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ABSTRACT

On coherence and the geometry of certain families of lattices

by

David Booth Kogan

Claremont Graduate University: 2022

The coherence of a lattice is, roughly speaking, a measure of non-orthogonality of its

minimal vectors. It was introduced to lattices (by analogy with frame theory) by L.

Fukshansky and others as a possible route to gaining insight into packing density, a

central problem in lattice theory. In this work, we introduce the related measure of

average coherence, explore connections between packing density and coherence, and

prove several properties of certain families of lattices, most notably nearly orthogonal

lattices, cyclotomic lattices, and cyclic lattices.
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CHAPTER I

Introduction

1.1 A brief history of lattices

The theory of Euclidean lattices1 is a classical and important area of study which

lies in the intersection of number theory and discrete geometry. A lattice is a discrete

free Z-module in a Euclidean space (usually Rn or Cn). Equivalently, given a basis

B = {b1, . . . , bk} with bi ∈ Rn, k ≤ n, a lattice L may be defined as

L = spanZ(B) =

{
k∑

i=1

αibi : bi ∈ Rn, αi ∈ Z

}
= BZk.

We should note some authors consider a lattice to be the combination (L, S) with S

a specified positive definite bilinear form.

The study of integral combinations of basis elements is classical, stretching back

to the ancient problems of Diophantine equations and finding Pythagorean triples,

through Fermat’s theorem on expressing odd primes as the sums of two squares,

Lagrange’s celebrated four square theorem, and Gauss’s Disquisitiones Arithmeticae.

A quadratic form is a polynomial in which every term has degree 2. x2+3xy−4y2,

2t2−tv, and 3xy are all examples of integral quadratic forms.2 There is a “dictionary”

1Other areas of mathematics use the term “lattice” to mean a partially ordered set that meets
certain conditions on inclusion. This is not that sort of lattice.

2Historically, there have been competing definitions of an integral quadratic form. For instance,
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that relates quadratic forms to lattices: similarity classes of lattices correspond with

equivalence classes of quadratic forms ([49], §1.7).

It was in this guise that much of the historic work on lattices was done. The

solution of the lattice packing density problem in 2 dimensions is usually credited to

Lagrange. In 3 dimensions, it was solved by Gauss; Korkine and Zolotareff solved

the problem in dimensions 4 and 5, and Blichfeldt solved dimensions 6− 8. The only

other lattice proven to be an optimal lattice sphere packing is the Leech lattice Λ24

([15]), which is in fact optimal among all packings in 24 dimensions (see generally

[19] and [49], as well as [16] and [65]).

A closely related problem is the kissing number problem: how many spheres may

simultaneously touch a central sphere. Even less has been proven in this space, with

solutions only known in dimensions 2, 3, 4, 8, and 24 (see [67], [43], [58], and [55]).

1.2 Definitions

In this section we define several terms that will play a major part throughout

this work. We define the determinant of a lattice L to be the absolute value of the

determinant of any basis matrix of the lattice. If L = BZn then

det(L) :=
√

det(B⊤B).

If B is n × n, then det(L) = | det(B)|. Because a lattice is discrete, it must have

non-zero vectors of shortest length. We define the minimum3 of a lattice L to be

|L| := min {∥x∥ : x ∈ L \ {0}} ,

Gauss used what is now called the “classically integral form” which is the form ax2 + 2bxy + cy2.
The advantage of this is that the matrix of the associated symmetric bilinear form has only integer
entries, even off the diagonal. In modern usage, a quadratic form is integral so long as all coefficients
are integers.

3Sometimes called the minimal length or minimal norm.
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where ∥ ∥ indicates the standard Euclidean norm, and the set of all such minimal

vectors is denoted

S(L) = {x ∈ L : ∥x∥ = |L|} .

Several important properties of lattices are defined based on its set of minimal

vectors. A lattice L is called weakly eutactic if there exist real numbers c1, . . . , cn,

called eutaxy coefficients, such that

∥v∥2 =
∑

x∈S(L)

ci(v,xi)
2

for all v ∈ Rn. If all eutaxy coefficients are positive, L is called eutactic, and if

c1 = · · · = cn > 0, the lattice L is called strongly eutactic; for instance, the integer

lattice Zn is strongly eutactic. Further, L is perfect if the set {xx⊤ : x ∈ S(L)} spans

the space of n× n real symmetric matrices,4 i.e. if

spanR
{
xx⊤ : x ∈ S(L)

}
=
{
X ∈ Rn×n : X = X⊤} .

A lattice L ∈ Rn is called well-rounded (WR) if it possesses n linearly independent

minimal vectors, i.e. if

spanR {x ∈ S(L)} = Rn.

Two lattices L1, L2 in Rn are called similar (written L1 ∼ L2) if there exists a

positive constant α and an n × n real orthogonal matrix U such that L2 = αUL1.

This is an equivalence relation on the space of lattices in Rn with equivalence classes

referred to as similarity classes of lattices in Rn. The space of similarity classes of

lattices in Rn can be identified with (R+ ×On(R)) \GLn(R)/GLn(Z), i.e., lattices

modulo left multiplication by positive constants and orthogonal matrices (see [49],

§1.7). Many properties of a lattice are preserved under similarity, including coherence

4Here and throughout vectors are always written as columns.
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and packing density.

One of the central lattice properties of interest is its sphere packing efficiency. To

begin, we define a fundamental domain. A fundamental domain of a lattice is full set

of coset representatives under the group action of translation by lattice points. In

other words, if L is a lattice of full rank in Rn, a fundamental domain is a convex set

F such that

Rn =
⋃
x∈L

(F + x),

with

(F + x) ∩ (F + y) = ∅

for x ̸= y ∈ L. While there are infinitely many fundamental domains for any lattice,

all have the same measure of det(L), and there are two primary ones. The fundamental

parallelotope F of a lattice L with basis b1, . . . , bn is a fundamental domain of L,

defined as

F =

{
n∑

i=1

tibi : 0 ≤ ti < 1

}
.

Another important region is called the Voronoi cell of a lattice, and can be constructed

as the set of points in Rn closer to 0 than any other lattice point, i.e.

V = {x ∈ Rn : ∥x∥ ≤ ∥x− y∥ ∀y ∈ L} .

The Voronoi cell of a lattice is a closure of a fundamental domain.

To every lattice we may attach a packing, that is, a fitting of n-balls in Rn such

that no point is contained in two or more balls, by centering a ball at each lattice

point and growing them uniformly until any further expansion would cause two balls

to overlap. It is clear that each ball in a lattice packing has radius |L|
2

and is enclosed

within one, and only one, Voronoi cell translate (see, for example, Figure 1.2). We

are now ready to define packing density properly.
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Figure 1.1:
The lattice points and Voronoi cells of the hexagonal lattice, A2, which
we will introduce in the next section.

The packing density of a lattice L is the proportion of space its lattice packing

occupies. From the definition of a fundamental domain, it is clear that this is the

same as the proportion of a Voronoi cell covered by the ball around its lattice point.

Thus, the packing density δ(L) of a lattice is

δ(L) :=
ωn|L|n

2n detL

where ωn is the volume of a unit ball in Rn.

The packing density function is continuous over the space of lattices (see e.g. [49],

Chap. 2). Any lattice L for which δ(L) attains a local maximum is called an extreme

lattice. A celebrated theorem of Voronoi states a lattice is extreme if and only if it

is perfect and eutactic5 [66], and a later paper by Ash shows all critical points of the

density function occur at eutactic lattices [1].

Remark 1.2.1. When discussing the packing density of a lattice, we consider only the

5Korkine and Zolotareff had earlier proved that perfection was a necessary condition for an
extreme form. See [41].
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Figure 1.2:
The lattice packing around the hexagonal lattice, A2, with Voronoi cells.

space of WR lattices. There are two reasons for this. The first is that any perfect

lattice, and any eutactic lattice, is necessarily WR. The second is that minima of

the packing density only make sense with certain restrictions on what lattices are

considered, otherwise we can always attain a worse packing through modification of

the lattice.

Another property defined on S(L) is coherence, which we borrow from the theory

of frames. In [35] the concept of frame coherence was applied to lattices (see also

Table 1 of [10]).We define the maximal coherence of the lattice L to be

C(L) = max

{
|(x,y)|
|L|

: x,y ∈ S(L),x ̸= ±y

}
,

where ( , ) stands for the usual scalar product of vectors. Notice that

0 ≤ C(L) ≤ 1/2,

since the angle between any two minimal vectors of a lattice is in the interval [π/3, 2π/3]

6



(see, for instance, Lemma 3.1 of [25]).

A related measure, average coherence, was introduced to frames in [4] and [5], and

we adapted the concept to lattices in [30] (see chapter III). We define the average

coherence of a lattice L to be

A(L) :=
1

|S ′(L)| − 1
· max
x∈S′(L)

 ∑
y∈S′(L)\{x}

|(x,y)|
∥x∥∥y∥

 ,

where S ′(L) is any half-set of S(L) where just one of ±x ∈ S(L) is taken to be in

S ′(L).

Because lattices are additive groups, we define the index of a sublattice L′ in a

lattice L as the number of cosets of L modulo L′. It is a known fact that

[L : L′] =
det(L′)

det(L)

(see e.g. [49], Prop. 1.1.56).

One way of producing a lattice is by embedding a number field7 into real space.

Let K be a number field of degree d over Q, and let OK be its ring of integers. Let

σ1, . . . , σr1 , τ1, τ̄1, . . . , τr2 , τ̄r2 : K ↪→ C

be its embeddings into the field of complex numbers, where r1+2r2 = d and σ1, . . . , σr1

are real embeddings, whereas τ1, τ̄1, . . . , τr2 , τ̄r2 are pairs of complex conjugate embed-

dings. The Minkowski embedding of K into Rd is then defined as

ΣK := (σ1, . . . , σr1 ,ℜ(τ1),ℑ(τ1), . . . ,ℜ(τr2),ℑ(τr2)) : K ↪→ Rd,

6What we call det(L), [49] calls the discriminant of the lattice, ∆(L).
7A number field is a finite algebraic extension of Q. For further discussion of the algebra involved,

we refer the reader to e.g. [47].
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An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Figure 1.3:
The Dynkin diagrams of the semi-simple Lie alge-
bras. Roots are represented by circles, and con-
nected by a single line if they are at a 120◦ angle
to each other, a double line for a 135◦ angle, and a
triple line for a 150◦ angle. If the roots are of dif-
ferent lengths, an arrow points towards the smaller
root. An, Dn, E6, E7 and E8 are the only systems
generated by roots of the same length, and thus
the only ones with associated root lattices.

and the image of OK under this embedding, ΛK := ΣK(OK), is a Euclidean lattice

of full rank in Rd.

Once we have a lattice, we can define another lattice in relation to it. Given a

lattice L ∈ Rn, we define its dual lattice to be L∗ := {x ∈ Rn : (x,y) ∈ Z ∀y ∈ L}.

1.3 Certain families of lattices

Several families of lattices will be discussed in this work. Nearly orthogonal,

cyclotomic, and cyclic lattices each have a chapter devoted to them, and will be

defined again there; here we introduce them along with other families.

Our first family are the famous root lattices. These have an immediate and obvious

connection to root systems in Lie algebras, as the minimal vectors (“roots”) of a root

lattice are, in fact, the root system of some semi-simple Lie algebra. They follow the

same naming convention, although there are no root lattices corresponding to the

families Bn and Cn, and exceptional algebras F4 and G2 because those are generated

by roots of different lengths, as can be seen in their Dynkin diagrams (Figure 1.3).
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The root lattice An is defined as

An =

{
x ∈ Zn+1 :

n+1∑
i=1

xi = 0

}
,

and is a rank n lattice. The root lattice Dn is defined as

Dn =

{
x ∈ Zn :

n∑
i=1

xi ≡ 0 (mod 2)

}
,

and is a rank n lattice. The root lattice E8 is defined as

E8 = D8 ∪

(
1

2

(
8∑

i=1

ei

)
+D8

)
,

and is a rank 8 lattice. The root lattices E7 and E6 can be described as sublattices

of E8 orthogonal to the vector e7 + e8 and to the pair of vectors e7 + e8 and e6 + e8,

respectively, and are rank 7 and 6 lattices, respectively.8 It is well known that the

root lattices are all local maxima of the packing density function, and further that

A2, A3
∼= D3, D4, D5, E6, E7, and E8 all achieve the absolute maximum lattice packing

density in their respective dimensions (see e.g. [19], §1.5).

