

G-mean 0.983 0.997 0.998 0.991 0.988 0.9914

Three

Accuracy 0.98 0.986 0.99 0.983 0.983 0.9844

Precision 0 0 0 0 0.571 0.1142

Recall 0 0 0 0 0 0

F1-score 0 0 0 0.5 1 0.3

ROC 0.495 0.493 0.497 0.49 0.5 0.495

G-mean 0 0 0 0 0 0

Four

Accuracy 0.943 0.959 0.962 0.962 0.942 0.9536

Precision 0.831 0.976 0.93 0.948 0.915 0.92

Recall 0.979 0.993 0.993 0.99 0.993 0.9896

F1-score 0.96 0.96 0.959 0.968 0.953 0.96

ROC 0.967 0.971 0.986 0.979 0.964 0.9734

G-mean 0.949 0.972 0.955 0.988 0.942 0.9612

427

Table A8: Decision Tree ML model performance evalua-

tion on Spambase dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.892 0.904 0.923 0.908 0.905 0.9064

Precision 0.879 0.867 0.905 0.849 0.893 0.8786

Recall 0.857 0.89 0.895 0.928 0.856 0.8852

F1-score 0.864 0.887 0.902 0.888 0.887 0.8856

ROC 0.89 0.9 0.921 0.917 0.889 0.9034

G-mean 0.89 0.904 0.916 0.903 0.899 0.9024

Two

Accuracy 0.937 0.935 0.932 0.942 0.925 0.9342

Precision 0.934 0.94 0.928 0.932 0.902 0.9272

Recall 0.952 0.927 0.941 0.961 0.937 0.9436

F1-score 0.938 0.929 0.936 0.944 0.921 0.9336

ROC 0.93 0.935 0.929 0.939 0.92 0.9306

G-mean 0.937 0.933 0.935 0.943 0.917 0.933

Three

Accuracy 0.923 0.912 0.913 0.922 0.907 0.9154

Precision 0.863 0.889 0.882 0.892 0.892 0.8836

Recall 0.873 0.882 0.878 0.881 0.865 0.8758

F1-score 0.862 0.88 0.894 0.889 0.875 0.88

ROC 0.904 0.887 0.924 0.905 0.908 0.9056

428

Table A8 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.906 0.895 0.899 0.908 0.896 0.9008

Four

Accuracy 0.925 0.931 0.925 0.923 0.906 0.922

Precision 0.921 0.927 0.932 0.922 0.929 0.9262

Recall 0.921 0.901 0.909 0.93 0.937 0.9196

F1-score 0.925 0.933 0.925 0.921 0.936 0.928

ROC 0.927 0.932 0.92 0.932 0.938 0.9298

G-mean 0.927 0.931 0.913 0.926 0.93 0.9254

Table A9: Decision Tree ML model performance evalua-

tion on Winequality dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.962 0.939 0.954 0.977 0.939 0.9542

Precision 0.333 0 0.333 0 0.167 0.1666

Recall 0 0 0.25 0 0.25 0.1

F1-score 0 0 0.444 0.4 0.222 0.2132

ROC 0.484 0.48 0.605 0.625 0.726 0.584

G-mean 0.571 0 0.693 0 0.69 0.3908

429

Table A9 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Two

Accuracy 0.984 0.949 0.976 0.98 0.98 0.9738

Precision 0.992 0.945 0.955 0.969 0.977 0.9676

Recall 0.992 0.953 0.992 0.984 1 0.9842

F1-score 0.992 0.949 0.973 0.973 0.981 0.9736

ROC 0.992 0.953 0.972 0.973 0.984 0.9748

G-mean 0.992 0.953 0.968 0.972 0.976 0.9722

Three

Accuracy 0.969 0.947 0.969 0.962 0.969 0.9632

Precision 0 0.2 0 0 0 0.04

Recall 0 0 0.25 0.5 0.5 0.25

F1-score 0 0.4 0.25 0.571 0 0.2442

ROC 0.484 0.484 0.612 0.616 0.606 0.5604

G-mean 0 0 0.496 0 0.702 0.2396

Four

Accuracy 0.988 0.949 0.969 0.969 0.965 0.968

Precision 0.962 0.969 0.962 0.977 0.977 0.9694

Recall 0.984 0.953 0.992 0.969 0.969 0.9734

F1-score 0.973 0.957 0.973 0.977 0.965 0.969

ROC 0.988 0.953 0.992 0.988 0.961 0.9764

G-mean 0.976 0.965 0.968 0.957 0.976 0.9684

430

Table A10: Decision Tree ML model performance evalua-

tion on Yeast dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.961 0.932 0.971 0.931 0.941 0.9472

Precision 0.75 0.636 0.833 0.75 0.667 0.7272

Recall 0.9 0.7 0.818 0.6 0.8 0.7636

F1-score 0.818 0.667 0.87 0.667 0.667 0.7378

ROC 0.934 0.828 0.944 0.789 0.878 0.8746

G-mean 0.928 0.818 0.895 0.762 0.875 0.8556

Two

Accuracy 0.951 0.978 0.973 0.968 0.94 0.962

Precision 0.937 0.968 0.978 0.968 0.956 0.9614

Recall 0.967 0.989 0.989 0.978 0.957 0.976

F1-score 0.952 0.978 0.978 0.973 0.95 0.9662

ROC 0.951 0.978 0.978 0.973 0.951 0.9662

G-mean 0.951 0.978 0.989 0.973 0.962 0.9706

Three

Accuracy 0.961 0.932 0.961 0.941 0.941 0.9472

Precision 0.818 0.625 0.889 0.667 0.583 0.7164

Recall 0.9 0.7 0.909 0.5 0.6 0.7218

F1-score 0.818 0.6 0.783 0.471 0.667 0.6678

ROC 0.939 0.782 0.853 0.728 0.889 0.8382

431

Table A10 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.978 0.758 0.938 0.766 0.77 0.842

Four

Accuracy 0.951 0.978 0.978 0.973 0.946 0.9652

Precision 0.938 0.938 0.978 0.957 0.978 0.9578

Recall 0.957 0.989 0.957 0.957 0.989 0.9698

F1-score 0.957 0.979 0.961 0.974 0.94 0.9622

ROC 0.978 0.978 0.978 0.984 0.967 0.977

G-mean 0.957 0.978 0.968 0.978 0.956 0.9674

Performance of Gradient Boosting

Table A11: Gradient Boosting ML model performance

evaluation on Ionosphere dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.901 0.943 0.9 0.971 0.957 0.9344

Precision 0.932 0.918 0.88 0.957 1 0.9374

Recall 0.911 1 0.978 1 0.978 0.9734

F1-score 0.921 0.957 0.926 0.978 0.989 0.9542

ROC 0.973 0.95 0.947 0.978 0.998 0.9692

432

Table A11 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.898 0.917 0.862 0.959 0.989 0.925

Two

Accuracy 0.878 0.956 0.944 0.978 0.956 0.9424

Precision 0.854 0.918 0.917 0.957 0.935 0.9162

Recall 0.911 1 0.978 1 0.956 0.969

F1-score 0.882 0.957 0.946 0.978 0.956 0.9438

ROC 0.952 0.996 0.989 0.987 0.989 0.9826

G-mean 0.877 0.955 0.944 0.978 0.944 0.9396

Three

Accuracy 0.901 0.929 0.9 0.971 0.971 0.9344

Precision 0.896 0.9 0.88 0.957 0.977 0.922

Recall 0.956 0.978 1 1 1 0.9868

F1-score 0.935 0.946 0.928 0.978 0.978 0.953

ROC 0.972 0.966 0.966 0.966 0.996 0.9732

G-mean 0.899 0.917 0.862 0.959 0.969 0.9212

Four

Accuracy 0.889 0.967 0.956 0.944 0.956 0.9424

Precision 0.889 0.917 0.957 0.956 0.936 0.931

Recall 0.889 0.978 0.978 0.956 0.978 0.9558

F1-score 0.889 0.968 0.957 0.956 0.957 0.9454

ROC 0.955 0.994 0.993 0.985 0.989 0.9832

G-mean 0.889 0.944 0.955 0.956 0.955 0.9398

433

Table A12: Gradient Boosting ML model performance

evaluation on Pageblocks dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.979 1 1 1 0.979 0.9916

Precision 1 1 1 1 0.75 0.95

Recall 0.667 1 1 1 1 0.9334

F1-score 0.8 1 1 1 0.857 0.9314

ROC 0.838 1 1 1 0.989 0.9654

G-mean 0.816 1 1 1 0.989 0.961

Two

Accuracy 1 1 1 1 0.989 0.9978

Precision 1 1 1 1 0.978 0.9956

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 0.989 0.9978

ROC 1 1 1 1 0.989 0.9978

G-mean 1 1 1 1 0.989 0.9978

Three

Accuracy 0.979 1 1 1 0.979 0.9916

Precision 1 1 1 1 0.75 0.95

Recall 0.667 1 1 1 1 0.9334

F1-score 0.8 1 1 1 0.857 0.9314

434

Table A12 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.838 1 1 1 0.989 0.9654

G-mean 0.816 1 1 1 0.989 0.961

Four

Accuracy 1 1 1 1 0.989 0.9978

Precision 1 1 1 1 0.978 0.9956

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 0.989 0.9978

ROC 1 1 1 1 0.989 0.9978

G-mean 1 1 1 1 0.989 0.9978

Table A13: Gradient Boosting ML model performance

evaluation on Spambase dataset under four different con-

ditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.948 0.949 0.94 0.96 0.935 0.9464

Precision 0.949 0.936 0.945 0.95 0.936 0.9432

Recall 0.917 0.931 0.901 0.948 0.895 0.9184

F1-score 0.931 0.932 0.922 0.948 0.915 0.9296

ROC 0.987 0.987 0.987 0.99 0.974 0.985

435

Table A13 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.939 0.945 0.933 0.958 0.927 0.9404

