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Abstract 

The scanning tunnelling microscope (STM) is a very powerful analytic tool capable of 

achieving atomic resolution. Unfortunately, the STM is restricted to samples that are sufficiently 

conductive to allow adequate tunneling current for feedback control. The amplifier used to 

measure the tunneling current is the critical limiting component. If the amplifier could be made 

more sensitive, the STM could be operated at lower tunneling currents allowing lower 

conductivity samples to be studied. Most amplifiers used in STM employ a resistor feedback 

design, which become unstable at high gain necessitating a tradeoff between gain and bandwidth. 

One way to circumvent that stability problem is to use a capacitor feedback design (switched 

integrator), which does not exhibit the same stability problem. This comes at the expense of 

added complexity because the output is the integral of the current and needs to be periodically 

reset. In this project, a switched-integrator current amplifier is constructed and explored. It 

consisted of an analog switched integrator controlled by a field-programmable-gate-array 

(FPGA) with a 16-bit analog-to-digital converter and an 18-bit digital-to-analog converter. A 

viable prototype was created which allowed for the exploration of the gain, phase, and time delay 

of such systems. This exploration helped further characterize the important design considerations 

and trade-offs necessary for such a system. A design sequence is proposed that allows for 

optimal planning based on the desired tunneling current and system bandwidth.  
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Chapter 1: Introduction 

1.1 Overview of Scanning Tunnelling Microscopy 

The scanning tunnelling microscope (STM) can image surfaces with atomic resolution 

and has proven to be an extremely powerful tool in modern physics.1 The technique was 

developed by Gerd Binnig and Heinrich Rohrer while working at IBM and demonstrated for the 

first time in 1983 (along with Gerber and Weibel),2 earning them the 1986 Nobel Prize in 

Physics.3 

In STM, an atomically sharp probe tip, typically made of tungsten or a platinum-iridium 

alloy, is positioned less than a nanometer above the surface of the material by a piezoelectric 

actuator. Once the probe tip is close enough, the electron wavefunctions of the probe tip and the 

sample will overlap, and quantum tunneling between the two will become possible. By applying 

a bias voltage between the probe tip and the sample, a net quantum tunnelling current will result. 

Because the tunnelling current is strongly dependent on the probe tip-sample separation, the 

tunneling current can be used to maintain the separation which avoids physical contact between 

the probe tip and the sample. One common STM operational mode achieves this by operating at 

a constant tunneling current. Negative feedback by the piezoelectric actuator is used to maintain 

the tunneling current at an operator-selected set point, and thus a nominally constant probe tip-

sample separation. The difference between setpoint current and the measured current is the error 

signal which drives the piezoelectric actuator. For example, if the tunneling current is above the 

set point, the separation is too small, and the probe tip is moved away from the surface. If the 

current is below the set point, the separation is too large, and the probe tip is moved closer to the 

surface. This balance is maintained throughout the time when the STM is operating. This 

feedback minimizes the error signal and holds the tunneling current constant. To image the 

sample surface, the tip is scanned across the material in a raster pattern, and the tip height at 

constant tunneling current is recorded for each point in the pattern, generating an electronic 

topographic map of the sample. The corresponding z-coordinate can then be mapped as a 

function of the x- and y- coordinate to create an image of the sample surface.4 An example of an 

STM image is given in Figure 1.1. The amplifier that measures the tunneling current is a critical 

component of the STM and is the focus of this project. 
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Figure 1.1:STM example image. DHCT-corrected STM image of alkanethiol-on-Au(111) 

self-assembled monolayers. The dark regions are topographically lower than the lighter 

regions and represent regions of gold vacancy islands. The monolayer is composed of a 

decanethiol host (10 carbon backbone) containing a small fraction of longer 

undecanethiol guest molecules (11 carbon backbone). The bright spots represent the 

longer chains on a sea of smaller chains.5 

 

While it was initially believed that the technique mapped solely the topography of the 

surface of a material, in 1996 Diebold showed that the STM map was in fact a map of the 

electronic structure of the material.6789 Thus, an STM image represents the convolution of the 

physical and electronic properties of the surface. By changing the imaging conditions (e.g., 

sample bias or the set-point current), it is possible to probe different electronic states or atoms 

within a sample. This ability to provide atomic resolution of materials surfaces has proven 

extremely valuable and has even recently allowed for the study of quantum superposition of 

electrons in monolayer graphene.10  

 

1.2 Motivation 

Controlling an STM requires a sophisticated set of electronics and a computer to process 

the measurements into a gray-scale image like in Figure 1.1, and a simplified diagram of these 

components is show in Figure 1.2. The tunnelling current must be measured and conditioned, 

most commonly by a current-to-voltage amplifier, to a voltage level that can interface with the 
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      Figure 1.2: Diagram of a scanning tunnelling microscope. 

      The tunnelling current is amplified to interface with the STM 

      control electronics which raises or lowers the tip, and the tip 

      height in relation to the x and y position on the sample is stored 

      to generate the contour map from Figure 1.1.1 

 

STM control electronics. The performance of this current amplifier is a key design consideration 

for the STM.  

Standard STM set-ups use transimpedance amplifiers, which use resistors as the feedback 

mechanism. The advantages of this set-up follow. 

1. Simple to use:  The gain, and therefore the voltage generated by the tunnelling 

current, can be easily manipulated by changing the resistance of the feedback resistor 

in accordance with Ohm’s law. 

2. Ease of processing:  Since the output voltage is directly proportional to the input 

current, extracting the tunnelling current requires little processing. 

3. History of success:  Transimpedance amplifiers have historically worked very well 

for samples with relatively high conductance. They have been employed for imaging 

with tunnelling currents as low as 0.1 pA. 

However, two issues exist that severely limit resistor-feedback systems. The first is that 

the parasitic capacitance in the feedback resistor results in a pole of the transfer function that 

limits the bandwidth of the amplifier. The second is that the input capacitance creates a zero in 

the transfer function which can lead to oscillation. This forces a compromise between bandwidth 

and gain. One way around this is to use a capacitor as the feedback element instead of a resistor, 

which has been used successfully in the design of patch clamp amplifier.1112 These systems are 
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more stable than their resistor feedback counterparts but are more complicated to implement. 

This type of feedback may allow for the detection of smaller tunnelling currents without 

sacrificing bandwidth, which would allow for application of STM to samples that are intractable 

by current systems due to low surface conductance. Section 2.2 discusses the theoretical 

implementation of these current amplifiers, and their actual usage is discussed in the following 

chapters. 

 

1.3 Overview of the Project 

The intent of this project was to explore the feasibility of using an integrating (capacitor-

feedback) amplifier for use as an STM current amplifier. The ultimate objective is to achieve 

STM operation with tunneling currents below 1 pA with a bandwidth of 2 kHz or greater with a 

current signal to noise ratio (SNR) greater than 10. To interface with existing STM control 

electronics, the output voltage must be proportional to the current. Because the current amplifier 

is part of the STM feedback loop, the phase margin of the system will need to be >45° to assure 

stable operation, which places limits on the group delay to below 200 μs.  

 

There are two required components for this design, the integrator, and the differentiator. 

In this project, the integrator was implemented on a printed circuit board with additional support 

components to provide the necessary input current and output voltage conditioning. 

Differentiation was accomplished by digitizing the signal with an analog-to-digital converter 

(ADC), differentiating it with a field-programmable gate array (FPGA), and outputting the 

processed signal with a digital-to-analog converter (DAC). Additionally, the FPGA controlled 

Figure 1.3: Conceptual diagram of the capacitor feedback operational amplifier.  
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the ADC, DAC, and the reset switch across the capacitor in the integrator. A simplified diagram 

of the general set-up is shown in Figure 1.3.  

 

1.4 Scope of the Thesis 

 This thesis will cover the theory, general design, prototyping, and implementation of a 

switched integrator capacitor feedback operational amplifier system that could be used for STM. 

Chapter 1 introduced the theory of STM, the motivation for studying capacitor-feedback 

operational amplifiers, and the general overview of the project. The information in Chapter 2 

lays the theoretical groundwork for understanding the limitations of traditional STM current 

amplifiers, and how capacitor-feedback can work around these limitations. Chapter 3 breaks 

down the hardware and components used in the system to a greater extent and discusses what 

each piece of the system does. Chapters 4 and 5 break down into detail the two major 

components. Chapter 4 describes the differentiator, specifically the theory behind the low-pass 

differentiating filter used as well as the software that controls the ADC, DAC, reset switch, and 

implementation of the filter. Chapter 5 covers the detailed PCB board implementation of a 

precise switched integrator. This chapter shows that the system works as intended and highlights 

the important design criteria revealed by these tests for future implementation. Chapter 6 

summarizes the results from Chapters 5, discusses a possible design sequence based on the 

necessary design criteria, and recommends possible improvements for future similar systems. 
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Chapter 2: STM Current Amplifiers 

The current amplifier is a key component of the STM that imposes limits on the gain and 

bandwidth of the tunnelling current, which is fundamental in measuring the tunnelling current in 

STM. Bandwidth determines the response time of the STM, and sufficient bandwidth is required 

required for the STM to be able to accurately follow the contours of the sample and react to 

variations in the surface without crashing. The gain limits the tunnelling current (and therefore 

the conductance of materials) that can be studied. These amplifiers that convert current to 

voltage are called transimpedance amplifiers. Converting current into voltage is useful because 

most electronic systems encode information as voltages, making it easier to interface with other 

components. 

The main factor that needs to be controlled to ensure a successful operational amplifier 

set-up is the signal-to-noise ratio. If the noise on a signal is too high, it may be difficult, if not 

impossible, to recover the desired signal in a timely manner. Increasing the gain of a system will 

also increase the amplitude of contributing noise sources. Different amplifier configurations will 

have different noise sources and responses to them. This chapter discusses the noise sources in 

transimpedance amplifiers, how different amplifier configurations work, and the resulting noise 

analysis that goes along with those amplifier configurations. 

 

2.1 Noise Sources in Transimpedance Amplifiers 

The three major noise sources relevant to STM amplifiers are shot noise, thermal noise, 

and kTC noise. Understanding what causes them and the effect they have on the measurement 

allows for systems to be designed that manage noise sources to improve the signal-to-noise ratio. 

 

2.1.1  Shot Noise 

Shot noise results from the discrete nature of electric charge. Current results from the 

movement of electrons. When current is high, the movement of the electrons follows the law of 

high numbers, the relative number of statistical fluctuations will be statistically small. However, 

at lower currents, the relative number of statistical fluctuations will increase, causing noise in the 

current. The equation for RMS shot noise is 

𝑁𝑠 = √2𝑒𝐼𝐵, 
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where e is the electron charge, I is the average dc current, and B is the frequency bandwidth.1 

The resulting SNR is 

𝑆𝑁𝑅𝑠 =  √
𝐼

2𝑒𝐵
. 

Shot noise is an inherent property of the current being measured. The SNR at 1 nA, 1pA, 

and 1 fA in 2 kHz bandwidth gives SNRs of 1200, 40, and 1.2, respectively. At high current, the 

effect of shot noise is generally less relevant, and if other noise sources dominate can be 

neglected. Shot noise can begin to dominate as other noise sources are reduced or when 

measuring a very small current.  

Because the shot noise is fundamental to the tunneling current, considering the shot noise 

alone estimates the expected current noise from a noiseless current amplifier. Using the target 

parameters from Section. 1.3 (SNR of 10 in a 2 kHz bandwidth), the smallest practical current 

the STM can operate at is 64 fA. In practice the STM loop bandwidth is effectively lower than 

this target because the STM feedback is primarily an integrator, and the loop can be slowed 

below the 2 kHz bandwidth to reduce the noise. 

 

2.1.2  Thermal Noise 

Thermal noise, also known as Johnson-Nyquist noise, is a phenomenon that arises from 

the thermal motion of electrons. The fluctuation of electrons within the resistor gives at any 

instant a voltage across the resistor. The RMS voltage noise that results in a resistor with 

resistance R is 

𝑁𝐽
𝑉 = √4𝑘𝐵𝑇𝐵𝑅, 

and the resulting RMS current noise is  

𝑁𝐽
𝐼 =  √

4𝑘𝐵𝑇𝐵

𝑅
. 

 

2.1.3  kTC Noise 

Ideal capacitors are lossless devices. However, Johnson-Nyquist noise on the rest of the 

circuit will impress a voltage fluctuation on the capacitor. This results in thermal noise on the 

capacitor known as kTC noise.2 The RMS voltage noise is 
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𝑁𝐾
𝑉 =  √𝑘𝐵𝑇/𝐶, 

and the charge noise is 

𝑁𝐾
𝑄 =  √𝑘𝐵𝑇𝐶. 

An interesting consequence of this is the presence of reset noise left on a capacitor when 

a switch is opened. The random thermal motion of the charges is then frozen onto the plates of 

the capacitor, resulting in the presence of noise while the capacitor is discharging, which can be 

the limiting source of noise for capacitive sensors.3  

 

2.2 Amplifier Types 

Response to the above noise sources is an important consideration when developing an 

STM. While there are numerous possible amplifier configurations that could be used in an STM, 

the focus of this thesis will be limited to those based on operational amplifiers. While many 

STMs use resistor feedback for their operational amplifiers, capacitive feedback has many 

characteristics that may be useful in low tunneling current applications. This next section 

differences between these two types of feedback. 

 

2.2.1  Resistor Feedback 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the resistor feedback operational amplifier shown in Figure 2.1, the relationship 

between the current into the inverting terminal and voltage across the feedback resistor can be 

easily found from Ohm’s law and the op amp golden rules4 

𝑉 = −𝐼𝑅. 

