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Abstract

Developing a deep understanding of data is a crucial part of decision-making processes.

It often takes substantial time and effort to develop a solid understanding to make well-

informed decisions. Data analysts often perform statistical analyses through visualization

to develop such understanding. However, applicable insight can be difficult due to biases

and anomalies in data. An often overlooked phenomenon is mix effects, in which subgroups

of data exhibit patterns opposite to the data as a whole. This phenomenon is widespread

and often leads inexperienced analysts to draw contradictory conclusions. Discovering such

anomalies in data becomes challenging as data continue to grow in volume, dimensionality,

and cardinality. Effectively designed data visualizations empower data analysts to reveal

and understand patterns in data for studying such paradoxical anomalies.

This research explores several approaches for combining statistical analysis and visualiza-

tion to discover and examine anomalies in multidimensional data. It starts with an automatic

anomaly detection method based on correlation comparison and experiments to determine

the running time and complexity of the algorithm. Subsequently, the research investigates

the design, development, and implementation of a series of visualization techniques to fulfill

the needs of analysis through a variety of statistical methods. We create an interactive visual

analysis system, Wiggum, for revealing various forms of mix effects. A user study to evaluate

Wiggum strengthens understanding of the factors that contribute to the comprehension of

statistical concepts. Furthermore, a conceptual model, visual correspondence, is presented

to study how users can determine the identity of items between visual representations by

interpreting the relationships between their respective visual encodings. It is practical to

build visualizations with highly linked views informed by visual correspondence theory. We

present a hybrid tree visualization technique, PatternTree, which applies the visual corre-

xiii



spondence theory. PatternTree supports users to more readily discover statistical anomalies

and explore their relationships. Overall, this dissertation contributes a merging of new visu-

alization theory and designs for analysis of statistical anomalies, thereby leading the way to

the creation of effective visualizations for statistical analysis.
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Chapter 1

Introduction

1.1 Overview

Developing a deep understanding of data is an essential part of decision-making processes.

It often takes substantial time and effort to develop enough understanding to make well-

informed decisions. Data analysts often perform statistical analyses to develop such under-

standing. This is especially common for large, multi-attribute data. A variety of statistical

phenomena can manifest in data. The inability to examine them, or even mere ignorance of

the phenomena themselves, can restrict analysis and lead to incorrect conclusions [18, 110].

Data analysts often use visualizations to explore data and examine trends in data. For

purposes of discussion in this dissertation, we will define a trend as a tendency of a variable in

relation to another variable that is changing in the data set, and focus on two trend types. A

linear relationship between two variables defines a regression trend (short for linear regression

trend). The ranking groups defined by one variable according to a statistic calculated on

a second variable defines a rank trend. Both of these types of trends can be identified in a

whole data set or in subgroups created by grouping instances based on the variable’s distinct

categories. A mix effect [13] occurs when a trend reverses in subgroups of data relative to

the aggregate trend.
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Figure 1.1: Simpsons’ paradox occurring in an example data set with two subgroups [164].
Each subgroup has a full weight trendline. The dashed line shows the reversed trend for the
entire data set.

A prominent case of mix effects arose in an audit of gender bias in graduate school

admissions at the University of California, Berkeley [18]. University officials observed that,

university wide, men were admitted at a higher rate than women; however, upon further

inspection, this was not true within individual departments. If every department shows

the reverse trend, it is a special case of mix effects known as Simpson’s paradox, in which

all subgroups of the data partitioned by a certain condition have trends opposite to the

aggregate data.

Figure 1.1 shows a synthetic example of Simpson’s paradox for a regression trend. A

black-dotted line shows a regression line over the full data set, indicating a positive cor-

relation. However, two subgroups of the data set, shown as red circles and blue circles,

individually have negatively sloped regression lines. Grouping the data by the color at-

tribute, we see an opposite relation between the overall trend and each of the two subgroup

trends. If analysts draw incorrect conclusions based on data that has such disparities, lives

and livelihoods may be affected.
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1.2 Motivation

Data are used to assist the decision making process through multiple analytical approaches.

Data mining and machine learning systems deployed in real world situations can reproduce

and amplify biases [118, 87, 169]. Many of these quantitative disparities are related to

differences in the makeup or structure of partitions of the data. These phenomena have fueled

rapidly growing interest in fair machine learning, producing both a plethora of definitions

and algorithmic solutions [15, 138]. However, fairness is not a uniquely quantifiable concept,

so improving social outcomes of data mining systems requires subjective human intervention

and reframing of the problem [127]. Kate Crawford first coined “Fairness Forensics” in

her 2017 NeurIPS (Conference on Neural Information Processing Systems) Keynote “The

Trouble with Bias” calling for more techniques to discover instances of unfairness in data [40].

Statistical analysts need better exploratory tools to draw reliable conclusions from high-

dimensional data sets. Subject-area experts are used to looking for particular information

in data and are accustomed to working with small data sets. As data grows not only in

the number of samples, but more importantly in the richness of each sample, tools to assist

with investigations become increasingly critical. The goal is to equip trained data scientists

and analysts with powerful visual systems for conducting fairness forensics investigations in

their exploratory data analysis and post-algorithm analysis workflows. Studies on statistical

phenomena, such as Simpson’s paradox, can be applied to detect bias in data for fairness

forensics.

Simpson’s paradox is a trend reversal in partitions of a data set. A linear relationship

between two variables defines a regression (short for linear regression) trend and ranking

groups defined by one variable according to a statistic calculated on a second variable defines

a rank trend. Although analysts can study trends via summary statistics, they may not

see important patterns in data since dramatically different data sets could produce the

same statistical properties [96]. Good visualizations allow analysts to observe the patterns

behind summary statistics. Taking this as a starting point, we endeavor to develop an
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effectively designed visualization system to investigate instances of Simpson’s paradox across

each trend type. Unfortunately, the combinatorial explosion of dimensions is challenging in

visualization design. To overcome this challenge, we sought to develop a visualization model

for visualization designs to manage combinations of dimensions. The need for dimensional

management led to the development of the visual correspondence theory and the PatternTree

technique.

1.3 Research Path

The research has three stages. In the first stage, we develop the basic detecting algorithm

for Simpson’s paradox (Chapter 3), and use bivariate colors to represent Simpson’s paradox

visually (Chapter 4). Case studies on empirical data sets show the effectiveness of the

algorithm and demonstrate the utility of our visualization design. In the second stage, we

design the visualization system integrated with multiple detection approaches (Chapter 5),

and perform an evaluation of the system (Chapter 6). We introduce a set of measures to

support examination of mix effects for multiple trend types. The visualization design of the

system aims to reduce the limitations of the bivariate color technique. In the third stage, we

present a visualization model (Chapter 7) for addressing the issues that we found from the

evaluation of the system, and apply the model to design an improved visualization technique

for statistical anomaly detection (Chapter 8). The details of the research path follow.

This dissertation addresses the problem of discovering and examining statistical anomalies

through a data analysis pipeline from statistical computation to interactive visualization for

multidimensional data. The goal is to gain knowledge about the problem and potential

solutions through a visual analysis system that combines back-end computation and front-

end visualization. Therefore, this research intersects with both statistics and visualization

as research fields. We deal with statistics first and start with one of the most well-studied,

surprising trends in data, Simpson’s paradox. Little work has been done to study how to
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allCorr attr1 attr2 revCorr catAttr subgroup

0.423 MPG acceleration -0.819 cylinders 3
0.423 MPG acceleration -0.341 cylinders 6
0.423 MPG acceleration -0.051 model year 75
0.423 MPG acceleration -0.051 model year 79
-0.778 MPG horsepower 0.621 cylinders 3
-0.778 MPG horsepower 0.013 cylinders 6

Table 1.1: The output from the algorithm in Chapter 3 for the Auto MPG data set [90]. The
Auto MPG data set has 6 reverse trends. Each row is an instance of a reverse trend. For
example, the regression trend between MPG and Acceleration for the entire data is positive
(0.432), but the subgroup trend for Cylinder 3 is negative (-0.819) [164].

detect Simpson’s paradox in multidimensional data. Simpson’s paradox has been studied in

two main forms: (1) ranking trends on relative rates and (2) linear trends. We focus on the

latter and use linear correlation to measure a trend between two variables. We developed

an algorithm for detecting regression based Simpson’s paradox, and the rest of the work in

this dissertation is based on it. The algorithm returns the result as tabular data, as shown

in Table 1.1.

We build a back-end computational library for extending the detection algorithm. We add

more algorithms for detecting ranking trend into the library, and explore visual techniques

for visualizing Simpson’s paradox. Choosing a bivariate color scheme can be a good start

since it helps to see the relationship between two variables: a variable for the subgroup’s

statistical result (e.g., correlation coefficient), and a variable for the aggregate’s statistical

result. Users can perceive the relationship by identifying a color rather than comparing two

numbers. Additionally, when we design the visualization for exploratory data analysis, it is

crucial to provide context and explanation for revealing patterns behind summary statistics.

We apply an overview plus detail interface design [130]. The overview shows contextual

information, and the detail view serves to explain the statistical result. Since the result of

our algorithm is derived from a correlation matrix, a correlation heatmap is used to represent

the correlation between different variables by color. Figure 1.2 shows the visualization for
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Figure 1.2: The application user interface for regression trend Simpson’s paradox detection
in the Auto MPG data set, using a bivariate color scheme.

the Auto MPG data set. This visualization is a precursor of our later visualization system

for exploring Simpson’s paradox. However, the bivariate color approach has limitations.

Users suffer from the cognitive effort required to match one color to two different values.

Furthermore, the differences between the two values represented by the bivariate color can

be hard to perceive and compare, yet the differences are crucial for data analysis. Last but

not least, the organizations of the heatmaps for rank trend and regression trend are different

from each other.

An empirical solution to the limitations of the bivariate color scheme is to use direct

encoding of data differences [103]. We introduce a practical set of measures to support

discovering mix effects (i.e., trend strength and trend distance). After the user sets the types

and roles for each variable and selects the trend type on the preparation page (Figure 1.3), the

visualization page (Figure 1.4) is presented by clicking the Visualize Trends button. At this
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Figure 1.3: The preparation page for the Auto MPG data set in Wiggum. The user selects
the types and roles for data attributes. The type and role associated with each variable are
used together in rank and regression trend calculations.

point, the heatmap in the overview uses color to represent the trend distance, which measures

the difference between two trends. We name our visual analysis system Wiggum. (Wiggum is

a fictional character from the animated television series The Simpsons; he is the police chief

of Springfield, and as a detective, he is a kind of analyst.) Wiggum makes improvements to

the earlier tool components that we studied and developed. The improvements include a set

of trend measurements that help to compare subgroup trends, a compatible overview design

of subgroup trends for different trend types, and interactive features to facilitate exploration.

To assess the utility and usability of Wiggum, we conduct a user study. We also learn

the limitations of Wiggum from the user study. A major limitation is that the structure

of the information in the data becomes hard to analyze visually due to a combinatorial

explosion of data dimensions. The combinatorial explosion occurs because the number of
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Figure 1.4: The visualization page for the Auto MPG data set in Wiggum. (A) The heatmap
view provides an overview of the subgroup trends in terms of trend measurement. (B) The
scatterplot shows the detail of a selected instance. (C) Users can also check the detailed
statistics in the table view.

possible combinations of data dimensions rapidly increases with the number of dimensions.

As a result, it is difficult to build visualizations that support identifying relationships in

the data. During our investigation of the issue with dimensional combinations from the

user study, we realize that the variables conveying hierarchical information (aggregate vs.

subgroups) are crucial for users to perform tasks correctly and comprehend relationships

among variables. This leads us to design a hybrid tree visualization, PatternTree, which

conveys hierarchical information and explicitly shows the variables which partition data into

subgroups. We apply PatternTree to the presidential election data set for gerrymandering

analysis. Figure 1.5 shows the PatternTree for the 2016 and 2020 presidential elections in

Oklahoma. Building PatternTree allows us to realize that there are clear issues of being

able to determine the identity of graphical items in two places as we browse the hybrid

tree visualization. Visualization tasks, such as identification and comparison, may require
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Figure 1.5: Example of a PatternTree for the 2016 and 2020 presidential election in Okla-
homa. The Republican party has a higher voting share than the Democratic party in the
entire data set. The trend in each congressional district is the same, but the number of
highly competitive districts decreases to 0 in the 2020 presidential election data.

users to determine the identity of graphical items by interpreting the relationships between

their respective visual encodings (e.g., color hue, shape, size). Consequently, we develop a

model of visual correspondence to help associate graphical items which encode the same data

through pairwise visual channels (e.g., color hue to color hue, shape to shape) in order to

connect different views to each other. We apply our visual correspondence model to refine

the design of PatternTree for revealing the relationship of graphical items between the host

view (node-link tree diagram) and the embedded views (e.g., maps and plots). We provide

an analysis of the utility of the visual correspondence theory through examples of design

cases utilizing the PatternTree technique.
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1.4 Thesis Statement and Research Contributions

This dissertation presents the following thesis: Combining composite visualizations for drill

down exploration with interactions into a visualization system supports effective comprehen-

sion and analysis of statistical anomalies in multidimensional data for the user with basic

statistical knowledge. Adding capabilities to drill down into dimensional combinations hier-

archically allows the user to see correspondences between dimensional information visually.

These capabilities allow the user to more readily discover statistical anomalies and explore

their relationships in multidimensional data.

This dissertation describes five contributions to the field of visual analytics in general

and to the analysis of statistical anomalies in multidimensional data specifically. The first

contribution is an algorithm to detect Simpson’s paradox for the regression trend case. A

performance evaluation of the algorithm reveals important factors that influence the run

time of the algorithm: the total number of attributes, the total number of records, and the

number of levels for each categorical attribute.

The second contribution is a visual technique in which instances of Simpson’s paradox

in both rank trends and regression trends can be emphasized and examined via a bivariate

color scheme.

The third contribution is Wiggum, an interactive visual analysis system that facilitates the

discovery and interpretation of mix effects involving multiple trend types in multidimensional

data. An evaluation of Wiggum’s usability and utility via a user study provides insights into

users’ ability to comprehend statistical concepts, identify the corresponding visual patterns,

and perform common analysis tasks correctly and efficiently.

The fourth contribution is a conceptual framework, Visual Correspondence, in which

graphical items encoding the same data in different parts of a visualization are associated

through their respective visual channels. A set of guidelines is provided to account for visual

correspondence in the design and evaluation of visualizations that can show and relate data

in new ways.
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The fifth contribution is a hybrid tree visualization technique, PatternTree, in which the

data items are smoothly transitioned from a host visualization to embedded visualizations for

exploring hierarchical patterns in a composite visualization with nested views. An example

visualization demonstrates its utility for analyzing gerrymandering in election data. We

validate the theory of visual correspondence by assessing the utility of a PatternTree example

application for exploring and analyzing that data.

1.5 Research Questions and Scope

The research presented in this dissertation must answer several questions raised by the thesis.

First, Simpson’s paradox is generally discussed in terms of binary variables, but studies

for the exploration of it for continuous variables are relatively rare. How can one detect

Simpson’s paradox for the trend of a pair of continuous variables in multi-dimensional data?

What is the running time at different scales of data volume and dimensionality?

Second, how can statistics and visualization be integrated to find anomalies? How can

visualization tools support interactive exploration to help users discover mix effects in high

dimensional data? How can data be visually represented to reveal different trend types for

mix effects?

Third, how can one support identification, comparison, and navigation over disparate

visual features that represent the same or equivalent information? Which pairings of visual

channels are perceptually effective for conveying such correspondence of information between

visual features? What perceptual factors influence such effectiveness, and how? What are

useful guidelines for creating visual correspondence?

Fourth, Wiggum focuses on the design of an overview-to-detail interface. As such, it

is less concerned with hierarchical relationships between data dimensions. A nested tree

visualization can help to represent such hierarchical information and still supporting an

overview-plus-detail design. How can visualization design support a smooth transition from
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host visualization to embedded visualizations in a hybrid node-link tree visualization? What

is the design space for building visualizations supporting smooth transitions in the hybrid

tree visualization? What are the challenges and limitations in designing the node-link layout

tree visualization?

Fifth, gerrymandering is related to Simpson’s paradox or mix effects. How can the

computation of mix effects be applied to study gerrymandering? How can a hybrid tree

visualization be designed for gerrymandering analysis?

Additional research topics are relevant to visual statistical anomaly detection, but are

beyond the scope of this thesis. Among these are causality, uncertainty visualization, 3D

graphics, progressive visualization, visual aggregation, and animations. They are not dis-

cussed in detail.

1.6 Organization of the Dissertation

The remaining chapters in the dissertation are organized as follows.

Chapter 2 provides an overview of previous studies in mix effects and Simpson’s paradox,

visual exploration of mix effects, fairness forensics tools, gerrymandering, and visualiza-

tion in particular, including visual perception, visual comparison, visual linking, multiple

views, design spaces of visualization, and visualization of hierarchies.

Chapter 3 presents a Simpson’s paradox detection algorithm based on the correlation of

two continuous variables. It discusses several empirical studies for revealing different

aspects of the algorithm.

Chapter 4 describes a visual technique to detect Simpson’s paradox for both rank trends

and regression trends, using a bivariate color scheme.

Chapter 5 introduces the Wiggum visual analysis system, describes its corresponding pro-

cessing pipeline, introduces a practical set of measures to support discovering mix effects,
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and proposes new view designs for understanding and efficiently detecting mix effects.

Chapter 6 presents use cases and user studies for evaluating Wiggum’s utility and usability.

Chapter 7 describes the conceptual framework of visual correspondence, applies the frame-

work to characterize correspondences between pairs of visual encoding channels, provides

foundational mathematics for analyzing visual analysis tasks in terms of interactive iden-

tification and comparison steps, and proposes a set of guidelines for the design and

evaluation of visualizations that account for visual correspondence.

Chapter 8 describes the concept of virtual layering, discusses a design space for virtual

layering inside node-link tree visualizations, describes a hierarchical pattern structure for

statistical analysis, explores possible visual designs of a PatternTree technique for visu-

alizing patterns in hierarchical data structures, and assesses how visual correspondence

in PatternTree applications supports such visualization tasks.

Chapter 9 concludes with a discussion of the benefits and limitations of visual analytics

for statistical anomaly discovery, an outline of possible extensions and future work, and

a summary of contributions.
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Chapter 2

Background and Related Work

This research focuses on combining statistical analysis and visualization for discovering and

examining anomalies in multidimensional data. In this chapter, we review the research

most relevant to mix effects and Simpson’s paradox and existing visualization techniques

for exploring them. We also review existing fairness forensics tools for investigating pos-

sible bias in algorithmic systems. For purposes of visualization design for analyzing such

statistical anomalies, we survey the existing literature in visualization including visual per-

ception, visual comparison, visual linking, multiple views, design spaces of visualization, and

visualization of hierarchies.

2.1 Mix Effects and Simpson’s Paradox

Undetected cases of mix effects can lead an unaware analyst to draw incorrect conclusions

about data. A central objective of mix effects detection is to search for a diversity of trends

between aggregate data and partitions of that data, and account for that diversity in one’s

analysis. The phenomenon has many names, but this most popular one is attributed to Blyth,

crediting one of the earliest formal accounts of the paradox [20]. Two popular examples are

gender disparities in university admission rates that reverse at the department level (the

Berkeley Admissions Example [18]), and average income increasing over time but decreasing
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at every level of education [102].

In the Berkeley Admission Example, the relative rank of the genders by admission rate is

flipped, and we refer to this form of mix effects as a rank trend mix effects. Other examples

of this type include tuberculosis mortality rates by race [55] and the on-time departure rate

of flights per airline and airport [122]. In addition, mix effects can be found in real-world

sports data sets [154, 111] used to rank players on statistical measures.

In the average income example [102], the summary statistic is the correlation between

time and income conditioned on educational attainment. By considering the direction of the

correlation, this form relies on assuming a linear relationship between the variables, and is

referred to as a regression trend mix effects. Other examples of this form include the positive

relationship between coffee and neuroticism by gender [80], and petal width and sepal of

irises by species [164].

As a special example of mix effects, Simpson’s paradox is of interest and often of signif-

icant concern in many disciplines including epidemiology [71, 141], social science [7, 8, 87],

psychology [80], and sports analytics [45, 154]. In one famous example, researchers quan-

tified the success rate of a surgical treatment [30]. Error arising from the paradox was not

discovered until years later [77]. Simpson’s paradox has also been studied in its impact on as-

sociation rules in databases [57]. In the statistics community, it is a well-known phenomenon,

widely understood through causal explanations [11, 109]. The HypDB [121] system was de-

veloped to detect, explain, and resolve bias leading to statistical anomalies like Simpson’s

paradox. The HypDB system is designed to help users detect bias using a causal directed

acyclic graph (DAG). It can be difficult to create and interpret a causal DAG, calling for

additional work to develop techniques and tools for analysis of Simpson’s paradox and other

kinds of mix effects.
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2.2 Visualization of Mix Effects

In visualization research, mix effects’ impact on causality has been studied with respect to

the reliability of correlation analysis [149, 150]. In causal inference, a confounding variable

that predicts both treatment and outcome can be closely linked to mix effects [108]. Existing

visualization techniques mostly fall into two categories based on how trends, including rank

trends and regression trends, manifest in data. Tabular techniques usually focus on rank

trend mix effects [14, 18, 45, 107, 53]. Scatterplots are more appropriate when the purpose

of the visualization is to present regression trends of two variables [7, 8, 80, 118, 31]. A line

graph that consists of only two points on the x-axis has also been proposed to illustrate mix

effects visually [118]. Causal network visualizations [166, 162, 76, 34, 51] offer additional

means to explore and interpret mix effects.

Efforts to visualize mix effects demonstrate how detection can be included in visual

exploration environments [65]. Vizdom allows users to observe instances of mix effects by

using multiple bar charts to compare aggregate and partition trends [43]. A grouped bar

chart can be used to explain mix effects by observing trend reversal in each subgroup [122].

The comet chart [13] supports the detection of mix effects, approaching the problem with

an explicit goal to explain the phenomenon mathematically. However, it does not address

effectiveness for exploring multidimensional data sets, is inherently unsuited to exploring

more than two subgroups—such as race in the adult income example—and doesn’t support

regression trend mix effects.

Building on static visualization [13, 80], interactive approaches hold clear promise to fa-

cilitate the mix effects detection process [65]. While automated methods for detection can

facilitate discovery [164], their black-box nature may not be suitable for sense-making. The

relatively new area of auditing fairness in machine learning [28, 159, 5, 151] brings visual

analytics techniques into the domain of interpretable machine learning [91, 119], concerned

with understanding the results of ML-based decisions. The work in this dissertation applies

interactive visualization techniques to create a human-in-the-loop design that improves in-
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terpretability as a part of sense-making by giving analysts access to and control over the

detection process.

2.3 Fairness Forensics Tools

FairVis is an interactive visualization tool that emphasizes discovering disparities with re-

spect to both user supplied and discovered subgroups [28]. The target user for FairVis is the

model developer who needs to evaluate models for biases in their outputs. To extend this tool

to work with a user supplied data set, a model must be trained outside of the tool and the

results must be appended as the last column, then the tool’s JavaScript code must be edited

to add the new data set to the start menu of the application. A deployed demo is available,

but only to be used on pre-provided data sets. FairVis focuses on auditing intersectional bias

by examining unfairness in a population defined by multiple features. FairVis allows users to

generate subgroups in several ways, including combining different attributes or values from

different attributes. In addition, suggested subgroups and similar subgroups are generated

to help users discover potential biases. However, FairVis can only assess fairness for binary

classification. The user can choose from 10 common fairness metrics. An interactive visual

interface allows users to explore, compare, and investigate multiple subgroups.

Aequitas is an open support bias report generator designed explicitly for use by both data

scientists and policy makers [120]. It is focused on the evaluation of risk assessment tools

and generates a report after a model exists, but possibly prior to deployment or in the model

selection phase. Aequitas is implemented as a Python library and a web application that

visualizes group metrics derived from multiple fairness definitions and disparities between

groups. After uploading data, the user selects protected attributes that need to be audited

for bias, and specifies reference groups. Next, a “fairness tree” guides the user to select

fairness metrics. Meanwhile, the user can enter a disparity intolerance value to filter out

the detected results within a range of disparity values that can be considered fair. A bias
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report is generated for use in decision making. Aequitas enables users to visualize group

metrics and disparities between groups. It implements multiple fairness metrics, is designed

explicitly to be accessible to non-technical parties, and supports reproducibility by offering

relatively few settings for the user to determine on each use.

IBM’s AI Fairness 360 (AIF360 ) toolkit is an open source Python package that imple-

ments fairness metrics and algorithmic interventions [15]. The primary audience for AIF360

is developers who are building AI systems; it is primarily a programming API and is focused

on the implementations of the interventions that are included in understanding and diag-

nosing bias. The tool is open source and provides clear contributing guidelines including the

criteria on which contributions will be evaluated for inclusion. That it is developed by a ma-

jor corporation is an advantage in that there are paid maintainers and effort behind growing

awareness of the tool. The package implements both groupwise and individual notions of

fairness to inspect various biases in many forms, thus meeting the criterion for definition

agnostic analysis. The package is published with demos and tutorials, so while it is catered

toward those who are building, and enables evaluation of any ML model, it is relatively

accessible. It serves as a useful tool for teaching these concepts in programming as it has

a standardized API with the popular machine learning package scikit-learn. Its interactive

web application is designed to help users understand the stages of the fairness pipeline, and

interactive demos are viewable and runnable on cloud tools without writing code or setting

up a programming environment, increasing accessibility further. As a fairness forensics tool,

AIF360 is a bias measurement tool, since it provides implementations of a number of metrics.

A report comparing original biased metrics and mitigated results is generated for assessing

the effectiveness of the chosen fairness metrics and the chosen mitigation algorithm.

