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Abstract

In this work, we introduce two effective field theories which parameterize a light

modulus field interacting both with the MSSM (φMSSM) and with the MSSM

combined with an additional supersymmetric DFSZ axion (φPQMSSM). All

two-body decays of the modulus are cataloged and connected to explicit string

scenarios, with all model-independent decay widths calculated incorporating

mixing and phase-space effects for the first time. Dark matter and dark radiation

production are studied in both models for a subset of string scenarios, with

comments provided on expectations for the remaining scenarios. Quite generally,

we find that many string scenarios with a modulus-driven early matter dominated

period overproduce dark matter and/or dark radiation. The overproduction of

dark matter may be remedied with a sufficiently large modulus mass, however

various consistency conditions show that most scenarios are incompatible with

weak-scale supersymmetry and with a DFSZ-type axion, at least without additional

model-building. We also study statistical properties of the Peccei-Quinn scale

fa and the derived value of the SUSY µ-term in the string landscape. Here, we

find the predicted value of fa is in the cosmological sweet-spot for axion dark

matter, while the predicted higgsino masses are slightly above current LHC bounds.

Additionally, we study the predicted nature of viable dark matter candidates in

explicit inflationary scenarios in string theory, finding a WIMP in Kähler inflation

and open string axions in fibre inflation to be natural dark matter candidates.

xvii



Chapter 1

From fields to superfields to strings

Our current understanding of the universe can be reduced to a few simple building

blocks. These building blocks are described by two extremely well-established

frameworks: quantum field theory (QFT) describing extremely small scales and

general relativity (GR) describing extremely large scales. Within the framework

of quantum field theory, the Standard Model (SM) of particle physics is a specific

QFT which describes both the fundamental fermions and the gauge bosons which

mediate electromagnetic, weak, and strong interactions. While the framework of

general relativity generically describes gravitational interactions as curvature in

spacetime, the specific Lambda-Cold Dark Matter (ΛCDM) cosmological model

describes the expanding universe on vast scales as homogeneous and isotropic,

consisting of baryonic matter, dark matter, and a positive vacuum energy density

- the cosmological constant Λ.

However, there are several known experimental and theoretical issues with

the SM that indicate it is incomplete, among which include: 1. the SM does

not provide a candidate for dark matter, 2. quantum corrections to the mass

of the Higgs are expected to pull its physical mass to extremely large values

(the gauge hierarchy problem), 3. CP symmetry is expected to be violated in

quantum chromodynamics (QCD), however measurements of the neutron electric

dipole moment (EDM) indicate that any CP -violation must be extremely weak

in stark contrast with theoretical expectations (the strong-CP problem), and 4.

1



the incorporation of gravity into the theory. One of the primary goals in modern

physics is to find some extension or generalization of the SM which will address

these issues, while still reproducing the extensive successes of the SM.

The inclusion of a viable dark matter candidate is particularly crucial for

a complete understanding of our universe. Planck 2018 data suggests that the

current dark matter energy density is over five times greater than that of baryonic

matter [11]. However, any non-gravitational dark matter interactions are model-

dependent and thus experiments to measure distinct signatures are only sensitive

to particular subclasses of dark matter candidates [12]. Furthermore, any existing

experimental constraints are typically weakened if dark matter is multi-component

[12]. Given the plethora of hypothesized dark matter candidates, perhaps the

most motivated approach is to prioritize focus on the models which also solve

other theoretical or experimental issues with the SM. This approach both gives

promising predictions for the nature of dark matter and for its experimental

detection within a particular model, as well as tying these predictions to other

problems which - if some alternate solution becomes experimentally confirmed or

preferred - may also effectively rule out the model.

One such attempt to address many of the shortcomings of the SM is supersym-

metry (SUSY), with the Minimal Supersymmetric Standard Model (MSSM) being

arguably the simplest phenomenologically viable model [1, 13, 14, 15]. The MSSM,

when embedded in the framework of supergravity or local supersymmetry, provides

a remarkably constrained grand unified theory (GUT) and a non-renormalizable

theory of gravity, with most models determined completely at the GUT scale by
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O(5) free parameters. A UV-complete theory incorporating gravity, on the other

hand, requires another framework. We are naturally led to consider superstring

theory as a plausible UV completion for the MSSM, which contains the graviton in

its spectrum1 and can predict the MSSM as the low (sub-Planck) energy effective

theory. The main focus of this work is thus to consider the motivated scenario

where the MSSM is the low energy limit of string theory, which - as we will see in

the next chapter - likely predicts a non-thermal cosmological history before Big

Bang Nucleosynthesis (BBN). As we will see throughout this work, this has rather

severe implications for the production and composition of dark matter which,

despite being an extremely compelling framework, becomes highly constrained.

This introduction is as follows. First, we briefly review the gauge hierarchy

problem and how it is addressed in the MSSM. We then review the strong-CP

problem and the proposed axionic solution.

1.1 The gauge hierarchy problem

The prediction [20, 21, 22] and experimental discovery [23, 24] of the Higgs boson

is perhaps the greatest success of the SM. This discovery gives a considerable

degree of evidence that the Higgs mechanism is the correct picture through

which the fundamental quarks, leptons, and W± and Z0 bosons of the SM

acquire their masses. However, the mass of the Higgs boson itself is a source of

1Supergravity - both in 4d and higher-dimensional generalizations - also include a natural
inclusion of the graviton [16, 13, 1]. However, supergravity is a non-renormalizable field theory
while string theory is finite in the ultraviolet (UV) regime. As realistic string theories can be
shown to reduce to supergravity theories in the low energy limit [16, 17, 18, 19], one might be
led to consider string theory as the UV-complete theory with a supergravity theory providing
an effective description close to the GUT scale but below the string scale.
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theoretical mystery, partially because in the SM the Higgs mass is a free parameter.

Although several theoretical consistency bounds, including constraints based on

renormalization group consistency [25], vacuum stability [26], and perturbative

unitarity bounds [27], were proposed, they largely suggested a Higgs mass between

O(85 GeV) . mh . O(1 TeV) (see e.g. [14]). Extensions of the SM to the MSSM

provided a much more stringent constraint, with mh . O(135 GeV), but in any

case there remained a large window of viable Higgs masses to be searched.

There is another (far more disturbing) issue with the Higgs mass in the SM. It

is well known that in QFT, particles receive quantum corrections to their tree-level

or bare mass. These mass corrections are typically divergent in the UV, which

are not expected to be physical divergences but instead imply some high energy

cutoff scale Λcutoff, above which a more fundamental theory makes sense of the

divergence. However, in QFT scalar fields are particularly susceptible to quadratic

divergences - and the Higgs field, being the sole scalar field in the SM, is no

exception. The Higgs mass - to 1-loop order - is then given by the schematic form

m2
h, phys ' (125 GeV)2 = m2

h, 0 −
c

16π2
Λ2

cutoff (1.1)

with mh,0 the bare Higgs mass, Λcutoff the UV cutoff of the theory, and c some

coefficient set by the relevant couplings and diagrams, predominantly set by the

top quark loop, gauge boson loops, and Higgs self-coupling loops.

Based on the running of the gauge couplings in the SM, it is plausible to

expect the gauge couplings to unify at an energy scale of around 1016 GeV, at
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which point some Grand Unified Theory might be expected to describe physics.

If we take the cutoff scale for the Higgs mass to be the GUT scale, even by the

most conservative estimates, the bare mass must match the cutoff term to at least

24 decimal places to get the right Higgs mass. The situation becomes even worse

if the scale of new physics is set by the Planck scale, where quantum field theory

and general relativity break down and a theory of quantum gravity is needed. It

is then highly implausible, although technically possible, that this high degree

of fine-tuning happens by pure chance. Certainly, one would expect for some

underlying mechanism to explain why the Higgs mass is extremely light when the

quantum corrections should pull the Higgs mass to a much higher scale. This is

one manifestation of the gauge hierarchy problem.

1.1.1 The MSSM and the gauge hierarchy problem

Supersymmetry, in particular the MSSM which is a supersymmetrization of the

Standard Model, provides quite possibly the most elegant solution to the gauge

hierarchy problem. In this framework, the notion of a Lie algebra is extended to

a graded superalgebra, thus circumventing the Coleman-Mandula theorem [28]

which asserts that - assuming all symmetries belong to Lie algebras - the only

possible internal and spacetime symmetries of a QFT must be a direct product

of the Poincaré group with the internal symmetry group. This simple extension

allows for spinorial symmetry generators, which in turn provides a symmetry

between bosons and fermions. A supersymmetrization of the SM then predicts a

boson superpartner for each fermion, and a fermion superpartner for each boson.
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To prevent dangerous operators which induce proton decay, an additional R-parity

symmetry is conventionally imposed [1] which forbids the offending terms. This

also has the implication that the lightest supersymmetric particle (LSP) is stable

- which can provide a compelling weakly interacting massive particle (WIMP) as

a dark matter candidate.

Returning to the problem of the stability of the Higgs mass, we can focus on

the dominant divergence which is due to the top quark loop2 [1]. The MSSM then

predicts a scalar superpartner, the top squark or stop, which contributes also a

quadratically divergent loop contribution to the Higgs mass, which we display

in Fig. (1.1.1). However, due to the spin-statistics theorem, the stop and top

loops contributions have opposite sign, leading to a cancellation of the quadratic

divergences in the amplitude. Additionally, if the supersymmetry is exact, the

subleading logarithmic divergences also cancel (see e.g. [31]). Fortunately, this is

not required to solve the gauge hierarchy problem, as log Λcutoff . O(40) with the

upper bound set by Λcutoff = mP , implying that a large tuning is not required to

stabilize the Higgs mass unlike when quadratic divergences are untempered.

As we have just alluded, we know that if supersymmetry is to be a funda-

mental symmetry of nature, it must be a broken symmetry at low energy. If

supersymmetry were exact, each SM particle would necessarily have the same

mass as its corresponding superpartner - and the superpartners would have been

experimentally detected long ago. To maintain the successes of supersymmetry

2Crudely speaking, the Higgs couplings to other fields are proportional to their masses.
As the top quark is the most massive particle in the SM, with mt ' 173 GeV [29, 30], its
contribution to this amplitude should dominate.
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h h = h h

t

t

+

t̃L,R

h h + . . .

Figure 1.1: Quantum corrections to the Higgs two-point correlation
function in the MSSM. Each SM loop has a corresponding superpartner
loop with opposite sign. Supersymmetry requires the coupling between
the Higgs and top quarks to be identical to the coupling between the
Higgs and stop squarks, exactly cancelling the quadratic divergences.

at solving the gauge hierarchy problem, it must be “softly” broken so that the

cancellation of quadratic divergences is preserved, although the mild logarithmic

divergences reappear [1, 13]. Perhaps the most important open question in super-

symmetry is then reconciling the details of how - and at what scale - SUSY is

broken with the non-observation of sparticles [32, 33, 34, 35, 36, 37, 38] at the

LHC.

1.2 The strong-CP problem

The QCD sector of the SM contains no symmetries to forbid the term

LQCD ⊃
θQCD g

2
s

32π2
Tr
[
Ga
µνG̃

µν, a
]

(1.2)

where Ga
µν and G̃µν, a are respectively the gluon field strength tensor and its Hodge

dual, and θQCD is related to the phase of the quark mass matrix. Initially, this
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term seems innocuous as it can be rewritten as a total derivative:

Ga
µνG̃

µν, a = ∂µK
µ, (1.3)

where

Kµ = εµνρσ

[
Aaν G

a
ρσ −

2

3
fabcAaνA

b
ρA

c
σ

]
, (1.4)

and thus one may expect it to make no contribution to the action. However, Kµ

is not a gauge-invariant quantity, and since the gauge field Aaµ must become pure

gauge as we approach infinity [39], the second term in Eq. (1.4) does not vanish

from the action integral. Therefore, due to the non-Abelian structure of QCD,

non-trivial localized gauge field configurations - known as instantons - provide

non-perturbative finite contributions to the action unless θQCD = 0. Furthermore,

since this term violates CP , P , and T symmetries, its presence indicates a source

of CP -violation in QCD.

Naively, one might be tempted to force θQCD = 0 in the Lagrangian by hand.

In this case, since QCD has an axial U(1)A symmetry, the Bell-Adler-Jackiw

anomaly [40, 41] regenerates this term if one rotates the quark fields by a chiral

transformation [42], e.g. q → exp(iβγ5)q. Additionally, due to the presence of

the anomaly, one can eliminate this term by a redefinition of the quark fields at

the expense of introducing a phase for the quark mass terms - a result that also

violates CP . In the quark mass eigenstate basis, the measurable θQCD parameter
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in Eq. (1.2) is then given by

θQCD = θ̃QCD + arg det (M) (1.5)

where M is the quark mass matrix, and θ̃QCD is the bare θ-parameter.

It thus appears that QCD generically predicts a source of CP -violation. This is

problematic, however, since there has yet to be any experimental confirmation that

such CP -violation exists. Most stringently, the presence of the term in Eq. (1.2)

should induce an electric dipole moment in the neutron, with a magnitude given

by [43]

dn ' 5.2× 10−16 θQCD e · cm. (1.6)

However, experimental measurements of the neutron’s electric dipole moment give

[44, 45]

|dn| < 1.8× 10−26 e · cm (1.7)

at the 90% confidence level. This implies that θQCD < 10−10 for the physical

θ-parameter. Such a small value constitutes a large degree of fine-tuning, in

particular since the SM provides no motivated reason for θQCD = 0. This is the

strong-CP problem.

1.2.1 The Peccei-Quinn solution

The Peccei-Quinn (PQ) solution to the strong-CP problem [46, 47] effectively

promotes the problematic θQCD to a field which dynamically relaxes to zero,
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naturally solving the strong-CP problem. Originally, this was accomplished by

introducing a global U(1) symmetry (conventionally referred to in this context

as a U(1)PQ symmetry) along with a second Higgs doublet. Assuming the PQ

charges are arranged to allow Yukawa-type couplings with the Higgs doublets, PQ

rotations allow for any quark phase to be absorbed into a phase of the Higgs. Once

the PQ symmetry is spontaneously broken, quarks (and the rest of the massive SM

content) acquire masses through the Higgs mechanism as the two Higgs doublets

settle to their vacuum expectation values (VEVs), which are independent of the

PQ phase - in essence solving the strong-CP problem.

Of course, as a consequence of the Goldstone theorem, a massless scalar

or Nambu-Goldstone boson should be present in the theory after the U(1)PQ

symmetry is broken. This was pointed out by Wilczek [48] and Weinberg [49],

with the predicted massless particle being named the axion. However, the chiral

anomaly explicitly breaks the PQ symmetry - and as such, the axion acquires

a small mass from non-perturbative instanton effects and is hence a “pseudo”

Nambu-Goldstone boson. In the context of the original PQ framework, the

predicted axion is typically coined the Peccei-Quinn-Wilczek-Weinberg (PQWW)

axion. The presence of the axion in the theory also makes the PQ solution to the

strong-CP problem slightly more apparent. Since the U(1)PQ current should also

possess a chiral anomaly, the Lagrangian should contain the terms [50]

L ⊃ θQCD g
2
s

32π2
Tr
[
Ga
µνG̃

µν, a
]

+ ξ
a

fa

g2
s

32π2
Tr
[
Ga
µνG̃

µν, a
]

(1.8)
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where ξ is set by PQ charge assignments, a is the axion field, and fa is the axion

decay constant which is determined by the VEV of the additional Higgs field.

This effective potential for the axion is then minimized at

〈a〉 = −θQCD
fa
ξ

(1.9)

which implies that the physical theory is defined around the CP -conserving

vacuum.

The PQWW axion was quickly ruled out for the key reason that the PQ

symmetry breaking is inherently tied to electroweak symmetry breaking in this

model. The VEV of the additional Higgs field must take a value close to the weak

scale, which ties the value of the decay constant to fa ∼ O(250 GeV). Since the

axion couples to the anomaly terms through couplings of the form (a/fa)GG̃,

certain hadronic states should be allowed to decay to an axion and another hadron.

Most notably, for the PQWW axion the decay channel K+ → π+ +a should occur

with a branching ratio [51]

Bpredicted
K+→π++a & 1.3× 10−5 (1.10)

which is a factor of O(300) larger than the measured value [52]

Bmeasured
K+→π++a . 3.8× 10−8. (1.11)

Furthermore, nuclear reactor experiments, beam dump experiments, and collider
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data provide strong evidence against the existence of the PQWW axion (see e.g.

[51] for an extensive review from this era, and [53] for a more recent review of

collider constraints).

However, these strong constraints are entirely contingent on the magnitude of

the PQ scale fa. Shortly after the PQWW model was introduced, two alternative

axion models appeared that incorporated the success of the U(1)PQ symmetry to

solve the strong-CP problem, while incorporating an additional field that allows

for a significantly larger scale of PQ breaking. In both models, the large increase

in fa predicts an axion that interacts extremely weakly which coined the term

“invisible axion.” As we will see in the following chapters, the invisible axion is

also a natural dark matter candidate - potentially explaining another shortcoming

of the SM.

The first model introduces a scalar field ϕ, which is charged under PQ symmetry

but otherwise an SM singlet, and a heavy quark doublet (QL QR), which is charged

under PQ symmetry and each QL,R are triplets under SU(3)c. The PQ Lagrangian

in this model then includes the Yukawa terms

LPQ ⊃ −λQ ϕQLQR + h.c. (1.12)

Since there are no direct tree-level couplings to the SM, ϕ can acquire a VEV at

a high scale, and since the axion couples only to the chiral anomaly, any coupling

to SM fields is extremely suppressed. This model is due to Kim [54] and Shifman,

Vainshtein, and Zakharov [55], and is thus referred to as the KSVZ axion.
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The second model also introduces a scalar field ϕ, which is similar to the

KSVZ case in that it is charged under PQ symmetry but an SM singlet otherwise.

Additionally, a second Higgs doublet is added so that both Higgs doublets are

charged under PQ symmetry, similar to the original PQWW model. Requiring

the usual generation of fermion masses through the Higgs mechanism then implies

that the SM fermions should be charged under PQ symmetry as well. This leads

to a similar situation as the PQWW model, with the very big exception that the

scalar potential

V = λH ϕ
2HuHd (1.13)

allows for the VEVs of Hu and Hd (vu and vd respectively) to remain at the

required weak scale values, while the VEV 〈ϕ〉 ∼ fa is able to be taken extremely

large. This is the model proposed by Dine, Srednicki, and Fischler [56] and

Zhitnitsky [57], and is referred to as the DFSZ axion. For the remainder of this

work, we focus on the DFSZ axion and provide more discussion in Sec. (3.1.3).
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Chapter 2

Moduli: a 4D perspective of extra dimensions

In this chapter, we begin by discussing in detail the Kaluza-Klein model and

re-derive the key results for both geometric and non-geometric moduli. Although

much of this work is focused on moduli from string theory, this introduction

serves to show how extra dimensions, when compactified, cause massless scalars

in the perspective of the 4d theory to arise rather generically. We then use these

concepts to discuss the moduli of string theory. Although we focus predominantly

on the Type IIb case, we provide discussion on the moduli present in the heterotic

case, as well as for M -theory compactified on a G2 manifold. Next, we discuss

current procedures which stabilize the moduli and the difficulty of this open

issue in string theory. Finally, due to its frequent appearance in string literature

but scarce appearance in literature on the MSSM, we provide brief discussion

on the phenomenon of sequestering. This chapter thus serves as motivation for

the generality of moduli in string theory, as background for our case scenario

definitions in Ch. (4), and as explicit realizations for our results in Ch. (6).

2.1 The Kaluza-Klein picture

We begin our discussion of moduli within the original context of a five-dimensional

theory, which was first proposed by Kaluza [58] and interpreted in a quantum

framework by Klein [59, 60]. The resulting Kaluza-Klein (KK) theory showed

that both electromagnetism and gravity can occur in a four-dimensional field
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theory from the compactification of a five-dimensional field theory containing only

gravity, providing the first example of unification of electromagnetism and gravity.

The generalization to 10-dimensions (or 11, in the case of M-theory) will be -

although substantially more difficult from a technical perspective - much more

intuitive.

In our following examples, we will assume a flat background in the extra

dimension. This can be generalized to warped backgrounds, which take the

general metric decomposition [61]

ds2 = e2A(y)ηµν dx
µ dxν + dy2. (2.1)

This decomposition is closer to what one might expect from a theory where energy

density exists in the higher dimensions - causing a backreaction on the local

geometry. Doing so, however, leads to technical complications beyond what we

require for this discussion - in particular since the massless spectra of the theory

that we are interested in is largely unchanged at the classical level [62].

These warped extra dimension models, such as those originally pioneered by

Randall and Sundrum [63], can also lead to interesting phenomenology in any

extra-dimensional framework. The original Randall-Sundrum model provided a

means of understanding the hierarchy problem from extra dimensions - if two

branes are geometrically separated in the additional dimension, the warping caused

by the geometric backreaction causes exponential redshifting of the masses in the

4d theory [63]. Distinct collider signatures may be predicted from Kaluza-Klein
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graviton exchange [64], additional stable vector bosons if an additional Kaluza-

Klein parity symmetry is postulated [65], and radions (or moduli) which could

be produced with a mass tentatively of order of the weak scale [66] (see also

[67, 68, 69, 70]). However, no experimental collider signatures for these types of

models have yet been detected [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83].

Additionally, if the extra compact dimension is “large” (as in the Arkani-Hamed

- Dimopoulos - Dvali (ADD) model [84], which predicts extra dimensions at or

below the millimeter scale), gravity - being intrinsically higher dimensional in this

framework - can “leak” out of the effective 4d theory and lead to modifications of

general relativity on large scales, which depend on the size of the extra dimension

[85, 84, 86]. Experimental analyses using gravitational wave astronomy [87, 88]

and black hole astronomy [89, 90] have also put constraints on the size of extra

dimensions, which constrain the radius of the extra dimension R < 170 AU [89].

2.1.1 Unification of electromagnetism and gravity

For our first example let us consider a five-dimensional field theory containing

only gravity, the dimensional reduction of which demonstrates both one particular

origin of moduli and shows the unification of electromagnetism and gravity in

the original Kaluza-Klein context. Following the Kaluza-Klein picture, we also

assume that the topology of the theory is M4 × S1 so that the fifth-dimension is

compact. The resulting action is given by

S5 = − 1

2κ2
5

∫
M4

∫
MS1

d4x dy
√
− det g5R5 (2.2)
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where κ2
5 = 8πG

(5)
N is the 5d gravitational constant,M4 andMS1 are (respectively)

the volumes of the non-compact 4d space and the compact fifth dimension, g5 is

the 5d metric tensor, and R5 is the 5d Ricci scalar. We display a schematic of

this geometry in Fig. (2.1.1).

Figure 2.1: Schematic of the Kaluza-Klein geometry. The (infinite)
length of the cylinder is the non-compact 4d space, while the “width”
is the compact fifth dimension.

In the absence of any matter - i.e. a vacuum compactification - we would

expect the 5d metric for this particular topology to decompose as

ds2 = g
(0)
MN dx

MdxN = g(0)
µν dx

µdxν + g
(0)
55 dy dy (2.3)

where g
(0)
MN is the 5d vacuum metric, while g

(0)
µν and g

(0)
55 are the 4d and fifth

dimension’s vacuum metric, respectively. Once matter is incorporated into the 5d

theory however, the metric will be deformed as dictated by general relativity and

the above decomposition is no longer sufficient.

To build intuition for the Kaluza-Klein metric ansatz, let us first recall that we

demand general coordinate invariance within general relativity. If we consider an
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infinitesimal coordinate transformation on the fifth dimension so that y → y+ε(x),

the metric will change by

gµ5 → gµ5 + ∂µε(x). (2.4)

This coordinate transformation enforces Kaluza’s so-called “cylindrical condition,”

which we will elaborate on shortly. Incidentally, this is precisely the transformation

one demands of a U(1) gauge field. Furthermore, under the above coordinate

transformation g55 has the transformation property of a scalar field, i.e. g55 → g55.

We now present the Kaluza-Klein ansatz for the metric, which we choose to

parameterize here as:

ds2 = gMN dx
MdxN = gµν dx

µdxν + exp (2φ) (Aµdx
µ + dy)2 (2.5)

where we distinguish the 5d metric from the 4d metric with an overline. Here,

Aµ is a U(1) gauge field which depends only on xµ, in keeping with Kaluza’s

“cylindrical condition.” We have also introduced the factor exp(2φ) where φ is a

scalar field (which also depends only on xµ). This additional scaling effectively

describes the overall strength of any 5d coordinate change relative to the “size”

of the coordinate y.

We emphasize that g55 = exp(2φ) is the metric component which defines

distances purely within the compact dimension, which we have taken to be S1.

The condition that g55 and gµ5 depend on xµ but not on y simply means that
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we do not consider any warped regions along the fifth dimension, and hence the

geometry is - at least locally - similar to that of a cylinder. For the sake of clarity,

let us make a brief analogy to the simple case of cylindrical coordinates in 3d

geometry. In 3d cylindrical coordinates, the S1 metric component is given by

gθθ = r2. Comparing to our more complicated case where g55 = exp(2φ), we see

that φ parametrizes the size of the compact dimension. Since φ may also vary with

xµ, the size (or volume) of the extra dimension may vary as we move throughout

M4 (although our coordinate choice y remains a fixed length - analogous to the

non-dimensional θ coordinate in the 3d cylindrical coordinate system).

To make the metric ansatz a bit more explicit, let us rewrite it in the form:

gµν = gµν + exp(2φ)AµAν (2.6)

gµ5 = g5µ = exp(2φ)Aµ (2.7)

g55 = exp(2φ) (2.8)

which has the inverse metric:

gµν = gµν (2.9)

gµ5 = g5µ = −Aµ (2.10)

g55 = A2 + exp(−2φ). (2.11)

It is now a rather simple matter to now calculate the Christoffel symbols

from the above metric and subsequently calculate the Ricci curvature tensor
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and scalar. However, as the resulting formulae are extremely lengthy we simply

provide the result for the Ricci curvature scalar since the remaining details are

largely irrelevant for this discussion. The 5d Ricci scalar in terms of Eqs. (2.6 -

2.11) can be shown to be (see e.g. [13], [18] for similar results):

R5 = R4 +
1

4
exp(2φ)F µνFµν − 2 exp(−φ)∇µ∇µ exp(φ) (2.12)

where Fµν dx
µ∧dxν ≡ dA is the U(1) field strength 2-form and ∇µ is the covariant

derivative. We also note that - for our parameterization of the metric ansatz - we

have det g5 = exp(2φ) det g4.

At long last, we have everything we need to integrate out the fifth dimension in

Eq. (2.2). Since our fifth dimension is compact, we take MS1 = [0, 2πr) where r

is the radius of the compact dimension. The dy integral is now trivially integrated

since (by the Kaluza-Klein metric ansatz) no fields depend on y:

S4 = −2πr

2κ2
5

∫
M4

d4x
√
− det g4

×
[
exp(φ)R4 +

1

4
exp(3φ)F µνFµν − 2∇µ∇µ exp(φ)

]
. (2.13)

Although the physics is readily apparent, this result is not quite in canonical form.

After making the Weyl transformation g → exp(−φ)g and a rescaling φ→ φ/
√

3,
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we recover the canonical action in the Einstein frame:

S4 =
1

2κ2
4

∫
M4

d4x
√
− det g4

[
−RE.H.

4 +
1

2
∇µφ∇µφ−

1

4
exp

(
φ/
√

3
)
F µνFµν

]
(2.14)

where we have defined the 4d gravitational constant as κ2
4 ≡ κ2

5/(2πr).

Thus, we see that pure gravity in 5d - upon dimensional reduction - looks in

4d like gravity and a U(1) gauge theory such as electromagnetism. Furthermore,

we have an additional massless scalar field which, as we have described earlier,

parametrizes the size of the extra dimension. In the low energy action, we also see

that the VEV of φ sets the coupling, g−2, of the gauge kinetic term, − 1
4g2
F µνFµν .

The field φ is typically labeled as a “radion” or a “dilaton”1 in Kaluza-Klein

theory. For our purposes, we can also refer to this field as a “modulus” in the

sense that it is a massless scalar at the classical level.

2.1.2 Massive scalars in 4d from massless scalars in 5d

Before we discuss string compactifications, it is worthwhile to present one more

dimensional reduction in Kaluza-Klein theory. Let us now consider a massless

scalar field Φ in the above 5d framework - which bears no relation to the φ field we

encountered in the previous example. Assuming the flat-space limit for simplicity,

1The dilaton of Kaluza-Klein theory is similar to the dilaton of string theory in that both
describe the size of a compact dimension. In Type IIa string theory, the dilaton appears from
compactification of M -theory on a circle.
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the action of the free scalar is given by

SΦ =

∫
M4

d4x

∫
MS1

dy

[
1

2
∂MΦ ∂MΦ

]
. (2.15)

Since the compact dimension y can be viewed as periodic with a period 2πr (where

r is again the radius of the compact dimension), let us make a Fourier expansion

of Φ:

Φ(x, y) =
1√
2πr

∑
n

φn(x) exp

(
iny

r

)
(2.16)

where 1/
√

2πr is the normalization factor. Using this expansion, the action can

then be written as

SΦ =
∑
n,m

∫
M4

d4x

∫
MS1

dy exp

(
i(n+m)y

r

)

× 1

2πr

[
1

2
∂µφn(x) ∂µφm(x) +

1

2

nm

r2
φn(x)φm(x)

]
. (2.17)

Evaluating the dy integral over MS1 = [0, 2πr) thus reduces the action to

SΦ =
∑
n

∫
M4

d4x

[
1

2
∂µφn(x) ∂µφn(x)− 1

2

n2

r2
φ2
n(x)

]
. (2.18)

It is immediately clear that, although in 5d our theory had a single massless

scalar, from the perspective of 4d we have one massless scalar (corresponding to

the n = 0 case) and an infinite tower of massive modes with masses m2 = n2/r2.

Furthermore, if we take the compact dimension to be of order of the Planck length,

then each of the massive scalars would be at least of order mP ! In most cases,
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one would expect the resulting 4d effective theory would then be most simply

described once these massive modes are integrated out - they are typically far too

massive to be relevant.

Comparing results between the previous two explicit compactification examples,

we see that massless scalars in the 4d theory can parameterize deformations in

the metric, but may also come from massless scalars in the 5d theory where some

fundamental symmetry prevents the 5d scalar from acquiring a mass. Following the

literature, we refer to these as geometric and non-geometric moduli, respectively.

However, in either case, massless scalars present a significant phenomenological

problem. Specifically, massless scalars are expected to be cosmologically stable,

and are expected to mediate Yukawa-type interactions - leading to a fifth force

that is not observed (see e.g. [91, 92] for reviews of theoretical and experimental

constraints). These moduli must then acquire a mass (i.e. they must be stabilized)

for phenomenological viability.2 Many other model-dependent issues also arise in

this class of models, including modifications to the standard Friedmann-Robertson-

Walker (FRW) cosmology [93, 94] or a contracting universe [95].

2.2 The many moduli from string theory

We saw in the previous section how dimensional reduction of a 5d theory to a 4d

theory introduced a modulus - which parametrizes the size of the extra dimension

2In simple Kaluza-Klein models, quantum corrections in the effective theory tend to provide a
mass for the massless scalars. However, in string theory, these corrections which are expected to
stabilize the moduli might be incalculable (depending on the regime of interest) as a consequence
of the Dine-Seiberg problem, which will be discussed shortly.
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- and introduced a low energy gauge theory from pure gravity. By discussing this

level of technical detail in the simpler setting of 5d, we are now in a position to

productively discuss the far more complicated case of moduli from string theory

without requiring explicit computation. It is well known [17, 18, 96, 19, 97, 98]

that in string theory, anomaly cancellation requires a spacetime dimension D = 10.

For a low energy description of string theory that matches physical observation, it

is then a phenomenological requirement that the 10d manifold decomposes under

compactification as

M10 =M4 ×M6 (2.19)

where, similar to the 5d Kaluza-Klein case, M6 is a 6d compact manifold while

M4 is non-compact.

However, it is not phenomenologically sufficient to simply choose any 6d

compact space - requiring M4 to support chiral matter places a considerable

constraint on the compactification manifold M6. Physically, we expect the low

energy theory to contain massless fermions (at least, above the EWSB scale)

which imposes the requirement that spinors inM6 are covariantly constant. Since

the requirement on spinors to be covariantly constant is linked to the holonomy

of the compactification manifold, phenomenology requires SU(3) holonomy for a

6d compactification manifold and thus requires compactification on a Calabi-Yau

threefold (see e.g. [97, 98, 96, 19, 18] for additional details and motivation). Similar

conditions occur for compactification of M -theory. Since M -theory must have

spacetime dimension D = 11, the phenomenological requirement of a covariantly
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constant spinor on the 7d compact space requires a manifold with G2 holonomy.

2.2.1 Moduli space of string theory

As one might suspect, the moduli space of string theory is far richer and more

complex than a simple extension of the 5d Kaluza-Klein model to 10d. For our

purposes, it is useful to deal with the supergravity limit of string theory - so that

only the massless string modes are excited. Before we discuss the full moduli

space in the supergravity limit, we first present the Type IIb supergravity action

in 10d. This will then allow us to proceed with an outline of the generalization

of Kaluza-Klein reductions to a 6d Calabi-Yau space - at least in the context of

Type IIb supergravity.

In the conventions of [99, 19, 100], the 10d bosonic action for Type IIb

supergravity in the string frame is given by

SNS =
1

2κ2
10

∫
d10x

√
− det g10 e

−2φ

[
R10 + 4 (∂φ)2 − 1

2
|H3|2

]
SRR = − 1

4κ2
10

∫
d10x

√
− det g10

[
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

]
SCS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F3

SIIb = SNS + SRR + SCS + Sloc. (2.20)

Here, we see that the Neveu-Schwarz (NS) sector action SNS contains gravity, the

dilaton φ, and the 3-form H3 ≡ dB2 - as expected from the decomposition of the

massless string spectrum [19]. In the Ramond-Ramond (RR) sector, the Type
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IIb massless modes contain the p-form fields Cp for p = 0, 2, 4. Correspondingly,

the RR sector action SRR can be built from the corresponding field strengths

Fp+1 = dCp, which is in essence a generalization of a gauge theory in 10d. Following

[19, 100], we have defined F̃3 ≡ F3−C0 ∧H3 and F̃5 ≡ F5− 1
2
C2 ∧H3 + 1

2
B2 ∧F3.

The equations of motion for the four-form are consistent with the self-duality

constraint, F̃5 = ?F̃5, which must be imposed on the solutions [19, 101, 102].

The third contribution to the action is the Chern-Simons term SCS. Finally,

we have included a term Sloc to account for local effects in the theory - namely

the localized effects of the presence of branes in the theory. We do not display

these (model-dependent) terms here, but simply note that these introduce a

super-Yang-Mills sector in the 10d low energy limit.

After a Weyl rescaling of the metric to the Einstein frame, the Type IIb action

becomes

SIIb =
1

2κ2
10

∫
d10x

√
− det g̃10

[
RE.H.

10 − |∂S|2

2 (Re(S))2
− |G3|2

2 Re(S)
− |F̃5|2

4

]

− i

κ2
10

∫
C4 ∧G3 ∧G3

Re(S)
+ Sloc (2.21)

where, following [19], we define3 the axio-dilaton:

S ≡ e−φ − iC0 (2.22)

3Our definition of the axio-dilaton here is rotated by −i compared to [19] to match later
conventions.
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and the 3-form

G3 ≡ F3 + iSH3. (2.23)

These quantities will be important when discussing flux compactifications in

Sec. (2.3.1).

It is worth reiterating that the supergravity actions listed above are only valid

below the string scale Ms, so that the massive string states can be integrated

out. There are two perturbative expansions that lead to gs (string loop) and

α′ (curvature) corrections which must be considered in order to ensure that the

theory has perturbative control and thus that the low energy supergravity limit

is a valid approximation. First, the string coupling gs (which is set by the VEV

of the dilaton) must be weak, i.e. gs � 1, so that the gs expansion is sensible.4

Second, the spacetime curvature must be small compared to the string scale for the

α′ expansion to be computed.5 To make matters more difficult, Dine and Seiberg

argue in [104] that in order to obtain the expected value of unified gauge couplings

in the (MS)SM at the GUT scale, considering a weakly-interacting string theory

(gs � 1 so that the gs expansion is under control) then implies the size - and hence

radius of curvature - of the compact manifold is relatively small compared to the

string length scale, thus causing the α′ expansion to break down and invalidating

the effective theory approach. In addition, if one considers a large compactification

4There are, of course, dualities that relate the five string theories amongst themselves. In
the case of strong coupling, one might suspect that the Type IIb string - which is S-dual to
itself - could simply be rewritten exploiting this duality. Doing so, however, would invalidate
the previous supergravity approximation and require a new supergravity action in this regime.

5This is due to the fact that, in flat space, one can compute the spectrum of the theory by
simply using the free theory. In curved space, this is (in general) no longer the case - however,
if the curvature is small in string units, one can sensibly define a perturbation series and use
known methods for calculations. [103]
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manifold, non-perturbative effects are expected to induce a runaway to either

the decompactification limit or the zero-coupling limit. Dine and Seiberg further

argue in [105] that, based on general assumptions relating the expected string

coupling to the vacuum energy, one cannot expect to construct a stable deSitter

vacuum (although metastable deSitter vacua are allowed). Collectively, this is

referred to as the Dine-Seiberg problem - and can be elegantly summed up in

the phrase [106], “when corrections can be computed, they are not important,

and when they are important, they cannot be computed.” This is a significant

obstacle that any string description (and in particular, any moduli stabilization

procedure) must overcome if it claims to reproduce the physics of our universe.

At long last, we are finally ready to describe the moduli in string theory. As

with the Kaluza-Klein example, the moduli here are related to the metric of the

internal space - albeit in a much more complex manner. Since we are assuming

compactification on a Calabi-Yau threefold, we use complexified coordinates, dzi

and dz, on the manifold. The moduli then correspond to deformations of the

(Hermitian) metric that preserves both the Ricci-flatness of the manifold and

Hermiticity of the metric. A general metric deformation can be written as [99]

δg = δgi dz
i dz + δgij dz

i dzj + c.c. (2.24)

Imposing the Ricci-flatness condition Ri = 0 on the deformation shows that the

δgi and δgij + c.c. deformations decouple.

The first set of deformations δgi can then be understood equivalently as
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deformations in the Kähler form, J , of the metric, g:

δJ = i δgi dz
i ∧ dz (2.25)

and are referred to as the Kähler moduli. For the deformations of Kähler form

that we are interested in, δJ is a harmonic (1, 1)-form and thus we can write

J ∈ H1,1

∂
(M). (2.26)

Here, H1,1

∂
(M) is the Dolbeault cohomology group of (complex) dimension (1, 1)

and is required to adequately describe our coordinate choices on the Calabi-Yau

manifoldM. Unlike our simple 5d Kaluza-Klein example where the topology was

trivial, Calabi-Yau manifolds have a non-trivial topology and thus coordinates are

not globally well-defined; the Dolbeault cohomology group provides us with the

required topological information to properly perform the dimensional reductions.

Since the dimension of H
(1,1)

∂
(M) is given by the Hodge number h1,1 of the Calabi-

Yau, there should thus be h1,1 Kähler moduli. It is then convenient to parametrize

the moduli by introducing the h1,1 harmonic (1, 1)-forms ωi that form a basis for

H1,1

∂
. We can then write

J = ti(x)ωi (2.27)

where ti(x) are the 2-cycle moduli [99, 18]. Through Poincaré duality, elements of

H1,1

∂
(M) are related to elements of H2,2

∂
(M) on a Calabi-Yau manifold [99, 107,

18, 17], providing a relation between the 2-cycle moduli ti and the 4-cycle moduli
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(conventionally denoted by τi).

It is useful to briefly discuss the relations between the 2-cycle and 4-cycle

moduli since, for our purposes, the 4-cycle moduli are more convenient for our

phenomenological work while the 2-cycle moduli are more convenient for our

discussion of the origin of the Kähler moduli. Since the Kähler form is a nowhere-

vanishing (1, 1)-form, it is a natural volume measure [108, 109]. The volume of

the compactification manifold in terms of the 2-cycle moduli ti is then given by

V =
1

3!

∫
M6

J ∧ J ∧ J =
1

6
κijkt

itjtk (2.28)

where κijk are the (fully symmetric) triple-intersection numbers of the manifold

[110, 109]. Each of the 4-cycle moduli are then the volumes of the respective

4-cycles they parametrize, and are given by

τi =
1

2

∫
ci

J ∧ J (2.29)

where ci is the relevant 4-cycle. The 2-cycle moduli can then be related to the

4-cycle moduli by the relation

τi =
∂V
∂ti

=
1

2
κijk t

jtk. (2.30)

The other set of metric deformations, δgij + c.c., must induce a change in the

complex structure J → J + δJ in order to preserve Hermiticity of the metric.

This shift in the complex structure can be used to build a harmonic (2, 1)-form χ
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as

χ = Ωijk δJ k
l
dzi ∧ dzj ∧ dzl = Ωijk δghl g

kh dzi ∧ dzj ∧ dzl (2.31)

where Ω is the unique non-vanishing (3, 0)-form on the Calabi-Yau [99, 107, 18, 17].

Since the form χ is harmonic, then

χ ∈ H2,1

∂
(M) (2.32)

where H2,1

∂
(M) is the Dolbeault cohomology group of (complex) dimension (2, 1).

The dimension of H2,1

∂
(M) is given by the Hodge number h2,1, and we therefore

expect h2,1 complex structure moduli. We can then parametrize the complex

structure moduli as [99]

δgAı = cζA(x) (χA)klı Ω
kl

 (2.33)

where c is a normalization constant and ζA(x) are the complex structure moduli.

Now that we have finally encountered (some of) the moduli of string theory,

let us briefly make contact with our main discussion of the 4d theory. Taking

analogy to our example in Sec. (2.1.1), we would expect from Eq. (2.21) that

the h1,1 Kähler moduli and h2,1 complex structure moduli to appear as massless

scalars in the 4d theory due to the dimensional reduction of gravity RE.H.
10 to

RE.H.
4 . In addition to the geometric moduli we have just described above, there

are also non-geometric moduli. As can be seen from Eq. (2.21), the axio-dilaton

is one such field; drawing analogy to our example in Sec. (2.1.2) we would expect

the axio-dilaton to show up in the low energy theory as a massless scalar with a
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corresponding tower of massive modes.

However, we have not yet discussed the reduction of the gauge fields in

Eq. (2.21), such as e.g. |F̃5|2 ≡ F̃5 ∧ ?F̃5 ⊃ dC4 ∧ ?dC4. Utilizing the metric

decomposition ansatz, we decompose these forms into 4d and 6d components as

e.g.

C
(10)
4 = C

(4)
4 + ci(x) ω̃i (2.34)

where we denote the 10d and 4d 4-forms as C
(10)
4 and C

(4)
4 respectively, and have

expanded the 6d form in a basis of harmonic (2, 2)-forms ω̃i ∈ H2,2

∂
. Focusing on

the 6d form, the action becomes

SF̃5
⊃ − 1

8κ2
10

∫
M4

d4x
√
− det g4

∫
M6

ω̃α ∧ ?6 ω̃
β

[
1

4!
∂µcα(x) ∂µcβ(x)

]
. (2.35)

As the fields cα,β(x) depend on the 4d coordinates only, the 4d action can be

trivially isolated - even if the dimensional reduction of ω̃α ∧ ?6 ω̃
β is highly non-

trivial. In the 4d theory, we see that the reduction of each of the 10d gauge fields

leads to h2,2 = h1,1 massless scalars since the remaining 6d integral simply provides

a field-space metric describing a σ-model. These moduli possess a distinctive

continuous shift symmetry, ci → ci+a with a some constant, which is a remnant of

the original 10d gauge symmetry. First pointed out by Witten [111] in the context

of the heterotic string, the shift symmetry motivates the identification of these

particular moduli with axions, which also possess a continuous shift symmetry

(at least, for energies above ΛQCD ∼ 200 MeV at which point QCD instantons

explicitly break the continuous shift symmetry to a discrete shift symmetry [112]).
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Depending on the topological structure of the compactification manifold, this

provides potentially hundreds [113, 114] of axion-like particles (ALPs) that may

remain in the low energy spectrum - leading to the picture of the string axiverse

[115, 116].

As a brief technical aside, we must give mention to orientifolding in the Type

II string context. Since Type II strings produce a low energy supergravity theory

with N = 2 supersymmetry [19], phenomenology demands this to be broken

to N = 1 supersymmetry as N = 2 supersymmetry does not support chiral

matter [13]. This is accomplished through use of O3/O7 orientifold planes. A

complete discussion of orientifold planes is beyond the scope of this work (see

e.g. [96, 19, 18] for a more complete treatment), but for the scope of this work it

suffices to note that orientifold planes are extended, non-dynamical objects with

negative tension that produce unoriented strings and break N = 2 supersymmetry

to N = 1 supersymmetry. This also affects the moduli space in a model-dependent

way. Under the orientifold action, the cohomology group H1,1

∂
is broken into

H1,1

∂
= H1,1

+ ⊕H
1,1
− (2.36)

where the h1,1
+ elements of H1,1

+ are even under orientifolding, while the h1,1
−

elements of H1,1
− are odd under orientifolding. This projects out of the spectrum a

subset of each of the moduli we have described above, although the decomposition

in Eq. (2.36) - and therefore h1,1
+ and h1,1

− - are model-dependent [18]. Once the

N = 2 supersymmetry is broken to N = 1 supersymmetry, it is conventional to
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complexify the Kähler moduli with the C4 axions so that our Kähler coordinates

are given by Ti = τi + ici.

As shown by Candelas and Ossa [117], the moduli arising from compactifica-

tions on Calabi-Yau manifolds can also be described in a 4d supergravity theory

with the Kähler potential

K0 = −2 log (V)− log
(
S + S

)
− log

(
−i
∫
M6

Ω ∧ Ω

)
(2.37)

where gs and α′ corrections have been neglected. Here, the Calabi-Yau volume

V is in terms of the complexified Kähler moduli Ti, while the second and third

terms correspond to the contributions of the dilaton and the complex structure

moduli, respectively. This form survives through both orientifolding and the

addition of fluxes (i.e. the inclusion of the |G3|2/2Re(S) term in Eq. (2.21)) as

shown by Giddings, Kachru, and Polchinski [100] - although the inclusion of fluxes

will induce warping of the geometry and thus induce a potential for the complex

structure moduli in the 4d theory. The addition of fluxes can be described by

the flux superpotential (also known as the Gukov-Vafa-Witten superpotential)

[118, 119, 100]

W0 =

∫
M6

G3 ∧ Ω. (2.38)

We will discuss the flux superpotential in more detail when discussing moduli

stabilization of the complex structure moduli. Although a far more technical

result than in our 5d example, the 4d effective supergravity action specified by

the above Kähler potential and superpotential accounts for the Kähler moduli,
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complex structure moduli, and the dilaton, in addition to the axionic contributions

from the RR field C4 and the flux contributions from G3 (which is - by definition

- related to the H3 = dB2 and F3 forms, as well as the axio-dilaton). Ignoring

for the moment any local contributions to the action Sloc, this 4d supergravity

action then accounts for all the moduli we would naively expect to appear from

Eq. (2.21).

Finally, we briefly discuss local contributions to the action - specifically the

inclusion of branes and open string sectors. The action for a Dp-brane is given by

the Dirac-Born-Infeld (DBI) action [99]:

SDBI = −gsTp
∫
dp+1σ e−φ

√
− det (Gab + Fab) (2.39)

where the action is integrated over the worldvolume of the Dp-brane. Additionally,

Fab ≡ Bab + 2πα′Fab is a gauge-invariant field strength, and Gab and Bab are

the pullbacks of the 10d metric and 2-form B
(10)
2 onto the brane worldvolume,

respectively. Quantization of open strings living on the Dp-brane gives rise to

a gauge sector Fab residing on the brane and a set of massless scalars which

parameterize the open string position on the brane. In the case of a stack of

branes, the gauge sector is that of an SU(N) super Yang-Mills theory [120]. Since

Dp-branes are charged under the RR sector gauge symmetry, Cp+1 → Cp+1 + dαp,

we have also the Chern-Simons coupling [99]:

SCS = iµp

∫
Σp+1

∑
n

Cn ∧ exp(F). (2.40)
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The reduction of these actions can be expressed by the DeWolfe-Giddings Kähler

potential [121] (see also [122, 123]), which for compact volumes well-described by

a single Kähler modulus takes the form:

K = −3 log
(
T + T − k(zα, zα)

)
(2.41)

where k(zα, zα) is the contribution from the massless complex scalars zα which

are typically taken to be visible sector fields [121, 124], and parameterize the

brane position. In addition to possessing no-scale structure [125], this Kähler

potential allows for sequestering of soft terms which will be discussed in more

detail in Sec. (2.4). This class of open string moduli residing on Dp branes is a

conventional way of model-building the MSSM field content in Type IIb string

models [126, 127, 128] due to the appearance of a super Yang-Mills gauge theory

with scalars (and fermionic partners by supersymmetry) charged under the gauge

symmetry.

2.3 Moduli stabilization

Now that we have discussed the naive moduli content appearing in the low energy

theory, we now turn to the topic of moduli stabilization. Although quantum

corrections are expected to lift any flat directions, due to the aforementioned

Dine-Seiberg problem [105, 104] the calculation of these corrections is exceedingly

difficult - if not (in various regimes) impossible. We focus here on the leading

proposals in Type IIb string theory, and provide some mention to moduli sta-
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bilization in heterotic constructions - which is far less understood than in the

Type IIb context. We begin with discussion of the stabilization of the complex

structure moduli and axio-dilaton from flux compactification, then proceed to the

two leading proposals to stabilize Kähler moduli.

2.3.1 Flux compactification

Before discussing the topic of flux compactification and its relevance to the complex

structure moduli and axio-dilaton in detail, it is useful to first briefly recap the

Dirac quantization condition. We therefore begin by the inclusion of a magnetic

monopole into Maxwell’s equations - i.e. by making the modification

∇ ·B = ρm (2.42)

while maintaining the definition for the vector potential

B = ∇×A. (2.43)

Since ∇ · (∇×A) = 0 in coordinate patches where A is well-defined, the result

∇ ·B = ρm can only be obtained if A is not globally well-defined. This requires

us to define multiple regions each with their own vector potentials (all related by

gauge transformations), which then glue together so that B is globally well-defined.

Making the notational shift to differential forms, i.e. A ≡ Ai dx
i and B = dA

where d is the usual exterior derivative, we can construct two coordinate patches

each with their own vector potential 1-form. In order to have a well-defined
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magnetic field, the two 1-forms must only vary by an exact form in the region

where both coordinate patches overlap:

A1 − A2 = dω (2.44)

where we take A1,2 to be the vector potential in regions 1 and 2 (respectively). If

some particle with charge e - such as an electron - begins at a point a in region 1

and traverses into region 2 to a point b, it should acquire a phase:

ψ → exp

(
ie

∫
a→b

dω

)
ψ. (2.45)

If the charged particle then traverses back to region 1 and returns to point a, the

total phase acquired can be written as

ψ → exp

(
ie

∮
dω

)
ψ. (2.46)

However, since the wavefunction is required to be single-valued we must demand

that the total acquired phase vanish. Since
∮
dω ∈ R\0 from our initial assumption

that dω was non-trivial, we are forced to assume that

eω = 2πn (2.47)

for n ∈ Z, where we have defined ω ≡
∮
dω. An equivalent condition follows which

will be useful in our discussion of flux quantization. Setting e = 1 for simplicity

38



(or equivalently, absorbing it into ω), we can write the integral in terms of 2-chain

boundaries which parameterize the traversal path, then apply Stokes’ theorem to

arrive at

∮
dω =

∮
(A1 − A2) =

∫
∂c2

A1 +

∫
∂d2

A2 =

∫
c2

dA1 +

∫
d2

dA2 =

∫
Σ

F (2.48)

where the 2-cycle Σ is effectively the surface enclosing the traversal path. Thus,

we see that an equivalent quantization condition is

∫
Σ

F = 2πn. (2.49)

We therefore see that the presence of magnetic monopoles implies that the electric

charge is quantized. More generally, we also see that this quantization condition is

forced upon us for any flux F that pierces a non-trivial cycle, which is illustrated

in Fig. (2.2).

Figure 2.2: A flux F1 pierces a non-trivial 1-cycle C1 of the torus T 2.

Returning now to the case of flux compactifications, we saw from Eq. (2.21)
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that the 10d action contains the term

SIIb ⊃
1

2κ2
10

∫
d10x

√
− det g̃10

[
− |G3|2

2 Re(S)

]
(2.50)

where G3 ≡ F3 + iSH3 = dC2 + iS dB2. Since these 3-forms are compactified over

the non-trivial 3-cycles of the Calabi-Yau, we expect a similar set of quantization

conditions to that which we derived from considering magnetic monopoles. This is

significant since - once the fluxes are quantized - the integration can be performed

over all h2,1 of the (2, 1)-cycles, which provides a potential for the complex structure

moduli. Additionally, due to the Re(S)−1 dependence on the axio-dilaton, flux

compactifications are expected to also stabilize the axio-dilaton. As shown by

Giddings, Kachru, and Polchinski (GKP) [100], the induced superpotential in the

4d effective supergravity theory is of the form postulated by Gukov, Vafa, and

Witten [118]:

W0 =

∫
M6

G3 ∧ Ω3. (2.51)

Following the GKP procedure, we can impose the quantization condition

1

2πα′

∫
A

F3 ∈ 2πZ,
1

2πα′

∫
B

H3 ∈ 2πZ (2.52)

where the integrals are understood to be over the relevant 3-cycles of the manifold.

Taking the original GKP example where h2,1 = 1 for simplicity, we can take the

integral over the A cycle to have M ∈ Z units of F3 flux while the integral over
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the dual B cycle is taken to have −K ∈ Z units of H3 flux.6 This reduces the flux

superpotential to

W0 = (2π)2 α′
(
M

∫
B

Ω3 + iKS

∫
A

Ω3

)
. (2.53)

Defining the coordinates

z ≡
∫
A

Ω3, G(z) ≡
∫
B

Ω3 (2.54)

so that z now describes the complex structure modulus, this gives us the revealing

form of the flux superpotential

W0 = (2π)2 α′ (MG(z) + iKSz) . (2.55)

From inspection of the supergravity F -term potential

VF = eK
[
Ki (DiW )

(
DW

)
− 3|W |2

]
(2.56)

we now expect that the complex structure modulus z and the axio-dilaton S are

stabilized. There is a subtle problematic detail in this example: as shown in

[100], the complex structure modulus is stabilized at z exponentially small which

removes S from the superpotential at z = 0, leaving S unstabilized in this vacuum.

6We note here that not all charge combinations for multiple fluxes are allowed due to charge
conservation of the D3 branes. Additionally, the warped geometry does not necessarily allow for
all fluxes to be supported on all cycles. We do not focus on these details here as they distract
from the main focus of this section, however the original work by GKP [100] and the later review
[129] both provide excellent discussions on these points.
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This can however be remedied with additional fluxes, which are readily available

in more realistic models.

Of course, the quantization requirement combined with charge conservation

does not lead to unique combinations of fluxes. As we see from Eq. (2.55), different

choices of M and −K will lead to different vacua which are (at least from this

vantage point) all equally valid assuming the flux choices satisfy all consistency

conditions. This leads to the so-called “flux landscape” or “string theory landscape”

of vacua [130, 131, 132, 133], with each vacua giving different low energy physics.

Indeed, the number of vacua in realistic compactifications is argued to be finite

[134, 135] but exceedingly large - with estimates of the number of flux vacua

ranging from O(10500) [136] to O(10272,000) [137]. Given that the scale of (4d,

N = 1) supersymmetry breaking is dependent on W0 in this framework, this

motivates the use of statistical studies [133, 131, 5, 138, 139] to uncover generic

predictions or salient phenomenological features that flux compactifications may

provide. It is, however, possible that some (or perhaps most) of these 4d effective

supergravity theories may be inconsistent with string theory [140, 141, 142, 143].

The natural question then arises of whether the MSSM - or at least some form of

the SM - are indeed contained in the UV-consistent string landscape or if they

instead reside in the so-called “swampland” of 4d supergravity theories which

are inconsistent with a UV completion to string theory. In this work, we do not

concern ourselves with this issue and simply adopt the optimistic assumption that

our models are indeed compatible with the string landscape.

Although we have focused primarily on Type IIb strings here, this methodology

42



may also have application in heterotic compactifications [129]. Heterotic string

constructions may be able to stabilize some complex structure moduli from fluxes

[129], although since only the NS flux H3 is available additional details are required

to stabilize all complex structure moduli. In [144], it was shown that constructions

with internal gauge fields may be able to stabilize the remaining complex structure

moduli in heterotic compactifications. Additionally, it has been proposed by

Anderson et al. [145] that the gauge bundle required in heterotic compactifications

may be sufficient to stabilize all geometric moduli. More work on heterotic moduli

stabilization can be found in e.g. [146, 147, 148, 149, 150, 151, 152, 153] while

moduli stabilization in M -theory can be found in [154, 155, 156, 157].

2.3.2 The KKLT scheme

In Type IIb models, the Kähler moduli still remain massless at the classical level

after turning on fluxes. This is due to the fact that in Type IIb models, the

available fluxes are due to the RR forms C0, C2, C4 and the NS form B2 - which

only pierce the “odd-dimensional” cycles of the compactification manifold. The

Kähler moduli must therefore be stabilized in a different manner.

One of the most popular Kähler moduli stabilization schemes was developed

by Kachru, Kallosh, Linde, and Trivedi [3] (KKLT). This was the first realistic

construction to feature both Kähler moduli stabilization and a metastable deSitter

(dS) vacuum. After fluxes have stabilized the complex structure moduli and

the axio-dilaton, the KKLT approach assumes a tuning of the flux superpoten-

tial W0 � 1 so that non-perturbative corrections from gaugino condensation
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[158, 159] or instanton effects [160] are comparable to the tree-level perturbative

superpotential. If W0 is sufficiently small, the scalar potential then admits an

anti-deSitter (AdS), SUSY-preserving minima. In the original work, this AdS

minima was uplifted to dS by including a stack of D3-branes at the tip of a

warped throat region [3] which introduces an additional potential contribution

and breaks supersymmetry.

To see this more clearly, let us elaborate some details. Once the complex

structure moduli and axio-dilaton have been stabilized, we can integrate out these

terms which leaves a constant superpotential W ⊃ W0. At the perturbative level,

the shift symmetry of the Kähler moduli Ti → Ti + iα (which arises as a remnant

of the 10d gauge symmetry) prevents them from appearing in the superpotential

which is protected by holomorphy. However, the Kähler moduli can appear in

non-perturbative contributions to the effective superpotential. As discussed in

the original work [3], the contributions from gaugino condensation and instanton

effects both take effectively the same form:

W = W0 +
∑
i

Ai exp (−aiTi) (2.57)

where ai = 2π for instantons and ai = 2π/N for gaugino condensation with N

the dimension of the fundamental representation of the condensing gauge group.

However, for our discussion it suffices to take both as simply O(1) parameters.
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The Kähler potential then takes the standard no-scale form [125],

K = −2 logV (2.58)

where V is the classical volume of the manifold.

For the purpose of this example, we restrict ourselves to the simplest case,

h1,1 = 1, much as in the original work [3]. The manifold volume in terms of a

single 4-cycle modulus is given by Eq. (2.30) which now reads

V = λτ 3/2 (2.59)

where we have defined λ ≡ 1/(3
√

2κ111) where κ111 is now the only intersection

number of the manifold. Complexification of the 4-cycle modulus τ with the

reduction of the 4-form gauge field C4 along the corresponding divisor leads to

the Kähler modulus

T ≡ τ + ic (2.60)

where, for simplicity, we have absorbed the geometric factor λ2/3. Thus, the

superpotential and Kähler potential take the form

W = W0 + A exp (−aT ) (2.61)

K = −3 log
(
T + T

)
. (2.62)

Here, we also make the simplification that a and A are real - the additional phase
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will not affect the main point of this discussion. The F -term scalar potential can

be computed using the standard supergravity formula, which results in

VF =
exp(−2aτ)

2τ 2

[
1

3
a2A2τ + aA2 + aAW0 exp(aτ)

]
(2.63)

where we have integrated out the axionic component of T in the process. The

minimization conditions then read

∂VF
∂τ

= 0 =
−2a2A

3τ
− 7aA

3τ 2
− aW0

τ 2
exp(aτ)− 2

A

τ 3
− 2

W0

τ 3
exp(aτ) (2.64)

which reduces to the form

(
2

3
aτ + 1

)
= −W0

A
exp(aτ). (2.65)

This equation in fact does have an analytic solution,

〈τ〉 = −1

a
W
(

3W0

2A exp(3/2)

)
− 3

2a
(2.66)

where W(z) is the Lambert W-function. For our example, we note that this

quantity must be negative to stabilize τ at a positive value given that we have

neglected any complex phase associated with A. However, since the Lambert

W-function is not defined for arguments below −1/e, we immediately have a

bound on W0/A:

|W0|
A

<
2

3

√
e ∼ 1.1. (2.67)
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Now that we have a stabilized modulus, let us check to see if SUSY is preserved

in this minima. The condition for unbroken/broken SUSY is given by DIW
?
= 0

evaluated at the minima, where DIW is the Kähler covariant derivative of the

superpotential. Here, the condition reads

〈DTW 〉 = −A
(
a+

3

2τ

)
exp(−aτ) +

3

2τ
A exp(−aτ)

(
2

3
aτ + 1

)
= 0 (2.68)

and thus we see that SUSY is preserved. In the original work [3], the authors

instead searched for a stabilized modulus that preserved supersymmetry - making

Eq. (2.68) a demand for the minima instead of a consequence as we have done

here. Although this is a more pragmatic approach, we will see in the next Kähler

moduli stabilization model that not all minima will preserve SUSY.

It is now a simple matter of substituting Eq. (2.66) (or, perhaps more simply,

the condition given by Eq. (2.65)) into Eq. (2.63) to reveal that the minima we

have found is AdS. Originally, a stack of D3-branes was placed at the tip of a

Klebanov-Strassler [161] throat which was shown to induce a term in the scalar

potential δV ∼ B2/τ
3 with B2 a parameter depending on the warp factor. Later

work studying this uplifting effect [162, 122] lead to a more precise understanding

of the D3 uplift, producing an uplifting term of the form δV ∼ B1/τ
2 where again

B1 is a parameter depending on the warp factor. Fortunately, both B1 and B2 are

expected to be extremely small due to a large warp factor, otherwise this uplifting

effect could destabilize the modulus - leading to a runaway to infinite volume

and thus the decompactification limit! In Fig. (2.3), we show the scalar potential

47



before uplifting (black solid curve) and with both uplifting effects included (blue

and green dashed curves).

Figure 2.3: The KKLT scalar potential in mP = 1 units (see Eq. (2.63))
for A = 1, a = 0.1, W0 = −10−4. Uplifting choices have B1 =
2.7× 10−11 and B2 = 3.15× 10−9. Plot reproduced from [3].

It is also worth mentioning that many variants and generalizations of the KKLT

scenario exist in the literature. Although the original work focused on uplifting

by D3-branes, many other uplifting mechanisms exist such as D-term uplifting

[163, 164, 165, 166, 167, 168], F -term uplifting [169, 170], and Kähler uplifting

[171, 172, 173]. It has also been shown in [174, 175, 176] that the D3 uplift (which

breaks SUSY) can be realized in the nilpotent goldstino formalism, which allows

for a supersymmetric formulation of the uplifting effect. Additionally, there are

generalizations stabilizing multiple Kähler moduli [177, 178, 179], although as

emphasized in [99] it is yet unclear if these situations may be regarded as generic.

The KKLT procedure has also been argued [163] to provide viable dS vacua in
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heterotic string models, albeit utilizing a D-term uplift as no analogs of D3 branes

exist in this context.

2.3.3 The Large Volume Scenario

The second Kähler moduli stabilization scheme we consider here is the Large

Volume Scenario (LVS), which was developed by Conlon et al. [180, 181]. The

initial setup is similar to KKLT: fluxes stabilize the complex structure moduli

and the axio-dilaton, leaving a constant flux superpotential W ⊃ W0. In LVS

however, non-perturbative corrections in the superpotential are balanced against

perturbative α′ corrections to the Kähler potential. The perturbative corrections

within the Kähler potential are computed by expansions in powers of V−1, and by

taking V exponentially large one guarantees the validity of the expansion.