Figure 2.1: Simplified diagram of a resistor feedback 

operational amplifier. Most STM’s use current 

amplifiers with resistor feedback. 
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These types of operational amplifiers are sufficient for samples with relatively high conductance. 

The gain in a resistor-feedback amplifier is proportional to R, and the Johnson-Nyquist voltage 

noise is proportional to √𝑅. Increasing the feedback resistor increases the gain faster than the 

noise, thus increasing the signal-to-noise ratio. However, the choice amplifier of gain must 

consider the entire circuit.  

 

 

 

 

 

 

 

 

 

 

The schematic in Figure 2.2 shows a resister feedback amplifier, along with the feedback 

resistors parasitic capacitance, input capacitance, and input resistance. Resistors and the circuit 

wiring contribute parasitic stray capacitance, and the input capacitance and resistance are 

important elements in the response and stability of the amplifier. The stray capacitance and the 

feedback resistor contribute a pole at 

𝑓𝑃 =  
1

2𝜋𝑅𝑓𝐶𝑓
, 

which results in a 3dB frequency reduction of the bandwidth at fP.5 When the denominator of the 

pole is large, the bandwidth becomes small. Thus, at a fixed Cf, there must be a trade-off between 

the gain and the bandwidth, since increasing R to increase the gain will decrease the bandwidth.1 

Additionally, the parallel sum of the capacitances and the resistances contributes a zero at  

𝑓𝑍 =  
𝑅𝑓 + 𝑅𝑖

2𝜋𝑅𝑓𝑅𝑖(𝐶𝑓 + 𝐶𝑖)
, 

which can affect stability and, in the worst case, cause the system to oscillate. Operational 

amplifier stability is discussed in section 2.3. A typical value for stray capacitance that has been 

reported in STM amplifiers is 0.5 pF.1  

Figure 2.2: Elements contributing to stability and bandwidth in 

transimpedance amplifiers. 



11 
 

Since the voltage gain of the resistor feedback operational amplifier is also dependent on 

the resistance of the feedback resistor, this also inherently limits the conductance of materials 

that can be studied; if the conductance is too low, the gain-limited current-to-voltage amplifier 

will not be able to generate a large enough current to drive the feedback mechanism of the STM. 

There have been numerous methods developed to maintain an acceptable bandwidth while 

sampling low-conductance materials in STM. A few are discussed below. 

1. Atomic Force Microscopy (AFM): AFM is another type of scanning probe 

microscopy that can measure forces as small as 10-18 N.6 It has proved very successful 

in sampling many different materials but has roughly 10-100x less resolution.7 

2. Cascading Amplifiers: Running the current through multiple stages of amplifiers, 

rather than one stage, can increase the frequency response of the amplifier, but results 

in an increase in noise because the internal noise of each amplifier is amplified by the 

subsequent stages.89 For example, a two-stage amplifier can be used, where the first 

stage will typically have high gain and low bandwidth for stability and the second 

stage recovers the lost bandwidth from the first stage.  

3. Another option is the use of composite amplifiers, where the last stage completes a 

feedback loop to the first stage. These designs can take the best elements of each 

amplifier while reducing their negative effects.10 

4. Feedback Loop Compensation: A team in 2020 was able to achieve 28 kHz 

bandwidth with 10 times lower Johnson-Nyquist noise than traditional 

transimpedance amplifiers. They did this by applying a compensating capacitor and 

resistor to the feedback mechanism.11 Another team devised a circuit with an 

operational amplifier that resulted in an additional “negative capacitance” seen across 

the feedback element of a transimpedance amplifier.12  
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2.2.2  Capacitor Feedback 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 shows the layout of a switched capacitor feedback operational amplifier. 

Unlike the resistor feedback system, when a capacitor with capacitance C is used as the feedback 

mechanism for these current-to-voltage amplifiers, the relationship between the input current I 

and the output voltage V is given by4 

𝑉𝑜𝑢𝑡 =  −
1

𝐶
∫ 𝐼𝑖𝑛 𝑑𝑡. 

Thus, the voltage depends on the sum total of the charge built up on the capacitor. So, whereas in 

a resistor feedback system a constant current into the amplifier would result in a constant voltage 

output, a constant current into a capacitor feedback system would result in a linearly increasing 

voltage output. The output would continue to increase until the amplifier saturates. Saturation 

needs to be avoided by the periodic discharge of the capacitor. This is accomplished with the in 

parallel with the capacitor, which keeps the capacitor in the range necessary to accurately 

measure the current being amplified. For defining the gain of the integrator, we consider the 

output quantity to be 
𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
 because it is instantaneously related to the input quantity 𝐼𝑖𝑛. The gain 

of the amplifier can be seen as the inverse of the capacitance of the feedback capacitor by taking 

the time derivative of the above equation, yielding the relation 

(
𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
)

𝐼𝑖𝑛
= −

1

𝐶
= 𝐴𝐼 , 

where AI is the gain of the integrator.  

Figure 2.3: Schematic of a switched integrator 

operational amplifier. The switch is used in parallel 

with the feedback capacitor to allow the capacitor 

to discharge when nearing saturation. 
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The STM feedback that drives the raising and lowering of the tip depends on the 

tunnelling current through the sample, not its integral. Therefore, the voltage signal needs to be 

differentiated to interface with the STM control electronics. While differentiating the signal adds 

another component, these amplifiers have improved noise performance compared to resistor 

feedback systems, particularly at the high frequencies and gains necessary to analyze samples 

with low conductance.13141516 

Capacitor feedback systems are popular in the biological sciences through patch clamp 

amplifiers,17 but these instruments require modifications and are usually too bulky to be mounted 

close to the scanning tip which increases the system noise.18 However, other capacitive feedback 

systems have been developed and shown to be viable for different situations.19  

 

2.3 Stability 

Time delays in the system can cause stability issues with the STM. As the tip moves over 

the surface of the sample, the piezo needs to be able to respond to these changes. As the voltage 

from the changing tunnelling current varies, the amplifier will try to respond. Time delays cause 

the op amp to fail to detect that it has reached the correct output voltage, which causes it to 

overshoot. The op amp then must try to correct back to the desired output voltage. If the delay is 

small enough compared to the frequency of the input signal, this will result in damped successive 

feedback oscillations that eventually settles on the correct output. If the time delay is results in a 

phase approaching 180º and a gain greater than 1, then positive feedback can result, causing the 

system to continuously oscillate and never settle to the correct value.1 
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Chapter 3: System Design 

Before diving into the specific construction of the system, it is important to understand 

generally how each component works together as well as the general design philosophy of the 

system as a whole. Since the voltage across a switched integrator is proportional to the integral 

of the current into the input, the signal needs to be differentiated to extract the tunnelling current. 

This was accomplished by first integrating the input signal with the switched integrator. The 

output of the integrator is conditioned first by an anti-aliasing filter with a differential input. The 

former removes frequencies above the Nyquist frequency of the digital sampling. The latter 

suppresses common mode noise. It is then converted to a fully differential signal and input to the 

16-bit analog-to-digital converter (ADC). Digital signal processing and differentiating is 

accomplished in the FPGA using a differentiating finite impulse response (FIR) filter and 

outputting the differentiated signal with a digital-to-analog converter (DAC). The output voltage 

can then be compared with the error voltage in the feedback electronics to determine the 

necessary adjustments to the tip height. A block diagram showing the general relationship of 

each component is shown in Figure 3.1. Each component is described in more detail in the 

following sections of this chapter.  

 

 

 

 

 

 

 

 

Figure 3.1: Block diagram of components of signal integrator and signal differentiator.  
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3.1 Signal Integration 

 

 

 

 

 

 

 

 

Figure 3.2 shows the three major elements responsible for integrating and conditioning 

the input from the STM. The first, and most important component of this system is the switched 

integrator. It contains the capacitor feedback amplifier, the switch to discharge the capacitor, and 

all the additional electronics to process and amplify the signal. The tested switched integrator 

systems are covered in Chapters 5 and 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next the signal is processed through an anti-aliasing filter. Aliasing occurs when a signal 

over the Nyquist frequency (discussed in Chapter 4) is sampled, causing false frequencies to 

Figure 3.2: Block diagram of input integration components 
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Figure 3.3: Magnitude response of the Sallen-Key anti-aliasing filters. While all three 

filters have the same pass-band and stop-band, the attenuation provided by the 8-pole 

filter is significantly stronger than the other two. 
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appear in a signal.1 High frequency noise signals can cause the appearance of features in the data 

that are not actually there. The anti-aliasing filter is a low-pass filter, preventing signals with 

frequencies above the Nyquist frequency from entering the ADC. The system is jumper 

selectable for 2, 4, and 8-pole Sallen-Key active low-pass filter as well as an 8-pole clock-

tunable Bessel filter. The schematics are included in Appendix A.3, and plots of the Sallen-Key 

filters performance are shown in Figure 3.3 and Figure 3.4. The 8-pole filter has the strongest 

attenuation, reaching −87 dB at the Nyquist frequency of 333 kHz while introducing a 10 μs 

group delay. This time delay can combine with other time delays in the system to produce a 

frequency dependent phase shift which can cause oscillations of the STM control loop at 

frequencies where the phase reaches 180°, as discussed in Section 2.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The signal is then amplified by a fully differential amplifier as required by the ADC, 

which also provides immunity to common mode noise such as ground loops. The fully 

differential amplifier used was the ADA4940-1ARZ differential amplifier2, which converts the 

single-ended signal out of the integrator into a fully-differential signal to be processed by the 

ADC. This board also contains components that condition the output signal, which will be 

Figure 3.4: Group delay of the Sallen-Key anti-aliasing filters. The consequence of the 

increased attenuation provided by the 8-pole filter is the increase in the group delay. 
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discussed in the next section. The schematics for the set-up used are included in Appendix A.4.2. 

From here, the signal is then transmitted to the differentiator. 

3.2 Signal Differentiation 

Figure 3.5 shows a circuit diagram of the set-up of the ADC, DAC, and FPGA. 

Communication between these components used a serial peripheral interface (SPI) bus, which is 

designed for short distances. To communicate between the PCB boards, ribbon cables with 

alternating signal and ground wires connections were implemented to reduce crosstalk and 

control the impedance as well as added 100 Ω source resistors to attenuate the signal reflections. 

After the processed signal is output by the DAC, it is first conditioned by a AMP03GS precision, 

unity gain differential amplifier3 and is then buffered by a unity gain line driver OP27G low-

noise precision amplifier.4 An external power source providing ±15V was also built to power the 

entire set up. 

 

        Figure 3.5: Schematic of the ADC, FPGA, and DAC. 

The ADC used was an Analog Devices AD4001. The AD4001 is a low power, high 

accuracy analog to digital converter. It outputs a 16-bit integer which has a range of −5V to +5V, 

yielding a resolution of 152.6 μV. It can convert and output a maximum of 2 MSPS and 

communicates via a modified SPI protocol. Figure 3.6 shows the functional block diagram of the 

AD4001. 
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Figure 3.6: Functional block diagram of the AD4001  

Analog-to-Digital Converter. 5 

 

The DAC used was an Analog Devices AD5781. The AD5781 is a low power, high 

accuracy digital-to-analog converter. It takes in a 24-bit instruction, consisting of a 4-bit register 

access command, an 18-bit integer corresponding to the desired output voltage in the range of 

−10 V to +10 V, and two additional bits that are not used. This yields a resolution of 76.3 μV. It 

can accept a maximum clock frequency of 35 MHz and communicates via SPI. Figure 3.7 shows 

the functional block diagram of the AD5781. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Functional block diagram of the  

AD5781 Digital-to-Analog Converter.6 

 

The AD4001 and the AD5781 were controlled via a CMOD-A7 35T which is built 

around a Xilinx Artix-7 FPGA. The VHDL-2008 code used to control both components works in 

parallel to minimize downtime between reading data in from the ADC and outputting it to the 

DAC. Additionally, the low-pass differentiating FIR filter discussed later in Chapter 4, as well as 

the integrator reset controller, was programmed into the FPGA. The code controlling these three 

processes is included in the Appendix. The CMOD-A7 was modified from its standard 12 MHz 

clock to an 80 MHz clock, which theoretically would allow up to 1.33 M samples per second. 

Through experimentation, it was determined that the maximum reliable throughput of this set-up 
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of 667 k samples per second was achieved by slowing the clock down to 20 MHz. We believe 

the limitation was SPI inter-board connection. Figure 3.8 shows a picture of the CMOD-A7 35-

T. 

 

 

 

 

 

 

Figure 3.8: Picture of the CMOD-A7 35T.7 
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Chapter 4: Low-Pass Differentiation 

4.1 Standard FIR Filters 

The output of the capacitor feedback operational amplifier is an example of a continuous 

time signal. Thus, this system takes an input system I(t), and outputs a transformation of that data 

O(t). 

𝑂(𝑡) =  Τ{𝐼(𝑡)}. 

This transformation can be accomplished through the implementation of a carefully constructed 

filter. Finite impulse response filters are filters that have no feedback into the filter and whose 

impulse response only accounts for data within a specific duration. The general formula used for 

a FIR filter is 

𝑂(𝑛) =  ∑ 𝑐𝑖𝐼(𝑛 − 𝑖)

𝑁

𝑖=0

, 

where N is the number of taps/samples used to filter the data, and c is the ith coefficient, or 

impulse response. Outside of these values, c is zero, which means that for a sampling time of ts, 

the total impulse response duration is ts (N-1). At the next sampling instance, I(0) is added to this 

register as i=0. The other values in the register are shifted down by one; i=0 becomes i=1, i=1 

becomes i=2... until the last value at i = N-1, which is shifted out of the register.  

