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Abstract

My thesis focuses on designing scalable machine learning algorithms lever-
aging theoretical advances in mathematics. In particular, I investigate two
directions where scalability plays an important role: fair machine learn-
ing and randomized feature representations. In fair machine learning, my
research concentrates on achieving individual fairness in the single model
and decoupled model settings with minimum data labeling budgets. For
randomized feature representations, I propose a model-agnostic framework
for designing computationally efficient randomized machine learning algo-
rithms with provable performance guarantees, which demonstrates that it
is not necessary for individual models to be weakly trained before they
are optimally ensembled. Furthermore, I also contribute to the scalable
estimation of Kernel matrix spectral norm. Specifically, I propose to apply
sketching techniques to efficiently estimate the spectral norm, theoretically
derive the estimation error and empirically demonstrate the estimation
efficiency in a time-constrained setting.
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Chapter 1

Introduction

The 21st century has seen a significant growth in data volume thanks to
the internet. More importantly, the emergence of larger storage media and
increased performance of computer processors also contribute to the recent
prosperity of machine learning research. While the aforementioned advances
make most machine learning models practical in industrial applications,
some nice techniques fail to see the light of day due to their poor scalability.
That is, such algorithms quickly become cost-prohibitive as the size of data,
typically the number of samples, grows. Hence they remain unknown to
most machine learning practitioners despite being considered interesting
by the theory community. To improve practicality of those techniques,
numerous research has been done on improving the scalability of machine
learning algorithms, and my efforts are a part of that.

My thesis focuses on designing scalable machine learning algorithms
leveraging theoretical advances in mathematics. In particular, I investigate
two directions where scalability plays an important role: fair machine
learning and randomized feature representations. Next, I will give a very
brief introduction to these fields. More details on related work will be
included in later sections.

1.1 Fair Machine Learning

As machine learning is increasingly applied to different aspects of our daily
life, some of those aspects inevitably affect decision-making, directly or
indirectly. Those decision-making are frequently life-changing, Eg. deciding
whether or not to issue a credit card to someone, or whether someone should
get early release from prison. Social activist organizations have found that
some of these machine learning systems exacerbate discrimination in our
society. A famous and influential example of such finding is ProPublica’s
report on the COMPAS software being racially biased. The COMPAS
software predicts recidivism, and it is used by many US courts. Despite
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social awareness of existing unfairness in machine learning applications,
solving this problem is an uphill battle. To start with, fairness as a social
concept is hard to quantify. There is still no concensus on which fairness
criteria is the best, but it is widely accepted that fairness criterion fall into
two categories: individual fairness and group fairness. Individual fairness
requires model predictions be similar on similar individuals, while group
fairness needs overall model predictions to be close between groups. My
research [CL22a, CL22b] concentrates on achieving individual fairness in
the single model and decoupled model settings.

1.2 Randomized Feature Representations

Randomization has long been the method of choice for reducing compu-
tational cost. It is a powerful tool for trade-off between accuracy and
computational cost. Well-known applications of randomized algorithm in
machine learning include random fourier features for scaling up kernel ma-
chines [RR08], random projection for classfication and regression [AV06],
randomized low-rank matrix factorization for collaborative filtering [DM16],
random forest, dropout for deep learning, stochastic gradient descent etc.
One common trait for all these established methods is that their design
are quite model-specific [RR08, Bre01, PPS94] and their application areas
are a bit narrow. In [CL22c], I propose a model-agnostic framework for
designing randomized machine learning algorithms. It turns out that it is
not necessary for individual models to be weakly trained before they are
ensembled.

While [CL22c] suggest new ways for learning more efficiently through
randomization, my research also contribute to performing classical machine
learning operations more efficiently. Namely, Chapter 7 improves the scal-
ability of spectral norm computation on non-sparse matrices by applying
sketching methods. Spectral norm is crucial for spectral learning, a subfield
of machine learning that concerns solving an optimization problem which in-
volves regularization with a spectral penalty term. Spectral learning has ap-
plication in collaborative filtering, multi-task learning, etc [AM05, AMP10].
More specifically, spectral norm regularization is found powerful under
various settings in matrix completion, graph embeddings, adversarial learn-
ing, and computer vision [MHT10, SCS+15, BMCM19, RKH20, ZHX+21].
Hence, improving the scalability of spectral norm computation in Chapter
7 is a huge step forward for many machine learning applications.
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1.3 Outline

A reader should skip the Preliminaries chapter and refer back to it when
the fundamental concepts are mentioned in later chapters. In Part I, I will
introduce my work on active learning for individual fairness [CL22a, CL22b],
where [CL22a] examines the single model setting and [CL22b] consider the
case for decoupled model. In Part II, I will explain my research on designing
randomized machine learning methods for scalability [CL22c] and Chapter
7. [CL22c] relaxes the weakly-learned assumption for traditional ensemble
models, and Chapter 7 finds a faster, more accurate approximation of
spectral norm for non-sparse symmetric matrices in the low computational
budget setting. Part I and Part II include slightly modified versions of
[CL22a, CL22b, CL22c] and Chapter 7 is a paper submission currently
under review.
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Chapter 2

Preliminaries

2.1 Tools from Matrix Analysis and High

Dimensional Probability

Definition 2.1.1 (Subgaussian). Let X be a random variable. X is sub-
gaussian if for some K0 > 0 the tails of X satisfy

P [|X| ≥ t] ≤ 2 exp(−t2/K2
0) for all t ≥ 0. (2.1)

This is Proposition 2.5.2 in [Ver18].

Lemma 2.1.2 (Weyl’s Inequality). For any symmetric matrices S and T
with the same dimensions, we have

max
i

|λi(S)− λi(T )| ≤ ∥S − T∥2. (2.2)

This is Theorem 4.5.3 in [Ver18].

Lemma 2.1.3 (Matrix Bernstein’s Inequality). Let X1, . . . , XD be indepen-
dent mean zero, n × n symmetric random matrices, such that ∥Xi∥ ≤ C
almost surely for all i. Then, for every t ≥ 0, we have

P [|λ1

( D∑
i=1

Xi

)
| ≥ t] ≤ 2n exp(− t2/2

σ2 + Ct/3
). (2.3)

Here σ2 = ∥
∑D

i=1EX2
i ∥ is the norm of the matrix variance of the sum.

This is Theorem 5.4.1 in [Ver18].
We state a version of Cauchy’s Interlacing Theorem.

Lemma 2.1.4 (Cauchy’s Interlacing Theorem). Assume the eigenvalues
are in ascending order. Suppose that A ∈ Mn is Hermitian and has the
block form

A =

[
B C
C∗ D

]
(2.4)
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where B ∈ Mm, C ∈ Mm,n−m, and D ∈ Mn−m. Then for each 1 ≤ k ≤ m,

λk(A) ≤ λk(B) ≤ λk+n−m(A). (2.5)

When m = n− 1,

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ . . . ≤ λn−1(B) ≤ λn(A). (2.6)

It is immediately clear from here that λmax(A) ≥ λmax(A
′) whenever A′

is a submatrix of A so ∥A∥ ≥ |aij| for all i, j.

Lemma 2.1.5. For any d× n matrix Z,

sk(Z) =
√
λk(ZTZ). (2.7)

This is immediate from the singular value decomposition of Z and
spectral decomposition of ZTZ, ZTZ = V ∗ΣU∗UΣV ∗ = V Σ2V ∗.

2.2 Tools from Previous Research

Lemma 2.2.1 (Exponentially fast convergence of RFF). For any fixed pair
of points x, y, their random fourier features satisfy

P [|z(x)T z(y)− k(x, y)| ≥ ε] ≤ 2 exp(−Dε2/4). (2.8)

This comes from the paragraph above Claim 1 of [RR07]. By Defini-
tion 2.1.1, this means that the random variable z(x)T z(y) − k(x, y) (wrt
randomness of RFF) is subgaussian with K0 =

2√
D
.

Lemma 2.2.2 (uniform convergence of RFF (Claim 1 [RR07])). Let M be
a compact subset of Rd with diameter diam(M). Then for the mapping z
defined in Algorithm 5, we have

P [ sup
x,y∈M

|z(x)T z(y)− k(x, y)| ≥ ε] (2.9)

≤ 28(
σpdiam(M)

ε
)2 exp(− Dε2

4(d+ 2)
), (2.10)

where σ2
p = 2dγ for the spherical gaussian kernel k(x, y) = exp(−γ∥x−y∥2).

Repeating the argument to obtain Lemma 2.2.2 from Lemma 2.2.1 will
be useful in the proof of Theorem 7.4.2.

Lemma 2.2.3 (Theorem 3 [DMC05]). Suppose G is an n× n symmetric
positive semi-definite matrix, let k ≤ c be a rank parameter, and let G̃k =

5



CW+
KCT be constructed from Algorithm 6 by sampling c columns of G with

probabilities {pi}ni=1 such that

pi =
G2

ii∑n
i=1G

2
ii

. (2.11)

Let r = rank(W) and let Gk be the best rank-k approximation to G. In

addition, let ε > 0. If c ≥ 4(1+
√

8 log(1/δ))2

ε2
, then with probability at least

1− δ,

∥G− G̃k∥2 ≤ ∥G−Gk∥2 + ε
n∑

i=1

G2
ii. (2.12)
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Part I

Active Fair Learning
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Chapter 3

Background on Active Fair
Learning

3.1 Introduction

Fairness of machine learning models is a critical societal concern these
days. It may be surprising that machine learning algorithms lead to dis-
criminatory decisions against minority people. However, many case studies
[FPCDG16, CW18] confirm this unfortunate truth. Soon after this prob-
lem is exposed, researchers have been trying hard to mitigate this issue
[CR18, MMS+21, PS22]. Some exploratory studies established that fairness
metrics generally falls into two categories, group fairness and individual
fairness. Generally speaking, group fairness is achieved when the model out-
put has minimal disparity across different groups, while individual fairness
demands comparable predictions on comparable individuals. The following
study will focus on the latter.

Lipschitz condition of a prediction model is originally proposed as an
individual fairness metric [DHP+12]. Later, [YR18] proposed a relaxed
version called approximate metric-fairness which is a probabilistic and almost
Lipschitz condition. Other individual fairness metrics are proposed to adapt
to different situations and [Ilv20, MYBS20] introduces how to design them.
Even though individual and group fairness are usually treated separately,
[ZWS+13, SMKR19] explain how to combine individual and group fairness.
The limited-resource setting is previously explored in [KRR18, BJW20],
before my active fair learning study. To compare the active setting with
the passive counterpart, the analysis on sample complexity for achieving
individual fairness in [BL19, SCM20] is used.

My research emphasizes obtaining a more efficient sample complexity for
achieving individual fairness. This is done by adapting active learning tricks
to serve individual fairness goals. Given a bias budget ε, existing methods
[YR18, BL19, SCM20] give a O( 1

ε2
) sample complexity. The following
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sections will show that this can be improved to O(log 1
ε
) through a variation

of active learning. To clear the way for further discussions on algorithm
design and analysis, I first introduce a new form of approximate metric-
fairness (AMF) based on uniform continuity and prove its equivalence
to the original form leveraging an established connection between almost
Lipschitz continuity and uniform continuity [Van91]. Next, I will present a
passive AMF learner and show its generalization performance in achieving
individual fairness. From there, I will explain the design of an active
AMF learner which selects samples whose neighboring predictions are very
different from its own. I will show that with high probability, this learner
only takes O(log 1

ε
) sample labels to bound unfairness with ε under proper

conditions. This analysis assumes boundedness of a meticulously defined
counter approximate metric fairness coefficient and an example calculation
will be shown to clarify.

The proposed active AMF algorithm [CL22a] in Chapter 4 is experi-
mented on three real world datasets. It is observed to improve individual
fairness of both linear and non-linear models faster than both its pas-
sive counterpart and canonical active learning, and such improvement is
achieved while maintaining similar accuracy, achieving a more productive
fairness-accuracy trade-off.

3.2 Related Work

3.2.1 Fair Learning

Machine learning is increasingly used in today’s world including applica-
tions that is closely related to healthcare and hiring decisions. Giving fair
treatment for every human being is vital to maintaining social mobility.
Unfortunately, a lot of machine learning algorithms are only exacerbating
the existing racial and gender-based tensions [FPCDG16, CW18]. In an
effort to ameliorate the situation, researchers are motivated to find algo-
rithmic improvements that would achieve better fairness as measured by
common fairness metrics [GHZGW16, AIK18, GHZGW18, RY18, MOS20].
It is widely known that such fairness metrics generally belongs to two classes,
individual fairness and group fairness. The following research will address
individual fairness. After [YR18] relaxed the individual fairness criterion
based on Lipschitz condition [DHP+12], its probabilistic and almost Lips-
chitz condition becomes the new go-to metric for researchers and many later
studies [KRR18, BL19, BJW20] apply it to their evaluation. The active
fair learning proposed as follows is also built on AMF. However, we adopt
a new and provably equivalent criteria based on uniform continuity instead
of almost Lipschitz.

Some research in individual fairness focus on finding a proper similarity
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metric for individual samples [Ilv20, MYBS20]. In the following study, I will
assume a metric is given and emphasize how to achieve individual fairness
efficiently through active learning. To my knowledge, research on individual
fairness before [CL22a] consider the passive setting where training data
is arbitrarily labeled. This leads to a sample complexity of O( 1

ε2
) when

the unfairness budget is ε [YR18, BL19, SCM20]. The following discussion
concerns the active case, where which samples to label are judiciously chosen.
Such selection improves the sample complexity to O(log 1

ε
). This sample

complexity reduction is a significant improvement over the existing methods.

3.2.2 Active Learning

Active learning is a popular and established subfield of machine learning
that provides cost-reducing alternatives when labels on the training data
are expensive to obtain [Set09, AKG+14, H+14]. It cautiously select certain
data samples to label instead of labeling as many as possible arbitrarily. The
existing selection process differ to cater to different needs. The uncertainty-
based procedure labels data with uncertain model outputs, and the query-
by-committee procedure labels data with disparate predictions from a
committee of models. Active learning has shown success in achieving
better accuracy more effectively than arbitrary labeling in the passive
setting [TCM99, WLR+03, Liu04, HJZL06, AZL06, ZH13]. To quantify
its efficiency, active labeling achieves ε error in O(log 1

ε
) while arbitrary

labeling do that in O(1
ε
) [Das05, Han07, BHV10].

Another notable trend in the literature is that active learning is usually
designed for classification but very few are for regression [BRK07, SN09,
CZZ13, YK10]. The common procedure for regression is greedy sampling
for data labeling. It labels the data samples that are the most different
from what’s already labeled in terms of both features and label. In any case,
these existing active learning algorithms improve accuracy for traditional
learners while the following research, inspired by disagreement-based active
learning [WLH19], improves individual fairness for AMF learners.

3.2.3 Fairness in Active Learning

Fairness in active learning is not researched until recently. They generally
either use active labeling [AAT20, SDI20] or adaptive sampling [AAK+20,
SFGJ21]. [CL22a] in Chapter 4 is also active labeling, but it improves
individual fairness for AMF learners while [AAT20, SDI20] aims at achieving
group fairness for standard learners. Besides, [CL22a] is the first work that
shows active learning can improve the sample complexity for individual
fairness to O(log 1

ε
). [CL22b] in Chapter 5 focus on the decoupled setting

as brought up by [DIKL18]. It is the first to achieve increasing (instead of

10



slower decreasing) fairness during active sample selection while maintaining
comparable accuracy.
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Chapter 4

Active Approximately
Metric-Fair (AMF) Learning

4.1 Active AMF Learning

4.1.1 Approximate Metric-Fairness (AMF)

A new version of approximate metric-fairness (AMF) is defined as follows
and equivalence to the canonical version is proven. Next, the analogous
passive AMF learner is shown and its generalization guarantee proven. The
following discussion in [CL22a] concentrate on the regression problem.

Let X be an instance space equipped with a metric d and distribution
D. Let H be a class of models defined on X. The original form of AMF
[YR18] is defined based on almost Lipschitz continuity, as follows.

Definition 4.1.1. A model h ∈ H is said to be (ε, β) approximately
metric-fair with respect to d and D if

Pr
x,x′∼D

{|h(x)− h(x′)| > d(x, x′) + β} ≤ ε. (4.1)

To facilitate algorithm design and analysis, [CL22a] propose the following
new form of AMF based on uniform continuity.

Definition 4.1.2. A model h ∈ H is said to be (α, β, ε) approximately
metric-fair with respect to d and D if

Pr
x,x′∼D

{d(x, x′) ≤ α, |h(x)− h(x′)| > β} ≤ ε. (4.2)

Intuitively, the new form models individual fairness by stating that if
two individuals x and x′ are similar (in a sense that d(x, x′) ≤ α), then
their predictions should be similar (in a sense that |h(x)− h(x′)| > β) with
high probability.

12



The following theorem suggests the two forms are equivalent, and is in-
spired by an interesting discovery that uniform continuity is almost Lipschitz
[Van91].

Theorem 4.1.3. Fix any α, β > 0. Any model with a convex domain is
(ε, β) approximately metric-fair with respect to d and D if it is (α, β, ε)
approximately metric-fair with respect to metric d′ = α

2β
· d and D, and only

if it is (α, 3β, ε) approximately metric-fair with respect to d′ and D.

Proof. Let h be a model with a convex domain. Define two sets Ψ1(β) =
{(x, x′) | |h(x)− h(x′)| ≤ d(x, x′) + β} and Ψ2(α, β) = {(x, x′) | d′(x, x′) ≤
α ⇒ |h(x)− h(x′)| ≤ β}, where ‘⇒’ means ‘imply’. We first prove

Ψ2(α, β) ⊆ Ψ1(β) ⊆ Ψ2(α, 3β). (4.3)

The left relation holds because, for any β, if there exists an α such that
d′(x, x′) ≤ α implies |h(x)− h(x′)| ≤ β, then [Van91, Theorem 1] implies
that |h(x)− h(x′)| ≤ d(x, x′) + β, where d(x, x′) = 2β

α
d′(x, x′).

The right relation follows from the fact that, if |h(x)−h(x′)| ≤ d(x, x′)+
β = 2β

α
d′(x, x′)+β, then d′(x, x′) ≤ α implies |h(x)−h(x′)| ≤ 2β

α
·α+β = 3β.

Then, by contrapositive, (4.3) implies

Ψ̃2(α, β) ⊇ Ψ̃1(β) ⊇ Ψ̃2(α, 3β), (4.4)

where Ψ̃ denotes the complement of Ψ. This further implies Pr{Ψ̃2(α, β)} ≥
Pr{Ψ̃1(β)} ≥ Pr{Ψ̃2(α, 3β)}, and the theorem follows by the two definitions
of fairness.

Theorem 4.1.3 shows one form of AMF converges to the other as β
decreases, which establishes an equivalence between them. It also suggests
one can achieve one form of AMF through the other. In the rest of this
chapter, AMF learners will be designed and analyzed based on Definition
4.1.2. For conciseness, the subscripts in Prx,x′∼D will be omitted whenever
they are clear from the context.

Next, a passive AMF learner based on Definition 4.1.2 is described and
its generalization guarantee is proven.

To facilitate discussion, define the fairness measure

∆α,β(h) = Pr{d(x, x′) ≤ α, |h(x)− h(x′)| > β}. (4.5)

Then h is said to be (α, β, ε)-AMF if ∆α,β(h) ≤ ε.
Let S be a sample of X × X with cardinality m. An estimate of the

probability ∆α,β(h) on sample S is

∆α,β(h;S) =
1

m

∑
(x,x′)∈S

I{d(x, x′) ≤ α,

|h(x)− h(x′)| > β},
(4.6)
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where I is an indicator function.
It is natural for AMF learning to find a model h with small ∆α,β(h;S)

and hope this could generalize to a small ∆α,β(h). This chapter focus
on a realizable case where H contains perfect AMF models that satisfy
∆α,β(h) = 0. Based on this, the passive AMF learner is defined as follows.