Two

Accuracy 0.949 0.956 0.949 0.948 0.946 0.9496

Precision 0.95 0.967 0.953 0.953 0.953 0.9552

Recall 0.948 0.944 0.944 0.946 0.941 0.9446

F1-score 0.949 0.956 0.948 0.95 0.946 0.9498

ROC 0.987 0.989 0.988 0.988 0.986 0.9876

G-mean 0.949 0.956 0.949 0.948 0.946 0.9496

Three

Accuracy 0.946 0.947 0.958 0.97 0.941 0.9524

Precision 0.938 0.931 0.96 0.966 0.938 0.9466

Recall 0.931 0.928 0.928 0.956 0.906 0.9298

F1-score 0.936 0.939 0.941 0.964 0.921 0.9402

ROC 0.99 0.988 0.99 0.993 0.98 0.9882

G-mean 0.943 0.943 0.95 0.964 0.941 0.9482

Four

Accuracy 0.955 0.967 0.957 0.969 0.957 0.961

Precision 0.955 0.973 0.956 0.959 0.957 0.96

Recall 0.964 0.953 0.961 0.971 0.961 0.962

F1-score 0.955 0.966 0.957 0.967 0.959 0.9608

ROC 0.992 0.993 0.99 0.992 0.992 0.9918

G-mean 0.954 0.966 0.956 0.967 0.96 0.9606

436

Table A14: Gradient Boosting ML model performance

evaluation on Winequality dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.969 0.954 0.954 0.977 0.977 0.9662

Precision 0 0 0.25 1 1 0.45

Recall 0 0 0.25 0.25 0.25 0.15

F1-score 0 0 0.25 0.4 0.4 0.21

ROC 0.852 0.878 0.872 0.992 0.929 0.9046

G-mean 0 0 0.494 0.5 0.5 0.2988

Two

Accuracy 0.988 0.973 0.98 0.984 0.992 0.9834

Precision 0.984 0.955 0.962 0.984 0.992 0.9754

Recall 0.992 0.992 1 0.984 0.992 0.992

F1-score 0.988 0.973 0.981 0.984 0.992 0.9836

ROC 1 0.998 1 0.996 1 0.9988

G-mean 0.988 0.972 0.98 0.984 0.992 0.9832

Three

Accuracy 0.977 0.977 0.969 0.969 0.969 0.9722

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

437

Table A14 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.635 0.363 0.684 0.951 0.873 0.7012

G-mean 0 0 0 0 0 0

Four

Accuracy 0.961 0.91 0.949 0.945 0.933 0.9396

Precision 0.933 0.861 0.901 0.914 0.882 0.8982

Recall 0.992 0.976 1 0.992 1 0.992

F1-score 0.962 0.915 0.948 0.948 0.937 0.942

ROC 0.982 0.949 0.962 0.98 0.971 0.9688

G-mean 0.96 0.908 0.943 0.948 0.931 0.938

Table A15: Gradient Boosting ML model performance

evaluation on Yeast dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.971 0.913 0.971 0.912 0.961 0.9456

Precision 0.818 0.556 0.818 0.571 0.875 0.7276

Recall 0.9 0.5 0.909 0.4 0.7 0.6818

F1-score 0.857 0.526 0.818 0.471 0.778 0.69

ROC 0.992 0.955 0.991 0.972 0.968 0.9756

438

Table A15 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.938 0.692 0.895 0.622 0.832 0.7958

Two

Accuracy 0.968 0.978 0.984 0.978 0.984 0.9784

Precision 0.967 0.958 0.979 0.958 0.989 0.9702

Recall 0.967 1 0.989 0.989 0.978 0.9846

F1-score 0.967 0.979 0.984 0.979 0.984 0.9786

ROC 0.997 0.997 0.998 0.999 0.996 0.9974

G-mean 0.968 0.978 0.984 0.978 0.989 0.9794

Three

Accuracy 0.971 0.932 0.971 0.941 0.971 0.9572

Precision 0.818 0.667 0.818 0.75 0.8 0.7706

Recall 0.9 0.6 0.818 0.6 0.8 0.7436

F1-score 0.857 0.632 0.818 0.667 0.842 0.7632

ROC 0.991 0.956 0.99 0.967 0.9 0.9608

G-mean 0.938 0.762 0.89 0.766 0.885 0.8482

Four

Accuracy 0.968 0.973 0.984 0.968 0.967 0.972

Precision 0.946 0.948 0.979 0.948 0.968 0.9578

Recall 0.957 1 0.989 0.989 0.978 0.9826

F1-score 0.951 0.974 0.984 0.963 0.973 0.969

ROC 0.996 0.996 0.999 0.998 0.997 0.9972

G-mean 0.951 0.978 0.984 0.967 0.973 0.9706

439

Performance of K-Nearest Neighbors

Table A16: K-Nearest Neighbors ML model performance

evaluation on Ionosphere dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.817 0.843 0.8 0.871 0.9 0.8462

Precision 0.808 0.804 0.772 0.833 0.88 0.8194

Recall 0.933 1 0.978 1 0.978 0.9778

F1-score 0.866 0.891 0.863 0.909 0.926 0.891

ROC 0.875 0.952 0.888 0.897 0.929 0.9082

G-mean 0.758 0.748 0.685 0.8 0.862 0.7706

Two

Accuracy 0.867 0.9 0.933 0.956 0.922 0.9156

Precision 0.837 0.833 0.898 0.918 0.896 0.8764

Recall 0.911 1 0.978 1 0.956 0.969

F1-score 0.872 0.909 0.936 0.957 0.925 0.9198

ROC 0.923 0.961 0.972 0.989 0.99 0.967

G-mean 0.866 0.894 0.932 0.955 0.922 0.9138

Three

Accuracy 0.803 0.871 0.829 0.871 0.914 0.8576

Precision 0.804 0.833 0.8 0.833 0.882 0.8304

Recall 0.911 1 0.978 1 1 0.9778

440

Table A16 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

F1-score 0.854 0.909 0.88 0.909 0.938 0.898

ROC 0.836 0.92 0.855 0.88 0.935 0.8852

G-mean 0.749 0.8 0.74 0.8 0.872 0.7922

Four

Accuracy 0.867 0.922 0.956 0.933 0.933 0.9222

Precision 0.867 0.865 0.936 0.882 0.915 0.893

Recall 0.867 1 0.978 1 0.956 0.9602

F1-score 0.867 0.928 0.957 0.938 0.935 0.925

ROC 0.913 0.954 0.965 0.989 0.961 0.9564

G-mean 0.867 0.919 0.955 0.931 0.933 0.921

Table A17: K-Nearest Neighbors ML model performance

evaluation on Pageblocks dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.968 1 0.968 0.989 0.979 0.9808

Precision 1 1 0.667 1 1 0.9334

Recall 0.5 1 0.8 0.833 0.667 0.76

F1-score 0.667 1 0.727 0.909 0.8 0.8206

441

Table A17 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.997 1 0.996 0.999 1 0.9984

G-mean 0.707 1 0.884 0.913 0.816 0.864

Two

Accuracy 0.989 0.994 0.989 1 0.994 0.9932

Precision 0.978 0.989 0.978 1 0.989 0.9868

Recall 1 1 1 1 1 1

F1-score 0.989 0.994 0.989 1 0.994 0.9932

ROC 1 1 1 1 1 1

G-mean 0.989 0.994 0.989 1 0.994 0.9932

Three

Accuracy 0.989 0.989 1 0.989 0.989 0.9912

Precision 1 0.833 1 1 1 0.9666

Recall 0.833 1 1 0.833 0.833 0.8998

F1-score 0.909 0.909 1 0.909 0.909 0.9272

ROC 0.915 1 1 1 1 0.983

G-mean 0.913 0.994 1 0.913 0.913 0.9466

Four

Accuracy 1 0.994 0.994 1 1 0.9976

Precision 1 0.989 0.989 1 1 0.9956

Recall 1 1 1 1 1 1

F1-score 1 0.994 0.994 1 1 0.9976

ROC 1 1 1 1 1 1

442

Table A17 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 1 0.994 0.994 1 1 0.9976

Table A18: K-Nearest Neighbors ML model performance

evaluation on Poker dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.99 0.993 0.993 0.99 0.986 0.9904

Precision 1 1 1 0 0 0.6

Recall 0.25 0.333 0.333 0 0 0.1832

F1-score 0.4 0.5 0.5 0 0 0.28

ROC 0.87 0.828 0.828 0.83 0.991 0.8694

G-mean 0.5 0.577 0.577 0 0 0.3308

Two

Accuracy 0.997 0.991 0.991 0.993 0.991 0.9926

Precision 0.993 0.983 0.983 0.986 0.983 0.9856

Recall 1 1 1 1 1 1

F1-score 0.997 0.992 0.992 0.993 0.992 0.9932

ROC 1 0.998 0.998 0.998 1 0.9988

G-mean 0.997 0.991 0.991 0.993 0.991 0.9926

443

Table A18 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Three

Accuracy 0.99 0.993 0.993 0.993 0.99 0.9918

Precision 1 1 1 1 1 1

Recall 0.25 0.333 0.333 0.333 0.25 0.2998

F1-score 0.4 0.5 0.5 0.5 0.4 0.46

ROC 0.874 0.83 0.83 0.831 0.996 0.8722

G-mean 0.5 0.577 0.577 0.577 0.5 0.5462

Four

Accuracy 1 0.998 0.995 0.998 0.995 0.9972

Precision 1 0.997 0.99 0.997 0.99 0.9948

Recall 1 1 1 1 1 1

F1-score 1 0.998 0.995 0.998 0.995 0.9972

ROC 1 0.998 0.998 0.998 0.998 0.9984

G-mean 1 0.998 0.995 0.998 0.995 0.9972

Table A19: K-Nearest Neighbors ML model performance

evaluation on Winequality dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.977 0.977 0.969 0.969 0.969 0.9722

444

Table A19 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.604 0.616 0.798 0.582 0.714 0.6628

G-mean 0 0 0 0 0 0

Two

Accuracy 0.933 0.933 0.937 0.949 0.965 0.9434

Precision 0.882 0.882 0.889 0.908 0.934 0.899

Recall 1 1 1 1 1 1

F1-score 0.937 0.937 0.941 0.952 0.966 0.9466

ROC 0.984 0.984 0.969 0.988 1 0.985

G-mean 0.931 0.931 0.935 0.947 0.964 0.9416

Three

Accuracy 0.977 0.977 0.977 0.969 0.977 0.9754

Precision 0 0 1 0 1 0.4

Recall 0 0 0.25 0 0.25 0.1

F1-score 0 0 0.4 0 0.4 0.16

ROC 0.625 0.633 0.825 0.596 0.73 0.6818

G-mean 0 0 0.5 0 0.5 0.2

Four

Accuracy 0.949 0.945 0.941 0.961 0.969 0.953

Precision 0.907 0.901 0.895 0.928 0.941 0.9144

445

Table A19 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Recall 1 1 1 1 1 1

F1-score 0.951 0.948 0.945 0.962 0.969 0.955

ROC 0.984 0.984 0.969 0.988 1 0.985

G-mean 0.948 0.944 0.939 0.96 0.968 0.9518

Table A20: K-Nearest Neighbors ML model performance

evaluation on Yeast dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.971 0.942 0.981 0.941 0.951 0.9572

