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Abstract

After developing the relevant background and proving some general results in the early

chapters, the main novel content of this thesis is the computation of the i-th homology

groups of the second configuration spaces of metric graphs Stark and Ĥm,n, with two restraint

parameters. These configuration spaces are filtered by the poset (R,≤)op × (R,≤). We study

the persistence modules PHi((Stark)2
−,−; F) and PHi((Ĥm,n)2

−,−; F) where i = 0, 1, since

higher homology vanishes for these spaces. Next, we construct a new representation over

the poset given by the hyperplane arrangement of the configuration spaces of the finite

graph. There is no loss of information when we restrict to the poset of chambers because

the functor PHi(−) factors through the poset of chambers. Using this machinery and the

homology groups we calculated, we find the direct sum decomposition of the 2-parameter

persistence modules PHi((Stark)2
−,−; F) and PHi((Ĥm,n)2

−,−; F), where each summand is

indecomposable. In particular, we show that PH0((Ĥm,n)2
−,−; F) and PH1((Ĥm,n)2

−,−; F)

can be written as a direct sum of polytope modules.

vii
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Chapter 1

Introduction

Topological data analysis (TDA) applies Topology to study data clouds’ geometry and

topological features. It was first inspired by the work of Marston Morse, followed by a

sequence of pioneered papers, see for instance [41][27][21]. The pipeline of TDA can be

(roughly) described by three main steps:

• Obtaining the point cloud with a metric;

• Constructing the geometric object (specifically, a filtered complex) from the point cloud

with discrete or continuous parameters;

• Calculating the homology groups of the filtered complex and the persistence diagram

/barcode. Interpreting the topological and geometric features of the data via persistence

diagram /barcode.

Data
Filtered

complex

Persistence

diagram/

Barcode

Figure 1.1: The pipeline of TDA

1



Let F be a field and (P ,≤) be the set P with a partial order. A persistence module over

(P ,≤) is a family of F-vector spaces {Mt | t ∈ P} and a doubly-indexed family of linear

maps {ρst : Ms → Mt | s ≤ t} where ρtuρst = ρsu for any s ≤ t ≤ u in P and ρss = idMs

for all s ∈ P . The poset (P ,≤) can be regarded as a category, and persistence modules are

functors from the category (P ,≤) to the category of vector spaces VectF. We use Vect(P ,≤)
F

to denote the category of persistence modules over the poset (P ,≤). For instance, when

(P ,≤) = (Rn,≤) with the product order where (a1, . . . , an) ≤ (b1, . . . , bn) ∈ (Rn,≤) if and

only if ai ≤ bi for all i = 1, . . . ,n, the objects of Vect(R
n,≤)

F is called n-parameter persistence

modules.

One of the primary tasks in TDA is finding the proper representations (called ”barcodes”)

of data clouds. The notion of barcodes is introduced in [27], and algorithms for computing

barcodes of persistence modules are discovered by many researchers. Carlsson-Zomorodian

(2015) studied the 1-parameter persistence modules of finite type [47], that is, (P ,≤) =

(N,≤) and each M : (N,≤) → VectF has the property that Mi is a finitely dimensional

vector space for every i ∈ N and there exists N ∈ N such that morphism M(i ≤ i+ 1) :

Mi → Mi+1 is an isomorphism for all i ≥ N . They proved that the category of persistence

modules of finite type is equivalent to the category of finitely generated non-negatively graded

F[x]-modules. Using the equivalence of the categories, one can obtain an algebraic description

of the barcode. Since F[x] is a principal ideal domain (PID), for each persistence module

M : (Z,≤)→ vectF, there exists m,n ∈N such that

M ∼=
(

n⊕
i=1

xaiF[x]

)
⊕

 m⊕
j=1

xbj F[x]/(xdj )



Therefore, the barcode of M consists of the intervals [ai,∞) for i = 1, . . . ,n and [bj , dj) for

j = 1, . . . ,m. The ungraded version is the structure theorem for finitely generated modules

2



over a PID, which is a standard result in commutative algebra.

Although the theory of 1-parameter TDA provides a powerful tool for helping people

understand data, the data cloud itself may naturally come with more than one parameter.

Analyzing one parameter at a time is time-consuming and can be information-losing: it only

contains a slice of the feature by fixing all but one parameter. For example, every RGB image

has three parameters representing the three color channels. When we apply TDA theory to

analyze this image, we first need to convert the RGB image into a grayscale image. In this

process, we may lose information because two distinct RGB points may have the same value

in grayscale. Multi-parameter topological data analysis has promising application potential

in dealing with higher-dimensional data clouds. Applying a multi-parameter TDA theory,

we will be able to train computers to learn RGB images without converting the images into

grayscale images.

On the other hand, the data cloud may contain noise. Multi-parameter topological

data analysis also has promising application potential handling data clouds with noise. By

considering the density of the data as a parameter along with the radius parameter, one can

remove noise from the data and analyze the shape of the data at various density levels.

One difficulty in the multi-parameter persistence theory is that there is no canonical way

to define the higher-dimensional barcodes (which represent indecomposable representations)

analogous to the 1-dimensional barcodes because there is no structure theorem available

in vect(P ,≤)
F when the poset P is not a totally ordered set. For example, it is impossible to

classify the indecomposable representations of 2-parameter persistence modules. Every point-

wise finite-dimensional 2-parameter persistence module corresponds to a finitely generated

Z2-graded module over F[x, y], up to isomorphism, but there is no classification theorem
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of finitely generated Z2-graded modules over F[x, y]. Consequently, the indecomposable

submodules of a multiparameter persistence module can be very complicated. Buchet-

Escolar shows that any n-parameter persistence module can be embedded as a slice of an

indecomposable (n+ 1)-parameter persistence module[13][12], that is, for every n-parameter

persistence module M , there exists an indecomposable (n+ 1)-parameter persistence module

N such that M = N ◦ ι, where ι : (Zn,≤) → (Zn+1,≤) is a functor that is injective on

objects.

In this thesis, we want to apply the multi-parameter TDA theory to analyze complicated

geometric objects. In particular, we want to understand how the configuration spaces change

along with the changes in the proximity conditions. In 2013, Dover-Özaydın studied the

restricted configuration space of metric graphs and gave an upper bound for the number

of homeomorphism types of its n-th configuration space over proximity conditions.[26] As

a continuation of their pioneering work, we study the multi-parameter persistence modules

given by the filtrations of the n-th configuration spaces (with two restraint parameters)

of finite metric graphs. In addition to the parameters representing the minimum distance

allowed between each pair of robots, we also consider the parameters representing the length

of edges (denoted by L = (Le)e∈E , where E is the set of edges of the underlying graph).

Let Γ = (V ,E) be a graph and X be a geometric realization of Γ. Given an edge length

vector L = (Le)e∈E ∈ R
|E|
>0 , the metric graph XL is the space X endowed with the metric

satisfying

1. each edge e is isometric to the interval [0,Le1 ];

2. XL has the path metric (denoted by δ): for any x, y ∈ XL, δ(x, y) is the length of a

shortest path from x to y.

4



1.1 - First Example

The n-th configuration space of X with restraint parameter r ∈ R
(n

2)
>0 and edge length vector

L is

Xn
r,L = {(x1, . . . ,xn) ∈ (XL)

n | δ(xi,xj) ≥ rij , i, j = 1, . . . ,n}

The object that we are investigating is a filtration of the spaces {Xn
r,L}. This filtration

naturally comes with (n
2) + |E| parameters [26]. In particular, when all robots have the same

size and all edges have fixed lengths, the problem reduces to a single-parameter problem, and

one can apply the (single-parameter) TDA theory to analyze the filtration of configuration

spaces.

In Section 1.1, we discuss an example which motivates this thesis.

1.1 First Example

Let YLe1
be a metric graph with the shape of Y with the following metric: two edges of

YLe1
have length 1, and the length of the other edge (labeled by e1) varies. Let e2 and e3

denote the other two edges of YLe1
. In this example, we interpret the metric graph YLe1

as a

Y -shaped rail and consider two distinct thick robots (denoted by red robot and green robot)

moving on YLe1
, see figure 1.2. Let r denote the minimum distance required between the two

robots and let Le1 denote the length of the edge e1. We denote its configuration space by

Y 2
r,Le1

.

e1

e2

e3

x
y

Figure 1.2
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1.1 - First Example

One cell of Y 2
r,Le1

is given by (1.1).

0 ≤ x ≤ 1 = Le2

0 ≤ y ≤ 1 = Le3

x+ y ≥ r

(1.1)

0 ≤ x ≤ 1 = Le3

0 ≤ y ≤ 1 = Le2

x+ y ≥ r

(1.2)

The system of inequalities (1.1) corresponds to the case when the red robot is on edge e2

and the green robot is on edge e3, while the system of inequalities (1.2) corresponds to the

case when the red robot is on edge e3 and the green robot is on edge e2.

Similarly, the system of inequalities (1.3) (1.4) (1.5) gives 2-dimensional cells of Y 2
r,Le1

:

for i = 2, 3,

0 ≤ x1 ≤ Le1

0 ≤ x2 ≤ 1 = Lei

x1 + x2 ≥ r

(1.3)

0 ≤ x1 ≤ 1 = Lei

0 ≤ x2 ≤ Le1

x1 + x2 ≥ r

(1.4)

0 ≤ x1 ≤ Le1

0 ≤ x2 ≤ Le1

x1 + x2 ≥ r

(1.5)

There is another type of 2-dimensional cells in Y 2
r,Le1

and those cells correspond to the

case when the red robot and green robot are on the same edge of Y: for i = 1, 2, 3,

0 ≤ x ≤ 1 = Lei

0 ≤ y ≤ 1 = Lei

x− y ≥ r

(1.6)

0 ≤ x ≤ 1 = Lei

0 ≤ y ≤ 1 = Lei

y− x ≥ r

(1.7)

The system of inequalities (1.6) corresponds to the case when the distance between the

red robot and the center of YLe1
is greater than the distance between the green robot and the

center of YLe1
, while the system of inequalities (1.7) corresponds to the opposite scenario.
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1.1 - First Example

Note that the critical hyperplanes are

r = 1

r = 2

r = Le1

r = Le1 + 1

(1.8)

We then obtain the hyperplane arrangement in the parameter space where each point

(r,Le1) in the hyperplane corresponds to a restricted configuration space Y 2
r,Le1

, as shown

in figure 1.3. Note that Y 2
r1,l1 and Y 2

r2,l2 are homotopy equivalent (or even stronger, isotopy

equivalent) when the points (r1, l1) and (r2, l2) are contained in the same chamber.

1 2

1

2

Le1

r

Figure 1.3: The hyperplane arrangement
in R2 associated to Y 2

r,Le1

1 2

1

2

Le1

r

6 points

2 points
1 circle

4 points

Figure 1.4: Homotopy type of Y 2
r,Le1

We want to understand how much the space will change if we perturb the parameters.

For example, when Le1 = 1, the space Y 2
r,1 changes as r goes from 0.2 to 2:

Figure 1.5: Y 2
0.2,1 Figure 1.6: Y 2

0.4,1 Figure 1.7: Y 2
1,1 Figure 1.8: Y 2

1.3,1 Figure 1.9: Y 2
2,1

Note that the space Y 2
0.4,1 is a subspace of Y 2

0.2,1, and Y 2
1,1 is a subspace of Y 2

0.4,1. In

7



1.1 - First Example

general, for a ≤ b ∈ R>0,

Y 2
b,1 ⊆ Y 2

a,1

We hence obtain a filtration with one parameter r with a given edge length Le1 = 1.

Apply the 0-th homology functor H0(−; F) to each step of the filtration then we obtain a

persistence module PH0(Y 2
−,1; F) over the poset (R>0,≤)op . The barcode of H0(Y 2

−,1; F) is

shown in figure 1.10.

210 3

Figure 1.10: The barcode of PH0(Y 2
−,1; F)

Now we consider Y 2
r,2 with r varies. In other words, we consider the restricted configuration

spaces of Y when the length of edge e1 is 2. Figure 1.11- 1.15 illustrate the changes of Y 2
r,1

as r goes from 0.2 to 2:

Figure 1.11: Y 2
0.2,2 Figure 1.12: Y 2

0.4,2 Figure 1.13: Y 2
1,2 Figure 1.14: Y 2

1.3,2 Figure 1.15: Y 2
2,2

Note that for a ≤ b ∈ R>0,

Y 2
b,2 ⊆ Y 2

a,2

We hence obtain a filtration with one parameter r with a given edge length Le1 = 2.

Note that Y 2
r,2 is homotopy equivalent to S1 when 0 < r ≤ 1. When 1 < r ≤ 3, Y 2

r,2 is

homotopy equivalent to the space of 4 points. Applying the 0-th homology functor H0(−; F)

to each step of the filtration then we obtain a persistence module PH0(Y 2
−,2; F) over the

8



1.1 - First Example

poset (R>0,≤)op . The barcode of H0(Y 2
−,2; F) is shown in figure 1.16.

210 3

Figure 1.16: The barcode of PH0(Y 2
−,2; F)

The homotopy type of Y 2
r,Le1

for each r and Le1 is given in Figure 1.4. We want to

understand the 2-parameter persistence module PHi(Y 2
−,−; F). In particular, we want to

answer the following questions:

• Is PHi(Y 2
−,−; F) interval indecomposable?

• What are the indecomposable direct summands of PHi(Y 2
−,−; F)?

9



Chapter 2

Preliminaries

In this chapter, we revisit some basic notions and results which serve as background. We

will also introduce the notations that we are going to use in this thesis.

2.1 Some Category Theory

2.1.1 Basic Notions

Definition 2.1. A category C consists of the following data:

• a collection of objects, denoted by ob C;

• a collection of morphisms between objects, denoted by HomC(∗, ∗), such that

– for each object c of C, idc ∈ HomC(c, c);

– f ∈ HomC(c, c′) and g ∈ HomC(c
′, c′′) implies g ◦ f ∈ HomC(c, c′′).

satisfying the following axioms:

– for any f ∈ HomC(c, c′), f ◦ idc = f = idc′ ◦f ;

10



2.1 - Some Category Theory

– for any f ∈ HomC(c, c′), g ∈ HomC(c
′, c′′), and h ∈ HomC(c

′′, c′′′),

h ◦ (g ◦ f) = (h ◦ g) ◦ f

When the collection of morphisms of C is a set, C is called a small category. C is called

a locally small category when HomC(c, c′) is a set for all c, c′ ∈ ob C.

Definition 2.2. A category C is thin if HomC(c, c′) contains at most one element for all

c, c′ ∈ ob C.

Definition 2.3. A category C is connected if C is not empty and for all c, c′ ∈ ob C, c and

c′ is connected by a finite zigzag of morphisms.

Here are some categories that we are going to use in this thesis:

Example 1 (Poset as a category). Let (P ,≤) be a partially ordered set (poset, in short).

We can view (P ,≤) as a category where its objects are elements of P and in which c→ c′ ∈

mor (P ,≤) if and only if c ≤ c′. 4

Example 2 (Path category of a graph). Let Γ = (V ,E) be a graph. The path category of

Γ, denoted by Path(Γ), is a category where its objects are vertices of Γ and morphisms are

paths in Γ. 4

Example 3 (Category of groups). The category of groups, denoted by Group, has groups

as its objects and group homomorphisms as its morphisms. The category of abelian groups,

denoted by Ab, has abelian groups as its objects and group homomorphisms as its morphisms.

Ab is a full subcategory of Group. 4

Example 4 (Category of R-modules). Let R be a commutative ring with 1. The category

of R-modules, denoted by ModR, has R-modules as its objects and R-homomorphisms as its

morphisms. A full subcategory of ModR consists of finitely generated R-modules is denoted

by Modf.g.
R . 4

11



2.1 - Some Category Theory

Example 5 (Category of vector spaces). The category of vector spaces over the field F,

denoted by VectF, has vector spaces as its objects and linear transformations as its morphisms.

A full subcategory of VectF consists of finite dimensional vector spaces is denoted by vectF.

4

Example 6 (Category of topological spaces). The category of topological spaces, denoted

by Top, has topological spaces as its objects and continuous maps as its morphisms. 4

Definition 2.4. A category D is a subcategory of C if ob D is a subcollection of ob C

and HomD(d, d′) is a subcollection of HomC(d, d′) for all d, d′ ∈ ob D. Moreover, when

HomD(d, d′) = HomC(d, d′), D is called a full subcategory of C.

Definition 2.5. Given categories C and D, a (covariant) functor F : C→ D consists of

the following data:

• for all c ∈ ob C, Fc ∈ ob D;

• for all f ∈ HomC(c, c′), Fc ∈ HomD(Fc,Fc′)

satisfying the following axioms:

• F idc = idFc for all c ∈ ob C;

• for any f ∈ HomC(c, c′) and g ∈ HomC(c
′, c′′),

F(g ◦ f) = Fg ◦ Ff

Here are some functors that we are going to use in this thesis:

Example 7 (Forgetful functors). Forgetful functors (denoted by U) are functors that forget

some structures in the source category. Here are some forgetful functors:

1. U : Group→ Set, forgetting the group structure;

12



2.1 - Some Category Theory

2. U : Group → Set∗, forgetting the group structure but keeping the information of

identity element for each group;

3. U : Top→ Set, forgetting the topological structure;

4. U : Ring→ Ab, forgetting the multiplicative operation;

5. U : ModR → Ab, forgetting the scalar multiplication.

4

Example 8 (Homology). Let i be a natural number. The i-th homology group defines a

functor Hi(−) : Top → Ab where Hi sends each X to Hi(X) and each continuous map

f : X → Y to a group homomorphism Hi(f) : Hi(X)→ Hi(Y ). 4

Example 9 (Persistence module). Consider the poset (R,≤) as a category. A persistence

module is a functor M : (R,≤) → VectF where M sends each a ∈ R to a vector space Ma

and each arrow a ≤ b to a linear transformation M(a ≤ b) : Ma →Mb. Since (R,≤) is thin,

the functoriality of M implies M(a ≤ a) = idMa and M(a ≤ c) = M(b ≤ c) ◦M(a ≤ b). 4

Example 10 (Quiver representation). Let Path(Γ) be the path category of a direct graph Γ.

A quiver representation over Γ is a functor F : Path(Γ)→ VectF where F sends each vertex v

to a vector space Fv and each path f : v → w to a linear transformation Ff : Fv → Fw. 4

Definition 2.6. Given two functors F ,G : C→ D, a natural transformation α : F ⇒ G

consists of the following data:

• for all c ∈ ob C, αc : Fc→ Gc ∈ mor D;

• for all f : c→ c′ ∈ HomC(c, c′),the following diagram commutes in D:

Fc Fc′

Gc Gc′

Ff

αc αc′

Gf

13



2.1 - Some Category Theory

Here are some functor categories that we are going to use in this thesis:

Example 11 (Category of persistence modules). Let (R,≤) be a poset (as a category). We

use Vect(R,≤)
F to denote the category of persistence modules, where its objects are functors

from (R,≤) to VectF and morphisms are natural transformations. 4

Example 12 (Category of quiver representations). Let Path(Γ) be the path category on a

direct graph Γ. We use VectPath(Γ)
F to denote the category of quiver representations over Γ,

where its objects are functors Path(Γ)→ VectF and morphisms are natural transformations.

4

The category of persistence modules and the category of quiver representations are

examples of the category of functors.

Example 13 (Category of functors). Let C and D be two categories. Then the category

of functors from C to D has functors C → D as its objects and natural transforms as its

morphisms. We use DC to denote this category. 4

The category of functors may not be locally small. In particular, when C and D are

locally small, DC is not guaranteed to be locally small. The next proposition is useful.

Proposition 2.7. Let C be a locally small category and D be a small category, then DC is

locally small.

Definition 2.8. Let F ,G : C → D be functors. We say F is naturally isomorphic to G

(denoted by F ∼= G) if there exists a natural transformation λ : F ⇒ G such that λc is an

isomorphism in D for all c ∈ ob C.

Definition 2.9. A functor F : C → D is said to be full if the map HomC(c, c′) →

HomD(Fc,Fc′) is surjective, and is said to be faithful if the map HomC(c, c′)→ HomD(Fc,Fc′)

is injective. F is said to be essentially surjective if for all d ∈ ob D there exists c ∈ ob C

such that Fc ∼= d.

14
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Definition 2.10. Let C and D be two categories. We say C is equivalent to D if there

exists F : C→ D and G : D→ C such that F ◦ G ∼= idD and G ◦ F ∼= idC.

Theorem 2.11. C and D are equivalent if there exists a functor F : C → D which is

fully-faithful and essentially surjective.

2.1.2 Limits and Colimits

In this section, a diagram in C (over a category J, called a shape) is a functor F : J→ C,

where J is the path category of a directed graph.

Example 14 (Trivial diagram). Let c ∈ ob C. A trivial diagram in C over a given shape J

is a functor c : J→ C where c sends each vertex of J to c and each arrow of J to idc. 4

Definition 2.12. Let F : J→ C be a functor. A cone over F with summit c is a natural

transformation λ : c ⇒ F and a cone under F with nadir c is a natural transformation

λ : F ⇒ c.

Definition 2.13. Let F : J → C be a functor. The limit of F , denoted by limJF , is an

object of C along with a universal cone λ : limJF ⇒ F satisfying the following condition:

for all µ : c ⇒ F , there exists a unique natural transformation α : c ⇒ limJF such that

µi = λi ◦ αi for all i ∈ ob J.

Equivalently, we can define limJF to be the representative of the functor Cone(−,F) :

C→ Set, in other words,

HomC(−, limJF) ∼= Cone(−,F)

Dually, we can define colimits.

Definition 2.14. Let F : J → C be a functor. The colimit of F , denoted by colimJF , is

an object of C along with a universal cone λ : F ⇒ limJF satisfying the following condition:

15
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for all µ : F ⇒ c, there exists a unique natural transformation α : colimJF ⇒ c such that

µi = αi ◦ λi for all i ∈ ob J.

Example 15 (Product and Coproduct). Let J be a discrete category and F : J → C.

Assume C has limits and colimits over J. The product of Fj , denoted by ∏
j∈J
Fj , is the limit

of F . In other words, ∏
j∈J
Fj = limJF . Dually, the coproduct of Fj , denoted by ∐

j∈J
Fj , is the

colimit of F . In other words, ∐
j∈J
Fj = colimJF . 4

2.1.3 Direct limit and its Properties

A set I is called a directed set if it has a preorder with an additional property that every

pair of elements of I has an upper bound. A directed system in C over the directed set

I (denoted by {Xi}i∈I) is a functor X : I → C. Since I is a preorder, X has the following

properties:

1. for all i, j ∈ I, |HomC(Xi,Xj)| ≤ 1;

2. X(i ≤ i) = idXi
for all i ∈ I;

3. X(j ≤ k) ◦X(i ≤ j) = X(i ≤ k), for all i, j, k ∈ I where i ≤ j ≤ k.

Definition 2.15. Let {Xi}i∈I be a directed system. The direct limit of {Xi}i∈I is the

colimit of X, in other words,

lim−−→Xi = colimIX

Notation: We denote the (unique) map X(i ≤ j) : Xi → Xj (i ≤ j) by fij ; we use pi

represents the map Xi → lim−−→Xi, which is a leg map of the colimit cone.

Note that, by the universal property of the direct sum, there exists a unique morphism⊕
i∈I

Xi → lim−−→Xi. In particular, the following proposition provides an explicit construction of

lim−−→Xi. Let λi : Xi →
⊕
i
Xi be the canonical morphism for all i ∈ I.

16
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Proposition 2.16. Let C = ModR. Then lim−−→Xi = colimIX ∼=
⊕
Xi/S, where S is the

submodule of M generated by λj ◦X(i ≤ j)− λi for all i ≤ j ∈ I.

Proof. See [42] Proposition 5.23.

Lemma 2.1. Let {Xi}i∈I be a directed system where Xi ∈ ModR for all i ∈ I. Then L is

the direct limit of {Xi}i∈I iff the following conditions hold:

1. Given x ∈ L, there exists i ∈ I and xi ∈ Xi such that pi(xi) = x.

2. If there exists xi ∈ Xi for some i ∈ I such that pi(xi) = 0, there exists j ∈ I with

j ≥ i such that fij(xi) = 0.

Proof of lemma. (⇒) is given in [46] Lemma 2.6.14.

(⇐) We want to show for any cocone under {Xi}i∈I with nadir M with leg maps (mi)i∈I ,

there exists a unique map

φ : L→M

such that mi = φ ◦ pi for all i ∈ I. By the condition (1), we are forced to define φ(x) =

mi(xi) where pi(xi) = x for some i ∈ I. Suppose there is another xj in Xj such that

pj(xj) = x, without loss of generality, we assume i ≤ j. Notice that pj(fij(xi)) = pi(xi)

hence pj(xj − fij(xi)) = pj(xj)− pi(xi) = x− x = 0. Therefore, by condition (2), there

exists k ∈ I with k ≥ j such that fjk(xj − fij(xi)) = 0. Hence mkfjk(xj − fij(xi)) = 0, i.e.,

mj(xj)−mi(xi) = 0, which implies φ is well-defined.

Theorem 2.17. Let {Xi}i∈I be a directed system where Xi are open subset of an ambient

topological space and Xi → Xj is an inclusion map if i ≤ j. Then

lim−−→πn(Xi) ∼= πn(lim−−→Xi)

17
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Proof. Given [σ] ∈ πn(lim−−→Xi), then σ is a map from Sn to lim−−→Xi =
⋃
Xi. Since Sn is

compact, there exists Xk such that Imσ ⊆ Xk. That means [σ] ∈ πn(Xk).

On the other hand, if there exists [σ] ∈ πn(Xi) such that σ ∼ 0 in πn(lim−−→Xi). Let

H : Sn × I → lim−−→Xi be the homotopy. Note that Sn × I is compact, there must exist Xk

such that ImH ⊆ Xk. Hence σ ∼ 0 in πn(Xk).

By the Lemma 2.1, we conclude that lim−−→πn(Xi) ∼= πn(lim−−→Xi).

Theorem 2.18. lim−−→− is exact.

Proof. Let {Xi}i∈I , {Yi}i∈I , {Zi}i∈I be directed systems where for each i ∈ I, Xi
fi−→ Yi

gi−→

Zi is exact at Yi. Denote αij : Yi → Yj and βij : Zi → Zj . Denote pi : Xi → lim−−→Xi,

qi : Yi → lim−−→Yi and ri : Zi → lim−−→Zi We want to show the following sequence is exact:

lim−−→Xi
F−→ lim−−→Yi

G−→ lim−−→Zi

First, the existence of F and G is clear by the universal property of direct limits.

Second, notice that gi ◦ fi = 0 for all i ∈ I (which means the map gi ◦ fi : Xi → Zi

factors through 0), hence we have G ◦ F = 0.

On the other hand, given y ∈ kerG, we have G(y) = 0. By the previous lemma, there

exists yi ∈ Yi for some i ∈ I such that qi(yi) = y. Hence we have (G ◦ qi)(yi) = G(y) = 0.

Note thatG◦ qi = rigi we have rigi(yi) = 0. By the previous lemma, there exists Zj such that

βij(gi(yi)) = 0. Note that βijgi = gjαij hence gjαij(yi) = 0. Note that Xj
fj−→ Yj

gj−→ Zj is

exact, there exists xj ∈ Xj such that fj(xj) = αij(yi). Hence we have

F ◦ pj(xj) = qjfj(xj) = qjαij(yi) = qi(yi) = y

Hence kerG ⊆ ImF .
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2.1.4 Generators of Categories and Projective Objects

Definition 2.19. Let C be a category. A collection of objects {Ui}i∈I is called a collection

of generators of C if for any pair of distinct morphisms f , g ∈ HomC(A,B), there exists

u ∈ HomC(Ui,A) for some i ∈ I such that fu 6= gu.

Note that if P ∈ C is projective and h : P → Ui is an epimorphism where Ui is a

generator of C, then P is a generator of C because: for distinct functions f , g : A→ B such

that fu 6= gu, where u : Ui → A, h is an epimorphism implies (fu)h 6= (gu)h

Proposition 2.20. Assume C has coproduct. Then an object U generates C if and only if

there exists a epimorphism γ : colimJU → A for every A ∈ C.

Proof. Assume U generates C. Then for any pair of distinct morphisms f , g ∈ HomC(A,B),

there exists u : U → A in C such that fu 6= gu. Let colimJU denote that coproduct of U

over the shape J = HomC(U ,A). Note that γ : colimJU → A is an epimorphism: let h 6= k

where h, k ∈ HomC(A,B) and u : U → A in C such that hu 6= ku. Let σu : U → colimJU be

the u-th leg map of the colimit cone. Then u = γσu. Since

hγσu = hu 6= ku = kγσu

we conclude that hγ 6= kγ. Therefore, γ is an epimorphism.

Conversely, let f , g ∈ HomC(A,B) to be a pair of distinct morphisms. Because there

exists a epimorphism γ : colimJU → A for every A ∈ ob C, fγ 6= gγ. Then there exists

σu : U → colimJU (which is the u-th leg map of the colimit cone) such that

fγσu 6= gγσu
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where γσu : U → A.

Definition 2.21. Assume C has coproduct and {Ui}i∈I be a collection of generators of C.

We call an object A ∈ C is finitely generated if there exists an epimorphism
n⊕

k=1
Uik
→ A

where i1, . . . , in ∈ I for some natural number n. A is free if there exists J ⊆ I such that

A ∼=
⊕
i∈J

Ui.

Definition 2.22. Let A be a small abelian category. Let E be a collection of epimorphisms

of A. An object A of A is E-projective if Hom(A,α) is an epimorphism for all α ∈ E . The

collection of E-projectives is denoted by pE. Let P be a collection of objects of A and eP

denote the collection

eP = {α ∈ MorA | α is an epimorphism and Hom(A,α) is an epimorphism for all A ∈ P. }

Note that E ⊆ E ′ implies pE ⊇ pE ′ and P ⊆ P ′ implies eP ⊇ eP ′. Moreover, epE ⊇ E

and peP ⊇ P . We can view e as a functor from the power sets of A to the power sets of

the collection of the epimorphisms of A and view p as a functor from the power sets of the

collection of the epimorphisms of A to the power sets of A. Then e a p and we obtain the

Galois connection between those two categories:

epeP = eP and pepE = pE

Definition 2.23. Let A be an abelian category and E be a collection of epimorphisms of A.

E is called closed if there exists a collection of objects of A, denoted by P, such that E = eP.