In a standard direct-form FIR filter, when viewed in the time domain, the values of 𝑐𝑖 

create a moving “window” through which certain values are used to process the signal, and 

outside of the window the values are discarded. This mathematically is represented by a 

convolution 

𝑂(𝑡) = 𝐼(𝑡) ∗ 𝑊(𝑡), 

where I(t) is the input signal and W(t) is the window function.1 Different window functions can 

be convolved with the input signal depending on the desired frequency response of the filter2. 

The values of the coefficients in a FIR filter can be designed such that it can perform as a 

variety of filters, e.g., high pass, low pass, or in this application, a low-pass differentiator. Proper 

design of the filter coefficients can allow certain frequency bands through while attenuating 

others. For a switched integrator STM, a low pass differentiating filter is desirable to help 

eliminate high frequency noise while still effectively extracting the tunnelling current. 

Additionally, the characteristics of the FIR filter can be tuned such that it acts as a linear phase 
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filter in the desired frequency region, which ensures that the group delay for the system will be 

constant, preventing signals with different frequencies from shifting relative to one another. 

Increasing the number of taps in a FIR filter will generally improve the desired 

characteristics, to include the sharpness of the transition from pass band to stop band and the 

amount of attenuation in the cut-off band. However, this will introduce a time delay equal to 

roughly half of the total impulse response duration. This time delay needs to be considered along 

with other time delays in the system, such as the anti-aliasing filter delay from Section 3.1.1. If 

the total time delay results in a phase shift of 90⁰ or greater, this can lead to instability and 

oscillation of the STM control loop as discussed in Section 2.2.1.  

The Nyquist frequency is another critical component to ensure proper design and 

functioning of a FIR filter. The Nyquist frequency of a filter is the maximum input signal 

frequency that filter can sample without aliasing; sampling signals above this frequency can 

result in the appearance of false signals. The Nyquist frequency is half of the sampling 

frequency, meaning if a filter samples a signal at 2 MHz, the Nyquist frequency of that filter 

would be 1 MHz.3 Thus, increasing the sampling rate (which corresponds to decreasing the time 

between samples, or the sampling time, of a filter) will increase the bandwidth of the filter. 

 

4.2 Low-Pass Differentiating FIR Filter 

An interesting algebraic property of convolutions which can easily be seen from the 

definition of a convolution is that the derivative operator is communicative, i.e. 

𝑑

𝑑𝑡
𝐼(𝑡) ∗ 𝑊(𝑡) = 𝐼(𝑡) ∗ 𝑑

𝑑𝑡
𝑊(𝑡). 

Thus, the derivative of an input signal I(t) can be extracted by running it through a filter 

with the derivative of the desired window function.4 This property is useful, since as discussed in 

Section 2.1.1, the output of a capacitor feedback operational amplifier is related to the integral of 

the current into it. The differentiating FIR filter thus also allows for the recovery of the input 

tunnelling current. A consequence of this is that one of the key features of a differentiating FIR 

filter is the coefficients are anti-symmetric. 

The gain of a differentiator in the time domain is proportional to the RC time constant 

 

𝑉𝑜𝑢𝑡(𝑡) = 𝑅𝐶 (
𝑑𝑉𝑖𝑛

𝑑𝑡
). 
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Unit analysis of this gain shows that the gain has units of seconds. The gain of a non-inverting 

differentiator can be expressed in the frequency domain as 

𝑉𝑜𝑢𝑡(𝜔)

𝑉𝑖𝑛
= 𝑗𝜔𝑅𝐶, 

which shows that gain is proportional to frequency and has an output phase shift of +90°. In the 

linear response region, this means that high frequencies will be amplified more than low 

frequencies. The required dynamic range of gain can create challenges in the required accuracy 

of the coefficients and the dynamic range of the DAC. 

For a practical differentiator, the frequency range of differentiation must be limited. The 

FIR filter gain also needs to fall below the least significant bit of the DAC at or below the 

Nyquist sampling frequency to prevent aliasing noise from being amplified by the differentiator. 

Steep fall-off to and strong attenuation in the stop band generally requires many coefficients but 

this requirement can be relaxed due to the additional attenuation provided by the pre-ADC low-

pass anti-alias filter. 

 

4.3 Software Design 

 Figure 4.1: VHDL-2008 code block diagram. 
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The VHDL-2008 code is included in Appendix A.2. It features three major processes; 

one to generate the 20 MHz clock, one to control the ADC and the FIR filter, and one to control 

the DAC. Figure 4.1 shows the block diagram of the relationship between these three processes. 

Figure 4.2 shows the global timing diagram showing the coordination between the ADC, the 

DAC, and the FIR filter. The DAC is the rate limiting step, requiring 30 clock cycles to output 

one transmission. This process runs in parallel to first the combined ADC and FIR filter.  

Process clockDivider: This process takes the 80 MHz and divides it down to 20 MHz, 

which is used to run the rest of the operations. Additionally, it generates a 2 MHz clock to 

control the anti-aliasing Bessel filter if it is in use. 

Process controlADCFIR: The ADCNV pin is taken low on the first clock cycle, signaling 

the ADC to begin outputting its 16-bit signal. The ADC takes 20 clock cycles to output its 16-bit 

binary signal to the FPGA on the ADSDO pin, which stores it as the corresponding decimal 

integer. Upon completion of the ADC output, the ADCNV pin is taken high, which switches the 

ADC from outputting data to converting the input voltage into a new integer. This integer is then 

input into the FIR filter register, which takes five clock cycles to process the data. On clock cycle 

26, the FPGA completes the transformed signal. Additionally, when the ADC outputs a value 

corresponding to a specified min or max limit, this is means capacitor is saturated beyond the 

limits that the ADC can measure and needs to be reset, which results this process sending a 

signal to the switch to initiate a reset. A buffer of ±4.8 V was used as the limits to keep the data 

Figure 4.2: Differentiator master timing diagram. While the DAC is outputting processed data, 

the ADC is receiving new data to run through the FIR filter or converting data for the next 

transmission. 
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well within the operational limits of the ADC. The process for this is discussed in detail in 

Section 4.4. 

Process controlDAC: On the first clock cycle of the subsequent iteration of the algorithm, 

the output of the FIR filter is shifted into the process controlling the DAC. On the second clock 

cycle, the DASYNC pin of the DAC is taken low to signal an incoming signal transmission. 

Over the next 24 clock cycles, the output of the FIR filter is converted into an 18-bit binary 

signal and output on the DASDI pin, along with the appropriate register access code. On clock 

cycle 28, the DASYNC pin is taken high to signal completion of a signal transmission and is 

held high long enough for the DAC to process and output the corresponding voltage before the 

whole cycle repeats again. Thus, on iteration n of the algorithm, the DAC is outputting the result 

of the n-1 FIR processed ADC conversion.  

The ADC can be used without configuration based on its standard settings, but the DAC 

requires that the configuration register be accessed to appropriately configure it before it begins 

converting transmitted values. At start-up, controlDAC outputs 1000 configuration transmissions 

to ensure DAC has received configuration data, and then begins outputting values to DAC for it 

to convert. This was initially done while designing the code for troubleshooting simplicity 

purposes; during power-on, the DAC and FPGA receive power at the same time. Identifying 

exactly when either component is ready was not attempted. Instead, hard-coding numerous 

configuration transmissions ensured the DAC receives at least one configuration message before 

controlDAC starts attempting to transmit data. It was not removed from the code because it was 

not found to negatively affect the performance of the system and because the total time for 1000 

transmissions with a 20 MHz clock is only 1.5 ms. 

 

4.4 Capacitor Reset 

Since the ADC is limited to ±5 V, the capacitor will need to be reset before the ADC 

receives voltages at these limits. For the ADC, this corresponds to the integers 32767 (+5 V) and 

32768 (−5 V) since it uses two’s complement to express negative numbers. If controlADCFIR, 

detects that the ADC output is between 31400 (+4.8 V, rounded down) and 34100 (−4.8 V, 

rounded up), it will begin outputting a +3.3 V signal to the switch for 2 ms, during which time 

capacitor switch will close allowing the capacitor to reset. The 0.2 V buffer around the two listed 

values accounts for any offset errors in the input voltage and prevents the ADC from being stuck 
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at the rails without being able to reset. During the reset time, the clock signals to the ADC and 

DAC will not be output, effectively freezing the input and output. Once 2 ms have passed, the 

entire process will restart. 2 ms was chosen as a safe value during testing that will was short 

enough that it did not significantly distort data in the expected operating ranges, but long enough 

that the capacitor had more than enough time to discharge fully. It is possible that as the system 

is eventually revised, this time could be reduced significantly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the reset, the fully discharged capacitor will start back at 0 V and resume 

integrating the signal. This will introduce a discontinuity in the output of the integrator that is not 

representative of the current input. If the old values in the FIR filter are used, this large 

discontinuity will propagate through the differentiator, resulting in a spike in the output of the 

differentiator until it has propagated through the FIR filter. If the values in the FIR filter are reset 

entirely to zero, there will be a delay as the filter refills. Because this is a differentiator, a 

continuous slope is expected in the data values in the filter and can be accomplished by patching 

the discontinuity. This patch is implemented on each reset by subtracting the most recent value in 

the FIR filter from all the data values. This adjusts the values in the register so that the most 

Figure 4.3: Graphical description of the correction made to the FIR register upon resetting. 

(A) A constant tunnelling current into the integrator will generate a linear voltage ramp (solid 

green line) that can exceed the limits of the ADC (dashed green line). (B). Resetting the 

integrator will introduce a false discontinuity in the output of the integrator, which will 

degrade the signal when differentiated. Subtracting the most recent value stored in the FIR 

register from every value in the register (dashed blue lines) will translate the signal so that 

the slope is preserved, but the discontinuity is removed (solid blue line).  

B A 
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recent value is 0 V which will stitch with the next value after reset (close to zero) and continue 

the same slope as the signal before reset. A graphical representation of the process is found in 

Figure 4.3. 

 

4.5 Design of Filter for Testing 

Identifying the conditions under which a filter will be used is important for understanding 

how to optimize the filter for desired performance. The ideal differentiator would have a linear 

response up to the Nyquist frequency, and then a step-response drop off to extremely high 

attenuation. However, this is not possible, and trade-offs must be made to maximize 

performance.  

1. Sharp cut-off:  In order to achieve a very sharp cut-off, the number of coefficients in 

the filter must be very high. The trade-off to this is that the time delay of the filter 

increases linearly with the order of the filter, and since the STM requires real-time 

feedback, the time delay cannot be allowed to grow too large without resulting in 

control loop instability. 

2. Large pass-band region:  In order to have a pass-band that accommodates a large 

range of frequencies, the coefficients will have a range in magnitude. Coefficients 

with very high magnitude can cause the intermediate values within the FIR register to 

overflow due to integer limitations, and very small coefficients can reduce the 

intermediate values to below the resolution of the ADC or DAC and cause loss of 

information. An additional complication is the fact that VHDL-2008 is incompatible 

with floating-point numbers, so the floating-point coefficients had to be converted by 

multiplying the coefficients by a large enough power of 10 to achieve at most 6 

integer digits per coefficient, and then dividing the sum by the same power of 10 at 

the end. If the disparity of the coefficient values is large enough, some of the smallest 

coefficients will express to zero, affecting the order of the filter and resulting in 

significant loss in information. 

3. High attenuation:  In order to achieve high attenuation in the stop-band, the order of 

the filter must be high, which circles back to the issues discussed above.  

Considering the STM operation conditions, it is desirable to have high gain in the low 

frequency region to ensure that the ADC and DAC will be able to resolve the data. Extremely 



28 
 

high attenuation was not prioritized because additional attenuation was achieved with the anti-

aliasing filter. Numerous filters were used and tested throughout this project, and the filter 

described below was chosen for the tests in Chapter 5 because of the considerations discussed 

above. It was generated with the Filter Designer tool available in MATLAB5 with the goal of 

achieving −90 dB attenuation below the Nyquist frequency, and with a linear response region up 

to 30 kHz to give ample bandwidth in which to test. Figure 4.4 shows the impulse response of 

this filter, and Figure 4.5 shows the magnitude response, both generated by MATLAB. Note that 

the coefficients are anti-symmetric as expected of a differentiator. The table of coefficients is 

included in Appendix A.1. 
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Figure 4.5: Magnitude response of 81st order direct-form differentiating FIR filter. (A) 

Magnitude (dB) vs frequency up to Nyquist frequency. (B) Magnitude (linear) vs frequency up 

to Nyquist frequency. (C) Magnitude (linear) vs frequency up to 5 Hz. This filter was 

determined through trial and error, and achieved the necessary compromises discussed in 

Section 4.5 to optimize performance for the tests in Chapter 5. 
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Chapter 5: PCB Switched Integrator 

There are trade-offs to be considered when designing a switched-integrator system. There 

is a trade-off between gain and system reset frequency dependent on the feedback capacitor. A 

smaller feedback capacitor yields higher integrator gain but will require frequent resets. Each 

reset introduces a deadtime that blinds the amplifier to changes of input current during the reset 

interval. To minimize disruption of STM operation, the resets must be carefully orchestrated into 

the STM control loop operation. See Section 2.2.2. 

There is also a trade-off between time delay and noise attenuation related to the number 

of coefficients in the FIR filter. While attenuating the high frequency noise is important to 

prevent aliasing from interfering with the current signal, the FIR filter does not have to provide 

all the attenuation. This can allow fewer coefficients to be used, which can significantly decrease 

the time delay of the system. Additionally, the linear relation between gain and frequency 

requires that the system be carefully tuned to the expected sampling conditions.  

The effect of these design considerations will be discussed and shown in relation to the 

PCB design discussed in this chapter. The circuit diagram is found in Figure 5.1. 