Precision 0.889 1 1 1 0.857 0.9492

Recall 0.8 0.4 0.818 0.4 0.6 0.6036

F1-score 0.842 0.571 0.9 0.571 0.706 0.718

ROC 0.996 0.832 0.953 0.872 0.877 0.906

G-mean 0.89 0.632 0.905 0.632 0.77 0.7658

Two

Accuracy 0.957 0.968 1 0.946 0.962 0.9666

Precision 0.929 0.939 1 0.903 0.929 0.94

Recall 0.989 1 1 1 1 0.9978

446

Table A20 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

F1-score 0.958 0.968 1 0.949 0.963 0.9676

ROC 0.987 0.978 1 0.995 0.982 0.9884

G-mean 0.956 0.967 1 0.944 0.961 0.9656

Three

Accuracy 0.981 0.942 0.981 0.951 0.951 0.9612

Precision 1 1 1 1 0.857 0.9714

Recall 0.8 0.4 0.818 0.5 0.6 0.6236

F1-score 0.889 0.571 0.9 0.667 0.706 0.7466

ROC 0.997 0.832 0.953 0.931 0.922 0.927

G-mean 0.894 0.632 0.905 0.707 0.77 0.7816

Four

Accuracy 0.962 0.962 0.995 0.957 0.957 0.9666

Precision 0.929 0.929 1 0.921 0.92 0.9398

Recall 1 1 0.989 1 1 0.9978

F1-score 0.963 0.963 0.995 0.959 0.958 0.9676

ROC 0.987 0.978 1 0.994 0.987 0.9892

G-mean 0.962 0.962 0.995 0.956 0.956 0.9662

Performance of Logistic Regression

447

Table A21: Logistic Regression ML model performance

evaluation on Ionosphere dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.887 0.9 0.843 0.857 0.914 0.8802

Precision 0.911 0.88 0.827 0.857 0.898 0.8746

Recall 0.911 0.978 0.956 0.933 0.978 0.9512

F1-score 0.911 0.926 0.887 0.894 0.936 0.9108

ROC 0.894 0.925 0.877 0.892 0.937 0.905

G-mean 0.878 0.862 0.782 0.82 0.884 0.8452

Two

Accuracy 0.856 0.889 0.9 0.9 0.9 0.889

Precision 0.848 0.857 0.891 0.86 0.86 0.8632

Recall 0.867 0.933 0.911 0.956 0.956 0.9246

F1-score 0.857 0.894 0.901 0.905 0.905 0.8924

ROC 0.915 0.97 0.94 0.955 0.954 0.9468

G-mean 0.855 0.888 0.9 0.898 0.898 0.8878

Three

Accuracy 0.845 0.914 0.843 0.886 0.929 0.8834

Precision 0.905 0.898 0.827 0.863 0.917 0.882

Recall 0.844 0.978 0.956 0.978 0.978 0.9468

F1-score 0.874 0.936 0.887 0.917 0.946 0.912

448

Table A21 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.881 0.9 0.849 0.892 0.9 0.8844

G-mean 0.845 0.884 0.782 0.839 0.906 0.8512

Four

Accuracy 0.811 0.9 0.889 0.9 0.922 0.8844

Precision 0.804 0.86 0.889 0.86 0.896 0.8618

Recall 0.822 0.956 0.889 0.956 0.956 0.9158

F1-score 0.813 0.905 0.889 0.905 0.925 0.8874

ROC 0.904 0.961 0.935 0.956 0.945 0.9402

G-mean 0.811 0.898 0.889 0.898 0.922 0.8836

Table A22: Logistic Regression ML model performance

evaluation on Pageblocks dataset under four different

conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.968 0.979 0.968 0.947 0.957 0.9638

Precision 1 0.8 1 0.667 1 0.8934

Recall 0.5 0.8 0.4 0.333 0.333 0.4732

F1-score 0.667 0.8 0.571 0.444 0.5 0.5964

ROC 0.985 0.989 0.973 0.97 0.972 0.9778

449

Table A22 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.707 0.889 0.632 0.574 0.577 0.6758

Two

Accuracy 0.983 0.972 0.972 0.983 0.96 0.974

Precision 0.967 0.946 0.946 0.967 0.927 0.9506

Recall 1 1 1 1 1 1

F1-score 0.983 0.972 0.972 0.983 0.962 0.9744

ROC 0.986 0.982 0.993 0.987 0.975 0.9846

G-mean 0.983 0.972 0.972 0.983 0.959 0.9738

Three

Accuracy 0.958 0.979 0.968 0.947 0.979 0.9662

Precision 1 0.8 1 0.667 1 0.8934

Recall 0.333 0.8 0.4 0.333 0.667 0.5066

F1-score 0.5 0.8 0.571 0.444 0.8 0.623

ROC 1 0.993 0.98 0.981 0.979 0.9866

G-mean 0.577 0.889 0.632 0.574 0.816 0.6976

Four

Accuracy 1 0.972 0.972 0.977 0.96 0.9762

Precision 1 0.946 0.946 0.957 0.927 0.9552

Recall 1 1 1 1 1 1

F1-score 1 0.972 0.972 0.978 0.962 0.9768

ROC 1 0.984 0.994 0.988 0.982 0.9896

G-mean 1 0.972 0.972 0.977 0.959 0.976

450

Table A23: Logistic Regression ML model performance

evaluation on Poker dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.986 0.99 0.99 0.99 0.986 0.9884

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.306 0.24 0.46 0.283 0.216 0.301

G-mean 0 0 0 0 0 0

Two

Accuracy 0.598 0.604 0.639 0.569 0.561 0.5942

Precision 0.601 0.594 0.628 0.567 0.563 0.5906

Recall 0.579 0.658 0.682 0.584 0.548 0.6102

F1-score 0.59 0.624 0.654 0.575 0.556 0.5998

ROC 0.653 0.603 0.667 0.612 0.615 0.63

G-mean 0.597 0.602 0.637 0.569 0.561 0.5932

Three

Accuracy 0.986 0.99 0.99 0.99 0.986 0.9884

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

451

Table A23 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.343 0.202 0.441 0.211 0.217 0.2828

G-mean 0 0 0 0 0 0

Four

Accuracy 0.57 0.586 0.618 0.568 0.537 0.5758

Precision 0.575 0.578 0.609 0.566 0.541 0.5738

Recall 0.538 0.634 0.661 0.577 0.5 0.582

F1-score 0.556 0.605 0.634 0.571 0.52 0.5772

ROC 0.634 0.593 0.661 0.598 0.598 0.6168

G-mean 0.569 0.584 0.617 0.568 0.536 0.5748

Table A24: Logistic Regression ML model performance

evaluation on Spambase dataset under four different con-

ditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.911 0.939 0.918 0.937 0.913 0.9236

Precision 0.914 0.923 0.936 0.925 0.915 0.9226

Recall 0.854 0.923 0.851 0.914 0.859 0.8802

F1-score 0.883 0.923 0.891 0.919 0.886 0.9004

ROC 0.971 0.979 0.967 0.978 0.965 0.972

452

Table A24 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.9 0.936 0.905 0.933 0.902 0.9152

Two

Accuracy 0.925 0.926 0.929 0.923 0.926 0.9258

Precision 0.929 0.936 0.93 0.927 0.941 0.9326

Recall 0.919 0.914 0.928 0.917 0.91 0.9176

F1-score 0.924 0.925 0.929 0.922 0.925 0.925

ROC 0.968 0.974 0.976 0.967 0.975 0.972

G-mean 0.925 0.925 0.929 0.923 0.926 0.9256

Three

Accuracy 0.92 0.942 0.917 0.935 0.916 0.926

Precision 0.919 0.921 0.931 0.917 0.918 0.9212

Recall 0.873 0.934 0.854 0.917 0.865 0.8886

F1-score 0.895 0.927 0.89 0.917 0.89 0.9038

ROC 0.972 0.979 0.966 0.977 0.966 0.972

G-mean 0.911 0.941 0.905 0.932 0.906 0.919

Four

Accuracy 0.922 0.923 0.931 0.924 0.926 0.9252

Precision 0.926 0.932 0.932 0.924 0.939 0.9306

Recall 0.918 0.912 0.93 0.923 0.91 0.9186

F1-score 0.922 0.922 0.931 0.924 0.924 0.9246

ROC 0.968 0.974 0.978 0.968 0.975 0.9726

G-mean 0.922 0.923 0.931 0.924 0.925 0.925

453

Table A25: Logistic Regression ML model performance

evaluation on Yeast dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.981 0.932 0.961 0.951 0.941 0.9532

Precision 0.9 0.714 1 1 0.75 0.8728

Recall 0.9 0.5 0.636 0.5 0.6 0.6272

F1-score 0.9 0.588 0.778 0.667 0.667 0.72

ROC 0.997 0.9 0.964 0.93 0.915 0.9412

G-mean 0.944 0.699 0.798 0.707 0.766 0.7828

Two

Accuracy 0.935 0.924 0.946 0.935 0.908 0.9296

Precision 0.955 0.906 0.956 0.918 0.879 0.9228

Recall 0.913 0.946 0.935 0.957 0.946 0.9394

F1-score 0.933 0.926 0.946 0.937 0.911 0.9306

ROC 0.964 0.975 0.972 0.981 0.961 0.9706

G-mean 0.935 0.924 0.946 0.935 0.907 0.9294

Three

Accuracy 0.981 0.951 0.951 0.941 0.951 0.955

Precision 0.9 1 1 1 0.857 0.9514

Recall 0.9 0.5 0.545 0.4 0.6 0.589

F1-score 0.9 0.667 0.706 0.571 0.706 0.71

454

Table A25 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.998 0.887 0.967 0.935 0.911 0.9396

G-mean 0.944 0.707 0.739 0.632 0.77 0.7584

Four

Accuracy 0.941 0.924 0.946 0.957 0.913 0.9362

Precision 0.955 0.906 0.956 0.947 0.888 0.9304

Recall 0.924 0.946 0.935 0.968 0.946 0.9438

F1-score 0.939 0.926 0.946 0.957 0.916 0.9368

ROC 0.963 0.974 0.97 0.982 0.962 0.9702

G-mean 0.94 0.924 0.946 0.957 0.912 0.9358

Performance of Random Forest

Table A26: Random Forest ML model performance evalua-

tion on Ionosphere dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.915 0.943 0.9 0.971 0.986 0.943

Precision 0.915 0.918 0.896 0.957 0.978 0.9328

Recall 0.911 1 0.933 0.978 1 0.9644

F1-score 0.945 0.957 0.925 0.967 0.978 0.9544

ROC 0.975 0.99 0.974 0.961 0.997 0.9794

455

Table A26 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.898 0.917 0.874 0.948 0.969 0.9212