Closely related to the root lattices are the Coxeter-Barnes lattices, Ar
n (called

simply Coxeter lattices when r|n + 1), which are best defined as lattices of rank n

in Rn+1 spanned over Z by the basis

e1 − e2, . . . , e1 − en,
1

r

(
ne1 −

n∑
i=2

ei

)
,

where ei are standard basis vectors in Rn+1. The Coxeter-Barnes lattice Ar
n can

then be thought of as the unique sublattice of A∗
n containing the root lattice An as a

sublattice to index [Ar
n : An] = r. The Coxeter lattices are also known to be extreme

8Unless otherwise specified, ei always refers to the i-th canonical basis vector of whichever real
space we are currently discussing, in this case R8.

9



for n ≥ 6, r ̸= n+ 1.

Next come nearly orthogonal lattices, introduced by [56]. These will be more thor-

oughly defined in §2.1. Broadly speaking, we call a basis of a lattice nearly orthogonal

if any ordering of it produces successive subspaces each of which is sufficiently close

to orthogonal to the next basis vector. Let B = {b1, . . . , bn} be an ordered basis for a

lattice L in Rn, and define a sequence of angles θ1, . . . , θn−1 as follows: each θi is the

angle between bi+1 and the subspace spanR{b1, . . . , bi}. For a given value θ ∈ [0, π/2],

we will say that B is a weakly θ-orthogonal basis if θi ≥ θ for each 1 ≤ i ≤ n− 1, and

θ-orthogonal if every ordering of it is weakly θ-orthogonal. If θ = π
3
, we simply call

the basis nearly orthogonal.

An ideal lattice is one formed by applying the Minkowski embedding to a fractional

ideal of the ring of itegers of some number field K. When K is a cyclotomic field,

Q(ζn), we call the embedding of its ring of integers a cyclotomic lattice. These will

be discussed in detail in chapter III.

There is another interesting class of lattices we would like to introduce. A lattice

L ⊂ Rn, not necessarily of full rank, is called cyclic in Rn if it closed under the

rotation shift linear operator ρ : Rn → Rn, given by

ρ(c1, c2, . . . , cn) = (cn, c1, . . . , cn−1),

i.e. if ρ(L) = L. These lattices are discussed in detail in chapter V.

We should also note that many lattices fall into many categories. For instance,

the Coxeter lattices are simple cyclic (see chapter V) for n ≥ 5, r = n+1
2

(see [49],

§5.2)

There are many other famous families of lattices not covered in this paper, such

as the Barnes-Wall lattices ([6]), Craig’s lattices ([21]), and laminated lattices (some

of the lattices mentioned here are laminated lattices, including but not limited to

10



L An Dn(n ≥ 4) E6 E7 E8 A
n+1
2

n (n odd, n ≥ 9)

|L|2 2 2 2 2 2 N

detL2 n+ 1 4 3 2 1 D

C(L) 1

2

1

2

1

2

1

2

1

2

n− 3

2(n− 1)

A(L)
2

n+ 2

2(n− 2)

n2 − n− 1

2

7

8

31

28

119

2(n− 5)

n2 + n− 2

s(L)
n(n+ 1)

2
n(n− 1) 36 63 120

n(n+ 1)

2

Table 1.1:

N =


n−3
2

if n ≡ 1mod 4

n−3
4

if n ≡ −1mod 4

and D =


2(n+1

2
)n−1 if n ≡ 1mod 4

(n+1
4
)n−1 if n ≡ −1mod 4

A2, E8, and Λ24, the famous Leech lattice [17]). For detailed expositions of these and

more, we refer the reader to [19] and [49].

1.4 Motivation and coherence

This course of study arose, as so many do, in response to a question about general-

ization of an observation. Notice that in the plane R2 the minimal packing density is

attained by Z2 and the maximal packing density is attained by A2. It is also the case

that the lowest maximal coherence is attained by Z2 and highest maximal coherence

is attained by A2. This led to the following motivating question:

Question 1. What connection does the packing density of a lattice have to its coher-

ence?

The answer to this question, at least with respect to maximal coherence, is “not

a lot.” It is possible to exhibit infinite families of extreme lattices with maximal

coherence strictly less than 1
2
, and infinite families of lattices with coherence C(L) = 1

2

that are not extreme. For instance, the Coxeter lattices Ar
n are extreme with coherence

11



C(Ar
n) <

1
2
for n ≥ 7 odd and r = n+1

2
. Further, any well-rounded nearly orthogonal

lattice L in dimension n ≥ 3 with |S(L)| > 2n has coherence C(L) = 1
2
but is not

extreme.

Nevertheless, there are good reasons to think harder about this question. Co-

herence of a lattice is, in some sense, a measure of the non-orthogonality of the set

of minimal vectors of a lattice. Let us suppose that a lattice L possesses a basis of

minimal vectors. This is not a trivial assumption; consider the following lattice:

Example 1. Let x = (1
2
, 1
2
, 1
2
, 1
2
, 1
2
) and ei be the canonical basis vectors within R5.

If B = (e1 e2 e3 e4 x), then L = BZ5 does not possess a basis of minimal vectors.

Remark 1.4.1. This construction is classical, and was certainly known by Minkowski.

See also [18] and [50] for lattices generated by minimal vectors but not possessing a

minimal basis.

However, assuming we have a minimal basis, then the orthogonality defect of that

basis, ν(B), is directly proportional to the packing density of the lattice:

ν(B) :=

∏k
j=1 ∥bj∥
detL

=
|L|k

det(L)
=

2k

ωk

δ(L)

Recall the root lattices An defined in section 1.3. While their coherence is C(An) =

1
2
for any n, they possess n(n+1)

2
pairs of minimal vectors. However, only 2(n − 1)

of these pairs are not mutually orthogonal. One would then expect a more accu-

rate measure of their non-orthogonality to progress like 1
n
, and, indeed, its average

coherence is

A(An) =
2

n+ 2
.

12



CHAPTER II

Nearly orthogonal lattices

2.1 Introduction

Let L be a lattice of rank n ≥ 2 in Rn, and denote its minimal norm as

|L| = min {∥x∥ : x ∈ L \ {0}} ,

where ∥ ∥ is the Euclidean norm on Rn. Then its set of minimal vectors is

S(L) = {x ∈ L : ∥x∥ = |L|} .

Recall that the maximal coherence of the lattice L is defined to be

C(L) = max

{
|(x,y)|
|L|2

: x,y ∈ S(L),x ̸= ±y

}
,

where ( , ) stands for the usual scalar product of vectors. Notice that

0 ≤ C(L) ≤ 1/2,

*This chapter is based on joint work with Lenny Fukshansky, published as [31]
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since the angle between any two minimal vectors of a lattice is in the interval [π/3, 2π/3]

(see, for instance, Lemma 3.1 of [25]). The coherence of lattices was recently intro-

duced in [35] by analogy with coherence of frames, an important notion in signal

processing. Generally, one can think of coherence of a set of vectors as a measure of

how far are they from being orthogonal. Various techniques in error-correcting cod-

ing and signal recovery employ overdetermined equal-norm spanning sets in Euclidean

vector spaces that are as close to orthogonal as possible. Since lattices are frequently

used in signal processing and digital communications, we want to better understand

the coherence properties of such sets coming from minimal vectors of lattices.

A classical optimization problem studied on lattices is the sphere packing problem.

Recall that there is a sphere packing associated with every lattice L, and it consists

of spheres of radius |L|/2 centered at the points of L, whose density is the proportion

of the space it occupies, which can be computed as

δ(L) =
ωn|L|n

2n detL
,

where ωn is the volume of a unit ball in Rn. The space of lattices in Rn can be

identified with GLn(R)/GLn(Z), i.e., nonsingular real n × n matrices modulo right

multiplication by nonsingular integer n× n matrices, and δ is a continuous function

on this space. Lattices that are local maxima of δ are called extreme. In [35] some

heuristics were presented, speculating that there may be an inverse correlation be-

tween the maximal coherence and packing density on lattices. Our goal here is to

investigate this correlation on the important class of nearly orthogonal lattices.

Recall that two lattices L1, L2 in Rn are called similar (written L1 ∼ L2) if there

exists a positive constant α and an n × n real orthogonal matrix U such that L2 =

αUL1. This is an equivalence relation on the space of lattices in Rn with equivalence

classes referred to as similarity classes of lattices in Rn. The space of similarity classes
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of lattices in Rn can be identified with (R+ ×On(R)) \GLn(R)/GLn(Z), i.e., lattices

modulo left multiplication by positive constants and orthogonal matrices. Metric

topology on this space is induced by the usual Euclidean norm on the space of n× n

real matrices viewed as vectors in Rn2
. It is easy to notice that if L1 ∼ L2, then

δ(L1) = δ(L2) and C(L1) = C(L2). In particular, extreme lattices can only be similar

to extreme lattices, and δ is a continuous function on the space of similarity classes

of lattices in Rn.

Recall that a lattice L is called well-rounded (WR) if

spanR S(L) = spanR L.

Because WR lattices can only be similar to WR lattices, we write WRn for the space

of similarity classes of WR lattices. It is a well-known fact that extreme lattices must

be WR, which is why the study of the packing density function on the space of lattices

is usually restricted to WR lattices. Detailed further information on lattices, their

geometric properties, and packing density can be found in [49] and [19].

We focus on the important class of nearly orthogonal lattices as defined in [56].

These lattices appear to be useful in image processing, signal recovery, and related

areas (see, for instance [56] and [13]). Let B = {b1, . . . , bn} be an ordered basis for

a lattice L in Rn, and define a sequence of angles θ1, . . . , θn−1 as follows: each θi is

the angle between bi+1 and the subspace spanR{b1, . . . , bi}. It is then clear that each

θi ∈ [0, π/2]. For a given value θ ∈ [0, π/2], we will say that B is a weakly θ-orthogonal

basis if θi ≥ θ for each 1 ≤ i ≤ n−1. A basis B is called θ-orthogonal if every ordering

of it is weakly θ-orthogonal. Notice that if some lattice L has a (weakly) θ-orthogonal

basis, then so does every lattice in its similarity class: we will call such lattices

(weakly) θ-orthogonal. Let us then write WOn(θ) for the space of similarity classes

of all weakly θ-orthogonal lattices, and WO∗
n(θ) for the space of similarity classes of
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all θ-orthogonal lattices in Rn. We will also write simply WOn (respectively, WO∗
n)

for WOn(π/3) (respectively, WO∗
n(π/3)), which will be especially important to us; we

will call lattices in WOn (respectively, WO∗
n) weakly nearly orthogonal (respectively,

nearly orthogonal) and refer to their corresponding (weakly) π/3-orthogonal bases as

(weakly) nearly orthogonal bases. It is shown in [56] that if L has a weakly nearly

orthogonal basis B, then B contains a minimal vector of L. As discussed in [56], not

every lattice has a weakly nearly orthogonal basis. Let us define

Wn(θ) = WRn ∩WOn(θ) and W∗
n(θ) = WRn ∩WO∗

n(θ),

i.e., the set of similarity classes of WR lattices in Rn that have a (weakly) θ-orthogonal

basis; we will write simply Wn for Wn(π/3) (respectively, W∗
n for W∗

n(π/3)).

Each similarity class can be represented by a lattice with minimal norm 1: for the

remainder of this chapter, we will always use such representatives. When we write

L ∈ Wn(θ), we will mean the similarity class of L where |L| = 1. Let us also write

a(x,y) for the angle between the two vectors x and y. For a given basis B of a lattice

L, we define

µ(B) := min{| cos a(bi, bj)| : 1 ≤ i ̸= j ≤ n},

ν(B) := max{| cos a(bi, bj)| : 1 ≤ i ̸= j ≤ n}).
(2.1)

In this chapter, we investigate geometric properties and packing density of WR nearly

orthogonal lattices. To do so, we examine the minimal vectors of these lattices and

the angles between them. Here is our first result in this direction.