Definition 4.1.4. Given a hypothesis class H, a loss function ℓ and a
labeled training set L = {(x1, yn), . . . , (xn, yn)} where xi is the ith instance
and yi is its label, an AMF learner returns a model h ∈ H by solving

min
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi), s.t. ∆α,β(h;S) = 0, (4.7)

where S = {(xi, xj)}i,j=1,...,n.

One can show the above AMF learner has a similar generalization
guarantee as in [YR18] based on the following lemma. Let Rm(·) denote
the Rademacher complexity of some hypothesis class for sample size m.

Lemma 4.1.5. Fix any t, β > 0. Let F : X ×X → R be a hypothesis class
induced from H such that ∀f ∈ F , f(x, x′) = τ tβ(|h(x)− h(x′)|) where τ tβ(z)

is a piecewise model outputting 1 if z > β + 1
t
, outputting 0 if z ≤ β and

t(z − β) otherwise. Then Rm(F ) ≤ 8t · Rm(H).

Proof Sketch. Repeatedly apply the Rademacher complexity property of
composite function with Lipschitz condition e.g. [BM02, Theorem 12] on
τ tβ and abs. See the supplementary material at the end of this chapter for
details.

Based on the above, one can prove the proposed AMF learner has
generalization guarantee based on an assumption that instances are sampled
i.i.d.. The results is as follows.

Theorem 4.1.6. Fix any α, β, t > 0. Suppose Rm(H) ∈ O(1/
√
m). Any

model h ∈ H returned by the AMF learner satisfies ∆α,β+1/t(h) ≤ ε with

probability at least 1−δ if m ≥ 1
ε2

(
16tc+

√
1
2
log 1

δ

)
, where m is the number

of (x, x′) ∈ S satisfying d(x, x′) ≤ α and c is a constant inherited from
O(1/

√
m).

Proof Sketch. The main challenge in our analysis is an extra d(x, x′) ≤ α
term that cannot be directly removed using the Rademacher complexity
property as in Lemma 4.1.5. To tackle this, I introduce V = {(x, x′) ∈
S; d(x, x′) ≤ α}.

I will first transform the analysis of joint event |h(a) − h(b)| > β and
d(a, b) ≤ to an analysis of single event |h(a)− h(b)| > β by narrowing the
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domain to V . Then, I derive a generalization bound for the single event
by first relaxing its indicator function to the piecewise function defined in
Lemma 4.1.5, then applying the standard generalization argument with
Rm(F ) e.g., [MRT18], and finally connecting Rm(F ) to Rm(H) using
Lemma 4.1.5. At the end, I transform the result for the single event back to
a result for the joint event which completes the proof. See the supplementary
material for details.

Theorem 4.4.2 implies one can achieve (α, β, ε) AMF with O( 1
ε2
) ran-

domly labeled instances, which is consistent with the sample complexity in
[YR18]. Constant c depends on the hypothesis class e.g., if H is the set of
linear models with proper constraints, I can set c to the maximum norm
of the instance [SSBD14]; if H is the set of kernel machines with proper
constraints, I can set c to the product of kernel function bound and gram
matrix trace [MRT18].

In the theorem, variable t is the slope of a Lipschitz function introduced
to approximate the indicator function. Its impact on the error bound is
interesting twofold. A smaller t leads to a weaker fairness guarantee, in a
sense that ∆α,β+1/t′ ≤ ε implies ∆α,β+1/t ≤ ε whenever t′ ≤ t. But it also
leads to higher sample efficiency, in a sense that a smaller t implies smaller
m suffices for the generalization guarantee.

Algorithm 1 Active AMF Learning

Input: an initial labeled training set L, an unlabeled set U , a hypothesis
class H, number k.

1: while stopping criterion is not met do
2: Learn a model h ∈ H based on sample L using the AMF learner in

Definition 4.1.4.
3: Pick an i.i.d. sample of k instances u ∈ U satisfying

∃u′ ∈ L, d(u, u′) ≤ α, |h(u)− h(u′)| > β. (4.8)

4: Label the selected instances. Then add them to sample L, and remove
them from sample U .

5: end while
Output: model h.

4.1.2 Sample Complexity of Active AMF Learning

In this section, [CL22a] propose an active AMF learner based on Definition
4.1.4 and derive its sample complexity.

The key idea is to label instances that are fairly close to their neighbors
but receive fairly different predictions from some hypothesis. [CL22a]
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characterize such instances using a set

Cα,β(H) = {(x, x′) ∈ X ×X; ∃h ∈ H,

d(x, x′) ≤ α, |h(x)− h(x′)| > β}.
(4.9)

Next, [CL22a] design a counter AMF coefficient, which will be used to
derive the complexity.

Definition 4.1.7. The counter (α, β) AMF coefficient with respect to a
hypothesis class H is

ξα,β = sup
r>0

Pr{(x, x′) ∈ Cα,β(Bα,β(r))}
r

, (4.10)

where Bα,β(r) = {h ∈ H;∆α,β(h) ≤ r} is the set of hypotheses that are
(α, β, r) AMF.

Intuitively, the coefficient measures the largest volume of instance pairs
that do not contribute to the fairness achievable in a hypothesis class. One
could expect it to be smaller if hypotheses are more fair. For conciseness, I
will omit the subscripts in ξα,β whenever they are clear from the context.

The proposed active AMF learner is shown in Algorithm 1. In each
round, it trains model h on the labeled set using the AMF learner, and
then labels instances that are close to the training data but receive different
predictions from h. It is clear that all labeled instances fall in Cα,β(H). The
fairness coefficients α, β are assumed preset by the problem, and one can
stop labeling when a desired AMF degree is achieved.

Our following theorem shows that, under proper conditions, Algorithm 1
can return a model satisfying (α, β, ε) AMF through O(log 1

ε
) labeling with

high probability.

Theorem 4.1.8. Fix any α, β > 0. If the counter (α, β) AMF coefficient
w.r.t. H is bounded, then with probability at least 1− δ, any h ∈ H returned
by Algorithm 1 satisfies ∆α,β(h) ≤ ε after O(log 1

ε
) labeling.

Proof Sketch. Let Vq = {h ∈ H;∆α,β(h;Sq) = 0} be the set of ‘perfect’
AMF models at the end of Q rounds of labeling. The goal of our analysis

is to show that, if one label k = 1
4ξ2

(
32c/β +

√
1
2
log 1

δ′

)
instances in each

round, then by the generalization bound in Theorem 4.4.2, there is

Pr{Cα,β(Vq+1)} ≤ 1

2
Pr{Cα,β(Vq)}. (4.11)

with high probability. This implies Q = log2
1
ε
rounds of labeling, which

means Qk = O(log 1
ε
) total labeling suffices to achieve Pr{Cα,β(Vq+1)} ≤ ε.

Since ∆α,β(h) ≤ Pr{Cα,β(Vq)} for any h ∈ Vq by definition, the theorem is
proved.
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Let & be logic ‘AND’ and define event

Iβα(x, x
′;h) := d(x, x′) ≤ α & |h(x)− h(x′)| > β. (4.12)

A key to prove (4.11) is to split the domain of ∆α,β(h) = Pr{Iβα(x, x′;h)} for
any h ∈ Vq+1 into (x, x′) ∈ Cα,β(Vq) and (x, x′) /∈ Cα,β(Vq). Probability on
the second subdomain is zero, and probability on the first subdomain can
be bounded using Theorem 4.4.2 conditioned on the fact that all labeled
instances fall in Cα,β(Vq). That bound is smaller than 1

2ξ
by our choice of

k and the definition of ξ, therefore implying Vq+1 ⊆ B
(

Pr{Cα,β(Vq)}
2ξ

)
and

thus Pr{Cα,β(Vq+1)} ≤ Pr
{
Cα,β

(
Bα,β

(
Pr{Cα,β(Vq)}

2ξ

))}
≤ ξ · Pr{Cα,β(Vq)}

2ξ
=

Pr{Cα,β(Vq)}
2

, where the second inequality is by definition. This proves (4.11)
and thus the theorem.

The proof of Theorem 4.1.8 also illuminates the key for Algorithm 1 to
reduce labeled instances is in Step 3, where one label u if (u, u′) ∈ Cα,β(Vq)
because only such pair can be used to further rule out hypotheses in Vq and
shrink Cα,β(Vq), which guarantees the shrinkage of ∆α,β(h).

An implicit assumption of the derived sample complexity is that, the
unlabeled set contains at least one instance satisfying (4.8) per epoch until
convergence. This is similar to the analysis of disagreement-based active
learning [H+14], which assumes at least one unlabeled instance is disagreed
by the committee models per epoch. From a practical perspective, when no
valid instance is found, one could train another model or randomly label
one instance and proceed to the next epoch.

The time complexity for Algorithm 1 to find an instance satisfying (4.8).
In a centralized computing environment, the complexity is O(|U ||L|), where
|U | is the size of unlabeled set and |L| is the size of labeled set. Typically
|L| ≪ |U |. This is higher than the complexity of uncertainty-based strategy
which is typically O(|U |), but more comparable to the complexity of query-
by-committee which is typically O(|U |t) for t committee models. In a
distributed computing environment, the complexity can be reduced to
O(|U |) if the evaluations of an instance u ∈ U with all u′ ∈ L can be
parallelized. Nonetheless, how to make selection more efficient remains an
open challenge.

4.1.3 The Counter AMF Coefficient

An important factor in our analysis is the counter AMF coefficient. [CL22a]
give an example on how to calcualte it.

Example 4.1.9. Fix α, β,B > 0. Let hw(x) = w · x be a 1-dimensional
linear hypothesis defined on [−B,B], and define H = {hw;w ≥ 0}. Assume
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Figure 4.1: Visualization of Prx(I
β
α(x, 0;h)).

instances are uniformly distributed on [−B,B]. If B > α, then

∆α,β(h) =

{
0, if w < β

α

1− β
αw

+ β
Bw

ln β
αw

, if w ≥ β
α

, (4.13)

and the counter (α, β) AMF coefficient w.r.t. to H is 1.

Proof. The roadmap of this proof is as follows. First derive ∆α,β(hw)
through case study and show it is non-decreasing with respect to w. Based
on this, argue the probability in (4.10) is equivalent to

P∗ := Pr{|h∗(x)− h∗(x
′)| > β, d(x, x′) ≤ α}, (4.14)

where h∗ is the model satisfying ∆α,β(h∗) = r, hence ξ = supr>0 P∗/r =
supr>0 r/r = 1.

Now the detailed proof is shown. For conciseness, I will write h for hw

but with the mind that each h is associated with a w. Also, recall the event
notation Iβα(x, x

′;h) := d(x, x′) ≤ α & |h(x)− h(x′)| > β.
Step 1: Characterize ∆α,β(h) for any h ∈ H.
Fix any h. Consider two cases.
(i) If αw < β, simple geometric analysis shows that event Iβα(x, x

′;h) is
always false so Prx,x′{Iβα(x, x′;h)} = 0.

(ii) If αw ≥ β (which implies w ̸= 0), then α ≥ β/w. In this case, we
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can properly partition the domain and have

Prx,x′{Iβα(x, x′;h)}

= Ex′∈[−B,B]

[
Prx{Iβα(x, x′;h)}

]
= 2 Ex′∈[0,B]

[
Prx{Iβα(x, x′;h)}

]
= 2

∫
x′∈[0,B−α]

Prx{Iβα(x, x′;h)} · p(x′)

+ 2

∫
x′∈(B−α,B− β

w
]

Prx{Iβα(x, x′;h)} · p(x′)

+ 2

∫
x′∈(B− β

w
,B]

Prx{Iβα(x, x′;h)} · p(x′),

(4.15)

where Prx{Iβα(x, x′;h)} is the probability defined for x with a fixed x′. In
(4.15), the first equality is by definition, and the second equality is by
the observation that Prx{Iβα(x, x′;h)} is symmetric on [−B,B] (which will
become more clear in later analysis). Note that p(x′) = 1

2B
.

Now each integral is studied separately.
(ii.a) If x′ ∈ [0, B − α], we can show

Prx{Iβα(x, x′;h)} = 1− β

wα
. (4.16)

To verify this, let us first fix x′ = 0 and identify the set of x in [−α, α]
that makes event Iβα(x, 0;h) true. This case is illustrated in Figure 4.1. We
see all targeted x fall in [β/w, α] and (by symmetry) in [−α,−β/w]. This

implies Prx{Iβα(x, 0;h)} = 2·(α−β/w)
2·α = 1− β

αw
. Since h is linear, the above

result applies to all x′ ∈ [0, B − α], which implies (4.16) and thus the first
integral equals to (1− β

wα
)(1− α

B
). Note it is non-negative since αw ≥ β

and B > α.
(ii.b) If x′ ∈ (B − α,B − β

w
], we can show

Prx{Iβα(x, x′;h)} = 1− β

w(B − x′)
. (4.17)

We can verify this in a similar way as in (ii.a), with additional shift of the
origin to x′ and constraint x ≤ B. Then, geometric analysis suggests all
targeted x fall in [x′ + β

w
, B] (shorter than interval [β/w, α] in Figure 4.1)

and thus Prx{Iβα(x, x′;h)} = 2(B−x′−β/w)
2(B−x′)

. This implies the second integral

is 1
B
(α− β

w
(1− ln β

wα
)). Note it is non-negative as (4.17) is non-negative by

the domain of x′.
(ii.c) If x′ ∈ (B− β

w
, B], it is easy to see no (x′, x) makes event Iβα(x, x

′;h)
true so Prx{Iβα(x, x′;h)} = 0. Then the third integral is zero.
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Plugging the integrals of (ii.a), (ii.b) and (ii.c) back to (4.15), and
combining results of cases (i) and (ii) gives (4.13).

Step 2: Show ∆α,β(h) is non-decreasing w.r.t. w.
All one need to show is ∆α,β(h) is non-negative and non-decreasing

when w ≥ β
α
. The first property is guaranteed since all integrals in (4.15)

are non-negative. To see the second property, take derivative
∂∆α,β(h)

∂w
=

β (B+α(ln αw
β

−1))

w2 αB
. Since w ≥ β

α
and B > α, one can easily show the derivative

is bigger than zero and hence ∆α,β(h) is non-decreasing.
Step 3: Equivalent Probability.
Let h∗ = w∗x be the model satisfying ∆α,β(h∗) = r. It is not hard to

show it exists for every r ∈ [0, 1) based on (4.13). Then, results of Step 1
and Step 2 suggest Bα,β(r) is the set of linear models satisfying w ≤ w∗,
which implies

Pr{Cα,β(Bα,β(r))} = Pr{Iβα(x, x′;h∗)}. (4.18)

To verify this, one first show every (x, x′) ∈ Cα,β(Bα,β(r)) makes event
Iβα(x, x

′;h∗) true. This is true because, for any x, x
′ with d(x, x′) ≤ α, if there

exists an w ≤ w∗ such that |wx−wx′| > β, then |w∗x−w∗x
′| ≥ |wx−wx′| >

β. One can then show every (x, x′) that makes event Iβα(x, x
′;h∗) true is

also in Cα,β(Bα,β(r)). This is true since h∗ exists.

The equivalence implies ξ = supr>0
Pr{Iβα(x,x′;h∗)}

r
= supr>0

r
r
= 1. The

proof is completed.

4.2 Experiments

4.2.1 Implementation Issues

In this section, three implementation issues are discussed.
The first issue is related to the AMF Learner in Definition 4.1.4. Directly

solving (4.7) is not easy since ∆α,β(h) is non-convex. [CL22a] propose to
approximate the solution by solving

min
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi) + λ ∆̃α,β(h;S), (4.19)

instead, where λ is a regularization coefficient and

∆̃α,β(h;S) =
1

n2β2

n∑
i,j=1

Mij · |h(xi)− h(xj)|2, (4.20)

with M being an n-by-n matrix whose entries are defined as Mij =
I{d(xi, dj) ≤ α}. Such approximation can be justified by the following rela-
tion, which implies that minimizing ∆̃α,β(h;S) also minimizes ∆α,β(h;S).
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Lemma 4.2.1. Fix any α, β > 0. Then ∆α,β(h;S) ≤ ∆̃α,β(h;S) for any
h ∈ S and sample S.

In practice, the approximate learner (4.19) may not always return a
model with zero bias on training data. In this case, the proposed algorithm
remains applicable and sample-efficient on fairness. There are two possible
theoretical explanations on the maintained efficiency. First, if the bias
is sufficiently small e.g., ∆α,β(h;S) ∈ O(ε), then the passive bound in
Theorem 4.4.2 can be extended to ∆α,β(h) ∈ O(ε). Plugging this back
to Theorem 4.1.8, one can obtain a similar complexity with an additional
constant factor. Second, one may borrow ideas from agnostic active learning
e.g., [DHM07, BBL09] and develop a new complexity for the non-realizable
case (i.e., when h has zero bias). These possible extensions are left for
future study.

The second implementation issue is related to the base model. [CL22a]
propose to implement a linear model and a kernel regression model approxi-
mated by Random Fourier Feature [RR07] called ‘rff model’.

For the linear model, if instances x1, . . . , xn ∈ Rp, one can show ∆̃α,β(h;S) =
2

n2β2 · hT [x](D −M)[x]Th, where [x] is an n-by-p matrix with the ith row

being xT
i . Further, if squared loss is used, then solution to (4.19) is

h = ([x](I − 2λ

nβ2
(D −M))[x]T )−1([x][y]), (4.21)

where [y] ∈ Rn is a vector with the ith entry being yi and D is an n-by-n
diagonal matrix with Dii =

∑n
j=1 Mij.

For the rff model, one can first calculate random features [RR07] and
then train a linear model based on them using the AMF learner. Note
random features are only used to approximate the prediction model, and
d(x, x′) is still measured using the original features.

The last issue is related to active learning. Given a labeled training
set L and an unlabeled set U , the proposed active AMF learner labels
a candidate instance u if there exists u′ ∈ L satisfying d(u, u′) ≤ α and
|h(u) − h(u′)| > β. In principle, one can also pair u with instances in U ,
as long as the labeled instances fall in Cα,β(Vq). In practice, pairing u with
instances in L is often more efficient (since the label set is often way smaller
than the unlabeled set), and leads to slightly better performance as one
observe in experiments.

4.2.2 Empirical Results

[CL22a] experiment on three real-world data sets. The Insurance data
set[data] has individual medical costs billed by health insurance company,
and the task is to predict the cost based other attributes. The Life data
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(a) ∆ versus λ (b) RMSE versus λ

(c) ∆ vs (α, β) Selection (d) RMSE vs (α, β) Selection

Figure 4.2: Results of Sensitivity Analysis

set[datb] has the life expectancy in different countries, and the task is
to predict the expectancy. [CL22a] also use a data set collected from
public resources. It contains the COVID death rates of 3142 counties in
United States and the task is to predict the rate based on other attributes
including population density, obesity rate, smoking rate, diabetes rate,
elderly population and vaccine rate. To learn more data sets used to
evaluate algorithmic fairness, interested readers may look into [LQRI+22].

[CL22a] encode categorical features by dummy variables, address missing
data using mean imputation and standardize all features. For higher
numerical stability, re-scale the labels are re-scaled: on the Insurance data
set, divide the medical cost which varies from 4k to 40k by 10k; on the Life
data set, divide the life expectancy which varies from 40 to 90 by 100; on
the COVID data set, multiply the death rate which varies from 0 to 0.01
by 100.