Moreover, if for every A ∈ ObjA there exists α : P → A where P ∈ pE, then E is called a

projective class of A.

Lemma 2.2. Let A be an abelian category and E be a projective class of A. If there is a

morphism α : A → B in A such that HomA(P ,α) is an epimorphism for all P ∈ pE , then
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2.1 - Some Category Theory

α ∈ E .

Proof of lemma. Since E be a projective class of A, E = eP for some P ⊆ MorA and

there exists β ∈ E where β : P → B and P ∈ pE . Note that HomA(P ,α) is an epimorphism,

there exists γ : P → A in A such that α ◦ γ = β. Since β is an epimorphism, so is α. Since

HomA(P ,α) is an epimorphism for all P ∈ pE , we obtain α ∈ epE . Note that E = eP , we

have

epE = epeP = eP = E

Therefore, α ∈ E . ■

Lemma 2.3. Let T : A → B be a faithful functor and α : A → A′ be a morphism in A. If

Tα is an epimorphism, so is α.

Proof of lemma. Assume there exists f , g ∈ MorA such that f ◦ α = g ◦ α. Applying

the functor T to this equation, by the functoriality of T , we get Tf ◦ Tα = Tg ◦ Tα. Note

that Tα is an epimorphism, therefore, Tf = Tg. Hence f = g because T is faithful. ■

Theorem 2.24. Consider S : B→ A and T : A→ B such that S a T . Assume T is faithful.

Let E be a projective class of B. Then T−1E is a projective class of A and p(T−1E) consists

of objects of the form SP or retractions of SP , where P ∈ pE.

Proof. Given α ∈ T−1E , Tα ∈ E . Hence for all P ∈ pE , HomB(P ,Tα) is an epimorphism.

Since S a T , HomB(P ,Tα) is an epimorphism implies HomA(SP ,α) is an epimorphism.

Therefore, SP ∈ p(T−1E).

Given α ∈ ep(T−1E), HomA(SP ,α) is an epimorphism for all P ∈ pE because SP ∈

p(T−1E). Since S a T , this implies HomB(P ,Tα) is an epimorphism for all P ∈ pE . Hence
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Tα ∈ epE . Since E is a projective class, hence is closed, there exists P ⊆ ObjB such that

E = eP . Hence epE = E and Tα ∈ E . Thus α ∈ T−1E , in other words, T−1E is closed.

Given A ∈ ObjA, note that TA ∈ ObjB and E is a projective class, there exists α :

P → TA in E for some P ∈ pE . Since S a T , α[ := εA ◦ Sα ∈ HomA(SP ,A). Note that

εA ◦ Sα ∈ T−1E , that is, Tα[ ∈ E : for all Q ∈ pE , the map

HomB(Q,Tα[) : HomB(Q,TSP )→ HomB(Q,TA)

is an epimorphism because HomB(Q,α) is an epimorphism, and we have the following

commutative diagram.

HomB(Q,P )

HomB(Q,TSP ) HomB(Q,TA)

HomB(Q,ηP ) HomB(Q,α)

HomB(Q,T α[)

Note that SP ∈ p(T−1E), we conclude that T−1E is a projective class.

Given A ∈ p(T−1E), note that TA ∈ ObjB and E is a projective class, there exists

α : P → TA in E for some P ∈ pE . Note that α[ ∈ T−1E and A ∈ p(T−1E), HomA(A,α[)

is an epimorphism, in particular, there exists γ : A → SP such that α[ ◦ γ = idA. Hence A

is a retract of SP for some P ∈ pE .

Proposition 2.25. Consider S : B → A and T : A → B such that S a T . Assume T is

faithful. Let E be a projective class of B. If there exists a functor R : A→ B such that

1. there exists µ : RS ⇒ idB;

2. for all α : SP → A where P ∈ pE and A ∈ p(T−1E), R(α) is an isomorphism implies
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α is an isomorphism.

Then A ∈ p(T−1E) implies A ∼= SP for some P ∈ pE .

Proof. Let A ∈ p(T−1E). T−1E is a projective class of A, there exists P ∈ pE and α : SP →

A in T−1E such that A is a retract of SP , i.e.,

A→ SP → A

Apply R to the above diagram, we obtain

RA→ RSP → RA

Note that µ : RS ⇒ id is an equivalence, in particular, RSP ∼= P , we get

RA→ P → RA

Hence RA is a retract of P . Since P ∈ pE , so is RA. Note that SRA is a retract of SP

because

SRA→ SP → SRA

We claim that SRA ∼= A.

Lemma 2.4. The co-unit morphism εA : STA→ A is an element of T−1E .

Proof of lemma. Apply T to εA : STA→ A, we obtain TεA : TSTA→ TA. Note that

for every P ∈ pE ,

TεA∗ : Hom(P ,TSTA)→ Hom(P ,TA)
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is an epimorphism: for every f ∈ Hom(P ,TA), note that ηT A ◦ f ∈ Hom(P ,TSTA) and

TεA∗(ηT A ◦ f) = TεA ◦ ηT A ◦ f = idT A ◦f = f

By Lemma 2.2, TεA ∈ E . Therefore, εA ∈ T−1E . ■

Since A is T−1E-projective, there exists γ : A→ STA such that εA ◦ γ = idA. Consider

SRA
SRγ−−−→ SRSTA

SµT A−−−→ STA
εA−→ A

By applying R to the above diagram, we obtain

RSRA
RSRγ−−−−→ RSRSTA

RSµT A−−−−→ RSTA
RεA−−→ RA

Note that the diagram
RSRSTA RSTA

RSTA TA

RSµT A

µRST A µT A

µT A

is a commutative because µ is a natural transformation. In other words, µT A ◦ µRST A =

µT A ◦RSµT A. Because µT A is an isomorphism, we obtain µRST A = RSµT A. Consider the

following diagram
RSRA RSRSTA

RA RSTA

RSRγ

µRA RSµT A

Rγ

This diagram is commutative because µ is a natural transformation and RSµT A = µRST A.
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Therefore,
RεA ◦RSµT A ◦RSRγ = RεA ◦Rγ ◦ µRA

= R(εA ◦ γ) ◦ µRA

= R(idA) ◦ µRA

= µRA

(2.1)

Therefore, RεA ◦RSµT A ◦RSRγ is an isomorphism because µRA is an isomorphism.

Theorem 2.26. Let I be a poset and E be a projective class of vect. Then the projective class

of vectI
F, denoted by E (I), consist of morphisms in vectI

F which are pointwise E-projective

and pE (I) consist of objects of the form ⊕
i∈I
Si(Pi) where Pi ∈ pE for all i ∈ I.

2.2 Graphs and Posets

A directed graph (also called digraph or quiver) Q = (V ,E, s, t) consists of two sets

V (called the set of vertices) and E (called the set of arrows), and two maps s, t : E → V

where s sends each edge to its source, and t sends each edge to its target. Q = (V ,E, s, t)

is said to be finite if V and E are finite sets. We can view a quiver Q = (V ,E, s, t) as a

category where V is the set of objects and the set of morphisms consists of all finite (directed)

paths in Q. We say the quiver Q is connected if Q is a connected as a category.

A graph Γ = (V ,E, ∗) is a digraph equipped with an involution ∗ on the set of arrows

A such that a∗∗ = a, sa∗ = ta and sa = ta∗ for all a ∈ A. The edge E of Γ are pairs {a, a∗}

for all a ∈ A, i.e., E is a set of unoriented arrow of Γ. When V and E are finite sets, we call

Γ a finite graph. We can view Γ = (V ,E, ∗) as a category where V is the set of objects

and the set of morphisms consists of all finite paths in Γ. We say the graph Γ is connected

if Γ is a connected as a category.
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A tree is a connected graph with no loops or cycles. A star graph with k leaves is a

tree with k + 1 vertices and k edges such that there is exactly one vertex has degree k and

the degree of the other vertices is 1.

...

1

2

k

3

4

5

Figure 2.1: Stark

A partially ordered set (or poset) is a set P with a partial order ≤:

1. a ≤ a for all a ∈ P ;

2. a ≤ b and b ≤ a implies a = b, for all a, b ∈ P ;

3. a ≤ b and b ≤ c implies a ≤ c, a, b, c ∈ P .

We use (P ,≤) to denote the set P with the partial order ≤.

A subposet I of (P ,≤) is connected if I is connected as a subcategory of (P ,≤). I is

convex if for every x ≤ z ≤ y ∈ P , x, y ∈ I implies z ∈ I.

Definition 2.27 (Interval of a poset). I ⊆ (P ,≤). I is called an interval if it is convex and

connected.

(P ,≤) is locally finite if every interval of P is finite.

A poset (P ,≤) is bounded if P contains an initial element and a terminal element as a

category. A subset U of (P ,≤) is called an upset if for any x ∈ U , x ≤ y implies y ∈ U for
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any y ∈ (P ,≤). Dually, a subset D of (P ,≤) is called an downset if for any x ∈ D, w ≤ x

implies w ∈ D for any w ∈ (P ,≤). Given an upset U (as a subposet of (P ,≤)), we call U

a principal upset if there exists a ∈ P such that a ≤ x implies x ∈ U for any x ∈ (P ,≤).

Dually, given an upset D (as a subposet of (P ,≤)), we call D a principal downset if there

exists b ∈ P such that y ≤ b implies y ∈ D for any y ∈ (P ,≤).

Let a, b ∈ P . a is said to cover b if b < a and there is no element c ∈ P such that

b < c < z. We write b ≺ a when a covers b.

When (P ,≤) is finite, we can construct a graph on the plane as follows:

1. each element of (P ,≤) gives a vertex of the digraph;

2. For all a, b ∈ P , place the vertex a above1 the vertex b if b < a;

3. For all a, b ∈ P , place a line segment between a and b if b ≺ a.

This digraph is called the Hasse diagram of (P ,≤)

2.3 Category of Graded Modules

Let J be a monoid. A J-graded ring R is a ring such that R ∼=
⊕
i∈J

Ri where Ri is a

subgroup of R for all i ∈ J , such that Ri ·Rj ⊆ Ri+j . In addition, when R is an algebra over

a field F and Ri is a vector space over F for all i ∈ J , R is called a graded F-algebra. Let

R and R̂ be two J-graded rings. f : R → R̂ is a graded ring homomorphism if f is a

ring homomorphism and f(Ri) ⊆ R̂i for all i ∈ J . The category of J-graded rings, denoted

by GrJRing, has graded rings as objects and graded ring homomorphisms as its morphisms.
1a is above b means that the y-coordinate of a is greater than the y-coordinate of b on the xy-plane.
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Example 16. F[x] is a N-graded ring via F[x]i := Fxi for all i ∈N. 4

Recall that a partially ordered set is a pair (S,≤) consisting of a set S and a partial

order ≤ on S. A group G is called a partially ordered group if its underlying set UG is

a partially ordered set, where U is the forgetful functor U : Group → Set, satisfying the

following condition

if a ≤ b ∈ G, then ag ≤ bg, for all g ∈ G

A ring can have multiple gradings.

Example 17. R := F[x1, . . . ,xd] is a N-graded ring via F[x1, . . . ,xd]i = Ri, where Ri is

the abelian group generated by the monomials of degree i. 4

Example 18. R := F[x1, . . . ,xd] is a Nd-graded ring via F[x1, . . . ,xd]n1,...,nd
= Fxn1

1 · · · x
nd
d .

4

Proposition 2.28. Let J be a monoid and R be a J-graded ring. Then

1. R0 is a subring of a J-graded ring R, where 0 ∈ J is the identity element;

2. 1R ∈ R0;

3. Ri ∈ModR0 for all i ∈ J .

Let J be a monoid and R be an J-graded ring. An R-module M is called an (J-graded)

R-module if there exists a collection of subgroups of M (denoted by {Mi}) such that

M ∼=
⊕
i∈J

Mi and Ri ·Mj ⊆ Mi+j . Let M ,N be (J-graded) R-modules. f : M → N is a

graded R-module homomorphism if f is an R-module homomorphism and f(Mi) ⊆ Ni

for all i ∈ J . The category of (J-)graded R-modules, denoted by GrJModR, has graded

R-modules as objects and graded R-module homomorphisms as its morphisms.

When J = Z×Z, we call M a bigraded module. Given two bigraded modules M and

N , a morphism f : M → N has degree (a, b) if f = (fij)ij∈J where fij : Mij → Ni+a,j+b.
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2.4 Mayer-Vietoris Spectral Sequences

In this section, we give an introduction to the Mayer-Vietoris spectral sequences. The set

up for the general spectral sequences can be found in any standard textbooks on homological

algebra, for example, [46] and [42]. We are going to use A to denote an abelian category.

A (homology) spectral sequence in A is a collection of objects {Er
pq} of A, for all

p, q ∈ Z and r ≥ a (for a fixed a), together with morphisms dr
pq : Er

pq → Er
p−r,q+r−1 such

that dr
pq ◦ dr

p−r,q+r−1 = 0, satisfying

Er+1
pq
∼=

kerdr
pq

Im dr
p+r,q−r+1

For each r, the collection of Er
pq is called the r-th page of the spectral sequence. {Er

pq} is

said to be bounded if for each n := p+ q (called the total degree of Er
pq), there exists only

finitely many non-zero term Ea
pq.

When Er
pq = 0 unless p ≥ 0 and q ≥ 0, {Er

pq} is called a first quadrant spectral

sequence. When r is sufficiently large, dr
pq : Er

pq → Er
p−r,q+r−1 is the zero map since Er

pq=0

or Er
p−r,q+r−1 = 0. Hence Er

pq = Er+1
pq for large r. Note that every first quadrant spectral

sequence is bounded.

Definition 2.29. Let {Er
pq} be a bounded spectral sequence. Then {Er

pq} converges to H

(denoted by Er
pq ⇒ H) if there exists a collection of objects Hn ∈ ob A and a filtration

0 = FsHn ⊆ · · · ⊆ Fp−1Hn ⊆ FpHn ⊆ · · · ⊆ FtHn = Hn
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for each n and

E∞
pq
∼=

FpHn

Fp−1Hn
=

FpHp+q

Fp−1Hp+q

for each p, q ∈ Z where p+ q = n.

We will heavily use the next proposition in chapter 4.

Proposition 2.30. Let {Er
pq} be a bounded spectral sequence where E2

pq = 0 unless p = 0

or p = 1. If Er
pq ⇒ H, then there exists a short exact sequence

0→ E2
0n → Hn → E2

1,n−1 → 0

for each n.

Proof. Note that Er
pq ⇒ H, there exists a filtration of H such that for each n,

0 = FsHn ⊆ · · · ⊆ Fp−1Hn ⊆ FpHn ⊆ · · · ⊆ FtHn = Hn

such that E∞
pq
∼=

FpHp+q

Fp−1Hp+q
. For each p, q, d2

pq : E2
pq → Er

p−2,q+1 is a zero morphism

because E2
pq = 0 unless p = 0 or p = 1. Therefore, the E2 page has no no-trivial arrows.

Hence E2 = E∞, and

E2
pq
∼=

FpHp+q

Fp−1Hp+q

Note that n = p+ q, hence

• when p 6= 0 and p 6= 1, E2
pq = 0 =

FpHn

Fp−1Hn
. Hence FpHn = Fp−1Hn for all p 6= 0 and

p 6= 1, and the filtration becomes to

0 = FsHn = · · · = F−2Hn = F−1Hn ⊆ F0Hn ⊆ F1Hn = F2Hn = · · · = FtHn = Hn

• when p = 0, E2
pq = E2

0q
∼=

F0Hn

F−1Hn
. Since F−1Hn = 0, we obtain E2

0q
∼= F0H0+q;
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• when p = 1, E2
pq = E2

1q
∼=

F1Hn

F1−1Hn
=

Hn

F0Hn
.

Note that there is a short exact sequence

0→ F0Hn ↪→ Hn → Hn/F0Hn → 0

Therefore,

0→ E2
0,n → Hn → E2

1,n−1 → 0

Definition 2.31. A double complex is an ordered triple (M , d′, d′′), where M is a bigraded

module and d′, d′′ are differential maps of bidegree (−1, 0) and (0,−1) such that d′ ◦ d′′ +

d′′ ◦ d′ = 0.

In other words, for all p, q ∈ Z,

d′
pq : Mp,q →Mp−1,q

and

d′′
pq : Mp,q →Mp,q−1

Definition 2.32. A total complex of a double complex (M , d′, d′′) is a complex where its

n-th term is ⊕
p+q=n

Mp,q. We use Tot(M)n to denote the term ⊕
p+q=n

Mp,q.

Lemma 2.5. {Tot(M)n} is a chain complex, where d = ∑
p+q=n

d′
pq + d′′

pq.

Let X be a CW-complex. Consider a cover U := {Xi}i∈I of X where I is a totally

ordered set and Xi is a subcomplex of X for all i ∈ I. Note that for i1 < i2 < · · · < in, there

is an inclusion map

C(Xi1 ⊕ · · · ⊕Xin)→ C(Xi1 ⊕ · · · ⊕ X̂ik
⊕ · · · ⊕Xin)
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where X̂ik
means we remove the k-th direct summand from the given expression. Therefore,

it induces a unique map

⊕
i1<···<in

C(Xi1 ⊕ · · · ⊕Xin)→
⊕

j1<···<jn−1

C(Xj1 ⊕ · · · ⊕Xjn−1)

Therefore, we obtain a sequence

· · · →
⊕

i1<···<in

C(Xi1 ⊕ · · · ⊕Xin)→
⊕

j1<···<jn−1

C(Xj1 ⊕ · · · ⊕Xjn−1)→ · · ·

→
⊕

i

C(Xi)→ C(X)→ 0
(2.2)

Lemma 2.6. The sequence given in (2.2) is exact, and Epq ⇒ Hp+q(X) where

E2
pq = Hp(E

1
pq) = Hp(

⊕
σ∈Nerve(U)

Hq(Xσ))

Proof. See [10] pp 166-167.

2.5 Quiver Representations

Let Q be a quiver (viewed as a category). A quiver representation over the quiver Q

is a functor M : Path(Q)→ VectF. M is thin if dimMv ≤ 1 for all v ∈ ob Path(Q).

Let An denote the quivers whose underlying graph is

where the graph has n vertices.
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Theorem 2.33. Any representation of a type An quiver is a direct sum of thin indecomposable

representations.

The converse of Theorem 2.33 is true as well.

Theorem 2.34. Let Q be a finite connected quiver. If every indecomposable representation

of the quiver Q is thin, then Q is a type An quiver.

Let Γ = (V ,E, s, t) be a finite quiver and kΓ be the path algebra of Γ. The arrow ideal

RΓ of kΓ is the two-sided ideal generated by the arrows (i.e., path of length 1) of Γ. RΓ has

a natural N-grading:

RΓ
∼=

∞⊕
i=1

kΓi

where Γi is the set of paths of Γ which have length i. We use Rm
Γ to denote the subalgebra

of RΓ generated by all paths of length greater or equal to m:

Rm
Γ
∼=

∞⊕
i=m

kΓi

It is clear that RΓ ⊇ R2
Γ ⊇ R3

Γ ⊇ R4
Γ ⊇ · · · ⊇ Rm

Γ ⊇ · · ·

Definition 2.35. A two-sided ideal I of kΓ is an admissible ideal if there exists an integer

m ≥ 1 such that

Rm
Γ ⊇ I ⊇ R2

Γ

Example 19. Let Γ = (V ,E, s, t) be a finite quiver and a, b, c, d ∈ E. Let I1 be the ideal

of kΓ generated by ab− cd and I2 be the ideal of kΓ generated by ab− c. Then I1 is an

admissible ideal while I2 is not. 4

Theorem 2.36 (Fitting’s lemma). Let R be a ring and M ∈ModR with finite length. Then

for any φ ∈ End(M), there exists a positive integer n such that

M ∼= kerφn ⊕ Imφn
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2.6 - Configuration Spaces

2.6 Configuration Spaces

Configuration space is one of the key notions used in robot motion planning. Given a

motion planning problem, each point of the configuration space corresponds to a possible

position where robots can appear without colliding with other robots. For a topological

space X, the n-th configuration space of X is

Xn = {(x1, . . . ,xn) ∈ Xn | xi 6= xj if i 6= j} = {x : n→ X | x is injective, n := {1, . . . ,n}}

We interpret the n-th configuration space of a topological space X as n distinguished robots

(treated as points) moving on X. When X is path-connected, the n-th configuration space

Xn is path-connected if any pairs of robots can interchange positions on X.

Example 20. Let X = [0, 1] and n = 2. The second configuration space of X is:

[0, 1]2 = {(x1,x2) ∈ [0, 1]× [0, 1] | x1 6= x2}

It is clear that [0, 1]2 is not path-connected and not compact. 4

Figure 2.2: [0, 1]2.

Example 21 (Y 2). Let Y denote the topological space of shape Y = [0, 1]t [0, 1]t [0, 1]/0 ∼

0 ∼ 0 (as a subspace of R2). The second configuration space of Y is:

We interpret Y 2 as the configuration space of two robots moving on the shape Y and

different regions of Y 2 correspond to different positions of the robots on Y . For any i ∈
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2.6 - Configuration Spaces

Figure 2.3: Y 2: Second configuration space of Y (all edges have length 1)[1]

{A,B}, let xi denote the position of robot i on edge 1 where the distance between the robot

i and the center of Y is xi. Similarly, for any i ∈ {A,B}, let yi denote the position of robot i

on edge 2 where the distance between the robot i and the center of Y is yi, and let zi denote

the position of robot i on edge 3 where the distance between the robot i and the center of Y

is zi. With these notation, every point of Y 2 can be written uniquely in terms of xi, yi and

zi (where i ∈ {A,B}):

(xA,xB, yA, yB, zA, zB)

Some symmetries exist on Y 2. For example, in figure 2.4, any point in the yellow rectangle

has a mirror image in the green rectangle about the common edge of the two rectangles.

For simplicity, we assume edge 2 is the common edge of the yellow rectangle and the green

rectangle, and robot B is moving on edge 2. Then any point in the yellow rectangle represents

the case in which robot A is on edge 1 at position xA and robot B is on edge 2, and the

distance between robot B and the center of Y is yB. In other words, every point in the yellow

rectangle can be represented by (xA, 0, 0, yB, 0, 0) and its mirror image is (0, 0, 0, yB,xA, 0).

Note that one obtains (0, 0, 0, yB,xA, 0) from (xA, 0, 0, yB, 0, 0) by moving the robot A from

edge 1 to the same position on edge 3 while the position of the robot B stays the same.

In figure 2.5, any point in the yellow rectangle has a symmetrical point in the green

rectangle from the center of Y . Any point (xA, 0, 0, yB, 0, 0) in the yellow rectangle represents
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2.6 - Configuration Spaces

the case in which robot A is on edge 1 at position xA and robot B is on edge 2 at position

yB. Note that (0, yB,xA, 0, 0, 0) is the symmetrical point of (xA, 0, 0, yB, 0, 0) and one get

(0, yB,xA, 0, 0, 0) from (xA, 0, 0, yB, 0, 0) by exchanging the positions of robot A and robot B.

Figure 2.4 Figure 2.5 Figure 2.6

In figure 2.6, any point in the yellow triangle on the left has a symmetrical point in the

yellow rectangle on the right from the center of Y . Because any point in the yellow triangle

on the left represents the case in which robot A is on edge 2 at position yA and robot B is

on edge 2 at position yB. Hence one obtains (0, 0, yB, yA, 0, 0) from (0, 0, yA, yB, 0, 0) in the

configuration space Y 2 by exchanging the positions of robot A and robot B.

It is clear that Y 2 is path-connected, hence [0, 1]2 is not homotopy equivalent to Y 2:

if [0, 1]2 is homotopy equivalent to Y 2, then πn([0, 1]2) ∼= πn(Y 2) for any n ∈ N. In

particular, π0([0, 1]2) ∼= π0(Y 2), which is a contradiction because π0([0, 1]2) ∼= Z⊕Z while

π0(Y 2) ∼= Z. Therefore, homotopy equivalent spaces do not always have homotopy equivalent

configuration spaces. 4

Here are some well-known facts about the n-th configuration spaces.

Proposition 2.37. If X is connected, Hausdorff and compact topological space, Xn (when

n ≥ 2) is not compact.

Proof. Since X is compact, Tychonoff’s theorem implies Xn is compact. Note that X is

Hausdorff, hence the diagonal of X is closed, i.e., ∆i<j := {(x1, . . . ,xn) ∈ Xn : xi = xj} is
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closed. Hence the finite union ⋃
1≤i<j≤n

∆i≤j is closed. Because Xn = Xn − ∆, Xn is open.

Assume Xn is compact. Since X is Hausdorff, so is Xn. Therefore, Xn is closed in Xn

because Xn is a compact subspace of a Hausdorff space. Hence Xn is both open and closed.

Note that X is connected, so is Xn. Therefore, Xn = Xn. Contradiction.

Proposition 2.38. If X is Hausdorff and not discrete, Xn (when n ≥ 2) is not compact.

Proposition 2.39. Let X be a connected compact simplicial complex, Xn is connected

unless

• X ∼= D1 and n ≥ 2;

• X ∼= S1 and n ≥ 3.

For a topological space X, there is a free group action on the n-th configuration spaces

of X:
Sn ×Xn → Xn

(σ, x) 7→ x ◦ σ

Since x is injective, Sn acts freely on Xn. Denote (X
n ) := Xn/Sn to the quotient space

of Xn under the group action Sn.

Definition 2.40. (X
n ) := Xn/Sn is called the n-th unlabeled configuration space of X.

Similar to the labeled configuration space Xn, we can interpret the n-th unlabeled

configuration space of X as n robots (treat as points) moving on X as follows: given

2 ≤ k ≤ n, let Sk denote the subgroup of Sn generated by {(1, 2), (1, . . . , k)}. Then Xn/Sk

is the configuration space of n robots where the first k robots are indistinguishable. If X is

Hausdorff, the canonical projection map Xn → Xn/Sn is a covering space, and Sn is the

group of deck transformations of this covering space.
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In the real-world scenario, however, there is a minimal distance allowed between each

pair of robots because the robots are thick objects, and we cannot treat them as points.

To measure the size of the robots, we need to define a metric on the graph. Deeley [25]

introduced the notion of configuration spaces of thick particles on a graph X in which the

graph is simple, and each edge of the graph gives the shortest distance between its endpoints.

Given a graph X with a metric δ, the n-th thick particle configuration space with parameter

r is

Xn
r = {(x1, . . . ,xn) ∈ Xn | δ(xi,xj) ≥ r}

He studied the second thick particle configuration space X2
r and gave an estimate on the

homotopy types of X2
r :

Theorem 2.41 (Deeley, 2011[25]). {X2
r } has finitely many homotopy types, the number of

which is bounded above by an exponential function in the number of edges.

Dover and Özaydın[26] introduced the notion of configuration spaces with restraint para-

meters of finite metric graphs as a generalization of the configuration spaces of thick particles

on a metric graph:

Definition 2.42. Let Γ = (V ,E) be a finite connected graph and X = |Γ| be the geometric

realization of Γ. X is a metric graph if for each edge e, there is a positive number Le

such that each geometric edge is isometric to [0,Le]. X has the path metric δ, i.e., for any

x, y ∈ X,

δ(x, y) = the length of a shortest path from x to y.

Note that in this definition, Γ is allowed to have multiple edges. Moreover, for the sake of

simplicity, we subdivide each loop of Γ into two edges if Γ has loops. We are slightly abusing

the notation by denoting the new graph by Γ and denoting the realization of such Γ by X.

As a consequence, X becomes a regular CW complex.
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Definition 2.43. Let (X, δ) be a metric space and let r = (rij)i<j ∈ R
(n

2)
≥0 . The n-th

configuration space with restraint parameter r = (rij)i<j is:

Xn
r = {(x1, . . . ,xn) ∈ Xn | δ(xi,xj) ≥ rij}

Proposition 2.44. Let X be a regular CW-complex, then Xn is a regular CW-complex.

Proof. Since the finite product of CW-complexes is a CW-complex ([29], Theorem A6) and

X is a CW-complex, Xn is a CW-complex.

Let (X, δ) be a metric graph. Maximal cells of a regular cell structure for Xn
r are obtained

by intersecting Xn
r with the maximal cells of Xn. In other words, Xn

r is a regular CW-

complex.

2.6.1 Parametric Polytopes and their Parameter Spaces

A parametric polytope cb in Rn is determined by Ax ≤ b where A is an m×n matrix and

b is a m× 1 column vector representing the constraints. Each feasible solution of Ax ≤ b

corresponds to a point of cb.

cb is a CW-complex, and the cell structure is also encoded in Ax ≤ b. Let β =

{λ1, . . . ,λn}. Then Aβ is the submatrix of A with rows λ ∈ β and bβ = (bλ)λ∈β. A

potential 0-dimensional cell of cb is given by A−1
β bβ for some β (where A−1

β exists) and such

potential 0-dimensional cell is indeed an 0-dimensional cell of cb if A−1
β bβ is a solution of

Ax ≤ b. We label each 0-cell by Sb := {β | Aβ is a solution of Ax ≤ b}.

We assign a label vb to each vertex of the parametric polytope where vb = {λ | AλA
−1b =

bλ}. Let Tb denote the type of cb: Tb = {vb(β) | β ∈ Sb} Dover and Özaydın [26] showed
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x1
...
xn

≤

b1
...
bλ
...
bm

Aλ

A

Figure 2.7: The λ-th constraint of the parametric polytope

the following lemmas:

Lemma 2.7. The family of polytopes {cb}b∈R has only finitely many combinatorial types.

Lemma 2.8. Let b′ ∈ Rn. If Tb′ 6= ∅, then the set of all b ∈ Rn with Tb = Tb′ is convex.

Using parametric polytopes, we characterize the cellular structure of Xn
r . Each maximal

cell of Xn
r can be characterized by a system of inequalities:

For 1 ≤ i ≤ n:

0 ≤ xi ≤ Lei (2.3)

For 1 ≤ i < j ≤ n:
xi + xj + δ(ai, aj) ≥ rij ;

Lei − xi + xj + δ(bi, aj) ≥ rij ;

xi + Lej − xj + δ(ai, bj) ≥ rij ;

Lei − xi + Lej − xj + δbi, bj ≥ rij

(2.4)

If there exists 1 ≤ i, j ≤ n such that ei = ej , with further assumption that xi ≤ xj ,

xi − xj ≤ 0;

xi − xj ≤ −rij ;

Lei − xi + xj + δ(ai, bi) ≥ rij

(2.5)
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For a metric graph (X, δ) and given n, r, there is a natural correspondence between the

dimensions of the cells of Xn
r and the positions of the robots on the graph X:

0-cell of Xn
r ↔ all n robots are on different vertices

1-cell of Xn
r ↔ n− 1 robots are on different vertices

and 1 robot on the interior of an edge of X

2-cell of Xn
r ↔ n− 2 robots are on different vertices

and 2 robots on the interior of edges of X
...

n-cell of Xn
r ↔ all n robots are on the interior of edges of X

As a consequence, Xn
r is compact.