To see this more closely, let us assume the simplest LVS case which has 2

moduli, Tb = τb + icb and Ts = τs + ics, with the geometric hierarchy τb � τs so

that τs is interpreted as a “blow-up mode” - i.e. it resolves a singularity in the

Calabi-Yau structure [182, 183]. The volume is assumed to take the form

V ' τ
3/2
b − λτ 3/2

s (2.69)

and, including leading-order α′ corrections to the Kähler potential, we have

W = W0 + As exp(−asTs) + Ab exp(−abTb) (2.70)

K = −2 log

[
V +

ξ

2

]
(2.71)
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where

ξ = − χ ζ(3)

2g
3/2
s (2π)3

∼ O(1). (2.72)

Here, ξ depends on the Euler number χ of the Calabi-Yau manifold, and gs follows

from the stabilization of the dilaton (i.e. ξ ≡ ξ̂(S+S)3/2 [184, 185, 4]). We assume

in this example that there are no additional contributions to the Kähler potential,

although in general one expects the additional terms K ⊃ Kmatter +Kuplift, which

do not affect the details of stabilization in any significant way. As with the previous

example, we again take W0 and As to be purely real - the additional phase does

not affect our discussion. Finally, before we calculate the scalar potential, we note

that the instanton correction to the big-cycle modulus can be neglected (i.e. we

set Ab exp(−abTb) ∼ 0) since τb is assumed much larger than τs, and is thus a

highly subleading correction here.

Under these simplifications, it is straightforward to compute the F -term scalar

potential from the standard supergravity formula:

VF ' eK
′
[

8

3

a2
sA

2
s

λ

√
τs
e−2asτs

V
− 4asAsW0τs

e−asτs

V2
+

3ξW 2
0

4V3

]
(2.73)

where we retain only terms up to O(V−3) and K ′ is the remaining Kähler potential

which is assumed independent of the Kähler moduli, and we have stabilized the

axion cs in the process. It is clear that both moduli τs and τb now have a

non-vanishing potential - this should not be surprising given the form of the α′

corrections in the Kähler potential and our addition of non-perturbative corrections

to the small cycle.

50



We display the scalar potential as a function of τs in Fig. (2.4) for V = 106.

In the limit where τs � 1, we see that the final term in Eq. (2.73) dominates,

yielding an extremely flat potential. Naively, the flatness of the potential in this

limit makes the blow-up mode a good candidate for the inflaton. We will discuss

this more in Ch. (7).

Figure 2.4: The LVS scalar potential in terms of the blow-up mode in
mP = 1 units (see Eq. (2.73)), τs. We take here the parameter choices
〈eK′〉 = 1, As = λ = 1, ξ = 1, W0 = 1, as = 2π, and V = 102.

Let us first minimize this potential with respect to τs. The minimization

condition then becomes

∂VF
∂τs

= 0 '
[
−4

3

asAs
λ

√
τse
−asτs +

W0τs
V

]
(2.74)

which tells us that the small-cycle modulus is stabilized at

〈τs〉 '
1

as
log

[
4asAsV
3W0λ

]
(2.75)
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where we neglect the second term on the right-hand side, − 1
2as

log(τs), which is

highly subdominant from the assumed hierarchy τb � τs.

Since we have now stabilized the small cycle modulus, let us briefly check

if SUSY is preserved. Taking the condition for unbroken/broken SUSY, i.e.

evaluating DIW
?
= 0 at the minima, we see that

〈DTsW 〉 ' −
3W0λ

4〈V〉
+

3

2
√
as

λ log1/2
[

4asAs〈V〉
3W0λ

]
〈V〉+ ξ/2

6= 0. (2.76)

Thus, we see that SUSY is broken in this minimum. Let us now proceed to the

stabilization of the big-cycle modulus.

Once τs is integrated out, we can rewrite the potential as

VF ' eK
′
[
− 3λ

2a
3/2
s

log3/2

[
4asAsV
3W0λ

]
+

3ξ

4

]
W 2

0

V3
. (2.77)

We display this potential in Fig. (2.5). The minimization for the big-cycle modulus

τb is effectively the same as the minimization of the volume V in the large volume

limit, and so we consider the minimization condition

∂VF
∂V

= 0 '
[

9λ

2a
3/2
s

log3/2

[
4asAsV
3W0λ

]
− 9ξ

4

]
W 2

0

V4
(2.78)

which tells us that τb is stabilized at

〈V〉 ' 3W0λ

4asAs
exp

(
as

(
ξ

2λ

)2/3
)

(2.79)
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and thus, returning to Eq. (2.75), we see that τs is stabilized at

〈τs〉 '
(
ξ

2λ

)2/3

∼ O(g−1
s ) (2.80)

where we have assumed λ ∼ O(1). Finally, let us check if SUSY is broken in the

τb minima. The SUSY breaking condition reads

〈DTbW 〉 ' −
3

2

〈τb〉1/2

[〈V〉+ ξ/2]

[
W0 +

3W0λ

4as〈V〉

]
6= 0. (2.81)

As with the τs minima, SUSY is broken in the τb minima and thus both moduli

acquire non-zero F -terms. Furthermore, the value of the potential at the minimum

is anti-deSitter.

Figure 2.5: The LVS scalar potential (in mP = 1 units) in terms
of the volume with τs stabilized. Here, our parameter choices are
〈eK′〉 = 1, As = λ = 1, ξ = 1, W0 = 1, and as = 2π. We also show
two uplifting scenarios motivated by [3] and [4], with B1 = 0.00315
and B2 = 0.0014.
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As we have an AdS minima, model-dependent uplifting terms can then be

added (as in KKLT) to lift the AdS minima to a dS minima. Much as with

the KKLT scenario, it is imperative to construct uplifting scenarios that do not

destabilize the moduli. Additionally, uplifting effects can shift the minima of

the moduli, and can result in shifts of the soft terms compared to the AdS case

[4]. Many uplifting mechanisms in LVS exist, including T -branes [186], non-zero

F -terms from complex structure moduli [187], dilaton-dependent non-perturbative

effects [188], and (depending on additional model considerations) most if not all

uplifting mechanisms that can be applied to KKLT.

We display two examples for uplifting in Fig. (2.5). The first, which we take

to be VdS ∼ B1V−4/3, is of the form of uplifting from D3-branes at the tip of a

warped throat region, similar to the original KKLT uplifting [3]. For our second

uplifting scenario, we take the form VdS ∼ B2V−1 which is motivated from [188]

where non-perturbative effects at geometric singularities induce superpotential

and Kähler potential terms

WdS ∼ AdS exp (−adS(S + κdSTdS)) (2.82)

KdS ∼ λdS
τ 2

dS

V
. (2.83)

Once the induced blow-up modulus is stabilized by the hidden sector D-term

potential, this leads to the effective scalar potential term VdS ∼ B2/V . For more

details and discussion, see e.g. [188, 4].
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2.4 Sequestering in string theory

For the purposes of this work, our discussion of string theory would not be

complete without a brief mention of the phenomena known as sequestering. In

theories with extra dimensions, it is possible [124] to construct models that localize

both the Standard Model and the source of SUSY breaking. The effects of SUSY

breaking, which can originate from anywhere other than the brane that hosts

the visible sector, must then be communicated across the bulk geometry. The

SM sector then receives a highly suppressed contribution due to the geometric

traversal of these effects.

This idea was originally proposed by Randall and Sundrum [124] as a means to

solve the SUSY flavor problem. By sequestering the visible sector from the hidden

sector, the direct coupling of the two sectors - which leads to dangerous flavor-

violating terms - are fundamentally absent. This causes the classical contributions

to the squark and slepton masses to vanish, with flavor-symmetric contributions

appearing only radiatively through anomaly-mediated contributions. Similarly,

other terms such as the Bµ term or problematic CP-violating terms are naturally

suppressed, solving other potential issues commonly related to SUSY breaking.

Sequestered Kähler potentials that also possess the desired no-scale structure

take the schematic form7

K = −3 log
[
fvis(Xi, X i) + ghid(Tj, T j)

]
(2.84)

7This is not the most general possible form for Kähler potentials that both exhibit no-scale
structure and allow for sequestering, although it suffices for our discussion of the simplest string
models. More general forms have been studied in e.g. [189].
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where fvis and ghid are unspecified (but suitably analytic) functions of their

respective field content. As the two sectors are sequestered from each other, the

superpotential is expected to take the form

W = Wvis(Xi) +Whid(Tj). (2.85)

To illustrate how sequestering appears in the low energy effective theory, it is

beneficial to show a brief example. Here, we assume for simplicity that each sector

contains only a single field, i.e. Wvis ≡ Wvis(X) and Whid ≡ Whid(T ), but our

arguments easily generalize to larger visible and/or hidden sectors. Furthermore,

we assume here that any visible sector VEVs are negligible compared to those of

the hidden sector, and that the visible sector function takes the canonical form

fvis ≡ αXX (2.86)

while we keep ghid(T, T ) arbitrary. Since we demand the visible sector VEVs to

be small (or absent) in comparison to the hidden sector VEVs, this motivates the

perturbative expansion of Eq. (2.84):

K ' −3 log
[
ghid(T, T )

]
− 3fvis(X,X)

ghid(T, T )
. (2.87)
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The components of the Kähler metric for this example are given by

KXX = 3
α

ghid

(2.88)

KXT = −3
α ∂Tghid

g2
hid

X (2.89)

KTT = 3
ghid + 2αXX

g3
hid

∂Tghid ∂Tghid − 3
ghid + αXX

g2
hid

∂T∂Tghid (2.90)

where under our assumptions, the metric becomes diagonal once the fields take

on their VEVs. Making the Kähler transformation

G ≡ K + logW + logW †, (2.91)

the visible scalar mass matrix has the diagonal elements [190]

m2
XX

= 〈eG
[
∇XGµ∇XG

µ −RXXµνG
µGν +KXX

]
〉. (2.92)

We note in our current example, any contributions to this mass matrix from

non-Hermitian terms vanish in the VEV so that m2
XX = m2

XX
= 0. Thus, in

this example Eq. (2.92) gives the classical value of the squared soft mass. Upon

evaluating these quantities in their respective VEVs, we obtain the result

m2
XX

=
3α eG

ghid

[
1−
|∂Tghid|2

(
|∂Tghid|2 + g2

hid
|∂TW |2
9|W |2 − ghid

(
∂Tghid

∂TW
3|W | + h.c.

))
(|∂Tghid|2 − ghid ∂T∂Tghid)2

]
(2.93)

where the VEVs of Whid and ghid are implied. Without specification for ghid, we
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expect that for generic values of the VEVs, the quantity inside brackets should

be roughly O(0 − 1). As a crude estimation of the gravitationally-mediated

contributions to the scalar mass (which we have assumed to be dominant), we

expect that

m2
XX

. O

(
m2

3/2

〈ghid〉

)
. (2.94)

The magnitude of the squared soft mass then depends crucially on the details

of the hidden sector, which may result in a large suppression depending on its

precise form. If the hidden sector has the form ghid = T +T and is absent from the

superpotential (as in the case of a Calabi-Yau volume which can be well-described

by a single Kähler modulus, which takes on the role of the hidden sector and

appears only non-perturbatively in the superpotential) then the term in brackets

vanishes. In this case, the scalar masses vanish at tree-level - reproducing the

result of [124]. In a similar way, the gaugino masses in gravity mediation can be

computed, which are effectively suppressed by the VEV of ghid. Of course, one

might then generically expect anomaly-mediated contributions [191, 192] to the

soft masses to take precedent.

The structure of soft terms in sequestered string models has been studied

extensively [193, 194, 195, 189, 196, 197, 184, 198, 199, 185, 200, 201, 202, 203,

204, 182, 205, 4], and given the plethora of models it is difficult to state any

general conclusions as to the pattern of the soft terms. In the context of LVS

models, it was shown in [185] that, neglecting uplifting effects, both the leading

gravitational and anomaly mediated terms cancel resulting in soft terms arising
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from subdominant (suppressed by a factor of m2
string/m

2
P ) gravitationally mediated

contributions. Depending on the level of sequestering, this can yield either

a natural or split SUSY spectrum, referred to as the “ultralocal” and “local”

scenarios, respectively. Sensitivity to various uplifting mechanisms in this setting

was then studied in [4], which found that, depending on the uplifting mechanism

considered, the contributions to the soft terms may be dominant or very mild

(and potentially even vanish). Additionally, different uplifting mechanisms were

found to predict either universal or non-universal scalar masses in the ultralocal

scenario. Furthermore, one might argue that large radiative corrections - which

are no longer protected against by supersymmetry - can pull the soft terms to

order of the gravitino mass, leading to desequestering. It is, however, possible

that this is not necessarily the case in string models. In the context of LVS,

[4] argued that due to couplings which are Planck-suppressed, loop corrections

may be hierarchically smaller than the classical value. It was also argued in

[206, 207] that many physically-separated setups can become desequestered once

the backreaction on the geometry is taken into account, however it was argued in

[121] that - at least for fields confined to D3-branes - such a deformation retains its

sequestered form as the solutions remain in the same pseudo-BPS class. Whether

or not sequestering is truly viable and generic in string theory remains an open

question, although its model-dependent realizations provide rather compelling

phenomenology.
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2.5 The cosmological moduli problem

We are finally ready to discuss the underlying motivation for the bulk of this work.

Given the large number of moduli expected to arise in the 4d theory from string

compactifications, it is important to study also their cosmological effects. Major

issues related to gravitationally-coupled scalars were first discussed by Coughlan

et al. [208] in the context of the supergravity Polonyi superpotential. In this

seminal work, it was found that strong thermal corrections to the scalar potential

displaced the scalar field far from its true minima - but once the temperature falls

below the characteristic scale, the scalar “rolls down the potential” towards its

true (T = 0) minimum. This intriguing behavior leads to cosmological disasters

- not only was the scalar field likely to interfere with Big Bang Nucleosynthesis

(BBN), but the energy density stored in the scalar field is converted to entropy

upon its decay, diluting the baryon-to-photon ratio by an astounding 15 orders of

magnitude. This issue, certainly in the context of supergravity models, has been

historically coined the “Polonyi problem.”

This is very similar to the case of string moduli - during inflation, light moduli

are expected to be given large Hubble-induced masses and so are generically

displaced far from their true minima [209, 210, 211]. As originally found by

Banks et al. [212] in the supergravity context and de Carlos et al. [213] in

the string context, if the moduli are lighter than around 10 − 30 TeV they

decay during BBN while moduli heavier than this (rough) bound may favor low-

temperature baryogenesis - with modulus decay possibly even sourcing the baryon
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asymmetry. The massive entropy production from modulus decay is, however,

likely incompatible with baryogenesis scenarios which occur at high temperatures

- with the possible exception of Affleck-Dine baryogenesis [214, 209, 215, 216, 217]

which, due to a high efficiency of producing baryon asymmetry, may actually benefit

from such large entropy production [218]. However, this has prompted new models

of baryogenesis which are induced by modulus decay [219, 220, 221, 222, 223, 224].

To make matters worse, it was realized [225, 226, 227, 228, 229, 230] that if the

gravitino was an accessible decay of the modulus, BBN considerations from the

cascade decay would push the modulus mass to yet larger values. Further yet,

the production of dark matter from moduli decay was studied in [231, 232, 233,

234, 235, 236, 237] and found that the produced relic abundance can be satisfied

but may also be highly oversaturated depending crucially on the properties of the

modulus and the dark matter. As yet one more potentially problematic effect, if

moduli are stabilized in a non-supersymmetric fashion (such as in LVS) the shift

symmetry of light ALPs may be preserved, leading to substantial dark radiation

production from modulus decay [238, 239, 240, 216, 241, 242, 243, 244, 245, 10].

The “cosmological moduli problem” (CMP) - as a moduli-specific version of the

original Polonyi problem - then effectively consists of the following parts:

• massive entropy dilution may interfere with BBN if light moduli decay too

late,

• if all light moduli decay earlier than BBN, they may still overproduce

gravitinos which also may interfere with BBN,
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• high-temperature baryogenesis scenarios may be incompatible due to massive

entropy production,

• moduli decay may overproduce dark matter, and

• moduli decay may overproduce dark radiation.

Thus, the major aim in this work is to consider the cosmological effects of a light

modulus with a natural SUSY spectrum to study the requirements of the modulus

to lead to a viable cosmology. Additionally, we will see that matters become even

more interesting if one incorporates a supersymmetric DFSZ axion into the model

(which allows for a lower Peccei-Quinn scale than the closed string axions from

string theory), providing a viable solution to the strong-CP problem.
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Chapter 3

The PQMSSM - a brief review

In the next few chapters, we shift focus to the vantage point of supersymmetric

models to provide a detailed description of the late-time cosmology before returning

to an explicit string realization in Ch. (7). We begin by providing a brief review of

the structure of the PQMSSM and previous work done on studying its cosmology

in a standard thermal history. We will also briefly review some key results from

the perspective of the string landscape, followed by an investigation of statistical

predictions from two solutions of the SUSY µ-problem in the context of the

string landscape. This chapter thus serves to describe the underlying model

which will incorporate a light modulus in the next chapter, and also provide

some background description in the standard thermal history of the universe

which changes drastically once a modulus is incorporated.1 The cosmological and

phenomenological consequences due to the addition of a post-inflationary light

modulus will then be described in the upcoming chapters.

3.1 Structure of the PQMSSM

In this section, we first provide a brief review of radiative natural supersymmetry

(RNS) which will serve as our benchmark SUSY model for the following work.

We then provide a review of the Giudice-Masiero solution [246] to the SUSY

1Of course, a standard thermal history such as in ΛCDM occurs if the lightest modulus
decays at or above the inflationary scale. This is the case if the lightest modulus is the inflaton,
such as in the model of Sec. (7.3.4).
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µ-problem, which will figure prominently into our later work. Following this, we

discuss the supersymmetric DFSZ axion and the Kim-Nilles solution [247] to the

SUSY µ-problem, which is a highly motivated alternative to the Giudice-Masiero

solution. We will also provide a few comments on the axion quality problem.

3.1.1 Radiative Natural Supersymmetry

Although the MSSM is specified by the simple superpotential [1]

WMSSM = µĤuĤd +
∑
i,j=1,3

[
λiju Q̂iĤuÛ

c
j + λijd Q̂iĤdD̂

c
j + λije L̂iĤdÊ

c
j

]
(3.1)

and supplemented by the set of soft SUSY breaking terms listed in [1], the

parameter space is far too large to be explored without imposing motivated

constraints. Indeed, before any constraints are imposed the MSSM contains

around 200 free parameters [1]. Grand Unified Theories (GUTs) based on the

incorporation of the MSSM into supergravity frameworks substantially reduces

this set (the mSUGRA model [248] is specified by only 5 free parameters [1] -

truly a substantial reduction!). Each of these GUTs then predicts the MSSM as

its low energy realization, however the phenomenology of the low energy theory

varies widely.

In this work, we focus on the framework dubbed “radiative natural supersym-

metry” (RNS) which can be incorporated into GUT models with non-universal

Higgs masses [249, 250]. RNS is characterized by a mass spectra featuring light

(∼ 100 − 300 TeV) higgsino-like neutralinos and charginos, gluinos and third-
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generation scalars around the TeV scale, and first and second generation scalars at

the multi-TeV scale [250]. Another key feature is that a 125 GeV Higgs boson can

be generated with very little fine-tuning (specifically, an electroweak fine-tuning

measure ∆EW ∼ 1− 30 [250]), which is hardly a universal feature of GUT models

featuring weak scale supersymmetry [249]. The motivation for RNS arises from

the electroweak symmetry breaking (EWSB) condition which reads [249, 251]

m2
Z

2
=
m2
Hd

+ Σd
d −

(
m2
Hu

+ Σu
u

)
tan2 β

tan2 β − 1
− µ2 ' −m2

Hu − Σu
u − µ2 (3.2)

where tan β ≡ vu/vd, µ is the SUSY µ parameter, mHd and mHu are the (non-

universal) Higgs soft masses, and Σu
u and Σd

d contain an assortment of radiative

corrections. As explained in [250], the electroweak fine-tuning measure ∆EW is

defined as

∆EW ≡
|max RHS contribution|

m2
Z/2

(3.3)

since - in the absence of fine-tuning - one expects that all terms involved in EWSB

are roughly the same order as m2
Z/2. The measure is particularly sensitive to the

radiative corrections appearing in Σu
u, which are dominated by contributions from

the top squarks [249] and takes the form [250]:

Σu
u(t̃1,2) =

3

16π2
F (m2

t̃1,2
)

[
f 2
t − g2

Z ∓
f 2
t A

2
t − 8g2

Z(1
4
− 2

3
xW )∆t

m2
t̃2
−m2

t̃1

]
(3.4)

where ft is the top quark Yukawa coupling, xW ≡ sin2 θW , and ∆t ≡ (m2
t̃L
−

m2
t̃R

)/2 +m2
Z cos 2β(1

4
− 2

3
xW ). For a large value of the trilinear coupling |At|, the
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top squark mass splitting becomes larger [1] - however the term in brackets in

Eq. (3.4) exhibits a cancellation for the t̃1 contribution. Additionally, the large

splitting also leads to a suppression of the F (m2
t̃2

) term in the t̃2 contribution [250]

- so that the dominant contributions to Σu
u are now highly suppressed. A large

negative value of the trilinear At then also raises the value of mh [252] towards the

observed 125 GeV [24, 23] value while the fine-tuning measure ∆EW can remain

small. Another defining feature of RNS is that the running of the soft mass m2
Hu

is

driven radiatively to small negative values of order ∼ −m2
Z which triggers EWSB

[249]. Although the GUT scale value of m2
Hu

may be at the TeV scale, the weak

scale value is thus driven to the right order of magnitude to achieve the observed

Higgs mass without a large degree of fine-tuning, as quantified by ∆EW. RNS can

be easily incorporated into models with non-universal Higgses at the GUT scale

[249] - in this work we focus mostly on the 2- and 3- extra parameter (NUHM2

and NUHM3, respectively) models as our GUT scale models.

Although the LHC Run 2 constraints seem to require a gluino mass mg̃ & 2.2

TeV [34, 35] and a top squark mass mt̃1
& 1.2 TeV [37, 36, 38], such seemingly

large masses can be accommodated in RNS without requiring fine-tuning, and

may be in reach of the HL-LHC [253, 254]. Due to the expected multi-TeV first

and second generation scalars (which are highly subdominant contributions to

Σu
u [249]), RNS also provides a natural solution to the SUSY flavor and SUSY

CP problems [255, 256, 257, 258]. As we will discuss shortly, RNS can also

naturally be combined with the DFSZ axion as the Kim-Nilles solution to the

SUSY µ-problem can generate a µ term with a value roughly the order of the
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weak scale (µ ∼ 100− 350 GeV) [5, 2, 259]. In these classes of models one expects

multi-component dark matter consisting of LSPs and axions, and while higgsino-

like neutralinos tend to be underproduced (i.e. produce only a fraction of the

observed relic density Ωh2 = 0.120± 0.001 [11]), axions can easily constitute the

remaining relic density [260, 261, 262]. For the purposes of this work we thus refer

to RNS combined with a (supersymmetric) DFSZ axion as the PQMSSM, which

provides a natural solution to the gauge hierarchy problem and the strong-CP

problem.

Many previous works [263, 251, 264, 265, 138, 266, 267, 254, 268] have also

studied RNS in the context of the string landscape. Based on arguments from

Douglas and others [133, 131, 269], one naively expects a distribution of the soft

SUSY breaking scale msoft to follow a vacua distribution like

dNvac ∼ fSUSY(msoft) · fEWSB(msoft) · dmsoft (3.5)

where fSUSY ∼ m2nF+nD−1
soft with nF (nD) the number of F -term (D-term) SUSY

breaking fields. For non-perturbative sources of SUSY breaking however, it was

argued by Dine et al. [270, 271] that one would not expect any favored SUSY

breaking scale - leading to instead an expectation that fSUSY ∼ m−1
soft. Both of

these characteristics were found explicitly in [272] in realistic string models, which

found that KKLT models with D3-brane uplifting suggest fSUSY ∼ m1
soft while LVS

(which, as we have discussed in Sec. (2.3.3) breaks SUSY in the AdS vacua, with

uplifting effects contributing only at subleading orders [4]) found fSUSY ∼ m−1
soft.

67



However, later work utilizing the nilpotent goldstino formalism [273] to model

the D3-brane uplift found instead both KKLT and LVS are tilted towards lower

values and stress the sensitivity of results on the details of the uplifting sector. In

any case, with RNS assuming a mild statistical draw towards larger soft terms

fSUSY ∼ m1
soft while also imposing the anthropic constraint based on arguments by

Agrawal, Barr, Donoghue, and Seckel [274, 275] puts strong statistical preference

on the observed value of the Higgs mass in addition to pulling most sparticle

masses above LHC limits [138, 251, 276, 277]. However, a statistical pull towards

lower soft terms fSUSY ∼ m−1
soft results in a low Higgs mass mh ∼ 118 GeV with

sparticle distributions peaking well within current LHC bounds [277, 267].

3.1.2 The Giudice-Masiero mechanism

As a precursor to the following work, let us briefly review the Giudice-Masiero

[246] mechanism for generating a µ-term in gravity-mediated models. In gravity-

mediated scenarios, one can write down effective interactions with some hidden

sector which are Planck-suppressed, as even if the visible and hidden sectors

have no direct couplings between them, they both must couple to gravity. If one

prevents the occurrence of the superpotential µ-term with e.g. some postulated

symmetry, an effective µ-term can be generated once the hidden sector field

acquires a VEV.

To see this more clearly, we write the simple model:

K = h†h+H†uHu +H†dHd +
λGM

mP

h†HuHd + h.c. (3.6)

68



and we assume that h, Hu, and Hd are absent in the superpotential2 - however

we make no further assumptions about the superpotential. Setting mP = 1 for

the moment to simplify the calculations, the F -terms can easily be shown to be

Fh = eK/2DhW ' eK/2W
(
h† + λGMH

†
uH
†
d

)
(3.7)

FHu = eK/2DHuW ' eK/2W
(
H†u + λGMh

†Hd

)
(3.8)

FHd = eK/2DHdW ' eK/2W
(
H†d + λGMh

†Hu

)
(3.9)

where DiW is the Kähler covariant derivative of the superpotential in the i-th

field direction. The scalar potential then can be written as

VF '
[
FhFh + FHuFHu + FHdFHd − 3eK |W |2

]
(3.10)

where indices are raised on the F -terms by use of the inverse Kähler metric. By

expanding the F -terms, the scalar potential can also be written as

VF ' eK/m
2
P
|W |2

m4
P

[
h†h− λGM

mP

h†HuHd + h.c.

− 2
λ2

GM

m2
P

h†h
(
H†uHu +H†dHd

)
− 3m2

P

]
(3.11)

where we have explicitly restored the units of mP . Cancellation of the cosmological

2Generically, one should expect h to be present in the superpotential at some level. However,
any couplings in the superpotential which are relevant to the visible sector should be suppressed
by a factor of at least m−1P due to the assumption that the couplings are purely gravitational. Any
contributions to the scalar potential from the superpotential involving hidden sector couplings
should then be suppressed by a factor of at least m−2P , and so we neglect these contributions
here as they do not affect our discussion.
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constant then implies that the VEV of h should be of order 〈h〉 ∼ O(mP ) since

the VEVs of Hu and Hd should be of order of the weak scale (or vanish, in the

case of the charged component of the doublets). Replacing h with its VEV 〈h〉, we

see that the effective µ-terms, µ2H†uHu and µ2H†dHd, and the effective Bµ terms,

BµHuHd + h.c., have been generated in the scalar potential. We then expect that

µ2 ∼ 2λ2
GMe

K/m2
P
|W |2

m4
P

〈h〉2

m2
P

∼ λ2
GM

m4
hid.

m2
P

∼ O
(
m2

3/2

)
(3.12)

Bµ ∼ λGMe
K/m2

P
|W |2

m4
P

〈h〉
mP

∼ λGMm3/2
m2

hid.

mP

∼ O
(
m2

3/2

)
(3.13)

where we take 〈Fh〉 ≡ m2
hid. to be the scale of SUSY breaking.

The Giudice-Masiero mechanism is thus a generic way to lower the µ-parameter

from its tentatively expected GUT-scale or Planck-scale value, in a way that makes

minimal assumptions on the hidden sector besides its existence. However, in

weak-scale supersymmetry, one expects µ to be on order of the weak scale - and

thus seems to require a very light gravitino mass. Of course, more complete

details on the hidden sector than those in our toy model above can significantly

ease the requirement of 〈h〉 ∼ O(mP ). Specifically, as we have seen in Ch. (2),

no-scale models naturally cancel the cosmological constant term, which can reduce

the expected magnitude of 〈Fh〉 ∼ m3/2〈h〉/mP by several orders of magnitude.

This can in principle result in natural values of µ, i.e. µ ∼ O(100 − 400) GeV,

depending on the precise details of the model.

There is, though, one caveat if one considers the scaling of µ throughout

the string landscape. As we saw in the above example, the µ term should
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be proportional to the gravitino mass, even if more realistic models provide a

significant suppression of the 〈h〉/mP factor. The gravitino mass - at least in

string models with flux compactifications [129, 100] - is set predominantly by the

Gukov-Vafa-Witten superpotential W0. Thus, as we have mentioned in Sec. (2.3.1),

the µ parameter should scan in the landscape similar to the soft SUSY breaking

terms. If one assumes that the soft terms (and similarly, µ) take a power law

distribution in the landscape [133, 131, 269], then µ is still expected to be pulled

to large values. However, since the µ parameter has direct impact on the value

of the weak scale in the MSSM, this issue can be tempered if one considers an

anthropic selection which we will explore in Sec. (3.2).

3.1.3 The supersymmetric DFSZ axion and the Kim-Nilles mechanism

The Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion model [56, 57] is a particu-

larly compelling solution to the strong-CP problem - especially given the simplicity

of constructing a supersymmetrized version within the context of the MSSM. In

its original form, a complex scalar, φ, is introduced as a Standard Model singlet.

Two scalar doublets, φu and φd, are also assumed present (which are typically

taken to be the Higgs doublets Hu and Hd), and a global U(1)PQ symmetry is

imposed such that the assigned charges obey Qu +Qd = −2Qφ. PQ charges for

the remaining SM field content then have some freedom in their assignment, so

long as the Yukawa coupling structure [56]

L ⊃ Gu

(
u d

)
L
φu uR +Gd

(
u d

)
L
φd dR + h.c. (3.14)
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is allowed (see e.g. [278] for more discussion on phenomenological consequences

that arise from differing charge assignments). Here, we have written the structure

explicitly for first generation quarks, but the remaining quarks and leptons follow

the same pattern.

In the DFSZ model, the addition of an extra SM singlet allows for the

spontaneous breaking of PQ symmetry to be independent of the breaking of

SU(2)L × U(1)Y , allowing PQ breaking to occur at a scale much larger than the

electroweak scale which was required in the original PQWW axion model. By

demanding that the imposed U(1)PQ symmetry is broken at a high scale fa and

thus φ acquires a large VEV

〈φ〉 = fa/
√

2�
√
v2
u + v2

d, (3.15)

the axion is generated as the pseudo Nambu-Goldstone boson with the key

feature that the axion’s couplings to matter are highly suppressed by a factor

f−1
a � (v2

u + v2
d)
−1/2 compared to the original PQWW model [46, 47, 48, 49]. At

temperatures below the QCD confinement scale T . ΛQCD ∼ 200 MeV, the axion

acquires a small mass from QCD instanton effects [279, 49, 48, 280]:

ma '
mπfπ
fa
∼ 360 µeV ×

(
1011 GeV

fa

)
, (3.16)

which, since it is also suppressed by a factor of f−1
a , is tiny in comparison to the

original PQWW axion which had a predicted mass of mPQWW
a ∼ 100 keV [49].
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Due to the large suppression of its matter couplings and its mass, the DFSZ axion

thus evades e.g. beam-dump and collider experiments that quickly excluded the

original PQ axion. Some of the most promising searches for axions are resonant

microwave cavity experiments such as the Axion Dark Matter Experiment (ADMX)

[281, 282]. These experiments rely on the axion-diphoton coupling gaγγ to convert

axions into microwave photons using strong magnetic fields. Unfortunately, the

supersymmetric DFSZ axion couplings are far below any projected sensitivities of

current or near-future experiments [283] due to the supersymmetric cancellations

in the effective coupling gaγγ similar to those which remedy the gauge hierarchy

problem in the Higgs sector.

Since the MSSM already possesses the required Higgs doublet structure for the

DFSZ model, the simplest supersymmetric extension has a nearly identical setup.

Taking Ŝ to be an SM singlet superfield and assuming the above requirements for

PQ charge assignments, one can write the superpotential term

WDFSZ ∼ λ
Ŝ2

mP

ĤuĤd. (3.17)

The PQ symmetry also forbids the fundamental SUSY µ-term from appearing in

the superpotential, since in the DFSZ model both Higgs fields are charged under

U(1)PQ. Once the scalar component of Ŝ acquires its VEV, the axion superfield

appears as the phase of Ŝ and an effective µ-term is induced:

Wµ ∼ λ
f 2
a

mP

ĤuĤd (3.18)
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where we identify µ ∼ λf 2
a/mP . This is the elegant Kim-Nilles solution [247] to

the SUSY µ-problem. Not only is the same mechanism responsible for solving

both the strong-CP problem and the SUSY µ-problem, but now the µ-term is

related to the intermediate PQ scale which motivates a natural little hierarchy in

the MSSM [284].

The remaining terms in the MSSM superpotential (following the conventions

of [1]) are given by Eq. (3.1), which we demand to be unchanged by the addition

of PQ symmetry. The PQ charge assignments must then reflect this. Assigning

a PQ charge QŜ ≡ 1 to the PQ field Ŝ so that the PQ charges of the two

Higgs fields obey QĤu
+QĤd

= −2, we see that the PQ charge assignments for

the remaining quark and lepton superfields are highly restricted. Indeed, the

choice QĤu
= QĤd

= −1 then dictates that QQ̂ + QÛ = QQ̂ + QD̂ = 1 so that

QÛ = QD̂, while we also have QL̂ + QÊ = 1. Any additional interactions with

Ŝ in the superpotential - depending on PQ charge assignments - then can only

possibly arise through dangerous baryon or lepton number violating operators

such as λ
′′

ijkm
−1
P ŜÛ c

i D̂
c
jD̂

c
k (if left unforbidden by e.g. imposing R-parity) or else

appear as highly suppressed corrections (proportional to m−nP ) in the effective

theory. Similarly, any interactions with the PQ field Ŝ appearing in the Kähler

potential are likewise highly suppressed by higher powers of m−nP - the lowest

power operators being of the form e.g. K ⊃ λ
m2
P
Ŝ†ŜĤ†uĤu. However, this only

affects the PQ scalar potential via supergravity interactions DIW ⊃ m−2
P W , and

thus provide only very small corrections to the global SUSY limit.

Once the PQ symmetry is broken and the superfield Ŝ is integrated out, the
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(supersymmetric) axion appears as the phase field of Ŝ. Interactions in the SUSY

DFSZ model are then specified by the Lagrangian [285]

LDFSZ =

∫
d2θ

(
1 +Bθ2

)
µ exp

(
cHÂ/vPQ

)
ĤuĤd (3.19)

where (1 +Bθ2) is a SUSY breaking spurion superfield, −cH ≡ QĤu
+QĤd

, and

vPQ = fa/
√

2. We have also introduced the axion superfield

Â ≡ 1√
2

(s+ ia) +
√

2θã+ θ2FA (3.20)

where a is the axion and s is its supersymmetric scalar partner, the saxion, and

the fermionic component ã is the axino. The decay rates for the saxion and axino

are then primarily produced by the mixing induced by this interaction [285]. It is

worth noting that in the DFSZ model, PQ breaking must happen before or during

inflation if the U(1)PQ symmetry is exact. Otherwise, stable topological defects

known as domain walls are present which are highly constrained [286].

Let us briefly comment on some of the features of the saxion and the axino.

The saxion is expected to gain a mass through e.g. gravitationally-mediated

contributions [287] so that one would expect its mass to be roughly of order of the

soft SUSY breaking terms, while the axion is protected against these contributions

from its characteristic shift symmetry A → A + iα [112]. However, the axino

mass is much more model-dependent, potentially being as large as the saxion or

substantially lighter depending on the model details [288, 289, 290]. If the axino
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is sufficiently light (i.e. lighter than the LSP expected from the MSSM alone),

it can take on the role as a viable dark matter candidate. Axino dark matter

has been studied in [291, 292, 293, 294, 295, 296, 297, 298, 299]. It is generally

found that the axino must have a mass mã . O(10 GeV) to be a viable dark

matter candidate - heavier axinos tend to be overproduced. Conversely, if the

axino mass is too light it may behave as warm or hot dark matter which are

highly constrained by CMB measurements [291, 292, 295]. The saxion and axion

(in a similar fashion to the modulus) may also be produced from a cosmological

phenomenon unique to scalars - coherent oscillations. The coherently oscillating

saxion and axion are produced non-thermally and have the equation-of-state of a

cold matter distribution, which makes the (stable) axion a highly motivated dark

matter candidate. However, as the (unstable) saxion is expected to be of order

of the soft terms ∼ O(1 TeV), its decay will produce a large amount of entropy

[286], which dilutes previously existing relics. This was studied in the context

of the supersymmetric DFSZ axion in [285, 300] where it was found that large

fa & 1014 GeV can significantly dilute any relic gravitinos or neutralinos, while

fa . 1012 GeV has a rather minimal effect on any thermal population. Thus, some

scenarios that are thermally-excluded may have significantly eased constraints in

this non-thermal cosmology, depending on the details of the PQ sector.

The PQMSSM conventionally predicts an admixture of axion and weakly-

interacting massive particle (WIMP) dark matter, where the role of the WIMP

is played by a higgsino-like neutralino (assuming the MSSM is of RNS type)

[285, 301, 302, 300, 284, 260, 261]. Indeed, the PQMSSM can also saturate
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the observed dark matter relic density [285, 301, 261], which is measured to be

Ωh2 = 0.120± 0.001 [11], and produce ultra-relativistic axions (which behave as

hot dark matter or dark radiation) at a level consistent with CMB observations

without fine-tuning [302, 300] (see also [303] for similar results with a wino-like

neutralino playing the role of the WIMP). Within the context of the string

landscape, it was found in [139] that by assuming a mild statistical draw towards

large soft SUSY breaking terms, the PQ VEV was pulled to large values as well -

unless additional requirements were imposed on the soft SUSY breaking terms

responsible for the PQ VEVs. A pull towards large VEVs - and thus a high PQ

scale fa - was found to typically result in overproduction of both the axion and

neutralino dark matter. This eliminates a potential solution [304, 305] of the

dark matter overproduction problem for large fa wherein a “tuning” of the axion

misalignment angle θi can occur in the landscape due to anthropic arguments - if

too much dark matter is present, galaxies would collapse on themselves and thus

no observers would exist. However, since the WIMPs are overproduced regardless

of θi this anthropic argument is unlikely to work here - it was found in [139] that

we would likely see far more dark matter given the statistical pull towards large

fa. If the soft terms responsible for the PQ VEV are constrained however, the

PQ scale naturally settles to the sweet spot of fa ∼ 1011 − 1013 GeV [139].

3.1.4 The axion quality problem

As we have remarked in the previous section, the U(1)PQ symmetry of the DFSZ

axion disallows other operators at the m−1
P level from appearing in the super-
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potential or Kähler potential. However, in supergravity one generically expects

higher dimensional operators which are compatible with the symmetries of the

SM but break the global PQ symmetry. This is not unique to the supersymmetric

DFSZ model, but rather a general expectation of all axion models regardless of

the UV completion. Since global symmetries are not expected to survive any

inclusion of quantum gravity (even at the classical level, black hole evaporation

can destroy global quantum numbers), global-symmetry-violating operators which

are gravitationally induced are expected to appear [306, 307, 308, 309, 310, 311].

Naively, one might expect that this has little relevance to the axion solution to the

strong-CP problem - all additional operators are expected to be Planck-suppressed,

while the leading operators are renormalizable. The work of Kamionkowski and

March-Russell [307], Barr and Seckel [312], and Holman et al. [308] however

showed that for a viable solution to the strong-CP problem, these operators must

be suppressed to a level of at least V ∼ φ12/m8
P . Thus, the PQ symmetry must

be extremely high quality in order to provide a solution to the strong-CP problem.

One particularly compelling solution to this “axion quality problem” or “gravity

spoliation problem” is the use of discrete symmetries, which appear in the low-

energy theory as an approximate global U(1)PQ symmetry. However, in the

SUSY DFSZ axion case this symmetry must be sufficiently strong to forbid any

PQ-violating terms up to m−8
P , forbid the SUSY µ-term, and (preferably) forbid

dangerous dimension-5 proton decay operators Q̂iQ̂jQ̂kL̂l and Û c
i Û

c
j D̂

c
kÊ

c
l from

appearing in the superpotential. As discussed in [2], this is elegantly accomplished

if the PQ symmetry breaking is tied to SUSY breaking. These models introduce
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multiple PQ fields X̂ and Ŷ which obey a discrete symmetry (which appears as

a U(1)PQ symmetry for all non-Planck-suppressed operators) and the axion is

then a composite of these fields once they acquire a VEV [313]. Incorporating

soft SUSY breaking terms into this model then generates a potential which gives

the scalar X and Y fields VEVs at an intermediate scale vX,Y ∼ O(1010 − 1012)

GeV [261]. Most notably, the gravity-safe PQ (GSPQ) model detailed in [2] is

based on a ZR
24 symmetry which was shown by Lee et al. [314] to be anomaly-free.

The GSPQ model also forbids additional PQ-violating operators to order m−8
P

- in accordance with the bounds from [307, 312, 308]. Although the remainder

of this work will focus on the GSPQ model, many other models postulating

discrete symmetries to solve the axion quality problem have been studied in e.g.

[315, 316, 317, 318, 319, 320, 321, 314, 322, 323].

3.2 Distribution of µ and fa from the landscape

Given the two aforementioned solutions to the SUSY µ-problem, we now investigate

how these solutions scan in the landscape. Here, we assume a fertile patch of

the multiverse so that the MSSM is the low energy effective theory. Based on

arguments given in [133, 131, 269], we assume a power-law distribution of soft

terms, i.e.

fSUSY ∼ mn
soft (3.21)

where n = 2nF + nD − 1. In this section, we focus on the case where nF = 1 and

nD = 0, and thus we naively expect a linear draw to large soft terms and thus
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a high scale of SUSY breaking. However, from the perspective of the landscape,

many of these vacua would lead to pocket universes which are incapable of

producing larger structures - and thus observers. Namely, large soft terms tend

to cause the Higgs potential to have charge-or-color breaking minima (CCB) or

no electroweak symmetry breaking (EWSB). Even if the Higgs potential has a

possibly viable minima, the magnitude of the soft terms has direct consequence

for the expected value of the weak scale. Given the SUSY EWSB conditions

which we write here with the specification that mPU
Z is the Z-boson mass set by

these conditions in some pocket universe,

(
mPU
Z

)2

2
=
m2
Hd

+ Σd
d −

(
m2
Hu

+ Σu
u

)
tan2 β

tan2 β − 1
− µ2 (3.22)

' −m2
Hu − Σu

u(t̃1,2)− µ2, (3.23)

one would generically expect the mass of the Z-boson, and hence the magnitude

of the weak scale, to be roughly of order of the largest term on the right-hand

side of Eq. (3.22). Taking into consideration the results from calculations which

investigate the dependence of nuclei on the weak scale, we adopt the Agrawal,

Barr, Donoghue, and Seckel (ABDS) window [274, 275] which suggest that the

weak scale should be no more than a factor of (2− 5) greater than our observed

value - otherwise the mass ratio between protons and neutrons would lie outside

the range required for complex nuclei to be stable, and thus any observers would

be unlikely to exist.

From these assumptions and arguments, it is clear that understanding any
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predictions of µ from the landscape is an important endeavor - it plays a direct

role in determining the weak scale. Once the anthropic considerations are applied,

the statistical distribution of µ then gives predictions for the Higgs mass and

sparticle masses, and in the case of the Kim-Nilles mechanism, gives predictions

on the PQ scale, fa.

3.2.1 Distribution of µ and fa in the GSPQ model

Of course, the PQ models we are interested in should be gravity-safe - i.e. in

order to solve the strong-CP problem, it should not suffer from a quality problem

induced by effective operators from the UV. As discussed in Sec. (3.1.4), gravity-

safe models may be based on discrete symmetries. Namely, here we consider a

discrete R-symmetry ZR
24 which was found to be anomaly-free [314] and forbid

any potentially dangerous terms such as those inducing proton decay [2]. The low

energy limit then looks like an approximate U(1)PQ symmetry, with the axion

multiplet given by the phases of two PQ superfields X̂ and Ŷ once the scalar

components acquire their VEVs. Here, we consider as a model the gravity-safe

PQ (GSPQ) model which we alluded to in Sec. (3.1.4) and is detailed in [2]. The

GSPQ model includes the superpotential terms

W ⊃ λµ
mP

X̂2ĤuĤd +
f

mP

X̂3Ŷ (3.24)
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from which we recover the SUSY µ term from the VEV of X:

µ ≡ λµ
mP

v2
X . (3.25)

We augment the superpotential with the following soft SUSY breaking terms

Lsoft ⊃ m2
X |φX |2 +m2

Y |φY |2 +

(
fAf
mP

φ3
XφY + h.c.

)
(3.26)

where Af is the trilinear coupling in the PQ sector that breaks the ZR
24 symmetry

(thus also breaking the approximate U(1)PQ symmetry) once SUSY is broken.

The scalar potential is now straightforward to compute. The terms relevant

to us are

V ⊃
∣∣∣∣ 3f

mP

φ2
XφY

∣∣∣∣2 +

∣∣∣∣ fmP

φ3
X

∣∣∣∣2
+m2

X |φX |
2 +m2

Y |φY |
2 +

(
fAf
mP

φ3
XφY + h.c.

)
. (3.27)

We now consider the minimization conditions to find the φX and φY VEVs.

Assuming for simplicity that the couplings, f and Af , and VEVs, vX and vY , are

real, the minimization conditions listed in [284] are given by

0 ' 9
f 2

m2
P

v4
XvY +

fAf
mP

v3
X +m2

Y vY (3.28)

0 ' 3
f 2

m2
P

v5
X + 18

f 2

m2
P

v3
Xv

2
Y + 3

fAf
mP

v2
XvY +m2

XvX (3.29)
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where throughout we have neglected the contributions from the Higgs VEVs -

which are highly subleading in comparison. It is a simple matter to show that,

assuming mX = mY ≡ m0, these minimization conditions are only non-trivial if

|Af | ≥
√

12m0. We must therefore require this condition to be satisfied in order

to achieve successful PQ breaking. Additionally, it is worth mentioning that,

although the dependence is highly non-trivial, increasing the magnitude of |Af |

increases the magnitude of the VEVs, vX and vY .

For the parameter choice mX = mY = 10 TeV, f = 1, and Af = −35.5

TeV, the solution to the minimization conditions gives vX ' 1011 GeV and

vY ' 5.8× 1010 GeV, which give a PQ scale of fa =
√
v2
X + 9v2

Y ' 2× 1011 GeV.

The µ-term then gets a value of µ = λµv
2
X/mP ' 417 GeV for λµ = 0.1. Thus, a

value of µ close to the weak scale can clearly be achieved with minimal tuning and

without imposing anthropic arguments, whereas the Giudice-Masiero mechanism

may require additional model-building, tuning, or anthropic tempering in order

to achieve a µ-term far below the SUSY breaking scale.

To study the low energy behavior in the landscape, we take the two-extra-

parameter non-universal Higgs SUSY model NUHM2 [324, 325, 326, 327, 328, 329]

as our GUT-scale model. In this model, all generations of matter scalars have

unified soft masses, m0(1, 2, 3) ≡ m0, while the two soft Higgs masses, mHu and

mHd , are independent and may be exchanged instead for weak scale values of µ

and mA. The parameter space for this model then may be entirely specified by

m0, m1/2, A0, tan β, µ, mA (3.30)
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where µ and mA are taken at their weak scale values, and all other parameters

are taken at the GUT scale. As we have discussed previously, we focus on an

independent n = 1 draw for the soft terms within the following limits

m0 : 0.1− 20 TeV (3.31)

m1/2 : 0.5− 5 TeV (3.32)

−A0 : 0− 50 TeV (3.33)

mA : 0.3− 10 TeV (3.34)

tan β : 3− 60 (uniform distribution) (3.35)

where we adopt a uniform distribution for tan β ≡ vu/vd since it is not a soft

term and thus should not have a favored magnitude in the landscape [138]. Here,

the upper bounds of this range are set by our anthropic considerations - values

close to any of the upper bound lead to either non-standard minima, no EWSB,

or a weak scale much larger than the ABDS limit [276]. Lower bounds for this

range are motivated by the current LHC search limits [276]. The soft masses

in the PQ sector are then taken to be mX = mY = m0, while we take the

coupling f = 1. Finally, as we have previously mentioned, we require the soft

term |Af | ≥
√

12m0 for successful PQ breaking. We therefore consider the soft

term Af to be correlated but not equal to A0, so that Af = 2.5A0. This is an

effective requirement since, for large |A0|, the vacua is a CCB minima due to

tachyonic top squark soft-squared masses, which implies that if we were to take

equality of Af and A0, having successful EW symmetry breaking likely leads to
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unsuccessful PQ breaking and vice-versa.

Our procedure here is as follows. For each draw of soft terms in Eqs. (3.31-

3.35), we numerically solve the minimization conditions in Eqs.(3.28-3.29) for the

smallest non-trivial VEVs, vX and vY . Using these results, we then calculate

a value for µ for a specified value of λµ, which gives us the full set of input

parameters in Eq. (3.30) required by NUHM2. We then use Isajet 7.88 [330] to

calculate the SUSY spectrum at the weak scale. Finally, we must impose our

anthropic considerations to either accept or veto each point. By adopting the

atomic principle advocated by Agrawal et al. [275], we require a weak scale in

each pocket universe to be within a factor of 4 from the value measured in our

universe - i.e. mPU
Z < 4mOU

Z . This corresponds to the condition

∆EW < 30 (3.36)

for the ∆EW fine-tuning measure [249, 250], which is calculated in the Isajet codes.

We begin by considering the case where λµ = 0.1. As we have already shown,

this value of the coupling can produce a value of the µ parameter which is close

to the acceptable range for generic values of soft terms, while increasing this to

λµ = 1 far exceeds the constraint mPU
Z < 4mOU

Z ∼ 365 GeV.

In Fig. (3.1), we display scan results in the A0 vs µ plane, with the ratio

mPU
weak/m

OU
weak being given by the appropriate color scale. The plot on the left

shows all standard minima but no restriction on the value of the weak scale, while

the plot on the right has the condition mPU
weak/m

OU
weak < 4 applied. For the region
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Figure 3.1: Results in A0 vs µ plane for n = 1 scan in GSPQ+MSSM
model with λµ = 0.1 and f = 1. The left plot corresponds to all values
of mPU

weak, while the right plot corresponds to mPU
weak < 4mOU

weak. Note
the right plot is a blow-up of the red boxed region in the left plot.
Figure taken from [5].

below the surviving points in the plot on the left, the lower bound here is imposed

by a combination of PQ symmetry breaking requirements (namely the condition

|Af | ≥
√

12m0) and our scan limits. As the magnitude of A0, and thus Af , grows

towards |A0| ∼ 27.7 TeV, there is always a maximal value of m0 within the scan

limits that allows PQ symmetry breaking. Due to this constraint, especially

when combined with our n = 1 statistical draw towards large soft terms, the

region close to A0 ∼ 0 becomes sparsely populated as it is extremely disfavored

by statistics. When the magnitude of A0 grows above |A0| & 27.7 TeV, the PQ

symmetry breaking condition can always be satisfied for any allowed m0, while

any cancellation between Af and m0 in determining the VEVs vX and vY quickly

becomes small. The shape of the lower boundary reflects these points, although

any boundary set from our scan limits is well beyond the ABDS window, as can

be seen in the plot on the right. The region above the surviving points in the
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plot on the left, however, is bounded by non-standard minima, typically CCB

minima in this case. Although there is also a bound above this region from our

lower limits of m0, the bound set by CCB minima is far more stringent here.

The right plot in Fig. (3.1) shows the subset of the scan that obeys our

anthropic considerations, and corresponds to an enlargement of the red boxed

region in the left plot. In the plot on the right, yellow and green points correspond

to points near the upper limit of mPU
weak/m

OU
weak. We see that, in the upper left

corner of these allowed points, the large values of |A0| and µ then predict larger

values of mPU
weak. The blue and purple points which predict a weak scale close to

mOU
weak are then predicted more frequently for smaller values of |A0| and µ. The

dark purple points, which are exceedingly rare in this scan as they require all soft

terms to be small, then correspond to a value µ . O(100 GeV), which is excluded

from LEP2 chargino pair searches [331, 332, 333].

We show the correlation between the soft masses and µ in Fig. (3.2), which

displays the predicted value of µ in the m0 vs m1/2 plane after our anthropic

considerations have been applied. We see that, as m0 increases, a larger value of

µ is predicted. There is also a correlation between large values of m1/2 and large

values of µ, which is primarily due to the statistical draw on both m1/2 and A0.

Here, it becomes clear that the upper bounds for our parameter space limits in

Eqs. (3.31 - 3.35) are well above the maximum values which lead to anthropically

viable vacua.

In the left plot of Fig. (3.3), we show the probability distribution of µ from the

landscape scan. The blue histogram includes all points that have EW symmetry
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Figure 3.2: Predicted value of µ in the m0 vs m1/2 plane for n = 1

landscape scan with mPU
weak/m

Ou
weak < 4 anthropic constraint applied.

Here, f = 1 and λµ = 0.1. Figure taken from [5].

Figure 3.3: Probability distribution of SUSY µ parameter (left) and
PQ scale fa (right). Here, f = 1 and λµ = 0.1. Figure taken from [5].

broken in the appropriate manner, but has no restriction on the predicted value

of the weak scale. We see a very broad peak around µ ∼ 1050 GeV, while larger

values tend to yield CCB minima or are artificially cut off by our scan limits.
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The red histogram then gives the probability distribution once our anthropic

considerations are applied. Here, we see a sharp peak around µ ∼ 200 GeV, while

the full distribution is limited to µ . 365 GeV.

In the right plot of Fig. (3.3), we show the probability distribution of the PQ

scale fa from the landscape scan. Again, the blue histogram includes all points with

appropriate EWSB but no restriction on mPU
weak, while the red histogram includes

only points that meet mPU
weak/m

OU
weak < 4. Before our anthropic considerations are

applied, we find a broad peak around (3− 3.5)× 1011 GeV, while a sharper peak

around 1.4×1011 GeV arises after this constraint is applied. Thus, for anthropically

viable vacua, we find a value of the PQ scale predicted at a “cosmological sweet

spot” where, for models with both axion and higgsino-like WIMP dark matter,

the relic densities of axions and WIMPs are similar and can easily reproduce the

observed DM density [139, 300, 285].

Figure 3.4: Probability distribution of the light Higgs mass mh (left)
and the gluino mass mg̃ (right). Here, f = 1 and λµ = 0.1. Figure
taken from [5].

Moving to the left plot Fig. (3.4), we display probability distributions of the
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light Higgs mass mh. Before the application of our anthropic considerations, the

blue histogram shows a predicted value of mh ∼ 128 GeV. This seemingly low

value (at least compared to what one might expect for statistical pulls towards

large soft terms) is set primarily by a combination of our scan limits along with

the constraint on m0 from demanding PQ symmetry breaking. Once we apply

the mPU
weak/m

OU
weak < 4 requirement, we see from the red histogram that the light

Higgs mass peak is lowered to mh ∼ (124− 125) GeV, which is in good agreement

with current measurements from CMS [334, 335] and ATLAS [336].

To conclude our study for the value λµ = 0.1, we display the probability

distribution for the gluino mass mg̃ in the right plot of Fig. (3.4). We see in

the blue histogram that, before anthropic considerations are applied, the gluino

mass is pulled to the largest possible value, cut off only by our artificial scan

limits. However, the anthropically allowed values displayed by the red curve are

drastically lower, with a peak around mg̃ ∼ 3 TeV. The tail of the curve is also

skewed towards larger values, until the probability vanishes around mg̃ ∼ 5 TeV.

Although the most recent results from CMS exclude gluinos with masses mg̃ . 2.2

TeV [337], this only rules out the leftmost bins - the bulk of the probability

narrowly evades this bound, and may be further explored with upcoming results

from the LHC Run 3 data. Other light sparticle distributions evade LHC search

limits by bigger margins, and thus we do not display these figures in the interest

of brevity.

We now briefly investigate how our results change based on the precise value of

the PQ coupling, λµ. Here, follow the same procedure as before but taking λµ ∈
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Figure 3.5: Distribution of µ after imposing mPU
weak < 4mOU

weak for
λµ = 0.2 (blue), λµ = 0.1 (red), and λµ = 0.05 (green). Figure taken
from [5].

{0.05, 0.1, 0.2}. In Fig. (3.5), we display the resulting probability distributions for

the SUSY µ parameter for each of these couplings. As expected, the peak of the

probability distribution is raised to larger values of µ as λµ increases. We see that

for λµ = 0.05 which is given by the green histogram, the distribution peaks at

around µ ∼ 100 GeV. This peak value is right at the edge of LEP2 constraints,

which require µ & 100 GeV. Thus, we expect λµ . 0.05 to be ruled out from

this constraint - in effect requiring natural values of the coupling λµ. When the

coupling is increased to λµ = 0.2, as shown in the blue histogram in Fig. (3.5), we

see that the distribution peaks at around µ ∼ 250 GeV. Since ATLAS and CMS

have yet to observe the soft dilepton plus jets plus /ET signature from higgsino pair

production [333, 338, 339, 340, 341], this model provides a tentative explanation

- the µ parameter is pulled towards values larger than the µ ∼ 200 GeV limits

expected from this process [342, 343].
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Figure 3.6: Distribution of fa after imposing mPU
weak < 4mOU

weak for
λµ = 0.2 (blue), λµ = 0.1 (red), and λµ = 0.05 (green). Figure taken
from [5].

In Fig. (3.6), we display the resulting probability distributions for the PQ scale

fa after our anthropic considerations are applied. It is an intriguing result that,

regardless of the value of λµ in this plot, the predicted PQ scale is within a fairly

narrow window at the fa ∼ (0.5 − 2.5) × 1011 GeV sweet spot. For λµ = 0.05

shown in the green histogram, we see a comparatively broad distribution which

becomes narrower as λµ increases. This can be understood from the correlation

between the predicted value of µ in this model and the predicted value of fa - if

λµ is too large, our anthropic constraint is violated, limiting the distribution for

a given set of VEVs, vX and vY . The corresponding axion masses predicted in

this scenario are then in the window 144 µeV . ma . 720 µeV. Unfortunately,

in the SUSY DFSZ model, the effective axion-diphoton coupling gaγγ is highly

suppressed due to cancellations in the triangle diagram due to the supersymmetric

contributions [283]. In this mass regime, we expect the coupling to have a value
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of roughly gaγγ ∼ (1− 7)× 10−15 GeV−1 [283] - well below current experimental

limits [344].

3.2.2 Distribution of µ in the Giudice-Masiero model

We now move to distributions of µ as predicted from the Giudice-Masiero model

[246]. As we have discussed in Sec. (3.1.2), the Giudice-Masiero mechanism

assumes that some symmetry forbids the µ-term from appearing in the superpo-

tential. An effective µ term is then generated from integrating out gravitational

interactions with some hidden sector in the low energy theory, which has an

expected magnitude

µ ∼ λGM
m2

hid.

mP

. (3.37)

The µ term is also expected to scan similarly to the soft terms in the string

landscape due to its implicit dependence on the Gukov-Vafa-Witten superpotential

W0.

In this section, we adopt a similar procedure as in the previous section.

In the Giudice-Masiero model, a single hidden sector field is responsible for

SUSY breaking, thus implying that nF = 1, nD = 0. We therefore take an

n = 2nF + nD − 1 = 1 draw on the soft terms within the parameter space limits

given in Eqs. (3.31-3.35) for the same NUHM2 model. We augment this set of

soft terms with an n = 1 draw on µ with

µ : 0− 450 GeV (3.38)
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where our upper bound is set by our anthropic considerations, which are saturated

at µ ∼ 365 GeV. We have also taken λGM = 1. Isajet 7.88 [330] is then used

to calculate the SUSY spectrum at the weak scale, and the same anthropic

requirements are imposed as we have used in the previous section to accept or

reject tenable vacua.

Figure 3.7: Probability distribution for SUSY µ parameter in the
Giudice-Masiero model. Here, λGM = 1. Figure taken from [5].

In Fig. (3.7), we display our results for the probability distribution of the

SUSY µ-parameter in the Giudice-Masiero model. The blue histogram shows

vacua with appropriate EWSB conditions, but no restriction on the magnitude

of the weak scale. As expected from the n = 1 statistical pull, larger values

of µ are favored. However, once our anthropic considerations mPU
weak/m

OU
weak < 4

are imposed, a fairly broad distribution shown in the red histogram emerges

with a slight peak around µ ∼ 250 GeV. This is not surprising since, for larger
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values of µ, the weak scale also gets contributions from large scalar masses which

push the Σu
u terms to larger values thus raising the value of the weak scale. The

resulting probability distributions for the light Higgs mass and gluino mass are

not significantly different from those displayed in the previous section, and hence

we omit them here.
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Chapter 4

The φMSSM and the φPQMSSM - an EFT

approach

In this chapter, we incorporate a light modulus into the PQMSSM framework. We

write down essentially two effective field theories in a single form that parametrize

1. the low energy dynamics of the MSSM, 2. a light modulus that is cosmologically

relevant after inflation, and 3. tentative interactions with a PQ sector assumed to

be of the DFSZ type. We refer to this EFT as either the φPQMSSM or - if the

PQ sector is absent - the φMSSM. This EFT parametrizes the key features for

several models, although additional model-dependent interactions may be present.

We provide comments on the connections and applicability to explicit models,

and introduce cases to parameterize most of the model-dependent interactions

which do not include additional field content. We include detailed computation of

the decay modes of the modulus in App. (A), and here provide only simplified

results and discussion on the decay widths within different UV models. Finally,

we introduce our natural SUSY benchmark point which we adopt for much of the

remainder of this work and provide results for various cases using this benchmark.

This chapter thus provides the underlying framework to parameterize several

explicit string constructions, in addition to providing the relevant decay widths

and branching ratios which will play a key role in the resulting cosmology in

Ch. (5) and Ch. (6).
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4.1 The φMSSM and φPQMSSM models

Our aim in this section is to write down an appropriate EFT that accommodates

all interactions allowed by the symmetries of the MSSM as well as the PQ sector.

Certain models then may require various interaction terms to vanish, or posit

restrictions on e.g. values of the couplings. Additionally, as we have seen in the

previous chapter, for a valid solution to the strong-CP problem, axion quality

is extremely important. We show that our model is highly compatible with the

class of PQ models based on discrete symmetries discussed in Sec. (3.1.3) without

requiring a specific PQ model choice.

In these calculations, we focus on only decay of the scalar component of the

modulus supermultiplet Φ̂, denoted here by
√

2Φ = φ+ ic with φ the modulus and

c the corresponding ALP.1 We also focus only on two-body decay modes which

are dominant, but provide comments and expectations on higher-body decays

and other model-dependent decays. The full calculation of the partial widths is

presented in App. (A) - we discuss only the interaction terms and simplified width

results here.

1We include the factor
√

2 here as we will assume canonically normalized fields in our
global SUSY EFT, which may include e.g. mixing effects with some additional hidden sector
fields. As the geometric moduli in Ch. (2) were all in non-canonical form and arose from
specific constructions, the normalization constant was spurious and thus omitted as further field
redefinitions and rescalings would be required to e.g. compute physical decays.
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Field SU(3)C SU(2)L U(1)Y

L̂ =

(
ν̂eL
êL

)
1 2 −1

Êc 1 1 2

Q̂ =

(
ûL
d̂L

)
3 2 1

3

Û c 3∗ 1 −4
3

D̂c 3∗ 1 2
3

Ĥu =

(
ĥ+
u

ĥ0
u

)
1 2 1

Ĥd =

(
ĥ−d
ĥ0
d

)
1 2∗ −1

Table 4.1: MSSM field content and charge assignments as given in [1].