Each data set is arbitrarily split into an initial training set (assumed
labeled), an unlabeled set (for query) and a testing set. Size of the initial
training set is chosen as follows: for the linear base model, it is the feature
number on the Insurance and Life data sets, and twice that number on the
COVID data set; for the rff base model, it is half of the random feature
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number. Size of the testing data is 25% of the total data size. The remaining
data are treated as unlabeled.

On a data set, [CL22a] run an active learner for 20 random trials and
report the average model performance on the testing sets. Model bias
is measured by ∆α,β(h;Sn) defined in (4.6), with (α, β) set to (2, 0.1)
on Insurance, (10, 0.2) on Life and (1.5, 0.001) on COVID. [CL22a] also
experiment with other fairness coefficients and observe similar comparative
performance. Model error is measured by the root-mean-squared-error.

[CL22a] evaluate the proposed active labeling strategy on the linear base
model and rff base model respectively, and compare its performance with
the following three strategies.

– Random: It randomly selects instances to label.
– Query-by-Committee (QBC): It labels instances which receive the

largest prediction variance from a committee of models. Following [BRK07],
[CL22a] construct a committee of five models and train each one using
a bootstrap sample of the training data, with sample size equals to the
training set size divided by the committee size.

– Uncertainty : It labels instances which are most different from the
training data in both feature space and label space [WLH19]. To our
knowledge, this is a state-of-the-art active labeling method for regression
model.

– Cluster : It is a clustering based baseline method that relies on the
distance between instances. It first identifies the top m uncertain instances
in the candidate pool using the above method, then runs k-means clustering
to identify their k centers, and finally labels the identified instances.

For the metric-fair learner, its regularization coefficient λ is chosen to
strike a good balance between fairness and accuracy. For the linear base
model, λ is set to 1 on Insurance and Life and 0.1 on COVID; for the rff
base model, λ is set to 1 on Insurance, 5 on Life and 0.5 on COVID.

For the rff base model, the random features that approximate Gaussian
kernel [RR07] are generated. The random feature number is set to 100 on
Insurance, 400 on Life and 200 on COVID. The gamma coefficient is set to
1e-4 on Insurance, 1e-9 on Life and 1e-2 on COVID. In practice, one can
observe these configurations lead to good and stable performance of active
metric-fair learning. For the clustering based baseline method, set m = 10
and k = 3 as they give consistently good performance (except k is set to 10
for linear model on the Life dataset).

Results of the experimented strategies on both base models across three
data sets are shown in Figure 4.3.

In Figure 4.3 (a-f), one can see the proposed active AMF learner reduces
model bias more efficiently than other learners, which empirically verifies
its efficient sample complexity. One might notice it achieves almost zero
bias in all cases, supporting our assumption on the realizable case. (And
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note this is not achieved at the cost of significantly deteriorating accuracy,
as explained in the next paragraph.) There seems no consistent pattern
on the efficiency of other learners. One may notice QBC and uncertainty
are often less efficient than random, implying the importance of (efficiently)
achieving individual fairness by design, as presented in this study.

In Figure 4.3 (g-l), it is not surprising to see that uncertainty based
labeling reduces error faster than other strategies. Comparatively, the
proposed active AMF learner manages to achieve a comparable reduction
rate, suggesting its has an efficient fairness-accuracy trade-off.

Sensitivity analysis on the proposed strategy is also performed. Results
are presented in Figure 4.2. Figures 4.2 (a-b) show the performance versus
regularization coefficient λ. One can see both training and testing δ decrease
as λ increases. This suggests the metric-fair learner can effectively reduce
bias and the reduction is generalizable, which supports Theorem 4.4.2. One
can also see model error first decreases and then increases, exhibiting an
overfitting phenomenon.

Figures 4.2 (c-d) show the performance versus different choices of (α, β)
when selecting instances in Step 3 of Algorithm 1. (But all δ’s are evaluated
based on the same (α, β) for fair comparison.) One can see using smaller α to
select instances leads to faster convergence of δ but more slowly convergence
of RMSE. There seems no clear pattern on the impact of β. Overall, it is
shown that one can balance fairness and accuracy of the proposed strategy
through adjusting α.

4.3 Conclusion

[CL22a] propose the first active approximate metric-fair (AMF) learner and
prove it can achieve an ε bias budget by labeling only O(log 1

ε
) instances.

To my knowledge, this result is a first and substantial improvement over the
existing O( 1

ε2
) sample complexity for achieving individual fairness by the

passive learners. Through extensive experiments across three public data
sets, [CL22a] show the proposed active AMF learner improves fairness of
two regression models more efficiently than its passive counterpart as well
as state-of-the-art active learners, while being able to maintain comparable
accuracy. Another contribution of this study is to present a provably
equivalent form of AMF based on uniform continuity instead of the existing
almost Lipschitz.

4.4 Supplementary Material

Lemma 4.4.1 (Lemma 3.5). Fix any t, β > 0. Let F : X ×X → R be a
hypothesis class induced from H such that ∀f ∈ F , f(x, x′) = τ tβ(|h(x) −

24



(a) Linear Insurance (b) Linear Life (c) Linear COVID

(d) Linear Insurance (e) Linear Life (f) Linear COVID

(g) RFF Insurance (h) RFF Life (i) RFF COVID

(j) RFF Insurance (k) RFF Life (l) RFF COVID

Figure 4.3: Bias and RMSE of Different Active Labeling Strategies for
Linear and RFF model on Three Data Sets

h(x′)|) where τ tβ(z) is a piecewise model outputting 1 if z > β+ 1
t
, outputting

0 if z ≤ β and t(z − β) otherwise. Then Rm(F ) ≤ 8t · Rm(H).

Proof. Let G : X × X → R be the set of functions induced from h and
defined as ∀g ∈ G, g(a, b) = h(a)− h(b). Let abs be the absolute function.
Then f(a, b) = τ tβ ◦ abs ◦ g(a, b) and one can write, accordingly,

F = τ tβ ◦ abs ◦G. (4.22)
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One first show Rm(F ) ≤ Rm(G). This is true because

Rm(F ) = Rm(τ
t
β ◦ abs ◦G) ≤ 2t · Rm(abs ◦G) ≤ 4t · Rm(G), (4.23)

where both inequalities are by the property of Rademacher complexity for
composite function with one component being Lipschitz continuous e.g.,
[BM02, Theorem 12] and the facts that τ tβ and abs are both Lipschitz with
constants t and 1 respectively.

One then show Rm(G) ≤ 2 · Rm(H). This is true because

Rm(G) = E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σig(ai, bi)

= E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σi[h(ai)− h(bi)]

≤ E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σih(ai) + E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σih(bi)

= 2 · E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σih(xi)

= 2 · Rm(H),

(4.24)

where the third equality is based on the fact that σi is uniform in {-1, 1}
so the expectation with respect to σi is the same as the expectation with
respect to −σi.

Combining (4.23) and (4.24) proves the lemma.

Theorem 4.4.2 (Theorem 3.6). Fix any α, β, t > 0. Suppose Rm(H) ∈
O(1/

√
m). Any model h ∈ H returned by the AMF learner satisfies

∆α,β+1/t(h) ≤ ε with probability at least 1− δ if m ≥ 1
ε2

(
16tc+

√
1
2
log 1

δ

)
,

where m is the number of (x, x′) ∈ S satisfying d(x, x′) ≤ α and c is a
constant inherited from O(1/

√
m).

Proof. To facilitate discussion, define two functions

τβ(z) =

{
1, if z > β

0, if z ≤ β
, (4.25)

and

τ tβ(z) =


1, if z > β + 1

t

t(z − β), if β < z ≤ β + 1
t

0, if z ≤ β

. (4.26)
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By definition, one have

τβ+ 1
t
(z) ≤ τ tβ(z) ≤ τβ(z). (4.27)

Recall S = {(xi, xj)}i,j=1,...,n. Let Sα be a subset of S defined as

Sα = {(a, b) ∈ S | d(a, b) ≤ α}. (4.28)

Suppose the size of Sα is m. Then,

∆α,β(h;S) =
1

n2

n∑
i,,j=1

I{|h(xi)− h(xj)| > β, d(xi, xj) ≤ α}

=
m

n2
· 1

m

∑
(a,b)∈Sα

I{|h(a)− h(b)| > β}

=
m

n2
· 1

m

∑
(a,b)∈S

τβ(|h(a)− h(b)|).

(4.29)

Recall F : X×X → R is the set of functions induced from τ tβ and defined
as ∀f ∈ F , f(a, b) = τ tβ(|h(a)− h(b)|). One have that, with probability at
least 1− δ,

1

m

∑
(a,b)∈S

τβ(|h(a)− h(b)|) ≥ 1

m

∑
(a,b)∈S

τ tβ(|h(a)− h(b)|)

≥ E[τ tβ(|h(a)− h(b)|) | d(a, b) ≤ α]− 2Rm(F )−

√
log 1

δ

2m

≥ E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α]− 16tRm(H)−

√
log 1

δ

2m

≥ E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α]− 1√

m

(
16tc+

√
1

2
log

1

δ

)
.

(4.30)

where for some constant c. In (4.30), the first inequality is by (4.27);
the second one is by standard generalization bound1 with Rademacher
complexity e.g. [MRT18, Theorem 3.3] conditioned on d(a, b) ≤ α; the
third one is by (4.27) and Lemma 4.1.5; and the last one holds since
Rm ∈ O(1/

√
m). Note the expectation of (a, b) ∈ Sα in Rm ∈ O(1/

√
m) is

1Here one can follow [YR18] and treat Sα as an i.i.d. sample. If it is not, one can
either add an additional constraint that no two pairs in Sα share the same instance so
it can be viewed as an i.i.d. sample, or apply a generalization error bound on non-i.i.d.
sample e.g. [MR08]. In either case, the order of our result remains the same.
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also conditioned on d(a, b) ≤ α, and one always assume Rm ∈ O(1/
√
m)

w.r.t. any data proper distribution.
Combining (4.29) and (4.30), one can see ∆α,β(h;S) = 0 implies

E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α] ≤ 1

m

(
16tc+

√
1

2
log

1

δ

)
. (4.31)

Further, one can show

∆α,β+ 1
t
(h) ≤ E[τβ+ 1

t
(|h(a)− h(b)|) | d(a, b) ≤ α], (4.32)

because

∆α,β+ 1
t
(h) =

∫
(a,b)∈X×X

I{|h(a)− h(b)| > β + 1/t} · I{d(a, b) ≤ α} · p(a, b)

≤
∫
(a,b)∈X×X

I{|h(a)− h(b)| > β + 1/t} · p(a, b)

≤
∫
(a,b)∈X×X

I{|h(a)− h(b)| > β + 1/t} · p(a, b | d(a, b) ≤ α)

= E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α].

(4.33)

Combining (4.31) and (4.32), and upper bounding the RHS of (4.31) by
ε implies that ∆α,β+ 1

t
(h) ≤ ε whenever

m ≥ 1

ε2

(
16tc+

√
1

2
log

1

δ

)
. (4.34)

The theorem is proved.

Theorem 4.4.3 (Theorem 4.2). Fix any α, β > 0. Suppose Rm(H) ∈
O(1/

√
m) and the counter (α, β) AMF coefficient w.r.t. H is bounded.

Then, with probability at least 1 − δ, any h ∈ H returned by Algorithm 1
satisfies ∆α,β(h) ≤ ε after O(log 1

ε
) labeling.

Proof. Suppose one have performed q rounds of labeling. Let Lq be the
updated training set and Sq be the associated set of instance pairs in
Definition 4.1.4. Define

Vq = {h ∈ H; ∆α,β(h;Sq) = 0}. (4.35)

Consider labeling m instances in round q+1. First, note that all labeled
instances fall in Cα,β(Vq) and thus will add to Sq at least m pairs of (x, x′)
satisfying d(x, x′) ≤ α. Then, by Theorem 4.4.2 and setting t = 1/β, if
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m ≥ 1
4ξ2

(
32c/β +

√
1
2
log 1

δ′

)
, with probability at least 1− δ′, any h ∈ Vq+1

satisfies
∆α,β(h) ≤ 1/(2ξ). (4.36)

Let & be logic ‘AND’ and define event

Iβα(x, x
′;h) := d(x, x′) ≤ α & |h(x)− h(x′)| > β. (4.37)

Then, with probability at least 1− δ′, any h ∈ Vq+1 satisfies

Pr{Iβα(x, x′;h)} = Pr{Iβα(x, x′;h)& (x, x′) ∈ Cα,β(Vq)}
+ Pr{Iβα(x, x′;h)& (x, x′) /∈ Cα,β(Vq)}

= Pr{Iβα(x, x′;h)& (x, x′) ∈ Cα,β(Vq)}

= Pr{Iβα(x, x′;h) | (x, x′) ∈ Cα,β(Vq)} · Pr{(x, x′) ∈ Cα,β(Vq)}

≤ Pr{(x, x′) ∈ Cα,β(Vq)}
2ξ

,

(4.38)

where the second equality is by the fact that Pr{Iβα(x, x′;h) & (x, x′) /∈
Cα,β(Vq)} ≤ Pr{Iβα(x, x′;h) & (x, x′) /∈ Cα,β(Vq+1)} = 0, and the inequality
is by (4.36) conditioned on an additional fact that all labeled instances fall
in Cα,β(Vq+1). For conciseness, one will write Pr{Cα,β(Vq)} for Pr{(x, x′) ∈
Cα,β(Vq)} .

Result in (4.38) implies Vq+1 ⊆ B
(

Pr{Cα,β(Vq)}
2ξ

)
and

Pr{Cα,β(Vq+1)} ≤ Pr

{
Cα,β

(
Bα,β

(
Pr{Cα,β(Vq)}

2ξ

))}
≤ ξ · Pr{Cα,β(Vq)}

2ξ
=

Pr{Cα,β(Vq)}
2

,

(4.39)

where the first inequality is by the definition of ξ. This result means
Pr{Cα,β(Vq)} is halved after each round of labeling. Therefore, after Q :=
log2

1
ε
rounds of labeling,

∆α,β(h) ≤ Pr{Cα,β(VQ)} ≤ ε, (4.40)

with probability at least 1−Qδ′; where the left inequality is by definition. By

then, the total number of labeled instances is log2
1
ε
· 1
4ξ2

(
32c/β +

√
1
2
log 1

δ′

)
.

Setting δ = Qδ′ and plugging δ′ = δ/Q in completes the proof.

Example 4.4.4 (Example 4.4). Fix α, β > 0. Let hz(x) = 1x>z be a
threshold function defined on [0, 1]. Let H = {hz;α ≤ z ≤ 1− α}. Assume

points are uniformly distributed in [0, 1]. Then, ∆α,β(h) = α(1−α2)
1−2α

and

ξ ≤ 1
2
.
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Proof. One can apply the same proof strategy and show ∆α,β(h) =
α(1−α2)
1−2α

≥
α(1 + α). (For two points to be within α distance apart, the probability
is (1 − 2α)2α + 2α(α + α

2
) = 1 − α2; for z to land in a certain α-length

interval within its whole range of length 1− 2α, the probability is α/(1−
2α)), Cα,β(Bα,β(r)) = [z − α

2
, z] × [z, z + α

2
] ∪ [z, z + α

2
] × [z − α

2
, z], so

Pr[Cα,β(Bα,β(r))] =
α2

2
≤ r

2
(because α + α2 ≤ r implies α2 ≤ r). Hence

ξ ≤ 1
2
.

Lemma 4.4.5 (Lemma 5.1). Fix any α, β > 0. One have ∆α,β(h;S) ≤
∆̃α,β(h;S) for any h ∈ S and sample S.

Proof. Since Ix≥t ≤ x
t
for any x, t ≥ 0, one have

I{d(xi, xj) ≤ α, |h(xi)− h(xj)| ≥ β}
= I{d(xi, xj) ≤ α} · I{|h(xi)− h(xj)|2 ≥ β2}

≤ 1

β2
· I{d(xi, xj) ≤ α} · |h(xi)− h(xj)|2

=
1

β2
·Mij · |h(xi)− h(xj)|2.

(4.41)

Plugging this back to (4.6) proves the lemma.
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Chapter 5

Fairness-Aware Active
Learning for Decoupled Model

5.1 Proposed Algorithm

In this section, [CL22b] propose a disagreement-based fairness-aware active
learning strategy (D-FA2L) for decoupled model.

Let (x, s, y) be an instance, where x is the vector of non-protected
features, s is a binary protected feature, and y is a binary label. A decoupled
model is a pair of models (h0, h1) such that hi is applied on instances with
s = i. A standard decoupled supervised learner Ad trains model hi from
instances with s = i using any standard supervised learning technique.

[CL22b] focus on the classification problem, but assume model hi will
output the posterior probability as hi(x) = Pr{y = 1 | x} instead of directly
outputting the binary class – one can obtain the latter by thresholding
model output as 1h(x)>0.5, where 1 is an indicator function.

The basic idea of the proposed strategy is to query label for instance u
that receives significantly different predictions from the decoupled models
h0 and h1, i.e., |h1(u) ̸= h0(u)| > α for some preset threshold α. This is
motivated by the classic disagreement-based active labeling strategy [H+14],
and can be viewed as its extension from single model to decoupled model.
Detailed connection and difference are discussed later.

The proposed D-FA2L process is presented in Algorithm 2. In practice,
one can stop labeling when a preset number of labels are queried or a desired
model performance is achieved.

5.2 Theoretical Analysis

In this section, [CL22b] theoretically analyze D-FA2L. The main insight
is that model unfairness is bounded by a notion of α-distance, which can
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Algorithm 2 Disagreement-based FA2L Algorithm (D-FA2L)

Input: an initial labeled training set L, a pool of unlabeled data set U ,
a hypothesis class H, a standard decoupled supervised learner Ad,
hyper-parameters α, k.

a decoupled model (h0, h1).
1: Train (h0, h1) ∈ H ×H from L using Ad.
2: while Stopping criterion is not met do
3: Independently and uniformly select k instances u ∈ U satisfying

|h0(u)− h1(u)| > α
4: Label the selected instances, add them to L, and remove them from

U .
5: Retrain (h0, h1) from L using Ad.
6: end while

be efficiently reduced by D-FA2L under proper conditions. In the rest of
this section, we first introduce a set of definitions, then present the main
theoretical results, and finally discuss the impact on model accuracy.

5.2.1 Notations and Definitions

Recall (x, s, y) denotes an arbitrary instance. Let (X,S, Y ) be the random
variable from which (x, s, y) is sampled. Let µ∗ be the joint sampling
probability distribution on (X,S) that induces µ(x) = P{X = x} and
µs(x) = P{X = x | S = s}.

Let H be a hypothesis class from which the decoupled models are learned.
Recall each model h ∈ H is defined as

h(x) = P{Y = 1 | X = x, h}, (5.1)

where randomness comes from the prediction uncertainty of h on a fixed x.
The predicted label of x is 1h(x)>0.5.

Recall (h0, h1) denotes a decoupled model. [CL22b] evaluate its fairness
based on a popular notion called disparate impact [BS16]. Specifically, for
any (h0, h1), define

DI(h0, h1) =
P{h0(x) > 0.5 | S = 0}
P{h1(x) > 0.5 | S = 1}

. (5.2)

If DI(h0, h1) is closer to 1, then (h0, h1) is more fair.
[CL22b] analyze how D-FA2L helps to learn a model with small DI(h0, h1).

Define the α-distance of (h0, h1) as

dα(h0, h1) = P{|h0(x)− h1(x)| > α}, (5.3)
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where randomness comes from the uncertainty of x w.r.t. µ. An estimate
of the distance on a sample J is

dα(h0, h1; J) =
1

|J |
∑
x∈J

1{|h0(x)− h1(x)| > α}. (5.4)

[CL22b] assume the decoupled model returned by a standard learner Ad

has the following form of large margin.