FairTest employs a novel principled methodology for discovering discriminatory or oth-

erwise unwanted behaviors in machine learning systems called the unwarranted associations

framework [139]. FairTest is both a Python application and a library that provides a Python

API on top of the R programming language. Multiple metrics for measuring association are
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available and classified into three categories: frequency distribution metrics, correlation,

and regression. In order to discover association bugs in sub-populations, FairTest gener-

ates an association-guided decision tree that finds sub-populations with strong associations

between the protected variable and the application output. After finding strongly affected

sub-populations, FairTest validates the association bugs on an independent test data set by

performing hypothesis testing. In addition, FairTest ranks the sub-populations on confi-

dence intervals of the association metric. An association bug report is generated for further

investigation. It also audits application outputs along with the user’s input data set.

Silva is a tool implemented as an interactive web application that visualizes a causal graph

with bias metrics to help users assess machine learning fairness [166]. Investigations through

Silva occur after a model has been built. The tool integrates three machine learning models

and five fairness metrics to study and compare fairness during the model validation stage.

Supportive approaches, such as recommendations on sensitive attributes’ nodes and paths

in the causal graph, are provided to guide the exploration of fairness. Informative tips in the

application assist users from different backgrounds in effectively navigating the application

with the ultimate goal of assessing fairness. The interactive visualization facilitates the

exploration of connections between causality and fairness metrics. Moreover, the causal

graph helps users inspect the relationship among attributes having different roles in machine

learning fairness. Silva can be utilized in concert with existing fairness tools and machine

learning pipelines to mitigate biases.

Google’s What-If Tool is an open source interactive visual interface for gaining a better

understanding of machine learning models [159]. Users can run minimal code from many

platforms, making it accessible to a wide variety of programmers. It implements multiple

performance metrics disaggregated by both supplied and computed groups, allowing a user

to simultaneously consider multiple notions of fairness. The tool can benefit a wide variety

of users from novice machine learning users to experienced machine learning researchers. It

consists of three interfaces with features to compare two models applied to the same data
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set. The first interface allows users to inspect and visualize individual data points with their

model predictions. It can also offer the nearest counterfactual example for users to compare

its similarity to the selected data point. Users can edit a selected data point, and rerun

the model to visualize the change in the new inference result. The second interface shows

two performance measurements. Users can slice the data, and apply fairness optimization

strategies to inspect how they affect positive classification thresholds across data slices. It

also supports the exploration of intersectional subgroups. In the final interface, users can

visualize each feature’s distribution and its summary statistics.

FairSight is a visual analysis tool for promoting fairness in decision making, especially

in ranking decisions [5]. It is based on the FairDM framework, a decision making frame-

work that combines three machine learning phases—data, model, and outcome—in a fairness

pipeline. The fairness pipeline consists of four required actions: understand, measure, iden-

tify, and mitigate. For understanding bias, FairSight introduces input space, output space,

and mapping. FairSight measures distortion to enable assessment of fairness by comparing

pairwise distance in the input space with pairwise distance in the output space. Two different

distance metrics are used for the input and output spaces, respectively. FairSight includes a

comprehensive set of fairness metrics to support individual and group fairness assessments.

It provides various strategies to investigate sensitive features (e.g., gender or race) that

can potentially identify bias. It also includes methods to mitigate bias in pre-processing,

in-processing, and post-processing stages. Users can select features to improve fairness in

pre-processing. In-processing supports fair machine learning models, such as the Additive

Counterfactually Fair model [84]. Post-processing applies a re-ranking algorithm [168] for

any given ranking outcome to achieve fairer decision making.

Fairlearn is a Python toolkit for fairness assessment and unfairness mitigation in machine

learning models, such as classification and regression models [19]. For different machine learn-

ing tasks, users can choose different metrics. Fairlearn focuses on assessing group fairness in

which groups of individuals are defined using sensitive features (e.g., gender, age, or disabil-
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ity status). Users can specify sensitive features to compute fairness metrics for a population

and its subgroups. Fairlearn enables users to generate an interactive dashboard for visualiz-

ing fairness metrics and model comparison. It applies mitigation algorithms during training

and post-processing. During training, a mitigation algorithm adjusts the machine learning

model to fit fairness constraints. During postprocessing, a mitigation algorithm transforms

the output to achieve fairness.

FAT Forensics is an open source Python package for inspecting fairness, accountability,

and transparency in the machine learning pipeline [132]. It provides a basic visualization

module and implements various fairness measurements for use in different stages of the

pipeline. It provides both a “research” mode and a “deployment” mode. The research mode

is designed for FAT (Fairness, Accountability, and Transparency) researchers who use it to

create new fairness metrics and compare them with existing metrics. The deployment mode

is meant for data scientists and machine learning model developers who need to evaluate a

model or assess fairness in a data set. The package includes tutorials, examples, user guides,

and an API reference.

Wiggum is an interactive visual analysis system for uncovering both mix effects and

special cases known as Simpson’s paradox. It is implemented as a Python library and a web

application. Users provide metadata such as variable types and roles. Wiggum computes a

set of measures in terms of trends to support discovering Simpson’s paradox and presents

them in an overview plus detail visualization. Interactive filtering and ranking features allow

users to efficiently organize trends for exploratory analyses. Wiggum is accessible to a wide

variety of users. It does not require any programming skills to use the web application. The

Python library includes all of the computational features and runs in the back-end server of

the Wiggum application. It has been designed as a modular framework, allowing for each

individual component to be modified or extended.
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2.4 Visualization

This section first covers visual perception and visual comparison. We also discuss visual

linking and multiple views. Since our work investigates the design space for connecting

views in a composite visualization of data that includes hierarchical information, we review

prior work with a focus on design spaces of visualization and visualization of hierarchies.

2.4.1 Visual Perception

Much of the foundational work in visualization focuses on understanding the relationship

between visual encoding channels and graphical perception. Bertin [17] considers firstly the

ordering of visual variables associated with four levels of organization: associate, selective,

ordered, and quantitative. Cleveland and McGill [37] identify and order the visual encoding

channels for representing quantitative information in a variety of chart types. Numerous per-

ceptual experiments in cognitive psychology research and otherwise validate elements of these

foundations and suggest a refinement of understanding of visual channels. Mackinlay [94]

proposed rankings of visual channels for three different types of information—quantitative,

ordinal, nominal—which later developed through a series of visualization systems culminat-

ing in the Tableau tools [137, 95].

Heer and Bostock [68] demonstrate the viability of conducting graphical perception ex-

periments on a crowdsourced platform. They analyze the cost and performance of such

experiments. Demiralp, et al. [47] estimate perceptual distances for building perceptual

distance matrices (perceptual kernels) through crowdsourced experiments. The perceptual

distance measures the perceptual similarity between a pair of elements in a single visual chan-

nel (univariate perceptual kernel) or in a pairwise combination of visual channels (bivariate

perceptual kernel), such as color, shape, and size. The perceptual kernels can be integrated

into automated visualization design for optimizing perceptual discriminability. McColeman

et al. [98] challenge assumptions in the existing rankings of visual channels. They find that
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prominent factors, such as the number of marks, have an impact on task performance and

could change the ranks of visual channels. Kim and Heer [81] suggest interactions between

visual encoding channels, task types, and data characteristics as factors to consider in deter-

mining the effectiveness rankings of visual encoding channels. They measure the impact of

task (summary task, value task) and data distribution characteristics (e.g., cardinality, en-

tropy) on encoding effectiveness rankings. Davis, et al. [44] investigate individual differences

in graphical perception performance. Their experimental results reveal patterns deviating

from the canonical rankings of visualization effectiveness.

Some research focuses on particular techniques and tasks in studying the effectiveness

of specific visual encodings. Heer, et al. [69] study the effect of space-efficient techniques

for increasing data density through graphical perception experiments of time series charts.

Based on their experimental findings, they propose design implications with regard to chart

size and layered bands for value comparison tasks in time series visualizations. Nothelfer

and Franconeri [103] investigate the visual perception of relations among data value pairs

across different comparison tasks. Data values are encoded in pairwise combinations fol-

lowing a set of data encoding approaches (individual value encoding, delta value encoding)

applied to particular visual encoding channels (slope, length, position). Chung, et al. [35]

present crowdsourcing empirical studies which investigate the perception of orderedness with

different visual channels. Their results indicate that shape can be orderable by the number

of spikes or edges, in contrast with Bertin [17] and Mackinlay [94], neither of which relates

shape to ordered perception or ordinal information.

The need for effective utilization of visual encoding channels in visualization designs calls

for ongoing study of human perceptual capabilities. We argue that the state of the art in

visualization design has not yet teased apart understanding of visual channels sufficiently.

In particular, there is very little formal understanding of how visual channels combine in

perceptually effective ways. Our model of visual correspondence considers visual encoding

channels pairwise across views to model their effectiveness for showing the same information
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in multiple places in visualization designs.

2.4.2 Visual Comparison

The study of supporting comparison visually has attracted considerable attention in the vi-

sualization community. Gleicher, et al. [61] survey works in information visualization related

to comparison, and categorized visual designs for comparison into three types. A top-down

perspective raises four considerations in conceptualizing comparison [60]: comparative ele-

ments, comparative challenges, scalability strategies, and comparative designs. Wu proposes

a view composition algebra (VCA) that supports ad hoc visual comparisons [161]. VCA

focuses on comparison safety and data transformations from the viewpoint of data itself.

While these efforts provide invaluable insights for visual comparison at the level of entire

views of data, they are less concerned with comparison at the level of visual perception, in-

cluding the effectiveness of visual encoding channels and the visual correspondence between

compared marks/glyphs. We argue that a better understanding of visual perception at the

level of visual encoding channels across views is crucial for the support of comparison tasks

in visualization designs.

Ondov, et al. [104] present an empirical study to explore the perceptual factors in visual

comparison. They focus on comparative layouts of views [61, 93] and a narrow set of visual

channels (length, slope, angle) represented by different charts for specific tasks. Jardine,

et al. [74] extend empirical evaluation with two new comparison tasks to understand which

visual features are adopted. They propose perceptual proxies for the interactions among

tasks, marks, and spatial arrangements in the visual comparison of means and ranges. Xiong,

et al. [163] empirically evaluate comparison affordances of four spatial arrangements for bar

charts. They find that viewers tend to compare bars that are visually aligned and spatially

proximate. Their work is confined to bar charts, and narrows the scope of factors that

could affect the perception of visual grouping and visual comparison. These studies focus

on comparing patterns of a target set of items. In contrast, our work is target-agnostic, and
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focuses on understanding the relationship between corresponding objects as represented in

multiple ways.

2.4.3 Visual Linking

Visual linking is a way to connect objects in visualization. It explicitly indicates the corre-

spondence between connected objects. VisLink [38] places multiple 2D layouts in 3D space

and draws inter-plane edges to reveal direct or indirect relationships between the visual-

izations. Flexible Linked Axes (FLINA) [36] draws links between pairs of axes to indicate

relationships between pairs of attributes. ConnectedCharts [148] explicitly draws curves ei-

ther between corresponding tuples or between corresponding axes to display relationships

between multiple charts.

Steinberger, et al. [134] present context-preserving visual links that aim to minimize

the occlusion of important information and reduce visual interference. LineUp [63] uses

lines to bridge multiple alternative rankings on the same set of items for easier tracking of

changes. More closely related to our work is Domino [62], a multiform visualization technique

for showing subsets and the relationships between them. Domino represents subsets as

blocks categorized into three types: partitioned, numerical, and matrix. It visually links

visualizations to show relationships at multiple levels of detail: items, groups, and entire

data sets. Connecting lines and alignment indicate corresponding items in adjacent blocks.

Visual linking is not always suitable to connect related graphic items, such as in visu-

alizations in tabs [137, 23] or multiple views on large displays [86]. Our theory of visual

correspondence describes how one can perceive associated graphic items through a pair of

visual encoding channels, based on Gestalt principles of design including alignment, prox-

imity, and similarity, regardless of whether explicit graphical associations like visual linking

are suitable for use in multiple view visualization designs.

25



2.4.4 Multiple Views

Multiple views are commonly used to visually represent multi-dimensional data in informa-

tion visualization. Baldonado, et al. [153] provide design guidelines for selecting, presenting,

and interacting with multiple views, and discuss basic trade-offs for design. Javed and

Elmqvist [75] present a design space for composing multiple views, and identify benefits and

drawbacks for each of five patterns: juxtaposed, integrated, superimposed, overloaded, and

nested views. More recent work focuses on spatial arrangement of view layouts [6, 128]. For

example, Chen, et al. [33] explore correlations between view types and popular layouts based

on images of multiple view visualizations in publications in the visualization community.

Multiple coordinated views is a technique that allows users to interact with presented

data through multiple visual representations (views) in a single composite visualization [117].

Improvise [155] presents an environment for building and browsing multiple-view visualiza-

tions [156, 157, 158] interactively through a shared-object coordination mechanism. Whereas

active interactions, such as dynamic queries or brushing, show view-to-view relationships

in coordinated multiple views, passive interaction like visual correspondence also can help

to see such relationships through pairwise visual channel encodings. Multiple view consis-

tency [113, 114] explores effective constraints on position and color encoding channel pairings

across views. GraphScape [82] uses a directed graph model to reason about visualization

sequencing. Multiple view consistency and visualization sequencing are ways of looking at

visual correspondence, either very narrowly at the perceptual level or more broadly at the

task level. Our work considers visual correspondence at the intermediate level of task steps

that involve visual identification of sameness or equivalence.

Brehmer et al. [23] describe visual encoding design choices in terms of the matches and

mismatches between abstract tasks and visual representations, with consideration of multiple

view workflows. They provide interactive linked highlighting between relevant elements in

juxtaposed views. Van den Elzen, et al. [145] enable users to explore a visualization’s state

space in terms of parameters and parameter values by offering multiple alternative views
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with small multiples. Their later work [146] considers multivariate network visualization via

selections and aggregation operations in two juxtaposed, coupled views. They use color to

achieve visual coherence between the different components. This is one of many examples

for which our theory of visual correspondence can help to explain why known approaches to

coordinating multiple views work well (or not).

2.4.5 Design Space of Visualization

Visualization “design spaces” are widely discussed in the visualization community. Card

and Mackinlay present a guide to the design of information visualization based on the space

of possible mappings between data types and graphical contexts [29]. Design spaces are

typically described in terms of their dimensions, such as the dimensions of chart types,

combinations, and enhancements used to classify data visualizations in genomics [42, 41].

Spatial relations and data relations are often emphasized in designing a composite visual-

ization [75]. Guidelines for the design of multiple view tools to support the investigation of

data consider cognitive factors including the effort required for comparison, context switch-

ing, working memory, and learning [153]. Gleicher, et al. consider fundamental designs for

visual comparisons [61] and propose an abstract framework to aid in designing visualizations

for comparison tasks [60].

Modeling the dimensionality of visualization design spaces is more elaborate as the pur-

pose of the designs becomes more specific. In one design space for geospatial networks,

four dimensions capture key aspects of geospatial network visualization, namely geography

representation, network representation, composition, and interactivity [123]. Frishman and

Tal minimize visual changes in clustered graphs by introducing invisible vertices [56]. Their

work uses virtual nodes to harmonize the layout of graphs, but it differs from our proposed

virtual layering technique both in looking at only a single view of the graph representation,

and in that it addresses only the layout of the vertices.
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2.4.6 Visualization of Hierarchies

There are many known ways to visualize hierarchies [125]. Common representations include

node-link diagrams and treemaps. More complex techniques for representing hierarchies

include elastic hierarchies, hierarchical edge bundling, and hierarchical aggregation. Two

common tree representations, node-link diagrams and treemaps [129], can be mixed to form

a hybrid visualization for investigating elastic hierarchies representing trees [170]. Holten [73]

proposed hierarchical edge bundling of adjacency edges to reduce visual clutter in tree vi-

sualizations. Elmqvist and Fekete [50] presented a model of hierarchical aggregation based

on linking aggregation in data space with the visual entity of the aggregates in visual space.

Our work involves a tree of dimension combinations and embeds nested views where nodes

would be in a node-link diagram.

There exist many composite visualizations for hierarchical data. Both tuples and at-

tributes in tabular data can be divided to form an aggregation hierarchy. Breakdown visual-

ization supports drill-down from overview to details across hierarchies through small multiple

views [39]. In geographic visualization, a phylogenetic tree visualization superimposed on

a map links geographic locations through a linear geographic axis [105]. TreeVersity2 [64]

presents a space-filling visualization called StemView that nests bars at each level of an icicle

tree. A web-based tool,VEHICLE [97], embeds hierarchical stacked bar charts into a node-

link diagram for exploring conflict event data, and uses a radial tree layout with glyphs as

nodes to visualize hierarchical information. A node-link diagram is juxtaposed with heatmap

views for visualizing sequences of transactions in information hierarchies [27]. The DimLift

system, presented by Garrison, et al. [58], represents hierarchical data through dimensional

bundling, and applies multiple composite and interactive visualization techniques to facilitate

exploration.

Despite a large amount of work on the visualization of hierarchies, none of these solutions

addresses the problem of transitioning graphical items with the same information from the

host view to the embedded view. Our work introduces a new visualization design pattern
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that facilitates smooth visual transitions in composite visualizations.
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Chapter 3

Automatically Detecting Simpson’s

Paradox

3.1 Overview

This chapter presents a Simpson’s paradox detection algorithm based on the correlation

of two continuous variables. It discusses several empirical studies for revealing different

aspects of the algorithm. Simpson’s paradox is a phenomenon in which a trend in the entire

population reverses within the subpopulations defined by a categorical variable. Detection

of Simpson’s paradox can suggest surprising and interesting phenomena in a data set to an

analyst. It is generally discussed in terms of binary variables; studies involving continuous

variables are relatively rare.

In this chapter, we describe an algorithm to detect Simpson’s paradox in trends consisting

of a pair of continuous variables. A correlation coefficient is used to measure the association

between each pair of continuous variables. Categorical variables partition the entire data

set into groups. The algorithm looks for sign reversals between the correlation coefficients

measured within the group relative to the original entire data set. We show that the algorithm

detects cases in real data sets as well as synthetic data sets, and demonstrate that the
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approach can uncover hidden patterns by detecting occurrences of Simpson’s paradox. We

benchmark the running time of the algorithm for typical combinations of varying conditions.

We also propose an approach to exploit sampled data for opportunistic Simpson’s paradox

detection.

3.2 Detecting Simpson’s Paradox

Simpson’s paradox has been studied in two main forms: through relative rates and through

trends. We focus on the trend-based case and use linear correlation to measure a trend

between two variables.

Given a data set, we first determine the type of each column, then assign the columns

to one of two lists: (1) splitby attributes for conditioning over; and (2) candidate attributes

for computing relationships. Columns of integer and non-numerical types are added to the

splitby attribute list. Common types include binary (e.g., male/female), categorical (e.g.,

red/blue/green), and ordinal (e.g., small/medium/large). Columns of continuous-valued

data type are added to the list of candidate attributes.

Algorithm 1 shows pseudocode for the algorithm. For a data set with d candidate at-

tributes, the algorithm first computes the d × d matrix of correlation coefficients for each

pair. The entry in the i-th row and j-th column of the correlation matrix represents the

correlation between the i-th candidate attribute and j-th candidate attribute.

The most computationally expensive step of detecting Simpson’s paradox comes next.

The algorithm partitions the data set by conditioning on each splitby attribute and computes

an additional d × d covariance matrix for each value of each splitby attribute. If the data

set has C splitby attributes and attribute c has kc different values, the algorithm computes∑C
c=1 kc correlation matrices of size d×d. Table 3.1 shows the structure of the two correlation

matrices between two candidate attributes when conditioned on each of two values (Blue

and Red) of a ‘Color’ splitby attribute in a synthetic data set. The entries of the correlation
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Attribute 1 Attribute 2

Blue
Attribute 1 1.000000 -0.619
Attribute 2 -0.619 1.000000

Red
Attribute 1 1.000000 -0.616
Attribute 2 -0.616 1.000000

Table 3.1: Per-group correlation matrices for a synthetic data set.

matrix are symmetric with respect to the main diagonal. Thus, the algorithm compares the

signs of each element in only the upper halves of the
∑C

c=1 kc correlation matrices of the

subgroups to the correlation matrix for all of the data. Instances of sign reversals are stored

with the overall correlation, reversed correlation value, matrix indices of the continuous

attributes, index of the splitby attribute, and the subgroup value. The instances constitute

detections of trend reversals that may contribute to a case of Simpson’s paradox.

Algorithm 1 Simpson’s Paradox Detection Algorithm

INPUT: Relational Table R
continuous column ← detectContinuousTypes(R)
splitby column ← detectNonContinuousTypes(R)
for all (column1,column2) ∈ continuous column do

correlationMatrix1 ← computeCorrelation(R, column1,column2)
end for
for column ← splitby column do

subgroups ← R.groupby(column)
for group ← subgroups do

for all (column1,column2) ∈ continuous column do
correlationMatrix2 ← computeCorrelation(group, column1,column2)

end for
if isReverse(correlationMatrix1, correlationMatrix2) then

SP result ← subgroup info
end if

end for
end for
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3.3 Example Applications

We conducted experiments to apply the algorithm to a synthetic data set and two real data

sets from the University of California, Irvine machine learning repository [90]: the popular

iris data set [54] and auto miles per gallon data set [115].

3.3.1 Synthetic Data Set

As a preliminary validation of the algorithm, we generate synthetic data for a simple case of

group-wise Simpson’s paradox of the regression type, shown in Figure 3.1. The means and
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Figure 3.1: Simpsons’ paradox occurring in an example data set with two subgroups. Each
subgroup has a full weight trendline. The dashed line shows the reversed trend for the entire
data set.

covariances are set for randomly generated samples of a multivariate normal distribution.

The number of means depends on the number of subgroup clusters. A shared covariance is

used for all subgroup clusters. The means and covariances of individual attributes induce

instances of Simpson’s paradox. We start with a pair of continuous attributes plus a cate-

gorical attribute, color. We then add a noisy continuous attribute and two noisy categorical
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allCorr attr1 attr2 revCorr splitby subgroup

0.771 attribute 1 attribute 2 -0.619 color b
0.771 attribute 1 attribute 2 -0.616 color r

Table 3.2: Result from our algorithm for the synthetic data set.

attributes. The size of the data set is 100 records. The scatter plot in Figure 3.1 visually

illustrates the phenomenon. The dashed line indicates the trend for the entire data set, and

the two solid lines show the reversed trends in the subgroups.

The detection algorithm finds two occurrences of trend reversals in the synthetic data set.

Each row in Table 3.2 corresponds to an occurrence of a reversal. The first column shows

the correlation for the entire population. The second column and third column indicate

which two attributes exhibit reversals. The fourth column is the reversed correlation found

in the subgroup. The categorical attribute used to partition data is in the fifth column,

and the last column indicates the value of that categorical attribute. The correlation in

the entire data set indicates that an increase in attribute 1 is correlated with an increase in

attribute 2. Nevertheless, if one considers the red or blue subgroup of the color attribute,

it is apparent that an increase in attribute 1 correlates with a decline in attribute 2, thus

exhibiting Simpson’s paradox in the color attribute.

3.3.2 Iris Data Set

We use our approach to detect Simpson’s paradox in the Iris data set [54]. The Iris data

set has 5 attributes: sepal length, sepal width, petal length, petal width, and species. The

first four attributes are continuous-valued measurements of flowers. Species are in three

categories: Iris Setosa, Iris Versicolour, and Iris Virginica. The number of records is 150 and

there are no missing values in the data set.

The algorithm detects nine occurrences of trend reversal, shown in Table 3.3. Three of
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allCorr attr1 attr2 revCorr splitby subgroup

-0.109 sepal length sepal width 0.747 class setosa
-0.109 sepal length sepal width 0.526 class versicolor
-0.109 sepal length sepal width 0.457 class virginica
-0.421 sepal width petal length 0.177 class setosa
-0.421 sepal width petal length 0.561 class versicolor
-0.421 sepal width petal length 0.401 class virginica
-0.357 sepal width petal width 0.280 class setosa
-0.357 sepal width petal width 0.664 class versicolor
-0.357 sepal width petal width 0.538 class virginica

Table 3.3: The output from our algorithm for the Iris data set. Each row corresponds to a
detection of a trend reversal, in which allCorr is the population correlation; attr1 and attr2
indicate the pair of continuous attributes; revCorr is the subpopulation correlation for that
pair, with sign opposite to that of the overall population; splitby is the categorical attribute;
and subgroup is the value for that attribute that exhibited the reversal.

the six pairs of continuous attributes exhibit reversals: sepal length vs. sepal width, sepal

width vs. petal length, and sepal width vs. petal width. For example, the correlation

for sepal length and sepal width in the subgroup Iris Setosa (first row) is a positive value

0.747, but the correlation for the same pair of attributes in the entire data set is a negative

value −0.109. All three records are a full reversal of the trend: each of the three candidate

attributes has the opposite value correlation as the overall population for those three pairs,

indicating an instance of Simpson’s paradox in the class attribute.

The scatter plots in Figure 3.2 show all three occurrences of Simpson’s paradox. The

regression lines show the trends in the data. Colors and shapes encode the subgroups. The

dashed line indicates the trend for the entire Iris data set. The plots give insight into how

the species attribute in Iris data set is a factor in the exhibited Simpson’s paradox in the

class attribute for each attribute pair.

35



(a) sepal length vs. sepal width

(b) sepal width vs. petal length

(c) sepal width vs. petal width

Figure 3.2: Visualization of Simpson’s paradox in the Iris data set. Black lines show overall
trends. Red, green, and blue show trends for individual species. Relationships between the
various attributes are reversed in individual species relative to the entire sample.
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allCorr attr1 attr2 revCorr splitby subgroup

0.423 MPG acceleration -0.819 cylinders 3
0.423 MPG acceleration -0.341 cylinders 6
0.423 MPG acceleration -0.051 model year 75
0.423 MPG acceleration -0.051 model year 79
-0.778 MPG horsepower 0.621 cylinders 3
-0.778 MPG horsepower 0.013 cylinders 6

Table 3.4: The output from our algorithm for the Auto MPG data set, in the same form as
Table 3.3.