4.1.1 The superpotential

Here, we construct the superpotential for our effective field theory. To begin, we

take the MSSM superpotential [1] with the superfields from Table (4.1):

WMSSM = λiju Q̂iĤuÛ
c
j + λijd Q̂iĤdD̂

c
j + λije L̂iĤdÊ

c
j +����

µĤuĤd (4.1)

where i, j run over generations and we assume that an effective µ-term is been

generated by either the Giudice-Masiero mechanism [246] or the Kim-Nilles

mechanism [247], but any fundamental µ-term is forbidden by some symmetry. In

the case of the Kim-Nilles mechanism, we assume PQ breaking has already occurred

and that the massive PQ field(s) have been integrated out of the superpotential.

To write the effective theory for two-body decays of Φ, we now consider any

allowed operators in the superpotential. Due to the MSSM charge assignments,
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the only potentially allowed 2-body decay terms in the superpotential are

W ⊃ λ/L Φ̂ εabL̂
aĤb

u (4.2)

and

W ⊃ λHuHd Φ̂ĤuĤd. (4.3)

The first term does not conserve L symmetry, and conventionally it is forbidden

by imposing R-parity - which we adopt here. The second term is effectively a

fundamental µ-term if Φ acquires a VEV, with a dimensionless coupling λHuHd .

However, since we are assuming that any fundamental µ-term in WMSSM is

forbidden by some additional symmetry, this term should also be forbidden.

For the φPQMSSM where the effective µ-term is generated by the Kim-Nilles

mechanism, we can write down the term

W ⊃ λS
m2
P

Φ̂Ŝ2ĤuĤd. (4.4)

Once S acquires its VEV, we see that the effective coupling in Eq. (4.3) should

have a value λHuHd ∼ λSf
2
a/m

2
P . However, in the corresponding Lagrangian this

coupling appears as O(f 4
a/m

4
P ) for the φ→ HuHd decay and O(f 2

a/m
2
P ) for the

φ → ψHuψHd decay. This factor can be comparable to the couplings we will

encounter in the next section for fa & O(109 GeV), although there is one final

subtlety to this term. Depending on how well the shift symmetry of Φ, Φ→ Φ+iα,

is preserved in the low energy theory, this term may be expected to be forbidden or
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highly suppressed at tree-level in an explicit string construction due to holomorphy

restrictions, and thus appears only through loop or non-perturbative effects in

the more fundamental supergravity theory. Thus, even if the factor f 2
a/m

2
P is

comparable to the other decays we encounter, the effective coupling λS may be

extremely suppressed. Additionally, the modulus decay into fermions due to this

term receives chiral suppression - and thus is expected only a small difference in

the total decay width if this term is included and the effective coupling is sizeable.

We thus ignore this decay term as we expect it to be negligible in most string

models.

Any generic, sizeable 2-body modulus decay in the superpotential would thus

require additional fields beyond the MSSM. At the 3-body level, we can take

the MSSM superpotential and simply couple Φ̂ to each term (except, of course,

the µ-term). The resulting interaction terms in the superpotential will then be

suppressed by a factor m−1
P . As before, the decay to scalars will be suppressed

by m−2
P , and the decay to fermions will be suppressed by m−1

P . Additionally,

these decay widths will also receive additional phase space suppression - thus

we expect only the fermion decays can potentially be appreciable at the 3-body

level. However, if the modulus is a geometric modulus with a well-preserved

shift symmetry which is left mostly intact, the effective 3-body terms in the

superpotential will be highly suppressed since they are forbidden at tree-level and

thus might appear only radiatively.

Finally, we note that if the modulus is stabilized in a supersymmetric fashion -
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such as in the KKLT model [3] - we can include a supersymmetric mass term

W ⊃MΦΦ̂2 (4.5)

which parametrizes the supersymmetric contributions to the modulus mass once

the UV physics is integrated out. This will only appear in the F -term interactions

upon integrating out the auxiliary fields, as Fφ ∼MΦΦ. Furthermore, this term

induces model-dependent decays - in LVS [180] MΦ is approximately 0 as the

stabilization of the lightest geometric modulus breaks supersymmetry, leaving

its corresponding ALP nearly massless [239] while the massive modulus can be

parameterized by the inclusion of a soft mass, Lsoft ⊃ 1
2
M2

φφ
2.

4.1.2 The Kähler potential

Here, we construct the Kähler potential for our effective field theory. Noting the

assigned charges in Table (4.1), we can write down the Kähler potential assuming

canonically normalized fields:

Kmatter = Φ̂†Φ̂ + Ĉ†i exp
(
−2gtAV̂A

)
Ĉi +

λCi
mP

Φ̂Ĉ†i exp
(
−2gtAV̂A

)
Ĉi + h.c.

+KGM +KPQ (4.6)

where Ĉi runs over all superfields listed in Table (4.1), Φ̂ is the modulus superfield,

and V̂A are the appropriate gauge potential superfields with g and tA the appro-

priate gauge coupling and generator (respectively) for V̂A. The first two terms in
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Kmatter are simply the kinetic terms for the modulus and the matter fields, e.g.

∂µΦ† ∂µΦ and [DµCi]
† [DµCi] respectively. Since the modulus is an SM singlet,

there is no associated gauge potential coupling (and thus takes the g → 0 limit).

The third term - along with its Hermitian conjugate - in Kmatter are then the

couplings of the modulus to all matter fields of the MSSM. Unless one of the

matter fields Ci acquires a VEV, any coupling of the modulus to a gauge potential

superfield V̂A through this term is a 3-body or higher decay interaction - and

hence the modulus decay width can be well approximated by the simpler form

Φ̂Ĉ†i Ĉi. The only possible exceptions to this in the MSSM are when Ĉi = Ĥu or

Ĉi = Ĥd, which can lead to 2-body decay terms of the modulus once the Higgs

fields acquire VEVs.

We also can write the Giudice-Masiero type operator:

KGM =
λGM

mP

Φ̂Ĥ†uĤ
†
d + h.c. (4.7)

This term can appear if it is not forbidden by additional symmetries such as

PQ symmetry. As discussed in Sec. (3.1.2) and Sec. (3.1.3), KGM and KPQ are

mutually exclusive due to these symmetry considerations, however in the interest

of conciseness we treat both simultaneously here as it allows us to write the two

similar EFTs in one form. We can then set one of these couplings to be 0 in our

later analyses depending on the model under study. If the Giudice-Masiero term

is present (KPQ → 0), we refer to the EFT as the φMSSM.

The matter Kähler potential may also be augmented with the PQ sector KPQ.
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Taking the simplest supersymmetric DFSZ model as discussed in Sec. (3.1.3), we

introduce the new SM singlet field, Ŝ, which carries PQ charge. This of course

forbids the Giudice-Masiero type operator so that λGM = 0 (KGM → 0) - and so

we refer to this EFT as the φPQMSSM. Assuming the modulus itself carries no

PQ charge, KPQ then takes the form

KPQ = Ŝ†Ŝ +
λPQ

mP

Φ̂Ŝ†Ŝ + h.c. (4.8)

containing both the kinetic term for Ŝ and the modulus coupling to Ŝ. Once the

PQ symmetry is broken and Ŝ acquires a VEV, the axion multiplet Â may then

be interpreted as the phase field for fluctuations about 〈S〉 [290] so that:

Ŝ ∼ vPQ exp
(
qÂ/fa

)
(4.9)

where q is the PQ charge and vPQ = 〈S〉. The effective Kähler potential after PQ

breaking is then given by

KPQ = v2
PQ exp

(
q
(
Â† + Â

)
/fa

)(
1 +

λPQ

mP

Φ̂ + h.c.

)
. (4.10)

Expanding the exponential to second order, the terms leading to two-body decay

of the modulus are then given by

KPQ ⊃
1

2

(
Â† + Â

)2
(

1 +
λPQ

mP

Φ̂ + h.c.

)
(4.11)
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where we have performed the field redefinition

Â→ Â′ =
qvPQ

fa
Â (4.12)

to obtain canonical kinetic terms for the axion multiplet. Alternatively, in most of

the simplest PQ models involving only one PQ superfield Ŝ, we may expect that

f 2
a = q2v2

PQ so that this redefinition is trivial. We also note that expanding the

exponential to first order2 induces kinetic mixing between the modulus and the

saxion - we ignore here these kinetic mixing effects which are Planck-suppressed.

Similarly, expanding the exponential to third order as done in [290] leads to the

PQ sector self interactions which we will require to study the cosmology in the

presence of the (unstable) saxions and axinos. This also leads to 3-body decay

terms for the modulus into PQ sector particles which will be suppressed by a

factor of (mPfa)
−1 in addition to receiving phase space suppression.

It is worth noting that global symmetries are expected to be absent in string

theory [345], and thus the existence of a global U(1)PQ symmetry is not expected to

be consistent with the UV theory. In [346], it was argued that one can successfully

construct an approximate global symmetry based on discrete symmetries [347, 348]

which are compatible with string theory. This approximate global symmetry

holds at leading order, while higher order (i.e. terms suppressed by higher powers

of mP ) break the approximate global symmetry and restore the exact discrete

2Specifically, the expansion at first order leads to kinetic mixing effects between Â and Φ̂,
which are of the form λPQqv

2
PQ/(mP fa)(Φ̂Â† + h.c.). While the kinetic mixing may be removed

by a field redefinition, we neglect this effect here since it leads to only a small correction in the
kinetic terms, Φ̂†Φ̂→ (1 + f2a/m

2
P )Φ̂†Φ̂ ∼ Φ̂†Φ̂ as fa & 1012 GeV is highly constrained for this

model.
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symmetry [349]. In Sec. (4.1.3), we will provide an explicit example relating an

axion model based on these discrete symmetries to our simple model above - and

show that our simple model is sufficient to describe the relevant PQ interactions

at our level of approximation.

Finally, in addition to the PQ axions discussed above, moduli stabilization

models where the shift symmetry of Φ̂ is left largely intact - such as LVS-type

stabilization - may also predict moduli decay to closed string axions or ALPs.

These ALPs are the axionic component of a modulus, i.e. the field c for a modulus

T = τ + ic where τ is the geometric modulus and c is, in Type IIb string models,

the reduction of the C4 RR gauge field along the divisor that τ parametrizes.

Modulus decay to closed string axions then arises due to the non-linear field

redefinitions in the effective theory (see e.g. [239]). Since the ALPs in LVS are

typically ultralight and only gravitationally coupled, they behave primarily as

dark radiation and can exclude certain models due to stringent limits on the

effective number of neutrinos from cosmic microwave background radiation (CMB)

measurements [11]. We discuss in Sec. (7.3.1) the explicit form from LVS-type

models, but for our purposes here, we simply parameterize the result in the

Lagrangian with the terms

Lφcc ⊃ −
λALP

mP

φ ∂µc ∂
µc (4.13)

where we take c to be the (massless if relevant) canonical ALP field - i.e. the

component from Φ = φ+ ic. Here, λALP ' 0.816 corresponds to minimal LVS.
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Field L̂ Êc Q̂ Û c D̂c Ĥu Ĥd X̂ Ŷ

ZR
24 9 5 5 5 9 16 12 -1 5

U(1)PQ 1 0 1 0 0 -1 -1 1 -3

Table 4.2: Charge assignments for the GSPQ model under a (funda-
mental) discrete ZR

24 symmetry and the corresponding (approximate)
global PQ symmetry as given in [2].

4.1.3 Connection to GSPQ models

In this section, we provide an explicit example connecting a gravity-safe PQ

(GSPQ) model to our simple PQ model we utilize in Sec. (4.1.2). Following along

the lines of [2], gravity-safe PQ models based on discrete R symmetries ZR
N add

a pair of fields X̂ and Ŷ which are charged under a discrete symmetry which

leads to an approximate global symmetry. The fields X̂ and Ŷ are SM singlets

otherwise. As an explicit example, we consider the superpotential of the GSPQ

model from [2]:

WGSPQ ⊃
f

mP

X̂3Ŷ +
λµ
mP

X̂2ĤuĤd (4.14)

which has the charge assignments given in Table (4.2). It was shown in [2]

that under these charge assignments, the next leading terms allowed in the

superpotential are suppressed by a factor m−7
P - and hence the corrections to the

scalar potential are O(m−8
P ). This large suppression is sufficient to be “gravity-safe”

[307] and thus evades the axion-quality problem [315].

Under this pretext, we may now consider a more complete model coupling the

PQ sector to the modulus. The leading terms in the Kähler potential are then
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given by

KPQ ⊃ X̂†X̂ + Ŷ †Ŷ +
λX
mP

Φ̂X̂†X̂ +
λY
mP

Φ̂Ŷ †Ŷ + h.c. (4.15)

Once the approximate U(1)PQ symmetry has been broken, integrating out the X̂

and Ŷ fields [290] leads to3

KPQ ⊃ v2
X exp

(
qX

(
Â† + Â

)
/fa

)(
1 +

λX
mP

Φ̂ + h.c.

)
+ v2

Y exp
(
qY

(
Â† + Â

)
/fa

)(
1 +

λY
mP

Φ̂ + h.c.

)
. (4.16)

Expanding the exponential then leads to interactions of the form

KPQ ⊃ Â†Â+

[
λXv

2
Xq

2
X + λY v

2
Y q

2
Y

f 2
a

]
1

2mP

(
Â† + Â

)2 (
Φ̂ + Φ̂†

)
(4.17)

where, on the axionic kinetic term, we have taken

f 2
a =

∑
i

q2
i v

2
i (4.18)

and is hence already normalized. For λX = λY , our PQ couplings to the modulus

reduce identically to our simple model. However, if we have λX 6= λY , we now

have an effective coupling of the form

λPQ =

[
λXv

2
Xq

2
X + λY v

2
Y q

2
Y

f 2
a

]
(4.19)

3There is also an additional singlet which is orthogonal to the axion multiplet [284], which
leads to a similar set of interactions. While this will affect the total decay width of the modulus,
we will see in the following chapters that - assuming the additional singlet does not contain the
LSP - this will hardly affect our conclusions.
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which one should expect to be roughly the same order of magnitude of both λX

and λY .

4.1.4 The gauge-kinetic function

Here, we discuss the gauge-kinetic function for our effective field theory. We

assume the quasi-universal gauge-kinetic function

fAA =
λG
mP

Φ̂ (4.20)

where, for the sake of notation and future use, we take a separate λG for each

gauge group to parametrize e.g. mixing effects from a more fundamental, possibly

non-universal gauge-kinetic function. However, we assume the gauge couplings to

the modulus are indeed unified throughout the rest of this work.

The gauge-kinetic terms then read

LGK ⊃ −
1

4

∫
d2θ

λG
mP

Φ̂Ŵc
αŴα + h.c. (4.21)

where Ŵα are the gauge superfields belonging to SU(3)C , SU(2)L, and U(1)Y , and

λG ∈ {λU(1), λSU(2), λSU(3)} is the appropriate coupling to the gauge superfield.

In many string models where the lightest modulus is a geometric modulus, such

as Type IIb models where the MSSM is located on D3 branes, the fundamental

gauge-kinetic function is typically set by the dilaton. The contribution to the

gauge-kinetic function from the lightest (geometric) modulus is then expected

to be induced at loop-level, and hence the coupling λG should be suppressed.
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However, this is not necessarily a universal prediction in string models - we will

discuss this point more in Sec. (4.3.1) where we define our several case scenarios

based on various string models.

Finally, we include the soft SUSY breaking terms enumerated in [1] to

parametrize details of SUSY breaking. We take these to be free parameters

for our case at hand (more precisely, these soft terms are set from the reduced set

of free parameters in our NUHM3 benchmark model), and provide a motivated

benchmark value which yields a natural SUSY spectrum.

We have now enumerated the field content of the model. We do not assume

any further details of the hidden sector, although if one postulates that e.g. some

non-minimal hidden sector couples gravitationally to the modulus, in addition to

implications for SUSY breaking and possible implications for the composition of

dark matter, it is possible that the modulus decay would be affected sufficiently

to alter our predictions. In this work, we assume that our effective field theory

captures most of the relevant effects - at least up to the uncertainty in the couplings

of the theory.

4.2 Modulus decays

We are now in a position to discuss the decay formulae for the modulus. Detailed

derivation and the full decay widths are included in App. (A) - we provide

simplified discussion and formulae here.
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4.2.1 Decays into gauge bosons and gauginos

The modulus decays into the gauge field sector is dictated by the gauge kinetic

function. This interaction is summarized in Eq. (4.21). After expanding the SM

gauge groups, the Lagrangian reads

L ⊃ −1

4

λgauge

mP

∫
d2θ

[
Φ̂ B̂cB̂ + Φ̂ Ŵ c

αŴα + Φ̂ Ĝc
αĜα + h.c.

]
(4.22)

Here, B̂, Ŵα, and Ĝα are the gauge-eigenstate superfields for U(1)Y , SU(2)L, and

SU(3)C gauge groups, respectively. We also assume for our current discussion that

the modulus couplings to each gauge group are unified, so that λU(1) = λSU(2) =

λSU(3) ≡ λgauge.

Focusing first on the decays to the gauge bosons, once SU(2)L × U(1)Y is

broken to U(1)e.m., the physical gauge bosons become the gluon, photon, and the

W± and Z0 bosons. The modulus decay width to each pair of gauge bosons is

then given by

Γφ→gauge boson pairs '
NGλ

2
gauge

32π

m3
φ

m2
P

. (4.23)

Here, NG = 8 for a gluon final pair, NG = 2 for a W± final pair, and NG = 1 for

both photon and Z0 final pairs - giving a total NG = 12. This is an unsuppressed

decay mode since the width is proportional to m3
φ/m

2
P . However, depending on

whether this effective interaction should be induced at tree level or loop level

(which appears in our assumed value of λgauge), it may be a leading interaction or

a subdominant interaction.
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Focusing now to the decays to gauginos, we list the leading interaction terms

once SU(2)L × U(1)Y is broken. The simplest interaction is that of the modulus

and the gluinos since no mixing takes place. This decay width is given by

Γφ→g̃g̃ '
λ2

gauge

π

m3
φ

m2
P

(
m2
g̃

m2
φ

)
(4.24)

where we have summed over the 8 colored states of the gluinos. This decay width

also gains a net factor of 2 enhancement since the final state fermions are Majorana.

However, the decay width also receives chirality suppression and is thus typically

a very small contribution to the total width if mφ � mg̃. The decays to gluinos

may, however, also produce a model-dependent decay width which is unsuppressed

through the F -term interaction if the modulus has a large supersymmetric mass.

This point is discussed more in App. (A) and in Sec. (4.3.1).

Moving now to the decays to electroweakinos, the charged gaugino compo-

nents combine to give modulus decays to chargino pairs. The neutral gaugino

components also combine to give modulus decay to neutralino pairs. However,

since both the charged and neutral gauginos also mix with the higgsinos, both the

neutralinos and charginos have additional contributions from the higgsino sector.

We thus postpone listing these decays until the next section.

4.2.2 Decays into Higgses

The modulus decays into Higgses and higgsinos are primarily dictated by the

Kähler potential. Specifically, the modulus couplings to the kinetic terms of the
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Higgses is model-independent, while the addition of a Giudice-Masiero term may

exist if not forbidden by PQ symmetry.

L ⊃
∫
d4θ

[
λGM

mP

Φ̂Ĥ†uĤ
†
d +

λH
mP

Φ̂Ĥ†uĤu +
λH
mP

Φ̂Ĥ†dĤd + h.c.

]
(4.25)

For simplicity in this discussion, we have assumed the two kinetic couplings are

unified, λHu = λHd ≡ λH . However, in Ch. (6) we do not always assume this is

the case - as one might expect in models with non-universal Higgses. We will

discuss this point further in that chapter, however we note that our study there

uses the full expressions listed in App. (A).

Let us focus first on the scalar components. After SU(2)L × U(1)Y breaking,

the real components of the up-type and down-type neutral Higgs components mix

to form the light (h) and heavy (H) scalar Higgses. The imaginary component of

the mixed neutral Higgses then becomes the pseudoscalar Higgs (A). A would-be

Goldstone boson is also produced, however a gauge transformation to the unitary

gauge removes it from the tree-level spectrum as it becomes the longitudinal

component of the (now massive) Z0 boson. The decay to the physical, neutral

Higgs bosons is then given by

Γφ→hihi '
1

64π

m3
φ

m2
P

(
λGM sin(2x)± 2λH

m2
hi

m2
φ

)2

(4.26)

where we have x ≡ α for hi = h,H and x ≡ β for hi = A. In addition, the ±

becomes + for hi = h, and − for hi = H,A. Finally, there is also the decay to a
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light and a heavy scalar Higgs, which is given by

Γφ→hH '
1

32π

m3
φ

m2
P

λ2
GM cos2(2α). (4.27)

In a similar way to the neutral scalars, the up-type and down-type charged

Higgs components mix to give a charged Higgs, H±. The mixing also produces

the charged would-be Goldstone boson, which we have removed from the physical

tree-level spectrum by our unitary gauge transformation - and it becomes the

longitudinal component for the W± bosons. The decay to the charged Higgs pairs

is then given by

Γφ→H+H− '
1

32π

m3
φ

m2
P

(
λGM sin(2β)− 2λH

m2
H±

m2
φ

)2

. (4.28)

A few comments are in order. If the Giudice-Masiero coupling is non-zero,

i.e. λGM 6= 0, then Eq. (4.26), Eq. (4.27), and Eq. (4.28) are rather dominant

(unsuppressed) decay terms. The total decay width to Higgs pairs is then well-

approximated by

Γφ→Higgs pairs '
λ2

GM

32π

m3
φ

m2
P

(
1 +

3

2
sin2(2β)

)
. (4.29)

However, as in the PQMSSM, if λGM = 0 we are left with only the mass-suppressed

contributions from Eq. (4.26) - which are extremely subdominant. In this case,
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the total decay width to Higgs bosons is approximated by

Γφ→Higgs pairs '
λ2
H

16π

m3
φ

m2
P

(
m4
h +m4

H +m4
A + 2m4

H±

m4
φ

)
. (4.30)

Moving now to the higgsinos, much as with the gauginos, the charged compo-

nents mix to give contributions to the charginos while the neutral components

mix to give contributions to the neutralinos. Combining both the gaugino and

higgsino terms, the decays to the physical same-generation chargino pairs is given

by

Γφ→W̃iW̃i
' 1

16π

m3
φ

m2
P

(
m2
W̃i

m2
φ

)(
(λGxα + λHxβ)2 + (λGyα + λHyβ)2

)
(4.31)

where xα,β and yα,β depend on sin2 γL/R and cos2 γL/R. Generically, one may

expect these are O(1), however depending on the specific SUSY details, some of

these terms may effectively vanish. The decay to the different-generation chargino

pairs is given by

Γφ→W̃1W̃2
' (λgauge − λH)2

8π

m3
φ

m2
P

(
m2
W̃1

+m2
W̃2

m2
φ

)

×
(
sin2 γL cos2 γL + sin2 γR cos2 γR

)
. (4.32)

Intriguingly, if λgauge = λH this interaction vanishes while it is in general highly

suppressed due to destructive interference in addition to chirality suppression.

Moving to the decays to neutralino pairs, the decay to same-generation neu-
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tralino pairs is given by

Γφ→Z̃iZ̃i '

(
λH

[
(v

(i)
1 )2 + (v

(i)
2 )2

]
+ λgauge

[
(v

(i)
3 )2 + (v

(i)
4 )2

])2

8π

m3
φ

m2
P

(
m2
Z̃i

m2
φ

)
.

(4.33)

Here, v
(i)
j are the matrix elements from the matrix that diagonalizes the neutralino

mass matrix, which are typically calculated numerically and are at most O(1).

The decay to different generation neutralinos is then given by

Γφ→Z̃iZ̃j '

(
λH

(
v

(i)
1 v

(j)
1 + v

(i)
2 v

(j)
2

)
+ (−1)θi+θjλgauge

(
v

(i)
3 v

(j)
3 + v

(i)
4 v

(j)
4

))2

16π

×
m3
φ

m2
P

(
m2
Z̃i

+m2
Z̃j

m2
φ

)
(4.34)

where θi and θj are defined to be 0 or 1 so that the corresponding neutralinos Z̃i

and Z̃j have a positive mass. It is worth noting that if both neutralino masses

mZ̃i
and mZ̃j

have the same sign (where we refer here to the eigenvalues of the

mass matrix - the physical masses have the additional sign from θi,j and are thus

intrinsically positive), then the gaugino and higgsino components constructively

interfere - making this decay width more sizeable. However, if both neutralino

masses have opposite sign from each other, then they interfere destructively and

thus yield a much smaller decay width.

Both the charginos and the neutralinos receive chirality suppression in their

widths. Thus, neither one contributes significantly to the total decay width of

the modulus. These are, however, extremely important modes in determining

the modulus branching ratio to R-parity odd final states. Much like the gluinos,
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however, the decays to neutralinos and charginos may be unsuppressed if the

modulus is stabilized supersymmetrically - this again arises through the F -term

interactions of the modulus and is discussed further in App. (A) and Sec. (4.3.1).

4.2.3 Decays into matter fields

The decays to matter fields have the interaction term in the Kähler potential

L ⊃
∫
d4θ

[
λLi
mP

Φ̂ L̂†i L̂i +
λEi
mP

Φ̂ (Êc
i )
†Êc

i +
λQi
mP

Φ̂ Q̂†iQ̂i

+
λUi
mP

Φ̂ (Û c
i )
†Û c

i +
λDi
mP

Φ̂ (D̂c
i )
†D̂c

i + h.c.

]
(4.35)

where each of the quark and lepton superfields has a generation index i ∈ {1, 2, 3}.

Again, for the sake of simplicity in this discussion, we take the quark couplings

to be unified, λQi = λUi = λDi ≡ λQ, and the lepton couplings to be unified,

λLi = λEi ≡ λL.

Let us focus first on both the squarks and sleptons. For the first two generations

of squarks and sleptons, the gauge eigenstates have very minimal mass mixing [1]

and thus we approximate the mass eigenstates as simply the gauge eigenstates

(e.g. ũL,R ' ũ1,2). The third generation, i.e. the stop, sbottom, and stau, do have

a non-negligible amount of mixing, and thus we make use of a transformation

matrix (detailed in App. (A)) to convert to the mass eigenstates. However, in

our unification simplification here, the dependence on the mixing angle drops out.

Additionally, although decays to different generation pairs is possible, these are

highly subdominant for non-unified couplings - and vanish in the unified limit.
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Thus, the modulus decay to sleptons are given by the widths

Γφ→l̃i l̃i '
λ2
L

8π

m3
φ

m2
P

(
ml̃i

mφ

)4

(4.36)

while the decay to squarks are given by the widths

Γφ→q̃iq̃i '
3λ2

L

8π

m3
φ

m2
P

(
mq̃i

mφ

)4

(4.37)

where we have summed over colors, resulting in an additional factor of 3.

These decay widths are all extremely subleading, due to the mass suppression

factor of (mf̃/mφ)4. Although they do contribute to the branching ratio to R-

parity odd particles, we can expect them to be well below the contributions from

the neutralinos and charginos, which only have a chirality suppression factor of

(mf/mφ)2.

Moving to the decays to the physical quarks and leptons, we combine the

doublets and singlets into the physical fields (as described in App. (A)). The

decays to leptons are then calculated to be

Γφ→lili '
λ2
L

4π

m3
φ

m2
P

(
mli

mφ

)2

(4.38)

while the decays to quarks are given by

Γφ→qiqi '
3λ2

L

4π

m3
φ

m2
P

(
mqi

mφ

)2

(4.39)
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where, again, we have summed over colors.

A few immediate comments are in order. From Eq. (4.38), we see that in the

massless neutrino limit, this width vanishes. Similarly, the width in Eq. (4.39)

vanishes in the limit of massless u, d, and s quarks. Furthermore, we once again

see that the fermionic widths are chirality suppressed in comparison to the leading

decay modes. We also expect these widths to be subdominant compared to the

(suppressed) widths to gluinos, charginos, and neutralinos as the quark and lepton

masses are expected to be well below the superparticle masses (except possibly

the top quark).

4.2.4 Decays into ALPs

As we have already discussed, the decay of the modulus into ALPs is a model-

dependent process. If the ALP is ultralight, as in LVS, the decay mode is always

open since the ALP is effectively massless. However, the ALP may also be massive

such as in KKLT, and - since supersymmetry is preserved in KKLT before uplifting

effects are incorporated providing a large supersymmetric mass MΦ - may be

kinematically forbidden since one expects mφ ' mc. It is conceivable that one

could construct a model in which the ALP is massive but sufficiently light so that

the decay channel is kinematically allowed - however we do not consider this case

in this work and instead consider only the limits mc ∼ mφ and mc ∼ 0.

In the case where the ALP is ultralight, the decay width is given by

Γφ→cc '
λ2

ALP

32π

m3
φ

m2
P

. (4.40)
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Since the ALPs are only gravitationally coupled, they do not thermalize once

produced. Additionally, since they are effectively massless and are a leading decay

mode of the modulus, we will see that these ALPs are potentially very problematic

due to tight constraints on the production of dark radiation [11].

4.2.5 Decays into DFSZ-type axions

While the ALPs are assumed to arise from the dimensional reduction of the 10d

gauge fields, in this work we consider the QCD axion to be instead of “field

theoretic” type - i.e. we assume the QCD axion to be the phase of some massive

SM singlet field Ŝ that acquires a VEV as in the DFSZ model. The modulus

couplings are then of the form

L ⊃ λPQ

2mP

∫
d4θ

[
Φ̂
(
Â+ Â†

)2

+ h.c.

]
(4.41)

where the axion superfield Â = (s+ ia)/
√

2 +
√

2θã+ θ2Fa. The modulus decay

widths to saxions and axions reduce to the same form for mφ � ms,ma, and are

given by

Γφ→ss(aa) '
λ2

PQ

64π

m3
φ

m2
P

. (4.42)

Thus, the φPQMSSM has two additional unsuppressed modulus decay modes to

axions and saxions, while the decays to the Higgs sector become mass-suppressed

as the Giudice-Masiero term is forbidden. This can be potentially problematic

however, as the axions typically do not thermalize and behave primarily as dark

radiation. We will discuss this at great length in Ch. (6).
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The modulus decay width to axinos is then given by

Γφ→ãã '
λ2

PQ

8π

m3
φ

m2
P

(
m2
ã

m2
φ

)
(4.43)

where the axinos receive a factor of 2 enhancement as they are Majorana. As with

the other fermion decay modes, this is chirality suppressed and thus subleading

to the total width although it may provide a significant contribution to the total

R-parity odd branching fraction. However, similar to the gauginos and higgsinos,

the axinos may also have a model-dependent unsuppressed decay through F -term

interactions if the modulus has a large supersymmetric mass.

4.2.6 Decays into gravitinos

In addition to the interactions we have already discussed, we also need to include

the decays to gravitinos which arise from supergravity interactions of the form

L ⊃ − exp(G/2)ψµσ
µνψν + h.c. (4.44)

where G ≡ K + logW + logW is the Kähler function. However, as discussed

in [350] the decay widths depend crucially on details of the hidden sector (i.e.

other moduli in the UV theory) which can induce different interactions from their

mixing in G. In particular, if direct couplings or significant mixing between the

modulus and a hidden sector is present, the decay width will be unsuppressed

(∝ m3
φ/m

2
P ) while if these direct couplings are absent, the decay width will be

chirality suppressed (∝ mφm
2
3/2/m

2
P ). We thus adopt the decay widths computed
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in [228, 230, 350] and parameterize them as

Γφ→ψ3/2ψ3/2
' λ2

G

288π

m3
φ

m2
P

(
λ1 + λ2

m2
3/2

m2
φ

)
(4.45)

where we define λ1,2 ≡ 0, 1 depending on which case scenario we are considering.

We will discuss this point more in the next section.

4.3 A natural SUSY benchmark point

In order to illustrate the results presented in the previous section, we adopt

henceforth a natural SUSY benchmark point based on the three-extra-parameter

non-universal Higgs SUSY model NUHM3 [324, 325, 326, 328, 327, 329]. This

model has unified soft masses for first and second generation matter scalars

m0(1) = m0(2) ≡ m0(1, 2), while the third generation soft mass m0(3) is inde-

pendent. Additionally, the two soft Higgs masses mHu and mHd are independent.

The parameter space for this model is entirely specified by

m0(1, 2), m0(3), m1/2, A0, tan β, µ, mA (4.46)

where µ and mA are evaluated at the weak scale, while all other parameters are

evaluated at the GUT scale.

We display the input data for the benchmark point in Table (4.3), which are

listed in the top two sections. The resulting mass spectra is calculated using

Isajet 7.88 [330] and is displayed in the third section of Table (4.3). Finally, in
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parameter NUHM3
m0(3) 5 TeV
m0(1, 2) 10 TeV
m1/2 1.2 TeV
A0 -8 TeV
tan β 10
µ 200 GeV
mA 2 TeV
mg̃ 2927.4 GeV
mũL 10209.4 GeV
mũR 10288.5 GeV
mẽR 9912.9 GeV
mt̃1

1251.0 GeV
mt̃2

3655.6 GeV
mb̃1

3697.1 GeV

mb̃2
5104.5 GeV

mτ̃1 4729.8 GeV
mτ̃2 5061.5 GeV
mν̃τ 5030.0 GeV
mW̃±1

209.1 GeV

mW̃±2
1042.8 GeV

mZ̃1
197.7 GeV

mZ̃2
208.0 GeV

mZ̃3
547.1 GeV

mZ̃4
1052.6 GeV

mh 125.3 GeV
Ωstd
z̃1
h2 0.011

BF (b→ sγ)× 104 3.0
BF (Bs → µ+µ−)× 109 3.8

σSI(Z̃1, p) (pb) 1.7× 10−9

σSD(Z̃1, p) (pb) 3.6× 10−5

〈σv〉|v→0 (cm3/sec) 2.0× 10−25

∆EW 20

Table 4.3: Input parameters and resulting weak-scale MSSM mass
spectra for a natural SUSY benchmark point in the NUHM3 model.
Additionally, we take m3/2 = 30 TeV except where noted otherwise.

the fourth section of Table (4.3) we list some estimated quantities which provide

insight on current constraints for this benchmark point. These quantities are also

computed using the Isajet routines.

122



It is worth mentioning here that if the lightest supersymmetric particle (LSP) -

which in our benchmark point is a higgsino-like neutralino - makes up the entirety

of the dark matter density by receiving an enhancement to its thermally-produced

relic density, this benchmark point runs into tension with some experimental

constraints. Based on the lightest neutralino annihilation cross section and mass,

〈σv〉|v→0 and mZ̃1
, the neutralino annihilation rate for our benchmark is slightly

too large to be consistent with Fermi-LAT searches for dark matter annihilation

in dwarf spheroidal galaxies [351], which limits 〈σv〉|v→0 . 5× 10−26 cm3s−1 in

the bb channel for a 200 GeV neutralino. Furthermore, recent results from the

LUX-ZEPLIN (LZ) [352] experiment constrains the spin-independent cross section

σSI(Z̃1, p) . 6 × 10−11 pb and the spin-dependent cross section σSD(Z̃1, p) .

1× 10−5 pb. However, for the purposes of this work we do not expect a different

benchmark point that meets these constraints to significantly alter our results for

the φMSSM. Additionally, when we cover the φPQMSSM these constraints become

significantly softer as they rely on the assumption that the LSP is the entirety of

the dark matter. Specifically, if the produced neutralino relic density takes its

thermally-produced value ΩZ̃1
h2 ' 0.011 (or at least is a subdominant dark matter

component), these constraints are weakened by a factor [353] of ξ ≡ ΩZ̃1
h2/0.12

for the σSI, SD(Z̃1, p) constraints and a factor of ξ2 for the 〈σv〉|v→0 constraint

which eases these bounds sufficiently to allow experimental compatibility. In

either case, we will see in the coming chapters that this benchmark point serves

as a “best-case scenario” as more efficient cross sections run into experimental

tension unless WIMPs are an extremely subdominant component of the total dark
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matter.

4.3.1 Scenarios from strings

We now enumerate some of the most motivated scenarios that we have alluded to

in the previous sections. Although we have already discussed the primary model-

independent decay modes of the modulus, there can be significant contributions

from model-dependent F -term interactions and assumptions about hidden sector

details. In most of the following work, we will only be focused on a subset of

these scenarios which provides some semblance of a (string) model-independent

reference. Detailing the other scenarios here then allows us to discuss how our

results are expected to change for other specific string constructions that may fall

into other case scenarios.

As we mentioned in the previous section, the decay of a modulus to gravitinos is

sensitive to the details of the hidden sector - which is studied in [350, 230, 228, 354].

Most moduli decays to fermions are expected to receive chirality suppression,

which was argued to apply for decays to gravitinos in [355, 225]. However, [350]

showed that this amplitude is generically unsuppressed if the modulus has either

direct couplings or appreciable non-supersymmetric mixing between longitudinal

component of the gravitino (or equivalently the goldstino, by use of the goldstino

equivalence theorem) and a SUSY breaking hidden sector field. If the modulus and

SUSY breaking hidden fields are not directly coupled and have masses dominated

by the supersymmetric contribution, the contributions to the modulus decay width

which are unsuppressed cancel, leaving only the suppressed amplitude.
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Furthermore, as we have previously mentioned there are cases where modulus

decays to gauginos are unsuppressed. As detailed in [350, 356], this may occur

through the gaugino mass term which is set by the modulus F -term if the lightest

modulus has a large supersymmetric mass (as we show in App. (A)). The same

interaction occurs from the Giudice-Masiero term for the higgsinos, so that the

modulus decay to the physical charginos and neutralinos is unsuppressed for both

gaugino and higgsino components. The simplest way to see this is in the global

SUSY limit, where we can parameterize the supersymmetric mass term for the

light modulus in the superpotential, W ⊃MΦΦ2, thus leading to an F -term like

FΦ ∼MΦΦ. Of course, this only contributes a non-negligible amount if the lightest

modulus does not break SUSY, such as in KKLT models. In the φPQMSSM, the

same effect leads to unsuppressed decays to axinos. However, the φPQMSSM

forbids the Giudice-Masiero term with a PQ symmetry which also forbids the

unsuppressed decays to higgsino components. Since the unsuppressed decay to

gaugino components is still allowed as they arise from the gauge-kinetic function,

we refer only to unsuppressed gauginos in the following cases - any unsuppressed

decays to either higgsino or axino components is then implicit from context.

The above considerations then motivate the four case scenarios for model-

dependent decay widths which we enumerate in Table (4.4). Case A1 has

Unsuppressed gravitinos Suppressed gravitinos
Unsuppressed gauginos Case A1 Case A2

Suppressed gauginos Case B1 Case B2

Table 4.4: Summary of case scenarios on leading decay modes depend-
ing on whether or not they receive chirality suppression.
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unsuppressed decays to both gravitinos and to gauginos, and thus parametrizes

cases where the lightest modulus does not break SUSY, but has direct couplings

or appreciable non-supersymmetric mixing to some SUSY breaking hidden sector.

This includes some variants and generalizations of KKLT [3] models - and in

particular KKLT models with hidden sector fields residing on D3 branes which

therefore exhibit the sequestered form4 of Sec. (2.4), such as those described

in [271, 228, 354]. Another variant of KKLT in this category is the O’KKLT

[169] model, which achieves uplifting by combining the O’Raifeartaigh and KKLT

models. This scenario also includes the G2MSSM model described in [357, 157]

where the hidden sector are the other moduli of the M -theory construction,

although in this case the lightest modulus is lighter than the gravitino and

thus this channel is kinematically forbidden. Case A2 has suppressed decays

to gravitinos but unsuppressed decays to gauginos, and so parametrizes cases

where the lightest modulus does not break SUSY and has no direct couplings or

non-supersymmetric mixing to some SUSY breaking hidden sector. This includes

the KKLT model in its original form [3], the Kallosh-Linde (KL) racetrack-type

model [132, 358], and the KKLT model with a D-term uplifting sector [163].

Case B1 has unsuppressed gravitino decays but suppressed gaugino decays. A

tentative example of this would be fibred LVS [9, 10], where the fibre modulus is

directly coupled to the transverse mode. The transverse mode is then the lightest

modulus which has an effectively vanishing supersymmetric mass. However, it

is a generic feature of this framework that the decay of the lightest modulus to

4This assumes that, although the Kähler potential may be of sequestered form, the seques-
tering is sufficiently weak so that the modulus decay to gravitinos is kinematically accessible.
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gravitinos is kinematically forbidden [9, 359, 10]. Case B2 then has suppressed

decays to both gauginos and gravitinos. Here, a tentative example would be

minimal LVS [181, 180], as any mixing between the bulk modulus and blow-up

moduli is extremely suppressed. Although the blow-up moduli break SUSY,

they are fixed by non-perturbative effects and have masses dominantly fixed

by the supersymmetric contributions, while the bulk modulus is the dominant

contribution to SUSY breaking. Much like in fibred LVS, it is a generic feature

that moduli decay to gravitinos is kinematically forbidden.

In addition to the specific examples above, there may be as-yet-undiscovered

moduli stabilization schemes or extended models based on existing schemes which

may generically fall into one or the other of these categories. For much of this

work, we concentrate on case B2 but investigate some implications of case B1 in

the φMSSM. As we will see in the next few chapters, we generically expect our

results to become slightly more optimistic for models with unsuppressed gaugino

decays when compared to both cases B1 and B2.

There are additional model-dependent considerations based on the gauge-

kinetic function of the low energy theory. In most Type IIb models that give

weak-scale supersymmetry, the MSSM sector is studied by constructions with

fractional D3 branes at singularities [360, 185, 184, 361]. In this so-called “blow-up”

or “singular” regime, the gauge-kinetic function is set primarily by the dilaton,

f = S + sikTk (4.47)
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where Tk are the blow-up moduli resolving the singularity [360, 185, 362]. In LVS

models, the blow-up moduli are stabilized at a much higher scale than the bulk

modulus, while in KKLT models the blow-up moduli may be set to 0 [362, 363].

As the dilaton is expected to be stabilized by fluxes in Type IIb constructions and

is thus expected to have a much higher mass (close to the string scale) than the

Kähler moduli, any dependence of the gauge-kinetic function on the lighter Kähler

moduli is then expected to be induced radiatively [239]. A similar form of the

gauge-kinetic function appears in heterotic models [364, 365, 366, 367]. However,

in the heterotic case the lightest modulus may in fact be the dilaton depending

on the details of stabilization [368, 369]. The MSSM sector can also be located on

D7 branes in the Type IIb context, which has a gauge-kinetic function of the form

f = Ta + αS (4.48)

where Ta is the modulus corresponding to the del Pezzo surface that the D7

branes wrap [184, 370, 185], so that in the geometric regime our gauge-kinetic

function may appear at tree level. In this case, sequestering is not possible and to

achieve soft terms close to the TeV scale, either fine-tuning of W0 or a low string

scale, ms ∼ O(1011 − 1012) GeV, is required for a sufficiently low gravitino mass

[371, 185, 205]. Additionally, in an M -theory construction compactified on a G2

manifold with N geometric moduli, the gauge-kinetic function is given by

f =
N∑
i=1

αiTi (4.49)
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where αi are integers determined by topological properties of the manifold [357,

157]. Thus, although one generically expects the couplings to be λi ∼ O(1) to

the quark, lepton, and Higgs sectors, the couplings to the gauge sector may be

either λgauge ∼ O(1) or5 λgauge ∼ O(1/16π2) depending on the details of the string

model. We enumerate these cases in Table (4.5).

Tree-level Loop-level
Gauge-kinetic function Case GK1 Case GK2

Table 4.5: Summary of case scenarios for the expected magnitude of
λgauge depending on whether or not the lightest modulus appears at
tree-level or at loop-level.

There is one final set of scenarios which we consider in this work. As we saw

in Sec. (2.3.2) and Sec. (2.3.3), modulus decay to ALPs may be possible if the

ALP is sufficiently light. Specifically, if the shift symmetry of the Kähler modulus

is preserved when the lightest modulus is stabilized such as in LVS, the ALP

is protected from gaining a mass (except from extremely tiny non-perturbative

effects which break this symmetry) and thus is ultralight. If, however, the shift

symmetry is broken when the lightest Kähler modulus is stabilized as in KKLT,

the ALP becomes massive - and since SUSY is preserved in the KKLT minimum

prior to uplifting, it is expected to be roughly the same mass as the modulus.

The ALPs which are massive are largely irrelevant for our purposes - not only are

they expected to be a kinematically forbidden decay of the lightest modulus, but

any thermal population that may exist after inflation will be diluted to negligible

5We assume here that the dependence of the gauge-kinetic function on the lightest moduli
appears at one-loop order, so that the effective coupling has a magnitude of roughly a loop
suppression factor ∼ 1/16π2.
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levels once the modulus injects significant entropy into the thermal bath. The

ultralight ALPs, on the other hand, are relevant as they are an unsuppressed decay

mode and since they are effectively massless and only gravitationally coupled,

behave primarily as dark radiation [239, 240]. Thus, we dedicate a section with

the φMSSM to the study of the dark radiation production estimated by ALPs if

they are ultralight.

In the following sections, we display our results for modulus decay widths and

branching ratios for a subset of the above scenarios and provide brief discussion

on how our results are expected to change for the rest of the cases. Our plots

utilize the full set of decay widths which are listed in App. (A), and assume the

natural SUSY benchmark point which we have listed in Table (4.3). In the set

of GK1 cases, we take all modulus couplings λi = 1, while in the GK2 cases

we take the modulus couplings to the gauge sector to be λgauge = 1/16π2 and

all remaining modulus couplings to be λi = 1. In both cases, we assume that

the gauge couplings are unified so that λU(1) = λSU(2) = λSU(3). Finally, for the

sake of legibility each curve in the partial width and branching ratio plots are the

sum of all relevant contributions (e.g. the sfermion + sfermion curve includes all

generations and flavors of squarks and sleptons).

4.3.2 Modulus decays in the φMSSM - the massive ALP case

In this section, we display the results of the two-body decays φ → A + B in

the φMSSM where we assume that any ultralight ALPs are absent from the low

energy spectrum. In the φMSSM, the Giudice-Masiero operator is allowed - and
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thus the decay widths to the Higgs sector is unsuppressed. Generically speaking,

the possible leading decay modes in this scenario are decays to either gauge boson

(γ, g, Z0,W±) pairs or Higgs boson (h,H,A,H±) pairs as these all scale as m3
φ.

Specific cases may then add the gravitino (ψ3/2) and/or gauginos (Z̃i, W̃i, g̃) to

this list. Of course, the leading decay mode depends on which combination of

cases from Tables (4.4) and (4.5) we are considering.

Figure 4.1: Modulus partial decay widths for the case B2-GK1 as a
function of mφ for the natural SUSY benchmark point in Table (4.3).
Here, all λi couplings are set to unity.

We first focus on the case B2-GK1, which assumes suppressed decays to

both gauginos and gravitinos and unsuppressed couplings to the gauge sector.

We display the modulus partial decay widths in Fig. (4.1) for this scenario. As

expected from their m3
φ scaling behavior, for most of the parameter space the

decays to gauge boson pairs (orange curve) are the leading decay channels, with the

decays to Higgs pairs (green curve) being the secondary decay channels. All other
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modes are highly subleading unless mφ . 100 TeV. Note the sharp dip in the width

to Higgs pairs around mφ ∼ 2 TeV - this is due to a partial cancellation between

the Giudice-Masiero term and the ΦH†u,dHu,d + h.c. terms. This cancellation is

most pronounced when mφ ∼ mH,A,H± , which all have mH,A,H± ∼ 2 TeV for our

benchmark point. We also see from Fig. (4.1) that the sfermion channel (red

curve) is entirely closed until mφ ∼ 2.5 TeV, at which point the decay φ→ t̃1 + t̃1

becomes accessible. The t̃2 and b̃1 channels then become open around mφ ∼ 7.2

TeV, with the remaining third-generation sfermion decay channels becoming open

around mφ ∼ 2m0(3) ∼ 10 TeV. The first and second generation sfermions finally

become accessible around mφ ∼ 2m0(1, 2) ∼ 20 TeV. Looking at the decay to

gauginos (blue curve), the width is comprised of the neutralinos and charginos

for mφ . 6 TeV, while for mφ & 6 TeV this width is dominated by gluino decay

which temporarily makes a sizeable (∼ 10%) contribution to the total width. As

expected, decays to gravitino pairs (brown curve) is blocked until mφ ∼ 60 TeV.

In Fig. (4.2), we display the modulus branching ratios for the same scenario,

case B2-GK1. We see that gauge bosons (orange curve) dominate the branching

fraction with roughly B(φ → G.B.) ∼ 90% for all mφ in the scan limits. The

decays to Higgs boson pairs (green curve) then provide the secondary decay

channels for mφ & 100 TeV, with B(φ→ Higgs) ∼ 10% in this region. All other

decay modes have a branching fraction B(φ→ other)� 1% for mφ & 100 TeV.

On the other hand, for mφ . 100 TeV we see a bit more competition for the second

largest branching fraction, with pairs of Higgs, sfermions, and gauginos each taking

the lead when their heavier decay channels open. We see that the sfermions (red
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Figure 4.2: Modulus branching ratios for the case B2-GK1 as a
function of mφ for the natural SUSY benchmark point in Table (4.3).
Here, all λi couplings are set to unity.

curve) are the second leading channel once the first and second generation channels

are available at mφ ∼ 20 TeV, but due to the 1/mφ dependence in their decay

widths, this (secondary) dominance is short-lived. Additionally, once the gluino

channel (primary contribution to the blue curve) is open around mφ ∼ 6 TeV, it

also temporarily has the second largest branching fraction. In cases A1-GK1

and A2-GK1, we would then expect the gluino channel to continue to dominate

over the Higgs sector once it becomes accessible.

The total branching fraction into SUSY particles, i.e. decays to R-parity

odd pairs, can also be very important when we study the production of WIMP

dark matter from modulus decay. In particular, any R-parity odd particle must

eventually cascade decay into the LSP. From this, Gelmini and Gondolo [231]

emphasized that if LSP annihilations are inefficient, i.e. in the so-called branching
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Figure 4.3: Upper and lower bounds for total modulus branching ratio
to SUSY particles for the case B2-GK1. Here, all λi couplings are
set to unity and we use the natural SUSY benchmark point in Table
4.3. The lower bound LB2 assumes the Higgs cascade decay to SUSY
particles with 1% branching ratio, while the upper bound UB assumes
100% Higgs to SUSY branching ratio. The lower bound LB1 assumes
no Higgs to SUSY contributions.

scenario which we discuss in the next chapter, the overall modulus branching ratio

to SUSY particles is crucial in determining the relic density of LSPs. Therefore, we

show in Fig. (4.3) both upper and lower bounds for the total modulus branching

ratio into SUSY particles. Since the Higgs sector can decay into pairs of LSPs,

we choose to parameterize this contribution since it is highly model-dependent.

For the upper bound, we include all R-parity odd particles and in addition, we

assume that the Higgs sector has a 100% branching ratio to SUSY particles. The

absolute lower bound, which we notate as B(φ → SUSY, LB1) in Fig. (4.3) is

set by taking only the R-parity odd branching ratios (no Higgs decay to SUSY

particles). Thus, the absolute lower bound LB1 contains no contributions from
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possible Higgs sector decay to LSP pairs. Additionally, we display a second lower

bound, B(φ→ SUSY, LB2), which includes all R-parity odd particles but assumes

that the Higgs branching ratio to LSP pairs is B(h,H,A,H± → LSPs) = 1%.

We see that, for mφ . 30 TeV, the upper and lower bounds are all rather close.

For 2.5 TeV . mφ . 100 TeV, gauginos and sfermions both provide comparable

contributions to the overall branching fraction into SUSY particles, while for

mφ & 100 TeV, the gluino and gravitino are the dominant R-parity odd decays.

Additionally, for mφ . 2.5 TeV, only the neutralinos and charginos are accessible.

Figure 4.4: Modulus partial decay widths for the case B2-GK2 as a
function of mφ for the natural SUSY benchmark point in Table (4.3).
Here, all λi couplings are set to unity except for the couplings to the
gauge sector, which have λgauge = 1/16π2.

Next, we move on to the case B2-GK2, which assumes suppressed decays to

both gauginos and gravitinos as well as suppressed couplings to the gauge sector.

In Fig. (4.4), we display the partial decay widths of the modulus for this case.
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Because the gauge sector in this scenario is taken to be induced radiatively, the

Higgs sector (green curve) now provides the dominant decay channels, while the

gauge bosons (orange curve) do not become secondary modes until mφ & 500 TeV -

even with the m3
φ scaling! The suppression of this coupling also drastically reduces

the decay width into gauginos (blue curve), which is overlapped by the fermion

decays (purple curve) in Fig. (4.4). Production of neutralinos and charginos is

then dominated by the decay to their higgsino components, while production of

gluinos is suppressed below the higgsino channels. It is also interesting to note

that, due to the aforementioned cancellation in the Higgs sector around mφ ∼ 2

TeV, there is a small window where the leading decay modes are actually to SM

fermions (which are dominated by decays to top quark pairs) and to the higgsino

components of the neutralinos and charginos. Similarly, at mφ ∼ 2m0(1, 2) ∼ 20

TeV, the sfermions (red curve) are briefly the leading decay mode when the decay

to first and second generations become accessible.

The modulus branching ratios for case B2-GK2 are then shown in Fig. (4.5).

For this case, the fermion branching curve (purple) overlaps with the gaugino

branching curve (blue) - although a small portion of the gaugino curve can be

seen underneath the fermion curve until the heaviest neutralino mode becomes

accessible at around 2 TeV. Additionally, we note that the branching ratio to

gauge bosons (orange) has been decreased from around 90% in case B2-GK1 to

around 0.1% for case B2-GK2. The gravitino (brown) also becomes the dominant

R-parity odd decay mode shortly after it becomes accessible, while sfermions (red)

are the dominant R-parity odd decay for 7 TeV . mφ . 100 TeV. For mφ . 7
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Figure 4.5: Modulus branching ratios for the case B2-GK2 as a
function of mφ for the natural SUSY benchmark point in Table (4.3).
Here, all λi couplings are set to unity except for the couplings to the
gauge sector, which have λgauge = 1/16π2.

TeV, the sfermions, neutralinos, and charginos compete for the leading R-parity

odd decays. We display the total branching ratio into SUSY particles in Fig. (4.6),

where we again adopt the same upper and lower bounds as for Fig. (4.3). In

general, we see that for both lower bounds and the upper bound, there is roughly

an order of magnitude increase in the total branching to LSPs compared to case

B2-GK1 in Fig. (4.3).

We now consider case B1-GK1 which assumes suppressed decays to gauginos

but unsuppressed decays to gravitinos. In Fig. (4.7), we display the modulus decay

widths for this case. As with the previous cases, the gravitinos (brown curve)

are kinematically forbidden until mφ & 60 TeV. However, as the gravitinos are

now unsuppressed they now trail the decays to Higgs pairs (green curve) only by
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Figure 4.6: Upper and lower bounds for total modulus branching
ratio to SUSY particles for the case B2-GK2. Here, we use the
natural SUSY benchmark point in Table 4.3 and all λi couplings are
set to unity except for the couplings to the gauge sector, which have
λgauge = 1/16π2. The lower bound LB2 assumes the Higgs cascade
decay to SUSY particles with 1% branching ratio, while the upper
bound UB assumes 100% Higgs to SUSY branching ratio. The lower
bound LB1 assumes no Higgs to SUSY contributions.

about an order of magnitude and decays to gauge boson pairs (orange curve) by

around two orders of magnitude. We do not expect a significant deviation of the

total width of the modulus between cases B1-GK1 and B2-GK1, although the

gravitinos may now be produced in significant abundance. In case B1-GK2, we

do expect a more noticeable change in the total width compared to case B2-GK2

as the gauge boson decays are suppressed, although in this comparison we only

expect roughly a 10% increase in Γtotal
φ . In case A1, although we expect a change

of roughly a factor of 2 in Γtotal
φ compared to the corresponding B1 case due to the

addition of unsuppressed gaugino modes, the addition of unsuppressed gravitino

decays will be even less noticeable compared to the corresponding A2 case.
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Figure 4.7: Modulus partial decay widths for the case B1-GK1 as a
function of mφ for the natural SUSY benchmark point in Table (4.3).
Here, all λi couplings are set to unity and decays to gravitinos are
unsuppressed.

In Fig. (4.8), we display the corresponding branching ratios in case B1-GK1.

We see that the modulus decays to gravitinos (if kinematically accessible) now

occur at slightly below the 1% level, with all other branching ratios mostly

unaffected. This is in good agreement with estimates from [228, 230], which point

out a resurgence of the gravitino problem due to a large production of gravitinos

from modulus decay. Although moduli lighter than 60 TeV here do not suffer from

the moduli-induced gravitino problem (for m3/2 = 30 TeV) as we will discuss in

the next chapter, we will see that a modulus this light will still grossly overproduce

dark matter. We will discuss these aspects more in the upcoming chapters.

Now that we have studied modulus decay in a few of the possible cases, we are

in a position to compare total decay widths - and discuss the possible quantitative
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Figure 4.8: Modulus branching ratios for the case B1-GK1 as a
function of mφ for the natural SUSY benchmark point in Table (4.3).
Here, all λi couplings are set to unity and decays to gravitinos are
unsuppressed.

changes for the remaining cases which we did not show above. The total decay

width - and by extension, the lifetime - of the modulus is a crucial property

to understand from a cosmological standpoint. In particular, if the modulus

has too small of a decay width, its lifetime can be long enough that it decays

during or after Big Bang Nucleosynthesis (BBN) and can spoil the extremely

successful predictions of BBN. It is therefore important to understand the total

decay width of the modulus, and to understand if any of our case scenarios can

yield significantly different results from the others. This will allow us to draw

rather immediate constraints on the modulus when we consider the scale at which

it decays, and to understand if these constraints are quantitatively similar across

the different moduli scenarios - establishing some potential sense of generality.

We compare the total widths, Γtotal
φ , for cases B2-GK1 and B2-GK2 in
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Figure 4.9: Comparison of the total width for cases B2-GK1 and
B2-GK2 as a function of mφ for the natural SUSY benchmark point
in Table (4.3). Both cases have suppressed decays to gravitinos and
gauginos. Case B2-GK1 sets all couplings, including those to the
gauge sector, to unity. Case B2-GK2 takes the gauge sector couplings
to be λgauge = 1/16π2, with all remaining λi couplings set to unity.

Fig. 4.9. Between these two cases, we see that the value of Γtotal
φ has a difference

of approximately one order of magnitude. We also see that the total decay width

is largely unaffected as the many decay modes to sparticles become kinematically

accessible, although the case B2-GK2 blatantly sees where the sfermions become

dominant (mφ ∼ 20 TeV) and the Higgs cancellation occurs (mφ ∼ 2 TeV).

Since case B2-GK2 has all model-dependent decays suppressed in addition to

suppressed couplings to the gauge sector, this case represents the lower limit of

Γtotal
φ among the scenarios in Tables (4.4) and (4.5) in the φMSSM. Of course, we

now must ask how we expect these total widths to change if additional model-

dependent decay channels are unsuppressed. In case B1-GK1, we saw that the
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gravitino was subleading to the Higgs channel by about an order of magnitude.

Therefore, we expect the unsuppressed gravitino’s contribution to the total decay

width to be sub-percent level - and so the case B1-GK1 will have a value of Γtotal
φ

that is nearly identical to the case B2-GK1. Case B1-GK2 will have a more

pronounced difference compared to case B1-GK1 since the gauge boson modes

are subdominant, although we expect an increase in total width of only about

10% here - which is still hardly noticeable on this plot.

Considering now the cases where the modulus is stabilized supersymmetrically,

the addition of unsuppressed gaugino decay modes can potentially provide a

significant difference to Γtotal
φ since they are expected to be comparable to the

gauge boson modes. In the GK1 cases, since the gauge bosons are the dominant

decay mode we then expect that the addition of unsuppressed gaugino decays

in cases A1 and A2 should increase Γtotal
φ by about a factor of 2 over their

B1 and B2 counterparts. However, in the GK2 cases, this addition should be

mostly washed out from the suppression of λgauge, and so these modes should

only change the total width by about 0.1%. Thus, we expect that all GK2

cases will be quantitatively very close to the case B2-GK2 - and thus we largely

expect cosmological predictions in the GK2 scenario to be largely independent

of the scenario in Table (4.4). Meanwhile, cases B1-GK1 and B2-GK1 should

have nearly identical total width, and cases A1-GK1 and A2-GK1 both give

a Γtotal
φ that is roughly twice as large. As we will see when we study dark

matter production, we are typically in the annihilation scenario (where the WIMP

DM abundance is set by the annihilation rate and the modulus decay scale) -
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and since the LSPs will annihilate somewhat efficiently, the increase in gaugino

production is largely irrelevant. However, the small increase in total width will

cause the modulus to decay slightly earlier, which actually gives us marginally

more optimistic predictions for cases A1 and A2 than for case B1 and B2 in the

GK1 context.

4.3.3 Modulus decays in the φMSSM - the ultralight ALP case

In this section, we display the results of the decays in the φMSSM where we

assume that the ALP is ultralight - and thus a viable decay mode of the modulus.

As we have discussed in Sec. (4.2), the decays to ALPs are an unsuppressed decay

mode and thus potentially a leading decay channel. Here, we again adopt the

natural SUSY benchmark point from Table (4.3), and take all modulus couplings,

including the coupling to the ALP, to unity (λi = 1). For the sake of brevity,

we include only the results for case B2-GK1 - the other case scenarios then

follow similar qualitative and quantitative behavior to the results presented in

the previous section.

In Fig. (4.10), we display the modulus partial decay widths in the case B2-

GK1 which now includes the ultralight ALP. This case assumes suppressed decays

to gravitinos and gauginos, but unsuppressed gauge couplings. Displayed in

Fig. (4.11) are the associated branching ratios of the modulus. We see that the

decays to ALPs (brown curve) is quantitatively almost identical to the decays

to the Higgs sector (green curve), each taking a branching ratio of roughly 10%

for mφ & 50 TeV. This is a particularly important consequence for studying the
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Figure 4.10: Modulus partial decay widths for the case B2-GK1 as a
function of mφ for the natural SUSY benchmark point in Table (4.3)
with the addition of an ultralight axion-like particle (ALP). Here, all
λi couplings are set to unity including the coupling to ALPs, λALP.

production of dark radiation, which is heavily dependent on the modulus branching

ratio into ALPs. As we will see later, in case B2-GK1 dark radiation can be

produced at a level consistent with experimental constraints for λALP ∼ O(1).

This is a direct consequence of the assumption that the dominant decays are to

gauge bosons, which strongly suppresses the branching fraction to ALPs. We then

expect case B1-GK1 to give a similar branching ratio into ALPs compared to

case B2-GK1 since the decays to gravitinos, if unsuppressed, are still subleading

to the Higgs and ALP decays. However, cases A1-GK1 and A2-GK1 will include

the gauginos as a dominant decay mode, with roughly the same magnitude as

the gauge bosons - so we expect the branching ratio to ALPs to be decreased by

roughly a factor of 2 in these cases. Thus, cases A1-GK1 and A2-GK1 are even

more optimistic than case B2-GK1 from this point of view.
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Figure 4.11: Modulus branching ratios for the case B2-GK1 as a
function of mφ for the natural SUSY benchmark point in Table (4.3)
with the addition of an ultralight axion-like particle (ALP). Here, all
λi couplings are set to unity including the coupling to ALPs, λALP.