Two

Accuracy 0.867 0.989 0.922 0.956 0.967 0.9402

Precision 0.848 0.957 0.915 0.978 0.938 0.9272

Recall 0.911 1 0.933 0.956 1 0.96

F1-score 0.879 0.978 0.923 0.978 0.968 0.9452

ROC 0.965 1 0.991 0.987 0.993 0.9872

G-mean 0.855 0.978 0.933 0.978 0.978 0.9444

Three

Accuracy 0.93 0.943 0.9 0.957 0.971 0.9402

Precision 0.909 0.938 0.896 0.957 0.978 0.9356

Recall 0.956 1 0.978 0.978 1 0.9824

F1-score 0.923 0.968 0.913 0.967 0.978 0.9498

ROC 0.974 0.98 0.973 0.963 0.999 0.9778

G-mean 0.919 0.938 0.864 0.948 0.98 0.9298

Four

Accuracy 0.867 0.978 0.933 0.967 0.956 0.9402

Precision 0.851 0.938 0.915 0.978 0.936 0.9236

Recall 0.911 0.978 0.956 1 0.978 0.9646

F1-score 0.894 0.978 0.923 0.978 0.968 0.9482

ROC 0.961 1 0.99 0.988 0.997 0.9872

G-mean 0.878 0.967 0.911 0.978 0.966 0.94

456

Table A27: Random Forest ML model performance evalua-

tion on Pageblocks dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.968 1 0.989 0.989 0.989 0.987

Precision 1 1 0.833 1 1 0.9666

Recall 0.667 1 1 0.833 1 0.9

F1-score 0.667 1 0.909 0.909 0.909 0.8788

ROC 0.998 1 1 1 1 0.9996

G-mean 0.707 1 0.994 0.913 0.913 0.9054

Two

Accuracy 1 1 1 1 1 1

Precision 1 1 1 1 1 1

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 1 1

ROC 1 1 1 1 1 1

G-mean 1 1 1 1 1 1

Three

Accuracy 0.979 1 0.989 0.989 1 0.9914

Precision 1 1 1 1 1 1

Recall 0.5 1 1 1 1 0.9

F1-score 0.667 1 0.909 1 1 0.9152

ROC 0.99 1 1 1 1 0.998

457

Table A27 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.707 1 0.994 1 1 0.9402

Four

Accuracy 1 1 1 1 0.989 0.9978

Precision 1 1 1 1 0.978 0.9956

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 0.989 0.9978

ROC 1 1 1 1 1 1

G-mean 1 1 1 1 0.989 0.9978

Table A28: Random Forest ML model performance eval-

uation on Poker dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.986 0.99 0.99 0.99 0.986 0.9884

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.98 0.859 0.939 0.9 0.996 0.9348

G-mean 0 0 0 0 0 0

Two

Accuracy 0.993 0.995 0.998 0.998 0.998 0.9964

458

Table A28 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Precision 1 1 1 1 1 1

Recall 0.986 0.99 0.997 0.993 0.997 0.9926

F1-score 0.993 0.995 0.998 0.997 0.998 0.9962

ROC 0.999 1 1 1 1 0.9998

G-mean 0.993 0.995 0.998 0.997 0.998 0.9962

Three

Accuracy 0.986 0.99 0.99 0.99 0.986 0.9884

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.984 0.91 0.974 0.86 0.956 0.9368

G-mean 0 0 0 0 0 0

Four

Accuracy 0.993 0.995 0.998 1 0.998 0.9968

Precision 1 1 1 1 1 1

Recall 0.986 0.99 0.997 1 0.997 0.994

F1-score 0.993 0.995 0.998 0.998 0.998 0.9964

ROC 0.997 1 1 1 1 0.9994

G-mean 0.993 0.995 0.998 1 0.998 0.9968

459

Table A29: Random Forest ML model performance evalu-

ation on Spambase dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.946 0.95 0.957 0.962 0.952 0.9534

Precision 0.948 0.944 0.966 0.967 0.962 0.9574

Recall 0.923 0.931 0.928 0.95 0.906 0.9276

F1-score 0.93 0.936 0.946 0.957 0.936 0.941

ROC 0.988 0.988 0.987 0.994 0.978 0.987

G-mean 0.946 0.949 0.95 0.96 0.946 0.9502

Two

Accuracy 0.961 0.97 0.956 0.966 0.962 0.963

Precision 0.958 0.976 0.961 0.961 0.959 0.963

Recall 0.971 0.966 0.953 0.968 0.961 0.9638

F1-score 0.962 0.968 0.962 0.964 0.962 0.9636

ROC 0.992 0.992 0.99 0.992 0.993 0.9918

G-mean 0.964 0.967 0.956 0.968 0.961 0.9632

Three

Accuracy 0.949 0.951 0.954 0.96 0.946 0.952

Precision 0.954 0.944 0.965 0.961 0.964 0.9576

Recall 0.915 0.923 0.92 0.953 0.898 0.9218

F1-score 0.938 0.931 0.943 0.954 0.928 0.9388

ROC 0.987 0.988 0.985 0.992 0.98 0.9864

460

Table A29 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.943 0.941 0.947 0.959 0.943 0.9466

Four

Accuracy 0.959 0.967 0.957 0.964 0.958 0.961

Precision 0.966 0.978 0.96 0.955 0.961 0.964

Recall 0.962 0.952 0.953 0.962 0.959 0.9576

F1-score 0.956 0.966 0.956 0.959 0.957 0.9588

ROC 0.99 0.99 0.99 0.993 0.992 0.991

G-mean 0.956 0.968 0.956 0.965 0.959 0.9608

Table A30: Random Forest ML model performance eval-

uation on Winequality dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.977 0.977 0.977 0.969 0.977 0.9754

Precision 0 0 1 0 1 0.4

Recall 0 0 0.25 0 0.25 0.1

F1-score 0 0 0.4 0 0.4 0.16

ROC 0.885 0.852 0.829 0.969 0.942 0.8954

G-mean 0 0 0.5 0 0.5 0.2

461

Table A30 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Two

Accuracy 0.996 0.976 0.984 0.984 0.996 0.9872

Precision 1 0.976 0.97 0.992 1 0.9876

Recall 1 0.992 1 0.984 1 0.9952

F1-score 0.996 0.972 0.981 0.984 1 0.9866

ROC 1 0.999 1 0.999 1 0.9996

G-mean 1 0.976 0.988 0.984 0.992 0.988

Three

Accuracy 0.977 0.977 0.977 0.969 0.977 0.9754

Precision 0 0 1 0 1 0.4

Recall 0 0 0.25 0 0.25 0.1

F1-score 0 0 0.4 0 0.4 0.16

ROC 0.786 0.811 0.88 0.965 0.951 0.8786

G-mean 0 0 0.5 0 0 0.1

Four

Accuracy 0.992 0.973 0.976 0.988 1 0.9858

Precision 0.992 0.976 0.955 0.984 1 0.9814

Recall 1 0.984 1 0.992 1 0.9952

F1-score 0.996 0.972 0.977 0.984 0.996 0.985

ROC 1 0.999 1 1 1 0.9998

G-mean 0.996 0.973 0.984 0.988 1 0.9882

462

Performance of Support Vector Machine

Table A31: Support Vector ML model performance evalua-

tion on Pageblocks dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.968 0.989 0.968 0.947 0.957 0.9658

Precision 1 1 1 1 1 1

Recall 0.5 0.8 0.4 0.167 0.333 0.44

F1-score 0.667 0.889 0.571 0.286 0.5 0.5826

ROC 1 0.996 0.987 0.996 0.996 0.995

G-mean 0.707 0.894 0.632 0.408 0.577 0.6436

Two

Accuracy 0.994 0.989 0.983 0.983 0.977 0.9852

Precision 0.989 0.978 0.967 0.967 0.957 0.9716

Recall 1 1 1 1 1 1

F1-score 0.994 0.989 0.983 0.983 0.978 0.9854

ROC 1 0.994 0.989 0.991 0.98 0.9908

G-mean 0.994 0.989 0.983 0.983 0.977 0.9852

Three

Accuracy 0.968 0.989 0.989 1 1 0.9892

Precision 1 1 1 1 1 1

Recall 0.5 0.8 0.8 1 1 0.82

F1-score 0.667 0.889 0.889 1 1 0.889

463

Table A31 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ROC 0.998 0.998 1 1 1 0.9992

G-mean 0.707 0.894 0.894 1 1 0.899

Four

Accuracy 1 1 0.994 0.989 0.983 0.9932

Precision 1 1 0.989 0.978 0.967 0.9868

Recall 1 1 1 1 1 1

F1-score 1 1 0.994 0.989 0.983 0.9932

ROC 1 1 0.996 1 0.998 0.9988

G-mean 1 1 0.994 0.989 0.983 0.9932

Table A32: Support Vector ML model performance eval-

uation on Poker dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.986 0.99 0.99 0.99 0.986 0.9884

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.98 0.944 0.985 0.939 0.995 0.9686

G-mean 0 0 0 0 0 0

464

Table A32 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Two

Accuracy 1 1 1 1 1 1

Precision 1 1 1 1 1 1

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 1 1

ROC 1 1 1 1 1 1

G-mean 1 1 1 1 1 1

Three

Accuracy 0.993 0.997 0.997 0.997 0.993 0.9954

Precision 1 1 1 1 1 1

Recall 0.5 0.667 0.667 0.667 0.5 0.6002

F1-score 0.667 0.8 0.8 0.8 0.667 0.7468

ROC 1 0.999 1 1 0.973 0.9944

G-mean 0.707 0.816 0.816 0.816 0.707 0.7724

Four

Accuracy 1 1 1 1 1 1

Precision 1 1 1 1 1 1

Recall 1 1 1 1 1 1

F1-score 1 1 1 1 1 1

ROC 1 1 1 1 1 1

G-mean 1 1 1 1 1 1

465

Table A33: Support Vector ML model performance evalu-

ation on Spambase dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.926 0.941 0.924 0.947 0.924 0.9324