Dover and Özaydın studied the homotopy, homeomorphism, and isotopy types of Xn
r over

the space of parameters r. They showed [26] that if Xn
r and Xn

s have the same combinatorial

type (same face poset of cells), then Xn
r is isotopic to Xn

s . In addition, Dover and Özaydın

provided a polynomial upper bound (which depends on the number of the edges of X) for

the number of isotopy types:

Theorem 2.45 (Dover-Özaydın, 2013[26]). For a metric graph X with E edges, the number

of homotopy types for the family of spaces {X2
r }r≥0 is bounded above by

9
2
E2 − 5

2
E + 1

The number of isotopy types is bounded above by

9E2 − 5E
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Theorem 2.46 (Dover-Özaydın, 2013[26]). Let n be a fixed positive integer and Ω be a

d-dimensional affine subspace of R(n
2). The number of isotopy types of {Xn

r }r∈Ω is bounded

above by a polynomial of degree nd in the number of edges of X.

On the other hand, when the norm of parameter r is sufficiently small, Xn
r is homotopy

equivalent to the n-th configuration space Xn:

Proposition 2.47. Let X = (V ,E) be a connected regular metric graph and let Le denote

the edge length of e ∈ E. Define a := min
e∈E

Le. If ||r||∞ <
a

n
, then the inclusion Xn

r ↪→ Xn is

a homotopy equivalence.

Proof. If r ≤ s and ||r||∞ ≤ ||s||∞ <
a

n
, then r and s belong to the same chamber in

the parameter space. Note that each chamber is convex, the maps Xn
r → Xn

s ↪→ Xn
r

and Xn
s ↪→ Xn

r → Xn
s are isotopic to the identity maps. Thus πk(X

n
s ) → πk(X

n
r ) is an

isomorphism for all k ∈N. Note that lim−→X
n
r
∼= Xn, we update the colimit cone with the leg

maps ir : Xn
r ↪→ Xn, for all r. Note that, by Theorem 2.18, lim−→ is exact, therefore,

lim−→πk(X
n
r )
∼= πk(lim−→X

n
r ) = πk(X

n)

By Lemma 2.1, there exists r such that the induced map πkir : πk(X
n
r ) → πk(X

n) is an

isomorphism. By Whitehead’s theorem, we conclude that the inclusion Xn
r ↪→ Xn is a

homotopy equivalence.
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Chapter 3

Multiparameter Persistence Modules

In Section 3.1, we introduce the notions of P -indexed objects and persistent homology

functors. In Section 3.2, we state the stability of persistence modules. In Section 3.3,

we briefly discuss the Zigzag persistence modules. In Section 3.4, we show that VectC
F is

equivalent to a full subcategory of ModFC when C be a small category and F be a field. Next,

in Section 3.5, we discuss some important properties of thin polytope modules. Finally, we

give a reduction algorithm for computing limits and colimits of diagrams in R2 with connected

boundaries in Section 3.6.

3.1 Persistence Modules

Let F be a field and (P ,≤) be a poset.

Let C be a category. M : (P ,≤)→ C is called a (P -indexed) persistence object. M

is called a (P -indexed) filtration when C = Top. M is called a (P -indexed) persistence

module when C = VectF. In other words, the (P -indexed) persistence module M consists

of a family of F-vector spaces {Mt | t ∈ P} and a doubly-indexed family of linear maps

{ρst : Ms → Mt | s ≤ t} where ρtuρst = ρsu for any s ≤ t ≤ u in P and ρss = idMs
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for all s ∈ P . We use Vect(P ,≤)
F to denote the category of persistence modules over the

poset (P ,≤). In this case, M can be viewed as a poset representation over the poset (P ,≤).

When (P ,≤) = (Rn,≤) with the product order, where (a1, . . . , an) ≤ (b1, . . . , bn) ∈ (Rn,≤)

if and only if ai ≤ bi for all i = 1, . . . ,n, the objects of Vect(R
n,≤)

F is called n-parameter

persistence modules. When M(i) is a finite dimensional vector space for all i ∈ (Rn,≤),

M is an object of vect(R
n,≤)

F .

We can define a functor PHi(−) : Top(P ,≤) → Ab(P ,≤) as follows:

• At the object level, PHi(−) sends each P -indexed filtrationM to a P -indexed persistence

abelian group Hi(M), where Hi(M) : (P ,≤) → VectF sends each p ∈ P to Hi(Mp)

and each arrow p ≤ q to the group homomorphism Hi(Mp)→ Hi(Mq) induced by the

inclusion map Mp ↪→Mq in Top;

• An the morphism level, PHi(−) sends each natural transformation α : M ⇒ N to

Hi(α) : Hi(M)⇒ Hi(N). The naturality of Hi(α) is clear because Hi(−) is a functor

hence it preserves commutative diagrams.

In other words, for each M ∈ ob Top(P ,≤), PHi(M) can be obtained by post-composing

Hi(−) with M . The functoriality of PHi(−) is clear.

Definition 3.1. PHi(−) : Top(P ,≤) → Ab(P ,≤) is called the i-th persistent homology

functor.

Definition 3.2. Let (P ,≤) be a poset and I ⊆ (P ,≤) is an interval. Define the interval

module FI as

FIt =


F, if t ∈ I;

0, if t /∈ I
and Hom(FIt, FIs) =


{idF}, if t ≤ s ∈ I;

0, else
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When (P ,≤) = (Rn,≤) and n ≥ 2, we call FI the polytope module over I.

Definition 3.3. Let M ∈ Vect(P ,≤)
F . M is decomposable if there exists non-trivial

subrepresentation N and N ′ such that Mt
∼= Nt ⊕ N ′

t for all t ∈ P . We say M is

indecomposable if it is not decomposable.

Lemma 3.1. Interval modules are thin and indecomposable.

Proof. Let M be an interval module. The support of M is an interval of (P ,≤). Consider

the endomorphism ring of M . We want to show End (M) ∼= F. Let f ∈ End(M). Note

that for every p ∈ (P ,≤), fp : F → F is a linear transformation, hence fp(x) = cfx for

some cf ∈ F. Let p′ be a point in the support of M . Note that there exists a zigzag path

from p to p′ because the support of M is an interval. Since f is a morphism between two

representations and M is a polytope module, we are forced to have fq(x) = cfx. Define

Φ : End(M) → F by Φ(f) = cf for each f ∈ End(M). It is clear that Φ is bijective, so we

only need to show Φ is a ring homomorphism. Note that Φ(f + g) = cf + cg = Φ(f) +Φ(g)

and Φ(f ◦ g) = cf · g = Φ(f)Φ(g), hence Φ is a ring homomorphism.

3.2 Stability Theorems of Persistence Modules

In Section 3.2.1 and Section 3.2.2, we review the definition and properties of the interleaving

distances and Bottleneck distance between functors from a (locally finite) poset (P ,≤) to

a category C with nice properties (for example, C is a Krull-Remak-Schmidt category.)

Note that the notions of interleaving distances and Bottleneck distance can be automatically

applied on the category vectF
(P ,≤) because vectF is an abelian Krull-Remak-Schmidt category.

In Section 3.2.3, we state the stability theorems of the 1-parameter persistence modules.
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3.2.1 Interleaving distance

Let (P ,≤) be a poset. A translation functor is an endofunctor

T : (P ,≤)→ (P ,≤)

consists of the following data:

• for each object i ∈ (P ,≤), i 7→ T (i);

• for each morphism i ≤ j ∈ (P ,≤), T (i) ≤ T (j).

Example 22 (Translation functor on (Z,≤)). The n-translation functor on (Z,≤) is an

endofunctor

[n] : (Z,≤)→ (Z,≤)

consists of the following data:

• for each object i ∈ (Z,≤), [n](i) = i+ n;

• for each morphism i ≤ j ∈ (Z,≤), [n](i) = i+ n ≤ j + n = [n](j).

It is straightforward to verify [n] is a functor. 4

Remark. The collection of translation functors on a given poset (P ,≤) has a monoidal

structure with respect to compositions.

Let (P ,≤, d) be a poset with a metric d and T : (P ,≤) → (P ,≤) is an n-translation

functor. The height of T is

h(T ) = sup
i∈(P ,≤)

{d(i,T (i))}
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3.2 - Stability Theorems of Persistence Modules

Definition 3.4 (T -Interleaved persistence modules). Let M ,N ∈ C(P ,≤) where C and (P ,≤)

are defined as above. Define η : id ⇒ T 2. M ,N are T -Interleaved if there exists natural

transformations α : M ⇒ N ◦ T and β : N ⇒ M ◦ T such that βT (i) ◦ αi = M(ηi) and

αT (i) ◦ βi = M(ηi). The interleaving distance between M and N is

dI(M ,N) = inf{ε |M and N are T -interleaved and h(T ) = ε.}

A real-valued function d : X ×X → R≥0 is a pseudometric if it satisfies the following

conditions:

1. d(x,x) ≥ 0 for all x ∈ X;

2. d(x, y) = d(y,x) for all x, y ∈ X;

3. d(x, y) + d(y, z) ≥ d(x, z) x, y, z ∈ X.

In addition, if for all x, y ∈ X, d(x, y) = 0 implies x = y, then d is a metric.

Proposition 3.5. dI is a pseudometric.

Proof. It is clear dI is symmetric. For the triangle inequality, given L,M ,N ∈ C(P ,≤), define

A = {ε1 | L and M are T -interleaved and h(T ) = ε1.}

B = {ε2 |M and N are T -interleaved and h(T ) = ε2.}

Then

dI(L,M) = inf A and dI(M ,N) = inf B

For all ε > 0, dI(L,M) +
ε

2
is not a lower bound of A. Hence there exists T1 : (P ,≤

) → (P ,≤) such that L and M are T1-interleaved and h(T1) ≤ dI(L,M) +
ε

2
. Similarly,
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3.2 - Stability Theorems of Persistence Modules

dI(M ,N) +
ε

2
is not a lower bound of B implies there exists T2 : (P ,≤) → (P ,≤) such

that M and N are T2-interleaved and h(T2) ≤ dI(M ,N) +
ε

2
. Note that L and N are

T2 ◦ T1-interleaved, therefore,

h(T2 ◦ T1) ≤ h(T1) + h(T2) ≤ dI(L,M) +
ε

2
+ dI(M ,N) +

ε

2

Thus

dI(L,N) ≤ dI(L,M) + dI(M ,N) + ε

Becase ε is arbitrary, we conclude that

dI(L,N) ≤ dI(L,M) + dI(M ,N)

Example 23 (Interleaving between objects of C(Rn,≤)). Let (P ,≤) in the definition 3.4 be

(Rn,≤) and C be a category. For ~u = (u1, . . . ,un) ∈ Rn, define ~u : (Rn,≤) → (Rn,≤)

where ~u(x1, . . . ,xn) = (x1 + u1, . . . ,xn + un) for any (x1, . . . ,xn) ∈ Rn. Then M ,N ∈

C(Rn,≤) are ~u-interleaved iff α : M ⇒ N ◦ ~u and β : N ⇒M ◦ ~u such that β~u(i) ◦αi = M(ηi)

and α~u(i) ◦ βi = M(ηi). For ε > 0 and ~u = (ε, . . . , ε), in particular, we say M and N are

ε-interleaved if they are ~u-interleaved. 4

Let I ∈ (Rn,≤) be an interval. The interval module FI is called ε-trivial if for any

(a1, . . . , an) ∈ I, (a1 + ε, . . . , an + ε) is not in I. Given M ∈ vect(R
n,≤)

F , let B(M) be the

multiset of barcodes corresponds to M . Define B(M)ε to be the multiset of barcodes that

are not ε-trivial.

There is a natural partially order on the collection of translation functors:
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3.2 - Stability Theorems of Persistence Modules

Definition 3.6. Let S,T be translation functors on (P ,≤). S ≤ T if and only if S(i) ≤ T (i)

for every i ∈ (P ,≤).

Remark. Assume M ,N are T -interleaved. Then for any endofunctor S ≥ T on (P ,≤),

M ,N are also S-interleaved.

Here is a useful fact about interleaving distance:

Proposition 3.7 (Proposition 3.6,[11]). Let D and E be two categories. Let M ,N ∈ D(R,≤)

and H : D→ E. If M and N are ε-interleaved, then so are HM and HN . Therefore,

dI(HM ,HN) ≤ dI(M ,N)

More generally,

Proposition 3.8. Let D and E be two categories. Let M ,N ∈ D(P ,≤) and H : D → E. If

M and N are T -interleaved, then so are HM and HN . Therefore,

dI(HM ,HN) ≤ dI(M ,N)

Proof. Since M and N are T -interleaved, there exists φ : M ⇒ N ◦ T , ψ : N ⇒ M ◦ T and

ηT : id(P ,≤) ⇒ T such that

M ◦ ηT 2 = (ψT ) ◦ φ (3.1)

N ◦ ηT 2 = (φT ) ◦ ψ (3.2)

By the functoriality of H, Hφ : H ◦M ⇒ H ◦N ◦ T and Hψ : H ◦N ⇒ H ◦M ◦ T are

natural transformations. Now we are going to show H preserves equation (3.1) and equation
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3.2 - Stability Theorems of Persistence Modules

(3.2). Note that for each i ∈ (P ,≤),

(H ◦M ◦ ηT 2)i = H ◦M((ηT 2)i) = H ◦ ((ψT )i ◦ φi) = ((HψT ) ◦ φ)i (3.3)

Therefore, HM and HN are T -interleaved.

3.2.2 Bottleneck distance

For 1-parameter persistence modules, the bottleneck distance is a metric on the collection

of persistence diagrams. Alternatively, the bottleneck distance evaluates the difference

between the barcodes of two persistence modules. In this section we will recall the definition

of bottleneck distance in different categories.

Let A,B be two multisets. A matching between A and B is a bijection σ from a subset

A′ of A to a subset B′ of B. A′ is called the coimage of σ and B′ is called the image of σ.

We denote such matching by σ : A⇌ B.

Take (P ,≤) to be (Rn,≤), there is one special kind of matching that plays a significant

role in the isometry theorem (see section 3.2.3).

Definition 3.9 (ε-matchings). An ε-matching between mutilsets A and B is a matching σ

such that:

• A2ε ⊆ coimage(σ);

• B2ε ⊆ image(σ);

• for any I ∈ A and J ∈ B such that J = σ(I), the interval modules FI and FJ are

ε-interleaved.

Definition 3.10 (Bottleneck distance[11]). Let A,B be two multisets of barcodes. The
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3.2 - Stability Theorems of Persistence Modules

bottleneck distance between A,B is defined by

db(A,B) = inf
σ:A⇌B

sup
I∈coimage(σ)

dI(FI, Fσ(I))

This definition is equivalent to the classic definition of bottleneck distance. For details,

see proposition 4.12 and 4.13 of [11].

Let A,B be two multisets and σ : A⇌ B a matching. Let d be a metric on a multiset Σ

containing A and B. Let W : Σ→ [0,∞) (treat the output as the ’width’ of the input) such

that

||W (I)−W (J)|| ≤ d(I, J)

The height of σ is

h(σ) = max{ max
I∈coimage(σ)

{d(I,σ(I))}, max
I /∈coimage(σ)

{W (I)}, max
J /∈image(σ)

{W (J)}}

Definition 3.11 (Generalized bottleneck distance). For Σ and W defined as above, the

bottleneck distance db between two mutiset is

db(A,B) = min{h(σ) | σ is a matching between A and B.}

3.2.3 Stability theorems

Cohen-Steiner-Edelsbrunner-Harer proved the Bottleneck stability theorem for persistence

diagrams [23]:

Theorem 3.12. Let X be a triangulable space with continuous tame functions f , g : X → R.

Let D(f) (D(g), resp.) be the set of intervals where the endpoints of each interval are critical
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3.2 - Stability Theorems of Persistence Modules

point of f (g, resp.). Then the persistence diagrams satisfy

||db(D(f),D(g))|| ≤ ||f − g||∞

Bubenik-Scott generalized the above theorem[11]:

Theorem 3.13. Let X be a topological space with two functions f , g : X → R. Let F ∈

Top(R,≤) be defined by F (a) = f−1(∞, a] for a ∈ R and F (a ≤ b) is given by inclusion.

Define G similarly. Let H : Top→ D. Then

db(HF ,HG) ≤ ||f − g||∞

There is some connection between the bottleneck distance of the given barcodes and the

interleaving distance between the corresponding persistence modules. Bauer-Lesnick showed

the following theorem:

Theorem 3.14 (Algebraic stability theorem). [7] Let M ,N ∈ vect(N,≤)
F with finite support,

then

db(B(M),B(N)) ≤ dI(M ,N)

Lesnick proved that db and dI are ’equal’[35] (Theorem 3.4):

Theorem 3.15 (Isometry theorem). For any ε ≥ 0, pointwise-finite-dimensional persistence

modules M and N are ε-interleaved iff there exists an ε-matching between the mutisets of

barcodes B(M) and B(N). In particular,

db(B(M),B(N)) = dI(M ,N)
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Modules

3.3 First Example of Multipersistence Modules: Zigzag

Persistence Modules

A zigzag is quiver Q with alternated arrows

• ↔ • ↔ · · · ↔ • ↔ •

where ↔ means → or ←.

Definition 3.16. Let F be a field. Let M denote a sequence (with length n) of finite-

dimensional vector spaces over F:

M1
f12←→M2 ↔ · · · ↔Mn−1

fn−1,n←−−→Mn

where

• fi,i+1 : Vi ↔ Vi+1 means either Vi → Vi+1 or Vi ← Vi+1;

• fi,i+1Vi ↔ Vi+1 is a linear map for all i = 1, . . . ,n− 1;

• if fi−1,i and fi,i+1 is composable, then fi−1,i+1 = fi,i+1 ◦ fi−1,i

Such M is called a zigzag persistence module.

Zigzag modules are 2-parameter persistence modules1 because we can embed a zigzag

a1 ↔ a2 ↔ · · · ↔ am into Z2 where ai ∈ (Z
op ×Z,≤) and m ∈ N. Unlike the general

2-parameter persistence modules which don’t have a classification of indecomposables, the

indecomposable representations of a zigzag module are fairly simple to classify: Any Zigzag

persistence module can be decomposed into intervals because its underlying quiver Q is of

type An.
1they are objects of vect(Z

2,≤)
F .
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Theorem 3.17 (Gabriel). A connected quiver is of finite type if and only if its underlying

graph is one of the Dykin diagrams:

Figure 3.1: Simply laced Dynkin diagrams (Figure credit to https://en.wikipedia.org/
wiki/ADE_classification)

By Gabriel’s theorem, any An quiver is of finite type, i.e., there are only finitely many

indecomposable representations of Q up to isomorphism. Therefore, every finite-dimensional

zigzag module is a direct sum of interval modules. Botman shows that the statement is also

true for pointwise finite-dimensional zigzag modules over an infinite zigzag.

Theorem 3.18. [8] Let V be a pointwise finite-dimensional zigzag module of type A∞. There

exists a multiset of intervals F such that V ∼=
⊕

I∈F
FI.

3.3.1 Zigzag Persistence Modules vs Persistence Modules

Definition 3.19. Let M be a zigzag module and let M
∣∣∣
[p,q]

be the restriction of M to an

interval [p, q]. A feature of M over [p, q] is a direct summand of M
∣∣∣
[p,q]

which is isomorphic

to the interval module F[p, q].

Carlsson-de Silva pointed out [15] that the features of a zigzag persistence module M are

submodules of M , while for the 1-parameter persistence module, the features of M is also

equivalent to the direct summands of M .
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Proposition 3.20 ([15], proposition 2.8). Let M be a persistence module of length n, and

let 1 ≤ p ≤ q ≤ n. The following are equivalent:

1. The linear map Mp →Mq is nonzero;

2. There exist nonzero elements xi ∈Mi for p ≤ i ≤ q such that xi+1 = Mi≤i+1(xi);

3. There exists a submodule of M
∣∣∣
[p,q]

which is isomorphic to F[p, q];

4. There exists a direct summand of M
∣∣∣
[p,q]

which is isomorphic to F[p, q].

Example 24. Consider a zigzag persistence module M :

F←− F2 −→ F

x← [ (x, y) 7→ y

Note that M ∼= N ⊕N ′ where N is

F←− F −→ 0

x← [ x 7→ 0

and N ′ is

0←− F −→ F

0←[ y 7→ y

Both N and N ′ are interval modules hence they are indecomposable. However, there

exists another submodule of M which is isomorphic to an interval module:

F←− ∆ −→ F
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x←[ (x,x) 7→ x

where ∆ is the diagonal of F2. Note that this submodule is not a direct summand of M . 4

3.4 Equivalences of Categories

It is known that the category of 1-parameter persistence modules Vect(R,≤)
F is equivalent

to the category of modules over the monoid ring generated by xα, where α ∈ R. In particular,

Vect(Z,≤)
F is equivalent to the category of the modules over the polynomial ring F[x].

This fact can be generalized as follows: Let C be a small category and R be a commutative

ring. Define

RC = {
∑

aifi | ai ∈ R, ai 6= 0 for finitely many i, fi ∈ mor C}

In other words, RC, as a set, consists of all formal linear combinations of the form ∑
i
aifi.

Equip RC the binary operation: for f , g ∈ mor C,

f · g =


f ◦ g, if the range of g is the domain of f ;

0, else

Extend it linearly, we obtain

∑
i

aifi ·
∑

j

bjgj =
∑
i,j
(aibj)fi · gj

On the other hand, for any c ∈ R and ∑
i
aifi ∈ RC, define

c ·
∑

i

aifi =
∑

i

(cai)fi
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RC with the above binary operation and scalar multiplication is called the category algebra

of C.

Proposition 3.21. Let C be a small category and F be a field. Then there exists a fully

faithful functor

VectC
F →ModFC

Proof. Define Φ : VectC
F →ModFC as follows:

At the object level Given M ∈ VectC
F, define Φ(M) =

⊕
c∈ob C

Mc. Note that Φ(M) is

well-defined as a vector space2. Define an FC-action on ⊕
c∈ob C

Mc: it suffices to define

the FC-action coordinate-wise, then extend it linearly.

Given c, d ∈ ob C and f ∈ HomC(c, d), define fc = incd ◦Mf ◦ projc, i.e., fc is the

composition of the morphisms in the diagram:

⊕
c∈ob C

Mc
projc−−−→Mc

M(c
f−→d)−−−−−−→Md

incd−−→
⊕

c∈ob C
Mc

For any x ∈ ⊕
c∈ob C

Mc and f ∈ HomC(c, d), define

f · x = fc(x)

This construction gives a ring action on Φ(M): given f ∈ HomC(c, d), g ∈ HomC(d, e),
2Because VectF is complete and cocomplete.
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and x ∈ Φ(M),

g(f(x)) = g(fc(x)) = gd(fc(x))

= ince ◦Mg ◦ projd ◦ incd ◦Mf ◦ projc

= ince ◦Mg ◦ (projd ◦ incd) ◦Mf ◦ projc

= ince ◦Mg ◦Mf ◦ projc

= ince ◦M(g ◦ f) ◦ projc

= (g ◦ f) · x

(3.4)

At the morphism level Let α : M ⇒ N be a morphism in VectC
F. Let Φ(α) denote the

yet-to-be-defined morphism in ModFC corresponding to α. As a morphism in VectF, we

are forced to define Φ(α) = (αc)c∈ob C. Note that Φ(α) is an FC-morphism: it suffices

to show that for every f ∈ mor C, Φ(α)(f · x) = f ·Φ(α)(x) for all x ∈ ⊕
c∈ob C

Mc. By

the naturality of α, we have

N f ◦ αc = αd ◦Mf , if the source of f is c and the target of f is d

Hence
f ·Φ(α)(x) = incd ◦Nf ◦ projc ◦Φ(α)(x)

= incd ◦Nf ◦ αc ◦ projc(x)

= incd ◦αd ◦Mf ◦ projc(x)

= Φ(α) ◦ incd ◦Mf ◦ projc(x)

= Φ(α)(f · x)

(3.5)
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Now we are going to show

φ : Hom(M ,N)→ Hom(
⊕

c∈ob C
Mc,

⊕
c∈ob C

Nc)

α 7→ Φ(α) = (αc)c∈ob C

is a bijection for every M ,N ∈ VectC
F. The well-definedness and injectivity of φ is clear

by the universal property of the coproduct. Now we are going to show that φ is surjective.

Given (fc)c∈ob C :
⊕

c∈ob C
Mc → ⊕

c∈ob C
Nc, define α : M ⇒ N by αc = fc for all c ∈ ob C.

Consider the following diagram:

Mc
⊕

c∈ob C
Mc

⊕
c∈ob C

Mc Md

Nc
⊕

c∈ob C
Nc

⊕
c∈ob C

Nc Nd

incc

fc

f ·

(fc)c∈ob C

projd

(fc)c∈ob C
fd

incc f · projd

Note that each small square of the above diagram is commutative:

• the square on the left is commutative by the universal property of coproducts,

• the square on the right is commutative since the horizontal arrows are projection maps,

• the square in the middle is commutative since (fc)c∈ob C is an FC-homomorphism.

Therefore, the outer square is commutative. Note that the composition of the morphisms

in the top row is Mf because

projd ◦f ◦ incc(y) = projd ◦fc(incc(y))

= projd ◦ incd ◦Mf ◦ projc ◦ incc(y)

= Mf(y)

(3.6)
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Similarly, the composition of the morphisms in the bottom row is Nf . Hence we obtain the

following commutative diagram for all g ∈ G and s ∈ S:

Mc Md

Nc Nd

Mf

fc fd

Nf

Therefore, α is a natural transformation.

As a consequence, VectC
F is equivalent to a full subcategory of ModFC.

3.5 Thin Polycode Modules

Let (P ,≤) be a connected poset. Recall that a representation M ∈ vect(P ,≤)
F is called

a thin representation, if Mi is either F or 0 for each i ∈ (P ,≤). We have seen in Lemma

3.1 that Polytope modules are thin and indecomposable. The next theorem show that the

converse of Lemma 3.1 is also true (up to isomorphism) when (P ,≤) = (R2,≤).

Lemma 3.2. Every indecomposable thin persistence module M ∈ vect(R
2,≤)

F has connected

support.

Proof. Let (P ,≤) be the support of M (in other words, Mi 6= 0 for all i ∈ P and M(i ≤

j) 6= 0 for i ≤ j ∈ P ). We first claim that P is connected: If P is not connected, then there

exists i, j ∈ P where there is no zigzag path between i and j. Define

S = {x ∈ P : x ≤ i or x ≥ i}
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and

T = Sc

Note that S ∩ T = ∅ we have M ∼= N ⊕N ′ where

Ni =


Mi, if i ∈ S

0, else
N(i ≤ j) =


M(i ≤ j), if i ≤ j ∈ S

0, else

and

N ′
i =


Mi, if i ∈ T

0, else
N ′(i ≤ j) =


M(i ≤ j), if i ≤ j ∈ T

0, else

Contradiction. Therefore, (P ,≤) is connect.

Lemma 3.3. Let M ∈ Vect(R
2,≤)

F be a thin persistence module and let P be the support of

M . Then for any a, b ∈ P such that a < b in R2, if there exists a zigzag path from a to b in

P then M(a < b) : Ma →Mb is not 0.

Proof. Since (R2,≤) is a thin category, we can assume such zigzag path in P consists of

horizontal and vertical arrows. We say an arrow on zigzag path is a good arrow if the

orientation of the arrow is coincide with the orientation of the zigzag path; otherwise we say

the arrow is a bad arrow. WLOG assuming such zigzag path is reduced: the zigzag path

doesn’t have two (or more) consecutive horizontal or vertical arrows, i.e., we either

• combine the two (or more) consecutive horizontal or vertical arrows if they are all good

arrows or all bad arrows;

• get a new (shorter) arrow from combining a good horizontal (vertical, resp) arrow with

a bad horizontal (vertical, resp) arrow.
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– The new arrow is good if the length of the original good arrow is strictly greater

than the length of the original bad arrow;

– The new arrow is bad if the length of the original good arrow is strictly less than

the length of the original bad arrow;

– The new arrow is a vertex if the length of the original good arrow is equal to the

length of the original bad arrow.

Induction on the length of the zigzag path.

• length= 1. There is nothing to show.

• length= N → N + 1.

– If the zigzag path has at least one self-intersection (denote a self-intersection by

c) then we can write the zigzag path as follows

a− x1 − · · · − xm − c− y1 − · · · − yn − c− z1 − · · · zN−m−n−2 − b

where n ≥ 1. (Note that if c = a or c = b, the induction hypothesis strikes.)

Therefore,

a− x1 − · · · − xm − c− z1 − · · · zN−m−n−2 − b

is a zigzag path from a to b with length at most N . By induction hypothesis,

M(a < b) 6= 0.

– Now we assume the zigzag path has no self-intersection.

∗ If the zigzag path consists of good arrows, then M(a < b) 6= 0;

∗ If we have a bad (B) arrow on the zigzag path, then

· there exists two consecutive good (G) arrows adjacent to the bad (B)

arrow, i.e., BGG or GGB;
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or

· there exists two consecutive bad (B) arrows adjacent to the good (G)

arrow, i.e., GBB or BBG

Otherwise,

· the zigzag path consists of bad arrows;

or

· good arrow and bad arrow alternate on the zigzag path.

contradicting to the assumption that a < b.

Because (R2,≤) is thin, we can substitute BBG/GBB/GGB/BGG with two new

arrows (may be degenerate). Therefore, the length of the new zigzag path is at

most N . By the induction hypothesis, M(a < b) 6= 0.

In conclusion, if there exists a zigzag path from a < b in P then M(a < b) 6= 0.

Definition 3.22 (weight of a zigzag path). Let p be a zigzag path in (R2) and M ∈ Vect(R
2,≤)

F

be a thin persistence module. The weight of p is

weight(p) =
∏

i→j is a good arrow of p

M(i ≤ j) ·
∏

k→l is a bad arrow of p

M(k ≤ l)−1

Corollary 3.23. Let M ∈ Vect(R
2,≤)

F be a thin persistence module and let P be the support

of M . Then for any a, b ∈ P such that a < b in R2, if there exists a zigzag path from a to b

in P with weight weight ω, then M(a < b) : Ma →Mb is the scalar multiplication by ω.