However, since the gauge sector in case B2-GK2 is highly suppressed, the

leading decays in this scenario are to Higgs and ALPs each with branching ratios

of roughly 50% for mφ & 100 TeV. Due to this drastic increase in the branching

ratio to ALPs, we expect a significant increase in production of dark radiation in

case B2-GK2 over case B2-GK1. In order to keep dark radiation production at

a level consistent with current experimental bounds, the coupling λALP must then

be suppressed, i.e. λALP � 1. Of course, whether or not a value of λALP � 1 can

be realized in specific string constructions will be model-dependent. Additionally,

using the same arguments we made in the previous section, we expect that all of

the scenarios in the GK2 category will suffer from this problem as the additional

unsuppressed modes will still be subdominant to the Higgs and ALP channels.
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4.3.4 Modulus decays in the φPQMSSM

In this section, we display the results of the two-body decays φ→ A+B in the

φPQMSSM. As we have discussed in Sec. (4.1.2), incorporating a DFSZ-type

axion sector forbids the Giudice-Masiero [246] term by PQ symmetry, while the

SUSY µ term is now generated by the Kim-Nilles mechanism [247]. Thus, in

the φPQMSSM the decays to the Higgs sector is mass suppressed, i.e. the decay

to Higgs pairs scales as m−1
φ . Including the PQ sector then introduces both

the saxion and the axion as unsuppressed decay modes. The φPQMSSM thus

generically has unsuppressed decays to gauge bosons, saxions, and axions, with

possible additional unsuppressed decays as in Table 4.4. However, any case that

assumes unsuppressed gauginos now also requires unsuppressed axinos, which

arise from the same F -term interaction as the unsuppressed gauginos. This leads

to interesting deviations for our results in the GK2 cases, as the coupling to the

PQ sector can yield an additional leading decay mode if the axino decays are

unsuppressed.

parameter PQ
ms 5 TeV
mã 5 TeV
fa 1011 GeV
θi 3.113
ma(T = 0) 372 µeV

Table 4.6: Parameters for a PQ benchmark point.

For the sake of brevity, we present results for cases B2-GK1 and B2-GK2

which assume suppressed decays into gravitinos, gauginos, and axinos, and again

discuss our expectations for the results in the remaining cases. Additionally, we
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consider only the case where there are no ultralight ALPs in the spectrum - and

leave study for the cases including ultralight ALPs for future work. We again

adopt the benchmark values given in Table (4.3), and augment them with the

parameters relevant for the PQ sector which are listed in Table (4.6). Additionally,

we take λPQ = 1 with all remaining couplings also set to unity, except in the

GK2 cases where we again take the couplings to the gauge sector to be unified at

λgauge = 1/16π2.

Figure 4.12: Modulus decay widths in the case B2-GK1 for the natural
SUSY benchmark point in Table (4.3) and PQ sector parameters in
Table (4.6). Here, all λi couplings are set to unity.

We display the results for modulus decay in the φPQMSSM for case B2-GK1

in Fig. (4.12). The decays to Higgs particles (green curve) are now mass-suppressed

and are subleading even when compared to the sfermions (red curve) for mφ & 7.2

TeV, when the t̃2 and b̃1 channels become accessible. Decays to axion pairs (brown

curve) have roughly the same partial width that the decay to Higgs pairs had in
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the φMSSM. Once the saxion channel becomes accessible at mφ ∼ 10 TeV, the

decays to saxions (pink curve) give an identical contribution and overlaps the

axion curve. Additionally, we see that the decay to axinos (gray curve) overlaps

with the decay to gravitinos (yellow curve) once the gravitino channel opens at

mφ ∼ 60 TeV.

Figure 4.13: Modulus branching ratios in the case B2-GK1 for the
natural SUSY benchmark point in Table (4.3) and PQ sector parame-
ters in Table (4.6). Here, all λi couplings are set to unity.

We display the corresponding branching ratios in Fig. (4.13). We see that

the axion and saxion each comprise about 4% of the modulus branching ratio,

while the gauge bosons have roughly 92%. The branching ratio to SUSY particles

thus depends crucially on the details of saxion decay. As discussed by Chun and

Lukas [290], self-interactions in the PQ sector are model-dependent and can be

parameterized as [300]

L ⊃ ξ

fa
s
[
∂µa ∂

µa+ iã/∂ã
]

(4.50)
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with the effective self-coupling expected to be 0 . ξ . 1. As the PQ sector

self-interactions play a dominant role in the decay of the saxion, we consider

both the limiting cases ξ = 1 and ξ = 0 when we study the cosmology of the

φPQMSSM. However, the bounds for the total branching ratio to SUSY particles

is similar to those for the B2-GK1 case in the φMSSM, which was displayed in

Fig. (4.3).

Figure 4.14: Modulus decay widths in the case B2-GK2 for the natural
SUSY benchmark point in Table (4.3) and PQ sector parameters in
Table (4.6). Here, all λi = 1 except for λgauge = 1/16π2.

For the case B2-GK2, we see from Figs. (4.14) and (4.15) that the dominant

decay mode is into axions for mφ . 10 TeV, and thus we would expect this

regime to be immediately excluded by dark radiation constraints. Once the saxion

becomes kinematically available, the saxions and axions are equally dominant

decay modes for mφ & 30 TeV, while a brief window between 20 TeV . mφ . 30

TeV has the first and second generations of sfermions dominating the modulus

149



decay. Because of the large production of axions from modulus decay in this

scenario, we might expect overproduction of dark radiation to provide the most

stringent constraints on this scenario.

Figure 4.15: Modulus branching ratios in the case B2-GK2 for the
natural SUSY benchmark point in Table (4.3) and PQ sector parame-
ters in Table (4.6). Here, all λi = 1 except for λgauge = 1/16π2.

As we have already mentioned, the decay of the saxion is the dominant

contribution in the overall modulus branching fraction to SUSY particles. Here,

we investigate the decay of the saxion for both limiting cases for the PQ self-

coupling, ξ = 1 and ξ = 0. For this work, we adopt the saxion and axino decay

widths to the MSSM which are provided in the appendix of [285]. As we are

considering here only the case with suppressed modulus decays to axinos, we focus

our discussion on the decays of the saxion which are dominant once the modulus

has decayed. It is worth mentioning that the saxion decays are similar to those

of the modulus, with the exception that they are suppressed by the PQ scale fa

150



instead of the Planck scale mP . Since the mass of the saxion is expected to be of

Figure 4.16: Saxion decay widths for the self-coupling ξ = 1 and the
natural SUSY benchmark point from Table (4.3) with PQ parameters
from Table (4.6).

order of the soft SUSY breaking terms [290], many of the interactions which are

negligible for the modulus (as we show in App. (A)) must be taken into account

for the saxion.

For the PQ sector self-coupling ξ = 1, we display the saxion decay widths in

Fig. (4.16) and the saxion branching fractions for the same case in Fig. (4.17). We

see that the leading decay of the saxion is to pairs of axions (green curve) if the

self-interaction of the PQ sector is present. Similarly to the modulus, the decay to

axion pairs scales as m3
s and thus remains a leading decay channel throughout the

range of saxion masses. The other decay channel that has this scaling is to gauge

bosons (blue curve), which in this case arises from mixing between the saxion and

the Higgs sector [285]. Additionally, we see that the decay to axino pairs, shown
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Figure 4.17: Saxion branching ratios for the self-coupling ξ = 1 and the
natural SUSY benchmark point from Table (4.3) with PQ parameters
from Table (4.6).

by the red curve, becomes sizeable once it becomes accessible at ms = 2mã ∼ 10

TeV. The saxion decay width to axinos scales as msm
2
ã [285] so if the saxion were

to be significantly heavier than the 20 TeV limit we display in Fig. (4.16), we

would expect the axino mode to be surpassed by the gauge boson mode. For

ms . 2mã ∼ 10 TeV, we see that the second most prominent decay mode is to

gauginos. In particular, we note the sharp peak at ms ∼ 2 TeV - although this

peak coincides with the saxion mass at which the heaviest chargino and neutralino

become kinematically accessible decay modes, this peak is primarily due to mixing

effects between the saxion and the Higgs sector [285]. When the saxion mass

is close to the mass of the heavy scalar Higgs, i.e. ms ∼ mH ∼ 2 TeV, the

saxion-Higgs mixing leads to a sharp enhancement of the effective couplings for

the gauginos, as well as the fermions (purple curve) and the Higgs channels (pink
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curve). This mixing would also induce a similar resonance in the sfermion decay

channel (gray curve), although this channel is closed until the lightest sfermions

become accessible around ms ∼ 2.5 TeV. Thus for the ξ = 1 limit, we expect the

saxion to decay primarily to axions, which behave as dark radiation, and gauginos

and/or axinos, which cascade decay to the LSP.

Figure 4.18: Saxion decay widths for the self-coupling ξ = 0 and the
natural SUSY benchmark point from Table (4.3) with PQ parameters
from Table (4.6).

For the PQ sector self-coupling ξ = 0, we display the saxion decay widths

in Fig. (4.18) and branching fractions in Fig. (4.19). We see that, perhaps as

expected, the decay widths are unchanged except that any decay to axions or

axinos is forbidden. However, since the axions were the dominant decay mode

in the ξ = 1 limit, we see from Fig. (4.19) that the dominant branching fraction

is now to gauginos, which is only overtaken by the gauge boson channel once

ms ∼ 20 TeV. Although the ξ = 0 limit will not introduce any additional dark
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Figure 4.19: Saxion branching ratios for the self-coupling ξ = 0 and the
natural SUSY benchmark point from Table (4.3) with PQ parameters
from Table (4.6).

radiation, the substantial increase in the branching ratio to gauginos compared to

the ξ = 1 limit suggests the ξ = 0 limit may produce significantly more WIMP

dark matter if the saxion takes sufficiently long to decay.

For the axino, there is no distinction between the ξ = 1 and ξ = 0 cases,

as can be read from Eq. (4.50). These decay modes arise from axino-higgsino

mixing [285], similar to the fashion that the saxion decay modes arise. The axino

decay widths are displayed in Fig. (4.20), and the associated branching fractions

in Fig. (4.21). We see that the axino decays predominantly to either gauginos

and Higgs bosons (green curves) or gauginos and gauge bosons (blue curve). The

decays to sfermion + fermion pairs is highly suppressed, and is kinematically

forbidden until the top quark + top squark threshold, at roughly 1.4 TeV. Due to

R-parity conservation, the axino must cascade decay to the LSP - resulting in a

154



Figure 4.20: Axino decay widths for the natural SUSY benchmark
point from Table (4.3) with PQ parameters from Table (4.6).

Figure 4.21: Axino branching ratios for the natural SUSY benchmark
point from Table (4.3) with PQ parameters from Table (4.6).

100% branching fraction to SUSY. In the cases where modulus decay to axinos is

unsuppressed, this may produce a significant excess of WIMP dark matter.
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Figure 4.22: Decay widths of the gravitino into the PQMSSM. We
again take the natural SUSY benchmark point from Table (4.3) and
PQ parameters from Table (4.6).

Finally, we also note that the gravitino may couple to the PQ sector. As we have

previously mentioned, a viable cosmology requires the gravitino to decay before

BBN. Furthermore, since the gravitinos - at least, in unsequestered scenarios - are

expected to decay rather late due to the gravitational nature of their interactions,

they can overproduce LSPs when they decay even if the decay occurs before BBN.

It is therefore crucial to understand the decays of the gravitino into the MSSM

and the PQ sector. These decays were computed in a generalized fashion by Kohri

et al. [227], which we adopt here. In Fig. (4.22), we display the partial widths of

the gravitino. We see that the leading decay channels are into the MSSM sparticle-

particle pairs, with the decay to axinos and either axions or saxions providing

only a small contribution to the total width of the gravitino. From Fig. (4.23),

we see that the branching ratio to the PQ sector is B(ψ3/2 → PQ) . 1%, while
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Figure 4.23: Gravitino branching ratios to the PQMSSM. We again
take the natural SUSY benchmark point from Table (4.3) and PQ
parameters from Table (4.6).

decays to a gaugino/gauge boson pair are the leading decay channel within our

scan limits. Due to R-parity conservation, we note that the branching ratio into

R-parity odd particles is 1. Thus, if produced in copious quantities (such as in

cases B1 and A1), its late decay will produce a large overabundance of LSP dark

matter. We also note that, although the branching ratio to an axino/axion pair

(shown by the red curve) is around 1%, the decay of the gravitino can make a

small contribution to the total amount of dark radiation.
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Chapter 5

Qualitative cosmological features of the φMSSM

and φPQMSSM

Now that we have discussed the basic properties of the φMSSM and φPQMSSM

EFTs, we are in a position to study the cosmology of both. We begin this chapter

by presenting the relevant Boltzmann equations that describe the cosmological

evolution of the model, which are derived in App. (B). We then provide a semi-

quantitative treatment of these Boltzmann equations to discuss the key features

and predictions for both the φMSSM and φPQMSSM when applied to our cases

enumerated in Tables (4.4) and (4.5). This includes estimates for the production

of dark matter and dark radiation, which we will see are rather constraining. We

will then include results from numerical solutions of the Boltzmann equations in

the next chapter, which in general agree quite well with our semi-quantitative

estimates.

5.1 The Boltzmann equations

We begin this section by presenting the general set of Boltzmann equations which

are derived in App. (B). We then provide discussion specific to each of the φMSSM

and of the φPQMSSM. In both models, each field that we track utilizes a pair of

Boltzmann equations - one which governs the evolution of its comoving number

density, and one which governs the evolution of its comoving energy density. This

allows us to model the smooth transition between the ultra-relativistic regime and
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the non-relativistic regime for any thermally or decay-produced particles as the

equations evolve from very high temperatures to very low temperatures. With

some simplifications, these equations also describe the evolution of coherently

oscillating scalar fields, which we track separately from any thermal counterparts.

To close the set of Boltzmann equations, we supplement these with the Boltzmann

equation which governs the evolution of entropy.

The Boltzmann equation that governs the i-th species comoving number

density ni is given by:

dni
dt

+ 3Hni =
∑
j

(ninj − ninj) 〈σi+j→a+b|v|〉

− Γi
mini
ρi

(
ni − ni

∑
i→a+b

Bi→a+b
nanb
nanb

)

+
∑
a

Γa
mana
ρa

(
Ba→ina − na

∑
a→i+b

Ba→i+b
ninb
ninb

)
. (5.1)

The corresponding Boltzmann equation which governs the evolution of the i-th

species’ energy density is given by:

dρi
dt

+ 3H (ρi + Pi) =
∑
j

(ninj − ninj) 〈σi+j→a+b|v|〉
ρi
ni

− Γimi

(
ni − ni

∑
i→a+b

Bi→a+b
nanb
nanb

)

+
∑
a

Γa
ma

2

(
Ba→ina − na

∑
a→i+b

Ba→i+b
ninb
ninb

)
. (5.2)

The temperature dependence of the axion also requires a term ṁ/m [286] - which
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we use in our numerical analysis but omit writing explicitly here for simplicity.

In both Eq. (5.1) and Eq. (5.2), the left-hand side is derived from the Liouville

operator and governs how the relevant phase space density evolves in an expanding

universe. On the right-hand side, the first term in both equations is the annihilation

term where ni denotes the equilibrium number density, and 〈σi+j→a+b|v|〉 is the

thermally averaged annihilation cross section. For most of our analysis, we can

make the approximation i = j - e.g. in the case of the lightest neutralino, the

total annihilation cross section is dominated by the Z̃1 + Z̃1 ↔ a+ b reaction. It is

worth noting that when the interaction rate of the annihilation term, ni〈σi+...|v|〉,

is the dominant term in the Boltzmann equation, it acts as an attractor towards

equilibrium - i.e. it pushes ni → ni. However, once the Hubble dilution becomes

about the same order (i.e. 3H ∼ ni〈σi+...|v|〉) the density of i is too dilute to

annihilate efficiently, and freeze-out occurs. This effect will factor prominently

into our discussion of the abundance of WIMP dark matter in the thermal and

non-thermal scenarios. Additionally, for coherently oscillating scalar fields which

are effectively zero-momentum condensates [286], this term is set to 0.

The second term on the right-hand side of both Eq. (5.1) and Eq. (5.2) accounts

for the decay of a species i. This decay term accounts for the decay i → a + b,

as well as inverse decays a + b → i which arise while chemical equilibrium is

maintained. If i is highly relativistic, its lifetime should also be accordingly dilated

in the comoving frame (which is implicitly assumed in our Boltzmann equations)

when compared to its lifetime in the rest frame. Relativistic dilation of i is thus

accounted for in the factor mini/ρi, which translates the rest frame of i to the
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comoving frame as we show in App. (B). For species which are assumed to be

stable, Γi = 0 so that the decay term vanishes.

Finally, the third term on the right-hand side of both Eq. (5.1) and Eq. (5.2)

is the injection term, which accounts for the decay of all species a that produce i.

This term is, unsurprisingly, very similar to the decay term as they arise due to

the same collision operator, as we discuss in App. (B). We note that the addition

of the branching ratio Ba→i is the effective branching ratio of a cascade decaying

to i, excluding any other fields which are explicitly tracked by these Boltzmann

equations. This term is set to 0 for the Boltzmann equations describing coherently

oscillating fields, which are not produced by decays of other particles.

To model the evolution of the thermal background radiation, we utilize the

Boltzmann equation for comoving entropy which is given by:

dS

dt
=
R3

T

∑
i

Bi→radΓimi

(
ni − ni

∑
i→a+b

Bi→a+b
nanb
nanb

)
. (5.3)

Here, Bi→rad is the branching ratio of i to any species that we treat as radiation,

and thus excludes decays to the LSP and any species explicitly tracked separately.

The relation between the entropy and temperature is then given by [286]:

s ≡ S

R3
=

2π2

45
g∗S(T )T 3 (5.4)

where g∗S(T ) is the number of entropic degrees of freedom. It is then a simple
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matter to relate this to the radiation energy density, which is given by

ρr =
π2

30
g∗(T )T 4 (5.5)

where g∗(T ) is the number of relativistic degrees of freedom. In order to close the

above equations, the final constraint we require is the Friedmann equation, which

reads:

H2 =
ρtotal

3m2
P

(5.6)

where ρtotal is the total energy density of the universe.

Additionally, we need to know the equilibrium number density ni. For fields

which follow a thermal distribution, a good approximation of the equilibrium

number density is given by [286, 372]:

ni =



gi
(
miT
2π

)3/2
exp (−mi/T ) (T < mi/10)

gi

(
m2
i

2π2T

)
K2 (mi/T ) (mi/10 ≤ T ≤ 3mi/2)

giNF

(
ζ(3)
π2

)
T 3 (T > 3mi/2)

(5.7)

where gi are the number of spin degrees of freedom, NF = 1 (3/4) for bosons

(fermions), and the modified Bessel function K2 is required to describe the

transition between the non-relativistic and relativistic regimes. For coherently

oscillating fields, ni = 0.

We are now in a position to discuss some key qualitative features of the Boltz-
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mann equations. Although the numerical solutions of the Boltzmann equations

will give us more precise predictions, these qualitative features will provide us

with significant insight to the relevant physics.

5.2 The temperature scales of interest

We begin our qualitative treatment of the Boltzmann equations by discussing the

relevant temperature scales of interest. For our purposes, these scales correspond

to when massive particles decay, when scalar fields begin oscillating, when the

modulus begins to dominate the energy density of the universe, and when the

modulus begins injecting entropy into the thermal bath thus marking the beginning

of modulus decay. Once we have the relevant formulae for these temperatures, we

estimate these scales for the φMSSM and the φPQMSSM and investigate their

dependence on the details of the modulus.

5.2.1 Decay temperature

The first qualitative result that we discuss is the decay temperature T iD of a

species i. In the sudden decay approximation, we assume that the decay happens

instantaneously when the Hubble scale is sufficiently low, i.e.

H(T iD) ∼ Γi (5.8)
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where Γi is the decay width of i. This is most easily read from Eq. (5.1), which in

this limit reduces to1

ṅi + 3Hni ' −Γini. (5.9)

When the decay interaction dominates over Hubble dilution, the solution of this

equation is an exponential decrease of ni - and once i has begun to decay, the

decay process proceeds rapidly.

Assuming that the universe is radiation-dominated after the decay process

and that the decay process occurs instantaneously, we have the expression:

T iD =
√
mPΓi

(
90

π2g∗(T iD)

)1/4

(5.10)

which follows directly from the expression for the Hubble parameter in a radiation-

dominated universe:

H(T ) ' T 2

mP

√
π2

90
g∗(T ) (5.11)

and the aforementioned conditions. Before we continue, it is worth stressing that

species with larger decay widths will decay at higher temperatures compared to

species with smaller decay widths, regardless of the dominant background.

1Here we have assumed i is non-relativistic when it decays. For the case of the modulus
or any other coherently oscillating fields, this is a very good approximation. Additionally, the
gravitino decays very late and is redshifted towards the non-relativistic limit. These are the
two cases that are most of interest for this approximation, as we will see when we discuss the
φPQMSSM.
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5.2.2 Oscillation temperature

Coherent oscillation, sometimes referred to as the misalignment mechanism, is

a unique cosmological property of scalar fields, and thus applies to the moduli,

saxion, and axion fields. Before we discuss the temperature at which oscillations

begin, let us first illustrate the details of this intriguing property for a generic

scalar field, ϕ. A more complete treatment can be found in e.g. [373].

Considering a scalar field ϕ in an FRW universe and neglecting perturbations,

the action for ϕ is given by

S =

∫
d4x
√
− det g

[
1

2
∂µϕ∂

µϕ− V (ϕ)

]
. (5.12)

The Euler-Lagrange equation of motion can then be written down:

∂µ∂
µϕ+ Γµµρ∂

ρϕ = −∂V
∂ϕ

. (5.13)

Assuming that the field is homogeneous (i.e. ϕ = ϕ(t), consistent with our

zeroth-order assumptions here), this reduces to

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (5.14)

where V ′ denotes differentiation of the potential with respect to ϕ, while ϕ̇ denotes

differentiation of ϕ with respect to comoving time. We now assume that the field

is initially displaced from its minima - i.e. the inflationary potential shifts the
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field ϕ(0) far away from its post-inflationary minima 〈ϕ〉. We thus approximate

the potential as dominated by its quadratic term, V ∼ 1
2
m2ϕ2 (where, for the sake

of this discussion, we have taken 〈ϕ〉 ∼ 0 as it is irrelevant for this discussion).

The equation of motion now becomes that of a damped harmonic oscillator:

ϕ̈+ 3Hϕ̇+m2ϕ = 0. (5.15)

When 3H > m, the system is overdamped and, assuming that H is varying slowly

with respect to the time scale of interest, we have the solution ϕ ∼ ϕ(0) ∼ const.

However, once we have 3H < m, the system is underdamped and thus begins to

oscillate, and for 3H � m, we arrive at the solution ϕ ∼ Re[A exp(imt)] where A

is a constant prefactor. We see that once Hubble friction becomes negligible, the

amplitude of ϕ’s oscillations approach a constant value.

It is also worth computing the stress-energy tensor for ϕ. The time-time

component is given by

T 0
0 = ρ =

1

2
ϕ̇2 + V (ϕ) = m2A2 cos2(mt) (5.16)

while the space-space components are given by

T ii = P =
1

2
ϕ̇2 − V (ϕ) = 0. (5.17)

It is now evident that coherently oscillating fields have the equation of state of a

cold matter fluid, w = P/ρ = 0. Additionally, we can take the time-average of
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the time-time component of the stress-energy tensor, which gives us

ρ0 =
1

2
m2A2. (5.18)

Of course, this expression has assumed that H is slowly varying and is thus

applicable to a small window close to when oscillations begin. Since coherently

oscillating fields behave as cold dark matter, over cosmological time scales this

energy density will decrease like matter so that

ρ(t) = ρ0

(
R(t = t0)

R(t)

)3

. (5.19)

To summarize, during the period where Hubble friction is significant, ϕ is

“frozen” in its displacement away from its true minima. When the Hubble friction

becomes much smaller, ϕ is no longer held in place and begins to oscillate about

its true minima and acts as cold matter. If ϕ does not decay, the oscillation

phenomenon will continue to the current time (although its energy density will

dilute as matter) since the Hubble friction should monotonically decrease. The

misalignment mechanism thus can provide a good cold dark matter candidate if

the field is cosmologically stable, as is the case with the axion which was first

discussed by Abbott et al. [374], Dine et al. [375], and Preskill et al. [376].

Based on the discussion above, we are now in a position to estimate the
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temperature at which oscillations begin through the critically damped case:

3H(Tosc) ∼ m(Tosc) (5.20)

where we have allowed for a temperature dependent mass. The temperature

dependence of m is not relevant for the modulus or the saxion, but is required for

the axion, which gets a non-zero (albeit tiny) mass through instanton corrections

[280, 375]. If we take Tosc ≤ T1 where T1 is some reference temperature, the fact

that the oscillating fields dilute as matter implies the relation

(
R(Tosc)

R(T1)

)3

=


(

H(T1)
H(Tosc)

)3/2

(radiation-dominated)(
H(T1)
H(Tosc)

)2

(matter-dominated)

(5.21)

for the cases where the universe is either radiation-dominated or matter-dominated

between T1 and Tosc.

If we assume that no massive particles decay out of equilibrium so that

conservation of entropy holds, taking S1/S2 = const. produces the relation

(
R(T2)

R(T1)

)3

=
g∗(T1)T 3

1

g∗(T2)T 3
2

. (5.22)

We should note that Eq. (5.22) holds in both radiation-dominated and matter-

dominated backgrounds so long as conservation of entropy holds.

We are also interested in epochs where a field decays out of equilibrium and

produces considerable entropy. Specifically, we are interested in the inflationary
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reheating period as well as the decay of the modulus and saxions, all of which are

assumed to decay in a matter-dominated background. We therefore refer to this

period as being “decay-dominated” to distinguish from matter-dominated periods

where entropy is conserved. During a decay-dominated epoch, we instead use

the result that the radiation is being sourced in the decay and scales instead as

ρrad ∝ R−3/2 [286]. Thus, during a decay-dominated period, we have the relation

(
R(T1)

R(T2)

)3

=

(
g∗(T2)T 4

2

g∗(T1)T 4
1

)2

. (5.23)

Since we require a reference temperature T1 to estimate the Hubble parameter

H(T1), we provide here the expression for the oscillation temperature of the

modulus taking the inflationary reheat temperature as our reference point, which

we denote as TR. As the hierarchy mφ � ms � ma dictates that modulus

oscillations begin first, this estimate will be common to both the φMSSM and

the φPQMSSM. We then provide estimates for the saxion and axion oscillation

temperatures when we discuss the φPQMSSM, as these are more conveniently

estimated using model-specific reference points. Assuming that the universe is

radiation-dominated at the inflationary reheat temperature2 TR, we can combine

2We keep this assumption throughout this work. If the universe were matter-dominated at
TR, it is likely that the contributions to the energy density from the modulus would end the
inflationary reheating period early. Detailed treatment then requires additional assumptions
about the inflationary sector and the details of reheating. This may lead to interesting, non-
trivial dynamics similar to those explored in [377]. However, this is beyond the scope of this
work.
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the above expressions to

H(T φosc) =
π

3mP

√
g∗(TR)

10
×


(
g∗(T

φ
osc)

g∗(TR)

)2/3

(T φosc)
2 (T φosc ≤ TR)

g∗(T
φ
osc)

g∗(TR)
(Tφosc)4

T 2
R

(T φosc ≥ TR)

(5.24)

where we have used

H(TR) =

√
π2g∗(TR)T 4

R

90m2
P

. (5.25)

Imposing now the oscillation condition 3H(T φosc) ∼ mφ, we find the oscillation

temperature of the modulus is given by

T φosc '


√
mPmφ

(
10

π2g∗(T
φ
osc)

)1/4

(T φosc ≤ TR)

(T 2
RmP mφ)

1/4
(

10 g∗(TR)

π2g2∗(T
φ
osc)

)1/8

(T φosc ≥ TR).

(5.26)

As expected, in the limit that Tosc → TR, the two expressions coincide.

5.2.3 Modulus-radiation equality temperature

In this section, we calculate the temperature at which the modulus comes to

dominate the energy density of the universe, which we denote as T φe . 3 Although

the saxion and/or axino may also come to dominate over the radiation energy

density as studied in [378, 372, 302, 301, 300], we shall see shortly that with

the addition of the modulus, the saxion and axino domination is extremely

3This temperature of matter-radiation equality is not to be confused with the matter-radiation
equality temperature that occurs around the eV scale.
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subdominant by comparison. Starting with our expectation for ρφ from Eq. (5.19),

we have the following cases

ρφ =
1

2
m2
φφ

2
0 ×



1 (T ≥ T φosc)

g∗(T )

g∗(T
φ
osc)

T 3

(Tφosc)3
(T ≤ TR, T

φ
osc ≤ TR)(

g∗(T )

g∗(T
φ
osc)

T 4

(Tφosc)4

)2

(T ≥ TR, T
φ
osc ≥ TR)

g∗(T )g∗(TR)

g∗(T
φ
osc)2

T 3T 5
R

(Tφosc)8
(T ≤ TR, T

φ
osc ≥ TR)

(5.27)

where we use Rosc/R(T ) = (Rosc/RTR)(RTR/R(T )) for the case where T ≤ TR but

T φosc ≥ TR. Setting this equal to ρrad and plugging in the appropriate expression

for T φosc, we arrive at our expression for T φe :

T φe =



(
15

π2g∗(T
φ
e )

)1/4√
mφφ0 (T φosc ≤ T φe )

3
2

(
10

π2g∗(T
φ
osc)

)1/4 (
φ0
mP

)2√
mPmφ (T φe ≤ T φosc ≤ TR)

(
2
3

)1/4
(
g∗(TR)

g∗(T
φ
e )

)1/4√
mP
φ0
TR (TR ≤ T φe ≤ T φosc)

3
2

(
φ0
mP

)2

TR (T φe ≤ TR ≤ T φosc)

(5.28)

We note that we can immediately discard the third case (TR ≤ T φe ≤ T φosc) as this

case scenario contradicts our assumption that the universe is radiation-dominated

at TR. While we would not expect a significant change in the physics of this case,

we leave the study of this case for future work as the details of the reheating

period then become interdependent with the details of the lightest modulus.

Before concluding this section, let us first look more closely at the case where
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T φe ≤ TR ≤ T φosc. We see that if φ0 >
√

2/3mP , then T φe > TR - contradicting

the assumed hierarchy of temperatures for this case. Thus, if the modulus

has large enough energy density and oscillations commence during inflationary

reheating, the end of inflationary reheating may actually transition directly to a

matter-dominated universe instead of a radiation-dominated one.

5.2.4 Entropy injection temperature

The last temperature that we require is the temperature at which entropy begins

to be injected due to modulus decay. We denote this temperature as TS. As

we have radiation being sourced by the decay between TS and TD, we have a

decay-dominated universe and - much as in the reheating scenario - Eq. (5.23)

provides a good description of the evolution during this period.

By analogy to the reheating epoch, we can write the relation

H(TD)2

H(TS)2
=

(
g∗(TD)T 4

D

g∗(TS)T 4
S

)2

. (5.29)

Assuming that the universe is radiation-dominated after decay, we may use

the standard radiation-dominated form for H(TD). To estimate H(TS), we can

multiply Eq. (5.29) by H(TS)2/H(Te)
2 and, by assuming conservation of entropy

between Te and TS, we can write instead the expression

H(TD)2

H(Te)2
=
g∗(TS)T 3

S

g∗(Te)T 3
e

(
g∗(TD)T 4

D

g∗(TS)T 4
S

)2

. (5.30)
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Upon noting that TD and Te both mark transitions between matter-domination

and radiation-domination (and hence H(TD) and H(Te) take on the standard

radiation-dominated form), we can retrieve our estimate for the entropy injection

temperature:

TS =

(
g∗(TD)

g∗(TS)
TeT

4
D

)1/5

. (5.31)

5.2.5 The temperature scales of the φMSSM

Here, we apply our discussion from the previous sections to the φMSSM. We

begin by estimating the decay temperature of the modulus. From Fig. (4.9), we

estimate the decay width of the case B2-GK1 to be about Γφ ∼ 10−20 GeV for a

modulus with a mass of mφ ∼ 103 TeV. Applying this to Eq. (5.10), we would

expect a modulus decay temperature of roughly

(
T φD

1 GeV

)
' 0.13

(1 GeV)1/2
×
(

Γφ
10−20 GeV

)1/2
(

20

g∗(T
φ
D)

)1/4

. (5.32)

As we have discussed in Sec. (4.3.2), the GK2 cases all are expected to have a

decay width roughly an order of magnitude below the corresponding GK1 case,

and thus we would estimate the modulus decay temperature in the GK2 cases

to be roughly a factor of 3 lower than in the GK1 case. Additionally, we expect

roughly the same result for the B1 cases as for the corresponding B2 cases. The

cases A1 and A2 roughly doubles the decay width, which leads to an increase by
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a factor of about 1.4 for the modulus decay temperature.

It is crucial to reiterate that this temperature must be above the scale that

BBN occurs. We see from Fig. (4.9) that, optimistically speaking, case A1-GK1

might produce a decay width around Γφ ∼ 10−25 GeV for mφ ∼ 10 TeV. This

pushes the decay temperature down to T φD ∼ 0.5 MeV, well below the expected

BBN scale, T ∼ (3− 5 MeV). Clearly, a modulus with mφ . 10 TeV (or possibly

even much larger, depending on the case scenario) suffers from the cosmological

moduli problem (CMP).

Moving to the oscillation temperature of the modulus, we have from Eq. (5.26)

the following estimate for mφ ∼ 103 TeV:

(
T φosc

1 GeV

)
'


4.04× 1011

( mφ
103 TeV

)1/2
(

225
g∗(Tosc)

)1/4

(T φosc ≤ TR)

6.36× 1011
(

TR
1012 GeV

) 1
2
( mφ

103 TeV

) 1
4

(
225

g∗(Tosc)

) 1
8

(T φosc ≥ TR)

(5.33)

where in the last line, we take g∗(TR) ' g∗(Tosc) ' 225. We see that for typical

values of the modulus mass, the oscillation temperature is very large, and unless

TR & O(1012) GeV, oscillations likely commence during inflationary reheating.

Indeed, a 10 TeV modulus would still have an oscillation temperature around

T φosc ∼ 1010 GeV.

We have now seen that roughly 12 orders of magnitude separate when the

modulus begins to oscillate and when it decays. However, it remains to estimate

when the modulus overtakes radiation as the dominant energy density, which

gives us a sense of how long the early matter dominated period is. Using again
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our benchmark modulus mass, mφ ∼ 103 TeV, Eq. (5.28) gives us the estimate

(
T φe

1 GeV

)
'



4.44× 1011
(

225

g∗(T
φ
e )

)1/4 ( mφ
103 TeV

)1/2
(
φ0
mP

)1/2

(T φosc ≤ T φe )

6.02× 1011
(

225

g∗(T
φ
osc)

)1/4 ( mφ
103 TeV

)1/2
(
φ0
mP

)2

(T φe ≤ T φosc ≤ TR)

1.5× 1012
(
φ0
mP

)2 (
TR

1012 GeV

)
(T φe ≤ TR ≤ T φosc)

(5.34)

where we again assume g∗(T
φ
osc) ' g∗(TR) ' g∗(T

φ
e ) ' 225. We see here that based

on some very general assumptions, the modulus will begin to dominate the energy

density of the universe at a very high temperature and continue to dominate the

energy density until it decays potentially very close to BBN.

Finally, it is worth estimating the scale at which entropy begins to be injected

into the thermal bath. This provides us with some intuition on how prolonged

the modulus decay is expected to be in the full Boltzmann solution. Additionally,

this provides us with our expectations of when the decay-dominated background

begins, which will play a crucial role in our semi-quantitative estimates when

we study the φPQMSSM. Using our benchmarks from this section, Eq. (5.31)

provides the estimate

(
T φS

1 GeV

)
' 30.2

×
(
g∗(TD)

20

)1/5(
90

g∗(TS)

)1/5(
T φe

4× 1011 GeV

)1/5
(

T φD
0.13 GeV

)4/5

. (5.35)

Thus, we see that the modulus decay-dominated epoch lasts from a radiation
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temperature of around 30 GeV to around 0.1 GeV for mφ ∼ 103 TeV. Within

the φMSSM, we do not expect any cosmological effects that we consider to occur

in this window. This is not true in the φPQMSSM - we will see that axion

oscillations are potentially likely to begin during this decay-dominated epoch. We

should note that due to the high scale of T φe and sensitive mφ-dependence of T φD,

the duration of the decay-domination can easily change by over a full order of

magnitude depending on the precise details of the modulus.

Before we display results of the semi-quantitative estimates as a function of mφ,

we emphasize that the only temperatures that depend on the case scenario are the

decay temperature T φD and, by extension, the entropy injection temperature T φS .

The oscillation temperature and the temperature at which the modulus begins

to dominate the background are entirely independent of the assumptions on how

the modulus decays. We therefore have our estimates for these temperatures in

the φPQMSSM. Furthermore, the dependence of the decay temperature on the

case scenario is not exceedingly large. For a given value of mφ, we have argued

that case A1-GK1, which has the largest total width of our 8 case scenarios

from Tables (4.4) and (4.5), is expected to be around a factor of 20 larger than

case B2-GK2, which has the smallest total width. However, since the decay

temperature depends on
√

Γφ, we expect only a factor of about 5 difference

between the best and worst case scenarios, which can be compensated for by

tripling the value of mφ. Considering the scales involved with modulus cosmology,

we therefore expect only relatively small quantitative differences between our

many case scenarios, while the qualitative behavior is largely unchanged.
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There is one glaring exception to this statement. If gravitinos are produced in

large quantities via modulus decay, they may grossly overproduce dark matter or

decay during/after BBN. This is the moduli-induced gravitino problem, which

has been studied in [225, 226, 227, 228, 229, 230]. We have seen from Fig. (4.22)

that the gravitino total width for m3/2 ∼ 30 TeV is roughly Γ3/2 ∼ 10−24 GeV.

Thus, we expect the gravitino decay temperature which we denote as (by abuse

of notation) T
3/2
D :

(
T

3/2
D

1 GeV

)
' 0.0011

(1 GeV)1/2
×
(

Γφ
10−24 GeV

)1/2
(

10.75

g∗(T
φ
D)

)1/4

(5.36)

where, although clear from context, the superscript 3/2 refers to the gravitino and

not exponentiation. Although clearly the decay of the gravitino occurs at roughly

the scale of BBN, detailed calculations from Jedamzik [379] and later Kawasaki et

al. [380, 381] suggest that this bound can be eased slightly, so long as the gravitino

abundance is sufficiently low. Our BBN bound on the modulus is thus more

conservative than the bound on the gravitino, and although similar calculations

can be performed for the modulus which may ease the BBN constraints slightly,

we will see that moduli that decay close to BBN still overproduce WIMP dark

matter in both the φMSSM and the φPQMSSM.

In Fig. (5.1), we plot the oscillation temperature T φosc, modulus-radiation

equality temperature T φe , entropy injection temperature T φS , and decay temperature

T φD estimates from the above formulae as a function of mφ using our natural SUSY

benchmark point in Table (4.3) and assuming case B2-GK1. We also plot the
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Figure 5.1: Relevant temperature scales for the φMSSM using the
natural SUSY benchmark point from Table (4.3). We plot both the
decay and entropy injection temperatures for all couplings set to
λi ∈ {0.1, 1, 10}. We also plot the neutralino freeze-out temperature
Tf.o. ∼ mZ̃1

/20 and two estimates for the temperature of BBN.

expected upper bound on the inflationary reheating temperature (horizontal red

dashed line) based on arguments from Buchmüller, et al., which claim that the

dilaton becomes destabilized above T & 1012 GeV [382, 383]4 - we therefore denote

this upper bound on the inflationary reheating temperature as TBHLRR ≡ 1012

GeV, so that TR . TBHLRR . Both the oscillation temperature (orange curve) and

the modulus-radiation equality temperature (green curve) are, as expected, very

4In these works, the finite-temperature effective potential was derived and it was shown to
induce a destabilizing term. The authors then found the critical temperature at which destabi-
lization occurs, which is related to the gravitino mass. This work predates the Large Volume
Scenario which provides a natural source of sequestering in string theory, which potentially
pushes this critical temperature to a much higher bound. We do not consider this here, and
adopt this maximum TR ∼ 1012 GeV throughout - furthermore, we will show that most of our
results are independent of TR.
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close to the reheating temperature which we take here to be TR = TBHLRR . We see

that for mφ & 6× 103 TeV, the modulus begins to oscillate during the inflationary

reheating process for our assumed value of TR. Any initial radiation-domination at

TR is also almost immediately overcome by the modulus. We also plot the decay

(cyan curves) and entropy injection (red curves) temperatures for the modulus for

all couplings set to λi ∈ {0.1, 1, 10} to compensate for the uncertainties in the

couplings. The full set of decay widths listed in App. (A) was used to produce Γφ

for each mφ and λi in the computation of T φD and T φS . As we have already discussed,

the modulus decay width does not impact the oscillation and modulus-radiation

equality temperatures which both depend primarily on the modulus mass. We

also plot the neutralino freeze-out temperature Tf.o. ∼ mZ̃1
/20 ∼ 10 GeV (purple

dot-dashed line) for our natural SUSY benchmark point, and two estimates of the

BBN temperature TBBN (black dashed lines) which provide a more conservative

estimate, TBBN ∼ 5 MeV, and a more optimistic estimate, TBBN ∼ 3 MeV (see

e.g. [384, 385, 386] for more discussion on determining TBBN in the presence of a

late-decaying scalar).

It is immediately apparent that if the modulus mass is below roughly mφ .

4× 103 TeV (if all λi = 10) to mφ . 7× 104 TeV (if all λi = 0.1), the modulus

will decay after neutralino freeze-out. As we will see in the next section, this

results in an enhancement of the neutralino relic density - thus lighter mφ are

more susceptible to WIMP dark matter overproduction. Large moduli masses

then produce neutralino abundances at the thermally-expected value, unless some

late decaying particle (such as gravitinos) produce large quantities of neutralinos
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at later times. Additionally, depending on the couplings and how conservative an

estimate of TBBN, a modulus mass above mφ & 10 TeV to mφ & 300 TeV is required

to ensure BBN safety in case B2-GK1. Finally, we note that the entropy injection

temperature is generally within 1-2 orders of magnitude of the decay temperature.

Although this scale is not strictly necessary to understand the relevant scales in the

φMSSM, it is imperative to understanding the production of coherently-oscillating

axions when we study the φPQMSSM. As we have previously discussed, we expect

the GK2 cases to have roughly an order of magnitude decrease in Γφ as compared

to the GK1 cases. Thus, we can expect that the λi = 0.1 curves on this plot

will give a decent representation of the GK2 case with all λi = 1 (except of

course for λgauge = 1/16π2). In the GK2 case, we then would expect for λi ∼ 0.1

to push the BBN bound to even larger mφ - likely requiring mφ & 500 TeV to

ensure BBN safety. Additionally, the A1 and A2 cases will only push the curves

slightly towards the left - if the inclusion of unsuppressed gaugino decays increases

the width by a factor of 2, the corresponding T φD increases only by roughly a

factor of 1.5. For all λi = 1, this translates to cases A1 and A2 falling roughly

halfway between the λi = 1 and λi = 10 curves for the shown B2 case. As the

unsuppressed gravitino modes are only expected to be roughly a percent-level

increase in Γφ, we expect this figure to also show accurate temperature scales for

case B1-GK1.

If gravitinos are produced in large quantities from modulus decay (such as

in cases A1 and B1), they may drastically enhance the neutralino relic density

or interfere with BBN. We plot the gravitino decay temperature along with the
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Figure 5.2: Gravitino decay temperature T
3/2
D vs m3/2. We also

plot the neutralino freeze-out temperature Tf.o. ∼ m
Z̃1
/20 and two

estimates for the temperature of BBN.

neutralino freeze-out and BBN temperatures in Fig. (5.2) as a function of the

gravitino mass m3/2. We see that a large gravitino mass m3/2 & 60 TeV may be

required to satisfy BBN constraints if produced in large abundance. Additionally,

we see that m3/2 & 104 TeV is required to decay before neutralino freeze-out. In

unsequestered scenarios, this can run into possibly severe tension with naturalness

expectations - TeV-scale soft terms might be viable with a 60 TeV gravitino, but

if the overproduction of neutralino dark matter requires m3/2 ∼ 104 TeV it is

difficult to believe a scenario with TeV-scale soft terms would arise without fairly

significant tuning [387, 363, 185]. Incidentally, while this is not an issue with

sequestered scenarios which do allow for TeV-scale soft terms with m3/2 & 104
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TeV, in sequestered LVS models the gravitino gains a mass larger than the bulk

(lightest) modulus and is thus kinematically forbidden. This may not be the

case in sequestered KKLT scenarios, which may give mφ > m3/2 � O(1 TeV)

[388, 200].

5.2.6 The temperature scales of the φPQMSSM

Here, we discuss the relevant temperature scales of the φPQMSSM. As we have

seen in Sec. (4.3), the modulus decay widths associated with the PQ sector are

quantitatively similar to those of the Higgs sector in the φMSSM - and thus we

expect the decay temperature of the modulus to be roughly unchanged, even

when considering the many scenarios from Tables (4.4) and (4.5). We have also

remarked in the previous section that the oscillation temperature T φosc and the

temperature of modulus-radiation equality T φe are independent of the details of

the modulus itself, save for its mass and initial amplitude of oscillation. The

φPQMSSM thus inherits all of the same temperature estimates we presented for

the φMSSM - the modulus begins to oscillate at a very high temperature and

overtakes the energy density of the universe almost immediately, leading to an

early matter dominated period (EMD) until it is expected to decay at a scale

not very far from BBN. Within the φPQMSSM, however, the addition of the

axion and saxion in particular introduce additional scales of interest as both of

these scalar fields may have coherently oscillating modes, in addition to the usual

thermal or decay production.

We are first tasked with understanding the decay scale of the axino and saxion.
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As we saw in Sec. (4.3.4), our benchmark 5 TeV saxion and axino have decay

widths of roughly Γs ∼ 10−13 GeV and Γã ∼ 10−14 GeV. Rough estimates for

these decays are then given by

(
T sD

1 GeV

)
' 190

(1 GeV)1/2
×
(

Γs
10−13 GeV

)1/2(
120

g∗(T sD)

)1/4

(5.37)

and

(
T ãD

1 GeV

)
' 62

(1 GeV)1/2
×
(

Γã
10−14 GeV

)1/2(
10.75

g∗(T ãD)

)1/4

. (5.38)

There are two issues with the above approximations. First, as we detailed in

Sec. (5.2.1), this approximation requires radiation-domination to estimate the

temperature at H(T iD) ∼ Γi. Unless the saxion or axino decays before T φe or

after T φD, this is in general not the case - the universe is expected to be matter-

dominated due to the presence of the modulus, resulting in a more complicated

dependence between the radiation temperature and the Hubble scale. The second

reason is more subtle - it was noted in [300] that in the SUSY DFSZ model,

inverse decays such as h+ h→ s and Z̃1 + h→ ã can be significant if the decay

temperature is large enough to be of order of the saxion or axino mass. This

changes the condition for the sudden decay approximation to

H(T iD) ∼ Γi

(
1− ni

ni

∑
i→a+b

Bi→a+b
nanb
nanb

)
(5.39)

which has the net effect of reducing the effective Γi, and thus prolonging the
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decay. However, for our purposes, these estimated decay temperatures serve as a

qualitative estimate that predicts the saxion to decay first, followed shortly by

the axino, then the modulus. The gravitino, at least in unsequestered scenarios,

is then expected to be the final particle to decay. One final comment is that the

axino and saxion are produced via the decay of the modulus, which takes place well

after these estimated temperatures. At least in the sudden decay approximation,

this paints the picture that the coherently oscillating saxions and initial thermal

population of saxions and axinos decay entirely during modulus domination, and

are then briefly repopulated by modulus decay at a much lower scale.

Our next endeavor will be to estimate the oscillation temperatures of the

saxion and the axion. In this case, we can now compare to temperature scales

that are set by the modulus, which dominates the cosmological background during

this time period. This allows for more convenient formulae, but also allows us

insight as to the interplay between these sectors.

Beginning with the saxion, we apply similar logic as we did with the modulus

but instead compare to T φosc (instead of the inflationary reheating temperature

TR). For the saxion, we have only the case where oscillations begin in a matter-

dominated background as dictated by the condition 3H ∼ ms � mφ with the
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assumed mass hierarchy.5 We then have the relation

H(T sosc) = H(T φosc)

(
g∗(T

s
osc)

g∗(T
φ
osc)

)1/2(
T sosc

T φosc

)3/2

. (5.40)

Imposing 3H(T sosc) ∼ ms, we find the oscillation temperature of the saxion:

T sosc = T φosc

(
ms

mφ

)2/3(
g∗(T

φ
osc)

g∗(T sosc)

)1/3

. (5.41)

Estimating these values, we see

(
T sosc

1 GeV

)
' 1.17× 1010

(
T φosc

4× 1011 GeV

)( ms

5000 GeV

)2/3
(

106 GeV

mφ

)2/3

(5.42)

where we again have taken g∗(T
φ
osc) ∼ g∗(T

s
osc) ∼ 225. Evidently, the saxion

oscillations begin soon after the modulus has begun to oscillate, which provides

a posteriori justification of our neglection of other background cases. Although

T φosc has mild mφ dependence, for both T φosc ≤ TR and T φosc ≥ TR the saxion

oscillation temperature is still inversely proportional to mφ (if only mildly). It is

straightforward to check that in the limit ms → mφ, we have T sosc → T φosc.

We now apply our oscillation considerations to the axion, where we do expect

to have several possible scenarios due to the axion’s extremely small mass. If

5We ignore the cases where the modulus begins decaying/injecting entropy or completely
decays prior to saxion oscillations and assume the modulus dominates the energy density before
saxion oscillations begin. This assumption is justified due to the extremely large energy density
and relatively low decay temperature of the modulus in comparison to the lighter, more strongly
interacting saxion.
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the modulus decays very late, we may have T aosc > T φS > T φD so that the modulus

still dominates while axion oscillations commence. In this case, it makes sense

to compare T aosc to the oscillation scale of the modulus T φosc as we expect both

matter-domination and entropy conservation during this period. We may also

have axion oscillations commence during the (non-sudden) modulus decay process,

i.e. T φS & T aosc & T φD, which occurs during a decay-dominated background. Here,

we compare to the scale of modulus decay T φD which marks a transition between

decay-domination and radiation-domination. Finally, axion oscillations may also

occur once the modulus has decayed. As we have just discussed, we expect the

modulus to typically decay after the saxion and hence we focus only on the case

where the universe is radiation-dominated after modulus decay, i.e. for the case

T aosc < T φD.

Putting these cases together, we have

H(T aosc) =



H(T φosc)
(
g∗(Taosc)

g∗(T
φ
osc)

)1/2 (
Taosc
Tφosc

)3/2

(T aosc > T φS )

H(T φD)
(
g∗(Taosc)

g∗(T
φ
D)

)(
Taosc
TφD

)4

(T φS & T aosc & T φD)√
π2

90m2
P
g∗(T aosc)(T

a
osc)

4 (T aosc < T φD)

(5.43)

where we neglect entropy injection due to saxion and axino decays. We are now in

a position to impose 3H(T aosc) ∼ ma(T
a
osc), where we adopt the axion’s temperature
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dependence as described in [280, 389, 390, 391] which reads

ma(T ) =
(
6.2× 10−3 GeV

)( NDW

fa/(1 GeV)

)
×


1 (T . ΛQCD)

0.018
(

ΛQCD

T

)4

(T & ΛQCD)

(5.44)

where ΛQCD ' 200 MeV is the QCD scale and NDW is the domain wall number,

which for our DFSZ case is NDW = 6. Taking the ansatz that T aosc & ΛQCD, the

oscillation temperature of the axion is then estimated by

T aosc =



(
A−2 10m2

P

π2g∗(Taosc)Tφosc

)1/11

(T aosc > T φS )(
A−1mP (TφD)

2

πg∗(Taosc)

)1/8 (
10g∗(T

φ
D)
)1/16

(T φS & T aosc & T φD)

(
A−1mP

π

)1/6
(10/g∗(T

a
osc))

1/12 (T aosc < T φD)

(5.45)

where we have made the definition

A−1 ≡
(
6.2× 10−3 GeV

)( NDW

fa/(1 GeV)

)(
0.018Λ4

QCD

)
(5.46)

for notational convenience. We now are in a position to estimate these results.

Here, we take fa = 1011 GeV which has been suggested to be the cosmological

sweet-spot for the SUSY DFSZ axion [5, 139] (see also Sec. (3.2.1)). This yields

an axion mass at present time m(T = 0) ∼ 378µeV. The axion oscillation
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temperature is then estimated to be

(
T aosc

1 GeV

)
=



0.108×
(

1.09×10−17 GeV−5

A

)2/11

×
(

75
g∗(Taosc)

)1/11 (
4×1011 GeV

Tφosc

)1/11

(T aosc > T φS )

0.636×
(

1.09×10−17 GeV−5

A

)1/8 (
75

g∗(Taosc)

)1/8

×
(

TφD
0.13 GeV

)1/4 (
g∗(T

φ
D)

20

)1/16

(T φS & T aosc & T φD)

1.20×
(

1.09×10−17 GeV−5

A

)1/6 (
75

g∗(Taosc)

)1/12

(T aosc < T φD).

(5.47)

In the first case, we find that in order to be consistent with the assumed tempera-

ture hierarchy T aosc > T φS , one must push the modulus mass far below the rough

bound mφ ∼ O(50 TeV) set by the CMP - even with some tuning of couplings.

Hence, we find that in phenomenologically viable scenarios the onset of axion

oscillations is expected to start in either the modulus decay-dominated epoch, or

when the universe becomes radiation-dominated after the modulus has completely

decayed - and in both cases, begins at roughly T ∼ O(1 GeV).

5.3 Estimates of produced abundances

In this section, we qualitatively study the production of dark matter in the

φMSSM and φPQMSSM. We then apply similar arguments to study dark radiation

production in a qualitative manner within the φPQMSSM and (if it contains

an ultra-light ALP) the φMSSM. This utilizes several approximations to the

Boltzmann equations we presented in Sec. (5.1) in addition to our temperature
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estimates from the previous section, Sec. (5.2).

5.3.1 Thermal WIMPs and gravitinos - relics of inflation

In standard thermal histories (e.g. ΛCDM), most models incorporating WIMPs

assume some form of thermal production. After inflationary reheating, the

WIMPs are produced in large quantities through interactions with the radiation,

e.g. i+ j ↔ Z̃1 + Z̃1, with a large enough cross section 〈σZ̃1
v〉 to reach equilibrium.

Once the temperature drops sufficiently so that the Hubble rate is comparable to

the interaction rate, the WIMPs are dilute enough that annihilations cease and

freeze-out occurs. As the Hubble dilution of WIMPs matches the Hubble dilution

of entropy, the WIMPs then have a constant abundance yield YZ̃1
assuming

no significant source of entropy after freeze-out. However, if a light modulus

is present its decay will produce a large amount of entropy which reduces the

thermally-produced WIMP abundance. It is generally assumed in cosmological

scenarios with light moduli that thermal relics are diluted to negligible amounts,

which we show here is typically a good assumption.

We begin by defining the entropy dilution factor to be

r ≡ Sf
S0

. (5.48)

By taking S0 = S(T φS ) and Sf = S(T φD), it is easy to show that

r =
g∗(T

φ
D)

g∗(T
φ
S )

(
R(T φD)

R(T φS )

)3(
T φD
T φS

)3

' T φe

T φD
(5.49)
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where we focus solely on entropy production by the decay of the modulus. Based on

our previous numerical estimates of T φe ∼ O(1011−1012) GeV and T φD ∼ O(0.1−1)

GeV for our mφ ∼ 103 TeV benchmark, we see immediately that r can easily

be O(1011) or larger. We display in Fig. (5.3) the entropy dilution factor r as

a function of mφ and see that - except for extremely large modulus masses -

the estimated entropy dilution is rather sizeable. As mφ increases, the entropy

dilution then decreases due to the early decay. The entropy dilution factor in this

approximation also drops at a faster rate once the modulus begins to oscillate

during the reheating period, as here T φe becomes constant with respect to mφ. If

mφ becomes too large, we see that the entropy dilution may become too weak to

sufficiently dilute thermal relics. However, we will not consider moduli masses

greater than mφ ∼ 109 TeV in this work as they decay sufficiently early to

effectively decouple from the cosmology, leading to only small deviations from a

standard thermal history.

For some thermally-produced species i, we can estimate the relic density ΩTP
i

in the absence of entropy production is given by [286]

ΩTP
i h2 ' miYih

2

ρc/s0

(5.50)

where h is the dimensionless Hubble constant, s0 ∼ 2970 cm−3 is the present

entropy density, and ρc/h
2 ∼ 1.05× 10−5 GeV · cm−3 is the critical closure density.
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Figure 5.3: Entropy dilution factor r ' T φe /T φD vs mφ for each λi ∈ {0.1, 1, 10}.

Factoring entropy dilution then changes this to

ΩTP′

i h2 ' miY
TP
i h2

rρc/s0

= r−1ΩTP
i h2 (5.51)

where Y TP
i is the abundance yield in a standard thermal history (no entropy

dilution) and we have denoted the final relic density by ΩTP′

i . Clearly, any species

that has an appreciable relic density in a standard thermal history can be expected

to be diluted by a significant amount (∼ 11 orders of magnitude, depending on

mφ) in a non-thermal history where modulus decay is present. Unless WIMPs

are overproduced by the same magnitude as the dilution factor,6 the dark matter

relic density must then be produced non-thermally. We will discuss non-thermal

6See e.g. [392] for a proposal of this sort, which assumes superheavy neutralinos in a high-
scale SUSY context are vastly overproduced and diluted to the measured relic density by light
modulus decay.
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production scenarios in the following sections.

However, this substantial dilution of inflationary relics can in turn be a signifi-

cant advantage of moduli cosmology. In models of SUSY cosmology, gravitinos are

also produced in large quantities in inflationary reheating. Unlike WIMPs, graviti-

nos are only gravitationally coupled which 1. gives them an extremely suppressed

cross section 〈σ3/2v〉 so that gravitinos never annihilate in significant quantities,

2. gives them an extremely long lifetime, which can interfere with the predictions

of BBN, and 3. can overproduce WIMPs through the late decay enhancement

(which we will discuss in the next section). This is the thermal gravitino problem,

and is studied in detail in e.g. [380, 393, 227, 300, 285, 394, 395, 396]. One of

the distinct consequences of the thermal gravitino problem is that the gravitino

abundance is directly proportional to the inflationary reheating temperature TR,

so large TR & O(106−8 GeV) is expected to vastly overproduce gravitinos. For

lower inflationary reheating temperatures, the production is reduced sufficiently

that a viable cosmology is possible. In the modulus-dominated cosmology, the

massive entropy dilution can change these predictions significantly - which results

in a much larger viable TR than in a thermal scenario.

To demonstrate this, we adopt thermally-produced gravitino production rates

calculated by Pradler and Steffen [394] and plot them vs m3/2 in Fig. (5.4). These

rates take the form

ΩTP
3/2h

2 '
3∑
i=1

ωig
2
i

(
1 +

M2
i

3m2
3/2

)
log

(
ki
gi

)( m3/2

100 GeV

)( TR
1010 GeV

)
(5.52)
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Figure 5.4: Thermally-produced gravitino relic density ΩTP
3/2h

2 for

TR = TBHLRR = 1012 GeV. We also show the predicted relic density in
the presence of modulus decay for mφ ∈ {10, 100, 1000} TeV for case
B2-GK1 with all λi = 1. Figure taken from [6].

where gi are the U(1)Y , SU(2)L, and SU(3)c gauge couplings, Mi are the corre-

sponding gaugino masses, and the parameters ci ∼ O(10− 100), k1 ∼ O(1), and

ωi ∼ O(0.01− 0.1). Clearly, the expected gravitino production will increase as

TR increases, and as seen from Fig. (5.4) the gravitino abundance (blue curve)

is well above acceptable bounds for TR = 1012 GeV. The entropy dilution from

the modulus, however, dilutes this tentatively massive abundance to negligible

amounts which we see from the entropy dilution curves in the figure for mφ = 10

TeV (red curve), mφ = 100 TeV (green curve), and mφ = 1000 TeV (orange curve).

Of course, we see also that as mφ increases, its entropy dilution weakens slightly.

We will return to this point later, although we note in passing that this weakening
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of the dilution can lead to a resurgence of the thermal gravitino problem if mφ is

large enough. Additionally, if m3/2 becomes very large (m3/2 � 104 TeV) we see

that the gravitino abundance may still be problematic even with entropy dilution -

though as we saw in Fig. (5.2) a gravitino mass this large might then be expected

to decay well before BBN which also alleviates the thermal gravitino problem.

This may not be the case if the gravitino is the LSP - though we do not consider

this case in this work. Furthermore, a gravitino mass this large is well beyond the

expected natural value m3/2 ∼ O(10−50) TeV in the absence of sequestering (due

to our assumption of TeV-scale soft terms), while in the presence of sequestering

one might expect an extremely large gravitino mass which decays sufficiently early

to effectively decouple from the late-time cosmology. Thus, for the cases we are

interested in here we may safely assume that the thermal gravitino problem is

alleviated by the massive entropy production from modulus decay.

5.3.2 Non-thermal WIMPs - the annihilation scenario

Since the thermally-produced relics are expected to be diluted to negligible

amounts, dark matter must then be produced non-thermally. First we focus on

dark matter that is produced in significant quantities from decay processes (e.g.

from moduli or saxion decays) which leads to the so-called annihilation scenario.

We then discuss in the next section the production of dark matter from decay

processes where the produced abundance is relatively low - which is referred

to as the branching scenario in much of the literature. Finally, we will discuss

production of axions from the misalignment mechanism in Sec. (5.3.7).
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Let us first focus on neutralinos produced from moduli decay. Close to the

neutralino freeze-out, the equilibrium density falls rapidly and - assuming WIMP

annihilations are the dominant effect immediately after modulus decay - we can

approximate the number density Boltzmann equation for the neutralino as

ṅZ̃1
+ 3HnZ̃1

' −〈σv〉n2
Z̃1
. (5.53)

Putting this in terms of the abundance yield YZ̃1
≡ nZ̃1

/s, we can rewrite this as

ẎZ̃1
' −〈σv〉Y 2

Z̃1
s. (5.54)

In the limit of constant 〈σv〉, we can integrate this equation from T φD to the present

time to find

Y C
Z̃1
' H(T φD)

〈σv〉s(T φD)
(5.55)

which may be recast in terms of the number density:

nC
Z̃1

(T φD) ' H(T φD)

〈σv〉
. (5.56)

Here, we have used the superscript C to denote this number density as the “critical

density,” following the terminology of [357].

This simple result encapsulates some extremely powerful physics. If the

produced abundance is large - specifically so that YZ̃1
(T φD) & Y C

Z̃1
(T φD) where
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YZ̃1
(T φD) is the abundance yield produced instantaneously after the decay of the

modulus - then the neutralinos will be abundant enough to undergo annihilations.

These WIMP annihilations will then continue until the neutralino abundance

reaches the critical value Y C
Z̃1

(T φD) - which then remains constant in the absence of

any further significant source of production. This is somewhat of a generalization

of the freeze-out process, which in the presence of a late-decaying modulus might

occur after the expected thermal freeze-out temperature is reached. Assuming

radiation-domination follows the modulus decay, we can see that Y C
Z̃1
∝ 1/T φD, so

that a larger modulus decay temperature will have a smaller critical abundance. In

particular, if T φD > Tf.o., then the neutralino abundance is large enough for efficient

annihilations to diminish the abundance to the standard thermal freeze-out value.

If instead T φD < Tf.o., then annihilations may still take place, but the dilution

of the produced abundance due to Hubble expansion reduces the efficiency of

annihilations - giving an enhancement in the final abundance in comparison to

the thermal (freeze-out) value. This is the main idea behind the original work

of Moroi and Randall [355] which showed that thermally-underproduced dark

matter - such as wino-like neutralinos (or in our case, higgsino-like neutralinos) -

can be enhanced to levels in accordance with the measured relic density (see also

Choi, Kim, and Seto [397]).

Combining these arguments, we can give an extremely concise estimate for the

neutralino relic density. Assuming a thermally-produced relic density of ΩTP
Z̃1
h2

(i.e. the expected WIMP relic density in a standard thermal scenario), the WIMP

relic density in the annihilation scenario which we denote as ΩC
Z̃1
h2 (the critical
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relic density) is given by

ΩC
Z̃1
h2 ' ΩTP

Z̃1
h2 ×max

{(
Tf.o./T

φ
D

)
, 1
}
. (5.57)

It is worth reiterating that - at least in the annihilation scenario - if the modulus

decay happens before thermal freeze-out, the produced dark matter abundance

is indistinguishable from that of a standard thermal scenario. We also see that

if the modulus decays very late, this enhancement can grossly overproduce dark

matter. This is sometimes referred to as the moduli-induced DM overproduction

problem [234].