Definition 5.2.1. (h0, h1) has an α-margin of γ if

P{|h0(x)− h1(x)| > α | 1h0(x)>0.5 ̸= 1h1(x)>0.5} ≥ γ. (5.5)

Intuitively, a large α-margin means the decoupled model makes confident
prediction on most instances. This is a reasonable assumption e.g., it is not
hard to show a standard large margin learner that achieves hard margin α
on h0 and h1 promises γ = 1, if one treat |hi(x)− 0.5| as the margin.

This analysis will also involve the distance between the data distributions
of the two groups, defined as follows.

Definition 5.2.2. The relative total variation distance between distribu-
tions µ0 and µ1 on any c-weighted data set is

λc := max
Q∈Ωc

|µ0(Q)− µ1(Q)|
|µ0(Q) + µ1(Q)|

, (5.6)

where Ωc = {T ⊆ X;µ0(T ) + µ1(T ) ≥ c}.
One can see that λc is small if the two distributions are similar, and the

following is an example.

Example 5.2.3. If X = R and µi = N(θi, σ
2), then λc ≤ |θ0−θ1|

2σc
.

Proof. By the total variation distance bound between two Gaussian [DMR18,

Theorem 1.3], one have maxQ |µ0(Q) − µ1(Q)| ≤ |θ0−θ1|
2σ

. The rest follows
by the definition of λc.

Finally, inspection suggests that D-FA2L is essentially selecting data in
a special region that helps the learner to reduce model unfairness efficiently.
This region is defined as follows.

Definition 5.2.4. Let V ⊆ H×H be any hypothesis space of the decoupled
model. The α-controversial region of V is

Cα(V ) = {x ∈ X; ∃(h0, h1) ∈ V, |h0(x)− h1(x)| > α}. (5.7)

The α-controversial coefficient is

ξα = supδ>0

Px∼µ{Cα(Σα,δ)}
δ

, (5.8)

where Σα,δ = {(h0, h1) ∈ H ×H; dα(h0, h1) ≤ δ}.
[CL22b] assume ξα is bounded. The following is an example.
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5.2.2 Main Theoretical Results

The first result shows that, the disparity of any decoupled model with large
α-margin is ‘squeezed’ by their α-distance.

Theorem 5.2.5. Let α, γ, c > 0. Any model (h0, h1) with an α-margin of
γ and P{h1(x) > 0.5 | S = 1} ≥ c satisfies

1− λc

1 + λc

− dα(h0, h1)

cγp0
≤ DI(h0, h1) ≤

1 + λc

1− λc

+
dα(h0, h1)

cγp0
, (5.9)

where p0 = P{S = 0}.

Proof. To facilitate discussion, let us assume w.l.o.g. that X is finite so all
µi’s are probability mass functions. Write

P{hi(x) > 0.5 | S = i} =
∑
x∈X

Ixi µ
x
i , (5.10)

where Ixi = 1hi(x)>0.5 and µx
i = µi(x).

[CL22b] first bound
∑

xI
x
0µ

x
0 −

∑
xI

x
1µ

x
1 , which equals to(∑

x

Ix0µ
x
0 −

∑
x

Ix1µ
x
0

)
+

(∑
x

Ix1µ
x
0 −

∑
x

Ix1µ
x
1

)
. (5.11)

The 1st parenthesized term equals to∑
x

(Ix0 − Ix1 )µ
x
0 ≤

∑
x

1Ix0 ̸=Ix1
· µx

0

≤ 1

p0

∑
x

1Ix0 ̸=Ix1
· µ(x),

(5.12)

where p0 = P{S = 0}. The first inequality is by case-studying Ix0 and Ix1 so
that Ix0 − Ix1 ≤ 1Ix0 ̸=Ix1

for any x, and the second inequality is by definition
so that µ0(x) = P{X = x, S = 0}/p0 ≤ µ(x)/p0. Note the rightmost sum
is P{Ix0 ̸= Ix1 } and

P{Ix0 ̸= Ix1 }

= P{Ix0 ̸= Ix1 , |h0(x)− h1(x)| > α}

+P{Ix0 ̸= Ix1 , |h0(x)− h1(x)| ≤ α}

≤ (1/γ) ·P{Ix0 ̸= Ix1 , |h0(x)− h1(x)| > α}

≤ (1/γ) · dα(h0, h1),

(5.13)

where the first inequality is due to the α-margin assumption.
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For the 2nd parenthesized term in (5.11), since
∑

x I
x
1µ

x
1 ≥ c,∑

x

Ix1µ
x
0 −

∑
x

Ix1µ
x
1 ≤

(
1 + λc

1− λc

− 1

)∑
x

Ix1µ
x
1 . (5.14)

Putting all back to (5.11), one have∑
x

Ix0µ
x
0 −

(
1 + λc

1− λc

)∑
x

Ix1µ
x
1 ≤ dα(h0, h1)

γp0
. (5.15)

By symmetric arguments, bounding
∑

x I
x
1µ

x
1 −

∑
x I

x
0µ

x
0 gives∑

x

Ix0µ
x
0 −

(
1− λc

1 + λc

)∑
x

Ix1µ
x
1 ≥ −dα(h0, h1)

γp0
. (5.16)

Combining (5.15), (5.16) and
∑

x I
x
1µ

x
1 ≥ c proves the theorem.

The main implication of Theorem 5.2.5 is one can reduce the unfairness
of a decoupled model by reducing its α-distance.

The next theoretical result shows D-FA2L can efficiently reduce the
α-distance under four assumptions: (A1) H has a Rademacher complexity
of Rm(H) ∈ O(1/

√
m), (A2) instances are selected i.i.d. in Cα(V ), (A3)

dα/2(h0, h1; J) ≤ 1/4ξα and (A4) ξα is bounded. Assumptions (A1, A2) are
common e.g., [BM02]. (A3) is supported by our empirical observation that
d̂α

2
(h0, h1) often drops to a small value.
The second theoretical results is stated as follows.

Theorem 5.2.6. Under (A1, A2, A3, A4), with probably at least 1 − t,
D-FA2L returns a model with dα(h0, h1) ≤ ϵ after labeling

O

ξ2α · log1/2 ϵ
α2

·

(
32 +

√
2 log

4 log1/2 ϵ

t

)2
 (5.17)

instances.

Proof. Let Vj ⊆ H × H be the hypothesis space satisfying (A3) on the
training set before the jth round of labeling. Note thatV0 ⊇ V1 ⊇ V2 . . ..
Based on (A1, A2), with probability at least 1− t′, any decoupled model
(h0, h1) ∈ Vj+1 satisfies

dα(h0, h1) ≤ d̂α
2
(h0, h1; J) +

K
(
32 +

√
2 log(4/t′)

)
α
√
|L|

. (5.18)

The proof of (5.18) is similar to [YR18, Theorem 4.1], relying on standard
Rademacher arguments plus a Lipschitz approximation of the 0-1 loss
function. Its proof is deferred to Section 5.5.
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Combining (5.18) and (A4), one can see if D-FA2L labels

N =
Kξ2α
α2

(
32 +

√
2 log

4

t′

)2

(5.19)

instances in Cα(Vj) in the (j+1)th round of labeling1, then with probability
at least 1− t′,

P{|h0(x)− h1(x)| > α | x ∈ Cα(Vj)} ≤ 1/(2ξα), (5.20)

for any (h0, h1) ∈ Vj+1. This further implies

P{|h0(x)− h1(x)| > α}

= P{|h0(x)− h1(x)| > α | x ∈ Cα(Vj)} · P{x ∈ Cα(Vj)}

+ P{|h0(x)− h1(x)| > α | x /∈ Cα(Vj)} · P{x /∈ Cα(Vj)}

= P{|h0(x)− h1(x)| > α | x ∈ Cα(Vj)} · P{x ∈ Cα(Vj)}

≤ P{x ∈ Cα(Vj)}
2ξα

:= rα,

(5.21)

where the second equality is by the definition of Cα(V ) so that P{|h0(x)−
h1(x)| > α | x /∈ Cα(Vj)} = 0. This result implies any (h0, h1) ∈ Vj+1 falls
in Σα,rα . Thus Vj+1 ⊆ Σα,rα and

Pr{x ∈ Cα(Vj+1)}
ξα

≤ Pr{x ∈ Cα(Σα,rα)}
ξα

≤ rα

=
Pr{x ∈ Cα(Vj)}

2ξα
,

(5.22)

where the second inequality is by the definition of ξα.
Result (5.22) implies that Pr{Cα(Vj+1)} ≤ 1

2
Pr{Cα(Vj)} with probabil-

ity at least 1− t′. Then, after M rounds of labeling, P{Cα(VM )} ≤ (1/2)M

with probability at least 1 −Mt′. Setting (1/2)M = ϵ gives M = log1/2 ϵ,
and setting Mt′ = t gives t′ = t/M = t/ log1/2 ϵ. Putting these back to
(5.19), one have that dα(h0, h1) ≤ ϵ with probability at least 1 − t after
labeling M ·N instances. This proves the theorem.

Theorem 5.2.6 implies D-FA2L can reduce the α-distance and the re-
duction is efficient under proper conditions. Combining this with Theorem
5.2.5 explains how D-FA2L achieves fairness.

1This is obtained by setting last term in (5.18) to 1/4ξα and solving for |L|.
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5.2.3 Impact of D-FA2L on Model Accuracy

In the previous section, it is shown that data training data labeled by
D-FA2L helps to improve model fairness. In this section, their impact on
model accuracy is discussed.

Define the disagreement region w.r.t. model (h0, h1) as

D(h0, h1) = {x ∈ X;1h0(x)>0.5 ̸= 1h1(x)>0.5}, (5.23)

and the controversial region w.r.t. model (h0, h1) as

Cα(h0, h1) = {x ∈ X; |h0(x)− h1(x)| > α}. (5.24)

In D-FA2L, data are selected by model (h0, h1) uniformly at random from
Cα(h0, h1). On the other hand, the active learning literature says training
data help to improve accuracy if selected from the following disagreement
region [H+14, Section 2]

DIS(H) = ∪(h0,h1)∈V D(h0, h1), (5.25)

where V = H ×H. This leads to the idea that if Cα(h0, h1) overlaps with
DIS(H) to a proper degree, then data selected by D-FA2L could help
improve accuracy with proper probability. In the following paragraphs,
[CL22b] examine this insight through a toy example.

Figure 5.1(a) shows a population represented by their predictions received
from a fixed decoupled model (h0, h1). Each point (a, b) ∈ [0, 1] × [0, 1]
represents an instance (or, the set of instances) receiving h0(x) = a and
h1(x) = b. Through simple geometric arguments, one can show Cα(h0, h1)
is union of the upper-left and lower-right isosceles right triangles with leg
length 1− α, and D(h0, h1) and is union of the upper-left and lower-right
squares with side length 0.5. Their overlapping region is union of the two
shaded regions.

If α < 0.5, simple geometric arguments shows the relative area of the
overlapping region is

|Cα(h0, h1) ∩ D(h0, h1)|
|Cα(h0, h1)|

=
0.5− α2

(1− α)2
, (5.26)

where | · | denotes the area of a region. Apparently, this area is larger if α is
larger, implying a larger overlapping between Cα(h0, h1) and DIS(V ). This
further implies D-FA2L could improve accuracy more efficiently if α is large.

If α ≥ 0.5, the overlapping region is show in Figure 5.1(b). In this case,
the shaded region always has

|Cα(h0, h1) ∩ D(h0, h1)|
|Cα(h0, h1)|

= 1, (5.27)

which implies
Cα(h0, h1) ⊆ D(h0, h1) ⊆ DIS(H). (5.28)

This implies D-FA2L could improve accuracy efficiently.
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(a) α < 0.5 (b) α > 0.5

Figure 5.1: Visualization of Disagreement and Controversial Region under
Different α Values

5.3 Experiments

5.3.1 Data Preparation

[CL22b] experiment on two public data sets. The COMPAS data set
contains 6172 instances described by 12 numerical attributes. Attribute
‘Two-Year-Recidivism’ is treated as label, and ‘African-American’ treated
as the protected attribute.

The Crime and Community data set contains 1994 instances described by
128 attributes. Attribute ‘crime rate’ is treated as the label, and ‘percentage
of African American’ combined with ’percentage of African American police’
is treated as the protected attribute. The label is binarized so that a
community with crime rate larger than 0.37 is considered as a high crime
community, and is otherwise is considered as a low crime community. The
protected attribute is binarized so that a community with less than 50%
percentage sum of African American (AA) and AA police is considered a
minority AA community, and otherwise it is considered as a non-minority
AA community.

On each data set, 0.2% of the data is arbitrarily selected as the initial
labeled training set, 25% of the remaining data is selected as the testing
set, and the rest data is treated as the pool of unlabeled data. The average
performance of each experimented method is then reported over 20 random
trials. To increase numerical stability of decoupled supervised learning,
in each trial, features of each group is standardized based on its selected
training and pool data.
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5.3.2 Experiment Design

[CL22b] evaluate the performance of D-FA2L and compare it with other
methods. Since existing AL techniques are mostly designed for single model,
we do not find any directly comparable active labeling strategy for decoupled
model. Nonetheless, we adapt both classic and state-of-the-art methods
and come up with the following three baseline strategies.

• Random: Data are selected uniformly at random.

• Uncertainty: It is an adaption of the classic uncertainty-based AL
strategy for decoupled model. Data with the highest prediction
uncertainty are selected, where the uncertainty of instance x with
protected attribute S = i is measured by

uncertainty(x) =
1

|hi(x)− 0.5|
. (5.29)

• FAL: It is an adaption of the state-of-the-art fairness-aware active
labeling strategy [AAT20] for decoupled model. First, the top m data
with the highest prediction entropy are picked, where the entropy of
an instance x with S = i is evaluated based on hi(x). Then, among
these data, the ones that could maximally reduce model unfairness
are selected, where the reduction of instance with S = i is measured
based on hi.

Logistic regression is used as the base model for all methods, and its
regularization coefficient is set to 0.1 as it gives the best performance on
initial training set. For D-FA2L, [CL22b] set α = 0.2 on the COMPAS data
set and α = 0.7 on the Community and Crime data set. α can be selected as
something slightly lower than the initial |h0(x)− h1(x)|. When no instance
satisfies |h0(x)− h1(x)| > α, [CL22b] arbitrarily pick an instance to label.
For FAL, m is set to 64 as it is reported to give the best performance in
the original paper. In each round, all methods label one instance.

Model accuracy is evaluated by F1 score, and model unfairness is evalu-
ated by Bias(h0, h1) = |Pr{h0(x) > 0.5 | S = 0}−Pr{h1(x) > 0.5 | S = 1}|.
Results on the two data sets are reported in Figures 5.2 and 5.3 respectively.

5.3.3 Discussion on the Results

Results on the COMPAS data set are reported in Figure 5.2. One can see
D-FA2L is the only method that reduces model bias. In the meantime,
D-FA2L improves accuracy as efficiently as other strategies, suggesting it
has a small trade-off between fairness and accuracy. These observations are
consistent with the theoretical analysis. Results on the Community and
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(a) Model Bias vs. Number of Samples (b) F1 Score vs. Number of Samples

Figure 5.2: Performance on the COMPAS Dataset

(a) Model Bias vs. Number of Samples (b) F1 Score vs. Number of Samples

Figure 5.3: Performance on the Crime Data Set

Crime data set are shown in Figure 5.3. We see D-FA2L effectively reduce
model bias while maintaining a F1 score that is somewhere between that
of the random strategy and uncertainty strategy. This further verifies the
efficacy of the proposed strategy. FAL does not appear very efficient, which
may imply that in the setting of decoupled model, the uncertain instances
are rarely useful for improving model fairness.

When applying D-FA2L, one may notice that model bias keeps decreasing
on the COMPAS dataset but stops decreasing after about 50 rounds of
labeling on the Crime dataset. This is partly related to the different
distributions of |h0(x) − h1(x)| on the two data sets. In Figure 5.4(a),
one can see the averaged ∆(x) = |h0(x) − h1(x)| of the instances labeled
by D-FA2L at each round. On Crime, one can see ∆(x) approaches the
threshold α = 0.7 at about 50 rounds after which D-FA2L loses the developed
theoretical guarantee on bias reduction. On COMPAS, one can see ∆(x)
mostly stays above its threshold α = 0.2 and D-FA2L maintains its guarantee
on bias reduction.

In Figure 5.5(b), the performance of D-FA2L versus α is shown. One can
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(a) |h0(x)− h1(x)| of Instance Labeled by
D-FA2L

(b) dα(h0, h1) under different α.

Figure 5.4: Selection of α

see the bias reduction performance is not monotonic w.r.t. α, and among
the examined values, α = 0.6 achieves the highest efficiency. This makes
sense: if α is too small, most instances would fall in the controversial region
so selecting one from them is similar to selecting one randomly. On the
other hand, if α is too large, few instances would fall in the controversial
region – in this case, although D-FA2L can quickly reduce bias, it will also
quickly run out of data to select and start performing random selection.
This explains why the red curve converges more quickly but only to a limited
value in Figure 5.5(b) (a). Surprisingly, α seems to have limited impact on
model accuracy, allowing us to achieve a more efficient fairness-accuracy
trade-off.

Next dα(h0, h1) is examined. D-FA2L is ran on COMPAS over 20 random
trials and the average of dα(h0, h1) under α = 0.25, 0.5, 0.75 are documented
respectively. Results are in Figure 5.4(b). In general, dα(h0, h1) decreases to
a small value after a sufficient number of training data are selected. Larger
α implies smaller dα(h0, h1), and when α = 0.7 one have dα(h0, h1) ≈ 0.
This suggests D-FA2L is effective in reducing dα(h0, h1), even if it applies
only a standard learner!

5.4 Conclusion

In this chapter, [CL22b] study a fairly new research problem called fairness-
aware active learning. [CL22b] propose the first disagreement-based fairness-
aware active labeling algorithm (D-FA2L) for decoupled model. [CL22b]
first theoretically analyze D-FA2L, explaining how it can reduce model
unfairness effectively and efficiently and how it impacts accuracy. [CL22b]
then empirically verify the efficacy of D-FA2L on two data sets, showing it
reduces bias more efficiently than the adapted classic and state-of-the-art
methods, while maintaining comparable accuracy.
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(a) Model Bias (b) F1 Score

Figure 5.5: Performance on the Crime Data Set. Figure 5.5(a) shows model
bias decreases in different speed with different α values. To achieve best
performance, α should be neither too small or too large. Figure 5.5(b)
shows increases in different speed with different α values. α seems to have
limited impact on accuracy, which allows a more efficient fairness-accuracy
trade-off.

5.5 Proof

In this section, [CL22b] proves the following bound in (5.18).

dα(h0, h1) ≤ d̂α
2
(h0, h1; J) +

K
(
32 +

√
2 log(4/t′)

)
α
√
|L|

. (5.30)

The proof is done in 6 steps. For a function class F , let R̂m(F ) be its
empirical Rademacher complexity over a sample J of size m, and Rm(F ) =
EJ [R̂m(F )] be its Rademacher complexity. Let σi be a Rademarcher noise.

Step 1. Define a set of functions

H ′ : [X] → {h0(x)− h1(x)}(h0,h1)∈H×H . (5.31)
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First, prove Rm(H
′) ≤ 2Rm(H). This is true because

Rm(H
′) = EJ [R̂m(H

′)]

= EJ,σ

[
sup

(h0,h1)∈H2

(
1

m

m∑
i=1

σi(h0(xi)− h1(xi))

)]

≤ EJ,σ

[
sup
h0∈H

(
1

m

m∑
i=1

σih0(xi)

)

+ sup
h1∈H

(
1

m

m∑
i=1

−σih1(xi)

)

= EJ,σ

[
sup
h0∈H

(
1

m

m∑
i=1

σih0(xi)

)]

+ EJ,σ

[
sup
h1∈H

(
1

m

m∑
i=1

−σih1(xi)

)]
= 2Rm(H).