 

5.1 Switched Integrator Test Circuit Design 

The board is powered by ±15V, and is protected with a system of zener diodes and 

capacitors to prevent damaging the board if power is improperly connected. Two current sources 

were included in order to allow for the possibility of more complex inputs for future testing. 

Each signal input is protected by TVS diodes.1 The J13 and J19 jumpers allow for selecting the 

input signal polarity. For these tests, the J13 jumper was configured to invert the polarity of the 

input signal to negate the inversion of the current amplifier. The signals are then conditioned by 

an AMP03G differential amplifier. The current source uses a 10 M resistor followed by a 1000x 

current divider. An input of 1 V provides 100 pA to the integrator. The integrator output is 

buffered and conditioned by an OP27G line driver. These OP27G amplifiers have a 10 kΩ 

resistor and 10 nF capacitor that contribute a pole at 1.6 kHz that contribute to the measured 

magnitude and phase of the integrator component. 
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Figure 5.1: Circuit diagram of PCB layout. Note this board was designed for the ADA4530 

but was modified to accept the ADA4622 due to survivability issues experienced during 

testing. 
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The PCB was designed to use the ADA4530-1ARZ femtoampere input bias current 

electrometer amplifier as the integrator,2 because of its very small input current offset and 

voltage noise.However, during initial testing we were not able to get the ADA4530 to work. 

Instead, the ADA4622,3 a precision JFET transistor op amp with a high bandwidth (−3dB = 15.5 

MHz) and slew rate (~20 V/µs) was substituted instead The feedback capacitor C5 was initially 

planned to be a 1 nF capacitor, but during testing it was found that the gain was too small, and 

and after testing that will be discussed in the next sections, was replaced with a 5 pF capacitor. 

This means that the expected gain of the amplifier is 

𝐴𝐼 =  
1

5 × 10−12 F
= 200 × 109F−1. 

The SMP41174 acted as the switch, and was opened and closed by the H11F1SM5, which 

receives the +3.3 V signal from the FPGA prior to the ADC reaching its limits and closes the 

switch of the SMP4117, allowing the capcitor to discharge. The PCB was designed with a 

provision for loading the input with capacitance for testing, C2 and C3. For these tests C1 and 

C2 were populated by MMBD301-TP schottky diodes to protect the inverting input from 

exceeding ±0.35 V. The output of the switched integrator is buffered by an OP27G and output to 

the anti-aliasing filter. 

 

5.2 System Performance Analysis 

All tests were performed with a Stanford Research Systems DS345 30 MHz synthesized 

function generator.6 The signals out of the function generator, integrator, and differentiator were 

analyzed with a Keysight DSOX1204G oscilloscope.7 Also note that a small DC offset in the 

range of −0.12 V was applied to the function generator output waveforms to compensate for an 

apparent input offset current in the integrator. This offset was manually adjusted for each 

measurement to cancel the DC drift of the integrator output. 

 

 



34 
 

5.2.1  Demonstration of System Performance 

Figure 5.2 demonstrates the ability of this system to effectively process various signal 

waveforms. Triangle and square waves at 100 Hz were input to the system with max amplitude 

of ±2 V for the function generator. The output from the integrator were parabolas and triangle 

waves respectively, matching the expected shape and sign of the integral of triangle and square 

waves. 

Next, the relative accuracy of the gain of both the integrator and differentiator can be 

checked by comparing the rough magnitudes of the signals resulting from the input square wave. 

For the 4 V peak-to-peak square wave, the integrator output slope has a magnitude of 40 V/s, and 

the differentiator output has a magnitude of 80 mV peak-to-peak. The resulting gains are 2×1011 

F−1 for the integrator, 1×10−3 s for the differentiator, in line with the expected values and yields 

Figure 5.2: Demonstration of integration and differentiation of input signal. Yellow is the input 

signal, green is the output of the integrator, and blue is the output of the differentiator. Bottom  

two images show a 100 Hz triangle wave with ~2V amplitude, top two images show a 100 Hz 

square wave with same amplitude. Images on the left are after averaging over 65536 samples. 

Images on the right are without averaging. 
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an overall transimpedance gain of 2×108 V/A. The frequency response of the above component 

gains is checked in the next section. 

When the output of the differentiator is averaged over a large number of samples, the 

original input waveform is recovered. Without averaging however there appears to be a 

significant amount of noise on both the differentiator and the integrator. Additionally, averaging 

the signal over so many samples is not ideal for STM application, as the STM requires real-time 

feedback. Comparing the averaged and raw data out of the integrator shows a slight fuzziness 

which indicates noise on the integrator. Since differentiators are highly susceptible to noise, it is 

possible that the noise on the integrator is being amplified by the gain of the differentiator and 

will need to be mitigated to produce cleaner signals. 

 

5.2.2  Magnitude vs Frequency Response 

Next, the gain of both the integrator and the differentiator were measured individually 

across a wider range of frequencies and compared to the theory. For these tests, the gain was 

computed in the time domain with an input sine wave represented by the formula 

𝑉𝑖𝑛 =  𝑉𝐼 sin 2𝜋𝑓𝑡. 

Given that the 1000x current divider outputs 100 pA of current for every 1 V of input signal, and 

defining the resulting transadmittance gain as  

𝐴𝑔 = 1 × 10−10 (
𝐴

𝑉
), 

the equation for the current coming into the amplifier is 

𝐼𝑖𝑛 =  𝑉𝐼𝐴𝑔 sin 2𝜋𝑓𝑡. 

The voltage output of the integrator is another sinusoid, and since it is related to the integral of 

the input current, it takes the form, 

𝑉𝑜𝑢𝑡 =  𝑉𝑂cos2𝜋𝑓𝑡, 

Plugging these equations into the equation shown in Section 2.2.2 for the gain on an integrator in 

the time domain yields 

(
𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
)

𝐼𝑖𝑛
=

2𝜋𝑓𝑉𝑂

𝑉𝐼𝐴𝑔
= 𝐴𝐼 . 

The voltage out of the integrator was measured at every half decade of frequency from 1 Hz to 

3000 Hz and is plotted in Figure 5.3 to determine the gain. Below 3000 Hz, the gain matches 
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very closely with the expected value of 2×1011 F−1 but begins to deviate above 3000 Hz due to 

the roll off of the gain of due to U12 and U7 that begins around 1.6 kHz. This shows that the 

integrator is behaving as expected. 
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Figure 5.3: Measured gain of the integrator. Below 3000 Hz, the 

amplifier gain was within 10% of the theoretical value based off 

the feedback capacitance and can be seen to decrease as 

frequency increases as expected. Above 3000 Hz, the poles 

from U7 and U12 cause the gain to deviate. 
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Figure 5.4: Measured gain of the differentiator. The slope of the linear 

differential gain was measured to follow the same relationship as predicted 

from the MATLAB filter designer tool. 
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The gains of the differentiator were measured via the same means and compared to the 

predicted values generated by the MATLAB Filter Designer tool. The measured gain vs 

frequency relationship for the differentiator is found in Figure 5.4. The values were found to 

nearly match the MATLAB values, indicating that the differentiator is behaving as expected and 

that the Filter Designer tool can be used to produce filters with desired gains in specific 

frequency bands with this implementation. The discrepancy at low frequencies is most likely due 

to precision limitations of the oscilloscope. 

 

5.2.3  Phase Response and Time Delay 

Next, the phase of both the integrator and the differentiator were measured compared and 

compared to the theory. In the frequency domain, the gain of a non-inverting integrator is 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

1

𝑗𝜔𝑅𝐶
. 

This shows that the expected phase response of this integrator is −90º. To measure the phase 

response of the integrator, the time delay between an input sine wave and the output of the 

integrator were compared to the period of the input sine wave. As shown in Figure 5.5, the phase  
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Figure 5.5: Integrator phase. Phase stays relatively constant up to 300 Hz at −90º as 

expected. Beyond that, the effect of the additional poles contributed by U12 and U7 

affect the shape of the graph. 
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is relatively constant up to 300 Hz at roughly −90º. The effect of the pole at 1.6 kHz on U7 and 

U12 can be seen above 1 kHz.  

Figure 5.6 shows the differentiator phase as a function of frequency compared to the 

standard value for a differentiator. As expected, the values start near +90º, but decrease as 

frequency increases, which can be explained by the group delay of the FIR filter compared to the 

input frequency. The group delay of the differentiator can be extracted from the slope of linear 

plot, yielding a group delay of 83 μs. 
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Figure 5.6: Differentiator phase. (Top) Phase vs log frequency. (Bottom) 

Phase vs linear frequency. Phase stays relatively constant up to 300 Hz at 

90º as expected. Beyond that, the phase begins to decrease because of the 

time delay of the FIR filter. 
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Figure 5.7 shows the relationship between the input, integrator, and differentiator 

waveforms with an increase in frequency. At low frequencies, the differentiator appears to be in 

phase with the input waveform, with the integrator 90º out of phase. This is because of the 

opposing phase response of the differentiator and integrator, which cancel each other out. As 

frequency increases however, the group delay causes the differentiator to not fully correct back 

in phase with the input signal. This is due to the FIR filter and the anti-aliasing filter contributing 

time delays in the system that are not noticeable at low frequencies but become more apparent at 

high frequencies.  

 

To measure and verify the total system group delay, a sawtooth wave was used as the 

input because the discontinuity is easy to correlate to the output of the differentiator. Measuring 

the time delay shown in Figure 5.8 gives a total time delay from input of 80 μs. This is very close 

to the measured time delay from Figure 5.6 of 83 μs, again showing the system is working as 

expected. 

Figure 5.7: Phase of entire system. At low frequencies, the phase of the integrator and 

differentiator cancel out, leaving the differentiated signal in phase with the input. As 

frequency increases, the time delay of the FIR filter causes the differentiator signal to fall 

out of phase with the input. (Top left) 1 Hz. (Top right) 10 Hz. (Bottom left) 100 Hz. 

(Bottom right) 1000 Hz. 
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5.2.4  Low-Frequency, Low-Amplitude Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the tunneling currents expected in these STM operations are very small, the expected 

performance of the system is better tested at low-frequency and low amplitude. Figure 5.9 shows 

the performance of the filter under a 0.1 V, 0.1 Hz square wave. At this frequency, the resets are 

Figure 5.9: Performance of system at low amplitudes and frequencies. Input was 

a 0.1 V square wave at 0.1 Hz. Signals were processed with boxcar averaging. 

Figure 5.8: Determination of group delay. With the Sallen-Key filter (left) and without (right). The 

time delay is increased by 10 μs compared to the rest of the system, in line with Figure 3.4. It also 

matches closely with the measured group delay of 83 μs from Figure 5.6. 
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apparent in the capacitor, occurring several times per cycle. The difference in slopes highlight 

the drift inherent in the system, and shows that even with the offset discussed earlier applied, the 

drift could not be fully cancelled out. While the signal on the integrator is very sharp, there is 

still a high amount of noise on the differentiator. This was unexpected, as reducing the amount of 

noise out of the integrator should reduce the noise on the differentiator. A possible explanation 

for this was the effect of small slopes combined with the resolution of the ADC. If the input from 

the integrator results in a high slope, then there will be significant changes in the voltage 

between samples. However, if the voltage does not increase beyond the resolution of the ADC 

between samples, then the ADC will output the same voltage in between samples, resulting in 

the slope being transformed into a straight line. This could cause the ADC output to bounce 

between zero and very small numbers due to random fluctuations, which when compared to the 

small voltages it is trying to output would result in an increase in the signal-to-noise ratio. Figure 

5.10 demonstrates this graphically and shows that the combination of the sampling time and the 

input voltage will determine if the ADC is able to resolve input voltages reliably. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Relationship between sampling time and ADC resolution. The green line 

represents the actual voltage being input to the system. The black line represents the 

digitized voltage the ADC will interpret in a certain range. V0 is the voltage sampled 

prior to the current sampling. The slope of the voltage being sampled does not change 

between the two sampling times, but long sampling times (ts2), allow for the voltage to 

change enough that the second voltage (V2) is substantially different from V0, and thus a 

slope can be measured. Short sampling times (ts1) can result in the next sampling 

resulting in the ADC outputting a voltage (V1) with the same value as V0. Thus, the FIR 

filter would interpret this as a straight line.  
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As the slope could not be changed substantially to test this, the sampling time was instead 

increased by decreasing the clock frequency to 400 kHz while keeping the rest of the code and 

system unchanged. This increased the sampling time from 1.5 μs to 75 μs. This noticeably 

decreased the noise on the differentiator, so much so that averaging was not required to recover 

the initial signal reliably and accurately, as seen in Figure 5.11. Thus, the initial assumption that 

increasing the sampling frequency of the FIR filter would reduce noise is not always accurate 

and increasing it too much may be counterproductive when trying to measure sub-picoamp 

tunneling currents. This shows that for a specific tunneling current, the system gain sets a limit 

on the sampling time of the filter, and how that sampling time is allocated between the different 

relevant parameters needs to be considered when designing a similar system.  

Decreasing the clock frequency also had the effect of increasing the differentiator gain, 

which can be seen due to the increase in the amplitudes of the differentiator signal between the 

20 MHz clock (±250 μV) to the 400 kHz clock (±500 mV). This is expected, as decreasing the 

clock frequency increases the time between samplings, which is analogous to the original filter 

sampling a signal with a higher slope.  

 

Figure 5.11: Performance of system at 13.3 k samples per second. Input was a 

0.1 V square wave at 0.1 Hz. Signals were processed without any averaging. 

The increased gain of the filter at low frequencies resulted in the smoothest 

signal processed yet with the highest signal-to-noise ratio. 
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Chapter 6: Conclusion 

6.1 Summary of Results 

While the desired SNR from Chapter 1 has not yet been demonstrated, there were two 

major successes resulting from this project.  