Theorem 2.1.1. Let L ∈ W∗
n with a nearly orthogonal basis B = {b1, . . . , bn}. Then

B ⊆ S(L), and so µ(B) ≤ ν(B) ≤ C(L). Let ε > 0 and let Bε(L) be a ball of radius

ε centered at L in the space of similarity classes of lattices in Rn. The following

statements are true:

1. If µ(B) < 1/2, then there exists L′ ∈ W∗
n ∩ Bε(L) with nearly orthogonal basis
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B′ such that µ(B′) > µ(B) and

δ(L′) =

√
1− µ(B)2√
1− µ(B′)2

δ(L) > δ(L).

2. If ν(B) > 0, then there exists L′′ ∈ W∗
n ∩Bε(L) with nearly orthogonal basis B′′

such that ν(B′′) < ν(B) and

δ(L′′) =

√
1− ν(B)2√
1− ν(B′′)2

δ(L) < δ(L).

3. If n ≥ 3, then µ(B) < 1/2 for every nearly orthogonal basis B of any lattice

L ∈ W∗
n. If n = 2, µ(B) = 1/2 if and only if L is the hexagonal lattice, in which

case this is true for any nearly orthogonal basis B of L.

4. C(L) = 0 if and only if L = Zn.

Loosely speaking, Theorem 2.1.1 asserts that a lattice L ∈ W∗
n can be locally modified

to increase or decrease the packing density by respectively increasing or decreasing

maximal coherence. We prove Theorem 2.1.1 in Section 2.2. Here is an immediate

consequence of this theorem.

Corollary 2.1.2. If n ≥ 3, then W∗
n does not contain any extreme lattices. If n = 2,

the hexagonal lattice is the unique extreme lattice, which is contained in W∗
2 . On the

other hand, W∗
n for every n ≥ 2 contains a unique minimum of the packing density

function on the set of WR lattices, the integer lattice Zn.

The fact that Wn(θ) with θ > π/3 cannot contain extreme lattices already follows

from results of [56] in a different manner. Recall that a lattice L is called weakly

eutactic if there exist real numbers c1, . . . , cn, called eutaxy coefficients, such that

∥v∥2 =
∑

x∈S(L)

ci(v,xi)
2 (2.2)
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for all v ∈ Rn. If eutaxy coefficients are positive, L is called eutactic, and if c1 = · · · =

cn > 0, the lattice L is called strongly eutactic; for instance, the integer lattice Zn is

strongly eutactic. Further, L is perfect if the set {xx⊤ : x ∈ S(L)} spans the space

of n × n real symmetric matrices. Both eutactic and perfect lattices are necessarily

WR, and eutaxy and perfection properties are preserved on similarity classes, as is

well-roundedness. A famous theorem of Voronoi (1908, [66]) asserts that L is extreme

if and only if L is eutactic and perfect. Notice that in order for L to be perfect S(L)

needs to contain at least n(n+1)
2

pairs of ± minimal vectors, the dimension of the space

of n×n real symmetric matrices. On the other hand, if L ∈ Wn(θ) with θ > π/3 and

B is its weakly θ-orthogonal basis, then Corollary 1 of [56] states that S(L) = ±B.

Hence L cannot be perfect, since n < n(n+1)
2

for all n ≥ 2. This, however, does not

imply our result for W∗
n. Indeed, while we do prove that B ⊆ S(L) for any nearly

orthogonal basis B of any lattice L ∈ W∗
n, it is possible to construct lattices in W∗

n

with larger sets of minimal vectors.

Theorem 2.1.3. Let n ≥ 2. For each 0 ≤ m ≤ [n/2] there exists a strongly eutactic

lattice Ln,m ∈ W∗
n with

|S(Ln,m)| = 2(n+m).

In particular, if m = [n/2], then

|S(Ln,m)| =

 3n if n is even

3n− 1 if n is odd.

Furthermore, for each even number k between 3n and 4n − 2, inclusive, there exists

a lattice L ∈ Wn such that |S(L)| = k. On the other hand, |S(L)| ≤ 4n − 2 for

every L ∈ Wn, and if |S(L)| > 3n then L cannot be in W∗
n.

We prove Theorem 2.1.3 in Section 2.3, in particular constructing explicit families of

lattices. Notice that the set W∗
n contains strongly eutactic lattices. Further, in Ex-
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ample 4 we exhibit a 3-dimensional irreducible non-perfect eutactic (but not strongly

eutactic) lattice, which is in W3, but not in W∗
3 . On the other hand, since perfect lat-

tices must have at least n(n+1) minimal vectors, Theorem 2.1.3 implies an immediate

corollary.

Corollary 2.1.4. For every n ≥ 3, the set Wn does not contain any perfect lattices.

Hence there are no extreme lattices in Wn for n ≥ 3.

There is another consequence of Theorem 2.1.3 that we want to record: we also

prove it in Section 2.3. Clearly, lattices in Wn contain bases of minimal vectors. In

fact, WR nearly orthogonal lattices satisfy a stronger property, which they have in

common with such lattices as root lattices An, for instance.

Corollary 2.1.5. Let L ∈ W∗
n. Then any n linearly independent vectors from S(L)

form a basis for L.

Let us now look at the coherence of WR nearly orthogonal lattices in more details.

Define a dimensional constant

cn =

√
(n− 2)2 + 16(n− 1)− (n− 2)

8(n− 1)
. (2.3)

We prove the following result.

Theorem 2.1.6. The following statements are true.

1. For a lattice L ∈ W∗
n, C(L) = 1/2 if and only if |S(L)| > 2n.

2. Let B = {b1, . . . , bn} in Rn be a collection of linearly independent unit vectors

such that

max
1≤i<j≤n

|(bi, bj)| ≤ cn.

Then L = spanZB is in W∗
n.
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We prove Theorem 2.1.6 in Section 2.4, where we also demonstrate a family of lat-

tices A∗
n outside of Wn with maximal coherence 1/n, which tends to Wn with respect

to maximal coherence as n → ∞ in the sense that limn→∞(cn/(1/n)) = 1. This shows

that cn is asymptotically sharp, so WR lattices with maximal coherence < 1/n tend to

be nearly orthogonal as n → ∞. For comparison, Proposition 1.1 of [63] implies that

the maximal coherence of the set of the first k shortest vectors of a random lattice

in Rn (where k does not depend on n) tends to O(1/
√
n) as n → ∞. In Section 2.4,

we also prove a result in the spirit of Diophantine approximation about an infinite

family of integral WR lattices in the plane with maximal coherence tending to 0. We

are now ready to proceed.

2.2 Packing density

In this section we prove Theorem 2.1.1. We start with several auxiliary lemmas.

Lemma 2.2.1. Let b1, b2 ∈ Rn be nonzero vectors with the angle π/3 ≤ θ1 ≤ 2π/3

between them. Then

min{∥αb1 + βb2∥ : α, β ∈ Z not both 0} = min{∥b1∥, ∥b2∥}. (2.4)

If ∥b1∥ = ∥b2∥ and α, β ̸= 0, then ∥αb1 + βb2∥ = ∥b1∥ if and only if either θ1 = π/3

and the pair (α, β) = ±(1,−1), or θ1 = 2π/3 and the pair (α, β) = ±(1, 1).

Proof. Assume min{∥b1∥, ∥b2∥} = ∥b1∥. Let x = αb1 + βb2 for some α, β ∈ Z, not

both 0. If α = 0 or β = 0, then we immediately have ∥x∥ ≥ ∥b1∥. Suppose that
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α, β ̸= 0, then

∥x∥2 = α2∥b1∥2 + 2αβ∥b1∥∥b2∥ cos θ1 + β2∥b2∥2

≥ α2∥b1∥2 − |αβ|∥b1∥∥b2∥+ β2∥b2∥2

= (|α|∥b1∥ − |β|∥b2∥)2 + |αβ|∥b1∥∥b2∥ ≥ ∥b1∥2 (2.5)

and

∥x∥ = ∥b1∥ ⇐⇒ ∥b2∥ = ∥b1∥, cos θ1 = ±1/2, and αβ = ±1. (2.6)

This completes the proof.

Lemma 2.2.2. Let b1, b2, b3 be nonzero non-coplanar vectors in Rn, n ≥ 3. Let θij be

the angle between bi and bj, 1 ≤ i ̸= j ≤ 3, and let ξ be the angle between z = b1+b2

and b3. Suppose that

cos θ13 = cos θ23 = α > 0.

Then | cos ξ| > α, and hence b3 makes a smaller angle with the plane spanned by b1

and b2 than with each of them.

Proof. Notice that cos ξ = (z,b3)
∥z∥∥b3∥ , where

(z, b3) = (b1, b3) + (b2, b3) = α∥b3∥(∥b1∥+ ∥b2∥) > α∥b3∥∥b1 + b2∥.

Further, the angle b3 makes with the plane spanned by b1 and b2 is ≤ ξ, since the

vector z = b1 + b2 lies in that plane. The conclusion follows.

Lemma 2.2.3. Let L ∈ Wn and

B = {b1, . . . , bn}

21



be a weakly nearly orthogonal basis for L. Then for each 1 ≤ k ≤ n, the lattice

Lk = spanZ {b1, . . . , bk}

is also WR.

Proof. Arguing toward a contradiction, suppose this is not true. Since L is WR, there

must exist some 1 < k < n such that Lk is not WR, but Lk+1 is. This means that

the number of linearly independent minimal vectors of Lk is 1 ≤ m < k; call these

vectors x1, . . . ,xm. On the other hand, Lk ⊊ Lk+1 and Lk+1 must contain k + 1

linearly independent minimal vectors. Now, every vector y ∈ Lk+1 is of the form

y = αx+ βbk+1

for some x ∈ Lk and α, β ∈ Z. Then, by Lemma 2.2.1,

|Lk+1| = min{∥y∥ : y ∈ Lk+1 \ {0}} = min{|Lk|, ∥bk+1∥}.

Suppose first that ∥bk+1∥ < |Lk|. Then ∥y∥ = |Lk+1| if and only if y = ±bk+1: since

k + 1 ≥ 2, this contradicts Lk+1 being WR. Next assume that |Lk| < ∥bk+1∥. Then

∥y∥ = |Lk+1| if and only if y ∈ S(Lk). However, there are only m < k such linearly

independent vectors, again contradicting Lk+1 being WR. Hence the only remaining

option is that

∥x1∥ = · · · = ∥xm∥ = ∥bk+1∥.

In this case,

S(Lk) ∪ {±bk+1} ⊆ S(Lk+1), (2.7)

but only m+ 1 < k+ 1 of these vectors are linearly independent. Additionally, some

vectors of the form x±bk+1 for some x ∈ S(Lk) may be in S(Lk+1). However, they are
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linearly dependent with the vectors in (2.7). This means that the number of linearly

independent vectors in S(Lk+1) is ≤ m + 1 < k + 1, contradicting the assumption

that Lk+1 is WR. Hence every Lk must be WR, and this completes the proof.

Lemma 2.2.4. Let L ∈ W∗
n and B a nearly orthogonal basis for L. Then B ⊆ S(L).

Proof. First suppose that B is weakly θ-orthogonal, where θ > π/3. Then Corollary 1

of [56] guarantees that S(L) = ±B. Assume then that for some 1 ≤ i ≤ n − 1, the

angle θi between bi and subspace spanned by b1, . . . , bn−1 is equal to π/3.

We argue by induction on n ≥ 2. If n = 2, let b1, b2 be a nearly orthogonal basis

for L; assume ∥b1∥ ≤ ∥b2∥. Then Theorem 1 of [56] guarantees that |L| = ∥b1∥. Let

θ1 = π/3 be the angle between b1, b2. Since L is WR, there must exist some

x = αb1 + βb2 ∈ L

such that β ̸= 0 and ∥x∥ = ∥b1∥. If α = 0, then x = βb2, and so we must have

β = ±1 and ∥b2∥ = ∥b1∥. If α ̸= 0, then ∥b2∥ = ∥b1∥ by (2.5) and (2.6) above. In

either case, b1, b2 ∈ S(L).