Precision 0.93 0.926 0.948 0.938 0.932 0.9348

Recall 0.879 0.926 0.854 0.925 0.87 0.8908

F1-score 0.904 0.926 0.898 0.932 0.9 0.912

ROC 0.978 0.981 0.97 0.981 0.963 0.9746

G-mean 0.917 0.938 0.91 0.943 0.913 0.9242

Two

Accuracy 0.927 0.939 0.935 0.928 0.945 0.9348

Precision 0.933 0.961 0.947 0.933 0.964 0.9476

Recall 0.921 0.916 0.923 0.923 0.925 0.9216

F1-score 0.927 0.938 0.935 0.928 0.944 0.9344

ROC 0.973 0.981 0.976 0.973 0.982 0.977

G-mean 0.927 0.939 0.935 0.928 0.945 0.9348

Three

Accuracy 0.93 0.937 0.933 0.953 0.929 0.9364

Precision 0.931 0.92 0.952 0.939 0.93 0.9344

Recall 0.89 0.92 0.873 0.942 0.887 0.9024

F1-score 0.91 0.92 0.911 0.941 0.908 0.918

ROC 0.982 0.985 0.979 0.987 0.968 0.9802

466

Table A33 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.923 0.934 0.921 0.951 0.921 0.93

Four

Accuracy 0.941 0.944 0.946 0.943 0.948 0.9444

Precision 0.941 0.959 0.948 0.938 0.956 0.9484

Recall 0.941 0.928 0.944 0.95 0.939 0.9404

F1-score 0.941 0.944 0.946 0.944 0.947 0.9444

ROC 0.981 0.983 0.982 0.981 0.985 0.9824

G-mean 0.941 0.944 0.946 0.943 0.948 0.9444

Table A34: Support Vector ML model performance eval-

uation on Winequality dataset under four different condi-

tions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.977 0.977 0.969 0.969 0.969 0.9722

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.81 0.74 0.76 0.703 0.758 0.7542

G-mean 0 0 0 0 0 0

467

Table A34 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Two

Accuracy 0.965 0.957 0.957 0.961 0.976 0.9632

Precision 0.934 0.92 0.921 0.928 0.955 0.9316

Recall 1 1 1 1 1 1

F1-score 0.966 0.958 0.959 0.962 0.977 0.9644

ROC 1 1 0.971 0.988 0.999 0.9916

G-mean 0.964 0.956 0.956 0.96 0.976 0.9624

Three

Accuracy 0.977 0.977 0.969 0.969 0.969 0.9722

Precision 0 0 0 0 0 0

Recall 0 0 0 0 0 0

F1-score 0 0 0 0 0 0

ROC 0.828 0.568 0.829 0.927 0.553 0.741

G-mean 0 0 0 0 0 0

Four

Accuracy 0.914 0.929 0.902 0.906 0.945 0.9192

Precision 0.852 0.876 0.841 0.842 0.901 0.8624

Recall 1 1 0.992 1 1 0.9984

F1-score 0.92 0.934 0.91 0.914 0.948 0.9252

ROC 0.944 0.949 0.901 0.929 0.96 0.9366

G-mean 0.91 0.927 0.897 0.901 0.943 0.9156

468

Table A35: Support Vector ML model performance eval-

uation on Yeast dataset under four different conditions.

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

One

Accuracy 0.981 0.942 0.99 0.951 0.951 0.963

Precision 0.9 0.833 1 1 0.857 0.918

Recall 0.9 0.5 0.909 0.5 0.6 0.6818

F1-score 0.9 0.625 0.952 0.667 0.706 0.77

ROC 0.999 0.937 0.994 0.968 0.957 0.971

G-mean 0.944 0.703 0.953 0.707 0.77 0.8154

Two

Accuracy 0.968 0.962 0.989 0.957 0.967 0.9686

Precision 0.957 0.929 0.989 0.929 0.939 0.9486

Recall 0.978 1 0.989 0.989 1 0.9912

F1-score 0.968 0.963 0.989 0.958 0.968 0.9692

ROC 0.994 0.994 0.999 0.997 0.99 0.9948

G-mean 0.968 0.962 0.989 0.956 0.967 0.9684

Three

Accuracy 0.981 0.942 0.99 0.951 0.951 0.963

Precision 0.9 0.833 1 1 0.857 0.918

Recall 0.9 0.5 0.909 0.5 0.6 0.6818

F1-score 0.9 0.625 0.952 0.667 0.706 0.77

ROC 0.999 0.937 0.994 0.968 0.957 0.971

469

Table A35 continued from previous page

Conditions Evaluation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

G-mean 0.944 0.703 0.953 0.707 0.77 0.8154

Four

Accuracy 0.968 0.962 0.989 0.957 0.967 0.9686

Precision 0.957 0.929 0.989 0.929 0.939 0.9486

Recall 0.978 1 0.989 0.989 1 0.9912

F1-score 0.968 0.963 0.989 0.958 0.968 0.9692

ROC 0.994 0.994 0.999 0.997 0.99 0.9948

G-mean 0.968 0.962 0.989 0.956 0.967 0.9684

470

.2 Appendix B

.2.1 Optimal Parameters

Table B36: Optimal AB ML hyper-parameters used to experiment

with conditions two and four.

Dataset Optimal parameters

Ionosphere learning rate: 1, n estimators: 50

Pageblocks learning rate: 1, n estimators: 50

Poker learning rate: 0.01, n estimators: 50

Spambase learning rate: 1, n estimators: 100

Winequality learning rate: 0.01, n estimators: 50

Yeast learning rate: 0.01, n estimators: 100

471

Table B37: Optimal DT ML hyper-parameters used to experiment

with conditions two and four.

Dataset Optimal parameters

Ionosphere criterion: gini, max depth: 10 max features: 5

min samples split: 4

Pageblocks criterion: gini, max depth: 10 max features: 5

min samples split: 4

Poker criterion: gini, max depth: 10 max features: 6

min samples split: 3

Spambase criterion: gini, max depth: 50 max features: 8

min samples split: 4

Winequality criterion: gini, max depth: 50 max features: 2

min samples split: 4

Yeast criterion: gini, max depth: 50 max features: 6

min samples split: 3

472

Table B38: Optimal GB ML hyper-parameters used to experiment

with conditions two and four.

Dataset Optimal parameters

Ionosphere learning rate: 1, max depth: 3, n estimators: 100

Pageblocks learning rate: 0.1, max depth: 3, n estimators:

100

Poker learning rate: 0.1, max depth: 5, n estimators:

150

Spambase learning rate: 0.1, max depth: 7, n estimators:

150

Winequality learning rate: 0.01, max depth: 5, n estimators:

50

Yeast learning rate: 0.1, max depth: 5, n estimators:

150

473

Table B39: Optimal KNN ML hyper-parameters used to experiment

with conditions two and four.

Dataset Optimal parameters

Ionosphere n neighbors: 3, weights: uniform

Pageblocks n neighbors: 3, weights: uniform

Poker n neighbors: 3, weights: uniform

Spambase n neighbors: 7, weights: distance

Winequality n neighbors: 5, weights: distance

Yeast n neighbors: 7, weights: uniform

Table B40: Optimal LR ML hyper-parameters used to experiment

with conditions two and four.

Dataset Optimal parameters

Ionosphere C: 10, penalty: l2

Pageblocks C: 10, penalty: l2

Poker C: 0.01, penalty: l2

Spambase C: 10, penalty: l2

Winequality C: 0.01, penalty: l2

Yeast C: 0.1, penalty: l2

474

Table B41: Optimal RF ML hyper-parameters used to experiment

with conditions two and four.

Dataset Optimal parameters

Ionosphere max depth: 20, max features: 5,

min samples split: 4, n estimators: 50

Pageblocks max depth: 20, max features: 8,

min samples split: 4, n estimators: 50

Poker max depth: 10, max features: 2,

min samples split: 3, n estimators: 50

Spambase max depth: 20, max features: 6,

min samples split: 3, n estimators: 100

Winequality max depth: 10, max features: 2,

min samples split: 3, n estimators: 100

Yeast max depth: 20, max features: 2,

min samples split: 5, n estimators: 100

475

Table B42: Optimal SVM ML hyper-parameters used to experiment

with conditions two and four.

Dataset Optimal parameters

Ionosphere C: 1, gamma: scale, kernel: rbf

Pageblocks C: 10, gamma: scale, kernel:rbf

Poker C: 10, gamma: scale, kernel:rbf

Spambase C: 10, gamma: scale, kernel:rbf

Winequality C: 0.1, gamma: scale, kernel:linear

Yeast C: 1, gamma: scale, kernel:rbf

476

.3 Appendix C

.3.1 Hypothesis Testing

.3.1.1 Adaboost

Table C43: Results of hypothesis testing for Adaboost algorithms on

Pageblocks dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9992 0.0016 ML
ML +

SMOTE

0.0004 -0.0008 1.224745 0.27522
Fail to

reject H0

ML +

SMOTE

0.9988 0.0024 ML ML(HP) 0 0 – –
Fail to

reject H0

ML(HP) 0.9992 0.0016 ML
ML(HP) +

SMOTE

0.0004 -0.0008 1.224745 0.27522
Fail to

reject H0

ML(HP) +

SMOTE

0.9988 0.0024
ML +

SMOTE

ML(HP) -0.0004 0.0008 -1.22474 0.27522
Fail to

Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0 – –
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

0.0004 -0.0008 1.224745 0.27522
Fail to

reject H0

477

Table C44: Results of hypothesis testing for Adaboost algorithms on

Poker dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.5702 0.100527 ML
ML +

SMOTE

-0.4232 0.098468 -10.3618 0.000144 Reject H0

ML +

SMOTE

0.9934 0.002059 ML ML(HP) 0.1506 -0.006 7.821855 0.000548 Reject H0

ML(HP) 0.4196 0.106522 ML
ML(HP) +

SMOTE

-0.1926 0.085811 -5.25756 0.003306 Reject H0

ML(HP) +

SMOTE

0.7628 0.014716
ML +

SMOTE

ML(HP) 0.5738 -0.10446 13.20252 4.45E-05 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.2306 -0.01266 42.64525 1.34E-07 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.3432 0.091807 -8.61645 0.000347 Reject H0

478

Table C45: Results of hypothesis testing for Adaboost algorithms on

Spambase dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.978 0.006325 ML
ML +

SMOTE

-0.0048 0.004385 -2.02356 0.09892
Fail to

reject H0

ML +

SMOTE

0.9828 0.001939 ML ML(HP) -0.0014 0.000338 -4.28661 0.007814
Fail to

reject H0

ML(HP) 0.9794 0.005987 ML
ML(HP) +

SMOTE

-0.0058 0.004604 -2.2531 0.073989
Fail to

reject H0

ML(HP) +

SMOTE

0.9838 0.00172
ML +

SMOTE

ML(HP) 0.0034 -0.00405 1.494836 0.195194
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.001 0.000219 -1.58114 0.174688
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0044 0.004266 -1.79033 0.133408
Fail to

reject H0

479

Table C46: Results of hypothesis testing for Adaboost algorithms on

Winequality dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.8336 0.099275 ML
ML +