5.3.3 Non-thermal WIMPs - the branching scenario

If the produced abundance is instead too small to annihilate - even inefficiently -

the treatment of the previous section does not apply. In this case, the primary

contribution to the neutralino’s Boltzmann equation close to the time of modulus

decay are the injections which can be approximated as

dnZ̃1

dt
+ 3HnZ̃1

' ΓφBφ→Z̃1
nφ (5.58)

where we focus only on neutralinos produced via modulus decay here. Rewriting

this in terms of the abundance yield variables YZ̃1
and Yφ, this can be rewritten as

ẎZ̃1
' ΓφBφ→Z̃1

Yφ. (5.59)
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It is now a trivial matter to integrate this expression from T φD to the present

time. As Yφ is only non-zero for the lifetime of φ (∼ Γ−1
φ ), in the sudden decay

approximation we have the result:

Y D
Z̃1
' Bφ→Z̃1

Yφ(T φD) (5.60)

or, in terms of the neutralino number density:

nD
Z̃1

(T φD) ' Bφ→Z̃1
nφ(T φD) (5.61)

where we now use the superscript D to denote this abundance as the “decay-

produced density.” This scenario is sometimes referred to as the “branching

scenario” since the WIMP abundance is simply that which is directly produced

from the decay of some massive species. The branching scenario also provides a

mechanism for thermally-overproduced dark matter - such as bino-like neutralinos

- to match the observed relic density.

We are now in a position to estimate the WIMP relic density produced in the

branching scenario. In this case, we can use Eq. (5.50) with our expression for

Y D
Z̃1

. However, in evaluating Yφ(T φD) there is one subtlety. Before the modulus

decays at T φD, it has begun to inject entropy at T φS - so in the sudden decay

approximation we require Yφ(T φD) to be defined with respect to the produced
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entropy from modulus decay. This can be cast in the simple form

Yφ(T φD) ' 45

4π2

r−1mφφ
2
0

g∗S(T φosc)(T
φ
osc)3

(5.62)

where we have used nφ(T φosc) = 1
2
mφφ

2
0 and used the entropy dilution factor to

account for the entropy production between T φS and T φD. As we expect r to increase

as mφ decreases, we see that although Yφ(T φD) is in general quite large due to

the expectation that φ0 ∼ mP , it is possible that the modulus abundance at

T φD may be very small for small mφ. This then provides us with a fairly concise

approximation for the neutralino relic density in the branching scenario:

ΩD
Z̃1
h2 ' 45

4π2

Bφ→Z̃1
mZ̃1

ρc/(s0h2)

r−1mφφ
2
0

g∗S(T φosc)(T
φ
osc)3

. (5.63)

Now that we have expressions for the neutralino relic density in both the annihi-

lation scenario and the branching scenario, we can then in general estimate the

WIMP abundance by

ΩZ̃1
h2 ∼ min

{
ΩC
Z̃1
h2, ΩD

Z̃1
h2
}
. (5.64)

5.3.4 Non-thermal WIMP production in the φMSSM - case B2

We first apply our arguments from the preceding sections to case B2 utilizing our

natural SUSY benchmark point from Table (4.3). Taking a benchmark mφ ∼ 103
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TeV, in addition to assuming a branching ratio B(φ→ SUSY) ∼ 0.01, it is clear

that we predict the annihilation scenario which gives

ΩZ̃1
h2 ∼ min {1.7, 2600} ∼ 1.7 (mφ = 103 TeV). (5.65)

Additionally, it is easy to convince oneself that larger values of mφ should likewise

Figure 5.5: Critical abundance yield Y C
Z̃1

(orange) and decay-produced

abundance yield Y D
Z̃1

(green) for neutralinos. Here we take case B2-

GK1 and assume 1% of Higgses decay to SUSY in addition to all
R-parity odd decays.

predict the annihilation scenario, based on the scaling of any mφ-dependent

parameters. Closer inspection of Eq. (5.63) indicates that smaller values of mφ

may predict the branching scenario however, since lowering mφ increases the

entropy dilution faster than T φosc. We display this behavior in Fig. (5.5) for case
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B2-GK1, which shows both the critical abundance yield Y C
Z̃1

(orange curve) and

the decay-produced abundance yield Y D
Z̃1

(green curve). We have also assumed

that the gravitinos - which are suppressed in this case - are produced in low

enough quantities to be ignored. In this figure, we adopt the lower bound LB2

which was shown in Fig. (4.3). This lower bound includes all direct R-parity

odd decays (i.e. modulus to sfermions, etc.) and assumes the Higgs sector has a

1% branching ratio to R-parity odd pairs. The critical abundance is computed

using the relic density estimate from IsaRED [330] ΩZ̃1
h2 ∼ 0.011, as listed in

Table (4.3). Evidently the annihilation scenario - given by the critical abundance

yield Y C
Z̃1

- is predicted for most of the displayed mφ, although the branching

scenario given by the decay-produced abundance yield Y D
Z̃1

becomes predicted for

mφ . 20 TeV.

We display the corresponding relic density based on our qualitative arguments

in Fig. (5.6) for this same lower bound. In addition, we display the predicted

relic density for each λi ∈ {0.1, 1, 10}. Even in this lower bound scenario, we

see that the WIMP relic density appears to be a much more stringent constraint

on mφ than the BBN bound. For larger values of the modulus couplings, we see

mφ & 700 TeV can satisfy the observed relic density, while smaller values push this

constraint to mφ & 2× 104 TeV - both well above our estimated mφ & (10− 300)

TeV constraint from BBN considerations (again, depending on the assumed values

of the couplings). We also see that the branching scenario is predicted for small

values of mφ with lower values of the couplings λi = 0.1 predicting the branching

scenario at a much larger value of mφ than for λi = 1, 10. However, WIMP dark
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Figure 5.6: Predicted WIMP relic density for each λi ∈ {0.1, 1, 10}.
Here we take case B2-GK1 and assume 1% of Higgses decay to SUSY
in addition to all R-parity odd decays. Figure updated from [6].

matter is still grossly overproduced even in this lower bound scenario - one would

need to introduce model-dependent considerations to reduce the branching ratio

to SUSY particles by more than an order of magnitude without changing the total

width significantly in order to reproduce the observed dark matter density in the

branching scenario.

We display in Fig. (5.7) the corresponding relic density for the upper bound

UB shown in Fig. (4.3), which includes all direct R-parity odd decays and assumes

the Higgs sector has a 100% branching ratio to R-parity odd pairs. We see that

- especially for λi = 0.1 - small values of mφ now predict even larger WIMP

relic densities. Lower values of mφ are also now predicted to be described by

the annihilation scenario than in our previous figure. However, since both the
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Figure 5.7: Predicted WIMP relic density for each λi ∈ {0.1, 1, 10}.
Here we take case B2-GK1 and assume 100% of Higgses decay to
SUSY in addition to all R-parity odd decays. Figure updated from [6].

lower bound in Fig. (5.6) and the upper bound in Fig. (5.7) transition to the

annihilation scenario before the WIMP relic density falls below the measured

value Ωh2 ∼ 0.12, both branching ratio bounds give identical constraints on mφ.

For the sake of comparison, we display in Fig. (5.8) the predicted WIMP

relic density adopting a constant modulus branching ratio to SUSY particles of

B(φ → SUSY) = 1%. Based on our previous discussion in Sec. (4.3.2), this is

rather artificial for mφ . 60 TeV for the φMSSM - although it serves as a useful

comparison for what one might expect as a lower bound if one neglects mixing and

phase space effects (as is conventional in the literature). Even with this artificial

lower bound, we see that - although we still transition between the annihilation

scenario and the branching scenario, the total WIMP relic density is still grossly
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Figure 5.8: Predicted WIMP relic density for each λi ∈ {0.1, 1, 10}.
Here we take case B2-GK1 but assume a flat branching fraction to
SUSY B(φ → SUSY) = 1% (independent of mφ). Figure updated
from [6].

overproduced.

We should note that in the branching scenario, it may be possible to reproduce

the observed DM relic density for mφ . 1 TeV. In particular, for mφ ∼ 500 GeV

most decay modes to SUSY particles will be kinematically forbidden, possibly

reducing the branching ratio sufficiently to reproduce Ωh2 ∼ 0.12. This scenario

however would require the modulus decay to occur after BBN - and is thus

excluded. Therefore, we do not expect the branching scenario from modulus

decay to be viable in the φMSSM - while the annihilation scenario is viable if

mφ & (700−2×104) TeV - depending on the magnitude of the modulus couplings.

Additionally, we expect similar results for the produced neutralino relic density
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in case A2-GK1, as well as in B2-GK2 and A2-GK2. This is largely due

to the fact that we expect the annihilation scenario for a viable cosmology and

the modulus decay temperature will not be significantly affected in any of these

cases. Based on our arguments in Sec. (4.3.2) and Fig. (4.9), we would expect a

decrease of T φD by about a factor of 3 in the GK2 cases, and an increase of T φD

by a factor of about 1.5 in the A2 case - leading to similar results to those we

have just discussed. Additionally, in the A2 cases it is likely that the transition

to the branching scenario is pushed to even smaller mφ and results in a larger

WIMP abundance - although this enhancement occurs only in the region where

neutralinos are already overproduced.

5.3.5 Non-thermal WIMP production in the φMSSM - case B1

It is now worth considering case B1-GK1, which includes unsuppressed decays

to gravitinos. As we saw in Sec. (4.3.2), we do not expect a significant change in

the decay width of the modulus so any WIMP abundance from modulus decay in

the annihilation scenario will be unchanged. Furthermore, although the modulus

branching fraction to SUSY particles is enhanced, we saw in Fig. (5.6) and

Fig. (5.7) that even lower (realistic) limits of branching ratios to SUSY particles

are likely to overproduce WIMPs in the branching scenario. However, now that

gravitinos are produced in tentatively significant abundance they may dominate

the cosmology if they are longer-lived than the modulus. In this case, we can use

similar arguments to those of the previous sections with a few minor modifications7

7If T
3/2
D & TφD, any gravitinos produced by modulus decay will decay rapidly. In this case,

we expect no significant deviation from the predictions of case B2.
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- where we now assume that T
3/2
D < T φD. The annihilation scenario replacement is

straightforward. Since the temperature scale of neutralino production is now the

gravitino decay temperature T
3/2
D instead of the modulus decay temperature T φD,

we can make the replacements

Y C
Z̃1

(T
3/2
D ) ' H(T

3/2
D )

〈σv〉s(T 3/2
D )

(5.66)

for the critical abundance yield, which gives us

ΩC
Z̃1
h2 ' ΩTP

Z̃1
h2 ×max

{(
Tf.o./T

3/2
D , 1

)}
(5.67)

for the critical relic density. The modifications in the branching scenario are not

much more involved - taking the modulus abundance yield Yφ(T φD), the gravitino

abundance yield is then given by

Y3/2(T φD) = Bφ→ψ3/2
Yφ(T φD) ' 45

4π2

r−1Bφ→ψ3/2
mφφ

2
0

g∗S(T φosc)(T
φ
osc)3

(5.68)

and, assuming that due to R-parity conservation the gravitino branching ratio to

SUSY particles is 100% and that entropy is conserved after T φD, the decay-produced

relic density is given by

ΩD
Z̃1
h2 ' 45

4π2

Bφ→ψ3/2
mZ̃1

ρc/(s0h2)

r−1mφφ
2
0

g∗S(T φosc)(T
φ
osc)3

. (5.69)
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Once again, the minimum of ΩD
Z̃1
h2 and ΩC

Z̃1
h2 determines the expected neutralino

relic density from gravitino decay.

Figure 5.9: Critical abundance Y C
Z̃1

(orange) and decay-produced abun-

dance Y D
Z̃1

(green) for neutralinos. Here we take case B1-GK1 and

assume the gravitino dominates the abundance contribution. Addi-
tionally, we fix mφ = 5× 104 TeV and take all λi = 1.

We show in Fig. (5.9) the critical abundance yield (orange curve) and the decay-

produced abundance yield (green curve) for neutralinos in case B1, where now all

neutralinos are assumed to come from the gravitino. We also fix mφ = 5× 104

TeV and take all λi = 1, which predicts the thermal WIMP abundance (i.e. no

enhancement due to moduli decay) if the gravitino is absent. Evidently, only

m3/2 . 3 TeV allows for the branching scenario - which is expected to be excluded

from BBN constraints as the gravitinos are now produced in large quantities.

Since we then expect to be in the annihilation scenario for any viable value of
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m3/2, we do not expect that neutralinos produced from modulus decay have any

significant effect on the WIMP abundance - the gravitinos produced from modulus

decay now dominate this aspect of the cosmology. Of course, if the gravitino is

kinematically forbidden the modulus is again the dominant factor in neutralino

production - we display this in Fig. (5.9) for m3/2 ≥ 2.5 × 104 TeV where the

gravitino becomes kinematically forbidden for this benchmark mφ. The WIMP

abundance remains at its thermally-expected value in this case, as the modulus

decays before neutralino freeze-out for mφ = 5× 104 TeV. This also marks the

best case scenario within case B1 since lighter moduli will produce an enhanced

neutralino abundance.

Figure 5.10: Predicted WIMP relic density in case B1-GK1. We fix
mφ = 5× 104 TeV and take all λi = 1.

We also display the predicted neutralino relic density in case B1 in Fig. (5.10).
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We see that dark matter is grossly overproduced here unless m3/2 & 3× 103 TeV.

This marks a big departure from case B2 - even if the modulus is sufficiently

heavy that neutralinos are not overproduced, the same DM overproduction and

BBN problems arise from the decay-produced gravitinos. This resurgence of the

gravitino problem, or rather the moduli-induced gravitino problem, was previously

studied in [229, 354, 228, 230, 350]. The moduli-induced gravitino problem can

be resolved quite simply if the gravitino is a kinematically forbidden decay of the

modulus or if sequestering is present which allows for m3/2 & 104 TeV. However,

models which do not predict either of these scenarios will be at severe tension with

a natural SUSY spectrum (likely falling into a high-scale SUSY [398, 399] or split-

SUSY spectrum [400, 401, 402], see also [403]), unless additional model-building

details are considered to evade this rather severe issue.

We should also note that we do not expect any change in results in case A1

from B1. Although the modulus may decay earlier, the gravitinos are produced

with roughly the same abundance and will still decay at the same scale - and

since we generically expect the annihilation scenario, the additional neutralino

abundance from unsuppressed gaugino decays will still annihilate to the critical

value. For identical reasons, we also do not expect any significant difference

between cases GK1 and GK2. Thus, we expect any case with unsuppressed

decays to gravitinos to produce very similar results to those we have presented in

this section.
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5.3.6 Dark radiation production in the φMSSM with a light ALP

If the φMSSM contains an light axion-like particle (ALP) in its spectrum, the

main contribution of the ALP will be the addition of dark radiation [239, 240, 236].

For a light ALP to exist in the spectrum, the shift symmetry which protects the

ALP from gaining a mass must survive moduli stabilization which we assume to

be the case in this section. This shift symmetry can then only be broken by small

non-perturbative effects, which leave the ALP effectively massless. Since these

particles are only gravitationally coupled (in general), they do not thermalize and

remain relativistic - only redshifting from Hubble dilution. In this section, we

estimate the amount of dark radiation produced in the φMSSM if it contains a

light ALP in its spectrum.

It is conventional to parametrize the amount of dark radiation produced

by an increase in the effective number of neutrinos, ∆Neff = Neff − NSM
eff . The

Standard Model predicts NSM
eff ' 3.046 [404, 344], while Planck 2018 results require

∆Neff < 0.29 at the 95% C.L. [11]. To estimate ∆Neff, we compare the energy

density of additional relativistic degrees of freedom (in the φMSSM, we have only

the ALP ρALP) to the energy density of a single neutrino species ρν = 7
8
π2

15
T 4
ν :

∆Neff =
ρALP

ρν
=

120

7π2

(
11

4

)4/3
ρALP(T )

T 4
(5.70)

where we relate the radiation temperature T to the neutrino temperature Tν =

(4/11)1/3T [344, 286]. Our aim now is to estimate ρALP(T ).

As we have just noted, ALPs are typically expected to be coupled only
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gravitationally which implies that production is characterized by the branching

scenario (i.e. the ALPs do not annihilate in any significant sense once produced).

Using arguments identical to those we made in the previous sections, we can relate

the energy density of the ALPs to that of the modulus at T φD in the branching

scenario by

ρALP(T φD) ' 1

2
Bφ→ALPr

−1m2
φφ

2
0

(
g∗S(T φD)

g∗S(T φosc)

(T φD)3

(T φosc)3

)
(5.71)

where we once again require the entropy dilution factor r−1 due to entropy having

already been injected before T φD occurs. At some later temperature T . T φD,

assuming entropy is conserved after T φD we can then write down the ALP energy

density at some lower temperature T :

ρALP(T ) '

(
g∗S(T )

g∗S(T φD)

T 3

(T φD)3

)4/3

ρALP(T φD) (5.72)

where we have used that ALPs dilute as radiation, ρALP ∝ R−4. This then gives

us an estimate for ∆Neff:

∆Neff '
60

7π2

(
11

4

)4/3
(
g∗S(T )

g∗S(T φD)

)4/3(
g∗S(T φD)

g∗S(T φosc)

Bφ→ALPr
−1m2

φφ
2
0

T φD(T φosc)3

)
. (5.73)

We display the predicted ∆Neff in Fig. (5.11) in the (mφ, λALP) plane for both

the B2-GK1 and B2-GK2 scenarios. Here, red dots are in excess of Planck

2018 bounds ∆Neff ≥ 0.29, while purple dots contribute a negligible amount of

dark radiation due to ALPs. The upper left plot takes all other λi = 0.1 in case
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Figure 5.11: Predicted dark radiation ∆Neff in case B2 in the
(mφ, λALP) plane. Upper plots and lower left plot assume the GK1
scenario, while the lower right plot takes the GK2 scenario. The upper
left (right) plot takes all remaining λi = 0.1 (all remaining λi = 1),
while the lower left plot takes all remaining λi = 10. The lower right
plot takes all remaining λi = 1 except for λgauge = 1/16π2. Horizontal
dashed line represents expected minimal LVS value, λALP = 0.816.
Figure reproduced from [7].

B2-GK1. From this plot, we see that a value λALP & 0.2 will produce an excess

of dark radiation, while far smaller values of λALP may be required depending

on the value of mφ. We also see for mφ & 104 TeV, dark radiation seems to be

produced in a greater amount than for smaller mφ. This is due to the scaling
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behavior of the entropy dilution factor r, which as we saw in Fig. (5.3) decreases

more quickly once T φosc & TR thus predicting a larger modulus abundance when it

decays. The upper right and lower left plots display the same scenario but for all

remaining λi = 1 and λi = 10, respectively. In all three of the B2-GK1 plots,

we see very similar behavior and quantitative trends - to avoid overproduction of

dark radiation, a λALP close to the value of the remaining λi is required. Referring

back to Fig. (4.11), we see that this implies a branching ratio to ALPs of less than

roughly 10% is required in the GK1 scenario. While we would not expect these

predictions to change in the B1-GK1 scenario, they may become marginally

more optimistic in the A1-GK1 and A2-GK1 scenarios as the introduction

of unsuppressed gaugino decays may suppress the branching ratio to ALPs by

roughly a factor of 2, which we would expect allows λALP to be larger by roughly

a factor of 1.5.

We also display the predicted ∆Neff for case B2-GK2 with all λi = 1 (except

λgauge = 1/16π2) in Fig. (5.11). Comparing this case to the B2-GK1 case with all

λi = 1, we see that the suppression of the gauge boson decays puts a much larger

constraint on λALP due to the increase in branching fraction to ALPs. Evidently,

here a maximum of λALP . 0.3 is allowed. In LVS, the bulk modulus coupling to

the ALP is determined from the geometry and (in minimal LVS) takes the value

λALP = 0.816 in our conventions [239, 240]. We display this expected bound as

the black dashed line in Fig. (5.11). Clearly, the GK2 case requires either a much

smaller λALP or larger λi couplings (namely, a larger Giudice-Masiero coupling

as it is the leading unsuppressed mode). However, as we saw in Sec. (3.1.2) this
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may translate to a large value of µ - leading to deviation from our natural SUSY

benchmark point. We will also cover this point in Ch. (7) when we consider dark

radiation in the fibred LVS model. We do not expect any large deviation in these

predictions for any of the GK2 cases since the branching ratio to ALPs is not

expected to be affected significantly.

5.3.7 Abundance of misalignment produced axions

In a standard thermal history, the relic density of axions produced via the

misalignment mechanism follows a simple form [374, 376, 375]:

Ωstd
a h2 ' 0.23f(θi)θ

2
i

(
fa/NDW

1012 GeV

)7/6

(5.74)

where f(θi) = [log (e/(1− θ2
i /π

2))]7/6 is the anharmonicity factor [405, 391]. How-

ever, in the non-thermal case, the onset of axion oscillations - as shown in

Sec. (5.2.2) - is sensitive to the dominant background. In particular, once oscilla-

tions begin the number density of the axions decreases as [286]

na(T ) = na(T
a
osc)

R3(T aosc)

R3(T )
(5.75)

for T < T aosc.

Focusing first on the case where T aosc < T φD and assuming a radiation-dominated

background after modulus decay, we can immediately write down the abundance

yield Ya = na/s. The case where T φS & T aosc & T φD follows similarly, however

we now must factor in the decay-dominated epoch from T aosc to T φD, at which
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point we again assume a radiation-dominated background. As we have discussed

in Sec. (5.2.6), we do not expect a phenomenologically viable scenario where

T aosc & T φS and hence we ignore this case here. The axion abundance is then well

approximated by the expressions

Ya =
45

2π2
×


1

g∗(Taosc)
na(Taosc)
(Taosc)3

(T aosc < T φD)

g∗(T
φ
D)

g∗(Taosc)2
na(Taosc)(TφD)5

(Taosc)8
(T φS & T aosc & T φD).

(5.76)

Let us now parameterize na(T
a
osc) as

na(T
a
osc) =

1

2
ma(T

a
osc)a

2
0 (5.77)

where the axion field’s initial amplitude, a0, is independent of the temperature

and background details and is given by [112]

a2
0 =

1.44f 2
aθ

2
i

N2
DW

f(θi), f(θi) ≡
[
log

(
e

1− θ2
i /π

2

)]7/6

. (5.78)

It is immediately clear that both the misalignment angle, θi, and the axion decay

constant, fa, play a large role in determining the final axion abundance. We are

now in a position to write down the axion relic density. Making use of Eq. (5.50),
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we thus have the expressions

Ωah
2 ' 45

4π2

ma(T = 0)h2a2
0

ρc/s0

ma(T
a
osc)

g∗(T aosc)
×


(T aosc)

−3 (T aosc < T φD)

g∗(T
φ
D)

g∗(Taosc)
(T φD)5/(T aosc)

8 (T φS & T aosc & T φD).

(5.79)

We now can estimate these relic densities for our standard benchmark data in

Table (4.6) and utilize our estimates for the various temperatures from the previous

section (again using mφ = 103 TeV as our modulus benchmark). Making the

estimate first for the case T aosc < T φD, we have

Ωah
2 ' 0.119×

(
ma(T = 0)

378 µeV

)(
a2

0

2.54× 1022 GeV2

)(
ma(T

a
osc)

0.00511 µeV

)
×
(

75

g∗(T aosc)

)(
1.20 GeV

T aosc

)3

(5.80)

As expected, since this case is specific to axion oscillations which commence

after the modulus has decayed, it is not surprising that the relic density is

entirely independent of the modulus details. Thus, in this case we also restore the

thermally-expected result. Our benchmark data also is then expected to saturate

the observed DM relic density, Ωh2 ∼ 0.12. Estimating now the second case,

T φS & T aosc & T φD, we have the estimate

Ωah
2 ' 0.0010×

(
ma(T = 0)

378 µeV

)(
a2

0

2.54× 1022 GeV2

)(
ma(T

a
osc)

0.00511 µeV

)
×
(

75

g∗(T aosc)

)2
(
g∗(T

φ
D)

20

)(
T φD

0.13 GeV

)5(
0.636 GeV

T aosc

)8

(5.81)
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which is a full two orders of magnitude below the thermally-expected value. This is

perhaps not surprising - if the axion begins oscillations before the modulus has

entirely decayed, it will effectively feel a partial amount of the entropy dilution.

However, since oscillations do not begin before T φS the axions do not feel the

full entropy dilution. This is evident if we consider the scaling of this quantity

with respect to mφ. Increasing mφ will increase both T φD and T aosc, which also has

the effect of decreasing the axion mass. Closer inspection of the dependence on

mφ for each of these terms then reveals that T φD has the dominant effect in this

expression - the overall expression scales as roughly m3
φ. Thus, increasing mφ will

increase the axion relic density - at least until T φD ∼ T aosc, signaling the change in

cosmology between the non-thermal and thermal scenarios.
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Chapter 6

Results and discussion

In this chapter, we begin by discussing our procedure and initial conditions for

numerically solving the Boltzmann equations. We then present results from these

numerical solutions for both the φMSSM and the φPQMSSM. We will also provide

discussion throughout on the cosmological and phenomenological impacts that

these results suggest.

6.1 Procedure and initial conditions

For all results in the φMSSM and φPQMSSM, we follow the approach from

[372, 300] and set our initial conditions at inflationary reheating TR. We also

assume the universe is radiation-dominated at TR and therefore take φ0/mP =√
2/3 since, as we have shown in Sec. (5.2.3), taking φ0/mP >

√
2/3 implies a

modulus-dominated universe at TR (i.e. no initial radiation-dominated epoch).

Taking TR as a free parameter, the initial Hubble rate, entropy, and radiation

density are specified from the standard relations we presented in the previous

chapter.

To set the initial conditions for the coherently oscillating (CO) components,

we compare the field’s mass to the Hubble rate. If the field has begun to oscillate

during inflationary reheating (i.e. m > 3H) we set the initial condition defined

by Eq. (5.27), while if m < 3H we set the initial condition to the constant energy

density ρ0 = 1
2
m2φ2

0 (with φ0 the relevant initial oscillation amplitude). As the
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coherently oscillating fields are non-relativistic, we always have ρ = nm so that

the initial number densities are likewise defined. Additionally, we update the

initial conditions of the axion at every integration step until its oscillations begin

to account for the temperature-dependence of its mass.

Figure 6.1: Thermally-averaged cross sections 〈σv〉 versus temperature
for each of neutralinos, saxions, axinos, axions, and gravitinos.

Thermally-produced (TP) components follow a simple set of initial conditions.

If the annihilation rate is greater than the Hubble rate n〈σv〉 > 3H, we assume that

interactions are sufficiently strong to begin the number density at its equilibrium

value. We display the thermally-averaged cross sections versus temperature for

all fields of interest using our natural SUSY benchmark point from Table (4.3)

and PQ benchmark point from Table (4.6). However, if the annihilation rate is

smaller than the Hubble rate, we begin the field at the rate expected from the

219



annihilation rate: 3Hn ∼ 〈σv〉n2. The initial energy density then is set to the

value expected for a relativistic distribution [286]. For the DFSZ-type axions,

saxions, and axinos we adopt the formula for the thermally-averaged cross section

given in [300] which follows the expression

〈σi+j→a,s,ã+...v〉ninj '
T 6

16π4

∫ ∞
M/T

dxK1(x)x4 σ(x2T 2) (6.1)

where M is the threshold mass for the process - i.e. the axino and saxion masses

for ã and s (respectively) and the higgsino mass µ for the axion a. The thermally-

averaged cross section for the gravitino is adopted from the results of Pradler and

Steffen [394]. The neutralino thermally-averaged cross section is computed using a

modified version of the IsaRED [330] subroutine, which replaces Bessel functions

programmed using Taylor expansions with the Boost library algorithms, which are

much better behaved in the low M/T regime. We also utilize the same numerical

fit used in [300] to determine the equation of state for thermal components, which

tend to begin with an equation of state of radiation and redshifts to a matter

distribution at a lower scale based on the relativistic dilation factor ρ/mn.

After the initial conditions are set, we then numerically integrate the Boltzmann

equations Eqs. (5.1), (5.2), (5.3) until all decaying fields have entirely decayed

and T < 10 eV. To perform the numerical integration, we use a codebase written

in C++ which utilizes Boost’s Odeint library. We use the Rosenbrock fourth-order

stepper, which is designed to solve numerically stiff equations. At every integration

step, decay widths are recalculated for any particles that can decay to axions
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to account for the changing mass. Once the Boltzmann equations are evolved

to the final step, we can compute the relic density Ωih
2 and effective number

of neutrinos ∆Neff for each component tracked using Eq. (5.50) and Eq. (5.70)

respectively, assuming that entropy is conserved after the final integration step.

We also note that our Boltzmann results calculate a lower value of the thermally-

expected neutralino relic density ΩBoltzmann
Z̃1

h2 ' 0.0044 than the estimate provided

by the IsaRED subroutine ΩIsaRED
Z̃1

h2 ' 0.011, which is the estimate listed in

Table (4.3). This is because of the procedure that IsaRED uses only a semi-

analytic formula similar to those we used in Ch. (5) in addition to using only

the temperature-independent value of the annihilation cross section at Tf.o.. Our

Boltzmann code uses the full temperature-dependent cross section, which as we see

from Fig. (6.1) has a fairly strong temperature dependence affecting the value of

〈σv〉 by about two orders of magnitude close to Tf.o.. This results in the neutralino

distribution tracking the equilibrium density more closely for a slightly longer

time, which produces a lower abundance yield after freeze-out - and hence a lower

relic density. We therefore expect our Boltzmann treatment to provide a more

accurate estimate of the neutralino relic density than the IsaRED estimate.

In both the φMSSM and the φPQMSSM, one of our primary goals is to

understand the parameter space of both models using our natural SUSY benchmark

in Table (4.3) as a reference. As we also mentioned before, if WIMPs compose

the entirety of our dark matter then our natural SUSY benchmark point runs

into minor tension with recent direct detection (DD) and indirect detection (ID)

experiments [352, 406], as well as Fermi-LAT observations of gamma-ray fluxes
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from dwarf spheroidal galaxies [351]. Based on the results of [353], we find that

if WIMPs compose less than roughly 10% of the observed DM relic density, i.e.

ΩZ̃1
h2 . 0.012, each of these experimental constraints can be met. We will thus

adopt this as our DD/ID bound for the neutralino relic density throughout, and we

will explicitly state when we impose it onto any selection criteria in our results.

6.2 Results for the φMSSM

We begin with discussion of the evolution of the φMSSM for a few of the scenarios

we have previously defined. Next, we will discuss entropy production in the

φMSSM and compare to our previous estimates. We then study neutralino (or

WIMP) dark matter production in a few scenarios. Throughout this section, we

track the modulus, gravitino, and the lightest neutralino - in addition to radiation

- in our Boltzmann equations.

6.2.1 Cosmological evolution in case B1-GK1

We begin our discussion of the φMSSM by focusing on case B1-GK1. In Fig. (6.2),

we display the abundance yield Yi ≡ ni/s for the four constituents - the modulus,

neutralino, gravitino, and radiation. Here, we take all λi = 1 and fix mφ = 5× 103

TeV and m3/2 = 30 TeV. We also take the inflationary reheating temperature to

be TR = 1010 GeV. The modulus (black curve) has a constant abundance yield

Yφ until it begins injecting entropy at R/R0 ∼ 108, which continues to dilute the

modulus abundance until it decays at R/R0 ∼ 1014. The neutralinos (blue curve),

on the other hand, begin well below their equilibrium value due to a small cross
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section at high temperatures (see Fig. (6.1)). As R/R0 increases, the radiation

Figure 6.2: Cosmological evolution of abundance yield Yi = ni/s vs
scale factor R/R0 in case B1-GK1. Here, we fix mφ = 5× 103 TeV
and m3/2 = 30 TeV, and take all allowed λi = 1.

temperature cools and the neutralino cross section increases enough to achieve

equilibrium around R/R0 ∼ 104, at which point its abundance yield is conserved

until it 1. begins to become sourced from modulus decay, 2. is diluted from the

entropy injection of the modulus, and 3. undergoes the freeze-out process (i.e. the

equilibrium density drops, pushing the true density lower until Hubble dilution

prevents further annihilations) - although clearly this plays no role in the final

abundance due to the presence of the modulus and gravitino. We also see that the

gravitino (yellow curve) is likewise sourced from the modulus beginning around

the time entropy injection begins. Finally, we see that once the modulus has

decayed, the gravitinos have an abundance yield of Y3/2 ∼ 10−9 until it decays
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around R/R0 ∼ 1017, at which point the neutralino abundance yield increases by

a large amount (∆YZ̃1
∼ 103). This of course translates to a large increase in the

neutralino relic density, as we expect for case B1.

Figure 6.3: Cosmological evolution of energy densities ρi vs scale factor
R/R0 in case B1-GK1. Here, we fix mφ = 5×103 TeV and m3/2 = 30
TeV, and take all allowed λi = 1.

We display the corresponding energy density evolution in Fig. (6.3). Here, the

features we described for the abundance yield plot are also rather evident. The

neutralinos dilute as radiation once they achieve equilibrium, and close to entropy

injection (seen by the slowing of the temperature in the dashed green curve) they

become sourced by the modulus and hence dilute more slowly. Similarly, close

to gravitino decay the neutralinos dilute at a noticeably slower rate. Not long

after gravitino decay, the neutralinos become redshifted sufficiently to behave

as matter and overtake radiation, leading to a matter-dominated universe at
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roughly T ∼ 100 eV - well above the T ∼ O(1) eV scale in a standard cosmology

(e.g. ΛCDM) [407, 286]. We also see that before the gravitinos decay, they have

nearly comparable energy density to radiation - trailing by only about an order of

magnitude. Finally, we note that this case produces a neutralino relic density of

ΩZ̃1
h2 = 114.806 which is in good agreement with our qualitative estimates we

presented in Fig. (5.10). (We also reiterate that the order of magnitude change

in mφ is inconsequential, as the gravitino abundance is large enough that the

neutralinos are in the annihilation scenario).

6.2.2 Cosmological evolution in case B2-GK1

Proceeding now to case B2-GK1, we display in Fig. (6.4) the abundance yield

Yi ≡ ni/s for the modulus, neutralinos, gravitinos, and radiation. We again take

all λi = 1 and fix mφ = 5 × 103 TeV and m3/2 = 30 TeV, as well as TR = 1010

GeV for the sake of comparison. Many of the details from case B1-GK1 again

appear here - the modulus begins with a constant abundance yield, starts to

inject entropy around R/R0 ∼ 108, and decays around R/R0 ∼ 1014. Similarly,

the neutralinos again begin well below equilibrium while interactions between the

neutralinos and radiation have pushed them to equilibrium around R/R0 ∼ 104.

Shortly after, the neutralinos are both enhanced and diluted from the modulus in

addition to the freeze-out process. However due to the now-suppressed decays

to gravitinos, the gravitino abundance yield after modulus decay is now around

Y3/2 ∼ 10−13 - four orders of magnitude less than case B1-GK1. The neutralinos

thus do not receive any significant enhancement once gravitinos decay in this case
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Figure 6.4: Cosmological evolution of abundance yield Yi = ni/s vs
scale factor R/R0 in case B2-GK1. Here, we fix mφ = 5× 103 TeV
and m3/2 = 30 TeV, and take all allowed λi = 1.

- their abundance is now set primarily by the modulus.

We also show the corresponding energy density evolution in Fig. (6.5). Unlike

the previous case, the gravitino now remains the lowest energy density for almost

the entirety of its existence. As the neutralinos are no longer extensively sourced

from gravitino decay, we also see that after they have redshifted sufficiently to

behave as a matter distribution (around R/R0 ∼ 1018) they will not overcome the

radiation energy density until T < O(10) eV, which is in good accordance with

the standard cosmology. Finally, we note that this case produces a neutralino relic

density of ΩZ̃1
h2 = 0.184067, about 3 orders of magnitude less than the previous

case. This is also in good agreement with our qualitative arguments which can be

seen from Fig. (5.6).
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Figure 6.5: Cosmological evolution of energy densities ρi vs scale factor
R/R0 in case B2-GK1. Here, we fix mφ = 5×103 TeV and m3/2 = 30
TeV, and take all allowed λi = 1.

6.2.3 Cosmological evolution with kinematically forbidden gravitino

Finally, for the sake of comparison we now consider again case B2-GK1 but

now with a kinematically forbidden gravitino. We once more take all λi = 1 and

TR = 1010 GeV, but now fix mφ = m3/2 = 5× 103 TeV. In Fig. (6.6), we plot the

four abundance yields in this scenario. As expected, many features are virtually

identical to Fig. (6.4) except that the gravitino abundance yield now disappears

around the same time that the modulus decays. The modulus then is the sole

determination of the late-time neutralino abundance. Fig. (6.7) then displays the

corresponding evolution of energy densities. We see that here, the gravitino plays

effectively no role - its energy density is too low to significantly affect the Hubble
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Figure 6.6: Cosmological evolution of abundance yield Yi = ni/s vs
scale factor R/R0 in case B2-GK1, but the gravitino is kinematically
forbidden. Here, we fix mφ = m3/2 = 5× 103 TeV and take all allowed
λi = 1.

constant during modulus domination, and decays slightly before modulus decay

providing effectively a decoupling solution. Of course, to realize this scenario in

tandem with natural SUSY, one would require sequestering in the UV theory.

This case produces a neutralino relic density of ΩZ̃1
h2 = 0.176941, slightly below

the previous B2 case.

6.2.4 Entropy production in the φMSSM

In Fig. (6.8), we display the entropy dilution factor r ≡ Sf/S0 in the φMSSM

for case B2-GK1. We also display three values of (unified) couplings, λi ∈

{0.1, 1, 10}. We see remarkable agreement in both qualitative and quantitative

228



Figure 6.7: Cosmological evolution of energy densities ρi vs scale factor
R/R0 in case B2-GK1, but the gravitino is kinematically forbidden.
Here, we fix mφ = m3/2 = 5× 103 TeV and take all allowed λi = 1.

behavior between the entropy dilution calculated from numerical solutions of

the Boltzmann equations in Fig. (6.8) when compared to Fig. (5.3) which was

created using primarily qualitative methods. Here, we emphasize that the entropy

density of the modulus, s ≡ (ρφ + Pφ)/T ∼ ρφ/T [407], decreases as R−3 so

that the total entropy S = sR3 is effectively independent of the scale factor.

However, the amount of entropy stored in the modulus when it is released into the

thermal bath is dependent on the decay temperature of the modulus, Sf ∝ (T φD)−1.

Additionally, the initial entropy stored in the modulus will be more dilute if a

prolonged period of radiation-domination has occurred before it begins to oscillate,

leading to a softer dependence on T φD. Since we have T φD ∝ m
3/2
φ in addition to

T φe ∝ m
1/2
φ if T φosc ≤ TR while T φe is independent of mφ for T φosc > TR, it is then not
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Figure 6.8: Numerical Boltzmann results for entropy dilution factor r
vs modulus mass mφ for in case B2-GK1 with all λi ∈ {0.1, 1, 10}.
Here, we take TR = TBHLRR = 1012 GeV.

surprising that our entropy dilution factor decreases as m−1
φ for mφ . 104 TeV

and m
−3/2
φ for mφ & 104 TeV in Fig. (6.8). If we had chosen a lower inflationary

reheating temperature TR, the entropy dilution would be expected to scale as

m
−3/2
φ beginning at a lower value of mφ. It is also evident that if mφ � 107 TeV,

the entropy dilution may be sufficiently weak so that thermal relics - thermal

gravitinos in particular - are still relevant.

6.2.5 DM production in case B1

In this section, we study WIMP dark matter production in case B1. In Fig. (6.9),

we display the produced WIMP relic density (orange curve) as a function of mφ

and fix m3/2 = 30 TeV. We see that for mφ . 60 TeV, the gravitino is kinematically
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Figure 6.9: Numerical Boltzmann results for WIMP relic density in
case B1-GK1 as a function of mφ. Here we take all λi = 1 and fix
m3/2 = 30 TeV.

forbidden - although the modulus still grossly overproduces dark matter in the

branching scenario. Once the gravitino becomes kinematically accessible, the

produced dark matter abundance is not only drastically overproduced but also

begins to increase slightly as mφ increases. This is due to our inclusion of

a relativistic dilation term in the Boltzmann equations: once the modulus is

significantly larger than the gravitino, we would expect the modulus decay products

to be highly boosted - leading to an enhancement of their lifetime. This then

translates to an increase in the produced WIMP abundance as the gravitino decay

occurs at a lower temperature. Clearly, it is not feasible to reproduce the observed

dark matter density in case B1 using our natural SUSY benchmark point without

raising the gravitino mass.
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Figure 6.10: Numerical Boltzmann results for WIMP relic density in
case B1-GK1 as a function of m3/2. Here we take all λi = 1 and fix
mφ = 5× 104 TeV.

In Fig. (6.10), we show the produced WIMP relic density (orange curve) as

a function of m3/2, where we now fix mφ = 5 × 104 TeV so that there is no

enhancement of the thermally-expected relic density due to the modulus. Here

we find that m3/2 & 7× 103 TeV in order to match dark matter production with

observation while a value of m3/2 & 2× 104 TeV is required to meet our DD/ID

constraints - both in rather good agreement with the values we expected from

our qualitative estimates in Fig. (5.10). In unsequestered scenarios, such a large

gravitino mass is in serious tension with our natural SUSY benchmark spectrum!

We display in Fig. (6.11) expected neutralino dark matter production in the

(m3/2, mφ) plane where m3/2 and mφ are now assigned randomly. Red color coding
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Figure 6.11: Numerical Boltzmann results for WIMP relic density in
case B1-GK1 in the (m3/2, mφ) plane. Here we take all λi = 1. The
diagonal dashed line indicates mφ = 2m3/2.

indicates a neutralino relic density in excess of the observed value, ΩZ̃1
h2 & 0.12,

while purple and dark blue points are expected to satisfy our DD/ID bounds. It is

immediately clear that neutralino dark matter production heavily constrains case

B1, requiring both the modulus and gravitino to have very large masses. Below

the diagonal dashed line - which indicates where mφ = 2m3/2 - the gravitino is

kinematically blocked. However, here the modulus is still required to have a mass

mφ & 6 × 103 TeV to avoid overproduction of the WIMP abundance. Above

the diagonal dashed line, we see that the gravitino is now pushed to a slightly

larger value - m3/2 & 7 × 103 TeV - to avoid dark matter overproduction. We
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also see comparing this plot to the previous figure that this bound is relatively

independent of mφ. Thus, in case B1-GK1 our main result is that unless both the

gravitino and modulus are extremely massive (mφ, m3/2 & 103−4 TeV), either the

modulus overproduces dark matter or the gravitino does. As we have previously

discussed, we do not expect significant deviation from these results for case A1

or for the GK2 cases. Since we are always expected to be in the annihilation

scenario, each of these cases results in only a relatively small quantitative shift of

the modulus and gravitino masses which we do not expect to change more than a

factor of 2− 3.

6.2.6 DM production in case B2

We now move to study dark matter production in case B2. In Fig. (6.12), we

plot the WIMP relic density as a function of mφ for λi ∈ {0.1, 1, 10}. Here we

take the lower bound LB2 from Fig. (4.3), which includes all direct R-parity

odd decays and assumes the Higgs sector decays to SUSY particles with a 1%

branching fraction. Comparing to Fig. (5.6) which estimates neutralino dark

matter production using qualitative arguments for the same scenario, we see good

agreement both qualitatively and quantitatively. For λi = 0.1, the transition to

the branching scenario occurs at a much larger mφ than for larger values of λi,

which results in diminution of the produced WIMP abundance - although clearly

neutralinos are still overproduced in the branching scenario. The annihilation

scenario then pushes mφ & (2× 103 − 3× 104) TeV - depending on the value of

the couplings - to avoid dark matter overproduction, roughly a factor of 2 larger
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Figure 6.12: Numerical Boltzmann results for WIMP relic density
in case B2-GK1 for each λi ∈ {0.1, 1, 10}. Here we assume 1% of
Higgses decay to SUSY in addition to all R-parity odd decays.

than our qualitative arguments in Sec. (5.3.4) have suggested.

We also display results for a flat modulus branching ratio to SUSY particles,

B(φ → SUSY) = 1%, in Fig. (6.13). Once again we see very good qualitative

and quantitative agreement with Fig. (5.8), which displays WIMP relic density

predictions for the same scenario using only qualitative arguments. Although

the transition to the branching scenario looks rather different in comparison

to Fig. (6.12), we see that any region that does not overproduce WIMPs is in

the annihilation scenario. Similarly, we arrive at the same constraints (mφ &

2 × 103 − 3 × 104 TeV) as in the previous figure - which is in agreement with

our assertion that in the annihilation scenario the produced WIMP abundance is

largely insensitive to the branching ratio to SUSY particles. As such, we expect
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Figure 6.13: Numerical Boltzmann results for WIMP relic density
in case B2-GK1 for each λi ∈ {0.1, 1, 10}. Here we assume a flat
branching fraction to SUSY Bφ→SUSY = 1% (independent of mφ).

very similar results for case A2 - the additional unsuppressed production of

neutralinos should simply annihilate down to the critical value. For the GK2

cases, due to an order of magnitude decrease (approximately) in Γtotal
φ (see e.g.

Fig. 4.9) we expect the WIMP relic density predictions to fall in between the

λi = 1 and λi = 0.1 cases, with a slight tilt towards the λi = 1 case.

Finally, one may inquire as to the relevance of a light gravitino m3/2 ∼ 30

TeV to the neutralino relic density in this scenario. We display in Fig. (6.14) the

produced WIMP relic density for the lower bound LB2 (all R-parity odd decays

with a 1% Higgs to SUSY branching ratio) for a kinematically-forbidden gravitino

(orange curve) and for m3/2 = 30 TeV (green curve). It is immediately evident

that the presence of suppressed decays to gravitinos affects results at or below the
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Figure 6.14: Numerical Boltzmann results for WIMP relic density in
case B2-GK1 for kinematically forbidden gravitinos (orange) and
gravitino mass fixed at m3/2 = 30 TeV (green). Here we take λi = 1
and assume 1% of Higgses decay to SUSY in addition to all R-parity
odd decays.

percent-level in case B2 as when compared to the same case with the gravitino

effectively decoupled from the cosmology. Thus, case B2 - and case A2 by the

same arguments as before - seem much more compatible with a natural SUSY

spectrum than case B1 and A1 if sequestering is absent - requiring only a large

modulus mass while a light gravitino can be accommodated.

6.2.7 Dependence on modulus initial amplitude φ0

In this section, we investigate the dependence of our results in the φMSSM on

the value of the modulus misalignment amplitude φ0. We show in Fig. (6.15)

the produced neutralino relic density as a function of φ0/mP in the bounds
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φ0/mP ∈ [10−8,
√

2/3] so that the transition at inflationary reheating TR remains

radiation-dominated (if only for an extremely short time). We see that there

Figure 6.15: Neutralino relic density as a function of φ0/mP in case
B1-GK1 with mφ = 100 TeV and TR = 108 GeV. Here, all λi = 1
and decays to gravitinos are unsuppressed.

is almost no dependence on the modulus amplitude until φ0/mP . 10−5, and a

value of φ0/mP . 3× 10−7 (without any other adjustments) would be required

so that neutralinos are not overproduced. However, whether or not such a value

can actually be realized in string constructions remains an open question. During

inflation, the light moduli (i.e. mφ < H) are displaced from their true minima and

held at their misaligned vacuum values by Hubble friction until H ∼ mφ, causing

the onset of moduli oscillations. Since the natural scale of the moduli is the Planck

scale, one would naively expect a shift from the true minima of φ0 ∼ O(mP )
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[210, 209]. In [408], an explicit construction in Kähler moduli inflation - which

we will discuss in detail in Ch. (7) - studied the vacuum misalignment of the

bulk modulus. It was found from rather general arguments in this framework

that the modulus displacement is φ0/mP ∼ (0.1 − 1), in agreement with EFT

expectations. Additionally, in the string landscape one might naively expect

variation of this amplitude as was suggested in [409]. Although there is certainly

some expected variability, the amplitude of the modulus is directly correlated with

the scale of the inflationary potential - and it is rather likely that large changes

of W0 in the landscape would change the curvature of the inflationary potential

sufficiently to spoil successful inflation. It is also possible that a sufficiently long

period of inflation can dilute the modulus amplitude [410] since the modulus

behaves as an overdamped harmonic oscillator as we have discussed in Sec. (5.2.2).

Unfortunately, the scenario we consider here would require an extremely fine-tuned

inflationary potential to achieve the required value of the amplitude [410]. From

this standpoint - in addition to the expectation of the modulus mass to scan in

the string landscape - the decoupling solution appears more attractive.

However, it is also feasible that the moduli minimum is entirely independent of

the details of inflation. Such an example due to Dine, Randall, and Thomas [210]

is if the moduli and inflaton Kähler potentials are independent from each other.

In this case, any interaction between the inflationary sector and the moduli sector

is due only to supergravity interactions - and it is easy to show that the potential

minimum of the moduli is then independent of the inflationary details. Inflation

then pushes the moduli to the minimum of their potential - effectively reducing
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their amplitude towards 0 and decoupling their cosmological effects. This case

would then appear nearly identical to a standard thermal history.

6.2.8 Some general comments on the φMSSM

As we have seen, cases A1 and B1 seem to require both large modulus and

gravitino masses mφ,m3/2 & 103−4 TeV so that neutralino dark matter is not

overproduced, with only minor changes between the GK1 and GK2 cases. It

then appears that unsequestered models will have an extremely difficult time

realizing the φMSSM in either of these cases, as such large gravitino masses would

be expected to raise the soft terms to correspondingly large values. Sequestered

models, on the other hand, can accommodate these large values and still provide

a natural SUSY spectrum similar to our benchmark mark point from Table (4.3).

Additionally, as we have commented in the previous chapters, the neutralino

cross section we adopt 〈σv〉(Tf.o.) ∼ 2.0× 10−25 cm3/sec is already at tension with

Fermi-LAT results [351] if the neutralinos make up the entirety of the dark matter.

We have then effectively studied the lower bound on neutralino dark matter

production in the φMSSM as larger annihilation cross sections are effectively ruled

out by experimental data - and smaller cross sections will result in less efficient

annihilations, and therefore raise the produced WIMP relic density.

To contrast this, cases A2 and B2 only require large modulus mass mφ & 103−4

TeV to match the observed DM relic density while a gravitino mass m3/2 ∼ 30

TeV can be easily accommodated - making at most percent-level corrections to our

results. This proves a much more optimistic scenario for unsequestered models,
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as in e.g. KKLT scenarios various uplifting mechanisms or generalizations may

generate different hierarchies between the lightest modulus, the gravitino, and

the soft terms [387, 411, 412, 132, 169, 388].

6.3 Results for the φPQMSSM

We now discuss results for the φPQMSSM from numerical solutions of the coupled

Boltzmann equations involving: 1. CO modulus field, 2. CO saxion field, 3.

TP/DP saxions, 4. CO axion field, 5. TP/DP axions, 6. TP/DP axinos, 7.

TP/DP gravitinos, 8. TP/DP neutralinos, and 9. radiation. Based on our results

from the previous section, we focus solely on the case B2 which provides more

optimistic results than case B1. However, we now distinguish between the GK1

and GK2 cases as we have seen that they give drastically different predictions

for dark radiation production, whereas they do not provide significantly different

predictions for WIMP dark matter in the φMSSM. Throughout this section, we

again use the natural SUSY benchmark point from Table (4.3). In several of the

following results, we augment these parameters with the PQ benchmark point

in Table (4.6), however in some cases we will vary the PQ data to study how

our results change with respect to the PQ parameters. In these cases, we will

explicitly denote the updated PQ parameter set. We also take the inflationary

reheating temperature TR = 1010 GeV throughout, except where explicitly noted

otherwise.
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6.3.1 Cosmological evolution in case GK1

We begin by displaying Fig. (6.16), which shows the evolution of the abundance

yield Yi = ni/s for the nine components as the scale factor R/R0 increases. Here,

we again fix mφ = 5× 103 TeV and take all λi = 1 to provide comparison with

the φMSSM abundance yield evolution figures provided in the previous section.

As with the φMSSM, the modulus begins to inject entropy into the thermal bath

Figure 6.16: Cosmological evolution of abundance yield Yi = ni/s vs
scale factor R/R0 in case B2-GK1. Here, we fix mφ = 5× 103 TeV
and take all allowed λi = 1. Figure reproduced from [8].

around R/R0 ∼ 108, which dilutes all other tracked species (except, of course,

radiation) until it decays at R/R0 ∼ 1014. The CO saxions then decay around

R/R0 ∼ 1011. We see that the TP/DP saxions, TP/DP axions, and axinos (as

well as neutralinos) all begin with a small abundance due to their small thermally-
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averaged cross section at high temperatures. Their abundances then increase

towards their respective equilibrium values as T decreases and 〈σv〉 increases.

These populations are sourced by modulus decay, so the late-time abundances of

the TP/DP saxions, TP/DP axions, and axinos are predominantly determined by

the modulus injections, which overpower the annihilations around R/R0 ∼ 108.

The TP/DP saxions and axinos thus do not fully decay until the modulus decays

at R/R0 ∼ 1014. We also see that close to the decay of the modulus (and hence

decays of the TP/DP saxions and axinos), the neutralino population is noticeably

sourced by these decays and - between annihilations and the last of the entropy

dilution from the modulus - rapidly approaches a constant value. As expected, the

gravitinos are then the final unstable particles to decay at around R/R0 ∼ 1017.

It is worth noting that once the CO axions begin to oscillate, they are slightly

diluted as the onset of oscillations overlaps with modulus decay - although they

only are subjected to a small fraction of the entropy dilution from the modulus.

Finally, we note that the relative scales from this numerical solution are in very

good agreement with our qualitative arguments from Sec. (5.2.6).

We show the evolution of energy densities for the nine components in Fig. (6.17).

In addition, we also display the radiation temperature where the ρ-axis gives

the magnitude but the units are taken to be GeV. We see that the modulus

dominates the energy density almost immediately after inflationary reheating

(R/R0 = 1) until it decays close to R/R0 ∼ 1014, which is virtually identical

to the φMSSM case. Briefly focusing on the temperature (green dashed curve),

we see the temperature decreases at a noticeably slower rate during the decay-
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Figure 6.17: Cosmological evolution of energy densities ρi vs scale
factor R/R0 in case B2-GK1. Here, we fix mφ = 5 × 103 TeV and
take all allowed λi = 1. Figure reproduced from [8].

dominated epoch - from R/R0 ∼ 108 to R/R0 ∼ 1014 - as expected from our

previous qualitative arguments. The neutralinos and the thermal components of

the PQ sector are produced below their equilibrium value due to a suppressed

〈σv〉 at high temperatures. As the temperature decreases, the thermally-averaged

cross sections for these particles increases which eventually pushes them towards

their equilibrium values. Equilibrium is attained for the neutralinos at roughly

R/R0 ∼ 104, although significant injections from the modulus and saxions - along

with the freeze-out effect - make sizeable contributions to the neutralino energy

density between R/R0 ∼ 108 and R/R0 ∼ 1014. We also see that the TP/DP

saxions and TP/DP axions decrease at a slower rate between around R/R0 ∼ 105

to R/R0 ∼ 1014, while the axinos only dilute at a slower rate between around
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R/R0 ∼ 108 to R/R0 ∼ 1014. Since the modulus decays to saxions and axions

are unsuppressed, the injection term is dominant for these populations from a

much earlier time compared to the axinos, which are suppressed modulus decay

modes here. In Sec. (5.2.6), we had estimated that the TP/DP saxion would

decay shortly before the axinos (albeit, without the rigorous procedure required

in this particular case for a true quantitative estimate). Careful inspection of

the TP/DP saxion and axino curves reveal that the saxions do begin to decay

at a slightly earlier time than the axinos - however as the saxions are produced

in far larger quantities than axinos by modulus decay, this extends the saxion

curve slightly so that they decay slightly later than the axinos. Additionally, the

gravitinos do not ever annihilate efficiently - so the injection term dominates the

evolution of the gravitinos from an early time (R/R0 ∼ 106). Finally, we also note

that at the end of our scan limit (T ∼ 10−8 GeV), the CO axions and neutralinos

(which are now redshifted sufficiently to behave as a matter distribution) will

overcome the radiation-domination around T ∼ 1 eV, in good agreement with the

expected temperature at matter-radiation equality in a standard thermal history

(ΛCDM) [407, 286].

We finish this section by listing the late-time values produced from this point.
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Here,

ΩZ̃1
h2 = 0.20023

ΩaCO
h2 = 0.07789

ΩaTP/DP
h2 = 1.48668× 10−6

∆Neff = 0.26504

and we see that both the total dark matter and dark radiation are overproduced

for this point. Additionally, there is a higher WIMP relic density here than in the

φMSSM case with the same modulus parameters - as we will see shortly, this is

due to the same relativistic dilation effect that enhanced the WIMP abundance in

the B1 case with fixed m3/2, except that now it is the modulus decay to boosted

saxions which enhances the relic density.

6.3.2 Cosmological evolution in case GK2

We now view the cosmological evolution in case B2-GK2. In Fig. (6.18), we

display the abundance yield Yi = ni/s for each of the nine components. Here, we

see that the modulus decay occurs later than in case B2-GK1 - entropy dilution

begins around R/R0 ∼ 1010 with the modulus decaying at R/R0 ∼ 1015. This

agrees with our expectations since the gauge boson modes are now suppressed,

giving roughly an order of magnitude decrease to the modulus total width. We

also see that the CO saxions decay at about the same time as in case B2-GK1 -

while the decay of the TP/DP saxions and axinos still coincides with the modulus
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Figure 6.18: Cosmological evolution of abundance yield Yi = ni/s
vs scale factor R/R0 in case B2-GK2. Here, we fix mφ = 5 × 103

TeV and take all allowed λi = 1 except for λgauge = 1/16π2. Figure
reproduced from [8].

decay. Due to the large increase in the effective modulus to WIMP branching

ratio (most dominantly through the φ → ss → WIMPs process), we see that

between around R/R0 ∼ 109 to R/R0 ∼ 1012 the neutralino abundance yield

receives a sizeable enhancement over the previous GK1 case. Because of the late

modulus decay (and therefore late TP/DP saxion and axino decay), we also notice

that the final abundance yield YZ̃1
∼ 10−9 is enhanced compared to the previous

case, which had YZ̃1
∼ 10−11. The abundance of TP/DP axions also receives

a substantial enhancement over the previous case, due to the large increase in

the φ → aa branching ratio. Finally, we also notice that the CO axions begin

oscillations earlier than in case B2-GK1 (at least in the ξ = 1 limit we consider
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here). We will comment more on this in Sec. (6.3.6), but for now we note that the

CO axions begin with a very large abundance (far more so than in the previous

case). The modulus then dilutes this abundance by a significant amount, which

gives a final abundance yield similar to the previous case. We will see later that

the ξ = 1 limit of the GK2 cases is peculiar in that it can provide an enhancement

of the CO axion relic density - a property that is nearly absent in the ξ = 0 limit

of the same case.

Figure 6.19: Cosmological evolution of energy densities ρi vs scale
factor R/R0 in case B2-GK2. Here, we fix mφ = 5 × 103 TeV and
take all allowed λi = 1 except for λgauge = 1/16π2. Figure reproduced
from [8].

In Fig. (6.19), we display the evolution of energy densities for the nine compo-

nents in case B2-GK2. Here, we see a key difference from the previous case is

that the energy density of radiation decreases below the TP/DP axions, so that
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most of the energy content behaving as radiation is in the form of dark radiation.

At this scale, the axions do not thermalize with the rest of the primordial plasma.

The corresponding radiation temperature after modulus decay is then expected

to be lower than in the previous case.

To conclude this section, we note that this point produces the late-time values

ΩZ̃1
h2 = 32.2581

ΩaCO
h2 = 0.03013

ΩaTP/DP
h2 = 0.00336

∆Neff = 598.869

which overproduces dark matter and far overproduces dark radiation. Before we

study the production of dark matter and dark radiation in the φPQMSSM, we

first discuss the entropy production in both the GK1 and GK2 cases.

6.3.3 Entropy production in the φPQMSSM

In Fig. (6.20), we display the entropy dilution factor r ≡ Sf/S0 as a function of

modulus mass mφ for both case GK1 and GK2. As we expect, in both cases GK1

and GK2 an increase in mφ translates to a potentially substantial weakening of

the entropy dilution factor. From the same arguments we made in Sec. (6.2.4),

we note that our entropy dilution factor decreases as m
−3/2
φ in Fig. (6.20) as

T φD ∝ m
3/2
φ , while we fix TR = 1010 GeV here so that there is no region here

where significant radiation-domination occurs before modulus oscillations begin.
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Figure 6.20: Entropy dilution factor r vs modulus mass mφ for both
case GK1 and GK2 in the ξ = 1 limit. We adopt our natural SUSY
benchmark point from Table (4.3) and our PQ benchmark point from
Table (4.6). Here, we fix TR = 1010 GeV. Figure taken from [8].

In the GK2 case, we see much more dependence on the various SUSY modes

which become kinematically accessible between 1 TeV . mφ . 60 TeV due to this

dependence on T φD, while for mφ & 100 TeV the entropy dilution decreases below

the value predicted from case GK1. This is due to the fact that in case GK2 in

the ξ = 1 limit, most of the modulus energy density (and hence entropy) ends up

in the production of axions - which behave as dark radiation at this scale - instead

of being released into the thermal bath. Case GK1 has a decay temperature set

primarily by λgauge, and is thus much less affected by these effects than case GK2.

In the next few sections, we now turn to the study of production of dark matter

and dark radiation in the φPQMSSM beginning with case B2-GK1 in the ξ = 1
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limit.

6.3.4 DM/DR production in case GK1 - the ξ = 1 limit

In Fig. (6.21), we show the associated dark matter production for each λPQ ∈

{0, 0.1, 1} with all other λi = 1 as a function of mφ for case GK1 with ξ = 1.

We also display the solid black vertical line at mφ ∼ 70 TeV which separates the

BBN-safe region (mφ & 70 TeV) from the region excluded by BBN (mφ . 70 TeV)

- i.e. where the modulus decays during or after the scale of BBN. Additionally,

Figure 6.21: Relic densities in case GK1 with ξ = 1 as a function of mφ

for neutralinos (blue), TP/DP axions (purple), CO axions (green), and
total DM (black) for λPQ ∈ {0, 0.1, 1} with all other λi = 1. Vertical

dashed lines represent where T φS ∼ T aosc (mφ ∼ 55 TeV), T φD ∼ T aosc

(mφ ∼ 5 × 103 TeV), and T φD ∼ Tf.o. (mφ ∼ 2 × 104 TeV). Vertical
solid black line at mφ ∼ 70 TeV represents BBN bound. Figure taken
from [8].

we display three vertical dot-dashed lines at mφ ∼ 55 TeV, mφ ∼ 5 × 103 TeV,
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and mφ ∼ 2 × 104 TeV which separate key aspects of the resulting cosmology.

The first line (mφ ∼ 55 TeV), indicates where the oscillations of the CO axion

begin simultaneously with when the modulus begins releasing entropy into the

thermal bath. We notice that, to the right of this line (55 TeV . mφ . 5× 103

TeV), the produced relic density due to CO axions (shown by the green curve)

increases at a faster rate than to the left of this line (mφ . 55 TeV). If the axion

oscillations do not begin until after the modulus has begun to release entropy,

the axion abundance will not be subject to the full dilution - unlike any relics

existing before T φS . To the left of this line (mφ . 55 TeV), the axion relic density

increases only because the entropy dilution factor decreases with increasing mφ.

The second vertical dot-dashed line (mφ ∼ 5× 103 TeV) indicates where the decay

of the modulus and the beginning of CO axion oscillations coincide. To the right

of this line (mφ & 5× 103 TeV), the entropy dilution from the modulus no longer

dilutes the CO axion, and its abundance reaches a constant value. The third

vertical dot-dashed line (mφ ∼ 2 × 104 TeV) then denotes where the modulus

decay occurs at the same time as neutralino freeze-out. In the case where λPQ = 0,

we see that the neutralino relic density takes a constant value to the right of this

line. However, for λPQ > 0 this is clearly not the case.

For the case where λPQ > 0, the effect of the relativistic dilation factor

msns/ρs in the Boltzmann equations Eqs. (5.1) and (5.2) becomes apparent.