3.3.3 Auto MPG Data Set

The third experimental data set is the auto MPG data set [115]. We select three attributes of

continuous (MPG, acceleration, horsepower) and categorical (cylinders, model year, origin)

types, and ignore the remaining attributes. We also remove six records missing a value for

horsepower, leaving a total of 392 records. Table 3.4 shows the six detected occurrences of

trend reversals, four for cylinders and two for model year.

It may be true that higher MPG correlates with higher acceleration and lower horsepower

overall. Nonetheless, surprising patterns are found in the 3-cylinder and 6-cylinder groups.

For those groups, a higher MPG correlates with lower acceleration and higher horsepower, as

seen in Figure 3.3a and 3.3c, respectively. The relationships between MPG and acceleration,

and between MPG and horsepower, are examples of trend reversals in particular cylinder

groups. Similarly, despite a positive correlation between acceleration and MPG in the overall

data, as seen in Figure 3.3b, the data for vehicles with model years 1975 and 1979 do not

have a strong linear relationship.

The visualized data in Figure 3.3a shows five types of cylinders. Despite the positive

relationship between MPG and acceleration when the data for all types of cylinders are taken

together, there exists a negative relationship for the 3-cylinder or 6-cylinder groups taken

individually. The reversed trend in those two groups can be easily observed by visualization
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and motivates further analysis of subgroup data. Although reverse trends in Iris data set

or the synthetic data set occur in all of the subgroups, it is worthy of remark that reverse

trends could occur in some of the subgroups. We refer to circumstances in which Simpson’s

paradox happens in some but not all subgroups as partial Simpson’s paradox. In Figure 3.3b,

a slightly negative relationship between MPG and acceleration exists for years 1975 and 1979,

but there exists a positive trend for the entire data set. Similarly, in Figure 3.3c, it is evident

that higher MPG tends to accompany lower horsepower overall. However, the regression lines

for the 3-cylinder and 6-cylinder groups don’t share the same direction with the regression

line for the entire data set; the 3-cylinder group becomes more positive than the 6-cylinder

group as MPG increases. This is an example of how the strengths of reversals can vary

between different subgroups.

3.4 Performance Evaluation

We evaluated the performance of the algorithm on a 2015 MacBook Pro with a 2.7 GHz

Intel Core i5 processor and 8 GB 1867 MHz DDR3 memory. The algorithm is implemented

in Python running in Jupyter Notebook.

For the performance evaluation, we apply the algorithm to two continuous attributes and

a categorical attribute which together exhibit Simpson’s paradox. The number of subgroup

clusters corresponds to the number of unique values of the categorical attribute. In Table 3.5,

32 clusters mean that there are 32 subgroups partitioned by the categorical attribute. We

generate the same number of additional continuous attributes and categorical attributes, for

a total of 96 attributes. For example, the 10 attributes shown in Table 3.5 represent a com-

bination of 5 continuous attributes and 5 categorical attributes. The additional continuous

attributes’ values are generated by drawing random samples from a normal distribution with

a predefined mean and standard deviation. Meanwhile, the additional categorical attributes’

values are generated by a uniform random sampling of integers within a defined range. We
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(a) MPG vs. acceleration in the cylinders group.

(b) MPG vs. acceleration in the model year group.

(c) MPG vs. horsepower in the cylinders group.

Figure 3.3: Simpson’s paradox in the Auto MPG data set.
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Data Size #Clusters 10 attr. 20 attr. 30 attr.

100K
32 4.383 11.499 28.723
256 5.144 14.512 33.954
1024 10.797 24.270 54.154

500K
32 5.544 16.033 38.259
256 6.815 18.703 44.084
1024 12.272 29.723 63.196

1M
32 6.855 22.303 52.011
256 8.165 23.965 55.423
1024 13.811 34.985 76.289

Table 3.5: Running time (in seconds) of the detection algorithm.

generate three such synthetic data sets for each test case and calculate the average running

time.

Analysis of the results (Table 3.5) reveals three important factors that influence the

running time of the algorithm: the total number of continuous and categorical attributes,

the total number of records, and the number of unique values of each categorical attribute.

The results for 1024 clusters and 30 attributes (15 continuous and 15 categorical) are

shown in Figure 3.4. For data sets of all three sizes, the running time increases as the

percentage of the sample data (Section 3.6) increases. The slope is larger for the bigger data

sets. The result indicates that time efficiency benefits from our approach to use sampled

data to detect Simpson’s paradox in large data sets.

3.5 Discussion

Our study of the real Iris and Auto MPG data sets suggests that partial Simpson’s paradox

could be commonplace. Moreover, the magnitude of the detected occurrences of Simpson’s

paradox can differ significantly. For example, there can be a strong linear relationship

between two continuous attributes in an entire data set, but an inverse relationship at the

subgroup level that is not strong. One example is shown in Table 3.4 and Figure 3.3c; for

40



Figure 3.4: Running time of the algorithm for different samplings of the synthetic data set.

6 cylinders, the correlation value (slope of the regression line) is close to 0. The degree of

the reversal should be carefully considered when analyzing large data sets. There can be

many distractions arising from such minor cases of reversal. Fabris and Freitas discuss ways

to rank such occurrences of Simpson’s paradox [53]. A comprehensive approach to filter out

low significance instances of Simpson’s paradox is needed to facilitate the exploration of the

meaningful occurrences of Simpson’s paradox in large data sets.

Visualization techniques have been developed to assist in the discovery and analysis of

Simpson’s paradox. Researchers often use single tables to examine and explain Simpson’s

paradox [20, 18]. Scatter plots and line charts can be used to illustrate the phenomenon as

well [118, 80]. More recently, the comet chart was introduced for this purpose [13]. For data

that is significantly larger in either the number of records or the number of attributes, new

visual techniques are needed to facilitate wider ranging exploration and analysis of Simpson’s

paradox.
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3.6 Simpson’s Paradox in Partial Data

The detection algorithm is computationally expensive for large data sets, particularly as the

number of attribute combinations increases. To improve its efficiency, subsampling the data

may allow less computationally expensive detection than computing on the entire data set.

We use subsample sizes of 10%, 30%, 50%, 60%, and 90% of records to assess this approach.

For each subsample size, we select five sample sets and run the Simpson’s paradox detection

algorithm on them. The algorithm’s results on the entire data set provide ground truth.

Figure 3.5 shows the average and standard deviation F1 scores across the sample sets

of different subsample sizes. (The F1 score indicates the correctness of the algorithm on a

sampled data subset relative to on the full data set.)

Figure 3.5: The F1 score when running the Simpson’s paradox over random samples of data.

The experiment indicates that the detection algorithm can achieve a high F1 score even for

relatively small subsets of the data. This suggests its potential for application in situations

that require high efficiency, such as streaming data scenarios.
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3.7 Summary

We present a new approach to detect Simpson’s paradox based on the comparison of correla-

tions. A case study on empirical data sets shows the effectiveness of the algorithm. We also

explore the feasibility of detecting Simpson’s paradox in subsampled data as a preliminary

step toward improved scalability. Benchmark results confirm that the total number of con-

tinuous attributes and categorical attributes, the total number of records, and the number

of unique values for each categorical attribute influence the running time of the algorithm.

This calls for considering the factors needed to sensibly filter real data sets. The currently

implemented algorithm partitions the data only once and iterates the partition over the dif-

ferent categorical attributes of the entire data set. Grouping the attributes themselves (two

or more) may be necessary to detect significant results of this form. However, grouping on

all possible combinations of the categorical attributes would be both intricate and tedious,

particularly because the interpretation of occurrences of trend reversals in particular combi-

nations requires the application of in-depth domain knowledge about the data set and the

phenomena behind its various data attributes. The following chapters present new visual

and interactive techniques that use such occurrences to guide a user’s data exploration and

analysis.
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Chapter 4

Representing Simpson’s Paradox with

Bivariate Colors

4.1 Overview

Seeking insights from data is a vital activity that increasingly requires human-centric com-

puting approaches for success. Simpson’s Paradox is a common phenomenon in data of

many forms. Undetected occurrences can lead an unaware analyst to draw incorrect con-

clusions. In one famous example, researchers erroneously quantified the success rate of a

treatment [30]. The error was not discovered until years later [77]. Moreover, as the name

suggests, Simpson’s paradox is generally a surprising observation and often counterintuitive

to non-statisticians. It is increasingly important for individuals without statistical exper-

tise to conduct exploratory analyses of data. As such, interpretable approaches to detect

and analyze Simpson’s paradox are increasingly important. Similarly, the democratization

of data science is empowering both experts and non-experts alike to explore data, making

easily interpretable techniques for detecting phenomena like Simpson’s paradox essential.

We categorize cases of Simpson’s paradox into two types based on the form of detection:

rank trend and regression trend. In rank trend Simpson’s paradox, the trend is of the
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relative rates of a binary outcome in two groups, for example, admissions by gender [18,

65]. In regression trend Simpson’s paradox, the trend is based on the sign of a correlation

between two variables [31, 80, 164]. While automated methods for the detection of Simpson’s

paradox [164] can help to facilitate the process of discovery, black-box method detection may

not be sufficient to support analysts’ sense-making processes.

We take advantage of visualization techniques to improve interpretability and make

human-in-the-loop data analytics more accessible to analysts with varied skills and exper-

tise. A novel visual analytics approach facilitates the exploration of data to detect Simpson’s

paradox. A bivariate color scheme illustrates relationships between trends over a full popu-

lation and within its subgroups. Detection and analysis activities are integrated via multiple

coordinated views that provide users with both an overview of the entire data set and de-

tails about subgroups and detected occurrences as desired. Interactive features allow users

to effectively and efficiently conduct exploratory analyses. We demonstrate the utility of our

visualization design to draw insights from data without being misled by undetected instances

of Simpson’s paradox.

4.2 Example Data

To illustrate the design, we utilize both real data and example synthetic data structured

like real data sets in which Simpson’s paradox has been noted. This allows control over the

number of occurrences and amount of trend reversal to robustly assess the design.

4.2.1 Rank Trend Simpson’s Paradox

To assess the technique with rank trends, we use a synthetic version of the well-known

Berkeley admissions case of Simpson’s paradox [18]. Rank trends involve three variable

types:

dependent variable is a variable that has a rate in which the ranking flips (e.g., from
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Figure 4.1: Bivariate color legends for rank trend Simpson’s paradox: (A) 3× 3 sequential-
sequential, (B) 3× 3 diverging-diverging, and (C) 5× 5 diverging-diverging.

Women having a higher admission rate than Men to Men having a higher admission

rate than Women), such as admission rate or mean salary;

independent variable is a grouping variable that determines how the rates are compared,

such as gender or race; and

splitby variable is a grouping variable that groups rows having the same values into sub-

groups, such as department or job function.

We set the portion of applications to each department, the rate of each gender applying

to each department, and each department’s acceptance rate, and generate a random sample

with 1000 records that follow the causal explanation of the Berkeley example, namely that

the departments with high admissions rates have higher shares of male applicants.

4.2.2 Regression Trend Simpson’s Paradox

To assess the technique with regression trends, we generate samples from a Gaussian Mixture

Model. The means are drawn from a Gaussian with a high positive correlation coefficient and

cluster covariances constructed to have a high negative correlation. We add two continuous
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variables (one as dependent variable and the other as independent variable) and a categorical

variable as splitby variable. The size of the data set is 100 records.

4.3 Tool Design

The design is implemented as a web-based interactive visualization application using Bo-

stock’s D3.js library [22]. The application was designed for use with data from any domain.

Labeling throughout the application user interface is generic or drawn from the data, and

scales are adaptive to the data. The user interface design is unified to support both forms

of Simpson’s paradox detection.

4.3.1 Bivariate Color Scheme

A bivariate color scheme [140] is a two-dimensional array of colors that integrates a pair

of univariate color schemes. This configuration illustrates the relationship between two

quantitative variables and allows comparison within and between them. For example, the

color in the right bottom cell of Figure 4.1(A) indicates that a subgroup trend has a neg-

ative aggregate trend and a positive subgroup trend. Figure 4.1 shows three examples: a

3 × 3 sequential/sequential scheme, a 3 × 3 diverging/diverging scheme, and a 5 × 5 di-

verging/diverging scheme. The vertical axis is split into ranges of trend values (rows) for

the entire data set. The horizontal axis is similarly split into columns for subgroups. The

top-left and bottom-right corners indicate a trend reversal between the overall trend and

the subgroup trend, indicating a possible occurrence of Simpson’s paradox. The 3 × 3 se-

quential/sequential scheme is derived from the logical arrangement of all combinations of

the colors in two 3-class sequential color schemes [24]. The option to choose diverging color

schemes allows a more perceptually direct examination of the critical midpoint. The 5 × 5

diverging/diverging scheme offers more levels to indicate the severity of the trend reversal

(or lack of one). (Unfortunately, these three bivariate color schemes are less accessible to
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users with color deficiency.)

4.3.2 Bivariate-Scaled Heatmaps

We apply the bivariate color scheme to color the cells of feature matrices, creating a heatmap

to visually indicate trend reversals and Simpson’s paradox. Correlation matrices are used to

show regression trends and rate comparison matrices show rank trends.

Correlation Matrices

For a data set with d continuous variables, we compute the d× d correlation matrix for the

whole population. After the data set is partitioned by the C group-by variables, we compute

a d×d correlation matrix for each of the kc values of group-by variable c. This gives
∑C

c=1 kc

correlation matrices of size d×d for each subgroup and a correlation matrix of size d×d for the

entire population. The correlation matrix for the whole population and each of the
∑C

c=1 kc

subgroup-level correlation matrices are used to generate bivariate heatmaps for visualization

Bc=s, in which each element is defined as bij = ftran(corr(ai, aj), corr(ai, aj|c = s)) where ai

and aj are the pair of continuous variables, c is the categorical variable, and s is the subgroup

value. The transformation function ftran(·) maps the correlations of the entire population

and subgroup s into a color in the bivariate color scheme [136]. Since Simpson’s paradox is

a change of sign, the ftran for regression compares the sign of the correlation coefficients.

Rate Comparison Matrices

Consider a data set with a binary dependent variable Y and variables, x1, . . . xG for grouping

G. Assume no prior knowledge about how to distinguish which grouping variables serve as

independent variables versus splitby variables; use each grouping variable as both an inde-

pendent variable and as a splitby variable. This gives G(G−1) total rate comparison matrices

to compute. Assume each grouping variable xg has Ng values: xg,1, . . . xg,Ng . Given a pair

of grouping variables (i,j), taking xi as the independent variable and xj as the explanatory
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variable, compute an Mi×Nj rate comparison matrix, using Mi =
(
Ni

2

)
comparisons for the

Ni values of the independent variable xi, and the Nj values of the splitby variable xj, with

i, j ∈ 1, . . . , G.

First, compute the G overall comparison vectors:

Di,all =



a1

a2

...

aMi


=



E(Y |xi = xi,1)

E(Y |xi = xi,2)
E(Y |xi = xi,1)

E(Y |xi = xi,3)
...

E(Y |xi = xi,Ni−1)

E(Y |xi = xi,Ni
)


(4.1)

Each entry in Dall is the ratio between the group-wise means of the dependent variable

Y conditioned on two values of the ith grouping variable. For example, if the first grouping

variable, x1, is binary coded gender and Y is binary admission decision, then N1 = 2,

M1 =
(

2
2

)
= 1, and D1,allR

1×1 is the ratio of the admission rate of men to women.

Next, partition the data set by further conditioning on each of the n values of the splitby

variable and compute a m × n rate comparison matrix, Di,j. Each column sl in Di,j is the

rate between the means of the dependent variable Y conditioned under (xi, xj). For the

example above, if the splitby variable x2 is department and N2 = 4, then D1,2 ∈ R1×2 is the

per department ratios of the admission rate of men to women.

s:,l =



E(Y |xi = xi,1, xj = xj,l)

E(Y |xi = xi,2, xj = xj,l)
E(Y |xi = xi,1, xj = xj,l)

E(Y |xi = xi,3, xj = xj,l)
...

E(Y |xi = xi,Ni−1, xj = xj,l)

E(Y |xi = xi,Ni
, xj = xj,l)


(4.2)

Next, use the G overall matrices, Di,all, and the G! rate comparison matrices Di,j to
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generate trend comparison matrices of size Mi ×Nj.

Finally, each entry bij in B is computed by the transformation function ftran(·) that

maps ai from Dall and sij from Dsubgroup into the position in the bivariate color scheme:

bij = ftran(ai, sij).

4.4 Visual Analysis Workflow

To facilitate the exploration of Simpson’s paradox, the web-based application is organized as

follows. On the left, a control panel allows users to upload a file, select a Simpson’s paradox

type, and change the color scheme. In the middle, bivariate-scale heatmaps help users detect

Simpson’s paradox. On the right, a detail panel (for rank trend Simpson’s paradox) or a

scatter plot (for regression trend Simpson’s paradox) shows the data and trends themselves.

The application user interfaces for detecting rank trend and regression trend Simpson’s

paradox are shown in Figures 4.2 and 4.3, respectively. After a data set is loaded into

the application, the user can choose the rank trend or regression trend Simpson’s paradox

detector by selecting from the type dropdown selector. Currently, the system requires a

comma-separated values (CSV) file with headers for analysis. The following sections describe

the operation for each type of Simpson’s paradox.

4.4.1 Rank Trend Simpson’s Paradox

In Figure 4.2, once users select rank trend, they can choose a color scheme from the legend

dropdown selector. In the middle view, the rate comparison matrices are colored according

to the bivariate color scheme. To facilitate visual exploration, users can highlight cells by

clicking a cell in the legend. The user can identify occurrences of Simpson’s paradox in the

heatmaps by looking at their cells’ colors. For example, the light pink of the Sequential

3 × 3 legend may indicate Simpson’s paradox, since the light pink represents a low com-

parison rate in the range (0.00, 0.95) in the subgroup but a medium comparison rate in the
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Figure 4.2: The application user interface for rank trend Simpson’s paradox detection: (A)
the user control panel; (B) bivariate scaled heatmaps for rate comparison matrices; (C) a
slope graph showing details for the selected heatmap and cell in it.

range (0.95, 1.05) in the entire data set. This situation could be a Simpson’s paradox if the

comparison rate is greater than 1.00. In the synthetic data set, the third rate comparison

matrix in the first row has four cells in light pink. This means that in each department,

females had a higher acceptance rate than males but the acceptance rate for males is higher

than for females in the entire data set. After the user clicks on the light pink cell, the slope

graph shows the details of acceptance rate for males and females for each department and

for the entire data set. The user can compare the trend line of the selected subgroup to that

of the whole in the slope graph, with the other subgroups’ trend lines faded out. The user

can double-click on the clicked cell to bring the trend lines for all subgroups to equal visual

prominence.

4.4.2 Regression Trend Simpson’s Paradox

In Figure 4.3, after the data file is loaded, the user can select regression type from the type

dropdown selector and pick a color scheme for regression trend detection. In the middle, the
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Figure 4.3: The application user interface for regression trend Simpson’s paradox detection:
(A) the user control panel; (B) bivariate scaled heatmaps for correlation matrices; (C) a
scatterplot showing details for the selected heatmap and cell in it.

bivariate heatmaps show subgroup-level matrices for identifying trend cases. The selected

dark green cell in Figure 4.3B indicates the trend reversal occurring in the color b group for

continuous variables x1 and x2. To understand the possible occurrence of Simpson’s paradox

in the data set, the scatterplot shows both data and trends (Figure 4.3C). The data points

related to the chosen subgroup are highlighted. The black-dotted line in the scatterplot

shows the regression line for the entire data set. The solid line represents the regression line

for the chosen subgroup. The reversal in direction between the two lines provides evidence

of the opposing relationship between the two variables.

A three-level tree layout (Figure 4.4) is included to illustrate the hierarchy of groupings.

The color in root level and middle level matrices represents the aggregate trend, whereas

the color in leaf matrices indicates the relationship between the aggregate trend and the

subgroup trend. The tree layout view helps to identify which categorical variables exhibit

trend reversals. For example, the leftmost two leaf matrices b and r have dark pink cells

indicating trend reversals, and the tree layout shows that they come from the categorical

variable color. If the user clicks on the matrices of non-leaf nodes (here color, char, and all),

all data points are highlighted in the scatter plot. The tree view allows users to interactively
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Figure 4.4: The tree layout for regression trend Simpson’s paradox. The user clicks on the
matrix of the parent node (color), and all data points are highlighted in the scatterplot.

explore the area of the tree that they want to see by dragging the tree or zooming in/out by

mouse or touchpad.

4.5 Summary

We present an interactive interface that facilitates visual detection of Simpson’s paradox

by non-experts during exploration. Bivariate-scale heatmaps of the features indicate both

directions of the trend and subgroup-aggregate trend relationship (same or reversed).

The visualization design is an initial step toward an interactive data exploration frame-

work for alerting the user to surprising results. We aimed to develop the visualization further

to incorporate ranking of the Simpson’s paradox occurrences to better accommodate large

data sets. Directions for extension include more flexible and varied trend detection, user

control of display thresholds, and joint visualization of multiple trend types. This led to the

Wiggum application discussed in the next chapter.

53



Chapter 5

Wiggum: Interactive Visual Analytics

for Examining Mix Effects

5.1 Overview

The importance of data-driven decision-making is rapidly increasing thanks in part to the

growing availability and accessibility of data sets and analysis tools. Yet, applicable insight

can be difficult due to biases and anomalies in data. An often overlooked phenomenon is mix

effects, in which subgroups of data exhibit patterns opposite to the data as a whole. This

phenomenon is widespread and often leads inexperienced analysts to draw incorrect statis-

tical conclusions. In addition, Simpson’s paradox is a special case of mix effects, occurring

when all subgroups of data partitioned by a certain condition evince the opposite pattern

of the aggregate data. In this chapter, we present Wiggum, an interactive visual analysis

system for uncovering both mix effects and Simpson’s paradox.

Wiggum represents a punctuation point in our work to develop visual analysis tools for a

broad community of users concerned with paradoxes and other complex anomalies in multi-

dimensional data sets. This work confronts critical challenges to the effective examination of

mix effects. In developing Wiggum, we pursue four main research goals (R1–R4) to address
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those challenges.

R1 Dimensionality: Checking a multidimensional data set for mix effects can be a chal-

lenging task because it requires examination of relationships between subsets of dimen-

sions in terms of the partitions of data in those dimensions on subgrouping criteria.

Wiggum provides features to flexibly drill-down into dimensions and specify trend type

and criteria.

R2 Flexibility: Visual identification and characterization of mix effects can be challenging

because the interpretation of trend strengths against the underlying data distribution

varies with the trend type and the data types of dimensions considered. Wiggum

generalizes the exploration process across different combinations of mix effects and

dimension types while also providing visualizations suitable for examining each one.

R3 Understandability: Designing usable visualization tools can be challenging because

users differ in their understanding of statistics concepts and how those concepts man-

ifest in data, especially when data is transformed along a pipeline for visualization. A

participant-based evaluation of Wiggum sheds light on how its exploratory drill-down

design helps users examine mix effects in high dimensional data.

R4 Integrability: Exploring mix effects in multidimensional data can be difficult be-

cause of the need to bring together independent tools for tasks including selection of

dimensions, definition of subgroups, and examination of trends. Wiggum integrates vi-

sualizations for examining mix effects with a user interface for loading data, browsing

dimensions, specifying groupings, and selecting groups to be examined.

Taken together, Wiggum’s features support interactive visual identification and examina-

tion of mix effects. While automated approaches to find mix effect candidates exist, one must

select and examine them to interpret their character, strength, and meaning. Automated

methods can thus complement but not supplant manual identification. For the current ver-
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sion of Wiggum, we focus on supporting examination of candidates detected by some means,

and leave addition of automated methods as future work.

To help data analysts better identify and interpret mix effects, Wiggum includes data

annotation features to specify variable types and roles. It also offers data augmentation

features to generate clusters, quantiles, or intersectional subgroups [26, 28].

We introduce trend strength and trend distance metrics to support comparison of ag-

gregate and subgroup trends. A distance heatmap view provides an overview for efficient

exploration of trend measures and lets users inspect patterns of relationships across dimen-

sions for defined subgroups. A second view (specific to trend type) shows the details of the

selected trend for examination and interpretation. Interactive filtering and ranking features

allow users to efficiently organize trends for exploratory analyses. Our contributions are as

follows:

• a visual analysis system that supports interactive exploration to examine patterns

that reveal mix effects;

• a processing pipeline to map data, annotated and augmented by the user, into

statistical results for display;

• mathematical equations to formalize metrics of mix effects;

• two new view designs, adapted from heatmaps and trend plots, to understand and

efficiently examine mix effects; and

• a comprehensive approach to help users examine multiple trend types and explore

different trend types simultaneously.

We start with an illustrative example of mix effects examination. We then describe how

Wiggum prepares and processes data for visual analysis of mix effects. Next, we outline

key goals to support visual analysis and the design of interaction visualization features in

Wiggum to achieve them.
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Figure 5.1: Selecting a subgroup and examining trends on the Wiggum visualization page.
After selecting the age 60 group and clicking a dark red cell in its distance heatmap (A), the
detail view (B) displays the trend reversal between the aggregate data and the age subgroups
in a scatter plot.

5.2 Illustrative Example

We illustrate how Wiggum supports visual data exploration of a synthetic data set relating

vitamin D level, sunlight exposure level (sunlight), food level in vitamin D (food), age, and

gender. (Key concepts are italicized throughout, and will be described more formally in later

sections.)

After loading the data set, we annotate the data type and role of each variable on the

data configuration page. To study correlations with vitamin D level, we choose the Pearson

correlation trend type then click the Visualize Trends button. On the visualization page,

we observe seven 3×3 distance heatmaps (Fig. 5.1A). Each distance heatmap represents one

subgroup of either the age group or the gender group. Each cell color encodes the pairwise

attribute trend distance that measures the discrepancy between the aggregate and subgroup

trends. A dark red cell encodes a distance of 1, indicating a trend reversal between the
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aggregate and subgroup.