Next assume the lemma is true in all dimensions ≤ n − 1. Let us prove it for

dimension n. Let

B = {b1, . . . , bn−1, bn}

be a nearly orthogonal basis for a lattice L ∈ W∗
n. Theorem 1 of [56] guarantees that

at least one of these basis vectors is a shortest vector for L, and we can assume that

B is ordered so that it is b1. Let Ln−1 = spanZ{b1, . . . , bn−1}; then Lemma 2.2.3

implies that Ln−1 ∈ W∗
n−1 and

|Ln−1| = ∥b1∥ = |L|, (2.8)

and ∥bn∥ ≥ |L|. We should remark that when we write W∗
n−1 here (and below),
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we are identifying Rn−1 with spanR Ln−1. By the induction hypothesis, we have

b1, . . . , bn−1 ∈ S(Ln−1) ⊆ S(L). Hence we only need to prove that bn ∈ S(L). Since

L is WR, there must exist some y ∈ S(L) \ Ln−1. Again, L = spanZ{Ln−1, bn}, so

y = αx+ βbn

for some x ∈ Ln−1 and α, β ∈ Z with β ̸= 0. By Lemma 2.2.1,

|L| = ∥y∥ = min{|Ln−1|, ∥bn∥}.

Combining this observation with (2.8) we have, in particular

min{∥αb1 + βbn∥ : α, β ∈ Z, β ̸= 0} = ∥b1∥,

while ∥bn∥ ≥ ∥b1∥ and the angle between b1 and bn is in the interval [π/3, 2π/3].

Then (2.5) and (2.6) imply that bn ∈ S(L), and we are done.

We are now ready to prove the theorem.

Proof of Theorem 2.1.1. First notice that, by Lemma 2.2.4, B ⊆ S(L). To prove

parts (1) and (2) of the theorem, we argue by induction on n ≥ 2. First suppose that

n = 2. Let L ∈ W∗
2 and let B = {b1, b2} be a nearly orthogonal basis for L. In this

case µ(B) = ν(B) = C(L), and assume that 0 < C(L) < 1/2. Then

L = spanZ {b1, b2}

with |L| = ∥b1∥ = ∥b2∥ = 1 and the angle θ1 between b1 and b2 lies in the interval

(π/3, π/2). The packing density of L is

δ(L) =
π|L|2

detL
=

π

sin θ1
.

24



Let us write U(θ1) for the counterclockwise rotation matrix by the angle θ1:

U(θ1) =

cos θ1 − sin θ1

sin θ1 cos θ1

 .

Without loss of generality, we can assume that b2 = U(θ1)b1. For a given ε > 0, let

θ′1 ∈ [π/3, θ1) and θ′′1 ∈ (θ1, π/2] be such that

(sin θ1 − sin θ′1)
2
+ (cos θ1 − cos θ′1)

2
< ε,

(sin θ1 − sin θ′′1)
2
+ (cos θ1 − cos θ′′1)

2
< ε.

(2.9)

Then the lattices

L′ = spanZ {b1, U(θ′1)b1} , L′′ = spanZ {b1, U(θ′′1)b1}

with nearly orthogonal bases B′ = {b1, U(θ′1)b1}, B′′ = {b1, U(θ′′1)b1}, respectively,

are in W∗
2 ∩ Bε(L),

1/2 ≥ µ(B′) > µ(B) = ν(B) > ν(B′′) ≥ 0,

and

δ(L′) =
π

sin θ′1
=

π√
1− µ(B′)2

>
π√

1− µ(B)2
=

π

sin θ1
= δ(L),

δ(L′′) =
π

sin θ′′1
=

π√
1− ν(B′′)2

<
π√

1− ν(B)2
=

π

sin θ1
= δ(L).

Hence

δ(L′) =

√
1− µ(B)2√
1− µ(B′)2

δ(L), δ(L′′) =

√
1− ν(B)2√
1− ν(B′′)2

δ(L).

Now suppose the statement is true in any dimension ≤ n − 1. Let us prove it

for n. We start with part (1), so let L ∈ W∗
n and let B = {b1, . . . , bn} be a nearly

orthogonal basis for L so that µ(B) < 1/2. Then B ⊆ S(L) by Lemma 2.2.4. Let
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Ln−1 = spanZ{b1, . . . , bn−1}, then by Lemmas 2.2.3 and 2.2.4, Ln−1 ∈ W∗
n−1 and

Bn−1 = {b1, . . . , bn−1} ⊆ S(Ln−1). Further, since we can reorder B as we like, we

can assume that µ(Bn−1) = µ(B) < 1/2, and thus we can apply induction hypothesis

to Ln−1. Then there exists L′
n−1 ∈ W∗

n−1 ∩Bε(Ln−1) with the nearly orthogonal basis

B′
n−1 = {b′1, . . . , b′n−1} such that

µ(B′
n−1) > µ(Bn−1), δ(L′

n−1) =

√
1− µ(Bn−1)2√
1− µ(B′

n−1)
2
δ(Ln−1).

Since we agreed to pick representatives of similarity classes that have minimal norm 1,

we have

|L′
n−1| = ∥b′1∥ = · · · = ∥b′n−1∥ = |Ln−1| = |bn∥ = |L| = 1,

by Lemma 2.2.4. Now, let L′ = spanZ{L′
n−1, bn}. Since L′

n−1 ⊂ spanR Ln−1, bn makes

the same angle θn−1 with spanR{b′1, . . . , b′n−1} and with spanR{b1, . . . , bn−1}, and so

L′ ∈ W∗
n with near orthogonal basis B′ = {b′1, . . . , b′n−1, bn} and |L′| = |L|,

µ(B′) = µ(B′
n−1) > µ(Bn−1) = µ(B),

and so δ(L′) =

√
1−µ(B)2√
1−µ(B′)2

δ(L), since

detL′ = (detL′
n−1)∥bn∥ sin θn−1, detL′ = (detLn−1)∥bn∥ sin θn−1.

This completes the proof of (1). The proof of (2) is completely analogous with µ

replaced by ν and the corresponding inequalities reversed.

To prove part (3), assume n ≥ 3 and suppose µ(B) = 1/2 for some L ∈ W∗
n with

a nearly orthogonal basis B = {b1, . . . , bn}. This means that all the angles between

these basis vectors are equal to π/3 or 2π/3. In particular, b3 makes such an angle

with b1 and b2. But then Lemma 2.2.2 implies that b3 makes an angle < π/3 with the

plane spanned by b1, b2, contradicting near-orthogonality of the basis B. Therefore
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we must have µ(B) < 1/2 when n ≥ 3. On the other hand, if n = 2 and L ∈ W∗
2 ,

then for any nearly orthogonal basis B, µ(B) ≤ C(L) is simply the cosine of the angle

between the minimal basis vectors, which is in the interval [π/3, π/2] and is equal to

π/3 precisely in the case of the hexagonal lattice

1 1/2

0
√
3/2

Z2.

Finally, for part (4) notice that C(L) = 0 if and only if all the angles between

minimal vectors are equal to π/2, which happens precisely in the case of the integer

lattice Zn.

2.3 Minimal vectors

In this section we construct families of latices in Wn with many minimal vectors,

but also prove that for any L ∈ Wn, |S(L)| ≤ 4n − 2. This will establish Theo-

rem 2.1.3. We begin with two constructions. We write A2 for the 2-dimensional root

lattice (isometric to the hexagonal lattice), normalized to have minimal norm 1. We

also write ⊕ for the orthogonal direct sum of lattices.

Lemma 2.3.1. Let n ≥ 2. For each 0 ≤ m ≤ n/2, let

Ln,m =
m⊕
i=1

A2

n−2m⊕
j=1

Z, (2.10)

where a direct sum is taken to be empty if the upper limit on the index is 0. This is

a strongly eutactic lattice contained in W∗
n with

|S(Ln,m)| = 2m+ 2n.
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If we take m = [n/2], we have

|S(Ln,m)| =

 3n if n is even

3n− 1 if n is odd.

Proof. Let B = {b1, . . . , bn} ⊂ Rn be a basis of unit vectors satisfying the following

condition:

∀ 1 ≤ i ≤ n ∃ at most one 1 ≤ t ≤ n such that:

(bi, bt) = 1/2 and ∀ 1 ≤ k ≤ n, k ̸= i, t, (bi, bk) = 0. (2.11)

Notice that such a basis is nearly orthogonal. Indeed, let 1 ≤ i ≤ n and let V be a

subspace of Rn spanned by some of the other vectors of B, say

V = spanR{bj1 , . . . , bjm : 1 ≤ j1, . . . , jm ≤ n, jk ̸= i ∀ k = 1, . . . ,m}.

Let

x =
m∑
k=1

akbjk ∈ V

be a unit vector for some real coefficients −1 ≤ a1, . . . , am ≤ 1. Since bi is orthog-

onal to every other vector of B except for (possibly) bt and (bi, bt) = 1/2, we have

|(x, bi)| ≤ 1/2. Thus bi makes an angle ≥ π/3 with each such subspace V . Thus if

L = spanZB, then L ∈ W∗
n.

Now, let 0 ≤ m ≤ n/2 and let Ln,m be as in (2.10). Then Ln,m is spanned over Z

by a unit basis

b11, b12, . . . , bm1, bm2, c1, . . . , cn−2m,

where each pair bi1, bi2 spans a copy of A2 and hence has inner product 1/2, cj’s

span Zn−2m, and hence are orthogonal to each other, and each pair bi1, bi2 is orthog-
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onal to every other pair and to all cj’s. Hence this basis satisfies condition (2.11),

therefore Ln,m ∈ W∗
n.

Let us count the number of minimal vectors in Ln,m. Notice that each of the m

copies of A2 in the orthogonal direct sum contributes 6 minimal vectors:

±bi1,±bi2,±(bi1 − bi2),

and each of the n− 2m copies of Z contributes two minimal vectors: ±cj. There are

no other minimal vectors. Hence we have

|S(Lm,n)| = 6m+ 2(n− 2m) = 2m+ 2n.

Finally notice that Ln,m is an orthogonal direct sum of strongly eutactic lattices

with equal minimal norm. Therefore it is strongly eutactic by Theorem 3.6.13 of [49].

This completes the proof of the lemma.

Lemma 2.3.2. For every n ≥ 2 there exist L ∈ Wn such that |S(L)| ≥ 4n− 2.

Proof. To prove this lemma, we demonstrate another construction. Let b1, b2 ∈ Rn be

unit vectors with angle π/3 between them, and let Π1 be the plane spanned by them.

Then b1−b2 is also a unit vector in Π1 by Lemma 2.2.1. Let b3 be a unit vector in Rn

making an angle π/3 with Π1 and with b1 − b2, i.e., the orthogonal projection of b3

onto Π1 is along the line spanned by b1 − b2. Then b1 − b2 − b3 is also a unit vector.

Let b4 be a unit vector in Rn making an angle of π/3 with b1 − b2 − b3 and with the

3-dimensional subspace spanned by b1, b2, b3. Once again, b1 − b2 − b3 − b4 is also a

unit vector. Continuing in the same manner, we construct a basis B = {b1, . . . , bn}

and take L = spanZB. Then L ∈ Wn by construction. Further, for n ≥ 2 the vectors

±bk ∀ 1 ≤ k ≤ n, ±

(
b1 −

k∑
i=2

bi

)
∀ 2 ≤ k ≤ n
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are contained in S(L). The number of these vectors is 4n− 2.