First, a working prototype was created which has been demonstrated to function across a 

range of frequencies and operating conditions, allowing for future testing in pursuit of the 

desired SNR at sub-picoamp tunneling currents. The gain and phase of the integrator and 

differentiator performed as expected, and the system can be easily modified to accommodate a 

variety of different components. The analysis of Chapter 5 can then be repeated to test the effect 

the changes have on the performance of the system.  

Second, the results of Chapter 5 revealed the important design criteria for this system, 

and careful analysis of the dependance of each of these individual components leads to a design 

roadmap for future iterations. Figure 6.1 captures the design progression, starting with a desired 

tunneling current and bandwidth. The tunneling current dictates the required gain necessary to 

amplify the signal into a detectable region, which determines the necessary feedback 

capacitance, which determines the reset characteristics of the system. The bandwidth sets the 

sampling time and provides limitations which guide the filter frequency characteristics, which 

allows for the generation of a filter with specific performances. The integrator gain and the 

sampling time must result in a signal amplitude that can be effectively resolved by the ADC and 

DAC. Once these components have been chosen, the noise of the system can be analyzed and 

checked to see if the resulting SNR is high enough.  

The system was able to recover an input signal on the order of 1 pA with significant 

averaging, but noise appears to be a significant concern with this current configuration. 

Identifying the noise sources and mitigating the most significant contributors, particularly out of 

the integrator, will be crucial for minimizing the noise of the system as whole. With some 

targeted analysis and optimization, this system may be able to achieve the current and SNR goals 

set out in Chapter 2. The next section identifies some of the issues, constraints, and 

improvements that were identified during this project. 
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6.2 Limitations and Possible Improvements 

6.2.1  VHDL-2008 Constraints 

VHDL-2008 only supports integer math, but the filter coefficients had many decimal 

digits. This required that the coefficients be significantly truncated. This was accomplished by 

multiplying the coefficients by a large enough power of 10 to achieve at most 6 integer digits per 

coefficient, and then dividing the sum by the same power of 10. The reason for the limitation on 

6 digits was that very large numbers, especially if added together, can cause integer overflow, 

and resulted in unusual operations and performance. To generate optimal filters, the spread in the 

total number of digits in the integer coefficients to a minimum, with a good goal being the same 

order as the number of digits used by the ADC, so that the largest coefficients don’t overflow the 

system, but the smallest coefficients are not truncated to zero and the order of the filter is 

reduced.  

To allow for filters that do not meet the above criteria if necessary, and to improve upon 

some other limitations of this design, future iterations should take advantage of the Vivado IP 

catalog. The IP catalog has both a floating-point arithmetic and FIR Compiler module which 

Figure 6.1: Design sequence for future iterations. Items in black are the initial design constraints. 

Items in blue are the intermediate results driven by the chosen constraints. Items in green are the 

necessary design outputs resulting from the intermediate results. Items in red are the final 

analyses that must be performed to determine if the chosen design will accomplish the desired 

end goal. 
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could be useful to simplify/optimize the above operations. This was not implemented in this 

design because of issues interfacing the Vivado IP integrator with the VHDL-2008 code.  

 

6.2.2  Clocking Constraints and Resolution Limitations 

 The FPGA, ADC, and DAC were all chosen based on their availability as a proof of 

concept. Increasing the speed of the clock would reduce the time delay or allow more precise 

data (more bits) to be output in the same amount of time, assuming the ADC resolution can 

support the decrease in sampling time. Additionally, ADC and DACs with higher resolution 

would allow for more precise tuning of the small tunnelling currents. Additional analysis showed 

that the integer math limitation discussed in Section 6.2.1 does not have a significant effect on 

accuracy of the ADC and DAC, as the rounding inherent in the conversion resolution ends up 

washing out the effect of the lost decimal digits. However, if the truncation process has the effect 

of reducing the order of the filter significantly because several coefficients were too small in 

comparison to the largest coefficients, the information loss of the filter can reduce the systems 

accuracy and result in additional noise. With the AD4001, any current resulting in a voltage with 

a change in magnitude of less than 152.6 μV between samples would contribute to the signal 

degradation discussed in Section 5.2.4. Increasing the ADC resolution would allow for an 

increase in the bandwidth. Additionally, the IP catalog has a clocking wizard which can generate 

clocks with larger range of possible frequencies compared to the process clockDivider, which 

could be used to generate clocks that can maximize the throughput based on the components 

used. 

 

6.2.3  Reset Considerations 

While a larger capacitor would simplify operations, it is necessary to use as small a 

capacitor as possible to have sufficient gain to sample small tunnelling currents. Excessive 

resetting can be prevented in this configuration if the tunneling currents are small enough and 

any input bias is accounted for. A simple RC time constant cannot be measured easily for this 

system to determine the optimal reset length, so additional analysis measuring the discharge rate 

should be performed to optimize reset length.  

There are a few steps that can be taken to help reduce the number of resets needed: 
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1. Careful calibration and compensation of the input signal should help prevent input 

signal offset from saturating. This could potentially be done by providing low 

frequency feedback to keep the integrator centered. This could be checked with a 

carefully calibrated sine wave generator; if a small enough perfectly balanced sine 

wave is used as an input, then the ascending and descending branches should cancel 

out the charge on the capacitor plates and resetting won’t occur. If the sine wave is 

offset, then excess charge will build up in the direction of the offset and the capacitor 

will saturate. One possible improvement as well would be using the planned 

ADA4530-1 amplifier instead of the ADA4622. The ADA4622 has an average input 

bias current of 2 pA and may be the source of the drift noticed. The ADA4530-1 is 

designed to have an ultra-low input current of on average 1 fA, an improvement of 

2000x.  

2. Careful calibration in the choice of feedback capacitor. As large a capacitor as 

possible should be used so that the rate of change of the voltage for a given tunnelling 

current is small, preventing the voltage from exceeding the ADC limits.  

3. Multi-Stage Amplification: The first stage is the integrator, which would be outfitted 

with as large of a capacitor as possible while still providing sufficient gain. The 

second stage would then be a low noise, high gain amplifier to provide the additional 

amplification necessary. Typically, it is desirable for the first stage in cascading 

amplifiers to have the most gain, but it may be possible to reach a compromise with 

this configuration that will provide the necessary dynamic range and gain. 

4. Using an ADC/DAC with as large of a range as possible. A larger ADC range would 

allow more charge to build up on the capacitor before necessitating a reset, but this 

may increase the amount of discharge time needed as well. 

Additionally, a point of improvement for the VHDL-2008 code is that this code did not 

implement a planned delay between closing the reset switch and resuming ADC operations. 

Reset noise on the capacitor could lead to transient voltages that would degrade the signal after 

resetting; pausing for a short period to allow the transients to dissipate would prevent this. 
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6.2.4  Parallel Filter Design 

The different FIR filters used in these tests demonstrated a need to optimize filters based 

on the expected conditions being sampled. Attempting to use a filter outside of the conditions for 

which it was optimized can cause the performance to suffer dramatically. One way to maximize 

performance over a wider range of conditions would be to program multiple parallel FIR filters 

into the FPGA all running at the same time. The output could be dynamically chosen to be the 

one corresponding to the slope of the signal being sampled, or crudely approximated based on 

the difference between the two most recent samples. If the frequency of the system is high, then 

the slope will be high, allowing the use of a filter optimized for that frequency range. 

Conversely, if the frequency is low, then a filter optimized for lower frequencies would be used. 

 

6.2.5  Noise 

Many of the signals tested showed significant noise, which will affect the SNR achieved 

by the system. While the ability of the oscilloscope to take an average of a signal was useful for 

demonstrating the operation of the system, averaging the sample in this way is not ideal for STM 

operations due to the need for real-time feedback. The next step would be to conduct detailed 

noise analysis to determine the limiting noise sources in this system and to determine what 

components can be changed to improve the SNR. Figure 5.9 hints that the limiting noise source 

may be somewhere on the integrator. Additionally, improving the design so that an ultra-low 

input bias current amplifier like the ADA5530-1 can be used may significantly reduce noise on 

the integrator, which will prevent that noise from being amplified by the differentiator.  
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Appendix  

A.1 FIR Filter 

Table A.1: List of coefficients in 81st order direct-form differentiating FIR filter for PCB integrator 

testing. 

Number Full Value 
Expressed 
Coefficient 

 Number Full Value 
Expressed 
Coefficient 

0 -0.00007950021554067070000 -8  41 -0.06150254336144200000000 -6150 

1 -0.00023492940807944600000 -23  42 -0.18185973564836600000000 -18186 

2 -0.00055877386078124800000 -56  43 -0.29443778636079400000000 -29444 

3 -0.00114294430022430000000 -114  44 -0.39458664312303300000000 -39459 

4 -0.00210797253732203000000 -211  45 -0.47841625178554100000000 -47842 

5 -0.00359377488974073000000 -359  46 -0.54301722265783000000000 -54302 

6 -0.00574852061088284000000 -575  47 -0.58660661069666400000000 -58661 

7 -0.00871048378953562000000 -871  48 -0.60859062387148200000000 -60859 

8 -0.01258330951234880000000 -1258  49 -0.60954152010293700000000 -60954 

9 -0.01740495559149850000000 -1740  50 -0.59109499978122000000000 -59109 

10 -0.02311295556887420000000 -2311  51 -0.55577909101487600000000 -55578 

11 -0.02950824982810960000000 -2951  52 -0.50679257061850400000000 -50679 

12 -0.03622293038873070000000 -3622  53 -0.44775237217344300000000 -44775 

13 -0.04269535959890900000000 -4270  54 -0.38243255051950800000000 -38243 

14 -0.04815967317124900000000 -4816  55 -0.31451483397992300000000 -31451 

15 -0.05165291954429900000000 -5165  56 -0.24736995962622300000000 -24737 

16 -0.05204540160898670000000 -5205  57 -0.18388315886512900000000 -18388 

17 -0.04809554634428760000000 -4810  58 -0.12633373410382200000000 -12633 

18 -0.03853007155485400000000 -3853  59 -0.07633160657627050000000 -7633 

19 -0.02214624080524100000000 -2215  60 -0.03481025488479280000000 -3481 

20 0.00206868694740781000000 207  61 -0.00206868694740781000000 -207 

21 0.03481025488479280000000 3481  62 0.02214624080524100000000 2215 

22 0.07633160657627050000000 7633  63 0.03853007155485400000000 3853 

23 0.12633373410382200000000 12633  64 0.04809554634428760000000 4810 

24 0.18388315886512900000000 18388  65 0.05204540160898670000000 5205 

25 0.24736995962622300000000 24737  66 0.05165291954429900000000 5165 

26 0.31451483397992300000000 31451  67 0.04815967317124900000000 4816 

27 0.38243255051950800000000 38243  68 0.04269535959890900000000 4270 

28 0.44775237217344300000000 44775  69 0.03622293038873070000000 3622 

29 0.50679257061850400000000 50679  70 0.02950824982810960000000 2951 

30 0.55577909101487600000000 55578  71 0.02311295556887420000000 2311 

31 0.59109499978122000000000 59109  72 0.01740495559149850000000 1740 

32 0.60954152010293700000000 60954  73 0.01258330951234880000000 1258 

33 0.60859062387148200000000 60859  74 0.00871048378953562000000 871 

34 0.58660661069666400000000 58661  75 0.00574852061088284000000 575 

35 0.54301722265783000000000 54302  76 0.00359377488974073000000 359 

36 0.47841625178554100000000 47842  77 0.00210797253732203000000 211 

37 0.39458664312303300000000 39459  78 0.00114294430022430000000 114 

38 0.29443778636079400000000 29444  79 0.00055877386078124800000 56 

39 0.18185973564836600000000 18186  80 0.00023492940807944600000 23 

40 0.06150254336144200000000 6150  81 0.00007950021554067070000 8 
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A.2 FPGA Code (VHDL-2008) 
 

---- Company: University of Oklahoma 
---- Student: Vincent Palmer 

 

---- Create Date: 08/26/2023  

---- Last Updated Date: 06/12/2023 
---- Design Name: AD4001 ADDA 
---- Module Name: 4001_Top 
---- Project Name: SEM ADDA 
---- Target Devices: AD4001 Eval Board, CMOD A7 35-T FPGA, AD5781 Eval Board 
---- Tool Versions: 
---- Description: This project takes input from the AD4001 ADC and sends it to the 
---- CMOD FPGA, which processes it via a FIR filter and sends the differentiated 
---- data to AD 5781 DAC 
---- Dependencies: 

 

---- Revision: 
---- Revision 0.01 - File Created 
---- Additional Comments: 

 

 

 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 
library UNISIM; 
use UNISIM.VComponents.all; 

 
entity ad4001_top is 

Port ( 
-- Ports for the AD4001 

adsdi : out STD_LOGIC := '1'; 
adsdo : in STD_LOGIC; 
adsclk : inout STD_LOGIC := '0'; 
adcnv : out STD_LOGIC := '1'; 

 
-- Ports for the AD5781. 

dasdin : out STD_LOGIC; 
dasdo : inout STD_LOGIC; 
dasclk : inout STD_LOGIC; 
dasync : out STD_LOGIC; 
daldac: out STD_LOGIC; 
daclr: out STD_LOGIC; 
dareset: out STD_LOGIC; 

 
-- Port to establish clock 

sysclk : in std_logic; 
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-- Ports to set LEDs appropriately, and outputting to the PMOD. 