SMOTE

-0.1508 0.09025 -3.63658 0.014957
Fail to

reject H0

ML +

SMOTE

0.9844 0.009024 ML ML(HP) 0.122 -0.0489 2.481644 0.055729
Fail to

reject H0

ML(HP) 0.7116 0.148174 ML
ML(HP) +

SMOTE

-0.0486 0.085734 -1.06521 0.335495
Fail to

reject H0

ML(HP) +

SMOTE

0.8822 0.013541
ML +

SMOTE

ML(HP) 0.2728 -0.13915 4.431765 0.006817
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.1022 -0.00452 14.10584 3.22E-05 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.1706 0.134633 -2.68577 0.043518
Fail to

reject H0

480

Table C47: Results of hypothesis testing for Adaboost algorithms on

Yeast dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.899 0.078149 ML
ML +

SMOTE

-0.0904 0.067498 -2.61774 0.047227
Fail to

reject H0

ML +

SMOTE

0.9894 0.010651 ML ML(HP) -0.0794 0.06103 -2.8659 0.035163
Fail to

reject H0

ML(HP) 0.9784 0.017118 ML
ML(HP) +

SMOTE

-0.0934 0.074537 -2.8827 0.034479
Fail to

reject H0

ML(HP) +

SMOTE

0.9924 0.003611
ML +

SMOTE

ML(HP) 0.011 -0.00647 1.146414 0.303508
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.003 0.00704 -0.8037 0.45806
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.014 0.013507 -2.10263 0.089454
Fail to

reject H0

481

.3.1.2 Decision Tree

Table C48: Results of hypothesis testing for DT algorithms on Iono-

sphere dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.8808 0.041513 ML
ML +

SMOTE

-0.0104 0.016047 -0.47713 0.653394
Fail to

reject H0

ML +

SMOTE

0.8912 0.025467 ML ML(HP) 0.0036 -0.00625 0.361133 0.732757
Fail to

reject H0

ML(HP) 0.8772 0.047768 ML
ML(HP) +

SMOTE

-0.039 -0.04232 -1.16796 0.295482
Fail to

reject H0

ML(HP) +

SMOTE

0.9198 0.083829
ML +

SMOTE

ML(HP) 0.014 -0.0223 0.66129 0.537677
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0286 -0.05836 -1.05754 0.338659
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0426 -0.03606 -1.68764 0.152283
Fail to

reject H0

482

Table C49: Results of hypothesis testing for DT algorithms on Poker

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.4968 0.002227 ML
ML +

SMOTE

-0.4936 -0.00376 -152.765 2.28E-10 Reject H0

ML +

SMOTE

0.9904 0.005987 ML ML(HP) 0.0018 -0.00118 1.206271 0.281671
Fail to

reject H0

ML(HP) 0.495 0.003406 ML
ML(HP) +

SMOTE

-0.4766 -0.00584 -135.858 4.1E-10 Reject H0

ML(HP) +

SMOTE

0.9734 0.008065
ML +

SMOTE

ML(HP) 0.4954 0.002581 152.8352 2.28E-10 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.017 -0.00208 6.790951 0.001054 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.4784 -0.00466 -120.456 7.48E-10 Reject H0

483

Table C50: Results of hypothesis testing for DT algorithms on Spam-

base dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9034 0.013366 ML
ML +

SMOTE

-0.0272 0.006959 -5.91304 0.001971 Reject H0

ML +

SMOTE

0.9306 0.006406 ML ML(HP) -0.0022 0.001591 -0.41215 0.697307
Fail to

reject H0

ML(HP) 0.9056 0.011775 ML
ML(HP) +

SMOTE

-0.0264 0.007352 -3.69047 0.014139
Fail to

reject H0

ML(HP) +

SMOTE

0.9298 0.006013
ML +

SMOTE

ML(HP) 0.025 -0.00537 3.986205 0.010466
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0008 0.000393 0.202375 0.8476
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0242 0.005761 -3.71824 0.013737
Fail to

reject H0

484

Table C51: Results of hypothesis testing for DT algorithms on

Winequality dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.584 0.092846 ML
ML +

SMOTE

-0.3908 0.079679 -10.6327 0.000127 Reject H0

ML +

SMOTE

0.9748 0.013167 ML ML(HP) 0.0236 0.030385 1.191919 0.286775
Fail to

reject H0

ML(HP) 0.5604 0.062462 ML
ML(HP) +

SMOTE

-0.3924 0.076739 -10.1749 0.000157 Reject H0

ML(HP) +

SMOTE

0.9764 0.016107
ML +

SMOTE

ML(HP) 0.4144 -0.04929 16.32914 1.57E-05 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0016 -0.00294 -0.25762 0.806968
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.416 0.046354 -17.2211 1.21E-05 Reject H0

485

Table C52: Results of hypothesis testing for DT algorithms on Yeast

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.8746 0.059758 ML
ML +

SMOTE

-0.0916 0.047214 -3.44764 0.018284
Fail to

reject H0

ML +

SMOTE

0.9662 0.012544 ML ML(HP) 0.0364 -0.01543 2.281067 0.071443
Fail to

reject H0

ML(HP) 0.8382 0.075184 ML
ML(HP) +

SMOTE

-0.1024 0.054245 -4.05732 0.009755
Fail to

reject H0

ML(HP) +

SMOTE

0.977 0.005514
ML +

SMOTE

ML(HP) 0.128 -0.06264 3.688184 0.014172
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0108 0.007031 -2.58712 0.049007
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.1388 0.06967 -4.32801 0.007513
Fail to

reject H0

486

.3.1.3 Gradient Boosting

Table C53: Results of hypothesis testing for GB algorithms on Iono-

sphere dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9692 0.018883 ML
ML +

SMOTE

-0.0134 0.00328 -1.22577 0.274866
Fail to

reject H0

ML +

SMOTE

0.9826 0.015603 ML ML(HP) -0.004 0.007248 -0.83649 0.441014
Fail to

reject H0

ML(HP) 0.9732 0.011634 ML
ML(HP) +

SMOTE

-0.014 0.004427 -1.29136 0.253053
Fail to

reject H0

ML(HP) +

SMOTE

0.9832 0.014455
ML +

SMOTE

ML(HP) 0.0094 0.003968 1.188319 0.288069
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0006 0.001147 -0.58835 0.581869
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.01 -0.00282 -1.32376 0.242874
Fail to

reject H0

487

Table C54: Results of hypothesis testing for GB algorithms on Page-

blocks dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9654 0.063842 ML
ML +

SMOTE

-0.0324 0.059442 -1.22474 0.27522
Fail to

reject H0

ML +

SMOTE

0.9978 0.0044 ML ML(HP) 0 0
Fail to

reject H0

ML(HP) 0.9654 0.063842 ML
ML(HP) +

SMOTE

-0.0324 0.059442 -1.22474 0.27522
Fail to

reject H0

ML(HP) +

SMOTE

0.9978 0.0044
ML +

SMOTE

ML(HP) 0.0324 -0.05944 1.224745 0.27522
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0324 0.059442 -1.22474 0.27522
Fail to

reject H0

488

Table C55: Results of hypothesis testing for GB algorithms on Spam-

base dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.985 0.005621 ML
ML +

SMOTE

-0.0026 0.004602 -1.30436 0.248924
Fail to

reject H0

ML +

SMOTE

0.9876 0.00102 ML ML(HP) -0.0032 0.001221 -4.89898 0.004478 Reject H0

ML(HP) 0.9882 0.0044 ML
ML(HP) +

SMOTE

-0.0068 0.004642 -2.88384 0.034433
Fail to

reject H0

ML(HP) +

SMOTE

0.9918 0.00098
ML +

SMOTE

ML(HP) -0.0006 -0.00338 -0.38411 0.716689
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0042 4E-05 -7.75476 0.00057 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0036 0.00342 -1.88691 0.117826
Fail to

reject H0

489

Table C56: Results of hypothesis testing for GB algorithms on

Winequality dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9046 0.050539 ML
ML +

SMOTE

-0.0942 0.048939 -4.46103 0.006634
Fail to

reject H0

ML +

SMOTE

0.9988 0.0016 ML ML(HP) 0.2034 -0.15487 2.919478 0.033034
Fail to

reject H0

ML(HP) 0.7012 0.205413 ML
ML(HP) +

SMOTE

-0.0642 0.038351 -3.30198 0.021429
Fail to

reject H0

ML(HP) +

SMOTE

0.9688 0.012189
ML +

SMOTE

ML(HP) 0.2976 -0.20381 3.543266 0.016505
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.03 -0.01059 5.937006 0.001935 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.2676 0.193225 -3.33214 0.02073
Fail to

reject H0

490

Table C57: Results of hypothesis testing for GB algorithms on Yeast

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9756 0.014151 ML
ML +

SMOTE

-0.0218 0.013131 -3.82437 0.012318
Fail to

reject H0

ML +

SMOTE

0.9974 0.00102 ML ML(HP) 0.0148 -0.01908 1.359229 0.232166
Fail to

reject H0

ML(HP) 0.9608 0.033235 ML
ML(HP) +

SMOTE

-0.0216 0.012984 -3.84815 0.012024
Fail to

reject H0

ML(HP) +

SMOTE

0.9972 0.001166
ML +

SMOTE

ML(HP) 0.0366 -0.03222 2.747611 0.040425
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0002 -0.00015 0.5 0.638299
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0364 0.032069 -2.70032 0.042767
Fail to

reject H0

491

.3.1.4 K-Nearest Neighbors

Table C58: Results of hypothesis testing for KNN algorithms on Yeast

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9082 0.028238 ML
ML +

SMOTE

-0.0588 0.003702 -4.88937 0.004516 Reject H0

ML +

SMOTE

0.967 0.024536 ML ML(HP) 0.023 -0.00931 3.475288 0.017748
Fail to

reject H0

ML(HP) 0.8852 0.037552 ML
ML(HP) +

SMOTE

-0.0482 0.003551 -3.64399 0.014841
Fail to

reject H0

ML(HP) +

SMOTE

0.9564 0.024687
ML +

SMOTE

ML(HP) 0.0818 -0.01302 6.763026 0.001074 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0106 -0.00015 2.657763 0.045005
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0712 0.012865 -4.87671 0.004566 Reject H0

492

Table C59: Results of hypothesis testing for KNN algorithms on

Pageblocks dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9984 0.001625 ML
ML +