Proof. Let p be a (reduced) zigzag path from a to b with weight ω. Say a = (a1, a2) and

b = (b1, b2). Define

Ω1 = {(x, y) ∈ R2 | a1 ≤ x ≤ b1}
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Ω2 = {(x, y) ∈ R2 | a2 ≤ y ≤ b2}

Ω = Ω1 ∪Ω2

Refining p as follows:

• if an arrow across the boundary of Ω, we add a vertex at the intersection, subdividing

the arrow into two subarrows. If the original arrow is good (bad, resp), then the

subarrows are good (bad, resp).

Denote the refined zigzag path of p by p̃. Note that by the above construction, weight(p̃) =

weight(p).

Induction on the length of p̃.

• length= 1, 2. There is nothing to show.

• length= N → N + 1

– If there exists an arrow c → d on p̃ which is in the convex hull of a → b (i.e.,

Ω1∩Ω2). Note that a ≤ c ≤ d ≤ b. By the induction hypothesis, ω = Sac ·M(c <

d) ·Sdb, where Sac is the weight of a staircase path from a to c and Sdb is the weight

of a staircase path from d to b.

– Assume there is no arrow of p̃ that is in the convex hull of a → b. WLOG we

assume a→ b is not vertical. Then there exists a good (G) horizontal arrow c→ d

(say c = (c1, c2) and d = (d1, d2)) on p̃ such that c1 = a1.

∗ If c2 = d2 > b2: note that the length of the zigzag path from a to c (on p̃)

is at most N , by the induction hypothesis, the weight of such path equals to

the weight of Sac (the staircase from a to c). Note that a ≤ c and a1 = c1,

therefore, Sac is the vertical arrow a → c. In addition, a → c is a good (G)
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3.5 - Thin Polycode Modules

arrow. Note that there exists a unique square in R2 such that a → c and

c→ d are two sides of the square. Let e denote the vertex of this square along

with a, c, d. Because this square is commutative, the weight of a → c → d

equals to the weight of a → e → d. Note that e ≤ b and [e, d) − d ⇝ b

(where d⇝ b is in p̃) is a zigzag path from e to b with length at most N . By

the induction hypothesis, the weight of such path equals to the weight of Seb

(the staircase from e to b). Note that a → e is a good (G) arrow, therefore,

[a, e)− Seb is a staircase from a to b. Denote this staircase by Sab. Hence

ω = weight(Sab).

∗ If c2 = d2 < a2: note that the length of the zigzag path from a to c (on p̃) is

at most N , by the induction hypothesis, the weight of such path equals to the

inverse of the weight of Sca ( Sca denotes the staircase from c to a). Note that

a ≤ c and a1 = c1, therefore, Sca is the vertical arrow c → a. Let e be the

intersection of the line x = d2 and the arrow a→ b. Note that there exists a

unique square in R2 such that c→ d and d→ e are two sides of the square.

Let f denote the vertex of this square along with a, d, e. Because this square

is commutative, the weight of c→ d→ e equals to the weight of c→ f → e.

In addition,

weight(a→ f → e) = weight(c→ a)−1weight(c→ f → e)

= weight(c→ a)−1weight(c→ d→ e)
(3.7)

Note that e ≤ b and [e, d)− d ⇝ b (where d ⇝ b is in p̃) is a zigzag path

from e to b with length at most N . By the induction hypothesis, the weight
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3.5 - Thin Polycode Modules

of such path equals to the weight of Seb (the staircase from e to b). Hence

ω = weight(c→ a)−1 ·weight(c→ d→ e) ·weight((d→ e)−1 ⇝ b)

= weight(a→ f → e) ·weight(Seb)
(3.8)

Note that Sa,b := a → f → e − Seb is a staircase from a to b. Hence

ω = weight(Sab) = M(a < b).

In conclusion, for any a, b ∈ P such that a < b in R2, if there exists a zigzag path p from

a to b in P with weight weight ω, then M(a < b) : Ma →Mb is the scalar multiplication by

ω.

Theorem 3.24. Every indecomposable thin persistence module M ∈ vect(R
2,≤)

F is isomorphic

to a polytope module.

Proof. Let (P ,≤) be the support of M . Lemma 3.2 implies that (P ,≤) is connected. Now

we assume (P ,≤) is not convex. Hence there exists a ≤ c ≤ b ∈ Z2 such that a, b ∈ P and

c /∈ P . Therefore, Mc = 0. Corollary 3.23 implies that M(a ≤ b) = ω 6= 0 for some ω ∈ R.

Since M is a persistence module, we have

M(a ≤ b) = M(c ≤ b) ◦M(a ≤ c) (3.9)

The righthand side of Equation (3.9) inicates M(a ≤ b) factor through Mc = 0, therefore,

ω = 0, contradiction. Hence (P ,≤) is convex.

Now we construct the morphism between M and FP . Fix a0 ∈ P , define α : M ⇒ FP :
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for all b ∈ P and x ∈Mb,

αb(x) =


weight(b→ a)x, if b ∈ P

0, else

Corollary 3.23 ensures α is well-defined. It is clear that α is a natural transformation, and it

is a natural isomorphism because αb is invertible for all b ∈ P , where α−1
b (x)weight(a→ b)x.

The weight of the trivial path has to be 1 because M(c ≤ c) = id for all c ∈ P .

3.6 Reduction for Computing Rank Invariants

Let (P ,≤) be a poset. Recall that a subset U of (P ,≤) is called an upset if for any

x ∈ U , x ≤ y implies y ∈ U for any y ∈ (P ,≤). Dually, a subset D of (P ,≤) is called an

downset if for any x ∈ D, w ≤ x implies w ∈ D for any w ∈ (P ,≤). Given an upset U (as a

subposet of (P ,≤)), we call U a principal upset if there exists a ∈ P such that a ≤ x implies

x ∈ U for any x ∈ (P ,≤). Dually, given an upset D (as a subposet of (P ,≤)), we call D a

principal downset if there exists b ∈ P such that y ≤ b implies y ∈ D for any y ∈ (P ,≤).

When (P ,≤) = (R2,≤), a subposet Q of (R2,≤) is called bounded if there exists a

principal upset U and a principal downset D such that Q ⊆ U ∩D.

Proposition 3.25. Let C be a complete category and P ⊆ (R2,≤) be a bounded poset

and the boundary of the upset (denoted by ∂P+) is connected. Then for any M ∈ CP ,

limM = limM
∣∣∣
∂P+

.

Proof. It is clear that there exists a unique morphism φ : limM → limM
∣∣∣
∂P+

because the

restriction of the limit cone limM ⇒ M is a cone over ∂P+. Now we show there exists a
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3.6 - Reduction for Computing Rank Invariants

unique morphism ψ : limM
∣∣∣
∂P+

→ limM . Let σ : limM
∣∣∣
∂P+

⇒ M
∣∣∣
∂P+

denote the limit

cone and σi denote the leg of σ for each i ∈ ∂P+. Given p ∈ P , there is i ∈ min ∂P+

(min ∂P+ is a subset of ∂P+ consists of all minimal elements of ∂P+) such that i ≤ p.

Define σp = M(i ≤ p) ◦ σi. We are going to show σp is well-defined, i.e., if there exists

another j ∈ min ∂P+ such that j ≤ p, then M(i ≤ p) ◦ σi = M(j ≤ p) ◦ σj .

If i∨ j ∈ ∂P+: it suffices to show M(i ≤ p) ◦ σi = M(i∨ j ≤ p) ◦ σi∨j = M(j ≤ p) ◦ σj .

Note that

M(i ≤ p) ◦ σi = M(i∨ j ≤ p) ◦M(i ≤ i∨ j) ◦ σi = M(i∨ j ≤ p) ◦ σi∨j

and

M(j ≤ p) ◦ σj = M(i∨ j ≤ p) ◦M(j ≤ i∨ j) ◦ σj = M(i∨ j ≤ p) ◦ σi∨j

therefore, M(i ≤ p) ◦ σi = M(j ≤ p) ◦ σj .

If i ∨ j /∈ ∂P+: WLOG we define σi∨j = M(i ≤ i ∨ j) ◦ σi and we assume the x-value

of i is less than j. . It suffices to show σi∨j is well-defined. Induction on the number of the

minimum elements of intermediate steps between i and j. n = 0 is clear by the previous

case. Assume the statement is true when n = N . When n = N + 1, note that there exists

a ≥ a ∧ b ≤ b on the intermediate steps between i and j such that a and b are maximal

elements of ∂P+ and a ∧ b ∈ ∂P+. Note that for any cone σ over ∂P+, there is a unique

σa∨b such that... Define σa∨b = M(a ∨ b ≤ a ∧ b) ◦ σa∧b. σa∨b is well-defined: for any

a∧ b ≤ x ≤ a∨ b,

M(x ≤ a∧ b) ◦ σx = M(x ≤ a∧ b) ◦M(a∧ b ≤ x) ◦ σa∧b = M(a∨ b ≤ a∧ b) ◦ σa∧b
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Now we obtain a new poset ∂̂P+ from ∂P+ by deleting the vertex a ∧ b and replacing the

arrows a ∧ b ≤ a and a ∧ b ≤ b by a ≤ a ∨ b and b ≤ a ∨ b. Note that there is a unique

morphism from γ : limM
∣∣∣
∂P+

→ limM
∣∣∣
∂̂P+

and ∂̂P+ has one less intermediate steps than

∂P+ (after combining arrows with the same direction). By induction hypothesis, τi∨j is

well-defined where τ : limM
∣∣∣
∂̂P+
⇒M

∣∣∣
∂̂P+

.

Let y be an element of ∂P+ such that y ≤ i∨ j and y 6= a∧ b. Note that

M(y ≤ i∨ j) ◦ σy = M(y ≤ i∨ j) ◦ τy ◦ γ = M(i ≤ i∨ j) ◦ τi ◦ γ = M(i ≤ i∨ j) ◦ σi

When y = a∧ b, note that

M(a∧ b ≤ i∨ j) ◦ σa∧b = M(a∨ b ≤ i∨ j) ◦M(a∧ b ≤ a∨ b) ◦ σa∧b

= M(a∨ b ≤ i∨ j) ◦ σa∨b

= M(a∨ b ≤ i∨ j) ◦ τa∨b ◦ γ

= M(i ≤ i∨ j) ◦ τi ◦ γ

= M(i ≤ i∨ j) ◦ σi

Therefore, we conclude that σi∨j is well-defined.

A dual argument of proposition 3.25 shows that the colimit of a persistence module

M ∈ CP is determined by the colimit of its boundary downset:

Proposition 3.26 (Dual of Proposition 3.25). Let C be a complete category and P ⊆ (R2,≤

) be a bounded poset and the boundary of the downset (denoted by ∂P−) is connected. Then

for any M ∈ CP , colimM = colimM
∣∣∣
∂P − .
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Chapter 4

Decomposing PH•(X2
−,−; F)

Let (X, δ) be a metric graph. Recall that Stark denotes the geometric realization of the

star graph with k leaves, where the length of each edge is 1. We use ˆStark denote the metric

star graph with k leaves where the length of an edge (denoted by e1) is Le1 , while the lengths

of the other edges are 1. Note that the vector (Le1 , 1, . . . , 1) ∈ R
|E|
>0 is the edge length vertor

of ˆStark. By a slight abuse of notation, we use Le1 to represent the vector (Le1 , 1, . . . , 1).

Figure 4.1: (Star3)2
0.5

In this chapter, we are going to compute the homology groups of the second configuration

spaces with restraint parameter r and edge length parameter Le1 of some special graphs. We

first introduce a new poset representation for PHi(X2
−,−; F) in Section 4.1. In Section, 4.2, we

give the decomposition of PHi(Y 2
−,−; F). In Section 4.3, we compute the homology groups of
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4.1 - Discretize the poset

the second configuration spaces of ˆStark, and we give the decomposition of PHi(( ˆStark)
2
−,−; F)

in Section 4.4.

Next, in section 4.5, we compute the homology groups of the second configuration spaces of

H-shaped graphs, and we give the decomposition of PHi(Ĥ2
−,−; F) in Section 4.6. In section

4.7, we compute the homology groups of the second configuration spaces of the generalized

H-shaped graphs, and we give the decomposition of PHi((Ĥm,n)2
−,−; F) in Section 4.8. In

Section 4.9, we give a strategy for calculating PHi(T2
r,Le1

) for any metric tree, where the

length of all but one edge (denoted by e1) of T is 1. Finally, in Section 4.10, we discuss some

properties of Hi(Tree2
r,Le1

; F), where Tree is a metric tree with arbitrary edge lengths.

4.1 Discretize the poset

Let (X, δ) be a finite metric graph and e1 is an edge of X. When there are finitely many

hyperplanes in the parameter space of X2
r,Le1

, the number of chambers in the hyperplane

arrangement of X2
r,Le1

is also finite. We may associate the hyperplane arrangement with a

poset (denoted by (P ,≤)), and the Hasse diagram of (P ,≤) can be constructed as follows:

• each chamber of the hyperplane arrangement is an element of (P ,≤);

• each arrow corresponds to a wall between two chambers, and the orientation of the

arrow is given by the filtration of the spaces (X)2
r,Le1

, satisfying the following condition:

the arrow is not a composition of two or more consecutive arrows

For example, the poset (P ,≤) associated to the hyperplane arrangement of Y 2
r,Le1

is

shown in Figure 4.2.
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4.1 - Discretize the poset

1 2

1

2

Le1

r12

Figure 4.2: (P ,≤) associated to the hyperplane arrangement of PH0(Y 2
r,Le1

; F)

Note that the construction of (P ,≤) from a hyperplane arrangement of a finite metric

graph is functorial, i.e., the construction above gives a functor (denoted by F)

F : (R>0,≤)
op
× (R>0,≤)→ (P ,≤)

At the object level, F sends (r,Le1) ∈ R>0 ×R>0 to p ∈ P , where p represents the

chamber that contains (r,Le1).

At the morphism level, F sends (r,Le1) → (r′,L′
e1) to the unique morphism p → p′,

where p represents the chamber that contains (r,Le1) and p′ represents the chamber that

contains (r′,L′
e1). Note that when p = p′, (r,Le1) and (r′,L′

e1) are in the same chamber,

and F sends (r,Le1)→ (r′,L′
e1) to idp. Hence, in particular,

F id(r,Le1 )
= idp

Note that F is well-defined because there is no hyperplane with a negative slope. Since

(P ,≤) is thin, F is a functor.
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−,−; F)

When (r,Le1) and (r′,L′
e1) lie in the same chamber of the parameter space, X2

r,Le1
and

X2
r′,L′

e1
have the same homotopy type (in fact, homeomorphism type). Therefore, each

persistence module PHi(X2
−,−; F) has a well-defined poset representation M : (P ,≤) →

VectF for a poset (P ,≤). Conversely, with the information of the hyperplane arrangement

of X2
r,Le1

, the poset (P ,≤) which is constructed as above, and a poset representation M :

(P ,≤)→ VectF, we can recover PHi(X2
−,−; F) from M by defining PHi(X2

r,Le1
; F) = M(p)

for all (r,Le1) that lies in the chamber represented by p, and PHi(X2
(r,Le1 )≤(r′,L′

e1 )
; F) =

M(p ≤ p′) where (r,Le1) lies in the chamber represented by p and (r′,L′
e1) lies in the

chamber represented by p′.

In other words, when X is a finite metric graph, the functor PHi(X2
−,−; F) factors through

the category (P ,≤).

(R>0,≤)op × (R>0,≤) (P ,≤)

VectF

P Hi(X
2
−,−;F)

F

M

4.2 Decomposition of PHi(Y 2
−,−; F)

In this section, we decompose the poset representation PHi(Y 2
−,−; F) (for i = 0, 1) into a

direct sum of indecomposable representations.

Note that the hyperplane arrangement of Y 2
r,Le1

can be interpreted as a functor

Y 2
−,− : (R>0,≤)

op
× (R>0,≤)→ Top

73



4.2 - Decomposition of PHi(Y 2
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where Y 2
−,− sends (a, b) ∈ R>0 ×R>0 to Y 2

a,b and sends the unique arrow (a, b) → (a′, b′)

to the inclusion map ι : Y 2
a,b → Y 2

a′,b′ , for all a′ ≤ a and b ≤ b′. Post-composing the i-th

homology functor Hi(−) with Y 2
−,−, we obtain

PHi(Y
2

−,−) : (R>0,≤)
op
× (R>0,≤)→ Ab

In other words, at the object level, for each (a, b) ∈ R>0 ×R>0,

PHi(Y
2

a,b) = Hi(Y
2

a,b)

At the morphism level, PHi(Y 2
−,−) sends each morphism (a, b) → (a′, b′) to a group

homomorphism

ι∗ : Hi(Y
2

a,b)→ Hi(Y
2

a′,b′)

where ι∗ is induced by the inclusion map ι : Y 2
a,b → Y 2

a′,b′ in Top.

Note that PH1(Y 2
−,−; F) is an interval module because the support of PH1(Y 2

−,−; F) is

an interval, we immediately have

Theorem 4.1. PH1(Y 2
−,−; F) is interval decomposable.

Now we are going to decompose PH0(Y 2
−,−; F). Note that there are finitely many

chambers in the hyperplane arrangement of Y 2
r,Le1

, we may associate the hyperplane arrange-

ment with the Hasse diagram of a poset (denoted by (P ,≤)) as follows:

• each chamber of the hyperplane arrangement is an element of (P ,≤);

• each arrow corresponds to a wall between two chambers, and the orientation of the

arrow is given by the filtration of the spaces Y 2
r,Le1

.
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We associate PH0(Y 2
−,−; F) with a representation over (P ,≤):

F F4 F2

F2 F6 F4

F2

=

< c1 > < c1, c3, c4, c6 > < c1, c4 >

< c3, c6 > < c1, c2, c3, c4, c5, c6 > < c1, c2, c4, c5 >

< c3, c6 >

α

λ β

γ

ε

(4.1)

where

• α maps every basis element of < c1, c3, c4, c6 > to c1;

• γ maps c1, c5, c6 to c1 and maps c2, c3, c4 to c2;

• λ maps c3, c6 to c1;

• β maps c1, c2 to c1, maps c4, c5 to c4, maps c3 to c3, and maps c6 to c6;

• ε maps c1, c2 to c1 and maps c4, c5 to c4;

• unlabeled maps are inclusion maps.

By an abuse of notation, we use PH0(Y 2
−,−; F) to denote the P -indexed persistence module

given by (4.1).
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Theorem 4.2. PH0(Y 2
−,−; F) ∼= M1 ⊕M2 ⊕E1 ⊕E2 ⊕ F where

M1 =

F F2 F

F F2 F

F

[ 1
1 ] [ 1

0 ]

[ 1 0
0 1 ]

[ 1
1 ]

[ 1
0 ]

[ 0
1 ]

M2 =

0 F F

0 F F

0

E1 =

0 0 0

F F F

0

E2 =

0 0 0

0 F F

0
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F =

0 F 0

0 F 0

F

Proof. We choose a basis for each vector space PH0(Ĥ2
r,Le1

; F):

< c1 > < c1, c3 − c6, c4 − c1, c6 > < c1, c4 − c1 >

< c3 − c6, c6 >
〈 c1, c2 − c1 + c5 −

c4, c3 − c6, c4 −

c1, c5 − c4, c6

〉 〈c1, c2 − c1 + c5 −

c4, c4 − c1, c5 − c4

〉

< c3 − c6, c6 >

α

λ

β

γ

ε

(4.2)

Define

M1 =

< c1 > < c1, c6 > < c1 >

< c6 > < c1, c6 > < c1 >

< c6 >

[ 1
1 ]

id [ 1 0
0 1 ]

[ 1
1 ]

id

∼=

F F2 F

F F2 F

F

[ 1
1 ]

[ 1 0
0 1 ]

[ 1
1 ]

(4.3)
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M2 =

0 < c4 − c1 > < c4 − c1 >

0 < c4 − c1 > < c4 − c1 >

0

id id

∼=

0 F F

0 F F

0

(4.4)

E1 =

0 0 0

0 < c2 − c1 + c5 − c4 > < c2 − c1 + c5 − c4 >

0

∼=

0 0 0

0 F F

0

(4.5)

E2 =

0 0 0

0 < c5 − c4 > < c5 − c4 >

0

∼=

0 0 0

0 F F

0

(4.6)

F =

0 < c6 − c3 > 0

< c6 − c3 > < c6 − c3 > 0

< c6 − c3 >

id
id

id

∼=

0 F 0

F F 0

F

(4.7)

Note that M2, E1, E2, and F are interval modules, hence by Lemma 3.1, they are

indecomposable. Now we are going to show that M1 is indecomposable. By the Fitting’s
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lemma (Theorem 2.36), it suffices to show that End(M1) does not contain any idempotents

except 0 and id.

Note that any linear transformation F→ F is a scalar multiplication. We use x : F→ F

to denote the linear transformation that sends f to xf for all f ∈ F. Let φ ∈ End(M1). It

consists of the following data:

• x : F→ F;

• y : F→ F;

• z : F→ F;

• A :=

 a b

c d

 be the morphism F2 → F2 under the given basis,

such that

x ◦

 1

0

 = A ◦

 1

0

 (4.8)

y ◦ [1 1] = A ◦

 1

0

 (4.9)

z ◦

 0

1

 = A ◦

 0

1

 (4.10)

Equation 4.8 implies  x

0

 =

 a

c

 (4.11)

Hence a = x and c = 0. Update A =

 x b

0 d

.
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Equation 4.9 implies

[x b+ d] = [y y] (4.12)

Hence x = y and b+ d = y. Update A =

 x b

0 x− b

.

Equation 4.10 implies  b

x− b

 =

 0

z

 (4.13)

Hence b = 0 and x = z. Update A =

 x 0

0 x

. Therefore, End(M1) ∼= F. Since F is a

field, it does not contain any idempotents except 0 and id. Thus M1 is indecomposable.

The indecomposables of PH0(Y 2
−,−; F) is given in Figure 4.3. The number on the colored

block indicates the multiplicity of F in the representation.

1 2

1

2
1

1 1

2

2
1

1

Le1

r12 1 2

1

2

1

1
1

1

Le1

r12 1 2

1

2

1 1

1

1

Le1

r12

1 2

1

2

1

1

Le1

r121 2

1

2

1

1

Le1

r12

Figure 4.3: The indecomposables of PH0(Y 2
−,−; F)
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4.3 Configuration Spaces of Star Graphs

We begin this section with an observation.

Proposition 4.3. Let k ≥ 4 and k ∈ Z. Let ˆStark be the metric graph where every edge

but e1 has length 1. Then ( ˆStark)
2
r,Le1

and Y 2
r,Le1

:= ( ˆStar3)2
r,Le1

have the same critical

hyperplanes.

Proof. The following inequalities give a description of the parametric polytopes of ( ˆStark)
2
r,Le1

:

For i, j ∈ {2, . . . , k} and i 6= j,

0 ≤ x ≤ 1 = Lei

0 ≤ y ≤ 1 = Lej

x+ y ≥ r

(4.14)

For i ∈ {2, . . . , k} and j = 1,
0 ≤ x ≤ 1 = Lei

0 ≤ y ≤ Le1

x+ y ≥ r

(4.15)

For j ∈ {2, . . . , k} and i = 1,
0 ≤ x ≤ Le1

0 ≤ y ≤ 1 = Lej

x+ y ≥ r

(4.16)
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4.3 - Configuration Spaces of Star Graphs

For i, j ∈ {2, . . . , k}, i = j, and y ≥ x,

0 ≤ x ≤ 1

0 ≤ y ≤ 1

y− x ≥ r

y ≥ x

(4.17)

For i, j ∈ {2, . . . , k}, i = j, and y ≤ x,

0 ≤ x ≤ 1

0 ≤ y ≤ 1

x− y ≥ r

y ≤ x

(4.18)

For i = j = 1, and y ≥ x,
0 ≤ x ≤ Le1

0 ≤ y ≤ Le1

y− x ≥ r

y ≥ x

(4.19)

For i = j = 1, and y ≤ x,
0 ≤ x ≤ Le1

0 ≤ y ≤ Le1

x− y ≥ r

y ≤ x

(4.20)

Compare the inequality systems (4.14), (4.15), (4.16), (4.17), (4.18), (4.19), and (4.20)

with inequality systems (1.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), and (1.8), we conclude that

82



4.3 - Configuration Spaces of Star Graphs

( ˆStark)
2
r,Le1

and Y 2
r,Le1

have the same type of parametric polytopes. Therefore, ( ˆStark)
2
r,Le1

and Y 2
r,Le1

have the same critical hyperplanes.

The hyperplane arrangement of ( ˆStark)
2
r,Le1

is given in Figure 1.3.

Proposition 4.4. Let r be a positive number and k ≥ 3. Then

H0((Stark)
2
r)
∼=



Z, if 0 < r ≤ 1

Zk2−k, if 1 < r ≤ 2

0, if 2 < r

and H1((Stark)
2
r)
∼=


Zk(k−3)+1, if 0 < r ≤ 1

0, if 1 < r

Proof. We run induction on k.

When k = 3 Consider the following cover of (Star3)2
r:

U11 = (e1)
2
r

U12 = e1 × Star2 − {(x, y) ∈ e1 × Star2 | δ(x, y) < r}

U21 = Star2 × e1 − {(x, y) ∈ Star2 × e1 | δ(x, y) < r}

U22 = (Star2)
2
r

(4.21)

Note that (e1)2
r '


{∗1, ∗2}, if 0 < r ≤ 1

∅, if 1 < r

where {∗1, ∗2} is a subspace of (e1)2
r

consists of two points. On the other hand,

e1 × Star2 − {(x, y) ∈ e1 × Star2 | δ(x, y) < r} '



{∗}, if 0 < r ≤ 1

{∗1, ∗2}, if 1 < r ≤ 2

∅, if 2 < r
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Similarly,

Star2 × e1 − {(x, y) ∈ Star2 × e1 | δ(x, y) < r} '



{∗}, if 0 < r ≤ 1

{∗1, ∗2}, if 1 < r ≤ 2

∅, if 2 < r

In addition, note that

H0((Star2)
2
r)
∼=


Z2, if 0 < r ≤ 2

0, if 2 < r

Now let’s consider the intersections of Uij . Note that

U11 ∩U12 '


{∗}, if 0 < r ≤ 1

∅, if 1 < r

U11 ∩U21 '


{∗}, if 0 < r ≤ 1

∅, if 1 < r

U22 ∩U12 '


{∗1, ∗2}, if 0 < r ≤ 1

∅, if 1 < r

U22 ∩U21 '


{∗1, ∗2}, if 0 < r ≤ 1

∅, if 1 < r

U11 ∩U22 = ∅

U12 ∩U21 = ∅

(4.22)
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Note that there are natural inclusions

U11 ∩U12 ↪→ U11

U11 ∩U12 ↪→ U12

U11 ∩U21 ↪→ U11

U11 ∩U21 ↪→ U21

U22 ∩U12 ↪→ U22

U22 ∩U12 ↪→ U12

U22 ∩U21 ↪→ U22

U22 ∩U21 ↪→ U21

(4.23)

When 0 < r ≤ 1: The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Star2)2
r) 0 0

0 Z4 ⊕H0((Star2)2
r) Z6 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.23).

Let a be the generator of H0(U11 ∩U12) and â be the generator of H0(U11 ∩U21). Let

b1, b2 be the generators of H0(U22 ∩U12) and b̂1, b̂2 be the generators of H0(U22 ∩U21).

Note that U11 has two path components, while U11 ∩U12 and U11 ∩U21 lie in different

path components. Choose a generator (denoted by c1) from the path component of U11

containing U11 ∩U12, and choose a generator (denoted by c2) from the path component

of U11 containing U11 ∩U21. Let e be the generator of H0(U12) and ê be the generator
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of H0(U21) such that

d1(a) = c1 + e

and

d1(â) = c2 + ê

On the other hand, let f1, f2 be the generators of H0(U22) ∼= Z2, where f1 and f2 lie

in different path components of U22, then

d1(b1) = e+ f1, d1(b2) = e+ f2,

and

d1(b̂1) = ê+ f1, d1(b̂2) = ê+ f2

Consider the following matrix



1 0 0 0 0 0

0 1 0 0 0 0

1 0 1 1 0 0

0 1 0 0 1 1

0 0 1 0 1 0

0 0 0 1 0 1
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Run the row reduction, we obtain:



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 −1

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 0



The rank of this matrix is 5, and the diagonal elements of the Smith Normal form of

the matrix above are all equal to 1. Therefore, Im d1 ∼= Z5 and kerd1 ∼= Z1. Hence we

obtain the E2 page of the Mayer-Vietoris spectral sequence:

q

2 ... 0 0

1 H1((Star2)2
r) 0 0

0 Z Z 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Star3)
2
r)
∼= Z

and

H1((Star3)
2
r)
∼= H1((Star2)

2
r)⊕Z ∼= Z

When 1 < r ≤ 2: The E1 page of the Mayer-Vietoris spectral sequence is
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q

2 ... 0 0

1 H1((Star2)2
r) 0 0

0 Z6 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Star3)
2
r)
∼= Z6

and

H1((Star3)
2
r) = 0

In conclusion,

H0((Star3)
2
r)
∼=



Z, if 0 < r ≤ 1

Z6, if 1 < r ≤ 2

0, if 2 < r

(4.24)

and

H1((Star3)
2
r)
∼=


Z, if 0 < r ≤ 1

0, if 1 < r

(4.25)
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When k ≥ 4 Consider the following cover of (Stark)
2
r:

U11 = (e1)
2
r

U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r}

U21 = Stark−1 × e1 − {(x, y) ∈ Stark−1 × e1 | δ(x, y) < r}

U22 = (Stark−1)
2
r

(4.26)

Note that (e1)2
r '


{∗1, ∗2}, if 0 < r ≤ 1

∅, if 1 < r

where {∗1, ∗2} is a subspace of (e1)2
r

consists of two points. On the other hand,

e1×Stark−1−{(x, y) ∈ e1×Stark−1 | δ(x, y) < r} '



{∗}, if 0 < r ≤ 1

{∗1, ∗2, . . . , ∗k−1}, if 1 < r ≤ 2

∅, if 2 < r

where {∗1, ∗2, . . . , ∗k−1} is a subspace of (e1)2
r consists of (k− 1) points.
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Now let’s consider the intersections of Uij . Note that

U11 ∩U12 '


{∗}, if 0 < r ≤ 1

∅, if 1 < r

U11 ∩U21 '


{∗}, if 0 < r ≤ 1

∅, if 1 < r

U22 ∩U12 '


{∗1, . . . , ∗k−1}, if 0 < r ≤ 1

∅, if 1 < r

U22 ∩U21 '


{∗1, . . . , ∗k−1}, if 0 < r ≤ 1

∅, if 1 < r

U11 ∩U22 = ∅

U12 ∩U21 = ∅

(4.27)

Note that there are natural inclusions

U11 ∩U12 ↪→ U11

U11 ∩U12 ↪→ U12

U11 ∩U21 ↪→ U11

U11 ∩U21 ↪→ U21

U22 ∩U12 ↪→ U22

U22 ∩U12 ↪→ U12

U22 ∩U21 ↪→ U22

U22 ∩U21 ↪→ U21

(4.28)
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When 0 < r ≤ 1: The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z4 ⊕H0((Stark−1)
2
r) Z2k 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.28).