-- Used in troubleshooting, not in actual operations 
led1: inout std_logic; 
led2: inout std_logic; 
led0_r: inout std_logic; 
led0_g: inout std_logic; 
led0_b: inout std_logic; 
ja4: out std_logic := '1'; 
ja0: out std_logic := '1'; 

 
-- Port to reset integrator when capped 

sireset: out std_logic := '0'; 

 
-- Port for the UART transmisson 

uart_txd_in: inout std_logic); 

 
end ad4001_top; 
 
architecture RTL of ad4001_top is 

 
constant ad_data_length: integer := 16;--AD4001 uses 16 bit data transfer 
constant ad_init_length: integer := 16; 
constant da_data_length: integer := 24; --AD5781 uses 24 bit data transfer 
signal cnvcount : natural range 0 to 25 := 0; --Counter that tells when 

--CNV will be low or high 
signal adcount: natural range 0 to 15 := 15; --Counter for number of bits 

--in AD transmission 
signal adinteger: integer range -268435455 to 268435455 := 0; 

-- Integer corresponding to binary output from AD 
signal transmissioncount : integer range 0 to 1000 := 0; 
signal transmitusb : integer range 0 to 1 := 0; 

 
-- Signals for creating sclk. Used in process clk divider, which divides the 
-- clock on the FPGA by a hex number to give you a slower clock. 

signal ClkCnt_a:std_logic_vector(27 downto 0); 
signal divisor: std_logic_vector(3 downto 0); 
signal reset: std_logic_vector(27 downto 0); 
signal ck_div_a: std_logic; 
signal runclk : std_logic := '0'; 
signal divclk: std_logic; 

 
-- Counters to ensure correct number of bits sent via UART 

signal screenoutsig : std_logic_vector(9 downto 0) := "1111111111"; 
signal usbuart : std_logic_vector (5 downto 0); 

 
 
begin 

 
-- CMOD17-35T has an internal clock of 12MHz, modified to support 40 MHz clock 
-- 40 MHz= sysclk. Generates a slower runclk that synchronizes SPI interface 
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clockDivider: process(sysclk) 

begin 
divisor <=X"1";--Results in a 20 MHz clock 
reset <= X"000_0000"; --clock counter reset state value 
if sysclk'event and sysclk='1' then 

ClkCnt_a <= ClkCnt_a + '1'; 
if ClkCnt_a=divisor then 

ClkCnt_a <= reset; 
ck_div_a <= not ck_div_a; 

end if; 
end if; 
runclk <= ck_div_a; 

end process; 

 
controlADCFIR: process(runclk, adinteger, transmissioncount, transmitusb, sysclk) 

variable acount : integer range 0 to 30 := 0;--Synchronize AD and DA by 
--cycling through 30 runclk cycles 

variable aoutsig: std_logic; --'1' or '0' corresponding to value currently on 
-- ADSDO, corresponds to binary integer 

variable adintegert: integer range 0 to 65535 := 0; --Temporary hold while 
--determining adinteger 

variable adintegerx: integer range 0 to 65535 := 0; --Temp hold to determine 
--if AD converter is railed 

variable adintegersig1: std_logic := '0'; --Checks to see if incoming value is 
--greater than v +4.8 V 

variable adintegersig2: std_logic := '0'; --Checks to see if incoming value is 
--greater than to -4.8 V 

variable firout: integer range -131071 to 131071 := 0; --Output of FIR Filter 
variable adintegers: integer range -65535 to 65535 := 0; -- Output of AD 4001 

--corrected for sign 
variable sicount: integer range 0 to 40000 := 0; -- Counter that drives how long 

-- sireset is held high 

variable lpfir: integer_vector(81 downto 0); --Outputs of AD4001 held in an 

--array to be multiplied by the 
--corresponding coefficients 

variable lpfirold: integer_vector(81 downto 0) ; --Temporary hold for outputs 
--of AD4001 held in array to 
--allow shifting of old data 
--into next spot in array 

--Results of multiplying lpfir value by corresponding coefficient 

variable lpfirint0: integer range -2100000000 to 2100000000; 
variable lpfirint1: integer range -2100000000 to 2100000000; 
variable lpfirint2: integer range -2100000000 to 2100000000; 
variable lpfirint3: integer range -2100000000 to 2100000000; 
variable lpfirint4: integer range -2100000000 to 2100000000; 
variable lpfirint5: integer range -2100000000 to 2100000000; 
variable lpfirint6: integer range -2100000000 to 2100000000; 
variable lpfirint7: integer range -2100000000 to 2100000000; 
variable lpfirint8: integer range -2100000000 to 2100000000; 
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variable lpfirint9: integer range -2100000000 to 2100000000; 

variable lpfirint10: integer range -2100000000 to 2100000000; 
variable lpfirint11: integer range -2100000000 to 2100000000; 
variable lpfirint12: integer range -2100000000 to 2100000000; 
variable lpfirint13: integer range -2100000000 to 2100000000; 
variable lpfirint14: integer range -2100000000 to 2100000000; 
variable lpfirint15: integer range -2100000000 to 2100000000; 
variable lpfirint16: integer range -2100000000 to 2100000000; 
variable lpfirint17: integer range -2100000000 to 2100000000; 
variable lpfirint18: integer range -2100000000 to 2100000000; 
variable lpfirint19: integer range -2100000000 to 2100000000; 
variable lpfirint20: integer range -2100000000 to 2100000000; 
variable lpfirint21: integer range -2100000000 to 2100000000; 
variable lpfirint22: integer range -2100000000 to 2100000000; 
variable lpfirint23: integer range -2100000000 to 2100000000; 
variable lpfirint24: integer range -2100000000 to 2100000000; 
variable lpfirint25: integer range -2100000000 to 2100000000; 
variable lpfirint26: integer range -2100000000 to 2100000000; 
variable lpfirint27: integer range -2100000000 to 2100000000; 
variable lpfirint28: integer range -2100000000 to 2100000000; 
variable lpfirint29: integer range -2100000000 to 2100000000; 
variable lpfirint30: integer range -2100000000 to 2100000000; 
variable lpfirint31: integer range -2100000000 to 2100000000; 
variable lpfirint32: integer range -2100000000 to 2100000000; 
variable lpfirint33: integer range -2100000000 to 2100000000; 
variable lpfirint34: integer range -2100000000 to 2100000000; 
variable lpfirint35: integer range -2100000000 to 2100000000; 
variable lpfirint36: integer range -2100000000 to 2100000000; 
variable lpfirint37: integer range -2100000000 to 2100000000; 
variable lpfirint38: integer range -2100000000 to 2100000000; 
variable lpfirint39: integer range -2100000000 to 2100000000; 
variable lpfirint40: integer range -2100000000 to 2100000000; 
variable lpfirint41: integer range -2100000000 to 2100000000; 
variable lpfirint42: integer range -2100000000 to 2100000000; 
variable lpfirint43: integer range -2100000000 to 2100000000; 
variable lpfirint44: integer range -2100000000 to 2100000000; 
variable lpfirint45: integer range -2100000000 to 2100000000; 
variable lpfirint46: integer range -2100000000 to 2100000000; 
variable lpfirint47: integer range -2100000000 to 2100000000; 
variable lpfirint48: integer range -2100000000 to 2100000000; 
variable lpfirint49: integer range -2100000000 to 2100000000; 
variable lpfirint50: integer range -2100000000 to 2100000000; 
variable lpfirint51: integer range -2100000000 to 2100000000; 
variable lpfirint52: integer range -2100000000 to 2100000000; 
variable lpfirint53: integer range -2100000000 to 2100000000; 
variable lpfirint54: integer range -2100000000 to 2100000000; 
variable lpfirint55: integer range -2100000000 to 2100000000; 
variable lpfirint56: integer range -2100000000 to 2100000000; 
variable lpfirint57: integer range -2100000000 to 2100000000; 
variable lpfirint58: integer range -2100000000 to 2100000000; 
variable lpfirint59: integer range -2100000000 to 2100000000; 
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variable lpfirint60: integer range -2100000000 to 2100000000; 
variable lpfirint61: integer range -2100000000 to 2100000000; 
variable lpfirint62: integer range -2100000000 to 2100000000; 
variable lpfirint63: integer range -2100000000 to 2100000000; 
variable lpfirint64: integer range -2100000000 to 2100000000; 
variable lpfirint65: integer range -2100000000 to 2100000000; 
variable lpfirint66: integer range -2100000000 to 2100000000; 
variable lpfirint67: integer range -2100000000 to 2100000000; 
variable lpfirint68: integer range -2100000000 to 2100000000; 
variable lpfirint69: integer range -2100000000 to 2100000000; 
variable lpfirint70: integer range -2100000000 to 2100000000; 
variable lpfirint71: integer range -2100000000 to 2100000000; 
variable lpfirint72: integer range -2100000000 to 2100000000; 
variable lpfirint73: integer range -2100000000 to 2100000000; 
variable lpfirint74: integer range -2100000000 to 2100000000; 
variable lpfirint75: integer range -2100000000 to 2100000000; 
variable lpfirint76: integer range -2100000000 to 2100000000; 
variable lpfirint77: integer range -2100000000 to 2100000000; 
variable lpfirint78: integer range -2100000000 to 2100000000; 
variable lpfirint79: integer range -2100000000 to 2100000000; 
variable lpfirint80: integer range -2100000000 to 2100000000; 
variable lpfirint81: integer range -2100000000 to 2100000000; 

 

variable lpfirouts: integer range -2100000000 to 2100000000; --Direct output 
--of FIR filter (with sign) before correcting for twos 
--complement 

variable lpcoeff0: integer := 0;--Coefficients in FIR Filter. Note, all are 
variable lpcoeff1: integer := 0;--multiplied by a common power of ten to 
variable lpcoeff2: integer := 0;-- corrent floating point numbers to integers. 
variable lpcoeff3: integer := 0;--This common term is divided out 
variable lpcoeff4: integer := 0;--later on in the filter 
variable lpcoeff5: integer := 0; 
variable lpcoeff6: integer := 0; 
variable lpcoeff7: integer := 1; 
variable lpcoeff8: integer := 1; 
variable lpcoeff9: integer := -1; 
variable lpcoeff10: integer := -4; 
variable lpcoeff11: integer := -6; 
variable lpcoeff12: integer := -3; 
variable lpcoeff13: integer := 11; 
variable lpcoeff14: integer := 31; 
variable lpcoeff15: integer := 39; 
variable lpcoeff16: integer := 6; 
variable lpcoeff17: integer := -75; 
variable lpcoeff18: integer := -162; 
variable lpcoeff19: integer := -158; 
variable lpcoeff20: integer := 30; 
variable lpcoeff21: integer := 367; 
variable lpcoeff22: integer := 625; 

variable lpcoeff23: integer := 458; 
variable lpcoeff24: integer := -307; 
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variable lpcoeff25: integer := -1358; 
variable lpcoeff26: integer := -1866; 
variable lpcoeff27: integer := -963; 
variable lpcoeff28: integer := 1430; 
variable lpcoeff29: integer := 4033; 
variable lpcoeff30: integer := 4608; 
variable lpcoeff31: integer := 1451; 
variable lpcoeff32: integer := -4809; 
variable lpcoeff33: integer := -10544; 
variable lpcoeff34: integer := -10640; 
variable lpcoeff35: integer := -1776; 
variable lpcoeff36: integer := 14516; 
variable lpcoeff37: integer := 31362; 
variable lpcoeff38: integer := 39637; 
variable lpcoeff39: integer := 33184; 
variable lpcoeff40: integer := 12933; 
variable lpcoeff41: integer := -12933; 
variable lpcoeff42: integer := -33184; 
variable lpcoeff43: integer := -39637; 
variable lpcoeff44: integer := -31362; 
variable lpcoeff45: integer := -14516; 
variable lpcoeff46: integer := 1776; 
variable lpcoeff47: integer := 10640; 
variable lpcoeff48: integer := 10544; 
variable lpcoeff49: integer := 4809; 
variable lpcoeff50: integer := -1451; 
variable lpcoeff51: integer := -4608; 
variable lpcoeff52: integer := -4033; 
variable lpcoeff53: integer := -1430; 
variable lpcoeff54: integer := 963; 
variable lpcoeff55: integer := 1866; 
variable lpcoeff56: integer := 1358; 
variable lpcoeff57: integer := 307; 
variable lpcoeff58: integer := -458; 
variable lpcoeff59: integer := -625; 
variable lpcoeff60: integer := -367; 
variable lpcoeff61: integer := -30; 
variable lpcoeff62: integer := 158; 
variable lpcoeff63: integer := 162; 
variable lpcoeff64: integer := 75; 
variable lpcoeff65: integer := -6; 
variable lpcoeff66: integer := -39; 
variable lpcoeff67: integer := -31; 
variable lpcoeff68: integer := -11; 
variable lpcoeff69: integer := 3; 
variable lpcoeff70: integer := 6; 
variable lpcoeff71: integer := 4; 
variable lpcoeff72: integer := 1; 

variable lpcoeff73: integer := -1; 
variable lpcoeff74: integer := -1; 
variable lpcoeff75: integer := 0; 
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variable lpcoeff76: integer := 0; 
variable lpcoeff77: integer := 0; 
variable lpcoeff78: integer := 0; 
variable lpcoeff79: integer := 0; 
variable lpcoeff80: integer := 0; 
variable lpcoeff81: integer := 0; 

 
begin 

adsclk <= runclk when ((acount >= 3) and (acount <= 18) 
and (sicount = 0)) else '0'; --Synchronizes AD clock to 