SMOTE

-0.0016 0.001625 -2.41209 0.060707
Fail to

reject H0

ML +

SMOTE

1 0 ML ML(HP) 0.0154 -0.03238 1.1317 0.309099
Fail to

reject H0

ML(HP) 0.983 0.034 ML
ML(HP) +

SMOTE

-0.0016 0.001625 -2.41209 0.060707
Fail to

reject H0

ML(HP) +

SMOTE

1 0
ML +

SMOTE

ML(HP) 0.017 -0.034 1.224745 0.27522
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.017 0.034 -1.22474 0.27522
Fail to

reject H0

493

Table C60: Results of hypothesis testing for KNN algorithms on Poker

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.8694 0.062876 ML
ML +

SMOTE

-0.1294 0.061897 -5.10394 0.003758 Reject H0

ML +

SMOTE

0.9988 0.00098 ML ML(HP) -0.0028 -0.00129 -4.66667 0.005499
Fail to

reject H0

ML(HP) 0.8722 0.06417 ML
ML(HP) +

SMOTE

-0.129 0.062076 -5.02538 0.004017 Reject H0

ML(HP) +

SMOTE

0.9984 0.0008
ML +

SMOTE

ML(HP) 0.1266 -0.06319 4.892056 0.004505 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0004 0.00018 1.224745 0.27522
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.1262 0.06337 -4.81778 0.004808 Reject H0

494

Table C61: Results of hypothesis testing for KNN algorithms on

Winequality dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.6628 0.081335 ML
ML +

SMOTE

-0.3222 0.071415 -9.22043 0.000252 Reject H0

ML +

SMOTE

0.985 0.00992 ML ML(HP) -0.019 -0.00328 -10.1079 0.000162 Reject H0

ML(HP) 0.6818 0.084615 ML
ML(HP) +

SMOTE

-0.3222 0.071415 -9.22043 0.000252 Reject H0

ML(HP) +

SMOTE

0.985 0.00992
ML +

SMOTE

ML(HP) 0.3032 -0.0747 8.331557 0.000407 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.3032 0.074696 -8.33156 0.000407 Reject H0

495

Table C62: Results of hypothesis testing for KNN algorithms on Yeast

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.906 0.059636 ML
ML +

SMOTE

-0.0824 0.051521 -3.58926 0.01572
Fail to

reject H0

ML +

SMOTE

0.9884 0.008114 ML ML(HP) -0.021 0.005521 -2.00166 0.101723
Fail to

reject H0

ML(HP) 0.927 0.054115 ML
ML(HP) +

SMOTE

-0.0832 0.052222 -3.60505 0.015461
Fail to

reject H0

ML(HP) +

SMOTE

0.9892 0.007414
ML +

SMOTE

ML(HP) 0.0614 -0.046 3.011445 0.029706
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0008 0.000701 -0.91766 0.400894
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0622 0.046701 -3.05024 0.028416
Fail to

reject H0

496

.3.1.5 Logistic Regression

Table C63: Results of hypothesis testing for LR algorithms on Iono-

sphere dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.905 0.022352 ML
ML +

SMOTE

-0.0418 0.003833 -5.17564 0.003538 Reject H0

ML +

SMOTE

0.9468 0.018519 ML ML(HP) 0.0206 0.00333 3.92779 0.011095
Fail to

reject H0

ML(HP) 0.8844 0.019022 ML
ML(HP) +

SMOTE

-0.0352 0.002139 -3.69348 0.014095
Fail to

reject H0

ML(HP) +

SMOTE

0.9402 0.020213
ML +

SMOTE

ML(HP) 0.0624 -0.0005 8.162618 0.000448 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0066 -0.00169 3.78536 0.012819
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0558 -0.00119 -6.51781 0.001271 Reject H0

497

Table C64: Results of hypothesis testing for LR algorithms on Page-

blocks dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9778 0.007679 ML
ML +

SMOTE

-0.0068 0.001725 -1.63836 0.162273
Fail to

reject H0

ML +

SMOTE

0.9846 0.005953 ML ML(HP) -0.0088 -0.00073 -5.64908 0.002413 Reject H0

ML(HP) 0.9866 0.008405 ML
ML(HP) +

SMOTE

-0.0118 0.001057 -3.1582 0.025146
Fail to

reject H0

ML(HP) +

SMOTE

0.9896 0.006621
ML +

SMOTE

ML(HP) -0.002 -0.00245 -0.48131 0.650621
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.005 -0.00067 -2.43975 0.058672
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.003 0.001784 -0.9649 0.37891
Fail to

reject H0

498

Table C65: Results of hypothesis testing for LR algorithms on Poker

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.301 0.085529 ML
ML +

SMOTE

-0.329 0.060326 -12.3576 6.15E-05 Reject H0

ML +

SMOTE

0.63 0.025203 ML ML(HP) 0.0182 -0.00899 1.217598 0.277699
Fail to

reject H0

ML(HP) 0.2828 0.094514 ML
ML(HP) +

SMOTE

-0.3158 0.058985 -12.5174 5.77E-05 Reject H0

ML(HP) +

SMOTE

0.6168 0.026544
ML +

SMOTE

ML(HP) 0.3472 -0.06931 12.16368 6.64E-05 Reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0132 -0.00134 6.868544 0.001 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.334 0.067971 -12.0334 6.99E-05 Reject H0

499

Table C66: Results of hypothesis testing for LR algorithms on Spam-

base dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.972 0.005657 ML
ML +

SMOTE

0 0.001915 -1.1E-14 1
Fail to

reject H0

ML +

SMOTE

0.972 0.003742 ML ML(HP) 0 0.000253 0 1
Fail to

reject H0

ML(HP) 0.972 0.005404 ML
ML(HP) +

SMOTE

-0.0006 0.001677 -0.17486 0.868047
Fail to

reject H0

ML(HP) +

SMOTE

0.9726 0.00398
ML +

SMOTE

ML(HP) 0 -0.00166 1.13E-14 1
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0006 -0.00024 -1.83712 0.125612
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0006 0.001424 -0.17688 0.866545
Fail to

reject H0

500

Table C67: Results of hypothesis testing for LR algorithms on Yeast

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9412 0.035051 ML
ML +

SMOTE

-0.0294 0.027768 -1.9013 0.11567
Fail to

reject H0

ML +

SMOTE

0.9706 0.007283 ML ML(HP) 0.0016 -0.00436 0.608816 0.569244
Fail to

reject H0

ML(HP) 0.9396 0.039414 ML
ML(HP) +

SMOTE

-0.029 0.027664 -1.84947 0.123632
Fail to

reject H0

ML(HP) +

SMOTE

0.9702 0.007386
ML +

SMOTE

ML(HP) 0.031 -0.03213 1.816628 0.128968
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0004 -0.0001 0.816497 0.451349
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0306 0.032027 -1.77348 0.136334
Fail to

reject H0

501

.3.1.6 Random Forest

Table C68: Results of hypothesis testing for RF algorithms on Iono-

sphere dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9794 0.012722 ML
ML +

SMOTE

-0.0078 0.000849 -1.4428 0.208665
Fail to

reject H0

ML +

SMOTE

0.9872 0.011873 ML ML(HP) 0.0016 0.000799 0.888889 0.414776
Fail to

reject H0

ML(HP) 0.9778 0.011923 ML
ML(HP) +

SMOTE

-0.0078 -0.0011 -1.36695 0.229894
Fail to

reject H0

ML(HP) +

SMOTE

0.9872 0.013819
ML +

SMOTE

ML(HP) 0.0094 -5E-05 1.6487 0.160124
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 -0.00195 0 1
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0094 -0.0019 -1.59253 0.172143
Fail to

reject H0

502

Table C69: Results of hypothesis testing for RF algorithms on Page-

blocks dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9996 0.0008 ML
ML +

SMOTE

-0.0004 0.0008 -1.22474 0.27522
Fail to

reject H0

ML +

SMOTE

1 0 ML ML(HP) 0.0016 -0.0032 1.224745 0.27522
Fail to

reject H0

ML(HP) 0.998 0.004 ML
ML(HP) +

SMOTE

-0.0004 0.0008 -1.22474 0.27522
Fail to

reject H0

ML(HP) +

SMOTE

1 0
ML +

SMOTE

ML(HP) 0.002 -0.004 1.224745 0.27522
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.002 0.004 -1.22474 0.27522
Fail to

reject H0

503

Table C70: Results of hypothesis testing for RF algorithms on Poker

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9348 0.050523 ML
ML +

SMOTE

-0.065 0.050123 -3.14018 0.025661
Fail to

reject H0

ML +

SMOTE

0.9998 0.0004 ML ML(HP) -0.002 0.004486 -0.13073 0.901089
Fail to

reject H0

ML(HP) 0.9368 0.046037 ML
ML(HP) +

SMOTE

-0.0646 0.049323 -3.09838 0.026903
Fail to

reject H0

ML(HP) +

SMOTE

0.9994 0.0012
ML +

SMOTE

ML(HP) 0.063 -0.04564 3.337119 0.020617
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0004 -0.0008 1.224745 0.27522
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0626 0.044837 -3.28607 0.021808
Fail to

reject H0

504

Table C71: Results of hypothesis testing for RF algorithms on Spame-

base dataset. ML– Machine learning; HP– Hyper-parameter; Std–

Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.987 0.005138 ML
ML +

SMOTE

-0.0048 0.004158 -2.11308 0.088276
Fail to

reject H0

ML +

SMOTE

0.9918 0.00098 ML ML(HP) 0.0006 0.001209 0.981981 0.371206
Fail to

reject H0

ML(HP) 0.9864 0.003929 ML
ML(HP) +

SMOTE

-0.004 0.003873 -1.89264 0.116963
Fail to

reject H0

ML(HP) +

SMOTE

0.991 0.001265
ML +

SMOTE

ML(HP) 0.0054 -0.00295 3.131641 0.025909
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.0008 -0.00029 1.680336 0.153725
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0046 0.002664 -2.86754 0.035095
Fail to

reject H0

505

Table C72: Results of hypothesis testing for RF algorithms on

Winequality dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.8954 0.052895 ML
ML +

SMOTE

-0.1042 0.052405 -4.8148 0.00482 Reject H0

ML +

SMOTE

0.9996 0.00049 ML ML(HP) 0.0168 -0.01901 0.81432 0.452486
Fail to

reject H0

ML(HP) 0.8786 0.071907 ML
ML(HP) +

SMOTE

-0.1044 0.052495 -4.84958 0.004676 Reject H0

ML(HP) +

SMOTE

0.9998 0.0004
ML +

SMOTE

ML(HP) 0.121 -0.07142 4.118729 0.009185
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0002 8.99E-05 -1.22474 0.27522
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.1212 0.071507 -4.1394 0.009002
Fail to

reject H0

506

.3.1.7 Support Vector Machine

Table C73: Results of hypothesis testing for SVM algorithms on

Pageblocks dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.995 0.00429 ML
ML +