Let a be the generator of H0(U11 ∩U12) and â be the generator of H0(U11 ∩U21). Let

b1, . . . , bk−1 be the generators of H0(U22 ∩ U12) and b̂1, . . . , b̂k−1 be the generators of

H0(U22 ∩U21). Note that U11 has two path components, while U11 ∩U12 and U11 ∩U21

lie in different path components. Choose a generator (denoted by c1) from the path

component of U11 containing U11 ∩ U12, and choose a generator (denoted by c2) from

the path component of U11 containing U11 ∩ U21. Let e be the generator of H0(U12)

and ê be the generator of H0(U21) such that

d1(a) = c1 + e

and

d1(â) = c2 + ê

Let f be the generator of H0(U22) ∼= Z, then for all i = 1, . . . , k− 1,

d1(bi) = e+ f

and

d1(b̂i) = ê+ f
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Consider the following matrix



1 0 0 0 · · · 0

0 1 0 0 · · · 0

1 0 1 0 · · · 0

0 1 0 1 · · · 1

0 0 1 1 · · · 1



where the third and the fourth columns are repeated for (k − 1) times. Run the row

reduction, we obtain: 

1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 1

0 0 0 0 · · · 0


The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of

the matrix above are all equal to 1. Therefore, Im d1 ∼= Z4 and kerd1 ∼= Z2k−4. Hence

we obtain the E2 page of the Mayer-Vietoris spectral sequence:

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z Z2k−4 0

0 1 2 p
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Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Stark)
2
r)
∼= Z

and the following sequence is a short exact sequence:

0→ H1((Stark−1)
2
r)→ H0((Stark)

2
r)→ Z2k−4 → 0 (4.29)

Note that Z2k−4 is free, the short exact sequence (4.29) splits, hence

H0((Stark)
2
r)
∼= H1((Stark−1)

2
r)⊕Z2k−4

∼= Z2k−4 ⊕Z2(k−1)−4 ⊕ · · · ⊕Z2(4)−4 ⊕Z

∼= Zk(k−3)+1

(4.30)

When 1 < r ≤ 2: The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z2k−2 ⊕H0((Stark−1)
2
r) 0 0

0 1 2 p

d1

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Stark)
2
r)
∼= H0((Stark−1)

2
r)⊕Z2k−2

∼= Z2k−2 ⊕Z2(k−1)−2 ⊕ · · ·Z2(4)−2 ⊕Z6

∼= Zk2−k

(4.31)
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and

H1((Stark)
2
r)
∼= H1((Stark−1)

2
r)

In conclusion,

H0((Stark)
2
r)
∼=



Z, if 0 < r ≤ 1

Zk2−k, if 1 < r ≤ 2

0, if 2 < r

(4.32)

and

H1((Stark)
2
r)
∼=


Zk(k−3)+1, if 0 < r ≤ 1

0, if 1 < r

(4.33)

Now we are ready to compute Hi(( ˆStark)
2
r). Consider the following cover of ( ˆStark)

2
r:

U11 = (e1)
2
r

U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r}

U21 = Stark−1 × e1 − {(x, y) ∈ Stark−1 × e1 | δ(x, y) < r}

U22 = (Stark−1)
2
r

(4.34)
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Note that there are natural inclusions

U11 ∩U12 ↪→ U11

U11 ∩U12 ↪→ U12

U11 ∩U21 ↪→ U11

U11 ∩U21 ↪→ U21

U22 ∩U12 ↪→ U22

U22 ∩U12 ↪→ U12

U22 ∩U21 ↪→ U22

U22 ∩U21 ↪→ U21

(4.35)

Proposition 4.5. Let Le1 be a positive number. If r ≤ Le1 and r ≤ 1 . Then

H0(( ˆStark)
2
r)
∼= Z and H1(( ˆStark)

2
r)
∼= Zk(k−3)+1

Proof. Consider the cover of ( ˆStark)
2
r given in Equation (4.34). Note that U11 = (e1)2

r '

{∗1, ∗2}. Moreover,

U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r} ' {∗}

and

U21 = Stark−1 × e1 − {(x, y) ∈ Stark−1 × e1 | δ(x, y) < r} ' {∗}
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Now let’s consider the intersections of Uij . Note that

U11 ∩U12 ' {∗} ' U11 ∩U21

U22 ∩U12 ' {∗1, . . . , ∗k−1} ' U22 ∩U21

U11 ∩U22 = ∅ = U12 ∩U21

(4.36)

The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z4 ⊕H0((Stark−1)
2
r) Z2k 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.35). Let a

be the generator of H0(U11 ∩U12) and â be the generator of H0(U11 ∩U21). Let b1, . . . , bk−1

be the generators of H0(U22 ∩ U12) and b̂1, . . . , b̂k−1 be the generators of H0(U22 ∩ U21).

Note that U11 has two path components, while U11 ∩U12 and U11 ∩U21 lie in different path

components. Choose a generator (denoted by c1) from the path component of U11 containing

U11∩U12, and choose a generator (denoted by c2) from the path component of U11 containing

U11 ∩U21. Let e be the generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a) = c1 + e

and

d1(â) = c2 + ê
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Let f be the generator of H0(U22) ∼= Z, then for all i = 1, . . . , k− 1,

d1(bi) = e+ f

and

d1(b̂i) = ê+ f

Consider the following matrix 

1 0 0 0 · · · 0

0 1 0 0 · · · 0

1 0 1 0 · · · 0

0 1 0 1 · · · 1

0 0 1 1 · · · 1


where the third and the fourth columns are repeated for (k−1) times. Run the row reduction,

we obtain: 

1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 1

0 0 0 0 · · · 0


The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore,

Im d1 ∼= Z4

and

kerd1 ∼= Z2k−4
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Hence we obtain the E2 page of the Mayer-Vietoris spectral sequence:

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z Z2k−4 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H1(( ˆStark)
2
r)
∼= H1((Stark−1)

2
r)⊕Z2k−4

∼= Zk(k−3)+1
(4.37)

and

H0(( ˆStark)
2
r)
∼= Z (4.38)

Proposition 4.6. Let Le1 be a positive number. If r > Le1 and r ≤ 1 . Then

H0(( ˆStark)
2
r)
∼= Z and H1(( ˆStark)

2
r)
∼= Z(k−1)(k−4)+1

Proof. Consider the cover of ( ˆStark)
2
r given in Equation (4.34). Note that U11 = (e1)2

r = ∅.

On the other hand,

U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r} ' {∗1, . . . , ∗k−1}

and

U21 = Stark−1 × e1 − {(x, y) ∈ Stark−1 × e1 | δ(x, y) < r} ' {∗1, . . . , ∗k−1}
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Now let’s consider the intersections of Uij . Note that

U11 ∩U12 = ∅ = U11 ∩U21

U22 ∩U12 ' {∗1, . . . , ∗k−1} ' U22 ∩U21

U11 ∩U22 = ∅ = U12 ∩U21

(4.39)

The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z2k−2 ⊕H0((Stark−1)
2
r) Z2k−2 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.35). Let

b1, . . . , bk−1 be the generators of H0(U22∩U12) and b̂1, . . . , b̂k−1 be the generators of H0(U22∩

U21). Let e, . . . , ek−1 be the generators of H0(U12) and ê1, . . . , êk−1 be the generators of

H0(U21). Let f be the generator of H0(U22) ∼= Z, then for all i = 1, . . . , k− 1,

d1(bi) = ei + f

and

d1(b̂i) = êi + f
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Consider the following matrix 

1 0 · · · 0 0

0 1 · · · 0 0

0 0 . . . 0 0

0 0 · · · 1 0

0 0 · · · 0 1

1 1 · · · 1 1


Run the row reduction, we obtain:



1 0 · · · 0 0

0 1 · · · 0 0

0 0 . . . 0 0

0 0 · · · 1 0

0 0 · · · 0 1

0 0 · · · 0 0



The rank of this matrix is 2k − 2, and the diagonal elements of the Smith Normal form

of the matrix above are all equal to 1. Therefore, Im d1 ∼= Z2k−2 and kerd1 = 0. Hence we

obtain the E2 page of the Mayer-Vietoris spectral sequence:

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z 0 0

0 1 2 p

100



4.3 - Configuration Spaces of Star Graphs

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H1(( ˆStark)
2
r)
∼= H1((Stark−1)

2
r)
∼= Z(k−1)(k−4)+1 (4.40)

and

H0(( ˆStark)
2
r)
∼= Z (4.41)

Proposition 4.7. Let Le1 be a positive number. If r ≤ Le1 and 1 < r ≤ 2 . Then

H0(( ˆStark)
2
r)
∼= Zk2−k+2 and H1(( ˆStark)

2
r) = 0

Proof. Consider the cover of ( ˆStark)
2
r given in Equation (4.34). Note that U11 = (e1)2

r =

{∗1, ∗2}. On the other hand,

U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r} ' {∗}

and

U21 = Stark−1 × e1 − {(x, y) ∈ Stark−1 × e1 | δ(x, y) < r} ' {∗}

Now let’s consider the intersections of Uij . Note that

U11 ∩U12 ' {∗} ' U11 ∩U21

U22 ∩U12 = ∅ = U22 ∩U21

U11 ∩U22 = ∅ = U12 ∩U21

(4.42)

The E1 page of the Mayer-Vietoris spectral sequence is
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q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z4 ⊕H0((Stark−1)
2
r) Z2 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.35). Let

a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21). Let e be the

generator of H0(U12) and ê be the generator of H0(U21). On the other hand, let f1, . . . , fk2−k

be the generators of H0(U22) ∼= Zk2−k, then for all i = 1, . . . , k− 1,

d1(a) = c1 + e

and

d1(b̂i) = c2 + ê

Consider the following matrix 

1 0

0 1

1 0

0 1

0 0
... ...

0 0
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Run the row reduction, we obtain: 

1 0

0 1

0 0

0 0

0 0
... ...

0 0


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and kerd1 = 0. Hence we obtain the

E2 page of the Mayer-Vietoris spectral sequence:

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Zk2−k+2 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H1(( ˆStark)
2
r)
∼= H1((Stark−1)

2
r) = 0 (4.43)

and

H0(( ˆStark)
2
r)
∼= Zk2−k+2 (4.44)
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Proposition 4.8. Let Le1 be a positive number. If Le1 < r ≤ Le1 + 1 and 1 < r ≤ 2 . Then

H0(( ˆStark)
2
r)
∼= Zk2+k−2 and H1(( ˆStark)

2
r) = 0

Proof. Consider the cover of ( ˆStark)
2
r given in Equation (4.34). Note that U11 = (e1)2

r =

∅. On the other hand, U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r} '

{∗1, . . . , ∗k−1} and U21 = Stark−1× e1−{(x, y) ∈ Stark−1× e1 | δ(x, y) < r} ' {∗1, . . . , ∗k−1}.

Now let’s consider the intersections of Uij . Note that

U11 ∩U12 = ∅ = U11 ∩U21

U22 ∩U12 = ∅ = U22 ∩U21

U11 ∩U22 = ∅ = U12 ∩U21

(4.45)

The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z2k−2 ⊕H0((Stark−1)
2
r) 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H1(( ˆStark)
2
r)
∼= H1((Stark−1)

2
r) = 0 (4.46)
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and

H0(( ˆStark)
2
r)
∼= Zk2+k−2 (4.47)

Proposition 4.9. Let Le1 be a positive number. If r > Le1 + 1 and 1 < r ≤ 2 . Then

H0(( ˆStark)
2
r)
∼= Zk2−k and H1(( ˆStark)

2
r) = 0

Proof. Consider the cover of ( ˆStark)
2
r given in Equation (4.34). Note that U11 = (e1)2

r = ∅.

On the other hand, U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r} = ∅ and

U21 = Stark−1 × e1 − {(x, y) ∈ Stark−1 × e1 | δ(x, y) < r} = ∅.

Now let’s consider the intersections of Uij . Note that

U11 ∩U12 = ∅ = U11 ∩U21

U22 ∩U12 = ∅ = U22 ∩U21

U11 ∩U22 = ∅ = U12 ∩U21

(4.48)

The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 H0((Stark−1)
2
r) 0 0

0 1 2 p

105



4.3 - Configuration Spaces of Star Graphs

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H1(( ˆStark)
2
r)
∼= H1((Stark−1)

2
r) = 0 (4.49)

and

H0(( ˆStark)
2
r)
∼= Zk2−k (4.50)

Proposition 4.10. Let Le1 be a positive number. If r ≤ Le1 and r > 2 . Then

H0(( ˆStark)
2
r)
∼= Z2 and H1(( ˆStark)

2
r) = 0

Proof. Consider the cover of ( ˆStark)
2
r given in Equation (4.34). Note that U11 = (e1)2

r '

{∗1, ∗2}. On the other hand,

U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r} ' {∗}

and

U21 = Stark−1 × e1 − {(x, y) ∈ Stark−1 × e1 | δ(x, y) < r} ' {∗}

Now let’s consider the intersections of Uij . Note that

U11 ∩U12 ' {∗} ' U11 ∩U21

U22 ∩U12 = ∅ = U22 ∩U21

U11 ∩U22 = ∅ = U12 ∩U21

(4.51)

The E1 page of the Mayer-Vietoris spectral sequence is
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4.3 - Configuration Spaces of Star Graphs

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z4 ⊕H0((Stark−1)
2
r) Z2 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.35). Let

a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21). Let c1, c2 be

the generators of H0(U11), where c1 and c2 lie in different path components of U11. Let e be

the generator of H0(U12) and ê be the generator of H0(U21). Note that

d1(a) = c1 + e

d1(â) = c2 + ê

Consider the following matrix 

1 0

0 1

1 0

0 1


Run the row reduction, we obtain 

1 0

0 1

0 0

0 0


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

107



4.3 - Configuration Spaces of Star Graphs

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and kerd1 = 0. Hence we obtain the

E2 page of the Mayer-Vietoris spectral sequence:

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z2 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H1(( ˆStark)
2
r)
∼= H1((Stark−1)

2
r) = 0 (4.52)

and

H0(( ˆStark)
2
r)
∼= Z2 (4.53)

Proposition 4.11. Let Le1 be a positive number. If Le1 < r ≤ Le1 + 1 and r > 2 . Then

H0(( ˆStark)
2
r)
∼= Z2k−2 and H1(( ˆStark)

2
r) = 0

Proof. Consider the cover of ( ˆStark)
2
r given in Equation (4.34). Note that U11 = (e1)2

r =

∅. On the other hand, U12 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r} '

{∗1, . . . , ∗k−1} and U21 = Stark−1× e1−{(x, y) ∈ Stark−1× e1 | δ(x, y) < r} ' {∗1, . . . , ∗k−1}.
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4.3 - Configuration Spaces of Star Graphs

Now let’s consider the intersections of Uij . Note that

U11 ∩U12 = ∅ = U11 ∩U21

U22 ∩U12 = ∅ = U22 ∩U21

U11 ∩U22 = ∅ = U12 ∩U21

(4.54)

The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... 0 0

1 H1((Stark−1)
2
r) 0 0

0 Z2k−2 ⊕H0((Stark−1)
2
r) 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H1(( ˆStark)
2
r)
∼= H1((Stark−1)

2
r) = 0 (4.55)

and

H0(( ˆStark)
2
r)
∼= Z2k−2 (4.56)

In summary, when k ≥ 4, the rank of H0(( ˆStark)
2
r) for all r > 0 and Le1 > 0 is shown

in Figure 4.4. When k ≥ 4, the rank of H1(( ˆStark)
2
r) for all r > 0 and Le1 > 0 is shown in

Figure 4.5.
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1 2

1

2

1

1 k2 − k

k2 + k− 2

k2 − k+ 2

2

2k− 2

Le1

r

Figure 4.4: The rank of H0(( ˆStark)
2
r)

1 2

1

2

k(k− 3) + 1

k2 − 5k+ 5
0

0

0

0

0

Le1

r

Figure 4.5: The rank of H1(( ˆStark)
2
r)
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4.4 Decomposition of PHi((Stark)2
−,−; F)

In the previous section, we computed Hi(( ˆStark)2
r) for all r,Le1 ∈ R>0. Recall that ˆStark

is a metric star graph where the length of all but one edge (denoted by e1) is 1, and the

length of edge e1 is Le1 . In this section, we define

(Stark)
2
r,Le1

:= ( ˆStark)
2
r

to emphasize that ( ˆStark)2
r is determined by two parameters r and Le1 .

Note that the hyperplane arrangement of (Stark)
2
r,Le1

can be interpreted as a functor

(Stark)
2
−,− : (R>0,≤)

op
× (R>0,≤)→ Top

where (Stark)
2
−,− sends (a, b) ∈ R>0×R>0 to (Stark)

2
a,b and sends the unique arrow (a, b)→

(a′, b′) to the inclusion map ι : (Stark)
2
a,b → (Stark)

2
a′,b′ , for all a′ ≤ a and b ≤ b′. Post-

composing the i-th homology functor Hi(−) with (Stark)
2
−,−, we obtain

PHi((Stark)
2
−,−) : (R>0,≤)

op
× (R>0,≤)→ Ab

In other words, at the object level, for each (a, b) ∈ R>0 ×R>0,

PHi((Stark)
2
a,b) = Hi((Stark)

2
a,b)

At the morphism level, PHi((Stark)
2
−,−) sends each morphism (a, b)→ (a′, b′) to a group

homomorphism

ι∗ : Hi((Stark)
2
a,b)→ Hi((Stark)

2
a′,b′)
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where ι∗ is induced by the inclusion map ι : (Stark)
2
a,b → (Stark)

2
a′,b′ in Top.

One natural question is whether or not it can be written as a direct sum of polycodes.

If it is not a direct sum of polycodes, what are the indecomposable direct summands of

PHi((Stark)2
−,−; F)? In this section, we give the decompositions of PH0((Stark)2

−,−; F) and

PH1((Stark)2
−,−; F).

Note that there are finitely many chambers in the hyperplane arrangement of (Stark)2
r,Le1

,

we may associate the hyperplane arrangement with the Hasse diagram of a poset (denoted

by (P ,≤)) as follows:

• each chamber of the hyperplane arrangement is an element of (P ,≤);

• each arrow corresponds to a wall between two chambers, and the orientation of the

arrow is given by the filtration of the spaces (Stark)
2
r,Le1

.

We associate PH0((Stark)2
−,−; F) with a representation over (P ,≤):
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F Fk2−k+2 F2

F Fk2+k−2 F2k−2

Fk2−k

=

< f > < e1, ê1, f1, . . . , fk2−k > < e1, ê1 >

< f >

〈e1, . . . , ek−1, ê1, . . . , êk−1,

f1, . . . , fk2−k

〉
< e1, . . . , ek−1, ê1, . . . , êk−1 >

< f1, . . . , fk2−k >

α

β

γ

ε

(4.57)

where α and γ maps every basis element to f , β maps ei to e1, maps êi to ê1 for all

i = 1, . . . , k − 1 and maps fj to fj itself for all j = 1, . . . , k2 − k, and ε maps ei to e1

and maps êi to ê1 for all i = 1, . . . , k − 1. All other maps are inclusions. By an abuse of

notation, we use PH0((Stark)2
−,−; F) to denote the P -indexed persistence module given by

(4.57).

Similarly, we associate PH1((Stark)2
−,−; F) with a representation over (P ,≤):
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Fk(k−3)+1 0 0

Fk2−5k+5 0 0

0

(4.58)

By an abuse of notation, we use PH1((Stark)2
−,−; F) to denote the P -indexed persistence

module given by (4.58).

Theorem 4.12. PH1((Stark)2
−,−; F) is interval decomposable.

Proof. The support of PH1((Stark)2
−,−; F) is a A2 quiver. Note that A2 quivers are interval

decomposable (Theorem 2.33), and there are only 3 types of thin indecomposable representa-

tions of a A2 type quiver, up to isomorphism:

F→ 0, F
id−→ F, and 0→ F

Note that

F 0 0

0 0 0

0

and

0 0 0

F 0 0

0

are indecomposable because
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they are simple representations. On the other hand, note that

End



F 0 0

F 0 0

0

id


∼= F

By Fitting’s Lemma (Theorem 2.36),

F 0 0

F 0 0

0

id

is indecomposable.

Assume there exists m,n > 0 such that M :=

Fm 0 0

Fn 0 0

0

α

is indecomposable.

Note that we can decompose α : Fn → Fm into a direct sum of the thin indecomposable

representations

F→ 0, F
id−→ F, and 0→ F
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Extend these representation as

F 0 0

0 0 0

0

0 0 0

F 0 0

0

and
F 0 0

F 0 0

0

id

Since M is indecomposable and m,n > 0, we must have m = n = 1. Therefore, every

indecomposable subrepresentation of PH1((Stark)2
−,−; F) is isomorphic to one of the following
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thin indecomposable representations:

F 0 0

0 0 0

0

,

0 0 0

F 0 0

0

,

F 0 0

F 0 0

0

id

Note that the supports of the above thin indecomposable representations are intervals (as

posets). Therefore, PH1((Stark)2
−,−; F) is interval decomposable.

Theorem 4.13. PH0(( ˆStark)2
−,−; F) ∼= M1 ⊕M2 ⊕ (

k−1⊕
i=2

Ei)⊕ (
k−1⊕
i=2

Êi)⊕ (
k2−k⊕
j=2

Fj) where

M1 =

F F2 F

F F2 F

F

[1 1] [ 1
0 ]

id id
[1 1]

id

[ 1
0 ][ 0

1 ]

M2 =

0 F F

0 F F

0

id

id id
id
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and for i = 2, . . . , k− 1,

Ei =

0 0 0

0 F F

0

id

Êi =

0 0 0

0 F F

0

id

and for j = 2, . . . , k2 − k,

Fj =

0 F 0

0 F 0

F

id

id

Proof. Equation 4.57 provides us with the behavior of each arrow with given basis elements.

Our goal is to find a new basis of PH0((Stark)2
r,Le1

; F) for all (r,Le1) ∈ R×R such that

each morphism in the diagram maps every basis to another basis or zero, depending on the

geometry of ( ˆStark)2
r,Le1

. We choose the basis for each vector space provided in the diagram

below:
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< f >

〈 e1, ê1 − e1, f1, f2 −

f1, . . . , fk2−k − f1

〉
< e1, ê1 − e1 >

< f >

〈e1, e2 − e1, . . . , ek−1 − e1, ê1 − e1,

ê2 − ê1, . . . , êk−1 − ê1, f1, f2 −

f1, . . . , fk2−k − f1

〉 〈
e1, e2 − e1, . . . , ek−1 −

e1,

ê1 − e1, ê2 −

ê1, . . . , êk−1 − ê1

〉

< f1, f2 − f1, . . . , fk2−k − f1 >

α

β

γ

ε

Let

M1 : =

< f1 > < e1, f1 > < e1 >

< f1 > < e1, f1 > < e1 >

< f1 >

α

β

γ

ε

∼=

F F2 F

F F2 F

F

[1 1] [ 1
0 ]

id id
[1 1]

id

[ 1
0 ][ 0

1 ]
(4.59)

M2 : =

0 < ê1 − e1 > < ê1 − e1 >

0 < ê1 − e1 > < ê1 − e1 >

0

α

β

γ

ε

∼=

0 F F

0 F F

0

id

id id
id

(4.60)
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For i = 2, . . . , k− 1

Ei : =

0 0 0

0 < ei − e1 > < ei − e1 >

0

α

β

γ

ε

∼=

0 0 0

0 F F

0

id
(4.61)

Êi : =

0 0 0

0 < êi − ê1 > < êi − ê1 >

0

α

β

γ

ε

∼=

0 0 0

0 F F

0

id
(4.62)

For j = 2, . . . , k2 − k

Fj : =

0 < fj − f1 > 0

0 < fj − f1 > 0

< fj − f1 >

α

β

γ

ε

∼=

0 F 0

0 F 0

F

id

id
(4.63)

Note that M2, Ei, Êi, and Fj (where i = 2, . . . , k− 1 and j = 2, . . . , k2 − k) are interval

modules, hence by Lemma 3.1, they are indecomposable. Now we are going to show that M1

is indecomposable. By the Fitting’s lemma (Theorem 2.36), it suffices to show that End(M1)

does not contain any idempotents except 0 and id.
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Note that any linear transformation F→ F is a scalar multiplication. We use x : F→ F

to denote the linear transformation that sends f to xf for all f ∈ F. Let φ ∈ End(M1). It

consists of the following data:

• x : F→ F;

• y : F→ F;

• z : F→ F;

• A :=

 a b

c d

 be the morphism F2 → F2 under the given basis,

such that

x ◦

 1

0

 = A ◦

 1

0

 (4.64)

y ◦ [1 1] = A ◦

 1

0

 (4.65)

z ◦

 0

1

 = A ◦

 0

1

 (4.66)

Equation 4.64 implies  x

0

 =

 a

c

 (4.67)

Hence a = x and c = 0. Update A =

 x b

0 d

.

Equation 4.65 implies

[x b+ d] = [y y] (4.68)
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Hence x = y and b+ d = y. Update A =

 x b

0 x− b

.

Equation 4.66 implies  b

x− b

 =

 0

z

 (4.69)

Hence b = 0 and x = z. Update A =

 x 0

0 x

. Therefore, End(M1) ∼= F. Since F is a

field, it does not contain any idempotents except 0 and id. Thus M1 is indecomposable.

4.5 Configuration Spaces of the H Graph

An H graph is a tree shown in Figure 4.6a. We want to assign each edge an orientation

that matches the orientation we assigned for the Y graph. Hence we subdivide the bridge

of H graph by introducing an artificial vertex, as shown in Figure 4.6b. We denote the

geometric realization of the resulting graph by H and use Ĥ to denote the metric graph H

where the length of the bridge is Le1 and the length of any other edge is 1. In this section,

we describe the second configuration spaces of Ĥ with restraint parameters r and Le1 .

e1

e2 e4

e3 e5

(a)

e6

e2 e4

e3 e5

e7

(b)

Figure 4.6

Let Lei denote the length of the ei. The parametric polytope of H2
r,~L is given by the

following inequalities, where ~L = (Le2 , . . . ,Le7) and Le6 + Le7 = Le1 :
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For i, j ∈ {2, 3}, i 6= j:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ y ≥ r

(4.70)

For i, j ∈ {4, 5}, i 6= j:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ y ≥ r

(4.71)

For i ∈ {2, 3}, j = 6:
0 ≤ x ≤ Lei

0 ≤ y ≤ Le6

x+ y ≥ r

(4.72)

For j ∈ {2, 3}, i = 6:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ y ≥ r

(4.73)

For i ∈ {2, 3}, j = 7:
0 ≤ x ≤ Lei

0 ≤ y ≤ Le7

x+ Le1 − y ≥ r

(4.74)
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For j ∈ {2, 3}, i = 7:
0 ≤ x ≤ Le7

0 ≤ y ≤ Lej

−x+ Le1 + y ≥ r

(4.75)

For i, j ∈ {6, 7}, i 6= j:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

−x+ Le1 − y ≥ r

(4.76)

For i ∈ {2, 3}, j ∈ {4, 5}:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ Le1 + y ≥ r

(4.77)

For i ∈ {4, 5}, j ∈ {2, 3}:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ Le1 + y ≥ r

(4.78)

For i ∈ {4, 5}, j = 7:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ y ≥ r

(4.79)
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For j ∈ {4, 5}, i = 7:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ y ≥ r

(4.80)

For i ∈ {4, 5}, j = 6:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ Le1 − y ≥ r

(4.81)

For j ∈ {4, 5}, i = 6:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

−x+ Le1 + y ≥ r

(4.82)

For i, j ∈ {2, 3, 4, 5, 6, 7}, i = j, x < y:

0 ≤ x ≤ Lei

0 ≤ y ≤ Lei

−x+ y ≥ r

(4.83)

For i, j ∈ {2, 3, 4, 5, 6, 7}, i = j, x > y:

0 ≤ x ≤ Lei

0 ≤ y ≤ Lei

x− y ≥ r

(4.84)
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When ~L = (1, . . . , 1) and Le6 = Le7 = 1
2Le1 ,

Ĥ = ˆStar3 ∨ ˆStar3

and the critical hyperplanes in the parameter space are:

r = 1

r = 2

r =
1
2
Le1

r = 1 + 1
2
Le1

r = 1 + Le1

r = Le1

r = 2 + Le1

(4.85)

Consider the following cover of (Ĥ)2
r,Le1

:

U11 = ( ˆStar3)
2
r

U12 = ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}

U21 = ˆStar3 × ˆStar3 − {(y,x) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}

U22 = ( ˆStar3)
2
r

(4.86)
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Note that there are natural inclusions

U11 ∩U12 ↪→ U11

U11 ∩U12 ↪→ U12

U11 ∩U21 ↪→ U11

U11 ∩U21 ↪→ U21

U22 ∩U12 ↪→ U22

U22 ∩U12 ↪→ U12

U22 ∩U21 ↪→ U22

U22 ∩U21 ↪→ U21

(4.87)

Lemma 4.1. ~L = (1, . . . , 1) and Le6 = Le7 = 1
2Le1 . Then

H0( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) ∼=



Z, if 0 < r ≤ Le1 + 1

Z4, if Le1 + 1 < r ≤ Le1 + 2

0, else

and

H1( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) ∼=


Z, if Le1 < r ≤ Le1 + 1

0, else

Proof. Consider the following cover of ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}:

V1 = ˆStar3 × e7 − {(x, y) ∈ ˆStar3 × e7 | δ(x, y) < r}

V2 = ˆStar3 × (e4 ∨ e5)− {(x, y) ∈ ˆStar3 × (e4 ∨ e5) | δ(x, y) < r}
(4.88)
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Note that

V1 '



{∗}, if 0 < r ≤ Le1

{∗1, ∗2}, ifLe1 < r ≤ Le1 + 1

∅ else

V2 '



{∗}, if 0 < r ≤ Le1

S1, ifLe1 < r ≤ Le1 + 1

{∗1, ∗2, ∗3, ∗4}, ifLe1 + 1 < r ≤ Le1 + 2

∅ else

(4.89)

and

V1 ∩ V2 '



{∗}, if 0 < r ≤ Le1

{∗1, ∗2}, ifLe1 < r ≤ Le1 + 1

∅ else

(4.90)

When 0 < r ≤ Le1: The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... ... ...

