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CHAPTER I

INTRODUCTION1

Discrete network optimization contains a wide range of interesting combinatorial problems

such as the traveling salesman problem, the maximum matching problem, the minimum

spanning tree problem, the shortest path problem, and others. Although they usually have

easy definitions, many of them (e.g., the traveling salesman problem) are considered as

hard problems (i.e., no one has found a polynomial-time algorithm for solving them yet).

However, there are practical (but not polynomial-time) algorithms for solving the hard ones

to optimality on real-life instances. These methods include but are not limited to branch-

and-bound (Markowitz and Manne, 1957; Eastman, 1958; Land and Doig, 1960), branch-and-

price (Davidon, 1991; Broyden, 1970; Fletcher, 1970), cutting-plane method (Jünger et al.,

1995), and Lagrangian relaxation (Held and Karp, 1971). Thanks to some of these methods,

large-scale instances of many optimization problems are solvable nowadays (Cook, 2019).

In some of these optimization problems, we observe that any feasible solution induces a

connected subgraph (i.e., there is a path between any two vertices of the induced subgraph).

For example, consider a feasible solution of the minimum spanning tree problem. This

solution corresponds to an induced subgraph that is (i) connected, (ii) contains no cycle, and

(iii) spans all vertices of the graph. In Figure 1.1, the solid edges represent a spanning tree.

Because any feasible solution of such problems (e.g., the minimum spanning tree problem

and the traveling salesman problem) induces a connected subgraph, their corresponding

optimization models must contain some constraints to impose connectivity.

1Some parts of this chapter are based on work with Austin Buchanan (Validi and Buchanan, 2019c)
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Figure 1.1: solid edges represent a spanning tree on the complete graph K4.

1.1 Connectivity Constraints

Connectivity constraints appear in many network optimization problems such as the minimum

spanning tree problem, the minimum Steiner tree problem, the traveling salesman problem,

the minimum connected dominating set problem, the political districting problem, and others.

For some problems (e.g., the districting problem), connectivity constraints are considered to

be challenging to impose well (Ricca and Simeone, 2008; Ricca et al., 2013; Goderbauer and

Winandy, 2018; Swamy et al., 2019b).

In this dissertation, we study connectivity constraints in network optimization problems,

and conduct associated polyhedral studies. For the sake of organization, we provide a

categorization of them. Depending on which decisions need to be made, connectivity

constraints are usually imposed in three spaces: the (i) vertex space, (ii) edge space, and (iii)

vertex-and-edge space. Before discussing these spaces, we provide some basic notations of

this chapter. Let G = (V,E) be a simple graph with vertex set V and edge set E. Also, let

n := |V | and m := |E|. The subgraph induced by a vertex subset V ′ ⊆ V and an edge set

E ′ ⊆ E are denoted by G[V ′] and G[E ′], respectively.

1.1.1 Vertex Space

Consider the county-level map of Oklahoma in Figure 1.2. One can build a corresponding

graph (dual graph) for it as follows: (i) put a vertex in each county, and (ii) draw an edge

2



between any two adjacent vertices (counties). Because Oklahoma has 77 counties and 195

internal common borders between counties, its corresponding dual graph has 77 vertices and

195 edges. Also, if following these instructions for drawing the dual graph, then no pair of

edges will cross each other. This means that the dual graph is planar. We will provide more

details on planar graphs in Chapter IV.

Figure 1.2: the dual graph of Oklahoma at the county level.

Now suppose you are asked to partition the state of Oklahoma into five non-empty

connected subsets of counties. How do you partition it? Note that a subset of counties is

connected if you are able to travel from any county of the subset to another county (in the

same subset) without leaving the subset. Figure 1.3 gives a plan with connected partitions

for Oklahoma at the county level. Connectivity is considered as a “hard constraint”, but

not the only one, in the districting process. We will provide more details on the districting

process and its criteria in Chapter III.

In some network optimization problems (e.g., partitioning the vertices of a graph into

connected subgraphs), the edges are immaterial, and the real decision is to determine which

vertices should be chosen so that the resulting induced subgraph is connected. So, one can

impose connectivity constraints by employing only binary decision variables for choosing

3



Figure 1.3: a contiguous districting plan of Oklahoma at the county level.

vertices. In other words, any feasible solution in a vertex-centric connectivity problem belongs

to the vertex-induced connected subgraph polytope PV (G).

PV (G) := conv.hull
{
xV
′
∣∣∣ G[V ′] is connected

}
.

Here, xV
′ ∈ {0, 1}n represents the characteristic vector of V ′ ⊆ V . Connectivity constraints

in the vertex space arise in the following problems:

• designing “virtual backbones” for wireless sensor networks (Validi and Buchanan, 2019b;

Buchanan et al., 2015; Du and Wan, 2013);

• choosing contiguous pieces of land to create a wildlife preservation (Dilkina and Gomes,

2010; Conrad et al., 2012; Carvajal et al., 2013);

• selecting contiguous census tracts to form a political district (Validi et al., 2020; Swamy

et al., 2019b; Garfinkel and Nemhauser, 1970; Mehrotra et al., 1998);

• searching for clusters in social (Wasserman and Faust, 1994; Moody and White, 2003;

Veremyev and Boginski, 2012) and biological networks (Dittrich et al., 2008; Bailly-

4



Bechet et al., 2011; Backes et al., 2012);

• trying to distinguish an object from the rest of an image (Vijayanarasimhan and

Grauman, 2011; Chen and Grauman, 2012);

• designing aisle space in a high density storage system (Gue, 2006).

In Chapter II of this dissertation, we consider how to impose connectivity for the minimum

latency-constrained connected dominating set problem in the vertex space. We employ a cut-

based formulation to impose connectivity in this space. Although the cut-based formulation

has exponentially many connectivity constraints, we can solve the LP relaxation of the problem

in polynomial time thanks to the classical “optimization = separation” result of Grötschel

et al. (1993). In Chapter III, we propose two formulations for the districting problem: (i) a

new cut-based formulation in the vertex space; and (ii) an extended flow-based formulation

for an existing cut-based formulation (in the vertex space). In Chapter V, we conduct a

polyhedral study of k connected components in the vertex space.

1.1.2 Edge Space

In some combinatorial optimization problems (e.g., see Section 1.1 and Figure 1.1 for the

minimum spanning tree problem), the decision is to determine which edges should be selected

in a connected subgraph. So, one can impose connectivity constraints by employing only

binary decision variables for selecting edges. In other words, any feasible solution in an

edge-centric connectivity problem belongs to the edge-induced connected subgraph polytope

PE(G).

PE(G) := conv.hull
{
yE
′
∣∣∣ G[E ′] is connected

}
.

5



Here, yE
′ ∈ {0, 1}m represents the characteristic vector of E ′ ⊆ E. We can see connectivity

constraints of this type in the following problems:

• designing Steiner and spanning trees (Hwang et al., 1995; Goemans and Myung, 1993;

Polzin and Daneshmand, 2001; Voß, 2006; Validi and Buchanan, 2019a; Williams,

2002a);

• designing survivable networks (Grötschel et al., 1995; Kerivin and Mahjoub, 2005;

Grötschel et al., 1992b,c).

In Chapter IV, we note that how ignoring a rule (root rule) renders the extended formulation

(in the edge space) of Williams (2002a) for finding spanning trees in planar graphs incorrect.

1.1.3 Vertex-and-Edge Space

Transmitting quality signals in a telecommunication network requires an efficient network

design that can minimize the cost of installing regenerators on vertices as well as establishing

new edges. The network design problem with regenerators (NDPR) is defined on an undirected

graph G = (V,E) with commodity set K, where K denotes the set of commodities or

communication pairs. Edges are categorized into two sets: (1) “free” edges denoted by Ef ,

and (2) potential edges, to possibly be added, represented by Ep. In other words, E = Ef ∪Ep.

Since signals can be traversed only through a path of length at most dmax, a regenerator

can be placed on an intermediate vertex v with cost cv to reamplify, reshape, and retime

them. Moreover, a potential edge e also can be added to the network with length of de at

cost of ce to facilitate communications between commodities. The optimization version of

NDPR is defined as follows.

Problem: NDPR.

Input: A graph G = (V,Ep ∪ Ef ), commodity set K, regenerator costs cv and edge costs ce

(which can be zero for free edges).

6



Output: A minimum cost regenerator subset V ∗ ⊆ V of vertices and edge subset E∗p ⊆ Ep

of edges that is feasible for NDPR.

A small NDPR instance and an optimal solution are provided in Figure 1.4. In this

instance, dmax = 4 and K = {{1, 3}, {1, 4}}. The installation cost of each regenerator is

shown as a label outside of each vertex. The potential edges are shown by dashed lines while

the free ones are represented by solid lines. Moreover, the cost of establishing each potential

edge is shown in parentheses after its length. Since free edges have been established before,

they are only labeled by their lengths.

1

4

2

3

3

2

4

2(a)

3(2)

4(3) 4(3)

3 3

4(2)

1

4

2

3

3

2

4

2(b)

Figure 1.4: An instance of NDPR (a); an optimal solution (b).

There are some network optimization problems (e.g., NDPR) in which we make decision

on both vertices and edges. So, one can impose connectivity constraints by employing binary

decision variables for selecting vertices and edges. In other words, any feasible solution in a

vertex-and-edge-centric connectivity problem belongs to the connected subgraph polytope

P (G).

P (G) := conv.hull
{

(xV
′
, yE

′
)
∣∣∣ subgraph (V ′, E ′) ⊆ G is connected

}
.
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Here, xV
′ ∈ {0, 1}n and yE

′ ∈ {0, 1}m represent the characteristic vectors of V ′ ⊆ V and

E ′ ⊆ E, respectively. These types of constraints appear in the following connectivity problems:

• prize-collecting Steiner tree problem (Chopra and Rao, 1994; Ljubić et al., 2006; Leitner

et al., 2018; Rehfeldt et al., 2019);

• network design problems with relays (Leitner et al., 2019; Cabral et al., 2007, 2008).

1.2 Summary of Contributions

In Chapter II, we consider imposing connectivity in wireless networks. Two nodes of a

wireless network may not be able to communicate with each other directly perhaps due to

obstacles or insufficient signal strength. This necessitates the use of intermediate nodes to

relay information. Often, one designates a (preferably small) subset of them to relay these

messages (i.e., to serve as a virtual backbone for the wireless network) which can be seen as

a connected dominating set (CDS) of the associated graph. Ideally, these communication

paths should be short, leading to the notion of a latency-constrained CDS. We point out

several shortcomings of a previously studied formalization of a latency-constrained connected

dominating set and propose an alternative one. We introduce an integer programming

formulation for the problem that has a variable for each node and imposes the latency

constraints via an exponential number of cut-like inequalities. Two nice properties of this

formulation are that: (1) it applies when distances are hop-based and also when they are

weighted; and (2) it easily generalizes to ensure fault tolerance. We provide a branch-and-cut

implementation of this formulation and compare it with a new polynomial-size formulation.

Computational experiments demonstrate the superiority of the cut-like formulation. We also

study related questions from computational complexity such as approximation hardness and

answer an open problem regarding the fault diameter of graphs.

In Chapter III, we study the political districting problem from a combinatorial optimization
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point-of-view. Beginning in the 1960s, techniques from operations research began to be used

to generate political districting maps. A classical example is the integer programming model

of Hess et al. (Operations Research 13(6):998–1006, 1965). Due to the model’s compactness-

seeking objective, it tends to generate contiguous or nearly-contiguous districts, although

none of the model’s constraints explicitly impose contiguity. Consequently, Hess et al. had

to manually adjust their solutions to make them contiguous. Since then, there have been

several attempts to adjust the Hess model and other models so that contiguity is explicitly

ensured. We review two existing models for imposing contiguity, propose two new ones, and

analytically compare them in terms of their strength and size. We conduct an extensive set

of numerical experiments to evaluate their performance. While many believe that contiguity

constraints are particularly difficult to deal with, we find that the problem does not become

harder when contiguity is imposed. In fact, a branch-and-cut implementation of a cut-based

model generates, for the first time, optimally compact districting plans for 21 different US

states at the census tract level (under the compactness objective proposed by Hess et al.).

To encourage future research in this area, and for purposes of transparency, we make our test

instances, source code, and log files publicly available.

In Chapter IV, we consider the minimum spanning tree problem in planar graphs. In the

paper “A linear-size zero-one programming model for the minimum spanning tree problem in

planar graphs” (Networks 39(1):53–60, 2002), Williams introduced an extended formulation

for the spanning tree polytope of a planar graph. This formulation is remarkably small (using

only O(n) variables and constraints) and remarkably strong (defining an integral polytope).

We point out that Williams’ formulation, as originally stated, is incorrect. Specifically,

we construct a binary feasible solution to Williams’ formulation that does not represent a

spanning tree. Fortunately, there is a simple fix, which is to restrict the choice of the root

vertices in the primal and dual spanning trees, whereas Williams explicitly allowed them to

be chosen arbitrarily. The same flaw and fix apply to a subsequent formulation of Williams
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(“A Zero-One Programming Model for Contiguous Land Acquisition.” Geographical Analysis

34(4): 330-349, 2002).

In Chapter V, we conduct a polyhedral study on connectivity constraints for imposing

at most k connected subgraphs. We generalize results of Wang et al. (Math Prog, 166(1-

2):241–271, 2017) that were obtained for the k = 1 case of our problem. Two classes of

inequalities are discussed: (i) separator inequalities, and (ii) indegree inequalities. We identify

when these classes are facet-defining, and when they, along with trivial 0-1 bounds, provide

perfect formulations. While fractional separation problem is solvable in polynomial time

for indegree inequalities, we show that it is NP-hard for sparator inequalities when k ≥ 2.

Also, we provide two extended formulations that are at least as strong as both classes of the

inequalities.

In Chapter VI, we conclude the dissertation and provide potential future research work.
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CHAPTER II

THE OPTIMAL DESIGN OF LOW-LATENCY VIRTUAL BACKBONES1

Two nodes of a wireless network may not be able to communicate with each other directly

perhaps due to obstacles or insufficient signal strength. This necessitates the use of inter-

mediate nodes to relay information. Often, one designates a small subset of them to relay

messages (i.e., to serve as a virtual backbone for the wireless network) which amounts to a

connected dominating set of the associated graph, defined below.

Definition 1 (CDS). A subset D ⊆ V of vertices is a connected dominating set (CDS) for

an undirected graph G = (V,E) if:

1. D is dominating, i.e., every vertex from V \D neighbors a vertex of D; and

2. D is connected, i.e., the subgraph G[D] induced by D is connected.

If the graph G is not complete2, a CDS can equivalently be defined as a subset D ⊆ V of

vertices such that, for every vertex pair {a, b} ∈
(
V
2

)
, there exists a path connecting a and b

whose interior vertices belong to D.

A CDS ensures that the nodes of the network can communicate with each other. It

provides little guarantee on how long it will take for a message to be received once it has been

sent. This has led some researchers to impose additional constraints on the CDS D ⊆ V ,

namely that the subgraph induced by the dominating set D has diameter at most s, i.e., is a

1Reprinted with permission from “The optimal design of low-latency virtual backbones” by H. Validi and
A. Buchanan. To appear at INFORMS Journal on Computing.

2The complete graph is the only exception. In this case, no virtual backbone is needed and yet Definition 1
would disallow the empty set. For this reason, the complete graph is treated “with generous disregard” in the
virtual backbone literature.
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dominating s-club (Li et al., 2007; Zhang et al., 2008; Buchanan et al., 2014). This ensures

that messages will be received in s + 2 hops: one hop to reach the CDS, at most s hops

within the CDS, and one hop to reach the destination.

Definition 2 (Dominating s-club). A subset D ⊆ V of vertices is a dominating s-club for

an undirected graph G = (V,E) if:

1. D is dominating, i.e., every vertex from V \D neighbors a vertex of D; and

2. D is an s-club, i.e., the subgraph G[D] induced by D has diameter at most s.

We argue that this formalization of the problem is less than ideal. First, and most

importantly, a dominating s-club does not quite capture the intent of the hop constraints, as

we will illustrate. Suppose that we want a CDS that facilitates 4-hop communication in the

graph in Figure 2.1. This can be ensured by the dominating 2-club given in Figure 2.1(a).

Indeed, a message sent from node 5 to node 8 through this virtual backbone must follow the

path 5-4-3-6-8, which takes four hops.

1

2 3 4 5

6 7

8 9

(a)

1

2 3 4 5

6 7

8 9

(b)

1

2 3 4 5

6 7

8 9

(c)

Figure 2.1: (a) dominating 2-club; (b) latency-2 CDS; (c) latency-3 CDS.

If 3-hop communication were required, one might search for a dominating 1-club, but

none exist in this graph. This may lead us to believe that a CDS that facilitates 3-hop

communication does not exist, but this belief would be false. Indeed, in Figure 2.1(b) we

provide a CDS which needs at most two hops to transmit information, so we could call it a

latency-2 CDS. Further, Figure 2.1(c) gives a latency-3 CDS which is also a minimum CDS!
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Note that a message can be passed directly from node 8 to node 9 in the wireless network

since they are adjacent; it does not have to be relayed through the CDS nodes.

Another limitation of previous works is that they make the simplifying assumption that

distances are measured by the number of hops, see Li et al. (2007); Zhang et al. (2008);

Buchanan et al. (2014) and Chapter 7 of Du and Wan (2013). However, this may ultimately

provide a poor approximation to the actual end-to-end delay when the delays at the nodes

differ. For example, a particular node may play a central role in the CDS, needing to relay a

large number of messages. This may cause messages to have to wait to be transmitted, and

these queueing delays may be more realistically captured for our purposes via node-weighted

delays as opposed to hop-based delays. For more information about this and other delays in

wireless networks, consult Xie and Haenggi (2009) and Zhong et al. (2017).

With these shortcomings in mind, we propose a new formalization of a low-latency virtual

backbone, which we call a latency-s CDS. For purposes of generality, it is defined in terms of

a directed and—without loss of generality—edge-weighted graph. By allowing for directed

edges, we can model non-uniform transmission ranges. For example, consider the case where

a node i has a large transmission range and is far away from a node j that has a small

transmission range. In this scenario, the edge (i, j) should exist, but not the edge (j, i). Note

that, as we make the transition to directed graphs, we are no longer referring to a “CDS” in

the sense of Definition 1, but rather in terms of a strongly connected dominating set in the

sense of Li et al. (2009). This is defined as a subset D of vertices such that: (i) D induces a

strongly connected subgraph; and (ii) every vertex from V \D has both an in-neighbor and

an out-neighbor in D.

Definition 3 (latency-s CDS). A vertex subset D ⊆ V is a latency-s CDS for a directed

graph G = (V,E) under edge weights w : E → R+ if, for every vertex pair (a, b) ∈ V × V ,

there is a path from a to b of length at most s whose interior vertices belong to D.
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Observe that the graph G in Definition 3 is edge-weighted but not vertex-weighted. This

is without loss of generality, as the following will illustrate. Consider the 3-vertex, undirected

path graph 1-2-3 representing a wireless network. Sending a message from node 1 to node

3 would incur delays at nodes 1 and 2 (since the delay is based on the transmitting node),

as well as delays on edges {1, 2} and {2, 3}, for an end-to-end delay that might be denoted

d1 + d2 + d{1,2} + d{2,3}. Instead, we can replace each undirected edge {i, j} by its directed

counterparts (i, j) and (j, i) and let the delay of each directed edge d(i,j) be the delay of its

undirected counterpart d{i,j} plus the delay of its tail node di. In this way, it is sufficient to

consider a directed graph with only edge weights.

Definition 3 overcomes the aforementioned issues with the previous formalization based

on dominating s-clubs. As an added bonus, it has superior computational properties. Indeed,

checking whether a graph admits a latency-s CDS is as simple as checking whether the

graph’s diameter is at most s. In contrast, the problem of checking whether there exists any

dominating s-club is NP-complete; specifically, this is true under hop-based distances for

the two most restrictive (but nontrivial) cases where s = diam(G)− 2 (Schaudt, 2013) and

s = diam(G)− 1 (Buchanan et al., 2014), where diam denotes the graph’s diameter.

The associated optimization problem is as follows.

Problem: The minimum latency-s CDS problem.

Input: A directed graph G = (V,E), a weight we ≥ 0 for each edge e ∈ E, and a number s.

Output: (if any exist) A smallest subset D ⊆ V of vertices that is a latency-s CDS.

In this chapter, we propose an integer programming (IP) formulation for this problem

that uses an exponential number of cut-like inequalities. As we will see, a relatively simple

implementation of it significantly outperforms a polynomial-size formulation that we introduce.

This second formulation has O(sn2) variables and O(snm) constraints and applies when the

distances are hop-based, where n and m denote the number of vertices and edges, respectively.
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In contrast, the cut-like formulation applies when there are weighted delays.

Previous Work

The minimum CDS problem is a well-studied NP-hard problem (Garey and Johnson, 1979) in

which the task is to find a CDS of minimum cardinality. For example, Figure 2.2(a) provides

a CDS and Figure 2.2(b) provides a minimum CDS. The reader is encouraged to consult

the book by Du and Wan (2013) for motivating applications, approximation algorithms,

and hardness results. There are a number of IP formulations and implementations for the

minimum CDS problem and for the equivalent maximum-leaf spanning tree problem (Lucena

et al., 2010; Simonetti et al., 2011; Morgan and Grout, 2008; Fan and Watson, 2012; Fujie,

2004; Gendron et al., 2014; Buchanan et al., 2015). See also the literature on the regenerator

location problem (Chen et al., 2010, 2015; Li and Aneja, 2017). To our knowledge, the state-

of-the-art IP formulation and implementation are due to Fujie (2004) and Buchanan et al.

(2015), respectively, although several of the previously mentioned approaches work well. As

far as we know, the only previous work to propose an IP formulation for a latency-constrained

variant of the CDS problem is by Buchanan et al. (2014); however, it is for dominating

s-clubs.
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(a)
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(b)
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6 7

8 9

(c)

Figure 2.2: (a) CDS; (b) minimum CDS; (c) 2-connected 2-dominating set.

Assuming the input graph is not complete, the minimum CDS problem can be formulated

as an IP as follows, where xi is a binary variable representing the decision to include vertex
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i in the CDS. A vertex cut is a subset C ⊂ V of vertices such that G − C := G[V \ C] is

disconnected and nontrivial (i.e., has at least two nodes).

min
∑
i∈V

xi (2.1)

∑
i∈C

xi ≥ 1, ∀ vertex cut C ⊂ V (2.2)

xi ∈ {0, 1}, ∀i ∈ V. (2.3)

This particularly elegant formulation is essentially due to Fujie (2004), and its linear

programming relaxation can be solved in polynomial time despite having exponentially many

constraints, as the separation problem for the vertex cut constraints (2.2) can be solved in

polynomial time. The implementation of Buchanan et al. (2015) used this formulation to

solve 42 of 47 standard test instances each in under 10 seconds (and never taking longer

than 500 seconds), whereas no earlier approach solved 42 instances each in a 1-hour time

limit. In their implementation, Buchanan et al. (2015) add violated vertex cut inequalities

on-the-fly, cutting off infeasible integer points. Our proposed formulation in this chapter,

which generalizes Fujie’s formulation, is implemented in the same manner.

One drawback of a CDS is that it can be vulnerable to node or arc failures. For example,

consider the minimum CDS from Figure 2.2(b). If node 3 fails, this renders the virtual

backbone inoperative as it no longer can relay information (say, from node 5 to node 8).

This motivates the notion of a fault-tolerant CDS—one that remains a CDS when fewer

than k nodes fail. This has been called a k-connected k-dominating set (k-k-CDS) as it can

equivalently be defined as a subset S ⊆ V of vertices such that G[S] is k-vertex-connected

and every vertex of V \S has k neighbors in S. Figure 2.2(c) gives a 2-2-CDS, which remains

a CDS if one vertex fails. The associated optimization problem, the minimum k-k-CDS
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problem, admits the following formulation (Buchanan et al., 2015; Ahn and Park, 2015).

min
∑
i∈V

xi (2.4)

∑
i∈C

xi ≥ k, ∀ vertex cut C ⊂ V (2.5)

xi ∈ {0, 1}, ∀i ∈ V. (2.6)

The formulations that we propose in this chapter generalize this k-k-CDS formulation as well

as Fujie’s CDS formulation.

Notation and Terminology

From now on, unless stated otherwise, G = (V,E) will be a directed graph, with vertex set

V and edge set E ⊂ V × V , that has no loops and no parallel edges. By “no parallel edges”,

we mean that there is at most one directed edge from a vertex i to a vertex j, and so we

can refer to it by the notation (i, j). Here, i is called the tail and j is the head. Frequently,

we bidirect an undirected edge, which we define to be the operation in which an undirected

edge {i, j} is replaced by its directed counterparts (i, j) and (j, i). When the edges of G are

reciprocated, i.e., if (i, j) ∈ E implies (j, i) ∈ E, then we say that G is bidirected—not to

be confused with the bidirected graphs of Edmonds and Johnson (1970), see also Schrijver

(2003).

For each edge e ∈ E of G, there is an associated nonnegative weight we representing the

delay. In the hop-based case, each weight is one. The distance from vertex a to vertex b in

graph G, denoted distG(a, b), is the length of a shortest path from a to b in G, edge-weighted

by w. Convention states that if there is no path from a to b in G, then distG(a, b) = ∞.

The diameter of G, denoted diam(G), is the maximum of these pair-wise distances, i.e.,

diam(G) := max{distG(a, b) | a, b ∈ V }.
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The out-neighborhood and in-neighborhood of a vertex v ∈ V in G are denoted N+
G (v) :=

{w ∈ V | (v, w) ∈ E} and N−(v) := {u ∈ V | (u, v) ∈ E}, respectively. For a vertex subset

S, δ+G(S) denotes the subset of edges whose tail belongs to S and whose head does not.

Similarly, δ−G(S) denotes the subset of edges whose head belongs to S but whose tail does

not. For a singleton S = {v}, let δ+G(v) := δ+G({v}) and δ−G(v) := δ−G({v}). When the graph

G in question is clear, the subscripts G in N+
G (·), N−G (·), δ+G(·), and δ−G(·) are omitted. The

subset of edges having both endpoints in S ⊆ V is denoted E(S) := {(i, j) ∈ E | i, j ∈ S}.

Our Contributions

In Section 2.1, we examine the complexity of latency-s CDS’s. Specifically, we answer

questions like: How quickly can one verify that a given subset of vertices is a latency-s CDS?

And, how hard is the minimum latency-s CDS problem?

In Section 2.2, we propose IP formulations for the minimum latency-s CDS problem. The

first formulation, which we call CUT, has n binary variables and an exponential number of

cut-like constraints. We then generalize this formulation so that it models the fault-tolerant

variant in which one seeks a latency-s CDS that maintains feasibility after a small number of

vertex failures. Then, we give a second IP formulation, which we call POLY, that has O(sn2)

variables and O(snm) constraints. It serves as a baseline for computational comparisons.

In Section 2.3, we examine the complexity of the separation problem associated with

formulation CUT. Specifically, we show that, under hop-based distances, it is polynomial-time

solvable for s ∈ {2, 3, 4} and NP-hard when s ≥ 5. En route to proving this, we answer an

open question of Xu et al. (2005), by showing that it is indeed NP-hard to compute a graph’s

fault diameter.

In Section 2.4, we perform computational experiments. Our results demonstrate that a

branch-and-cut implementation of formulation CUT significantly outperforms the polynomial-

size formulation POLY. Notably, CUT makes easy work of a real-life instance with 300 nodes,

18



while formulation POLY struggles to solve instances with 50 nodes in an hour.

2.1 The Complexity of Latency-s CDS

In this section, we examine the complexity of latency-s CDS’s. First, we pinpoint the

complexity of verifying feasible solutions, showing essentially that a quadratic running

time is unavoidable under a plausible complexity assumption. Then, we establish the

inapproximability of the minimum latency-s CDS problem.

2.1.1 The Complexity of Verifying Feasible Solutions

To verify that a given subset D ⊆ V of vertices is a latency-s CDS, we can compute, for each

vertex v ∈ V , the shortest paths from v to all other nodes t ∈ V \ {v} and check that these

paths are short enough. However, we are not interested in just any paths from v to t; these

paths must not cross vertices from V \D. In our proposed approach, we solve an instance of

the single source shortest path problem (SSSP) in the subgraph
−→
GD
v = (V,

−→
ED
v ), which has

edge set

−→
ED
v := E(D) ∪ δ+(D) ∪

(
δ+(v) ∩ δ−(D)

)
. (2.7)

Here, we preserve the edges E(D) that have both endpoints in D, those edges δ+(D) that

point out of D, and those edges δ+(v) ∩ δ−(D) whose tail is v and whose head is in D. This

set
−→
ED
v includes all edges that might be used in a suitable path from v to another node. Of

course, we need not create the graph
−→
GD
v in the implementation, as nearly any shortest path

algorithm can be reconfigured to work implicitly on
−→
GD
v when given G, D, and v.

IsLatencyConstrainedCDS(G, D, s):

1. for each v ∈ V do
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(a) compute shortest paths from v in
−→
GD
v ;

(b) if dist−→
GD
v

(v, t) > s for some t ∈ V \ {v}, then return “no”;

2. return “yes”.

Proposition 1. The algorithm IsLatencyConstrainedCDS correctly determines whether

a given subset D ⊆ V of vertices is a latency-s CDS for a directed graph G = (V,E):

• in O(mn+ n2 log log n) time and linear space under nonnegative edge weights;

• in O(mn) time and linear space in the hop-based case.

Here, we are using the algorithm of Thorup (2004) to compute SSSP in time O(m +

n log log n) in the nonnegative weights case, and BFS to solve SSSP in the hop-based case.

Given that this or some other verification procedure will be called repeatedly in our

implementation, it is important that it runs as quickly as possible. For example, we would like

to know: is there a different verification procedure that, say, runs in linear time O(m+ n)?

Unfortunately, under a complexity assumption called the strong exponential time hypothesis

(SETH) of Impagliazzo et al. (2001) and Impagliazzo and Paturi (2001), this is not possible.

SETH is an unproven complexity assumption that is stronger than P 6=NP. While it is unproven

and some doubt that it is true, it is nevertheless a benchmark for gauging how surprising or

noteworthy a faster algorithm would be. The reader is referred to the survey of Lokshtanov

et al. (2013) for more information about SETH. To prove our results, we use the following

theorem of Roditty and Vassilevska Williams (2013).

Theorem 1. If SETH holds, then for every ε > 0 there is no algorithm for verifying that a

simple, connected graph G = (V,E) has diam(G) = 2 that runs in time O(m2−ε).

Proposition 2. If SETH holds, then for every ε > 0 there exists no algorithm for verifying

that a subset D of vertices is a latency-s CDS that runs in time O(m2−ε), even in the simplest

nontrivial case of hop-based distances and s = 2.
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Proof. The proof follows by reduction from the problem in Theorem 1. Namely, bidirect the

edges of the graph to get
←→
G = (V,

←→
E ) and let s = 2, D = V , and we = 1 for each e ∈

←→
E . It

can be observed that D is a latency-s CDS for
←→
G if and only if G has diam(G) = 2, and

this reduction runs in linear time, so the proposition follows.

A similar negative result shows a difficulty that would be encountered when applying

local search to the minimum latency-s CDS problem. In the following proposition, we refer

to the local search move in which one is given a known-to-be-feasible solution D ⊆ V along

with a vertex v ∈ D, and the task is to determine whether one can move to D \ {v} and

maintain feasibility.

Proposition 3. If SETH holds, then for every ε > 0 there exists no algorithm for the local

search move defined above that runs in time O(m2−ε), even in the simplest nontrivial case of

hop-based distances and s = 2.

Proof. The proof follows by reduction from the problem in Theorem 1, where we assume,

without loss, that G is not complete and thus diam(G) ≥ 2. Add a new node v to the graph

G = (V,E) and connect it to all other nodes. Call this new graph G′ = (V ′, E ′), where

V ′ = V ∪ {v} and E ′ = E ∪ {{u, v} | u ∈ V }. Bidirect all edges of G′ to get
←→
G ′ = (V ′,

←→
E ′).

Let s = 2 and D = V ′ and we = 1 for each e ∈
←→
E ′. Since v is an in-neighbor and an

out-neighbor of all other nodes in
←→
G ′ and since v ∈ D, it is clear that D is a latency-s CDS

for
←→
G ′. It can be observed that D \ {v} is a latency-s CDS for

←→
G ′ if and only if G has

diam(G) = 2, and this reduction runs in linear time, so the proposition follows.

2.1.2 The Inapproximability of the Minimum Latency-s CDS Problem

We provide a hardness result for approximating the size of a minimum latency-s CDS. It is

based on the hardness result of Dinur and Steurer (2014) which states that approximating

the minimum hitting set problem to within a factor of (1− ε) lnh is NP-hard for every ε > 0,
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where h refers to the number of subsets to hit, cf. Raz and Safra (1997); Alon et al. (2006);

Moshkovitz (2012). Also, see similar hardness results based on the stronger assumption that

NP does not have quasipolynomial-time algorithms (Lund and Yannakakis, 1994; Feige, 1998).

Note that |U | = O(hc) for some constant c in Dinur and Steurer’s result.

Problem: The minimum hitting set problem.

Input: a family F1, . . . , Fh ⊆ U of subsets of U .

Output: A minimum cardinality subset D ⊆ U such that |D ∩Fi| ≥ 1 for every i = 1, . . . , h.

Theorem 2. There is a polynomial-time algorithm, when given an instance ((F1, . . . , Fh), U)

of the minimum hitting set problem, that creates an instance (G = (V,E), w, s) of the minimum

latency-s CDS problem that satisfies:

• |V | = 4 + h+ |U | and s = 2 = diam(G) and we = 1 for each e ∈ E;

• there exists a k-hitting set if and only if there exists a (k + 2)-vertex latency-s CDS.

Proof. Let V = {r, a, b, c}∪T ∪U , where T = {t1, . . . , th}. Thus, |V | = 4+h+ |U |. Construct

E by bidirecting the following edges. Connect r to every vertex of U ∪ {a}. Connect a to

every vertex of U . Connect b to every vertex of T ∪ U . Make {a, b, c} a triangle. Finally, for

each Fi in the hitting set instance, connect ti to every vertex v ∈ Fi ⊆ U .

( =⇒ ) Suppose that D ⊆ U is a hitting set of size k. It can be verified that D∪{a, b} is a

latency-2 CDS for G, i.e., that for every ordered pair of nodes (i, j) with i 6= j and (i, j) /∈ E,

there is a node v ∈ D ∪ {a, b} such that (i, v) and (v, j) are edges in E.

( ⇐= ) Now, suppose that D ⊆ V is a latency-2 CDS of size k + 2. We argue that

D ∩ U is a hitting set of size at most k. Observe that there is no edge (c, r) and so to

ensure 2-hop communication from c to r, D must contain a vertex from N+(c) ∩N−(r), and

N+(c) ∩N−(r) = {a} so a ∈ D. Similarly, (c, t1) is not an edge and N+(c) ∩N−(t1) = {b}

so b ∈ D. This shows that |D ∩ U | ≤ |D| − 2 = k. Now we show that D ∩ U is a hitting set.
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Recall that, for each i = 1, . . . , h, the edge (r, ti) does not exist. So, since D is a latency-2

CDS, at least one vertex from N+(r) ∩N−(ti) = Fi ⊆ U must belong to D. Thus, D ∩ U is

a hitting set of size at most k.

Corollary 1 (Inapproximability). There is a constant α > 0 such that it is NP-hard to

approximate the minimum latency-2 CDS problem to within a factor of α lnn, where n refers

to the number of vertices, even under bidirected edges and hop-based distances.

Proof. This follows by Theorem 2 and the inapproximability of hitting set (Raz and Safra,

1997; Alon et al., 2006; Moshkovitz, 2012; Dinur and Steurer, 2014).

2.2 Integer Programming Formulations

In what follows, we propose two IP formulations for the minimum latency-s CDS problem:

CUT and POLY.

2.2.1 Formulation CUT

Here we propose the formulation called CUT. It has n binary variables and an exponential

number of constraints—one for each (minimal) length-s vertex cut.

Definition 4 (length-s vertex cut). A subset C ⊆ V of vertices is a length-s vertex cut of a

directed, edge-weighted graph G = (V,E) if diam(G− C) > s.

The correctness of formulation CUT is a consequence of the following characterization.

Proposition 4 (Characterization of latency-s CDS). A subset D ⊆ V of vertices is a

latency-s CDS for G if and only if |D ∩ C| ≥ 1 for every length-s vertex cut C ⊂ V .