--runclk for 16 clock cycles 
--when sireset is low 

adcnv <= '0' when ((acount >= 2) and (acount <= 20)) else '1'; 
--Synchronizes ADCNV to runclk for 19 clock cycles when 
--sireset is low 

aoutsig := adsdo when ((acount >= 3) and (acount <= 18)) else '0'; 
-- Pulls value on ADSDO into FPGA for calculations 

adintegersig1 := '1' when ((adintegerx > 31400) or sicount > 0) else '0'; 
--Checks to see if AD input is above value correspondiong to +4.8, 
--rounded to nearest hundred 

adintegersig2 := '1' when ((adintegerx < 34100) or sicount > 0) else '0'; 
--Checks to see if AD input is above value correspondiong to -4.8, 
--rounded to nearest hundred 

sireset <= '1' when (((adintegersig1 = '1') 
and (adintegersig2 = '1'))) else '0'; 

--If value is above +4.8V and -4.8V simultaneously-> initiate reset 

 
if (rising_edge(sysclk)) then --If sireset is triggered, start counting 

--to determine when to stop resetting 
sicount := sicount + 1 when sireset = '1'; 

end if; 
if (falling_edge(sysclk)) then --Resets SI count so that normal 

--operations can resume 
sicount := 0 when sicount = 39999 else sicount; 

end if; 

 
if falling_edge(runclk) then --Increase acount to synchronize with ADSCLK 

 
--and AD SPI 

acount := acount + 1 when acount < 30 else 0; 
end if; 
if rising_edge(runclk) then --Converts binary into corresponding decimal 

--value, depending on clock count. 
--Two's complement, no sign 

if acount >= 3 and acount <= 18 then 
adintegert := (adintegert + 2**(18-acount)) 

when aoutsig = '1' else adintegert; 
                end if; 
            end if; 

if acount = 0 then--Reset adingetert to start fresh 
adintegert := 0; 
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end if; 
if acount = 19 then--Store value in adintegert to check if 

--SI needs to be reset 
adintegerx := adintegert when sireset = '0' else 0; 

end if; 
if acount = 20 then--Corrects twos complememnt to account for sign, 

--easier to manipulate and apply to FIR filter 
adintegers := -1*(65536-adintegert) 

when adintegert > 32767 else adintegert; 
end if; 

if acount = 21 then--Update FIR register with new value 
--If resetting, seeds FIR register with corrected values to 
--prevent delay in refilling register and to patch the 
--slopes together 

lpfir(0) := adintegers when sireset = '0' else lpfir(0) - lpfir(0); 
lpfirold(1) := lpfir(1) when sireset = '0' else lpfir(1) - lpfir(0); 
lpfirold(2) := lpfir(2) when sireset = '0' else lpfir(2) - lpfir(0); 
lpfirold(3) := lpfir(3) when sireset = '0' else lpfir(3) - lpfir(0); 
lpfirold(4) := lpfir(4) when sireset = '0' else lpfir(4) - lpfir(0); 
lpfirold(5) := lpfir(5) when sireset = '0' else lpfir(5) - lpfir(0); 
lpfirold(6) := lpfir(6) when sireset = '0' else lpfir(6) - lpfir(0); 
lpfirold(7) := lpfir(7) when sireset = '0' else lpfir(7) - lpfir(0); 
lpfirold(8) := lpfir(8) when sireset = '0' else lpfir(8) - lpfir(0); 
lpfirold(9) := lpfir(9) when sireset = '0' else lpfir(9) - lpfir(0); 
lpfirold(10) := lpfir(10) when sireset = '0' else lpfir(10) - lpfir(0); 
lpfirold(11) := lpfir(11) when sireset = '0' else lpfir(11) - lpfir(0); 
lpfirold(12) := lpfir(12) when sireset = '0' else lpfir(12) - lpfir(0); 
lpfirold(13) := lpfir(13) when sireset = '0' else lpfir(13) - lpfir(0); 
lpfirold(14) := lpfir(14) when sireset = '0' else lpfir(14) - lpfir(0); 
lpfirold(15) := lpfir(15) when sireset = '0' else lpfir(15) - lpfir(0); 
lpfirold(16) := lpfir(16) when sireset = '0' else lpfir(16) - lpfir(0); 
lpfirold(17) := lpfir(17) when sireset = '0' else lpfir(17) - lpfir(0); 
lpfirold(18) := lpfir(18) when sireset = '0' else lpfir(18) - lpfir(0); 
lpfirold(19) := lpfir(19) when sireset = '0' else lpfir(19) - lpfir(0); 
lpfirold(20) := lpfir(20) when sireset = '0' else lpfir(20) - lpfir(0); 
lpfirold(21) := lpfir(21) when sireset = '0' else lpfir(21) - lpfir(0); 
lpfirold(22) := lpfir(22) when sireset = '0' else lpfir(22) - lpfir(0); 
lpfirold(23) := lpfir(23) when sireset = '0' else lpfir(23) - lpfir(0); 
lpfirold(24) := lpfir(24) when sireset = '0' else lpfir(24) - lpfir(0); 
lpfirold(25) := lpfir(25) when sireset = '0' else lpfir(25) - lpfir(0); 
lpfirold(26) := lpfir(26) when sireset = '0' else lpfir(26) - lpfir(0); 
lpfirold(27) := lpfir(27) when sireset = '0' else lpfir(27) - lpfir(0); 
lpfirold(28) := lpfir(28) when sireset = '0' else lpfir(28) - lpfir(0); 
lpfirold(29) := lpfir(29) when sireset = '0' else lpfir(29) - lpfir(0); 
lpfirold(30) := lpfir(30) when sireset = '0' else lpfir(30) - lpfir(0);
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lpfirold(31) := lpfir(31) when sireset = '0' else lpfir(31) - lpfir(0); 
lpfirold(32) := lpfir(32) when sireset = '0' else lpfir(32) - lpfir(0); 
lpfirold(33) := lpfir(33) when sireset = '0' else lpfir(33) - lpfir(0); 
lpfirold(34) := lpfir(34) when sireset = '0' else lpfir(34) - lpfir(0); 
lpfirold(35) := lpfir(35) when sireset = '0' else lpfir(35) - lpfir(0); 
lpfirold(36) := lpfir(36) when sireset = '0' else lpfir(36) - lpfir(0); 
lpfirold(37) := lpfir(37) when sireset = '0' else lpfir(37) - lpfir(0); 
lpfirold(38) := lpfir(38) when sireset = '0' else lpfir(38) - lpfir(0); 
lpfirold(39) := lpfir(39) when sireset = '0' else lpfir(39) - lpfir(0); 
lpfirold(40) := lpfir(40) when sireset = '0' else lpfir(40) - lpfir(0); 
lpfirold(41) := lpfir(41) when sireset = '0' else lpfir(41) - lpfir(0); 
lpfirold(42) := lpfir(42) when sireset = '0' else lpfir(42) - lpfir(0); 
lpfirold(43) := lpfir(43) when sireset = '0' else lpfir(43) - lpfir(0); 
lpfirold(44) := lpfir(44) when sireset = '0' else lpfir(44) - lpfir(0); 
lpfirold(45) := lpfir(45) when sireset = '0' else lpfir(45) - lpfir(0); 
lpfirold(46) := lpfir(46) when sireset = '0' else lpfir(46) - lpfir(0); 
lpfirold(47) := lpfir(47) when sireset = '0' else lpfir(47) - lpfir(0); 
lpfirold(48) := lpfir(48) when sireset = '0' else lpfir(48) - lpfir(0); 
lpfirold(49) := lpfir(49) when sireset = '0' else lpfir(49) - lpfir(0); 
lpfirold(50) := lpfir(50) when sireset = '0' else lpfir(50) - lpfir(0); 
lpfirold(51) := lpfir(51) when sireset = '0' else lpfir(51) - lpfir(0); 
lpfirold(52) := lpfir(52) when sireset = '0' else lpfir(52) - lpfir(0); 
lpfirold(53) := lpfir(53) when sireset = '0' else lpfir(53) - lpfir(0); 
lpfirold(54) := lpfir(54) when sireset = '0' else lpfir(54) - lpfir(0); 
lpfirold(55) := lpfir(55) when sireset = '0' else lpfir(55) - lpfir(0); 
lpfirold(56) := lpfir(56) when sireset = '0' else lpfir(56) - lpfir(0); 
lpfirold(57) := lpfir(57) when sireset = '0' else lpfir(57) - lpfir(0); 
lpfirold(58) := lpfir(58) when sireset = '0' else lpfir(58) - lpfir(0); 
lpfirold(59) := lpfir(59) when sireset = '0' else lpfir(59) - lpfir(0); 
lpfirold(60) := lpfir(60) when sireset = '0' else lpfir(60) - lpfir(0); 
lpfirold(61) := lpfir(61) when sireset = '0' else lpfir(61) - lpfir(0); 
lpfirold(62) := lpfir(62) when sireset = '0' else lpfir(62) - lpfir(0); 
lpfirold(63) := lpfir(63) when sireset = '0' else lpfir(63) - lpfir(0); 
lpfirold(64) := lpfir(64) when sireset = '0' else lpfir(64) - lpfir(0); 
lpfirold(65) := lpfir(65) when sireset = '0' else lpfir(65) - lpfir(0); 
lpfirold(66) := lpfir(66) when sireset = '0' else lpfir(66) - lpfir(0); 
lpfirold(67) := lpfir(67) when sireset = '0' else lpfir(67) - lpfir(0); 
lpfirold(68) := lpfir(68) when sireset = '0' else lpfir(68) - lpfir(0); 
lpfirold(69) := lpfir(69) when sireset = '0' else lpfir(69) - lpfir(0); 
lpfirold(70) := lpfir(70) when sireset = '0' else lpfir(70) - lpfir(0); 
lpfirold(71) := lpfir(71) when sireset = '0' else lpfir(71) - lpfir(0); 
lpfirold(72) := lpfir(72) when sireset = '0' else lpfir(72) - lpfir(0); 
lpfirold(73) := lpfir(73) when sireset = '0' else lpfir(73) - lpfir(0); 
lpfirold(74) := lpfir(74) when sireset = '0' else lpfir(74) - lpfir(0); 
lpfirold(75) := lpfir(75) when sireset = '0' else lpfir(75) - lpfir(0); 
lpfirold(76) := lpfir(76) when sireset = '0' else lpfir(76) - lpfir(0); 
lpfirold(77) := lpfir(77) when sireset = '0' else lpfir(77) - lpfir(0); 
lpfirold(78) := lpfir(78) when sireset = '0' else lpfir(78) - lpfir(0); 
lpfirold(79) := lpfir(79) when sireset = '0' else lpfir(79) - lpfir(0); 
lpfirold(80) := lpfir(80) when sireset = '0' else lpfir(80) - lpfir(0); 
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lpfirold(81) := lpfir(81) when sireset = '0' else lpfir(81) - lpfir(0); 
end if; 
if acount = 22 then --Multiply values in FIR register with corresponding 

--coefficient 
lpfirint0 := (lpcoeff0*lpfir(0)); 
lpfirint1 := (lpcoeff1*lpfir(1)); 
lpfirint2 := (lpcoeff2*lpfir(2)); 
lpfirint3 := (lpcoeff3*lpfir(3)); 
lpfirint4 := (lpcoeff4*lpfir(4)); 
lpfirint5 := (lpcoeff5*lpfir(5)); 
lpfirint6 := (lpcoeff6*lpfir(6)); 
lpfirint7 := (lpcoeff7*lpfir(7)); 
lpfirint8 := (lpcoeff8*lpfir(8)); 
lpfirint9 := (lpcoeff9*lpfir(9)); 
lpfirint10 := (lpcoeff10*lpfir(10)); 
lpfirint11 := (lpcoeff11*lpfir(11)); 
lpfirint12 := (lpcoeff12*lpfir(12)); 
lpfirint13 := (lpcoeff13*lpfir(13)); 
lpfirint14 := (lpcoeff14*lpfir(14)); 
lpfirint15 := (lpcoeff15*lpfir(15)); 
lpfirint16 := (lpcoeff16*lpfir(16)); 
lpfirint17 := (lpcoeff17*lpfir(17)); 
lpfirint18 := (lpcoeff18*lpfir(18)); 
lpfirint19 := (lpcoeff19*lpfir(19)); 
lpfirint20 := (lpcoeff20*lpfir(20)); 
lpfirint21 := (lpcoeff21*lpfir(21)); 
lpfirint22 := (lpcoeff22*lpfir(22)); 
lpfirint23 := (lpcoeff23*lpfir(23)); 
lpfirint24 := (lpcoeff24*lpfir(24)); 
lpfirint25 := (lpcoeff25*lpfir(25)); 
lpfirint26 := (lpcoeff26*lpfir(26)); 
lpfirint27 := (lpcoeff27*lpfir(27)); 
lpfirint28 := (lpcoeff28*lpfir(28)); 
lpfirint29 := (lpcoeff29*lpfir(29)); 
lpfirint30 := (lpcoeff30*lpfir(30)); 
lpfirint31 := (lpcoeff31*lpfir(31)); 
lpfirint32 := (lpcoeff32*lpfir(32)); 
lpfirint33 := (lpcoeff33*lpfir(33)); 
lpfirint34 := (lpcoeff34*lpfir(34)); 
lpfirint35 := (lpcoeff35*lpfir(35)); 
lpfirint36 := (lpcoeff36*lpfir(36)); 
lpfirint37 := (lpcoeff37*lpfir(37)); 
lpfirint38 := (lpcoeff38*lpfir(38)); 
lpfirint39 := (lpcoeff39*lpfir(39)); 
lpfirint40 := (lpcoeff40*lpfir(40)); 
lpfirint41 := (lpcoeff41*lpfir(41)); 
lpfirint42 := (lpcoeff42*lpfir(42)); 
lpfirint43 := (lpcoeff43*lpfir(43)); 
lpfirint44 := (lpcoeff44*lpfir(44)); 
lpfirint45 := (lpcoeff45*lpfir(45)); 
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lpfirint46 := (lpcoeff46*lpfir(46)); 
lpfirint47 := (lpcoeff47*lpfir(47)); 
lpfirint48 := (lpcoeff48*lpfir(48)); 
lpfirint49 := (lpcoeff49*lpfir(49)); 
lpfirint50 := (lpcoeff50*lpfir(50)); 
lpfirint51 := (lpcoeff51*lpfir(51)); 
lpfirint52 := (lpcoeff52*lpfir(52)); 
lpfirint53 := (lpcoeff53*lpfir(53)); 
lpfirint54 := (lpcoeff54*lpfir(54)); 
lpfirint55 := (lpcoeff55*lpfir(55)); 
lpfirint56 := (lpcoeff56*lpfir(56)); 
lpfirint57 := (lpcoeff57*lpfir(57)); 
lpfirint58 := (lpcoeff58*lpfir(58)); 
lpfirint59 := (lpcoeff59*lpfir(59)); 
lpfirint60 := (lpcoeff60*lpfir(60)); 
lpfirint61 := (lpcoeff61*lpfir(61)); 
lpfirint62 := (lpcoeff62*lpfir(62)); 
lpfirint63 := (lpcoeff63*lpfir(63)); 
lpfirint64 := (lpcoeff64*lpfir(64)); 
lpfirint65 := (lpcoeff65*lpfir(65)); 
lpfirint66 := (lpcoeff66*lpfir(66)); 
lpfirint67 := (lpcoeff67*lpfir(67)); 
lpfirint68 := (lpcoeff68*lpfir(68)); 
lpfirint69 := (lpcoeff69*lpfir(69)); 
lpfirint70 := (lpcoeff70*lpfir(70)); 
lpfirint71 := (lpcoeff71*lpfir(71)); 
lpfirint72 := (lpcoeff72*lpfir(72)); 
lpfirint73 := (lpcoeff73*lpfir(73)); 
lpfirint74 := (lpcoeff74*lpfir(74)); 
lpfirint75 := (lpcoeff75*lpfir(75)); 
lpfirint76 := (lpcoeff76*lpfir(76)); 
lpfirint77 := (lpcoeff77*lpfir(77)); 
lpfirint78 := (lpcoeff78*lpfir(78)); 
lpfirint79 := (lpcoeff79*lpfir(79)); 
lpfirint80 := (lpcoeff80*lpfir(80)); 
lpfirint81 := (lpcoeff81*lpfir(81)); 