1 0 0 0

0 Z2 Z 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced from the following maps:

V1 ∩ V2 ↪→ V1

V1 ∩ V2 ↪→ V2
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Let a be the generator of H0(V1 ∩ V2). Choose a generator b of H0(V1) and a generator

c of H0(V2) such that d1(a) = b+ c. Thus dim Im d1 = 1 and dim kerd1 = 0, and we obtain

the E2 page of the spectral sequence:

q

2 ... ... ...

1 0 0 0

0 Z 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) ∼= Z

and

H1( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) = 0

When Le1 < r ≤ Le1 + 1: The E1 page of the Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 Z 0 0

0 Z3 Z2 0

0 1 2 p

d1
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We want to understand the behavior of d1, where d1 is induced from the following maps:

V1 ∩ V2 ↪→ V1

V1 ∩ V2 ↪→ V2

Let a1, a2 be the generators of H0(V1 ∩ V2). Choose generators b1 and b2 for H0(V1) and

a generator c for H0(V2) such that

• b1 and a1 lie in the same path component;

• b2 and a2 lie in the same path component.

Hence

d1(a1) = b1 + c

d1(a2) = b2 + c

Consider the matrix 
1 0

0 1

1 1


Run the row reduction, we obtain:


1 0

0 1

0 0



The rank of the matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Thus dim Im d1 = 2 and dim kerd1 = 1, and we obtain the

E2 page of the spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 Z 0 0

0 Z 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) ∼= Z

and

H1( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) ∼= Z

When Le1 + 1 < r ≤ Le1 + 2: The E1 page of the Mayer-Vietoris spectral sequence is

q

2 ... ... ...

1 0 0 0

0 Z4 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) ∼= Z4

and

H1( ˆStar3 × ˆStar3 − {(x, y) ∈ ˆStar3 × ˆStar3 | δ(x, y) < r}) = 0
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Proposition 4.14. Let Le1 be a positive number. If r ≤ 1
2Le1 and r ≤ 1, then

H0((Ĥ)2
r,Le1

) ∼= Z and H1((Ĥ)2
r,Le1

) ∼= Z3

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 Z2 0 0

0 Z4 Z4 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.87). Let

a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21). Let b be the

generator of H0(U22 ∩ U12) and b̂ be the generator of H0(U22 ∩ U21). Choose a generator

(denoted by c) for H0(U11), (denoted by ĉ) for H0(U22), and let e be the generator of H0(U12)

and ê be the generator of H0(U21) such that

d1(a) = c+ e

d1(â) = ĉ+ ê

d1(b) = c+ e

d1(b̂) = ĉ+ ê

(4.91)
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Consider the following matrix 

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1


Run the row reduction, we obtain:



1 0 0 −1

0 0 1 1

0 0 0 0

0 1 0 1



The rank of this matrix is 3, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z3 and kerd1 ∼= Z. Hence we obtain the

E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 Z2 0 0

0 Z Z 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z and H1((Ĥ)2
r,Le1

) ∼= Z3
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Proposition 4.15. Let Le1 be a positive number. If 1
2Le1 < r ≤ Le1 and r ≤ 1, then

H0((Ĥ)2
r,Le1

) ∼= Z and H1((Ĥ)2
r,Le1

) ∼= Z3

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z6 Z8 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.87).

Let a1, a2 be the generators of H0(U11 ∩ U12) such that a1 and a2 lie in different path

components of U11 ∩ U12. Similarly, let â1, â2 be the generators of H0(U11 ∩ U21), let b1, b2

be the generators of H0(U22 ∩ U12) and b̂1, b̂2 be the generators of H0(U22 ∩ U21) such that

the generators of each abelian group lie in different path components. Choose generators

(denoted by c3 and c6) for H0(U11), (denoted by ĉ3 and ĉ6) for H0(U22), and let e be the
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generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a1) = c3 + e

d1(a2) = c6 + e

d1(â1) = c3 + ê

d1(â2) = c6 + ê

d1(b1) = ĉ3 + e

d1(b2) = ĉ6 + e

d1(b̂1) = ĉ3 + ê

d1(b̂2) = ĉ6 + ê

(4.92)

Consider the following matrix



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1
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Run the row reduction, we obtain:



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0



The rank of this matrix is 5, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to ±1. Therefore, Im d1 ∼= Z5 and kerd1 ∼= Z3. Hence the E2

page of the Mayer-Vietoris spectral sequence is:

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z Z3 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z and H1((Ĥ)2
r,Le1

) ∼= Z3

Proposition 4.16. Let Le1 be a positive number. If Le1 < r ≤ 1, then

H0((Ĥ)2
r,Le1

) ∼= Z and H1((Ĥ)2
r,Le1

) ∼= Z5
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Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 Z2 0 0

0 Z6 Z8 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.87). Let

a1, a2 be the generators of H0(U11 ∩U12) such that a1 and a2 lie in different path components

of U11 ∩U12. Similarly, let â1, â2 be the generators of H0(U11 ∩U21) such that â1 and â2 lie

in different path components of U11 ∩U21. Let b1, b2 be the generators of H0(U22 ∩U12) and

b̂1, b̂2 be the generators of H0(U22 ∩ U21) such that the generators of each abelian group lie

in different path components. Choose generators for H0(U11) (denoted by c3 and c6) and

H0(U22) (denoted by ĉ3 and ĉ6). Let e be the generator of H0(U12) and ê be the generator

of H0(U21) such that
d1(a1) = c3 + e

d1(a2) = c6 + e

d1(â1) = c3 + ê

d1(â2) = c6 + ê

d1(b1) = ĉ3 + e

d1(b2) = ĉ6 + e

d1(b̂1) = ĉ3 + ê

d1(b̂2) = ĉ6 + ê

(4.93)
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Consider the following matrix



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1



Run the row reduction, we obtain:



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0



The rank of this matrix is 5, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z5 and kerd1 ∼= Z3. Hence the E2 page

of the Mayer-Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 Z2 0 0

0 Z Z3 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z and H1((Ĥ)2
r,Le1

) ∼= Z5

Proposition 4.17. Let Le1 be a positive number. If 1 < r ≤ 2 and r ≤ 1
2Le1 , then

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) = 0

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z10 Z4 0

0 1 2 p

d1
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We want to understand the behavior of d1, where d1 is induced by inclusions (4.87). Let

a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21). Let b be

the generator of H0(U22 ∩U12) and b̂ be the generator of H0(U22 ∩U21). Choose generators

(denoted by c1, c3, c4 and c6) for H0(U11) such that no two generators lie in the same path

component of U11. Similarly, choose generators (denoted by ĉ1, ĉ3, ĉ4 and ĉ6) for H0(U22)

such that no two generators lie in the same path component of U22. Moreover, let e be the

generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a) = c1 + e

d1(â) = c4 + ê

d1(b) = ĉ1 + e

d1(b̂) = ĉ4 + ê

(4.94)

Consider the following matrix 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

0 1 0 1
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Run the row reduction, we obtain:



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z4 and kerd1 = 0. Hence we obtain the

E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z6 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) = 0

Proposition 4.18. Let Le1 be a positive number. If 1 < r ≤ 2 and 1
2Le1 < r ≤ Le1 , then

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) = 0
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Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z14 Z8 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.87). Let

a1, a2 be the generators of H0(U11 ∩ U12) and â1, â2 be the generators of H0(U11 ∩ U21).

Let b1, b2 be the generators of H0(U22 ∩ U12) and b̂1, b̂2 be the generators of H0(U22 ∩ U21).

Choose generators (denoted by c1, . . . , c6) for H0(U11) such that no two generators lie in

the same path component of U11. Similarly, choose generators (denoted by ĉ1, . . . , ĉ6) for

H0(U22) such that no two generators lie in the same path component of U22. Moreover, let

e be the generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a1) = c1 + e

d1(a2) = c2 + e

d1(â1) = c4 + ê

d1(â2) = c5 + ê

d1(b1) = ĉ1 + e

d1(b2) = ĉ2 + e

d1(b̂1) = ĉ4 + ê

d1(b̂2) = ĉ5 + ê

(4.95)
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Consider the following matrix



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1



Run the row reduction, we obtain:



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



The rank of this matrix is 8, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z8 and kerd1 = 0. Hence we obtain the
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E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z6 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) = 0

Proposition 4.19. Let Le1 be a positive number. If 1 < r ≤ 2 and Le1 < r ≤ 1
2Le1 + 1,

then

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) ∼= Z2

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...
2 0 0 0

1 Z2 0 0

0 Z14 Z8 0

0 1 2 p

d1
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We want to understand the behavior of d1, where d1 is induced by inclusions (4.87). Let

a1, a2 be the generators of H0(U11 ∩ U12) and â1, â2 be the generators of H0(U11 ∩ U21).

Let b1, b2 be the generators of H0(U22 ∩ U12) and b̂1, b̂2 be the generators of H0(U22 ∩ U21).

Choose generators (denoted by c1, . . . , c6) for H0(U11) such that no two generators lie in

the same path component of U11. Similarly, choose generators (denoted by ĉ1, . . . , ĉ6) for

H0(U22) such that no two generators lie in the same path component of U22. Moreover, let

e be the generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a1) = c1 + e

d1(a2) = c2 + e

d1(â1) = c4 + ê

d1(â2) = c5 + ê

d1(b1) = ĉ1 + e

d1(b2) = ĉ2 + e

d1(b̂1) = ĉ4 + ê

d1(b̂2) = ĉ5 + ê

(4.96)
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Consider the following matrix



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1



Run the row reduction, we obtain:



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



The rank of this matrix is 8, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z8 and kerd1 = 0. Hence we obtain the
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E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 Z2 0 0

0 Z6 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) ∼= Z2

Proposition 4.20. Let Le1 be a positive number. If 1 < r ≤ 2 and 1
2Le1 + 1 < r ≤ Le1 + 1,

then

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) ∼= Z2

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 Z2 0 0

0 Z6 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z6 and H1((Ĥ)2
r,Le1

) ∼= Z

Proposition 4.21. Let Le1 be a positive number. If 1 < r ≤ 2 and Le1 + 1 < r , then

H0((Ĥ)2
r,Le1

) ∼= Z12 and H1((Ĥ)2
r,Le1

) = 0

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z12 0 0

0 1 2 p
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Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z12 and H1((Ĥ)2
r,Le1

) = 0

Proposition 4.22. Let Le1 be a positive number. If 2 < r and r ≤ 1
2Le1 , then

H0((Ĥ)2
r,Le1

) ∼= Z2 and H1((Ĥ)2
r,Le1

) = 0

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z6 Z4 0

0 1 2 p

d1

We want to understand the behavior of d1, where d1 is induced by inclusions (4.87). Let

a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21). Let b be

the generator of H0(U22 ∩U12) and b̂1 be the generator of H0(U22 ∩U21). Choose generators

(denoted by c1, c4) for H0(U11) such that no two generators lie in the same path component of

U11. Similarly, choose generators (denoted by ĉ1, ĉ4) for H0(U22) such that no two generators

lie in the same path component of U22. Moreover, let e be the generator of H0(U12) and ê
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be the generator of H0(U21) such that

d1(a) = c1 + e

d1(â) = c4 + ê

d1(b) = ĉ1 + e

d1(b̂) = ĉ4 + ê

(4.97)

Consider the following matrix 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

0 1 0 1


Run the row reduction, we obtain:



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z4 and kerd1 = 0. Hence we obtain the

E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z2 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z2 and H1((Ĥ)2
r,Le1

) = 0

Proposition 4.23. Let Le1 be a positive number. If 2 < r and 1
2Le1 < r ≤ 1

2Le1 + 1, then

H0((Ĥ)2
r,Le1

) ∼= Z2 and H1((Ĥ)2
r,Le1

) = 0

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). The E1 page of the Mayer-

Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z10 Z8 0

0 1 2 p

d1

151



4.5 - Configuration Spaces of the H Graph

We want to understand the behavior of d1, where d1 is induced by inclusions (4.87). Let

a1, a2 be the generators of H0(U11 ∩ U12) and â1, â2 be the generators of H0(U11 ∩ U21).

Let b1, b2 be the generators of H0(U22 ∩ U12) and b̂1, b̂2 be the generators of H0(U22 ∩ U21).

Choose generators (denoted by c1, c2, c4, c5) for H0(U11) such that no two generators lie in

the same path component of U11. Similarly, choose generators (denoted by ĉ1, ĉ2, ĉ4, ĉ5) for

H0(U22) such that no two generators lie in the same path component of U22. Moreover, let

e be the generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a1) = c1 + e

d1(a2) = c2 + e

d1(â1) = c4 + ê

d1(â2) = c5 + ê

d1(b1) = ĉ1 + e

d1(b2) = ĉ2 + e

d1(b̂1) = ĉ4 + ê

d1(b̂2) = ĉ5 + ê

(4.98)
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Consider the following matrix



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1



Run the row reduction, we obtain:



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



The rank of this matrix is 8, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z8 and kerd1 = 0. Hence we obtain the
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E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z2 0 0

0 1 2 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z2

and

H1((Ĥ)2
r,Le1

) = 0

Proposition 4.24. Let Le1 be a positive number. If 2 < r and 1
2Le1 + 1 < r ≤ Le1 , then

H0((Ĥ)2
r,Le1

) ∼= Z2 and H1((Ĥ)2
r,Le1

) = 0

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). Note that when 2 < r and
1
2Le1 + 1 < r ≤ Le1 ,

U11 = ∅ = U22

The E1 page of the Mayer-Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z2 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z2 and H1((Ĥ)2
r,Le1

) = 0

Proposition 4.25. Let Le1 be a positive number. If 2 < r and Le1 < r ≤ Le1 + 1 , then

H0((Ĥ)2
r,Le1

) ∼= Z2 and H1((Ĥ)2
r,Le1

) ∼= Z2

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). Note that when 2 < r and

Le1 < r ≤ Le1 + 1, U11 = ∅ = U22. The E1 page of the Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 Z2 0 0

0 Z2 0 0

0 1 2 p
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Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z2 and H1((Ĥ)2
r,Le1

) ∼= Z2

Proposition 4.26. Let Le1 be a positive number. If 2 < r and Le1 + 1 < r ≤ Le1 + 2 , then

H0((Ĥ)2
r,Le1

) ∼= Z8 and H1((Ĥ)2
r,Le1

) = 0

Proof. Consider the cover of (Ĥ)2
r,Le1

given in Equation (4.86). Note that when 2 < r and

Le1 + 1 < r ≤ Le1 + 2, U11 = ∅ = U22. The E1 page of the Mayer-Vietoris spectral sequence

is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z8 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥ)2
r,Le1

) ∼= Z8 and H1((Ĥ)2
r,Le1

) = 0

In summary, the rank of H0((Ĥ)2
r,Le1

) for all r > 0 and Le1 > 0 is shown in Figure 4.7,

and the rank of H1((Ĥ)2
r,Le1

) for all r > 0 and Le1 > 0 is shown in Figure 4.8.
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4.6 Decomposition of PHi(Ĥ2
−,−; F)

In the previous section, we computed Hi(Ĥ2
r,Le1

) for all r > 0 and Le1 > 0. Note that

the hyperplane arrangement of Ĥ2
r,Le1

can be interpreted as a functor

Ĥ2
−,− : (R>0,≤)

op
× (R>0,≤)→ Top

where Ĥ2
−,− sends (a, b) ∈ R>0 ×R>0 to Ĥ2

a,b and sends the unique arrow (a, b) → (a′, b′)

to the inclusion map ι : Ĥ2
a,b → Ĥ2

a′,b′ , for all a′ ≤ a and b ≤ b′. Post-composing the i-th

homology functor Hi(−) with Ĥ2
−,−, we obtain

PHi(Ĥ2
−,−) : (R>0,≤)

op
× (R>0,≤)→ Ab

At the object level, for each (a, b) ∈ R>0 ×R>0,

PHi(Ĥ2
a,b) = Hi(Ĥ2

a,b)

At the morphism level, PHi(Ĥ2
−,−) sends each morphism (a, b) → (a′, b′) to a group

homomorphism

ι∗ : Hi(Ĥ2
a,b)→ Hi(Ĥ2

a′,b′)

where ι∗ is induced by the inclusion map ι : Ĥ2
a,b → Ĥ2

a′,b′ in Top.

One natural question is whether or not it can be written as a direct sum of polycodes. In

this section, we give the decompositions of PH0(Ĥ2
−,−; F) and PH1(Ĥ2

−,−; F).

Because there are finitely many chambers in the hyperplane arrangement of Ĥ2
r,Le1

, we

may associate the hyperplane arrangement with the Hasse diagram of a poset (denoted by
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−,−; F)

(P ,≤)) as follows:

• each chamber of the hyperplane arrangement is an element of (P ,≤);

• each arrow corresponds to a wall between two chambers, and the orientation of the

arrow is given by the filtration of the spaces Ĥ2
r,Le1

.

We associate PH0(Ĥ2
−,−; F) with a representation over (P ,≤):

F F6 F2

F F6 F2

F F6 F2

F6 F2

F12 F8

=

< e > < c3, c6, ĉ3, ĉ6, e, ê > < e, ê >

< e > < c3, c6, ĉ3, ĉ6, e, ê > < e, ê >

< e > < c3, c6, ĉ3, ĉ6, e, ê > < e, ê >

< c3, c6, ĉ3, ĉ6, e, ê > < e, ê >

〈c3, c6, ĉ3, ĉ6, e1, . . . , e4,

ê1, . . . , ê4

〉
< e1, . . . , e4, ê1, . . . , ê4 >

α ι

α ι

α

ι

β
γ

ς

(4.99)
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where

• α maps every basis element of < c3, c6, ĉ3, ĉ6, e, ê > to e;

• β maps e1, . . . , e4 to e, maps ê1, . . . , ê4 to ê, maps ci to ci, and maps ĉi to ĉi for i = 3, 6;

• γ maps e1, . . . , e4 to e and maps ê1, . . . , ê4 to ê;

• ι is an inclusion map;

• ς is an inclusion map;

• unlabeled vertical maps are the identity maps.

By an abuse of notation, we use PH0(Ĥ2
−,−; F) to denote the P -indexed persistence module

given by (4.99).

We associate PH1(Ĥ2
−,−; F) with a representation over (P ,≤):

F3 0 0

F3 0 0

F5 F2 0

F2 F2

0 0

η

ζ

(4.100)

where

• ζ is the inclusion map;
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• η ◦ ζ = 0;

• unlabeled vertical maps are the identity maps.

By an abuse of notation, we use PH1(Ĥ2
−,−; F) to denote the P -indexed persistence module

given by (4.100).

Theorem 4.27. PH1(Ĥ2
−,−; F) is interval decomposable.

Proof. We denote the support of PH1(Ĥ2
−,−; F) by M . (See (4.101).)

F3

F3

F5 F2

F2 F2

η

ζ (4.101)

Note that η ◦ ζ = 0, and all unlabeled morphisms are identity maps, see (4.100). Moreover,

ζ is the inclusion map, hence M can be decompose into two subrepresentations M1 and M2:

M1 =

0

0

F2 F2

F2 F2

id (4.102)
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M2 =

F3

F3

F3 0

0 0

(4.103)

Since M1 is an A4-quiver and M2 is an A3-quiver, they are interval decomposable. Let

P1 denote the underlying poset of the support of M1, and P2 denote the underlying poset

of the support of M2. Note that the intervals in Pi (where i = 1, 2) are also intervals in P .

Therefore, we can extend each indecomposable representation of Mi (where i = 1, 2) to a

subrepresentation of PH1(Ĥ2
−,−; F) by putting 0 to every vertex which is not in the support

of the subrepresentation and trivial morphism between two vertices where at least one vertex

is not in the support of the subrepresentation.

Theorem 4.28. PH0(Ĥ2
−,−; F) is interval decomposable.

Proof. Equation (4.99) provides us with the behavior of each arrow with given basis elements.

Our goal is to find a new basis of each vector space PH0(Ĥ2
r,Le1

; F) such that each morphism

in the diagram maps every basis to another basis or zero, depending on the geometry of

Ĥ2
r,Le1

.

We choose a basis for each vector space PH0(Ĥ2
r,Le1

; F):
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< e >

〈 c3 − e, c6 − e, ĉ3 −

ê, ĉ6 − ê, e, ê− e

〉
< e, ê− e >

< e >

〈 c3 − e, c6 − e, ĉ3 −

ê, ĉ6 − ê, e, ê− e

〉
< e, ê− e >

< e >

〈 c3 − e, c6 − e, ĉ3 −

ê, ĉ6 − ê, e, ê− e

〉
< e, ê− e >

〈 c3 − e, c6 − e, ĉ3 −

ê, ĉ6 − ê, e, ê− e

〉
< e, ê− e >

〈 c3 − e1, c6 − e1, ĉ3 −

ê1, ĉ6 − ê1, e1, e2 −

e1, . . . , e4 − e1, ê1 −

e1, ê2 − ê1, . . . , ê4 − ê1

〉 〈 e1, e2 − e1, . . . , e4 −

e1, ê1 − e1, ê2 −

ê1, . . . , ê4 − ê1

〉

α ι

α ι

α

ι

β γ

ς

(4.104)

N1 =

< e > < e > < e >

< e > < e > < e >

< e > < e > < e >

< e > < e >

< e1 > < e1 >

id id

id id

id

id

β γ

id

∼=

F F F

F F F

F F F

F F

F F

id id

id id

id
id

id
id

β γ

id

(4.105)
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N2 =

0 < ê− e > < ê− e >

0 < ê− e > < ê− e >

0 < ê− e > < ê− e >

< ê− e > < ê− e >

< ê1 − e1 > < ê1 − e1 >

id

id

id

β γ

id

∼=

0 F F

0 F F

0 F F

F F

F F

β γ

id

(4.106)

For i = 3, 6

Ei =

0 < ci − e > 0

0 < ci − e > 0

0 < ci − e > 0

< ci − e > 0

< ci − e1 > 0
β

∼=

0 F 0

0 F 0

0 F 0

F 0

F 0

β

(4.107)
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and

Êi =

0 < ĉi − ê > 0

0 < ĉi − ê > 0

0 < ĉi − ê > 0

< ĉi − ê > 0

< ĉi − ê1 > 0

β

∼=

0 F 0

0 F 0

0 F 0

F 0

F 0

β

(4.108)

For j = 2, 3, 4

Fj =

0 0 0

0 0 0

0 0 0

0 0

< ei − e1 > < ei − e1 >
id

∼=

0 0 0

0 0 0

0 0 0

0 0

F F
id

(4.109)
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and

F̂j =

0 0 0

0 0 0

0 0 0

0 0

< êi − ê1 > < êi − ê1 >
id

∼=

0 0 0

0 0 0

0 0 0

0 0

F F
id

(4.110)

It is clear that PH0(Ĥ2
−,−; F) ∼= N1⊕N2⊕E3⊕E6⊕ Ê3⊕ Ê6⊕ (

4⊕
j=2

Fj)⊕ (
4⊕

j=2
F̂j). Note

that N1, N2, Ei, Êi, Fj , and F̂j (where i = 3, 6 and j = 2, 3, 4) are interval modules, hence by

Lemma 3.1, they are indecomposable. Therefore, PH0(Ĥ2
−,−; F) is interval decomposable.

4.7 Configuration Spaces of the Generalized H Graph

Let m,n ≥ 3. A generalized H graph, denoted by Hm,n, is a tree shown in Figure 4.9a.

One can obtain Hm,n by concatenating Starm and Starn at a degree 1 vertex x0. We want to

assign each edge an orientation where the orientation is matched with the orientation that

we assigned for the star graph. Hence we subdivide the bridge of Hm,n by introducing a new

vertex (and replacing the bridge with two new edges), as shown in Figure 4.9b. We use f

to denote the new edge incident to the center of Starm and use f ′ to denote the new edge

incident to the center of Starn. By an abuse of notation, we denote the resulting graph by

Hm,n, and we use Ĥm,n to denote the special H where the length of the bridge (before the

subdivision) is Le1 and the length of any other edge is 1. In this section, we describe the
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4.7 - Configuration Spaces of the Generalized H Graph

second configuration spaces of Ĥm,n with restraint parameters r and Le1 .

e2 e′
2

em e′
n

e3· · ·

e′
3

· ·
·e1

(a)

f

e2 e′
2

em e′
n

f ′
e3· · ·

e′
3

· ·
·

(b)

Figure 4.9

Let Lei denote the length of the ei for i = 2, . . . ,m and Le′
i

denote the length of the e′
i

for i = 2, . . . ,n. In addition, we use Lf denote the length of the f and use Lf ′ denote the

length of the f ′. The parametric polytope of (Hm,n)2
r,~L is given by the following inequalities,

where ~L = (Le2 , . . . ,Lem ,Le′
2
, . . . ,Le′

n
,Lf ,Lf ′) and Lf + Lf ′ = Le1 :

For i, j ∈ {2, . . . ,m}, i 6= j:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lej

x+ y ≥ r

(4.111)

For i, j ∈ {2, . . . ,n}, i 6= j:
0 ≤ x ≤ Le′

i

0 ≤ y ≤ Le′
j

x+ y ≥ r

(4.112)

For i ∈ {2, . . . ,m}, j = f :
0 ≤ x ≤ Lei

0 ≤ y ≤ Lf

x+ y ≥ r

(4.113)
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For j ∈ {2, . . . ,m}, i = f :
0 ≤ x ≤ Lf

0 ≤ y ≤ Lej

x+ y ≥ r

(4.114)

For i ∈ {2, . . . ,m}, j = f ′:
0 ≤ x ≤ Lei

0 ≤ y ≤ Lf ′

x+ Le1 − y ≥ r

(4.115)

For j ∈ {2, . . . ,m}, i = f ′:
0 ≤ x ≤ Lf ′

0 ≤ y ≤ Lej

−x+ Le1 + y ≥ r

(4.116)

For i, j ∈ {2, . . . ,n}, i 6= j:
0 ≤ x ≤ Le′

i

0 ≤ y ≤ Le′
j

−x+ Le1 − y ≥ r

(4.117)

For i ∈ {2, . . . ,m}, j ∈ {2, . . . ,n}:

0 ≤ x ≤ Lei

0 ≤ y ≤ Le′
j

x+ Le1 + y ≥ r

(4.118)
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For i ∈ {2, . . . ,n}, j ∈ {2, . . . ,m}:

0 ≤ x ≤ Le′
i

0 ≤ y ≤ Lej

x+ Le1 + y ≥ r

(4.119)

For i ∈ {2, . . . ,n}, j = f ′:
0 ≤ x ≤ Le′

i

0 ≤ y ≤ Lf ′

x+ y ≥ r

(4.120)

For j ∈ {2, . . . ,n}, i = f ′:
0 ≤ x ≤ Lf ′

0 ≤ y ≤ Le′
j

x+ y ≥ r

(4.121)

For i ∈ {2, . . . ,n}, j = f :
0 ≤ x ≤ Le′

i

0 ≤ y ≤ Lf

x+ Le1 − y ≥ r

(4.122)

For j ∈ {2, . . . ,n}, i = f :
0 ≤ x ≤ Lf

0 ≤ y ≤ Le′
j

−x+ Le1 + y ≥ r

(4.123)
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For i, j ∈ {2, . . . ,m}, i = j, x < y:

0 ≤ x ≤ Lei

0 ≤ y ≤ Lei

−x+ y ≥ r

(4.124)

For i, j ∈ {2, . . . ,m}, i = j, x > y:

0 ≤ x ≤ Lei

0 ≤ y ≤ Lei

x− y ≥ r

(4.125)

For i, j ∈ {2, . . . ,n}, i = j, x < y:

0 ≤ x ≤ Le′
i

0 ≤ y ≤ Le′
i

−x+ y ≥ r

(4.126)

For i, j ∈ {2, . . . ,n}, i = j, x > y:
0 ≤ x ≤ Le′

i

0 ≤ y ≤ Le′
i

x− y ≥ r

(4.127)

For i = j = f , x > y:
0 ≤ x ≤ Lf

0 ≤ y ≤ Lf

x− y ≥ r

(4.128)
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For i = j = f , x < y:
0 ≤ x ≤ Lf

0 ≤ y ≤ Lf

y− x ≥ r

(4.129)

For i = j = f ′, x > y:
0 ≤ x ≤ Lf ′

0 ≤ y ≤ Lf ′

x− y ≥ r

(4.130)

For i = j = f ′, x < y:
0 ≤ x ≤ Lf ′

0 ≤ y ≤ Lf ′

y− x ≥ r

(4.131)

Compare the inequality systems (4.70)-(4.84) with inequality systems (4.111)-(4.131)

associated to (Hm,n)2
r,~L when ~L = (1, . . . , 1, 1, . . . , 1,Lf ,Lf ′) and Lf = Lf ′ = 1

2Le1 , we

conclude that (Ĥm,n)2
r,Le1

and Ĥ2
r,Le1

have the same type of parametric polytopes. Therefore,

(Ĥm,n)2
r,Le1

and Ĥ2
r,Le1

have the same critical hyperplanes.

Consider the following cover of (Ĥm,n)2
r,Le1

:

U11 = (em)2
r

U12 = em × Ĥm−1,n − {(x, y) ∈ em × Ĥm−1,n | δ(x, y) < r}

U21 = Ĥm−1,n × em − {(y,x) ∈ Ĥm−1,n × em | δ(x, y) < r}

U22 = (Ĥm−1,n)
2
r

(4.132)
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Note that there are natural inclusion maps

U11 ∩U12 ↪→ U11

U11 ∩U12 ↪→ U12

U11 ∩U21 ↪→ U11

U11 ∩U21 ↪→ U21

U22 ∩U12 ↪→ U22

U22 ∩U12 ↪→ U12

U22 ∩U21 ↪→ U22

U22 ∩U21 ↪→ U21

(4.133)

Now we are going to calculate Hi(Ĥm,n)2
r,Le1

in 2 steps. First we calculate Hi(Ĥm,3)2
r,Le1

for all m ≥ 3, then we calculate Hi(Ĥm,n)2
r,Le1

for all n ≥ 3.