Proof. ( =⇒ ) Assume that D ⊆ V is a latency-s CDS and suppose, for sake of contradiction,

that C ⊂ V is a length-s vertex cut with |D ∩ C| = 0. By definition of length-s vertex

cut, diam(G− C) > s, i.e., there exist vertices a, b ∈ V \ C such that distG−C(a, b) > s. By
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assumption that D is a latency-s CDS, there is an a-b path of length at most s whose interior

vertices belong solely to D, i.e., distG[D∪{a,b}](a, b) ≤ s. Since D ∪ {a, b} ⊆ V \ C we have

distG[V \C](a, b) ≤ distG[D∪{a,b}](a, b) which results in the following contradiction:

s < distG−C(a, b) , distG[V \C](a, b) ≤ distG[D∪{a,b}](a, b) ≤ s.

( ⇐= ) By the contrapositive. Suppose that D ⊆ V is not a latency-s CDS, i.e., there

exist vertices a, b ∈ V such that there is no a-b path of length at most s whose interior

vertices belong to D, i.e., distG[D∪{a,b}](a, b) > s. This implies that diam(G[D ∪ {a, b}]) > s,

and so C := V \ (D ∪ {a, b}) is a length-s vertex cut. Moreover, |D ∩ C| = 0, as desired.

Proposition 4 immediately implies the correctness of the formulation CUT:

min
∑
i∈V

xi (2.8)

∑
i∈C

xi ≥ 1, ∀ length-s vertex cut C ⊂ V (2.9)

xi ∈ {0, 1}, ∀i ∈ V. (2.10)

In general, there can be exponentially many of the constraints (2.9), even if we restrict

ourselves to inclusion-minimal length-s vertex cuts. This formulation generalizes the CDS

formulation based on vertex cuts that is essentially due to Fujie (2004). We address the

separation complexity for constraints (2.9) in Section 2.3.

Not every valid inequality of the form
∑

i∈C xi ≥ 1 is a length-s vertex cut inequality. For

example,
∑

i∈V \{v} xi ≥ 1 is valid when G = (V,E) is the bidirected 4-cycle, but V \{v} is not

a length-s vertex cut. However, the following shows that the length-s vertex cut inequalities

are the only meaningful valid inequalities of this type.

Lemma 1. Let C ⊂ V . The inequality |S ∩ C| ≥ 1 holds for every latency-s CDS S ⊆ V if
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and only if C is a superset of some length-s vertex cut C ′.

Proof. The ‘if’ direction follows easily by Proposition 4, so suppose that |S ∩ C| ≥ 1 holds

for every latency-s CDS S ⊆ V . Let D = V \ C. By our assumption, D cannot be

a latency-s CDS, i.e., there exist vertices a, b ∈ V such that distG[D∪{a,b}](a, b) > s. So,

s < diam(G[D∪{a, b}]) = diam(G−C ′), where C ′ = V \ (D∪{a, b}). Thus, C ′ is a length-s

vertex cut for G, and C ⊇ C ′, as desired.

Given that the minimum latency-s CDS problem admits the formulation CUT (and by

Lemma 1), there are immediate polyhedral consequences (cf. Sassano (1989)), so we provide

the following proposition without proof.

Proposition 5 (Basic polyhedral analysis). The convex hull of (characteristic vectors of)

latency-s CDS’s is full-dimensional if and only if every length-s vertex cut has size at least

two. Further, if it is full-dimensional, then

1. for each v ∈ V ,

(a) xv ≤ 1 induces a facet;

(b) xv ≥ 0 induces a facet if and only if v does not belong to a length-s vertex cut of

size two.

2. for C ⊂ V , the inequality
∑

i∈C xi ≥ 1 induces a facet if and only if

(a) C is a minimal length-s vertex cut, and

(b) for each v ∈ V \ C there exists c ∈ C such that (V \ C) ∪ {c} \ {v} is a latency-s

CDS.

2.2.2 Generalizing the Formulation CUT for Fault-Tolerance

Here, we consider the robust or fault-tolerant variant of a latency-s CDS. That is, we are

interested in a vertex subset that remains a latency-s CDS when few vertices fail.
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Definition 5. A subset D ⊆ V of vertices is an r-robust latency-s CDS for graph G if, for

every F ⊆ D with |F | < r, the vertex subset D \ F is a latency-s CDS for G.

A consequence of Proposition 4 is the following characterization.

Corollary 2 (Characterization of r-robust latency-s CDS). A subset D ⊆ V of vertices is

an r-robust latency-s CDS if and only if |D ∩ C| ≥ r for every length-s vertex cut C ⊂ V .

Corollary 2 immediately implies the correctness of the following formulation for the

minimum r-robust latency-s CDS problem:

min
∑
i∈V

xi (2.11)

∑
i∈C

xi ≥ r, ∀ length-s vertex cut C ⊂ V (2.12)

xi ∈ {0, 1}, ∀i ∈ V. (2.13)

This formulation generalizes previously existing formulations for the minimum k-k-CDS

problem (Ahn and Park, 2015; Buchanan et al., 2015).

Figure 2.1(b) gives a feasible solution to this problem when (s, r) = (3, 2) (using hop-

based distances and treating the undirected edges as bidirected edges). That is, the gray

vertices remain a latency-3 CDS when one of them fails. This is also an optimal solution for

(s, r) = (2, 1). However, there is no solution for (s, r) = (2, 2), as evidenced by the length-2

vertex cut C = {5}. Indeed, this implies that the inequality x5 ≥ 2 is valid, but of course no

binary vector x can satisfy this constraint.

We remark that our formalization of a fault-tolerant low-latency virtual backbone might

not provide for r vertex-disjoint paths of length at most s (of CDS vertices) between every

pair of vertices. An example is given in Figure 2.3, treating the undirected edges as bidirected

edges. This should not be surprising given that there is, in general, no “Menger’s theorem”

for length-bounded paths, cf. Lovász et al. (1978).
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a b

Figure 2.3: A CDS that maintains 5-hop communication paths when any one vertex fails,
but that does not have a pair of vertex-disjoint length-5 a-b paths. Observe that this is a
unit disk graph.

2.2.3 Formulation POLY

Here we propose the formulation called POLY. It is introduced primarily for comparison

purposes and is inspired by a formulation for s-clubs given by Veremyev and Boginski (2012).

It applies to hop-based case.

As before, the binary variable xi represents the decision to include vertex i in the latency-s

CDS. The binary variable ytij equals one if and only if there exists a directed path in G from

i to j of length exactly t whose interior vertices belong to the chosen CDS. This variable is

only defined when t ≥ 2 and should not be confused with yij raised to the t-th power. To

formulate our problem, we should write constraints that impose the following condition:

ytik = 1 ⇐⇒
(
there exists j ∈ N−(k) such that yt−1ij = 1 and xj = 1

)
.

In words, there is a path (across CDS nodes) from i to k of length t if and only if (i) there is

a path (across CDS nodes) of length t− 1 from i to some in-neighbor j of node k, and (ii)

node j belongs to the CDS. When t ≥ 3, this equivalence can be formulated as follows.

(⇐= ) yt−1ij + xj ≤ ytik + 1 ∀j ∈ N−(k)

( =⇒ ) ytik ≤
∑

j∈N−(k)

yt−1ij xj.
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The second implication is enforced via a constraint that has products of binary variables.

For linearization purposes, introduce (binary) variables zt−1ij to replace the terms yt−1ij xj. To

impose that zt−1ij = yt−1ij xj, use the usual linear constraints:

zt−1ij ≤ yt−1ij

zt−1ij ≤ xj

yt−1ij + xj ≤ zt−1ij + 1.

These ideas lead to the following formulation, where the special case t = 2 is handled via

constraints (2.15) and (2.16). Let T≥3 := {3, . . . , s} and N−[j] := N−(j) ∪ {j}.
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min
∑
i∈V

xi (2.14)

xj ≤ y2ik j ∈ N+(i) ∩N−(k), i ∈ V \ {k}, k ∈ V (2.15)

y2ik ≤
∑

j∈N+(i)∩N−(k)

xj i ∈ V \ {k}, k ∈ V (2.16)

yt−1ij + xj ≤ ytik + 1 i ∈ V \ {j, k}, (j, k) ∈ E, t ∈ T≥3 (2.17)

ytik ≤
∑

j∈N−(k)

zt−1ij i ∈ V \ {k}, k ∈ V, t ∈ T≥3 (2.18)

zt−1ij ≤ yt−1ij i ∈ V \ {j}, j ∈ V, t ∈ T≥3 (2.19)

zt−1ij ≤ xj i ∈ V \ {j}, j ∈ V, t ∈ T≥3 (2.20)

yt−1ij + xj ≤ zt−1ij + 1 i ∈ V \ {j}, j ∈ V, t ∈ T≥3 (2.21)

s∑
t=2

ytij ≥ 1 i ∈ V \N−[j], j ∈ V (2.22)

xi ∈ {0, 1} i ∈ V (2.23)

ytij ∈ {0, 1} i ∈ V \ {j}, j ∈ V, t ∈ {2, . . . , s} (2.24)

ztij ∈ {0, 1} i ∈ V \ {j}, j ∈ V, t ∈ {2, . . . , s− 1}. (2.25)

The constraints (2.22) ensure that there is a path of length at most s (across CDS vertices)

from i to j when (i, j) /∈ E. So, by the ideas presented above, it is straightforward to prove

the following.

Theorem 3. Under hop-based distances, the above is a correct formulation for the minimum

latency-s CDS problem and has Θ(sn2) variables, Θ(snm) constraints, and Θ(snm) nonzeros.

Since modern MIP solvers use sparse matrix representation, this formulation’s size in

computer memory can be approximated by the number Θ(snm) of nonzeros. This is much

less than the quantity obtained by multiplying the number of variables by the number of
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constraints.

Not all of these variables and constraints may be necessary. For example, if G is bidirected,

we can assume that ytij = ytji. If desired, the user can impose these constraints ytij = ytji when

implementing the formulation, and the MIP solver will perform the appropriate substitutions

in its presolve phase.

Based on our computational experiments, it is possible that formulation POLY is weaker

than CUT, although we could not find a proof. Figure 2.4 shows that POLY cannot be

stronger than CUT. We were unable to prove/disprove that CUT is stronger than POLY.

1
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0

3

0.25

4

0.25

5

0.25

Figure 2: A graph with nodes numbered {1, 2, 3, 4, 5} and values for x∗ given by the nodes.
When the edges shown are treated as bidirected and unit-weighted, this vector x∗ is infeasible
for formulation CUT (for every s), since the length-s vertex cut inequality for C = {3, 4}
is violated. However, there exist values y∗ and z∗ for which (x∗, y∗, z∗) satisfies formulation
POLY when s = 3. Indeed, these values for x∗ are optimal for POLY’s LP relaxation. See
the solve logs below which we obtained via Gurobi.

9

Figure 2.4: A graph with nodes numbered {1, 2, 3, 4, 5} and values for x∗ given by the nodes.
When the edges shown are treated as bidirected and unit-weighted, this vector x∗ is infeasible
for formulation CUT (for every s), since the length-s vertex cut inequality for C = {3, 4}
is violated. However, there exist values y∗ and z∗ for which (x∗, y∗, z∗) satisfies formulation
POLY when s = 3. Indeed, these values for x∗ are optimal for POLY’s LP relaxation. The
solve logs, obtained via Gurobi, are below.

Optimize a model with 230 rows, 80 columns and 590 nonzeros

Coefficient statistics:

Matrix range [1e+00, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [1e+00, 1e+00]
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Presolve removed 131 rows and 45 columns

Presolve time: 0.00s

Presolved: 99 rows, 35 columns, 241 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 0.0000000e+00 2.000000e+00 0.000000e+00 0s

20 5.0000000e-01 0.000000e+00 0.000000e+00 0s

Solved in 20 iterations and 0.00 seconds

Optimal objective 5.000000000e-01

X_1 = 0

X_2 = 0

X_3 = 0.25

X_4 = 0.25

X_5 = 0

Y_{1,2}^2 = 0.25

Y_{1,3}^2 = 0.25

Y_{1,4}^2 = 0.25

Y_{1,5}^2 = 0.5

Y_{2,1}^2 = 0.25

Y_{2,3}^2 = 0.25

Y_{2,4}^2 = 0.25

Y_{2,5}^2 = 0.5

Y_{3,1}^2 = 0.25

Y_{3,2}^2 = 0.25

Y_{3,4}^2 = 0

Y_{3,5}^2 = 0.25
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Y_{4,1}^2 = 0.25

Y_{4,2}^2 = 0.25

Y_{4,3}^2 = 0

Y_{4,5}^2 = 0.25

Y_{5,1}^2 = 0.5

Y_{5,2}^2 = 0.5

Y_{5,3}^2 = 0.25

Y_{5,4}^2 = 0.25

Y_{1,2}^3 = 0

Y_{1,3}^3 = 0

Y_{1,4}^3 = 0

Y_{1,5}^3 = 0.5

Y_{2,1}^3 = 0

Y_{2,3}^3 = 0

Y_{2,4}^3 = 0

Y_{2,5}^3 = 0.5

Y_{3,1}^3 = 0

Y_{3,2}^3 = 0

Y_{3,4}^3 = 0

Y_{3,5}^3 = 0

Y_{4,1}^3 = 0

Y_{4,2}^3 = 0

Y_{4,3}^3 = 0

Y_{4,5}^3 = 0

Y_{5,1}^3 = 0.5

Y_{5,2}^3 = 0.5
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Y_{5,3}^3 = 0

Y_{5,4}^3 = 0

Z_{1,2}^2 = 0

Z_{1,3}^2 = 0

Z_{1,4}^2 = 0

Z_{1,5}^2 = 0

Z_{2,1}^2 = 0

Z_{2,3}^2 = 0

Z_{2,4}^2 = 0

Z_{2,5}^2 = 0

Z_{3,1}^2 = 0.25

Z_{3,2}^2 = 0.25

Z_{3,4}^2 = 0

Z_{3,5}^2 = 0.25

Z_{4,1}^2 = 0.25

Z_{4,2}^2 = 0.25

Z_{4,3}^2 = 0

Z_{4,5}^2 = 0.25

Z_{5,1}^2 = 0

Z_{5,2}^2 = 0

Z_{5,3}^2 = 0

Z_{5,4}^2 = 0

2.3 The Complexity of the Formulations

In this section, we determine the separation complexity for the constraints defining formulation

CUT and its fault-tolerant generalization. On the way, we answer an open question of Xu
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et al. (2005) regarding the complexity of computing a graph’s fault diameter.

2.3.1 Computing the Fault Diameter of Graphs

As a helpful first step to determining the separation complexity, we show that a related

problem, which we call Diameter Interdiction by Node Deletion, is NP-complete.

Problem: Diameter Interdiction by Node Deletion.

Input: a simple graph G = (V,E) and integers q and L.

Question: Is there a subset C ⊂ V of q vertices such that diam(G− C) > L?

This problem is defined for an undirected and unweighted graph G, and the diameter

that is referred to is hop-based.

Theorem 4. For each L ≥ 5, Diameter Interdiction by Node Deletion is NP-

complete.

To prove this theorem, we craft reductions from Length-Bounded a-b Node Cut,

which is known to be NP-complete and hard to approximate (Baier et al., 2010). Notice that

this problem has specified end nodes a and b, while Diameter Interdiction by Node

Deletion does not. We provide two reductions, given in Lemma 2 and Lemma 3, that

together prove Theorem 4.

Problem: Length-Bounded a-b Node Cut.

Input: A simple graph G′ = (V ′, E ′), nonadjacent a, b ∈ V ′, and integers q′ and L′.

Question: Is there a subset C ′ ⊆ V ′ \ {a, b} of q′ vertices such that distG′−C′(a, b) > L′?

Lemma 2. For each odd L ≥ 5, Diameter Interdiction by Node Deletion is NP-

complete.

Proof. Membership in NP is obvious. For the reduction, consider an instance of Length-

Bounded a-b Node Cut defined by graph G′ = (V ′, E ′), vertices a, b ∈ V ′, and integers
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q′ and odd L′ ≥ 5. Let q = q′ and L = L′. Now we construct G = (V,E). The idea is to

connect every pair of vertices from G′ (besides a and b) by carefully adding many short paths

so that the only possible way to cheaply disrupt the diameter of G is to cut all short paths

from a to b. Construct V as follows.

V := V ′ ∪ T ∪ A ∪B ∪W

T := {ti | 1 ≤ i ≤ q + 1}

A :=

{
aji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L− 1

2

}
B :=

{
bji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L− 1

2

}
W :=

{
vji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L− 3

2
, v ∈ V ′ \ {a, b}

}
.

Notice that |V | = O(qL|V ′|) and q ≤ |V ′| and L ≤ |V ′|, so the reduction will be polynomial.

Construct the edge set E of G as follows. First, connect the vertices of V ′ so that G[V ′] =

G′. Then make T a clique in G. Similarly, make each Aj := {aji | 1 ≤ i ≤ q + 1} a clique.

Do the same for each Bj := {bji | 1 ≤ i ≤ q + 1} and for each W j(v) := {vji | 1 ≤ i ≤ q + 1}.

Connect a to every vertex of A1; and every vertex of A1 to every vertex of A2; and so on.

Connect b to every vertex of B1; and every vertex of B1 to every vertex of B2; and so on.

Then for every v ∈ V ′ \ {a, b}, connect v to every vertex of W 1(v); and every vertex of W 1(v)

to every vertex of W 2(v); and so on. Finally, letting p = L−1
2

, connect every vertex of T

to every vertex of Ap ∪ Bp ∪
(
∪v∈V ′\{a,b}W p−1(v)

)
. Creating E obviously can be done in

polynomial time. See Figure 2.5 for an illustration.

Observe that there exist at least q + 1 (internally) node-disjoint paths of length at most

L between every pair of vertices of G (the interior vertices of which belong to V \ V ′),

except possibly for the pair {a, b}. Moreover, (simple) a-b paths of length at most L in

G can only cross vertices of V ′. Thus, it can be argued that the instance (G′, a, b, q′, L′)
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of Length-Bounded a-b Node Cut is a “yes” if and only if the instance (G, q, L) of

Diameter Interdiction by Node Deletion is a “yes.”

a b
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. . .

. . .

. . .

. . .
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Kq+1
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Kq+1
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Kq+1

Kq+1

Kq+1

...

Kq+1

G′ − a− b

G′

L−3
2

Figure 2.5: Illustration of the reduction for odd L ≥ 5. Here, Kn is a complete graph on n
nodes.

Lemma 3. For each even L ≥ 5, Diameter Interdiction by Node Deletion is

NP-complete.

Proof. Membership in NP is obvious. For the reduction, consider an instance of Length-

Bounded a-b Node Cut defined by graph G′ = (V ′, E ′), vertices a, b ∈ V ′, and integers

q′ and even L′ ≥ 5. Let q = q′ and L = L′. Now we construct G = (V,E). The main
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idea behind the reduction is the same as before, but the construction is slightly different.

Construct V as follows.

V := V ′ ∪ T ∪ T ′ ∪W

T := {ti | 1 ≤ i ≤ q + 1}

T ′ := {t′i | 1 ≤ i ≤ q + 1}

W :=

{
vji

∣∣∣∣ 1 ≤ i ≤ q + 1, 1 ≤ j ≤ L

2
− 1, v ∈ V ′

}
.

Notice that |V | = O(qL|V ′|) and q ≤ |V ′| and L ≤ |V ′|, so the reduction will be polynomial.

Construct the edge set E of G as follows. First, connect the vertices of V ′ so that G[V ′] =

G′. Then make T ∪ T ′ a clique in G. Similarly, make each W j(v) := {vji | 1 ≤ i ≤ q + 1} a

clique. For every v ∈ V ′, connect v to every vertex of W 1(v); and every vertex of W 1(v) to

every vertex of W 2(v); and so on. Let p = L
2
− 1. Connect every vertex of T to every vertex

of ∪v∈V ′\{b}W p(v). Similarly, connect every vertex of T ′ to every vertex of ∪v∈V ′\{a}W p(v).

Creating E obviously can be done in polynomial time. See Figure 2.6 for an illustration.

Observe that there exist at least q + 1 (internally) node-disjoint paths of length at most

L between every pair of vertices of G (the interior vertices of which belong to V \ V ′),

except possibly for the pair {a, b}. Moreover, (simple) a-b paths of length at most L in

G can only cross vertices of V ′. Thus, it can be argued that the instance (G′, a, b, q′, L′)

of Length-Bounded a-b Node Cut is a “yes” if and only if the instance (G, q, L) of

Diameter Interdiction by Node Deletion is a “yes.”

Researchers have studied related notions of the fault diameter of a graph (Krishnamoorthy

and Krishnamurthy, 1987; Xu, 2001). For example, Xu (2001) defines the f -fault diameter of
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Figure 2.6: Illustration of the reduction for even L ≥ 5.
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graph G = (V,E) to be

Df (G) := max {diam(G− F ) | F ⊆ V, |F | < f} ,

and states that computing this value “is a quite difficult problem,” but no justification is

given3. Later, Xu et al. (2005) listed its NP-hardness as an open problem. Theorem 4 implies

that computing Df (G) is indeed NP-hard when f is part of the input, say, by letting f = q+1

and returning “yes” if Df (G) > L.

Corollary 3. Computing the f -fault diameter is NP-hard when f is part of the input.

2.3.2 The Separation Problem for CUT

Formulation CUT has an exponential number of constraints (2.9), as does its fault-tolerant

generalization (2.12), making it a nontrivial question as to how they should be used. A

helpful observation, however, is that by the polynomial equivalence of optimization and

separation (Grötschel et al., 1993), their LP relaxations can be solved in polynomial time if

and only if their separation problems (defined below) can be solved in polynomial time.

Problem: Separation Problem for Formulation CUT.

Input: a directed and edge-weighted graph G = (V,E), a weight x∗v ∈ [0, 1] for each v ∈ V ,

an integer r ≥ 1, a number s.

Output: (if any exist) a length-s vertex cut C ⊆ V with
∑

i∈C x
∗
i < r.

For purposes of generality, we define this separation problem for the fault-tolerant gener-

3 Schoone et al. (1987) show a related result for increasing the diameter by edge deletions, but it is not
clear how to modify their result for our purposes. Their definition of the problem (strangely) only allows
edge deletions that maintain connectivity of the graph. This allows them to perform a reduction from
Hamiltonian Path by seeking subsets of m− (n− 1) edges whose removal increases the diameter to n− 1.
We feel that this is an unsatisfying hardness reduction since a minimum cut likely has fewer edges, and its
removal would make the diameter infinite. In contrast, our diameter parameter can be a small constant, and
we allow for arbitrary vertex deletions.
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alization, which has right-hand-side r. We provide both positive and negative results.

Theorem 5. Under hop-based distances, the separation problem is:

1. polynomial-time solvable for s ∈ {2, 3, 4}, for every r ≥ 1;

2. (in its decision version) NP-complete for every s ≥ 5, even when r = 1.

Proof. First, we prove that item 2 holds. Membership in NP is clear, so we only show hardness.

The reduction is from an instance of Diameter Interdiction by Node Deletion given

by (G, q, L), which is NP-complete for each L ≥ 5 by Theorem 4. Bidirect G = (V,E) yielding

directed graph
←→
G = (V,

←→
E ). Let r = 1, s = L, and x∗i = 1

q+1
for every i ∈ V . We argue that

(G, q, L) is a “yes” instance of Diameter Interdiction by Node Deletion if and only

if (
←→
G , x∗, r, s) admits a violated length-s vertex cut inequality (2.12). Suppose there is a

violated length-s vertex cut inequality (2.12) for some C ⊆ V . Then, |C|
q+1

=
∑

i∈C x
∗
i < 1, i.e.,

|C| ≤ q, and the instance of Diameter Interdiction by Node Deletion is a “yes.” Now,

if there is a length-s vertex cut C ′ ⊆ V with |C ′| ≤ q for
←→
G , then

∑
i∈C′ x

∗
i = |C′|

q+1
≤ q

q+1
< 1

and so x∗ violates the length-s vertex cut inequality
∑

i∈C′ xi ≥ 1.

Now, we discuss why item 1 holds. In the cases s ∈ {2, 3, 4}, we can find a most-violated

length-s vertex cut inequality (2.12) by computing, for each (a, b) ∈ (V ×V ) \E, a minimum-

weight length-s a, b-vertex cut and comparing its weight to r. The cases s ∈ {2, 3} are fairly

straightforward, e.g., for s = 2 the solution is N+(a)∩N−(b). The case s = 4 was (essentially)

shown by Lovász et al. (1978) to be polynomial-time solvable by reducing it to a particular

instance of the min-cut problem, cf. Theorem 4.3.1 of Xu (2001). Since this min-cut instance

can be constructed in linear time (and it is actually a subgraph of the input graph), this

minimum-weight length-s a, b-vertex cut subproblem can be solved in time O(mn) by Orlin

(2013). Solving these subproblems for every missing edge (a, b) gives a total time of O(mn3),

which is polynomial.
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By standard arguments, the flow-based separation routines referenced in the proof of

Theorem 5 imply polynomial-size extended formulations for the LP relaxation of CUT when

s ∈ {3, 4}, see Martin (1991). However, these formulations would have roughly mn2 variables,

making them too large to be practical. Hence, we do not discuss them further.

2.3.3 Verification and Integer Separation for the Fault-Tolerant Variant

The problem of verifying whether a given subset D ⊆ V of vertices is an r-robust latency-s

CDS is nontrivial. In a brute force approach, enumerate all subsets F ⊆ D of r−1 vertices and

verify that D \ F is indeed a latency-s CDS. By algorithm IsLatencyConstrainedCDS,

this takes time
( |D|
r−1

)
O(n3) = O(nr+2), which is polynomial for any constant r. A natural

question is whether this test can be performed in polynomial time when r is part of the

problem input. Unfortunately, the likely answer is “no,” as this is coNP-complete.

Corollary 4. When r is part of the input, the problem of verifying whether D ⊆ V is an

r-robust latency-s CDS is coNP-complete for each fixed s ≥ 5. This holds even for bidirected

edges and hop-based distances.

Proof. Membership in coNP follows because a length-s vertex cut C ⊆ V with |C| < r is

a suitable witness when it is a “no” instance. For the reduction, consider an instance of

Diameter Interdiction by Node Deletion defined by a simple graph G = (V,E) and

integers q and L. Bidirect its edges and let s = L, r = q + 1, and D = V . It can be observed

that the instance of Diameter Interdiction by Node Deletion is a “yes” instance if

and only if D is not an r-robust latency-s CDS of this bidirected graph.

Remark 1. As a consequence of Corollary 4, the separation problem for the constraints (2.12),

with r being part of the input, is hard even when x∗ is integer.
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2.4 Computational Experiments

In this section, we provide results from our computational experiments. First, we demonstrate

the importance of (quickly) strengthening the length-s vertex cut inequalities. Second, we

provide computational results demonstrating the importance of providing an initial heuristic

solution to the MIP solver. Third, we compare our full implementation of CUT with the

polynomial-size formulation POLY. Our tests demonstrate the superiority of CUT over POLY.

Finally, we experiment with formulation CUT for:

1. s ∈ {diam(G), diam(G) + 1, diam(G) + 2, n− 1};

2. the fault-tolerant case with r = 2;

3. a class of instances representing node-weighted, transmitter-based delays.

All of our experiments are conducted on a Dell Precision Tower 7000 Series (7810) machine

running Windows 10 enterprise, x64, with Intel R© Xeon R© Processor E52630 v4 (10 cores,

2.2GHz, 3.1GHz Turbo, 2133MHz, 25MB, 85W) – that is 20 logical processors – and 32 GB

memory. The IP formulations were implemented in Microsoft Visual Studio 2015 in C++

for Gurobi version 7.0.2. We use default settings with the exception that we force Gurobi

to use the concurrent method (which uses primal simplex, dual simplex, and barrier on

different threads) for solving the root LP relaxation for POLY, as this formulation is highly

degenerate and typically barrier is fastest. We impose a time limit of 3600 seconds on each

instance and use the same test instances that have been used in the previous literature on

the minimum CDS problem by Lucena et al. (2010); Simonetti et al. (2011); Fan and Watson

(2012); Gendron et al. (2014); Buchanan et al. (2015); Li and Aneja (2017). This testbed

includes both real-life and synthetically generated instances, all of which are undirected. In

our experiments, we bidirect their edges.
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2.4.1 The Importance of Strengthening the Inequalities

Since formulation CUT can have exponentially many constraints when s ≥ 3, we initialize it

with only some of the constraints. Others are added as needed via Gurobi’s lazy constraint

callback features. Specifically, we start with the vertex cuts given by N+(i), i ∈ V (or

inclusion-minimal subsets thereof that are also length-s vertex cuts). Then, within the

branch-and-bound tree, violated length-s vertex cut inequalities are added on-the-fly.

Since the separation problem for the length-s vertex cut inequalities is NP-hard, we only

separate integer points that the solver encounters.

Each of these possible solutions D ⊆ V will satisfy the initial constraints given to the

solver, but D may not actually be feasible for the latency-s CDS problem. In this case,

C := V \ D is a length-s vertex cut for the graph, and the inequality
∑

i∈C xi ≥ 1 would

be valid for our problem and would cut off the binary point representing D. However, this

inequality is likely very weak, so we strengthen the inequality, i.e., find a minimal subset of

C that is also a length-s vertex cut. This is done when initializing the formulation with the

vertex cuts N+(i), i ∈ V and also when adding inequalities on-the-fly.

The following algorithm can be used to strengthen length-s vertex cut inequalities, i.e., to

find inclusion-minimal length-s vertex cuts. For our purposes, it is best described in terms of

a “bad” vertex subset B ⊆ V , i.e., one that is not a latency-s CDS for G. (If given a length-s

vertex cut, initialize the algorithm using its complement.) The algorithm takes B as input

and returns an inclusion-minimal length-s vertex cut C ⊆ V \B for G.

MinimalizeBasic(G, B, s):

1. Q← V \B;

2. for q ∈ Q do

• if B ∪ {q} is not a latency-s CDS for G then update B ← B ∪ {q};

3. return C := V \B.
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Proposition 6. Algorithm MinimalizeBasic finds a minimal length-s vertex cut in time

O(n4).

Proof. The runtime is dominated by the |Q| different calls to IsLatencyConstrainedCDS,

which take time O(|Q|n3) = O(n4). Since latency-s CDS’s are closed under taking supersets

(as a consequence of Proposition 3 of Chapter II), it can be argued that, in step 3, B ∪ {v}

is a latency-s CDS for every v ∈ V \ B. Further, B is not. Thus, |D ∩ C| ≥ 1 for every

latency-s CDS D ⊆ V , and no proper subset of C satisfies this property. So, by Lemma 1 of

Chapter II, C is a minimal length-s vertex cut.

The algorithm MinimalizeBasic for finding a minimal length-s vertex cut runs in time

O(n4). Here, we provide an improved O(n3) implementation. It is based on maintaining the

collection F of “far” pairs of vertices, i.e., pairs of vertices that cannot communicate quickly

enough through B ⊆ V .

First we provide pseudocode for the subroutine EnumerateFarPairs, which finds all

far pairs. It is similar to IsLatencyConstrainedCDS described earlier but requires more

space, since it requests the set F (and not just a query as to whether F is empty). Recall

the subgraph of G denoted
−→
GB
v whose edge set

−→
E B
v was defined in equation 7 of Chapter II.

This is used to compute shortest paths from v to all other nodes, using nodes from B as

intermediaries.

EnumerateFarPairs(G, B, s):

1. F ← ∅;

2. for each v ∈ V do

• compute shortest paths from v in digraph
−→
GB
v ;

• for t ∈ V \ {v} do

– if dist−→
GB
v

(v, t) > s then F ← F ∪ {(v, t)};
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3. return F .

Now we give an improved implementation of MinimalizeBasic. In its pseudocode, we

need notation for another subgraph ofG, denoted
←−
GB
v = (V,

←−
E B
v ), that is used when computing

the shortest paths from all other nodes to v, using only nodes from B as intermediaries. Its

edge set
←−
E B
v contains all edges that might be used in one of these paths.

←−
E B
v := E(B) ∪ δ−(B) ∪

(
δ+(B) ∩ δ−(v)

)
. (2.26)

Minimalize(G, B, s):

1. Q← V \B and F ←EnumerateFarPairs(G,B, s);

2. for v ∈ Q do

• compute shortest paths from v in graph
−→
GB
v ;

• compute shortest paths to v in graph
←−
GB
v ;

• R← {(a, b) ∈ F | dist←−
GB
v

(a, v) + dist−→
GB
v

(v, b) ≤ s};

• if F 6= R then update B ← B ∪ {v} and F ← F \R;

3. return C := V \B.

Here, R ⊆ F represents the subset of far pairs that would no longer be far if paths could

cross node v. If the sets R and F are the same, then this means that B ∪ {v} a latency-s

CDS (which we do not want), otherwise the algorithm adds v to B, thus moving to the larger

infeasible set B ∪ {v}—whose complement is a smaller length-s vertex cut.

Theorem 6. Algorithm Minimalize finds a minimal length-s vertex cut in time O(n3) and

space O(n2), or, more precisely, in:

• O(nm+ n2 log log n+ |Q||F0|) time and O(m+ |F0|) space under nonnegative weights;
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• O(nm+ |Q||F0|) time and O(m+ |F0|) space in the hop-based case.

Here, F0 denotes the original set of far pairs, i.e., the set F from step 1.

In Table 2.1, we compare the performance of formulation CUT with three different settings:

(1) without minimalizing the length-s vertex cuts, (2) applying algorithm MinimalizeBasic,

and (3) applying algorithm Minimalize. In these tests, we set s = diam(G) since this is

the smallest feasible value of s. Moreover, we exclude the cases where s = diam(G) = 2,

as there is nothing to minimalize. Note that these tests use the BestInHeuristic that is

described in Section 5. CUT only solves 4 instances if we do not minimalize the length-s

vertex cuts, in which case the formulation is practically useless. Using MinimalizeBasic,

we can solve 20 of the 30 instances, but the callback time is large in many cases. For example,

see the instance v200 d20 in which 37 minutes is spent in the callback. If Minimalize is used

instead, the callback time reduces to 1 minute. Moreover, the time saved by Minimalize

allows the solver to improve the lower bound in 5 of the 10 unsolved cases.

We also experimented with separating fractional points, particularly when s = 3 as this

case of the separation problem is polynomial-time solvable. However, the fastest separation

procedure that we are aware of takes time O(mn3) and was ultimately unhelpful—in all nine

of the different implementations that we tried.

When experimenting with fractional separation, we felt it was important to try differ-

ent implementations, as the number of cuts and the cut violation can greatly impact the

performance. With this in mind, we tried nine different implementations.

The generic pseudocode that we use in the callback is as follows, where x∗ is the branch-and-

bound node’s LP solution, ε ∈ {0.01, 0.1, 0.5} is the cut violation threshold, and I ∈ {1, 2, 3}

controls how many cuts are added per callback.

• for every vertex a ∈ {1, 2, . . . , n} do

– for every vertex b ∈ {1, 2, . . . , n} do
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Table 2.1: An evaluation of the usefulness of Minimalize as compared to no minimalizing
and to MinimalizeBasic. For all graphs G, we set s = diam(G) and exclude instances
where s = 2. We report the optimal objective (or the best lower/upper bounds [L,U ] after
one hour) under the columns labeled obj. We also give the time spent in the callback (call),
and the total solve time (total), where a dash indicates > 3600 seconds.