Once mφ � 2ms, the saxions become highly boosted in the comoving frame which

leads to a large enhancement of their lifetime. Here, even though the modulus

has decayed before neutralino freeze-out, the saxions decay much later. Since
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the copiously produced saxions then decay to gauginos with a branching ratio of

∼ 2%−5% as we saw in Fig. (4.17), this leads to an enhancement in the neutralino

relic density. As mφ increases, the modulus decay temperature rises faster than

the saxion lifetime dilation so that eventually the neutralino relic density decreases

to its thermal value. For mφ . 2× 103 TeV, we see the neutralino relic density

is well above the measured value regardless of the value of λPQ - providing a far

more stringent bound than BBN. In order to produce neutralino relic density

consistent with the total measured dark matter relic density, here we find that

mφ & 104 TeV without significant tuning of λPQ. However, in order to produce

a neutralino relic density consistent with current DD/ID bounds, a much larger

value of mφ may be required depending on the precise value of λPQ.

Additionally, the contribution of TP/DP axions to the total relic density is

very low - below 0.1% of the measured value. The effect of the TP/DP axions

is then primarily the production of dark radiation. In Fig. (6.22), we display

the dark radiation predictions in the form of the effective number of neutrinos

∆Neff for λPQ ∈ {0, 0.1, 1} (where all other λi = 1), as well as the Planck 2018

constraints on ∆Neff (red line) [11] and the forecasted CMB-S4 limit (orange

dashed line) [413]. We see that λPQ & 1 is excluded from Planck 2018 data,

while λPQ = 0.1 is still below the forecasted CMB-S4 limit which will probe

much of the expected parameter space of this case. Between both Fig. (6.21) and

Fig. (6.22), we also see for λPQ = 0 a drastic increase in both ΩaTP/DP
h2 and ∆Neff

at mφ ∼ 60 TeV. Although this coincides with the value of mφ where T φS ∼ T aosc,

this is purely coincidental - the drastic increase is solely due to the modulus
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Figure 6.22: Dark radiation production in case GK1 with ξ = 1 as a
function of mφ for λPQ ∈ {0, 0.1, 1} with all other λi = 1. Horizontal
red line shows Planck 2018 bounds, while orange dashed line shows
forecast CMB-S4 limits. Vertical solid black line at mφ ∼ 70 TeV
represents BBN bound. Figure taken from [8].

decay to gravitino channel becoming kinematically accessible. The gravitino can

then decay to axion+axino pairs (albeit at around a 1% branching fraction, as

we saw in Fig. (4.23)), whereas the only other source of TP/DP axions in the

λPQ = 0 case are the thermal axions produced by inflationary reheating which

are heavily diluted from modulus decay. We also notice a sharp increase in ∆Neff

for mφ & 3× 104 TeV for λPQ = 0. Here, the entropy dilution from the modulus

has now become sufficiently weak that thermal axions and saxions (which here

primarily decay to axions) are no longer diluted to entirely negligible levels -

although they are still well below the reach of the CMB-S4 forecasted limits.

Since we are considering case B2 here, which has suppressed modulus decay to
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gravitinos, as mφ increases the ΩaTP/DP
h2 and ∆Neff curves for λPQ = 0 decrease

until mφ ∼ 2 × 104 TeV. At this point, the entropy dilution from the modulus

becomes weak enough that the thermally-produced saxions and axions are no

longer diluted to negligible levels, thus increasing the TP/DP axion abundance

and corresponding contribution to dark radiation. We also note that there are two

bumps in ∆Neff in Fig. (6.22) for λPQ > 0. The first, between mφ ∼ 300 TeV and

mφ ∼ 2× 103 TeV, is due to the relativistic enhancement of the saxions. Here, the

saxions begin to be relativistic and have correspondingly higher energy density

when they decay, translating to a larger TP/DP axion energy density. However,

once the modulus gets much larger than mφ ∼ 2 × 103 TeV, the saxions live

sufficiently long to become redshifted, once again behaving as matter once they

decay - relaxing the axion energy density back to its expected value. This effect

does not happen for the neutralinos produced from saxion decay (at least from

the viewpoint of the produced WIMP relic density) since the saxion-produced

axions are in the branching scenario while the saxion-produced neutralinos are in

the annihilation scenario. The second bump begins at mφ ∼ 5× 104 and continues

for the duration of our plot limits. Once the modulus and saxions decay early

enough (i.e. at large enough temperature T sD & 3 − 5 GeV), the axion’s cross

section 〈σav〉 is large enough to pull the axions up towards their equilibrium value

as can be seen from Fig. (6.1). On the other hand, if the modulus and saxions

decay much earlier the axion population begins to become redshifted - decreasing

its energy density and therefore decreasing its contribution to ∆Neff.

We display in Fig. (6.23) the produced dark matter relic densities as a function
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Figure 6.23: Dark matter production as a function of ms in case
B2-GK1 in the ξ = 1 limit. Here, we fix mφ = 5 × 105 TeV and
mã = 5 TeV and take all λi = 1. All remaining PQ parameters are as
given in Table (4.6).

of the saxion mass ms, where we have fixed mφ = 5× 105 TeV and mã = 5 TeV

in addition to taking all λi = 1. We see that as ms increases, there is a reduction

in the produced relic density due to a corresponding decrease in the relativistic

dilation factor mn/ρ. Once ms & 7 TeV, we see that the decay now happens

sufficiently early to return the neutralino relic density to its thermally-expected

value (albeit with a slight enhancement due to the modulus decays to axinos,

which are both present and constant in this plot). As ms & 2mã = 10 TeV, we

can see a sharp increase in the WIMP relic density. This is because the saxion

can now decay to axino pairs with a large branching ratio, which further cascade

decay to neutralinos. We also notice a slight dip in the neutralino relic density at
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ms ∼ 2 TeV. As can be seen from Fig. (4.17), this is due to a resonance in the

saxion decay width to gauginos. Although the saxion branching ratio to SUSY

particles increases sharply here, the saxion lifetime decreases - which produces a

net decrease in the neutralino relic density since we are in the annihilation scenario.

It is noted in [290] that although the saxion mass is expected to be of order of the

soft terms, the axino mass tends to be a truly model-dependent quantity which

can be the same magnitude as the saxion or possibly much lighter. Our results

here suggest that models predicting a relatively large saxion mass which is close to

the axino mass (or at least sufficiently close to block the saxion-to-axino decays)

will produce the most optimistic results in the φPQMSSM.

Finally, we discuss our anticipations of how these results change for cases

B1, A1, and A2. In case B1, we do not expect a significant change in the

modulus decay temperature since the branching fraction to gravitinos is still only

∼ 1%. However, as we saw in the φMSSM, the gravitinos decay very late and -

as they are now produced in much more abundant quantities than in case B2 -

we expect this to lead to an extremely large enhancement in the neutralino relic

density. Since the gravitinos can decay into axion+axino and saxion+axino pairs

as well (albeit with only a roughly 1% branching ratio), this may also lead to a

slight enhancement in the amount of dark radiation produced. In case A2, both

gauginos and axinos are unsuppressed - which should increase the modulus total

width by roughly a factor of 2. This translates into an increase in the modulus

decay temperature by a factor of around 1.4, which lowers the naive expectation

of neutralino dark matter production by about the same amount. However,
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as the highly boosted saxions significantly enhance the neutralino production

for mφ & 300 TeV, the decrease in the neutralino relic abundance may be not

be as significant for large mφ - a behavior that is exhibited in Fig. (6.21) for

mφ & 2× 104 TeV. Additionally, axinos are now produced in large quantities and

- much like the saxions - are highly boosted. For our PQ benchmark parameters

in Table (4.6), we expect that the neutralino relic abundance increases slightly

compared to case B2 for mφ & 300 TeV since, as we saw in Fig. (4.20), the decay

width for axinos is slightly lower than the saxion decay width, corresponding to

a longer lifetime and less efficient neutralino annihilations. The unsuppressed

modulus decays to gauginos and axinos may also ease the production of dark

radiation in this scenario since this decreases the effective modulus branching

fraction to axions. Case A1 then provides the most challenging scenario from the

perspective of dark matter production - the unsuppressed production of gravitinos

should generically overproduce neutralino dark matter unless the gravitino is

made extremely massive. Even in sequestered scenarios where this is possible and

still compatible with a natural SUSY spectrum, the unsuppressed decays to axinos

still may provide severe neutralino overproduction. In all cases, we would not

expect a significant change in the CO axion relic density, as the entropy injected

from the modulus is expected to only change by a small amount.

6.3.5 DM/DR production in case GK1 - the ξ = 0 limit

In Fig. (6.24), we show the associated dark matter production in the PQ self-

coupling ξ = 0 limit for each λPQ ∈ {0, 0.1, 1} with all other λi = 1 as a function
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of mφ for case GK1. We again display the solid black vertical line at mφ ∼ 70

TeV separating the BBN-safe and BBN-violating regions, and the three vertical

dot-dashed lines indicating shifts in the resulting cosmology at mφ ∼ 55 TeV,

mφ ∼ 5× 103 TeV, and mφ ∼ 2× 104 TeV. As can be seen from the figure, this

Figure 6.24: Relic densities in case GK1 with ξ = 0 as a function of mφ

for neutralinos (blue), TP/DP axions (purple), CO axions (green), and
total DM (black) for λPQ ∈ {0, 0.1, 1} with all other λi = 1. Vertical

dashed lines represent where T φS ∼ T aosc (mφ ∼ 55 TeV), T φD ∼ T aosc

(mφ ∼ 5 × 103 TeV), and T φD ∼ Tf.o. (mφ ∼ 2 × 104 TeV). Vertical
solid black line at mφ ∼ 70 TeV represents BBN bound. Figure taken
from [8].

case is very similar to the ξ = 1 limit just studied - the key difference being the

lack of PQ sector self-interactions. Since the s→ aa mode is now forbidden, the

primary saxion decay is into gaugino pairs with a branching fraction of about 90%,

as we have seen in Fig. (4.19). The saxion decay width is now also reduced by

around two orders of magnitude, thus increasing its lifetime by the same amount.
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This increase in the saxion lifetime then predicts much larger enhancements of the

neutralino relic density than in the ξ = 1 limit. In the ξ = 0 limit, we therefore

see a much larger value of mφ is required to meet DD/ID bounds - here, mφ & 107

TeV for λPQ = 0.1, with larger values λPQ requiring even larger values of mφ.

Figure 6.25: Dark radiation production in case GK1 with ξ = 0 as a
function of mφ for λPQ ∈ {0, 0.1, 1} with all other λi = 1. Horizontal
red line shows Planck 2018 bounds, while orange dashed line shows
forecast CMB-S4 limits. Vertical solid black line at mφ ∼ 70 TeV
represents BBN bound. Figure taken from [8].

In Fig. (6.25), we plot the produced dark radiation in the ξ = 0 limit. A quick

comparison with Fig. (6.22) shows that the ξ = 0 case generically tends to have a

slightly lower ∆Neff than the ξ = 1 limit. This is, of course, due to the lack of

saxion decays into axions - so that the only production of dark radiation comes

from modulus decay and, to a much lesser extent, gravitino decay. Additionally,

we note that the bump that was present in the ξ = 1 limit between mφ ∼ 300
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TeV and mφ ∼ 2 × 103 TeV is not present in the ξ = 0 limit for this reason.

We also see that for λPQ = 0, the produced dark radiation for mφ & 3 × 104

TeV is correspondingly lower than in the ξ = 1 limit. As with the ξ = 1 limit,

the entropy dilution from modulus decay has become weak at large mφ so that

sizeable contributions from the thermally-produced population occur, although

the thermal saxions can no longer provide a large contribution to ∆Neff.

Figure 6.26: Dark matter production as a function of ms in case
B2-GK1 in the ξ = 0 limit. Here, we fix mφ = 5 × 105 TeV and
mã = 5 TeV and take all λi = 1. All remaining PQ parameters are as
given in Table (4.6).

We display the produced dark matter relic densities as a function of ms in the

ξ = 0 limit in Fig. (6.26). Similarly to the ξ = 1 limit, here we fix mφ = 5× 105

TeV and mã = 5 TeV and take all λi = 1. As the saxion decays to PQ sector pairs

are forbidden in the ξ = 0 limit, two features are immediately clear: 1. the leading
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saxion decays are now to gaugino pairs, which decreases its total width by around

1− 2 orders of magnitude, causing an increase in the neutralino abundance by up

to an order of magnitude and 2. now that the decays to axino pairs is forbidden,

it appears that larger saxion masses are favored. Much as in the ξ = 1 plot, we

again see a sharp decrease due to the gaugino resonance in the saxion decay width

at ms ∼ 2 TeV, however here this drop is far more pronounced as this resonance

has a much larger effect on the saxion decay width in the ξ = 0 limit.

Evidently, this scenario requires (without any other considerations) a modulus

mass at least an order of magnitude larger than in the corresponding ξ = 1 limit

due to a large increase in the neutralino relic density. In this scenario, we again

expect both cases B1-GK1 and A1-GK1 to be even more difficult to realize due

to the moduli-induced gravitino problem. Case A2-GK1 may also be difficult

to realize due to the unsuppressed decays to axinos. To avoid overproduction of

neutralino dark matter, the modulus, saxion, and axino likely all would need to

have very large masses - with perhaps saxion and axino masses required to be

greater than the expected O(1 − 10) TeV based on our soft masses unless the

modulus mass is pulled up far higher. However, if the modulus mass is taken large

enough that natural values of the saxion and axino masses do not overproduce

WIMP dark matter, it is likely that such a large modulus mass will no longer

dilute the thermal relics - causing a resurgence of the thermal gravitino problem.

Thus it might be that cases A1 and A2 are unable to be realized in tandem

with natural SUSY - we leave a precise analysis of this statement for future work.

There is an additional implication from this scenario due to our expectation of
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mφ & 107 TeV to meet DD/ID constraints. Consistency of this scenario then

puts a requirement on the Hubble scale during inflation HI & 1010 GeV so that

HI > mφ - otherwise the modulus begins to oscillate during or before inflation and

would then be irrelevant for the later cosmology. Additionally, our assumption

that PQ symmetry is broken before or during inflation requires that fa > HI/2π

[112]. These two consistency arguments put very tight constraints on the viable

parameter space of mφ and fa in the ξ = 0 limit - a large enough modulus mass

to meet DD/ID constraints requires a higher scale of inflation, which requires

an even higher PQ scale. These constraints are eased significantly in the ξ = 1

limit, which requires a lower inflationary Hubble scale HI ∼ 5× 108 GeV since

we would expect mφ & 5× 105 TeV to meet DD/ID bounds, allowing for fa as

low as ∼ 108 GeV.

6.3.6 DM/DR production in case GK2 - the ξ = 1 limit

We now turn to case B2-GK2 in the ξ = 1 limit. In Fig. (6.27), we display

the associated dark matter production in this case as a function of mφ for each

λPQ ∈ {0, 0.1, 1}, with λgauge = 1/16π2 and all remaining λi = 1. A quick

comparison to the GK1 cases shows several notable differences here. To begin,

we note that the black vertical line separating BBN-safe from BBN-violating

regions has now been pushed up to mφ ∼ 200 TeV. Additionally, the three vertical

lines indicating cosmology shifts are (in the case where λPQ = 1) pushed to

mφ ∼ 300 TeV (T φS ∼ T aosc), mφ ∼ 2 × 104 TeV (T φD ∼ T aosc), and mφ ∼ 2 × 105

TeV (T φD ∼ Tf.o.). The shift of each of these lines is due to modulus decay occuring
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Figure 6.27: Relic densities in case GK2 with ξ = 1 as a function of
mφ for neutralinos (blue), TP/DP axions (purple), CO axions (green),
and total DM (black) for λPQ ∈ {0, 0.1, 1}. Vertical dashed lines

represent where T φS ∼ T aosc (mφ ∼ 300 TeV), T φD ∼ T aosc (mφ ∼ 2× 104

TeV), and T φD ∼ Tf.o. (mφ ∼ 2× 105 TeV). Vertical solid black line at
mφ ∼ 200 TeV represents BBN bound. Figure taken from [8].

substantially later since the leading decay mode (into gauge bosons) is now highly

suppressed. Furthermore, each of these four lines gets pushed to even larger mφ

as λPQ decreases.

We also notice a substantial increase in the relic abundance of TP/DP axions

for all three values of λPQ considered. As the modulus decays to gauge bosons are

now highly suppressed, the modulus branching ratio to both axions and saxions

(which primarily decay to axions in this ξ = 1 limit) drastically increases - from

Figs. (4.15) and (4.17), we see the effective modulus-to-axion branching ratio is

above around 95% once the saxions decay. Since the modulus now releases most
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of its energy to ultra-relativistic axions which - at the scale they are produced - do

not thermalize at all, this energy is not released into the thermal bath at any point.

This causes the radiation temperature at a given value of H to be lower after

modulus decay in this case than in the others - a key distinction of this case. Since

the CO axions have a temperature-dependent mass m ∝ T−4 for T & ΛQCD, the

initial energy density for the axion when it begins to oscillate increases in this case

due to the lower oscillation temperature. This causes the relic density for the CO

axions to receive an enhancement, as we see in Fig. (6.27) for mφ & 2× 104 TeV.

For smaller values of λPQ, we also see that the CO axion relic density becomes

constant at larger values of mφ due to the sensitive dependence of T φD on λPQ here

- a feature not present in the GK1 cases which depend on these couplings only at

the percent-level.

Finally, the neutralino relic density receives an extra enhancement over the

GK1 case due to the later decay of the modulus, which causes the boosted saxion

population to decay later. For both λPQ = 0.1 and λPQ = 1, we see that the

neutralino relic density is above the measured value throughout the entirety of our

scan limits. Even for λPQ = 0, a value mφ & 105 TeV is required to be consistent

with DD/ID constraints - a full order of magnitude above the GK1 case.

In Fig. (6.28), we display the dark radiation produced in this scenario. We see

that for λPQ = 0.1 and λPQ = 1, the value of ∆Neff is produced at least two orders

of magnitude above the Planck 2018 limit - except for values of mφ well into the

BBN-violating region. We also do not expect any significant deviations from this

excessive dark radiation and dark matter overproduction in any of the cases A1,
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Figure 6.28: Dark radiation production in case GK2 with ξ = 1 as a
function of mφ for λPQ ∈ {0, 0.1, 1}. Horizontal red line shows Planck
2018 bounds, while orange dashed line shows forecast CMB-S4 limits.
Vertical solid black line at mφ ∼ 200 TeV represents BBN bound.
Figure taken from [8].

A2, or B1. Thus, we conclude this scenario is excluded by overproduction of both

dark matter and dark radiation, at least without additional symmetries or severe

tuning which cause λPQ ∼ 0.

6.3.7 DM/DR production in case GK2 - the ξ = 0 limit

The final case we consider is case B2-GK2 in the ξ = 0 limit. In Fig. (6.29), we

plot dark matter production in this case. We see immediately that the ξ = 0 limit

seems to fare better than the ξ = 1 limit. As the saxions can no longer decay

to axion pairs, they now decay primarily to gauginos and other particles which

do thermalize. This returns a significant fraction of the modulus energy back to
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Figure 6.29: Relic densities in case GK2 with ξ = 0 as a function of
mφ for neutralinos (blue), TP/DP axions (purple), CO axions (green),
and total DM (black) for λPQ ∈ {0, 0.1, 1}. Vertical dashed lines

represent where T φS ∼ T aosc (mφ ∼ 300 TeV), T φD ∼ T aosc (mφ ∼ 2× 104

TeV), and T φD ∼ Tf.o. (mφ ∼ 2× 105 TeV). Vertical solid black line at
mφ ∼ 200 TeV represents BBN bound. Figure taken from [8].

the thermal bath, so that the radiation temperature is now relatively unchanged

for differing λPQ. We see that the CO axion relic density is still sensitive to the

value of λPQ as this coupling predominantly sets the modulus decay temperature

- and thus when it ceases to dilute the CO axion abundance. However, since the

radiation temperature at H(T aosc) is now largely unaffected, the CO axions do not

receive a large enhancement as in the ξ = 1 limit.

On the other hand, the computed relic density for the neutralinos exhibit some

seemingly strange behavior at first. We see that for 500 TeV . mφ . 2× 104 TeV,

the neutralino relic density for λPQ = 0 and λPQ = 1 overlap, while λPQ = 0.1
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actually yields a higher neutralino relic density. This is again due to the sensitive

dependence of T φD on λPQ in this scenario. For λPQ = 0, the modulus decay

temperature is set primarily by the (suppressed) couplings to the gauge sector

- the decay to saxions and axinos is turned off. Neutralinos are then produced

from modulus decay to gauginos with an abundance determined primarily by T φD.

When λPQ = 0.1, the modulus decay temperature is raised but now the boosted

saxions set the dominant decay scale, which is lowered due to the relativistic

dilation of the saxion lifetime. Here, the net effect is that neutralinos are then

produced at a lower scale than for λPQ = 0 - leading to the enhancement we see

in the plot. However, for λPQ = 1 the relativistic dilation factor of the saxion for

a given mφ is unchanged, but the modulus decays at a temperature a full order of

magnitude larger than for λPQ = 0.1. This then roughly reduces the neutralino

abundance by an order of magnitude, which is precisely what we see in Fig. (6.29).

The overlapping of the λPQ = 0 and λPQ = 1 cases are then coincidental. This

effect was obscured in the ξ = 1 limit due to the excessive production of dark

radiation, which raises the modulus abundance yield Yφ when it decays due to

the lower radiation temperature.

In Fig. (6.30), within the BBN-safe region for λPQ = 0.1 and λPQ = 1 we see

that dark radiation is produced at a level around 2 orders of magnitude above

the Planck 2018 limit. Although less extreme, this is similar to the ξ = 1 limit of

the GK2 case - dark radiation excludes this case unless fine-tuning or additional

symmetries are introduced which we do not consider here.

If we were to instead consider cases A1 and A2, the addition of unsuppressed
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Figure 6.30: Dark radiation production in case GK2 with ξ = 0 as a
function of mφ for λPQ ∈ {0, 0.1, 1}. Horizontal red line shows Planck
2018 bounds, while orange dashed line shows forecast CMB-S4 limits.
Vertical solid black line at mφ ∼ 200 TeV represents BBN bound.
Figure taken from [8].

axino decays and gaugino decays (although still suppressed by a loop factor

here) will reduce the production of dark radiation since it reduces the effective

modulus branching ratio into axions. However, we would then only expect the

modulus branching ratio into axions to be reduced from roughly 50% to 33%

in this case. Considering that case B2-GK1 in the ξ = 0 limit produced dark

radiation at a level close to Planck 2018 bounds with an effective modulus-to-axion

branching ratio of roughly 5%− 10% (as seen from Fig. (4.13)), it is unlikely that

the additional decay modes would lower the produced dark radiation to a level

consistent with current experimental bounds in this scenario. Furthermore, the

boosted axinos would likely contribute an enhancement to the neutralino dark
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matter content, leaving the limiting case of λPQ = 0 as the only potentially viable

case (albeit, at the cost of introducing fine-tuning or additional symmetries).

Given the additional constraints on the inflationary Hubble scale HI and the PQ

scale fa from consistency arguments for large values of mφ, we expect that this

case may also be excluded simply by considering consistency in tandem with the

DD/ID bounds.

6.3.8 The allowed PQ parameter space

In this section, we abandon the PQ benchmark parameters from Table (4.6) and

instead study the production of dark matter and dark radiation as a function

of the expected ranges of the PQ parameters. Here, we focus on case B2-GK1

in the ξ = 1 limit for two reasons. The first reason is that although ξ is a

model-dependent parameter, generically it is expected to be close to 1 [290].

Since the GK2 cases are effectively ruled out from dark radiation considerations,

this leaves us with case GK1 in the ξ = 1 limit. The second is for consistency

reasons: the ξ = 1 limit produces a smaller amount of neutralino dark matter

than the ξ = 0 limit - allowing for easier realization of the required hierarchy

fa > HI/2π > mφ/2π.

Before we delve too deeply, let us first discuss the expected ranges of our

parameters which we list in Table (6.1). Of course, we expect the initial misalign-

ment angle of the axion to be in the interval θi ∈ [0, π). We do not make the lack

of tuning θi a requirement here, but we will discuss this as it pertains to our results

later. The axion decay constant is expected to have a lower bound from supernova
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cooling [414, 415], which indicate that fa & 109 GeV. However, too large of fa

tends to overproduce CO axion dark matter unless θi is tuned close to 0 - we there-

fore focus on fa . 3× 1013 GeV. We also take here the axino and saxion masses

to be roughly of order of the soft terms, ms ∼ mã ∼ O(1− 30) TeV. Additionally,

given the uncertainty in the modulus couplings to matter fields we scan over the

λi as well. Since these couplings are generically expected to be λi ∼ O(1), we take

the range to be within an order of magnitude so that λi ∈ [0.1, 10]. Furthermore,

the modulus couplings are taken to be unified in the sense of what one would

expect for the NUHM3 model - e.g. we take unified couplings to first and second

generations of lepton superfields λL1 = λL2 = λE1 = λE2 , while third generation

lepton superfields are unified to a different randomly assigned value λL3 = λE3 ,

and similarly for the quarks. The two Higgs couplings, λHu and λHd , are then

taken to be independent as are the gravitino and PQ sector couplings. Finally, the

couplings to the gauge sector are also taken to be unified and randomly assigned

within the range defined in Table (6.1). Given our ignorance of the underlying

parameter set, this allows us to make some rather general statements for this

model.

parameter PQ
ms [1 TeV, 30 TeV]
mã [1 TeV, 30 TeV]
fa [109 GeV, 3× 1013 GeV]
θi [0, π)
λi [0.1, 10]

Table 6.1: Parameter bounds for scanning PQ parameter space.

For our first scan, we fix mφ = 5× 105 TeV. From our results in Sec. (6.3.4),

271



we expect an mφ this large should be able to produce neutralino relic densities

that satisfy the DD/ID constraints on WIMPs, which for our natural SUSY

benchmark model requires ΩZ̃1
h2 . 0.012. In Fig. (6.31), we display the scan

Figure 6.31: Neutralino relic density from scanning PQ parameter
space fa, θi, ms, mã, and all modulus couplings λi as given in Ta-
ble (6.1). Here, we fix mφ = 5× 105 TeV and assume the B2-GK1
case with ξ = 1. Red points are in excess of measured dark matter relic
density, Ω

Z̃1
h2 & Ωmeas.h

2 ∼ 0.12. Purple and dark blue points are
close to the thermal value and can satisfy DD/ID constraints. Figure
taken from [8].

results which show the computed relic density for the neutralinos in the (fa, θi)

plane. We see that, in general, increasing the PQ scale fa translates to a larger

WIMP abundance as denoted by the color schema. This can be understood by

noting that the saxion lifetime in the ξ = 1 case is primarily controlled by fa

- the (dominant) decay width to axions is proportional to m3
s/f

2
a [285], so that
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an increase in fa produces an increase in the saxion lifetime - thus leading to

an enhancement in the neutralino abundance. The red points then oversaturate

the observed dark matter abundance, Ωmeas.h
2 ∼ 0.12, which occur frequently for

fa & 1011. Due to the other random parameters in our scan, we see that a large

fa does not necessarily exclude points with very low neutralino relic abundance,

although they become more rare. Conversely, we also see some red points in the

region fa ∼ 109−10 GeV. Although the mass of the saxions and axinos plays a

role in this aspect of the distribution, the primary source for these is the ratio of

the leading couplings, λgauge/λPQ. If the (unified) couplings to the gauge sector

are generated towards the top of the scan interval, λgauge ∼ 10, while the coupling

to the PQ sector is generated towards the bottom, λPQ ∼ 0.1, the modulus both

decays earlier and produces fewer saxions leading to a substantial reduction in

the neutralino relic density. Similarly, if the couplings to the gauge sector are

generated quite low, λgauge ∼ 0.1, while the coupling to the PQ sector is generated

much higher, the modulus will decay later and produce more saxions which cascade

decay into neutralinos, producing a higher relic density. Additionally, we note that

it is not impossible to find points with fa & 1013 GeV which not only satisfy the

measured dark matter relic density bound, but also satisfy the DD/ID constraints

which are shown by purple or dark blue points. It is perhaps not surprising that

θi seems to make no effect on the neutralino relic density - although it does make

a significant difference to the CO axion energy density which we will see shortly,

the axion energy density ρaCO
is never large enough in this case to change the

Hubble scale beyond the sub-percent level (and, of course, the CO axions are
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effectively decoupled from all other components we consider here outside of any

potential impact on the Hubble scale).

Figure 6.32: CO-produced axion relic density from scanning PQ
parameter space fa, θi, ms, mã, and all modulus couplings λi as given
in Table (6.1). Here, we fix mφ = 5×105 TeV and assume the B2-GK1
case with ξ = 1. Red points are in excess of measured dark matter
relic density, ΩaCOh

2 & Ωmeas.h
2 ∼ 0.12. Note the color schema here

is logarithmic. Figure taken from [8].

We show the scan results for the axion relic density in the (fa, θi) plane in

Fig. (6.32). The axion relic density is extremely sensitive to both parameters,

so we adopt here a logarithmic color scale indicating the relic density. Between

5× 1010 GeV . fa . 1013 GeV, we see a distinct predictive band that separates

the region where axion dark matter is overproduced (red points) from the region

where axion dark matter is extremely underproduced (purple and dark blue points).

We also see that the axion relic density is far less sensitive to the other random
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parameters (i.e. the saxion and axino masses and the modulus couplings) than

the neutralino relic density is. Of course, there are a few overproduced points

in the generically underproduced region. These are again determined from the

ratio of λgauge/λPQ - if λgauge is small while λPQ is large, most of the modulus

energy density goes to the TP/DP axion population (which behaves primarily

as dark radiation) thus decreasing the radiation temperature. This leads to an

enhancement in the CO axion much like we saw in Sec. (6.3.6). However, these

red points then overproduce dark radiation - and are thus excluded from both

DM and DR considerations.

Now that we have a small understanding of the parameter space of PQ

parameters, we repeat the scan for mφ ∈ {5 × 104, 1 × 105, 5 × 105} TeV. Our

aim here is to show the allowed PQ parameter space as mφ increases, while also

incorporating the uncertainties in the values of the PQ parameters as indicated by

our scan limits in Table (6.1). In Fig. (6.33), we display these contours for each

mφ which 1. roughly saturate total dark matter by imposing 0.09 ≤ Ωtotalh
2 ≤

0.125, 2. produce neutralinos at a level consistent DD/ID constraints so that

ΩZ̃1
h2 ≤ 0.1Ωmeas.h

2 ∼ 0.012, and 3. do not overproduce dark radiation - i.e.

∆Neff ≤ 0.26. In order to have sufficient efficiency to draw sensible contours, we

utilize our understanding of the parameter space from Figs. (6.31) and (6.32) to

target regions of (fa, θi) where we expect points that meet these criteria to live.

The large fa and small θi regime is particularly low efficiency; as we have seen

from Fig. (6.31), a large majority of this section of parameter space overproduces

neutralinos due to the enhanced saxion lifetime. In all targeted regions, we have
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Figure 6.33: Contours of allowed PQ parameter space for given values
of mφ in case B2-GK1 in the ξ = 1 limit. Interior regions satisfy
0.09 ≤ Ωtotalh

2 ≤ 0.125, ∆Neff ≤ 0.26, and satisfy DD/ID bounds
which are Ω

Z̃1
h2 . 0.1Ωmeas.h

2 for our natural SUSY benchmark
point. Here, we take random values of fa, θi, ms, mã, and all modulus
couplings λi as given in Table (6.1). Figure taken from [8].

checked that our bounds extend past the contours which gives us confidence in

their accuracy. We see that for mφ = 5× 104 TeV, only fa . 5× 1011 GeV and

θi & 2.2 is allowed - with the enhancement due to late modulus-to-saxion-to-

WIMP cascade decay overproducing neutralinos for larger fa. As mφ increases to

1× 105 TeV, its decay temperature has decreased so that now a larger portion

of parameter space is allowed: fa . 1012 GeV and θi & 1.7. For our largest

mφ = 5 × 105 TeV, we see that a significant portion of the parameter space

has opened up, allowing fa . 1 − 2 × 1013 GeV and θi & 0.4. We can also
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understand this from referring back to Fig. (6.21) - at mφ ∼ 5 × 105 TeV, the

neutralino relic density relaxes close to its thermal value for λPQ = 0.1. Thus,

we expect points that lie in the large fa region to have a large λgauge/λPQ ratio

within the allowed λi scan limits. For smaller values of fa . 8× 1010 GeV, dark

matter is typically underproduced - so tuning θi ∼ π can increase the CO axion’s

relic density enough through anharmonic effects [391] to saturate the measured

value without violating our other constraints. Although we display this value in

Fig. (6.33) since it does meet our criteria, the plausibility of such a tuning is rather

questionable. We expect larger values of mφ to then exhibit a similar parameter

space to mφ = 5× 105 TeV, although if mφ � 106−7 TeV the consistency of this

scenario (fa > HI/2π > mφ) will exclude lower values of fa.

It is also worth mentioning that most of the parameter space to the below-left

of the contours in Fig. (6.33) are not necessarily excluded. This region, as can

also be seen from Figs. (6.31) and (6.32), drastically underproduces the total

dark matter content although does not generically violate either ∆Neff or ΩZ̃1

constraints. Thus, this DM-underabundant region can be incorporated into other

models which introduce some other primary source of dark matter - such as

primordial black holes or possibly other string remnants. We do not consider such

cases in this work, but simply note that these cases are not inherently mutually

exclusive.
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6.3.9 Dependence on inflationary reheating temperature TR

In a standard thermal history, the inflationary reheating temperature can have a

major impact on the abundances of relics present in the late-time cosmology. As we

have previously discussed, thermally-produced gravitinos (which do not annihilate

efficiently) can be drastically overproduced if TR & 105−9 GeV (depending on

model details) [381, 416, 227, 380, 393]. However, the significant entropy released

from moduli decay is expected to dilute all thermal relics to negligible quantities.

In the early matter dominated framework that is generic with moduli, we then

expect that there is no dependence on the inflationary reheating temperature.1

Figure 6.34: Dependence of results on inflationary reheating tempera-
ture TR in case B2-GK1. Here, we fix mφ = 5× 103 TeV and take
λPQ = 0.2, with all other λi = 1. Figure taken from [8].

1Of course, as we assume throughout this work, this relies on the assumption that the details
of inflationary reheating effectively decouple from the details of the light modulus.
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In Fig. (6.34), we plot the produced dark matter abundances as a function of

TR ∈ [105 GeV, 1012 GeV]. Here, we fix mφ = 5 × 103 TeV and take λPQ = 0.2

in case B2-GK1, with all other allowed modulus couplings set to unity. It is

readily apparent that the inflationary reheating temperature plays effectively no

role in the late-time cosmology here. Similarly, from the same data set we find

that the produced dark radiation ∆Neff is unchanged, although we do not display

this plot in the interest of brevity. Thus, our results from numerical solutions of

the Boltzmann equations agrees exceedingly well with our expectations.

6.3.10 Dependence on modulus initial amplitude φ0

In this section, we investigate the dependence of our results in the φPQMSSM on

the value of the modulus misalignment amplitude φ0. In Fig. (6.35), we display

the relic densities for neutralinos and both TP/DP axions and CO axions for

φ0/mP ∈ [10−8,
√

2/3] so that again we have a radiation-dominated universe at

TR. Here, we again take mφ = 100 TeV and TR = 108 GeV to illustrate the

transition between a severely modulus-dominated cosmology to a viable thermal

cosmology. Similarly to the B1-GK1 case we studied in the φMSSM, we see that

the neutralino relic density is virtually unaffected by the displacement amplitude

until φ0/mP ∼ 10−5, and in order to produce a WIMP relic density below the

(total) observed value requires φ0/mP . 10−6. We see that the TP/DP axions

also are virtually unaffected by the precise value of the amplitude until the

modulus is diluted near φ0/mP ∼ 10−5. At this point, the relic density of the

TP/DP axions decreases extremely rapidly as the modulus is now too dilute
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Figure 6.35: Relic densities in the φPQMSSM as a function of the
displacement amplitude φ0/mP . Here, we take case B2-GK1 with all
λi = 1 and ξ = 1. Additionally, we set mφ = 100 TeV, ms = mã = 5
TeV, fa = si = 1011 GeV, and take TR = 108 GeV. Figure taken from
[8].

to contribute significantly to dark radiation - marking the transition between a

modulus-dominated cosmology and a radiation-dominated one. For φ0/mP . 10−5,

we see that then the modulus entropy dilution effectively vanishes thus leaving the

thermal axions produced after inflationary reheating as dark radiation. Finally,

we see that the CO axions are the only DM relic that appears sensitive to the

amplitude - being critically dependent on the entropy dilution produced from the

modulus. We again find that φ0/mP . 10−7 is required to decouple the modulus

and provide a viable cosmology in this case.
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6.3.11 Some general comments on the φPQMSSM

As we have just seen, the B2-GK2 cases appear to be excluded by dark radiation

constraints for the φPQMSSM in both the ξ = 0 and ξ = 1 limits. We also do

not expect the addition of unsuppressed axinos and gauginos in case A2-GK2

nor the addition of unsuppressed gravitinos in cases A1-GK2 and B1-GK2 to

sufficiently reduce the modulus branching ratio to axions. It may be possible to

realize this case if additional symmetries or model-building features are considered

that can provide a reasonable explanation for decoupling of the axions - quite

likely also decoupling the saxions, which tend to overproduce neutralino dark

matter by a large factor in the GK2 case. However, such additional features

should also come with sufficient motivation to warrant their presence other than

simply evading current experimental bounds. Without additional model-dependent

features, it appears that realizing the φPQMSSM in the standard natural SUSY

model-building practice of Type IIb models - i.e. confining the matter fields to

D3 branes at singularities - will be excluded from experimental constraints.

The B2-GK1 case fairs much better - although Planck 2018 results may

be at slight tension with the largest value of the coupling λPQ, much of the

relevant parameter space will be probed by the upcoming CMB-S4 experiment.

Additionally, it appears from neutralino relic density considerations that an

extremely massive modulus - more so than the φMSSM - is required to successfully

realize this case: mφ & 105 TeV in the ξ = 1 limit, and even larger in the ξ = 0

limit. We expect similar results in case A2-GK1, although the addition of
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unsuppressed axino decays (which are slightly longer lived than the saxions)

may further enhance the neutralino relic density, pushing the lowest viable mφ

slightly higher. On the other hand, cases B1-GK1 and A1-GK1 are expected

to suffer from the same moduli-induced gravitino problem as we saw in the

φMSSM - requiring an extremely massive gravitino which is difficult to realize

in unsequestered scenarios. This suggests that our φPQMSSM model may be

more easily realized in heterotic or M -theoretic constructions - particularly if

sequestering is possible - than in Type IIb constructions.

Finally, we also note that our consistency conditions for this scenario (fa >

HI/2π > mφ) require a higher scale of inflation, especially for the ξ = 0 limit. We

must then consider isocurvature constraints for the φPQMSSM. Based on Planck

2018 results [417], isocurvature constraints require [405]

HI . 1.4× 10−5 faθi. (6.2)

Clearly, the ξ = 0 limit in the GK1 cases requires too large of an inflationary scale

to be compatible with these bounds. The ξ = 1 limit, however, may still be viable

- although our benchmark point runs into mild tension with these results, it is

possible that similar benchmark points may be compatible with these constraints

depending on the precise neutralino annihilation cross section. Although we leave

a precise investigation of isocurvature constraints for the ξ = 1 limit for future

work, it appears that all GK2 cases and ξ = 0 cases are excluded, leaving only

the GK1 cases in the ξ = 1 limit. Of course, these results may also suggest
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that the standard thermal cosmological history could be preferred such that the

inflationary scale is lower than the lightest modulus mass, and all light moduli

are inflated away. In this case, the results from e.g. [300, 285] seem far more

optimistic in terms of dark matter and dark radiation production.

We can also relate our results for the φPQMSSM to one particular aspect

of dark matter structure formation. In [418, 419] it was argued that in early

matter domination scenarios (such as modulus domination), axion miniclusters

with masses of roughly O(10−13 − 10−18) times the solar mass can form in the

case that PQ symmetry breaking occurs before the end of inflation. This is

because perturbations grow linearly in a matter-dominated background, while

only logarithmically in a radiation-dominated background [407]. Prior to BBN,

small k-modes re-enter the horizon and - if axion oscillations overlap with modulus-

domination - these perturbations can become enhanced. However, based on our

study of dark matter production in the φPQMSSM, we saw that neutralino dark

matter is always overproduced - usually by a few orders of magnitude - in the

regime where this enhancement is possible. Thus, we do not expect the presence

of these axion miniclusters in the φPQMSSM.
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Chapter 7

Inflation and phenomenology in fibred LVS

models

In our final exposition, we shift focus to a specific string construction - that of

fibred LVS. One of the many features of string theory is the plethora of light fields

which may be good inflaton candidates. Here, we focus on the class of LVS models

where the inflaton is one of the Kähler moduli. We first review Kähler moduli

inflation - also known as blow-up inflation - in the “minimal” LVS framework

that we illustrated in Sec. (2.3.3), where the blow-up moduli appear as natural

inflaton candidates due to their extremely flat potential. We then describe the

generalization in the fibred LVS framework, where inflation again is driven by

a blow-up modulus. Within the fibred LVS framework however, there is one

additional flat direction which provides an additional inflaton candidate leading

to the scenario known as fibre inflation. In both Kähler moduli inflation and

fibre inflation, previous works have fit the available parameters to cosmological

observables in the simplest scenarios - here we use these results to study the

phenomenology which emerges.

7.1 Blow-up/Kähler inflation in LVS

As we saw in Sec. (2.3.3), the blow-up Kähler moduli - which are stabilized

by non-perturbative corrections to the superpotential - have a remarkably flat

potential. This particular class of moduli thus make natural inflaton candidates,
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and the corresponding inflationary models are referred to as blow-up inflation,

Kähler moduli inflation, or simply Kähler inflation [420]. The simplest realization

of this model requires h1,1 ≥ 3, with a volume of the form

V = α
(
τ

3/2
b − λφτ 3/2

φ − λsτ 3/2
s

)
(7.1)

and the assumed hierarchy τb � τφ � τs. Here, τφ takes the role of the inflaton and

τs is required so that the volume mode τb (and hence the volume V) is stabilized

during inflation, thus maintaining the flatness of the inflaton potential [420]. Once

τs and τb are integrated out, the inflationary potential is given schematically by

Eq. (2.73) after the substitution τs → τφ. In terms of the canonically normalized

inflaton φ, this potential then takes the schematic form [99]

V ' V0

(
1− c1V5/3φ4/3 exp

[
−c2V2/3φ4/3

])
(7.2)

where V0 ≡ O(1)×W 2
0 ξ V−3 sets the overall scale of the inflationary potential, and

c1 ≡ O(1)× ξ−1 and c2 ≡ O(1)× aφ are set by the details of the perturbative and

non-perturbative corrections, although are still expected to be O(1) parameters.

However, once gs corrections are taken into account the situation appears to

change drastically. The corrections to the potential in terms of the canonically

normalized inflaton are conjectured to be [421, 422]

δVgs ∼
1

φ2/3 V10/3
. (7.3)
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Since this correction is not exponentially suppressed as in Eq. (7.2), this may

destroy the flatness of the potential which is required for successful inflation.

Indeed, the slow-roll parameter η should receive a correction

δη ∼
δV ′′gs
V0

∼ 1

φ8/3 V1/3
∼ a2

φ

V
(logV)2 � 1 (7.4)

and we are lead to the conclusion that blow-up inflation has a severe η-problem

once gs corrections are considered. However, it is pointed out in [423, 99] this

problem can be avoided depending on the brane configuration - e.g. if only D3

branes wrap the inflationary cycle instead of D7 branes, these gs corrections

may be absent or subdominant while the desired non-perturbative effects in the

superpotential are still generated [9].

7.2 Inflation in fibred LVS

In the previous section, we saw that the inclusion of gs corrections can - depending

on the brane configuration - lead to a serious η-problem. The same gs corrections

that may induce the η-problem in Kähler inflation can themselves provide a viable

inflationary potential in fibred LVS models. This class of inflationary models

are collectively referred to as fibre inflation [9]. Before we discuss inflation and

its connections to dark matter and dark radiation phenomenology in fibred LVS

models, we first review the fibred LVS framework.

The fibred LVS framework is similar to the (minimal) LVS framework we

have detailed in Sec. (2.3.3) - with the key difference that the bulk volume is

286



determined by two moduli. Specifically, the geometry is that of a K3 fibration

over a P1 base, which in terms of the two-cycle moduli takes the form [424, 425]

V =
1

6

∫
CY

J ∧ J ∧ J =
1

6

3κ122t1t
2
2 −

h1,1+∑
i=3

κiiit
3
i

 (7.5)

where t1 is the volume of the base, t22 is the volume of the fibre, and ti are

blow-up modes, while the integers κ122 and κiii are the intersection numbers of the

Calabi-Yau manifold. This volume can straightforwardly be rewritten in terms of

the 4-cycle moduli (see e.g. [359]):

V ' α

√τ1τ2 −
h1,1+∑
i=3

γiτ
3/2
i

 (7.6)

where α = 1/
√

2κ122 and λi = 2
3

√
κ122/κiii. Focusing on the case where h1,1

+ = 3

and absorbing any geometrical prefactors into the moduli, this takes the simple

form

V =
√
τ1τ2 − τ 3/2

3 . (7.7)

The assumed hierarchy τ2 & τ1 � τ3 ensures the validity of the effective field

theory, and allows us to neglect the non-perturbative corrections to τ1 and τ2. In

this case, similar to Eq. (2.70) the superpotential takes the form

W ' W0 + A3e
−a3 T3 (7.8)

where Ti = τi+ i ci are the complexified Kähler moduli, and ci are the ALPs which
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arise from dimensional reduction of the 10d RR 4-form C4 on the corresponding

divisor.

The Kähler potential takes a similar form as to Eq. (2.71) in minimal LVS

with one subtlety. In minimal LVS, we saw in Sec. (2.3.3) that the blow-up moduli

are stabilized by non-perturbative effects, and the volume (or bulk) modulus is

stabilized by the α′ corrections in the Kähler potential. In fibred LVS, while the

volume can be stabilized similar to minimal LVS, one of the two bulk moduli

will remain unstabilized, i.e. a flat direction remains. This flat direction can be

lifted by also incorporating gs corrections in the Kähler potential. Following the

procedure of [359, 10], we utilize a perturbative expansion of the Kähler potential

incorporating both α′ [426] and gs [421, 422, 427] corrections, which reads

Ktree = −2 logV

Kα′ = − ξ̂

g
3/2
s V

Kgs = gs
∑
i

cigsti

V

K = Ktree +Kα′ +Kgs (7.9)

where cigs are O(1) coefficients for each of the 2-cycle moduli, ti. These coefficients

are dependent on the complex structure moduli, and can be regarded as tunable

parameters in the string landscape [359]. Perhaps unsurprisingly, the scalar

potential at order O(V−3) is identical to Eq. (2.73), while the additional Kgs

corrections induce corrections to the scalar potential at order O(V−10/3) which
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are given by the schematic form [359]

VO(V−10/3) '
(
g2
s

A

τ 2
1

− B

V√τ1

+ g2
s

Cτ1

V2

)
W 2

0

V2
(7.10)

where A,B,C are parameters that depend on the cigs coefficients. The stabilization

of moduli is now entirely analogous to the procedure illustrated in Sec. (2.3.3),

with stabilization occurring at

〈τ1〉 ' g4/3
s λ〈V〉2/3, 〈τ2〉 ' g−2/3

s λ−1/2〈V〉2/3, 〈τ3〉 '

(
ξ̂

2

)2/3

g−1
s (7.11)

where λ ≡ (4A/B)2/3 is effectively an O(1) tunable parameter. Consequently,

the volume V is stabilized identically to minimal LVS at leading order, and is

thus given by Eq. (2.79). The addition of dS uplifting terms may quantitatively

affect these VEVs and resulting spectrum by small corrections, but the qualitative

behavior will remain unchanged in our regimes of interest.

In fibre inflation, the fibre τ1 takes the role of the inflaton with the inflationary

potential set predominantly by VO(V−10/3). Integrating out the volume mode and

the blow-up mode - whose presence keeps the volume mode stabilized during

inflation, much like in Kähler inflation - the inflationary potential in terms of the

canonically normalized inflaton φ/mP '
√

3
2

log τ1 is given by [9, 423]

Vinf '
β

〈V〉−10/3

(
3− 4 exp

(
− φ√

3mP

)
+ exp

(
− 4φ√

3mP

)
+R exp

(
2φ√
3mP

))
(7.12)
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where R ∼ g4
s � 1 and β ∼ O(1) which can be explicitly determined from the

potential Eq. (7.11) with the stabilized values of the moduli, although the precise

form is not important for this discussion. We display this potential in Fig. (7.1).

From the φ/mP -axis, we see that this model is a large-field inflationary model -

Figure 7.1: Inflationary potential in fibre inflation for canonically
normalized inflaton φ/mP ∼ log τ1. We take R = g4

s with gs = 0.1,
β = 1, and 〈V〉 = 103. Figure reproduced from [9].

i.e. during inflation, φ traverses a distance ∆φ & mP in field space (see e.g. [99]).

One distinguishing feature of the fibre inflation model is - fairly independently

of the underlying parameters - the prediction of detectable gravitational waves

characterized by a tensor-to-scalar ratio in the range r ∼ O(0.001 − 0.01) [9].

This range of the tensor-to-scalar ratio is expected to be probed in the upcoming

CMB-S4 experiment [428], making this scenario quite attractive from a testability

standpoint.

In fibred LVS models, Kähler moduli inflation can also be realized where

a blow-up modulus again assumes the role of the inflaton. In both minimal
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and fibred LVS, an additional blow-up mode is required to keep the inflaton

stabilized during inflation. As we have already noted, the potential of the blow-up

mode - and thus the details of inflation - are effectively unchanged in fibred LVS

compared to minimal LVS. Unlike the fibre inflation scenario, the gravitational

waves produced by Kähler inflation are extremely small: r . O(10−10) [420].

With all moduli stabilized, the characteristic fibred LVS mass spectrum can

be computed straightforwardly using the standard formula (M2)ik = K−1
ij Vjk,

where K−1
ij is the inverse Kähler metric and Vjk is the second derivative of the full

scalar potential V ' VO(V−3) + VO(V−10/3) about the minima. However, in fibred

LVS models the mass matrix is not diagonal in the geometric moduli basis - the

physical moduli masses are determined by the eigenvalues of the (M2)ik matrix.

The resulting spectrum has been calculated in e.g. [429, 430, 359, 392] and is

given by

m2
τ3
' m2

c3
' (log ε)2m2

3/2 > m2
3/2

m2
V '

(
ε

g
3/2
s W0| (log ε)3 |

)
m2
τ3
� m2

τ3

m2
u '

(
ε1/3g

5/6
s | log ε|

W
1/3
0

√
λ

)
m2
V < m2

V

m2
ci
' τ 3

i

W0

e−aiτim2
3/2 � m2

u ∀i = 1, 2 (7.13)

where we have made the convenient definitions

ε ≡ W0/V � 1 and κ ≡ gs/(8π)� 1. (7.14)
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Additionally, if the visible sector is located on D3 branes at singularities - as

we consider here - the soft gaugino masses M1/2 can be estimated from the results

of [4]:

M1/2 '
3ω

2

m3/2

V
τ

3/2
3 ∼ O

(m3/2

V
(lnV)3/2

)
(7.15)

where ω is dependent on the dilaton and complex structure moduli - and is thus a

tunable parameter in the landscape. Incidentally, the SUSY µ term can be cast in

terms of M1/2 since both are predominantly set by the dilaton [4]. The soft scalar

masses m0 were also computed in [4] for the visible sector on D3 branes, which

in this context depend on the level of sequestering. The physical (normalized)

Yukawa couplings Ŷαβγ take the following form in terms of the holomorphic Yukawa

couplings [431, 371]

Ŷαβγ = eK/2
Yαβγ(U, S)√
K̃αK̃βK̃γ

(7.16)

where K̃α,β,γ are the matter Kähler metrics. If Eq. (7.16) is independent of the

compactification volume V to any expansion order in V−1, we call this the ultralocal

limit. However, if the sequestering is weaker and Eq. (7.16) is independent of the

compactification volume V at only leading order in V−1, we call this the local

limit. It was found in [4] that the soft scalar masses in each of these limits take

the general form

m0 '


M1/2

√
V �M1/2 (local limit)

M1/2 (ultralocal limit)

(7.17)
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where the ultralocal limit can lead to a natural SUSY spectrum with all soft

terms ∼ O(1) TeV, while the local limit leads to a split-SUSY spectrum with light

gauginos but heavy scalars m0 � O(10) TeV. Although the deSitter uplifting will

lead to quantitative deviations (such as non-universality or subleading corrections)

[185, 4], this level of approximation will suffice for the following section.

7.3 Phenomenology in viable fibred LVS inflationary sce-

narios

We now apply the considerations of the previous section to two inflationary models

in the fibred LVS framework. We begin by calculating the relevant decays of the

lightest modulus. Next, we analyze the produced dark radiation due to decays into

closed string axions in a generalized setting of the fibred LVS framework. Finally,

we use these results to study the production of dark matter while ensuring a

cosmology consistent with dark radiation constraints in both Kähler inflation and

fibre inflation scenarios. In both inflationary scenarios, previous work [392, 359]

has fitted the fibred LVS parameters to inflationary observables, resulting in a

top-down model which is compatible with observation.

7.3.1 Moduli decays

In this section, we compute the relevant decay modes of the lightest modulus -

which in fibred LVS, is the direction transverse to the volume mode. We begin by
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considering a slight generalization of the volume form:

V = τ
n1/2
1 τ

n2/2
2 (7.18)

where n1 + n2 = 3 and we ignore the blow-up modulus which is irrelevant for

studying the decays of the lightest modulus. This allows for quick comparison

with the minimal LVS case where n1 = 3 and n2 = 0, while for fibred LVS we have

n1 = 1 and n2 = 2. The Kähler potential in terms of the complexified moduli

Ti = τi + ici is then given by

K/m2
P = −n1 log(T1 + T 1)− n2 log(T2 + T 2) (7.19)

which produces the Kähler metric

Ki =
m2
P

4

n1/τ
2
1 0

0 n2/τ
2
2

 . (7.20)

We can then rewrite the moduli kinetic terms

Lkin. = Ki ∂µT
i ∂µT

 ⊃ m2
P

4

ni
τ 2
i

∂µτi ∂
µτi (7.21)

in canonical form by the field redefinition

τi = exp

(√
2

ni

φi
mP

)
. (7.22)
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Here, φi are the redefined fields which have canonical kinetic terms - however

these fields still have, in general, mass mixing. Using the results from [9], the

volume mode mass eigenstate is given by

φV/mP ∝ logV . (7.23)

Combining our volume expression from Eq. (7.18) and field redefinitions in

Eq. (7.22), the canonical mass eigenstate of the volume mode φV is given by

φV =

√
n1

n1 + n2

φ1 +

√
n2

n1 + n2

φ2 (7.24)

while the transverse mode φu can be found from imposing orthogonality:

φu = −
√

n2

n1 + n2

φ1 +

√
n1

n1 + n2

φ2. (7.25)

Now that we have the canonical moduli of the theory, we are in a position to

study the decays of the lightest (physical) modulus - the transverse mode φu.

We begin by considering decays to closed string axions, which are the axionic

partners ci of the geometric moduli τi. These interactions arise due to the kinetic

terms

L = Ki ∂µT
i ∂µT

 ⊃ m2
P

4

ni
τ 2
i

∂µci ∂
µci (7.26)

which, after applying the field redefinitions from Eq. (7.22) and transformations
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to the mass eigenstate basis from Eqs. (7.24)-(7.25), take the form

L ⊃ −
√

2

3

φV
mP

(∂µa1 ∂
µa1 + ∂µa2 ∂

µa2)

−
√

2

3

φu
mP

(√
n1

n2

∂µa2 ∂
µa2 −

√
n2

n1

∂µa1 ∂
µa1

)
(7.27)

where we have rescaled the axion fields ai =
√
ni/2mP ci to have canonical kinetic

terms. This leads to a decay width of φu into closed string axions a1 and a2

Γ(φu → aa) =
1

48π

(
n2

1 + n2
2

n1n2

)
m3
u

m2
P

≡ chidΓ0 (7.28)

where we have made the following definitions for future convenience:

chid ≡
(
n2

1 + n2
2

n1n2

)
(7.29)

Γ0 ≡
1

48π

m3
u

m2
P

. (7.30)

In the case of minimal LVS, the transverse mode φu is set to 0 leaving φV as the

lightest modulus - it is then easy to check that with the appropriate rescaling of

a1 the decay into closed string axions in minimal LVS is simply Γ(φV → aa) = Γ0

which agrees with the results of [239].

We now consider the decays of φu to open string axions. Unlike their closed

string counterparts, open string axions instead arise as the phase of a matter field,

C, which is charged under a U(1)PQ symmetry (possibly an approximate U(1)

from a more fundamental discrete symmetry [432, 433]), which is immediately
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analogous to e.g. the DFSZ construction that we have already studied.1 Based

on the results of [434] which includes the expected moduli dependence of Kähler

potentials for matter fields living on D3-branes,2 the relevant term in the Kähler

potential is then taken to be

K/m2
P =

CC

(T1 + T 1)x1(T2 + T 2)x2
(7.31)

where x1 and x2 are fixed by the brane configuration.3 The two cases suggested

by [434] are given by x1 = 1, x2 = 0 and x1 = 0, x2 = 1. After rewriting the

above Kähler potential in terms of the physical moduli, it is easy to show this

leads to the interaction

L ⊃ mP

2
√

6

(
C∂2C + C∂2C

)
φV

+
mP

2
√

6

(
x2

√
n1

n2

− x1

√
n2

n1

)(
C∂2C + C∂2C

)
φu. (7.32)

Once C acquires a VEV, the axion appears as the phase of C - i.e. C = ρ exp(iθ)

where ρ is the radial component and θ is the axion. Rewriting Eq. (7.32) in terms

of the canonically normalized radial field ρ̃ and canonically normalized axion

1Here, we do not assume a specific open string axion model and so we do not assume the
Giudice-Masiero term to be forbidden, which is specific to the DFSZ-type axions.

2The cited work presents results for toroidal orientifolds, however these results should be
applicable to the fibred LVS case as the volume scaling of toroidal orientifolds (V ∼ √τ1τ2τ3)
reduces to the fibred LVS volume scaling (V ∼ √τ1τ2) in the τ3 → τ2 limit. Additionally, we
note that this result reduces to the DeWolfe-Giddings Kähler potential [121] in the large volume
limit for minimal LVS, which takes the limit τ3 → τ2 → τ1 limit.

3The attentive reader may object that this additional interaction modifies the Kähler metric
- requiring corrections to our field redefinitions. This addition does indeed modify the moduli
Kähler metric, although the additional terms can be shown to be sufficiently small to neglect.
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θ̃ = 〈ρ̃〉θ, we have the following interaction:

L ⊃ 1

2
√

6mP

(
x2

√
n1

n2

− x1

√
n2

n1

)[
2φuθ̃∂

2θ̃ − θ̃2∂2φu

]
. (7.33)

Here, the dependence on the canonically normalized radial component ρ̃ of C,

which is given by

ρ̃ =
mPρ√

〈T1 + T 1〉x1〈T2 + T 2〉x2
, (7.34)

arises only through the canonically normalized axion θ̃ - i.e. ρ̃ disappears explicitly

from the open string axion interactions upon canonical normalization of the axion.

It is also worth noting that the axion decay constant is determined by the

VEV of ρ̃, i.e. fθ = 〈ρ̃〉. Clearly, the first interaction (∼ φuθ̃∂
2θ̃) leads to a

mass-suppressed decay width - while the second term (∼ θ̃2∂2φu) leads to an

unsuppressed decay of φu - both of which we explicitly demonstrate in App. (A)

within in a supersymmetric context. Similar results appear in minimal LVS (albeit

for φV , which assumes a nearly-identical form from Eq. (7.32)) - this is contrary to

the claims in [239] which neglected the unsuppressed term and therefore produced

only a suppressed decay to open string axions. As evident from the form of the

coupling in Eq. (7.33), depending on the brane configuration which is parametrized

by the choices of x1 and x2 there are two possible decay widths in the fibred LVS

case:

Γ
(
φu → θ̃θ̃

)
=


Γ0/8 (x1 = 1 and x2 = 0)

Γ0/32 (x1 = 0 and x2 = 1)

(7.35)
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where we have restored explicitly that n1 = 1 and n2 = 2 in fibred LVS. Likewise,

in minimal LVS the decay width is given by Γ(φV → θ̃θ̃) = Γ0/16 where there is

only one choice for the modulus-dependence of the Kähler potential. Thus we

see that depending on the assumed brane configuration, one can see either an

enhancement or a diminution in the decay to open string axions in fibred LVS

when compared to the minimal LVS case. In the remainder of this section, we

focus on the more optimistic case where x1 = 0 and x2 = 1, which minimizes

its contributions to the dark radiation produced. This case also corresponds to

a coupling of λPQ ' 0.41 if we apply this specific model to the context of our

φPQMSSM model. However, this application would instead require a construction

of the φPQMSSM with the KSVZ axion model - since we have seen that forbidding

the Giudice-Masiero term in case GK2 of the φPQMSSM with a DFSZ axion

drastically overproduced dark radiation.

Our next task is to compute the modulus decays into Higgses. Here, we again

take a Kähler potential of the form suggested by the toroidal orientifold case [434]:

K/m2
P ⊃

HuHu

(T1 + T 1)y1(T2 + T 2)y2
+

HdHd

(T1 + T 1)w1(T2 + T 2)w2

+
ZHuHd + h.c.

(T1 + T 1)k1(T2 + T 2)k2
. (7.36)

We assume the Giudice-Masiero term [246] has a Kähler metric that is of product

form, so that KHuHd =
√
KHuKHd which implies the relation k1 = (y1 + w1)/2

and likewise for k2. We also assume that Z is constant with respect to T1 and

T2. Although Z does depend on the dilaton and complex structure moduli, these
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moduli are integrated out at this scale [4] and so we can adopt the viewpoint that

Z is a tunable parameter in the string landscape. Using again the arguments

from [434], we have the constraints y1 = 1(0) and y2 = 0(1), and w1 = 1(0) and

w2 = 0(1) (where yi and wi are independent from each other as they arise from

different fields) for the moduli dependence of the Kähler potential. This implies

that the Giudice-Masiero term in Eq. (7.36) may take the following forms:

1.) k1 = 1 and k2 = 0

2.) k1 = 0 and k2 = 1

3.) k1 = k2 = 1/2.

Putting all this together, the Lagrangian then contains the canonically normalized

interactions

L ⊃ 1√
6mP

(
H̃u∂

2H̃u + H̃u∂
2H̃u

)
φV +

1√
6mP

(
H̃d∂

2H̃d + H̃d∂
2H̃d

)
φV

+
1√

6mP

(
ZH̃uH̃d + h.c.

)
∂2φV

+
α√
6mP

(
H̃u∂

2H̃u + H̃u∂
2H̃u

)
φu +

β√
6mP

(
H̃d∂

2H̃d + H̃d∂
2H̃d

)
φu

+
γ√
6mP

(
ZH̃uH̃d + h.c.

)
∂2φu (7.37)
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where the canonical normalization

H̃u =
mPHu√

〈T1 + T 1〉y1〈T2 + T 2〉y2
(7.38)

H̃d =
mPHd√

〈T1 + T 1〉w1〈T2 + T 2〉w2

(7.39)

for the Higgs fields has been used and we have made the convenient definitions

α ≡
(
y2

√
n1

n2

− y1

√
n2

n1

)
(7.40)

β ≡
(
w2

√
n1

n2

− w1

√
n2

n1

)
(7.41)

γ ≡ 1

2
(α + β) =

(
k2

√
n1

n2

− k1

√
n2

n1

)
. (7.42)

It is easy to see from the form of Eq. (7.37) that only the Giudice-Masiero term

leads to an unsuppressed decay width for φu. Again, we also show this explicitly

in App. (A).