(5.32)

Step 2. Let abs(·) be the absolute value function. Define a set of
composed functions:

G := abs ◦H ′ : [X] → {|h0(x)− h1(x)|}(h0,h1)∈H×H . (5.33)

One can prove Rm(G) ≤ 4Rm(H). This is true because

Rm(G) = Rm(abs ◦H ′) ≤ 2Rm(H
′) ≤ 4Rm(H), (5.34)

where the first inequality is based on [BM02, Theorem 12, Fact 4] and the
fact that absolute value function has a Lipschitz constant 1, and the second
inequality is based on (5.32).

Step 3. Define a composed function

F̃α := τ tα ◦G, (5.35)

where

τ tα(x) =


0, x ≤ α

t(x− α), α < x < α + 1
t

1, x ≥ α + 1
t
,

(5.36)

One can prove Rm(F̃ ) ≤ 8∆Rm(H). This is true because

Rm(F̃ ) ≤ 2tRm(G) ≤ 8tRm(H), (5.37)
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where the first inequality is based on [BM02, Theorem 12, Fact 4] and the
fact that τ tα has a Lipschitz constant t; the second inequality is based on
(5.34).

Step 4. Let τα(x) be an indicator function outputting 1 if x > α and 0
otherwise. There is

τα+ 1
t
(z) ≤ τ tα(z) ≤ τα(z), (5.38)

for any input z. Define loss functions for a given (h0, h1) as

Lt
α(h0, h1) = Exτ

t
α(|h0(x)− h1(x)|), (5.39)

and, similarly,
Lα(h0, h1) = Exτα(|h0(x)− h1(x)|). (5.40)

Let L̂t
α and L̂α be the empirical estimates of Lt

α and Lα over sample S,
respectively.

Combining (5.38, 5.39,5.40), one can easily show that

Lα+ 1
t
(h0, h1) ≤ Lt

α(h0, h1) ≤ Lα(h0, h1), (5.41)

and
L̂α+ 1

t
(h0, h1) ≤ L̂t

α(h0, h1) ≤ L̂α(h0, h1). (5.42)

Further, by a classic error bound e.g., [MRT18, Theorem 3.1], for any
(h0, h1), with probability at least 1− δ, there is∣∣∣Lt

α(h0, h1)− L̂t
α(h0, h1)

∣∣∣ ≤ 2Rm(F̃ ) +

√
ln(4/δ)

2m

≤ 8tRm(H) +

√
ln(4/δ)

2m
.

(5.43)

where the second inequality is based on (5.37).
Step 5. Assuming t ≥ 1, it follows

L̂α(h0, h1)

≥ L̂t
α(h0, h1)

≥ Lt
α(h0, h1)−

(
8tRm(H) +

√
ln(4/δ)

2m

)

≥ Lt
α(h0, h1)− t

(
8Rm(H) +

√
ln(4/δ)

2m

)

≥ Lα+ 1
t
(h0, h1)− t

(
8Rm(H) +

√
ln(4/δ)

2m

)
,

(5.44)
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where the first and last inequalities are by (5.42), the second is based on
(5.43), and the third is based on t ≥ 1.

Step 6. By the assumption that Rm(H) ∈ O(1/
√
m), there exists a

constant C > 0 such that, for any (h0, h1) ∈ H ×H,

P{|h0(x)− h1(x)| > α+ 1/t}

= Lα+ 1
t
(h0, h1)

≤ L̂α(h0, h1) + t

(
8Rm(H) +

√
ln(4/δ)

2m

)

≤ L̂α(h0, h1) + t

(
8C√
m

+

√
ln(4/δ)

2m

)
,

(5.45)

where the first inequality is based on (5.44).
Recall α ∈ (0, 1). Setting 1

t
= α, one have

P{|h0(x)− h1(x)| > 2α}

≤ L̂α(h0, h1) +
1

α

(
8C√
m

+

√
ln(4/δ)

2m

)
.

(5.46)

Setting α′ = 2α proves (5.18).
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Part II

Randomized Machine Learning
Methods
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Chapter 6

A Model-Agnostic Randomized
Learning Framework based on
Random Hypothesis Subspace
Sampling

6.1 Introduction

Randomized machine learning is a research topic that studies how to ran-
domize the learning process, often with an aim of improving learning
efficiency. Representative techniques range from random projection [Vem05]
for efficient dimensionality reduction to extremely randomized decision
tree [GEW06], and from random Fourier feature [RR08] for efficient kernel
methods to random vector functional link [NNSS20] for efficient network
training. These techniques have received adequate research interests over
the past decades.

When inspecting the literature, one may notice that most randomized
learning techniques are model-specific. For example, in [GEW06], tree
generation is randomized by using random features to split tree nodes; in
[RR08], a kernel machine is randomized by using random Fourier features
to approximate kernel functions; in [NNSS20], neural network training is
randomized by fixing all but the output weights to random values. While
these techniques have achieved promising results on their designated models
respecitvely, it remains unclear how they could be applied on other models
or guide the design of randomized learners for them.

Random projection [Vem05] is a randomized dimensionality reduction
technique, which projects data into a lower dimensional feature space
through random linear projections. It can be applied to speed up down-
stream learning and considered as model-agnostic to the learner. However,
the speedup is often limited because the learner is not randomized and
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could remain inefficient especially if its time complexity does not depend
heavily on the original feature dimension such as kernel methods.

The above observations reveal the lack of a model-agnostic randomized
learning framework that not only ties the existing techniques for certain
models but also provides guidance on designing randomized learners for
other models. [CL22c] believes such framework will help to significantly
advance the research and application of randomized machine learning. This
motivates the present study.

A major contribution of this paper is the design of a model-agnostic
randomized learning framework based on Random Hypothesis Subspace
Sampling (RHSS). Given any hypothesis class, it randomly samples k hy-
potheses and learns a model in their span that best approximates the target
model on a set of n training instances. Importantly, this learning process
can always be cast as a simple linear least square problem and solvable in
O(nk2) time. In practice, small k often suffices for good performance, which
makes RHSS-based learning extremely efficient no matter how complex the
given hypothesis class is.

On the theory side, [CL22c] derives the performance guarantee of RHSS
from a generic subspace approximation perspective, leveraging properties
of metric entropy and random matrices. Under proper conditions, it is
shown that the best model learned from the span of k randomly sampled
hypotheses can approximate any target model on a fixed data set by up
to an O(k−c) error with high probability, where c is a constant in (0, 1).
Although this bound is not as tight as those developed for model-specific
randomized learners such as in [RR17, AKM+17], in experiments RHSS is
observed to have similar or even better performance than their counter-
parts. Nonetheless, it remains an open question on how to bridge the gap
theoretically.

On the practical side, [CL22c] demonstrates the applications of RHSS on
kernel, neural network and tree based models, and discusses their connections
to the existing randomized learners that are specifically designed for these
models, including random Fourier features, random vector functional link
and extra tree. In experiments, [CL22c] compares the proposed RHSS-based
learners with standard learners and model-specific randomized learners. One
can see they approach standard learners efficiently as k increases, and often
outperform their model-specific counterparts on real-world data sets.

The rest of this chapter is organized as follows: Section 2 reviews
related work; Section 3 presents the proposed RHSS framework; Section 4
presents its theoretical analysis and Section 5 demonstrates its applications;
experimental results are shown in Section 6 and conclusion in Section 7.
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6.2 Related Work

6.2.1 Random Fourier Feature

Random Fourier Features (RFF) is designed to speed up kernel methods
[RR08]. It approximates kernel functions using inner products of explicit
feature vectors generated through random Fourier functions, and thus
bypasses the need of working with the Gram matrix. With n training
instances and k random features, RFF reduces the typical time complexity
of learning a kernel machine from O(n3) to O(nk2), where k is often smaller
than n. Because of its outstanding efficiency, RFF has been intensively
studied in the past e.g. [YLM+12, Sza15, RR17, AKM+17, Li17, LTOS19].

It remains unclear, however, that how RFF can be applied on non-kernel
machines such as network or tree that do not necessarily work with Gram
matrices. One may use it as a feature preprocessing technique such as
generating a tree based on Fourier features, but there is little guarantee
on the accuracy or efficiency of downstream learning. (See Section 2.4 for
more discussion on the limitations of randomized feature preprocessing.)
Comparatively, the proposed RHSS framework applies to both kernel and
non-kernel machines.

6.2.2 Random Vector Functional Link

Random Vector Functional Link (RVFL) is designed to speed up multi-layer
perceptron learning [PPS94, IP95]. It only optimizes the weights between
the last hidden layer and the output layer, and randomly sets the other
weights for the final network. With n training instances and m neurons in
the last hidden layer, RVFL can efficiently learn the network in O(nm2)
time. Although proposed in the last century, RVFL is re-gaining research
interests in recent years [ZS16, NNSS20, GS20].

Apparently, it is unclear how RVFL can be applied on non-network
models such as kernel machine or tree that are not constructed by ordered
layers of weights. Comparatively, the proposed RHSS framework applies
to both network and non-network models. Interestingly, when applied on
multi-layer perceptron, RHSS can be viewed as applying the RVFL principle
on a specially constructed network. See Figure 6.1 and related discussions
in Section 5.2.

6.2.3 Extra Tree

Extra tree is designed to speed up tree learning [GEW06]. It randomly
selects features to split nodes when generating each tree, and outputs the
average of multiple trees as the final model. By avoiding the search of optimal
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features for node splitting, extra tree is more efficient than standard tree
learning and has received successful applications [DPH+12, MWvdG+15].

Similar to RFF and RVFL, however, it is unclear how extra tree can be
applied on non-tree models that do not have nodes to split. Comparatively,
the proposed RHSS framework applies to both tree and non-tree models.
When applied on tree, RHSS uses the same method as extra tree to generate
multiple trees, but then outputs an optimally weighted average of them as
the final model.

From the tree ensemble perspective, RHSS and extra tree are both
connected to random forest. The latter is a powerful non-randomized
tree learning method, which also averages multiple trees but each tree
finds optimal features (from a sub-pool) to split nodes. [CL22c] does not
expect randomized tree learners to beat random forest in accuracy, yet our
experimental results suggest they provide good approximations while being
significantly more efficient to learn.

In light of the above discussion, one may also see some connection
between RHSS and boosting, since the latter also finds an optimal weighted
average of models. Yet, they have a fundamental difference that boosting
optimizes each model (thus not a randomized learner) whereas RHSS
randomly picks each model. Besides, models in boosting are often dependent
whereas models in RHSS are i.i.d. sampled.

6.2.4 Random Projection

Random Projection (RP) is design to speed up dimensionality reduction. It
maps a set of data into a lower dimensional feature space through randomly
generated linear projections [Vem05]. Compared to other reduction methods,
RP is more efficient in that it avoids the search of optimal projections which
often has a high time complexity such as O(p3) for p input features in PCA.
Besides, it is proved that data distortion in the randomly projected feature
space is likely bounded [AV06] and thus RP will not significantly deteriorate
the performance of downstream learning [FM03, MM12, DK13].

RP is often applied to speed up downstream learning and considered
as model-agnostic to the learner. However, the speedup is often limited
because the learner could remain inefficient. For example, after using RP to
reduce feature dimension, learning a kernel machine still takes O(n3) time
with n training instances and RVFL still takes O(nm2) time with m hidden
neurons. Comparatively, the proposed RHSS directly speeds up the learner
(through approximation). When applied on linear hypothesis class, RHSS
is equivalent to RP followed by the learning of a linear model.

From a broader randomized feature projection perspective, another
related work is randomized kernel locality sensitive hashing (R-KLSH)
[GGVS+19, GGVSC19]. It designs randomized hash functions (with param-
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eters) to generate binary features, then optimizes them for label prediction,
and finally use them to train multiple tree models that are at the end
assembled into a random forest.

Both R-KLSH and RP generate features with randomness for down-
stream learning, but they have two fundamental difference. First, features
of RP are random while features of R-KLSH are semi-random since they
are optimized from data for the prediction task. Second, RP speeds up
learning by generating few features, but R-KLSH often needs to generate
redundant features and achieves speedup based on the binary property of
these features that can be efficiently exploited by tree models – from this
perspective, R-KLSH is model-specific. These, plus the difference between
RP and RHSS, are the difference between R-KLSH and RHSS.

6.3 The RHSS-based Learning Framework

In this section, [CL22c] presents the RHSS-based randomized learning
framework. Its basic idea is to randomly sample some hypotheses and then
learn an optimal model in their span. Specifically, given a hypothesis class
and a set of n training instances, RHSS operates in four steps:

(1) Randomly sample k hypotheses from the class.
(2) Apply each sampled hypothesis on all training instances and obtain

an n-dimensional vector of its predicted labels.
(3) Learn an optimal linear combination of the prediction vectors that

best approximates the vector of true labels.
(4) Output the combined hypothesis.
Detailed learning process is elaborated in Framework 3. In the framework,

xi is the ith instance in the training set and yi is its label. The number
of sampled hypotheses k is a hyper-parameter. The design of specific
hypothesis sampling approach is dependent on the hypothesis class, and
three examples are shown in Section 6.5.

Once an output model f is obtained, one can apply it on a testing point
z by first applying the sampled hypotheses to obtain h1(z), . . . , hk(z) and
then calculating the prediction as f(z) = α1h1(z) + . . .+ αkhk(z).

As one can see, the RHSS framework is fairly simple and easy to apply
as learning is always formulated as a linear least square problem solvable in
O(nk2) time, no matter how complex the hypothesis class is. In experiments,
one can observe that small k often suffices for good performance, which
makes RHSS-based learning very efficient.

Next, the theoretical guarantees of RHSS are derived and its applications
are demonstrated on three hypothesis classes.
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Framework 3 The RHSS-based Learning Framework

Input: hypothesis class H, sampling distribution D, a labeled set
(x1, y1), . . . , (xn, yn), hyper-parameter k

1: Independently sample h1, . . . , hk ∈ H based on D.

2: Calculate h̃i = [hi(x1), . . . , hi(xn)]
T for each i.

3: Optimize coefficients α1, . . . , αk ∈ R by solving

min
α1,...,αk

∥∥∥∥∥
k∑

i=1

αih̃i − ỹ

∥∥∥∥∥
2

, (6.1)

where ỹ = [y1, . . . , yn]
T .

Output: Model f =
∑k

i=1 αihi.

6.4 Theoretical Analysis of RHSS

In this section, the theoretical guarantee of RHSS is derived from a generic
subspace approximation perspective, i.e., it is equivalent to approximating
a target set using a random subspace spanned by the columns of a random
matrix.

First, a reader may refer to the set of analytic tools introduced in Chapter
2, some borrowed from the literature of metric entropy and random matrices
and some developed from there (with proofs given in the appendix). Then,
the main theoretical results are presented and their implications discussed.

6.4.1 Preliminaries

The analysis of subspace approximation will be performed on the Grass-
mannian. Let Gn,ℓ be the Grassmannian consisting of all the ℓ-subspaces of
Rn, and the distance between any two U, V ∈ Gn,ℓ is measured by

dG,r(U, V ) = ∆(U ∩ Sr, V ∩ Sr), (6.2)

where ∆ is the Hausdorff distance defined as

∆(X, Y ) = max{sup
x∈X

inf
y∈Y

∥x− y∥, sup
y∈Y

inf
x∈X

∥x− y∥} (6.3)

with ∥ · ∥ being the ℓ2 norm, and Sr is an n− 1 dimensional sphere with
radius r. The Remark 5 in [Sza82] suggests dG,r is also a metric.

To analyze the approximation error, one can use the covering number of
Gn,ℓ. Let Nε be the ε-covering number of Gn,ℓ w.r.t. dG,r, which is defined
as the smallest number of ε-balls whose union contains Gn,ℓ, that is,

Nε = argmin
m

∪m
i=1Bε(Ui) ⊇ Gn,ℓ, (6.4)

52



where Bε(Ui) = {V ∈ Gn,ℓ | dG,r(Ui, V ) ≤ ε} is an ε-ball centered at
Ui ∈ Gn,ℓ and with radius ε; moreover, Bε(U1), . . . , Bε(UNε) is called an ε-
covering of Gn,ℓ. The following lemma is a scaled version of the Proposition
8 in [Sza82], originally proposed in [Sza], which bounds the covering number.

Lemma 6.4.1. There exist universal constants c, C such that(cr
ε

)ℓ(n−ℓ)

≤ Nε ≤
(
Cr

ε

)ℓ(n−ℓ)

, (6.5)

for any ε ∈ (0,
√
2].

Our analysis also involves the use of a subspace to approximate a finite
set. Inspired by the Kolmogorov n-width theory [Pin12], [CL22c] define the
distance from a subspace U ∈ Gn,ℓ to a finite set A ⊆ Rn as

dS(A,U) = sup
a∈A

inf
u∈U

||a− u||. (6.6)

Note that infU∈Gn,ℓ
dS(A,U) is the Kolmogorov ℓ-width of A in Rn, and its

value is zero whenever the cardinality of A is no greater than ℓ (because
one can always use elements of A as part of a basis to construct U). In
addition, [CL22c] develop the following pseudo-triangular inequality based
on this distance. Its proof is in Appendix 6.8.1.

Lemma 6.4.2. For any U, V ∈ Gℓ,n and finite A ⊆ Sr,

dS(A,U) ≤ dS(A, V ) + dG,r(V, U). (6.7)

The subspace being analyzed will be random, and is actually the row
space of a random matrix H̃ constructed as follows: let H1, . . . , Hk be
the random hypotheses from which the k hypotheses in Framework 3 are
sampled respectively, and x1, . . . , xn be a given data set. Construct

H̃ =

H1(x1) . . . H1(xn)
...

. . .
...

Hk(x1) . . . Hk(xn)

 =

H̃1:
...

H̃k:

 , (6.8)

where H̃i: = [Hi(x1), . . . , Hi(xn)] is the ith row and k is typically way smaller
than n.

Our analysis will rely on a fixed dimension of the random subspace, and
this only occurs with certain probability that can be characterized by the
following property of random matrix, which is from [Ver10] Theorem 5.39.

Theorem 6.4.3. Let M be a k-by-n matrix whose rows are independent sub-
gaussian isotropic random vectors in Rn. Let σmin be the smallest singular
value of M . Then

Pr{σmin <
√
k − c

√
n− t} ≤ 2 exp(−Ct2), (6.9)
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for any t ≥ 0, where c, C > 0 are constants depending only on the maximum
subgaussian norm of the rows.

Using the above theorem, one may develop the following property of H̃.
Its proof is in Appendix 6.8.2.

Lemma 6.4.4. For random matrix H̃ in (6.8), if H1, . . . , Hk are i.i.d. and
each H̃i: follows a sub-Gaussian distribution and has an invertible expected
outer product, then

(i) H̃1:, . . . , H̃k: are i.i.d..
(ii) There exist constants a, b depending on the largest sub-Gaussian

norm and expected outer product of H̃i:, such that a sample of H̃ has linearly
independent rows with probability at least 1− 2 exp(−b(

√
k − a

√
n)2).

Our analysis also relies on the following assumption.

Assumption 6.4.5. There exists an ε-covering of Gn,ℓ, denoted by

Bε(U1), . . . , Bε(UNε) (6.10)

for some U1, . . . , UNε ∈ Gn,ℓ, such that any ℓ-dimensional row span of H̃ is
uniformly distributed in Bε(U1), . . . , Bε(UNε).