No minimalizing MinimalizeBasic Minimalize
graph s obj call total obj call total obj call total
v30 d10 8 15 10.29 280.24 15 0.00 0.01 15 0.00 0.02
v30 d20 5 8 0.01 0.05 8 0.02 0.06 8 0.00 0.03
v30 d30 3 [7,8] 229.27 - 8 0.11 0.21 8 0.02 0.10
v50 d5 14 [26,32] 49.88 - 32 0.02 0.07 32 0.02 0.07
v50 d10 5 [13,20] 31.27 - 18 0.44 0.58 18 0.08 0.18
v50 d20 3 [8,14] 51.24 - 14 0.16 0.25 14 0.03 0.11
v50 d30 3 [6,8] 45.67 - 8 1.69 2.70 8 0.16 1.12
v70 d5 8 [24,36] 14.41 - 32 1.13 1.36 32 0.32 0.53
v70 d10 4 [14,31] 19.93 - 29 3.14 5.77 29 0.44 2.98
v70 d20 3 [8,18] 19.60 - 17 47.27 335.22 17 3.40 305.96
v70 d30 3 [6,8] 66.95 - 7 9.68 12.93 7 0.50 3.33
v100 d5 5 [24,57] 9.71 - 56 16.38 33.14 56 2.10 17.91
v100 d10 4 [14,31] 10.82 - [22,26] 322.14 - [22,26] 18.79 -
v100 d20 3 [8,20] 15.26 - [14,20] 507.29 - [14,20] 24.16 -
v120 d5 6 [25,40] 8.80 - 31 464.72 1511.87 31 25.86 1087.17
v120 d10 3 [13,68] 7.92 - 63 27.31 35.60 63 2.21 10.31
v120 d20 3 [8,21] 13.89 - [10,21] 973.37 - [10,21] 42.57 -
v120 d30 3 [6,12] 19.98 - [7,12] 737.91 - [7,12] 21.65 -
v150 d5 5 [25,54] 7.19 - [29,54] 1088.47 - [30,54] 121.73 -
v150 d10 3 [13,65] 7.35 - [41,63] 717.64 - [43,61] 39.95 -
v150 d20 3 [8,22] 12.70 - [9,22] 1915.12 - [9,22] 58.24 -
v200 d5 4 [25,92] 6.10 - [48,92] 1851.87 - [49,92] 169.57 -
v200 d10 3 [13,64] 6.26 - [23,64] 1734.04 - [26,64] 132.19 -
v200 d20 3 [7,22] 7.58 - [7,22] 2226.01 - [8,22] 58.71 -
IEEE-14 5 5 0.00 0.00 5 0.00 0.00 5 0.00 0.01
IEEE-30 6 14 0.33 3.98 14 0.00 0.01 14 0.00 0.01
IEEE-57 12 [24,35] 23.24 - 35 0.02 0.05 35 0.01 0.04
RTS-96 13 [27,40] 13.53 - 37 0.09 0.17 37 0.07 0.14
IEEE-118 14 [39,48] 15.22 - 48 0.01 0.17 48 0.00 0.15
IEEE-300 24 [104,139] 16.49 - 135 14.35 18.00 135 8.65 11.98
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∗ compute a minimum-weight length-3 a,b-separator C ⊆ V \ {a, b} in graph

G = (V,E), where each vertex i has weight x∗i ;

∗ if the cut violation 1− x∗(C) is more than ε,

· add the cut x(C) ≥ 1;

· if I = 1, then return;

· if I = 2, then break the for-loop over b (i.e., go to the next a);

As can be observed in the pseudocode, setting I = 1 adds ≤ 1 cut per callback, setting

I = 2 adds ≤ n cuts per callback, and setting I = 3 adds ≤ n2 cuts per callback.

There are several ways to speed up separation in practice. In all of our implementations,

we use the following speedups:

1. We can skip the cases a = b.

2. Our test instances are bidirected, so it suffices to consider b ∈ {a+ 1, a+ 2, . . . , n}.

3. If x∗(N+(a) ∩N−(b)) + ε ≥ 1, then no sufficiently violated cut will exist, and one can

skip to the next vertex b.

We tried each of the three settings I ∈ {1, 2, 3} across three different values of ε ∈

{0.01, 0.1, 0.5}, resulting in a total of nine implementations. The results are provided in

Tables 2.2, 2.3, 2.4. In each table, we report the lower and upper bounds on the objective

value after a one-hour time limit. For reference, we also report the bounds obtained using

our integer separation routine that we have been using all along.

Among the nine fractional separation implementations, there is no clear winner. For the

graph v150 d10, the best bounds are achieved with the following parameter settings.

(I, ε) ∈ {(1, 0.01), (3, 0.01), (3, 0.1)}
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While, for the graph v200 d20, the best bounds are achieved with a different parameter

setting (I, ε) = (1, 0.1). However, if we include our original implementation into the mix, it

is the clear winner. This is despite a good-faith effort towards using fractional separation,

including a polynomial-time separation routine for s = 3 and helpful speedups. We imagine

that the results would be even worse if we had to perform exact separation for s ≥ 5, where

separation is NP-hard. This confirms our suspicions that we had obtained when studying

another semi-related problem (Salemi and Buchanan, 2020).

One explanation for the poor performance of s = 3 fractional separation is the time to

solve the separation problem. It requires the solution of up to Θ(n2) different minimum

cut problems, making the runtime something like mn3. In contrast, our integer separation

routine requires O(n3) time. Note that for the s = 3 instance v200 d20, n3 = 8, 000, 000,

while mn3 = 31, 840, 000, 000. Any time spent on the time mn3 procedure in the callback

is time not spent on other things (like branching). Apparently, this tradeoff is not worth it.

As a final remark, see that several of our instances remain unsolved even when s = 2.

Recall that we add all length-2 vertex cut inequalities upfront in the s = 2 case since there

are only O(n2) of them, in which case there is no need to perform fractional separation. Thus,

even when fractional separation takes “zero time”, the instances cannot be solved. This

lends credence to the idea that there is little room for fractional separation to help; these

instances may just be challenging. We note that one of our s = 2 instances was submitted to

MIPLIB 2017 and has been included in their Collection Set. At the time of writing, it is still

considered an “open” instance, meaning that no MIP solver has been able to solve it (even

with the latest software releases). The instance (and its “open” status) can be found on the

MIPLIB website: http://miplib.zib.de/instance_details_v150d30-2hopcds.html
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Table 2.2: Lower and upper bounds after one hour when cut violation threshold is ε = 0.01

Lazy I = 1 I = 2 I = 3
graph s ≤ 1 ≤ n All Pairs
v100 d20 3 [14,20] [11,20] [10,20] [11,20]
v120 d20 3 [10,21] [8,21] [7,21] [8,21]
v120 d30 3 [7,12] [4,12] [4,12] [4,12]
v150 d10 3 [43,61] [38,65] [35,65] [38,65]
v150 d20 3 [9,22] [7,22] [7,22] [7,22]
v200 d10 3 [26,64] [27,64] [24,64] [27,64]
v200 d20 3 [8,22] [6,22] [6,22] [6,22]

Table 2.3: Lower and upper bounds after one hour when cut violation threshold is ε = 0.1

Lazy I = 1 I = 2 I = 3
graph s ≤ 1 ≤ n All Pairs
v100 d20 3 [14,20] [10,20] [10,20] [11,20]
v120 d20 3 [10,21] [9,21] [7,21] [8,21]
v120 d30 3 [7,12] [6,12] [4,12] [4,12]
v150 d10 3 [43,61] [28,65] [37,65] [38,65]
v150 d20 3 [9,22] [8,22] [7,22] [7,22]
v200 d10 3 [26,64] [19,64] [24,64] [26,64]
v200 d20 3 [8,22] [7,22] [6,22] [6,22]

Table 2.4: Lower and upper bounds after one hour when cut violation threshold is ε = 0.5

Lazy I = 1 I = 2 I = 3
graph s ≤ 1 ≤ n All Pairs
v100 d20 3 [14,20] [11,20] [9,20] [10,20]
v120 d20 3 [10,21] [8,21] [7,21] [7,21]
v120 d30 3 [7,12] [4,12] [4,12] [4,12]
v150 d10 3 [43,61] [28,65] [37,65] [36,65]
v150 d20 3 [9,22] [7,22] [6,22] [6,22]
v200 d10 3 [26,64] [20,64] [23,64] [24,64]
v200 d20 3 [8,22] [6,22] [6,22] [6,22]
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2.4.2 The Importance of Providing a Heuristic Solution to the Solver

We provide a simple “best-in” heuristic for the minimum latency-s CDS problem. In the

pseudocode, the vertex subset D represents a partial solution; the set F represents the set of

“far pairs,” i.e., those pairs of vertices that inhibit D from being a feasible solution; and the

score of a vertex is how many far pairs it would “close” or eliminate. Note that the scores

can increase during the heuristic, and they can all be zero while F is nonempty.

BestInHeuristic(G, s):

1. compute diam(G);

2. if diam(G) > s, return “infeasible”;

3. initialize D ← ∅ and F ← {(i, j) ∈ V × V | (i, j) /∈ E, i 6= j};

4. while F 6= ∅ do

(a) for v ∈ V \D do

• compute shortest paths from v in graph
−→
GD
v ;

• compute shortest paths to v in graph
←−
GD
v ;

• compute score(v) :=
∣∣∣{(a, b) ∈ F

∣∣∣ dist←−
GD
v

(a, v) + dist−→
GD
v

(v, b) ≤ s
}∣∣∣;

(b) let v∗ ∈ V \D be a vertex of maximum score;

(c) R←
{

(a, b) ∈ F
∣∣∣ dist←−

GD
v∗

(a, v∗) + dist−→
GD
v∗

(v∗, b) ≤ s
}

;

(d) update D ← D ∪ {v∗} and F ← F \R;

5. return D.

This heuristic returns a feasible solution (when the instance is feasible), and its runtime

is O(n4), or, more precisely, O(n3 + |D|mn+ |D||F0|n), where D is the heuristic solution at

the end, and F0 is the initial set of far pairs from step 3. Given that it takes time O(n3) to

verify feasibility, this heuristic is not too costly. The output of this heuristic is not necessarily

inclusion-minimal, so we run a post-processing procedure to make it so.
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We also experimented with a “worst-out” heuristic that starts with V as an initial solution

and greedily deletes vertices v, in order of decreasing indegree |N−(v)| plus outdegree |N+(v)|,

as long as this is still feasible. This heuristic, when applied to the minimum CDS problem,

is “provably best” in the sense of Kahruman-Anderoglu et al. (2016) meaning that, unless

P=NP, no polynomial-time algorithm always finds a better solution than this heuristic (when

a better solution exists). Similar heuristics work well in practice for the minimum CDS

problem (Butenko et al., 2004). However, this particular worst-out heuristic performed poorly

compared to the best-in heuristic in initial experiments, so it is excluded.

In Table 2.5, we evaluate the usefulness of the proposed best-in heuristic (while employing

Minimalize to strengthen the inequalities). In most cases, the impact of the heuristic is

marginal (positively or negatively). Of the instances that were solved to optimality, its effect

is most pronounced on v70 d20 and v120 d5 where it slowed down the solver by 173 seconds

and sped up the solver by 409 seconds, respectively. It may seem strange that providing an

MIP start could worsen the performance, but this is likely a natural consequence of solver

variability, and we did not attempt to tame or take advantage of this behavior. Note, however,

that Gurobi was unable to find a feasible solution on four instances if left unaided. Further,

on the instances v150 d20 and v200 d20 the best-in heuristic found solutions (in under a

second) that were 12 vertices and 13 vertices better, respectively, than what Gurobi found in

an hour. Frankly, Gurobi’s performance on some of the s = 2 instances surprised us. For

example, on the instance v120 d50, CUT has only 120 binary variables and 3570 covering

constraints, and yet it did not solve within an hour.

2.4.3 Comparison with Formulation POLY

In Table 2.6, we compare the performance of CUT with that of POLY. In these tests, we set

s = diam(G), provide an MIP start using BestInHeuristic, and exclude instances with

s = 2. The reason for excluding the s = 2 comparisons is that CUT and POLY are equally
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Table 2.5: An evaluation of the usefulness of BestInHeuristic as compared to running
Gurobi without an MIP start. We report the objective of the heuristic solution (hobj) and
the time spent in the heuristic (htime). For the meanings of other reported quantities, refer
to Table 2.1.

No heuristic with BestInHeuristic
graph s obj total hobj obj htime total
v30 d10 8 15 0.01 15 15 0.00 0.02
v30 d20 5 8 0.09 8 8 0.00 0.03
v30 d30 3 8 0.16 8 8 0.00 0.10
v30 d50 2 7 0.02 7 7 0.00 0.01
v30 d70 2 3 0.02 4 3 0.00 0.04
v50 d5 14 32 0.05 32 32 0.01 0.07
v50 d10 5 18 0.18 20 18 0.01 0.18
v50 d20 3 14 0.14 14 14 0.00 0.11
v50 d30 3 8 7.23 8 8 0.00 1.12
v50 d50 2 9 0.18 11 9 0.00 0.17
v50 d70 2 4 0.89 4 4 0.00 0.79
v70 d5 8 32 0.44 36 32 0.01 0.53
v70 d10 4 29 1.34 31 29 0.01 2.98
v70 d20 3 17 132.69 18 17 0.01 305.96
v70 d30 3 7 1.95 8 7 0.00 3.33
v70 d50 2 10 0.76 10 10 0.00 0.56
v70 d70 2 5 2.04 5 5 0.00 1.57
v100 d5 5 56 17.02 57 56 0.04 17.91
v100 d10 4 [22,26] - 31 [22,26] 0.02 -
v100 d20 3 [14,18] - 20 [14,20] 0.01 -
v100 d30 2 39 5.35 42 39 0.03 5.00
v100 d50 2 12 59.15 13 12 0.01 61.27
v100 d70 2 5 8.91 5 5 0.00 8.17
v120 d5 6 31 1496.49 40 31 0.05 1087.17
v120 d10 3 63 10.33 68 63 0.06 10.31
v120 d20 3 [10,26] - 21 [10,21] 0.02 -
v120 d30 3 [7,12] - 12 [7,12] 0.01 -
v120 d50 2 [11,12] - 13 [11,12] 0.01 -
v120 d70 2 5 32.86 6 5 0.00 29.67
v150 d5 5 [30,∞] - 54 [30,54] 0.10 -
v150 d10 3 [39,∞] - 65 [43,61] 0.10 -
v150 d20 3 [9,34] - 22 [9,22] 0.04 -
v150 d30 2 [35,42] - 45 [35,41] 0.06 -
v150 d50 2 [9,13] - 13 [9,13] 0.02 -
v150 d70 2 6 560.68 7 6 0.01 569.10
v200 d5 4 [46,∞] - 92 [49,92] 0.34 -
v200 d10 3 [23,∞] - 64 [26,64] 0.20 -
v200 d20 3 [7,35] - 22 [8,22] 0.07 -
v200 d30 2 [27,43] - 45 [27,44] 0.12 -
v200 d50 2 [8,15] - 16 [8,15] 0.04 -
v200 d70 2 [4,6] - 7 [4,7] 0.01 -
IEEE-14 5 5 0.00 5 5 0.00 0.01
IEEE-30 6 14 0.01 14 14 0.00 0.01
IEEE-57 12 35 0.02 35 35 0.01 0.04
RTS-96 13 37 0.15 40 37 0.02 0.14
IEEE-118 14 48 0.07 48 48 0.06 0.15
IEEE-300 24 135 8.91 139 135 2.31 11.98
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strong when s = 2, and so CUT will obviously perform better due to its smaller size. Since

our instances are bidirected, we fix ytij = ytji as discussed in Section 2.2.3.

The results demonstrate the superiority of CUT. It solves the 11 instances solved by

POLY—and 9 others. Ten instances are left unsolved by both approaches; CUT provides

better bounds on all of them. The formulation CUT also quickly solves some instances that

POLY left unsolved after an hour. For example, CUT solved v50 d5, v70 d5, v70 d10, and

v70 d30 each in under five seconds, while POLY solved none of them in the time limit.

2.4.4 The Cost of Low Latency

Imposing that a dominating set be connected is not too costly. Indeed, the domination number

γ(G) and the connected domination number γc(G) are a constant factor apart. Specifically,

they satisfy γ(G) ≤ γc(G) ≤ 3γ(G)− 2, see Haynes et al. (1998). In contrast, we show that

the cost of low latency can be very large—even when decreasing the latency parameter s by

one. We denote by γlats (G) the size of a minimum latency-s CDS in G.

Proposition 7 (Potentially large cost of low latency). For every latency parameter s ≥ 2,

there is an infinite class of graphs G for which γlats+1(G) ≤ s, but γlats (G) ≥ Ω(n). This holds

even when edges are bidirected and distances are hop-based.

Proof. One such class of graphs are obtained by taking the Cartesian products Kq�Ps of a

complete graph Kq and a path graph Ps and then bidirecting the edges. These graphs have

sq vertices and diameter s when q ≥ 2. These graphs Kq�Ps can be defined as having vertex

set V 1 ∪ · · · ∪ V s, where each V i = {vi1, . . . , viq}. For the edges, let each V i be a clique, and

connect each vertex vij to its counterpart vi+1
j from the next V i+1. Bidirect all edges.

See that γlats+1(Kq�Ps) ≤ s, since the s vertices vi1 form a feasible solution. Now we

show that γlats (Kq�Ps) ≥ Ω(n) in two cases. When s = 2, the q vertex subsets {v1i , v2i+1} for

i = 1, . . . , q−1 and {v1q , v21} form length-2 cuts and are disjoint. Thus, γlat2 (Kq�P2) ≥ q = n/2.
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Table 2.6: A comparison of the performance of formulation CUT with that of POLY. For all
graphs G, we set s = diam(G) and exclude instances where s = 2. We report the optimal
objective (or the best lower/upper bounds [L,U ] after one hour) under the columns labeled
obj. We also give the total solve time (total), where a dash indicates > 3600 seconds.

POLY CUT
graph s hobj obj total obj total
v30 d10 8 15 15 2.71 15 0.02
v30 d20 5 8 8 111.14 8 0.03
v30 d30 3 8 8 12.59 8 0.10
v50 d5 14 32 [31,32] - 32 0.07
v50 d10 5 20 18 2711.41 18 0.18
v50 d20 3 14 14 6.31 14 0.11
v50 d30 3 8 8 398.41 8 1.12
v70 d5 8 36 [26,36] - 32 0.53
v70 d10 4 31 [28,29] - 29 2.98
v70 d20 3 18 [11,18] - 17 305.96
v70 d30 3 8 [6,7] - 7 3.33
v100 d5 5 57 [42,57] - 56 17.91
v100 d10 4 31 [13,31] - [22,26] -
v100 d20 3 20 [9,20] - [14,20] -
v120 d5 6 40 [16,40] - 31 1087.17
v120 d10 3 68 63 1522.53 63 10.31
v120 d20 3 21 [7,21] - [10,21] -
v120 d30 3 12 [4,12] - [7,12] -
v150 d5 5 54 [19,54] - [30,54] -
v150 d10 3 65 [35,65] - [43,61] -
v150 d20 3 22 [6,22] - [9,22] -
v200 d5 4 92 [43,92] - [49,92] -
v200 d10 3 64 [24,64] - [26,64] -
v200 d20 3 22 [6,22] - [8,22] -
IEEE-14 5 5 5 0.08 5 0.01
IEEE-30 6 14 14 0.29 14 0.01
IEEE-57 12 35 35 57.65 35 0.04
RTS-96 13 40 [35,39] - 37 0.14
IEEE-118 14 48 48 130.70 48 0.15
IEEE-300 24 139 [6,139] - 135 11.98
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When s ≥ 3, each vertex vij with 2 ≤ i ≤ s− 1 is a length-s vertex cut on its own (by the

resulting distance between nodes v1j and vsj ), so γlats (Kq�Ps) ≥ (s− 2)q ≥ n/3.

We observe the cost of low latency “in practice” through the computational results given

in Table 2.7. We report the solution sizes and runtimes for different values of the latency

parameter s ∈ {diam, diam +1, diam +2, n− 1} under hop-based distances. Thus, we have

the strictest case of s = diam and the most relaxed value of s = n− 1, which corresponds

to the minimum CDS problem when edges are bidirected. The solve times tend to improve

as s increases, and we are able to solve all instances when s = n− 1. However, this is not

universally the case, e.g., for graph v100 d5. Some of the lower bounds can immediately be

improved based on the table. For example, we can claim a lower bound of 10 for the instance

v150 d20 when s = diam, since 10 is optimal for the less restrictive case s = diam +1.

The runtimes for the case s = n−1 closely resemble those given by Buchanan et al. (2015)

for the minimum CDS problem. This is unsurprising given that the approach taken here is

very similar. However, the instance IEEE-300 takes longer here (514.34 vs. 52.88 seconds).

This can be attributed to the 492.86 seconds spent in our slower callback routines.

In some applications, achieving low latency is desirable but should not be viewed as a

“hard” constraint. In this case, the tradeoff between CDS size and the latency guarantee

should be considered. For example, the results for graphs v30 d10 and IEEE-14 show that low

latency comes for free; there is a minimum CDS that also satisfies the most restrictive (but

feasible) latency value s = diam. On the other hand, for the graphs v100 d30 and v150 d30,

the optimal objective triples when tightening the latency parameter from s = 3 to s = 2 and

may not be justified.

We also give the optimal objectives for the dominating (s− 2)-club problem. As observed

in the introduction, the formalization based on dominating (s−2)-clubs does not quite capture

the intent of the latency constraints, and here we see that it usually gives the impression that

no suitable low-latency CDS exists, and yet there exists a latency-s CDS. This occurs for 37
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of the 47 graphs when s = diam(G). An example is given in Figure 2.7(a). Also, Figure 2.7(b)

shows an instance where both problems are feasible but have different optimal solutions.

(a) IEEE-30 (b) v50 d10

Figure 2.7: Side (a) shows a minimum latency-6 CDS for IEEE-30; there is no dominating
4-club. Side (b) shows a minimum latency-5 CDS D and a minimum dominating 3-club D′

for the graph v50 d10. Nodes in D∪D′ are larger; nodes in D \D′ are white; nodes in D′ \D
are black; nodes in D ∩D′ are gray.

2.4.5 Results for the Fault-Tolerant Variant

In Table 2.8, we provide results for the fault-tolerant variant, where r = 2, and s is set to

the smallest feasible value4 max{diam(G− v) | v ∈ V }. The reason for including results for

r = 2 (and not for larger values) is that network topologies that continue to function after

the failure of a single entity are often considered sufficient for practical purposes (Monma

and Shallcross, 1989; Grötschel et al., 1992a).

The implementation needed to be modified to accommodate r = 2. For one, we needed to

alter the heuristic. Our approach is to first find a feasible solution D ⊆ V for r = 1 using

the BestInHeuristic from before. Then we consider some v ∈ D and check if D \ {v} is a

4If the graph has a cut vertex, we exclude it from consideration since there is no feasible (finite) value for
s.
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Table 2.7: Results for different values of the latency parameter s. The case where s = n− 1
is identical to the minimum strongly connected dominating set problem. We also report the
objective of the dominating (s− 2)-club problem (club). Here, ∞ denotes infeasibility, and
blank cells indicate that s− 2 ≤ 0.

s = diam s = diam +1 s = diam +2 s = n− 1
graph diam club obj total club obj total club obj total obj total
v30 d10 8 ∞ 15 0.02 15 15 0.02 15 15 0.02 15 0.04
v30 d20 5 8 8 0.03 7 7 0.01 7 7 0.02 7 0.01
v30 d30 3 ∞ 8 0.10 5 5 0.05 4 4 0.01 4 0.01
v30 d50 2 7 0.01 3 3 0.01 3 3 0.01 3 0.01
v30 d70 2 3 0.04 2 2 0.01 2 2 0.01 2 0.01
v50 d5 14 32 32 0.07 32 32 0.13 31 31 0.19 31 0.36
v50 d10 5 19 18 0.18 14 14 0.18 13 13 0.11 12 0.23
v50 d20 3 ∞ 14 0.11 7 7 0.27 7 7 0.17 7 0.17
v50 d30 3 ∞ 8 1.12 5 5 0.10 5 5 0.12 5 0.12
v50 d50 2 9 0.17 3 3 0.10 3 3 0.02 3 0.02
v50 d70 2 4 0.79 2 2 0.03 2 2 0.02 2 0.02
v70 d5 8 32 32 0.53 29 29 0.74 28 28 1.38 27 0.76
v70 d10 4 ∞ 29 2.98 17 16 8.87 13 13 0.47 13 0.10
v70 d20 3 ∞ 17 305.96 8 8 0.21 7 7 0.19 7 0.14
v70 d30 3 ∞ 7 3.33 5 5 0.17 5 5 0.16 5 0.16
v70 d50 2 10 0.56 3 3 0.05 3 3 0.05 3 0.05
v70 d70 2 5 1.57 2 2 0.10 2 2 0.06 2 0.06
v100 d5 5 ∞ 56 17.91 40 [34,36] - 29 29 2018.43 24 0.56
v100 d10 4 ∞ [22,26] - 15 15 4.24 14 14 0.41 13 0.25
v100 d20 3 ∞ [14,20] - 9 9 2.35 8 8 0.53 8 0.51
v100 d30 2 39 5.00 ∞ [7,12] - 6 6 0.94 6 0.98
v100 d50 2 12 61.27 4 4 0.87 4 4 0.89 4 0.93
v100 d70 2 5 8.17 3 3 1.20 3 3 1.18 3 1.20
v120 d5 6 31 31 1087.17 28 28 97.26 26 26 4.36 25 0.62
v120 d10 3 ∞ 63 10.31 ∞ [17,31] - 15 15 202.51 13 0.69
v120 d20 3 ∞ [10,21] - 9 9 5.67 8 8 3.46 8 1.54
v120 d30 3 ∞ [7,12] - 6 6 1.10 6 6 1.20 6 1.10
v120 d50 2 [11,12] - 4 4 4.78 4 4 3.71 4 3.63
v120 d70 2 5 29.67 3 3 2.06 3 3 2.16 3 2.08
v150 d5 5 ∞ [30,54] - [28,33] [26,40] - [26,28] [26,33] - 26 2.10
v150 d10 3 ∞ [43,61] - ∞ [14,28] - 16 [15,18] - 14 4.94
v150 d20 3 ∞ [9,22] - 10 10 379.34 9 9 7.13 9 6.88
v150 d30 2 [35,41] - ∞ [6,11] - 6 6 7.65 6 3.96
v150 d50 2 [9,13] - 4 4 2.38 4 4 2.49 4 2.77
v150 d70 2 6 569.09 3 3 3.29 3 3 3.35 3 3.41
v200 d5 4 ∞ [49,92] - [31,52] [26,50] - [25,46] [26,35] - 27 10.00
v200 d10 3 ∞ [26,64] - ∞ [14,29] - [14,19] [14,21] - 16 301.83
v200 d20 3 ∞ [8,22] - 10 [9,11] - 9 9 183.40 9 184.27
v200 d30 2 [27,44] - ∞ [6,12] - 7 7 223.04 7 205.41
v200 d50 2 [8,15] - 4 4 145.90 4 4 7.44 4 7.84
v200 d70 2 [4,7] - 3 3 6.43 3 3 6.29 3 6.59
IEEE-14 5 5 5 0.01 5 5 0.01 5 5 0.01 5 0.01
IEEE-30 6 ∞ 14 0.01 13 13 0.01 11 11 0.01 11 0.01
IEEE-57 12 35 35 0.04 31 31 0.08 31 31 0.19 31 1.88
RTS-96 13 37 37 0.14 35 35 0.46 34 34 0.38 32 1.90
IEEE-118 14 48 48 0.15 46 46 0.25 45 45 0.25 43 1.18
IEEE-300 24 135 135 11.98 131 131 35.08 130 130 66.30 129 514.34
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latency-s CDS. If not, then we augment it by adding high score vertices from V \D in the

same way as in BestInHeuristic until the failure of v ∈ D will not cause problems. We do

this for each vertex v ∈ D from the initial solution (for r = 1) until our heuristic solution is

feasible for r = 2.

We also had to modify the callback routines. When the solver encounters a vertex subset

D that satisfies the initial constraints, we check if it is a latency-s CDS (for r = 1). If

not then V \D is a length-s vertex cut, and we strengthen it using Minimalize as before.

Supposing D is a latency-s CDS, then we check if it is a solution for r = 2, i.e., if D \ {v} is

a latency-s CDS for each v ∈ D. If not, then (V \D) ∪ {v} is a length-s vertex cut, and we

use Minimalize on it.

2.4.6 Results when Delays are Node-Weighted and Transmitter-Based

In this section, we provide computational results for instances in which delays are node-

weighted and transmitter-based. The intent is to model wireless sensor networks in which

delays depend on the transmitting node. In our experiments, we make the simplifying

assumption that the delay at node i is a given constant wi. This is the time for node i to pass

a message to any neighboring node. Following the transformation given in the introduction,

this means that the edges pointing away from node i should have weight wi. However, if one

were to look at our implementation, they would see that our weights are stored by node. We

prefer this representation since it is more space efficient.

To ensure that the node-based delays wi used in our experiments are somewhat reasonable

and reproducible, we define them as follows, where dist(i, j) is hop-based.

wi :=

⌊
1000(n− 1)∑
j∈V dist(i, j)

⌋
.

The reasoning for defining wi in this way is as follows. So-called central nodes in the network
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Table 2.8: Results for the fault-tolerant variant, where r = 2 and s = max{diam(G− v) | v ∈
V }. Only biconnected graphs are considered. The number of branch-and-bound nodes is
“BB node.”

graph diam s BB node htime hobj obj total
v30 d30 3 3 462 0.00 12 12 0.09
v30 d50 2 2 0 0.01 15 14 0.02
v30 d70 2 2 0 0.00 6 5 0.02
v50 d10 5 5 239 0.12 34 32 0.33
v50 d20 3 4 432 0.03 15 13 0.25
v50 d30 3 3 10625 0.01 13 12 2.28
v50 d50 2 2 9 0.02 18 15 0.19
v50 d70 2 2 0 0.00 7 6 0.33
v70 d5 8 10 201 0.27 53 51 0.61
v70 d10 4 5 7519 0.13 33 27 4.44
v70 d20 3 3 384357 0.12 31 26 106.28
v70 d30 3 3 29771 0.02 14 12 7.30
v70 d50 2 2 174 0.03 18 16 0.56
v70 d70 2 2 163 0.01 9 7 1.77
v100 d5 5 6 134933 0.71 63 56 102.40
v100 d10 4 4 943671 0.29 48 [38,41] -
v100 d20 3 3 1260796 0.15 32 [24,27] -
v100 d30 2 3 366610 0.07 18 [11,16] -
v100 d50 2 2 21597 0.07 19 18 36.17
v100 d70 2 2 4146 0.02 10 8 14.25
v120 d5 6 7 134501 1.22 59 50 164.92
v120 d10 3 4 570958 0.56 42 [28,39] -
v120 d20 3 3 357951 0.28 32 [18,30] -
v120 d30 3 3 265467 0.08 19 [10,17] -
v120 d50 2 2 1109463 0.13 22 [16,18] -
v120 d70 2 2 6075 0.02 10 8 37.63
v150 d5 5 5 388468 2.44 80 [53,80] -
v150 d10 3 4 283107 0.49 45 [25,45] -
v150 d20 3 3 273843 0.51 36 [16,34] -
v150 d30 2 3 244025 0.20 19 [9,19] -
v150 d50 2 2 222265 0.18 22 [15,18] -
v150 d70 2 2 628745 0.04 11 [8,9] -
v200 d5 4 4 644105 12.81 128 [104,118] -
v200 d10 3 3 426782 5.56 95 [55,95] -
v200 d20 3 3 224602 0.79 32 [13,32] -
v200 d30 2 2 77784 6.57 72 [49,63] -
v200 d50 2 2 33061 0.64 25 [13,22] -
v200 d70 2 2 119071 0.07 12 [7,9] -
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will be used more frequently to transmit information, resulting in longer queueing delays.

The quantity (n − 1)/
∑

j∈V dist(i, j) is the definition of (normalized) closeness centrality

and the first definition for wi that we tried. However, it is fractional, and the inexactness

of later floating point calculations caused problems. To avoid exact rational arithmetic, we

wanted to round closeness centrality to an integer, but this would give either a zero or a one.

Multiplying by a large integer (1000 in our case) allowed for more diverse delays.

Table 2.9 provides our results with these delays where s = diam(G) is set to be as restrictive

as possible while maintaining feasibility. They indicate a strength of our approach—that

using weighted distances has little impact on the performance.

2.5 Conclusion

In this chapter, we introduce a latency-constrained variant of the minimum CDS problem

motivated by applications in wireless sensor networks in which one seeks a virtual backbone

that provides for small end-to-end delays. We propose integer programming formulations

based on length-bounded vertex cuts. These formulations generalize the best-performing

existing formulations for the minimum CDS problem and also generalize the best-performing

formulations for the fault-tolerant variant—the minimum k-connected k-dominating set

problem. A branch-and-cut implementation of formulation CUT makes easy work of synthetic

instances having fewer than 100 nodes and real-life instances with up to 300 nodes, significantly

outperforming formulation POLY. Our proposed formulations are in the same vein as the

recent “thin” approaches for other optimization problems (Fischetti et al., 2017a, 2016). In

ongoing and future research, we study the potential of using similar thin formulations based

on length-bounded vertex cuts for other distance-constrained problems in networks, e.g.,

Salemi and Buchanan (2020). We also focused on exact approaches. Only because our MIP

solver Gurobi had problems finding feasible solutions in an hour did we employ a simple

construction heuristic. There is certainly room for improvement on this front, although the
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Table 2.9: Results for the weighted-distance variant. See Section 2.4.6 for weighting informa-
tion.

graph s BB node hobj obj total
v30 d10 2281 0 21 21 0.02
v30 d20 2317 31 12 11 0.04
v30 d30 1751 117 19 18 0.07
v30 d50 1422 48 10 9 0.06
v30 d70 1585 0 8 7 0.04
v50 d5 2549 21 37 37 0.11
v50 d10 1961 377 29 29 0.29
v50 d20 1614 158 33 32 0.21
v50 d30 1743 6317 25 22 1.17
v50 d50 1400 523 14 14 0.27
v50 d70 1606 285 8 6 0.21
v70 d5 2055 919 50 48 0.71
v70 d10 1701 42 52 50 0.51
v70 d20 1624 10527 43 40 2.37
v70 d30 1716 3556 35 30 1.47
v70 d50 1404 5631 17 15 3.04
v70 d70 1581 328 8 8 0.47
v100 d5 1701 10376 79 76 3.37
v100 d10 1785 1820846 55 [47,51] -
v100 d20 1678 290399 34 [21,33] -
v100 d30 1211 13773 51 47 6.46
v100 d50 1378 244673 19 17 61.96
v100 d70 1571 1250 9 8 1.82
v120 d5 1948 542530 59 53 774.43
v120 d10 1471 97436 76 70 31.07
v120 d20 1659 2327430 47 [37,43] -
v120 d30 1695 4844453 47 40 1101.31
v120 d50 1389 6911583 18 [14,16] -
v120 d70 1559 475 10 9 3.21
v150 d5 1757 4407299 89 87 2378.46
v150 d10 1469 1686790 102 [81,92] -
v150 d20 1663 337800 50 [30,47] -
v150 d30 1209 4540949 58 [43,50] -
v150 d50 1371 4427905 24 [18,21] -
v150 d70 1559 317 12 10 4.38
v200 d5 1594 374407 137 [80,135] -
v200 d10 1503 419384 122 [83,109] -
v200 d20 1640 2184837 106 [84,96] -
v200 d30 1201 1162600 67 [45,63] -
v200 d50 1361 4196920 26 [20,23] -
v200 d70 1557 8868 12 11 46.41
IEEE-14 2154 0 8 8 0.01
IEEE-30 2121 0 16 16 0.02
IEEE-57 2306 0 41 41 0.11
RTS-96 2241 285 42 41 0.51
IEEE-118 2556 0 48 48 0.84
IEEE-300 2646 6558 141 137 66.90
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negative results given in Section 2.1.1 should not be ignored.
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CHAPTER III

IMPOSING CONTIGUITY CONSTRAINTS IN POLITICAL DISTRICTING

MODELS1

In the USA, congressional redistricting occurs every 10 years, soon after the census has been

taken and the number of representatives for each state has been determined based on their

populations (a process called reapportionment). A redistricting plan, which specifies how the

district lines will be drawn within a US state, must satisfy certain constraints. Two typical

constraints are that: (i) each district must be contiguous, and (ii) each district must have

the “same” population. There are other properties that redistricting plans must satisfy (e.g.,

the Voting Rights Act prohibits racial gerrymandering) but they are often not as clear-cut

as contiguity and population-equality or may vary by state (e.g., some states require the

preservation of political subdivisions like counties).

Many redistricting plans will satisfy the contiguity and population-equality constraints,

allowing redistricters to optimize a particular objective or to satisfy a set of additional

constraints. This opens the door for state legislatures (who often control redistricting) to

leverage the process to their benefit, resulting in partisan or incumbent gerrymanders. Indeed,

gerrymandering has become so contentious lately, that it led to several cases before the

Supreme Court of the United States in the last few years. These cases included: Lamone

v. Benisek regarding Democratic gerrymandering in Maryland, Rucho v. Common Cause

regarding Republican gerrymandering in North Carolina, and Abbott v. Perez regarding

racial gerrymandering in Texas. Preliminary evidence of a gerrymander often includes

1This chapter is based on work with Austin Buchanan and Eugene Lykhovyd (Validi et al., 2020).
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disproportionate electoral outcomes (e.g., in 2016, Republicans won 77% of North Carolina’s

congressional seats despite winning only 53% of the votes) or unusually shaped, non-compact

districts (e.g., Maryland’s 3rd congressional district2, depicted in Figure 3.1, was drawn

by the state’s Democrats and has been compared to a “broken-winged pterodactyl, lying

prostrate across the center of the state” by a federal judge (Linskey, 2012)). However,

neither a disproportionate outcome nor an unusually shaped district is a tell-tale sign of

gerrymandering (Duchin et al., 2019). In June 2019, the Supreme Court decided that partisan

gerrymandering falls outside the purview of the federal courts, unleashing a new era of

gerrymandering.