Example 2. Let us show examples of our constructions in the proofs of Lemmas 2.3.1

and 2.3.2 above for n = 3, 4. For an example of the first construction when n = 3,

we can take

L1 = spanZ


1√
2


1

1

0

 ,
1√
2


1

0

1

 ,
1√
3


−1

1

1


 ,

which is a lattice in W∗
3 with 8 minimal vectors. For n = 4, take

L2 = spanZ


1√
2



1

1

0

0


,
1√
2



1

0

1

0


,
1

2



−1

1

1

1


,
1

2



1

−1

−1

1




,

which is a lattice in W∗
4 with 12 minimal vectors. The presented bases for these lattices

satisfy (2.11).

Here is also a 3-dimensional example of the second construction:

L3 = spanZ


1√
2


1

1

0

 ,
1√
2


1

0

1

 ,
1

2
√
2


√
2

1−
√
2

−(1 +
√
2)


 .

This is a lattice in W3 with 10 minimal vectors, however it is not in W∗
3 , since the

ordering of the minimal basis


1√
2


1

1

0

 ,
1

2
√
2


√
2

1−
√
2

−(1 +
√
2)

 ,
1√
2


1

0

1
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is not weakly nearly orthogonal: indeed, the cosine of the angle between the plane

spanned by the first two of these vectors and the third one is
√
2/5 > 1/2. In fact,

since every 3-dimensional lattice constructed as in the proof of Lemma 2.3.2 is isomet-

ric to L3, all of them would be in W3, but not in W∗
3 . Furthermore, this implies that

construction of Lemma 2.3.2 never produces lattices in W∗
n for n ≥ 3: just reorder

the first three vectors as in the example L3.

Remark 2.3.1. It is perhaps worth noting that the property of being nearly orthogonal

is not preserved under the tensor product. Consider the examples above: if L = L1⊗

L2, then L /∈ W∗
12. Writing L1 = spanZ {a1,a2,a3} and L2 = spanZ {b1, b2, b3, b4},

and denoting by ai⊗bj the concatenation of successive columns of the matrix aib
⊤
j , we

find the subspace spanR {a1 ⊗ b1,a1 ⊗ b2,a1 ⊗ b3,a1 ⊗ b4,a2 ⊗ b1} forms an angle of

arcsin(3
4
) < π

3
with a2 ⊗ b2, and thus L /∈ W∗

12.

Lemma 2.3.3. For any L ∈ Wn, |S(L)| ≤ 4n− 2.

Proof. We argue by induction on n. If n = 2, the hexagonal lattice has largest set of

minimal vectors, which has cardinality 6 = 4 × 2 − 2. Now assume the statement is

true in all dimensions ≤ n − 1. We prove it in dimension n > 2. Let L ∈ Wn,

and let B = {b1, . . . , bn} be a weakly nearly orthogonal basis for L. Then the

lattice L′ = spanZ{b1, . . . , bn−1} ∈ Wn−1 by Lemma 2.2.3, and hence has at most

4(n−1)−2 = 4n−6 minimal vectors by induction hypothesis. Suppose that y ∈ S(L)

is not contained in L′. Then either y = bn or

y = αx+ βbn

for some x ∈ L′, β ̸= 0, and

∥y∥ = |L′| = |L| = ∥bn∥.
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If y ̸= bn, Lemma 2.2.1 implies that ∥x∥ = ∥bn∥ and the angle between x and bn

is π/3. By Lemma 2.2.2, there can exist no more than one vector in L′ with which bn

makes an angle π/3: otherwise it would make an angle < π/3 with the subspace

spanR L
′. Hence the total number of minimal vectors of L which are outside of L′ is

no greater than 4, and so

|S(L)| ≤ |S(L′)|+ 4 ≤ 4n− 2.

Corollary 2.3.4. For every n ≥ 3 and m ≥ 1 such that

m ≤


n−2
2

if n is even

n−1
2

if n is odd,
(2.12)

there exist L ∈ Wn such that

|S(L)| =

 3n+ 2m if n is even

3n− 1 + 2m if n is odd.
(2.13)

Proof. We argue by induction on n ≥ 3. If n = 3, we must have m = 1, and so

3n− 1 + 2m = 9− 1 + 2 = 10 = 4n− 2.

If n = 4, again we have m = 1, so

3n+ 2m = 12 + 2 = 14 = 4n− 2.

Hence the existence of such a lattice L inW3 orW4 follows directly from Lemma 2.3.2.

Assume then that n > 4, and the result holds in all dimensions ≤ n− 1. Let us prove
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it for n. First notice that if there is equality in (2.12), then the result again follows

from Lemma 2.3.2. Hence let us assume that m is strictly less than the right hand

side of (2.12), that is

m ≤


n−4
2

= (n−2)−2
2

if n− 2 is even

n−3
2

= (n−2)−1
2

if n− 2 is odd.

By the induction hypothesis, there must exist L′ ∈ Wn−2 with

|S(L′)| =

 3(n− 2) + 2m if n− 2 is even

3(n− 2)− 1 + 2m if n− 2 is odd.

Let us embed L′ into the (n−2)-dimensional coordinate subspace in Rn corresponding

to the last two coordinates being 0 and let V be the orthogonal complement of this

subspace in Rn. Let L′′ be a lattice of unit minimal norm in V , similar to A2, i.e.,

spanned by a pair of unit vectors c1, c2 with angle π/3 between them. Then S(L′′) =

{±c1,±c2,±(c1 − c2)}. Now, let L = L′ ⊕ L′′. Then S(L) = S(L′) ∪ S(L′′), and so

|S(L)| = |S(L′)|+ 6. This establishes (2.13).

Example 3. Here we present an explicit construction of the first case where there

exists a lattice between the two extreme ends of Lemmas 2.3.1 and 2.3.2 (when n = 5).

First, we construct a 4-dimensional lattice L4 ∈ W4 with |S(L)| = 14 by following the

procedure in Lemma 2.3.2. This gives

L4 = spanZ





1

0

0

0


,
1

2



1
√
3

0

0


,
1

4



1

−
√
3

2
√
3

0


,
1

8



1

−
√
3

−2
√
3

4
√
3




.

Then, to produce a 5-dimensional lattice L5 ∈ W5 with |S(L)| = 16 = 3n + 1, we
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need simply to add a copy of Z orthogonal to the subspace of R5 spanned by the basis

of L4. This gives us

L5 = spanZ





1

0

0

0

0


,
1

2



1
√
3

0

0

0


,
1

4



1

−
√
3

2
√
3

0

0


,
1

8



1

−
√
3

−2
√
3

4
√
3

0


,



0

0

0

0

1




.

By the same argument as at the end of Example 2, lattices produced using Corol-

lary 2.3.4 are again in Wn, but not in W∗
n, since they still follow the construction of

Lemma 2.3.2.

The strongly eutactic lattices constructed in Lemma 2.3.1 are orthogonal direct

sums of copies of A2 and Z, which is not so surprising. It is more interesting that Wn

can contain irreducible eutactic lattices which are also not inW∗
n; we now demonstrate

such an example for n = 3.

Example 4. Let us consider eutactic lattices in dimensions 2 and 3. In R2, there are

only two eutactic lattices: Z2 and A2, and both of them are in W∗
2 by Lemma 2.3.1.

In dimension 3, there are five eutactic lattices: Z3, A2 ⊥ Z, A3, A∗
3 and K ′

3 (see

Example 9.5.1 (6) on p. 345 of [49]). The lattices Z3 and A2 ⊥ Z are in W∗
3 by

Lemma 2.3.1. The root lattice A3 has 12 minimal vectors, and hence is not in W3

by Theorem 2.1.3. The lattice A∗
3 is also not in W3 (see Example 5 below). The one

remaining lattice is K ′
3 (see Section 8.5 of [49] for its construction), which is spanned

by a unit basis

b1 =


1

0

0

 , b2 =


−1/2
√
3/2

0

 , b3 =


−1/2

0
√
3/2

 .

34



This lattice has 10 minimal vectors: ±bi for 1 ≤ i ≤ 3, ±(b1 + b2), ±(b1 + b3).

It is irreducible, eutactic, but not perfect, and not strongly eutactic. We will show

that K ′
3 ∈ W3, but K

′
3 ̸∈ W∗

3 . Indeed, let θij be the angle between bi and bj, 1 ≤ i <

j ≤ 3. Also define

Π1 = spanR{b1, b2}, Π2 = spanR{b2, b3},

and let ν1 be the angle between b3 and Π1, ν2 the angle between b1 and Π2. It is then

easy to check that

| cos θ12| = | cos θ13| =
1

2
, | cos θ23| =

1

4
.

Also, | cos ν1| = 1
2
, and hence B = {b1, b2, b3} is a weakly nearly orthogonal basis,

so K ′
3 ∈ W3. On the other hand, let

x =
1

2
(b2 + b3) =


−1/2
√
3/4

√
3/4

 ∈ Π2,

and let µ be the angle between b1 and x. Notice that

| cos ν2| ≥ | cosµ| =
√

2

5
>

1

2
.

This means that the ordering of the basis {b2, b3, b1} is not weakly nearly orthogonal,

and hence K ′
3 ̸∈ W∗

3 . Notice also that K ′
3 is not similar to the lattice L3 in Example 2.

Remark 2.3.2. A theorem of A. Ash [1] (see also [2]) asserts that all the critical points

of the packing density function δ occur at eutactic lattices. By Voronoi’s theorem,

we know that these are maxima if and only if the corresponding eutactic lattice is

also perfect. Non-perfect eutactic lattices may or may not be minima: combining our

observations on eutactic lattices in Wn with our Theorem 2.1.1, we see that many of
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them are not minima, not even among well-rounded lattices. On the other hand, two

lattices L1 and L2 are said to be in the same minimal class if there exists U ∈ GLn(R)

such that L2 = UL1 and S(L2) = US(L1). Theorem 9.4.1 of [49] asserts that δ attains

its minimum on a given minimal class at a weakly eutactic lattice, if one exists (each

minimal class has no more than one weakly eutactic lattice).

Finally we show that lattices in W∗
n cannot have too many minimal vectors, con-

sistent with examples L3, L4, L5, and K ′
3 demonstrated above.

Lemma 2.3.5. Let n ≥ 3 and L ∈ Wn be such that |S(L)| > 3n. Then L ̸∈ W∗
n.

Proof. Let L ∈ W∗
n and let B = {b1, . . . , bn} be its nearly orthogonal basis. We want

to prove that |S(L)| ≤ 3n. Suppose that for some 1 ≤ k ≤ n

x1 = α1bk + y ∈ S(L), x2 = α2bk + z ∈ S(L),

where 0 ̸= α1, α2 ∈ Z and 0 ̸= y, z ∈ spanZB \{bk}. Then by Lemma 2.2.1, we must

have α1, α2 = ±1, y, z ∈ S(L), and the angles between bk and y, z equal to π/3

or 2π/3. In this case Lemma 2.2.2 implies that the angle bk makes with the space

spanned by the rest of vectors of B is less than π/3, which contradicts the assumption

that L is in W∗
n. Hence there can be at most one ± pair of vectors in S(L) besides

±bk which is expressible as an integral linear combination of the vectors of B with

a nonzero coefficient in front of bk, and this is true for every 1 ≤ k ≤ n. Thus a

maximal possible number of minimal vectors for L is achieved by the construction

described in Lemma 2.3.1 with 3n or 3n− 1 vectors, depending on whether n is even

or odd.

Proof of Theorem 2.1.3. The theorem now follows upon combining Lemmas 2.3.1,

2.3.2, 2.3.3 and 2.3.5 with Corollary 2.3.4.
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Proof of Corollary 2.1.5. We argue by induction on n ≥ 2. If n = 2, then |S(L)| = 4

unless L is the hexagonal lattice, in which case it has 6 minimal vectors. In either case,

the result is immediate by direct verification. Suppose now the result is established

in all dimensions ≤ n−1. Let us prove it for n. By Lemma 2.3.5, |S(L)| ≤ 3n, out of

which n pairs of vectors are the nearly orthogonal basis vectors ±B = ±{b1, . . . , bn}.