Step 1: Calculating Hi(Ĥm,3)2
r,Le1

.

Lemma 4.2. ~L = (1, . . . , 1,Lf ,Lf ′) ∈ (R>0)m+3 where Lf = Lf ′ = 1
2Le1 . Then

H0(U12) ∼=



Z, if 0 < r ≤ 1

Zm−1, if 1 < r ≤ 2 and r ≤ 1 + Le1

Zm, if 1 < r ≤ 2 and r > 1 + Le1

Z, if 2 < r and r ≤ 1 + Le1

Z2, if 2 < r and 1 + Le1 < r ≤ 2 + Le1

0, else
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and

H1(U12) ∼= 0

Proposition 4.29. Let Le1 be a positive number. If r ≤ Le1 and r ≤ 1, then

H0((Ĥm,3)
2
r,Le1

) ∼= Z and H1((Ĥm,3)
2
r,Le1

) ∼= Zm2−3m+3

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z5 Z2m 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21).

Let b2, . . . , bm−1 and b′ be the generators of H0(U22 ∩ U12). Let b̂2, . . . , b̂m−1 and b̂′ be the

generators of H0(U22 ∩ U21). Choose generators (denoted by c1 and c2) for H0(U11). By

induction hypothesis, H0(U22) ∼= Z and we choose a generator (denoted by f) for H0(U22).
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Let e be the generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a) = c1 + e

d1(â) = c2 + ê

d1(bi) = e+ f , ∀i = 2, . . . ,m− 1

d1(b′) = e+ f

d1(b̂i) = ê+ f , ∀i = 2, . . . ,m− 1

d1(b̂′) = ê+ f

(4.134)

Consider the following matrix



1 0 0 · · · 0 0 · · · 0

0 1 0 · · · 0 0 · · · 0

0 0 1 · · · 1 1 · · · 1

1 0 1 · · · 1 0 · · · 0

0 1 0 · · · 0 1 · · · 1



The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z4 and kerd1 ∼= Z2m−4. Hence we obtain

the E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 Zm2−5m+7 0 0

0 Z Z2m−4 0

0 1 2 p
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Here we applied the induction hypothesis H1((Ĥm−1,3)2
r,Le1

) ∼= Zm2−5m+7. Since there

is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Z

and

H1((Ĥm,3)
2
r,Le1

) ∼= Zm2−5m+7 ⊕Z2m−4 ∼= Zm2−3m+3

Proposition 4.30. Let Le1 be a positive number. If Le1 < r ≤ 1, then

H0((Ĥm,3)
2
r,Le1

) ∼= Z and H1((Ĥm,3)
2
r,Le1

) ∼= Zm2−m−1

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z5 Z2m+2 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21).

Let b2, . . . , bm−1, b′1 and b′2 be the generators of H0(U22 ∩U12). Let b̂2, . . . , b̂m−1, b̂′1 and b̂′2 be

the generators of H0(U22 ∩U21). Choose generators (denoted by c1 and c2) for H0(U11). By
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induction hypothesis, H0(U22) ∼= Z and we choose a generator (denoted by f) for H0(U22).

Let e be the generator of H0(U12) and ê be the generator of H0(U21) such that

d1(a) = c1 + e

d1(â) = c2 + ê

d1(bi) = e+ f , ∀i = 2, . . . ,m− 1

d1(b′j) = e+ f , ∀j = 1, 2

d1(b̂i) = ê+ f , ∀i = 2, . . . ,m− 1

d1(b̂′j) = ê+ f , ∀j = 1, 2

(4.135)

Consider the following matrix



1 0 0 · · · 0 0 · · · 0

0 1 0 · · · 0 0 · · · 0

0 0 1 · · · 1 1 · · · 1

1 0 1 · · · 1 0 · · · 0

0 1 0 · · · 0 1 · · · 1



The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z4 and kerd1 ∼= Z2m−2. Hence we obtain

the E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 Z(m−1)2−(m−1)−1 0 0

0 Z Z2m−2 0

0 1 2 p

Here we applied the induction hypothesis H1((Ĥm−1,3)2
r,Le1

) ∼= Z(m−1)2−(m−1)−1. Since

there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Z

and

H1((Ĥm,3)
2
r,Le1

) ∼= Z(m−1)2−(m−1)−2 ⊕Z2m−2 ∼= Zm2−m−1

Proposition 4.31. Let Le1 be a positive number. If 1 < r ≤ 2 and r ≤ Le1 , then

H0((Ĥm,3)
2
r,Le1

) ∼= Zm2−3m+6 and H1((Ĥm,3)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z2m−2 ⊕H0((Ĥm−1,3)2
r,Le1

) Z2 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Since H0(U11 ∩ U12) = H0(U11 ∩ U21) = ∅, we do not need to choose generators

for their 0-th homology groups. Let b be the generator of H0(U22 ∩ U12) and b̂ be the

generator of H0(U22 ∩ U21). By induction hypothesis, H0(U22) ∼= Z(m−1)(m−4)+6 and we

choose a collection of generators (denoted by fij and f̂ij , where 2 ≤ i < j ≤ m − 1 or

m+ 1 ≤ i < j ≤ m+ 2, f ′, and f̂ ′) for H0(U22). Let e2, . . . , em−1, e′ be the generators of

H0(U12) and ê2, . . . , êm−1, ê′ be the generators of H0(U21) such that

d1(b) = e′ + f ′

d1(b̂) = ê′ + f̂ ′
(4.136)

Consider the following matrix 

1 0

0 1

1 0

0 1


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and coker d1 ∼= Zm2−3m+6. Hence we

obtain the E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Zm2−3m+6 0 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm−1,3)
2
r,Le1

) = 0

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Zm2−3m+6

and

H1((Ĥm,3)
2
r,Le1

) = 0

Proposition 4.32. Let Le1 be a positive number. If 1 < r ≤ 2 and Le1 < r ≤ Le1 + 1, then

H0((Ĥm,3)
2
r,Le1

) ∼= Zm2−3m+6 and H1((Ĥm,3)
2
r,Le1

) = Z2m−4

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z2m−2 ⊕H0((Ĥm−1,3)2
r,Le1

) Z4 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Since H0(U11 ∩U12) = H0(U11 ∩U21) = ∅, we do not need to choose generators for

their 0-th homology groups. Let b1 and b2 be the generators of H0(U22 ∩ U12). Let b̂1 and

b̂2 be the generators of H0(U22 ∩U21). By induction hypothesis, H0(U22) ∼= Z(m−1)(m−4)+6

and we choose a collection of generators (denoted by fij and f̂ij , where 2 ≤ i < j ≤ m− 1

or m+ 1 ≤ i < j ≤ m+ 2, f ′, and f̂ ′) for H0(U22). Let e2, . . . , em−1, e′ be the generators of

H0(U12) and ê2, . . . , êm−1, ê′ be the generators of H0(U21) such that for i = 1, 2,

d1(bi) = e′ + f ′

d1(b̂i) = ê′ + f̂ ′
(4.137)

Consider the following matrix 

1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and coker d1 ∼= Z2m−2+(m−1)(m−4)+6−2 ∼=

Zm2−3m+6. Hence we obtain the E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 Z2(m−1)−4 0 0

0 Zm2−3m+6 Z2 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm−1,3)
2
r,Le1

) = Z2(m−1)−4

and

H0((Ĥm−1,3)
2
r,Le1

) = Z(m−1)(m−4)+6

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Zm2−3m+6

and

H1((Ĥm,3)
2
r,Le1

) = Z2m−4

Proposition 4.33. Let Le1 be a positive number. If 1 < r ≤ 2 and Le1 + 1 < r ≤ Le1 + 2,

then

H0((Ĥm,3)
2
r,Le1

) ∼= Zm2+m and H1((Ĥm,3)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the
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Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z2m ⊕H0((Ĥm−1,3)2
r,Le1

) 0 0

0 1 2 p

By induction hypothesis,

H0(U22) ∼= Z(m−1)2+(m−1)

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Zm2+m

and

H1((Ĥm,3)
2
r,Le1

) = 0

Proposition 4.34. Let Le1 be a positive number. If 2 < r and r ≤ Le1 , then

H0((Ĥm,3)
2
r,Le1

) ∼= Z2 and H1((Ĥm,3)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z2 ⊕H0((Ĥm−1,3)2
r,Le1

) Z2 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Since H0(U11 ∩U12) = H0(U11 ∩U21) = ∅, we do not need to choose generators for

their 0-th homology groups. Let b be the generator of H0(U22 ∩U12) and b̂ be the generator

of H0(U22 ∩U21). By induction hypothesis, H0(U22) ∼= Z(m−1)(m−4)+6 and we choose a set

of generators (denoted by f ′ and f̂ ′) for H0(U22). Let e be the generator of H0(U12) and ê′

be the generator of H0(U21) such that for i = 1, 2,

d1(bi) = e′ + f ′

d1(b̂i) = ê′ + f̂ ′
(4.138)

Consider the following matrix 

1 0

0 1

1 0

0 1


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and coker d1 ∼= Z2.

Hence we obtain the E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z2 0 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm−1,3)
2
r,Le1

) = 0

and

H0((Ĥm−1,3)
2
r,Le1

) = Z2

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Z2

and

H1((Ĥm,3)
2
r,Le1

) = 0

Proposition 4.35. Let Le1 be a positive number. If 2 < r and Le1 < r ≤ Le1 + 1, then

H0((Ĥm,3)
2
r,Le1

) ∼= Z2 and H1((Ĥm,3)
2
r,Le1

) = Z2m−4

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the
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Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z2 ⊕H0((Ĥm−1,3)2
r,Le1

) Z4 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Since H0(U11 ∩U12) = H0(U11 ∩U21) = ∅, we do not need to choose generators for

their 0-th homology groups. Let b1 and b2 be the generators of H0(U22 ∩U12). Let b̂1 and b̂2

be the generators of H0(U22 ∩U21). By induction hypothesis, H0(U22) ∼= Z2 and we choose

a set of generators (denoted by f ′ and f̂ ′) for H0(U22). Let e be the generator of H0(U12)

and ê′ be the generator of H0(U21) such that for i = 1, 2,

d1(bi) = e′ + f ′

d1(b̂i) = ê′ + f̂ ′
(4.139)

Consider the following matrix 

1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and coker d1 ∼= Z2. Hence we obtain

the E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 Z2(m−1)−4 0 0

0 Z2 Z2 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm−1,3)
2
r,Le1

) ∼= Z2(m−1)−4

and

H0((Ĥm−1,3)
2
r,Le1

) = Z2

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Z2

and

H1((Ĥm,3)
2
r,Le1

) ∼= Z2m−4

Proposition 4.36. Let Le1 be a positive number. If 2 < r and Le1 + 1 < r ≤ Le1 + 2, then

H0((Ĥm,3)
2
r,Le1

) ∼= Z4(m−3)+8 and H1((Ĥm,3)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,3)2
r,Le1

given in Equation (4.132). The E1 page of the
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Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm−1,3)2
r,Le1

) 0 0

0 Z4 ⊕H0((Ĥm−1,3)2
r,Le1

) 0 0

0 1 2 p

By induction hypothesis, H0(U22) ∼= Z4(m−4)+8 and H1(U22) = 0. Since there is no

non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥm,3)
2
r,Le1

) ∼= Z4(m−3)+8

and

H1((Ĥm,3)
2
r,Le1

) = 0

Step 2: Calculating Hi(Ĥm,n)2
r,Le1

where n ≥ 4
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Lemma 4.3. ~L = (1, . . . , 1,Lf ,Lf ′) ∈ (R>0)m+3 where Lf = Lf ′ = 1
2Le1 . Then

H0(U12) ∼=



Z, if 0 < r ≤ 1

Zn−1, if 1 < r ≤ 2 and r ≤ 1 + Le1

Zm+n−3, if 1 < r ≤ 2 and r > 1 + Le1

Z, if 2 < r and r ≤ 1 + Le1

Zm−1, if 2 < r and 1 + Le1 < r ≤ 2 + Le1

0, else

and

H1(U12) ∼= 0

Proposition 4.37. Let Le1 be a positive number. If r ≤ Le1 and r ≤ 1, then

H0((Ĥm,n)
2
r,Le1

) ∼= Z and H1((Ĥm,3)
2
r,Le1

) ∼= Zm(m−3)+n(n−3)+3

Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm,n−1)2
r,Le1

) 0 0

0 Z4 ⊕H0((Ĥm,n−1)2
r,Le1

) Z2n 0

0 1 2 p

d1
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We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21).

Let b′2, . . . , b′n−1 and b be the generators of H0(U22 ∩ U12). Let b̂′2, . . . , b̂′n−1 and b̂ be the

generators of H0(U22 ∩ U21). Choose generators (denoted by c1 and c2) for H0(U11). By

induction hypothesis, H0(U22) ∼= Z and we choose a generator (denoted by f) for H0(U22).

Let e′ be the generator of H0(U12) and ê′ be the generator of H0(U21) such that

d1(a) = c1 + e′

d1(â) = c2 + ê′

d1(bi) = e′ + f , ∀i = 2, . . . ,n− 1

d1(b′) = e′ + f

d1(b̂i) = ê′ + f , ∀i = 2, . . . ,n− 1

d1(b̂′) = ê′ + f

(4.140)

Consider the following matrix



1 0 0 · · · 0 0 · · · 0

0 1 0 · · · 0 0 · · · 0

0 0 1 · · · 1 1 · · · 1

1 0 1 · · · 1 0 · · · 0

0 1 0 · · · 0 1 · · · 1



The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z4 and kerd1 ∼= Z2n−4. Hence we obtain

the E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 Z(n−1)(n−4)+m(m−3)+3 0 0

0 Z Z2n−4 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm,n−1)
2
r,Le1

) ∼= Z(n−1)(n−4)+m(m−3)+3

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Z

and

H1((Ĥm,n)
2
r,Le1

) ∼= Zm2−5m+7 ⊕Z2m−4 ∼= Zm(m−3)+n(n−3)+3

Proposition 4.38. Let Le1 be a positive number. If Le1 < r ≤ 1, then

H0((Ĥm,n)
2
r,Le1

) ∼= Z and H1((Ĥm,n)
2
r,Le1

) ∼= Z(m+n)(m+n−7)+11

Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132).

The E1 page of the Mayer-Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 H1((Ĥm,n−1)2
r,Le1

) 0 0

0 Z4 ⊕H0((Ĥm,n−1)2
r,Le1

) Z2m+2n−4 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let a be the generator of H0(U11 ∩ U12) and â be the generator of H0(U11 ∩ U21).

Let b′2, . . . , b′n−1, b2,…, bm−1 and bm be the generators of H0(U22 ∩ U12). Let b̂′2, . . . , b̂′n−1,

b̂2,…, b̂m−1 and b̂m be the generators of H0(U22 ∩U21). Choose generators (denoted by c1 and

c2) for H0(U11). By induction hypothesis, H0(U22) ∼= Z and we choose a generator (denoted

by f) for H0(U22). Let e′ be the generator of H0(U12) and ê′ be the generator of H0(U21)

such that
d1(a) = c1 + e′

d1(â) = c2 + ê′

d1(bi) = e′ + f , ∀i = 2, . . . ,n− 1

d1(b′j) = e′ + f , ∀j = 2, . . . ,m

d1(b̂i) = ê′ + f , ∀i = 2, . . . ,n− 1

d1(b̂′j) = ê′ + f , ∀j = 2, . . . ,m

(4.141)
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Consider the following matrix



1 0 0 · · · 0 0 · · · 0

0 1 0 · · · 0 0 · · · 0

0 0 1 · · · 1 1 · · · 1

1 0 1 · · · 1 0 · · · 0

0 1 0 · · · 0 1 · · · 1



The rank of this matrix is 4, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z4 and kerd1 ∼= Z2m+2n−8. Hence we

obtain the E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 Z(m+n−1)(m+n−8)+11 0 0

0 Z Z2m+2n−8 0

0 1 2 p

Here we applied the induction hypothesis H1((Ĥm,n−1)2
r,Le1

) ∼= Z(m+n−1)(m+n−8)+11.

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Z

and

H1((Ĥm,n)
2
r,Le1

) ∼= Z(m+n−1)(m+n−8)+10 ⊕Z2m+2n−8 ∼= Z(m+n)(m+n−7)+11
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Proposition 4.39. Let Le1 be a positive number. If 1 < r ≤ 2 and r ≤ Le1 , then

H0((Ĥm,n)
2
r,Le1

) ∼= Zm(m−3)+n(n−3)+6 and H1((Ĥm,n)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm,n−1)2
r,Le1

) 0 0

0 Z2n−2 ⊕H0((Ĥm,n−1)2
r,Le1

) Z2 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let b be the generator of H0(U22 ∩U12) and b̂ be the generator of H0(U22 ∩U21). By

induction hypothesis, H0(U22) ∼= Zm(m−3)+(n−1)(n−4)+6 and we choose generators (denoted

by fij , f̂ij for 2 ≤ i < j ≤ m and m + 2 ≤ i < j ≤ m + n − 1, f2,m+2 and f̂2,m+2)

for H0(U22). Let e′
2, . . . , e′

n−1, e be the generators of H0(U12) and ê′
1, . . . , ê′

n−1, ê be the

generator of H0(U21) such that
d1(b) = e′ + f2,m+2

d1(b̂) = ê′ + f̂2,m+2

(4.142)
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Consider the following matrix 

1 0

0 1

1 0

0 1


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and kerd1 = 0. Hence we obtain the

E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Zm(m−3)+n(n−3)+6 0 0

0 1 2 p

Here we applied the induction hypothesis H1((Ĥm,n−1)2
r,Le1

) = 0. Since there is no

non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Zm(m−3)+n(n−3)+6

and

H1((Ĥm,n)
2
r,Le1

) = 0
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Proposition 4.40. Let Le1 be a positive number. If 1 < r ≤ 2 and Le1 < r ≤ Le1 + 1, then

H0((Ĥm,n)
2
r,Le1

) ∼= Zm(m−3)+n(n−3)+6 and H1((Ĥm,n)
2
r,Le1

) ∼= Z2(m−2)(n−2)

Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm,n−1)2
r,Le1

) 0 0

0 Z2n−2 ⊕H0((Ĥm,n−1)2
r,Le1

) Z2m−2 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let b2, . . . , bm be the generators of H0(U22 ∩U12) and b̂2, . . . , b̂m be the generators of

H0(U22 ∩ U21). By induction hypothesis, H0(U22) ∼= Zm(m−3)+(n−1)(n−4)+6 and we choose

generators (denoted by fij , f̂ij for 2 ≤ i < j ≤ m and m+ 2 ≤ i < j ≤ m+ n− 1, f2,m+2

and f̂2,m+2) for H0(U22). Let e′
2, . . . , e′

n−1, e be the generators of H0(U12) and ê′
1, . . . , ê′

n−1, ê

be the generator of H0(U21) such that

d1(b) = e′ + f2,m+2

d1(b̂) = ê′ + f̂2,m+2

(4.143)
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Consider the following matrix 

1 0

0 1

1 0

0 1


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and kerd1 = 2m− 4. Hence we obtain

the E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 Z2(m−2)(n−3) 0 0

0 Zm(m−3)+n(n−3)+6 Z2m−4 0

0 1 2 p

Here we applied the induction hypothesis H1((Ĥm,n−1)2
r,Le1

) ∼= Z2(m−2)(n−3). Since

there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Zm(m−3)+n(n−3)+6

and

H1((Ĥm,n)
2
r,Le1

) ∼= Z2(m−2)(n−2)

Proposition 4.41. Let Le1 be a positive number. If 1 < r ≤ 2 and Le1 + 1 < r ≤ Le1 + 2,
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then

H0((Ĥm,n)
2
r,Le1

) ∼= Z(m+n)(m+n−5)+6 and H1((Ĥm,n)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm,n−1)2
r,Le1

) 0 0

0 Z2m+2n−6 ⊕H0((Ĥm,n−1)2
r,Le1

) 0 0

0 1 2 p

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Z(m+n)(m+n−5)+6

and

H1((Ĥm,n)
2
r,Le1

) = 0

Proposition 4.42. Let Le1 be a positive number. If 2 < r and r ≤ Le1 , then

H0((Ĥm,n)
2
r,Le1

) ∼= Z2 and H1((Ĥm,n)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is
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q

3 ... ... ...

2 0 0 0

1 H1((Ĥm,n−1)2
r,Le1

) 0 0

0 Z2 ⊕H0((Ĥm,n−1)2
r,Le1

) Z2 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let b be the generator of H0(U22 ∩ U12) and b̂ be the generator of H0(U22 ∩ U21).

By induction hypothesis, H0(U22) ∼= Z2 and we choose generators (denoted by f2,m+2 and

f̂2,m+2) for H0(U22). Let e be the generator of H0(U12) and ê be the generator of H0(U21)

such that
d1(b) = e+ f2,m+2

d1(b̂) = ê+ f̂2,m+2

(4.144)

Consider the following matrix 

1 0

0 1

1 0

0 1


The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore,

Im d1 ∼= Z2

and

kerd1 = 0
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Hence we obtain the E2 page of the Mayer-Vietoris spectral sequence:

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z2 0 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm,n−1)
2
r,Le1

) = 0

and

H0((Ĥm,n−1)
2
r,Le1

) ∼= Z2

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Z2

and

H1((Ĥm,n)
2
r,Le1

) = 0

Proposition 4.43. Let Le1 be a positive number. If 2 < r and Le1 < r ≤ Le1 + 1, then

H0((Ĥm,n)
2
r,Le1

) ∼= Z2 and H1((Ĥm,n)
2
r,Le1

) ∼= Z2(m−2)(n−2)
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Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132). The E1 page of the

Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 H1((Ĥm,n−1)2
r,Le1

) 0 0

0 Z2 ⊕H0((Ĥm,n−1)2
r,Le1

) Z2m−2 0

0 1 2 p

d1

We need to understand the behavior of d1, where d1 is induced by the inclusion maps

(4.133). Let b2, . . . , bm be the generators of H0(U22 ∩U12) and b̂2, . . . , b̂m be the generators of

H0(U22 ∩U21). By induction hypothesis, H0(U22) ∼= Z2 and we choose generators (denoted

by f2,m+2 and f̂2,m+2) for H0(U22). Let e be the generator of H0(U12) and ê be the generator

of H0(U21) such that
d1(bi) = e+ f2,m+2,∀i = 2, . . . ,m

d1(b̂i) = ê+ f̂2,m+2,∀i = 2, . . . ,m
(4.145)

Consider the following matrix



1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1

1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1



The rank of this matrix is 2, and the diagonal elements of the Smith Normal form of the

matrix above are all equal to 1. Therefore, Im d1 ∼= Z2 and kerd1 = 2m− 4. Hence we obtain

the E2 page of the Mayer-Vietoris spectral sequence:
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q

3 ... ... ...

2 0 0 0

1 Z2(m−2)(n−3) 0 0

0 Z2 Z2m−4 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm,n−1)
2
r,Le1

) ∼= Z2(m−2)(n−3)

and

H0((Ĥm,n−1)
2
r,Le1

) ∼= Z2

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Z2

and

H1((Ĥm,n)
2
r,Le1

) ∼= Z2(m−2)(n−2)

Proposition 4.44. Let Le1 be a positive number. If 2 < r and Le1 + 1 < r ≤ Le1 + 2, then

H0((Ĥm,n)
2
r,Le1

) ∼= Z2(m−1)(n−1) and H1((Ĥm,n)
2
r,Le1

) = 0

Proof. Consider the cover of (Ĥm,n)2
r,Le1

given in Equation (4.132). The E1 page of the
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Mayer-Vietoris spectral sequence is

q

3 ... ... ...

2 0 0 0

1 0 0 0

0 Z2m−2 ⊕Z2(m−1)(n−2) 0 0

0 1 2 p

Here we applied the induction hypothesis

H1((Ĥm,n−1)
2
r,Le1

) = 0

and

H0((Ĥm,n−1)
2
r,Le1

) ∼= Z2(m−1)(n−2)

Since there is no non-trivial arrow on the E1 page, E1 = E∞. Therefore,

H0((Ĥm,n)
2
r,Le1

) ∼= Z2(m−1)(n−1)

and

H1((Ĥm,n)
2
r,Le1

) = 0

In summary, when m,n ≥ 3, the rank of H0((Ĥm,n)2
r,Le1

) for all r > 0 and Le1 > 0 is

shown in Figure 4.10. When m,n ≥ 3, the rank of H1((Ĥm,n)2
r,Le1

) for all r > 0 and Le1 > 0

is shown in Figure 4.11.
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L

r

1
m(m− 3) + n(n− 3) + 6

2

2(m− 1)(n− 1)

(m + n)(m + n− 5) + 6

Figure 4.10: Rank of H0((Ĥm,n)2
r,Le1

)

L

r

m(m− 3) + n(n− 3) + 3

2(m− 2)(n− 2)

(m + n)(m + n− 7) + 11

Figure 4.11: Rank of H1((Ĥm,n)2
r,Le1

)
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4.8 Decomposition of PHi((Ĥm,n)2
−,−; F)

In the previous section, we computed the persistence module Hi((Ĥm,n)2
r,Le1

) for all

r,Le1 ∈ R>0. Note that the hyperplane arrangement of (Ĥm,n)2
r,Le1

can be interpreted as a

functor

(Ĥm,n)
2
−,− : (R>0,≤)

op
× (R>0,≤)→ Top

where (Ĥm,n)2
−,− sends (a, b) ∈ R>0×R>0 to (Ĥm,n)2

a,b and sends the unique arrow (a, b)→

(a′, b′) to the inclusion map ι : (Ĥm,n)2
a,b → (Ĥm,n)2

a′,b′ , for all a′ ≤ a and b ≤ b′. Post-

composing the i-th homology functor Hi(−) with (Ĥm,n)2
−,−, we obtain

PHi((Ĥm,n)
2
−,−) : (R>0,≤)

op
× (R>0,≤)→ Ab

In other words, at the object level, for each (a, b) ∈ R>0 ×R>0,

PHi((Ĥm,n)
2
a,b) = Hi((Ĥm,n)

2
a,b)

At the morphism level, PHi((Ĥm,n)2
−,−) sends each morphism (a, b)→ (a′, b′) to a group

homomorphism

ι∗ : Hi((Ĥm,n)
2
a,b)→ Hi((Ĥm,n)

2
a′,b′)

where ι∗ is induced by the inclusion map ι : (Ĥm,n)2
a,b → (Ĥm,n)2

a′,b′ in Top.

One natural question is whether or not it can be written as a direct sum of polycodes. In

this section, we give the decompositions of PHi((Ĥm,n)2
−,−; F) where i = 0, 1.

Since there are finitely many chambers in the hyperplane arrangement of (Ĥm,n)2
r,Le1

, we

may associate the hyperplane arrangement with the Hasse diagram of a poset (denoted by
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−,−; F)

(P ,≤)) as follows:

• each chamber of the hyperplane arrangement is an element of (P ,≤);

• each arrow corresponds to a wall between two chambers, and the orientation of the

arrow is given by the filtration of the spaces (Ĥm,n)2
r,Le1

.

A poset representation over (P ,≤) related to PH0((Ĥm,n)2
−,−; F) is given in (4.146):

F Fm2+n2−3m−3n+6 F2

F Fm2+n2−3m−3n+6 F2

F Fm2+n2−3m−3n+6 F2

Fm2+n2−3m−3n+6 F2

Fm2+n2+2mn−5m−5n+6 F2(m−1)(n−1)

(4.146)

By an abuse of notation, we use PH0((Ĥ−,−)2
r,Le1

; F) to denote the 2-parameter persistence

module given in (4.146). We want to understand the behavior of each arrow in the diagram.

205



4.8 - Decomposition of PHi((Ĥm,n)2
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< f >

〈e′
k, ê′

k, f2,m+2, f̂2,m+2, fij , f̂ij | 2 ≤ k ≤

n− 1, 2 ≤ i < j ≤ m,m+ 2 ≤ i < j ≤

m+ n− 1

〉
< f2,m+2, f̂2,m+2 >

< f >

〈e′
k, ê′

k, f2,m+2, f̂2,m+2, fij , f̂ij | 2 ≤ k ≤

n− 1, 2 ≤ i < j ≤ m,m+ 2 ≤ i < j ≤

m+ n− 1

〉
< f2,m+2, f̂2,m+2 >

< f >

〈e′
k, ê′

k, f2,m+2, f̂2,m+2, fij , f̂ij | 2 ≤ k ≤

n− 1, 2 ≤ i < j ≤ m,m+ 2 ≤ i < j ≤

m+ n− 1

〉
< f2,m+2, f̂2,m+2 >

〈e′
k, ê′

k, f2,m+2, f̂2,m+2, fij , f̂ij | 2 ≤ k ≤

n− 1, 2 ≤ i < j ≤ m,m+ 2 ≤ i < j ≤

m+ n− 1

〉
< f2,m+2, f̂2,m+2 >

〈e
′
k, ê′

k, fl,m+2, . . . , fl,m+n,

f̂l,m+2, . . . , f̂l,m+n, fij , f̂ij | 2 ≤ k ≤

n − 1, 2 ≤ i < j ≤ m,m + 2 ≤ i <

j ≤ m+ n− 1, 2 ≤ l ≤ m

〉 〈fl,m+2, . . . ,

fl,m+n, f̂l,m+2,

. . . , f̂l,m+n | 2 ≤

l ≤ m

〉

α ι

α ι

α

ι

β

γ

ς

(4.147)

where

• α maps every basis element of < e′
k, ê′

k, f2,m+2, f̂2,m+2, fij , f̂ij | 2 ≤ k ≤ n− 1, 2 ≤ i <

j ≤ m,m+ 2 ≤ i < j ≤ m+ n− 1 > to f ;
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• β maps ek to ek and maps êk to êk for all 2 ≤ k ≤ n− 1. In addition, β maps fij to

fij and f̂ij to f̂ij for all 2 ≤ i < j ≤ m and m+ 2 ≤ i < j ≤ m+ n− 1. Moreover, β

maps fl,m+k to f2,m+k and f̂l,m+k to f̂2,m+k for all 2 ≤ k ≤ n and 2 ≤ l ≤ m.