Figure 3.1: Maryland’s 3rd congressional district following the 2010 census.

In an effort to de-politicize the redistricting process, some have suggested that “redistricting

should be a bureaucratic, boring process where you get the census data, you turn the crank, and

you get new maps for the next decade” (Boehm, 2018). Others have commented unfavorably

on automated redistricting because: (1) reasonable people can disagree about what properties

the “best” redistricting plan should satisfy, and (2) even if there were universal agreement

on the desiderata, the resulting problem would almost certainly be NP-hard (Altman and

McDonald, 2010). Nevertheless, the show must go on. Some redistricting plan must be

2Operations researchers might be interested to know that the INFORMS offices sit just outside of this
district.
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chosen, and computers will inevitably be used in its creation, whether to provide starting

points for discussion, to refine preliminary plans, or to understand the limits of what is

possible. In any case, imposing contiguity will be important; 23 states require contiguity by

law, and the others almost always practice it anyway (Altman, 1998; Duchin et al., 2019).

Researchers have struggled to handle the contiguity constraints inherent in redistricting

problems, despite a long history. Hess et al. (1965) proposed perhaps the first optimization

model for redistricting. It sought an optimally compact redistricting plan, where compactness

was measured in terms of a moment-of-inertia objective, subject to constraints on population

equality. Due to the model’s compactness-seeking objective, it tends to generate contiguous

or nearly-contiguous districts, although none of the model’s constraints explicitly impose

contiguity. Consequently, Hess et al. manually adjusted their solutions to make them

contiguous.

Since then, there have been several attempts to adjust the Hess model (or others similar

to it) so that contiguity is explicitly ensured (Zoltners and Sinha, 1983; Drexl and Haase,

1999; Caro et al., 2004; Shirabe, 2009; Duque et al., 2011; Oehrlein and Haunert, 2017; Kim

and Xiao, 2017). Nevertheless, researchers have remained pessimistic.

• “[Contiguity] constraints make [districting] much more difficult than other partitioning

problems in combinatorial optimization, such as coloring or frequency assignment.”

(Ricca and Simeone, 2008)

• “[Contiguity] is particularly difficult to deal with and, sometimes, it is even discarded

from [political districting] models and considered only a posteriori.” (Ricca et al., 2013)

• “Ensuring contiguity efficiently seems to be an issue in exact methods [for political

districting].” (Goderbauer and Winandy, 2018)

• “For exact methods, contiguity enforcement has been a major challenge.” (Swamy

et al., 2019b)
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With this in mind, this chapter studies how to best impose contiguity in the context of

the Hess model. We consider the following models:

1. SHIR, a flow-based model credited to Shirabe (2005, 2009) and detailed by Oehrlein

and Haunert (2017);

2. CUT, a cut-based model proposed by Oehrlein and Haunert (2017) that draws from Car-

vajal et al. (2013) and others;

3. MCF, a new flow-based model that we show is equivalent in strength to CUT and

stronger than SHIR at the cost of having more variables;

4. LCUT, a new cut-based model that is shown to be stronger than the other models.

We also examine the separation problems associated with the CUT and LCUT models; the

former is shown to be solvable in time O(n2 log3 n), whereas the procedure used by Oehrlein

and Haunert (2017) takes time O(n4). (Here, n is the number of vertices.)

To evaluate the performance of the four models, we conduct a thorough set of compu-

tational experiments, testing the four models on redistricting instances for every US state

at the county and census tract levels. In a nod to Hess et al. (1965), we use the original

moment-of-inertia objective function in our experiments. We find that the new LCUT model

is the best-performing formulation on the county-level instances where the problem has

more of a combinatorial flavor. On the tract-level instances, which have significantly more

granularity, CUT and LCUT perform nearly the same and solve 21 instances to optimality.

The largest instance that CUT solves is for Indiana. This instance has 1, 511 census

tracts and uses (1, 511)2 = 2, 283, 121 binary variables. To our knowledge, this is significantly

larger than any districting instance ever solved in the literature by an exact method—with

or without contiguity constraints. For example, Mehrotra et al. (1998) use branch-and-price

for South Carolina, essentially at the county level, having approximately 50 vertices and 6

districts. Several of their steps were not automated, including the splitting and joining of
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several counties pre-solve, and manual adjustments post-solve for population-equality, and

were ultimately unable to guarantee optimality. A more recent paper by Swamy et al. (2019b)

heuristically reduces the sizes of instances by a series of graph contractions until n ≤ 200

(n2 ≤ 40, 000) at which point they are able to deploy their exact method. They motivate this

graph contraction procedure by noting that Wisconsin has 1, 409 tracts and by pointing out

the enormous size of the resulting MIP. This instance can also be solved with our techniques

if Hess et al.’s original objective function is used.

To encourage future research in this area, and for purposes of transparency, we make our

test instances, C++ source code, and redistricting plans (maps and block equivalency files)

available at https://github.com/zhelih/districting. The source code is released under

a GNU General Public License, which gives users the ability to run, study, share, and modify

it.

3.1 Background and Literature Review

In this section, we give a brief overview of redistricting, particularly congressional redistricting

for the US, and approaches for constructing redistricting plans. The literature on these

topics is vast, and we can only cover the highlights. Interested readers are encouraged to

refer to Di Cortona et al. (1999), Murphy et al. (2013), Ricca et al. (2013), and Goderbauer

and Winandy (2018) for perspectives on redistricting from operations researchers, as well

as Grofman (1985), Arrington (2010), and Bullock III (2010) for perspectives from social

scientists.

3.1.1 Redistricting principles and laws in the US

A redistricting plan must satisfy certain state and federal laws. These laws are often crafted

to ensure that traditional redistricting principles are followed (e.g., population-equality,

contiguity, compactness, preservation of political subdivisions and communities of interest) or

68



that the districting process does not disadvantage a particular group (e.g., a racial minority

or members of a political party). Below we mention some examples of redistricting laws in

the US. Our intent is to provide some context for the stylized redistricting problem that

we will consider in this chapter, while also recognizing that the districting plans from our

computational experiments will not consider all of these redistricting principles or laws (which

also vary by state).

Population balance. Federal laws in the US require that congressional districts within

a state all have the “same” population. This one-person, one-vote principle was formally

interpreted by the Supreme Court to be a consequence of Article I, Section 2 of the US

Constitution in the 1964 case Reynolds v. Sims. In the decades following Reynolds, the

courts established tighter and tighter restrictions on how much population deviation is

allowed. There is currently no threshold for population deviation beyond which a districting

plan will necessarily be deemed legal (i.e., a “safe harbor”), and a population deviation

of just 19 people (0.0029%!) was ruled unconstitutional in 2002 by a federal district court

in Pennsylvania (Hebert et al., 2010). Nevertheless, larger population deviations of up to

1% have been allowed if there is a compelling justification, such as the desire to satisfy a

traditional redistricting principle. For example, West Virginia kept all of its counties intact

at the price of a 0.79% population deviation (NCSL, 2019).

Race. Federal law also dictates what role race should (or should not) play in redistricting.

For example, Section 2 of the Voting Rights Act (VRA) prohibits racial gerrymandering,

disallowing any practice or procedure that inhibits a protected minority group from electing

candidates of their choice. In the 1986 case Thornburg v. Gingles, the Supreme Court

established when states must create “majority-minority” or minority-opportunity districts

with the three-pronged Gingles test, the first prong of which requires that the minority group

69



be sufficiently numerous and geographically compact. There are also constitutional limits

on racial gerrymandering. For example, in the 1993 case Shaw v. Reno, the Supreme Court

established that the Equal Protection Clause of the 14th Amendment prohibits states from

the excessive or unjustified use of race when redistricting, especially if race predominates

the map-making process to the exclusion of traditional redistricting principles (Hebert et al.,

2010).

State laws (e.g., contiguity). States also enact laws regarding congressional redistricting.

For example, contiguity is not federally required, so 23 states have imposed this requirement

themselves; the other states almost always enact contiguous districts anyway (Duchin et al.,

2019). States such as Iowa have additional laws regarding compactness, the preservation of

political subdivisions, and the non-use of partisan data (NCSL, 2019).

3.1.2 Algorithms and models for redistricting

Any practical variant of redistricting is NP-hard (Altman, 1997), leading many researchers to

propose their own heuristics (Ricca et al., 2013). A non-exhaustive list of examples include

greedy construction heuristics (Vickrey, 1961; Kim, 2019), local search heuristics (King et al.,

2012, 2015, 2018), metaheuristics like simulated annealing and tabu search (Bozkaya et al.,

2003; Ricca and Simeone, 2008; Altman et al., 2011; Guo and Jin, 2011; Liu et al., 2016;

Olson, 2019; Gutiérrez-Andrade et al., 2019), and generalizations of Voronoi diagrams (Miller,

2007; Svec et al., 2007; Ricca et al., 2008; Cohen-Addad et al., 2018; Levin and Friedler,

2019).

Recently, several researchers propose Markov chain Monte Carlo (MCMC) methods for

generating large collections of redistricting plans, where the aim is understand the distribution

of redistricting plans, which can provide a baseline with which to compare proposed or

implemented plans (Fifield et al., 2015; Cho and Liu, 2018; Adler and Wang, 2019; DeFord
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et al., 2019). If a proposed redistricting plan is an outlier (say, with respect to seat share

distribution), this might suggest an intent to gerrymander. MCMC sampling methods for

redistricting are quite similar to local search in that they move from one feasible solution to

a neighboring feasible solution.

The literature also contains many exact methods for redistricting, including numerous IP

formulations (Ricca et al., 2013). Perhaps the two most notable are what we will call the

Hess model and the set partition model.

The Hess model, detailed in Section 3.1.4, is a constrained k-median model. Its essence

can be found in numerous papers on redistricting in the OR literature (Hess et al., 1965;

Hojati, 1996; Gentry et al., 2015). The most popular technique for imposing contiguity in

the context of the Hess model is a flow-based formulation credited to Shirabe (2005, 2009)

and fully fleshed out by Oehrlein and Haunert (2017). This formulation, which is detailed

in Section 3.2.1, is easy to implement and has been used in one form or another in several

papers (Duque et al., 2011; Gopalan et al., 2013; Oehrlein and Haunert, 2017; Kong et al.,

2019; Swamy et al., 2019b). Another notable approach for imposing contiguity uses graph

cuts. Specifically, Oehrlein and Haunert (2017) propose to use a, b-separator inequalities for

redistricting (detailed in Section 3.2.3); others have proposed related inequalities that are

weaker (Drexl and Haase, 1999) or not valid (Zoltners and Sinha, 1983).

In the set partition model, there is a binary variable for each possible district, and the

task is to select k of them such that every part of the state is covered exactly once. The

approaches of Garfinkel and Nemhauser (1970) and Mehrotra et al. (1998) are based on

formulations of this type. It should be noted that, in general, the set of possible districts

grows exponentially, meaning that formulations of this type are solved either using a select

subset of district variables or the variables are introduced on-the-fly via column generation.

Contiguity is handled during pricing.
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3.1.3 Notation and problem definition

When trying to impose the contiguity constraints involved in political districting, it is helpful

to use the so-called contiguity graph (Ricca et al., 2013), also known as the adjacency graph

or dual graph. In this graph G = (V,E), each vertex v ∈ V represents a contiguous parcel

of land (e.g., a county or census tract), and there is an edge {u, v} ∈ E connecting vertices

u and v when the corresponding land parcels share a border of nonzero length (e.g., it is

not enough to meet at a point3). By this construction, G will be simple and planar, and

thus sparse. Indeed, its number of edges m := |E| is linear with respect to the number of

vertices n := |V |; Euler’s polyhedral formula implies that m ≤ 3n − 6 when n ≥ 3. The

(open) neighborhood of vertex i is denoted by N(i) := {j ∈ V | {i, j} ∈ E}, and the closed

neighborhood is denoted by N [i] := N(i) ∪ {i}. Other necessary data includes:

• the number k of districts to be created;

• the population pv of each land parcel v ∈ V ;

• the minimum and maximum population (L and U) allowed in a district.

Another piece of data that might be used to construct a “compact” districting plan is the

distance dij between (the centers of) land parcels i and j. Indeed, these distances appear in

the compactness-seeking objective function in the model of Hess et al. (1965).

For the purposes of this chapter, the districting problem is defined as follows. If any exist,

find a partition of the vertex set V into districts such that:

1. each vertex belongs to exactly one district;

2. there are k districts;

3. each district V ′ satisfies the population bounds, i.e., L ≤
∑

i∈V ′ pi ≤ U ;

3Authors sometimes use the notions of queen contiguity and rook contiguity. In the former, land parcels
that meet at a point are considered to be adjacent, while in the latter (which we use) they are not.
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4. each district V ′ is contiguous, i.e., G[V ′] is connected.

We call these four constraints the bright-line rules, and any districting plan that satisfies

them is said to be feasible. If there are multiple feasible solutions, the task is to find one that

is most compact with respect to the penalties w, which are discussed next.

3.1.4 The Hess model

Hess et al. (1965) introduced the classical integer program for political districting, which uses

the following n2 binary variables.

xij =

 1 if vertex i is assigned to (the district centered at) vertex j

0 otherwise.

The Hess formulation is as follows, where wij is a penalty charged for assigning i to j.

min
∑
i∈V

∑
j∈V

wijxij (3.1a)

∑
j∈V

xij = 1 ∀i ∈ V (3.1b)

∑
j∈V

xjj = k (3.1c)

Lxjj ≤
∑
i∈V

pixij ≤ Uxjj ∀j ∈ V (3.1d)

xij ≤ xjj ∀i, j ∈ V (3.1e)

xij ∈ {0, 1} ∀i, j ∈ V. (3.1f)

Constraints (3.1b) ensure that each vertex is assigned to a district. Constraint (3.1c) ensures

that k districts are chosen. Constraints (3.1d) ensure that the population of each district

lies between L and U . Constraints (3.1e) were not originally included by Hess et al. (1965)
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but are usually added for strength (Ricca et al., 2013). In our code, we also introduce a

new variable to replace the expression
∑

i∈V pixij in constraints (3.1d), thus reducing the

formulation’s size in computer memory by 20%.

Hess et al. (1965) considered a moment-of-inertia objective, defining the penalties wij as

follows.

(penalty for moment-of-inertia objective) wij := pid
2
ij.

Meanwhile, the traditional objective used in facility location would capture the total number of

miles traveled if the state’s inhabitants were to drive to their district centers with the penalties

wij := pidij, where d is set using road distances (Daskin and Tucker, 2018). Duchin (2018)

has humorously described this measure of compactness as an “appealing one, particularly if

you imagine replacing distance with travel time” because you can think of it as answering the

question: “How long does it take you to go yell at your representative?” Another objective

that has been considered by Hojati (1996) and Gopalan et al. (2013) uses squared Euclidean

distances wij := d2ij . Others such as Swamy et al. (2019a) and Mehrotra et al. (1998) use the

simpler penalty wij := dij. In fact, Mehrotra et al. (1998) take dij as the hop-based distance

between i and j in the contiguity graph. In a nod to Hess et al. (1965), we use the original

moment-of-inertia objective in our experiments; however, our analysis and techniques apply

regardless of which penalties are used. For more information about the many measures of

compactness in the literature, we refer the reader to the compactness critiques of Young

(1988) and the classification by Niemi et al. (1990).

The Hess model is the foundation of our proposed formulations. The feasible region of its

LP relaxation, which we denote by PHESS, is defined as follows.

PHESS :=
{
x ∈ Rn×n

+

∣∣ x satisfies constraints (3.1b), (3.1c), (3.1d), (3.1e)
}
.
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Note that the bounds xij ≤ 1 are implied by nonnegativity and the assignment con-

straints (3.1b).

3.2 Contiguity Models

Here, we consider four different models for imposing contiguity in the context of the Hess

model: SHIR, CUT, MCF, and LCUT. Two of them have appeared in the previous literature

(SHIR and CUT), while two others are new (MCF and LCUT). The flow-based models

SHIR and MCF refer to the “bidirected” version of the contiguity graph which we denote by

D = (V,A). This directed graph D is obtained from G = (V,E) by replacing each undirected

edge {u, v} ∈ E by its directed counterparts (u, v) and (v, u). Thus, |A| = 2|E|. The set of

edges pointing away from vertex i is denoted by δ+(i), and the set of edges pointing towards

vertex j is denoted by δ−(j).

3.2.1 SHIR

Oehrlein and Haunert (2017) propose a flow-based formulation, adapted from Shirabe (2009).

We provide (essentially) the same formulation below and call it SHIR. This formulation uses

the following flow variables.

f vij = the amount of flow, originating at district center v, that is sent across edge (i, j).
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The SHIR formulation is as follows, where f j(S) for S ⊆ A is shorthand for
∑

(u,v)∈S f
j
uv.

x ∈ PHESS (3.2a)

f j(δ−(i))− f j(δ+(i)) = xij ∀i ∈ V \ {j}, ∀j ∈ V (3.2b)

f j(δ−(i)) ≤ (n− 1)xij ∀i ∈ V \ {j}, ∀j ∈ V (3.2c)

f j(δ−(j)) = 0 ∀j ∈ V (3.2d)

f vij ≥ 0 ∀(i, j) ∈ A, ∀v ∈ V (3.2e)

xij ∈ {0, 1} ∀i, j ∈ V. (3.2f)

Now, we define the polytope PSHIR as follows.

PSHIR :=
{

(x, f) ∈ Rn×n × R2mn
∣∣ (x, f) satisfies constraints (3.2a)− (3.2e)

}
.

Remark 2. The following equations are implied in PSHIR.

f j(δ+(j)) =
∑

i∈V \{j}

xij ∀j ∈ V. (3.3)

Proof. Consider a point (x̂, f̂) that belongs to PSHIR. Then, for every vertex j ∈ V ,

f̂ j(δ+(j)) = f̂ j(δ+(j))− f̂ j(δ−(j)) (3.4a)

= f̂ j(δ+(j))− f̂ j(δ−(j))−
∑
i∈V

(
f̂ j(δ+(i))− f̂ j(δ−(i))

)
(3.4b)

= −
∑

i∈V \{j}

(
f̂ j(δ+(i))− f̂ j(δ−(i))

)
(3.4c)

=
∑

i∈V \{j}

(
f̂ j(δ−(i))− f̂ j(δ+(i))

)
=

∑
i∈V \{j}

x̂ij. (3.4d)

Here, equation (3.4a) holds by constraints (3.2d), equation (3.4b) holds because the flow
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variables in the summation cancel each other, and equation (3.4d) holds by constraints (3.2b).

3.2.2 MCF

The SHIR formulation uses “big-M” constraints (3.2c), which can result in a weak linear

programming relaxation. With this in mind, we propose a different flow-based formulation

which avoids the big-M constraints via a different variable definition.

fabij =

 1 if edge (i, j) ∈ A is on the path to vertex a from its district’s center b

0 otherwise.

The resulting MCF formulation, which can be viewed as a disaggregation of SHIR, is as

follows, where fab(S) for S ⊆ A is shorthand for
∑

(u,v)∈S f
ab
uv.

x ∈ PHESS (3.5a)

fab(δ+(b))− fab(δ−(b)) = xab ∀a ∈ V \ {b}, ∀b ∈ V (3.5b)

fab(δ+(i))− fab(δ−(i)) = 0 ∀i ∈ V \ {a, b}, ∀a ∈ V \ {b}, ∀b ∈ V (3.5c)

fab(δ−(b)) = 0 ∀a ∈ V \ {b}, ∀b ∈ V (3.5d)

fab(δ−(j)) ≤ xjb ∀j ∈ V \ {b}, ∀a ∈ V \ {b}, ∀b ∈ V (3.5e)

fabij ≥ 0 ∀(i, j) ∈ A, ∀a ∈ V \ {b}, ∀b ∈ V (3.5f)

xij ∈ {0, 1} ∀i, j ∈ V. (3.5g)

To our knowledge, this formulation is new in the context of districting. Now, we define

the polytope PMCF as follows.

PMCF :=
{

(x, f) ∈ Rn×n × R2mn(n−1) ∣∣ (x, f) satisfies constraints (3.5a)− (3.5f)
}
.
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Note that the bounds fabij ≤ 1 are implied in PMCF by nonnegativity and constraints (3.5e).

Remark 3. The following equations are implied in PMCF.

fab(δ+(a))− fab(δ−(a)) = −xab ∀a ∈ V \ {b}, ∀b ∈ V (3.6a)

fab(δ+(a)) = 0 ∀a ∈ V \ {b}, ∀b ∈ V. (3.6b)

Proof. Consider a point (x̂, f̂) that belongs to PMCF. For distinct vertices a, b ∈ V ,

f̂ab(δ+(a))− f̂ab(δ−(a)) = f̂ab(δ+(a))− f̂ab(δ−(a))−
∑
j∈V

(
f̂ab(δ+(j))− f̂ab(δ−(j))

)
(3.7a)

= −
∑

j∈V \{a}

(
f̂ab(δ+(j))− f̂ab(δ−(j))

)
(3.7b)

= −
(
f̂ab(δ+(b))− f̂ab(δ−(b))

)
= −x̂ab. (3.7c)

Here, equation (3.7a) holds because the flow variables in the summation cancel each other.

The first equation in line (3.7c) holds by constraints (3.5c) and the second holds by con-

straints (3.5b). So, the point (x̂, f̂) satisfies the equations (3.6a). Further,

0 ≤ f̂ab(δ+(a)) = −x̂ab + f̂ab(δ−(a)) ≤ −x̂ab + x̂ab = 0.

Here, the first equation holds by the implied equations (3.6a), and the last inequality holds

by constraints (3.5e). Thus, the equations (3.6b) are implied in PMCF.

3.2.3 CUT

The CUT formulation, which was first used for districting by Oehrlein and Haunert (2017),

is based on the concept of a, b-separators, see also Carvajal et al. (2013); Buchanan et al.

(2015); Ahn and Park (2015); Fischetti et al. (2017b); Wang et al. (2017). An example of an
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a, b-separator is given in Figure 3.2.

Definition 6 (a, b-separator). A subset C ⊆ V \ {a, b} of vertices is called an a, b-separator

for G = (V,E) if there is no path from a to b in G− C.

5 2

4 3

1

Figure 3.2: Here, C = {2, 5} is a 1, 3-separator, and the inequality x13 ≤ x23 + x53 is valid
when districts are required to be connected.

The resulting a, b-separator inequalities (3.8b) are written for every ordered pair (a, b) of

nonadjacent vertices and every a, b-separator C, which we denote by the shorthand ∀(a, b, C).

As is usual, it is sufficient to consider minimal a, b-separators, where minimality is taken by

inclusion.

x ∈ PHESS (3.8a)

xab ≤
∑
c∈C

xcb ∀(a, b, C) (3.8b)

xij ∈ {0, 1} ∀i, j ∈ V. (3.8c)

Now, we define the polytope PCUT as follows.

PCUT :=
{
x ∈ Rn×n ∣∣ x satisfies constraints (3.8a)− (3.8b)

}
.

3.2.4 LCUT

The a, b-separator inequalities (3.8b) use the fact that the vertices assigned to a vertex b are

required to induce a connected subgraph. By exploiting additional information (e.g., that

the population bound U must also be satisfied), we can write stronger inequalities.
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We formalize this using the concept of a length-U a, b-separator. To do this, we need to

refer to vertex-weighted distances, where the weight of a vertex i is its population pi. The

distance distG,p(a, b) from a to b is the length
∑

v∈V (P ) pv of a shortest vertex-weighted path

P from a to b. An example is given in Figure 3.3.

Definition 7 (length-U a, b-separator). A subset C ⊆ V \ {a, b} of vertices is called a

length-U a, b-separator in G = (V,E), with respect to vertex weights p, if distG−C,p(a, b) > U .

5 2

4 3

1

Figure 3.3: When p = 1, C = {2} is a length-3 1, 3-separator, and the inequality x13 ≤ x23 is
valid when districts are required to have population at most 3 and be connected.

With this definition, we can write inequalities having the exact same form as the a, b-

separator inequalities (3.8b), except that C will now be a length-U a, b-separator. We write

these inequalities for every ordered pair (a, b) of distinct (possibly adjacent) vertices and every

(minimal) length-U a, b-separator C, which we again denote by the shorthand ∀(a, b, C).

x ∈ PHESS (3.9a)

xab ≤
∑
c∈C

xcb ∀(a, b, C) (3.9b)

xij ∈ {0, 1} ∀i, j ∈ V. (3.9c)

Similar length-bounded cut models have been proposed recently for other problems (Salemi

and Buchanan, 2020; Validi and Buchanan, 2019b; Arslan et al., 2019, 2020).

Remark 4. If distG,p(a, b) > U , then C = ∅ is a length-U a, b-separator and xab ≤ 0 is the

associated length-U a, b-separator inequality.
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Now, we define polytope PLCUT as follows.

PLCUT :=
{
x ∈ Rn×n ∣∣ x satisfies constraints (3.9a)− (3.9b)

}
.

3.3 Analysis of the Formulations

We now compare the strength of the four formulations, prove their correctness, and analyze

the separation problems associated with the exponentially-sized models CUT and LCUT.

3.3.1 Formulation strength

The main result of this subsection is the following theorem. A specific result is that the newly

proposed LCUT formulation is the strongest formulation in this chapter.

Theorem 7. For every instance of districting,

PLCUT ⊆ PCUT = projx PMCF ⊆ projx PSHIR,

and there exist instances for which the inclusions are strict.

Proof. This follows by Lemmata 4, 5, and 6, which are proven below.

Lemma 4. For every instance of districting, PLCUT ⊆ PCUT, and this inclusion can be strict.

Proof. Since a, b-separator inequalities are length-U a, b-separator inequalities for every U ,

the inclusion PLCUT ⊆ PCUT holds. Figure 3.4 gives an example where PLCUT 6= PCUT. So,

the inclusion can be strict.

Lemma 5. For every instance of districting, PCUT = projx PMCF.

Proof. (⊇) Suppose that (x̂, f̂) belongs to PMCF. To show that x̂ belongs to PCUT, it suffices

to show that x̂ satisfies constraints (3.8b) for an arbitrary pair of nonadjacent vertices a, b ∈ V
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5
x̂55 = 0.4
x̂52 = 0.1
x̂53 = 0.1
x̂54 = 0.4

2 x̂22 = 0.6
x̂23 = 0.4

4
x̂44 = 0.4
x̂43 = 0.2
x̂45 = 0.4

3 x̂33 = 0.6
x̂34 = 0.4

1

x̂12 = 0.5
x̂13 = 0.5

Figure 3.4: An example showing PLCUT 6= PCUT. Here, L = k = 2, U = 3 and p = 1. While
the point x̂ belongs to PCUT, it does not belong to PLCUT because it violates the length-3
1, 3-separator inequality (3.9b) for a = 1, b = 3, and C = {2}.

and a,b-separator C ⊆ V \ {a, b}. Let B the set of vertices reachable from b in the graph

G− C. Then,

x̂ab = f̂ab(δ+(b))− f̂ab(δ−(b)) (3.10a)

= f̂ab(δ+(B))− f̂ab(δ−(B)) (3.10b)

≤ f̂ab(δ+(B)) (3.10c)

≤ f̂ab(δ−(C)) (3.10d)

≤
∑
j∈C

f̂ab(δ−(j)) (3.10e)

≤
∑
j∈C

x̂jb. (3.10f)

Here, equation (3.10a) holds by constraints (3.5b), equation (3.10b) holds by constraints (3.5c),

and inequalities (3.10c)–(3.10e) hold by nonnegativity of f̂ . Finally, inequality (3.10f) holds

by constraints (3.5e).

(⊆) Suppose that x̂ belongs to PCUT. For every pair of distinct vertices a, b ∈ V , we define

f̂ab as follows. If vertices a and b are adjacent, then define f̂abba := x̂ab and f̂abij := 0 for all

other arcs (i, j) ∈ A \ {(b, a)}. If a and b are nonadjacent, consider the following maximum
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b-a flow problem in which the fixed x̂jb values are used as vertex capacities.

max fab(δ+(b)) (3.11a)

fab(δ+(i))− fab(δ−(i)) = 0 ∀i ∈ V \ {a, b} (3.11b)

fab(δ−(b)) = 0 (3.11c)

fab(δ−(j)) ≤ x̂jb ∀j ∈ V \ {b} (3.11d)

fabij ≥ 0 ∀(i, j) ∈ A. (3.11e)

This problem is feasible (by the zero flow), and its objective is at most one because the sink a

has capacity x̂ab by (3.11d). Let f̂abij for (i, j) ∈ A be an optimal solution to this flow problem.

Now we are to show that (x̂, f̂) satisfies constraints (3.5b)–(3.5f). They are easily satisfied

when the constraint quantifiers a and b are adjacent, by the simple definition of f̂ab in this

case. When the constraint quantifiers a and b are nonadjacent, constraints (3.5c)–(3.5f) hold

by the constraints defining the flow problem. So it remains to show that (x̂, f̂) satisfies

constraints (3.5b) for nonadjacent vertices a and b. By classical results of Ford Jr and

Fulkerson (1962) (see section 1.11 on vertex capacities), the flow value f̂ab(δ+(b)) is equal to

the weight
∑

j∈C x̂jb of a minimum-weight b, a-separator C, where vertex j has weight x̂jb.

Then,

x̂ab ≤
∑
j∈C

x̂jb = f̂ab(δ+(b)) = f̂ab(δ−(a)) ≤ x̂ab.

Here, the first inequality holds by assumption that x̂ satisfies constraints (3.8b), and the

last inequality holds by the capacity of vertex a in the flow problem (3.11d). Then, because

f̂ab(δ−(b)) = 0 by the flow problem (3.11c), the constraint f̂ab(δ+(b)) − f̂ab(δ−(b)) = x̂ab

holds.

Lemma 6. For every instance of districting, projx PMCF ⊆ projx PSHIR, and this can be
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strict.

Proof. To prove projx PMCF ⊆ projx PSHIR, consider a point (x̄, f̂) that belongs to PMCF.

We construct f̄ such that (x̄, f̄) belongs to PSHIR. For every vertex b ∈ V and every edge

(i, j) ∈ A, let

f̄ bij :=
∑

a∈V \{b}

f̂abij .

To show that (x̄, f̄) satisfies constraints (3.2b), consider distinct vertices i, b ∈ V . Then,

f̄ b(δ−(i))− f̄ b(δ+(i)) =
∑

a∈V \{b}

f̂ab(δ−(i))−
∑

a∈V \{b}

f̂ab(δ+(i)) (3.12a)

=
∑

a∈V \{b,i}

(
f̂ab(δ−(i))− f̂ab(δ+(i))

)
+ f̂ ib(δ−(i))− f̂ ib(δ+(i))

(3.12b)

= 0 + f̂ ib(δ−(i))− f̂ ib(δ+(i)) = x̄ib. (3.12c)

Here, equation (3.12a) holds by the definition of f̄ , and equations (3.12c) holds by con-

straints (3.5c) and (3.6a).

To show that (x̄, f̄) satisfies constraints (3.2c), consider distinct vertices i, b ∈ V . Then,

f̄ b(δ−(i)) =
∑

a∈V \{b}

f̂ab(δ−(i)) ≤
∑

a∈V \{b}

x̄ib = (n− 1)x̄ib.

Here, the first equation holds by the definition of f̄ , and the inequality holds by con-

straints (3.5e).

To show that (x̄, f̄) satisfies constraints (3.2d), consider a vertex j ∈ V . Then,

f̄ j(δ−(j)) =
∑

i∈V \{j}

f̂ ij(δ−(j)) = 0.
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Here, the first equation holds by the definition of f̄ , and the second holds by constraints (3.5d).

Figure 3.5 gives an example where PCUT 6= projx PSHIR. Since PCUT = projx PMCF by

Lemma 5, this shows that the inclusion projx PMCF ⊆ projx PSHIR can be strict.

1
x̂11 = 0.5
x̂12 = 0.3
x̂13 = 0.2

2
x̂22 = 0.5
x̂21 = 0.3
x̂24 = 0.2

3

x̂33 = 0.5
x̂32 = 0.2
x̂34 = 0.3

4
x̂44 = 0.5
x̂41 = 0.2
x̂43 = 0.3

f̂3
31 = 0.5

f̂2
31 = 0.3

f̂1
14 = 0.5

f̂3
14 = 0.3

f̂2
23 = 0.5

f̂4
23 = 0.3

f̂1
42 = 0.3

f̂4
42 = 0.5

Figure 3.5: An example showing projx PSHIR 6= PCUT. Here, L = U = k = 2 and p = 1.
While the point (x̂, f̂) belongs to PSHIR, x̂ does not belong to PCUT because it violates the
a, b-separator inequality (3.8b) for a = 1, b = 2, and C = {3, 4}.

3.3.2 Formulation correctness

Here we consider the correctness of the formulations. By this, we mean that they allow

precisely those plans that satisfy the four bright-line rules. To our knowledge, no previous

work has explicitly proven the correctness of the SHIR and CUT formulations. While their

correctness is not surprising, we feel that this step is critical to safeguard against seemingly

innocuous formulations, see Validi and Buchanan (2019a).

Definition 8. A given x̂ ∈ {0, 1}n×n is consistent if x̂ij ≤ x̂jj for all i, j ∈ V .

In the context of the x variables, a districting plan is represented as follows. If a given
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x̂ ∈ {0, 1}n×n is consistent, the associated set of district “roots” is given by

R(x̂) := {b ∈ V | x̂bb = 1},

and the district rooted at b ∈ R(x̂) is given by

Vb(x̂) := {a ∈ V | x̂ab = 1}.

Supposing that x̂ is consistent, the four bright-line rules can be expressed mathematically as

follows.

1. each vertex i ∈ V belongs to exactly one of the sets Vr(x̂), r ∈ R(x̂);

2. |R(x̂)| = k;

3. for every r ∈ R(x̂), L ≤
∑

i∈Vr(x̂) pi ≤ U ;

4. for every r ∈ R(x̂), Vr(x̂) induces a connected subgraph in G.

We restate the correctness theorem for completeness.

Theorem. Formulations SHIR, MCF, CUT, and LCUT are correct.

Proof. We are to show that, for each formulation F , x̂ ∈ {0, 1}n×n is consistent and satisfies

the four bright-line rules if and only if x̂ ∈ projx F . By Theorem 7, it suffices to show the

two claims:

1. if x̂ ∈ {0, 1}n×n is consistent and satisfies the four bright-line rules, then x̂ ∈ PLCUT;

and

2. if (x̂, f̂) ∈ PSHIR and x̂ ∈ {0, 1}n×n, then x̂ is consistent and satisfies the four bright-line

rules.

86



To prove the first claim, suppose that x̂ satisfies the four bright-line rules and is consistent.

By the first three rules, x̂ satisfies the constraints (3.9a) from the Hess model. So, all

that remains is to show that x̂ satisfies the length-U a, b-separator inequalities (3.9b). So,

consider vertices a and b and a length-U a, b-separator C ⊆ V \ {a, b}. If x̂ab = 0, then the

constraint (3.9b) is trivially satisfied, so suppose x̂ab = 1. This implies that a ∈ Vb(x̂). By

the fourth rule, Vb(x̂) induces a connected subgraph in G, implying that there exists a path

P from a to b in G[Vb(x̂)]. Moreover, this path P has length at most U , because V (P ) is a

subset of Vb(x̂) and because p(Vb(x̂)) ≤ U by the third rule. By the definition of a length-U

a, b-separator, there is at least one vertex c ∈ Vb(x̂) that belongs to both C and V (P ), and

so constraint (3.9b) is satisfied as

x̂ab = 1 = x̂cb ≤
∑
j∈C

x̂jb.