Let X = {x1, . . . ,xn} ⊂ S(L) be any n linearly independent vectors. Then at least

n − [n/2] of them are vectors from ±B. Let bk be one of these vectors. There is

at most one other vector, say x1 ∈ X, which is a linear combination of some bi’s

with ±1 coefficients and a nonzero coefficient in front of bk: we can write this x1 as

x′
1 ± bk. Then

spanZ{x1, . . . ,xn} = spanZ{x′
1, . . . ,xn},

and spanZ(X \ {bk}) ⊆ L′
k := spanZ(B \ {bk}) with X \ {bk} ⊂ S(L′

k). Applying

the induction hypothesis to L′
k, we see that X \ {bk} is a basis for L′

k. Since L =

spanZ{L′
k, bk}, we conclude that X is a basis for L.

2.4 Coherence

We now discuss the maximal coherence of lattices in some more details. As in-

dicated in [35], one might expect that many extreme lattices have maximal coher-

ence = 1/2. Certainly this is true for the standard root lattices An, Dn, E6, E7 and

E8, as witnessed by the Coxeter-Dynkin diagrams (see, for instance, Theorem 4.6.3

of [49]; see also Figure 1.3). On the other hand, there are also extreme lattices that

have maximal coherence less than 1/2. Consider, for instance, the Coxeter-Barnes

lattice Ar
n, which is best defined as a lattice of rank n in Rn+1 spanned over Z by the

basis

e1 − e2, . . . , e1 − en,
1

r

(
ne1 −

n∑
i=2

ei

)
,
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where ei are standard basis vectors in Rn+1. Let n ≥ 7 and 1 < r < n+1 be a divisor

of n + 1. With parameters as specified, these lattices are known to be perfect and

strongly eutactic, hence extreme (see Theorem 5.2.1 of [49]). If r = (n + 1)/2, these

lattices have maximal coherence < 1/2 (see Proposition 5.2.3 of [49]).

These considerations raise a question: what is the maximal coherence of a WR

nearly orthogonal lattice? Well, it can be 1/2, as in the constructions in Lemmas 2.3.1

and 2.3.2 above. In fact, this is the case for any L ∈ W∗
n with |S(L)| > 2n. The

following proposition is part (1) of Theorem 2.1.6.

Proposition 2.4.1. Let L ∈ W∗
n. Then C(L) = 1/2 if and only if |S(L)| > 2n.

Proof. Let L ∈ W∗
n and B be a weakly nearly orthogonal basis for L. Suppose

|S(L)| = 2n. Then S(L) = ±B by Lemma 2.2.4. Assume C(L) = 1/2. Then there

are some two vectors, say, bi, bj ∈ S(L) so that the angle between them is π/3 or

2π/3. Lemma 2.2.1 then implies that one of the vectors bi ± bj is also in S(L),

contradicting the fact that S(L) = ±B. Hence, if |S(L)| = 2n, maximal coherence

must be < 1/2.

Now suppose |S(L)| > 2n. Then ±B ⊊ S(L), so there must exist some x ∈

S(L) \ ±B. Suppose that this x is a linear combination of some m ≥ 2 vectors of B,

say

x =
m∑
k=1

αkbik ,

where 2 ≤ m ≤ n, 1 ≤ i1 < · · · < im ≤ n, α1, . . . , αm ∈ Z. We will prove that

C(L) = 1/2. If m = 2, then x = α1bi1 + α2bi2 ∈ S(L) and

∥x∥ = ∥bi1∥ = ∥bi2∥.

Lemma 2.2.1 then implies that α1, α2 = ±1 and the angle between bi1 and bi2 is π/3

or 2π/3. This implies that C(L) = 1/2. Assume now m > 2. Let y =
∑m−1

k=1 αkbik ,
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then x = y+αmbim . Since y ∈ spanR{bi1 , . . . , bim−1}, the angle θ between y and bim

is in the interval [π/3, 2π/3]. Then Lemma 2.2.1 implies that

∥x∥ ≥ min{∥y∥, ∥bim∥} = ∥bim∥ = ∥x∥,

which is only possible if y ∈ S(L), αm = ±1 and θ = π
3
or 2π

3
. Hence C(L) = 1

2
.

On the other hand, Zn ∈ W∗
n and intuition suggests that lattices with very low

maximal coherence should be in W∗
n. One can ask, “how low is low enough?” In other

words, does there exist some dimensional constant cn such that whenever C(L) ≤ cn,

the lattice L is necessarily in W∗
n?

Example 5. Define a cyclic frame

b1 :=
1√

n2 + n



−n

1

...

1


, . . . , bn :=

1√
n2 + n



1

...

−n

1


,

and

bn+1 :=
1√

n2 + n



1

1

...

−n


= −(b1 + · · ·+ bn).

Let L = spanZ{b1, . . . , bn}, then S(L) = {b1, . . . , bn, bn+1} and L is similar to the

lattice A∗
n, the dual of the root lattice An := V ∩ Zn+1, i.e.,

A∗
n := {x ∈ V : (x,y) ∈ Z ∀ y ∈ An} .

Then C(L) = 1/n, |S(L)| = 2n + 2; see [35], [10], [49] for further details on this
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lattice. On the other hand, L is not contained in Wn by Proposition 2.4.1, since

C(L) < 1/2 while |S(L)| > 2n.

Thus Example 5 shows that a WR lattice with maximal coherence even as low as 1/n

still does not have to be nearly orthogonal, i.e., cn < 1/n. This being said, we can

prove the following criterion, which is part (2) of Theorem 2.1.6.

Proposition 2.4.2. Let B = {b1, . . . , bn} in Rn be a collection of linearly independent

unit vectors such that

max
1≤i<j≤n

|(bi, bj)| ≤ cn, (2.14)

where cn is as in (2.3). Then L = spanZB is in W∗
n.

Proof. Let us prove that if (2.14) holds, then B is a nearly orthogonal basis for

L = spanZB. Without loss of generality, assume that B = {b1, . . . , bn} is an arbitrary

ordering of B. Then we only need to prove that (2.14) forces the angle θ between

Πk−1 := spanR{b1, . . . , bk−1} and bk to be ≥ π/3 for every 2 ≤ k ≤ n. Let x ∈ Πk−1

be a vector so that

a(x, bk) = θ.

Let us write x =
∑k−1

i=1 αibi for some α1, . . . , αk−1 ∈ R. Then

∥x∥2 =
k−1∑
i,j=1

αiαj(bi, bj) ≥
k−1∑
i=1

α2
i − 2cn

∑
1≤i<j≤k−1

|αiαj|,

and so

| cos θ| = |(x, bk)|
∥x∥

≤
∑k−1

i=1 |αi||(bi, bk)|
∥x∥

≤ cn
∑k−1

i=1 |αi|√∑k−1
i=1 α

2
i − 2cn

∑
1≤i<j≤k−1 |αiαj|

.

40



We want this quantity to be ≤ 1/2, which is equivalent to saying that

4c2n

(
k−1∑
i=1

|αi|

)2

≤
k−1∑
i=1

α2
i − 2cn

∑
1≤i<j≤k−1

|αiαj|. (2.15)

Manipulating (2.15), we obtain

f(α1, . . . , αk−1) :=

∑
1≤i<j≤k−1 |αiαj|∑k−1

i=1 α
2
i

≤ 1− 4c2n
8c2n + 2cn

. (2.16)

In other words, | cos θ| ≤ 1/2 if and only if (2.16) holds for all α1, . . . , αk−1 ∈ R. Hence

we want to maximize f(α1, . . . , αk−1) and prove that this maximum is no bigger than

the right hand side of (2.16). We can assume without loss of generality that all αi

are nonnegative. For every 1 ≤ i ≤ k − 1,

fi :=
∂

∂αi

f(α1, . . . , αk−1) =

(∑k−1
j=1 α

2
j

)(∑
j ̸=i αj

)
− 2αi

(∑
1≤l<j≤k−1 αlαj

)
(∑k−1

j=1 α
2
j

)2 .

Then α = (α1, . . . , αk−1) is a critical point of f if and only if fi(α) = 0 for all

1 ≤ i ≤ k − 1, which is equivalent to

αi =
1

2

( ∑k−1
j=1 α

2
j∑

1≤i<j≤k−1 αiαj

)(
k−1∑

j=1,j ̸=i

αj

)
=

1

2f(α)

k−1∑
j=1,j ̸=i

αj. (2.17)

Summing (2.17) over all i, we obtain:

k−1∑
i=1

αi =
1

2f(α)

k−1∑
i=1

k−1∑
j=1,j ̸=i

αj =
k − 2

2f(α)

k−1∑
i=1

αi,

which means that α is a critical point of f if and only if k−2
2f(α)

= 1, i.e., f(α) = k−2
2
.

Notice that this happens when α1 = · · · = αk−1 ̸= 0:

f(α1, . . . , α1) =

(
k−1
2

)
α2
1

(k − 1)α2
1

=
k − 2

2
,

41



i.e., f is constant on the line {α1 = · · · = αk−1}\{0}. Computing the Hessian matrix

of f at any point α with equal positive coordinates, we obtain:

H(f) =
1

k − 1



−(k − 2) 1 . . . 1

1 −(k − 2) . . . 1

...
...

. . .
...

1 1 . . . −(k − 2)


.

It is a (k−1)×(k−1) symmetric matrix with a simple eigenvalue 0 and eigenvalue −1

of multiplicity k−2. Hence, as a symmetric bilinear form on the tangent space to the

graph of f along the entire line {α1 = · · · = αk−1} \ {0}, H(f) is negative semidefi-

nite with 1-dimensional radical spanR{(1, . . . , 1)⊤}. This implies that f assumes its

maximum at (α, . . . , α) ̸= 0. Hence we have | cos θ| ≤ 1/2 if and only if

k − 2

2
≤ 1− 4c2n

8c2n + 2cn
,

for all k ≤ n. This is equivalent to saying that

4(n− 1)c2n + (n− 2)cn − 1 ≤ 0.

For positive cn, equality in this inequality holds if and only if cn is as in (2.14).

Remark 2.4.1. Notice that cn defined in (2.14) is not much smaller than 1/n. For

instance, for n = 1000, cn = 0.00099801587... as compared to 1/n = 0.001. Further-

more,

lim
n→∞

(cn/(1/n)) =

(
lim
n→∞

n

8(n− 1)

)
lim
n→∞

(√
(n− 2)2 + 16(n− 1)− (n− 2)

)
=

1

8
lim
n→∞

16(n− 1)√
(n− 2)2 + 16(n− 1) + (n− 2)

= 1.
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This suggests that asymptotically as n → ∞ the family of lattices A∗
n of Example 5

comes as close as possible to W∗
n with respect to maximal coherence.

Approximation of WR lattices with respect to maximal coherence has previously

been considered in [24], where a sequence of integer lattices approximating the hexag-

onal lattice in the plane was constructed (Theorem 1.6 of [24]). Here we also construct

an infinite family of integral WR planar lattices with arbitrarily small maximal co-

herence and controlled minimal norm and denominator, thus approximating Z2. This

is a result in the spirit of Diophantine approximation.

Proposition 2.4.3. Let 0 < ε ≤ 1/2 and D be a positive squarefree integer. There

exists an integral well-rounded lattice

L =

√
q p/

√
q

0 r
√
D/

√
q

Z2 ⊂ R2, (2.18)

where p, q, r ∈ Z>0 and p2 + r2D = q2, so that 0 < C(L) = p/q < ε with

q ≤ 2D

1− ε

(
1

ε
+ 2

√
1

ε
− 1

)
.

For this L, we have

|L| = √
q ≤

√√√√ 2D

1− ε

(
1

ε
+ 2

√
1

ε
− 1

)

and

det(L) = r
√
D ≤ 2

√
D

(√
1

ε2
− 1 +

√
1

ε
+ 1

)
.

Proof. Let γ = m/(n
√
D) > 1 be a rational multiple of 1/

√
D such that

γ ≤
√

1 + ε

1− ε
. (2.19)
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We can assume without loss of generality that gcd(m,n) = 1. Then

√
D < m/n ≤

√
3D.

Let p = m2 −Dn2, q = m2 +Dn2 and r = 2mn, then p2 + r2D = q2 and

p

q
=

γ2Dn2 −Dn2

γ2Dn2 +Dn2
=

γ2 − 1

γ2 + 1
≤ ε.