Finally, let f be a model returned by RHSS. Its error will be analyzed
on a labeled set (x1, y1), . . . , (xn, yn), defined as

ern(f) =
1

n

n∑
i=1

[f(xi)− yi]
2. (6.11)

Its error is also analyzed on the population, defined as

er(f) = E[f(x)− y]2, (6.12)

where (x, y) denotes a random instance.

6.4.2 Theoretical Analysis of RHSS

The main result is stated as follows.

Theorem 6.4.6. Suppose H̃ in (6.8) satisfy the conditions in Lemma 6.4.4
and Assumption 6.4.5. Then, there exist constants a, b, c > 0 such that
any model f returned by Framework 3 satisfies ern(f) ≤ ε with probability
at least 1 − δ1 − δ2 (over the random choice of hypotheses), where δ1 =

2 exp(−b(
√
k − a

√
n)2) and δ2 = exp(−k(

√
nε

2cr
)(n−1)) .
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Proof. This proof has four steps: (i) show the vectorized hypotheses are
linearly independent with high probability; (ii) show ern(f) is bounded by
some distance dS; (iii) upper bound the introduced distance; (iv) specify
the probability for the upper bound to hold. Details are elaborated below.

Step (i): Probability of Linear Independence
Consider an event that h̃1, . . . , h̃k are linearly independent. Let P1 be

the probability this event does not occur. Then, Lemma 6.4.4 suggests
there exists constants a, b such that

P1 ≤ 2 exp(−b(
√
k − a

√
n)2). (6.13)

The rest of the analysis will be based on the assumption that the event of
linear independence occurs.

Step (ii): Bound ern(f) by dS(Ỹ , Ṽi).
Let ℓ be a proper number (to be picked later) and evenly divide h̃i’s

into m = k/ℓ groups. By the assumption in Step (i), each group spans an
ℓ-subspace. Let Ṽ1, . . . , Ṽm ∈ Gn,l be the ℓ-subspaces spanned by the m
groups, respectively.

Then, RHSS can be viewed as using one Ṽi to approximate the target
set Ỹ = {ỹ}, as it finds a model whose vectorized representation f̃ =
[f(x1), . . . , f(xn)]

T ∈ Ṽi has the smallest distance to ỹ ∈ Ỹ , i.e.,

||f̃ − ỹ|| = sup
ỹ∈Ỹ

min
h̃∈Ṽi

||h̃− ỹ|| = dS(Ỹ , Ṽi). (6.14)

Moreover, it is easy to verify (by definition) that

ern(f) = [dS(Ỹ , Ṽi)]
2/n. (6.15)

Thus to bound ern(f), it suffices to bound dS(Ỹ , Ṽi).
Step (iii): Bound dS(Ỹ , Ṽi).
To bound dS(Ỹ , Ṽi), one can first apply the developed pseudo-triangular

inequality. Let V∗ = argminV ∈Gn,ℓ
dS(Ỹ , V ) be a subspace that best approx-

imates Ỹ and r = ||ỹ||. Then, Lemma 6.4.2 and the remark of (6.6) suggest
that

dS(Ỹ , Ṽi) ≤ dS(Ỹ , V∗) + dG,r(V∗, Ṽi)

= dG,r(V∗, Ṽi).
(6.16)

To bound dG,r(V∗, Ṽi), one may apply results on Grassmannian. Recall Nε is
the covering number of Gn,ℓ, and let Bε(U1), . . . , Bε(UNε) be the ε-covering
in assumption 6.4.5.

By definition, V∗ must fall in one of the balls – without loss of generality,
assume V∗ ∈ Bε(U1). Now, if Ṽi also falls in Bε(U1), by the triangular
inequality for metric dG,

dG,r(Ṽi, V∗) ≤ dG,r(Ṽi, U1) + dG,r(U1, V∗) ≤ 2ε. (6.17)
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Plugging (6.16) (6.17) back to (6.15), one have

ern(f) ≤ (4ε2)/n. (6.18)

The quantity ε′ = (4ε2)/n implies

ε =
√
ε′n/2. (6.19)

Step (iv): Specify the Probability for the Bound
It remains to specify the probability for (6.18). By the uniform assump-

tion, the probability for one Ṽi to fall outside Bε(U1) is 1− 1/Nε, and for
all Ṽ1, . . . , Ṽm to fall outside Bε(U1) is P2 = (1− 1/Nε)

m. By Lemma 6.4.1
and (6.19), one have

P2 ≤ exp(−m

Nε

) ≤ exp(−k

ℓ

( ε

cr

)ℓ(n−ℓ)

)

≤ exp(−k

ℓ
(

√
nε′

2cr
)ℓ(n−ℓ)),

(6.20)

for some constant c. Now one can pick ℓ. Simple analysis shows the right
side of (6.20) is minimum when ℓ = 1. Thus

P2 ≤ exp(−k(

√
nε′

2cr
)(n−1)). (6.21)

Finally, combining all by a union bound and replacing ε′ with ε proves the
theorem.

Implications of Theorem 6.4.6

In Theorem 6.4.6, the probability for RHSS to have guaranteed performance
is determined by δ1 and δ2, where the former determines how likely the
sampled hypotheses are linearly independent, and the latter determines
how likely the output model performs well. The following discussion will
focus on discussing the impact of k on both terms, since it is the major
hyper-parameter of RHSS.

For δ1, the impact of k is not monotonic based on δ1 = 2 exp(−b(
√
k −

a
√
n)2). When

√
k < a

√
n, increasing k will increase δ1 and generate a

weaker guarantee; otherwise, increasing k will decrease δ1. This implies if
one wants all sampled hypotheses to be linearly independent, one could
sample either very few or a lot. (Fortunately, in experiment one can see a
few is sufficient for good performance.)

For δ2, it monotonically decreases as k increases based on δ2 = exp(−k(
√
nε

2c∥ỹ∥)
n−1),

giving a higher probabilistic guarantee. When δ2 is held constant, one can
see that increasing k allows one to pick a smaller ε. This implies sampling
more hypotheses allows one to have a smaller error guarantee.
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Since both δ1 and δ2 have the form exp(−cnk) for some cn, together
they provide a strong guarantee that ern(f) > ε with probability at most
exp(−ck), which drops exponentially fast as k increases.

It is worth mentioning that, δ2 often dominates δ1 in practice, especially
for large n and small k. Moreover, it is easy to show δ1 = 0 if more ideal
sampling distributions can be assumed, such as those remarked in following
corollary.

Corollary 6.4.7. If H̃1, . . . , H̃k, defined in (6.8), are independently and
uniformly distributed, then there exists constant c > 0 as in Lemma 6.4.1
such that any model f output from Framework 3 satisfies ern(f) ≤ ε with

probability at least 1− δ, where δ = exp(−k(
√
nε

2cr
)(n−1)).

Extension to Generalization Error

In this section, the above result is extended from a data set to the population
using Rademacher complexity. Recall such complexity1 of a hypothesis class
H w.r.t. random inputs x1, . . . , xn is defined as

Rn(H) = ExEt sup
h∈H

1

n

∣∣∣∑n

i=1
tih(xi)

∣∣∣ , (6.22)

where t1, . . . , tn are independent random variables uniformly picked from
{−1,+1}. Let k,M be two constants and define the following hypothesis
class

F =
{∑k

i=1
αihi | hi ∈ H,αi ∈ R.|αi| ≤ M

}
, (6.23)

The following relation can be developed between Rn(F ) and Rn(H). Its
proof is in Appendix 6.8.3.

Theorem 6.4.8. For any finite K,M, n > 0,

Rn(F ) = Mk · Rn(H). (6.24)

Combining this with standard generalization arguments e.g., Theorem 3.3
in [MRT18] and Theorem 6.4.8, one may obtain the following generalization
error bound for RHSS.

Theorem 6.4.9. In Framework 3, suppose all hypotheses are bounded by a
constant T > 0 and the n instances are sampled i.i.d.. Then there exists a
constant M depending on λ such that, with probability at least 1− δ, any

output model f satisfies er(f) ≤ ern(f) + 8TMkRn(H) + T 2

√
8 log 1

δ

n
.

1Here the version with absolute value is adopted.
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To better interpret the bound, consider the scenario in Corollary 6.4.7

which implies ern(f) ≤ 4c2r2

n
( 1
k
log 1

δ
)

1
n−1 . Plugging this into Theorem 6.4.9,

the error bound becomes

4c2r2

n
(
1

k
log

1

δ
)

1
n−1 + 8TMkRn(H) +O(

1√
n
). (6.25)

One can see k balances the first two terms, as increasing it will decrease
the 1st term (approximation error) but increase the 2nd term (complexity
of F ). This makes perfect sense.

Interestingly, the balance suggests an optimal k that could minimize the
error bound. Let J(k) be the sum of the first two terms in (6.25). Solving

∂J(k)
∂k

= 0 gives this optimal k =

(
c2r2(log 1

δ
)
2−n
n−1

2TMRn(H)n(n−1)

)n−1
n

. Plugging this back

to (6.25) and assuming n is sufficiently large, it is easy to show the 1st term
is in O( 1

n
) and the 2nd term is in O( 1

n2 ).
Note that both terms are much smaller than the 3rd term, which is

in O( 1√
n
) and induced solely from generalization. Then, Theorem 6.4.9

suggests the error induced from approximation is negligible compared to the
error induced from generalization. This presents a theoretical justification
on the effectiveness of RHSS, and is also consistent with our experimental
results.

6.5 Applications of RHSS

Applying RHSS is straightforward: sample some hypotheses, get their
predictions and learn their best combination. In practice, the design of
hypothesis sampling depends on the model. Three examples are given in
this section.

6.5.1 Kernel Ridge Regression (KRR)

Let ϕ be an (implicit) feature mapping and Hϕ be the set of all linear
hypotheses in the mapped space. Standard KRR learns a model in Hϕ in
O(n3) time.

[CL22c] propose RHSS based KRR (RHSS-KRR), which randomly sam-
ples hypotheses from

Hϕ =

{
n∑

i=1

βiϕ(xi) | βi ∈ R

}
. (6.26)

Specifically, a hypothesis is sampled by independently sampling its βi’s from
a proper distribution such as Gaussian.
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Suppose the jth hypothesis hj =
∑n

i=1 β
j
i ϕ(xi) is sampled. Its prediction

vector can be evaluated as

h̃j = [hj(ϕ(x1)), . . . , hj(ϕ(xn))]
T = K · β⃗j, (6.27)

where β⃗j = [βj
1, . . . , β

j
n]

T and K is the Gram matrix.
In terms of time complexity, RHSS-KRR takes O(nk2) to learn the

output model, which is more efficient than the standard KRR that takes
O(n3), and equally efficient as random Fourier Feature that takes O(nk2)
with k random features. The process of sampling and evaluating h̃1, . . . , h̃k

takes O(n2k), which is less efficient than RFF which takes O(nk) but still
more efficient than standard KRR.

6.5.2 Multi-Layer Perceptron (MLP)

Let Hτ be the set of MLPs with the same architecture τ which specifies
the number of hidden layers, number of neurons per layer and activation
functions. Standard MLP learning is done through back-propagation.

[CL22c] propose RHSS based MLP (RHSS-MLP), which randomly sam-
ples a network in Hτ by independently sampling all its weights from a
proper distribution such as Gaussian.

RHSS-MLP takes O(nk2) to learn the output model, while RVFL takes
O(nm2

τ ) with mτ being the number of neurons in the last hidden layer.
Interestingly, one can view RHSS-MLP as applying the RVFL principle on
a network with special architecture, as illustrated in Figure 6.1.

Figure 6.1(a) shows an MLP with a single hidden layer. Let W1 be the
set of weights between the input and hidden layers, and W2 be the set of
weights between the hidden and output layers. Back-propagation optimizes
W1 and W2, while RVFL randomly sets W1 and only optimizes W2.

Figure 6.1(b) shows the corresponding network of RHSS-MLP. It has k
blocks of MLP’s, as k sampled hypotheses, and combines them at the end.
Let W3 be the set of weights between the output and the last hidden layer.
RHSS-MLP randomly sets W1 and W2, and only optimizes W3.

6.5.3 Decision Tree

Let Hτ be the set of decision trees that can be generated based on a feature
set τ . Standard tree learning algorithms find optimal features to split tree
nodes.

We propose RHSS based tree (RHSS-Tree), which randomly samples
trees in Hτ by applying the extra tree generation technique [GEW06] on
bootstrap samples. More specifically, one can sample a tree by randomly
selecting features to split its nodes. Bootstrapping is necessary in this
application, since different trees generated by an extra tree will have the
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(a) MLP/RVFL (b) RHSS-MLP (k = 2)

Figure 6.1: Architectures of MLP, RVFL and RHSS-RVFL

same predictions on the training set, making the optimization in (6.1) useless
(all αi’s are identical).

Standard tree learning and extra tree learning have the same time
complexity, although the latter is faster since it avoids the time of finding
optimal features for node split. RHSS-Tree has the same time complexity
as it applies extra tree.

6.6 Experiments

[CL22c] compares the performance of the proposed RHSS-KRR, RHSS-MLP
and RHSS-Tree with their existing randomized counterparts on three public
real-world data sets, namely, Crime and Community, Adult and COMPAS.
On each data set, we use the first half of the instances for training and
the other half for testing. To account for the randomness in randomized
learners, [CL22c] runs each learner for 20 times and report its average
performance and standard deviation. It focuses on reporting accuracy of
the trained models (measured by their rooted mean square errors) versus
hyper-parameter k. In all figures, the k values are log-scaled.

The following discussion first presents three sets of experiments, each
comparing one RHSS based learner with its existing randomized counterpart.
Then, [CL22c] performs a set of sensitivity analysis including the impact
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of RP on RHSS. The codes of all experiments are available at https:

//github.com/yxc827/RHSS.

6.6.1 Comparisons with Existing Randomized Learn-
ers

[CL22c] designs three sets of comparisons, each based on one proposed
application of RHSS in Section 6.5.

The first set compares RHSS-KRR with standard KRR and Random
Fourier Feature based KRR (RFF-KRR). It uses RBF kernel with width
optimized to 1e-3. For RHSS-KRR, the hypothesis coefficients are sampled
independently from N(0, 1). It choses this distribution simply because it is
common, but RHSS actually seems fairly robust across different sampling
distributions. (See results in the next section.) Both KRR and RFF-KRR
apply ridge regression, and the regularization coefficient is optimized to
0.1 on Crime and 0.001 on the other two data sets. In this experiment, k
is the number of sampled hypotheses for RHSS-KRR and the number of
random features for RFF-KRR. Results are shown in Figure 6.2(a) 6.2(b)
6.2(c). One can see RHSS-KRR converges slightly faster than RFF-KRR,
and converges to KRR at around k = 100.

The second set compares RHSS-MLP with standard MLP and RVFL.
Since RVFL is mainly designed for the single-hidden-layer architecture,
[CL22c] apply this architecture with 20 hidden neurons and ReLU ac-
tivation function. For MLP and RVFL, the regularization coefficient is
optimized to 10. For RHSS-MLP and RVFL, all non-optimized parameters
are independently sampled from N(0, 1). Results are shown in Figure 6.2(d)
6.2(e) 6.2(f). One can see RHSS-MLP converges to MLP when around
k = 100 and offers a better approximation of MLP than RVFL at that point
on two data sets.

The third set compares RHSS-Tree with decision tree, extra tree and
random forest. In this experiment, k is the number of sampled hypotheses
for RHSS-Tree and the number of trees for extra tree and random forest.
For RHSS-Tree, bootstrap sample size is set to 80% of the original training
set. The configurations of all other methods are set as default. Results are
shown in Figure 6.2(g) 6.2(h) 6.2(i). One can see RHSS-Tree and extra
tree both outperform decision tree as k increases to a small number, and
can well approximate the powerful random forest on two data sets. On
COMPAS, RHSS-Tree slightly outperforms random forest.

Figures 6.2(j) 6.2(k) 6.2(l) show the training time (in terms of seconds)
of all methods on Crime. We see those popular randomized learners RFF-
KRR, RVFL and extra tree are indeed extremely efficient, followed by RHSS
based learners. They are all a lot faster than standard learners.

Overall, one can see RHSS provides an efficient and effective randomized
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learning framework for different models.

6.6.2 Experiment with RP and Sensitivity Analysis

In this section, the performance of random projection (RP) for KRR is
evaluated on the Crime and Community data set. [CL22c] experiments
two methods: (i) RP-KRR first applies RP and then applies KRR; (ii)
RP-RHSS-KRR: first applies RP and then applies RHSS-KRR. In both
methods, k is the projected dimension of RP, and we fix the number of
sampled hypotheses to 100 for RHSS-KRR. For RP, all projection entries
are independently sampled from N(0, 0.01). All other configurations are
the same as before. Results are shown in Figure 6.2(m). We see RP-KRR
also offers a good approximation to KRR as k increases. However, it does
not speed up learning as much as RHSS-KRR, as shown in Figure 6.2(j).
One also see RP-RHSS-KRR is not as efficient as other methods, leaving
how to effectively combine randomized dimensionality reduction method
and randomized learning method an open question.

Next, we evaluate the performance of RHSS-KRR on Crime with different
sampling distributions. Keeping all other configurations, [CL22c] includes
four distributions: (i) Gaussian N(0, 1); (iii) uniform in [−

√
3,
√
3], (iii)

Laplace with zero mean and unit scale, and (iv) symmetric Bernoulli with
p = 0.5. Results are shown in Figure 6.2(o). One can see RHSS is fairly
robust across the different sampling distributions.

Finally, the performance of RVFL and RHSS-MLP are evaluated when
the network architecture varies. Specifically, the number of hidden neurons
is increased, with k fixed to 100 for RHSS-MLP, and results are reported
in Figure 6.2(n). One can see RVFL improves as more hidden neurons
are added, which is a known result. The impact of hidden neurons on
RHSS-KRR is limited, however. Our general observation is that RHSS
based methods are mainly affected by k.

6.7 Conclusion

This chapter presents a model-agnostic randomized learning framework
based on Random Hypothesis Subspace Sampling (RHSS), which ties the
popular model-specific randomized learners and provides a more unified
base for the future developments of randomized machine learning.

The proposed RHSS framework is simple and easy to apply, and cast
learning for any hypothesis class as a linear least square problem solvable
in O(nk2) time with n training instances and k sampled hypotheses. On
the theory side, [CL22c] derives error bounds for RHSS and show the
approximation error is negligible compared to the generalization error,
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(a) RHSS-KRR on Crime (b) RHSS-KRR on COM-
PAS

(c) RHSS-KRR on Adult

(d) RHSS-MLP on Crime (e) RHSS-MLP on COMPAS (f) RHSS-MLP on Adult

(g) RHSS-Tree on Crime (h) RHSS-Tree on COMPAS (i) RHSS-Tree on Adult

(j) Training Time of Kernel
Machines

(k) Training Time of Net-
work Models

(l) Training Time of Tree
Models

(m) Performance of Random
Projection

(n) Performance of RVFL (o) Sampling Distributions
of RHSS-KRR

Figure 6.2: Performance of RHSS based Learning Algorithms on Three
Data Sets
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which theoretically justifies its effectiveness. On the practical side, [CL22c]
demonstrates the applications of RHSS on kernel, neural network and tree
based models. In experiments, one can see the proposed RHSS-based
learners converge efficiently to standard learners and often outperform their
model-specific randomized counterparts, including random Fourier feature,
RVFL and extra tree, on real-world data sets. Our results suggest a strong
practical value of the proposed unifying framework.