To prove the second claim, suppose that (x̂, f̂) ∈ PSHIR and x̂ ∈ {0, 1}n×n. This implies x̂

is consistent. By the correctness of the Hess formulation, the districting plan Vb(x̂), b ∈ R(x̂),

satisfies the first three bright-line rules. So, it suffices to show that the fourth holds, i.e., that

each vertex subset Vb(x̂) induces a connected subgraph Gb := G[Vb(x̂)] in G. For contradiction

purposes, suppose that some Vb(x̂) induces at least two connected components in G, and let

S be the vertex set of a component of Gb that does not contain vertex b. Let N(S) be the

neighborhood of S, i.e.,

N(S) := {j ∈ V \ S | ∃ v ∈ S 3 {j, v} ∈ E} .
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Then,

1 ≤ |S| =
∑
j∈S

x̂jb =
∑
j∈S

(
f̂ b(δ−(j))− f̂ b(δ+(j))

)
(3.13a)

=
∑
j∈S

 ∑
i∈N(j)

(f̂ bij − f̂ bji)

 (3.13b)

=
∑
j∈S

∑
i∈N(j)∩S

(
f̂ bij − f̂ bji

)
+
∑
j∈S

∑
i∈N(j)∩(V \S)

(
f̂ bij − f̂ bji

)
(3.13c)

= 0 +

∑
j∈S

∑
i∈N(j)∩(V \S)

f̂ bij −
∑
j∈S

∑
i∈N(j)∩(V \S)

f̂ bji

 (3.13d)

= 0 +

∑
j∈S

∑
i∈N(j)∩(V \S)

f̂ bij − 0

 (3.13e)

≤ 0 +

 ∑
i∈N(S)

f̂ b(δ+(i))− 0

 (3.13f)

=
∑
i∈N(S)

f̂ b(δ−(i))−
∑
i∈N(S)

x̂ib (3.13g)

=
∑
i∈N(S)

f̂ b(δ−(i))− 0 ≤ 0. (3.13h)

Equation (3.13a) holds by constraints (3.2b). Equation (3.13d) holds because, in the left

sum, each flow variable f̂ bij with i, j ∈ S appears once with a positive coefficient and

once with a negative coefficient, so they cancel each other. Equation (3.13e) holds by

constraints (3.2c) and (3.2e), because x̂ib = 0 for every vertex i ∈ N(S). Inequality (3.13f)

holds by constraints (3.2e). Equation (3.13g) holds by constraints (3.2b). The equation in

line (3.13h) holds because x̂ib = 0 for every vertex i ∈ N(S). The inequality in line (3.13h)

then holds by constraints (3.2c). This results in the contradiction 1 ≤ 0.
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3.3.3 The separation problems

Since the models CUT and LCUT have exponentially many constraints, it is important to

study the associated separation problems so that inequalities can be added to the model

on-the-fly as needed, instead of all up front which would render the models useless. This

problem asks: given x∗, is there an inequality from the model that x∗ violates? We show

that this can be solved in time O(n2 log3 n) for CUT, which is significantly faster than what

was previously published: O(n4) by Oehrlein and Haunert (2017). We then show that the

separation problem for LCUT is NP-hard. However, we show that both separation problems

can be solved in time O(n2) when x∗ is integer.

Fractional separation for CUT

Oehrlein and Haunert propose to solve the separation problem for inequalities (3.8b) as

follows, when given a (fractional) point x̂. For every pair (a, b) of nonadjacent vertices,

solve a minimum-weight a, b-separator problem in graph G, where vertex i has weight x̂ib.

If this weight is less than x̂ab, then an inequality (3.8b) is violated. The minimum-weight

a, b-separator problem is solved in the usual way, by a node-splitting transformation to a

minimum cut problem. This procedure runs in time O(mn) = O(n2) for a particular (a, b)

pair, and in time O(n4) overall.

Proposition 8 (Oehrlein and Haunert (2017)). The separation problem for constraints (3.8b)

can be solved in time O(n4).

We note that, by exploiting the planarity of D, the separation problem can be solved

significantly faster. Namely, when given a fractional point x̂, do the following for each

b ∈ V . Start with graph D and let each vertex v have capacity x̂vb. Apply the linear-time

reduction of Kaplan and Nussbaum (2011) to convert vertex capacities to edge capacities

(while preserving planarity). Then, apply the algorithm of Lacki et al. (2012) to find the max
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b, v-flow value (for all v) in time O(n log3 n). This will tell us the value of a minimum-weight

v, b-separator for all vertices v. Compare these flow values to x̂vb to see if any inequalities (3.8b)

are violated. Pick the most-violated one of them, say v = a, if any exist. Then apply the

algorithm of Kaplan and Nussbaum (2011) to compute a max b, a-flow, and from it find the

associated separator C ⊆ V \ {a, b}.

Lemma 7. The separation problem for constraints (3.8b) for fixed b ∈ V can be solved in

time O(n log3 n).

Applying Lemma 7 for each vertex b ∈ V gives the following proposition. We find this

result quite striking given that there are n2 variables.

Proposition 9. The separation problem for constraints (3.8b) can be solved in time O(n2 log3 n).

Fractional separation for LCUT

We show that the separation problem for LCUT is NP-hard. Hardness persists for outerplanar

graphs, which are planar graphs in which all vertices touch the outer face. To prove this, we

require the following lemma. It refers to the Partition problem, in which positive integers

t1, t2, . . . , tn are given as input and the task is to determine whether there exists T ⊆ [n] with∑
i∈T ti =

∑
i∈[n]\T ti.

Lemma 8. Partition remains NP-hard when two of the integers in the input equal

(3/8)
∑n

i=1 ti.

Proof. The reduction is from an arbitrary instance of Partition with positive integers

s1, s2, . . . , sq. Let σ = 1
2

∑q
i=1 si be the associated target value, and let n := q + 2. We

construct an equivalent instance of partition t1, t2, . . . , tn, where ti := si for every i ∈ [q], and

the last two integers tq+1 and tq+2 are each set to 3σ. The sum
∑n

i=1 ti equals 8σ, meaning

that the new target value is 4σ. This implies that tq+1 and tq+2 cannot be on the same side
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of the partition, in which case the new instance of Partition is equivalent to the original

one. Since the reduction runs in polynomial time and since tq+1 = tq+2 = 3σ = (3/8)
∑n

i=1 ti,

this proves the lemma.

Theorem 8. The separation problem for LCUT is NP-hard, even when the graph is outer-

planar and the given point x∗ is known to belong to PCUT.

Proof. We show that it is NP-complete to determine whether a given point x∗ lies outside of

PLCUT. This problem belongs to NP because a violated inequality from PLCUT is a suitable

witness. The hardness reduction is from a Partition instance from the special class described

in Lemma 8. Without loss, suppose that t1 = t2 = 3
4
α, where α := 1

2

∑n
i=1 ti is the target

value, and that α ≥ 17 (otherwise it is solvable in polynomial time by dynamic programming).

Figure 3.6 details the construction of the graph G = (V,E), the population vector p, and the

nonzeros of the point x∗. Also, set L := 0, U := α − 1, and k := n + 1. The graph G has

3n+ 1 vertices and is outerplanar.

1

p1 = 0

x∗1b =
t1
α+1

x∗11 = 1− t1
α+1

2

p2 = 0

x∗2b =
t2
α+1

x∗22 = 1− t2
α+1

2′

p2′ = t2

x∗
2′b = 1− t2

α+1

x∗
2′2′ =

t2
α+1

1′

p1′ = t1

x∗
1′b = 1− t1

α+1

x∗
1′1′ =

t1
α+1

apa = 0
x∗ab = 1 h2

ph2
= 0

x∗h2b
= 1

h3
ph3

= 0

x∗h3b
= 1

. . . hn
phn = 0

x∗hnb
= 1

n

pn = 0

x∗nb =
tn
α+1

x∗nn = 1− tn
α+1

n′

pn′ = tn
x∗
n′b = 1− tn

α+1

x∗
n′n′ =

tn
α+1

b
pb = 0
x∗bb = 1

Figure 3.6: An illustration of the graph G = (V,E), the population vector p, and the nonzeros
of x∗.

First, we show that x∗ belongs to PCUT. For every vertex i ∈ V ,
∑

j∈V x
∗
ij = 1, so

the assignment constraints (3.1b) are satisfied. Furthermore,
∑

j∈V x
∗
jj = n + 1 = k, so

constraint (3.1c) is satisfied. The population constraints (3.1d) are clearly satisfied for a, the

hi vertices, and the top-most vertices, so consider a vertex of the type v′ on the bottom, and
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see that

Lx∗v′v′ = 0

(
tv

α + 1

)
≤
∑
i∈V

pix
∗
iv′ = tv

(
tv

α + 1

)
≤ (α− 1)

(
tv

α + 1

)
= Ux∗v′v′ ,

where the last inequality holds by tv ≤ 3
4
α and α ≥ 4. For vertex b, we have

Lx∗bb = 0(1) ≤
∑
i∈V

pix
∗
ib =

n∑
i=1

pi′x
∗
i′b

=
n∑
i=1

ti

(
1− ti

α + 1

)
=

n∑
i=1

ti −
(

1

α + 1

) n∑
i=1

t2i

<
n∑
i=1

ti −
(

1

α + 1

)(
t21 + t22

)
= 2α−

(
1

α + 1

)(
9

8
α2

)
≤ (α− 1)(1) = Ux∗bb.

The last inequality holds because α ≥ 17. It is clear that x∗ satisfies the coupling con-

straints (3.1e). The i, j-separator inequalities (3.8b) obviously hold for most variables x∗ij,

because most of them are zero or have i = j. The only nontrivial case is when j = b. For

this case, observe that a unit flow can be sent from a to b that respects the “capacities” x∗vb,

by sending a flow of x∗vb across arc (hv, v) and a flow of x∗v′b across arc (hv, v
′). A similar

flow proves the claim for i 6= a. So, x∗ satisfies all inequalities (3.8b), and thus satisfies all

constraints defining PCUT.

Now, to show NP-hardness, we must demonstrate that (t1, t2, . . . , tn) is a “yes” instance

of Partition if and only if there is an inequality defining PLCUT that x∗ violates.

( =⇒ ) Suppose that (t1, t2, . . . , tn) is a “yes” instance of Partition, meaning that

there is a subset C ⊂ [n] such that
∑

i∈C ti =
∑

i∈[n]\C ti. We argue that C is a length-U
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a, b-separator in G and that x∗ violates the associated inequality. First, see that if a vertex

i ∈ C is removed from G, then any a, b-path must cross its copy i′ which will contribute pi′

towards the length of the path. Thus, if C is removed, then every a, b-path will have length

at least
∑

i∈C pi′ =
∑

i∈C ti = α = U + 1. That is, C is a length-U a, b-separator. Then, x∗

lies outside of PLCUT because

x∗ab = 1 >
α

α + 1
=

1

α + 1

∑
i∈C

ti =
∑
i∈C

ti
α + 1

=
∑
i∈C

x∗ib.

(⇐= ) For the other direction, suppose that there is an inequality defining PLCUT that x∗

violates. As we have shown, x∗ belongs to PCUT (and thus PHESS), so any violated inequality

must take the form xij ≤
∑

c∈C xcj where i 6= j. Observe that C must be a length-U

i, j-separator and not just an i, j-separator (by x∗ ∈ PCUT), so there exists an i, j-path in

G − C, but its length is more than U . Without loss of generality, we suppose that C is a

minimal length-U i, j-separator.

Claim 1. j = b.

Proof. The claim follows because if j 6= b, then x∗ij = 0 ≤
∑

c∈C x
∗
cj. �

Claim 2. C contains no vertices from the middle row {a, h2, h3, . . . , hn, b}.

Proof. If C contains a vertex v from the middle row, then x∗ib ≤ 1 = x∗vb ≤
∑

c∈C x
∗
cb, and x∗

satisfies the length-U i, b-separator inequality for C. �

Claim 3. C contains no vertices from the bottom row {1′, 2′, . . . , n′}.

Proof. For contradiction purposes, suppose that C contains a vertex v′ from the bottom row.

Let C ′ := C \ {v′} and consider a shortest i, b-path P ′ in G− C ′. This path P ′ cannot cross
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v′, for if it did then replacing v′ by its upper counterpart v gives a shorter path P of length

length(P ) = length(P ′) + pv − pv′ = length(P ′) + 0− tv < length(P ′).

Thus, P ′ also belongs to G−C, implying that distG−C′,p(i, b) = distG−C,p(i, b). Recalling that

distG−C,p(i, b) > U as C is a length-U i, b-separator, we see distG−C′,p(i, b) = distG−C,p(i, b) >

U . Consequently, C ′ is also a length-U i, b-separator, contradicting the minimality of C. �

Claim 4. The inequalities α ≤ pi +
∑

c∈C tc and (α + 1)
∑

c∈C x
∗
cb ≥ (α− pi) hold.

Proof. By Claims 2 and 3, C ⊆ [n]. By minimality of C, i must be somewhere to the left of

the C vertices in Figure 3.6. So, every i, b-path must cross i and the lower counterparts C ′ of

C, and thus has length at least pi + p(C ′). Meanwhile, a path P of the same length can be

constructed by moving from left to right, opting for v ∈ [n] when it is available (v /∈ C) and

taking v′ otherwise. Thus, P is a shortest i, b-path in G− C, and

α = U + 1 ≤ distG−C,p(i, b) = pi + p(C ′) = pi +
∑
c∈C

tc = pi + (α + 1)
∑
c∈C

x∗cb.

�

Claim 5. Vertex i cannot belong to the top row {1, 2, . . . , n}.

Proof. If i ∈ {1, 2, . . . , n}, we arrive at the following contradiction.

(3/4)α ≥ ti = (α + 1)x∗ib > (α + 1)
∑
c∈C

x∗cb ≥ α > (3/4)α.

The first inequality holds by special class of partition instances that we reduce from. The

second inequality holds by the assumption. The third inequality holds by Claim 4 and

pi = 0. �

Claim 6. (t1, t2, . . . , tn) is a “yes” instance of Partition.
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Proof. By Claim 5, either i ∈ {a, h2, ..., hn} or i ∈ {1′, 2′, . . . , n′}. In the former case,

1 = x∗ib >
∑
c∈C

x∗cb =
∑
c∈C

tc
α + 1

, (3.14)

implying that α + 1 >
∑

c∈C tc and so

α + 1 >
∑
c∈C

tc =
∑
c∈C

tc + pi ≥ α, (3.15)

where the last inequality holds by Claim 4. Because all terms of (3.15) are integers, it follows

that
∑

c∈C tc = α. Thus, C is a solution to the partition instance. In the latter case, i belongs

to the bottom row {1′, 2′, . . . , n′}. Let j ∈ {1, 2, . . . , n} be its upper counterpart. Then,

1− tj
α + 1

= x∗ib >
∑
c∈C

x∗cb =
∑
c∈C

tc
α + 1

. (3.16)

implying that α + 1− tj >
∑

c∈C tc and so

α + 1 >
∑
c∈C

tc + tj =
∑
c∈C

tc + pi ≥ α, (3.17)

where the last inequality holds by Claim 4. Because all terms of (3.17) are integers, it follows

that
∑

c∈C tc + tj = α. Thus, C ∪ {j} is a solution to the partition instance. �

Integer separation for CUT and LCUT

Here we give a separation procedure for CUT and LCUT that applies when x∗ is integer. The

motivation is threefold. First, the fractional separation algorithm for CUT (Proposition 9)

relies on complex algorithms for planar graphs that, to our knowledge, have never been

implemented. Meanwhile, the straightforward procedure for CUT taken by Oehrlein and
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Haunert (2017) requires the solution of roughly n2 minimum cut problems; this price is often

too expensive to justify (Fischetti et al., 2017b; Validi and Buchanan, 2019b; Salemi and

Buchanan, 2020). Finally, the separation problem for LCUT is NP-hard. This motivates the

following procedure which builds upon one proposed by Fischetti et al. (2017b).

Algorithm 1 IntegerSeparation(G, p, U, x∗)

1: for b ∈ V do
2: if x∗bb = 1 then
3: let Vb := {i ∈ V | x∗ib = 1}
4: for every component G′ of G[Vb] that does not contain b do
5: let a be an arbitrary vertex of G′ (e.g., one with the largest population)
6: let C be the minimal a, b-separator obtained by Fischetti et al. (2017b)
7: if model = LCUT then
8: for c ∈ C do
9: if distG−(C\{c}),p(a, b) > U then

10: C ← C \ {c}
11: add cut xab ≤

∑
c∈C xcb to the model

When G is planar, Algorithm 1 runs in time O(n2) and returns a collection of violated

(minimal) separator inequalities. This time is quite modest given that the solution x∗ has

n2 entries. When the solution is already contiguous, the separation procedure runs in time

O(kn). Another nice property is that the cuts added on line 11 will have a combined O(n)

nonzeros.

Key to our arguments is the observation that each vertex i will belong to at most degG(i)

many of the sets C from line 6. This follows because each minimal a, b-separator obtained

from the algorithm of Fischetti et al. (2017b) is a subset of the shore of V (G′), and i

can belong to at most degG(i) such shores (once for each of its neighbors). This implies

that the total number of nonzeros coming from the round of cuts on line 11 is at most∑
i∈V degG(i) + n = 2m+ n = O(n).

To argue for a runtime of O(n2) when Algorithm 1 is applied to CUT, see that each

vertex i can take at most one turn as the vertex a from line 5 and the fact that the algorithm
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of Fischetti et al. (2017b) takes time O(m), and m = O(n) since G is planar.

To argue for a runtime of O(n2) when Algorithm 1 is applied to LCUT, it now suffices to

argue that the total time spent on lines 7 through 10 is at most O(n2). To see this, observe that

the distance found in line 9 can be computed in time O(n) since G is planar (Henzinger et al.,

1997), also recalling that the number of distance computations will be at most 2m = O(n)

because each vertex i will make at most degG(i) appearances in the sets C. Note that the

inequalities added for LCUT will be as strong or stronger than the inequalities added for

CUT. For ease of implementation, we instead use Dijkstra’s shortest path algorithm, meaning

that our code will take time O(n2 log n) instead of time O(n2) when applied to LCUT.

3.4 Variable Fixing and a Heuristic

In initial experiments, the MIP solver had difficulties handling most tract-level instances,

even when contiguity was not imposed. The large number of variables (n2) and the numerical

instability coming from the wide range of the objective coefficients (wij := pid
2
ij) lead to the

following issues.

1. The root LP took a long time to solve with simplex; typically barrier was significantly

faster.

2. If the root LP was solved with barrier, the crossover step took a very long time. The

primal and dual push phases were not too costly, but the final simplex cleanup was

slow—often taking ten times longer than barrier.

3. Even when an optimal basis for the root LP could be found, the MIP solver took a

long time to find a good MIP-feasible solution.

To mitigate these issues, we sought to reduce the model’s size by safely fixing some of

the variables. By safe, we mean that doing so preserves an optimal solution. Intuitively,

opportunities for variable fixing should be quite common. For example, if a vertex j is near
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the border of the state, it is likely not an optimal district center; instead, we expect the

district centers to be in the state’s interior. If we can rigorously argue that this is the case,

we can fix the n variables xij, i ∈ V , to zero. Similarly, if vertices i and j are far from each

other (say, at opposite corners of a state), then we expect that we can fix xij = 0. It is also

possible to safely fix some variables to one, although this occurred so infrequently that we

chose not to pursue it. This is perhaps not surprising; very few variables could safely be fixed

to one in the experiments of Beasley (1993) for the k-median problem when k was small.

To safely fix variables to zero, we use Lagrangian arguments. We run a heuristic to

find an upper bound UB on the optimal objective value. Then, we construct a Lagrangian

relaxation model that provides a lower bound LBij on the objective value when a variable

xij is tentatively fixed to one. The bounds LBij can be computed almost for free while

solving the Lagrangian. Now, if LBij > UB, then xij cannot equal one in an optimal solution,

meaning that we can safely fix xij = 0. The Lagrangian is solved using an implementation of

Shor’s r-algorithm that was developed by one of the authors (Lykhovyd, 2019), see also Shor

(1985) and Kappel and Kuntsevich (2000). We found that the Lagrangian terminated more

quickly and with a larger objective if the Lagrangian multipliers were initialized using optimal

dual variables from the LP relaxation, which we obtained with barrier (no crossover). These

initial multipliers can be found in the ralg warm directory.

Figure 3.7 illustrates the power of this variable fixing procedure for Oklahoma. The

heuristic runs for 4 seconds and the Lagrangian runs for 3 seconds (when given optimal LP

dual variables). The total number of xij variables reduces from 1,094,116 to 12,425, a savings

of 99%.

3.4.1 Heuristic

After some testing, we settled on the following heuristic. It draws upon the districting

experience of Hess et al. (1965) and the k-median experience of Resende and Werneck (2004).
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Figure 3.7: When contiguity is imposed, 96% of the center variables xjj are safely fixed to
zero for Oklahoma at the tract level; the non-fixed tracts are filled in black.

Pseudocode for RandomizedHeuristic() and LocalSearch() are given in Algorithms 2 and 3,

respectively.

1. call RandomizedHeuristic for 10 iterations to find an initial set S of centers;

2. call LocalSearch(S) to improve the set of centers, using a first-improvement strategy;

3. if contiguity is required, solve a particular instance of the SHIR model (detailed below).

The descent steps in the inner loop of RandomizedHeuristic originate with Hess et al. (1965),

see their Figure 1. They propose to find a heuristic solution by solving a restricted problem.

That is, a set S of k centers is fixed (i.e., fix xjj = 1 for j ∈ S) and the task is to assign the

other vertices to them. At the time, Hess et al. heuristically solved this restricted problem

by transportation techniques, but we use a MIP solver and denote the objective of this

restricted problem by obj(S). The solution to this restricted problem partitions the vertices

into k districts. The best center of each district is calculated, and the restricted problem

is resolved taking this new set of centers as S. Repeat until convergence. This heuristic

works surprisingly well even when the initial set of centers is chosen uniformly at random

(as observed by Resende and Werneck). Following Resende and Werneck, we run this for 10
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iterations and return the best set of centers that was found.

Algorithm 2 RandomizedHeuristic(maxit)

1: S∗ ← ∅
2: for i = 1, 2, . . . ,maxit do
3: pick a set S of k centers uniformly at random from V
4: repeat
5: find a solution x∗ to the Hess model (3.1) restricted to centers {v1, v2, . . . , vk} ← S
6: for j = 1, 2, . . . , k do
7: let Vj be the vertices assigned to vj in x∗

8: let v∗j be the best center of Vj, i.e., a vertex b ∈ Vj that minimizes
∑

i∈Vj wib

9: S ← {v∗1, v∗2, . . . , v∗k}
10: until convergence
11: if obj(S) < obj(S∗) then
12: S∗ ← S
13: return S∗

However, the subsequent local search procedure used by Resende and Werneck would

be too burdensome for us. In the traditional k-median problem, the problem of assigning

customers to facilities is trivial once the facilities have been opened: assign each customer to

its nearest open facility. This allows one to quickly evaluate whether it is beneficial to swap

a center with a non-center. The same cannot be said for districting due to the population

bounds and contiguity constraints. This makes the problem of assigning vertices to centers,

i.e., the function evaluation obj(S), an NP-hard problem. Consequently, we find just one

local minimum with LocalSearch, starting the search from the best set of centers found by

RandomizedHeuristic. To further speed up local search, we only consider swapping a center

s ∈ S with one of its neighbors s′ ∈ V \ S. This reduces the number of function evaluations

from |S|(n− |S|) to roughly
∑

i∈S degG(i) in each call of LocalSearch. For California at the

tract level, this reduction is from 425,000 to roughly 300.

Lastly, if required, we solve a final MIP to find a contiguous solution. Typically, the

solution identified in local search is nearly contiguous and few changes are needed to achieve

contiguity. To exploit this observation, we take the current set of district centers S ⊆ V and

100



Algorithm 3 LocalSearch(S)

1: for s ∈ S do
2: for s′ ∈ NG(s) ∩ (V \ S) do
3: S ′ ← (S \ {s}) ∪ {s′}
4: if obj(S ′) < obj(S) then
5: return LocalSearch(S ′)

6: return S

fix the associated variables xjj to one in the SHIR model. For most states, this is sufficient

for the MIP solver to identify a good contiguous solution within a few seconds. However, we

observed that the MIP solver still struggled to solve this restricted problem on some of the

largest instances. In response, we take the following approach. For each center j ∈ S, do the

following:

1. identify the vertices Vj that are assigned to j in the local search solution;

2. identify the component of G[Vj] that contains j and let J be its vertex set;

3. for each vertex i ∈ J , provide xij = 1 as part of a warm start solution; and

4. if working with a tract-level instance: for each vertex i in the interior4 of J , fix xij = 1.

In practice, we found that these last two steps guide the MIP solver to a contiguous solution

without sacrificing much in terms of solution quality. This tweak allowed us to find (contiguous)

feasible solutions for states like Illinois, New York, and Texas at the tract level.

3.4.2 Lagrangian-based variable fixing for Hess model

Lagrangian techniques are quite common and useful for variants of the k-median prob-

lem (Beasley, 1993) and have also been used for districting purposes (Hojati, 1996). Here, we

propose to use Lagrangian reduced costs to safely fix many of the variables xij to zero before

building the Hess model, thus reducing it to a more manageable size. A similar approach

was taken by Briant and Naddef (2004) for the diversity management problem.

4We define the interior of J to be the vertices in J whose neighbors in G also belong to J .
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The Lagrangian relaxation model is obtained from the Hess model as follows. We relax

the assignment constraints (3.1b), population lower bounds (3.1d), and population upper

bounds (3.1d) and penalize their violation in the objective function with (vector) multipliers

α, λ, and υ, respectively. Following Beasley (1993) and Hojati (1996), we scale the population

constraints by dividing them by L and U , respectively. The optimal objective of the following

Langragian is denoted by L(α, λ, υ).

min
∑
i∈V

∑
j∈V

wijxij +
∑
i∈V

αi

(
1−

∑
j∈V

xij

)
+
∑
j∈V

|λj|

(
xjj −

∑
i∈V

pi
L
xij

)

+
∑
j∈V

|υj|

(∑
i∈V

pi
U
xij − xjj

)
(3.18a)

∑
j∈V

xjj = k (3.18b)

xij ≤ xjj ∀i, j ∈ V (3.18c)

xij ∈ {0, 1} ∀i, j ∈ V. (3.18d)

There are two main differences with previous works (besides the definition of w). First, we

have population lower and upper bounds (L and U), while Beasley (1993) had no analogue of

L and Hojati (1996) had an equality constraint (i.e., L = U). Second, we take the absolute

values of λj and υj in the Lagrangian’s objective function, while Beasley (1993) required υj

to be nonnegative; absolute values do not cause problems for Shor’s r-algorithm (Shor, 1985).
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To simplify the Lagrangian’s objective function, we can collect like terms. For this, define

ŵij =



wij − αi − |λj|

pi
L

+ |υj|

pi
U

 if i 6= j

wij − αi − |λj|

pi
L

+ |υj|

pi
U

+ |λj| − |υj| if i = j

for every i ∈ V and j ∈ V . The Lagrangian’s objective function now reduces to

min
∑
i∈V

αi +
∑
i∈V

∑
j∈V

ŵijxij.

To find an optimal solution x∗ to the Lagrangian, consider the case where vertex j ∈ V is

selected as a center. In this case, it would be optimal to assign vertex i to center j if and only

if ŵij ≤ 0. Thus, if j ∈ V were selected as a center, its contribution to the objective would be

Wj := ŵjj +
∑

i∈V \{j}

min {0, ŵij} ,

otherwise the contribution would be zero.

With these observations, the Lagrangian reduces to the following n-variable problem.

min
∑
i∈V

αi +
∑
j∈V

Wjxjj (3.19a)

∑
j∈V

xjj = k (3.19b)

xjj ∈ {0, 1} ∀j ∈ V. (3.19c)

This can be solved by identifying the k different vertices j with the smallest Wj values and
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setting their variables xjj to one; set all others to zero. The objective value of this solution

is equal to L(α, λ, υ), which provides a lower bound on our original MIP (whether or not

contiguity is imposed).

Now, we discuss how to safely fix variables to zero in the Hess model (3.1) using the

heuristic upper bound UB and the Lagrangian. Let x∗ be an optimal solution to the reduced

Lagrangian problem (3.19) with objective value L(α, λ, υ). The associated set of centers is

S := {v ∈ V | x∗vv = 1}. If we were to tentatively fix xij = 1, the resulting Lagrangian bound

Lij(α, λ, υ) would be

Lij(α, λ, υ) =



L(α, λ, υ) if j ∈ S, i = j

L(α, λ, υ) + max{0, ŵij} if j ∈ S, i 6= j

L(α, λ, υ)−max
v∈S
{Wv}+Wj if j ∈ V \ S, i = j

L(α, λ, υ)−max
v∈S
{Wv}+Wj + max{0, ŵij} if j ∈ V \ S, i 6= j.

This value can be used to update the lower bound LBij ← max{Lij(α, λ, υ), LBij} on

the objective value that would result from fixing xij = 1. Observe that L(α, λ, υ) and

max{Wv | v ∈ S} do not depend on i nor j, meaning that they can be precomputed, stored,

and then used to update all of the LBij values in time Θ(n2).

The outer problem for the Lagrangian (for finding the best Lagrange multipliers) is

controlled by Shor’s r-algorithm. When it terminates with the final values LBij, we fix

xij = 0 if LBij > UB.
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3.4.3 Lagrangian-based variable fixing for contiguity models

We can fix even more variables xij to zero by exploiting contiguity. Ideally, we would add

constraints to (3.18) requiring that the vertices Vj(x) assigned to j induce a connected

subgraph. In this case, the Lagrangian relaxation model could be solved by redefining Wj as

the weight of a minimum-weight connected subgraph (MWCS) rooted at j (where the weight

of vertex i is ŵij) and again solving the problem (3.19). One issue is that the rooted MWCS

problem is NP-hard. While this problem has been studied frequently lately (Álvarez-Miranda

et al., 2013a,b; Álvarez-Miranda and Sinnl, 2017; Rehfeldt et al., 2019), and several research

codes perform quite well on benchmark instances (Fischetti et al., 2017b; Gamrath et al.,

2017; Rehfeldt and Koch, 2019), we choose not to use them given how frequently we would

need to solve the rooted MWCS problem5.

Instead, we consider a relaxed form of contiguity for which all LBij values can be updated

in O(n2) time. This relaxed form of contiguity only enforces that an i, j-path exists within

G[Vj(x)] if xij is tentatively fixed to one. For this, define the weights qju as below, representing

the “extra” cost to use vertex u in an i, j-path in district Vj(x). Observe that the “cost” ŵuj

of vertex u has already been accounted for in Wj if u = j or ŵuj ≤ 0, giving an extra cost of

zero.

qju =


0 if u = j or ŵuj ≤ 0

ŵuj otherwise.

Again, let L(α, λ, υ) be the objective value of the Lagrangian relaxation model (3.19) and

let S be the associated set of centers. Then, a lower bound on the contiguity-constrained

5Also, preliminary experiments with solving the rooted MWCS problem exactly showed little to no
improvement—in terms of the number of variables fixed—over the simple and very quick procedure that we
finally settled on.
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Lagrangian relaxation model—when xij is tentatively fixed to one—is as follows.

L̃ij(α, λ, υ) =


L(α, λ, υ) + distG,qj(i, j) if j ∈ S

L(α, λ, υ)−max
v∈S
{Wv}+Wj + distG,qj(i, j) if j /∈ S.

Here, distG,qj(i, j) is the vertex-weighted distance from i to j, where vertex u has weight

qju. These distances distG,qj(·, j) can be computed in time O(n) with a planarity-exploiting

single-source shortest path algorithm (Henzinger et al., 1997). Thus, all updates LBij ←

max{LBij, L̃ij(α, λ, υ)} can be computed in time O(n2). However, for ease of implementation,

we use Dijkstra’s algorithm, so our code takes time O(n2 log n) to update the LBij values.

As before, we fix xij = 0 if LBij > UB. Theorem 9 ensures that this is safe.

Theorem 9. For every set of Lagrange multipliers (α, λ, υ) we have z∗ij ≥ L̃ij(α, λ, υ), where

z∗ij is the optimal objective of the Hess model when xij is fixed to one and contiguity is imposed.

Proof. Consider a set of Lagrange multipliers (α, λ, υ), the corresponding ŵ and W , and an

optimal set of centers S for the Lagrangian (3.19). Then, let x∗ be an optimal solution to

the Hess model (3.1) when xij is fixed to one and contiguity is imposed, and let S∗ := {v ∈

V | x∗vv = 1} be the associated set of centers. Observe that subset of vertices assigned to

j induces a connected subgraph, so there is a path P from i to j whose vertices u ∈ V (P )

satisfy x∗uj = 1.

Claim 7. z∗ij ≥
∑

u∈V αu +
∑

v∈S∗Wv + distG,qj(i, j).
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Proof. Using the notations (a)+ := max{0, a} and (a)− := min{0, a}, observe that

z∗ij =
∑
u∈V

∑
v∈V

wuvx
∗
uv (3.20a)

≥
∑
u∈V

∑
v∈V

wuvx
∗
uv +

∑
u∈V

αu

(
1−

∑
v∈V

x∗uv

)
+
∑
v∈V

|λv|

(
x∗vv −

∑
u∈V

pu
L
x∗uv

)

+
∑
v∈V

|υv|

(∑
u∈V

pu
U
x∗uv − x∗vv

)
(3.20b)

=
∑
u∈V

αu +
∑
u∈V

∑
v∈V

ŵuvx
∗
uv (3.20c)

≥
∑
u∈V

αu +
∑
v∈S∗

Wv + distG,qj(i, j). (3.20d)

Here, inequality (3.20b) holds by the feasibility of x∗ for the Hess model. Equality (3.20c)

holds by the definition of ŵ. Finally, inequality (3.20d) holds by inequalities (3.21), which
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are shown below.

∑
u∈V

∑
v∈V

ŵuvx
∗
uv =

∑
v∈V

ŵvvx
∗
vv +

∑
v∈V

∑
u∈V \{v}

(ŵuv)
−x∗uv +

∑
v∈V

∑
u∈V \{v}

(ŵuv)
+x∗uv

(3.21a)

≥
∑
v∈V

ŵvvx
∗
vv +

∑
v∈V

∑
u∈V \{v}

(ŵuv)
−x∗uv +

∑
u∈V (P )\{j}

(ŵuj)
+x∗uj

(3.21b)

(by x∗uv ≤ x∗vv) ≥
∑
v∈V

ŵvvx
∗
vv +

∑
v∈V

∑
u∈V \{v}

(ŵuv)
−x∗vv +

∑
u∈V (P )\{j}

(ŵuj)
+x∗uj

(3.21c)

=
∑
v∈V

ŵvv +
∑

u∈V \{v}

(ŵuv)
−

x∗vv +
∑

u∈V (P )\{j}

(ŵuj)
+x∗uj (3.21d)

(by Wv def.) =
∑
v∈V

Wvx
∗
vv +

∑
u∈V (P )\{j}

(ŵuj)
+x∗uj (3.21e)

(by qju def.) =
∑
v∈S∗

Wv +
∑

u∈V (P )

qju (3.21f)

(by distG,qj(i, j) def.) ≥
∑
v∈S∗

Wv + distG,qj(i, j). (3.21g)

�

With Claim 7 established, we turn to the theorem. In the first case, suppose that j ∈ S.

Then,

z∗ij ≥
∑
u∈V

αu +
∑
v∈S∗

Wv + distG,qj(i, j)

≥
∑
u∈V

αu +
∑
v∈S

Wv + distG,qj(i, j)

= L(α, λ, υ) + distG,qj(i, j) = L̃ij(α, λ, υ),
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where the inequalities hold by Claim 7 and by the optimality of S for the Lagrangian (3.19),

and the equalities hold by the definitions of L(α, λ, υ) and L̃ij(α, λ, υ).

In the other case, where j 6∈ S, there exists a vertex s that belongs to S but not to S∗.

(Otherwise, S ⊆ S∗ and j ∈ S∗ \ S, implying the contradiction k = |S| < |S∗| = k). Then,

∑
v∈S∗

Wv =
∑

v∈(S∗∪{s})\{j}

Wv −Ws +Wj

≥
∑
v∈S

Wv −Ws +Wj

≥
∑
v∈S

Wv −max
v∈S
{Wv}+Wj,

which, along with Claim 7, implies that

z∗ij ≥
∑
u∈V

αu +
∑
v∈S∗

Wv + distG,qj(i, j)

≥
∑
u∈V

αu +
∑
v∈S

Wv −max
v∈S
{Wv}+Wj + distG,qj(i, j)

= L(α, λ, υ)−max
v∈S
{Wv}+Wj + distG,qj(i, j) = L̃ij(α, λ, υ),

where the equalities hold by the definitions of L(α, λ, υ) and L̃ij(α, λ, υ).

3.5 Computational Experiments

In this section, we conduct an extensive computational study. Broadly speaking, the aim is

to answer the questions: (i) Which model for imposing contiguity is the fastest in practice?