Further,

q = m2 +Dn2 = (γ2 + 1)Dn2, (2.20)

and, by (2.19),

m

n
≤
√
D(1 + ε)√
1− ε

=

√
D(1

ε
+ 1)√

1
ε
− 1

.

We can then take m =
[√

D(1
ε
+ 1)

]
and n =

[√
1
ε
− 1
]
+ 1. Combining this obser-

vation with (2.20) and (2.19), we obtain

q ≤
(
1 + ε

1− ε
+ 1

)
D

([√
1

ε
− 1

]
+ 1

)2

≤ 2D

1− ε

(
1

ε
+ 2

√
1

ε
− 1

)
.

The rest follows by Proposition 1.1 of [29].

44



CHAPTER III

Cyclotomic lattices

3.1 Introduction

Let L ⊂ Rd be a lattice of full rank d ≥ 1 in the Euclidean space Rd, where we

will always write ∥ ∥ for the corresponding Euclidean norm. As usual, we define the

minimum of L to be

|L| := min {∥x∥ : x ∈ L \ {0}} ,

and the set of minimal vectors of L to be

S(L) := {x ∈ L : ∥x∥ = |L|} .

The lattice L is called well-rounded (WR) if spanR S(L) = Rd. There is a stronger

condition for L to be generated by minimal vectors if spanZ S(L) = L (see [60]), and

an even stronger condition for L to have a basis of minimal vectors, i.e. for S(L)

to contain a basis for L (see [50]). We can associate a sphere packing to the lattice

L by placing maximal non-overlapping spheres of equal radius at the lattice points.

Then the radius of these spheres, called the packing radius of L, will be |L|/2 and the

*This chapter is based on joint work with Lenny Fukshansky, to be published in Communications

in Mathematics; see [30]
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density of this lattice packing will be

δ(L) :=
ωd|L|d

2d det(L)
,

where ωd is the volume of a unit ball in Rd and det(L) is the determinant of L, as

usual. Given a basis matrix B =

(
b1 . . . bd

)
for L, we define the orthogonality

defect of B as

ν(B) :=

∏d
j=1 ∥bj∥
det(L)

,

i.e. the ratio of the volume of a rectangular box with sides ∥b1∥, . . . , ∥bd∥ to the

volume of the parallelepiped spanned by the column vectors of B. Naturally, the

Hadamard inequality ν(B) ≥ 1 holds with equality if and only if B is an orthogonal

basis. If B ⊆ S(L), then

ν(B) =
|L|d

det(L)
=

2d

vd
δ(L) (3.1)

is an invariant of the lattice L, which we will call the orthogonality defect of L and

denote by ν(L). Hence for a lattice with a basis of minimal vectors the packing

density is proportionate to the orthogonality defect, i.e. to maximize the packing

density one wants a lattice with a “least orthogonal” minimal basis. Orthogonality

defect figures prominently in lattice theory, especially in connection with algorithmic

lattice problems (see [53]).

Another measure of orthogonality for a collection of vectors is given by coherence

and comes from signal processing. Given a finite set of vectors S ⊂ Rd, we define its

maximal coherence as

C(S) := max

{
|⟨x,y⟩|
∥x∥∥y∥

: x ̸= y ∈ S

}
,

where ⟨ , ⟩ stand for the usual Euclidean inner product, and we define its average
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coherence as

A(S) :=
1

|S| − 1
max

 ∑
y∈S\{x}

|⟨x,y⟩|
∥x∥∥y∥

: x ∈ S

 .

It is easy to see that A(S) = 0 if and only if S is an orthogonal collection of vectors,

which in particular implies |S| ≤ d. An important problem in signal processing is

the construction of sufficiently large sets S (|S| > d) with sufficiently low coherence.

Special attention among such low-coherence sets is usually given to frames, which

are overdetermined spanning sets with certain additional properties, especially to the

uniform tight frames: a finite set S ⊂ Rd is called a uniform tight frame if all vectors

in S have the same norm and there exists a real constant γ > 0 such that

∥v∥ = γ
∑
x∈S

⟨v,x⟩2 ,

for every v ∈ Rd (see [68] for a comprehensive exposition of tight frame theory).

We can extend the notion of coherence to lattices as follows. Notice that minimal

vectors of a lattice L come in ± pairs: x ∈ S(L) if and only if −x ∈ S(L). Then

define S ′(L) to be a subset of S(L) constructed by selecting one vector out of each

such pair, and define maximal and average coherence of L to be

C(L) := C(S ′(L)), A(L) := A(S ′(L)),

respectively. These values do not depend on the specific choice of vectors in S ′(L)

out of each ± pair. If L has a basis of minimal vectors, then A(L) becomes a certain

alternative measure of its “non-orthogonality”: A(L) ≥ 0 with equality if and only

if S ′(L) is an orthogonal basis for L. Maximal coherence on lattices has previously

been introduced in [35] and studied on nearly orthogonal lattices in [31], but average

coherence has not previously been extended to lattices, as far as we know. Average

coherence for frames was introduced in [5]. Our definition of average coherence slightly
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differs from the one introduced in [5]: in their definition, the absolute value is outside

of the sum. We choose to move absolute value inside to ensure that the average

coherence does not depend on the choice of the vectors in S ′(L): it does not matter

which vector from each ± pair in S(L) is selected.

While there can be a relation between average coherence and orthogonality defect

in some special cases, there does not appear to be a general dependence. On the

other hand, it is interesting to understand which lattices with relatively large sets of

minimal vectors simultaneously have small average coherence and large orthogonality

defect. To this end, given a lattice L ⊂ Rd with a basis of minimal vectors, we define

its orthogonality product measure (referred to from here on simply as product measure)

to be

Π(L) :=
|S ′(L)|ν(L)
d · A(L)

. (3.2)

Then a lattice L with large |S ′(L)| (as compared to the dimension d), small A(L)

and large ν(L) will have large Π(L). We can then ask which lattices have large Π(L).

In this note, we investigate average coherence and product measure on the family of

cyclotomic lattices, a special family of ideal lattices. We start out by recalling the

ideal lattices.

Let K be a number field of degree d over Q, and let OK be its ring of integers.

Let

σ1, . . . , σr1 , τ1, τ̄1, . . . , τr2 , τ̄r2 : K ↪→ C

be its embeddings into the field of complex numbers, where r1+2r2 = d and σ1, . . . , σr1

are real embeddings, whereas τ1, τ̄1, . . . , τr2 , τ̄r2 are pairs of complex conjugate embed-

dings. The Minkowski embedding of K into Rd is then defined as

ΣK := (σ1, . . . , σr1 ,ℜ(τ1),ℑ(τ1), . . . ,ℜ(τr2),ℑ(τr2)) : K ↪→ Rd,
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and the image of OK under this embedding, ΛK := ΣK(OK), is a Euclidean lattice

of full rank in Rd. Furthermore,

det(ΛK) = 2−r2 |∆K |1/2, (3.3)

where ∆K stands for the discriminant of K. Such lattices are called number field

lattices; they form a special case of the more general ideal lattices (of trace type),

which are given by the same construction on an arbitrary fractional ideal in K. This

construction of ideal lattices is classical: it can be found, for instance, in [9] (pp.

94–99) or [64] (Chapter 5.3), as well as in [8].

We focus specifically on cyclotomic fields. Let ζn = e
2πi
n for n > 2 be the n-th

primitive root of unity and K = Q(ζn) be the corresponding n-th cyclotomic number

field, then d = [K : Q] = ϕ(n) and the ring of integers OK = Z[ζn]. Then the group

of n-th roots of unity

Rn :=
{
ζkn : 1 ≤ k ≤ n

}
is precisely the set of all roots of unity contained in OK . We refer to the lattice ΛK as

the n-th cyclotomic lattice. We give a more detailed description of cyclotomic lattices

and their properties in Section 3.2, in particular explaining that they have bases of

minimal vectors and

|S ′(ΛK)| =

 n if n is odd,

1
2
n if n is even.

Further, we demonstrate the well-known fact that in the cyclotomic case the orthog-

onality defect

ν(ΛK) =

(
ϕ(n)∏

p|n p
ep− 1

p−1

)ϕ(n)
2

, (3.4)

where n =
∏

p|n p
ep and the product in the denominator is over all primes dividing n.

We also define the average coherence A(α) for any α ∈ S ′(ΛK), as well as A(ΛK),
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the average coherence of the lattice ΛK , in (3.9) and (3.10), respectively. Finally,

cyclotomic lattices are strongly eutactic, meaning that their sets of minimal vectors

form uniform tight frames in their respective Euclidean spaces.

Cyclotomic lattices have been extensively studied in the context of lattice theory

(see Section 8.7 of [19] and references therein), and their structure is generally under-

stood. One goal of this note is to attract some attention to the notions of average and

maximal coherence on lattices. We use cyclotomic lattices as a simple and attractive

case study. As it turns out, there is a particularly simple and elegant arithmetic

formula for the average coherence of this family of lattices.

Theorem 3.1.1. Let n > 2 be an integer, and let ΛK be the corresponding cyclotomic

lattice for K = Q(ζn). Then

C(ΛK) =

 0 if n is power of 2,

1
p−1

if p is the smallest odd prime dividing n.

Additionally, for any α ∈ S ′(ΛK),

A(α) = A(ΛK) =


2ω(n)−1
n−1

if n is odd,

2ω(n)−2
n−2

if n is even,
(3.5)

where ω is the number of prime divisors function. Combining (3.5) with (3.4), we

readily obtain an explicit formula for Π(ΛQ(ζn)), which depends only on n:

Π(ΛQ(ζn)) =



n(n−2)ϕ(n)
ϕ(n)
2 −1

2(2ω(n)−2)

(∏
p|n p

ep− 1
p−1

)ϕ(n)
2

if 2 | n,

n(n−1)ϕ(n)
ϕ(n)
2 −1

(2ω(n)−1)

(∏
p|n p

ep− 1
p−1

)ϕ(n)
2

if 2 ∤ n.

We prove Theorem 3.1.1 in Section 3.3. In Section 3.4, we demonstrate several ex-

amples, aiming to determine values of n for which Π(ΛQ(ζn)) is the largest in a fixed
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dimension d = ϕ(n). For comparison purposes, we also compute the coherence and

product measure values for the standard root lattices. Of course, it is easy to see

that the product measure values for cyclotomic lattices are not nearly as large as for

the root lattices in the same dimensions. On the other hand, root lattices are truly

exceptional (in particular, they are local maxima of the packing density function in

their dimensions; see, for instance, Chapter 4 of [49] for details), and there are very

few of them. Cyclotomic lattices present a larger family of lattices with interesting

properties (in even dimensions given by the values of the Euler ϕ-function), including

numerous examples of lattices with low maximal coherence. In fact, as we discuss at

the end of Section 3.4, the maximal and average coherence of cyclotomic lattices, in

contrast with the root lattices, are about the same on the average as n → ∞, which

can also make them potentially interesting from the standpoint of signal processing,

since this means that any pair of frequencies represented by the minimal vectors is

equally mutually incoherent. We are now ready to proceed.

3.2 Cyclotomic lattices

In this section we give an alternative, and for our purposes more convenient,

description of cyclotomic lattices. Let K = Q(ζn). For n > 2, K only has the

complex embeddings

τ1, τ 1, . . . , τd/2, τ d/2 : K ↪→ C,

so r1 = 0 and d = ϕ(n) = 2r2. For each α ∈ OK , the trace of α is given by

TrK(α) :=

d/2∑
k=1

(τk(α) + τ k(α)).
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Using the notation of Section 8.7 of [19] (see also [7]), we can think of the cyclotomic

lattice ΛK as the free Z-module OK equipped with the bilinear form

⟨α, β⟩ := 1

2
TrK(αβ̄)

for any α, β ∈ OK . It is easy to verify that ⟨α, β⟩ is equal to the usual dot product

of the vectors ΣK(α) and ΣK(β) in Rd. Then for any α = a + bi ∈ OK = Z[ζn], so

αᾱ = a2 + b2, and hence

⟨α, α⟩ =
d/2∑
k=1

τk(a
2 + b2) =

d/2∑
k=1

(
ℜ(τk(α))2 + ℑ(τk(α))2

)
.