6.8 Appendix

6.8.1 Proof of Lemma 6.4.2

Lemma 6.4.2. For any U, V ∈ Gℓ,n and finite A ⊆ Sr,

dS(A,U) ≤ dS(A, V ) + dG,r(V, U). (6.28)

Proof. Let a ∈ A, u ∈ U and v ∈ V . There is

||a− u|| ≤ ||a− v||+ ||v − u||. (6.29)

Taking infimum of u ∈ U on both sides of (6.29) gives

inf
u∈U

||a− u|| ≤ ||a− v||+ inf
u∈U

||v − u||. (6.30)

Let va = arg infv∈V ||a − v||. Taking infimum of v ∈ V on both sides of
(6.30) gives

inf
u∈U

||a− u|| ≤ inf
v∈V

(||a− v||+ inf
u∈U

||v − u||)

≤ ||a− va||+ inf
u∈U

||va − u||

= inf
v∈V

||a− v||+ inf
u∈U

||va − u||.

(6.31)

Since A ⊆ Sr, we have ||a|| = r and thus ||va|| = r. Then

inf
u∈U

||va − u|| ≤ inf
u∈U∩Sr

||va − u|| ≤ sup
v∈V ∩Sr

inf
u∈U∩Sr

||v − u|| ≤ DG,r(V, U).

(6.32)

Plugging (6.32) back to (6.31) and taking supremum of a ∈ A on both sides
of the inequality proves the lemma.

6.8.2 Proof of Lemma 6.4.4

Lemma 6.4.4. For random matrix H̃ in (6.8), if H1, . . . , Hk are i.i.d. and
each H̃i: follows a sub-Gaussian distribution and has an invertible expected
outer product, then
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(i) H̃1:, . . . , H̃k: are i.i.d..
(ii) There exist constants a, b depending on the largest sub-Gaussian

norm and expected outer product of H̃i:, such that a sample of H̃ has linearly
independent rows with probability at least 1− 2 exp(−b(

√
k − a

√
n)2).

Proof. We first prove (i). To show any two rows have identical distribution
is trivial. To show they are independent, let ρ(x;E) = {h ∈ H;h(x) ∈ E}.
Then, for any two Hi, Hj, fixed inputs x, z and sets E1, E2, we have

Pr{Hi(x) ∈ E1, Hj(z) ∈ E2} = Pr{Hi ∈ ρ(x;E1), Hj ∈ ρ(z;E2)}
= Pr{Hi ∈ ρ(x;E1)} · Pr{Hj ∈ ρ(z;E2)}
= Pr{Hi(x) ∈ E1} · Pr{Hj(z) ∈ E2},

(6.33)

where the third line is by the independence assumption. The argument can
be readily generalized to all inputs which implies [Hi(x1), . . . , Hi(xn)] and
[Hj(x1), . . . , Hj(xn)] are independent vectors. This proves claim (i).

Now we prove (ii). Let Σ = E[H̃T
i: H̃i:]. Let H̃ ′ be an k-by-n matrix

whose ith row is
H̃ ′

i: = Σ−1/2H̃i:. (6.34)

It is easy to show H̃ ′
i: has i.i.d. sub-Gaussian isotropic rows.

Let σ′
min be the least singular value of H̃ ′. By Theorem 6.4.3,

Pr{σ′
min <

√
k − a′

√
n− t} ≤ 2 exp(−bt2), (6.35)

for some constants a′, b.
Now, pick an arbitrarily small ε > 0 and set t =

√
k−(a′+ε)

√
n, we have

Pr{σ′
min = 0} ≤ Pr{σ′

min < ε
√
n} ≤ 2 exp(−b[k+(a′)2n−2a′

√
nk]). Further,

let σmin be the least singular value of H̃. Then Pr{σmin = 0} ≤ Pr{σ′
min = 0},

since a sample of H̃ with linearly dependent rows implies the existence of
a sample of H̃ ′ with linearly dependent rows constructed through (6.34).
Setting a = (a′)2 and putting all together prove claim (ii).

6.8.3 Proof of Theorem 6.4.8

Theorem 6.4.8. For any finite K,M, n > 0,

Rn(F ) = MK · Rn(H). (6.36)

Proof. For compact presentation, we will omit subscripts in the expectation
in Rn, and use α and h to denote the set of α1, . . . , αK and set of h1, . . . , hK

respectively.
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We first prove Rn(F ) ≤ MKRn(H). This is true because

Rn(F ) =
1

n
E sup

α,h

∣∣∣∑n

i=1
ti ·
(∑K

j=1
αjhj(xi)

)∣∣∣
=

1

n
E sup

α,h

∣∣∣∑K

j=1
αj ·

(∑n

i=1
tihj(xi)

)∣∣∣
≤ 1

n
E sup

α,h

∑K

j=1
|αj| ·

∣∣∣∑n

i=1
tihj(xi)

∣∣∣
=

1

n
E
∑K

j=1
M · sup

hj

∣∣∣∑n

i=1
tihj(xi)

∣∣∣
=
∑K

j=1
M · 1

n
E sup

hj

∣∣∣∑n

i=1
tihj(xi)

∣∣∣
= MK · Rn(H),

(6.37)

where the third line is by the triangular inequality (for any fixed α, h), the
fourth line is by the definition of supremum so that the sum and product of
non-negative variables are maximized when these variables are maximized;
the fifth line is by the linearity of expectation.

Next we prove Rn(F ) ≥ MKRn(H). This is true because

Rn(F ) =
1

n
E sup

α,h

∣∣∣∑K

j=1
αj ·

(∑n

i=1
tihj(xi)

)∣∣∣
≥ 1

n
E sup

h

∣∣∣∑K

j=1
M ·

(∑n

i=1
tihj(xi)

)∣∣∣
≥ 1

n
E sup

hj=h′

∣∣∣∑K

j=1
M ·

(∑n

i=1
tih

′(xi)
)∣∣∣

= MK · 1
n
E sup

h′

∣∣∣∑n

i=1
tih

′(xi)
∣∣∣

= MK · Rn(H),

(6.38)

where the third line is obtained by setting α1, . . . , αK to M ; the fourth
line is obtained by adding a constraint h1 = . . . = hK when taking the
supremum. Combining (6.37) and (6.38) proves the theorem.
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Chapter 7

SpectralSketches: Scaling Up
Spectral Norm Estimation
through Sketchings

7.1 Introduction

Spectral norm, which is the largest singular value, has long been of interest
to the machine learning community. Such interest naturally comes from
the birth of kernel-based methods in the early days. It re-emerged under
the spotlights due to recent popularity of neural networks and advances in
neural tangent kernels, building equivalence between neural networks and
kernels.

In this era of big data, the computation of spectral norm is known
to be a bottleneck to scalability issues due to its O(n3) time complexity.
Historically, approximation is done through power iterations or Lanczos
Algorithm [Lan50] and their variations. Power iterations directly outputs
an estimate of the greatest eigenvalue in absolute value (for real symmetric
matrices, this coincides with the largest singular value), whereas Lanczos
algorithm usually output a tridiagonal square matrix with another matrix
with orthonormal columns and one can compute the estimate from the small
k × k squared matrix in O(k2). However, these methods converge slowly
and are only computationally efficient for sparse matrices.

Research on power methods and Lanczos continued throughout decades
since spectral norm estimation is important for many machine learning
problems. In the last century, this was crucial for principal component
analysis (PCA) [Pea01] and for all vibration problems of physics and
engineering [Lan50]. Developments in this century continued. Spectral
norm estimation is applied in many classical machine learning methods
including many clustering methods and Support Vector Machine (SVM)
[KK10, TBRS13]. Moreover, a new line of work named spectral learning
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begin to thrive. Spectral learning concerns solving an optimization problem
which involves regularization with a spectral penalty term [AMP10]. It ap-
plies to multi-task learning, collaborative filtering and so on [AMP10, AM05].
In particular, spectral norm regularization is found effective under different
senarios in matrix completion, graph embeddings, adversarial learning, and
computer vision[MHT10, SCS+15, BMCM19, RKH20, ZHX+21]. Spectral
norm is also often used to give upper estimates of approximation errors
[DMC05, GM13, BFT17] and serve as a measure of trainability during
neural architecture search [XPS20]. Its ability to signal trainability leads to
neural architecture search algorithms being developed using spectral norm
estimates as an important step[CGW21, DL21].

Existing research on spectral norm estimation focus on iteration-based
methods. Our contribution is to show, theoretically and empirically, a more
numerically stable and more scalable new paradigm to estimate spectral
norm is through sketching-based algorithms (SpectralSketches). We use
random fourier features and Nystrom method as classical examples of
sketching, representing data-independent and data dependent schemes.
While many improved variants are proposed, they still fall in the iteration-
based framework and have O(n2) in terms of sample size n. Comparatively,
our proposed method is O(n) in terms of n. Our goal is to demonstrate how
sketching may be used in spectral norm approximation, explain what would
be the best setting to apply it, and advocate it as a promising alternative
to classical iteration-based estimations in the resource-constrained scenario.

The rest of this paper is organized as follows. Section 2 discusses work
related to spectral norm approximation and sketching. Sections 3 states
the related and proposed algorithms. Section 4 details the corresponding
approximation bounds and compares the SpectralNystrom bound to power
methods and Lanczos algorithm. Section 5 records the experimental re-
sults and discusses its connection to theoretical gaurantees in Section 4.
Conclusion is given in Section 6.

7.2 Related Work

7.2.1 Spectral Norm Approximation

Spectral norm is widely used in machine learning, from principal component
analysis [Pea01], variations of clustering and support vector machine [KK10,
TBRS13], to neural architecture search [XPS20, CGW21]. It is also critical
for multi-task learning [APYM07], matrix completion [MHT10], computer
vision [ZHX+21], adversarial learning [RKH20, ZHX+21], deep learning
[BMCM19] etc. through spectral learning or spectral regularization [AM05,
AMP10, SCS+15]. Interests in spectral norm estimation results from all
the applications mentioned above. Historically, they mainly come from
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popularity of kernel-based methods and recently by and large due to the
connection established between kernel machines and neural networks through
neural tangent kernels (NTKs) [JGH18].

Many methods have been developed to estimate spectral norm. A
basic method to estimate spectral norm is the power iteration. However,
power iteration is known to be numerically unstable and converges slowly.
Lanczos algorithm is an improvement over Power method introduced by
Richard von Mises in 1929. It first got proposed in [RLHK51]. Improvement
with complete reorthogonalization suggested in [Wil58], and the Lanczos
algorithm for singular value decomposition appeared in [GK65]. Block
Lanczos came up in [GU77] for sparse symmetric matrices, which is still the
main subject of interest for research today. For additional reference, [Kom03]
summarizes the development of Lanczos method well. After decades of
research on improvements, [MM15] gives the state-of-the-art version of
randomized block Lanczos, which they call randomized block Krylov. They
give a faster algorithm with stronger guarantees for sparse matrices. While
their contribution is solid, the case for non-sparse matrices is beyond the
scope of their paper. Their algorithm would still take O(n2k) to compute
for nonsparse matrix with k being the number of iterations and this time
complexity is instrinsic to iteration-based algorithms due to the need for
computing matrix-vector product at each iteration.

7.2.2 Sketching

Sketching is a useful numerical linear algebra technique which aims at
compressing a big matrix into a small matrix so that the more expensive
computations can be done on the small matrix instead [W+14]. Histori-
cally, sketching-based methods are used to speed up matrix multiplications
[DKM06], finding least square solutions [DMMS11, LWM18], finding low-
rank approximation to matrices [LWM+07], finding approximate nearest
neighbors [AC06] and so on.

Random Fourier Features (RFF) [RR07] and Nystrom [DMC05] are two
famous methods that fall under the umbrella of sketching. The former is
data-independent while the latter is data-dependent. They have both seen
numerous improvements in various aspects since their debut. Some represen-
tative examples include [YSC+16, Bac17, DDSR17, MKBO18, YSSK20] for
speeding up RFF convergence, [MM17] for speeding up Nystrom to run in
linear time with respect to the number of samples, [RCCR18] further speed
up the leverage score sampling part of Nystrom and [DKM20, VSSB22] gives
latest improvement on convergence bound ([VSSB22] for sparse matrices).
They are also widely applied to other commonly used machine learning
structures and problems, including transformer [CZJY21, XZC+21] and
k-means clustering [WGM19]. They additionally apply to spectral norm
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estimation through SpectralSketches, which we will introduce below.

7.2.3 Estimating Spectral Norm based on Sketched
Matrix

The idea of estimating spectral norm of a square matrix by computing
spectral norm of a compressed version of it is quite intuitive. Naturally,
there are existing analysis that is based on some version of this idea,
Eg. [T+15, Git11]. They tend to focus on error ε instead of sample size
dimension n, which may be of theoretical interest by default but shows
slow convergence rate. Such slow convergence rate is inherited from random
features, which conveys the conclusion that this idea is of little practical
value. To summarize, those analysis has slightly different settings and fail
to capture the strength of this method.

Specifically, result from [T+15] is linear in the matrix dimension while
mine has an extra exponentially decaying multiplicative factor that contains
the matrix dimension. [T+15] uses d1 × d2 for matrix dimension and mine
use n×n. I rephrase [T+15]’s result using n in this paragraph. Comparable
result is (6.2.6) or (6.5.7) in [T+15]. One can directly compare with (6.2.6),
which has the same left hand side as us and the right hand side is O(n)
while mine is O(n exp(−1/n)). This means my bound is tighter. One may
also apply Markov’s inequality to (6.5.7) then compare that with mine,
which also gives O(n) on the RHS, similar to (6.2.6). This is likely due to
the fact that (6.2.6) is for general not-necessarily-symmetric matrices, which
doesn’t make use of the symmetry. Furthermore, since (6.5.7) is proven
using (6.2.6), such limitation is inherited and Markov’s inequality is also
loose.

7.3 The SpectralSketches Framework

In this section, I present SpectralSketches (Algorithm 4), a framework for
computing spectral norm estimates through sketching. Its basic idea is using
square of the largest singular value for sketches to provide estimation for
the spectral norm of the underlying symmetric prototype of those sketches.
Detailed process is elaborated in Algorithm 4.

In SpectralSketches, any sketching algorithm may be used, although
one may need to adjust the output of the chosen sketching algorithm
accordingly. For example, while the output Z ∈ RD×n from random fourier
features (Algorithm 5) may be used directly by SpectralRFF, the output
G̃k from the Nystrom method (Algorithm 6) need minor adjustment: a best
rank-k approximation typically won’t return Wk directly [DM18], it usually
returns an orthogonal matrix U along with k eigenvalues instead. Forming
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Algorithm 4 SpectralSketches

Input: n× d data matrix X and the kernel map k : Rd ×Rd → R
Compute k × n matrix Z with a sketching algorithm of choice s.t. ZTZ
approximates K
return: σ2

max(Z) as an approximation to λmax(K)

Algorithm 5 Random Fourier Features

Input: A positive definite shift-invariant kernel k(x, y) = k(x − y),
samples x1, . . . , xn ∈ Rd

Compute the Fourier transform p of the kernel k: p(w) = 1
2π

∫
eiw

T δk(δ)dδ.
Draw D i.i.d. samples w1, . . . , wD ∈ Rd from p and D i.i.d. samples
b1, . . . , bD ∈ R from unif[0, 2π].
return: an D × n matrix Z formed by

z(xi) =
√

2
D
[cos(wT

1 xi + b1) cos(w
T
2 xi + b2) . . . cos(w

T
Dxi + bD)]

T

a diagonal matrix Λ with such k eigenvalues, one can get Wk by computing
Wk = UΛUT . This means that instead of returning G̃k, one should return
Z = (CUΛ1/2)T when adapting Nystrom method to form SpectralNystrom
(a version of Algorithm 4).

In terms of computational complexity, the standard singular value cal-
culation in SpectralSketches takes O(nk2) (with k = D being the number
of random features), while the standard eigenvalue calculation takes O(n3).
One may use Lanczos to do an approximate calculation to speed up the
latter, which would still take O(n2k) (with k being the number of iterations
in Lanczos).

As one can see, SpectralSketches is embarrassingly simple and easy
to apply using any existing sketching algorithm. Hence one can take full
advantage of the continuous improvements in sketching techniques. The
approximation accuracy and convergence rate is consistent with the per-
formance of the chosen sketching algorithm as one will see in the theory
and experiment sections. In those later sections, I will exemplify Spec-
tralSketches with SpectralRFF and SpectralNystrom, where the sketching
method used in Algorithm 4 are RFF and Nystrom, respectively.

7.4 Theoretical Guarantees of SpectralSketches

7.4.1 Notations

si(A)’s or σi(A)’s are used to denote singular values of matrix A, and
λj(K)’s to denote eigenvalues of a symmetric matrix K. Furthermore,
without loss of generality, I assume that the singular values are ordered,
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Algorithm 6 the Nystrom Method

Input: n× n matrix G, {pi}ni=1 such that
∑n

i=1 pi = 1, c ≤ n and k ≤ c
- Pick c columns of G in i.i.d. trials with replace and with respect to the
probabilities {pi}ni=1; let I be the set of indices of the sampled columns
for each sampled column (whose index is i ∈ I) do
Scale by dividing its elements by

√
cpi

end for
- Let C be the n× c matrix containing the sampled columns rescaled in
this manner and let W be the c × c submatrix of G whose entries are
Gij/(c

√
pipj), i ∈ I, j ∈ I

- Compute Wk, the best rank-k approximation to W.
return: G̃k = CW+

k CT

with λ1(A) (resp. σ1(A)) referring to the largest eigenvalue (resp. singular
value) of A. Let Z be a D × n sketching matrix (Eg. consisting of random
fourier features) throughout this paper. Since ∥ · ∥2 = s1(·) = smax(·), we
will use them interchangeably. ∥ · ∥ refer to the spectral norm and ∥ · ∥F
refer to the Frobenius norm throughout this paper.

Note that for symmetric matrices, largest singular value is the absolute
value of largest eigenvalue. The spectral radius is the maximum of absolute
values of eigenvalues. So these terms may also be used interchangeably
throughout this chapter.

7.4.2 Main Theorem

From previous analysis on RFF, one see that ZTZ approximates K by
Lemma 2.2.1. Hence, E = K − ZTZ will be written as the error matrix.

Theorem 7.4.1 (SpectralRFF bound). Let M be a compact subset of
Rd with diameter diam(M). Let x ∈ M for all row x of X with size
n× d. Let K ∈ Mn×n be the Gaussian kernel matrix of X with k(x, y) =
exp(−γ∥x − y∥2) and Z ∈ MD×n be the matrix consisting of the random
Fourier features of K. With probability at least

1−O(n exp(−1/n)) (7.1)

in terms of n, one has ∣∣∥K∥2 − s21(Z)
∣∣ ≤ ε. (7.2)

Proof. By Lemma 2.1.5 and Lemma 2.1.2,

max
1≤k≤n

|λk(K)− λk(Z
TZ)| (7.3)

= max
1≤k≤n

|λk(K)− λk(K − E)| (7.4)

≤|λ1(E)|. (7.5)
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From [RR07], one can know that E[z(x)T z(y)] = k(x, y) by design, hence
z(x)T z(y)− k(x, y) is mean zero. Since the rows of Z are independent, then
one can write the n× n matrix E as a sum of D independent mean-zero
symmetric matrices: Let Ei (1 ≤ i ≤ D) has its (j, l)-th entry as ZijZil−Kjl

D
,

then it is easy to verify that E =
∑D

i=1Ei.
Apply Lemma 2.1.3 to E, one has

P [|λ1(E)| ≥ t] =

P [|λ1(
D∑
i=1

Ei)| ≥ t] ≤ 2n exp(− t2/2

σ2 + Ct/3
).