(ii) Is this fastest model able to solve the large-scale instances encountered in practice?

Most experiments were performed on a machine with Intel Xeon E3-1270 v6 “Kaby Lake”

3.80 GHz CPU with 8 cores and 32 GB RAM. The MIP solver is Gurobi Optimizer 8.1.1.

When solving the MIPs, default settings are used with the following exceptions: 8 threads
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maximum, 10 GB RAM maximum, concurrent method for the LP relaxation, and zero MIP

gap tolerance. We invoke the LazyConstraints parameter when solving the CUT and LCUT

models.

Recall that to initialize the Lagrangian procedure we use optimal dual multipliers from

the LP relaxation of the Hess model. In this case, the barrier method is used to solve the LP.

For four states with the most census tracts (FL, NY, TX, and CA) the size of this LP model

exceeds available memory, in which case we solve the LP using a different machine that has

dual Intel Xeon E5-2620 “Sandy Bridge” hex core 2.0 GHz CPUs and 256 GB RAM.

3.5.1 Data preparation

To compare the computational performance of the models, we needed test instances having

the following input data: contiguity graph G = (V,E), population vector p, bounds L and U ,

number of districts k, and the distance matrix d. This data is not directly provided by the

Census (particularly the graph and distance matrix), and optimization researchers who have

studied districting in the past did not make their data public. This is a significant barrier

to entry for those who want to apply their methods to redistricting problems. Moreover,

previous studies have focused on one or two states, making it impossible to know how well

their methods would perform on another state or if the data were different (say, after a new

Census).

For these reasons, we generate the requisite data ourselves for all 50 states using the 2010

Census numbers. So that future researchers can use the same data and also for purposes

of transparency, we post the complete data set online at https://lykhovyd.com/files/

public/districting/. The GitHub repository includes scripts used to convert the raw data

from the USCB (2012) into formats convenient for our use.

We generate the input data at two different levels: county and census tract. There is an

average of 62 counties per state and a maximum of 254 for Texas. Meanwhile, there is an
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average of 1,461 census tracts per state and a maximum of 8,057 in the case of California. The

county-level instances are small enough that we can apply each of the contiguity formulations.

This allows us to compare them and discern which of them has the best chance to handle

large instances. Moreover, several states require congressional redistricting plans to split the

fewest number of counties, and states such as Iowa and West Virginia split zero counties

in their 2013 maps. This makes county-level instances practical in some cases. However,

most states cannot redistrict at the county level. For example, Dallas County in Texas had a

population of 2,368,139 after the 2010 Census, meaning that it needed to be split into (at

least) 4 congressional districts in order to satisfy the rigid population bounds. Census tracts

are designed to be relatively homogeneous and typically have between 2,500 and 8,000 people

in them, which provides enough granularity to satisfy the population bounds. The tract-level

instances are sufficiently large and challenging that roughly half of them can be solved by

our techniques, allowing us to show their computational limits. Note, however, that no state

has a law requiring the indivisibility of tracts, and many states perform districting at the

block level, where n approaches one million. The exact techniques considered in this chapter

cannot handle such instances, so we do not generate block-level data.

The data is constructed for each state separately, using a suitable map projection from

the EPSG dataset (IOGP, 2019). The centroid of each county or tract is taken as its center,

and Euclidean distances are measured between centroids. If two counties or tracts share

a nontrivial border, we connect them by an edge in G. For some states, the graph G is

disconnected (e.g., due to islands off a state’s coast). In this case, we make it connected by

adding a minimum-weight subset of (currently missing) edges via a straightforward extension

of Kruskal’s algorithm. We take the weight of an edge {i, j} to be the distance between (the

centroids) i and j. In this way, a single island tract will be made adjacent to its nearest tract

from the coast. However, if there is a tightly packed cluster of islands sufficiently far from

the coast, only one edge will be added connecting the islands to the coast; the other added
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edges will be internal to the island cluster.

Although rare, some tracts are themselves non-contiguous. For example, the tract in

Massachusetts with GEOID 25023990003 consists of three disconnected pieces, each a body

of water with zero population. In these cases, a district that is connected in the contiguity

graph may not be contiguous on the map. In fact, this happened in our experiments. To

address this issue, one could adjust the contiguity graph by creating a different node for each

of the tract’s pieces, or by merging the disconnected pieces into neighboring tracts (Duchin,

2020). However, as our intent in this chapter is to compare the performance of the contiguity

formulations on realistic instances—and not to create “good” plans—we opt to keep the

contiguity graphs as-is. In the future, this might not be a problem; the criteria specified

for the 2020 Census state that “Census tracts must comprise a reasonably compact and

contiguous land area” (Bureau of the Census, 2018).

The other parameters are set as follows, where the number k of congressional districts is

known and set by reapportionment. We compute the ideal population p̄ := 1
k

∑
i∈V pi of a

district and allow a 1% deviation, setting L̂ := 0.995(p̄) and Û := 1.005(p̄), as was suggested

in a redistricting competition held by reformers in Ohio (Altman and McDonald, 2018). We

then round the population bounds (in the appropriate direction) to an integer, i.e., L := dL̂e

and U := bÛc.

3.5.2 Experiments with heuristic and variable fixing

Table 3.1 reports our experience with the heuristic and variable fixing procedures from

Section 3.4. For space considerations, only tract-level results are reported here in the paper.

Tract-level results are also more interesting because this is where these procedures are most

needed.

Reported under the Lagrangian columns are the lower bound obtained from the Lagrangian

and the time in seconds spent by Shor’s r-algorithm. As noted in Section 3.4, we initialize
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Table 3.1: Heuristic and Lagrangian results. We report the number of tracts (n), the number
of districts (k), the Lagrangian objective (LB) and time in seconds, as well as the heuristic
objective (UB), time, and the percentage of the variables fixed to zero (fixed) when contiguity
is (not) imposed—rounded to the nearest percent.

Lagrangian w/o contiguity w/ contiguity
State n k LB time UB time fixed UB time fixed

RI 244 2 228.33 0.09 228.42 0.21 100 228.42 0.23 100
NH 295 2 2,687.72 0.09 2,689.07 0.18 100 2,688.28 0.30 100
ID 298 2 53,913.93 0.22 53,930.05 0.15 100 53,916.36 0.20 100
HI 351 2 13,990.50 0.22 13,991.27 0.17 100 13,991.95 0.29 100
ME 358 2 7,713.30 0.30 7,716.04 0.16 100 7,716.04 0.22 100
WV 484 3 10,789.79 0.52 11,801.80 0.66 48 11,834.84 0.87 58
NM 499 3 31,575.28 0.53 31,598.10 1.72 95 31,608.19 1.91 95
NE 532 3 21,975.38 0.59 21,983.42 1.28 99 21,983.42 1.45 99
UT 588 4 22,029.31 0.81 22,035.62 2.03 97 22,037.00 2.50 97
MS 664 4 16,295.54 0.98 16,303.82 1.81 100 16,308.89 2.05 100
AR 686 4 15,490.50 1.02 15,565.41 3.85 96 15,569.97 4.09 97
NV 687 4 11,367.90 1.32 12,443.84 5.96 35 12,497.05 6.14 43
KS 770 4 22,654.34 1.43 22,786.63 3.08 82 22,786.69 3.87 85
IA 825 4 18,164.68 1.72 18,202.13 2.77 96 18,206.43 3.37 97
CT 833 5 1,420.41 1.68 1,422.13 4.50 99 1,422.13 4.74 99
OR 834 5 26,742.01 1.87 26,750.23 9.55 98 26,750.15 10.36 98
OK 1,046 5 19,106.02 3.34 19,132.60 3.60 99 19,131.99 4.35 99
SC 1,103 7 8,356.08 3.28 9,293.98 13.48 18 9,294.45 14.94 40
KY 1,115 6 14,793.25 2.90 14,833.72 10.25 95 14,835.16 11.27 96
LA 1,148 6 13,805.17 3.61 14,829.56 12.52 32 14,830.45 13.92 48
AL 1,181 7 13,058.24 3.86 13,510.26 17.54 49 13,510.26 18.08 68
CO 1,249 7 19,715.16 4.27 19,916.43 15.99 40 19,918.36 17.50 53
MN 1,338 8 24,207.22 4.86 24,220.52 184.95 89 24,224.19 217.11 87
MO 1,393 8 18,830.09 5.47 21,214.38 29.24 16 21,222.79 31.44 44
MD 1,406 8 5,079.56 5.56 5,084.47 26.79 94 5,084.53 29.75 95
WI 1,409 8 16,272.83 5.34 16,340.39 28.70 79 16,340.81 32.23 84
WA 1,458 10 12,376.66 5.70 12,604.21 47.42 53 12,609.09 71.92 61
MA 1,478 9 2,558.82 6.09 2,626.48 50.55 41 2,627.03 53.75 57
TN 1,497 9 10,783.27 6.05 13,092.08 48.49 8 13,092.08 51.55 44
IN 1,511 9 11,061.11 6.46 11,084.81 28.10 97 11,085.37 32.27 97
AZ 1,526 9 29,479.16 6.71 30,219.11 81.92 22 30,220.39 88.56 33
VA 1,907 11 12,836.67 11.22 13,814.08 379.21 20 13,815.25 391.63 49
GA 1,969 14 15,836.59 11.43 15,955.65 243.27 67 15,955.65 242.99 79
NJ 2,010 12 2,250.25 12.09 2,291.51 213.81 52 2,291.51 216.89 70
NC 2,195 13 14,416.66 14.29 14,679.00 331.61 52 14,680.02 350.92 77
MI 2,813 14 24,569.50 24.79 24,685.68 775.69 56 24,686.55 788.41 71
OH 2,952 16 11,520.54 26.59 11,908.25 1,936.37 25 11,911.64 2,056.53 65
IL 3,123 18 15,815.07 30.26 16,067.49 14,316.10 40 16,091.05 14,403.97 55
PA 3,218 18 11,424.45 32.59 11,799.41 6,674.80 38 11,806.00 6,721.78 66
FL 4,245 27 14,766.11 58.53 15,222.31 7,668.40 38 15,225.47 7,811.97 65
NY 4,919 27 15,405.98 77.60 16,700.05 13,848.68 7 16,700.81 15,120.01 45
TX 5,265 36 57,770.13 105.63 72,846.42 14,691.58 1 72,860.21 15,657.41 14
CA 8,057 53 26,238.24 218.99 27,603.66 22,122.05 28 - - -113



Shor’s r-algorithm with optimal dual multipliers from the LP relaxation of the Hess model.

The time to solve this LP can be substantial—5 days for CA—so we precompute the LP dual

multipliers and store them in the ralg warm directory for reuse; the time to solve this LP is

not included in the time given in Table 3.1. We see that if Shor’s r-algorithm is limited to

(at most) 100 iterations, it terminates in less than one minute for most instances. The last

six columns report the upper bound obtained via the heuristic (without and with contiguity

constraints), the time spent by the heuristic, and the percentage of the variables xij that are

eventually fixed.

Generally speaking, the objective values of the heuristic solutions (contiguous vs. not)

are similar. So, the price of contiguity appears small. (This is confirmed for optimal

solutions later.) Recall that in our heuristic we solve a series of restricted MIPs. For speed

considerations, we do not force the MIP solver to prove optimality for these restricted MIPs.

This explains the perhaps counterintuitive observation that, when contiguity is enforced, the

heuristic’s objective value sometimes improves (e.g., for NH, ID, OR, and OK).

Another observation is that the variable fixing procedure is quite powerful, sometimes

allowing us to fix approximately 100% of the variables. While this is most pronounced on

the smaller instances (e.g., RI, NH, ID, HI, ME), some large instances are also amenable to

fixing. Roughly 97% of the variables can be fixed for IN which has n = 1, 511 tracts.

Finally, we observe that it can be quite helpful to exploit contiguity in the variable

fixing procedure (Section 3.4.3). For example, consider the case of TN. Here, the heuristic’s

objective value does not change when contiguity is imposed, but the fixings increase from

8% to 44%. In another example, CO sees the fixings increase from 40% to 53% despite a

degradation in objective value.
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3.5.3 County-level results

A majority of the county-level instances are infeasible. For example, consider Texas. Dallas

County had a population of pv = 2, 368, 139, which far exceeds the population limit U =

701, 980 that we impose. Thus, Texas is obviously infeasible at the county level. This type of

overt infeasibility where the population of a single vertex exceeds U is exhibited by 27 states.

These, as well as the 7 trivial instances where k = 1, are uninteresting and are excluded from

our county-level experiments.

Table 3.2: An initial classification of the 50 county-level instances

Class # States
Overt inf. 27 AZ, CA, CT, FL, GA, HI, IL, IN, KY, MA,

MC, MI, MN, MO, NC, NJ, NV, NY, OH,
PA, RI, TN, TX, UT, VA, WA, WI.

Trivial (k = 1) 7 AK, DE, MT, ND, SD, VT, WY.
Remaining 16 AL, AR, CO, IA, ID, KS, LA, ME, MS,

NE, NH, NM, OK, OR, SC, WV.

This leaves 16 county-level instances. It turns out that each of them is MIP-feasible under

the Hess model, although 4 of them become infeasible when contiguity is imposed (CO, NH,

OR, SC), leaving 12 contiguity-feasible instances. The reasons why CO and OR are infeasible

can be understood by inspecting the sub-maps depicted in Figure 3.8. For 4 instances, the

optimal solution that is returned by the Hess model under the moment-of-inertia (MOI)

objective happens to be contiguous (IA, ID, KS, MS). In the other 8 cases, the Hess solution

that is found is not contiguous. Further, when contiguity is explicitly imposed, the optimal

objective value increases, implying that for these states no optimal solution to the Hess model

is contiguous (e.g., see Figure 3.9).

Table 3.3 reports the optimal objective values and solve times (in seconds) for the

16 remaining county-level instances. Note that the reported times include all operations

(heuristic, Lagrangian fixing, model build, model solve) excluding read time and the time

to get the initial Lagrange multipliers (see Section 3.4). More details can be found in the
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(a) Denver metro (b) Portland metro

Figure 3.8: Side (a) shows that Colorado is infeasible at the county level because there is
no feasible district containing Denver County (pop. 600,158). Side (b) shows that Oregon
is infeasible at the county level because there is no feasible district containing Maltnomah
County (pop. 735,334).

(a) Optimal solution w/o contiguity (b) Optimal solution w/ contiguity

Figure 3.9: Optimal county-level solutions for Oklahoma.

results directory in the GitHub repository. As the table shows, the Hess model is relatively

easy for the MIP solver at the county level, with each being solved to optimality in under 10

seconds.

For the contiguity models, one observes that the MCF model is the slowest (attributable

to its large size), while the others are reasonably competitive with each other. In some

cases, however, LCUT edges out the competition. For example, LCUT edges out SHIR

for Alabama (19 vs. 64 seconds). We attribute this time difference to LCUT being smaller

and more nimble than SHIR. Meanwhile, LCUT edges out CUT for Colorado (2 seconds

vs. TL). In fact, we find that LCUT proves infeasibility of Colorado at the root node of the

branch-and-bound tree. To illustrate, recall Figure 3.8. Denver County cannot be paired

with any adjacent counties without exceeding the population upper bound. Thus, the special

case of the length-U a, b-separator inequalities from Remark 4 enforces that Denver County
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Table 3.3: Times and objective values for solving the resulting MIPs at the county level.
Infeasibilities are denoted by an objective value of ∞, while TL denotes that the one-hour
time limit was reached.

w/o contiguity w/ contiguity
State n k obj Hess obj MCF SHIR CUT LCUT
NH 10 2 3,641.24 0.03 ∞ 0.23 0.12 0.12 0.08
ME 16 2 10,789.07 0.03 19,093.26 2.42 0.78 0.72 0.66
NM 33 3 32,847.05 0.07 32,944.25 0.63 0.11 0.10 0.10
OR 36 5 31,424.49 0.40 ∞ 55.80 0.59 3.08 0.32
ID 44 2 61,232.58 0.06 61,232.58 2.79 0.14 0.09 0.09
SC 46 7 12,479.94 8.67 ∞ TL TL TL TL
WV 55 3 11,844.76 0.82 12,000.62 62.16 1.68 0.86 0.84
LA 64 6 17,239.16 2.14 17,272.65 66.87 4.08 2.22 2.23
CO 64 7 35,466.64 2.46 ∞ 215.25 2.74 TL 1.94
AL 67 7 15,519.54 3.83 16,627.25 457.52 64.29 20.94 19.41
AR 75 4 16,525.07 0.53 16,543.15 29.04 1.62 0.96 0.96
OK 77 5 21,527.57 1.01 21,756.50 101.64 5.06 1.64 1.97
MS 82 4 16,142.04 0.41 16,142.04 8.31 0.54 0.49 0.49
NE 93 3 22,112.00 0.28 22,193.01 13.33 0.57 0.45 0.47
IA 99 4 17,748.05 0.85 17,748.05 29.23 1.47 0.87 0.87
KS 105 4 23,736.89 1.34 23,736.89 48.98 1.78 1.10 1.11

cannot be assigned to other counties, nor can other counties be assigned to it. So, Denver

County must be in its own district. However, this conflicts with the population lower bound,

proving infeasibility. We also observe that SHIR proves the infeasibility of Colorado at the

root node—with the help of the MIP solver’s presolve and cuts. When these features are

turned off, branching is required to solve the SHIR model.

Surprisingly, South Carolina (with only 46 counties!) was left unsolved by all contiguity

models after a one-hour time limit. Digging deeper, we find that each of its counties can be

placed in a suitable district (satisfying contiguity and population balance), but that these

districts cannot be pieced into a full districting plan. This provides a partial explanation

why the contiguity models have more trouble proving the infeasibility of this instance than,

say, Colorado. Another reason why the models might struggle is a sort of symmetry. To

illustrate, observe that a partition (V1, V2, . . . , Vk) of the vertices can be represented in many

ways in the formulation (|V1||V2| · · · |Vk| to be exact). Normally, we can distinguish between
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these solutions by their objective values (which differ based on the choice of centers). If any

such feasible solution is discovered, then the other representations (with inferior objectives)

would be pruned by bound. However, when the instance is infeasible there is no incumbent

solution that can be used for pruning, unleashing the combinatorial explosion. If an instance

is suspected to be infeasible, we can attempt to prove this by imposing a canonical center

for a district, say, with the largest population, by fixing xij = 0 whenever pi > pj. In this

way, we can prove the infeasibility of South Carolina with LCUT in three seconds and safely

report the objective value in Table 3.3 as ∞. Applegate (2019) and Buchanan (2019) confirm

the infeasibility of South Carolina using different methods.

3.5.4 Tract-level results

Now we report tract-level results for the Hess, SHIR, and CUT formulations. The formulation

MCF is omitted because it is too large to handle tract-level instances, and LCUT is omitted

because it performs nearly the same as CUT on tract-level instances. As before, we do not

consider the seven trivial instances (where k = 1) in our experiments. The remaining 43

tract-level instances are feasible. Figure 3.10 gives an optimal solution for Oklahoma.

Figure 3.10: A tract-level solution for Oklahoma that is optimal for the Hess and CUT
models.

Table 3.4 gives the results under a one-hour time limit. In every case, we apply the
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Table 3.4: Results for solving the resulting MIPs at the tract level. For each formulation, we report the final
lower and upper bounds at termination within a 3,600 second time limit, as reported by Gurobi. When the LP
relaxation does not solve within the time limit, the time is reported as LPNS.

Hess SHIR CUT
State LB UB time LB UB time LB UB time

RI 228.42 228.42 0.00 228.42 228.42 0.02 228.42 228.42 0.00
NH 2,688.28 2,688.28 0.03 2,688.28 2,688.28 0.13 2,688.28 2,688.28 0.01
ID 53,916.36 53,916.36 0.01 53,916.36 53,916.36 0.02 53,916.36 53,916.36 0.00
HI 13,991.27 13,991.27 0.01 13,991.63 13,991.63 0.15 13,991.63 13,991.63 0.01
ME 7,716.04 7,716.04 0.00 7,716.04 7,716.04** 0.02 7,716.04 7,716.04** 0.00
WV 11,026.27 11,801.80 TL 10,937.99 11,834.84 TL 11,053.92 11,834.84 TL
NM 31,598.10 31,598.10 24.79 31,603.15 31,603.15 216.76 31,603.15 31,603.15 44.78
NE 21,983.14 21,983.14 0.22 21,983.42 21,983.42 2.40 21,983.42 21,983.42 0.16
UT 22,035.37 22,035.37 9.57 22,037.00 22,037.00 44.09 22,037.00 22,037.00 16.85
MS 16,303.82 16,303.82 0.17 16,305.45 16,305.45 1.57 16,305.45 16,305.45 0.19
AR 15,563.52 15,563.52 17.72 15,569.97 15,569.97 119.47 15,569.97 15,569.97 14.99
NV 11,383.34 12,443.84 TL 11,368.70 12,497.05 TL 11,370.55 12,497.05 TL
KS 22,784.49 22,784.49 1,310.10 22,784.53 22,786.69 TL 22,786.69 22,786.69 660.25
IA 18,172.01 18,172.01 12.27 18,176.37 18,176.37 276.96 18,176.37 18,176.37 39.99
CT 1,422.13 1,422.13 8.39 1,422.13 1,422.13 32.21 1,422.13 1,422.13 6.96
OR 26,749.59 26,749.59 81.37 26,749.74 26,749.74 733.67 26,749.74 26,749.74 83.74
OK 19,107.72 19,107.72 2.09 19,107.72 19,107.72 17.94 19,107.87 19,107.87* 1.65
SC 8,357.73 9,293.98 TL - 9,294.45 LPNS 8,360.04 9,294.45 TL
KY 14,833.72 14,833.72 244.93 14,835.16 14,835.16 2,272.44 14,835.16 14,835.16 2,354.22
LA 13,909.48 14,829.56 TL - 14,830.45** LPNS 13,909.56 14,830.45** TL
AL 13,073.21 13,510.26 TL - 13,510.26 LPNS 13,080.87 13,510.26 TL
CO - 19,916.43 LPNS - 19,918.36 LPNS 19,715.23 19,918.36 TL
MN 24,217.31 24,220.16 TL 24,210.23 24,223.84 TL 24,217.35 24,224.19 TL
MO - 21,214.38 LPNS - 21,222.79 LPNS - 21,222.79 LPNS
MD 5,082.38 5,084.32 TL 5,080.71 5,084.53 TL 5,083.39 5,084.53 TL
WI 16,272.94 16,311.75 TL - 16,340.81 LPNS 16,273.67 16,340.81 TL
WA - 12,604.21 LPNS - 12,609.09 LPNS - 12,609.09 LPNS
MA - 2,626.48 LPNS - 2,627.03** LPNS - 2,627.03** LPNS
TN 10,783.27 13,092.08 TL - 13,092.08 LPNS 10,786.16 13,092.08 TL
IN 11,078.13 11,081.76 TL 11,075.06 11,081.76 TL 11,078.06 11,081.76 TL
AZ - 30,219.11 LPNS - 30,220.39 LPNS - 30,220.39 LPNS
VA - 13,814.08 LPNS - 13,815.25 LPNS 12,836.85 13,815.25 TL
GA 15,836.60 15,955.65 TL - 15,955.65 LPNS - 15,955.65 LPNS
NJ - 2,291.51 LPNS - 2,291.51 LPNS - 2,291.51 LPNS
NC - 14,679.00 LPNS - 14,680.02 LPNS 14,417.50 14,680.02 TL
MI - 24,685.68 LPNS - 24,686.55 LPNS - 24,686.55 LPNS
OH - 11,908.25 LPNS - 11,911.64 LPNS - 11,911.64 LPNS
IL - 16,067.49 LPNS - 16,091.05 LPNS - 16,091.05 LPNS
PA - 11,799.41 LPNS - 11,806.00 LPNS - 11,806.00 LPNS
FL - 15,222.31 LPNS - 15,225.47 LPNS - 15,225.47 LPNS
NY - 16,700.05 LPNS - 16,700.81 LPNS - 16,700.81 LPNS
TX - 72,846.42 LPNS - 72,860.21 LPNS - 72,860.21 LPNS
CA - 27,603.66 LPNS - - LPNS - - LPNS
* The objective values obtained for the CUT and SHIR models are inconsistent with each other. Suspecting this inconsistency

was due to a numerical issue, we reran both models with the NumericFocus parameter set to 3. With this change, both

models reported an objective value of 19,107.72.
** The best solution that was found is connected in the contiguity graph but not on the map (see Section 3.5.1).
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heuristic from Section 3.4 and provide the resulting solution to Gurobi as a MIP start. We also

use the associated upper bound in the Lagrangian-based procedure discussed in Section 3.4 to

safely fix some variables to zero. As expected, the formulations solve most quickly when the

number of tracts is small, and they generally struggle more and more as n increases. They

all solve instances as big as Kentucky (n = 1, 115), but solve none of the larger instances

within a one-hour time limit. Somewhat surprisingly, the MIP solver even struggles with

West Virginia (n = 484) and Nevada (n = 687)–whether or not contiguity is imposed. One

explanation for this is that the Lagrangian-based reduced cost fixing is less effective on these

instances (recall Table 3.1).

In some cases, Hess is noticeably faster than SHIR and CUT; for example, the times for

Kentucky are 245 and 2,272 and 2,354 seconds, respectively. There are also cases where CUT

is noticeably faster than Hess and SHIR; for example, the times for Kansas are 660 and 1,310

and > 3, 600 seconds, respectively. Meanwhile, SHIR is consistently the slowest, performing

worse than Hess in all cases, and worse than CUT in all but one case (Kentucky, by 82

seconds). The dominance of Hess over SHIR matches the experience of many researchers over

the years who have observed that contiguity constraints tend to make problems more difficult.

However, if using an alternative model for enforcing contiguity (CUT), this no longer seems

to be true. In fact, the CUT and Hess models seem to have very similar performance. They

solve the same 16 instances within a one-hour time limit, and their running times on these

instances are on par with each other.

Another observation is the LP relaxations are often quite difficult to solve. Half of the

SHIR LP relaxations could not be solved within the one-hour time limit, and one third of

the CUT LP relaxations could not be solved. This is summarized in Table 3.5.

Out of curiosity, we decided to test the limits of the approach by running select states

without a time limit. Table 3.6 reports five instances that eventually solved. Interestingly, the

MIP solver could not solve the Hess model for Minnesota when it is told to obey a one-hour
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Table 3.5: Summary of tract-level MIP results with a one-hour time limit.

Status Hess SHIR CUT
# MIPs solved 16 15 16
# LPs solved (but not MIP) 11 6 13
# LPs not solved 16 22 14

time limit; however, when no time limit is imposed it solves in 2,205 seconds. The MIP solver

appears to behave differently when told to obey a one-hour time limit.

Table 3.6: Tract-level MIPs that are solved when no time limit is imposed.

Hess CUT
State n k obj time obj time
WV 484 3 11,801.26 27,056.92 11,834.84 28,984.58
MN 1,338 8 24,220.16 2,204.75 24,221.70 92,312.17
MD 1,406 8 5,084.32 36,553.32 5,084.44 75,539.58
WI 1,409 8 16,311.75 173,216.16 16,312.72 293,674.57
IN 1,511 9 11,081.72 10,570.75 11,081.72 13,435.36

3.6 Conclusion

Many researchers have stated that contiguity constraints make districting problems particu-

larly difficult to solve. However, the experiments conducted in this chapter suggest otherwise;

the exact same 21 tract-level instances are solved to optimality whether or not contiguity is

imposed. One explanation for this phenomenon is that the compactness objective proposed

by Hess et al. (1965) leads to nearly contiguous districting plans; a slight nudge is all that

is needed to achieve “full” contiguity. Formulations based on graph cuts, like the CUT

formulation of Oehrlein and Haunert (2017) and the newly proposed LCUT formulation,

are well-suited to this task. Few inequalities are needed to prove optimality. Meanwhile,

flow-based formulations can also perform well on smaller instances, but their size becomes a

problem sooner as their LP relaxations are larger.

The biggest bottleneck is solving the root LP relaxations. The bedrock of the formulations
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considered in this chapter—the Hess formulation—grows quadratically with the number n

of vertices. With Lagrangian reduced-cost fixing, many of these variables can be avoided,

allowing half of the tract-level instances to be solved. With small tweaks to the implementation,

other instances may be within reach, but entirely new ideas may be needed to solve the

largest instances like Texas (n = 5, 265) and California (n = 8, 057).

We make no claims that the maps generated in our computational experiments are “good”

or even legal. For example, our implementation does not explicitly consider the Voting

Rights Act, political subdivisions, partisan makeup of the districts, nor any laws that vary by

state. We consider one measure of compactness (the most prominent one in OR models), but

there are many others in the literature. We hope that the work conducted in this chapter

(including our publicly available source code and test instances) will provide a basis for further

districting research.
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CHAPTER IV

A LINEAR-SIZE FORMULATION FOR THE MINIMUM SPANNING TREE

PROBLEM IN PLANAR GRAPHS1

In 2002, Williams (2002a) proposed an extended formulation for spanning trees of a pla-

nar graph. The formulation is remarkably small (using only linearly many variables and

constraints) and remarkably strong (defining an integral polytope). This shows that the

spanning tree polytope of a simple planar graph G = (V,E) has extension complexity O(n),

where n = |V | is the number of its vertices.

This result is frequently mentioned as an exemplary example of the power of extended

formulations (Braun et al., 2016; Faenza et al., 2015; Iwata et al., 2016), and is a key ingredient

in several subsequent extended formulations (Conforti et al., 2015; Kaibel et al., 2016; Fiorini

et al., 2017). Indeed, a recent paper by Fiorini et al. (Fiorini et al., 2017), which gives

size O(g1/2n3/2 + g3/2n1/2) extended formulations for spanning trees in graphs of genus g,

depends crucially on Williams’ result. The spanning tree formulation and a subsequent

formulation for vertex-induced connectivity by Williams (Williams, 2002b) are also used

computationally (Xiao, 2006; Ahmadi and Mart́ı, 2015; Wang and Önal, 2011; Kim and Xiao,

2017).

In this chapter, we show that Williams’ spanning tree formulation is incorrect as stated.

Specifically, we construct a binary feasible solution to Williams’ spanning tree formulation

that does not represent a spanning tree. Fortunately, a small tweak corrects the formulation.

The change is to restrict the choice of the root vertices in the primal and dual spanning trees,

1Reprinted with permission from “A Note on “A linear-size zero-one programming model for the minimum
spanning tree problem in planar graphs”” by H. Validi and A. Buchanan. Networks, 73(1): 135-142, 2019.
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whereas Williams explicitly allowed them to be chosen arbitrarily. That this restriction on

the roots results in a correct formulation was first observed by Pashkovich and Kaibel (and

appears in Pashkovich’s dissertation (Pashkovich, 2012)), but the result and its proof have

not appeared outside of this dissertation, nor does the dissertation point out the error with

Williams’ original formulation. Additionally, we prove the converse statement: if their Root

Rule is not followed, then Williams’ formulation will (always) allow a solution that is not

a spanning tree. This shows that the Root Rule is, in some sense, the way to fix Williams’

formulation.

Then, we give a counterexample to a subsequent formulation from Williams for vertex-

induced connected subgraphs of planar graphs, which was introduced in the context of

acquiring contiguous parcels of land (Williams, 2002b). That this second formulation is

incorrect as stated is perhaps unsurprising given that it relies on the correctness of the

spanning tree formulation. Fortunately, the same Root Rule patches it.

Terminology and Notation

Williams’ formulation uses the notion of the planar dual graph (defined below), which may

have parallel edges and loops even when the graph coming from the original application does

not. So, in an effort to keep the exposition uniform and general, all graphs considered here

will be multigraphs, which are permitted to have parallel edges and loops. In this case, edges

e are not uniquely identified by their endpoints u and v, so we will not write e = {u, v},

contra Williams (Williams, 2002a) and Pashkovich (Pashkovich, 2012).

In this note, G = (V,E) will be a connected, undirected multigraph with vertex set V and

edge set E. We call G the primal graph, or simply the “primal.” Replacing each undirected

edge of G by its directed counterpart(s) yields the bidirected primal graph
↔

G = (V,
↔

E), or

simply the “bidirected primal.” When an edge is a loop in G, we intend for
↔

G to have only

one associated directed edge. Undirected edges in G that have distinct endpoints result in
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two oppositely directed edges in
↔

G.

We assume that G is embedded in the plane so that no two of its edges cross (i.e., a planar

embedding). In this case, there is an associated graph G∗ = (V ∗, E∗) called the planar dual

of G, or simply the “dual.” This dual graph G∗ is created as follows2. Place one dual vertex

inside each face of the embedding of G, including the exterior face. Place a dual edge across

each primal edge, and connect it to the dual vertices representing the faces on either side of

the primal edge. These two faces are identical when the primal edge is a bridge, yielding a

loop in G∗. Figure 4.1 gives an example primal/dual pair of graphs.

1 2

3

4

1

2 3

4

Figure 4.1: A planar embedding of “primal” G with round vertices, and its planar “dual” G∗

with square vertices.

Note that G∗ may have parallel edges and loops even when G does not. For example, this

is true if G is a cycle with k edges, in which case G∗ consists of two vertices with k parallel

edges between them. Also, if G is a tree with k edges, then G∗ consists of a single vertex

with k loops.

Replacing each undirected edge of G∗ by its directed counterpart(s) gives the bidirected

dual graph
↔

G∗ = (V ∗,
↔

E∗), or simply the “bidirected dual.” Figure 4.2 summarizes the

notation.

As is standard, δH(i) denotes the subset of edges incident to vertex i in an undirected

2The notation G∗ for the dual is common and is used, for example, by Tutte (Tutte, 1984) and Diestel (Di-
estel, 2010).
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Undirected Directed

Primal G
bidirect−−−−→

↔

G
l

Dual G∗
bidirect−−−−→

↔

G∗

Figure 4.2: The names of the multigraphs in this note.

graph H, and δ−H(i) denotes the subset of directed edges entering vertex i in a directed graph

H. The function qH maps an undirected edge to the set of its endpoints in graph H, as in

qH(e) = {u, v}. Note that qH(e) will be a singleton when e is a loop.

There is a natural bijection between the edges of the primal and dual, based on their

crossings. Following Diestel (Diestel, 2010), the notation e will often refer to a primal edge,

and e∗ to its associated dual edge from the bijection.

4.1 Spanning Tree Formulation

Williams’ formulation (Williams, 2002a) exploits the complementary nature of spanning

trees in the primal and dual. For example, consider the primal spanning tree in Figure 4.3

indicated by the solid lines. The spanning tree drawn in the dual is the unique spanning tree

that does not cross the edges of the primal spanning tree. Observe that exactly one edge is

chosen from each pair of crossing edges. For example, the edge connecting primal vertices

1 and 4 is chosen but not the crossing edge that connects dual vertices 1 and 2. We will

formalize these relationships in Lemma 10.
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1 2

3

4

1

2 3

4

Figure 4.3: The complementary nature of primal and dual spanning trees. Solid edges are
chosen and dashed edges are not.

Williams’ formulation is as follows3. It models a spanning arborescence, which is a directed

version of a spanning tree in which all edges are pointed away from a root vertex, in which

case each vertex (besides the root) has one incoming edge. For each primal edge e and for

each of its endpoints i, there is a binary variable xe,i representing the choice to select edge

e and orient it towards vertex i. There are similar binary variables ye∗,u for dual edges e∗

and endpoints u. Recall that e∗ is the notation for the dual edge that crosses primal edge e.

3We make minor modifications. First, we model a spanning arborescence (instead of a spanning anti-
arborescence) because arborescences are perhaps more common and also because this follows Pashkovich’s
dissertation. Second, Williams removes all edges pointing away from each terminus because the associated
variables would end up being zero anyways in an anti-arborescence. Instead, like in Pashkovich’s dissertation,
we retain the edges pointing towards the roots. Third, Williams uses a variable xij for edge e = (i, j), but due
to the possibility for parallel edges, we instead use variables xe,j , like in Pashkovich’s dissertation, requiring
us to refer to edge subsets δ·(·) instead of vertex neighborhoods. Fourth, we introduce the notation q·(·) to
correctly handle loops in the constraints (4.5).
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Williams states that a primal root r ∈ V and dual root r∗ ∈ V ∗ are to be picked arbitrarily.