SMOTE

0.0042 -0.00226 1.623409 0.165429
Fail to

reject H0

ML +

SMOTE

0.9908 0.006554 ML ML(HP) -0.0042 0.00331 -2.09303 0.09055
Fail to

reject H0

ML(HP) 0.9992 0.00098 ML
ML(HP) +

SMOTE

-0.0038 0.00269 -3.1096 0.026563
Fail to

reject H0

ML(HP) +

SMOTE

0.9988 0.0016
ML +

SMOTE

ML(HP) -0.0084 0.005575 -2.80416 0.037808
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.008 0.004954 -3.36067 0.020093
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

0.0004 -0.00062 0.420084 0.691866
Fail to

reject H0

507

Table C74: Results of hypothesis testing for SVM algorithms on Poker

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9686 0.022703 ML
ML +

SMOTE

-0.0314 0.022703 -3.38779 0.019508
Fail to

reject H0

ML +

SMOTE

1 0 ML ML(HP) -0.0258 0.011996 -2.10032 0.089717
Fail to

reject H0

ML(HP) 0.9944 0.010707 ML
ML(HP) +

SMOTE

-0.0314 0.022703 -3.38779 0.019508
Fail to

reject H0

ML(HP) +

SMOTE

1 0
ML +

SMOTE

ML(HP) 0.0056 -0.01071 1.281137 0.256345
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0056 0.010707 -1.28114 0.256345
Fail to

reject H0

508

Table C75: Results of hypothesis testing for SVM algorithms on

Spambase dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.9746 0.00706 ML
ML +

SMOTE

-0.0024 0.003213 -0.61478 0.565598
Fail to

reject H0

ML +

SMOTE

0.977 0.003847 ML ML(HP) -0.0056 0.000384 -7.39579 0.000711 Reject H0

ML(HP) 0.9802 0.006675 ML
ML(HP) +

SMOTE

-0.0078 0.005563 -2.32793 0.067385
Fail to

reject H0

ML(HP) +

SMOTE

0.9824 0.001497
ML +

SMOTE

ML(HP) -0.0032 -0.00283 -0.82919 0.444765
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

-0.0054 0.00235 -5.29514 0.003205 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0022 0.005179 -0.67915 0.527202
Fail to

reject H0

509

Table C76: Results of hypothesis testing for SVM algorithms on

Winequality dataset. ML– Machine learning; HP– Hyper-parameter;

Std– Standard deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.7542 0.034597 ML
ML +

SMOTE

-0.2374 0.023344 -17.1729 1.23E-05 Reject H0

ML +

SMOTE

0.9916 0.011253 ML ML(HP) 0.0132 -0.11718 0.203681 0.846633
Fail to

reject H0

ML(HP) 0.741 0.151777 ML
ML(HP) +

SMOTE

-0.1824 0.014195 -11.8991 7.39E-05 Reject H0

ML(HP) +

SMOTE

0.9366 0.020402
ML +

SMOTE

ML(HP) 0.2506 -0.14052 3.882167 0.011616
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0.055 -0.00915 13.28745 4.32E-05 Reject H0

ML(HP)
ML(HP) +

SMOTE

-0.1956 0.131376 -2.88232 0.034494
Fail to

reject H0

510

Table C77: Results of hypothesis testing for SVM algorithms on Yeast

dataset. ML– Machine learning; HP– Hyper-parameter; Std– Standard

deviation.

Algorithm Mean Std Conditions
Mean

difference

Std

difference

t-value p-value Hypothesis

ML 0.971 0.023126 ML
ML +

SMOTE

-0.0238 0.020066 -2.6627 0.044739
Fail to

reject H0

ML +

SMOTE

0.9948 0.003059 ML ML(HP) 0 0
Fail to

reject H0

ML(HP) 0.971 0.023126 ML
ML(HP) +

SMOTE

-0.0238 0.020066 -2.6627 0.044739
Fail to

reject H0

ML(HP) +

SMOTE

0.9948 0.003059
ML +

SMOTE

ML(HP) 0.0238 -0.02007 2.662697 0.044739
Fail to

reject H0

ML +

SMOTE

ML(HP) +

SMOTE

0 0
Fail to

reject H0

ML(HP)
ML(HP) +

SMOTE

-0.0238 0.020066 -2.6627 0.044739
Fail to

reject H0

511

.4 Appendix D

.4.1 Study One

.4.1.1 Confusion Matrix

Figure 1: Confusion matrices of modified VGG16 on (a) train and (b) test set.

Figure 2: Confusion matrices of ROIN on (a) train and (b) test set.

512

Figure 3: Confusion matrices of ROIHEN on (a) train and (b) test set.

.4.2 Study Two

.4.2.1 Confusion Matrix

Figure 4: Confusion matrices of ROIN on (a) train and (b) test set.

513

Figure 5: Confusion matrices of ROIHEN on (a) train and (b) test set.

Figure 6: Confusion matrices of ROIHEDEN on (a) train and (b) test set.

514

	Abstract
	Introduction & Dissertation Structure
	Overview
	Data Driven Model
	Data Assessment
	Data Normalization and Cleaning
	Structure of ML Inference Engine
	ML Training and Implementation
	ML Engine Inference Integration
	Test Deployment
	Statistical Analysis and Evaluation

	Study towards Data Balancing Approaches
	Importance of Data Balancing
	Goal and Objectives
	Outline of Dissertation

	Data Balancing Approaches
	Introduction
	Motivation
	Chapter Outline
	Background
	Undersampling
	Oversampling
	Hybrid Methods
	Ensemble Methods

	Systematic Analysis
	Identification of the Data

	Literature Review
	Data Distribution
	Performance of ML Algorithms
	Effect of Undersampling
	Effect of Oversampling
	Effect of SMOTE

	Effect of Hybrid Approaches
	Effect of GAN-Based Approaches
	Effect of Other Data Balancing Approaches

	Overall Findings
	Conclusions

	Effect of SMOTE on Data Balancing Approaches
	Introduction
	Motivation
	Chapter Outline

	Experimental Setup
	Datasets
	Ionosphere
	Pageblocks
	Poker
	Spambase
	Wine Quality
	Yeast

	ML Algorithms
	Adaptive Boosting
	Decision Tree
	Gradient Boosting
	K-Nearest Neighbors
	Logistic Regression
	Random Forest
	Support Vector Machine

	Performance Evaluation

	Computational Results
	Performance of AB
	Performance of DT
	Performance of GB
	Performance of KNN
	Performance of LR
	Performance of RF
	Performance of SVM

	Discussion of the Results
	Hypothesis Testing
	Performance of AB
	Performance of DT
	Performance of GB
	Performance of KNN
	Performance of LR
	Performance of RF
	Performance of SVM

	Overall Findings
	Conclusion

	Enhancing and Improving the Performance of Imbalanced Class Data Using Novel GBO and SSG: A Comparative Analysis
	Introduction
	Motivation
	Chapter Outline
	Background
	Methods
	SVM-SMOTE Algorithm
	Proposed Approaches
	Modified GAN

	Classification Methods and Evaluation Index
	Experimental Evaluation Index

	Simulation Experiment
	Experimental Environment
	Numerical Experiment

	Results and Discussion
	Limitations of the Study
	Conclusion

	BSGAN: A Novel Oversampling Technique for Imbalanced Pattern Recognition
	Introduction
	Motivation
	Chapter Outline
	Related Work
	Methodology
	SMOTE
	Borderline-SMOTE
	GAN
	Proposed BSGAN
	Proposed Neural Network
	Performance Evaluation
	Datasets
	Experimental Setup

	Results
	Discussion
	Conclusions

	Deep Learning-Based COVID-19 Diagnosis using Chest X-ray: An Analysis of Data Balancing Techniques
	Introduction
	Motivation
	Chapter Outline
	Background
	Chest X-ray Based Screening

	Research Methodology
	Deep Learning Algorithms
	VGG
	InceptionResNetV2
	ResNet
	MobileNetV2

	Using Pre-Trained Convet

	Results
	Study One
	Confusion Matrix
	Model Accuracy
	Model Loss

	Study Two
	Confusion Matrix
	Model Accuracy
	Model Loss

	Study Three
	Test Results with Confidence Intervals

	Discussion
	Feature Selection

	Overall Findings
	Conclusion and Future Works

	Exploring Mixed Image Data for COVID-19 Diagnostics using Transfer Learning and Explainable AI
	Introduction
	Motivation
	Chapter Outline
	Background
	CT Scan-based Screening

	Research Methodology
	LIME as Explainable AI

	Results
	AUC-ROC Curve

	Discussion
	Overall Findings
	Conclusion and Future Works

	Defect Analysis of 3D Printed Cylinder Object Using Transfer Learning Approaches
	Introduction
	Motivation
	Chapter Outline
	Methodology
	Data Collection
	Experimental Setup

	Results
	Study One
	Study Two

	Discussions
	Models Prediction

	Conclusion

	Defect Localization Using Region of Interest and Histogram-Based Enhancement Approaches
	Introduction
	Motivation
	Chapter Outline
	Background
	Research Methodology
	Proposed Appraoches
	Region of Interest (ROI)
	Histogram Equalization (HE)
	Details Enhancer (DE)

	Model Interpretation

	Results
	Study One
	Study Two
	Computational Complexity
	Models Explainability

	Discussion and Overall Findings
	Conclusion and Future Works

	Deep MLP-CNN Model Using Mixed-Data
	Introduction
	Motivation
	Chapter Outline
	Background
	Dataset and Methodology
	Proposed Model
	How Proposed MLP-CNN Model Works
	Experiment Setup

	Computational Results
	Discussion
	Conclusion

	Conclusions
	Overall Summary of All Research Questions
	Summary of Individual Research Questions
	What are the scopes of data-balancing approaches toward the major and minor samples?
	What is the effect of traditional Machine Learning (ML) and Synthetic Minority Over-sampling Technique (SMOTE)-based data-balancing on imbalanced data analysis?
	How does imbalanced data affect the performance of Deep Learning (DL)-based models?

	Contributions
	References
	Appendix A
	Performance of Adaboost

	Appendix B
	Optimal Parameters

	Appendix C
	Hypothesis Testing
	Adaboost
	Decision Tree
	Gradient Boosting
	K-Nearest Neighbors
	Logistic Regression
	Random Forest
	Support Vector Machine

	Appendix D
	Study One
	Confusion Matrix

	Study Two
	Confusion Matrix