Before we compute the decay width to Higgses, we note that in this scenario

the level of sequestering plays a dominant role in the masses of the Higgses -

and therefore whether or not they are kinematically accessible in the decay of

φu. In the ultralocal limit [185, 4], the scalar soft mass has a volume scaling

m0 ∼ M1/2 ∼ mPV−2 and is thus highly sequestered in the large volume limit -

naturally resulting in TeV-scale soft masses for a sufficiently large volume. Since

mu ∼ mPV−5/3, all Higgs degrees of freedom are expected to be accessible in the

decay of φu - just as in our previous study of the φMSSM EFT. In the local limit
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[185, 4] however, the sequestering is weaker - the scalar soft mass then scales as

m0 ∼M1/2

√
V ∼ mPV−3/2. Evidently, only the light Higgs degrees of freedom can

be expected to be accessible in the large volume limit - which limits the decays of

φu to the physical h, G0, and G± modes. In the split-SUSY limit, the physical

Lagrangian takes the form [359]

L ' − γZ

2
√

6mP

(
|G+|2 − (h0)2 + (G0)2

)
∂2φu. (7.43)

The decays into Higgs particles can then be written down as

Γ (φu → HuHd) = Γ0 ×


2γ2Z2 (ultralocal limit)

5γ2Z2/8 (local limit).

(7.44)

Since the tree-level gauge-kinetic function is set by the dilaton for D3-branes

at singularities [185], any decays of φu to the gauge sector are highly suppressed

(i.e. the GK2 case) and thus we can safely ignore them for our purposes here.

Additionally, as we have seen in previous sections all couplings to matter fields

lead to either chirality-suppressed decays to fermions or mass-suppressed decays

to sfermions, and are also safely neglectable. Finally, since the lightest moduli are

stabilized non-supersymmetrically there are no unsuppressed F -term interactions

that arise here. To good approximation for mu & 100 TeV - which will be the

case here - we saw from Fig. (4.10) that the total width in case B2-GK2 with a

light ALP is set to a high precision by the decays to the Higgses and the ALP.
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This thus concludes the computation of the leading decay modes we require to

study the phenomenology of this scenario.

7.3.2 Dark radiation production

As we have previously discussed, ultra-relativistic particles which interact ex-

tremely weakly (such as being only gravitationally coupled) typically do not

thermalize and behave as dark radiation which can be parametrized by the ef-

fective number of neutrinos ∆Neff. Here we adopt the estimate for ∆Neff used in

[239]:

∆Neff '
43

7

fhid

1− fhid

(
g∗(Tdec)

g∗(Trh)

)1/3

(7.45)

where g∗(Tdec) ∼ 10.75 is the number of relativistic degrees of freedom at the

temperature of neutrino decoupling, g∗(Trh) is the number of relativistic degrees

of freedom at the modulus decay temperature or reheat temperature,4 and fhid

is the branching fraction into the relativistic hidden sector particles. As we are

considering the more optimistic case for open string axions, fhid is given (to good

approximation) by

fhid '
Γ(φu → aa)

Γ(φu → aa) + Γ(φu → HuHd)
. (7.46)

4Here, we follow the literature from the string community which conventionally denotes
the temperature of modulus decay as Trh and is equivalent to our previous notation TφD. This
reheating temperature is distinct from the inflationary reheating temperature if the lightest
modulus is not the inflaton. If the lightest modulus is the inflaton, as is the case in fibre inflation,
Trh is also the inflationary reheating temperature.
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At our level of approximation, fhid is independent of mu - a behavior which was

observed for moduli masses above ∼ 10 − 50 TeV in our detailed treatment in

Sec. (4.3.2). Taking our expressions for the decay widths and expanding γ while

maintaining generality around the brane configuration hosting the Higgses, we

arrive at

fhid '


[1 + 2Z2(k2n1 − k1n2)2/(n2

1 + n2
2)]
−1

(ultralocal limit)

[
1 + 5

8
Z2(k2n1 − k1n2)2/(n2

1 + n2
2)
]−1

(local limit).

(7.47)

In addition to the expression for fhid, we will need the reheating temperature

of the modulus to 1. ensure BBN safety of the model and 2. study dark matter

production, since we are generally expected to be in the annihilation scenario for

viable dark matter production. In the sudden decay approximation, using the

results of Sec. (5.2.1) we can write the result5

Trh =

∣∣∣∣k2

n2

− k1

n1

∣∣∣∣1/2√Γ0mP

×


(

80Z2

π2g∗(Trh)
[2Z2(k2n1 − k1n2)2 + n2

1 + n2
2]
)1/4

(ultralocal limit)(
25Z2

π2g∗(Trh)

[
5
8
Z2(k2n1 − k1n2)2 + n2

1 + n2
2

])1/4

(local limit).

(7.48)

Taking g∗(Trh) ∼ 86.25 and a benchmark modulus mass of mu = 2.5 × 104

TeV, we display in Fig. (7.2) and Fig. (7.3) both the dark radiation production

(upper plot) and the corresponding reheating temperature (lower plot) in the

5Here, we use the condition 3H ∼ Γ instead of H ∼ Γ for compatibility with previous works.
This change is inconsequential to any of our results.
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Figure 7.2: Dark radiation production ∆Neff (upper plot) and reheating
temperature Trh in GeV (lower plot) in the ultralocal limit for the
case k1 = 1 and k2 = 0. Figure taken from [10].

(n1, Z) plane for the ultralocal limit. These figures also represent the local limit

by scaling Z by a factor of about 1.8. In both upper and lower plots of both

figures, the unshaded regions are ruled out by Planck 2018 constraints which

require ∆Neff . 0.29 [11], while color coded regions in each upper plot (lower

plot) represents the predicted value of ∆Neff (Trh) if it satisfies the Planck 2018

bound. In Fig. (7.2), we display the more optimistic brane configuration leading

to the pair k1 = 1 and k2 = 0. From this figure, we see that a value of Z & 2.5

is required to satisfy dark radiation constraints for fibred LVS (n1 = 1) in the

305



Figure 7.3: Dark radiation production ∆Neff (upper plot) and reheating
temperature Trh in GeV (lower plot) in the ultralocal limit for the
case k1 = 1/2 and k2 = 1/2. Figure taken from [10].

ultralocal limit, while the local limit requires Z & 5. It is worth stressing that

this prediction is largely independent of mu - the only dependence arises through

g∗(Trh) which only makes very small adjustments to ∆Neff if mu is changed. Fibred

LVS then predicts a reheating temperature Trh & 15− 20 GeV (well above the

BBN bound) for our benchmark modulus mass mu = 2.5× 104 TeV. We note that

this figure also describes the case where k1 = 0 and k2 = 1 under the interchange

n1 ↔ n2. For this case, we see that Z & 5 in the ultralocal limit would be required

for consistency with Planck 2018 results in fibred LVS. From Fig. (7.3) which
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displays the case where k1 = k2 = 1/2, we see that a Z & 10 in the ultralocal

limit is required to satisfy Planck 2018 bounds. Evidently, the k1 = 1 and k2 = 0

case in the ultralocal limit seems preferred from the perspective of tuning Z to

avoid dark radiation overproduction. Based on our toy model description of the

Giudice-Masiero mechanism in Sec. (3.1.2), we saw that µ ∼ λGMm
2
hid./mP . In

the most optimistic brane configuration, we might therefore expect the LSP to be

higgsino-like in the ultralocal limit, while Z & 5 may lead to too large a µ and

thus predict either a bino-like or wino-like LSP depending on the remaining model

details. We now focus on the best-case scenario - i.e. take k1 = 1 and k2 = 0 - as

it does not require unnaturally large Z to satisfy current observational bounds.

7.3.3 Kähler inflation in fibred LVS with matter fields on D3 branes

We first apply the results from the previous sections to the case of Kähler moduli

inflation (KMI) [420]. In Table (7.1), we list our benchmark spectrum which is

based on the results of [392]. As we saw in Sec. (2.3.3), Sec. (7.1), and Sec. (7.2), the

scalar potential and mass spectrum in both minimal and fibred LVS are effectively

specified by the parameters V, W0, gs, and λ since any remaining parameters

related to the non-perturbative effects that appear in the superpotential are

expected to be O(1) [435]. It was found in [392] that V . 108 and W0 . 1000 are

able to reproduce the observed density perturbations (As ' 2.1×10−9 [417]), with

strong preference for V ∼ O(107) and W0 . 50. We also take gs = 0.1 to ensure

perturbative control, and take λ = 2 based on the expected ratio of the 1-loop

open string correction coefficient to the tree-level winding string coefficient [359].
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This produces the mass spectrum in Table (7.1), where we have also taken the

parameters ω = 0.01 and τ3 = 1.5 in Eq. (7.15) so that M1/2 is of order the TeV

scale.6 This then fixes the inflationary Hubble scale to be HI ∼ mV ∼ 5×108 GeV,

giving a relatively low inflationary scale. Additionally, we see from Table (7.1)

that all moduli in this spectrum are well above the O(10− 300) TeV bound set

by BBN.

W0 40
V 107

gs 0.1
λ 2

m3/2 6.1× 108 TeV
M1/2 1.7 TeV
mτ3 7.5× 109 TeV
mV 3.1× 105 TeV
mu 2.5× 104 TeV

Table 7.1: Benchmark spectrum for Kähler inflation. We take ω = 0.01
and τ3 = 1.5 which gives the gaugino mass M1/2 from Eq. (7.15).

Focusing on the best case scenario (k1 = 1 and k2 = 0) in the ultralocal limit,

we can compute the decay width for φu into the Higgs sector from Eq. (7.44):

Γ(φu → HuHd) = 4Z2Γ0 (7.49)

which gives us the branching ratio into hidden sector particles (i.e. closed string

axions) from Eq. (7.47):

fhid '
(

1 +
8

5
Z2

)−1

. (7.50)

6As we have noted previously, ω is a tunable parameter in the landscape which allows for
this choice without a significant degree of tuning.
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Additionally, the reheat temperature is given by Eq. (7.48):

Trh = 2
√

5

(
Z2[1 + 8

5
Z2]

π2g∗(Trh)

)1/4√
Γ0mP . (7.51)

Taking Z = 3 so that ∆Neff ∼ 0.2 < 0.29 in accord with Planck 2018 constraints

[11] and taking g∗(Trh) ' 86.25, we see that Trh for our benchmark scenario in

Table (7.1) is (
Trh

1 GeV

)
' 18.7×

(
mu

2.5× 104 TeV

)3/2

. (7.52)

Clearly, this is well above the BBN scale TBBN ∼ O(1 − 5 MeV), so that this

scenario does not suffer from the BBN-violating aspect of the cosmological moduli

problem. For the sake of reference, we also have the branching ratio into dark

radiation for Z = 3

fhid ' 6.5% (7.53)

which is in accordance with our results which did not violate Planck 2018 bounds

in the φPQMSSM in Sec. (6.3.4) - albeit within a different context.

Now that we have the relevant cosmological parameters for our KMI benchmark

spectrum, we are in a position to analyze the viability of dark matter production.

We begin by analyzing dark matter that may be produced in the branching

scenario - so that the produced DM abundance after modulus decay is too low

to annihilate. We can estimate the produced abundance yield in the branching
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scenario by [235] (see also e.g. Sec. (5.3.3) for a derivation):

YDM = Yφu B(φu → DM) (7.54)

where the observed abundance yield is given by [235, 236]

Y obs
DM ' 5× 10−10

(
1 GeV

mDM

)
. (7.55)

Adopting a lower bound on the branching ratio to DM as B(φu → DM) & 5×10−3

which is motivated from the lower bound set by 3-body modulus decays [220], we

see that

Yφu

( mDM

1 GeV

)
. 10−7 (7.56)

For mDM . O(10 GeV), we then expect a modulus abundance yield of Yφu . 10−8

to reproduce the observed DM abundance - with larger DM masses requiring even

lower modulus abundances at Trh. Additionally, if the dark matter mass is well

below the GeV scale we might expect it to behave also as dark radiation without

additional model-building details. A simple estimate for the modulus abundance

at Trh is given by [235, 236]

Yφu =
3Trh

4mu

. (7.57)

For our benchmark spectrum, we find that this translates to Yφu ∼ 5.6× 10−7 -

well above the expected Yφu . 10−8 to successfully realize the branching scenario.

Using the required modulus abundance yield, we can also find a rough constraint
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on the reheating temperature to realize the branching scenario: Trh . 0.3 GeV -

far below the value given by Eq. (7.52). This leads us to the conclusion that the

branching scenario is not viable in our benchmark spectrum.

Figure 7.4: Constraints on the branching scenario in the (mDM,mu)
plane. Gray regions are incompatible with the branching scenario,
while red regions are excluded by either dark matter overproduction
or BBN violation. Figure reproduced from [10].

However, if one instead extends the inflationary sector to include additional

fields responsible for generating the observed density perturbations, we can modify

the benchmark spectrum to study the requirements on the branching scenario.

An increase to the volume V & 5× 108 then corresponds to an abundance yield

Yφu . 8.7× 10−8 - which is much closer to the required value. This also leads to

the rough bound of Trh . 70 MeV required to realize the branching scenario, where

larger values of Trh correspond to moduli masses too large to obtain the required
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abundance. In Fig. (7.4), we display constraints on the branching scenario in the

(mDM,mu) plane. Here, the gray regions indicate regions that are expected to be

inconsistent with the branching scenario - if the reheating temperature is larger

than the freeze-out temperature Trh > Tf ∼ mDM/20 we would expect to be in

the thermal scenario, while Trh > 70 MeV is likely to overproduce the modulus

abundance. The lower red region is set by Trh = TBBN ∼ 3 MeV - corresponding

to the requirement that mu & 80 TeV - while the upper-right red region is ruled

out by dark matter overproduction. The yellow contour then corresponds to

viable branching scenario parameter space with a branching ratio to dark matter

B(φu → DM) & 5 × 10−2, while the green and purple contours correspond to

B(φu → DM) & 1 × 10−2 and B(φu → DM) & 5 × 10−3, respectively. If the

lower bound of the branching ratio to DM can be eased in model-dependent

constructions, the viable parameter space can be enlarged - however we see from

the plot that one would need an extremely suppressed branching ratio to realize

the branching scenario with dark matter masses mDM & O(1 − 10) TeV. We

also see that the consistency condition Trh > Tf prevents arbitrarily low dark

matter masses from being considered (assuming that the dark matter annihilates

strongly enough to reduce to the thermal scenario in this case). Thus, with

fairly model-independent considerations we see that the branching scenario can

only be realized for a very narrow window of 100 MeV . mDM . 3.3 GeV and

80 TeV . mu . 550 TeV, and requires a KMI inflationary model which generates

the observed density perturbations through a non-standard mechanism.

This brings us to consider the annihilation scenario. In the annihilation
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scenario, we can estimate the produced dark matter abundance yield as [235, 236]

(see also e.g. Sec. (5.3.2) for a derivation):

YDM = Y obs
DM

〈σannv〉thf.o.

〈σannv〉f.o.

(
Tf.o.

Trh

)
(7.58)

where 〈σannv〉thf.o. ' 3 × 10−26 cm3 s−1 is the annihilation cross section required

in the thermal scenario to reproduce the observed DM abundance and Y obs
DM is

given by Eq. (7.55). There is also the consistency condition that Trh . Tf.o.,

Figure 7.5: Constraints on the annihilation scenario in the (mDM, Trh)
plane. Red regions are excluded by dark matter overproduction. Blue,
green, and yellow contours also indicate dark matter overproduction if
〈σv〉f.o./〈σv〉thf.o. is below 3, 10, and 30 respectively. Figure reproduced
from [10].

otherwise we are expected to be in the thermal scenario. This condition then

demands that 〈σannv〉f.o. & 〈σannv〉thf.o. in order to reproduce the observed DM
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abundance. Of course, larger annihilation cross sections imply a larger interaction

rate which can be detected from e.g. indirect detection experiments searching

for gamma-ray signals from WIMP annihilations such as Fermi-LAT [351] and

H.E.S.S [436] (see also [437, 438, 439, 440]). We therefore adopt the upper bound

on annihilation cross sections 〈σannv〉f.o. from the limits set by [351] for the bb

channel as a function of mDM. In Fig. (7.5), we display the allowed parameter space

for the annihilation scenario in the (mDM, Trh) plane. The dashed line separates

the thermal (Trh > Tf.o.) and non-thermal (Trh < Tf.o.) scenarios. In the red region

for mDM . 100 GeV, WIMP-like dark matter in the thermal scenario is expected

to be overproduced since any annihilation cross section allowed from Fermi-LAT

constraints will result in less efficient annihilations and thus an enhancement

above the observed value. The red region below the dashed line then corresponds

to DM overproduction based on our fit of 〈σannv〉f.o. from Fermi-LAT constraints

which leads to a lower bound of the viable Trh without overproducing DM, while

larger Trh with the same mDM and 〈σannv〉f.o. may still be allowed. We also

display contours which represent the required annihilation cross section to be

consistent with the observed DM abundance, so that 〈σannv〉f.o./〈σannv〉thf.o. ≤ n

will overproduce DM for each contour with n ∈ {3, 10, 30}. For our benchmark

spectrum from Table (7.1), we have Trh ' 18.7 GeV with Z = 3 and so we find

that we would expect to be in the thermal scenario for mDM . 400 GeV while we

are in the annihilation scenario for mDM & 400 GeV.

Incidentally, the local limit leads to exceedingly similar constraints. As we

find a value of Z & 5 is required to be compatible with dark radiation constraints,
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we find the reheating temperature for our benchmark spectrum to be

(
Trh

1 GeV

)
' 20.8×

(
mu

2.5× 104 TeV

)3/2

(7.59)

where we again have g∗(Trh) ' 86.25. This puts slightly more stringent restrictions

the both the branching scenario. Although an identical analysis to the ultralocal

limit can be performed, we can also obtain results by simple scaling arguments. As

we have increased Trh and thus the modulus abundance yield Yφ by around 10%, the

maximal modulus mass that can realize the branching scenario is correspondingly

pushed down to mu . 500 TeV. Similarly, the maximal dark matter mass that the

branching scenario can realize is then pushed down to 3 GeV. The annihilation

scenario can also be read off of Fig. (7.5) using the larger value of Trh in the

local scenario. We see that in the local limit, we expect a thermal scenario for

mDM . 430 GeV while we expect the annihilation scenario for mDM & 430 GeV.

However, in both scenarios it seems that WIMPs produced by the annihilation

scenario are the natural dark matter candidate.

7.3.4 Fibre inflation with matter fields on D3 branes

We now apply the results from the previous sections to the study of fibre inflation.

In this scenario, we update our benchmark spectrum in Table (7.2) which is

based on the results of [359]. Similar to the Kähler inflation scenario, these

values of W0, V, gs, and λ were found to reproduce the observed amplitude of

density perturbations in fibre inflation. Due to the inflationary potential now
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arising from the gs corrections, the value of the potential during inflation is now

of order W 2
0 /V10/3 - so matching the amplitude of density perturbations requires

a correspondingly smaller volume, which pushes the resulting mass spectrum to

much larger values. We also see that even in the presence of sequestering, the

soft gaugino masses are pulled to a much higher scale: M1/2 ∼ 1010 − 1011 GeV

(and by extension, the soft scalar masses m0 are pulled up to this scale - or even

larger in the local limit). Based on the mass spectrum shown in Table (7.2),

the Hubble scale of inflation is also significantly higher than in Kähler inflation:

HI ∼ mu ∼ 5 × 1013 GeV. In fibre inflation, there is no period of modulus

domination since the lightest modulus is the inflaton. Hence, the reheating

temperature Trh is the inflationary reheat temperature, and once the inflaton

decays we transition to a standard thermal history.

W0 15
V 103

gs 0.1
λ 2

m3/2 2.3× 1012 TeV
M1/2 6.3× 107 TeV
mτ3 9.5× 1012 TeV
mV 2.0× 1011 TeV
mu 4.4× 1010 TeV

Table 7.2: Benchmark spectrum for fibre inflation. We take ω = 0.01
and τ3 = 1.5 which gives the gaugino mass M1/2 from Eq. (7.15).

Since the SUSY breaking scale is now much higher than in the Kähler inflation

case, here we expect that WIMP dark matter is grossly overproduced. Naively, one

expects WIMPs to have an annihilation cross section that scales as 〈σv〉 ∝ m−2
DM

[12], and since the LSP should have a significantly larger mass this results in a large
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suppression of the annihilation cross section - and thus a large enhancement of the

relic density in both the thermal and non-thermal scenarios without additional

model-building considerations. Since the SUSY breaking scale is fixed roughly

3 orders of magnitude below the lightest modulus (and thus the LSP should

be kinematically accessible), the fibre inflation scenario then seems to demand

R-parity violating models so that the LSP is unstable.

The fibred LVS scenario does however generically predict decays to closed

string axions. In [441], it was shown that closed string axions arising from the

C4 reduction along the overall volume can behave as fuzzy dark matter (FDM)

[442, 443, 444, 445] - a model where the DM candidate is a cold, ultralight

bosonic field which can form dark matter halos as Bose-Einstein condensates

while preventing the build-up of potentially problematic substructures. However,

this requires a rather specific mass and decay constant range for the closed string

axions.7 Although it was found in [441] that closed string axions arising from a

model with V ∼ 102−104 can behave as fuzzy dark matter - precisely in the range

of our benchmark spectrum, strong isocurvature bounds on axions must also be

taken into account. Since our benchmark spectrum (which was determined by

fitting the observed amplitude of density perturbations) predicts a high scale of

inflation, HI ∼ 5× 1013 GeV, based on the results of [441] only an inflationary

scale HI . 2× 1011 GeV can be accommodated with isocurvature bounds. Thus,

we find here that the closed string axions also cannot be the dark matter candidate

7Although we have generally neglected the non-perturbative corrections for the τ1 and τ2
moduli in our earlier treatment as they are extremely subleading, analyses such as these involving
FDM models clearly require their inclusion which give the closed string axions tiny, but non-zero,
masses ma ∼ O(10−22) eV.
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in fibre inflation.

However, the QCD axion - realized as an open string axion as we studied

in Sec. (7.3.1) - can also provide a viable dark matter candidate if produced by

the misalignment mechanism (i.e. coherent oscillations). In a similar way to

the closed string axions, the QCD axion also is subject to strong isocurvature

constraints if the Peccei-Quinn symmetry is broken during inflation (fa > HI).

This then requires us to estimate the decay constant fθ which, as we have previously

discussed, is set by the VEV of the radial component of the PQ field. However,

calculation of this VEV is non-trivial as it depends on both F -term and D-term

(due to an induced Fayet-Iliopoulos term) stabilization [183]. This calculation has

been done in [183], which also shows that the value of the VEV - and thus the

decay constant fθ - depends crucially on the level of sequestering. The result was

found to be

fθ '


mP/V2 ∼M1/2 ∼ 5× 1010 GeV (ultralocal limit)

mP/V ∼ m3/2 ∼ 1015 GeV (local limit)

(7.60)

where we have assumed the values in our benchmark spectrum in Table (7.2). For

scenarios where the PQ symmetry is broken during inflation, the isocurvature

bounds are given by [417, 405]

HI . 1.4× 10−5 fθθi (7.61)

where θi is again the misalignment angle. Since the local scenario has fθ ∼
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1015 GeV > HI but 1.4 × 10−5fθ ∼ 1010 GeV < HI , we conclude that the local

scenario is excluded from isocurvature bounds. However, the ultralocal scenario

has fθ ∼ 5 × 1010 GeV < HI , thus evading the isocurvature bounds as the PQ

symmetry remains unbroken until after inflation. Thus, in this case we find the

QCD axion has a decay constant (and thus mass) in the regime where it can

saturate the observed dark matter abundance [446, 112] while also satisfying the

isocurvature constraints. Although other dark matter candidates are expected to

be viable in this scenario, it appears the ultralocal scenario naturally provides the

QCD axion as a viable dark matter candidate without introducing any additional

field content or model details.

Finally, we again can estimate the reheating temperature in fibre inflation as

with Kähler inflation:

(
Trh

1 GeV

)
' 4.07× 1010

(
mu

4.4× 1013 GeV

)3/2

(7.62)

where again we take Z = 3 to avoid dark radiation overproduction and we take

g∗(Trh) = 106.75. This inflationary reheating temperature is rather high - however

it does not suffer from a thermal gravitino problem as modulus decays to gravitinos

are kinematically forbidden due to sequestering and are therefore not produced as

inflationary relics.
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Chapter 8

Conclusions

In this work, we have studied the interplay of a light modulus with a natural MSSM

model based on radiative natural supersymmetry. By parameterizing several cases,

we have found motivated benchmark scenarios based on moduli stabilization

details and string model-building considerations which allows us to systematically

study many different string models with an effective theory approach. We find

that a heavy modulus mφ � 1000 TeV is required in order to meet the observed

dark matter relic density, regardless of the details of its decays to gravitinos. We

also find that if the decays to gravitinos are unsuppressed, m3/2 & 7000 TeV and

mφ & 6000 TeV is required to match the observed dark matter relic density -

far higher than the bounds set by Big Bang Nucleosynthesis constraints. String

models which allow for sequestering then are phenomenologically more attractive

in this case, while the restriction to the case of suppressed modulus decays into

gravitinos appears to be required in non-sequestered models to avoid running

into severe naturalness conflicts. In models where the modulus is stabilized in

a non-supersymmetric fashion, the decays to ultralight axion-like particles can

contribute significantly to dark radiation depending on the details of the gauge-

kinetic function. This potentially excludes a large class of models by stringent

constraints set by cosmic microwave background experiments such as the Planck

experiment, unless the effective modulus coupling to these axion-like particles is

sufficiently small.
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We also studied how these results change once a supersymmetric DFSZ axion

is incorporated. Generically, the addition of the axino and saxion contribute a

large addition to the produced neutralino dark matter, requiring an even larger

modulus mass mφ & 10000 TeV. In this case, our scenarios inspired by Type IIb

constructions with matter fields hosted on D3-branes appears to be excluded due

to gross dark radiation overproduction. Additionally, the heterotic and M -theory

inspired scenarios are expected to be probed by upcoming CMB experiments. We

also find that simple consistency conditions require also a higher scale of inflation

due to the requirement of an extremely large modulus mass. These consistency

conditions are in severe tension with isocurvature constraints in the scenario

where the PQ self-coupling is absent, i.e. ξ = 0, thus excluding this scenario.

Thus, without additional model-building only the scenario with PQ self-coupling

(ξ = 1) is potentially viable. We also find that based on our benchmark point and

indirect detection limits, we expect these to be “best-case scenario” results unless

neutralinos make up a very small fraction of dark matter which weakens these

constraints and a large neutralino annihilation cross section can be realized in

a natural supersymmetry framework. We have therefore excluded a large class

of possible string constructions which produce the MSSM and a DFSZ-type PQ

sector in the simplest low energy limit, while placing considerable constraints on

the remaining viable scenarios. These results may also suggest a preference for a

lower inflationary scale, which would inflate away all light moduli and reduce to a

standard thermal history instead of one with an early matter dominated period.

It is also interesting that the φPQMSSM seems to prefer axions to highly
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dominate the dark matter composition. Although our benchmark point required

WIMPs to compose (at most) around 10% of the dark matter abundance to be

in accordance with direct detection bounds, this put considerable constraints

on the minimum modulus mass and, by extension, may run into tension with

isocurvature constraints. If the WIMPs were to annihilate more efficiently, this

stringent constraint might be eased - however, this comes at the expense of

requiring the WIMPs to compose an even smaller percentage of the dark matter

composition. Thus, one might not expect to see WIMPs at direct or indirect

detection experiments in the near future if they make up e.g. 1% of the total dark

matter abundance. However, this implies that (at least in the φPQMSSM) the

dark matter is almost entirely composed of axions.

These predictions may change slightly if one instead considers a KSVZ-type PQ

sector instead of a DFSZ-type model. As the KSVZ model introduces a heavy quark

pair which is coupled to the charged PQ field, the Giudice-Masiero term is no longer

forbidden. This may drastically ease dark radiation production in the scenarios

inspired by Type IIb constructions, in addition to slightly shortening the lifetime of

the modulus resulting in a reduced WIMP dark matter abundance in all scenarios.

Additionally, if one instead assumes the LSP is the axino, then it is possible that

dark matter overproduction might be substantially eased, depending on the ratio

mã/mZ̃1
[447]. The axino LSP scenario is also largely unaffected by direct and

indirect WIMP constraints. Since any axino interactions will be suppressed by

the PQ scale fa, the expected cross sections for axino LSPs are several orders of

magnitude below current sensitivities [299, 298]. In our computations of modulus
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decay, we have also focused exclusively on perturbative decays. However, in the

φPQMSSM it is possible that non-perturbative decays to the saxion or axion

through a parametric resonance may occur, entirely analogous to preheating effects

in inflation. We have also focused exclusively on the case where PQ breaking occurs

before or during inflation. Since we expect gravitationally-induced operators to

break the U(1)PQ symmetry, it is also possible that PQ breaking may happen after

inflation if the domain walls are sufficiently unstable [448, 449, 450], which would

trivially evade the isocurvature constraints. Each of these alternate scenarios may

drastically change the overall picture, which we leave for future study.

Additionally, we have studied the expected distributions of the SUSY µ-

term in the string landscape for each of the Kim-Nilles and Giudice-Masiero

solutions to the µ-problem. In both cases, it was found that although requiring

an anthropically-allowed window of the weak scale requires µ . 365 GeV, the

Kim-Nilles solution is quite predictive - leading to sharp distributions of µ with its

peak value depending on the coupling to the Higgs bilinear HuHd. The Giudice-

Masiero solution, however, produced a rather broad distribution - with tempering

at large µ mostly induced from other soft terms leading to anthropically-disallowed

vacua. However, both scenarios predicted light higgsinos slightly above current

LHC bounds but possibly within reach of upcoming HL-LHC measurements

[341]. We also studied the distribution of the Peccei-Quinn scale fa in the string

landscape within the Kim-Nilles solution, and found a sharp peak predicting

fa ∼ (0.5− 2.5)× 1011 GeV with the peak again depending on the coupling to the

Higgs bilinear. This agrees well with both previous work and our work here on
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the φPQMSSM, which seem to favor fa close to this scale based on dark matter

production considerations.

Finally, we have also studied the dark matter and dark radiation production

in the context of a fibred Large Volume Scenario string model which produces two

viable inflationary scenarios without additional model-building. Based on previous

works which fit the parameters of the inflationary potential to the observed density

perturbations, we find that in Kähler moduli inflation a massive WIMP is the

preferred dark matter candidate while in fibre inflation, the high inflationary scale

prefers open string (QCD or QCD-like) axions as the dark matter candidate. In

both cases, the “ultralocal limit” appears preferred predicting highly sequestered

soft terms. The upcoming CMB-S4 experiment may probe the fibre inflationary

scenario, while producing further constraints on general LVS models through

measurements of possible dark radiation - which may also further constrain or

exclude these scenarios.
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Appendix A

Moduli interactions and decay widths

A.1 Half superspace integrals of 3 fields

Following the notation of [1], we expand left-chiral scalar superfields as

Â(xµ, θ, θ) = A+ i
√

2θψL,A + iθθLFA +
i

2

(
θγ5γµθ

)
∂µA

− 1√
2
θγ5θ · θ/∂ψL,A +

1

8

(
θγ5θ

)2
∂2A. (A.1)

and we expand left-chiral spinor superfields in the Wess-Zumino gauge as

Ŵα = λL,α +
1

2
γµγνFµν,αθL − iθθL

(
/DλR

)
α
− iDαθL. (A.2)

A.1.1 Integrals of the form ÂŴ c
αŴα + h.c.

The form

L = λ

∫
d2θ

[
ÂŴ c

αŴα + h.c.
]

(A.3)

produces the corresponding Lagrangian

λ−1L = −4

[
iA
(
λα/∂PRλα + gfCBαλα /V BPRλC

)
+

1

2
ADαDα

]
+

[
AFµν,αF

µν,α +
i

2
AεµνρσFµν,αFρσ,α

]
+ 2

[
iλαλL,αFA

]
+
√

2
[
ψAσ

µνλL,αFµν,α
]
− 2
√

2
[
ψAλL,αDα

]
+ h.c.
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This form can be worked out as follows. We expand the left-chiral scalar superfields

using Eq. (A.1) and the left-chiral spinor superfields using Eq. (A.2):

λ−1L ⊃
∫
d2θ

(
θθL
)
A
[
i
((

/DλR

)c
α
λL,α − λR,α

(
/DλR

)
α

)
−DαDα

]
+

∫
d2θ A

[
1

4
θRγ

νγµγργσθLFµν,αFρσ,α − i
1

2
θR [γνγµ + γµγν ] θLFµν,αDα

]
+

∫
d2θ

[
i

2

(
θγ5γµθ

)
∂µA

]
λR,αλL,α +

∫
d2θ

[
iθθLFA

]
λR,αλL,α

+

∫
d2θ

[
i
√

2θψL,A

] [1

2
λR,αγ

µγνθLFµν,α +
1

2
θRγ

νγµλL,αFµν,α

]
+

∫
d2θ

[
i
√

2θψL,A

] [
−iDα

(
λR,αθL + θRλL,α

)]
(A.4)

Using the identity θRγ
νγµγργσθL = 1

2
(θθL)Tr [γνγµγργσPL] and the defining Clif-

ford algebra for the gamma-matrices, as well as using several Majorana spinor

identities, we can rewrite this as

λ−1L ⊃
∫
d2θ

(
θθL
) [
iA
((

/DλR

)c
α
λL,α − λR,α

(
/DλR

)
α

)
− ADαDα

]
+

∫
d2θ

(
θθL
) [1

8
ATr [γνγµγργσPL]Fµν,αFρσ,α

]
+

∫
d2θ

(
θγ5γµθ

) [ i
2
λαλL,α ∂

µA

]
+

∫
d2θ

(
θθL
) [
iλαλL,αFA

]
+

1√
2

∫
d2θ

(
θθL
) [
ψAσ

µνλL,αFµν,α
]
−
√

2

∫
d2θ

(
θθL
) [
ψAλL,αDα

]
(A.5)
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To evaluate the terms involving the gauge field strengths, we need the identity

Tr [γνγµγργσPL] =
1

2
Tr [γνγµγργσ]− 1

2
Tr [γνγµγργσγ5]

= 2 [ηνµηρσ − ηνρηµσ + ηνσηµρ] + 2iενµρσ (A.6)

Noting that the integral
∫
d2θ(θθL) = 2 and

∫
d2θ(θγ5γµθ) = 0, this reduces to

λ−1L ⊃ −4

[
iA
(
λα/∂PRλα + gfCBαλα /V BPRλC

)
+

1

2
ADαDα

]
+

[
AFµν,αF

µν,α +
i

2
AεµνρσFµν,αFρσ,α

]
+ 2

[
iλαλL,αFA

]
+
√

2
[
ψAσ

µνλL,αFµν,α
]
− 2
√

2
[
ψAλL,αDα

]
+ h.c. (A.7)

A.2 Full superspace integrals of 3 fields

Due to the reality condition of the Kähler potential, there are only two entirely

unique combinations for products of 3 chiral scalar superfields, namely ÂB̂Ĉ+ h.c.

and ÂB̂Ĉ† + h.c.. Our convention for superfields follows [1], which we recap here.

Left-chiral scalar superfields are expanded as

Â(xµ, θ, θ) = A+ i
√

2θψL,A + iθθLFA +
i

2

(
θγ5γµθ

)
∂µA

− 1√
2
θγ5θ · θ/∂ψL,A +

1

8

(
θγ5θ

)2
∂2A. (A.8)
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A.2.1 Useful Grassmann identities involving scalars

Here we list useful identities involving Grassmann variables which are associated

to terms incorporating only Lorentz-scalar terms.

θPL/Rθ
(
θγ5γµθ

)
= 0 (A.9)

θPRθ θPLθ = −1

2

(
θγ5θ

)2
(A.10)(

θPL/Rθ
)2

= 0 (A.11)(
θγ5γµθ

) (
θγ5γνθ

)
= −gµν

(
θγ5θ

)2
(A.12)

A.2.2 Useful Grassmann identities involving spinors

Here we list useful identities involving Grassmann variables contracted with spinor

fields. Each can be verified by application of Eq. 5.21 in [1].

θPLψ1

[
θγ5θ · θ/∂PLψ2

]
= 0 (A.13)

θPLψ1

[
θγ5θ · θ/∂PRψ2

]
=

1

4
(θγ5θ)

2ψ1/∂PRψ2 (A.14)

ψ1PRθ
[
θγ5θ · θ/∂PLψ2

]
= −1

4
(θγ5θ)

2ψ1/∂PLψ2 (A.15)

θPLψ1 · θPLψ2

(
θγ5γµθ

)
= 0 (A.16)

θPLψ1 · ψ2PRθ
(
θγ5γµθ

)
=

1

4

(
θγ5θ

)2
ψ1γµPRψ2 (A.17)

θPLψ1 · ψ2PR/Lθ · θPLθ = 0 (A.18)

θPLψ1 · θPLψ2 · θPRθ =
1

4
(θγ5θ)

2ψ1PLψ2 (A.19)
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A.2.3 Kähler potentials of the form ÂB̂Ĉ + h.c.

The form

K ⊃ λ
[
ÂB̂Ĉ + h.c.

]
(A.20)

gives the corresponding Lagrangian

L = 0 (A.21)

Since the Kähler metric vanishes if a term does not contain both a holomorphic

and anti-holomorphic direction, the corresponding Lagrangian must vanish.

A.2.4 Kähler potentials of the form ÂB̂Ĉ† + h.c.

The form

K ⊃ λ
[
ÂB̂Ĉ† exp

(
−2gtaΦ̂a

)
+ h.c.

]
(A.22)
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gives the corresponding Lagrangian

λ−1L = −
[
AB∂2C†

]
+ i
[
AψB /∂PRψC +BψA/∂PRψC

]
+
[
BFAF †C + AFBF †C − iψAPLψBF

†
C

]
− g

[
ABC† (taDa)

]
+ g2

[
ABC† (taV

µ
a ) (tbVb,µ)

]
+ ig

[
AB∂µC† − AC†∂µB −BC†∂µA

]
(taVa,µ)

− g
√

2
[
ABψCPR (taλa) + AC†ψBPL (taλa) +BC†ψAPL (taλa)

]
+ g

[
AψBγµPRψC (taV

µ
a ) +BψAγµPRψC (taV

µ
a )
]

+ h.c. (A.23)

This form can be worked out as follows. We expand the left-chiral scalar superfields

using A.8 and the gauge potential superfield Φ̂a using the identity [1]:

exp
(
−2gtaΦ̂a

)
= 1− g

(
θγ5γµθ

)
(taV

µ
a )− 2ig

(
θγ5θ

)
θ (taλa)

+
1

2

(
θγ5θ

)2
(gtaDa − (gtaV

µ
a ) (gtbVb,µ)) . (A.24)
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This gives us

L = −λ1

2

∫
d4θ

(
θγ5θ

)2

[
− 1

4

[
AB∂2C† + AC†∂2B +BC†∂2A

]
+

1

2

[
A∂µB∂

µC† +B∂µA∂
µC† − C†∂µA∂µB

]
− i

2

[
ψBγµPRψC ∂

µA− AψC /∂PLψB − AψB /∂PRψC + (A↔ B)
]

+
[
BFAF †C + AFBF †C − iψAPLψBF

†
C

]
−
[
ABC† (gtaDa − (gtaV

µ
a ) (gtbVb,µ))

]
+ i
[
g (taVa,µ)AB∂µC† − g (taVa,µ)AC†∂µB − g (taVa,µ)BC†∂µA

]
−
√

2
[
gABψCPR (taλa) + gAC†ψBPL (taλa) + gBC†ψAPL (taλa)

]
+
[
gAψBγµPRψC (taV

µ
a ) + gBψAγµPRψC (taV

µ
a )
]

+ h.c.

]
(A.25)

where we have made use of the identities Eqs. (A.9-A.19). Evaluating the su-

perspace integral and leveraging several surface term identities, we arrive at the

result:

λ−1L = −
[
AB∂2C†

]
+ i
[
AψB /∂PRψC +BψA/∂PRψC

]
+
[
BFAF †C + AFBF †C − iψAPLψBF

†
C

]
− g

[
ABC† (taDa)

]
+ g2

[
ABC† (taV

µ
a ) (tbVb,µ)

]
+ ig

[
(taVa,µ)AB∂µC† − (taVa,µ)AC†∂µB − (taVa,µ)BC†∂µA

]
− g
√

2
[
ABψCPR (taλa) + AC†ψBPL (taλa) +BC†ψAPL (taλa)

]
+ g

[
AψBγµPRψC (taV

µ
a ) +BψAγµPRψC (taV

µ
a )
]

+ h.c.
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A.3 Toy model Feynman amplitudes and decay widths

We make repeated use of the definition

λ1/2(x, y, z) ≡
[
x2 + y2 + z2 − 2(xy + yz + xz)

]1/2
(A.26)

as a shorthand for the phase space factor.

A.3.1 Modulus decay to real scalars

We start with the toy model

L ⊃ λ1AB∂
2φ+ λ2φB∂

2A+ λ3φA∂
2B (A.27)

where A and B are assumed to be real scalars, and λ1, λ2, λ3 each have mass

dimension −1. Each interaction term corresponds to the diagram

φ

B

A

q

k′

where the vertex factors are −iλ1m
2
φ, −iλ2m

2
A, and −iλ3m

2
B, respectively. For

the case where A = B, each of these vertex factors is multiplied by an additional

factor of 2.

Assuming no other contributions to the φ→ A+B decay, the total amplitude
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is then

iM = −i
(
λ1m

2
φ + λ2m

2
A + λ3m

2
B

)
(A.28)

and hence the squared matrix element is simply given by

|M|2 =
(
λ1m

2
φ + λ2m

2
A + λ3m

2
B

)2
. (A.29)

As there is no angular dependence, the decay widths can then be written down

immediately. When A and B are distinguishable, we have

ΓφAB =
1

16πmφ

(
λ1m

2
φ + λ2m

2
A + λ3m

2
B

)2
λ1/2

(
1,
m2
A

m2
φ

,
m2
B

m2
φ

)
(A.30)

while for the case where A = B, we have

ΓφAA =
1

8πmφ

(
λ1m

2
φ + λ2m

2
A

)2
λ1/2

(
1,
m2
A

m2
φ

,
m2
A

m2
φ

)
(A.31)

where the amplitude squared introduced an additional factor of 4, while the

identical particles in the final state divide the decay width by 2. We have also

taken λ3 = 0 in this case without loss of generality.
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A.3.2 Modulus decay to complex scalars

We start with the toy model

L ⊃ λ1C
†D∂2φ+ λ2φD∂

2C† + λ3φC
†∂2D (A.32)

where C and D are assumed to be complex scalars, and λ1, λ2, λ3 each have mass

dimension −1. Each interaction term corresponds to the diagram

φ

D

C†

q

k′

where the vertex factors are −iλ1m
2
φ, −iλ2m

2
C , and −iλ3m

2
D, respectively. In the

case where C† = D†, the vertex factor remains unchanged as the final state is

distinguishable.

Assuming no other contributions to the φ→ C†+D decay, the total amplitude

is then

iM = −i
(
λ1m

2
φ + λ2m

2
C + λ3m

2
D

)
(A.33)

and the squared matrix element is given by

|M|2 =
(
λ1m

2
φ + λ2m

2
C + λ3m

2
D

)2
. (A.34)
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Like the decay to real scalars, there is no angular dependence and thus the decay

width can be written down as

ΓφC†D =
1

16π
m3
φ

(
λ1 + λ2

m2
C

m2
φ

+ λ3
m2
D

m2
φ

)2

λ1/2

(
1,
m2
C

m2
φ

,
m2
D

m2
φ

)
. (A.35)

As expected, the contributions from the λ2 and λ3 terms are suppressed in

comparison to the λ1 term. This expression is valid also in the case where

C† = D†, where without loss of generality we can take λ3 = 0.

A.3.3 Modulus decay to spin-1/2 fermions

We start with the toy model

L ⊃ iλ1 φψ/∂ (gV + gAγ5)ψ (A.36)

where ψ is a four-component spinor, and λ1 has mass dimension −1. This interac-

tion term corresponds to the diagram

φ

ψ

ψ

q

k′

where the vertex factor is−iλ1/k
′
(gV +gAγ5). For the case where ψ is Majorana, this

vertex factor is multiplied by an additional factor of 2 due to the indistinguishability

of the final state.
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Assuming no additional contributions, the matrix element for this process is

given by

iM = us
′
(k′)

(
−iλ1/k

′
(gV + gAγ5)

)
vs(k). (A.37)

Summing over outgoing spins, the squared matrix element becomes:

|M|2 = 2|λ1|2m2
ψm

2
φ

(
g2
V

[
1− 4

m2
ψ

m2
φ

]
+ g2

A

)
(A.38)

where our kinematics gave k′µk
µ = 1

2
m2
φ−m2

ψ. Since there is no angular dependence,

the decay widths can then be written down immediately. If ψ is simply a Dirac

fermion (e.g. quarks and leptons), the decay width is given by

Γφψψ =
1

8π
|λ1|2m3

φ

(
m2
ψ

m2
φ

)(
g2
V

[
1− 4

m2
ψ

m2
φ

]
+ g2

A

)
λ1/2

(
1,
m2
ψ

m2
φ

,
m2
ψ

m2
φ

)
. (A.39)

However, if ψ is Majorana in nature (e.g. gluinos and electroweakinos), the decay

width is given by

ΓφψMψM =
1

4π
|λ1|2m3

φ

(
m2
ψ

m2
φ

)(
g2
V

[
1− 4

m2
ψ

m2
φ

]
+ g2

A

)
λ1/2

(
1,
m2
ψ

m2
φ

,
m2
ψ

m2
φ

)

(A.40)

where the amplitude squared introduced an additional factor of 4, and we divide

the final decay width by 2 as the final state is indistinguishable.
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We also consider the toy model

L ⊃ iλ1 φ
[
χ/∂ (gV + gAγ5)ψ + ψ/∂ (gV + gAγ5)χ

]
(A.41)

where ψ and χ are assumed to be four-component Majorana spinors, and λ1 has

mass dimension −1. The first interaction term corresponds to the diagram

φ

ψ

χ

q

k′

where the vertex factor is −iλ1/k
′
(gV + gAγ5), and the second interaction term can

be obtained by the replacements k ↔ k′ and ψ ↔ χ.

Assuming no other contributions to the φ→ ψ + χ decay, the total amplitude

is then

iM = −iλ1

[
us
′
(k′)

(
/k
′
(gV + gAγ5)

)
vs(k) + us(k) (/k(gV + gAγ5)) vs

′
(k′)
]
.

(A.42)

Summing over outgoing spins, the squared matrix element becomes

|M|2 = 2|λ1|2m2
φ

(
m2
ψ +m2

χ

)
×

(
g2
V

(
1− (mψ +mχ)2

m2
φ

)
+ g2

A

(
1− (mψ −mχ)2

m2
φ

))
(A.43)
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where our kinematics gave us 2k′µk
µ = m2

φ−m2
ψ −m2

χ. The decay width can then

be written down:

Γφψχ =
1

8π
|λ1|2m3

φ

(
m2
ψ +m2

χ

m2
φ

)

×

(
g2
V

(
1− (mψ +mχ)2

m2
φ

)
+ g2

A

(
1− (mψ −mχ)2

m2
φ

))
λ1/2

(
1,
m2
ψ

m2
φ

,
m2
χ

m2
φ

)
.

(A.44)

As expected, the decay width to fermions receives chirality suppression.

A.3.4 Modulus decay to vector bosons

We start with the toy model

L ⊃ −λ1 φ [∂µMν∂
µN ν − ∂µMν∂

νNµ] (A.45)

where M and N are (possibly either massive or massless) vector bosons, and λ1

has mass dimension −1. This interaction term corresponds to the diagram

φ

Mα

Nβ

q

k′

where the vertex factor is iλ1[k′µk
µgαβ − k′αkβ].

Assuming no other contributions to the φ→M+N decay, the total amplitude
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is then

iMµνε∗µ(k)ε∗ν(k
′) = iλ1

[
k′γk

γgµν − k′µkν
]
ε∗µ(k)ε∗ν(k

′). (A.46)

The squared matrix element then becomes

|Mµνε∗µ(k)ε∗ν(k
′)|2 = λ2

1

(
k′γk

γ
)2
[
gµν − k′µkν

(k′γk
γ)

] [
gαβ − k′αkβ

(k′γk
γ)

]
× ε∗µ(k)εα(k)ε∗ν(k

′)εβ(k′). (A.47)

For a massive boson, we can then sum over polarizations using

∑
λ

ε(q)∗µε(q)ν = −gµν +
qµqν
m2

(A.48)

whereas if a boson is massless, we must use

∑
λ

ε(q)∗µε(q)ν = −gµν +
qµnν + qνnµ

q · n
(A.49)

where, without loss of generality as two body decays are always colinear in the rest

frame of the parent, we assume the decay products move along the z-axis such

that qµ = (q, 0, 0, q) and nν = (q, 0, 0,−q) so that only the physical polarizations

appear in the sum.
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We now have the squared matrix element:

∑
pol.

|Mµνε∗µ(k)ε∗ν(k
′)|2 =

λ2
1

2
m4
φ

(1− m2
N

m2
φ

− m2
M

m2
φ

)2

+ 2
m2
Mm

2
N

m4
φ

 (A.50)

where our kinematics gave us 2k′µk
µ = m2

φ −m2
N −m2

M . This formula is valid

for both massive and massless bosons. Since there is once again no angular

dependence, the decay widths can be written down immediately. If M and N are

distinguishable, the decay width is given by

ΓφMN =
λ2

1

32π
m3
φ

(1− m2
N

m2
φ

− m2
M

m2
φ

)2

+ 2
m2
Mm

2
N

m4
φ

λ1/2

(
1,
m2
M

m2
φ

,
m2
N

m2
φ

)
.

(A.51)

If M = N is indistinguishable, the decay width is then given by

ΓφMM =
λ2

1

16π
m3
φ

[
1− 4

m2
M

m2
φ

+ 6
m4
M

m4
φ

]
λ1/2

(
1,
m2
M

m2
φ

,
m2
M

m2
φ

)
(A.52)

where the amplitude squared introduced an additional factor of 4, and we divide

the final decay width by 2 as the final state is indistinguishable.
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A.4 Moduli-gauge sector interactions

The leading interaction terms between the modulus and the gauge sector are given

by

LG.K. ⊃ −
1

4

∫
d2θ

[
λU(1)

mP

φ̂ B̂cB̂ +
λSU(2)

mP

φ̂ Ŵ c
αŴα +

λSU(3)

mP

φ̂ Ĝc
αĜα + h.c.

]
(A.53)

where B̂ is the gauge-eigenstate superfield for U(1)Y , Ŵα is the gauge-eigenstate

superfield for SU(2)L, and Ĝα is the gauge-eigenstate superfield for SU(3)C . Using

Eq. (A.4), we can evaluate the superspace integral. Separating into the different

gauge groups, we have for the U(1)Y group

LG.K., U(1) ⊃
λU(1)

mP

[
iΦλ0/∂PRλ0

]
−
λU(1)

4mP

[
ΦBµνB

µν +
i

2
Φ εµνρσBµνBρσ

]
−
√

2
λU(1)

4mP

[
ψφσ

µνBµνPLλ0

]
+
√

2
λU(1)

2mP

[
DU(1)

0 ψφPLλ0

]
+
λU(1)

2mP

ΦDU(1)
0 DU(1)

0 −
λU(1)

2mP

[
iFφ λ0PLλ0

]
+ h.c. (A.54)

while for SU(2)L we have

LG.K., SU(2) ⊃
λSU(2)

mP

[
iΦλα/∂PRλα + igεCBα Φλα /WBPRλC

]
−
λSU(2)

4mP

[
ΦWµν,αW

µν,α +
i

2
Φ εµνρσWµν,αWρσ,α

]
−
√

2
λSU(2)

4mP

[
ψφσ

µνPLλαWµν,α

]
+
√

2
λSU(2)

2mP

[
ψφPLλαDSU(2)

α

]
+
λSU(2)

2mP

ΦDSU(2)
α DSU(2)

α −
λSU(2)

2mP

[
iFφ λαPLλα

]
+ h.c. (A.55)

341



Finally, for SU(3)C we have

LG.K., SU(3) ⊃
λSU(3)

mP

[
iΦ g̃α/∂PRg̃α + igfCBα Φ g̃α /GBPRg̃C

]
−
λSU(3)

4mP

[
ΦGµν,αG

µν,α +
i

2
Φ εµνρσGµν,αGρσ,α

]
−
√

2
λSU(3)

4mP

[
ψφσ

µνPLg̃αGµν,α

]
+
√

2
λSU(3)

2mP

[
ψφPLg̃αDSU(3)

α

]
+
λSU(3)

2mP

ΦDSU(3)
α DSU(3)

α −
λSU(3)

2mP

[
iFφ g̃αPLg̃α

]
+ h.c. (A.56)

We now can separate these results into groupings which are relevant for the decay

to the physical gauge bosons and gauginos. The terms involving modulus decay

to electroweak gauge boson pairs are given by

LG, ewk. ⊃ −
λU(1)

4mP

[(
Φ + Φ†

)
BµνB

µν +
i

2

(
Φ− Φ†

)
εµνρσBµνBρσ

]
−
λSU(2)

4mP

[(
Φ + Φ†

)
Wµν,αW

µν,α +
i

2

(
Φ− Φ†

)
εµνρσWµν,αWρσ,α

]
(A.57)

while the terms involving modulus decay to gluon pairs is given by

LG, col. ⊃ −
λSU(3)

4mP

[(
Φ + Φ†

)
Gµν,αG

µν,α +
i

2

(
Φ− Φ†

)
εµνρσGµν,αGρσ,α

]
.

(A.58)

The decay to electroweak gaugino pairs is then given by

Lg, ewk. ⊃ i
λU(1)

mP

(
Φλ0/∂PRλ0 + Φ†λ0/∂PLλ0

)
+ i

λSU(2)

mP

(
Φλα/∂PRλα + Φ†λα/∂PLλα

)
(A.59)
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and the decay to gluino pairs is given by

Lg, col. ⊃ i
λSU(3)

mP

(
Φg̃α/∂PRg̃α + Φ†g̃α/∂PLg̃α

)
. (A.60)

A.4.1 Electroweak gauge boson interactions

Focusing first on the interaction with the electroweak gauge boson pairs, the

relevant terms are

LG, ewk. ⊃ −
λU(1)

2
√

2mP

[φBµνB
µν ]−

λSU(2)

2
√

2mP

[φWµν,αW
µν,α]

+
λU(1)

4
√

2mP

[c εµνρσBµνBρσ] +
λSU(2)

4
√

2mP

[c εµνρσWµν,αWρσ,α] (A.61)

where we have used Φ = (φ+ ic)/
√

2. Expanding the field strengths as

Bµν = ∂µBν − ∂νBµ (A.62)

Wα
µν = ∂µW

α
ν − ∂νWα

µ − gεαβγW β
µW

γ
ν (A.63)

we can express the modulus coupling to the physical electroweak gauge bosons

where

W± =
1√
2

[
W 1 ∓ iW 2

]
(A.64)

Z0 = − sin θWB + cos θWW
3 (A.65)

A0 = cos θWB + sin θWW
3. (A.66)
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The interaction between the modulus and W± pairs is then given by

LφW+W− ⊃ −
2λSU(2)√

2mP

φ
[
∂µW

−
ν ∂

µW+,ν − ∂νW−
µ ∂

µW+,ν
]

(A.67)

where we have neglected the additional terms which arise from the gauge-covariant

derivative, as they will introduce only higher-body decays. The interaction between

the modulus and Z0 pairs is given by

LφZ0Z0 ⊃ −
(
λU(1) sin2 θW + λSU(2) cos2 θW

)
√

2mP

φ
[
∂µZ

0
ν∂

µZ0,ν − ∂νZ0
µ∂

µZ0,ν
]

(A.68)

where once again we have neglected the higher-body interaction terms introduced

by the gauge-covariant derivative. The interaction between the modulus and A0

pairs is given by

LφA0A0 ⊃ −
(
λU(1) cos2 θW + λSU(2) sin2 θW

)
√

2mP

φ
[
∂µA

0
ν∂

µA0,ν − ∂νA0
µ∂

µA0,ν
]

(A.69)

where, as before, we have neglected higher-body interaction terms. Finally, the

interaction between the modulus, a Z0, and an A0 is given by

LφZ0A0 ⊃ −
2 sin θW cos θW

(
λSU(2) − λU(1)

)
√

2mP

φ
[
∂µZ

0
ν∂

µA0,ν − ∂νZ0
µ∂

µA0,ν
]
.

(A.70)
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A.4.2 Electroweakino interactions

The relevant terms for the modulus interactions with the electroweakinos are then

given by

Lg, ewk. ⊃
λU(1)√
2mP

(
iφλ0/∂λ0

)
+
λSU(2)√

2mP

(
iφλα/∂λα

)
−

λU(1)√
2mP

(
cλ0/∂γ5λ0

)
−
λSU(2)√

2mP

(
cλα/∂λα

)
. (A.71)

We now move to the mass eigenstates. The neutralino terms may be obtained

using [1]

λ0 =
∑
i

v
(i)
4 (iγ5)θi Z̃i (A.72)

λ3 =
∑
i

v
(i)
3 (iγ5)θi Z̃i (A.73)

where v
(i)
j are elements of the matrix that diagonalizes the neutralino mass matrix,

and θi is either 0 or 1 such that the mass of its corresponding neutralino, Z̃i, is

positive. The modulus interaction with identical neutralino pairs is then given by:

L
φZ̃iZ̃i

⊃ i

(
λU(1)(v

(i)
4 )2 + λSU(2)(v

(i)
3 )2

√
2mP

)
φZ̃i/∂Z̃i (A.74)

and the interactions with different pairs of neutralinos is given by:

L
φZ̃iZ̃j

⊃ i (−i)θi (i)θj

(
λU(1)v

(i)
4 v

(j)
4 + λSU(2)v

(i)
3 v

(j)
3√

2mP

)
φZ̃i/∂ (γ5)θi+θj Z̃j. (A.75)
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The interactions between the modulus and charginos are then obtained by the

transformations [1]

PLλ = sin γLPL (γ5)
θ
W̃1 W̃1 + θx cos γLPL (γ5)

θ
W̃2 W̃2 (A.76)

PRλ = sin γRPR (γ5)
θ
W̃1 W̃1 + θy cos γRPR (γ5)

θ
W̃2 W̃2 (A.77)

where we have defined

λ =
λ1 + iλ2√

2
(A.78)

and where γL/R are mixing angles between the gauginos and higgsinos, and θx,y

are signs (which are, loosely speaking, positive if the charginos are higgsino-like

and negative if they are gaugino-like). The θW̃1/2
terms are then defined as either

0 or 1 such that the corresponding chargino mass is non-negative.

The interaction of the modulus with the lighter chargino pairs is then given

by:

L
φW̃ 1W̃1

⊃
2λSU(2)√

2mP

(
iφW̃1/∂ (xc − ycγ5) W̃1

)
(A.79)

and the interaction between the modulus and heavier chargino pairs is given by:

L
φW̃ 2W̃2

⊃
2λSU(2)√

2mP

(
iφW̃2/∂ (xs − ysγ5) W̃2

)
(A.80)
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where we have made the definitions

xc ≡
1

2

(
sin2 γL + sin2 γR

)
yc ≡

1

2

(
sin2 γL − sin2 γR

)
xs ≡

1

2

(
cos2 γL + cos2 γR

)
ys ≡

1

2

(
cos2 γL − cos2 γR

)
. (A.81)

The interaction between the modulus and different generations of charginos is

then given by:

LφW̃1W̃2
⊃ i

(
2λSU(2)√

2mP

)[
φW̃1/∂ (x− yγ5) W̃2 + φW̃2/∂ (x− yγ5) W̃1

]
(A.82)

where we have made the definitions:

x ≡ 1

2

(
(−1)

θ
W̃1

+θ
W̃2 θx sin γL cos γL + θy sin γR cos γR

)
y ≡ 1

2

(
(−1)

θ
W̃1

+θ
W̃2 θx sin γL cos γL − θy sin γR cos γR

)
. (A.83)

A.4.3 Electroweak D-term interactions

Most electroweak D-term interactions lead to four-body decays of the modulus to

quarks, leptons, and Higgses. However, once the Higgses acquire a vev, there are

induced two-body decays of the form

mPLD−term, ewk. ⊃ Λ1φv
2
uH
†
dHd + Λ2φv

2
dH
†
uHu + Λ3φvuvd(H

†
uHd + h.c.). (A.84)
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where the Λi are the effective couplings and vu (vd) are the up (down) type Higgs

vevs. These decay widths are then, up to numerical factors, given by

Γ ∝ Λ2
1

v4
u

m2
Pmφ

+ . . . (A.85)

Since vu, vd . O(100 GeV), we neglect these decays as they are extremely sub-

leading.

A.4.4 Electroweak F -term interactions

In models where the modulus is stabilized supersymmetrically, we can param-

eterize its mass with the superpotential term W ⊃ MΦΦ2, where MΦ is the

supersymmetric contribution to the modulus mass. This leads to a modulus F -

term Fφ ∼ −2iMΦΦ† ⊃ −
√

2iMΦφ. The electroweakinos then have the induced

F -term interactions

LF−term, ewk. ⊃ −
λU(1)√
2mP

[
MΦφλ0PLλ0

]
−
λSU(2)√

2mP

[
MΦφλαPLλα

]
+ h.c. (A.86)

These can straightforwardly be rewritten in terms the physical charginos and

neutralinos. If MΦ ∼ mφ, it is easy to see that these F -term decays will produce

proportional to ∼ m3
φ/m

2
P in our A cases.
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A.4.5 Gluon interactions

Focusing now on the interaction with gluon pairs, the relevant terms are

LG, col. ⊃ −
λSU(3)

2
√

2mP

[φGµν,αG
µν,α] +

λSU(3)

4
√

2mP

[c εµνρσGµν,αGρσ,α] . (A.87)

Expanding the field strength as

Gα
µν = ∂µG

α
ν − ∂νGα

µ − gsfαβγGβ
µG

γ
ν (A.88)

we recover the interaction between the modulus and gluon pairs:

LG, col. ⊃ −
λSU(3)√

2mP

φ [∂µG
α
ν∂

µGν,α − ∂µGα
ν∂

νGµ,α] (A.89)

A.4.6 Gluino interactions

The relevant terms containing the modulus interactions with the gluinos are given

by:

Lg̃, col. ⊃ i
λSU(3)√

2mP

(
φg̃α/∂g̃α + icg̃α/∂γ5g̃α

)
. (A.90)

Since SU(3)C is unbroken, there is no mixing, and we have simply the term

Lφg̃g̃ ⊃ i
λSU(3)√

2mP

(
φg̃α/∂g̃α

)
. (A.91)
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A.4.7 QCD D-term interactions

All QCD D-term interactions with the modulus lead to four-body decays of the

modulus to quarks, and hence the phase space factor is highly suppressed. We

neglect these decays.

A.4.8 Gluino F -term interaction

Similarly to the electroweakinos, the gluinos have the induced F -term interaction

LF−term, col. ⊃ −
λSU(3)√

2mP

[
MΦφ g̃αPLg̃α

]
+ h.c. (A.92)

where MΦ is the supersymmetric contribution to the modulus mass. If present

(e.g. in the A cases), these lead to unsuppressed decays to gluinos.

A.5 Moduli-Higgs interactions

The leading interaction terms between the modulus and Higgs sector is

LH ⊃
∫
d4θ

[
λGM

mP

φ̂Ĥ†uĤ
†
d +

λHu
mP

φ̂Ĥ†ue
−2gtaΦ̂aĤu +

λHd
mP

φ̂Ĥ†de
−2gtaΦ̂aĤd + h.c.

]
(A.93)

where

Ĥu =

ĥ+
u

ĥ0
u

 and Ĥd =

ĥ−d
ĥ0
d

 (A.94)
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are the two (gauge-eigenstate) Higgs doublets of the MSSM and Φ̂a are the SU(2)L

and U(1)Y gauge potential superfields. Note that gauge invariance requires the

gauge potential coupling in the second and third terms, while the Giudice-Masiero

interaction is already locally invariant under SU(2)L × U(1)Y .

Expanding the doublets, the Giudice-Masiero interaction in terms of the

neutral and charged Higgs superfields becomes:

LH ⊃
λGM

mP

∫
d4θ

[
φ̂
(
ĥ+
u

)† (
ĥ−d

)†
+ φ̂

(
ĥ0
u

)† (
ĥ0
d

)†
+ h.c.