∑
e∈δG(i)

xe,i = 1 ∀i ∈ V \ {r} (4.1)

∑
e∈δG(i)

xe,i = 0 i = r (4.2)

∑
e∗∈δG∗ (u)

ye∗,u = 1 ∀u ∈ V ∗ \ {r∗} (4.3)

∑
e∗∈δG∗ (u)

ye∗,u = 0 u = r∗ (4.4)

∑
i∈qG(e)

xe,i +
∑

u∈qG∗ (e∗)

ye∗,u = 1 ∀e ∈ E (4.5)

xe,i ∈ {0, 1} ∀e ∈ δG(i), i ∈ V (4.6)

ye∗,u ∈ {0, 1} ∀e∗ ∈ δG∗(u), u ∈ V ∗. (4.7)

The indegree constraints (4.1), (4.2), (4.3), (4.4) ensure that the roots r and r∗ have

zero incoming edges and that all other vertices have one incoming edge. The crossing edge

constraints (4.5) typically take the form xe,i + xe,j + ye∗,u + ye∗,v = 1, where {i, j} and {u, v}

are the endpoints of e and e∗, respectively. One exception is when e is a loop, in which case

the constraint will take the form xe,i + ye∗,u + ye∗,v = 1. The other exception is when e is a

bridge, meaning e∗ will be a loop, and the constraint will take the form xe,i + xe,j + ye∗,u = 1.

However, in any feasible solution these loop variables will take a value of zero since the

corresponding bridge variables will sum to one, so the loop variables can be removed from

the formulation. If desired, the variables in constraints (4.2) and (4.4) can also be removed.

As given, the formulation has 4|E| − b − s variables, where b and s are the number of

bridges and loops, respectively, in G. If G = (V,E) is planar and simple, the number of

variables is O(n), where n = |V |. This is because simple planar graphs G = (V,E) with at

least three vertices satisfy |E| ≤ 3|V | − 6, which holds by Euler’s polyhedral formula.
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Spanning tree counterexample. Figure 4.4 gives a counterexample to Williams’ formu-

lation (Williams, 2002a). Here, we have chosen r = 4 and r∗ = 4 as the primal and dual

roots, respectively. Observe that each primal and dual vertex (besides the roots) has precisely

one incoming solid edge, so the indegree constraints (4.1) and (4.3) are satisfied. And, the

roots have zero incoming solid edges, so constraints (4.2) and (4.4) are satisfied. Finally, the

crossing edge constraints (4.5) are satisfied. Yet, the selected primal edges form a directed

cycle on vertices 1, 2, and 3; they do not form a spanning arborescence.

Later in this chapter we give a general procedure for constructing such counterexamples

when they exist; see the proof of Lemma 11 for the details.

1 2

3

4

1

2 3

4

Figure 4.4: A counterexample to the spanning tree formulation of Williams (Williams, 2002a).

4.1.1 Spanning Tree Fix

To fix Williams’ formulation, we can use the following Root Rule (Pashkovich, 2012).

Root Rule (Due to Pashkovich and Kaibel). Arbitrarily pick a face r∗ ∈ V ∗ as the dual

root. Then, pick a vertex r ∈ V from that same face to be the primal root.

Figure 4.5 gives examples of good and bad choices for the primal and dual roots.

Lemma 9 (folklore). Let G = (V,E) be a directed graph. The edge subset Ê ⊆ E is a

spanning arborescence rooted at vertex r ∈ V if and only if the following hold:
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Figure 4.5: A good choice (left) and a bad choice (right) for the roots.

1. for each non-root i ∈ V \ {r}, exactly one directed edge incoming to i belongs to Ê, i.e.,

|δ−G(u) ∩ Ê| = 1;

2. no edge incoming to the root r belongs to Ê, i.e., |δ−G(r) ∩ Ê| = 0;

3. the subgraph (V, Ê) contains no directed cycles.

Lemma 10 (see Theorem XI.6 of Tutte (Tutte, 1984)). Suppose G is connected. The edge

subset T ⊆ E is the edge set of a spanning tree of G if and only if T ∗ := {e∗ | e ∈ E \ T} is

the edge set of a spanning tree of G∗.

With these two lemmata, it can be shown that the Root Rule fixes the formulation, which

we prove for completeness. The idea behind the proof originates with Pashkovich and Kaibel

(see Lemma 3.4 in Pashkovich (2012)).

Theorem 10 (Pashkovich and Kaibel). If the Root Rule is followed, then Williams’ spanning

tree formulation is correct.

Proof. Suppose the Root Rule is followed. We are to show that a binary vector x̂ represents

a spanning arborescence of
↔

G rooted at r if and only if there exists a binary vector ŷ such

that (x̂, ŷ) satisfies the formulation.

( =⇒ ) Suppose that x̂ represents a spanning arborescence of
↔

G. Undirecting these edges

gives a spanning tree of G with edge set T . By Lemma 10, T ∗ := {e∗ | e ∈ E \ T} is the
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edge set of a spanning tree of G∗. Directing the edges of T ∗ away from r∗ gives a spanning

arborescence of
↔

G∗ rooted at r∗. Let ŷ be its characteristic vector. Since x̂ and ŷ represent

spanning arborescences rooted at r and r∗, respectively, and by Lemma 9, (x̂, ŷ) satisfies the

indegree constraints and binary restrictions from Williams’ formulation. Finally, (x̂, ŷ) satisfy

constraints (4.5) since they represent orientations of the complementary spanning trees T

and T ∗.

(⇐= ) Suppose that (x̂, ŷ) satisfies the formulation. We show that x̂ represents a spanning

arborescence of
↔

G by showing it satisfies the properties from Lemma 9. Since x̂ satisfies

the indegree constraints (4.1) and (4.2), properties 1 and 2 of Lemma 9 are satisfied. So,

it suffices to show that x̂ satisfies property 3, which we show via Pashkovich and Kaibel’s

infinite nested cycles.

For contradiction purposes, suppose x̂ selects the edge set Ĉ1 of a directed cycle (and

possibly other edges too). The cycle does not contain the primal root r by constraint (4.2).

It creates two distinct regions in the planar embedding: the interior and the exterior of the

cycle. Let R1 be the region that does not contain the primal root r. By the Root Rule, the

dual root r∗ also does not belong to R1. Now, the region R1 contains at least one dual vertex,

say u ∈ V ∗ \ {r∗}. By the indegree constraints (4.3), there is one dual edge e∗ that is selected

and oriented towards u, and by the crossing edge constraints (4.5) this edge cannot cross

the cycle Ĉ1 into R1. Thus, the other endpoint of e∗, say v, also belongs to R1. Repeatedly

tracing the directed edges backwards in this way shows that ŷ selects at least one directed

cycle Ĉ∗1 of
↔

G∗ within R1. This dual cycle Ĉ∗1 also creates two regions: its interior and exterior.

Let the region that does not contain r (and thus does not contain r∗) be called R∗1. By the

same arguments as before, x̂ selects a directed cycle of G that lies within R∗1. Repeating this

procedure gives an infinite sequence of nested primal/dual cycles Ĉ1, Ĉ
∗
1 , Ĉ2, Ĉ

∗
2 , . . . that are

edge disjoint. This contradicts that
↔

G and
↔

G∗ have finitely many edges, implying that x̂

satisfies property 3. So, the directed edges selected by x̂ satisfy all properties from Lemma 9
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and thus form a spanning arborescence of
↔

G.

Observe that any choice of primal and dual roots satisfies the Root Rule when G is a tree

or a cycle. First, planar embeddings of trees have only one face, meaning that there is only

one choice for the dual root r∗, and all primal vertices lie on this face. Second, in the case of

a cycle, there are two faces: interior and exterior. Again, all primal vertices lie on these faces,

so either choice for the dual root will end up satisfying the Root Rule.

Remark 5. If G is a tree or a cycle, then any choice of primal and dual roots satisfies the

Root Rule.

Lemma 11. If G is neither a tree nor a cycle, then there is a choice of primal and dual

roots such that Williams’ spanning tree formulation is incorrect.

Proof. Suppose that G is neither a tree nor a cycle. We select primal and dual roots r and

r∗ and construct a feasible solution (x̂, ŷ) to the formulation such that x̂ does not represent a

spanning arborescence rooted at r.

Because G is not a tree (and by assumption throughout this note that G is connected),

it contains an undirected cycle. Direct its edges into a directed cycle Ĉ ⊂
↔

E. Create a

breadth-first search (BFS) tree in G emanating from this cycle and let its directed edges be

T̂ ⊂
↔

E. Let r ∈ V be a leaf vertex in this BFS tree and let the directed edge pointing to

r be er ∈ T̂ . (That r and er exist outside of this cycle holds because G is connected but is

itself not a cycle.) Let x̂ be the characteristic vector of Ĉ ∪ T̂ \ {er}. It can be observed that

x̂ satisfies constraints (4.1) and (4.2).

By undirecting the edges of Ĉ ∪ T̂ \ {er} we obtain the edge subset Ê ⊂ E. Let

Ê∗ := {e∗ | e ∈ E \ Ê}. We argue that Ê∗ induces a subgraph of G∗ with two components: a

tree and a 1-tree (i.e., a tree that has one extra edge). To see this, let ec be an edge from the

directed primal cycle Ĉ. Let S be the spanning tree of G obtained by undirecting the edges of

(Ĉ \ {ec})∪ T̂ . Then, by Lemma 10, the dual edge subset S∗ := {e∗ | e ∈ E \S} is a spanning
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tree of G∗. Then, S∗ \ {e∗c} is a forest containing two trees and Ê∗ = (S∗ \ {e∗c}) ∪ {e∗r}

induces a tree and a 1-tree.

Direct the edges of the 1-tree’s cycle into a directed cycle Ĉ∗, and let T̂ ∗ be the directed

edges of a BFS tree in (V ∗, Ê∗) emanating from the cycle. Pick a vertex r∗ from the tree

component of (V ∗, Ê∗) and direct the edges of the tree component away from r∗, giving the

subset T̂ ∗t of directed edges. Let ŷ be the characteristic vector of Ĉ∗ ∪ T̂ ∗ ∪ T̂ ∗t . It can be

observed that ŷ satisfies constraints (4.3) and (4.4). Finally, constraints (4.5) are satisfied

because x̂ and ŷ are orientations of the complementary edge subsets Ê and Ê∗.

So, (x̂, ŷ) satisfies all constraints of the formulation, but x̂ does not represent a spanning

arborescence of
↔

G. Therefore, the formulation is incorrect under this choice of primal root r

and dual root r∗.

By Theorem 10, Remark 5, and Lemma 11, we have the following theorem.

Theorem 11. Williams’ spanning tree formulation is correct if and only if the Root Rule is

followed.

Williams (Williams, 2002a) notes that his formulation has a totally unimodular constraint

matrix, implying that his formulation is integral. Pashkovich (Pashkovich, 2012) observes in

a footnote that total unimodularity persists when G and G∗ are multigraphs, as long as each

loop in the undirected graphs results in one directed loop in the bidirected graphs. Since we

are primarily concerned with the formulation’s correctness, and not its integrality, we refer

the reader to page 42 of Pashkovich (Pashkovich, 2012) for the proof.

4.2 Connected Subgraph Formulation

In a second paper, Williams (2002b) adapts his spanning tree formulation so that it selects

contiguous parcels of land. In the graph context, a feasible solution is a subset S ⊆ V of
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vertices that induces a connected subgraph G[S]. Again, he exploits planar graph duality,

but the task of selecting only a subset of the vertices is different and uses different variables.

For each primal vertex i ∈ V , there is a variable ui representing the decision whether or

not to include it in S. There are two sets of primal edge variables, xe,i and ye,i, that together

select a spanning arborescence of
↔

G. The variables xe,i select an arborescence that spans the

vertices selected by the ui variables (the “sub-arborescence”), and the variables ye,i represent

the other edges of the spanning arborescence of
↔

G. The variables ze∗,u represent a spanning

arborescence of G∗. As before, e∗ ∈ E∗ is the dual edge that crosses e ∈ E.

The formulation is as follows, where Williams again states that the primal and dual

roots can be chosen arbitrarily. The first five constraints are identical to the spanning tree

formulation, except that the selected primal edges are broken into two parts: xe,i and ye,i.

The last few constraints relate the vertex and edge decisions for the sub-arborescence4.

4Originally, Williams imposed cardinality constraints on the number p of vertices (parcels) and the number
p− 1 of edges. Instead, we write the more general constraint (4.15).
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∑
e∈δ(i)

(xe,i + ye,i) = 1 ∀i ∈ V \ {r} (4.8)

∑
e∈δ(i)

(xe,i + ye,i) = 0 i = r (4.9)

∑
e∗∈δ(u)

ze∗,u = 1 ∀u ∈ V ∗ \ {r∗} (4.10)

∑
e∗∈δ(u)

ze∗,u = 0 u = r∗ (4.11)

∑
i∈qG(e)

xe,i +
∑

i∈qG(e)

ye,i +
∑

u∈qG∗ (e∗)

ze∗,u = 1 ∀e ∈ E (4.12)

∑
j∈qG(e)

xe,j ≤ ui ∀i ∈ qG(e), e ∈ E (4.13)

∑
e∈δ(i)

xe,i ≤ ui ∀i ∈ V \ {r} (4.14)

∑
i∈V

ui −
∑
i∈V

∑
e∈δ(i)

xe,i = 1 (4.15)

xe,i ∈ {0, 1} ∀e ∈ δG(i), i ∈ V (4.16)

ye,i ∈ {0, 1} ∀e ∈ δG(i), i ∈ V (4.17)

ze∗,u ∈ {0, 1} ∀e∗ ∈ δG∗(u), u ∈ V ∗ (4.18)

ui ∈ {0, 1} ∀i ∈ V. (4.19)

Connected subgraph counterexample. Figure 4.6 gives a planar embedding of a primal

graph on 6 round vertices. The dual vertices are squares.

Figure 4.7 gives a counterexample to Williams’ connected subgraph formulation (Williams,

2002b). Here, we have chosen r = 6 and r∗ = 3 as the primal and dual roots, respectively.

Observe that all constraints of the formulation above are satisfied, and yet the gray-filled

primal vertices (representing vertices i with ui = 1) induce a disconnected subgraph. The
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Figure 4.6: A planar embedding of a graph G and its dual G∗.

primal edges selected by the x variables (resp. y variables) are solid (resp. dashed). The dual

edges selected by the z variables are solid.
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Figure 4.7: A counterexample to the connected subgraph formulation of Williams (2002b).
.

We note that even in Figure 1 of Williams’ paper (Williams, 2002b) the choice of primal

and dual roots violates the Root Rule, and so the x and y variables may not select a primal

arborescence. However, the vertices selected by the u variables will luckily induce a connected

subgraph for that instance. This is why we give a different counterexample—to illustrate

that the selected vertices may be disconnected.

It can be shown that this formulation for vertex-induced connected subgraphs is correct

when following the Root Rule. The proof of this is not difficult in light of Theorem 10 and is

omitted.
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4.3 Conclusion

In this chapter, we note that a rule (root rule) is not respected in William’s spanning tree

formulation for planar graphs. Thanks to Pashkovich (2012), we provide a fix for it. We

also prove that if the root rule is not respected, then Williams’ formulation always allows a

solution that is not a spanning tree.
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CHAPTER V

POLYHEDRAL STUDY OF k CONNECTED COMPONENTS1

5.1 Introduction

Imposing at most k connected subgraphs arises in interesting applications of network design

and analysis problems: reserve network design problems (Jafari and Hearne, 2013, 2020; Önal

et al., 2016; Jafari et al., 2017), and the max-p-regions problem (Duque et al., 2012). In each

of these applications, one trie to find at most k connected subgraphs that satisfy specific

properties. Wang (2015) addresses this problem as “an interesting and challenging task.”

Given a simple graph G = (V,E) and an integer k, our task is to write a “good” integer

programming formulation for finding at most k connected components. Also, let D = (V,A)

be an orientation of graph G in which every edge {u, v} ∈ E is replaced with exactly one

directed edge (u, v) ∈ A or (v, u) ∈ A. In this paper, we denote n := |V |, m := |E|, and the

open neighborhood of vertex v ∈ V as N(v) := {u ∈ V | {v, u} ∈ E}. Also, we define c(G)

and ∆(G) as the number of components and the maximum degree of graph G, respectively.

For every vertex v ∈ V , we define degG(v) as the degree of vertex v in graph G, and dv as the

indegree value of vertex v in directed graph D. For any set S, we use π(S) as a shorthand

for
∑

i∈S πi. Finally, we assume that 0-vertex and 1-vertex graphs are connected.

Definition 9. The k-component polytope of graph G = (V,E) is

Pk(G) := conv.hull
{
xS ∈ {0, 1}n

∣∣ c(G[S]) ≤ k
}
,

1This chapter is based on work with Austin Buchanan (Validi and Buchanan, 2020c).
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where xS represents the characteristic vector of S ⊆ V .

Let xi be the decision variable for each vertex i ∈ V , where setting this variable to one

represents the decision to include i in set S. Our decision variables are xi for each vertex

i ∈ V , where setting this variable to one represents the decision to include i in our set S.

5.2 Basic Properties of Pk(G)

Proposition 10. Consider a graph G with q = c(G) components. The k-component polytope

Pk(G) is full-dimentional. Furthermore, for each i ∈ V ,

1. xi ≥ 0 is facet-defining; and

2. xi ≤ 1 is facet-defining if and only if k ≥ 2 or (k = 1 and q = 1).

Proof. The points 0 and ei for every i ∈ V are affinely independent and show that Pk(G) is

full-dimentional. The n affinely independent points 0 and ej for every j ∈ V \ {i} satisfy

xi ≥ 0 at equality. This proves the first statement.

Now we prove the second statement.

( =⇒ ) By the contrapositive, suppose k = 1 and q ≥ 2. Then G is not connected and

xi ≤ 1 does not induce a facet by Proposition 1 of Wang et al. (2017).

(⇐= ) If k = 1 and q = 1, then G is connected and xi ≤ 1 is facet-defining by Proposition

1 of Wang et al. (2017). Now, suppose that k ≥ 2. Without loss of generality, let G′ = (V ′, E ′)

be the component that contains vertex i. Apply DFS algorithm from vertex i and let

(vi1, v
i
2, . . . , v

i
n′) be the order of visited vertices in the DFS procedure. For u = 1, 2, . . . , n′,

points
∑u

j=1 evj form n′ affinely independent points that satisfy xi ≤ 1 at equality. If q = 1,

then we are done. Now, suppose q ≥ 2. Then select a vertex v from V \ V ′; i.e., v ∈ V \ V ′.

Then, unit vectors ev’s along with ei form n− n′ points. This finishes the proof.
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Lemma 12. Let
∑

i∈V πixi ≤ kπ0 be a facet-defining inequality of Pk(G). Then, π0 ≥ 0. The

inequality is (a scalar multiple of) some nonnegativity bound −xj ≤ 0 if and only if π0 = 0.

Proof. Because the empty set is feasible, we have π0 ≥ 0.

( =⇒ ) This is trivial.

(⇐= ) Suppose π0 = 0. Then, for every i ∈ V , we must have πi ≤ 0 because each induced

subgraph G[{i}] is feasible. Also, suppose that at least two coefficients, say πu and πv, are

negative. Then valid inequalities πuxu ≤ 0 and
∑

i∈V \{u} πixi ≤ 0 imply the valid inequality∑
i∈V πixi ≤ 0. This contradicts the facet-defining assumption of the statement.

Lemma 13. Suppose graph G has components G1, G2, . . . , Gq with q ≥ k, and let π ∈ Rn

and π0 > 0. Suppose that, for each j ∈ [q], the inequality
∑

i∈Vj πixi ≤ π0 is valid for P1(Gj).

Then, the inequality
∑

i∈V πixi ≤ kπ0 is valid for Pk(G).

Proof. Suppose that each inequality
∑

i∈Vj πixi ≤ π0 is valid for P1(Gj). Suppose that a

subset of vertices S induces at most k components G[S1], G[S2], . . . , G[Sp] in graph G. So,

we have

π(S) =

p∑
u=1

π(Su) ≤
p∑

u=1

π0 = pπ0 ≤ kπ0.

Here, the first inequality holds by validity of
∑

i∈Vj πixi ≤ π0 for P1(Gj).

Theorem 12. Suppose that G has components G1, G2, . . . , Gq, and let π ∈ Rn and π0 > 0.

If each sub-inequality
∑

i∈Vj πixi ≤ π0 induces a facet of P1(Gj) and if q ≥ k + 1, then the

inequality
∑

i∈V πixi ≤ kπ0 induces a facet of Pk(G).

Proof. Because the inequality
∑

i∈Vj πixi ≤ π0 induces a facet of P1(Gj) for each Gj = (Vj, Ej),

there are nj affinely independent points that satisfy the inequality at equality. Let aji be the

i-th affinely independnet point of component j. Also, let Aj be a set of affinely independent
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points of component Gj. By Corollary 4.4 of Nemhauser and Trotter (1974), the following

structure provides n affinely independent points that satisfy
∑

i∈V πixi ≤ kπ0 at equality.

M =



0n1×n2 a1111×n3 . . . A1 a1111×nk+2
. . . a1111×nq

A2 0n2×n3 . . . a2111×n1 a2111×nk+2
. . . a2111×nq

...
...

...
...

...
...

...
ak−11 11×n2 ak−11 11×n3 . . . ak−11 11×n1 ak−11 11×nk+2

. . . ak−11 11×nq
ak111×n2 ak111×n3 . . . ak111×n1 0 . . . 0
ak+1
1 11×n2 ak+1

1 11×n3 . . . 0nk+1×n1 0 . . . 0
0 0 . . . 0 Ak+2 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . Aq


Figure 5.1: Affinely independent points

Lemma 14. Let π ∈ Rn and π0 > 0 and suppose that the inequality
∑

i∈V πixi ≤ π0 is valid

for P1(G). If the inequality
∑

i∈V πixi ≤ kπ0 induces a facet of Pk(G), then for every vertex

v ∈ V there exists a feasible tight set S ′ ⊆ V such that v ∈ S ′ and π(S ′) = π0.

Proof. To prove this, we first claim that for every vertex v ∈ V , there exists a feasible

tight set S ⊆ V such that v ∈ S and π(S) = kπ0. Suppose not, then all points on face

F := Pk(G) ∩ {x | πTx = kπ0} also belong to the face F ′ := Pk(G) ∩ {x | xv = 0}. So,

F ⊆ F ′. Since 0 ∈ F ′ and 0 6∈ F , the inclusion is strict; i.e., F ⊂ F ′. This shows that F is

not a maximal face; so, it is not a facet. This contradicts the assumption that the inequality∑
i∈V πixi ≤ kπ0 induces a facet of Pk(G).

Because for every vertex v ∈ V , there is a feasible tight set S ⊆ V such that v ∈ S and

π(S) = kπ0, G[S] induces p components G[S1], G[S2], . . . , G[Sp] with p ≤ k and S = ]j∈[p]Sj.

Because the inequality
∑

i∈V πixi ≤ π0 is valid for P1(G), we have
∑

i∈Sj πixi ≤ π0 for every

j ∈ [p]. Finally, we have the following string of inequalities, where jv denotes the component

that contains vertex v.

141



kπ0 = π(S) =

p∑
j=1

π(Sj) =
∑

j∈[p]\{jv}

π(Sj) + π(Sjv) ≤ pπ0 ≤ kπ0.

Here, the first inequality holds by the fact that
∑

i∈Sj πixi ≤ π0 for every j ∈ [p]. This chain

of inequalities implies that p = k and there exists a feasible tight set S ′ := Sjv such that

v ∈ S ′ and π(S ′) = π0.

Lemma 15 (Upper bound on lifting). Suppose
∑

i∈V \{v} πixi ≤ kπ0 induces a facet of

Pk(G − v) and
∑

i∈V \{v} πixi ≤ π0 is valid for P1(G − v), where π0 > 0. Then, the lifting

problem for v

ζ := max
S⊆V

 ∑
i∈V \{v}

πix
S
i

∣∣∣∣∣∣ xSv = 1 and G[S] has at most k components


satisfies ζ ≤ (α(G[N(v)]) + k − 1) π0.

Proof. Let U ′ be an optimal solution for the lifting problem. Also, let I = {u1, u2, . . . , us} be

a maximal independent set of (G[N(v)]), where s = α(G[N(v)]). Then define U := U ′ \ {v}.

Let G′v be the component of G[U ′] that contains v, let U1 = V (G′v) \ {v} and let U2 = U \U1.

Partition U1 into s subsets (some possibly empty) as follows. Let U1
1 ⊆ U1 be the set of

vertices that are connected to u1 by a path in G[U1]. For every p ∈ {2, 3, . . . , s}, let U1
p be

the vertices of U1 \ (U1
1 ∪ U1

2 ∪ · · · ∪ U1
p−1) that are connected to up by some path in G[U1].

For every p ∈ [s] because G(U1
p ) is a connected subgraph of G− v, we have π(U1

p ) ≤ π0 by

validity of
∑

i∈V \{v} πixi ≤ π0 for P1(G− v). Let G[U2
1 ], G[U2

2 ], . . . , G[U2
q ] be the components

of G[U2], and see that q ≤ k − 1. Since
∑

i∈V \{v} πixi ≤ π0 is valid for P1(G − v), each

142



component U2
j satisfies π(U2

j ) ≤ π0 for every j ∈ [q]. Thus,

ζ = π(U) = π(U1) + π(U2)

=
s∑

p=1

∑
i∈U1

p

πi

+

q∑
j=1

∑
i∈U2

j

πi

+
∑
i∈V \U

πix
U
i

≤ sπ0 + (k − 1)π0

= (α(G[N(v)]) + k − 1) π0.

Lemma 16 (Lower bound on lifting). Suppose
∑

i∈V \{v} πixi ≤ kπ0 induces a facet of

Pk(G− v) and
∑

i∈V \{v} πixi ≤ π0 is valid for P1(G− v), where π0 > 0. Also, let c(G− v)

and t be the number of components of G − v and G[N(v)], respectively. Then, the lifting

problem for v

ζ := max
S⊆V

 ∑
i∈V \{v}

πix
S
i

∣∣∣∣∣∣ xSv = 1 and G[S] has at most k components


satisfies ζ ≥ (k − 1)π0 if v is isolated and

ζ ≥ max {k, t+ min{k − 1, c(G− v)− t}} π0,

otherwise.

Proof. First suppose that v is isolated. Because the inequality
∑

i∈V \{v} πixi ≤ kπ0 is facet-

defining for Pk(G−v), there exists a feasible tight set H ⊆ V \{v} for which π(H) = kπ0. Let

G[H1], G[H2], . . . , G[Hp] be the connected subgraphs induced by H with p ≤ k. By validity

143



of
∑

i∈V \{v} πixi ≤ π0 for P1(G− v), we have

π(H1) =
∑
i∈V

πix
H1 ≤ π0. (5.1)

Define H ′ := (H \H1) ∪ {v}. H ′ also induces p connected components. So, we have

π(H ′ \ {v}) = π(H)− π(H1) ≥ π(H)− π0 = kπ0 − π0 = (k − 1)π0.

Here, the inequality holds by inequality (5.1). Hence, ζ ≥ (k − 1)π0 when v is isolated.

Now suppose that vertex v is not isolated. Consider a vertex u ∈ N(v). Because the

inequality
∑

i∈V \{v} πixi ≤ kπ0 is facet-defining for Pk(G− v), there exists a feasible tight set

containing u that satisfies the inequality at equality. Hence, we have ζ ≥ kπ0 when v is not

isolated.

Let u1, u2, . . . , ut be vertices that connect vertex v to components G[V1], G[V2], . . . , G[Vt],

respectively (i.e., for every i ∈ [t], we have N(v) ∩ Vi = ui). By Lemma 14, for every i ∈ [t],

there exists a feasible tight set Si ⊆ Vi such that ui ∈ Si and π(Si) = π0. Similarly, we can

find connected components for every component of G− v that is not connected to vertex v

(there are c(G− v)− t of them). This implies ζ ≥ (t+ min{k − 1, c(G− v)− t}) π0. So, we

have

ζ ≥ max {k, t+ min{k − 1, c(G− v)− t}} π0.

Finally, we show that
∑

i∈V πixi ≤ π0 is valid for P1(G) after lifting vertex v. If vertex v

is isolated, then we have the following upper bound for πv.

πv = kπ0 − ζ ≤ kπ0 − (k − 1)π0 = π0.
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This means
∑

i∈V πixi ≤ π0 remains valid after lifting isolated vertex v. Now suppose vertex v

is not isolated. Then, we claim that
∑

i∈V πixi ≤ π0 is always valid for P1(G) if c(G− v) ≥ k

and t = 1. If these two conditions hold, then we have ζ ≥ kπ0. So, let U be a connected

component of graph G[W ] with W := V1 ∪ V2 ∪ · · · ∪ Vt ∪ {v}. Then,

∑
i∈W

πix
U
i = πvx

U
v +

∑
j∈[t]

∑
i∈Vj

πix
U
i

≤ (kπ0 − kπ0) + tπ0

= π0.

For any t ≥ 2, we claim that
∑

i∈V πixi ≤ π0 is always valid for P1(G) if c(G− v)− t ≥ k− 1.

If this condition holds and t ≥ 2, then we have ζ ≥ (k + t− 1)π0. So, let U be a connected

component of graph G[W ] with W := V1 ∪ V2 ∪ · · · ∪ Vt ∪ {v}. Then for any t ≥ 2,

∑
i∈W

πix
U
i = πvx

U
v +

∑
j∈[t]

∑
i∈Vj

πix
U
i

≤ kπ0 − (k + t− 1)π0 + tπ0

= π0.

So, we have

ζ ≥


(k − 1)π0 if t = 0

(k + t− 1)π0 if t ≥ 1 and c(G− v)− t ≥ k − 1.

Lemma 17. Let
∑

i∈V πixi ≤ kπ0 be a facet-defining inequality for Pk(G). For any pair of

vertices u, v ∈ V with positive coefficients πu, πv > 0, there is no path Pu,v with π(Pu,v) =
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πu + πv.

Proof. Suppose there exist vertices i, j ∈ V with πi, πj > 0 such that there is a path P̂ij

between them with π(P̂ij) = πi + πj. Since the inequality is facet-defining for Pk(G), there

are n affinely independent points S1, S2, . . . , Sn that satisfy the inequality at equality. At

least one of these points, say S ′, contains exactly one of i and j. Without loss of generality,

suppose S ′ contains i but not j. Let S ′′ := S ′ ∪ V (P̂i,j). Because path P̂i,j connects i to j,

S ′′ also belongs to Pk(G). But, we have

∑
w∈V

πwx
S′′

w =
∑
w∈V

πwx
S′

w + π(V (P̂i,j) \ {i}) = kπ0 + πj > kπ0.

This is a contradiction.

Lemma 18. Suppose that the inequality
∑

i∈V πixi ≤ kπ0 induces a non-trivial facet, and

define U := {i ∈ V | πi > 0}. Then |U | ≥ k + 1.

Proof. For contradiction purposes, we consider the following three cases: (i) |U | = 0; (ii)

|U | = 1; and (iii) 2 ≤ |U | ≤ k.

In the first case, suppose |U | = 0. Note that π0 ≥ 0 by Lemma 12. Since no variable has a

positive coefficient, π0 should be zero; otherwise, no point in Pk(G) satisfies the inequality at

equality. Hence π0 = 0. By Lemma 12, the inequality is a (scalar multiple of a) nonnegativity

bound. This is a contradiction because the inequaity is a non-trivial facet.

In the second case, suppose that U = {v} with v ∈ V . Then, 0 < πv ≤ kπ0 because

G[U ] induces at most k components and
∑

i∈V πixi ≤ kπ0 is a valid inequality. Also,

πv = kπ0 because otherwise there is no point that satisfies the inequality at equality. So,

the inequality πvxv ≤ kπ0, where πv = kπ0, is a valid inequality. Further, the inequality

0xv +
∑

i∈V \{v} πixi ≤ 0 is valid because πi ≤ 0 for every i ∈ V \ {v}. If πi = 0 for every

i ∈ V \ {v}, then
∑

i∈V πixi ≤ kπ0 is a scalar multiple of xv ≤ 1. If not, then there exists

a vertex j ∈ V \ {v} such that πj < 0. Hence, the valid inequalities πvxv ≤ kπ0 and
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0xv +
∑

i∈V \{v} πixi ≤ 0 imply
∑

i∈V πixi ≤ kπ0. So,
∑

i∈V πixi ≤ kπ0 is not a facet-defining

inequality when πj < 0 for a j ∈ V \ {v}.

In the third case, suppose 2 ≤ |U | ≤ k. Inequality
∑

i∈V \U πixi ≤ 0 is valid because πi ≤ 0

for every i ∈ V \U . If πi = 0 for every i ∈ V \U , then
∑

i∈U πixi ≤ kπ0 is facet-defining and

there is a feasible tight set W that satisfies it at equality. We claim that U ⊆ W ; otherwise,

there is a tight feasible set U ′ ⊂ U for which π(U ′) = kπ0. This implies π(U) > k. Hence,

U ⊆ W and π(U) = kπ0. This means the scalar multiples of valid inequalities xv ≤ 1 for all

v ∈ U imply

∑
i∈U

πixi ≤
∑
i∈U

πi = kπ0.

This is a contradiction. If there exists a vertex j ∈ V \ U such that πj < 0, then the

scalar multiples of valid inequalities xv ≤ 1 for all v ∈ U and
∑

i∈V \U πixi ≤ 0 imply∑
i∈V πixi ≤ kπ0. This means

∑
i∈V πixi ≤ kπ0 is not a facet-defining inequality when πj < 0

for a vertex j ∈ V \ U .

5.3 Separator Inequalities

Definition 10 (separator). In a graph G = (V,E), a subset C ⊂ V of vertices is said to be

a separator for S ⊆ V if no two vertices of S belong to the same component of G− C.

For any S ⊆ V with |S| = k + 1 and a separator C ⊆ (V \ S) for S, separator inequality

is defined as follows.

(separator inequality) x(S)− x(C) ≤ k. (5.2)

Also, define the polytope of separator inequalities (Qk(G)) as follows.
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Qk(G) := {x ∈ [0, 1]n | x satisfies all separator inequalities.}

Proposition 11. The inequalities (5.2) and x ∈ {0, 1}n correctly model the polytope Pk(G).

Proof. We show that the subgraph G[U ] induced by U has at most k components if and only

if the characteristic vector xU satisfies all constraints (5.2).

( =⇒ ) By the contrapositive. Suppose that xU violates some constraint (5.2) given by

x(S)−x(C) ≤ k, where C is a separator for S and |S| = k+ 1. Thus xU (S)−xU (C) ≥ k+ 1.

This happens only when |U ∩ S| = k + 1 (i.e., S ⊆ U) and |U ∩ C| = 0 (i.e., U ⊆ V \ C).

Because U ⊆ V \ C, each vertex i ∈ S ⊆ U belongs to a different component of G[U ]. Since

|S| = k + 1, G[U ] has at least k + 1 components.

( ⇐= ) By the contrapositive. Suppose that G[U ] has more than k components. Call

them G1, G2, . . . , Gq with q ≥ k+ 1. For each component Gi with i ≤ k+ 1, pick a vertex vi

from V (Gi). Let S ′ = {v1, v2, . . . , vk+1} and C ′ = V \ U . Then, xU violates constraints (5.2)

for S ′ and C ′ since xU(S ′)− xU(C ′) = (k + 1)− 0 > k.

Lemma 19. Let C ⊂ V be a separator for S ⊆ V with |S| = k + 1. Then x(S) ≤ k induces

a facet of P (G− C).

Proof. For any v ∈ S, let Sv be the component of G − C that contains vertex v. Because

inequality xv ≤ 1 induces a facet for P1(G[Sv]), x(S) ≤ k induces a facet for P (G− C) by

Theorem 12.

Lemma 20. For a graph G = (V,E) and an independent set S ⊆ V with |S| ≥ k + 1, the

inequality x(S) ≤ k induces a facet for G[S].

Proof. This follows by Theorem 12.
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Proposition 12 (cf. Wang et al. (2017)). There is a facet-defining inequality of Pk(G) with

α(G) positive coefficients. None have more.

Proof. The first claim holds by Lemma 20. The second claim holds by Lemma 17.

Theorem 13. Consider a graph G = (V,E). For every S ⊆ V with |S| = k + 1 and a

separator C ⊆ (V \ S) for S,

x(S)− x(C) ≤ k (5.3)

is facet-defining if and only if C is a minimal separator.

Proof. ( =⇒ ) Suppose that C is not a separator. Then, there exist vertices a, b ∈ S such

that there is an a, b path P in G − C. Then, G[S ∪ V (P )] induces at most k connected

components that is represented by x∗; however, we have

x∗(S)− x∗(C) = x∗(S) = k + 1 > k.