• γ maps fl,m+k to f2,m+2 and maps f̂l,m+k to f̂2,m+2 for all 2 ≤ k ≤ n and 2 ≤ l ≤ m;

• ι is an inclusion map;

• ς is an inclusion map;

• unlabeled vertical maps are the identity maps.

A poset representation over (P ,≤) related to PH1((Ĥ−,−)2
r,Le1

; F) is given by (4.148):

Fm2−3m+n2−3n+3 0 0

Fm2−3m+n2−3n+3 0 0

Fm2+n2+2mn−7m−7n+11 F2(m−2)(n−2) 0

F2(m−2)(n−2) F2(m−2)(n−2)

0 0

η

ζ

(4.148)

where

• ζ is the inclusion map;

• η ◦ ζ = 0;

• unlabeled non-trivial vertical maps are the identity maps.
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By an abuse of notation, we use PH1((Ĥ−,−)2
r,Le1

; F) to denote the P -indexed persistence

module given by (4.148).

Theorem 4.45. PH1((Ĥ−,−)2
a,b; F) is interval decomposable.

Proof. We denote the support of PH1((Ĥ−,−)2
r,Le1

; F) by M . (See (4.149).)

Fm2−3m+n2−3n+3

Fm2−3m+n2−3n+3

Fm2+n2+2mn−7m−7n+11 F2(m−2)(n−2)

F2(m−2)(n−2) F2(m−2)(n−2)

η

ζ

(4.149)

Note that η ◦ ζ = 0 and the endomorphism of F2(m−2)(n−2) is the identity map, see (4.148).

Moreover, ζ is the inclusion map, hence M can be decompose into two subrepresentations

M1 and M2:

M1 =

0

0

F2(m−2)(n−2) F2(m−2)(n−2)

F2(m−2)(n−2) F2(m−2)(n−2)

id
(4.150)
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M2 =

Fm2−3m+n2−3n+3

Fm2−3m+n2−3n+3

Fm2−3m+n2−3n+3 0

0 0

(4.151)

Since M1 is an A4-quiver and M2 is an A3-quiver, they are interval decomposable. Let

P1 denote the underlying poset of the support of M1, and P2 denote the underlying poset

of the support of M2. Note that the intervals in Pi (where i = 1, 2) are also intervals in P .

Therefore, we can extend each indecomposable representation of Mi (where i = 1, 2) to a

subrepresentation of PH1((Ĥ−,−)2
r,Le1

; F) by putting 0 to every vertex which is not in the

support of the subrepresentation and trivial morphism between two vertices where at least

one vertex is not in the support of the subrepresentation.

Theorem 4.46. PH0((Ĥ−,−)2
r,Le1

; F) is interval decomposable.

Proof. Equation (4.147) provides us with the behavior of each arrow with given basis elements.

Our goal is to find a new basis of each vector space PH0((Ĥm,n)2
r,Le1

; F) such that each

morphism in (4.147) maps every basis to another basis or zero, depending on the geometry

of (Ĥm,n)2
r,Le1

. We choose the basis for each vector space provided in the diagram below:
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< f >

〈e
′
k − f2,m+2, ê′

k − f̂2,m+2, f2,m+2,

f̂2,m+2 − f2,m+2, fij − f2,m+2, f̂ij −

f̂2,m+2 | 2 ≤ k ≤ n− 1, 2 ≤ i < j ≤

m,m+ 2 ≤ i < j ≤ m+ n− 1

〉
< f2,m+2, f̂2,m+2 − f2,m+2 >

< f >

〈e
′
k − f2,m+2, ê′

k − f̂2,m+2, f2,m+2,

f̂2,m+2 − f2,m+2, fij − f2,m+2, f̂ij −

f̂2,m+2 | 2 ≤ k ≤ n− 1, 2 ≤ i < j ≤

m,m+ 2 ≤ i < j ≤ m+ n− 1

〉
< f2,m+2, f̂2,m+2 − f2,m+2 >

< f >

〈e
′
k − f2,m+2, ê′

k − f̂2,m+2, f2,m+2,

f̂2,m+2 − f2,m+2, fij − f2,m+2, f̂ij −

f̂2,m+2 | 2 ≤ k ≤ n− 1, 2 ≤ i < j ≤

m,m+ 2 ≤ i < j ≤ m+ n− 1

〉
< f2,m+2, f̂2,m+2 − f2,m+2 >

〈e
′
k − f2,m+2, ê′

k − f̂2,m+2, f2,m+2,

f̂2,m+2 − f2,m+2, fij − f2,m+2, f̂ij −

f̂2,m+2 | 2 ≤ k ≤ n− 1, 2 ≤ i < j ≤

m,m+ 2 ≤ i < j ≤ m+ n− 1

〉
< f2,m+2, f̂2,m+2 − f2,m+2 >

< A > < B >

α ι

α ι

α

ι

β

γ

ς

(4.152)

where A consists of the following elements:

1. e′
k − f2,m+2 and ê′

k − f̂2,m+2 for all 2 ≤ k ≤ n− 1;
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2. fij − f2,m+2, f̂ij − f̂2,m+2 for all 2 ≤ i < j ≤ m and m+ 2 ≤ i < j ≤ m+ n− 1;

3. f2,m+2, f2,m+3 − f2,m+2, . . . , f2,m+n − f2,m+2;

4. fs,m+t − f2,m+t for all 3 ≤ s ≤ m and 2 ≤ t ≤ n;

5. f̂l,m+t − fl,m+t for all 2 ≤ l ≤ m and 2 ≤ t ≤ n

and B consists of the following elements:

1. f2,m+2, f2,m+3 − f2,m+2, . . . , f2,m+n−1 − f2,m+2;

2. fs,m+t − f2,m+t for all 3 ≤ s ≤ m and 2 ≤ t ≤ n;

3. f̂l,m+t − fl,m+t for all 2 ≤ l ≤ m and 2 ≤ t ≤ n

Define

N1 =

< f > < f2,m+2 > < f2,m+2 >

< f > < f2,m+2 > < f2,m+2 >

< f > < f2,m+2 > < f2,m+2 >

< f2,m+2 > < f2,m+2 >

< f2,m+2 > < f2,m+2 >

id id

id id

id

id

β γ

id

∼=

F F F

F F F

F F F

F F

F F

id id

id id

id
id

id
id

β γ

id

(4.153)
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N2 =

0 < f̂2,m+2 − f2,m+2 > < f̂2,m+2 − f2,m+2 >

0 < f̂2,m+2 − f2,m+2 > < f̂2,m+2 − f2,m+2 >

0 < f̂2,m+2 − f2,m+2 > < f̂2,m+2 − f2,m+2 >

< f̂2,m+2 − f2,m+2 > < f̂2,m+2 − f2,m+2 >

< f̂2,m+2 − f2,m+2 > < f̂2,m+2 − f2,m+2 >

id

id

id

β γ

id

∼=

0 F F

0 F F

0 F F

F F

F F

β γ

id

(4.154)

For 2 ≤ k ≤ n− 1

Ek =

0 < e′
k − f2,m+2 > 0

0 < e′
k − f2,m+2 > 0

0 < e′
k − f2,m+2 > 0

< e′
k − f2,m+2 > 0

< e′
k − f2,m+2 > 0

β

∼=

0 F 0

0 F 0

0 F 0

F 0

F 0

β

(4.155)
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and

Êk =

0 < ê′
k − f̂2,m+2 > 0

0 < ê′
k − f̂2,m+2 > 0

0 < ê′
k − f̂2,m+2 > 0

< ê′
k − f̂2,m+2 > 0

< ê′
k − f̂2,m+2 > 0

β

∼=

0 F 0

0 F 0

0 F 0

F 0

F 0

β

(4.156)

For 2 ≤ i < j ≤ m,m+ 2 ≤ i < j ≤ m+ n− 1

Fij =

0 < fij − f2,m+2 > 0

0 < fij − f2,m+2 > 0

0 < fij − f2,m+2 > 0

< fij − f2,m+2 > 0

< fij − f2,m+2 > 0

β

∼=

0 F 0

0 F 0

0 F 0

F 0

F 0

β

(4.157)
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and

F̂ij =

0 < f̂ij − f̂2,m+2 > 0

0 < f̂ij − f̂2,m+2 > 0

0 < f̂ij − f̂2,m+2 > 0

< f̂ij − f̂2,m+2 > 0

< f̂ij − f̂2,m+2 > 0

β

∼=

0 F 0

0 F 0

0 F 0

F 0

F 0

β

(4.158)

For all 3 ≤ t ≤ n

G2,t =

0 0 0

0 0 0

0 0 0

0 0

< f2,m+t − f2,m+2 > < f2,m+t − f2,m+2 >
id

∼=

0 0 0

0 0 0

0 0 0

0 0

F F
id

(4.159)
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and

Ĝ2,t =

0 0 0

0 0 0

0 0 0

0 0

< f̂2,m+t − f2,m+t > < f̂2,m+t − f2,m+t >
id

∼=

0 0 0

0 0 0

0 0 0

0 0

F F
id

(4.160)

For all 2 ≤ t ≤ n and 3 ≤ s ≤ m,

Gs,t =

0 0 0

0 0 0

0 0 0

0 0

< fs,m+t − f2,m+t > < fs,m+t − f2,m+t >
id

∼=

0 0 0

0 0 0

0 0 0

0 0

F F
id

(4.161)
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4.8 - Decomposition of PHi((Ĥm,n)2
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and

Ĝs,t =

0 0 0

0 0 0

0 0 0

0 0

< f̂s,m+t − f̂2,m+t > < f̂s,m+t − f̂2,m+t >
id

∼=

0 0 0

0 0 0

0 0 0

0 0

F F
id

(4.162)

It is clear that

PH0((Ĥm,n)
2
−,−; F) ∼= N1 ⊕N2 ⊕ (

n−1⊕
k=2

Ek)⊕ (
n−1⊕
k=2

Êk)⊕ (
⊕

2≤i<j≤m

Fij)⊕ (
⊕

2≤i<j≤m

F̂ij)

⊕ (
⊕

m+2≤i<j≤m+n−1
Fij)⊕ (

⊕
m+2≤i<j≤m+n−1

F̂ij)

⊕ (
⊕

3≤t≤n−1
G2,t)⊕ (

⊕
3≤t≤n−1

Ĝ2,t)

⊕ (
⊕

3≤s≤m

⊕
2≤t≤n−1

Gs,t)⊕ (
⊕

3≤s≤m

⊕
2≤t≤n−1

Ĝs,t)

(4.163)

Note that N1, N2, Ek, Êk, Fij , F̂ij , G2,t, Ĝ2,t, Gs,t, and Ĝs,t are interval modules,

hence by Lemma 3.1, they are indecomposable. Therefore, PH0((Ĥ−,−)2
r,Le1

; F) is interval

decomposable.
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4.9 PHi(T2
r,Le1

; F)

Let T = (V ,E) be a tree, and by abuse of notation, we use T to denote a finite tree whose

underlying graph is T and the length of the edge e1 has length Le1 while other edges have

length 1. Note that T can be written as a union of the star graphs and generalized H graphs,

say T = T1 ∪ · · · ∪Tn, then we can calculate Hi(T2
r,Le1

): first calculate Hi((T1 ∪T2)2
r,le1

),

using the cover
W11 = (T1)

2
r,Le1

W12 = T1 ×T2 − {(x, y) ∈ T1 ×T2 | δ(x, y) < r}

W21 = T2 ×T1 − {(x, y) ∈ T2 ×T1 | δ(x, y) < r}

W22 = (T2)
2
r,Le1

(4.164)

Applying the Mayer-Vietoris spectral sequence, we can calculate Hi((T1 ∪T2)2
r,Le1

). We will

obtain Hi(T2
r,Le1

) after finitely many steps, adding a star graph or a generalized H graph at

each step. Since PHi(T2
r,Le1

) = Hi(T2
r,Le1

) for all r,Le1 ∈ R>0, we can compute the functor

PHi(T2
−,−) at the object level.

4.10 Hi(Tree2
r,L) of Trees with Arbitrary Edge Lengths

In this section, we use ˆStark to denote the metric star graph where the length of an edge

ei is Lei (assume Lei > 0) for all i = 1, . . . , k and use T̂ to denote a finite tree T = (V ,E)

where the length of an edge ei is Lei (assume Lei > 0) for all i = 1, . . . , |E|

Theorem 4.47. Let k ≥ 1. Then H2(( ˆStark)
2
r) = 0 and H1(( ˆStark)

2
r) is torsion-free.

Proof. Induction on k.
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When k = 1. Note that

( ˆStar1)
2
r '


{∗1, ∗2}, if 0 < r ≤ Le1

∅, if Le1 < r

(4.165)

Since the spaces that are homotopy equivalent to ( ˆStar1)2
r do not contain 1-cells and

2-cells, H2(( ˆStar1)2
r) = H1(( ˆStar1)2

r) = 0.

When k = 2, Without loss of generality we assume Le1 ≤ Le2 . Note that

( ˆStar2)
2
r '



{∗1, ∗2}, if 0 < r ≤ Le1

{∗1, ∗2}, if Le1 < r ≤ Le2

{∗1, ∗2}, if Le2 < r ≤ Le1 + Le2

∅, if Le1 + Le2 < r

(4.166)

Since the spaces that are homotopy equivalent to ( ˆStar2)2
r do not contain 1-cells and

2-cells, H2(( ˆStar2)2
r) = H1(( ˆStar2)2

r) = 0.

When k = N + 1, we consider the following cover of ( ˆStarN+1)
2
r:

U11 = (e1)
2
r

U12 = e1 × ˆStarN − {(x, y) ∈ e1 × ˆStarN | δ(x, y) < r}

U21 = ˆStarN × e1 − {(x, y) ∈ ˆStarN × e1 | δ(x, y) < r}

U22 = ( ˆStarN )2
r

(4.167)

Let S := {Lei | i = 2, . . . ,N + 1} with cardinality m := |S|. Note that S is a subset of

R hence S is a totally-ordered set. Without loss of generality, we assume s1 < s2 < · · · < sm
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where si ∈ S for i = 1, . . . ,m. Moreover, for each i = 1, . . . ,m, we use ci to denote cardinality

of the set {j = 2, . . . ,N + 1 | Lej = si}.

Note that (e1)2
r '


{∗1, ∗2}, if 0 < r ≤ Le1

∅, if Le1 < r

, where {∗1, ∗2} is a subspace of (e1)2
r

consists of two points.

On the other hand,

U12 '



{∗}, if 0 < r ≤ Le1

{∗2, ∗3, . . . , ∗N+1}, if Le1 < r ≤ Le1 + s1

{∗2, ∗3, . . . , ∗N+1−c1}, if Le1 + s1 < r ≤ Le1 + s2

{∗2, ∗3, . . . , ∗N+1−c1−c2}, if Le1 + s2 < r ≤ Le1 + s3

... ...

∅, if Le1 + sm < r

Similarly,

U21 '



{∗}, if 0 < r ≤ Le1

{∗2, ∗3, . . . , ∗N+1}, if Le1 < r ≤ Le1 + s1

{∗2, ∗3, . . . , ∗N+1−c1}, if Le1 + s1 < r ≤ Le1 + s2

{∗2, ∗3, . . . , ∗N+1−c1−c2}, if Le1 + s2 < r ≤ Le1 + s3

... ...

∅, if Le1 + sm < r
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Therefore, for all i ≥ 1,

Hi(U11) = Hi(U12) = Hi(U21) = 0 (4.168)

Now let’s consider the intersections of Uij . Note that

U11 ∩U12 '


{∗}, if 0 < r ≤ Le1

∅, if Le1 < r

U11 ∩U21 '


{∗}, if 0 < r ≤ Le1

∅, if Le1 < r

U22 ∩U12 = ( ˆStarN )2
r ∩ (e1 × ˆStarN − {(x, y) ∈ e1 × ˆStarN | δ(x, y) < r})

'



{∗2, ∗3, . . . , ∗N+1}, if 0 < r ≤ s1

{∗2, ∗3, . . . , ∗N+1−c1}, if s1 < r ≤ s2

{∗2, ∗3, . . . , ∗N+1−c1−c2}, if s2 < r ≤ s3

... ...

∅, if sm < r

U22 ∩U21 = ( ˆStarN )2
r ∩ ˆStarN × e1 − {(x, y) ∈ ˆStarN × e1 | δ(x, y) < r}

'



{∗2, ∗3, . . . , ∗N+1}, if 0 < r ≤ s1

{∗2, ∗3, . . . , ∗N+1−c1}, if s1 < r ≤ s2

{∗2, ∗3, . . . , ∗N+1−c1−c2}, if s2 < r ≤ s3

... ...

∅, if sm < r

(4.169)
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Therefore, for all i ≥ 1,

Hi(U11 ∩U12) = Hi(U11 ∩U21) = Hi(U22 ∩U12) = Hi(U22 ∩U21) = 0 (4.170)

The E1 page of the Mayer-Vietoris spectral sequence is

q

3 ... 0 0

2 H2(( ˆStarN )2
r) 0 0

1 H1(( ˆStarN )2
r) 0 0

0 ∗ ∗ 0

0 1 2 p

d1

Hence the E2 page of the Mayer-Vietoris spectral sequence is

q

3 ... 0 0

2 H2(( ˆStarN )2
r) 0 0

1 H1(( ˆStarN )2
r) 0 0

0 ∗ ∗ 0

0 1 2 p

Note that E2
10 = kerd1 is a subgroup of a free abelian group, hence E2

10 is free.

Since there is no non-trivial differential on the E2 page, E2 = E∞. Hence

H2(( ˆStarN+1)
2
r)
∼= H2(( ˆStarN )2

r)
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By the induction hypothesis, H2(( ˆStarN )2
r) = 0, hence

H2(( ˆStarN+1)
2
r) = 0

By the induction hypothesis, H1(( ˆStarN )2
r) is torsion-free, hence

H1(( ˆStarN+1)
2
r)
∼= H1(( ˆStarN )2

r)⊕E2
10

is torsion-free.

Lemma 4.4. Let T be a metric tree with at least one essential vertices such that all its

edges have length 1. Let {v} be a leaf of T. Then for all r > 0,

H1(T× {v} − {(x, y) ∈ T× {v} | δ(x, y) < r}) = 0

Proof. Without loss of generality, we assume T does not have vertices with degree 2. Induction

on the number of essential vertices of T.

When n = 1, then T = Stark for some k ∈N. Hence

T× {v} − {(x, y) ∈ T× {v} | δ(x, y) < r} '



{∗}, if 0 < r ≤ 1

{∗1, ∗2, . . . , ∗k−1}, if 1 < r ≤ 2

∅, if 2 < r

(4.171)

Since the spaces that are homotopy equivalent to T×{v}− {(x, y) ∈ T×{v} | δ(x, y) < r}

do not have 2-cells, H1(T× {v} − {(x, y) ∈ T× {v} | δ(x, y) < r}) = 0 for all r > 0.
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Assume the statement is true when n = N . When n = N + 1, let u be an essential

vertex of T such that it is a leaf of the graph T′ obtaining by deleting all the leaves of T and

u is not adjacent to v.

Now we construct T as a wedge sum of two trees at vertex u: a tree (denoted by T̃)

obtained by deleting all leaves that incident to u and a tree (denoted by Stark−1, where

k = deg u in T) with 1 essential vertex u which is not adjacent to v. Let

V1 = T̃× {v} − {(x, y) ∈ T̃× {v} | δ(x, y) < r}

and

V2 = Stark−1 × {v} − {(x, y) ∈ Stark−1 × {v} | δ(x, y) < r}

Let a = δ(u, v). Note that

V1 ∩ V2 =


{u} × {v}, if 0 < r ≤ a

∅, if a < r

(4.172)

Hence the reduced Mayer-Vietoris sequence implies

H1(T× {v} − {(x, y) ∈ T× {v} | δ(x, y) < r}) ∼= H1(V1)⊕H1(V2) (4.173)

Since T̃ has N essential vertices, by the induction hypothesis,

H1(V1) = H1(T̃× {v} − {(x, y) ∈ T̃× {v} | δ(x, y) < r}) = 0
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Recall a = δ(u, v). Note that

V2 '



{∗}, if 0 < r ≤ a

{∗1, ∗2, . . . , ∗k−1}, if a < r ≤ a+ 1

∅, if a+ 1 < r

(4.174)

Since the spaces that are homotopy equivalent to V2 = Stark−1×{v}−{(x, y) ∈ Stark−1×

{v} | δ(x, y) < r} do not have 1-cells,

H1(Stark−1 × {v} − {(x, y) ∈ Stark−1 × {v} | δ(x, y) < r}) = 0

Thus H1(V2) = H1(T× {v} − {(x, y) ∈ T× {v} | δ(x, y) < r}) = 0 for all r > 0 when T

has N + 1 essential vertices.

In conclusion, H1(T× {v} − {(x, y) ∈ T× {v} | δ(x, y) < r}) = 0 for all r > 0.

Lemma 4.5. Let T̂ = (V ,E) be a metric tree with at least one essential vertex, where the

length of each edge ei is Lei for all i = 1, . . . , |E|. Assume there exists v0 ∈ V and a subtree

T̃ of T̂ such that T = T̃∨v0 Stark−1 for some k ≥ 2, where v0 is the center of Stark−1 and a

leaf of T̃, then for all r > 0,

H2(T̃× Stark−1 − {(x, y) ∈ T̃× Stark−1 | δ(x, y) < r}) = 0

and H1(T̃× Stark−1 − {(x, y) ∈ T̃× Stark−1 | δ(x, y) < r}) is torsion-free.

Proof. Let U12 := T̃× Stark−1 − {(x, y) ∈ T̃× Stark−1 | δ(x, y) < r}. Induction on the

number of vertices of T̃. When n = 2, then T̂ = ˆStark and T̃ is an edge of T̂, denoted by e1.

We denote the edges of Stark−1 by e2, . . . , ek. Let S := {Lei | i = 2, . . . , k} with cardinality
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m := |S|. Note that S is a subset of R hence S is a totally-ordered set. Without loss of

generality, we assume s1 < s2 < · · · < sm where si ∈ S for i = 1, . . . ,m. Moreover, for each

i = 1, . . . ,m, we use ci to denote cardinality of the set {j = 2, . . . , k | Lej = si}.

U12 '



{∗}, if 0 < r ≤ Le1

{∗2, ∗3, . . . , ∗k}, if Le1 < r ≤ Le1 + s1

{∗2, ∗3, . . . , ∗k−c1}, if Le1 + s1 < r ≤ Le1 + s2

{∗2, ∗3, . . . , ∗k−c1−c2}, if Le1 + s2 < r ≤ Le1 + s3

... ...

∅, if Le1 + sm < r

Therefore, H2(U12) = H1(U12) = 0.

Now we assume T̃ has N + 1 vertices. Since T̃ is a tree, it has at least 2 leaves. Hence

there exists a leaf u of T̃ other than v0 such that diam(T̃) = δ(u, v0). Let e1 denote the

unique edge that incident to u and let w be the unique vertex adjacent to u. Consider the

following cover of U12:

V1 = (T̃− {u})× Stark−1 − {(x, y) ∈ (T̃− {u})× Stark−1 | δ(x, y) < r}

V2 = e1 × Stark−1 − {(x, y) ∈ e1 × Stark−1 | δ(x, y) < r}
(4.175)

The Mayer-Vietoris long exact sequence of this cover is

· · · → H2(V1 ∩ V2)→ H2(V1)⊕H2(V2)→ H2(U12)

→ H1(V1 ∩ V2)→ H1(V1)⊕H1(V2)→ H1(U12)

→ H0(V1 ∩ V2)→ H0(V1)⊕H0(V2)→ H0(U12)→ 0

(4.176)
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Note that

V1 ∩ V2 = {w} × Stark−1 − {(x, y) ∈ {w} × Stark−1 | δ(x, y) < r}

'



{∗2, ∗3, . . . , ∗k}, if 0 < r ≤ s1

{∗2, ∗3, . . . , ∗k−c1}, if s1 < r ≤ s2

{∗2, ∗3, . . . , ∗k−c1−c2}, if s2 < r ≤ s3

... ...

∅, if sm < r

(4.177)

Hence H2(V1 ∩ V2) = H1(V1 ∩ V2) = 0 and H0(V1 ∩ V2) = 0 is free. Note that, by the

induction hypothesis, H2(V1) = 0 and Hi(V1) is torsion-free (i = 0, 1) since T̃− {u} has N

vertices. On the other hand, H2(V2) = 0 and Hi(V2) is torsion-free (i = 0, 1) since V2 is the

base case of the induction. Hence the Mayer-Vietoris long exact sequence becomes

· · · →0→ 0⊕ 0→ H2(U12)

0→ H1(V1)⊕H1(V2)
j∗−→ H1(U12)

∂1−→ H0(V1 ∩ V2)
i∗−→ H0(V1)⊕H0(V2)

j∗−→ H0(U12)→ 0

(4.178)

Hence

H2(U12) = 0 (4.179)

and

0→ H1(V1)⊕H1(V2)
j∗−→ H1(U12)→ Im ∂1 → 0 (4.180)

Since H0(V1) ⊕H0(V2) is free and Im ∂1 is a subgroup of H0(V1) ⊕H0(V2), Im ∂1 is free.

Hence (4.180) splits and

H1(U12) ∼= H1(V1)⊕H1(V2)⊕ Im ∂1 (4.181)
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Since H1(V1), H1(V2) and Im ∂1 are torsion-free, so is H1(U12).

In conclusion, for all r > 0, H2(U12) = 0 and H1(U12) is torsion-free.

Theorem 4.48. Let T̂ be a metric tree (with at least one essential vertex) where the length

of an edge ei is Lei for all i = 1, . . . , |E|. Then

Hi(T̂
2
r) = 0

for all i ≥ 2 and H1(T̂2
r) is torsion-free all possible values of r.

Proof. Without loss of generality, we assume T̂ does not have vertices with degree 2. Induction

on the number of essential vertices of T̂.

When n = 1, then T̂ = ˆStark for some k ∈ N. Note that for all possible r and Le1 ,

Hi(( ˆStark)
2
r; F) = 0 for all i ≥ 2, and H1(( ˆStark)

2
r; F) is torsion-free. (See Theorem 4.47.)

Assume the statement is true when n = N . When n = N + 1, let v be an essential

vertex of T̂ such that it is a leaf of the graph T̂′ which is obtained by deleting all the leaves

of T̂ and let u be the essential vertex of T̂ such that u is adjacent to v. Now we can obtain

T̂ as a wedge sum of two trees at vertex v: a tree (denoted by T̃) obtained by deleting all

leaves that incident to the vertex v where k = deg v and a tree (denoted by ˆStark−1) with 1

essential vertex. Note that T̃ has N essential vertices.
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Consider the following cover of T̂2
r:

U11 = (T̃)2
r

U12 = T̃× ˆStark−1 − {(x, y) ∈ T̃× ˆStark−1 | δ(x, y) < r}

U21 = ˆStark−1 × T̃− {(x, y) ∈ ˆStark−1 × T̃ | δ(x, y) < r}

U22 = ( ˆStark−1)
2
r

(4.182)

By Theorem 4.47, we know H2(U22) = 0. By Lemma 4.5 and its dual, we know H2(U12) = 0

and H2(U21) = 0. On the other hand, by the induction hypothesis, Hi(T̃2
r; F) = 0 for all

i ≥ 2 and all possible values of r and Le1 . Now let’s consider the intersections of Uij .

U11 ∩U12 = T̃× {v} − {(x, y) ∈ T̃× {v} | δ(x, y) < r}

U11 ∩U21 = {v} × T̃− {(x, y) ∈ {v} × T̃ | δ(x, y) < r}

U22 ∩U12 '


{∗1, ∗2, . . . , ∗k−1}, if 0 < r ≤ 1

∅, if 1 < r

U22 ∩U21 '


{∗1, ∗2, . . . , ∗k−1}, if 0 < r ≤ 1

∅, if 1 < r

U11 ∩U22 = ∅

U12 ∩U21 = ∅

(4.183)

By Lemma 4.4, H1(U11 ∩U12) = 0 = H1(U11 ∩U21). In addition, all the triple intersections

of distinct Uij are empty.

The E1 page of the Mayer-Vietoris spectral sequence is
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q

3 ... 0 0

2 H2((T̃)2
r)⊕H2(( ˆStark−1)

2
r) 0 0

1 H1((T̃)2
r)⊕H1(( ˆStark−1)

2
r) 0 0

0 ∗ ∗ 0

0 1 2 p

d1

The E2 page of the Mayer-Vietoris spectral sequence is

q

... ... ... ...

2 H2((T̃)2
r)⊕H2(( ˆStark−1)

2
r) 0 0 0

1 H1((T̃)2
r)⊕H2(( ˆStark−1)

2
r) 0 0 0

0 ∗ kerd1 0 0

0 1 2 3 p

Since there is no non-trivial arrow on the E2 page, E2 = E∞. Therefore, for all possible

values of r,

1. Hi(T̂2
r; F) = 0 for all i ≥ 3 and all possible values of r;

2. H2(T̂2
r; F) ∼= H2((T̃)2

r) ⊕ H2(( ˆStark−1)
2
r). Applying the induction hypothesis and

Theorem 4.47, we conclude that H2(T̂2
r; F) = 0;

3. H1(T̂2
r; F) ∼= H1((T̃)2

r)⊕H1(( ˆStark−1)
2
r)⊕ kerd1. Note that kerd1 is a subgroup of a
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free abelian group. Hence kerd1 is free. By induction hypothesis and Theorem 4.47, we

then conclude that H1(T̂2
r; F) is torsion-free.
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decomposable, 45
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double complex, 31

E

equivalence of categories, 15
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F

faithful, 14
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filtration, 43

full, 14

full subcategory, 12
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G

generalized H graph, 166

graded algebra, 27

graded module, 28

graded module homomorphism, 28

graded ring, 27

graded ring homomorphism, 27

graph, 25

H

H graph, 122

Hasse diagram, 27
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matching, 50
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P

partially ordered group, 28

persistence module, 43

persistence object, 43

persistent homology functor, 44

polytope module, 45

product, 16

Q

quiver representation, 32

S

small category, 11

spectral sequence, 29

star graph, 26

subcategory, 12

T

T-Interleaved, 47

thin category, 11

thin representation, 60

translation functor, 46

tree, 26

U

unlabeled configuration space, 37

Z

zigzag, 53

zigzag persistence module, 53
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