end if; 
if acount = 23 then--Sum all values together 

lpfirouts := (lpfirint0 + lpfirint1+ lpfirint2 + lpfirint3 
+ lpfirint4 + lpfirint5 + lpfirint6 + lpfirint7 
+ lpfirint8 + lpfirint9+ lpfirint10 + lpfirint11 
+ lpfirint12 + lpfirint13 + lpfirint14+ lpfirint15 
+ lpfirint16 + lpfirint17 + lpfirint18 + lpfirint19 
+ lpfirint20 + lpfirint21 + lpfirint22 + lpfirint23 
+ lpfirint24 + lpfirint25 + lpfirint26 + lpfirint27 
+ lpfirint28 + lpfirint29 + lpfirint30 + lpfirint31 
+ lpfirint32 + lpfirint33 + lpfirint34 + lpfirint35 
+ lpfirint36 + lpfirint37 + lpfirint48 + lpfirint49 
+ lpfirint40 + lpfirint41 + lpfirint42 + lpfirint43 
+ lpfirint44 + lpfirint45 + lpfirint46 + lpfirint47 
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end if; 

+ lpfirint48 + lpfirint49 + lpfirint50 + lpfirint51 
+ lpfirint52 + lpfirint53 + lpfirint54 + lpfirint55 
+ lpfirint56 + lpfirint57 + lpfirint58 + lpfirint59 
+ lpfirint60 + lpfirint61 + lpfirint62 + lpfirint63 
+ lpfirint64 + lpfirint65 + lpfirint66 + lpfirint67 
+ lpfirint68 + lpfirint69 + lpfirint70 + lpfirint71 
+ lpfirint72 + lpfirint73 + lpfirint74 + lpfirint75 
+ lpfirint76 + lpfirint77 + lpfirint78 + lpfirint79 
+ lpfirint80 + lpfirint81)/100000; 
--Dividing by 100000 correcots for correcting floating 
--point to integers 

if acount = 24 then--Store current values in register to a new 
--location in order to shift and update the 
--register at the start of next cycle 

lpfir(1) := lpfir(0); 
lpfir(2) := lpfirold(1); 
lpfir(3) := lpfirold(2); 
lpfir(4) := lpfirold(3); 
lpfir(5) := lpfirold(4); 
lpfir(6) := lpfirold(5); 
lpfir(7) := lpfirold(6); 
lpfir(8) := lpfirold(7); 
lpfir(9) := lpfirold(8); 
lpfir(10) := lpfirold(9); 
lpfir(11) := lpfirold(10); 
lpfir(12) := lpfirold(11); 
lpfir(13) := lpfirold(12); 
lpfir(14) := lpfirold(13); 
lpfir(15) := lpfirold(14); 
lpfir(16) := lpfirold(15); 
lpfir(17) := lpfirold(16); 
lpfir(18) := lpfirold(17); 
lpfir(19) := lpfirold(18); 
lpfir(20) := lpfirold(19); 
lpfir(21) := lpfirold(20); 
lpfir(22) := lpfirold(21); 
lpfir(23) := lpfirold(22); 
lpfir(24) := lpfirold(23); 
lpfir(25) := lpfirold(24); 
lpfir(26) := lpfirold(25); 
lpfir(27) := lpfirold(26); 
lpfir(28) := lpfirold(27); 
lpfir(29) := lpfirold(28); 
lpfir(30) := lpfirold(29); 
lpfir(31) := lpfirold(30); 
lpfir(32) := lpfirold(31); 
lpfir(33) := lpfirold(32); 
lpfir(34) := lpfirold(33); 
lpfir(35) := lpfirold(34); 
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lpfir(36) := lpfirold(35); 
lpfir(37) := lpfirold(36); 
lpfir(38) := lpfirold(37); 
lpfir(39) := lpfirold(38); 
lpfir(40) := lpfirold(39); 
lpfir(41) := lpfirold(40); 
lpfir(42) := lpfirold(41); 
lpfir(43) := lpfirold(42); 
lpfir(44) := lpfirold(43); 
lpfir(45) := lpfirold(44); 
lpfir(46) := lpfirold(45); 
lpfir(47) := lpfirold(46); 
lpfir(48) := lpfirold(47); 
lpfir(49) := lpfirold(48); 
lpfir(50) := lpfirold(49); 
lpfir(51) := lpfirold(50); 
lpfir(52) := lpfirold(51); 
lpfir(53) := lpfirold(52); 
lpfir(54) := lpfirold(53); 
lpfir(55) := lpfirold(54); 
lpfir(56) := lpfirold(55); 
lpfir(57) := lpfirold(56); 
lpfir(58) := lpfirold(57); 
lpfir(59) := lpfirold(58); 
lpfir(60) := lpfirold(59); 
lpfir(61) := lpfirold(50); 
lpfir(62) := lpfirold(51); 
lpfir(63) := lpfirold(52); 
lpfir(64) := lpfirold(53); 
lpfir(65) := lpfirold(54); 
lpfir(66) := lpfirold(55); 
lpfir(67) := lpfirold(56); 
lpfir(68) := lpfirold(57); 
lpfir(69) := lpfirold(58); 
lpfir(70) := lpfirold(59); 
lpfir(71) := lpfirold(70); 
lpfir(72) := lpfirold(71); 
lpfir(73) := lpfirold(72); 
lpfir(74) := lpfirold(73); 
lpfir(75) := lpfirold(74); 
lpfir(76) := lpfirold(75); 
lpfir(77) := lpfirold(76); 
lpfir(78) := lpfirold(77); 
lpfir(79) := lpfirold(78); 
lpfir(80) := lpfirold(79); 
lpfir(81) := lpfirold(80); 
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end if; 
 

if acount = 25 then --Corrects sign so that output is in twos 
complement 

--for DA operations 
if lpfirouts >=0 and lpfirouts <= 65530 then 
    firout := lpfirouts; 
elsif lpfirouts <0 and lpfirouts >= -65536 

then firout := 131073 + lpfirouts; 
elsif lpfirouts > 

65530 then firout 
:= 65530; 

elsif lpfirouts < -
65536 then firout 
:= 65537; 

end if; 
            end if; 

if acount = 26 then--Final integer to output to DAC 
adinteger <= firout; 

            end if; 
        end if; 
    end process; 

 
controlDAC: process(runclk, adinteger) 

variable dcount: integer range 0 to 30; --Synchronizes DA clock to runclk 
for 

--24 clock cycles when sireset is 
low variable doutsig: std_logic; -- Outputs signal to DASDI 
corresponding to 

--bit in dabits 
variable dabits: std_logic_vector (160 downto 0); --Stores binary bits 

--to output to DA 
variable fromad: integer range 0 to 262143:=0;  
    --Scaled value from adinteger to account for +-10V range  
variable fromadtemp: integer; --Temp hold updating fromad as bits have 

--been outputted 
variable converthold: integer; --Converts fromadtemp to binary 
variable configswitch: std_logic;  
    --Determines whether to send configuration data or voltage  
    --data should be sent  
variable configcount: integer range 0 to 1000:= 0; 

--Send 1000 configuration signals prior to beginning conversion 

 
begin 

dasclk <= runclk when (((dcount >= 3) and (dcount <= 26)) )else '0'; 
-- Synchronizes DA clock to runclk for 24 clock cycles 
--when sireset is low 

dasync <= '0' when (((dcount >= 2) and (dcount <= 28))) 

           else '1'; 
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daldac <= '0' ; 

--Unused, must be held low due to chosen configuration  

daclr <= '1'; 

--Unused, must be held high due to chosen configuration  

dareset <= '1'; 

--Unused, must be held high due to chosen configuration 
configswitch := '1' when configcount < 1000 else '0'; 

--Once configcount reaches 1000, drops low to allow 
--outputting voltages 

dasdin <= doutsig when (((dcount >= 3) and (dcount <= 27)) )else '1'; 
--Sends signal corresponding to binary integer  

--to DASDIN  

doutsig := '1' when dabits(dcount) = '1' else'0'; 
--Signal corresponding to bits in output data 

 
if rising_edge(runclk) then 

fromadtemp := fromad when dcount = 2; 
--Pull fromad in to perform calculations 

dcount := dcount + 1 when dcount < 30 else 0; 
--Increase dcount to synchronize with DASCLK and DA SPI 

converthold := fromadtemp /(2**(24-dcount)) when 
(dcount >= 7 and dcount <= 24) else 0; 

--If fromadtemp > 2**(24-dcount), will have a remainder 
--of 1 -> needs to output 
--binary 1. If <, remainder 0, output 0 

end if; 
if falling_edge(runclk) then 

fromadtemp := (fromadtemp - 2**(24-dcount)) 
when (converthold >= 1) else fromadtemp ; 

--Subtract outputted values from fromadtemp 
end if; 

 
if configswitch = '1' then --When 

configuring if 
falling_edge(runclk) then 

configcount := configcount + 1 when dcount 
= 0; end if; 
if dcount = 0 then 

dabits(3) := '0'; --First four -> access configuration 
register dabits(4) := '0'; 
dabits(5) := '1'; 
dabits(6) := '0'; 

dabits(7) := '0'; --
Configuration data dabits(8) := 
'0'; 
dabits(9) := '0'; 
dabits(10) := '0'; 
dabits(11) := '0'; 
dabits(12) := '0'; 
dabits(13) := '0'; 
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dabits(14) := '0'; 
dabits(15) := '0'; 
dabits(16) := '0'; 
dabits(17) := '0'; 
dabits(18) := '1'; 
dabits(19) := '1'; 
dabits(20) := '0'; 
dabits(21) := '1'; 
dabits(22) := '1'; 
dabits(23) := '0'; 
dabits(24) := '0'; 
dabits(25) := '1'; 
dabits(26) := '0'; 

end if; 
 

else--configswitch = '0' -
>Outputting data if dcount = 0 
then 

dabits(3) := '0'; --Command to output corresponding 
voltage dabits(4) := '0'; 
dabits(5) := '0'; 
dabits(6) := '1'; 

--Remaining DA bits calculted below 
dabits(25) := '0'; --Not Used 
dabits(26) := '0'; --

Not Used end if; 
if dcount = 1 then 

--AD4001 -> 16 bit accuracy, 0 = 0V, 32767 = +5V, 
-- 32768 = -5V, 65535 = -152.6 uV (Loops around) 
--AD5781 -> 18 bit accuracy, 0 = -10V, 131072 = 0V, 
-- 262143 = +10V (Linear from from -10V to +10V) 
--Below if loop corrects for difference in precision and 
--configuration 

if adinteger <= 65536 
then 

fromad := ((adinteger*2) + 
131072); 

                 elsif adinteger >= 65537 then 
fromad := (adinteger-

65537)*2;  
                 end if; 

end if; 
if dcount >= 7 and dcount <= 24 then 

--Output '1' or '0' corresponding to 
remainder if (converthold >= 1) then 

dabits(dcount) := '1'; 
else 

dabits(dcount) := '0'; 
                 end if; 
             end if; 
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         end if; 
     end process; 
 
end RTL; 
end Behavioral; 
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A.3 Additional Electronics Schematics 

Figure A.1: Schematic of anti-aliasing filter. 
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 Figure A.2: Schematic of differential amplifier. 

 