Clicking the VitaminD x Sunlight cell in the heatmap for the age 60 subgroup, the detail

view (Fig. 5.1B) displays a scatter plot of the age subgroups. Each subgroup and its Pearson

correlation trend are color encoded with the age 60 subgroup highlighted in solid purple.

Its regression line in the plot indicates a positive relationship between vitamin D level and

sunlight exposure level. In contrast, the dashed black regression line indicates a negative

relationship between them in the aggregate data set. This reversal pattern matches the

meaning of the selected dark red cell in the heatmap. The regression lines for the other age

groups are similarly reversed from the aggregate data set, although to different degrees.

Mix effects and Simpson’s paradox can be expressed mathematically. A trend distance

d is defined in Equation (5.1), using a distance function, dist, and a binary relationship,

trendb, for some summary statistic, stat, of two variables x1 and x2. For a single value of

x3 = y (y is a value of the variable x3, e.g., age = 60), the value of d is the trend distance

between a subgroup trend y (i.e., age 60) and the aggregate data. We define a subgroup

trend as a trend between two variables x1 and x2 given x3 = y. In the synthetic data, the

stat is the Pearson correlation between vitamin D level (x1) and sunlight exposure level (x2)

conditioned on age (x3). The trendb is positive or negative according to the direction of the

correlation. A distance of 0 indicates the trends have the same direction, and 1 indicates

a reversal. In this case, the trend between vitamin D level and sunlight exposure level is

negative for the aggregate data but positive for the age 60 subgroup. Since the two trends

are reversed, the distance between them is 1.

dx1,x2,y = dist(trendb(stat(x1, x2)), trendb(stat(x1, x2|x3 = y))) (5.1)

Mix effects occur when reversal (d = 1) happens for some values of x3. If reversal occurs

for all values of x3, it is a special case known as Simpson’s paradox. The synthetic data

exhibits both Simpson’s paradox and mix effects. The correlation between vitamin D level
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and food illustrates mix effects, since only two out of five age subgroups (50 and 60) have the

reverse trend. The correlation between vitamin D level and sunlight exemplifies Simpson’s

paradox, since all five age subgroups have the reverse trend. Ignoring these phenomena could

lead to incorrect conclusions and decision making.

5.3 Data Preparation and Processing

In this section, we describe the processing pipeline that Wiggum applies to map a data set

into the statistical information displayed in its visualizations. The process begins with a

data preparation phase, in which the user provides metadata and applies any preprocessing

needed for their investigation. Next, Wiggum extracts features and partitions the data as

inputs to trend generation. Finally, it calculates trend measures for each subgroup.

5.3.1 Data Preparation

Data preparation happens in two stages, both under interactive user control. In data anno-

tation, the user labels the data attributes of the loaded data set with the role they should

play in trend calculations. In data augmentation, the user can define additional categorical

variables for use in partitioning data.

Data Annotation

Wiggum needs type and role information for each data dimension (variable) to determine

how to apply rank and regression trend calculations. Upon loading a data set, Wiggum

applies an automatic type-mapping function to infer a type for each variable. The user can

edit the type to be binary, categorical, continuous, or ordinal. They can also specify each

variable’s role to be dependent, independent, or splitby.

A feature is a variable that has been cast into a type and put into a role for the purpose of

calculating trends, as shown in Table 5.1. An instance of mix effects involves three features.
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Table 5.1: User-defined types and roles of features in instances of mix effects, for each of the
two types of trends.

Feature in
Eq. 5.1

Rank Regression

Type Role Type Role

x1 binary/continuous dependent continuous/ordinal dependent
x2 categorical independent continuous/ordinal independent
x3 any splitby any splitby

The first two features, one dependent and one independent, are used to compute a trend.

For a rank trend, an aggregation (e.g., average) is applied to values of the dependent feature.

The independent feature partitions a population into ranked groups (e.g., {Women, Men} for

Gender) based on the aggregation result. For example, in the admissions data set, admission

rate is calculated as the mean of a dependent feature (Accept Status as a binary type). The

rank by admission rate of the independent feature (Gender as a categorical type) determines

the rank trend. For a regression trend, Wiggum models the relationship between the features

(details in Section 5.3.2). For both types of trend, a third splitby feature groups rows by the

other features’ values.

A drop-down list lets users select multiple roles for a variable in a data set, making it

possible to have multiple features in which the same variable plays different roles. Users

may want to consider only a subset of variables, especially for high-dimensional data sets.

Wiggum provides an ignore role option for users to exclude variables that are not of interest.

(Note: For the rest of the chapter we use the terms variable and feature interchangeably.)

Data Augmentation

For many data sets and problem definitions, existing categorical variables can be used as

splitby attributes for partitioning. Wiggum also lets users define calculated categorical vari-

ables. The values of each calculated variable populate an additional column in the data.

Wiggum currently supports calculations to discretize the values of a quantitative attribute

into quantiles. Users can also create intersectional combinations of other categorical vari-
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ables. For example, a user can select features “race” and “gender” to generate a new categor-

ical column called “race gender” containing values such as “Asian male” from “Asian” and

“male”. Creation of intersectional variables allows users to discover reverse trends in more

complex groupings. Wiggum also lets users define categories via clustering using the Dirich-

let Process Gaussian Mixture Model implemented in the Scikit-learn library [112]. The user

is not required to specify the number of clusters. We set the maximum number of mixture

components to 20, which limits the number of clusters to 20. The user can interact with a

range slider to adjust cluster quality and tune the resulting clusters.

5.3.2 Trend Extraction

Wiggum selects subsets of the available features and partitions them into subgroups. It then

generates rank and regression trends based on variable types and roles.

Feature Subset and Subgroup Creation

A subset is a pair of features along with their respective columns populated with the data

values of each feature’s variable cast into the feature’s type. Wiggum uses the user’s entered

data annotations to calculate all subsets of the entire data set that are relevant to the selected

trend type (see Figure 5.2).

In a typical rank trend analysis, users are interested in ranking different groups on a

particular statistic. We define a dependent variable as a data column whose values are used

to calculate such a statistic. In Equation (5.1), the dependent and independent variables

correspond to features x1 and x2, respectively. Wiggum processes the data to find all column

pairings that contain one dependent variable and one independent variable. The total number

of subsets detected for rank trend mix effects is the number of dependent variables times the

number of independent variables. To create subgroups for rank trend, Wiggum iterates over

the list of splitby variables and partitions each subset on the unique values of each splitby

variable. If a splitby variable is also in a subset as an independent variable, it will be skipped
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Figure 5.2: Subset generation. For each user-annotated feature (A1–A6), Wiggum generates
dependent and independent feature lists appropriate to the user-specified trend type. Gener-
ated subsets consist of all possible non-same pairings between the dependent and independent
feature lists.

and will not be used to partition the subset.

In a regression trend analysis, the idea is to model the relationship between a pair of

continuous or ordinal variables. Variables specified as continuous or ordinal type in a depen-

dent or independent role are used for subset generation. The subsets are all possible pairs of

dependent and independent variables, excluding pairings of a variable with itself. Variable

pairs are treated as x1 and x2 in Equation (5.1) to detect instances of regression trend mix

effects. For M dependent variables, N independent variables, and P same variable pairs,

the total number of subsets for regression trend detection is M ×N −P . Unlike rank trend,

there is no conflict between splitby variables and independent variables, so all of the splitby

variables can be used to partition subsets.

In practice, a data variable may play multiple roles in a data set. For instance, feature
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A4 in Figure 5.2 is annotated as playing both dependent and independent roles. In subset

generation, A4 is paired both with continuous/dependent feature A1 in Subset 7 and with

continuous/independent variable A5 in Subset 9. Both subsets are used for regression trend

detection.

Generating Trends

Given subgroups of different subsets, the next (vital) step is to compute trends for both

subgroups and the aggregate data subset. Trend generation applies the same method to

both the aggregate data and subgroups. For rank trends, Wiggum computes a summary

statistic, such as mean or median, on XDep (e.g., the admitted variable: 1 admit, 0 do not

admit) for every group value xi ∈ XIndep = {x1, ..., xn} (e.g., gender = {Men, Women}).

The next step is to rank the n groups by the summary statistic. The trend is an ordered list

of ranked groups. In the Berkeley Admissions Example, the trend for aggregate data can be

denoted as ta = [Women,Men] indicating that the admission rate for men is higher than

the admission rate for women.

For a regression trend, we consider correlation for a subset. Wiggum applies Pearson cor-

relation on the pair of columns in the subset. We denote the trend as t = corr(XDep, XIndep),

where XDep is the variable of the dependent role and XIndep is the variable of the indepen-

dent role. A difference in the signs of the correlations for the subgroup and aggregate data

indicates a reverse trend.

Despite being a powerful method for detecting mix effects, correlation alone does not

suffice to detect the difference between trends without trend reversal. To allow users to

track changes in trends even without reversal, the slope of a linear regression line is used as

the trend value. Then t = b where b is derived in the equation of a linear regression line

XDep = b ·XIndep + a.
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5.3.3 Trend Measurement

Wiggum introduces a practical set of measures to support discovering mix effects. We define

two basic measures: trend strength and trend distance.

Trend Strength

Trend strength is a metric for assessing how well a trend represents data being examined.

For a rank trend, given a subgroup trend t, the strength s(t) indicates how the subgroup

trend list and the element-wise sorted list are dissimilar to each other after repeating each

element of the subgroup trend by the corresponding proportion to reproduce the full list

with the same length. We denote the extended subgroup trend list as Ls. Wiggum generates

an element-wise sorted list denoted as La by sorting on the XDep column of the subset, then

creates a list of the elements in XIndep. The strength is computed using the absolute value

of Kendall’s tau similarity between the two lists La and Ls. We formulate the strength as:

s(t) = |τ(La, Ls)| =

∣∣∣∣∣ P −Q√
(P +Q+ T )(P +Q+ U)

∣∣∣∣∣ , (5.2)

in which P is the number of concordant pairs, Q is the number of discordant pairs, T is the

number of ties only in La, and U is the number of ties only in Ls. For example, if La = [M,F ]

and Ls = [F,M ], then P = 0, Q = 2, T = 0, U = 0 and s(t) = 1.

For a regression trend, the absolute correlation indicates the strength of the association

of the two attributes in the observed subgroup. We denote the trend strength for a regression

trend as:

s(t) = | corr(XDep, XIndep)|, (5.3)

which quantifies the strength of the relationship between dependent and independent vari-

ables to measure how well the regression trend fits the data.
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Trend Distance

Distance is a fundamental concept in Wiggum. Given an aggregate trend ta and a subgroup

trend ts, a pairwise distance d(ta, ts) indicates the discrepancy between two trends. To

make multiple subgroup trends in different types of trends consistent and comparable, the

distances in Wiggum are normalized to [0, 1]; 0 is considered “the exact same trend” and 1

“the largest possible difference”. For a rank trend we use Kendall’s Tau similarity between

the aggregate and subgroup trends, since they are represented as lists. We formulate the

normalized distance for a rank trend as:

dτ (ta, ts) = 1− (τ(ta, ts) + 1)

2
. (5.4)

For regression trends, we use two different strategies of detection to increase the flexibility

of the trend comparison. When users only care if the subgroup exhibits the opposite pattern

of the aggregate data, Wiggum checks the sign of the correlation. The distance for a subgroup

trend is defined as:

d⊕(ta, ts) = sign(ta)⊕ sign(ts), (5.5)

in which sign refers to mapping the correlation by its sign to 0 or 1 (1 for positive, 0 for

negative) and ⊕ is the logic operation for exclusive-OR. In addition to being useful for

detection of a reverse trend, Wiggum can help users explore the difference between trends to

figure out whether a trend is a recurring phenomenon. We use the slope as the trend value,

with distance defined as the normalized angle between two linear regression lines, as:

d](ta, ts) = normangle(ta, ts) =
2

π

(∣∣tan−1(ta)− tan−1(ts)
∣∣%π

2

)
, (5.6)

in which % is the modulo operator, ta is the slope for the aggregate data, and ts is the slope

for the subgroup data. The normalization step generates a distance d] ∈ [0, 1] where d] = 1
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Figure 5.3: The Auto MPG data set [90] in Wiggum. (A) Control panel for filtering, detect-
ing, and ranking potential instances of mix effects. (B) Result table for examining statistical
details of each subgroup trend. (C) Scrollable array with a distance heatmap for each result
subgroup trend. (D) Legend of heatmap cell colors. (E) Trend plot for exploring details of
regression trends.

indicates a right angle and d] = 0 indicates parallel lines.

5.4 Wiggum: Discovering Mix Effects

Wiggum is a web application consisting of a data preparation page and a visualization page,

as shown in Figure 5.3. In the data preparation page, the user can pick trend types, label

metadata, and perform data augmentation. Wiggum is motivated by the Visual Information

Seeking Mantra: “Overview first, zoom and filter, then details-on-demand” [131]. The vi-

sualization page is made up of a distance heatmap collection for overview, a trend plot and

result table for detail, and a control panel area to support zoom and filter operations.
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5.4.1 Design Goals

Wiggum was designed to be an interactive visual system for exploring mix effects in multi-

dimensional data. We established the following set of goals to guide design and evaluation.

G1 Provide easy generation of variables for partitioning data. Although some

data sets have categorical or ordinal variables which can be used for partitioning, it is

often useful to provide users with a set of approaches to generate subgroups without

direct application to existing categorical or ordinal variables. Users should be able

to specify the inputs for such data augmentation and quickly generate variables for

partitioning.

G2 Support multiple trend types. The system should support detection of multiple,

statistically important trend types (e.g., rank trend and regression trend). The visu-

alization design should be general enough to reveal the statistical characteristics for

different trend types (R2).

G3 Present an overview of the trend distance. The visual design should clearly

show the trend distances generated by the detection algorithm in a way that lets users

explore them quickly to identify and analyze interesting patterns (R1).

G4 Facilitate the interpretation of exploration results. The system should help

users understand trend measurements to discern how a subgroup trend reverses com-

pared to the aggregate trend. Users should be able to visualize all subgroups’ trends

to discover whether mix effects or Simpson’s paradox exists in the data set (R3).

G5 Allow flexible selection of subgroup trends. Since users may have domain knowl-

edge about important feature attributes or subgroups they want to check, users should

be able to select records in the result table using quick, simple interactions.
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5.4.2 Preparation Page

On the preparation page, Wiggum lets users load data from a new or previously saved

CSV file. Data annotation and augmentation are integrated into the same page. Wiggum

allows users to select variables to generate quantiles or make intersectional subgroups. It

also supports Dirichlet Process Gaussian Mixture Model clustering over pairs of continuous

variables by setting a cluster quality threshold (G1). Wiggum equips a list of available

trend types such as Pearson correlation, linear regression, and rank trend in a selection box

to allow users to select one or multiple options at a time (G2). Upon clicking the Visualize

Trends button, Wiggum redirects users to the visualization web page that includes the views

discussed below.

5.4.3 Result Table View

The output of the data processing pipeline is a result table (Figure 5.3B) for each trend-level

comparison. After executing the statistical computation in the Wiggum back-end, the user

is provided with a result table view containing information on dependent, independent, and

splitby variables, subgroups, and trend types. Trend, trend strength, and trend distance for

subgroup and aggregate, respectively, are also included in the result table for each subgroup

trend. Each record in the result table represents a subgroup trend from a feature subset.

If there are m subsets (see Section 5.3.2), n splitby variables, and the ith splitby variable

has ki values, then the total number of rows in the result table will be m ×
∑n

i=1 ki. In

this view, users can find detailed statistics for a trend in an observational subgroup (G4).

The result table is a basic component containing all information needed to generate the

distance heatmap view. To further investigate subgroup trends, the area below the table

header provides interactive selection boxes and sliders for use in conjunction with the Filter

and Detect buttons.
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5.4.4 Distance Heatmap View

The distance heatmap view provides an overview of the subgroup trends from the result

table (G3). The view consists of multiple distance matrix heatmaps. We designed the

distance heatmap view to show the measured distances between different paired features for

each subgroup for each trend type. The different trend types generate heatmaps separately.

For example, if there are n splitby variables used for partitioning in a data set and the ith

splitby variable has ki values, then there are
∑n

i=1 ki separate heatmaps for each trend type.

If there are T trend types that are selected by users, the total number of heatmaps will be

T ×
∑n

i=1 ki. To use the central space more efficiently, Wiggum lays out three heatmaps per

row with vertical scrolling.

The first step in generating a distance heatmap is to select rows from a subset of the result

table which contains dependent, independent, splitby, subgroup, trend type, and distance

information. For example, in the table in Figure 5.4, each row represents a subgroup trend

in the Auto MPG data set. The selection iterates over trend type, splitby, and subgroup;

each subset has the same values of these three things. The second step is to reshape the

subset data into a two-dimensional matrix, as illustrated in Figure 5.4B. The matrix’s values

are the distance values, and missing values will be set to not-a-number (NaN ). Rows show

Dependent values and columns show independent values. Each distance matrix heatmap’s

size is the product of the number of unique values in the dependent variable and the number of

unique values in the independent variable for the current choice of subgroup and trend type.

For example, as the subset table after selection in Figure 5.4 shows, there are two unique

values of dependent variable (MPG and horsepower) and two unique values of independent

variable (horsepower and acceleration), giving the distance matrix a size of 2 × 2. The

corresponding distance matrix heatmap (Figure 5.4C) is a visual representation of the cells

of that distance matrix with each cell representing a subgroup trend. The cells of the matrix

are color-encoded to show distance values. Subgroup trends with higher distance are more

saturated. In addition, a dark/light red color encodes a binary distance (i.e., 1 for a reverse
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Figure 5.4: Internal pipeline to generate a distance matrix heatmap from a result table.
(A) Records with the same trend type, splitby, and subgroup are selected to build a subset
table. (B) Distance values are mapped into dependent variable rows and independent variable
columns to form a distance matrix. (C) The matrix is visually encoded as a distance heatmap.

trend and 0 for a same trend) for a Pearson Correlation trend type. Grey indicates a cell

with an absent (NaN ) distance value.
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Figure 5.5: A screenshot of a distance heatmap and its detail view. The detail view shows
a rank trend. When the user clicks a decision by gender cell in the distance heatmap, the
parallel coordinates view shows a line for each gender through decision rates on each axis
to represent a rank subgroup trend in the department 3 subgroup. A grouped bar chart
provides details about the counts of each subgroup.

5.4.5 Detail Views

Wiggum includes detail views to help users investigate and understand relationships be-

tween aggregate and subgroup trends (G4). For each trend type, we choose different visual

techniques to help explain various situations in the data. We describe the detail views

corresponding to the two basic trend types, rank trend and regression trend, as follows.

The detail view for rank trend contains two sub-views: a grouped bar chart and a

parallel coordinate plot. As shown in Figure 5.5, when users click a cell in the distance

matrix heatmap, the cell is highlighted with a solid black border, and the detail view provides

details on rates and counts for aggregate data and subgroups. A grouped bar chart at the top

displays the counts of records for all combinations of the values in the independent variable
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Figure 5.6: A screenshot of a distance heatmap and its detail view. The detail view shows a
regression trend. When the user clicks the MPG by acceleration cell in the distance heatmap,
the trend plot view shows the relationship between MPG and acceleration to represent a
regression subgroup trend in the cylinders 6 subgroup. The legend in the trend plot is a list
of the cylinder numbers.

and the splitby variable. Bars are grouped by position above the axis for the aggregate and

each subgroup. Bars are color-encoded to represent each trend group in the trend group

variable. The parallel coordinate plot allows comparison of the aggregate and subgroups to

identify trend differences among them. The detailed information for the aggregate is always

plotted on the leftmost axis, with the user-selected subgroup on the second axis. After users

click a cell for another subgroup, the order of the vertical axis adjusts correspondingly. To

better satisfy the need to observe the change of rates, each axis has the same scale. The

colors of the connecting lines represent the trend group.

A trend plot—a scatterplot with trend enhancements—is a useful tool for observing

relationships in bivariate data, and supports interpretation of the correlation coefficient or

a linear regression model of a regression trend. As shown in Figure 5.6, the user selects a

subgroup trend by clicking a cell in the distance matrix. Wiggum gets two columns of the
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data from the column names, which are indicated by the cell’s dependent and independent

values, then plots all the data points in the trend plot. The vertical axis represents the

dependent variable, and the horizontal axis represents the independent variable. Wiggum

uses the splitby variable to color points in the trend plot. Regression lines for the selected

subgroup and aggregate are plotted for users to observe their trends. A dotted black line

represents the aggregate trend, and each colored line indicates the corresponding subgroup

trend. The slope of the regression line indicates the direction of the relationship between

dependent and independent variables. The positive slope of the aggregate trend and a

negative slope of the subgroup trend in Figure 5.6 indicates a trend reversal. The degree of

the slope allows users to track changes in trends even without a trend reversal.

At the top of the trend plot, Wiggum provides a checkbox for users to switch between

two different axis range settings: same axis range and different axis ranges. The same axis

range setting helps users more accurately observe slope and the angle between two regression

lines. In contrast, angle and slope are not well-preserved when different axis ranges are used.

It is sometimes preferable to use different axis ranges to have a finer view of the data when

two variables have different ranges. In addition, the trend plot provides an interactive legend

that indicates the subgroups in the splitby variable. Clicking legend cells selects subgroups

and highlights their data.

5.4.6 The Control Panel Area

Wiggum provides a control panel to support efficient exploration of mix effects. The control

panel allows filtering, detecting, ranking, saving, and resetting to support this process.

Users can filter the result table via the combo box at the top of the result table and the

Filter button in the control panel (G5). Each combo box displays all unique values from

the corresponding column. The result table view only keeps the rows with the same values

based on the combo boxes’ selections. Users can select multiple values from the combo boxes

in multiple columns (i.e., dependent, independent, splitby, subgroup, and trend type) at the
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same time. The distance heatmap view is updated based on the filtered result table. A

Reset button restores the original rows of the table.

To start detecting, users can adjust the thresholds for subgroup trend strength, ag-

gregate trend strength, and distance using the sliders in the result table. The table and

heatmaps update correspondingly. Wiggum suggests default values for those thresholds.

When users click the Detect button, the thresholds are sent to a filtering method in the

data flow pipeline. By adding filtering by strength and distance, users are able to discover

interesting patterns. For example, a distance threshold setting of 1 for a regression trend

detects all reverse subgroup trends, since the distance method returns 1 for a reverse trend

and 0 for a same trend.

Furthermore, Wiggum supports a comprehensive ranking function for users to examine

the detected results. Wiggum provides three levels of ranking, as follows.

Viewpoint-level ranking. We define a viewpoint as a set of subgroup trends having the

same dependent and independent variables. We refer to a pair of variables (x1, x2) that are

used for computing trends as a viewpoint of the data, considering that two variables allow us

to plot the data. To go deeper into the data, the next level of ranking is based on summary

statistics by grouping the subgroup trends in the same viewpoint. Each viewpoint is ranked

by the viewpoint aggregate score.

Colored Viewpoint-level ranking. In this level, we define a colored viewpoint as a set of

subgroup trends having the same dependent, independent, and splitby variables. We refer to

a 3-tuple of variables (x1, x2, x3) that are used for computing subgroup trends as a colored

viewpoint of the data, with encoding of the splitby variable (x3) as a point color in the

plot. The colored viewpoint-level measure of ranking can be obtained by aggregating over

all subgroup trends within the same colored viewpoint. Users can choose which aggregation

method (sum, mean, max, min) on the distance column to use to compute a colored viewpoint

score. The options for colored viewpoint and viewpoint ranking is shown by clicking the select

button. The colored viewpoint aggregate scores are added to the result table and used to
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rank each colored viewpoint.

Subgroup-trend-level ranking. In the analyzing stage, users are shown a result table com-

prising potential reverse subgroup trends. Each row represents a subgroup trend. Each

subgroup trend has four elements (x1, x2, x3, y), in which x1 represents the dependent vari-

able, x2 is the independent variable, x3 is the splitby variable, and y represents subgroup

value. A user can rank the subgroup trends by clicking the header of the distance column

in the result table, in which case the ranks of all of the subgroup trends are based on the

results of a descending sort on distance in the result table.

Moreover, Wiggum provides users with a button for saving the original data, the meta-

data, and the result table. In the preparation page, users can load prior saved files into

Wiggum from a chosen folder. This approach can avoid repeating the process of data label-

ing, and save time by reusing a result table instead of computing it again in the data flow

pipeline.

Wiggum also allows users to retrieve the initial result by clicking a Reset button. After

resetting is triggered, the result table is set to the original result table without any filtering,

detecting, or ranking. The distance heatmap view is redrawn from the original result table.

5.4.7 Implementation

The Wiggum system is a web app. It uses D3 [22] for visualization and a Flask [3] server to

connect the Wiggum Python library to JavaScript-powered visual analytics in the browser.

The Python Wiggum library includes all of the computational features and runs as a back-

end server to the Wiggum app. Wiggum has been designed as a modular framework, allowing

for each individual component to be modified or extended.
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5.5 Summary

In this chapter, we present Wiggum, an integrated system for detecting, ranking, and visual-

izing mix effects and Simpson’s paradox. A distance heatmap view provides an overview of

subgroup trends and offers clues to find potentially important ones. Trend plots and parallel

coordinate views support detailed examination of mix effects and Simpson’s paradox. Coor-

dination of multiple views through a variety of supporting interactions helps users discover

and explore patterns related to trend reversal. Users can filter, rank, and compare subgroup

trends on trend strength and distance to eliminate spurious subgroup trends.
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Chapter 6

Evaluation of Wiggum

6.1 Overview

Through use cases, we describe how Wiggum supports the discovery of mix effects in three

real data sets and demonstrate how a combination of visualization techniques—heatmaps,

trend plots, small multiples, coordinated multiple views, and dynamic queries for multi-

attribute drill-down—are effective for analyzing mix effects. We conducted a user study to

evaluate Wiggum, focusing on users’ ability to comprehend the statistical concepts, iden-

tify the corresponding visual patterns, and perform common analysis tasks correctly and

efficiently. We discuss usability issues, utility limitations, and outline future directions to

improve Wiggum.