]
(A.95)

The interaction with Ĥ†uĤu becomes

LH ⊃
λHu
mP

∫
d4θ

[
φ̂
(
ĥ+
u

)† (
ĥ+
u

)
+ φ̂

(
ĥ0
u

)† (
ĥ0
u

)
+ h.c.

]
(A.96)

and we have an identical form for the Ĥ†dĤd interaction.

Using Eq. (A.23), we can evaluate the superspace integrals for each of the

interaction with the charged Higgses. The Giudice-Masiero term becomes

LH, charged ⊃ −
λGM

mP

[
h+
u h
−
d ∂

2Φ†
]

+ i
λGM

mP

[
h+
uψh−d

/∂PRψφ + h−d ψh+u /∂PRψφ

]
+
λGM

mP

[
h+
uFh−d F

†
φ + h−d Fh+uF

†
φ − iF

†
φψh+uPLψh−d

]
+ h.c.

(A.97)
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while the up-type Higgs interaction becomes

LH, charged ⊃−
λHu
mP

[
Φh+

u ∂
2
(
h+
u

)†]
+ i

λHu
mP

[
Φψh+u /∂PRψh+u + h+

uψφ/∂PRψh+u

]
+
λHu
mP

[
ΦFh+uF

†
h+u

+ h+
uFφF

†
h+u
− iF †

h+u
ψφPLψh+u

]
+ h.c. (A.98)

with an identical interaction for the down-type Higgs after the replacements

h+
u → h−d and λHu → λHd . Here, we have ignored the 3-body decays to gauge

modes which may become 2-body decays once one of the Higgs fields takes on its

VEV.

After the appropriate interchanges, h+
u → h0

u and h−d → h0
d, we have identical

results for the interaction with the neutral Higgses. Note that in Eq. (A.97), the

modulus does not directly couple to higgsinos - however, the moduli F -term leads

to a higgsino mass term if it takes on a non-zero VEV (as is expected from the

Giudice-Masiero mechanism). Furthermore, based on the form of Eq. (A.97),

we would expect the modulus partial widths into Higgses go like
m3
φ

m2
P

. However,

Eq. (A.98) does couple the modulus directly to the higgsinos, and this term is

still allowed even if the Giudice-Masiero term is forbidden by a PQ symmetry.

The modulus partial widths into Higgses due to the contribution of Eq. (A.98) is

then expected to go like
m2
Hi

m2
φ

m3
φ

m2
P

(with i ∈ {u, d}) - i.e. these widths should be

mass suppressed.

352



A.5.1 Charged Higgs interactions

Focusing first on the modulus interactions with the charged Higgses, the relevant

terms are

mPLH, charged ⊃−
λGM√

2

[
h+ ∗
u h−∗d + h+

u h
−
d

]
∂2φ− iλGM√

2

[
h+ ∗
u h−∗d − h

+
u h
−
d

]
∂2c

− λHu√
2

[
h+
u ∂

2h+ ∗
u + h+ ∗

u ∂2h+
u

]
φ− λHd√

2

[
h−d ∂

2h−∗d + h−∗d ∂2h−d
]
φ

− iλHu√
2

[
h+
u ∂

2h+ ∗
u − h+ ∗

u ∂2h+
u

]
c− iλHd√

2

[
h−d ∂

2h−∗d − h
−∗
d ∂2h−d

]
c

(A.99)

where we used Φ ≡ (φ+ ic)/
√

2. Utilizing the following transformation [1],

h−∗d
h+
u

 =

cos β − sin β

sin β cos β

G+

H+

 (A.100)

we may now move to the mass-eigenstate basis. The modulus interaction with

the charged Higgs pairs is given by

LφH+H− ⊃
λGM sin(2β)√

2mP

H+H−∂2φ

−
(
λHu cos2 β + λHd sin2 β√

2mP

)[
H+∂2H− +H−∂2H+

]
φ (A.101)
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and the modulus interaction with the charged Goldstone boson pairs is given by

LφG+G− ⊃−
λGM sin(2β)√

2mP

G+G− ∂2φ

−
(
λHu sin2 β + λHd cos2 β√

2mP

)[
G+∂2G− +G−∂2G+

]
φ. (A.102)

Finally, the modulus interaction with a charged Higgs and a charged Goldstone

mode is given by

LφG±H∓ ⊃−
λGM cos(2β)√

2mP

[
H+G− +H−G+

]
∂2φ

− (λHu − λHd) sin(2β)

2
√

2mP

[
G+∂2H− +H−∂2G+

]
φ

− (λHu − λHd) sin(2β)

2
√

2mP

[
H+∂2G− +G−∂2H+

]
φ. (A.103)

As we work in the unitary gauge, the decay interactions to would-be Goldstone

modes can be projected out with the appropriate transformation - here they

become the longitudinal components of the W± bosons.

A.5.2 Charged higgsino interactions

The interaction between the modulus and charged higgsinos comes solely from

the kinetic couplings. The relevant terms are

LH, charged ⊃ i
λHu√
2mP

[
φψh+u /∂ψh+u + icψh+u /∂γ5ψh+u

]
+ i

λHd√
2mP

[
φψh−d

/∂ψh−d
+ icψh−d

/∂γ5ψh−d

]
. (A.104)
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After using the transformation [1]

χ̃ ≡ PLψh−d
− PRψh+u (A.105)

to define our Dirac fields for the negatively charged higgsino, we see that the

modulus-charged higgsino interaction becomes

LH, charged ⊃ i

(
λHu + λHd√

2mP

)
φχ̃/∂χ̃. (A.106)

However, we are still using the gauge-eigenstates, and must put these into the

appropriate mass-eigenstates, resulting in interactions with the charginos. This

can be done with the transformations [1]:

PLχ̃ = −θx sin γL (γ5)
θ
W̃2 PLW̃2 + cos γL (γ5)

θ
W̃1 PLW̃1 (A.107)

PRχ̃ = −θy sin γR (γ5)
θ
W̃2 PRW̃2 + cos γR (γ5)

θ
W̃1 PRW̃1 (A.108)

where γL/R, θx,y, and θW̃1/2
are defined identically as for the gaugino components

of the charginos.

The modulus interaction with pairs of the lighter charginos is governed by the

term

L
φW̃ 1W̃1

⊃ i

(
λHu + λHd√

2mP

)
φW̃1/∂(xs − ysγ5)W̃1 (A.109)
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while the modulus interaction with pairs of the heavier charginos is governed by

L
φW̃ 2W̃2

⊃ i

(
λHu + λHd√

2mP

)
φW̃2/∂(xc − ycγ5)W̃2 (A.110)

where we have made use of the definitions in Eq. (A.81). Finally, the modulus

interaction with a heavy and a light chargino is then given by the terms:

LφW̃1W̃2
⊃ −i

(
λHu + λHd√

2mP

)[
φW̃2/∂(x− yγ5)W̃1 + φW̃1/∂(x− yγ5)W̃2

]
(A.111)

where we have made use of the definitions in Eq. (A.83).

A.5.3 Charged Higgs F -term interactions

The interactions with the relevant F -terms lead to the additional modulus inter-

actions:

LφF
h+u
F
h+u
⊃
√

2λHu
mP

φFh+uF
†
h+u

+

√
2λHd
mP

φFh−d F
†
h−d

(A.112)

Using the equations of motion for each F -term, we see that there are numerous

higher order interactions allowing for 4-body decays (and higher) to the quark

and lepton superfields. However, in the presence of a µ-term the following two

interactions are induced:

LφF
h+u
F
h+u
⊃
√

2λHu
mP

µ2 φh−∗d h−d +

√
2λHd
mP

µ2 φh+∗
u h+

u (A.113)
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which are 2-body decay terms. It is straightforward to rewrite these in terms of

the physical charged Higgs particles. Clearly, these terms are negligible as they

lead to mass-suppressed decay widths of the form ∼ µ4/m2
Pmφ.

We now consider the terms involving the F -term of the modulus. The interac-

tions with the scalar components are

LFφ ⊃
λGM

mP

[
h+
uFh−d F

†
φ + h−d Fh+uF

†
φ

]
+
λHu
mP

h+∗
u Fh+uF

†
φ +

λHd
mP

h−∗d Fh−d F
†
φ + h.c.

(A.114)

Once again replacing the F -terms of the Higgses and the modulus using their

equations of motion, the leading interactions are given by

LFφ ⊃
√

2λGM

mP

MΦµ
[
h+
u h

+∗
u φ+ h−d h

−∗
d φ
]

+

√
2 (λHu + λHd)

mP

MΦµh
+∗
u h−∗d φ+ h.c.

(A.115)

where again MΦ is the supersymmetric contribution to the modulus mass. Ev-

idently, regardless of whether or not the Giudice-Masiero term is allowed, the

F -term interactions lead to the helicity-suppressed decay width form ∼ µ2mφ/m
2
P

for decays to charged Higgses if MΦ ∼ mφ.

We also have the following F -term interaction from the Giudice-Masiero

operator:

L ⊃
√

2λGM

mP

[
MΦφψh+uPLψh−d

]
+ h.c. (A.116)
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This F -term interaction, similar to the previous modulus-higgsino interaction

terms, can be rewritten in terms of the physical charginos. As with the F -term

interactions through the gaugino mass term, the F -term interactions with the

higgsino mass term also lead to unsuppressed decays to charginos if MΦ ∼ mφ.

A.5.4 Neutral Higgs interactions

Focusing now on modulus interactions with the neutral Higgses, the relevant terms

are

mPLH, neutral ⊃−
λGM√

2

[
h0 ∗
u h

0 ∗
d + h0

uh
0
d

]
∂2φ− iλGM√

2

[
h0 ∗
u h

0 ∗
d − h0

uh
0
d

]
∂2c

− λHu√
2

[
h0
u∂

2h0 ∗
u + h0 ∗

u ∂
2h0

u

]
φ− λHd√

2

[
h0
d∂

2h0 ∗
d + h0 ∗

d ∂
2h0

d

]
φ

− iλHu√
2

[
h0
u∂

2h0 ∗
u − h0 ∗

u ∂
2h0

u

]
c− iλHd√

2

[
h0
d∂

2h0 ∗
d − h0 ∗

d ∂
2h0

d

]
c

(A.117)

where we again used Φ ≡ (φ + ic)/
√

2. Splitting this apart into the real and

imaginary components of the Higgses, e.g. h0
u = (h0

uR + ih0
uI)/
√

2 and likewise for

h0
d, this becomes

mPLH, neutral ⊃−
λGM√

2

[
h0
uRh

0
dR − h0

dIh
0
uI

]
∂2φ− λGM√

2

[
h0
uIh

0
dR + h0

dIh
0
uR

]
∂2c

− λHu√
2

[
h0
uR∂

2h0
uR + h0

uI∂
2h0

uI

]
φ− λHd√

2

[
h0
dR∂

2h0
dR + h0

dI∂
2h0

dI

]
φ

+
λHu√

2

[
h0
uI∂

2h0
uR − h0

uR∂
2h0

uI

]
c+

λHd√
2

[
h0
dI∂

2h0
dR − h0

dR∂
2h0

dI

]
c.

(A.118)
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Utilizing the transformations [1]

h0
uR

h0
dR

 =

cosα − sinα

sinα cosα

h

H

 (A.119)

and

h0
uI

h0
dI

 =

 sin β cos β

− cos β sin β

G0

A

 (A.120)

we may now move to the mass-eigenstate basis. The interaction between the

modulus and light Higgs pairs is given by

Lφhh ⊃ −
λGM sin(2α)

2
√

2mP

hh ∂2φ−
(
λHu cos2 α + λHd sin2 α√

2mP

)
φh ∂2h (A.121)

while the interaction between the modulus and the heavy Higgs pairs is given by

LφHH ⊃
λGM sin(2α)

2
√

2mP

HH ∂2φ−
(
λHu sin2 α + λHd cos2 α√

2mP

)
φH ∂2H. (A.122)

The interaction between the modulus and a CP-odd Higgs pair is given by

LφAA ⊃
λGM sin(2β)

2
√

2mP

AA∂2φ−
(
λHu cos2 β + λHd sin2 β√

2mP

)
φA∂2A. (A.123)
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The interaction between the modulus and neutral Goldstone boson pairs is given

by

LφG0G0 ⊃ −λGM sin(2β)

2
√

2mP

G0G0 ∂2φ−
(
λHu sin2 β + λHd cos2 β√

2mP

)
φG0 ∂2G0.

(A.124)

Moving to the interactions of the modulus with mixed pairs of Higgses, we begin

with the interaction between the modulus and a light and a heavy Higgs:

LφhH ⊃ −
λGM cos(2α)√

2mP

hH ∂2φ− (λHd − λHu) sin(2α)

2
√

2mP

[
φH ∂2h+ φh ∂2H

]
.

(A.125)

Finally, we have the interaction between the modulus and the CP-odd Higgs and

the neutral Goldstone boson:

LφAG0 ⊃ −λGM cos(2β)√
2mP

G0A∂2φ− (λHu − λHd) sin(2β)

2
√

2mP

[
φA∂2G0 + φG0 ∂2A

]
.

(A.126)

A.5.5 Neutral higgsino interactions

The interaction between the modulus and neutral higgsinos once again arises

solely from the kinetic couplings. The relevant terms are

LH, neutral ⊃ i
λHu√
2mP

[
φψh0u

/∂ψh0u + icψh0u
/∂γ5ψh0u

]
+ i

λHd√
2mP

[
φψh0d

/∂ψh0d + icψh0d
/∂γ5ψh0d

]
. (A.127)
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In order to move to the mass-eigenstates, we use the following transformations [1]:

ψh0u =
4∑
i=1

v
(i)
1 (−iγ5)θi Z̃i (A.128)

ψh0d =
4∑
j=1

v
(j)
2 (−iγ5)θj Z̃j (A.129)

where v
(i)
1/2 are elements of the matrix which diagonalizes the neutral gaugino-

higgsino mass matrix, and θi is defined to be either 0 or 1 such that the corre-

sponding neutralino mass is non-negative.

The interactions between the modulus and pairs of identical neutralinos is

given by

L
φZ̃iZ̃i

⊃ i

λHu
(
v

(i)
1

)2

+ λHd

(
v

(i)
2

)2

√
2mP

φZ̃i/∂Z̃i. (A.130)

The interactions between the modulus and two differing neutralinos (i 6= j) is

then given by

L
φZ̃iZ̃j

⊃i (i)θi (−i)θj
(
λHuv

(i)
1 v

(j)
1 + λHdv

(i)
2 v

(j)
2√

2mP

)
φZ̃i/∂ (γ5)θi+θj Z̃j (A.131)
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A.5.6 Neutral Higgs F -term interactions

The interactions with the neutral Higgs F -terms lead to the additional modulus

interactions:

LφF
h0u
F
h0u
⊃
√

2λHu
mP

φFh0uF
†
h0u

+

√
2λHd
mP

φFh0dF
†
h0d

(A.132)

As with the charged Higgs F -term interactions, the only 2-body decays arise in

the presence of a µ-term:

LφF
h0u
F
h0u
⊃
√

2λHu
mP

µ2 φh0∗
d h

0
d +

√
2λHd
mP

µ2 φh0∗
u h

0
u (A.133)

which are again negligible as the decay widths are of the form ∼ µ4/m2
Pmφ.

Considering now the modulus F -term interactions, we have

LFφ ⊃
λGM

mP

[
h0
uFh0dF

†
φ + h0

dFh0uF
†
φ

]
+
λHu
mP

h0∗
u Fh0uF

†
φ +

λHd
mP

h0∗
d Fh0dF

†
φ + h.c.

(A.134)

Once more replacing the F -terms via their equations of motion, the leading

interactions are given by

LFφ ⊃
√

2λGM

mP

MΦµ
[
h0
uh

0∗
u φ+ h0

dh
0∗
d φ
]

+

√
2 (λHu + λHd)

mP

MΦµh
0∗
u h

0∗
d φ+ h.c.

(A.135)

where again MΦ is the supersymmetric contribution to the modulus mass. Again
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we find that the F -term interactions lead to the helicity-suppressed decay width

form ∼ µ2mφ/m
2
P for decays to neutral Higgses if MΦ ∼ mφ, regardless of whether

or not the Giudice-Masiero term is allowed.

We also have the F -term interaction from the Giudice-Masiero operator:

L ⊃
√

2λGM

mP

[
MΦφψh0uPLψh0d

]
+ h.c. (A.136)

which can be rewritten in terms of the physical neutralinos. As with the charginos,

the F -term interactions with the higgsino mass term lead to unsuppressed decays

to neutralinos if MΦ ∼ mφ, much like the F -term interactions through the gaugino

mass term.

A.6 Moduli-matter interactions

The leading interaction term between the modulus and matter (i.e. quark and

lepton superfields) sector is

LM ⊃
∫
d4θ

[
λM
mP

φ̂M̂ †M̂ + h.c.

]
(A.137)
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where M̂ ∈ {L̂, Êc, Q̂, Û c, D̂c}. Using Eq. (A.23), we can evaluate the superspace

integral, which becomes:

LM ⊃ −
λM
mP

[
ΦM∂2M †]+ i

λM
mP

[
ΦψM /∂PRψM +Mψφ/∂PRψM

]
+
λM
mP

[
ΦFMF †M +MFφF †M − iF

†
MψφPLψM

]
+ h.c.

(A.138)

A.6.1 Squark interactions

Focusing first on the modulus interactions with squarks, we have the following

terms:

LM ⊃−
λQi√
2mP

[
φũL,i∂

2ũ†L,i + φũ†L,i∂
2ũL,i + φd̃L,i∂

2d̃†L,i + φd̃†L,i∂
2d̃L,i

]
− λUi√

2mP

[
φŨi∂

2Ũ †i + φŨ †i ∂
2Ũi

]
− λDi√

2mP

[
φD̃i∂

2D̃†i + φD̃†i∂
2D̃i

]
− i λQi√

2mP

[
cũL,i∂

2ũ†L,i − cũ
†
L,i∂

2ũL,i + cd̃L,i∂
2d̃†L,i − cd̃

†
L,i∂

2d̃L,i

]
− i λUi√

2mP

[
cŨi∂

2Ũ †i − cŨ
†
i ∂

2Ũi

]
− i λDi√

2mP

[
cD̃i∂

2D̃†i − cD̃
†
i∂

2D̃i

]
(A.139)

where ũL,i and d̃L,i are respectively the up and down SU(2)L doublet squarks, Ũi

and D̃i are respectively the up and down SU(2)L singlet squarks, and i ∈ {1, 2, 3}

is the generation index.

Moving to the mass-eigenstates, the first two generations of squarks have min-

imal mixing and hence the gauge-eigenstates are approximately mass-eigenstates.
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Thus, we have the interactions between the modulus and the left-handed squarks

Lφq̃Lq̃L ⊃ −
λQi√
2mP

[
φq̃L∂

2q̃†L + φq̃†L∂
2q̃L

]
(A.140)

where q̃L ∈ {ũL, d̃L, c̃L, s̃L} and the coupling index i ∈ {1, 2} again labels the

generation. Similarly, for the modulus interactions with the right-handed squarks,

we have

Lφq̃Rq̃R ⊃ −
λqi√
2mP

[
φq̃R∂

2q̃†R + φq̃†R∂
2q̃R

]
(A.141)

where q̃R ∈ {ũR, d̃R, c̃R, s̃R}, the coupling λqi ≡ λUi if q̃R is an up-type squark and

λqi ≡ λDi if it is a down-type squark, and i ∈ {1, 2} is once again the generation

index.

For the third-generation squarks, mixing can no longer be neglected. For the

top squarks, we use the transformation [1]

t̃L
t̃R

 =

 cos θt sin θt

− sin θt cos θt

t̃1
t̃2

 (A.142)

where θt is the top squark mixing angle. The same transformation also holds

for the bottom squarks with the interchange θt → θb and t̃ → b̃. The modulus

interactions with pairs of identical top squarks are then

Lφt̃1 t̃1 ⊃ −
(
λQ3 cos2 θt + λU3 sin2 θt

)
√

2mP

[
φt̃1∂

2t̃†1 + φt̃†1∂
2t̃1

]
(A.143)
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and

Lφt̃2 t̃2 ⊃ −
(
λQ3 sin2 θt + λU3 cos2 θt

)
√

2mP

[
φt̃2∂

2t̃†2 + φt̃†2∂
2t̃2

]
(A.144)

while the modulus interaction with mixed pairs of top squarks is then

Lφt̃1 t̃2 ⊃ −
(λQ3 − λU3) sin(2θt)

2
√

2mP

[
φt̃2∂

2t̃†1 + φt̃1∂
2t̃†2 + φt̃†2∂

2t̃1 + φt̃†1∂
2t̃2

]
.

(A.145)

The modulus interactions with the bottom squarks are then identical to the three

interactions above, with the replacements t̃1/2 → b̃1/2, θt → θb, and λU3 → λD3

(note that λQ3 couples both top and bottom squarks to the modulus).

A.6.2 Quark interactions

The interaction between the modulus and quarks arises from the following terms:

LM ⊃i
λQi√
2mP

[
φuL,i/∂uL,i + φdL,i/∂dL,i

]
+ i

λUi√
2mP

φU i/∂Ui + i
λDi√
2mP

φDi/∂Di

− λQi√
2mP

[
cuL,i/∂γ5uL,i + cdL,i/∂γ5dL,i

]
− λUi√

2mP

cU i/∂γ5Ui −
λDi√
2mP

cDi/∂γ5Di (A.146)

where uL,i and dL,i are respectively up and down type SU(2)L doublet quarks, Ui

and Di are respectively up and down type SU(2)L singlet quarks, and i ∈ {1, 2, 3}
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is once again the generation index. We now can define the Dirac quark fields by

q ≡ PLqL + PRQ (A.147)

where qL is any left-handed quark, and Q is the corresponding right-handed quark.

The interaction with the Dirac quark fields then becomes

Lφuiui ⊃ i
(λQi + λUi)√

2mP

φui/∂ui (A.148)

for up-type quarks and

Lφdidi ⊃ i
(λQi + λDi)√

2mP

φdi/∂di (A.149)

for down-type quarks.

A.6.3 Quark F -term interactions

The interactions with the quark F -terms of the form

L ⊃ λM
mP

ΦFMF †M + h.c. (A.150)

typically leads to 4-body (and higher) decays of the modulus. However there is

the exception when the Higgs fields take on their VEVs, which lead to interactions

of the form

L ⊃ λDi√
2mP

f 2
dv

2
d φd̃

†
L,id̃L,i + h.c. (A.151)
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and similarly for the FU and FQ interactions. These interactions are negligible as

they lead to decay widths of the form ∼ v4
d/m

2
Pmφ and, additionally, only third

generation quark components are expected to contribute [1].

The modulus F -term interactions of the form

L ⊃ λM
mP

MFφF †M + h.c. (A.152)

typically lead to 3-body decays, except when the Higgs fields acquire their VEVs.

In this case, we have

L ⊃
√

2λDi
mP

fdvdMΦ φd̃
†
R,id̃L,i + h.c. (A.153)

and similarly for the FU and FQ terms. If we have MΦ ∼ mφ, these lead to decay

widths of the helicity-suppressed form v2
dmφ/m

2
P .

A.6.4 Slepton interactions

The slepton interactions with the modulus follow similarly to the squark case.

Applying Eq. (A.138) to the lepton superfields, we have

LM ⊃−
λLi√
2mP

[
φẽL,i∂

2ẽ†L,i + φẽ†L,i∂
2ẽL,i + φν̃L,i∂

2ν̃†L,i + φν̃†L,i∂
2ν̃L,i

]
− λEi√

2mP

[
φẼi∂

2Ẽ†i + φẼ†i ∂
2Ẽi

]
− i λLi√

2mP

[
cẽL,i∂

2ẽ†L,i − cẽ
†
L,i∂

2ẽL,i + cν̃L,i∂
2ν̃†L,i − cν̃

†
L,i∂

2ν̃L,i

]
− i λEi√

2mP

[
cẼi∂

2Ẽ†i − cẼ
†
i ∂

2Ẽi

]
(A.154)
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where ẽL,i and ν̃L,i are respectively the SU(2)L doublet selectron and sneutrinos,

Ẽi is the SU(2)L singlet selectron, and i ∈ {1, 2, 3} is the generation index.

Moving to the mass-eigenstates, again the first two generations of selectrons

have minimal mixing and thus the gauge-eigenstates are also approximately mass-

eigenstates. Additionally, since lepton flavor conservation is assumed and the

neutrinos are assumed massless, the sneutrino gauge-eigenstates are also mass-

eigenstates. The interactions between the modulus and the left-handed sleptons

is thus given by

Lφf̃Lf̃L ⊃ −
λLi√
2mP

[
φf̃L∂

2f̃ †L + φf̃ †L∂
2f̃L

]
(A.155)

where f̃L ∈ {ẽL, ν̃e,L, µ̃L, ν̃µ,L, ν̃τ,L} and the coupling index i ∈ {1, 2, 3} is again

the generation index.

Similarly, the interactions with the right-handed selectrons is given by

Lφf̃Rf̃R ⊃ −
λEi√
2mP

[
φf̃R∂

2f̃ †R + φf̃ †R∂
2f̃R

]
(A.156)

where f̃R ∈ {ẽR, µ̃R} and once again the coupling index i ∈ {1, 2} is the generation

index.

The interactions with the staus, however, must take mixing into account -

much like the top and bottom squarks. To move to the mass-eigenstates for the
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staus, we use the transformation [1]

τ̃L
τ̃R

 =

 cos θτ sin θτ

− sin θτ cos θτ

τ̃1

τ̃2

 (A.157)

where θτ is the mixing angle between staus. The modulus interactions with pairs

of identical staus are then

Lφτ̃1τ̃1 ⊃ −
(
λL3 cos2 θτ + λE3 sin2 θτ

)
√

2mP

[
φτ̃1∂

2τ̃ †1 + φτ̃ †1∂
2τ̃1

]
(A.158)

and

Lφτ̃2τ̃2 ⊃ −
(
λL3 sin2 θτ + λE3 cos2 θτ

)
√

2mP

[
φτ̃2∂

2τ̃ †2 + φτ̃ †2∂
2τ̃2

]
(A.159)

while the modulus interaction with mixed pairs of staus is then

Lφτ̃1τ̃2 ⊃ −
(λL3 − λE3) sin(2θτ )

2
√

2mP

[
φτ̃2∂

2τ̃ †1 + φτ̃1∂
2τ̃ †2 + φτ̃ †2∂

2τ̃1 + φτ̃ †1∂
2τ̃2

]
.

(A.160)

A.6.5 Lepton interactions

The lepton interactions with the modulus follow nearly identically to the quark

interactions. Applying Eq. (A.138) to the lepton superfields, we have the terms

LM ⊃i
λLi√
2mP

[
φeL,i/∂eL,i + φνL,i/∂νL,i

]
+ i

λEi√
2mP

φEi/∂Ei

− λLi√
2mP

[
ceL,i/∂γ5eL,i + cνL,i/∂γ5νL,i

]
− λEi√

2mP

cEi/∂γ5Ei (A.161)

370



where eL,i and νL,i are respectively SU(2)L doublet electrons and neutrinos, Ei

are the SU(2)L singlet electrons, and once more i ∈ {1, 2, 3} is the generation

index. We define the Dirac lepton fields by

l ≡ PLlL + PRL (A.162)

where lL is any left-handed lepton, and L is the corresponding right-handed lepton.

The interaction with the Dirac lepton fields then becomes

Lφeiei ⊃ i
(λLi + λEi)√

2mP

φei/∂ei (A.163)

for the electron generations and

Lφνiνi ⊃ i
λLi√
2mP

φνi/∂νi (A.164)

for the neutrino generations.

A.6.6 Lepton F -term interactions

The interactions with the lepton F -terms, similar to those of the quark F -terms,

only lead to 2-body decays when the Higgs fields take on their VEVs. We then

have interactions of the form

L ⊃ λEi√
2mP

f 2
e v

2
d φẽ

†
L,iẽL,i + h.c. (A.165)
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and similarly for the FL interaction. Much like in the quark F -term case, these

interactions are negligible as they lead to decay widths of the form ∼ v4
d/m

2
Pmφ

with again only third generation lepton components contributing [1].

The modulus F -term interactions again lead to 3-body decays except when

the Higgs fields acquire their VEVs. This leads to interactions of the form

L ⊃
√

2λEi
mP

fevdMΦ φẽ
†
L,iẽR,i + h.c. (A.166)

and similarly for the FL interaction. For MΦ ∼ mφ, these lead to decay widths of

the helicity-suppressed form v2
dmφ/m

2
P .

A.7 Moduli-PQ sector interactions

The leading interaction term between the modulus and PQ-axion superfields is

given by

LPQ ⊃
∫
d4θ

[
λPQ

2mP

φ̂
(
Â+ Â†

)2

+ h.c.

]
(A.167)

Expanding, we see

LPQ ⊃
λPQ

2mP

∫
d4θ

[
2φ̂Â†Â+ φ̂Â†Â† + h.c.

]
(A.168)

where the φ̂ÂÂ+ h.c. term vanishes due to Eq. (A.21).
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Using Eq. (A.23), we can evaluate the above superspace integral. This gives

LPQ ⊃
λPQ

2mP

[
−2ΦA∂2A† − A†A†∂2Φ

]
+ i

λPQ

mP

[
Φã/∂PRã+ Aψφ/∂PRã− Aã/∂PRψφ

]
+
λPQ

mP

[
ΦFAF †A + (A+ A†)FφF †A − iF

†
AψφPLã+

i

2
FφãPRã

]
+ h.c.

(A.169)

A.7.1 Saxion and axion interactions

Focusing first on the modulus interactions with the scalars, the relevant terms are

mPLPQ, scalar ⊃−
λPQ

2
√

2

[
ss∂2φ+ 2φs∂2s− aa∂2φ+ 2φa∂2a

]
− λPQ√

2
λPQ

[
as∂2c− ca∂2s+ cs∂2a

]
. (A.170)

This breaks into

mPLφss ⊃ −
λPQ

2
√

2

[
ss∂2φ+ 2φs∂2s

]
(A.171)

for the modulus-saxion interactions, and after integrating-by-parts the modulus-

axion terms, we have

mPLφaa ⊃
λPQ√

2
[φ ∂µa ∂

µa] (A.172)
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for the modulus-axion interaction, where the required shift symmetry of the axion

is manifest. We have also dropped the ALP interaction term as it vanishes upon

integrating-by-parts.

A.7.2 Axino interactions

Focusing now on the modulus interactions with the axinos, the relevant terms are

mPLPQ,axino ⊃ i
λPQ√

2
φã/∂ã− λPQ√

2
cã/∂γ5ã. (A.173)

A.7.3 PQ F -term interactions

The PQ symmetry forbids the axion supermultiplet from appearing in the super-

potential at the perturbative level. However, they may appear non-perturbatively

as [285]

W ⊃ µ exp
(
cHÂ/vPQ

)
ĤuĤd (A.174)

where we use that µ = λPQf
2
a/mP and take cH to be the PQ charge of the Higgs

bilinear HuHd. From this, we see that any axion F -terms FA have a suppression

factor of µ/vPQ. We therefore focus only on the modulus F -terms, which reduce

to the axino mass term. This gives an interaction of the form

L ⊃ λPQ√
2mP

MΦφãPRã+ h.c. (A.175)
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where, once more, MΦ is the supersymmetric contribution to the modulus mass mφ.

If we have Mφ ∼ mφ, this produces an unsuppressed decay width ∼ m3
φ/m

2
P .

A.8 Moduli decay widths

Here, we list the model-independent decay widths of the modulus - i.e. neglecting

the F -term interactions which may be included straightforwardly from our results

in the previous section.

A.8.1 Modulus decay widths to electroweak gauge bosons

We list here the model-independent decay widths to electroweak gauge bosons.

Application of Eq. (A.51) to Eq. (A.67) gives the decay width to W± boson pairs:

ΓφW+W− =
λ2
SU(2)

16π

m3
φ

m2
P

[
1− 4

m2
W

m2
φ

+ 6
m4
W

m4
φ

]
λ1/2

(
1,
m2
W

m2
φ

,
m2
W

m2
φ

)
(A.176)

Taking now Eq. (A.68) and applying Eq. (A.52), we have the decay width to Z

boson pairs:

ΓφZ0Z0 =

(
λU(1) sin2 θW + λSU(2) cos2 θW

)2

32π

m3
φ

m2
P

[
1− 4

m2
Z

m2
φ

+ 6
m4
Z

m4
φ

]

× λ1/2

(
1,
m2
Z

m2
φ

,
m2
Z

m2
φ

)
. (A.177)
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Similarly, we take Eq. (A.69) and apply Eq. (A.69) to obtain the decay width to

photon pairs:

ΓφA0A0 =

(
λU(1) cos2 θW + λSU(2) sin2 θW

)2

32π

m3
φ

m2
P

(A.178)

where the phase space factor has dropped out as both final state particles are

massless. Finally, applying Eq. (A.51) to Eq. (A.70) gives the decay width to a

photon and Z boson:

ΓφZ0A0 =
sin2 θW cos2 θW

(
λSU(2) − λU(1)

)2

16π

m3
φ

m2
P

(1− m2
M

m2
φ

)2


× λ1/2

(
1, 0,

m2
M

m2
φ

)
. (A.179)

A.8.2 Modulus decay width to gluons

We list here the model-independent decay width of the modulus to gluons. Ap-

plying Eq. (A.52) to Eq. (A.89) gives us the decay width:

Γφgg =
λ2
SU(3)

4π

m3
φ

m2
P

(A.180)

where we have summed over the 8 possible final state gluons. Note that the phase

space factor drops out as the gluons are massless.
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A.8.3 Modulus decay widths to neutral Higgses

We list here the model-independent decay widths of the modulus into the neutral

Higgs sector. Starting with Eq. (A.121), application of Eq. (A.31) gives us the

decay width to light Higgs pairs:

Γφhh =
1

64π

m3
φ

m2
P

(
λGM sin (2α) + 2

(
λHu cos2 α + λHd sin2 α

) m2
h

m2
φ

)2

× λ1/2

(
1,
m2
h

m2
φ

,
m2
h

m2
φ

)
. (A.181)

Similarly, application of Eq. (A.31) to Eq. (A.122) gives the decay width to heavy

Higgs pairs:

ΓφHH =
1

64π

m3
φ

m2
P

(
λGM sin (2α)− 2

(
λHu sin2 α + λHd cos2 α

) m2
H

m2
φ

)2

× λ1/2

(
1,
m2
H

m2
φ

,
m2
H

m2
φ

)
. (A.182)

The decay width to CP-odd Higgs pairs is obtained from application of Eq. (A.31)

to Eq. (A.123):

ΓφAA =
1

64π

m3
φ

m2
P

(
λGM sin (2β)− 2

(
λHu cos2 β + λHd sin2 β

) m2
A

m2
φ

)2

× λ1/2

(
1,
m2
A

m2
φ

,
m2
A

m2
φ

)
. (A.183)
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Moving now to the modulus decay to a light Higgs and a heavy Higgs, applying

Eq. (A.30) to Eq. (A.125) gives:

ΓφhH =
1

128π

m3
φ

m2
P

(
2λGM cos (2α) + (λHd − λHu) sin (2α)

(
m2
h +m2

H

m2
φ

))2

× λ1/2

(
1,
m2
h

m2
φ

,
m2
H

m2
φ

)
. (A.184)

The widths to would-be Goldstone bosons vanish in the unitary gauge.

A.8.4 Modulus decay widths to charged Higgses

We list here the model-independent decay widths of the modulus into the charged

Higgs sector. Starting with Eq. (A.101), application of Eq. (A.35) gives us the

decay width to charged Higgs pairs:

ΓφH+H− =
1

32π

m3
φ

m2
P

(
λGM sin (2β)− 2

(
λHu cos2 β + λHd sin2 β

) m2
H±

m2
φ

)2

× λ1/2

(
1,
m2
H±

m2
φ

,
m2
H±

m2
φ

)
. (A.185)

The widths to would-be Goldstone bosons vanish in the unitary gauge.

A.8.5 Modulus decay widths to neutralinos

We list here the model-independent decay widths of the modulus into neutralinos.

The interactions for decay into identical neutralino pairs are given by Eq. (A.74)
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and Eq. (A.130). These combine into

L
φZ̃iZ̃i

= i

λHu
(
v

(i)
1

)2

+ λHd

(
v

(i)
2

)2

+ λSU(2)

(
v

(i)
3

)2

+ λU(1)

(
v

(i)
4

)2

√
2mP

φZ̃i/∂Z̃i.

(A.186)

The interactions for decay into a pair of different neutralinos is then given by

Eq. (A.75) and Eq. (A.131). These combine into

L
φZ̃iZ̃j

⊃ i (i)θi (−i)θj

×


(
λHuv

(i)
1 v

(j)
1 + λHdv

(i)
2 v

(j)
2

)
+ (−1)θi+θj

(
λSU(2)v

(i)
3 v

(j)
3 + λU(1)v

(i)
4 v

(j)
4

)
√

2mP


× φZ̃i/∂ (γ5)θi+θj Z̃j. (A.187)

Applying Eq. (A.40) to Eq. (A.186), we have the decay width into identical

neutralino pairs:

ΓφZ̃iZ̃i =

(
λHu

(
v

(i)
1

)2

+ λHd

(
v

(i)
2

)2

+ λSU(2)

(
v

(i)
3

)2

+ λU(1)

(
v

(i)
4

)2
)2

8π

×
m3
φ

m2
P

(
m2
Z̃i

m2
φ

)(
1− 4

m2
Z̃i

m2
φ

)
λ1/2

(
1,
m2
Z̃i

m2
φ

,
m2
Z̃i

m2
φ

)
. (A.188)

Applying now Eq. (A.44) to Eq. (A.187), we have the decay width into pairs of
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different neutralinos:

Γ
φZ̃iZ̃j

=((
λHuv

(i)
1 v

(j)
1 + λHdv

(i)
2 v

(j)
2

)
+ (−1)θi+θj

(
λSU(2)v

(i)
3 v

(j)
3 + λU(1)v

(i)
4 v

(j)
4

))2

16π

×
m3
φ

m2
p

(
m2
Z̃i

+m2
Z̃j

m2
φ

)(
1−

(|mZ̃i
|+ |mZ̃j

|)2

m2
φ

)
λ1/2

(
1,
m2
Z̃i

m2
φ

,
m2
Z̃j

m2
φ

)
(A.189)

where the absolute value on the “masses” allow for the negative mass from di-

agonalization of the mass matrix (before the field redefinition to make the mass

intrinsically positive). Depending on the relative signs of the mass of two neutrali-

nos (before field redefinition), these couplings may interfere either constructively

(masses for both Z̃i and Z̃j have same sign) or destructively (differing sign).

A.8.6 Modulus decay widths to charginos

We list here the model-independent decay widths of the modulus into charginos.

The interactions for decay to lighter chargino pairs are given by Eq. (A.79) and

Eq. (A.109). These combine into

L
φW̃ 1W̃1

=
1√

2mP

iφ W̃ 1/∂
(
gW̃1
V − g

W̃1
A γ5

)
W̃1 (A.190)

where we made the definitions

gW̃1
V ≡

(
2λSU(2)xc + (λHu + λHd)xs

)
(A.191)

gW̃1
A ≡

(
2λSU(2)yc + (λHu + λHd)ys

)
. (A.192)
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Note that this term couples the modulus to the kinetic term of the lighter chargino

- and in the absence of the modulus couplings, we have xc+xs = 1 and yc+ys = 0,

reducing this term to the canonical kinetic term as expected.

The interactions for decay to heavier chargino pairs are given by Eq. (A.80)

and Eq. (A.110). These combine into

L
φW̃ 2W̃2

=
1√

2mP

iφ W̃ 2/∂
(
gW̃2
V − g

W̃2
A γ5

)
W̃2 (A.193)

where we made the definitions

gW̃2
V ≡

(
2λSU(2)xs + (λHu + λHd)xc

)
(A.194)

gW̃2
A ≡

(
2λSU(2)ys + (λHu + λHd)yc

)
. (A.195)

Once more, these terms reduce to the canonical kinetic term in the absence of the

modulus coupling.

The interactions for decay to a light chargino and a heavy chargino are given

by Eq. (A.82) and Eq. (A.111). These combine into

LφW̃1W̃2
=⊃ i

(
2λSU(2) − λHu − λHd√

2mP

)[
φW̃2/∂(x− yγ5)W̃1 + φW̃1/∂(x− yγ5)W̃2

]
(A.196)

where, in the absence of the modulus coupling, this term vanishes.

Applying Eq. (A.39) to Eq. (A.190), we have the decay width into light
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chargino pairs:

Γ
φW̃ 1W̃1

=
1

16π

m3
φ

m2
P

(
m2
W̃1

m2
φ

)((
gW̃1
V

)2
[

1− 4
m2
W̃1

m2
φ

]
+
(
gW̃1
A

)2
)

× λ1/2

(
1,
m2
W̃1

m2
φ

,
m2
W̃1

m2
φ

)
. (A.197)

Similar application of Eq. (A.39) to Eq. (A.193) gives the decay width into heavy

chargino pairs:

Γ
φW̃ 2W̃2

=
1

16π

m3
φ

m2
P

(
m2
W̃2

m2
φ

)((
gW̃2
V

)2
[

1− 4
m2
W̃2

m2
φ

]
+
(
gW̃2
A

)2
)

× λ1/2

(
1,
m2
W̃2

m2
φ

,
m2
W̃2

m2
φ

)
(A.198)

Finally, application of Eq. (A.44) to Eq. (A.196) gives the decay width into a light

chargino and a heavy chargino:

ΓφW̃1W̃2
=

(
2λSU(2) − λHu − λHd

)2

16π

m3
φ

m2
P

(
m2
W̃1

+m2
W̃2

m2
φ

)

×

(
x2

[
1−

(mW̃1
+mW̃2

)2

m2
φ

]
+ y2

[
1−

(mW̃1
−mW̃2

)2

m2
φ

])

× λ1/2

(
1,
m2
W̃1

m2
φ

,
m2
W̃2

m2
φ

)
. (A.199)
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A.8.7 Modulus decay width to gluinos

We list here the model-independent decay width of the modulus into gluinos.

Application of Eq. (A.40) to Eq. (A.91), we have the decay width:

Γφg̃g̃ =
λ2
SU(3)

π

m3
φ

m2
P

(
m2
g̃α

m2
φ

)(
1− 4

m2
g̃α

m2
φ

)
λ1/2

(
1,
m2
g̃α

m2
φ

,
m2
g̃α

m2
φ

)
(A.200)

where we have then summed over the 8 different gluinos.

A.8.8 Modulus decay widths to squarks

We list here the model-independent decay widths of the modulus into squarks. Each

width is multiplied here by the color factor NC = 3. Starting with Eq. (A.140),

application of Eq. (A.35) gives us the decay width to left squark pairs:

Γφq̃Lq̃L =
3

8π

m4
q̃L

mφm2
P

(λQi)
2 λ1/2

(
1,
m2
q̃L

m2
φ

,
m2
q̃L

m2
φ

)
(A.201)

where q̃L ∈ {ũL, d̃L, c̃L, s̃L} and the coupling index i ∈ {1, 2} labels the generation.

Similar application of Eq. (A.35) to Eq. (A.141) gives us the decay width to right

squark pairs:

Γφq̃Rq̃R =
3

8π

m4
q̃R

mφm2
P

(λqi)
2 λ1/2

(
1,
m2
q̃R

m2
φ

,
m2
q̃R

m2
φ

)
(A.202)

where q̃R ∈ {ũR, d̃R, c̃R, s̃R}. The coupling again takes the definitions λqi ≡ λUi if

q̃R is an up-type squark, and λqi ≡ λDi if q̃R is a down-type squark, and the index

i ∈ {1, 2} again labels the generation.
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Moving to the decays to the top squarks, we start with Eq. (A.143) which

gives the decay width

Γφt̃1 t̃1 =
3

8π

m4
t̃1

mφm2
P

(
λQ3 cos2 θt + λU3 sin2 θt

)2
λ1/2

(
1,
m2
t̃1

m2
φ

,
m2
t̃1

m2
φ

)
(A.203)

for the lightest top squark, while the decay width to the heavier top squark is

obtained from Eq. (A.144):

Γφt̃2 t̃2 =
3

8π

m4
t̃2

mφm2
P

(
λQ3 sin2 θt + λU3 cos2 θt

)2
λ1/2

(
1,
m2
t̃2

m2
φ

,
m2
t̃2

m2
φ

)
. (A.204)

Finally, the decay to a light top squark and a heavy top squark is given by

Eq. (A.145):

Γφt̃1 t̃2 =
3

32π

(
m2
t̃1

+m2
t̃2

)2

mφm2
P

((λQ3 − λU3) sin (2θt))
2

× λ1/2

(
1,
m2
t̃1

m2
φ

,
m2
t̃2

m2
φ

)
. (A.205)

Upon taking the appropriate replacements, t̃1/2 → b̃1/2, θt → θb, and λU3 →

λD3 , into the above formulae, we have then the modulus decay into bottom squarks.

The decay into the light bottom squarks is given by

Γφb̃1b̃1 =
3

8π

m4
b̃1

mφm2
P

(
λQ3 cos2 θb + λD3 sin2 θb

)2
λ1/2

(
1,
m2
b̃1

m2
φ

,
m2
b̃1

m2
φ

)
(A.206)
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while the decay into the heavy bottom squarks is given by

Γφb̃2b̃2 =
3

8π

m4
b̃2

mφm2
P

(
λQ3 sin2 θb + λD3 cos2 θb

)2
λ1/2

(
1,
m2
b̃2

m2
φ

,
m2
b̃2

m2
φ

)
(A.207)

and the decay into a light and heavy bottom squark is given by

Γφb̃1b̃2 =
3

32π

(
m2
b̃1

+m2
b̃2

)2

mφm2
P

((λQ3 − λD3) sin (2θb))
2

× λ1/2

(
1,
m2
b̃1

m2
φ

,
m2
b̃2

m2
φ

)
. (A.208)

A.8.9 Modulus decay widths to sleptons

We list here the model-independent decay widths of the modulus into sleptons.

Starting with Eq. (A.155), application of Eq. (A.35) gives us the decay width to

left slepton pairs:

Γφf̃Lf̃L =
1

8π

m4
f̃L

mφm2
P

(λLi)
2 λ1/2

(
1,
m2
f̃L

m2
φ

,
m2
f̃L

m2
φ

)
(A.209)

where f̃L ∈ {ẽL, ν̃e,L, µ̃L, ν̃µ,L, ν̃τ,L} and the coupling index i ∈ {1, 2, 3} labels the

generation. Note that the decay width to neutrinos vanishes assuming that the

neutrinos are massless. Similar application of Eq. (A.35) to Eq. (A.156) gives us

the decay width to right slepton pairs:

Γφf̃Rf̃R =
1

8π

m4
f̃R

mφm2
P

(λEi)
2 λ1/2

(
1,
m2
f̃R

m2
φ

,
m2
f̃R

m2
φ

)
(A.210)
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where f̃R ∈ {ẽR, µ̃R} and the index i ∈ {1, 2} once again labels the generation.

Moving to the decays to the tau sleptons, we start with Eq. (A.158) which

gives the decay width

Γφτ̃1τ̃1 =
1

8π

m4
τ̃1

mφm2
P

(
λL3 cos2 θτ + λE3 sin2 θτ

)2
λ1/2

(
1,
m2
τ̃1

m2
φ

,
m2
τ̃1

m2
φ

)
(A.211)

for the light tau slepton, while the decay width to the heavy tau slepton is obtained

from Eq. (A.159):

Γφτ̃2τ̃2 =
1

8π

m4
τ̃2

mφm2
P

(
λL3 sin2 θτ + λE3 cos2 θτ

)2
λ1/2

(
1,
m2
τ̃2

m2
φ

,
m2
τ̃2

m2
φ

)
. (A.212)

Finally, the decay to a light tau slepton and a heavy tau slepton is given by

Eq. (A.160):

Γφτ̃1τ̃2 =
1

32π

(
m2
τ̃1

+m2
τ̃2

)2

mφm2
P

((λL3 − λE3) sin (2θτ ))
2

× λ1/2

(
1,
m2
τ̃1

m2
φ

,
m2
τ̃2

m2
φ

)
. (A.213)

A.8.10 Modulus decay widths to quarks

We list here the model-independent decay widths into quarks. Each width is

multiplied here by the color factor NC = 3. Starting with Eq. (A.148), application

of Eq. (A.39) gives the decay width to up-type quark pairs:

Γφuiui =
3 (λQi + λUi)

2

16π

m3
φ

m2
P

(
m2
ui

m2
φ

)(
1− 4

m2
ui

m2
φ

)
λ1/2

(
1,
m2
ui

m2
φ

,
m2
ui

m2
φ

)
(A.214)
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where once again, i ∈ {1, 2, 3} is the generation index. The decay width to

down-type quarks follows identically starting with Eq. (A.149). The result is

Γφdidi =
3 (λQi + λDi)

2

16π

m3
φ

m2
P

(
m2
di

m2
φ

)(
1− 4

m2
di

m2
φ

)
λ1/2

(
1,
m2
di

m2
φ

,
m2
di

m2
φ

)
. (A.215)

In the massless limit for the u, d, and s quarks, these decay widths vanish.

A.8.11 Modulus decay widths to leptons

We list here the model-independent decay widths into leptons. Starting with

Eq. (A.163), application of Eq. (A.39) gives the decay width to the electron-

generation lepton pairs:

Γφeiei =
(λLi + λEi)

2

16π

m3
φ

m2
P

(
m2
ei

m2
φ

)(
1− 4

m2
ei

m2
φ

)
λ1/2

(
1,
m2
ei

m2
φ

,
m2
ei

m2
φ

)
(A.216)

where, once again, i ∈ {1, 2, 3} is the generation index. The decay width to

neutrino pairs is obtained identically, starting from Eq. (A.164):

Γφνeiνei =
(λLi)

2

16π

m3
φ

m2
P

(
m2
νei

m2
φ

)(
1− 4

m2
νei

m2
φ

)
λ1/2

(
1,
m2
νei

m2
φ

,
m2
νei

m2
φ

)
. (A.217)

In the limit of massless neutrinos, these decay widths vanish.

A.8.12 Modulus decay widths into axions and saxions

We list here the model-independent decay widths into PQ-sector axions and

saxions. Starting with Eq. (A.171), application of Eq. (A.31) leads to the decay
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width to saxion pairs:

Γφss =
λ2

PQ

64π

m3
φ

m2
P

(
1 + 2

m2
s

m2
φ

)2

λ1/2

(
1,
m2
s

m2
φ

,
m2
s

m2
φ

)
. (A.218)

Moving to the decay to axions, we can use Eq. (A.172) - or equivalently, the

modulus-axion interaction terms in Eq. (A.170), in conjunction with Eq. (A.31)

to obtain the decay width to axion pairs:

Γφaa =
λ2

PQ

64π

m3
φ

m2
P

(
1− 2

m2
a

m2
φ

)2

λ1/2

(
1,
m2
a

m2
φ

,
m2
a

m2
φ

)
. (A.219)

A.8.13 Modulus decay width into axinos

We list here the modulus decay widths to pairs of PQ-sector axinos. Starting with

Eq. (A.173), we apply Eq. (A.40) as the axinos are Majorana. This leads to the

decay width:

Γφãã =
λ2

PQ

8π

m3
φ

m2
P

(
m2
ã

m2
φ

)(
1− 4

m2
ã

m2
φ

)
λ1/2

(
1,
m2
ã

m2
φ

,
m2
ã

m2
φ

)
. (A.220)
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Appendix B

The Boltzmann equations

B.1 The Boltzmann equations

We discuss here the relevant Boltzmann equations for our model. Following [286],

the Boltzmann equation may be written simply as

L̂[f ] = C[f ] (B.1)

where L̂ is the Liouville operator and C is the collision operator. In an FRW

universe, the Liouville operator is given by

L̂[f ] = pα
∂f

∂xα
− Γαβγp

βpγ
∂f

∂pα
(B.2)

which reduces to [286]

L̂[f ] = E
∂f(E, t)

∂t
−H|p|2∂f(E, t)

∂E
(B.3)

where, at zeroth-order in an FRW universe, the distribution function f = f(E, t)

is homogeneous and isotropic. From the definitions of the number density, energy
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density, and pressure,

ni ≡ gi

∫
d3p

(2π)3
fi(E, t) (B.4)

ρi ≡ gi

∫
d3p

(2π)3
fi(E, t)E (B.5)

Pi ≡ gi

∫
d3p

(2π)3
fi(E, t)

p2

3E
(B.6)

we recover the Boltzmann equations governing number density

ṅi + 3Hni = gi

∫
d3p

(2π)3

C[fi]

E
(B.7)

and the energy density

ρ̇i + 3H (ρi + Pi) = gi

∫
d3p

(2π)3
C[fi]. (B.8)

We are now ready to discuss the collision operator, C[fi]. In our case of interest,

we are interested in primarily annihilations, decays, and so-called “injections”

(which we will define shortly), so that C[fi] = C[fi]ann + C[fi]dec + C[fi]inj.

Let us focus first on annihilations. We expect that many N -point annihilations

should have taken place in the early universe, with the general reaction schematic

i+j+ · · · ↔ a+b+ . . . . Fortunately for our calculations, the higher the dimension

of the phase space, the more its contribution should be suppressed. We thus make

the approximation of including only interactions that follow the i + j ↔ a + b

schematic. The annihilation collision operator for the number density equation
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then takes the general form

gi

∫
d3pi

(2π)3

C[fi]ann

Ei
= −

∫
dΠidΠjdΠadΠb (2π)4 |M|2

× δ(4)(pi + pj − pa − pb) [fifj − fafb] (B.9)

where we have assumed CP -invariance so that |M|2i+j→a+b = |M|2a+b→i+j. In

addition, we have also assumed Maxwell-Boltzmann statistics for simplicity as we

are typically modeling temperatures well above where quantum statistical effects

take precedence.

Assuming that the decay products, a + b, rapidly (i.e. within a Hubble

time) approach thermal equilibrium with zero chemical potential, the distribution

functions may be related by [286]:

fifj = f if j (B.10)

where f i is the equilibrium distribution function of the species. The annihilation

collision operator for the number density equation then reduces to the standard

form:

gi

∫
d3pi

(2π)3

C[fi]ann

Ei
= −

∑
j

〈σi+j→a+b|v|〉 [ninj − ninj] (B.11)

where, although in many cases we may approximate i = j as the dominant

annihilation mode, we account for more general annihilation possibilities.

We now shift focus to the decay terms for the number density equation. First,

we consider a generic field i which may decay with a total decay width, which
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we denote as Γi. As with annihilations, in general when i decays, we expect a

multitude of N -body decay processes. To simplify our equations, we make the

approximation of considering only two body decays, i.e. Γi→a+b, as three-body

and higher decays will be phase space suppressed. Much like the annihilations,

due to the high energy scale of the thermal bath, the decay process may also

happen in reverse - i.e. we may have the inverse decay process a+ b→ i. It was

shown in [285] that the inverse decay process can be significant in the DFSZ model

- specifically for the axino and saxion - and thus we cannot ignore this effect in

our decay collision terms. Accounting for these inverse decays and making the

approximation that |M|2i→a+b ' |M|2a+b→i ≡ |M|2, the collision operator thus

takes the form

gi

∫
d3p

(2π)3

C[fi]dec

E
= −

∫
dΠidΠadΠb (2π)4 δ(4) (pi − pa − pb) |M|2 [fi − fafb] .

(B.12)

Assuming that the decay products, a+ b, rapidly approach kinetic equilibrium,

we can relate their distribution functions to that of i by

fafb = f i exp ((µa + µb)/T ) = f i
fafb

faf b
(B.13)

where the factor fafb/(faf b) accounts for the decay products having non-zero

chemical potential. When the chemical potential for a and b vanishes, this factor

simply reduces to unity.

We are now in a position to write down the form of the decay collision operator
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in the number density Boltzmann equation:

gi

∫
d3p

(2π)3

C[fi]dec

E
= −Γ′i

[
ni − ni

∑
i→a+b

Bi→a+b
nanb
nanb

]
(B.14)

where we sum over all possible decay channels and Bi→a+b is the branching ratio

for each decay process. There is, however, one final subtlety. In writing down the

Boltzmann equations, we have implicitly specified the comoving frame [286]. The

decay width, Γ′i, must therefore be evaluated in the comoving frame as it is not

Lorentz invariant. We can, however, write instead the transformation

Γ′i =
Erest frame

Ecomoving frame

Γi =
mini
ρi

Γi (B.15)

where Γi is evaluated in the rest frame of i. The factor, mini/ρi, serves as a

relativistic dilation factor and suppresses the decay of highly relativistic particles

in the comoving frame. In the non-relativistic limit, ρi → mini and the relativistic

dilation factor reduces to unity.

Finally, we turn to the injection terms. Some other field, a, may have also

have a non-zero decay width, Γa. When a decays, it may produce i based on

the branching ratio, Ba→i, where this branching ratio is defined to produce at

least one i from the decay of a. As we have alluded to previously, we refer to this

process as an injection, as this process “injects” i into the thermal plasma, and

hence increases the population of i. Finding the collision operator follows nearly

identically to the decay case considered above, except now the decay process is
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a→ i+ b. The collision operator for the number density equation thus takes the

form

gi

∫
d3p

(2π)3

C[fi]inj

E
= +

∑
a

Γ′a

[
Ba→ina − na

∑
a→i+b

Ba→i+b
ninb
ninb

]
(B.16)

where the factor Ba→i accounts for only the decays of a which produce i, while

the factor Ba→i+b accounts for each possible inverse decay i+ b→ a. Once again,

the decay width here is evaluated in the comoving frame. To relate to the decay

width in the rest frame of a, we can again utilize Eq. (B.15) with the replacement

i→ a.

We now turn to the collision operators in the energy density equation for all

three contributions. The procedure is identical, save for the additional factor of

E (evaluated in the comoving frame) in each term. Taking the average energy-

per-particle, 〈Ei〉 = ρi/ni, the annihilation and decay collision operators can be

written down with this simple additional factor. For the injections of the form

a → i + b, we must first relate 〈Ei〉 ∼ 〈Ea〉/2 where 〈Ea〉 is now the average

energy of the parent, a. The additional factor in the injection terms of the energy

density equation is then given by ρa/(2na).

We now have useful forms of equations governing the evolution of number

densities and energy densities in terms of easily calculable equilibrium values,

decay widths, branching fractions, and annihilation cross sections. However, we

must still model the evolution of radiation in order to close the full set of equations.

Here, we choose to model the evolution of radiation as given by the second law of
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thermodynamics [286]:

Ṡ = − 1

T

∑
i

d

dt

(
R3ρi→rad

)
(B.17)

where ρi→rad is the fraction of each i’s energy density that decays to radiation.

Assuming that the pressure is negligible at the time of decay (i.e. the decaying

particle is redshifted sufficiently to be cold - a condition trivially true for coherently

oscillating fields), this reduces to the same form as the Liouville operator in the

energy density Boltzmann equation. Thus, we can simply write down the decay

collision operator multiplied by its branching ratio to radiation. The annihilation

and injection collision operators will not change the entropy in any significant

way here, and hence can be ignored.

At long last, we have all the required pieces to write down the full set of

zeroth-order Boltzmann equations. Rewriting the time derivatives in terms of e-

fold derivatives which we denote with a prime, the Boltzmann equation governing

the number density of the i-th field is given by

H (n′i + 3ni) =
∑
j

(ninj − ninj) 〈σv〉ij

− Γi
mini
ρi

(
ni − ni

∑
i→a+b

Bi→a+b
nanb
nanb

)

+
∑
a

Γa
mana
ρa

(
Ba→ina − na

∑
a→i+b

Ba→i+b
ninb
ninb

)
(B.18)

while the Boltzmann equation governing the energy density of the i-th field is
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given by

H (ρ′i + 3 (ρi + Pi)) =
∑
j

(ninj − ninj) 〈σv〉ij
ρi
ni

− Γimi

(
ni − ni

∑
i→a+b

Bi→a+b
nanb
nanb

)

+
∑
a

Γa
ma

2

(
Ba→ina − na

∑
a→i+b

Ba→i+b
ninb
ninb

)
. (B.19)

The entropy equation is then given by

HS ′ =
R3

T

∑
i

Bi→radΓimi

(
ni − ni

∑
i→a+b

Bi→a+b
nanb
nanb

)
. (B.20)

Finally, we must supplement these with the Friedmann equation,

H2 =
1

3m2
P

ρtotal (B.21)

where ρtotal is the total energy density of the universe. We note that these

reproduce exactly the Boltzmann equations used in [300].

Let us briefly discuss a few details of the above equations. Although we derived

the above equations in some sense of generality, not all terms apply to all of the

fields we want to track. Coherently oscillating fields have the equation-of-state that

is identically that of matter in the non-relativistic limit. The annihilation cross

sections do not apply to these coherently oscillating fields, and the equilibrium

densities and the pressure term also vanish. Furthermore, due to their production

mechanism, injection terms do not apply. We are then left with only the Hubble
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dilution and decay terms for the coherently oscillating fields, with inverse decays

set to 0. In addition, for most particles we wish to track, we assume that the

annihilation cross section is dominated for i = j. However, for the PQ-sector, it

was shown in [299, 298] that the dominant annihilation cross sections is instead

given by processes like ã+ q, ã+ q̃, etc. Thus, we treat j as one of the radiation

degrees-of-freedom when tracking thermally-produced or decay-produced PQ-

sector particles.
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Appendix C

A list of acronyms

Here, we present a list of acronyms for the aid of the reader.

ABDS Agrawal-Barr-Donoghue-Seckel
ADD Arkani-Hamed-Dimopoulos-Dvali
ADMX Axion Dark Matter Experiment
AdS anti-deSitter
ALP axion-like particle
BBN Big Bang Nucleosynthesis
CCB charge-or-color breaking minima
CMB Cosmic Microwave Background
CMP Cosmological Moduli Problem
CO coherently-oscillating
DD direct detection
DFSZ Dine-Fischler-Srednicki-Zhitnitsky
DM dark matter
DP decay-produced
DR dark radiation
dS deSitter
EDM electric dipole moment
EFT effective field theory
EMD early matter dominated period
EWSB electroweak symmetry breaking
FI fibre inflation
FRW Friedmann-Robertson-Walker
GKP Giddings-Kachru-Polchinski
GR general relativity
GSPQ gravity-safe Peccei-Quinn
GUT grand unified theory
ID indirect detection
KK Kaluza-Klein
KKLT Kachru-Kallosh-Linde-Trivedi
KMI Kähler moduli inflation
KSVZ Kim-Shifman-Vainshtein-Zakharov
LHC Large Hadron Collider
LSP lightest supersymmetric particle
LVS Large Volume Scenario
MSSM Minimal Supersymmetric Standard Model
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NS Neveu-Schwarz
NUHM2/NUHM3 2/3 extra parameter non-universal Higgs model
PQ Peccei-Quinn
PQMSSM Peccei-Quinn

+ Minimal Supersymmetric Standard Model
PQWW Peccei-Quinn-Wilczek-Weinberg
QCD quantum chromodynamics
QED quantum electrodynamics
QFT quantum field theory
RNS radiative natural supersymmetry
RR Ramond-Ramond
SM Standard Model
SUSY supersymmetry
TP thermally-produced
UV ultraviolet
VEV vacuum expectation value
WIMP weakly interacting massive particle
ΛCDM Lambda-Cold Dark Matter
φMSSM Modulus + Minimal Supersymmetric Standard Model
φPQMSSM Modulus + Peccei-Quinn

+ Minimal Supersymmetric Standard Model
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Appendix D

Conventions

In this work, we use Einstein summation convention where appropriate. Greek

indices usually denote 4d coordinates (e.g. µ ∈ {0, 1, 2, 3}) where 0 is the time

coordinate. Latin indices usually denote spatial coordinates, with the relevant di-

mension clear from context. Upper-case indices usually denote higher-dimensional

coordinates prior to a decomposition (e.g. M ∈ {0, 1, 2, 3, 4} which decomposes

as µ ∈ {0, 1, 2, 3} in addition to an explicit 5th dimensional coordinate). Where

indices are instead used to denote field-space coordinates (e.g. gi ∂µφ
i∂µφ


), Latin

indices without overlines denote the holomorphic directions while Latin indices

with overlines denote anti-holomorphic directions.

Throughout, we utilize natural units where ~ = c = mP = kB = 1 except for

where these units are explicitly restored for key results.

All Minkowski and Friedmann-Robertson-Walker (FRW) metrics adopt the

mostly-minus signature, (+, −, −, −).
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