This means that inequality (5.3) is not valid. Now suppose that C is not minimal. This implies

that there exists c ∈ C such that C ′ := C \ {c} is also a separator. So, x(S)− x(C ′) ≤ k is

also valid. This means that inequality (5.3) is not facet-defining.

( ⇐= ) Let C be a minimal separator, and S := {s1, s2, . . . , sk+1}. Then define

S1, S2, . . . , Sk+1 as follows.

S1 := {u ∈ V | u and s1 belong to the same component of G− C}
...

Sk+1 := {u ∈ V | u and sk+1 belong to the same component of G− C}

W := V \ (S1 ∪ S2 ∪ · · · ∪ Sk+1 ∪ C) .
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Let Z := S1 ∪ S2 ∪ · · · ∪ Sk+1. By Theorem 12, x(S) ≤ k is facet-defining for Pk (G[Z]).

Now, we claim that it is facet-defining for Pk (G[Z ∪ C]). So, we lift variables xv for every

v ∈ C. Let C = {v1, v2, . . . , vq}, C0 = ∅ and for every j ∈ [q], let Cj = {v1, v2, . . . , vj}. We

show that for each j ∈ {0, 1, . . . , q}, the inequality x(S) − x(Cj) ≤ k is facet-defining for

Pk(Gj) with Gj = G[Z ∪Cj ]. This is clearly true for j = 0. Assume that the statement holds

for some 0 ≤ j < q. We show that it also holds for j + 1. By assumption, the inequality

x(S)− x(Cj) ≤ k is facet-defining for Pk(Gj). Consider the problem of lifting variable xvj+1

into the inequality; i.e., solving

ζ := max
T⊆Z∪Cj+1

{
xT (S)− xT (Cj)

∣∣ G[T ] has at most k components and vj+1 ∈ T
}
.

For any x ∈ [0, 1]n, we have

∑
i∈S

xi −
∑
u∈Cj

xu ≤
∑
i∈S

xi ≤ k + 1. (5.4)

Hence, ζ ≤ k + 1. Since C is a minimal separator, there are a, b ∈ S such that there exists a

path from a to b in G[(V \ C) ∪ {vj+1}]. Let U be the vertices on this path. Then, xU∪S is a

feasible solution for the lifting problem and its objective value is calculated as follows.

ζ ≥
∑
i∈S

xU∪Si −
∑
u∈Cj

xU∪Su =
∑
i∈S

xU∪Si = k + 1. (5.5)

This implies ζ ≥ k + 1. So, ζ = k + 1 by inequalities (5.4) and (5.5). Finally, the inequality

(k − ζ)xvj+1
+
∑
i∈S

xi −
∑
u∈Cj

xu =
∑
i∈S

xi −
∑

u∈Cj+1

xu ≤ k

induces a facet for Pk(Gj+1). Thus, the inequality x(S) − x(C) ≤ k induces a facet for

Pk(Z ∪ C).
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Finally we show that x(S) − x(C) ≤ k induces a facet for Pk(G). For any v ∈ W , let

σ(v) be the length of shortest path from v to C. Order the vertices of W = {v1, v2, . . . , vr}

such that σ(s) ≤ σ(t) for any s, t ∈ [r] and s ≤ t. Let W0 = ∅; and for any j ∈ [r],

let Wj = {v1, v2, . . . , vj} and Hj = G[(V \W ) ∪Wj]. We employ induction to show that

x(S)− x(C) ≤ k induces a facet for Pk(Hj). The claim is clear for j = 0. Suppose that it

holds for some j ∈ {0, 1, . . . , r− 1}. We are to show that it holds for j + 1. By the induction

assumption, we know that x(S)− x(C) ≤ k induces a facet for Hj . Now, we define the lifting

problem as follows.

ζ := max
T⊆V (Hj+1)

{
xT (S)− xT (C)

∣∣ G[T ] has at most k components and vj+1 ∈ T
}
.

Let U ⊆ V (Hj+1) be a feasible solution to the lifting problem. If xU(S)− xU(C) > k, then

all vertices of the set S belong to U . However, because U is a feasible solution and G[U ] has

at most k connected components, there exists q ∈ U ∩ C and we have

xU(S)− xU(C) ≤ xU(S)− xUq ≤ k.

So, we have ζ ≤ k.

To show the reverse inequality, let R1 be the set of vertices in a shortest path from vj+1

to set C. Let q ∈ C be the other endpoint of the path. Because R1 forms the shortest path

from vj+1 to set C, we have R1 ∩ C = {q}. Also, because C is minimal, there exists vertices

a, b ∈ S such that there is a path from a to b in G[(V \C)∪{q}]. Let R2 ⊆ V be the vertices

on this path, and let R = R1 ∪R2 ∪ S. Then, G[R] induces exactly k connected components

that contains vj+1, a, b and R ∩ C = {q}. Hence, xR is a feasible solution for the lifting
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problem, and

xR(S)− xR(C) = xR(S)− xRq = k.

Thus, ζ ≥ k, and this implies ζ = k. So, the inequality x(S)− x(C) ≤ k induces a facet for

Pk(Hj+1). Hence, it induces a facet for Pk(Hr).

Lifting separator inequalities. Assume that x(S)−x(C) ≤ k induces a facet for Pk(G−v).

If we want to lift in vertex v such that the inequality is facet-defining for Pk(G), then next

theorem proves that the following algorithm can be run in linear time.

1. let Sj = {i ∈ V | i and sj belong to the same component of G−C} for every j ∈ [k+1];

2. if N(v) = ∅, then return ζ = k − 1;

3. if there exists at least two components Si and Sj such that Si = Sj, then return

ζ = k + 1;

4. if S1 6= S2 6= . . . 6= Sk+1, then return ζ = k.

Theorem 14. The lifting algorithm lifts vertex v into a given separator inequality in linear

time.

Proof. The algorithm runs in linear time (based on the number of edges) because step one

runs in linear time via BFS. If N(v) = ∅, then ζ = k − 1 by Lemmata 15 and 16. Now,

suppose that N(v) 6= ∅. The following two cases can happen.

1. Vertex v belongs to at least two components Si and Sj. This means at least two

components Si and Sj are the same. Let P be a path between si and sj in G−C. Then

U := S ∪ V (P ) maximizes ζ. So, we have

xU(S)− xU(C) ≤ xU(S)− 0 = k + 1.
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This implies that ζ ≤ k + 1. Also, because U is a feasible solution with objective value

k + 1 for the maximization problem, ζ ≥ k + 1. Hence, ζ = k + 1.

2. Vertex v belongs to none of the components S1, S2, . . . , Sk+1. This implies that C is a

separator for S. Also, C is minimal because the separator inequality is facet-defining

for Pk(G − v). For contradiction purposes, suppose that there is a solution U ⊂ V

such that xU(S) − xU(C) > k and G[U ] induces at most k connected components.

Because C is minimal, there exists a vertex c ∈ C such that there are two components

Si and Sj for which there is a path from si to sj in G[(V \ C) ∪ {c}]. This means U

has a connected component containing si, sj, c and v along with at most k − 1 other

components that contain su for every u ∈ S \ {i, j}. So , we have

xU(S)− xU(C) ≤ xU(S)− xUc = k.

This is a contradiction, and it implies that ζ ≤ k. Also, U is a feasible solution for the

maximization problem; so, ζ ≥ k. Hence, ζ = k.

5.3.1 Separation Complexity

Since there are exponentially many of the separator inequalities (5.2), we should use them

carefully and adding them on-the-fly only as needed. That is, while solving our problem, we

will encounter some possible solution x∗ ∈ Rn and should determine whether x∗ satisfies all

separator inequalities. And if not, we are to provide a violated separator inequality.

Integer separation

To simplify the process, we may choose to separate only integer points x∗ ∈ {0, 1}n. In this

case, x∗ will represent some vertex subset S ⊆ V . Let S1, S2, . . . , Sk+1 be k + 1 connected

153



components that are induced by S. An integer separation procedure is provided in Algorithm 4.

Algorithm 4 IntegerSeparation(G,S)

1: compute the connected components G1, G2, . . . , Gq of G[S]
2: if q ≤ k then
3: return “none violated”
4: C ← ∅
5: let T := {vi | i ∈ [k + 1]}
6: let S ′ ← V1 ∪ V2 ∪ · · · ∪ Vk+1

7: while S ′ ∪ C 6= V do
8: let C ′ := {v ∈ (V \ S ′) | N(v) ∩ S ′ 6= ∅}
9: for every c ∈ C ′ do

10: if c neighbors only one component Vi then
11: Vi ← Vi ∪ {c}
12: else C ← C ∪ {c}
13: S ′ ← V1 ∪ V2 ∪ · · · ∪ Vk+1

14: return x(T )− x(C) ≤ k

Proposition 13. Algorithm 4 identifies a minimal violated separator inequality (when one

exists) and can be implemented to run in time O(m+ na(n)), where a(.) denotes the inverse

of Ackermann function.

Proof. Minimality of the separator follows by the fact that each c ∈ C neighbors at least two

components. For time complexity, note that step one runs in O(m) and steps 4–13 run in

O(na(n)) (see Cormen et al. (2009)).

Fractional separation

In this section, we prove that fractional separation is NP-hard for separator inequalities. To

prove this, we first introduce Multiterminal Vertex Separator Problem as follows.

Problem: Multiterminal Vertex Separator.

Input: a simple graph G = (V,E), a terminal set T and integer L.

Question: Is there a subset C ′ ⊆ V such that G−C ′ induces |T | components (|T | ≥ 3) each

containing only one vertex from T and |C ′| < L?
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Problem: Separation Problem for Separator Inequalities.

Input: a simple graph G = (V,E), a weight x∗v ∈ [0, 1] for each v ∈ V , and integer k.

Output: (if any exist) a vertex subset S of size k + 1 and an S-separator C such that∑
i∈C x

∗
i <

∑
i∈S x

∗
i − k.

Theorem 15. The separation problem is NP-complete for every k ≥ 2.

Proof. Membership in NP is obvious. The reduction is from an instance of Multiterminal

Vertex Separator Problem which is NP-complete for |T | ≥ 3 (Cornaz et al., 2019). Let

S := T , k := |T | − 1, x∗i := 1 for every i ∈ S, and x∗i := 1
L

for every i ∈ V \ S. We argue that

(G, T, L) is a “yes” instance of Multiterminal Vertex Separator Problem if and

only if (G,S, x∗, k) violates a separator inequality. Suppose that there is a violated separator

inequality for some C ⊆ V . Then, |C|
L

=
∑

i∈C x
∗
i <

∑
i∈S x

∗
i − k = |S| − (|S| − 1) = 1,

i.e., |C| < L, and the instance of Multiterminal Vertex Separator Problem is a

“yes”. Finally, if there is a separator C ′ ⊆ V such that |C ′| < L (or equivalently |C′|
L
< 1),

then
∑

i∈C′ x
∗
i = |C′|

L
< 1 = |T | − (|T | − 1) =

∑
i∈T x

∗
i − k. Hence, x∗ violates the separator

inequality.
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A strong extended formulation for the separator inequalities

Let I be the family of all independent sets of size k + 1 in graph G. Then, the polytope

Fk(G) is the set of all (x, f) that satisfies the following constraints. This formulation has a

size of O
((

n
k+1

)(
k+1
2

)
2m
)
.

∑
a,b∈U :a<b

fU,ab(δ+(i)) ≤ xi ∀i ∈ V, ∀U ∈ I

x(U)−
∑

a,b∈U :a<b

(
fU,ab(δ+(a))− fU,ab(δ−(a))

)
≤ k ∀U ∈ I

fU,ab(δ+(i))− fU,ab(δ−(i)) = 0 ∀U ∈ I, ∀a, b ∈ U, a < b, ∀i ∈ V \ {a, b}

0 ≤ xi ≤ 1 ∀i ∈ V

0 ≤ fU,abij ≤ 1 ∀(i, j) ∈ A, ∀U ∈ I, ∀a, b ∈ U, a < b.

Lemma 21. projx(Fk(G)) ⊆ Qk(G).

Proof. Let (x̂, f̂) ∈ Fk(G). Consider an arbitrary U = {u1, u2, . . . , uk+1} ∈ I and a corre-

sponding separator C ⊆ V \U . Without loss of generality, suppose that U = {1, 2, . . . , k+ 1}.

Let U1, U2, . . . , Uk+1 be sets of vertices reachable from vertices 1, 2, . . . , k + 1 in G − C,

respectively. For every a ∈ U , let Ra = V \ Sa with Sa := Ua ∪ C. Also, for every a, b ∈ U
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and (i, j) 6∈ A, let f̂U,abij = 0. Then we have

x̂(U)− k ≤
∑

a,b∈U :a<b

(∑
j∈V

f̂U,abaj −
∑
j∈V

f̂U,abja

)

=
∑

a,b∈U :a<b

(∑
i∈Sa

(∑
j∈V

f̂U,abij −
∑
j∈V

f̂U,abji

))

=
∑

a,b∈U :a<b

(∑
i∈Sa

∑
j∈Sa

(f̂U,abij − f̂U,abji )

)
+

∑
a,b∈U :a<b

(∑
i∈Sa

∑
j∈Ra

(f̂U,abij − f̂U,abji )

)

= 0 +
∑

a,b∈U :a<b

(∑
i∈Sa

∑
j∈Ra

(f̂U,abij − f̂U,abji )

)

=
∑

a,b∈U :a<b

(∑
i∈C

∑
j∈Ra

(f̂U,abij − f̂U,abji )

)

≤
∑

a,b∈U :a<b

(∑
i∈C

∑
j∈Ra

f̂U,abij

)

=
∑
i∈C

( ∑
a,b∈U :a<b

∑
j∈V

f̂U,abij

)

=
∑
i∈C

( ∑
a,b∈U :a<b

f̂U,ab(δ+(i))

)

≤
∑
i∈C

x̂i.

Lemma 22. Suppose that
∑

i∈V πixi ≤ kπ0 induces a facet for Pk(G) and let S := {i ∈

V | πi > 0}. If |S| = k + 1, then πv = π0 for every v ∈ S.

Proof. First, we claim π(S) = (k + 1)π0. For every v ∈ S, the inequality π (S \ {v}) ≤ kπ0

holds by validity of
∑

i∈V πixi ≤ kπ0 for Pk(G). We claim that π (S \ {v}) = kπ0 holds for

every v ∈ S. Suppose not. Then, there exists u ∈ S such that π (S \ {u}) < kπ0. This implies

that any point that satisfy the inequality
∑

i∈V πixi ≤ kπ0 at equality has x∗u = 1. This

means the facet-defining inequality
∑

i∈V πixi ≤ kπ0 defines the same face as the inequality
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xu ≤ 1 defines. This is a contradiction. Hence, for every v ∈ S, we have π (S \ {v}) = kπ0.

This implies that

∑
v∈S

π (S \ {v}) = kπ(S) = (k + 1)kπ0.

This means π(S) = (k + 1)π0. Because π (S \ {v}) = kπ0 holds for every v ∈ S,

πv = π(S)− π(S \ {v}) = (k + 1)π0 − kπ0 = π0.

Lemma 23. If a facet-defining inequality
∑

i∈V πixi ≤ kπ0 for Pk(G) has exactly k + 1

positive coefficients, then it is a separator inequality.

Proof. Let πu1 , πu2 , . . . , πuk+1
be positive coefficients and define S := {u1, u2, . . . , uk+1}. By

Lemma 22, πu1 = πu2 = · · · = πuk+1
= π0. Now we define the following sets.

C = {i ∈ V | πi = −π0}

T = {i ∈ V | − π0 < πi < 0}

R = {i ∈ V | πi < −π0}.

First, we claim that R = ∅. Suppose not, then there is a vertex v ∈ R. Because πv < −π0,

there is no point that contains v and satisfies the facet-defining inequality
∑

i∈V πixi ≤ kπ0

at equality. This contradicts the fact that
∑

i∈V πixi ≤ kπ0 is a facet-defining inequality.

Thus, R = ∅. So, we can write the facet-defining inequality
∑

i∈V πixi ≤ kπ0 as follows.

∑
i∈S

π0xi −
∑
i∈C

π0xi +
∑
i∈T

πixi ≤ kπ0. (5.7)

We show that C ∪ T must be a separator. Suppose not, then there are two vertices in S ⊆ V
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such that there is a path P between them in G − (C ∪ T ) and P ∪ S induces at most k

connected components. This means
∑

i∈V πix
S∪P
i ≤ kπ0; however, we find the following

contradiction.

(k + 1)π0 =
∑
i∈S

πi =
∑
i∈V

πix
S∪P
i ≤ kπ0.

Because inequality (5.7) is a facet-defining inequality, C ∪ T is a minimal separator.

Now we claim T = ∅. Suppose not. Because C ∪ T is a minimal separator, there exists a

vertex v ∈ T such that v belongs to the common neighbor set of at least two components of

G1, G2, . . . , Gk+1 in G− (C ∪ T ). Define U := V (G1) ∪ V (G2) ∪ · · · ∪ V (Gk+1) ∪ {v}. Then

G[U ] induces at most k connected components; however,

∑
i∈V

πix
U
i =

∑
i∈S

π0 + πv > (k + 1)π0 − π0 = kπ0.

This contradicts the validity of
∑

i∈V πixi ≤ kπ0 for Pk(G). Thus, T = ∅ and inequality (5.7)

is a separator inequality.

Theorem 16. The separator inequalities x(S)− x(C) ≤ k and 0-1 bounds provide a perfect

formulation of Pk(G) if and only if α(G) ≤ k + 1.

Proof. ( =⇒ ) By contrapositive, suppose that α(G) > k + 1. This means there exists an

independent set I ⊆ V with |I| > k + 1 such that x(I) ≤ k induces a facet for G[I] (by

Lemma 20). By Proposition 12, there exists a facet-defining separator inequality with more

than k + 1 positive coefficients. Hence, the separator inequalities, with |S| = k + 1, do not

form all the facet-defining inequalities.

( ⇐= ) Suppose that α(G) ≤ k + 1. Consider an arbitrary facet-defining inequality∑
i∈V πixi ≤ kπ0 and let U be the set of variables with positive coefficients. By Proposition 12

and the assumption, we have |U | ≤ α(G) ≤ k + 1. We consider the following cases: (i)
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|U | ≤ k; and (ii) |U | = k + 1. In the first case, the separator inequalities do not induce

non-trivial facets by Lemma 18. In the second case, the facet-defining inequality is a separator

inequality by Lemma 23.

Corollary 5. For any fixed k if α(G) ≤ k+ 1, then the problem of finding a maximum weight

subgraph that induces at most k connected components is solvable in polynomial time.

Proof. By Theorem 16, separator inequalities x(S) − x(C) ≤ k and 0-1 bounds provide a

perfect formulation of Pk(G); however, its separation problem is hard for k ≥ 2 by Theorem 15.

This does not mean that we cannot solve LP relaxation in polynomial time because polytope

Fk(G) and 0-1 bounds provides a stronger formulation with polynomial size for any fixed

k.

5.4 Indegree Inequalities

For any direction d of edges E in graph G, we have the following valid indegree inequalities

for imposing at most k connected components. Also, see Gröflin and Liebling (1981); Wang

et al. (2017); Korte et al. (2012); Bley et al. (2017) for indegree inequalities when k = 1.

∑
i∈V

(1− di)xi ≤ k.

In this section, we study the polytope of indegree inequalities that is defined as follows.

Rk(G) := {x ∈ [0, 1]n | x satisfies all indegree inequalities.}

Lemma 24. The indegree inequalities are valid for Pk(G) for arbitrary graph G.

Proof. Suppose that S ⊆ V induces q ≤ k connected components. This means that the

number edges with both endpoints in S are at least |S| − q. So, for any indegree vector
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d ∈ Zn+, we have
∑

i∈S di ≥ |S| − q. This implies

∑
i∈V

(1− di)xSi = |S| −
∑
i∈S

di ≤ |S| − (|S| − q) = q ≤ k.

Lemma 25. Suppose that S ⊆ V induces at most k connected components of G. Then, S is

a feasible tight set for an indegree inequality if and only if

1. S induces a forest of k trees in G; and

2. each edge of E having exactly one endpoint in S is oriented out of S.

Proof. (⇐= ) Because of the first condition, the number of edges with both endpoints in S

is exactly |S| − k. Also because of the second condition, we have
∑

i∈S di = |S| − k. Hence,

∑
i∈V

xSi −
∑
i∈V

dix
S
i = |S| − (|S| − k) = k.

( =⇒ ) It is easy to show that if S induces less than k trees, or if one of the edges directed

towards S, then
∑

i∈V x
S
i −

∑
i∈V dix

S
i is at most k− 1 which implies that S is not tight.

Lemma 26. If the number of zero-degree vertices of an orientation D = (V,A) is less than

or equal to k, then the corresponding indegree inequality induces a trivial facet of Pk(G).

Proof. If the number of zero-degree vertices of an orientation D is less than or equal to k,

then the number of variables with positive coefficients is also less than or equal to k. By

Lemma 18, the indegree inequality induces a trivial facet of Pk(G).

Lemma 27. If there are two directed s− t walks in an orientation D = (V,A) of G, then

the corresponding indegree inequality does not induce a facet of Pk(G).
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Proof. For the indegree inequalities to induce a facet, there must be a feasible tight set S

containing t. We argue that the vertices along the two s− t walks must belong to S. Suppose

not. Then there is at least one directed edge that is not directed out of S. By the second

condition of Lemma 25, S is not tight. Hence, all vertices on these two s− t walks belong to

S. However, this implies that S induces a cycle in G and this is in contradiction with the

first condition of Lemma 25. Thus, no such S exists and indegree inequality cannot induce a

facet.

Lemma 28. Consider an orientation D = (V,A) of graph G with q components and q ≤ k.

Also let Z be the set of zero-degree vertices and z := |Z| ≥ k+1. If there is a vertex v ∈ V \Z

that is reachable by at least z − k + 2 of zero-degree vertices, then the corresponding indegree

inequality does not induce a facet of Pk(G).

Proof. Suppose there is a vertex v ∈ V \Z that is reachable by at least z−k+2 of zero-degree

vertices. By second property of Lemma 25, any tight point S that includes vertex v must

contain at least z − k + 2 zero-indegree vertices. This means that we can construct at most

k − 1 trees when vertex v is chosen. Then by the first condition of Lemma 25, there is

no feasible tight set in orientation D that contains vertex v and satisfies the inequality at

equality.

Theorem 17. The indegree inequality corresponding to an orientation D = (V,A) of G

induces a facet of Pk(G) if and only if

1. the set of zero-indegree vertices (set Z) has a size of z, where z ≥ k + 1,

2. for every u, v ∈ V , there is at most one directed u− v walk in D; and

3. for every v ∈ V \ Z, there are at most z − k + 1 zero-degree vertices that can find a

directed path toward v.
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Proof. ( =⇒ ) This holds by Lemmata 26–28.

(⇐= ) Because z ≥ k + 1, seed inequality
∑

j∈Z xj ≤ k is facet-defining for Pk(G[Z]) by

Lemma 20.

Now, we claim that the inequality is facet-defining for Pk(G). In this step, we employ

the topological ordering of all vertices in set V \ Z for lifting purposes. Consider the lifting

problem of vertex v in the topological ordering. Define Dv as follows.

Dv := {v} ∪ {u ∈ V | there is a directed u− v path in D}.

We claim that G[Dv] is a tree. Suppose not. Then there is an undirected cycle (V ′, E ′) in

G[Dv] such that each vertex u ∈ V ′ can find a directed path toward vertex v in the induced

subgraph G[Dv]. This implies that there exist a pair of vertices a, b ∈ V ′ such that there are

two directed a− b walks in (V ′, E ′). This means there are at least two directed a− b walks

in G[Dv]. This contradicts the second assumption.

Let zv be the number of zero-degree vertices that find a path toward vertex v. By the

third assumption, z − zv ≥ k − 1. This implies that one can form a set of zero-indegree

vertices Sv such that it contains exactly k− 1 zero-indegree vertices and none of them belongs

to set Dv.

Finally, we define forest Fv := Sv ∪ Dv with exactly k components. Hence, we have a

lower bound for ζ as follows.

ζ ≥
∑

i∈Fv\{v}

(1− di) = (|Fv| − 1)− (|E(G[Fv])| − dv)

= (|Fv| − 1)− (|Fv| − k − dv) = (k − 1) + dv.

By Lemma 15, we have ζ ≤ (k − 1) + α(G[N(v) ∩ V (Fv)]) = (k − 1) + dv. This finishes the

proof.
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5.4.1 Lifting indegree inequalities

Theorem 18 (Wang et al. (2017)). Lifting a vertex into an indegree inequality is strongly

NP-hard. This holds even when the graph is bipartite and 2-degenerate.

5.4.2 Separating indegree inequalities

Theorem 19 (Wang et al. (2017)). There is a linear time algorithm that finds most-violated

indegree inequality.

Proof. See section 4.3 of Wang et al. (2017) for the algorithm and its complexity proof.

5.4.3 A linear-size extended formulation for the indegree inequalities

In this section, we provide an extended formulation of size O(m+ n) for the polytope of the

indegree inequalities and non-negativity bounds.

ye − xv ≤ 0 and ye − xu ≤ 0 ∀e = {u, v} ∈ E (5.8)∑
i∈V

xi −
∑
e∈E

ye ≤ k (5.9)

ye ≥ 0 ∀e ∈ E (5.10)

xi ≤ 1 ∀i ∈ V. (5.11)

Theorem 20. The polytope of indegree inequalities and non-negativity bounds admits an

extended formulation of size O(m+ n).

Proof. The proof is similar to the proof of Theorem 9 in Wang et al. (2017).

Lemma 29. Let G = (V,E) be a simple graph and k be a positive integer with k ≥ 2. Suppose

that every independent set S with |S| ≥ k + 1 hits every cycle at least twice and satisfies
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T ⊆ S, where T := {v ∈ V | degG(v) > 2}. If a feasible set U is tight for a facet-defining

inequality
∑

i∈V πixi ≤ k, then

1. G[U ] has exactly k components, and

2. G[U ] is a forest.

Proof. First, we claim that no component of G[U ] is a cycle. Let p be the number of positive

coefficients of the facet-defining inequality. Because the facet-defining inequality is non-trivial,

k + 1 ≤ p by Lemma 18. Also, p ≤ α(G) by Proposition 12. So, k + 1 ≤ α(G). For

contradiction purposes, suppose that G[U ] contains a cycle Ĉ. Because every independent

set with size of at least k + 1 hits every cycle at least twice, α(Ĉ) ≥ 2. Because the facet-

defining inequality has at least k + 1 positive coefficients and no two adjacent vertices have

positive coefficients by Lemma 17, there is a non-trivial facet-defining inequality in which the

coefficients of two vertices of Ĉ is positive. By Lemma 17, Ĉ contains at least two vertices,

say w and w′, with negative coefficient. So, π(U \ {w}) > k while the number of connected

components does not change. This is a contradiction.

Finally, we show that G[U ] has exactly k components. Note that G[U ] has at most

k components by correctness of Pk(G). So, it suffices to show that U induces at least k

components. For contradiction purposes, suppose that U induces q components with q < k.

We proved that no component of G[U ] is a cycle. So, each component is a tree. For any

component W , none of its endpoints has negative coefficient; otherwise, one can remove it

and the facet-defining inequality is violated while the number of components does not change.

Without loss of generality, we can reduce each component W to W ′ such that endpoints of

W ′ are positive. Let U ′ be the union of W ′ components. Then, G[U ′] also has q components

with q < k.

If G[U ′] contains q isolated vertices, then because the facet-defining inequality is non-

trivial and contains at least k + 1 positive coefficients, we can add another vertex, say u with
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πu > 0, to set U ′ and keep number of connected components less than or equal to k. However,

π(U ′ ∪ {u}) > k. This is a contradiction. If G[U ′] contains a component with two positive

endpoints, then by Lemma 17 there exists a vertex w with πw < 0 between the endpoints.

Because every vertex v ∈ V with degG(v) > 2 belongs to any independent set of size at least

k + 1 and the facet-defining inequality has at least k + 1 positive coefficients, the coefficient

of vertex v is always positive by Lemma 17. So, w 6= v and degG(w) ≤ 2. Hence we can

remove vertex w and keep number of connected components less than or equal to k. However,

π(U ′ \ {w}) > k. This is a contradiction.

Lemma 30. Let G = (V,E) be a simple graph and k be a positive integer with k ≥ 2.

Suppose that every independent set S with |S| ≥ k + 1 hits every cycle at least twice and

satisfies T ⊆ S, where T := {v ∈ V | degG(v) > 2}. Also, suppose
∑

i∈V πixi ≤ k defines a

non-trivial facet for Pk(G). For every edge e = {i, j} ∈ E, either

1. i ∈ S or j 6∈ S for every feasible tight set S, or

2. i 6∈ S or j ∈ S for every feasible tight set S.

Proof. For contradiction purposes, suppose that there is an edge ê = {u, v} for which there

exists (i) a feasible tight set S1 with u 6∈ S1 and v ∈ S1 and (ii) a feasible tight set S2 with

u ∈ S2 and v 6∈ S2. First, note that πu and πv are non-positive; otherwise, one can add

u to S1 (or v to S2) and this violates the validity of
∑

i∈V πixi ≤ k. Now, we claim that

πu = πv = 0. Otherwise, one can remove them without changing the number of connected

components; however, this violates the validity of
∑

i∈V πixi ≤ k. Trace a path from v inside

S1 until it hits a vertex v′ of positive weight. Let v′′ be the last vertex of this path with

non-positive coefficient. None of the interior vertices on this v − v′′ path can have negative

weight. Otherwise, one can remove the negative tail while the number of components does

not change; however, this violates the validity of
∑

i∈V πixi ≤ k. Similarly, trace a path

from u inside S2 until it hits a vertex u′ of positive weight. Let u′′ be the last vertex of this
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path with non-positive coefficient. Similar to the previous argument, we claim that none

of the interior vertices on this u − u′′ path can have negative weight. However, this is in

contradiction with Lemma 17.

Finally, it suffices to show that u′ and v′ are distinct vertices. It is clear when graph G

is a tree. If graph G contains a cycle, then the cycle has at least two distinct vertices with

positive coefficients because (i) every independent set of size at least k + 1 hits the cycle at

least twice; (ii) the non-trivial facet-defining inequality has at least k + 1 positive coefficients

by Lemma 18; and (iii) no pair of adjacent vertices has positive coefficients by Lemma 17.

Proposition 14. Pk(G) = [0, 1]n if and only if α(G) ≤ k.

Proof. ( =⇒ ) By contrapositive, suppose α(G) > k. Then, let S be an independent set of

size k + 1. Then x(S) ≤ k induces a facet of Pk(G[S]) by Lemma 20. This seed inequality

can be lifted to get a facet-defining inequality of Pk(G) which is not a scalar multiple of a 0-1

bound.

(⇐= ) Let S be any subset of vertices. Because α(G) ≤ k, subgraph G[S] induces at most

k components. So, xS ∈ Pk(G) for any S ⊆ V . This implies Pk(G) = conv.hull({0, 1}n) =

[0, 1]n.

Theorem 21. Let G = (V,E) be a simple graph and k be a positive integer with k ≥ 2. The

indegree inequalities and 0-1 bounds provide a perfect formulation for Pk(G) if and only if

every independent set S with |S| ≥ k + 1 hits every cycle at least twice and satisfies T ⊆ S,

where T := {v ∈ V | degG(v) > 2}.

Proof. ( =⇒ ) First, if Pk(G) contains only 0-1 bounds, then α(G) ≤ k by Proposition 14.

Now by contrapositive, suppose that (i) α(G) ≥ k + 1; and (ii) there is an independent

set Ŝ with |Ŝ| ≥ k + 1 such that either of the followings occurs:

1. S hits a cycle Ĉ at most once; or
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2. there is a vertex v ∈ (V \ Ŝ) such that degG(v) > 2.

Consider the first case. Then there is no facet-defining inequality by the second condition of

Theorem 17.

Now consider the second case. Then we have α(G− v) ≥ k + 1. Let u1, u2, and u3 be

three neighbors of vertex v. Also define U := {v, u1, u2, u3}. Then we have the following

cases:

1. G[U ] contains a cycle C3. Then no orientation D = (V,A) of G can define a facet-

defining indegree inequality by the second condition of Theorem 17.

2. G[U ] contains no cycle. Because α(G− v) ≥ k + 1, there exists an independent set I

of size k + 1 such that (U \ {v}) ⊆ I. Let Ĉ be a minimal I-separator. Then, v ∈ Ĉ

and the separator inequality X(I)− x(Ĉ) ≤ k is facet-defining for Pk(G). However, no

orientation D̂ of G can make this facet-defining inequality.

(⇐= ) First, suppose that α(G) ≤ k. Then by Proposition 14, 0-1 bounds provide a perfect

formulation for Pk(G).

Now suppose α(G) ≥ k + 1 and the second condition holds. Let
∑

i∈V πixi ≤ kπ0 be

a non-trivial facet-defining inequality in the full description of Pk(G). By Lemma 18, the

number of variables with positive coefficients must be greater than k in the facet-defining

inequality. Because 0 ∈ Pk(G), we have π0 ≥ 0. Because
∑

i∈V πixi ≤ kπ0 is a non-trivial

facet-defining inequality, π0 > 0. So, we can divide both sides of the inequality by π0. Hence,∑
i∈V π

′
ixi ≤ k is also facet-defining with π′i := πi

π0
for every i ∈ V .

By Lemma 30, for every edge e ∈ E, at most one of its endpoints is included in a feasible

tight set among all existing feasible tight sets. For every edge e = {u, v} ∈ E, orient it from

u to v if there is a feasible tight set S with u ∈ S and v 6∈ S. Let d be a corresponding vector
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of this orientation. Then for any feasible tight set S, we have

∑
i∈S

(1− di) = |S| −
∑
i∈S

di = |S| − (|S| − k) = k.

Here, the second equation holds because S induces a forest of k trees by Lemma 29. Hence,

every feasible tight point of
∑

i∈V π
′
ixi = k lies on the face of the above indegree inequality.

So,
∑

i∈V π
′
ixi = k is the indegree inequality.

5.5 Conclusion

In this chapter, we studied two polytopes for finding at most k connected components: (i)

separator inequalities, and (ii) indegree inequalities. Although both of these polytopes are

studied for k = 1 (Wang et al., 2017), we considered a generalization of these polytopes for

any positive integer k. We also identified when these inequalities are facet-defining. Finally,

we provided full characterizations for both classes of inequalities. An interesting future work

can be conducting polyhedral studies on other generalizations of connectivity polytopes.
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CHAPTER VI

SUMMARY AND FUTURE WORK

In Chapter II, we propose a cut formulation (with exponentially many constraints) for the

latency-constrained connected dominating set problem. In this formulation, we employ

length-bounded cuts to impose (i) connectivity, and (ii) the maximum desired length of

communication between any two nodes in a telecommunication network. We also introduce a

ploynomial-size formulation for the problem. Our experiments show the superiority of the

cut formulation over the polynomial-size one. As a future work, we are trying to find similar

length-bounded cuts for some other network design problems (e.g., network design problem

with relays) in the vertex-and-edge space.

In Chapter III, we employ PHESS formulation to obtain compact districts with respect

to the moment-of-inertia. Because PHESS formulation does not guarantee connectivity, we

add two cut-based and two flow-based sets of constraints to PHESS formulation for imposing

connectivity. We show that the cut-based formulations are at least as strong as the flow-based

ones. As a future work, we are working on formulations that (i) are smaller than Hess in

number of variables, and (ii) employ other compactness objective functions (e.g., cut-edges

or Polsby-Popper).

In Chapter IV, we identify an error in a well-known extended formulation for the min-

imum spanning tree problem in planar graphs. We also mention how Pashkovich’s root

rule (Pashkovich, 2012) can fix the formulation. As a future work, we are working on an

extended formulation for the minimum spanning forest with k sub-trees, where k ∈ Z+ and

k ≥ 2. We can employ the new light extended formulation in some network design problems
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(e.g., political districting); however, these kinds of formulations suffer from symmetry. So, we

are also working on symmetry breaking methods in edge space.

In Chapter V, we generalize separator and indegree inequalities for imposing at most k

connected components. We conduct a polyhedral study on both classes of inequalities and

identify when these inequalities are facet-defining. Also, we introduce conditions under which

these inequalities provide perfect formulations for the polytope of k connected components.

For future work, one can investigate other interesting classes of valid inequalities for imposing

at most k connected components.
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M. Leitner, I. Ljubić, M. Luipersbeck, and M. Sinnl. A dual ascent-based branch-and-bound

framework for the prize-collecting steiner tree and related problems. INFORMS Journal

on Computing, 30(2):402–420, 2018.
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