6.2 Use Cases

In this section, we describe how Wiggum can be applied in practice to two real-world data

sets from the UCI Machine Learning repository [90] and a famous example of Simpson’s

paradox [18]. The first use case shows how Wiggum can be applied to detect trend reversal

in partitioned data for linear regression analysis of multidimensional data. The second use

case explores a binary ranking of rates which ranks two groups through a known example of
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Simpson’s paradox from the UC Berkeley admissions data set. The third scenario highlights

how Wiggum can be generalized to a more advanced usage that detects mix effects relative to

trends based on both binary and multiple ranking cases. Multiple ranking analysis considers

rank trend with respect to the rank of three or more groups. Table 6.1 summarizes the

domain, trend type, the number of the records, and the number of the attributes for each

use case.

Table 6.1: Summary of the three use cases.

Case Domain Type #Records #Attributes

1 Auto MPG Regression 392 9

2 Graduate Admissions Binary Rank 12 4

3 Adult Income Multiple Rank 32,561 8

6.2.1 Regression Analysis

In the first use case, we demonstrate how Wiggum can be used to discover mix effects in a

regression trend type data set. We apply Wiggum to the Auto MPG data set. After removing

rows with missing data, 392 records each represent a car model with 9 attributes: MPG,

cylinders, displacement, horsepower, weight, acceleration, model year, origin, and car name.

Data preparation begins after loading the data. The MPG attribute is set to continuous

type and dependent role. The horsepower attribute is set to continuous type and role as

both dependent and independent. The acceleration attribute is set to continuous type and

independent role. The other (discrete, multi-valued) attributes are set to categorical type

and splitby role. The displacement, weight, and car name attributes’ roles are set to ignore to

exclude them from trend computation in regression calculations. To study the relationship

between two continuous variables in the data, we also set the trend type to Linear Regression.

Upon clicking the Visualize Trends button, Wiggum switches to the visualization page.

The result table view shows 63 rows, one for each combination of 21 subgroups and 3 splitby

variables. The distance heatmap view displays a heatmap for each of the 21 subgroups and
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chosen splitby variable. Each heatmap shows a 2x2 matrix corresponding to the chosen

two dependent variables and two independent variables. Inspecting the distance heatmap

view immediately reveals some surprising patterns. Two of the 13 heatmaps for model year

subgroups contain dark blue cells located in the same cell position, indicating a relationship

between MPG and acceleration. Clicking the dark blue cell in the heatmap of model year

75, we see a positive relationship between MPG and acceleration for all data points. One

might conclude that higher MPG corresponds to higher acceleration, yet this inference is

not supported in the dis-aggregated data. A negative relationship is obvious in model years

75 and 79. The inconsistency of patterns between aggregate data and subgroups may lead

a user to hesitate to draw conclusions. Furthermore, we observe an interesting pattern in

the heatmap for the 6 cylinders subgroup, as shown in Figure 5.3, in which the relationship

between MPG and acceleration shows a trend reversal. This finding could influence the

decision making process for a car consumer who considers a high MPG and high acceleration

car. Once they recognize that MPG will decrease as acceleration increases for the cars with

6 cylinders, other cylinder models tend to be more attractive to them.

There are more surprising trend reversals in the Auto data set that we can discover

and study through Wiggum. Although space precludes describing more of them here, the

example above is evidence of Wiggum’s capability for both detecting and explaining mix

effects in linear regression analysis.

6.2.2 Binary Ranking Analysis

We illustrate how Wiggum can support visual data exploration through the gender bias case

in the UC Berkeley graduate admissions data set. A study of graduate admissions to the

University of California, Berkeley [18] was conducted to investigate gender bias. The binary

ranking analysis is based on the ranking of two subgroups, men and women. The admission

rates for Fall 1973 showed that 44% of men and 35% of women were accepted overall, yet in

the data for the six largest departments, four departments show a lower acceptance rate for

79



men than women.

The graduation admissions data contains 12 records with 4 attributes: department, gen-

der, number of applicants, and rate of admission. After loading the data set, we annotated

data types and roles for each variable in the data configuration page. Since we wanted to

study the ranking of gender in admission rate, we chose the rank trend type, then clicked the

Visualize Trends button. In the visualization page, each of the six 1×1 distance heatmaps

(Fig. 6.1A) represents one department. The dark blue cell indicates a high trend distance

between the aggregate data and the subgroup data. After clicking a cell in the distance

heatmap for Department A, the detail view (Fig. 6.1B) displays the corresponding grouped

bar chart and parallel coordinate plot for examining rank trend type. In the parallel coor-

dinate plot, the first axis shows that men have a higher admission rate than women in the

aggregate data (F:35% vs. M:44%). Nevertheless, the second axis reveals a reverse trend

in which the admission rate for women exceeds that of men in Department A (M:62% vs.

F:82%). Since the relative rank of the genders by admission rate is flipped (from [Women,

Men] to [Men, Women]), the clicked cell in the distance heatmap is color-encoded dark

blue. The parallel coordinate plot represents the trend distance by visualizing the rankings

for gender on each axis. The grouped bar chart shows the gender distribution in aggregate

and in each department. The Berkeley admission case clearly illustrates mix effects, since

four out of six departments have the reverse trend.

6.2.3 Multiple Ranking Analysis

The adult data set [90] contains 32,561 records with 8 attributes: workclass, education,

marital-status, occupation, relationship, race, sex, and income. A multiple ranking analysis

can be applied to the ranking based on any attribute (e.g., race) with more than two values

(e.g., White, Black, Asian-Pac-Islander). In this use case, we aim to find surprising trends

in the rate of people making more than 50K per year. We again load the data file and select

variable types and roles. All attributes except income are set to categorical type and both
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Figure 6.1: The visualization page for the UC Berkeley Graduate Admissions data set. After
clicking a dark blue cell in the distance heatmap (A) for department A, the detail view (B)
displays the corresponding grouped bar chart and parallel coordinate plot for examining the
trend reversal between the aggregate data and subgroups.

independent and splitby roles. Thus, those 7 attributes are either the independent or splitby

variable of a subgroup trend. The income attribute is a binary attribute containing two

values: >50K and <=50K. We set its type to binary and role to dependent, making it the

dependent variable of a subgroup trend. Since we use this data set to study the trend based

on the rate of adults’ income exceeding 50K per year, we set the trend type to rank trend.

On the visualization page (Figure 6.2) Wiggum displays 9 out of 60 distance heatmaps,

each representing a subgroup. Each heatmap has one row (for the dependent variable) and

six columns (for the independent variables), with the splitby variables used to partition the

data. In the result table view, there are 360 records (one dependent × six independent × 60

subgroups). Each one represents a subgroup trend corresponding to a cell in the heatmaps.

The blue cells in the distance heatmap view are mostly related to race and sex. Focusing

on the darkest ones, we adjust the distance slider to 0.9 and both strength sliders to 0.

Clicking the detect button leaves only three subgroup trends in the result table. Meanwhile,
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Figure 6.2: The visualization page for the adult data set. The distance heatmap view displays
9 out of 60 1×6 distance heatmaps; vertical scrolling reveals the others. After clicking a cell
in the distance heatmap for a subgroup (A), the detail view displays the corresponding
grouped bar chart and parallel coordinate plot for examining rank trend type (B).

we see three 1 × 1 distance matrix heatmaps in the overview area. Several interesting

observations arise upon checking the detail view of the three subgroup trends. For instance,

in the Married-civ-spouse subgroup, we can observe a reverse trend in terms of sex. The trend

in the aggregate data is that the rate of over 50K annually is higher for males (30.6%) than

females (10.9%). After dividing the data set based on marital-status, we see there is a reverse

trend with females (45.5%) at a higher rate than males (44.6%) in the Married-civ-spouse

subgroup.

In addition to a binary ranking, we observe another interesting case in the detail view,

in which the trends are seen among different racial groups based on the rate of over 50K

income. We select race in the independent menu selection and pick occupation in the splitby

menu selection, then click the Filter button. Looking within racial groups, the rate of

income over 50K among Asian-Pac-Islander is 26.6%, followed by White (25.6%), Black

(12.4%), Amer-Indian-Eskimo (11.6%) and Other (9.2%). However, Asian-Pac-Islander
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is not always the highest income earning race. Clicking the cell belonging to the Exec-

managerial subgroup partitioned by the occupation variable reveals that White experiences

the highest rate (49.9%) of income over 50K, followed by Asian-Pac-Islander (45.2%), Black

(34.4%), Other (18.2%) and Amer-Indian-Eskimo (10%). Similarly interesting patterns exist

and can be readily explored for each occupation’s subgroups.

This example demonstrates the capability to explore trends in both binary and multiple

ranking cases. A more comprehensive understanding of the data emerges from observing

how surprising ranking trends of subgroups are inconsistent with aggregate ranking trends.

6.3 Evaluation

We conducted a formal user study to evaluate how well Wiggum helps target users detect

and understand mix effects, and also to solicit ideas for enhancement motivated by their

individual data analysis wants and needs. In this study, we focused specifically on detection

of reverse regression trends using Pearson correlation. The study was approved by the

Internal Review Board (IRB) at the University of Oklahoma.

6.3.1 Participants

We did a pilot study with 2 participants—one library staff member with a biology back-

ground, one undergraduate in computer engineering—in order to test feasibility, duration,

and improve upon the study design. For the main study, we recruited 37 other participants:

14 Ph.D. students, 8 faculty members, 8 M.S. students, 4 staff members (3 library, 1 se-

nior research associate), 2 postdocs, and 1 undergraduate student. Participants’ majors or

current primary academic disciplines included physics, economics, geography, meteorology,

computer science, psychology, data science, library information science, geology, biology,

mathematics, and management information systems. All participants had at least basic

knowledge of statistics, such as linear regression or Pearson correlation. Most participants
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Table 6.2: The predefined roles—dependent, independent and splitby—of variables, the
number of distance heatmaps, and their internal dimensions generated in the user study.

Data
Set

Size Dependent Independent Splitby Distance Heatmap

Num. Dimensions

Iris 150 sepal length, sepal width sepal length, petal length,
petal width

class 3 2× 3

Auto 392 MPG, acceleration displacement, horsepower,
weight, acceleration

cylinders, model
year, origin

21 2× 4

Facebook 495 page total likes, reach, con-
sumers, num comments,
num shares

page total likes, consumers,
num comments, num likes,
num shares

type, category,
month, weekday,
hour, paid

44 5× 5

took at least one full semester statistics course. Participants were not compensated.

6.3.2 Procedure

We conducted the study with participants one-on-one via Zoom video conferencing. With

the consent of all participants, we recorded audio and video with screen sharing. Partici-

pants were encouraged to think aloud and to ask questions. The procedure consisted of the

following steps: an introduction, to give a quick overview and explain the purpose of the

study; a questionnaire, to gather demographic and educational background details; a knowl-

edge assessment, to evaluate participants’ knowledge of mix effects and associated concepts;

a six minute video tutorial, to give an overview of Wiggum and demonstrate its features;

performance of a set of data exploration tasks (within-subjects) to assess utility and identify

usability issues with Wiggum; and a post-survey, to gather subjective feedback about its

design and features. We set up a local web server running Wiggum. Participant access was

remote over public internet through a secure tunnel (ngrok [4]).

6.3.3 Data and Tasks

Our study employed three open-source data sets available from the UCI machine learning

repository [90]: Iris, Auto, and Facebook (short for Facebook metrics). We chose these

data sets because they give the exploration tasks three levels of complexity: easy, medium,
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Table 6.3: Tasks and questions in the user study.

Task Question Task Score Rubrics

Identify reverse trends in
heatmaps

T1 Q1: How many reverse trends do you find?
T1 Q2: Describe a reverse trend.

Score = average correctness per
question
(0.5 partial credit for simple mis-
count)

Identify subgroup or ag-
gregate trends
(for two different sub-
groups and pairs of vari-
ables: Q1–Q4 and Q5–
Q8)

T2 Q1/Q5: What is the trend between variables for the
aggregate data?
T2 Q2/Q6: What is the trend between variables for the
subgroup?
T2 Q3/Q7: Are the two trends the reverse or the same?
T2 Q4/Q8: What are the other subgroups’ trends between
the variables?

Score = average correctness per
question

Confirm Simpson’s para-
dox or mix effects

T3 Q1: How many instances of Simpson’s paradox?
T3 Q2: Describe one instance of Simpson’s paradox.
T3 Q3: How many instances of mix effects?
T3 Q4: Describe one instance of mix effects.

Score = average correctness per
question
(0.5 partial credit for simple mis-
count)

and hard. The levels of complexity are driven by the number and dimensions of distance

heatmaps. For example, the easy data set (Iris) generates three 2 × 3 distance heatmaps,

whereas the hard data set (Facebook) generates 44 5 × 5 distance heatmaps. We preset

the roles for all variables (see Table 6.2), allowing participants to get started with minimal

data preparation. After loading the data, the participants chose Pearson Correlation for the

trend type, then clicked the Visualize Trends button. The number and dimensionality of

distance heatmaps vary from data set to data set. (Some dimensions have too few records

or attribute values to include. Heatmaps are not generated for such dimensions.)

Amar, et al. describe ten kinds of low-level analysis tasks used to evaluate the design of

visualizations for data understanding [9]. We focus on tasks that involve retrieving values,

finding anomalies, and assessing correlations. As our objective was to observe how Wiggum

helps target users detect and understand mix effects, we designed tasks to capture an inter-

action process that includes input, output, and analysis steps [85]. We designed three tasks

to afford participants an opportunity to gradually learn key concepts needed to understand

mix effects: subgroup trend vs. aggregate trend, same trend vs. reverse trend, and Simp-

son’s paradox vs. mix effects. Table 6.3 summarizes the goals, questions asked, and scoring

rubrics applied for each task.
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6.3.4 Correctness

Figure 6.3 shows the number of participants who answered correctly for each task-question-

dataset combination. For correctness, scores were binary. Of the 37 participants, the ma-

jority (Iris: 26/37; Auto: 28/37; Facebook: 24/37) were able to identify all reverse trends

(T1 Q1). For the Iris data set, most incorrect answers (8/11) arose from misconception

about how reverse trends are represented in heatmaps; in those cases participants inter-

preted cells in the same position in heatmaps as a single reverse trend. For the other two

data sets, most of the participants who gave incorrect answers (Auto: 6/9; Facebook: 8/13)

miscounted reverse trends due to difficulty counting over the increased number of heatmaps

and the need to scroll over them. Participants performed well on most questions when asked

to identify a trend by giving specified information (T2 Q1–Q8). For the Facebook data set,

participants performed poorly on T2 Q4 and T2 Q8 due to the large number of subgroups

and their trends. In T3, the Iris data set exhibits only Simpson’s paradox, and the Auto

and Facebook data sets exhibit only mix effects. Participant responses offer insight even

without a data set that exhibits both Simpson’ paradox and mix effects. When asked to

Figure 6.3: Correct answers for each task-question-dataset combination.
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confirm mix effects (T3 Q3), the number of correct answers declined sharply between data

sets (Auto: 10/37; Facebook: 2/37). This suggests that data set size substantially degrades

(and ultimately limits) one’s ability to visually detect mix effects in the Wiggum design.

Evaluation on a wider range of data set sizes is needed to assess this hypothesis.

6.3.5 Time vs. Task Score

The average session duration was 109.05 minutes (s.d.=29.64). Mean completion times for

T1 in the Iris, Auto, and Facebook data sets were 7.81 (s.d.=4.38), 6.92 (s.d.=3.62), and

5.95 (s.d.=2.40) minutes, respectively. For T2 these were 6.30 (s.d.=3.53), 5.70 (s.d.=2.36),

and 5.92 (s.d.=3.24) minutes. For T3 these were 7.19 (s.d.=4.32), 7.19 (s.d.=3.37), and 9.73

(s.d.=6.73) minutes. For timing, T1 and T3 scores could earn half credit, to account for

the prevalence of mental addition errors even when participants counted items correctly (see

Table 6.3). Half credit produced the distribution of fractional average task scores shown in

Figure 6.4. Task scores (color) are widely distributed over task durations (vertical position).

They are only weakly correlated in a few of the nine task-dataset combinations, such as

higher scores on T1 taking longer particularly on the Iris data set, and much longer times

to correctly count all mix effects in T3 on the Facebook data set. The former suggests that

some participants were still learning Wiggum, with more or different training possibly needed.

The latter suggests that task duration is closely coupled with counting effort, and thus that

adding counting aids to the Wiggum design, such as some kind of selection highlighting to

remember counted items, could significantly increase both efficiency and correctness of task

performance.

6.3.6 Qualitative Results

We administered a post-survey, asking participants to rate Wiggum on four aspects. Average

Likert ratings were high all around on a 5-point scale: easy to learn (3.9/5.0, s.d.= 0.66), easy

to use (3.9/5.0, s.d.= 0.85), fast to use (4.1/5, s.d.= 0.95), and comfortable to perform tasks
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(3.9/5.0, s.d.= 0.97). While this feedback is encouraging, it indicates no obvious directions

for design or feature improvement.

Some participants clearly found Wiggum helpful for learning mix effects. P10 wrote: “I

feel like after using the tool I have a more practical sense of what the paradox looks like, and

the formal definition makes more sense to me now that I’ve seen examples and can put it in

my own words.” Similarly, P9 commented, “seeing it visually helped my understanding of the

concept.” Unfortunately, learning to interpret a new type of visualization is not an easy task,

and participants often struggled to identify instances of mix effects. Some participants were

not able to understand the transition between heatmaps and trend plot, and didn’t realize

that clicking on the same cell position in any heatmap of a given splitby variable highlights

different subgroups in the same trend plot. In the distance heatmap view, we also observed

that participants were hindered by how Wiggum shows all distance heatmaps together in one

scrolling layout rather than grouping them by their splitby variables. P15 wrote: “Looking

where a particular category ends and another begins was difficult too.”

We found the distance heatmap view to help participants’ awareness of different patterns.

In general, participants enjoyed using it. P33 commented, “I really liked the heat maps, and

Figure 6.4: Time vs. task score in each task level for the different data sets.
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the fact that all subgroup trends for a particular relationship were shown at once.” P22

said, “I preferred to use the heat maps for detecting Simpson’s paradox, especially for the

larger data sets, because the trendlines [in the trend plot] were difficult to see for larger

sets.” However, some participants noted how working with larger data was a struggle. P29

wrote, “The volume of data increased the difficulty to look and see if there was a Simpson’s

paradox.” P20 said, “When there was a great number of variables to address in the Facebook

data set, that feeling of comfort with the interface started to decline.” Participants sometimes

overlooked the scrollbar, which hides itself in some browsers, thus missing some heatmaps,

or accidentally zoomed in on individual heatmaps when trying to scroll.

Participants especially enjoyed the overall ease and efficiency of using Wiggum. P3 said,

“I liked it. It was easy to use and understand what was going on/what I was doing.” P24

pointed out that “Visual feedback showing selected data sets and trendlines was very quick,

essentially instantaneous.” Similarly, P16 commented: “It was simple to use. It definitely

helps you look at data in an easy manner.”

6.4 Limitations and Future Work

In this section, we discuss limitations of the current version of Wiggum and identify oppor-

tunities for future development.

6.4.1 Trends Types and Comparisons

Wiggum is currently designed for rank and regression trends (R2), but can be extended

to other statistical measures, such as for performance of a binary classification task. For

example, the difference between precision for an entire population and conditioned on a

specific subgroup ( TP
TP+FP

) is a promising measure to support fairness forensics [40, 26, 72,

48]. Beyond the brute force discovery of clusters currently implemented in Wiggum, future

work on more flexible proxy techniques to recover the omitted splitby variable could enable
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Wiggum to further support fairness forensics. In addition, Wiggum’s current support for

comparison between aggregate and subgroup trends could be extended to interesting and

practical comparison between subgroups themselves.

6.4.2 Visualization Design

Participants performed poorly at identifying and counting mix effects in larger data sets.

Techniques to increase visual scalability for larger and more complex data sets (R1) is a

clear direction for improvement. In practice, we find it helps to report summary information

such as the number of mix effects. In future work we will explore more guided (less ad

hoc) approaches to selecting dimensional subsets. It can also be difficult to differentiate

the subgroups of different splitby variables in the current heatmap layout. This could be

addressed by more clearly organizing the heatmaps by their subgroups. The heatmaps also

become denser as rows and columns increase in number. An overview heatmap over all

subgroups might help with checking trends in individual heatmaps. The same issue arises in

the parallel coordinate plot as the number of distinct values of the splitby variable increases.

Although parallel coordinates can help users observe changes of ranking between aggregate

and subgroup data, the distance and strength of a subgroup trend are relatively hard to

read visually. Alternative visualization techniques could support more precise reading and

hence easier interpretation of those statistical measurements. (The bump chart [142] is a

candidate, but it poorly shows relative rate difference, which is crucial for rank comparison.)

In the trend plot, the angle between two regression lines is hard to interpret and compare

across axis scale changes, which happens when users select a different cell in a heatmap. We

plan to explore visual techniques to help users read angles; simple radial plots may be a

promising option for this task.
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6.4.3 Causality

While Wiggum provides a means to detect and explain mix effects and Simpson’s paradox

statistically, what to infer from them visually is not always clear (R3). Causal inference may

provide a practical perspective from which to explain them. Incorporating ways to visualize

the network of causal relationships among variables might prove highly beneficial for deeper

sense-making.

6.4.4 Scalability

Moving forward, we will investigate the scalability of computation and visualization in Wig-

gum in terms of data size and dimensionality (R1), particularly in terms of the number

of independent, dependent, and splitby variables. We conducted a preliminary study that

produced three findings.

First, varying data sizes doesn’t slow down the computation significantly. Second, as the

number of dependent/independent variables increases, we see a trend showing a quadratic

increase in the running time. Lastly, as the number of total subgroups increases, there exists

a trend showing a linear increase in the running time. The current visualization design

(see Section 5.4) anticipated and addressed some scalability issues. Moreover, filtering low

correlation pairs of dependent and independent variables after the computation of aggregate

data can alleviate visual complexity by reducing the number of rows and columns in the

heatmap view. As the number of subgroups increases, Wiggum might also display only

the top-k heatmaps that have the highest average distance scores. Follow-up studies could

be conducted to investigate multiple optimization methods with Wiggum with the goal of

supporting data analysis at larger scales.
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6.5 Summary

This chapter describes three use cases for evaluating the utility of Wiggum. Wiggum appears

effective for supporting deep visual analysis of multiple trend types in real-world data sets.

We conducted a user study to learn users’ ability to comprehend the statistical concepts,

identify the corresponding visual patterns, and perform common analysis tasks correctly and

efficiently. The user study revealed usability issues that motivate design improvements as

well as analysis features for ongoing development and study.
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Chapter 7

A Model of Visual Correspondence

7.1 Overview

Well-designed visualizations can lead to effective and efficient exploratory data analysis.

However, the meaning of data can be ambiguous as its interpretation depends on what kind

of information in it is being conveyed. There are different pieces of information we may

take from data. For instance, if we have a quantitative data value, we might look at it in

terms of whether it is positive or negative, or whether it is high or low relative to some

reference value, or the amount of precision in the data value. Additionally, data items with

the same interpretation could have multiple visual representations, and such representations

might be used for looking at the values in different ways simultaneously. As the ambiguity

of data and the complexity of visualizations continue to grow, identifying corresponding

graphical items becomes challenging. We define visual correspondence as the extent to which

visual encodings of the same or equivalent information are interpreted as being the same or

equivalent. Current visualization theories [17, 37, 94] focus on determining a visual channel

for a single encoding of a graphical item. In contrast, our work explores the pairwise effect

of visual channels when visual correspondence is considered.

It would be useful to develop a conceptual model for visual correspondence that visual
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designers can apply in the visualization design process. Visualizations often consist of mul-

tiple views. Visual correspondence provides an implicit and passive way to bridge from

view to view with a smooth transition. Visual linking, which provides explicit continuity

and connectivity through connecting lines, is a workaround for weak correspondence. Visual

links should minimize visual interference and the occlusion of important information [134].

When it is hard to achieve the above goals, visual correspondence can be an alternative way

to associate related graphical items. Also, strong visual correspondence could strengthen

the effectiveness of visual encodings for identification and comparison tasks. Our theory

makes predictions about design, experience, and effectiveness, when the identity of items

throughout a visualization is a key factor in performing tasks.

Visual correspondence in general is about figuring out how to make a set of same or

equivalent things be seen as related to each other, but unrelated to all the others. Gestalt

theory helps us to figure out which combinations of visual channels may or may not work

for creating visual correspondence. We derive our conceptual model from some of the more

relevant principles of Gestalt theory, including alignment, proximity, and similarity.

We develop a complete theory that tells the visualization designer what to do when they

have two different visual representations for the same data item with any possible set of

data cardinalities (number of unique possible values of the item). Our conceptual model

measures the degree of correspondence in terms of four factors: aspects of information, a

pair of visual channels, and cardinality. A general method applies all possible combinations

of these four factors to measure visual correspondence. A specific method for populating

the model applies three cases: a simple case, an intermediate case, and a complex case. Our

contributions are as follows:

• a model of visual correspondence,

• an assessment of the model for visual encoding pairs in common configurations,

• a comparative analysis of the model in application to a variety of example visual-
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izations,

• a set of guidelines for the design and evaluation of visual correspondence in practice,

and

• a sketch of a research program to develop foundational mathematics for ana-

lyzing tasks in terms of the effects of visual correspondence on item identification and

comparison.

Together, these contributions provide a basis for designing visualizations that account

for effective visual correspondence.