(7.6)

for every t ≥ 0. By uniform convergence of RFF (Lemma 2.2.2), E2
ij ≤ ε2

with high probability, ∥E∥ ≤ ∥E∥F =
√∑n

i=1

∑n
j=1E

2
ij ≤ nε, so C = nε

with failure probability at most 212 d
2γ2diam(M)2

ε2
exp(− Dε2

4(d+2)
). Observe that

σ2 ≤ Dλ2
max(Ei), because

σ2 = ∥E
D∑
i=1

E2
i ∥ = ∥

D∑
i=1

E(E2
i )∥ = ∥DE(E2

1)∥ ≤ DE∥E2
1∥ = Dλ2

max(E1),

(7.7)
where the first equality of by linearity of expectation, second by the fact that
E(E2

i ) are equal for all i based on the i.i.d. assumption of random feature
mappings, third by property of the norm, the inequality is by Jensen’s
inequality and that spectral norms are convex, and the fifth equality by the
definition of spectral norm.

To summarize,

P [|λ1(E)| ≥ ε] ≤ 2n exp(− ε2/2

σ2 + Cε/3
)

≤ 2n exp(− ε2

Dλ2
max(E1) + nε2/3

) + 212
d2γ2diam(M)2

ε2
exp(− Dε2

4(d+ 2)
)

≤ 2n exp(− ε2/2

Dε2 + nε2/3
) + 212

d2γ2diam(M)2

ε2
exp(− Dε2

4(d+ 2)
) + 2 exp(−ε2/4)

= 2n exp(− 3

6D + 2n
) + 212

d2γ2diam(M)2

ε2
exp(− Dε2

4(d+ 2)
) + 2 exp(−ε2/4),

(7.8)
where the first comes from setting t = ε in Equation 7.6, the second from
Equation 7.7, and the third holds by Lemma 2.2.1 with D = 1. Note the
last two lines have no effect on n, so one can in fact stop at line 2 if ε is not
of interest.

One can reach a similar bound for Nystrom. Note the assumption about

a in the next theorem holds unless ε =
2
∑n

i=1 K
2
ii√

c
which is almost impossible

because ε > 0 is small. Hence such assumption is an extremely weak one.
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Theorem 7.4.2 (SpectralNystrom bound). Let M be a compact subset
of Rd with diameter diam(M). Let x ∈ M for all row x of X with size
n× d. Let Z ∈ M c×n be the matrix consisting of the Nystrom-transformed
data of X with respect to the Gaussian kernel k(x, y) = exp(−γ∥x− y∥2).
Assume |

√
c

2
∑n

i=1 K
2
ii
− 1

ε
| ≥ a for some a > 0. With probability at least

1−O(n exp(−1/n)), ∣∣∥K∥2 − s21(Z)
∣∣ ≤ ε, (7.9)

where σ2 is the variance of Nystrom approximation and c is the number of
columns sampled.

Proof. From Lemma 2.2.3 with k = r := rank(K) and taking c =
4(1+

√
8 log(1/δ))2

ε2
,

one can have

P [∥K − K̃∥ ≥ ε] ≤ exp(−
( ε

√
c

2
∑n

i=1 K
2
ii
− 1)2

8
). (7.10)

From the implications of Lemma 2.1.4, one can have

P [|g(x)Tg(y)− k(x, y)| ≥ ε] ≤
≤ P [∥K − K̃∥ ≥ ε]

≤ exp(−
( ε

√
c

2
∑n

i=1 K
2
ii
− 1)2

8
).

(7.11)

By assumption on a, one can have

P [|g(x)Tg(y)− k(x, y)| ≥ ε] ≤ exp(−aε2

8
). (7.12)

Observe that this is similar to what one has in Lemma 2.2.1. Apply argument
similar to what is used to obtain Lemma 2.2.2 from Lemma 2.2.1, one can
get a similar uniform convergence bound on E. With a similar argument
for norm bound using Frobenius norm to bound spectral norm, one can
have ∥E∥ ≤ nε with failure probability d2

ε2
exp(−aε2

d
). Now apply Lemma

2.1.3 similarly,

P [|λ1(E)| ≥ ε] = P [|λ1(
D∑
i=1

Ei)| ≥ ε] ≤ 2n exp(− 3

6a+ 2n
)

+ 212
d2γ2diam(M)2

ε2
exp(− aε2

4(d+ 2)
) + 2 exp(−ε2/4).

(7.13)

Note that the two bounds have the same order with a in SpectralNystrom
and D in SpectralRFF. I will use a in Theorem 7.4.4, but note the same is

74



true for D. Based on our assumption on a, with fixed number of columns
sampled c, a = O(1/ε). With fixed error budget ε, a = O(

√
c).

Observe that with respect to error budget ε, the failure probability

is O( exp(−ε2)
ε2

). With respect to sample size n, the failure probability is
O(n exp(−1/n)). With respect to the feature dimension d of original data
matrix, the failure probability is O(d2 exp(−1/d)).

7.4.3 Comparison to Power Iteration and Lanczos
Algorithm

On a high level, the following theorem states that the probablistic relative
failure goes to zero roughly as

√
n(1 − ε)k for the power algorithm and

at most as
√
n exp(−(2k − 1)

√
ε) for the Lanczos algorithm [KW92]. It

assumes the starting vectors are sampled uniformly from the unit sphere.

Theorem 7.4.3 (Theorem 4.1(a) [KW92]). For any symmetric positive
definite matrix A and for any k ≥ 2 one can have for the power method

P [

∣∣∥Ã∥ − ∥A∥
∣∣

∥A∥
> ε] (7.14)

≤ min(0.824,
0.354√
ε(k − 1)

)
√
n(1− ε)k−1/2. (7.15)

and for the Lanczos algorithm,

P [

∣∣∥Ã∥ − ∥A∥
∣∣

∥A∥
> ε] ≤ 1.648

√
n exp(−

√
ε(2k − 1)). (7.16)

Theorem 7.4.4 (probabilistic relative failure for SpectralSketches). For
any symmetric positive definite matrix K,

P [

∣∣∥K̃∥ − ∥K∥
∣∣

∥K∥
≥ ε] ≤ exp(− aε2

8r∥K∥
), (7.17)

where r ≤ n is the rank of K and a is as defined in Theorem 7.4.2.

Proof.
∑n

i=1K
2
ii ≤

∑n
i=1

∑n
j=1K

2
ij = ∥K∥2F . It is well-known that ∥K∥2 ≤

∥K∥F ≤
√
r∥K∥2, so from Theorem 7.4.2, one can have

P [
∥K̃ −K∥

∥K∥
≥ εr∥K∥] ≤ exp(−

( ε
√
c

2∥K∥2F
− 1)2

8
). (7.18)

By the triangle inequality and reorganizing,

P [

∣∣∥K̃∥ − ∥K∥
∣∣

∥K∥
≥ ε] ≤ exp(−

( ε
√
c

2r∥K∥∥K∥2F
− 1)2

8
). (7.19)
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Write x = ε
√
c

2r∥K∥∥K∥2F
and observe that ε√

r∥K∥F
≤ 3

4
≤ (1

2
−x)2+ 3

4
because K

has all 1’s on the diagonal for the Gaussian kernel which makes ∥K∥F ≥
√
n

by definition of Frobenius norm. Then

ε

r∥K∥
≤ ε√

r∥K∥F
≤ (

1

2
− x)2 +

3

4

= x2 − x+ 1
ε

r∥K∥
− x ≤ x2 − 2x+ 1 = (x− 1)2

ε

r∥K∥
− ε

√
c

2r∥K∥∥K∥2F
≤ (

ε
√
c

2r∥K∥∥K∥2F
− 1)2.

(7.20)

Furthermore, by assumption on a

a ≤ 1− ε
√
c

2
∑n

i=1K
2
ii

≤ 1− ε
√
c

2∥K∥2F
,

aε2

r∥K∥
≤ aε

r∥K∥
≤ ε

r∥K∥
− ε

√
c

2r∥K∥∥K∥2F
.

(7.21)

By combining equation 7.20 and equation 7.21, one can easily get

aε2

r∥K∥
≤ (

ε
√
c

2r∥K∥∥K∥2F
− 1)2.

Combining this with equation 7.19 gives the theorem.

By comparing these bounds, one can see that SpectralSketches scale
better (as n increases) than both power method and Lanczos algorithm as n
gets large. In particular, when matrix norm is fixed, the failure probability is
of order O(exp(−1/r)) with r being the matrix rank. When matrix norm is
not fixed, it is O(exp(− 1

r∥K∥)). When n is fixed, however, SpectralSketches
may have a slower convergence speed than iteration-based methods, since ε
is squared in the exponential term of the failure probability bound. This is
consistent with my experimental result in Figure 7.1, see thorough discussion
in Section 7.5.

Finally, there exists seemingly faster algorithm and seemingly more
superior bound in modern literature, Eg. [MM15]. However, their algorithm
is fast for sparse matrix and still takes O(n2k) for non-sparse matrix while
SpectralSketches takes O(nk2). Their bound is better than what’s shown
in Theorem 7.4.3 in terms of ε but not n. SpectralSketches may have
slower convergence than Lanczos-type algorithms in the fixed-small-n and
large-number-of-iterations (large k) case, but it is a better choice for small k
and large n (i.e. when scalability is required and a only small computational
budget is available). Further empirical evidence of this fact is shown in
Section 7.5, consistent with our analysis in the previous paragraph.
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(a) Estimates vs. k on Crime (b) Estimates vs. k on Crime (c) Estimates vs. n on Crime

(d) Estimates vs. k on Wine (e) Estimates vs. k on Wine (f) Estimates vs. n on Wine

(g) Estimates vs. k on Boston(h) Estimates vs. k on Boston (i) Estimates vs. n on Boston

Figure 7.1: Approximation Performance of SpectralSketches and Power
Method on Three Datasets over 20 Trials. The first two columns vary
the number of features or number of iterations, keeping the overall time
complexity O(nk2) across all three methods. The third column vary the
number of samples used while keeping k = 60 constant across all three
datasets. The first column is a zoomed-out version, which gives intuition
about the convergence speed for each method while sample/matrix size is
kept the same. The second column is a zoomed-in version, which enables
finer comparison between the data-dependent methods. The third column
gives intuition about scalability - we see that SpectralRFF consistently
outperforms the Power Method, which is consistent with our theoretical
finding in Section 7.4.3 (also discussed in Section 7.5).

7.5 Experiments

For fair comparison, we compare each class of methods in their primitive
form. Namely, we experiment on power method as an iteration-based repre-
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sentative, SpectralSketches for random fourier feature (SpectralRFF) as a
data-independent representative, and SpectralSketches for Nystrom method
(SpectralNystrom) as a data-dependent sampling-based representative. As
mentioned towards the end of Section 7.1, all three methods has seen nu-
merous improvements over the years, as discussed in Section 7.2.2, however,
those improvements either suffer from the same drawbacks as the original
method or trade time or space complexity to address those drawbacks.
While it might be worthwhile to research incremental improvements follow-
ing roughly the same pattern, it is also critical to think outside the box and
recognize new class of methods for solving the same problem. Our goal is
to point out SpectralSketches as a strong alternative to existing research
which all seems to follow the iteration-based pattern throughout decades.

To this end, we show performance of our example SpectralSketches
algorithms, SpectralRFF and SpectralNystrom, on three public real-world
datasets (Figure 7.1). The three columns in Figure 7.1 give us intuition about
overall convergence speed (a)(d)(g), approximation quality under different
computation budget (b)(e)(h), and scalability (c)(f)(i). To clarify, we state
the power iterations algorithm used for producing Figure 7.1 in Algorithm
7. The exact procedures of SpectralRFF and SpectralNystrom is discussed
in Section 7.3, so we won’t repeat them here. In Figure 7.1 (b)(e)(h), we
also included SpectralUnifNystrom as a benchmark. UnifNystrom is almost
the Nystrom algorithm described in Algorithm 6 but without the leverage
score sampling. In other words, force pi = 1/n for all i, meaning sample the
columns uniformly. The reason for including SpectralUnifNystrom is not
only to demonstrate the flexibility of SpectralSketches and show the perfor-
mance difference, but also to try and include existing widely used packages
whenever possible. Namely, the package we used for SpectralUnifNystrom
is from sklearn.kernel approximation import Nystroem.

The datasets we used are the UCI Communities and Crime dataset,
the UCI Wine Quality (White) Dataset [DG17], and the Kaggle Boston
Housing dataset. We generate symmetric matrices from these datasets
by implicitly (for RFF) or explicitly (for all other methods) applying the
Gaussian kernel. The spectral norms of such matrices are of tremendous
importance for various applications as discussed in Section 7.2. For Figure
7.1 (a)(b), the matrix evaluated is of size 996×996, for Figure 7.1 (d)(e),
1469×1469 and for Figure 7.1 (g)(h), 479×479. The matrix size changes as
n changes in Figure 7.1 (c)(f)(i), with its size being n× n at all times.

Overall, individual SpectralSketches algorithms inherit strength and
weaknesses from the chosen Sketching algorithm. Next, we give a finer
discussion on all three aspects.
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Algorithm 7 Power Iterations

Input: number of iterations t, number of features k, a distribution p for
guessed starting vectors, n× n matrix K
for i = 1 to t do
Sample starting vector v from p
for j = 1 to k do
Compute Kv and normalize the resulting vector, update v with the

vector and update the norm estimate with the max absolute value of
entry in Kv
end for
Output an estimated norm

end for

7.5.1 Convergence Speed

RFF is known to have slow convergence speed, and a string of research
papers have tried to address that over the years [YSC+16, Bac17, DDSR17,
MKBO18, YSSK20] as discussed in Section 7.2. Since RFF is known to have
slower convergence than Nystrom, it is expected that such slow convergence
behavior gets inherited in SpectralRFF as shown in Figure 7.1(a)(d)(g). As
observed, SpectralNystrom steadily converges to the actual value as number
of features increases, which corroborates our theory in Theorem 7.4.2.

7.5.2 Approximation Quality

Figure 7.1(b)(e)(h) is a zoomed-in version of the previous column. The
difference between data-dependent and data-independent methods is again
observed - SpectralNystrom give closer estimate than SpectralRFF in the
fixed sample size setting due to its ability to incorporate information from
data. Also as expected, SpectralNystrom has similar and usually slightly
better approximation than SpectralUnifNystrom, since these algorithms are
extremely alike in nature with UnifNystrom being more coarse than leverage-
scored Nystrom. It appears that Spectral(Unif)Nystrom consistently give
better estimate than Power method when the computational budget is low
(k is small) despite the slightly larger variance. When k is even smaller
than what’s shown in Figure 7.1(b)(e)(h), we see that SpectralNystrom is
obviously the winner by referring back to Figure 7.1(a)(d)(g).

To summarize, SpectralNystrom has strong advantages over Power
method in the low budget regime. It consistently provides more stable and
more accurate approximations.
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7.5.3 Scalability

As indicated by our theoretical analysis in Section 7.4.3, SpectralSketches
has better scalability gaurantee than Power method and Lanczos algorithm.
This is real world data so we don’t have fixed matrix norm, which means
the failure probability should scale as O(exp(− 1

r∥K∥)). This is exactly

what our experimental results show in Figure 7.1 (c)(f)(i). With a given
computational budget and increased data size (i.e. k = 60 fixed and n
increases for the n×n matrix), SpectralRFF scales a lot better than all other
methods. (The performance gap between SpectralRFF and SpectralNystrom
might be due to our assumption on a. Even though their bound have the
same order substituting D with a, the D in SpectralRFF is fixed to k = 60
while a depends on the matrix norm which is not fixed in this case.) Note
that k = 60 is a extremely low budget, especially considering n grows into
hundreds and thousands for the matrix size n2 in Figure 7.1 (c)(f)(i). This
means instead of dealing with matrices of size n×n with n = 996, 1469, 479
respectively in Figure 7.1 (c)(f)(i), we only need to store matrix of size
n× 60, and the time complexity for estimating the spectral norm is reduced
from O(n3) to O(602n). Even though it may seem like the estimates are
not as accurate as need be in Figure 7.1 (c)(f)(i), keep in mind that this
is simply because we chose a small budget k = 60. One can easily get
more accurate approximation by extending the budget, as suggested by the
convergence behavior in other plots of Figure 7.1. Furthermore, we don’t
always need spectral norm estimate to be very exact in practice – a lot of
times it is enough to know the correct order of magnitude that spectral
norm has, for example when spectral norm is used as a regularization term
[AMP10, SCS+15, BMCM19, ZTSG19] or as a trainability signal in neural
architecture search [XPS20, CGW21].

7.6 Conclusion

This chapter presents SpectralSketches, a framework for approximating
spectral norm through any sketching-based algorithms. I give SpectralRFF
and SpectralNystrom as example algorithms of SpectralSketches and perform
theoretical and empirical analysis on them. I derive rigorous theoretical
guarantee for the approximation quality of SpectralSketches and show
that it scales better than the current mainstream methods (Power method
and Lanczos algorithm, both iteration-based). In particular, for a fixed
error budget ε, the probablistic relative failure is reduced from O(

√
n) to

O(exp(−1/r)) with r ≤ n being the matrix rank. I corroborate such superior
scalability through experiments on three real-world datasets. Empirical
evidence further suggest that SpectralSketches give a more numerically
stable and more accurate estimate in the low (computational) budget
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regime. While current research on spectral norm estimation mostly follow
the iteration-based paradigm, SpectralSketches provides a fundamentally
different alternative to spectral norm approximation with strong theoretical
guarantee and empirical performance.
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Part III

Limitations and Future
Directions

82



Chapter 8

Limitations and Future
Research Directions

8.1 Fair Machine Learning

While the insight from [CL22b] that suggests separate standardization of
features between groups is interesting, the ethical implications of doing
so is not thoroughly discussed. It is worth taking a closer look at when
it would make sense to standardize data separately and when it would
not. For example, when such method is applied to social settings that
affect decision-making involving people, it should be used with caution,
whereas under the setting when fairness is applied to objects instead, for
example, new versus old content in a recommendation system, then the
ethical concern is minuscule. The relative distribution shift that results
from separate standardization is not quantified in [CL22b], but it may be
worth exploring in future research.

Additionally, [CL22a, CL22b] both discuss achieving individual fairness
when the sensitive attribute is available. It is worth researching the group
fairness aspect and explore alternatives when the sensitive attribute may
not be available.

8.2 Randomized Algorithms in Machine Learn-

ing

[CL22c] gives an interesting alternative to traditional ensemble method and
proves the possibility of removing the weakly-learned assumption for base
models. However, there is still a gap between the theoretical analysis and
empirical observations. Namely, the empirical results seems to converge
much faster than the theoretical guarantee, suggesting the current bound is
not sharp. Obtaining a sharp bound likely require a fundamentally different
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way of modeling, which is still an open problem at the time of this writing.
Alternatively, sharper bounds may exist under more granular settings, for
example, by enforcing certain assumption on data. Currently, analysis in
[CL22c] make no such assumptions.

For further applications of [CL22c], two questions are worth answering.
First, how to generate hypothesis in practice to obtain uniform direction
when those hypothesis are applied to data. It is an important assumption
in the analysis, and currently it is done through making sure the resulting
vector coordinates have equal probability of being positive or negative.
That means each vector has equal probability of falling into any of the
high-dimensional quadrant and hence the directions are almost uniform.
For neural networks it might be possible to do something similar, but the
exact empirical performance of doing that is unknown. Second, whether the
inherent regularization from such randomized framework can be exploited
to achieve federated learning, differential privacy and robustness. Random-
ized algorithms are typically easy to parallelize and so is RHSS. Hence it
might have natural applications in federated learning. Modern research on
differential privacy and robustness usually involves adding a small random
noise. Generating a random vector instead with RHSS might provide a new
paradigm and alternative to the existing solutions in these areas.
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