7.2 A Model of Visual Correspondence

Visual correspondence is the extent to which different graphical items can be associated

when they encode the same data value. Visual correspondence builds on existing knowledge

and practice of encoding channels for visualizing data. In Figure 7.1a, a number and a dot,

which encode the same data as vertical position in a single view, can correspond to each

other. Similarly, the elements in juxtaposed views or nested views could activate visual

correspondence for revealing the related data items. In Figure 7.1b, horizontal position in

the bar chart and shape in the scatterplot represent the same categorical data items. In

Figure 7.1c, leaf nodes encode data as vertical position, and bars encode the same data as

horizontal position. This section presents a conceptual model of visual correspondence. We

first describe the factors contributing to the structure of the space for our model. We then

describe the model itself.

7.2.1 Information Aspects

Representations of information always involve interpretation. A single data value can exhibit

different types of information depending on how it is interpreted. Numbers represent quan-
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tities; meanwhile, they have an order and can also be thought of as nominal. For example, a

position along a path in a national park, in which the actual position is a quantity of walking

miles, can also have ordinal characteristics (one landmark comes before another landmark)

as well as nominal characteristics (specific landmarks). The quantitative characteristic can

be less important than an ordinal or nominal characteristic when considering how to design

a visualization.

We focus on multidimensional data which are structured into a table. A value in each

cell of the table represents the information about an attribute of a record. A broader cat-

egorization interprets the value as one of three types of information: nominal, ordinal, or

quantitative [94]. However, the information of an attribute is not always confined to a

single type. When an attribute can be interpreted as multiple types, we refer each such

interpretation as an aspect of the information. We call an aspect “type-like”, for instance,

nominal-like or quantitative-like. Our model considers visual encodings of data in terms of

such interpretable aspects of the information rather than their overt information types.

We define a visual object as a minimal graphical object which applies a visual channel

to encode a data value in a graphical item. For instance, a visual object can be a color-

filled circle, or the edge of a circle that uses its width to encode data. Our goal is to learn

how visual objects correspond to each other. To achieve this, we first need to understand

Figure 7.1: Three basic visual designs for considering visual correspondence: (a) a single
view, (b) juxtaposed views, and (c) nested views. Color is used here for illustration only;
without the strong visual correspondence provided by associated colors, the overall visual
correspondence between each item’s pair of visual encodings would be weaker.
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Figure 7.2: Three-level degree of likeness for three different information aspects over common
visual encoding channels.

the correspondence between a data item and its visual object. Mackinlay’s [94] Automatic

Presentation Tool (APT) uses the ranking of perceptual tasks by information type to express

the effectiveness of visual channels. The effectiveness implies the correspondence between

a data item and a visual object that encodes it. We use three levels (i.e., Not at all,

Weak, Strong) to rank pairs of visual channels between visual objects for the three different

aspects of data considered in Mackinlay’s rankings. The coarse level of ranking simplifies the

methods for applying our model, and helps to verify our model and methods in the initial

effort presented here.

7.2.2 Visual Channels

For a given data value, which visual channel should we choose to represent it? Part of the

difficulty is that any given representation, visual or otherwise, is not purely quantitative

or ordinal, or nominal. For instance, horizontal position seems like it inherently involves a

quantity, but this is actually false. Quantities are only associated with seen positions in space

because we frame them within an imposed interpretation of a coordinate system in which we

define the origin and orientations of axes, effectively constraining interpretation of positions
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as measures of quantity. We are habituated in constraining information interpretations as

well as following shared common interpretations. Even ordinality has an ambiguity problem

in need of interpretation when it uses a position channel, since we have to specify which

direction the ordering is in. Not only can visual channels be utilized to show different types

of information, but they also can be interpreted in diverse ways.

This work challenges the notion that there is just one way to interpret a representation of

information, whether it is a data representation of bits or a graphical representation of visual

channels. Bridging data to visual channels involves a great deal of careful consideration of

the aspects of information carried by data and visual channels.

We take all visual channels from Mackinlay’s ranking of visual channels [94], and exclude

four visual channels: connection, containment, density, and slope. We do not consider

connection because it is an explicit visual binary relation between two things. We exclude

containment and density since there are relatively few examples to draw from to inform

the model. We do not use slope because it is similar to angle and can be subsumed in

it. Conversely, we split Mackinlay’s position channel to distinguish 1D and 2D positions

as distinct channels including horizontal position, vertical position, and 2D position. In

Figure 7.2, we use a heat map as in Mackinlay’s rankings but recast in terms of degree

of likeness. The horizontal represents visual channels, and the vertical indicates the three

different aspects. We observe that horizontal and vertical positions work well for all three

aspects of an attribute, but 2D positions aren’t perceptually ordered or metric unless one

imposes a 1D ordering or metric on them. Furthermore, color hue is strong for nominal-like

data but weak for ordinal-like and quantitative-like aspects because perceptual non-linearity

and distinguishability weaken ordinal and quantitative interpretations. In addition, shape

itself is not relevant to quantitative and ordinal information, but we mark it as weak for

ordinal-like and quantitative-like data since the interpretation of a shape could convey an

ordinal or quantitative meaning through its properties, for example, the number of its sides

or corners.
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Our theory challenges the accepted “atomicity” of visual channels and data types. The

heat map might be extended by elaborating visual channels or expressing degree of likeness in

finer or alternative ways. Although it is impractical to derive a comprehensive and accurate

ranking of visual channels with respect to information aspects, our conceptual model for

visual correspondence still can be built upon the heuristics from existing visual encoding

theories that are still the common foundation for visualization research and practice.

7.2.3 Visual Cardinality

Data cardinality is the number of unique values of a data attribute. We define visual cardi-

nality as the number of unique values of a data attribute that can be mapped into a visual

channel with perceptual differentiability. As data cardinality increases, identifying corre-

sponding visual objects becomes harder. (We refer to visual cardinality simply as cardinality

from now on.) The visual identification of data values through a visual channel can be in-

fluenced by cardinality. For instance, color hue encodes at most 7-11 distinct “identities”.

Color hue can perform well for identifying a value from an attribute with data cardinality 5,

but cardinality 10 starts to impede performance. Distinguishing color hues for an attribute

with cardinality 20 or higher can be unfeasible. For visual correspondence, tasks involve

identification and comparison. For instance, one sees an item and identifies it over here,

then sees there is another item somewhere else that needs to be assessed by comparing the

two to determine whether they are the same or not. Since visual channels are limited in terms

of visually differentiable items, the interaction between visual channels and cardinality has

an effect on visual effectiveness across different tasks. If the cardinality of a data attribute is

too high, it affects the ability to identify a given value represented by a given channel. As a

result, it also affects the ability to determine matches between visual encoded values in two

places. Therefore, our model includes cardinality for visual correspondence analysis.
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Figure 7.3: (A) Populated matrices for three information aspects with cardinality five. (B)
Three cases of populating the model by assessing visual correspondence through visual en-
coding pairs in the diagonal cells of the heat map: a simple case, a case with an extra visual
channel encoding a single value, and a case with an extra visual channel encoding multiple
values.

7.2.4 Degree of Correspondence

Visual correspondence is the extent to which we can identify identity or equivalence between

items shown in two different places through their visual encodings. The degree of correspon-

dence is determined by four factors: the aspect of information, a pair of visual channels,

and cardinality. The measure of the degree of correspondence includes steps about assessing

against the theoretical criteria, for example, whether a visual channel can differentiate items

at a certain cardinality. This is the same as how the visual encodings in Mackinlay’s ranking

were judged originally and as still judged in practice. The degree of correspondence is a

relatively ordered scale from best-case to worst-case to not applying at all. The model can

be thought of as being a collection of combination matrices for each information aspect and

the level of cardinality, as shown in Figure 7.3.

Determining the degree of correspondence includes consideration of three criteria: iden-
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tifiability, consistency, and indeterminacy. Identifiability is the ability to identify an item

visually. Visual correspondence builds on identification tasks. If visual identifiability is weak,

we also consider that visual correspondence is probably weak. Consistency is the quality

of producing the same results after repeated testing by adding some distractors. A graphical

item could have multiple visual encodings, and visual correspondence may be established by

only one of the visual encodings. Varying conditions based on additional visual encodings

and their related cardinality could help to find cases producing different results for degree

of correspondence. Indeterminacy is the quality of being uncertain. The more possible

things that need to match across the two visually encoded sets of possible values, the more

difficult correspondence.

7.3 Applying the Model

In this section, we describe a general method for applying the model and a specific method

to populate the model for common channels and cardinalities. Next, we discuss the results

and apply them to practical examples.

7.3.1 General Method

We apply the model of visual correspondence by covering all three information aspects, most

of the visual channels, and a representative subset of cardinality values.

In Figure 7.3A, each lower triangle heat map shows the degree of correspondence for

each pair of visual channels under a specific information aspect and a specific cardinality.

The diagonal cells are pairings of the same visual channel, while off-diagonal cells represent

pairings of two different visual channels. We assess most of the visual channels from our

model discussed in Section 3.2, except for texture. We initially included texture in our

visual channel list. As we applied the method to populate the model, we found it too

complicated to make recommendations for texture especially because it can combine the
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characteristics from other visual channels (e.g., color, angle, shape, etc.) in complex ways.

We leave treatment of texture to future work.

The general approach to varying cardinality is based on the typical regimes of the number

of different values that visual channels can differentiate. As such vary the cardinality focusing

specifically on cardinalities 2, 5, 10, and 20. Cardinality 2 is the base case. Cardinality

5 is a typical case for which most visual channels should work. At cardinality 10, some

visual channels drop off but some still work well for encoding. At cardinality 20, only

position typically works well for encoding. When position stops working for encoding, visual

correspondence stops working too. In general, visual correspondence is bounded by the visual

identifiability of the two visual encodings.

Measuring visual correspondence is complicated, especially for cases with two different

visual channels. Even though we consider the degree of correspondence as a relatively or-

dered scale from best to worst, we simplify our method to have three levels for the degree

of the correspondence (i.e., Not at all, Weak, Strong). Three-level ranking makes visual cor-

respondence relatively easy to assess, thus facilitating the process of populating the model

and helping to verify our methods, at least in the rough strokes.

7.3.2 Populating the Model

We create two views to encode the same data for each included visual channel. In Figure 7.3B,

the simple case shows the views in side-by-side pairs that correspond to the diagonal cells in

the matrices. This results in a representative set of prototype views with a few items each.

To assess the degree of correspondence, we add some distractors by increasing complexity in

terms of additional visual encodings and their related cardinality. We add an extra visual

channel that encodes either a single value or multiple values in the other two cases. We omit

the second case for the angle channel, because the first and second cases are the same if we

consider length as the additional channel.

The cells for the degree of visual correspondence are filled based on the overall assess-
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ment against the criteria for the three cases. The assessment considers whether the visually

encoded items are identifiable, whether the results from the three cases are consistent, and

the degree of uncertainty in matching items. We start by filling in the diagonal cells repre-

senting the same visual channel by looking at the side-by-side pair of views in each column

of Figure 7.3B. After filling the diagonal cells, off-diagonal cells representing pairings of two

different visual channels are filled by looking at the corresponding views in different row

positions. We fill the lower triangle matrices for cardinalities 2, 5, and 10 based on the steps

described above. For cardinality 20, our judgment of visual correspondence is based on the

results from cardinality 10 and our practical experience with each visual channel’s encoding

ability. For example, color hues are harder to tell apart when the cardinality is 20 than when

it is 10, making for a correspondingly low prediction of visual correspondence.

7.3.3 Observations and Patterns

Figure 7.4 shows an overview of the results after populating the model. In general, the

diagonal cells representing same visual channel pairings work better than the off-diagonal

cells representing different visual channel pairings. The top three cells indicate that pairings

between horizontal and vertical positions can handle all three information aspects under all

four cardinality conditions. In contrast, 2D position only corresponds well to another 2D

position encoding, and only for nominal information. The pairing of area and length is strong

for visual correspondence when the cardinality is 2 for a nominal-like attribute; for circles,

this may be due to the functional relationship between area and a radius length. This suggests

that functional relationships between channels tend to promote higher correspondence.

Cardinality is an important factor that affects the degree of correspondence. Most visual

channel pairings have at least some visual correspondence when the cardinality is 2 or 5. As

cardinality increases, the degree of correspondence drops. Some visual channels start to be

challenging to use when the cardinality is 10. For instance, the pairing of color saturation

to color saturation is not fit for perceiving corresponding items since visual identifiability is
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Figure 7.4: The combination matrices populated by our method. Each cell in the matrix
shows the degree of correspondence for a pair of visual channels by an information aspect
and a level of cardinality.

too poor if not absent. When the cardinality reaches 20, only position pairings are left. We

assume that visual correspondence breaks down badly once an attribute is at a high enough

cardinality, with 20 a sufficient maximum to include.

According to visual encoding theory, position ranks highly for nominal information, and

hue is nearly as strong as position. When comparing position and hue, we observe that

hue is slightly worse than position at low cardinalities, but a lot worse at high cardinalities.

We should thus keep cardinality in mind, and switch to position from hue above a certain

cardinality. By comparing the two pairings above, we gain insight into not only the effects

of cardinality on perceiving identity through a visual encoding, but also its relative effect

(with potentially high impact) on perceiving correspondence.
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7.3.4 Applying the Results

We apply the results of the populated matrices to 12 example visualizations to assess the re-

sults, the general method, and our model. The 12 example visualizations shown in Figure 7.5

include: (a) Minard’s map [144], (b) Literature fingerprinting [79], (c) XGobi [25], (d) time-

line visualization [165], (e) MapTrix [167], (f) MotionExplorer [16], (g) Cluster viewer [147],

(h) filled line chart and horizon graphs [69], (i) visualization course figures [99], (j) network

visualizations [59], (k) network visualization for cliques [100], and (l) GrouseFlocks [12]. For

each example visualization, there is a set of visual object pairings denoted as a letter and a set

of key visual correspondences, including visual linking (if present), denoted as a number. For

example, in the MapTrix visualization, there are three views, hence three pairings of views.

The bar chart and a matrix view (Figure 7.5e-B) have a correspondence between vertical

position and vertical position (Figure 7.5e-B1) and also use visual linking (Figure 7.5e-B4).

We use our populated matrices as predictions, and compare the predicted correspondence for

the general case to the expected correspondence for the particular case that we discern (from

practical experience) in the example visualizations. There are two versions for the degree

of correspondence. The predicted degree of correspondence from our populated matrices is

shown in the upper-left triangle. The expected correspondence is depicted in the lower-right

corner of the degree box next to the channel pairing views. The degree boxes next to a case

of visual linking (e.g., Figure 7.5a-2) do not have a lower triangle, since our model does not

offer predictions about visual linking. We use the information aspect, visual channels, and

cardinality of the visualized data to look up the predicted degree of correspondence in the

populated matrices in Figure 7.4. We use the closest cardinality in the populated matrices.

(It is usually easy to round one way or the other without changing the prediction.) Next,

we present examples of analysis of correspondence in the 12 example visualizations.

A hue to hue pairing can generate strong correspondence at low cardinality. In Fig-

ure 7.5g, the Cluster Viewer has a correspondence case (A1) between a calendar view and

a line chart view. The strong green in the upper-left triangle indicates a strong correspon-
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Figure 7.5: The 12 example visualizations used to assess natural instances of correspondence.
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dence from our model prediction. The strong green in the lower-right that indicates strong

correspondence is expected, too. Other cases involving a hue to hue correspondence (e.g.,

Figure 7.5d-B2, Figure 7.5j-A3, Figure 7.5l-A2) similarly show a match between predicted

and expected correspondence. This case verifies the correct predictive ability of our model.

Figure 7.5k uses a node-link view and a matrix view to show the different types of

cliques in a network. There are four correspondence cases. The first two pairings, between

a 2D position and horizontal and vertical positions, are not corresponding at all in both

prediction and expectation. The third correspondence case is a hue to hue pair, with strong

correspondence both predicted and expected. We observe that the visual linking is actually

weak for perceiving correspondence since the lines in the node-link view and the matrix view

could interfere with the perception of the visual linking, and the visual link lines overlap each

other, too. The visual linking contribution is minor at best to the group level correspondence,

since the hue to hue correspondence already generates strong correspondence between the

same cliques. Moreover, there is a visual correspondence between the color of the link and the

color of the linked items. This provides an additional level of reinforcement of equivalence

transitively through the link. Overall, the crossing lines make it hard to follow the path

of visual linking, consequently; the correspondence between individual cliques via the links

is not strong. Introducing another visual correspondence case into the visualization design

could alleviate the issue of crossing lines. For example, by adding color saturation to the

cliques in both views, the correspondence for individual cliques might be stronger, allowing

the visual linking lines to be removed. This is an example of a potential design improvement

resulting from model prediction.

In Figure 7.5a, one case of correspondence (A1) is horizontal position to horizontal po-

sition between the map view and the line chart. We see a strong green in the upper-left

triangle from the prediction of our populated matrices and a weak green in the lower-right

for the expected correspondence. Our model predicts a strong correspondence for this case,

but the expected correspondence is moderately weak. The nuance with respect to Minard’s
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map is that the map weakly shows discrete positions as line intersections because the paths

of the armies and the temperature plots are in fact line plots. However, the position that

we use to fill out the model is based on discrete positions as opposed to bend points in the

line chart. Consequently, being able to see the correspondence from position to position is

weaker than predicted. Visual linking helps to enhance the corresponding positions explicitly

connecting corresponding bend points.

Similarly, the correspondence case in Figure 7.5e-B1 is vertical position to vertical posi-

tion between the bar chart and the matrix. Our model predicts strong correspondence, but

the expected correspondence is moderately weak. The alignment between the bars and the

rows or columns of the matrix is weakened due to the rotation of the matrix. This is a case

of visual linking (B4) strongly enhancing an otherwise weak correspondence. The perception

of correspondence for a position to position channel is strongly dependent on how clear the

alignment is. Similar cases include Figure 7.5d-A1 and Figure 7.5i-A1, B1, C1. The align-

ment in those cases is very bad; consequently, the expected correspondence is none. This

suggests possibilities to extend the visual channels applied in the model to a more nuanced

organization.

The example visualizations (Figure 7.5c, f, l) have correspondence cases with 2D position

to 2D position (A1). Our model predicts strong correspondence, but the expected correspon-

dence is none. In example visualization c, the two views have different coordinate systems.

The left view uses a normal 1D×1D coordinate system of a scatterplot, but the right view

uses a 2D geographic coordinate system. In example visualizations f and j, the organization

principles are different. Motionexplorer (f) uses a dendrogram view and a node-link view.

For the illustration in GrouseFlocks (l), the left view is a top-down node-link tree view and

the right view is a circular treemap. Since the two views in each visualization have different

spatial organization principles, the 2D position to 2D position mappings are ambiguous if not

determinate, offering little if any correspondence. This indicates how the model implicitly

assumes 2D positions are in the same, equivalent, or at least readily translatable coordinate
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systems. This limitation of the model may carry over to other geometric channels as well.

All three example visualizations use a hue to hue pairing to establish strong correspondence

to compensate.

7.4 Discussion

In this section, we discuss additional limitations of and opportunities for developing and

applying the model.

Non-same Channel Pairings. Based on the 12 example visualizations, we observe that

all of the visual correspondence cases use pairings with the same visual channels to generate

correspondence. This observation suggests that exploiting visual correspondence between

two different visual channels is rare. It illustrates the need for more examples of visualiza-

tion designs to be created that show off different channel pairings for visual correspondence.

The pattern of populated matrices shown in Figure 7.4, which suggests that the same vi-

sual channel pairings work better than different visual channel pairings, can help explain

this finding. Similarly, the 2D position to horizontal/vertical position cases in the example

visualizations (Figure 7.5e, j, k) match the pattern in the populated matrices in which 2D

position only corresponds strongly to another 2D position. These observations and the pat-

terns in the populated matrices indicate a predictive power that can benefit visualization

design by supporting consideration of effective visual correspondence.

Means to Correspond. Visual linking uses explicit graphical connections to represent cor-

respondence. Brushing establishes or reinforces correspondence by temporarily turning on

additional visual encoding features such that corresponding items more clearly match relative

to other items, i.e., they are highlighted in their respective views. Visual correspondence,

visual linking, and brushing thus all serve the same purpose to support seeing equivalent

items in multiple places. Strategic combination of correspondence methods including visual

linking, brushing, and “passive” visual correspondence could lead to interesting and powerful
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new techniques for visualization designs in a variety of static and interactive circumstances.

The trade-offs among correspondence methods could be considered for integrating diverse ap-

proaches across multiple views. Moreover, the potential for exploiting weaker correspondence

in pairings of different visual channels remains almost entirely unexplored, and might lead

to deeper investigation of how people perceive information differently across visual channels

and view contexts.

Cardinality Regimes. The 12 examples involve a wide range of visual cardinality. The

strategy of picking a close cardinality from the populated matrices could be problematic

due to the nuances of visual identifiability among different visual channels. Sampling more

levels of cardinalities could alleviate the problem and help with more accurate predictions.

In addition, most correspondence cases in the example visualizations are low cardinality

cases. Evidence at high cardinality is sparse. Visualizations to study correspondence at

higher cardinalities are needed. The model may itself encourage the development of such

visualizations.

Same Versus Equivalent. Based on the 12 example visualizations, we observe that the

relationship between corresponding visual objects can be one-to-one (e.g., Figure 7.5a), one-

to-many (e.g., Figure 7.5g), or many-to-many (e.g., Figure 7.5c). The arity relationship

of visual objects could be an important additional dimension to extend the model. The

current model presented here measures the effectiveness of individual item correspondence

cases between pairings of visual channels. One could also assess overall collective correspon-

dence from multiple pairwise correspondence cases among a set of related visual objects.

The individual correspondence cases might interact with each other, for example, two weak

correspondence individual cases contributing to a strong overall correspondence.

Correspondence Strength Levels. While perceptual rankings [94, 101] generally treat

visual channels as separate from each other, interactions between different visual channels

can play an important role in perceiving correspondence visually. For example, a small size

of a shape could reduce or eliminate the visual correspondence established by a pairing of
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shape channels. Furthermore, the relationship between the encoding capability of visual

channels and the degree of visual correspondence needs development. Evaluation of this

information could help to identify new and subtle factors for assessing the effectiveness of

visual encoding choices within and between views. The degree of likeness and the degree

of correspondence is estimated in a coarse manner, calling for systematic dissection of both

through empirical studies.

Ratio of Unique to All Data Values. In our assessment of the visual encoding pairs, the

number of data values is equal to the cardinality of the data values, however, it is more often

that the number of data values is greater than the cardinality. The assessment could consider

different cases in terms of cardinality relative to the number of data values. Specifically, the

distribution of data values for a quantitative attribute could be included in assessment of

visual correspondence. Including data from a variety of domains could also help to gain

in-depth insight into how people perceive visual correspondences. Mechanical Turk and

similarly crowdsourced perception experiments are viable and seem likely to contribute to

understanding the nuances of different visual channel pairings for visual correspondence.

Other Factors to Consider. There are additional factors that seem likely to contribute

to correspondence, such as alignment between two 1D position channels and the layouts of

items in views with 2D channels. Ignoring those factors could result in wrong predictions.

Moreover, the specific design of a visual object can have an impact on perception of visual

correspondence; for example, 1D position as discrete points versus as line bend points. The

designs of visual objects can also influence visual perception of items collectively, such as the

ability to perceive alignment of a set of items, calling for extensive consideration of a wide

variety of item encodings ranging from simple marks to complex glyphs.
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7.5 Guidelines

Based on the results of applying and analyzing the model, we propose a set of guidelines for

designing and evaluating visualizations that account for visual correspondence. Certainly,

approaches exist to establish visual correspondence overtly, such as visual linking. These

guidelines aim to also encourage less overt establishment of visual correspondence through

the pairing of channels. Creating a visual correspondence between a pair of visual objects

could entail multiple steps. In general, the first step is to see to what extent the base visual

channels that the visual representations already use can create visual correspondence. Next,

if we cannot use visual channels due to externally imposed or prior constraints on how the

visual channels are used, can we mix in an additional visual channel? The detailed guidelines

follow. An overview is shown in Figure 7.6.

G1: Consider more effective pairwise channels to visually correspond objects.

Figure 7.6: Guidelines for considering visual correspondence. G1: Consider more effective
pairwise visual channels (VC) to visually correspond objects. G2: If possible, choose the
same or highly related visual channel for corresponding visual objects. G3: If G2 fails, reuse
an already used visual channel of one visual object. G4: If G2 and G3 fail, pick the most
highly visually correspondent visual channel from unused visual channels for any aspect of
the information.
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The appropriateness of using a visual channel to encode a data item depends on several

factors, and those factors can interact with each other, inadvertently or not. It is not clear

whether there exist any situations in which a strong visual correspondence can coincide with

very poor visual encoding of information. A methodical approach to visual correspondence

will list candidate visual channels, and sort them by the degree of likeness which indicates

their individual visual effectiveness for the information to be encoded. If there are multiple

viable pairings of visual channels for that information, the option with the highest degree of

likeness for each visual channel is suggested.

G2: If possible, choose the same or highly related visual channel for correspond-

ing visual objects. Unsurprisingly, we found that using the same visual channel between

two sets of visual objects almost always affords very good visual perception of correspon-

dence. This is essentially what common forms of highlighting do in brushing, after all. In

Figure 7.4, the dark green diagonal cells indicate the same or better correspondence between

the same visual channel than between different ones. Highly related can be nearly as strong,

such as vertical versus horizontal position (that are basically subcategories of the position

channel) or in the case of color, color hue versus color saturation. However, it may not always

be possible to establish visual correspondence using seemingly related visual channels. For

example, the U.S. states might be encoded as rows (1D position) in a list and as regions (2D

position) in a map. Vertical position and 2D position are predicted to be strong encoding

channels for nominal-like data. Items are clearly distinguishable as rows and regions in their

respective views. Nevertheless, the visual correspondence between a vertical position in the

list and a 2D position in the map is poor. It is hard to tell which vertical item corresponds to

which region of the map, even though they represent the same thing. We would have to use

some other visual channel to actually create the visual correspondence, and may even have

to resort to symbols (state names or abbreviations as labels) to establish the correspondence

explicitly.

G3: If G2 fails, reuse an already used visual channel of one visual object. If
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Figure 7.7: An example of Guideline 3. At top, the two views have weak visual corre-
spondence for attribute A2. At bottom, the two views show a strong visual correspondence
through addition of color hue for A2 to the bar chart.

the base visual channels in the visual representations are not sufficient for perceiving corre-

spondence, one possible way forward is to consider visual channels already used for visual

encoding. As shown in Figure 7.7, the top bar chart encodes a quantitative-like attribute

(A1) using length and encodes a nominal-like attribute (A2) by horizontal position. For the

scatterplot, two different quantitative-like attributes (A3, A4) are encoded in the horizontal

and vertical position respectively, and the same nominal-like attribute (A2) is encoded by

color hue. Although horizontal position and color hue are strong encoding channels for the

nominal-like data, the visual correspondence between these two visual channels is weak. It

is hard to tell which bar in the bar chart is related to which colored point in the scatterplot,

even though the underlying data is exactly the same in both. However, we can reuse the

color hue visual channel from the scatterplot view to encode the nominal-like attribute (A2)
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in the bar chart. The hue to hue channel pairing establishes a strong visual correspondence

between the two views.

G4: If G2 and G3 fail, pick the most highly visually correspondent visual channel

from unused visual channels for any aspect of the information. Visual channels are

not always available for visual correspondence due to existing use. They may be reserved

for layout or for encoding of particular data attributes. For example, vertical position is

Figure 7.8: An example of Guideline 4. The top pair of views do not show correspondence
at all, despite the attribute A1 being encoded in both views. The bottom panel depicts a
relatively stronger visual correspondence after adding a saturation channel encoding for the
ordinal-like aspect of A1 to both views.
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used to layout each level of nodes in a left-right node-link tree. In such cases, visualization

designers should consider other any remaining available visual channels and how they might

be utilized in contribution to establish correspondence for the visual objects. As shown at

the top of Figure 7.8, the same data attribute (A1) can be encoded differently by position.

It is encoded as vertical position of leaf nodes in the tree visualization at left, while the

bubble chart at right encodes it as 2D position. Both position channels encode the nominal-

like aspect of A1. While either vertical position or 2D position is generally one of the best

choices for a nominal-like attribute, the visual objects representing the same attribute values

in the two views do not correspond at all. As shown at the bottom of Figure 7.8, A1 also has

an ordinal-like aspect; for example, a month can be either nominal-like or ordinal-like data.

We check the unused visual channels and find that color saturation is one of the best choices

for an ordinal-like aspect (up to a certain cardinality). After applying saturation to A1 for

its ordinal-like aspect in both views, the visual correspondence is enhanced. The pairing of

saturation channels represents the ordinal-like aspect of A1 (e.g., month) in the fill color of

leaf nodes in the tree visualization and bubbles in the bubble chart.

7.6 Toward Systematic Evaluation of Correspondence

Despite the substantial theoretical foundation of visual encoding and evolving understanding

of its application, in practice selecting visual encodings remains highly contextual

and experience-driven. Applying the model of visual correspondence is similar

in these regards. For both visual encoding and visual correspondence, continuing to

populate a space of diverse examples is essential for the ongoing development of theory. In

particular, exploring the relationships between the two is necessary to better understand

their roles in identification, comparison, and other perceptual steps in visualization tasks.

In this section, we sketch a future program of theoretical and empirical work to determine

functional relationships between the two in terms of their combined effectiveness for key
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perceptual steps in visualization tasks.

Much like visual encodings provide a means to perceptually identify data objects and

attributes within a visual representation, visual correspondences provide a means to percep-

tually compare data objects and attributes between visual representations, and thus serve as

a critical bridge to identify the same (or equivalent) data objects and attributes as seen from

different perspectives. We envision breaking down visualization tasks into non-perceptual

and perceptual sub-tasks like these to identify components of a general perceptually-aware

mechanics underlying those tasks, akin to how Fitt’s law and Hick’s law predict functional

relationships to optimize efficiency in selecting and laying out user interface components.

In our sketch, we speculate under a working assumption that the individual and combined

influences of visual encodings and correspondences on the effectiveness of perceptual steps

are functionally linear; the equations are merely suggestive placeholders for functional re-

lationships to be determined. We consider first visual encodings on their own, then visual

correspondences between pairs of visual encodings.

7.6.1 Visual Presence within a Visual Encoding

Visual encoding is the correspondence between a data item and how it is visually encoded.

Visual encoding helps in understanding how well the visual representation of a data item

captures not only the data value but also the desired aspect of information in the data value.

We treat the correspondence between a data item and its visual object as a visual presence

of the item within a visual encoding. The effectiveness of visual encoding involves an iden-

tification task to perceive the data item through the visual object. The visual effectiveness

for identification (E(·)) is defined as follows, and is determined by the degree of likeness of

the visual channel A (La) to the desired apsect:

E(a) = kaLa + k (7.1)
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in which ka is the constant for visual channel A and k is a baseline constant. Since the

degree of likeness is an ungrounded value, we expect it to be derived from some function

of the quality of the visual encoding. The constants may be something like baseline visual

effectiveness, and we can not tell them apart for different visual channels. Although we

expect the general constant to be zero, we could get a non-zero value when we actually

measure under the assumption of a linear model. Developing empirical methods to determine

functional forms and coefficients is a matter for future work.

7.6.2 Visual Correspondence between Visual Encodings

For visual correspondence, we have two visual objects for a given data item. In this case,

the effectiveness is related to the comparison task. The comparison depends not only on

whether or not the two visual encodings are effective or not, but also on whether the two

visual channels are visually correspondent. This means that strong visual correspondence

alone may not guarantee effectiveness of comparison; poorly chosen visual encoding channels

may undermine it. Therefore, to assess effectiveness for comparison we factor in how well

a visual encoding captures the aspects of the data value that we want to show, as well the

visual correspondence between the two visual channels. We define the visual effectiveness

for comparison (E(a→ b)) of a visual object encoded by visual channel A to a visual object

encoded by visual channel B as:

E(a→ b) = kaLa + kbLb + kabCab + k (7.2)

in which La and Lb are the degrees of likeness for visual channel A and visual channel B,

respectively, Cab is the degree of correspondence from visual channel A to visual channel B,

kab is the constant for the visual correspondence between visual channel A and B, and k

is again a baseline constant. The constant kab could be low if the overall effectiveness for

comparison is primarily determined by the effectiveness of the individual visual encodings.
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7.6.3 Discussion

While we do not want to suggest specifics of a formalism, we offer mathematical forms in

a figurative way to describe how components might combine to make overall predictions of

task effectiveness. In this manner, the formulas serve two purposes. First, we use them as

a way to summarize how key factors interact in combination to influence task effectiveness.

Second, the formulas can lead us to move forward and design experiments to understand

how these factors combine with each other to determine the visual correspondence between

items. Using the formulas one could model overall visual effectiveness in terms of degrees

of likeness and visual correspondences. Systematic empirical study over a space of suitably

varying visualization designs would ask users to perform identification and comparison tasks

to determine the formulas and constants, and thereby assess the model. If the formulas

and constants were found to be consistent over useful portions of the visualization design

space, they could be integrated into an automated visualization design process. Effective

visualization designs could be predicted from task descriptions.

7.7 Summary

In this chapter, We offer a new perspective to think about visual channels in terms of how

they relate to each other, and suggest considering the effect of pairwise visual channels in the

design of visualizations. We present visual correspondence, a conceptual model of how well

associated visual objects are correctly seen as encoding the same data. The effect of pairwise

visual channels is assessed for basic views and information aspects in order to gain initial

insights into the utility and predictive capability of the model. Guidelines offer strategies to

visualization designers to incorporate stronger visual correspondence in their designs. We lay

out a program of future research to systematically develop measures of visual correspondence

and their potential contribution to a mechanics of visualization tasks.

The motivation to develop the model of visual correspondence arose during development
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of the initial version of the PatternTree visualization technique described in next chapter.

The hybrid tree visualization design revealed issues of being able to establish correspondence

while browsing. We developed the general theory of Visual Correspondence to help associate

visual objects which encode the same data through pairwise visual channels for connecting

different views to each other. We then applied the theory specifically to refine the PatternTree

technique, and in turn assessed the theory through design cases of PatternTree applications.

These efforts are described in next chapter.
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Chapter 8

PatternTree: A Hybrid Tree

Visualization for Hierarchical

Patterns

8.1 Overview

Visualization helps users to explore phenomena, gather insights, communicate ideas, and

memorize information from data. Exploratory data analysis endeavours to understand data

from different perspectives through manipulation, such as filtering, grouping, or aggregating.

Visualization of hierarchical data is important in a wide range of domains, including genome

research [106], political redistricting studies [66], event detection [152], and sports analyt-

ics [27]. One study considered the role that visualization design plays in human cognition

by measuring the memorability of visualizations [21].

We are interested in studying user comprehension of visualizations that convey hierar-

chical information. Trees are important data structures for representing hierarchical infor-

mation. There exist numerous ways to visually represent tree structures [125]. When data is

multifaceted [78], such as when it consists of different attributes or data computed from dif-
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ferent approaches, a visual representation must convey the relationships between attributes

as well as in the data structure overall.

In this chapter, we formalize a structure of hierarchical information for designing and

implementing virtual layering in multifaceted visualizations. Virtual layering is a form of

composite visualization [75] that embeds multiple views [153, 155, 145] as nodes inside a

host node-link diagram. Virtual layering provides smooth visual transitions between the

data structures in the embedded visualizations and those in the overall host visualization.

These transitions can enhance the comprehension of both the composite visualization and

the underlying data. Although we concentrate here only on virtual layering in node-link

tree visualizations, we predict that virtual layering can be applied to graphs and many other

kinds of multifaceted data structures.

Specifically, we propose a PatternTree technique that uses virtual layering to support

smooth navigation and drill-down into data structures embedded inside hierarchical informa-

tion. We apply PatternTree to study gerrymandering, the political manipulation of bound-

aries of electoral districts with the intent of creating partisan advantage [52]. We demonstrate

the utility of PatternTree and its virtual layering for visual analysis of electoral data sets.

The main contributions of this chapter are:

• virtual layering, a new visualization design pattern that facilitates smooth visual tran-

sitions in composite visualizations (Section 8.2);

• a design space for integrating virtual layering into the nodes in a node-link tree visu-

alization (Section 8.2);

• a hierarchical pattern structure for statistical analysis of multidimensional data and

its visualization using the PatternTree technique for exploratory data analysis (Sec-

tion 8.3–Section 8.5);

• two use cases involving a presidential election data set to demonstrate the utility of

PatternTree (Section 8.8), and
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• an assessment of visual correspondence (Chapter 7) in the PatternTree use cases (Sec-

tion 8.9) and the applicability of the PatternTree technique in general (Section 8.10).

8.2 Virtual Layering

We can create a composite visualization that represents data with nested relational semantics

using virtual layering as a means to transition between containing and contained visualiza-

tions. The virtual layering aims to smooth out the disconnect between the two-dimensional

visual space of a containing visualization and the two-dimensional visual spaces of the vi-

sualizations contained in it. We refer to these two “layers” as the identity portion and the

view portion, respectively. The identity portion visually represents the relationships between

nodes in the tree (Section 8.2.1). The view portion visually represents the relationship within

nodes in the tree in the form of embedded visualizations that show different facets of data

for their respective purposes (Section 8.2.2), which may be the same or different from node

to node.

8.2.1 Identity Portion

The identity portion conveys information about a node in its role as part of a hierarchy. As

shown in Figure 8.1, there can be two identity portions in the virtual layering for a node

located in a middle layer of a tree visualization. Since in this case we embedded the virtual

layer into a left-right oriented node-linked diagram, the left identity portion indicates the

node’s relationship to its parent node or ancestry, and the right identity portion indicates the

node’s relationship to its children nodes or descendants. Since we embed a visualization into a

tree at a specific layer, the embedded visualization will break the connectivity of the original

tree structure. Consequently, extra mental effort is required to identify the association

between the tree node and the embedded visualization. The identity portion allows users to

transition from the tree visualization to the embedded visualization smoothly and efficiently.
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Figure 8.1: Basic virtual layering concept illustrated in a node-link diagram. The virtual
layering consists of the identity portion and the view portion.

A well-designed identity portion can reduce the competition for space between tree links and

the embedded view; as a result, it mitigates visual clutter for the visualizations.

8.2.2 View Portion

The view portion conveys information about a node in its role as a container of embedded

data. It serves as a display space of an embedded visualization in which multiple aspects

of embedded data may be rendered, such as multivariate attributes, statistical analysis, or

geospatial context. A view portion can be a single visualization or a composite visualiza-

tion such as a juxtaposition of multiple visualizations. A view portion can support visual

alternatives which are activated by user interaction and vary in the approach to displaying

information. The integration of view portion and identity portion strives to reduce the men-

tal effort of transitioning from the tree visualization into the embedded visualization and

back out again. The view portion is limited by the space constraints of the tree visualization

layout.

8.2.3 Visual Compositions in the Virtual Layer

Design patterns for visual composition in the virtual layer can apply the existing approaches

presented in the literature [75, 67]. Putting off exhaustive investigation of such patterns as
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future work, here we illustrate the virtual layering technique through a few prominent, prac-

tical design patterns. Two common visual composition patterns for virtual layering follow

the juxtaposition and superimposition patterns common to multiple view compositions. Jux-

taposition places the visual representations of the identity and visual portions side-by-side

in the virtual layer. As shown in Figure 8.2a, the identity portion, consisting of nodes in

the tree, is placed next to the view portion represented by a dot strip plot. Superimposition

overlays the visual representation of the identity portion to the side of the view portion. Fig-

ure 8.2b shows virtual layering in the middle level of a node-lined diagram, with both parent

and child identity portions superimposed on left and right vertical axes of a scatterplot,

respectively.

A third pattern unifies the identity portion with the view portion. The idea of unification

is not to show the visual representation of the identity portion explicitly, but rather to

utilize a visual association approach, such as association by visual ordering, to indicate the

association between a parent node and its child nodes. Figure 8.2c shows a hybrid that

combines two different methods. The parent identity portion uses unification to abstract

Figure 8.2: Composite visual designs for the identity and view portion of the virtual layer.
The dashed rectangles indicate the current virtual layer. Yellow nodes represent the visual
items for the identity portion while green items represent the visual items in the view portion.
(a) Identity nodes juxtaposed with dot strip plots. (b) By superimposition, identity nodes
are overlaid on the axes of a scatterplot. (c) A hybrid approach uses unification for the
parent identity and juxtaposition for the child identity. The parent identity portions are
implicitly unified within the replicated heatmap views from its parent, whereas the child
identity nodes are juxtaposed to the right of the heatmap view.
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the relation between two virtual layers by associating visual ordering with highlighting of

visual items in views replicated from the parent. The child identity portion is juxtaposed

to the right of the replicated views. The nodes directly drawn inside the replicated views

represent the parent identity portion. In practice, those nodes can be omitted thanks to the

visual correspondence between horizontal position (in each node’s view portion) and vertical

position (between each child node’s view portion).

8.2.4 Positioning View Portion

In a left-right oriented node-linked diagram, the location and size of view portions are most

constrained by vertical space. Horizontal space is easier to adjust as needed. Strategies to

distribute embedded views over a vertical space vary. We investigated strategies for three

situations, as illustrated in Figure 8.3.

Figure 8.3a shows a situation in which the view’s height is the same as the interval

between the first and last sibling nodes of a parent. Because the view aligns well with the

vertical space taken by the nodes, we can use the first node’s y position for the view’s top y

position, and the last node’s y position as the view’s bottom y position.

Figure 8.3b shows how a view with a shorter height can be centered in the middle verti-

cally. (We could still draw the view at the first node’s y position.) To center the view, the

y position for the top of the view is simply computed as:

y = y′ + (
1

2
interval − 1

2
height), (8.1)

in which y′ is the y position of the first node in the branch, interval is the vertical distance

between the first node and the last node in the branch, and height is the height of the view.

In Figure 8.3c, the height of each view exceeds the vertical interval of its branch in the

tree. Since consistency of view size may make comparisons easier, in this scenario we assume

views have the same height. To place multiple views, we can calculate the y position for the
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first view as follows:

y1 = y′ − 1

2
(n ∗ height− total interval), (8.2)

where y′ is the y position of the first node in an entire level, n is the number of nodes/views

in the level, height is the height of each view (plus any desired padding), and total interval

is the distance between the first node and the last node in the entire level. After we get the

position for the first view, we can compute the y position for the rest of views by adding the

view height to the y position of each previous view in turn, as follows:

yi = yi−1 + height. (8.3)

Figure 8.3: Positioning the view portion for three different situations involving different
view heights. (a) Positioning a view when its height is the same as the branch height. (b)
Centering a view that is shorter. (c) Placing multiple views with equal heights each larger
than its branch height.
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8.2.5 Association Between Identity and View Portions

An identity portion may couple with a single element in a view portion (1:1), such as a bar

in a bar chart or a dot in a scatterplot. Multiform visualization [116] presents the same data

in alternative ways by applying different types of visualization or different visual encodings.

When the identity portion visually encodes some data, multiform visualization of the same

data can be applied to the view portion to create a one-to-one visual relationship between

the components. Users can choose the multiform visualization to suit the data, domain, and

analysis needs.

An identity portion may also be coupled with multiple items in a view portion (1:M). The

view portion presents additional dimensions of the data that need to couple with the identity

portion. For example, a set of bars in a grouped bar chart or a group of dots in a scatterplot

may associate with an identity portion. For example, in the Gerrymandering case, the leaf

nodes represent the districts under a districting plan. If we draw a grouped bar chart to

show the voting share percentages of the two parties for each district, the identity portion

(which represents the district) will associate with two grouped bars that each represents a

party’s voting share percentage in the view portion. The view portion aims to provide a

visualization of complementary information from different aspects of the data.

Many types of perceptual cues can be applied to make the association between identity

and view portions stronger and more salient to users. The goal is to reduce the cognitive

and perceptual load of view transitions by taking advantage of the Gestalt principles [83],

particularly proximity, similarity, and continuity. As shown in Figure 8.4, we assessed 14

visualization types for potential use as view portions in virtual layering. We categorize the

visualization types as either overlapping or space-filling [50], or in an other category, which

includes additional kinds of visualizations, such as bar charts and tables. Below, we discuss

in detail ways to strengthen the perceptual mapping between an identity portion and a view

portion.
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Figure 8.4: Visual manipulations and their applicability to common visualization types.

Law of Proximity. Objects that are close to one another are perceived as belonging to

the same group. An association can be created by spatial proximity via positional alignment

or view rotation.

Alignment can be characterized in terms of the data relation between the identity portion

and the view portion. Aligning items in the identity portion to items in the view portion

(item-item alignment) can be used to create a 1:1 relation, whereas aligning items in the

identity portion to the view of the view portion (item-view alignment) can be used to create

a 1:M relation.

An item-view alignment can vertically move the identity items so that they are close to

the view. For example, in Figure 8.3c, we can move the top two leaf nodes close to the

middle of the y-axis of the uppermost scatterplot. Some visualization types can be aligned

without moving the identity items, such as the strip plot, as shown in Figure 8.2a.

An item-item alignment is more complex than an item-view alignment. Figure 8.4 sum-

marizes how most visualizations that contain two-dimensional geometric shapes, such as

radar charts, venn diagrams, tree maps, choropleth maps, and pie charts, are not amenable

to item-item alignment. Items in those visualizations are positioned in a two-dimensional

space, but identity items are positioned vertically. The mismatch between 1D space for
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identity items and 2D space for view items makes item-item alignment hard in most cases.

Heatmap and table visualization are special cases in that the identity items can be aligned

with rows that represent view items. Similarly, we can place identity items on the y-axis of

a 2D scatter plot to align them horizontally with plot items, as shown in Figure 8.2b. This

alignment approach for a 2D scatter plot allows users to perceive item associations unless

there are too many overlapping items on the y-axis. The same approach can be applied to

line charts and parallel coordinates. Strip plots and grouped bar charts may be amenable

to alignment, but issues can arise from grouping. Each identity item can correspond to an

entire group of items rather than the individual items in these groups. One or more levels of

such 1:M correspondence might require more cognitive effort to associate each identity item

with particular view items through their groupings.

An embedded view can also be rotated or transposed to make the relationships between

identity items and view items more apparent. Rotation exploits the internal spatial arrange-

ment of the view to reposition relevant items in the view portion close to the corresponding

identity items. Visualizations like scatter plots, heatmaps, and tables have both horizon-

tal/row and vertical/column dimensions that one can rotate by 90◦ or transpose. When

identity items are associated with columns in a view, rotating the view to turn columns into

rows can help the user perceive item associations based on the law of proximity.

Law of continuity. The law of continuity is also known as the law of good continuation.

It states that visual objects are more likely to be followed by the human eye and perceived

as more related if they are in a continuous flow. Using a leader line to connect an identity

item and its associated item in the view portion offers a strong way to perceive a 1:1 relation

between items. Although adding leader lines is a powerful approach to explicitly bridge

visualizations and is easy to implement, they have shortcomings that designers should keep

in mind. Leader lines may penetrate a view and potentially occlude items. When leader

line crossings occur, it can generate visual clutter and diminish the perception of continuity,
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making it harder to follow to see group elements along the path. Additionally, when a

visualization can contain grouping or hierarchical structure, such as strip plots and grouped

bar charts, adding leader lines may require extra cognitive effort to identify which items in

the corresponding level of grouping or hierarchy that the lines mean to connect. This issue

is similar to that of alignment for those visualization types.

Law of similarity. People tend to perceive as grouped objects that are visually similar,

through features, such as shape, size, and color. We illustrate two manipulations of virtual

layer components that exploit similarity to improve their correspondence.

First, highlighting can provide users with immediate visual feedback to perceive the

association between identity items and view items. Although highlighting can be applied

to all visualization types listed in Figure 8.4, they often entail different design choices. The

most common highlighting design changes the color of selected items or their edges. When

a highlighted item is small, increasing the item’s size can improve visual salience to enhance

the perception of its association.

Second, items can have the same or similar shapes to associate them. Specifically, identity

items can duplicate the shape of their corresponding view items. For example, when identity

items represent districts in a state and the view is a districting map of the state, we can use

the district’s shape in the map to draw the identity items. The shapes need to be distinctive

for recognition. In their generic forms, of the visualization types in Figure 8.4, only the

choropleth map may be suitable using shape as a similarity cue.

In practice, multiple manipulations may strengthen item association, and one can weigh

which to use under the circumstances. It is also possible to combine two manipulations, such

as adding leader lines and highlighting with color. The designer should consider trade-offs

among the various visualization types and which kinds of manipulation they support.
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8.3 PatternTree Design

We develop an improved version of how users can see the collection of the dimensional

combinations of heatmaps in Wiggum using a hierarchical approach. PatternTree is designed

for visualizing patterns in hierarchical data structures that embed complex node information.

We first introduce a hierarchical pattern structure. To explore patterns, a node-link diagram

is used to represent the portions in the hierarchical pattern structure.

8.3.1 Hierarchical Pattern Structure

We structure an information hierarchy as a tree in which we explore patterns in a data set

and its partitions. Given a data set, D, we define a pattern as the relationship between a

pair of attributes {xm, xn}. For those attributes, we denote a pattern P ({xm, xn}, D) for the

overall data set, and call it the overall pattern. D can be omitted for simplicity. A hierarchy

can be established by dividing the data set into multiple subgroups D1, D2, ..., Dn which

contains a set of records grouping by a third attribute xs. We call the third attribute as

splitby variable. A pattern P of {xm, xn} created from a subgroup of the data Di is denoted

P ({xm, xn}, Di), and we call it a subgroup pattern.

8.3.2 Visual Design

We describe the hierarchical design of the PatternTree, which uses a node-link diagram as

the base representation.

Hierarchical View

The hierarchical pattern structure can be organized into a three-level tree structure as shown

in Figure 8.5. The overall pattern P ({xm, xn}) maps to the node in the first level of the tree

structure, and the subgroup patterns P ({xm, xn}, Di) map to the nodes in the third level.

The different splitby variables xs are the nodes in the middle level of the tree, and they are
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Figure 8.5: The hierarchical view design for the PatternTree.

connected to the overall pattern and their own subgroup patterns. The hierarchical structure

can be extended by further dividing the data set, but here we focus on a one-level partition to

illustrate the utilization of virtual layering in example domains. To differentiate the pattern

levels from the splitby level in the node-link diagram, we can use shape to encode their

nodes. For example, a circle node represents a splitby variable, and a square node represents

patterns in Figure 8.5. An alternative method is to apply background color to alternate

levels. There are two reasons why we choose a node-link diagram over other hierarchical

visualization techniques [126] like Treemaps [129], Sunburst [133], or icicle plots [160] as the

base representation, First, the non-leaf nodes for splitby components are more expressive in a

node-link diagram than in a Treemap because Treemaps strongly emphasize leaf nodes over

all other nodes. Second, node-link diagrams have more flexible layouts than space-filling

methods [124]. For example, it is easy to adjust the widths of each level in a node-link

diagram to make room for embedded views.

8.4 Use Case: Gerrymandering

Gerrymandering refers to the manipulation of voting district boundaries to advantage a polit-

ical party or group. Negative effects of gerrymandering can include letting politicians choose
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their voters, packing partisans, splitting communities, diluting minority votes, etc. [89].

When states redraw their districts, they may consider and balance diverse criteria for a wide

variety of factors. The most common criteria and factors, such as equal population, minority

representation, contiguity, compactness, communities of interest, etc., are often reviewed to

ensure a fair redistricting plan.

There are a variety of ways to measure continuity and compactness when comparing

the redistricting maps drawn by independent redistricting commissions to those drawn by

state legislatures [49]. In addition to measures based on redistricting criteria, the seats-votes

relationship can be useful for assessing the swing ratio and partisan bias of redistricting

plans [143]. Measures of electoral competition can also contribute to comparison of the

redistricting plans; a recent study suggests that, despite expectations, independent redistric-

tors may not increase electoral competition to achieve a more neutral political balance [70].

Most recently, DeFord, Eubank and Rodden [46] introduced a measure, partisan dislocation,

to indicate cracking and packing by considering a voter’s geographic nearest neighbors.

Rather than developing measures, researchers use automated redistricting algorithms

to generate redistricting plans and perform comparative analysis to reveal gerrymandering.

Two types of redistricting algorithms that are commonly used in the redistricting literature

are partitioning algorithms and swapping algorithms, which can be integrated into a divide

and conquer redistricting algorithm [88]. Automated districting simulations that are blind

to partisanship and race are used to measure unintentional gerrymandering that can emerge

from patterns of the geographic distribution of voters with respect to partisanship [32].

The difficulty of statistical analysis with quantitative metrics can discourage plaintiffs from

raising legal challenges to gerrymandering [135]. Making statistical analysis more visually

interpretable and less confusing is a primary motivation for this work.
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Table 8.1: Example: Precinct-Level Data for the 2016 and 2020 Presidential Elections in
Oklahoma with Congressional Districts for the 2010 and 2020 Cycles.

District 2010
Cycle

District 2020
Cycle

GEOID20 Party Votes
2016

Votes
2020

2 2 40079000102 DEM 75 82

2 2 40079000102 REP 385 412

3 3 40113000113 DEM 17 14

3 3 40113000113 REP 37 40

3 3 40113000102 DEM 31 24

3 3 40113000102 REP 126 167

8.5 Patterns in Gerrymandering

To illustrate the features of our hierarchical pattern structure, we use precinct data as shown

in Table 8.1. It shows the votes for each party per precinct in the state of Oklahoma in

the 2016 and 2020 presidential elections. The data contain congressional districts for two

redistricting cycles. For example, the 2010 cycle for the congressional districts in Oklahoma

starts on May 10, 2011 and ends on Dec 31, 2021, whereas the 2020 cycle is from Nov 22,

2021 to Jun 30, 2031 [1]. We compare statistics between the two major parties. For example,

the party having a higher voting share percentage (VSP) in a district, which is calculated

by Equation (8.4) given i ∈ precincts and j ∈ parties, wins the election for a House seat in

the U.S. Congress.

V SP (votes|party = j) =

∑
i votesi ∧ party = j∑

i votesi
. (8.4)

Pattern P ({votes, party}) indicates the relationship between the votes variable (xm) and

135



the party (xn) variable. In our example, we use voting share percentage as the aggregate

measure over precincts, and apply a binary ranking pattern on it, such as V SP (votes|party =

Dem) > V SP (votes|party = Rep). The pattern can be generalized to two variables with

some statistical analysis on one of the variables, as shown in Equation (8.5).

P ({xm, xn}) : stat(xm|xn = a) > stat(xm|xn = b). (8.5)

in which the ranking can be greater than (>) or smaller than (<); we exclude the possibility

of a tie (=) in a two-party contest.

In the gerrymandering case, the overall pattern P ({votes, party}) indicates which party

has a higher voting share percentage in the state-level data, while a subgroup pattern is the

pattern in the district-level (i.e., P ({votes, party}, Di), in which Di is a partition of the

data for a specific congressional District value (i.e., district = c). Congressional districts

are divisions of a state. Seeing the pattern in each district could provide an important

perspective on disparate results from elections.

Given the patterns, a distance function can be applied to measure if two binary ranking

patterns P ({xm, xn}) and P ({xm, xn}, Di) are the same or reversed:

d(P ({xm, xn}), P ({xm, xn}, Di)) =


0 if the same pattern

1 if the reverse pattern

(8.6)

For example, if P ({votes, party}) is the overall pattern that Republicans have a higher

voting share percentage at the state-level and P ({votes, party}, Di)) is a subgroup pattern

having lower voting share percentage for Republicans in a specific district, the distance be-

tween the two patterns is 1. Using a distance function alone can not reveal if a districting

plan of a state is gerrymandered. One approach to assess gerrymandering is to examine

all districts’ distances. We propose a summary function S, defined in Equation 8.7, us-

ing pattern distance d and |xs| as the number of the unique distinct values in variable xs
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(i.e, district). The value of S indicates what proportion of the districts do not follow the

state-wide pattern. If we compare the summary of district distances with the voting share

percentage of the minority party at the state-level, the disparity suggests that the districting

plan is gerrymandered. For example, the minority party has a 40% voting share percentage

at the state-level, but the sum of the distances is 0.6 in a state with five districts. The sum

indicates that the minority party should win the majority of the seats (3 out of 5). The

different outcomes (i.e, 40% vs 60%) may be caused by gerrymandering.

S(xm, xn, xs) =
1

|xs|
∑
∀Di∈D

d(P ({xm, xn}), P ({xm, xn}, Di)) (8.7)

For the binary ranking pattern, we further provide a strength for exploring how well a

pattern represents the data being examined. We apply the winning margin, as shown in

Equation 8.8, to represent the pattern strength s in the study of gerrymandering. The win-

ning margin helps to examine the competitiveness of congressional elections. By comparing

the competitiveness of different redistricting plans, analysts can find additional support for

the hypothesis that a redistricting plan is partisan gerrymandering.

s(P ({xm, xn})) = |stat(xm|xn = a)− stat(xm|xn = b)|

= |V SP (votes|party = a)− V SP (votes|party = b)|
(8.8)

8.6 Color Selection

Color is a powerful visual channel to guide attention. We try to pick better color schemes

for different components in our complex hybrid visualization system. We first consider the

well-known colors in our application domain which is political science. The color blue is

associated with the Democratic Party, and the red is for the Republican Party. The political

colors are reserved for the embedded charts that convey political parties’ information. Next,

we select a yellow-green sequential color palette to encode the distance values in both tree
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nodes and relevant elements in the virtual layering. The color green and yellow are visually

distinguishable to the predefined political colors. The yellow-green sequential color palette

is more easily distinguishable between low distance values and high distance values than the

green only sequential color palette, especially when the distances in the leaf nodes are either

0 or 1. Last but not least, we exclude the predefined colors above and use other colors based

on the different hue channel for the charts in the hybrid visualization.

8.7 Implementation

As shown in Figure 8.6, the PatternTree system architecture consists of three major parts:

(1) a web browser, (2) a Flask Server, and (3) a Python computation library. The web

browser allows users to interact with the functions of the PatternTree web application,

which was developed using HTML, CSS, JavaScript, and D3 [22]. The D3.js library provides

flexibility and interactability to create visualizations on the client side. Flask [3] is a web

application microframework that allows connection between a Python computation library

and JavaScript-powered visual analytics in the browser. The Flask server processing involves

two main components: a controller and a model. The controller accepts user input and

interacts with the Python computation library to execute tasks such as validating input,

computing patterns, etc. The controller calls the model to handle the processed data in

order to prepare it for visualization; for example, the controller sends the result table to the

model and the model generates and returns distance matrices. An Ajax request allows a web

application to send and retrieve JSON formatted data between the web browser and the Flask

server. The Python computation library consists of all of the computational features, and

is executed in the back-end server. PatternTree has been factored as a modular framework.

Each individual component can be changed or augmented, e.g., to implement a different

clustering method for data augmentation, add a new trend type, etc.
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Figure 8.6: An overview of the PatternTree system architecture.

8.8 Analysis Examples

In this section, we describe how PatternTree can be applied to the electoral precinct data of

the U.S. presidency from Dave’s Redistricting App [2] and congressional redistricting data

from All About Redistricting [1]. For our analysis, we applied the 2016 and 2020 presidential

vote share data at the precinct level. The election data was disaggregated to 2020 census

blocks following the method described by Amos, et al. [10].

8.8.1 Evaluating the Efficiency Gap

This use case was inspired by an evaluation of the efficiency gap [135]. The relationship

between seats and votes in the two-party system [143] could indicate the efficiency gap. We

inspect changes of the efficiency gap before and after the redistricting plan.

At the beginning of the analysis, we start by looking at the structure of the hierarchical

data. The PatternTree has four levels, as shown in Figure 8.7(a). Looking at the heatmap

view of the root node, we observe that there are two patterns in the electoral data set. The

first pattern is P({Votes2016, Party}), representing the binary ranking pattern extracted

from the precinct-level votes data of the 2016 Presidential election and each party’s informa-

tion. The second pattern P({Votes2020, Party}) applies to the 2020 Presidential election.

In the first level of the tree, the two patterns are split into corresponding branches. The
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Figure 8.7: An example demonstrating the basic design of the PatternTree technique for
evaluating the efficiency gap. The user first visualizes an initial PatternTree (a). Later, the
user selects three views to embed into the PatternTree (b): a bar chart comparing vote shares
between two parties, a scatterplot showing summary statistics, and a map view providing
more context for districts in New Jersey.

next level shows the splitby variables, in which we see that the congressional districts for

each election year are split into 2010 and 2020 cycles. By comparing these two cycles, we

can gain insight into how the new redistricting plan has an impact on the election. The last

level of the PatternTree shows the leaf nodes that present the congressional districts for each

combination of cycle and election year.

We further investigate the details in each PatternTree level, as shown in Figure 8.7(b). In

the first level, the mean distance aggregated for the second pattern P({Votes2020, Party})

is 0.208. By clicking the show view button for views in the first level, we see that the

pattern P({Votes2020, Party}) at the state level is that Democrats receive a higher vote

share than Republicans in the presidential election (58% vs 42%). In the splitby level, we
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show a scatterplot to view the statistics calculated for the two districting cycles. We find

that the mean distance in the 2020 cycle is 0.167. Comparing this number to the vote

share for Republicans, it is obvious that the gap between overall statewide support (42%)

for Republicans and the proportion of their winning districts (16.7%) indicates partisan bias

and hence supports a contention of gerrymandering. In addition, we see that the 2020 cycle

has a lower mean distance than the 2010 cycle. This shows that partisan bias is worse under

the new districting plan.

To understand the disparity and examine the congressional district lines, we inspect

individual districts in the leaf nodes. We observe that the distances for District 2, 3, and

4 in the 2010 cycle are equal to 1, which represents a reverse pattern compared to the

pattern at the state level. In contrast, the districts whose distance is 1 in the 2020 cycle

are District 2 and District 4. Since District 3 is no longer showing the reverse pattern, we

investigate several aspects of gerrymandering. One crucial aspect relating to gerrymandering

is whether the congressional district lines of the flipping district are drawn differently in the

new districting plan. The embedded map view clearly shows that the congressional district

lines for District 3 are quite different between the two cycles. Another aspect is to check

the degree of partisanship. Switching to a strip plot at the leaf level, we find that the

vote shares for the two parties in District 3 are extremely close in the 2010 cycle (50.1%

Republican versus 49.9% for Democrat), while the vote shares in the 2020 cycle are much

further apart (58.1% Democrat versus 41.9% Republican). Meanwhile, the vote shares for the

Democratic party in the adjoining districts including Districts 2 and 4, decreased in the 2020

cycle, whereas the vote shares for the Republican party increased. This indicates possible

gerrymandering techniques such as cracking and packing. In this case, the Republican voters

may have been cracked from District 3 into District 2 and 4; consequently, those votes are

diluted. Concomitantly, the Democratic voters from District 2 and 4 might have been packed

into District 3.

Through this exploration, we gained understanding of how the district lines are drawn
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Figure 8.8: Example of a PatternTree to assess electoral competition. The user selects a
heatmap view in the first level, a grouped bar chart in the splitby level to explore changes in
competitiveness between the two districting cycles, and a strip plot in the leaf level to show
vote details for districts in Oklahoma.

and what the possible consequences might be in future elections. This use case validates the

effectiveness of the PatternTree technique to identify potential gerrymandering, and suggests

further exploration.

8.8.2 Assessing Electoral Competition

In a second use case, we demonstrate how we utilize PatternTree to investigate the redis-

tricting plan that appears to impact electoral competition.

Figure 8.8 shows the PatternTree for the Presidential election in Oklahoma. In this case,

the root level and the first level are not connected by lines; instead, the two duplicated and

highlighted view portions in the first level implicitly represent the parent-child relationships

with the root node. The mean distances of the internal nodes and the distances of the leaf

nodes are all 0, as indicated by their respective fill colors. This clearly indicates that the

district-level patterns are compatible with the statewide pattern in which the Republican
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party always wins every district in Oklahoma.

Since we are particularly interested in the recent election, we track the lower branch which

presents the pattern P({Votes2020, Party}). When we look at the bar chart in the splitby

level, we find that one highly competitive district (i.e., a winning margin of 0% to 10%) in the

2010 cycle becomes less competitive in the 2020 cycle; the number of moderately competitive

districts (i.e., a winning margin of 10% to 20%) changes from 0 to 1 after redistricting.

To delve more deeply into these changes, we more closely examine individual districts’

voting shares. We embed a strip plot in the leaf level, and examine the changes of the voting

shares for the two parties. We find that the competition is close in District 5 in the 2010 cycle

(i.e., Republican 52.9% vs. Democrat 47.1%), and that the difference between the shares

of the votes for the two parties becomes larger in the 2020 cycle (i.e., 59.5% Republican

vs. 40.5% Democrat). This indicates that District 5 is probably safer and more secure for

Republicans after redistricting. In addition, we find that District 3, which is a neighbor of

District 5, shrinks its winning margin in the 2020 cycle. We assume that the district lines

for both districts were redrawn in the new redistricting plan. To confirm this, we switch to

map views in the leaf nodes and observe a notable difference in the border between the two

districts.

Our findings in Oklahoma are a strong sign that gerrymandering can occur even with-

out overturning elections. Based on our exploration, we conclude that Districts 3 and 5

were likely gerrymandered to protect Republican candidates especially in District 5. Over-

all, the PatternTree technique aids in exploring hierarchical patterns and gaining a deeper

understanding of underlying information.

8.9 Visual Correspondence Assessment

In order to build a hybrid tree visualization, the theory of visual correspondence can be

applied to connect the host view (node-link tree) with various types of embedded views. In
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this section, we describe how we refine the design of PatternTree. We also provide a basic

assessment of the theory of visual correspondence through application to the PatternTree.

In the PatternTree, correspondence between the node-link tree view and the embedded

views focuses on visually associating the nodes in the tree with the graphical objects in their

view portions, such as dots in a scatterplot or bars in a bar chart. To refine the design,

we first need to know which visual channels are already used and how effective those visual

channels are. In Figure 8.9, the table for the host view shows the used visual channels,

the corresponding aspect likeness, and the degree of likeness. The embedded view table

shows a target set of embedded views. Based on the design guidelines from the visual

correspondence theory, several pairs of visual channels can be chosen to establish or enhance

visual correspondence. For example, we can utilize shape in the host view and embedded

map views to show the relationship between the leaf nodes and the components in the map.

The other two examples similarly apply visual correspondence to suggest refinements to

visualizations at different levels in PatternTree.

Figure 8.9: An example of refining choices of host and embedded visualizations in Pattern-
Tree based on the theory of visual correspondence.
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Figure 8.10: Designs for embedding a heat map in the first level of a PatternTree. (A)
Visual linking connects heatmap cells (B) Positions and colors of cells provides sufficient
visual correspondence without the drawbacks of visual linking.

Figure 8.10 shows two approaches to embed a heatmap into the first level of the tree.

Figure 8.10 (A) shows the original design before applying visual correspondence. Drawing

connecting lines explicitly reveals the relationship between graphical objects in different tree

levels. The view portions implicitly represent node identity. In Figure 8.10 (B), we take

advantage of visual correspondence. We remove the connecting lines from the heat map in

the root to the heat maps in the first level. The same shape indicates that the two heat maps

represent the same information. Moreover, color and position of each highlighted cell in the

two heatmaps indicate their relationship to the corresponding cells in the root heatmap. In

addition, squares explicitly show the child identity portion to the right of each embedded

heatmap. The visual correspondence for a one-to-one relationship between the child identity

nodes in the first level and the parent identity nodes in the next level is easily established

by the same color. As the number of rows and columns in the heat map increases, following
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Figure 8.11: Designs for embedding a scatterplot in the second level of the tree visualiza-
tion. In (A), there is no visual correspondence between the tree nodes and the dots of the
scatterplot in the original design. In (B), visual correspondence is established by pairing of
vertical position channels.

the paths of individual connecting lines would become more difficult. The new design avoids

this issue.

Figure 8.11 shows how a scatterplot can be embedded into the second level of the tree

visualization. Figure 8.11 (A) shows the design before we apply the visual correspondence

theory. There is no correspondence between the tree nodes and the dots in the scatterplot

(ignoring the symbolic correspondence of their labels). In the design shown in Figure 8.11

(B), vertical position is used to establish the correspondence. Consequently, it is easy to

perceive the visual correspondence between the tree nodes and the dots in the scatterplot.

We also add a right hand axis to the scatterplot, and duplicate the tree nodes of the second

level along that axis. The same position for the nodes on the left axis and on the right

axis indicates that they encode the same identity information about nodes in that level.

Although a pair of vertical channels generally works well when the data points are spread

out vertically, the visual correspondence could be diminished if the dots in the scatterplots

are too close to each other. In this way, the embedded view type and the distribution of data
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Figure 8.12: Designs for embedding a map view in the leaf level. (A) The original design
uses connecting lines to establish correspondence. (B) A pair of shape channels is used for
visual correspondence.

in it can have an impact on visual correspondence when using a pairing of position channels

(or otherwise).

Figure 8.12 shows how a map view can be embedded into the leaf level. Figure 8.12 (A)

is the original design that uses connecting lines to establish correspondence between the leaf

nodes and the districts in the map. Figure 8.12 (B) is the design after applying the theory of

visual correspondence; color saturation and shape are both viable ways to provide or enhance

visual correspondence. Although pairing of shape channels is suitable for use with maps and

can work well for enhancing correspondence, there exist limitations. First, the number of

shapes and one’s ability to distinguish them has an influence on visual correspondence. When

we apply PatternTree to states having more than 20 congressional districts (e.g., California,

Texas, Florida), it is hard to recognize and distinguish the corresponding shapes. The

cardinality of data plays a crucial role in visual correspondence in general. Moreover, visual

channels often interact with each other, and the visual correspondence for any given visual

channel can be affected by other visual channels. For example, because size can affect the
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perception of shape, it is harder to perceive correspondence when the congressional districts

are drawn very small, and even more so for districts that are geographically small to begin

with, as in the most populous cities. More sophisticated approaches are needed to tackle

these issues.

8.10 Limitations and Future Work

In this section, we discuss the limitations of our current system and future directions.

8.10.1 Design Space

There are abundant ways to visualize hierarchical data as tree visualizations. Exploring

different aspects of the design space benefits in understanding different approaches, and helps

to absorb the strengths and weaknesses. In this work, we only consider a node-link diagram

as the base representation for the hierarchical data, and our hybrid tree visualization inherits

limitations and drawbacks from the explicit tree visualization, such as low space utilization

efficiency. Some techniques among the treemap variations not only are highly space-efficient

graphical representations but also highlight the hierarchical structure, for example, Cascaded

Treemaps [92]. To explore the new layout, we may take into account different design spaces

of composite visualization. Our approach in PatternTree nests one or more charts inside the

node-link diagram based on the relationship between the nodes in node-link diagram and the

visual elements in the chart. In the future, we plan to investigate other design options using

composite visualization for enhancing various types of tree visualization, for example, using

juxtaposition for Cascaded Treemaps. Moreover, node-link tree visualizations treat nodes

as discrete entities, but it is possible that the next level of detail contains a set of ranges

based on a continuous variable. The design of the visual representation for the continuous

leaf nodes and their corresponding view needs further exploration and study. In addition,

applying the virtual layering technique to other graph-structured data and visualizations
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leads to directions on how to extend and generalize the virtual layering technique in the

future.

8.10.2 Scalability

The node-link layout tree visualization suffers from its low space utilization efficiency. Our

PatternTree inherits the downside of the node-link layout when there exist a large number of

branches and leaves. The number of branches grows when the number of patterns increases

since each pattern is a branch. Also, if there are more leaves, it will cost more vertical screen

space. For example, large states, such as Texas or California, have much more congressional

districts than other states. Consequently, low space efficiency could have a detrimental effect

on comparison tasks, especially when users need to scroll vertically to compare congressional

districts across different districting cycles and it generates an excess of the comparative

burden on users’ memory. Future work could design interaction techniques to increase the

space-efficiency. For example, using an ellipsis to omit less essential leaf nodes could save

the vertical space at the initial stage, then interactions activate the collapse or expansion of

the leaves.

8.11 Summary

We have introduced PatternTree as a hybrid tree visualization via a virtual layering technique

to explore hierarchical patterns. We presented a formal description of a design space for

embedding the virtual layering in a node-link tree visualization. We illustrated the usefulness

of the features of our hierarchical pattern structure by applying it to the gerrymandering

domain. In two use cases, we demonstrated that PatternTree allows users to gain new insights

about gerrymandering on presidential election data. Our study suggests that PatternTree

enhances not only exploration of hierarchical patterns, but also understanding of complex

relationships in the underlying data. Finally, we discussed limitations and future directions.
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In the near future, we plan to conduct a usability study of the effectiveness of PatternTree

for analysis of gerrymandering.
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Chapter 9

Conclusion

The new visualization capabilities described in this dissertation together support interac-

tive exploration of data to detect patterns that reveal mix effects. The suite of features

implemented in Wiggum is designed as a modular framework to allow each individual com-

ponent to be modified or extended. Data analysts can extend the system by adding new

statistics features via simple module insertion. Visualization researchers can use the system

as a platform for exploring patterns of patterns in visualizations that utilize various types

of compositional techniques. Taken together, the contributions of this dissertation open up

new paths to grow the complexity and capabilities of tools for exploring statistical anomalies

visually.

9.1 Contributions

This dissertation presents the following thesis: Combining composite visualizations for drill

down exploration with interactions into a visualization system supports effective comprehen-

sion and analysis of statistical anomalies in multidimensional data for the user with basic

statistical knowledge. Adding capabilities to drill down into dimensional combinations hier-

archically allows the user to see correspondences between dimensional information visually.

These capabilities allow the user to more readily discover statistical anomalies and explore
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their relationships in multidimensional data. The research described in this dissertation

makes the following contributions:

• view designs for understanding and efficiently detecting mix effects and Simpson’s

paradox;

• a Python library of statistical computations and methods for detecting mix effects;

• an implementation of a visual analysis application, Wiggum, that integrates the library

with a JavaScript-powered visual analytics user interface in the browser;

• an evaluation of users’ ability to comprehend and apply statistical concepts in the

views in the user interface;

• a conceptual model for effectively associating graphical items which encode the same

data through pairwise visual channels;

• a set of design guidelines for establishing and evaluating visual correspondence; and

• a design space for embedding views in a node-link tree visualization for smooth visual

transitions.

These contributions validate the effectiveness of the visualization techniques and Wig-

gum for detecting statistical anomalies by demonstrating learnability, flexibility, and general

applicability of the statistical methods for exploratory visual data analysis. Wiggum has

been used to support useful statistical analysis in several data domains. As mix effects be-

come increasingly important to study for problems like gerrymandering, new computational

methods and visualization techniques can be integrated into Wiggum as extensions to the

work described in this dissertation. Wiggum and the models of compositional design can also

serve as a platform to conduct future research bridging statistical analysis and visualization.
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9.2 Future Work

9.2.1 Summary Statistics

Wiggum presents a computational framework that enables the detection and examination

of mix effects. We use the term pattern to refer to any parametric relationship between

a set of variables. For example, a line is a pattern with slope and intercept parameters.

Wiggum currently implements patterns for linear regression, Pearson correlation, rank by

mean/percentage, and supports exploration and comparison of such patterns at different lev-

els of analysis. Formalization of patterns of these various types would help to generalize and

extend current computational capabilities. The development of theory and interactive tools

for pattern discovery promises to push forward research in many different domains. With

an increasingly generalized framework, we can apply Wiggum more broadly to meaningful

real world problems (e.g., gerrymandering, medical data, fairness) with impact on inspiring

research in new areas.

9.2.2 Tree Visualization

Although PatternTree focuses on node-link tree visualizations, there are a rich variety of

other techniques for visualizing hierarchical data that could serve as the host visualization.

The space efficiency of space-filling techniques such as treemaps might help to address lim-

itations and drawbacks of node-link techniques. Other tree visualization layouts introduce

new constraints to the design spaces of composite visualization to explore. Moreover, since

a tree is a special case of a graph, broader consideration of graph-structured data and vi-

sualizations will open up directions to extend and generalize the visual correspondence and

virtual layering models.
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9.2.3 Evaluation

The model of visual correspondence described in Chapter 7 focuses on only a few perceptual

factors to ground predictions for visualization design. The effectiveness of visual encoding

channels requires careful development and application of methods to assess human percep-

tual capabilities. Studying a variety of subjects could help to gain insight into how people

establish and process visual correspondence. The intersection of eye tracking with visualiza-

tion research may reveal patterns when users perform comparison tasks designed for visual

correspondence. Furthermore, the relation between the quality of visual encoding channels

and the quality of visual correspondence remains to be determined. Evaluation is needed

to identify factors in visual effectiveness. Patterns observed through empirical studies can

serve to clarify the rankings of visual channels and help to establish new guidelines for visu-

alization designers and developers of manual and automatic visualization systems to create

more perceptually effective visualizations.

9.3 Conclusions

The principle goal of this dissertation has been to develop and assess a visual analysis

approach in which complex statistical capabilities can be made accessible to wider groups

of users with a basic knowledge of statistics. The implementation and evaluation of the

Wiggum visual analysis system indicate substantial progress toward achieving this goal.

This work opens up a myriad of directions for future research on the way to greater data

democratization.
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