By the results of [36], ΛK is WR with |ΛK |2 = ϕ(n)
2

and α ∈ S(ΛK) if and only if it is

a root of unity, i.e.

S(ΛK) = {±α : α ∈ Rn} =

 Rn if 2 | n

R2n if 2 ∤ n,

since

−1 = eπi =

 e
2(n/2)πi

n if 2 | n

e
2nπi
2n if 2 ∤ n.

Let α, β ∈ S(ΛK), then

⟨α, β⟩ = 1

2
TrK(αβ̄),

where αβ̄ is also a root of unity. Suppose that αβ̄ is m-th primitive root of unity

of for some m | n, then it is a root of m-th cyclotomic polynomial Φm(x). Notice

that the trace of an algebraic number is the negative of the second coefficient of its

minimal polynomial. It is a well-known fact that

Φm(x) = xϕ(m) − µ(m)xϕ(m)−1 + . . . ,
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where µ is the Möbius function. Hence TrQ(αβ̄)(αβ̄) = µ(m), and therefore

⟨α, β⟩ = 1

2
TrK(αβ̄) =

[K : Q(αβ̄)]

2
TrQ(αβ̄)(αβ̄) =

ϕ(n)

2ϕ(m)
µ(m). (3.6)

Further, if α = ζk1n and β = ζk2n , then m = n
gcd(k1−k2,n)

, and so the cosine of the angle

between these two vectors is

c(α, β) :=
⟨α, β⟩√

⟨α, α⟩ ⟨β, β⟩
=

ϕ(n)

ϕ(n)ϕ(m)
µ(m) =

µ
(

n
gcd(k1−k2,n)

)
ϕ
(

n
gcd(k1−k2,n)

) . (3.7)

Define s := |S(ΛK)|, so

s =

 n if n is even

2n if n is odd
. (3.8)

Then we can write

S(ΛK) =
{
ζkn, ζ

k+ s
2

n : 1 ≤ k ≤ s/2
}
,

where ζ
k+ s

2
n = −ζkn and c

(
ζkn, ζ

k+ s
2

n

)
= −1, as expected. Hence let

S ′(ΛK) =
{
ζkn : 1 ≤ k ≤ s/2

}
,

so the coherence of the lattice ΛK is given by

C(ΛK) = max {|c(α, β)| : α, β ∈ S ′(ΛK), α ̸= β} .

Then for any α = ζk1 , β = ζk2 ∈ S ′(ΛK), we have |k1 − k2| ≤ s/2 − 1, and therefore

c(α, β) ̸= ±1. Additionally, for each α ∈ S ′(ΛK) define its average coherence to be

A(α) =
1

|S ′(ΛK)| − 1

∑
β∈S′(ΛK)\{α}

|c(α, β)|. (3.9)

53



The average coherence of ΛK is then given by

A(ΛK) = max{A(α) : α ∈ S ′(ΛK)}. (3.10)

Now, the discriminant of the cyclotomic field K = Q(ζn) is given by

∆K = (−1)
ϕ(n)
2 nϕ(n)

∏
p|n

p−
ϕ(n)
p−1 ,

where the product is over all primes p dividing n (see, for instance, Section 8.7.3

of [19]). Combining these observations with (3.1), (3.3), and the fact that |ΛK |2 =

ϕ(n)/2, we obtain (3.4).

We also briefly comment on the structure of cyclotomic lattices, which is well

known (see, for instance, Section 8.7 of [19]). Two lattices L1, L2 ⊂ Rk are called

similar, denoted L1 ∼ L2, if there exists a nonzero real constant γ and a k × k real

orthogonal matrix U such that L2 = γUL1; if γ = ±1, L1 and L2 are isometric,

denoted L1
∼= L2. For any lattice L ⊂ Rd of rank d, its dual is the lattice

L∗ :=
{
x ∈ Rd : ⟨x,y⟩ ∈ Z ∀ y ∈ L

}
.

Recall that the root lattice An is defined as

An =

{
x ∈ Zn+1 :

n+1∑
i=1

xi = 0

}
, (3.11)

which is a lattice of rank n, as is its dual A∗
n. With this notation, the following is

true:

1. If n = p is an odd prime, then ΛK ∼ A∗
p−1,

2. If n = pk is an odd prime power, then ΛK ∼
⊕pk−1

j=1 A∗
p−1,
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3. If n = pkql is a product of two distinct odd primes, then

ΛK ∼

pk−1⊕
j=1

A∗
p−1

⊗

ql−1⊕
j=1

A∗
q−1

 .

Lattices A∗
n are known to be strongly eutactic. Further, tensor products of strongly

eutactic lattices as well as direct sums of isometric strongly eutactic lattices are

strongly eutactic (see Chapter 3 of [49]). This observation, along with the above

properties, implies that cyclotomic lattices in general are strongly eutactic.

3.3 Coherence of cyclotomic lattices

In this section we prove Theorem 3.1.1 in a series of several lemmas. Throughout

this section, K = Q(ζn) for the specified choices of n and ΛK is the corresponding

cyclotomic lattice.

Lemma 3.3.1. Suppose n = 2m for some m ≥ 1, then ΛK is an orthogonal lattice,

which is similar to Z2m−1
. In particular, C(ΛK) = 0.

Proof. First notice that ϕ(2m) = 2m−1, thus ΛK is a lattice of rank 2m−1 with 2m

minimal vectors. Let α, β ∈ S ′(ΛK) and suppose αβ̄ is k-th primitive root of unity

for some k | 2m. Then k = 2l for some 0 ≤ l ≤ m, and by (3.6),

⟨α, β⟩ = 1

2

ϕ(2m)

ϕ(2l)
µ(2l) = 0,

unless l = 0 or 1. If l = 0 or 1, then αβ̄ is first or second root of unity, i.e. αβ̄ = ±1,

which implies that α = ±β. Therefore c(α, β) = 0 for any pair of distinct minimal

vectors in S ′(ΛK), and so S(ΛK) consists of ϕ(n) = n/2 = 2m−1 plus-minus pairs of

orthogonal basis vectors of equal norm. Hence ΛK ∼ Z2m−1
.
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Lemma 3.3.2. Assume that n is not a power of 2, and let p be the smallest odd

prime dividing n. Then

C(ΛK) =
1

p− 1
.

Proof. Let α = ζk1n ∈ S ′(ΛK), then

{β ∈ S ′(ΛK) : β ̸= α} =
{
ζk2n : 1 ≤ k2 ≤ s/2, k2 ̸= k1

}
,

and so k1 − k2 takes on all nonzero integer values between k1 − 1 and k1 − s/2. In

particular, k1 − k2 < s/2, which means that c(α, β) ̸= ±1. Since p is the smallest

odd prime dividing n, 2 < p ≤ s/2. Then let k1 = p + 1 and k2 = 1, and for the

corresponding α = ζk1n , β = ζk2n , (3.7) gives

|c(α, β)| = 1

p− 1
.

On the other hand, n
gcd(k1−k2,n)

̸= 1 is a divisor of n, which cannot be equal to 2:

n
gcd(k1−k2,n)

= 2 implies n is even and |k1 − k2| = n/2 = s/2, however we know that

|k1 − k2| ≤ s/2− 1. Hence it cannot be smaller than p, and so (3.7) guarantees that

C(ΛK) ≤ 1
p−1

. Thus we have the result.

Lemma 3.3.3. Assume n is odd and squarefree. Then

A(ΛK) =
τ(n)− 1

n− 1
,

where τ(n) is the number of divisors of n.

Proof. Since n is odd, we have s/2 = n. Let α = ζkn ∈ S ′(ΛK) for some 1 ≤ k ≤ s/2,
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then by (3.7),

A(α) =
1

s/2− 1

s/2∑
j=1, j ̸=k

1

ϕ
(

n
gcd(j−k,n)

) =
1

n− 1

n−k∑
m=1−k, m ̸=0

1

ϕ
(

n
gcd(m,n)

)
=

1

n− 1

∑
d|n, d̸=n

ad
ϕ(n/d)

,

where ad = the number of times gcd(m,n) = d for nonzero 1−k ≤ m ≤ n−k. Notice

that the set {1 − k, . . . , n − k} is a complete residue system modulo n, as is the set

{1, . . . , n} and hence the number of times gcd(m,n) = d for nonzero 1−k ≤ m ≤ n−k

equals the number of times gcd(m,n) = d for 1 ≤ m ≤ n. Therefore we can write

A(α) =
1

n− 1

∑
d|n,d ̸=n

ad
ϕ(n/d)

,

where

ad = |{1 ≤ m ≤ n : gcd(m,n) = d}| = ϕ(n/d),

which is independent of k and thus of the choice of α. Hence we have

A(ΛK) =
1

n− 1

∑
d|n, d̸=n

ϕ(n/d)

ϕ(n/d)
=

1

n− 1

∑
d|n, d̸=n

1 =
τ(n)− 1

n− 1
.

Lemma 3.3.4. Assume n is even and squarefree. Then

A(ΛK) =
τ(n)− 2

n− 2
,

where τ(n) is the number of divisors of n.

Proof. Since n is even, we have s/2 = n/2. Let α = ζkn ∈ S ′(ΛK) for some 1 ≤ k ≤
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s/2, then by (3.7),

A(α) =
1

s/2− 1

s/2∑
j=1, j ̸=k

1

ϕ
(

n
gcd(j−k,n)

) =
2

n− 2

n
2
−k∑

m=1−k, m ̸=0

1

ϕ
(

n
gcd(m,n)

)
=

2

n− 2

∑
d|n, d<n

2

bd
ϕ(n/d)

,

where bd = the number of times gcd(m,n) = d for nonzero 1 − k ≤ m ≤ n
2
− k.

Notice that, if d ̸= 1, 2, then for any such m there is a unique m′ = m+ n/2 so that

gcd(m′, n) = gcd(m,n) = d and n
2
− k ≤ m′ ≤ n − k. Therefore for each divisor

d ̸= 1, 2 of n with d < n/2, bd =
ϕ(n/d)

2
. On the other hand,

gcd(m,n) = 1 ⇔ gcd(m′, n) = 2, gcd(m,n) = 2 ⇔ gcd(m′, n) = 1,

so b1 + b2 = ϕ(n) = ϕ(n/2). Further, observe that d | n with d < n/2 if and only if

d | n
2
and d ̸= n/2. Hence

A(ΛK) =
2

n− 2

ϕ(n/2)

ϕ(n/2)
+

∑
d|n, d<n

2
, d̸=1,2

ϕ(n/d)

2ϕ(n/d)


=

2

n− 2

(
1 +

1

2
(τ(n)− 4)

)
=

τ(n)− 2

n− 2
,

since the number of divisors d of n such that d < n/2 is τ(n) − 2: we count all the

divisors except for n and n/2.

Corollary 3.3.5. Let n > 2 be an integer and let n′ =
∏

p|n p be its squarefree

part. Let ΛK be the corresponding cyclotomic lattice for K = Q(ζn). Then for any

α ∈ S ′(ΛK),

A(α) = A(ΛK) =


τ(n′)−1
n−1

if n is odd,

τ(n′)−2
n−2

if n is even.
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Proof. For each α = ζkn ∈ S ′(ΛK), we have

A(α) =
1

|S ′(ΛK)| − 1

∑
β∈S′(ΛK)\{α}

|c(α, β)| = 2

s− 2

s/2∑
j=1, j ̸=k

∣∣∣µ( n
gcd(j−k,n)

)∣∣∣
ϕ
(

n
gcd(j−k,n)

) ,

where for each β = ζjn ∈ S ′(ΛK),

c(α, β) =
µ
(

n
gcd(k−j,n)

)
ϕ
(

n
gcd(k−j,n)

) = 0,

unless n
gcd(k−j,n)

is squarefree, i.e. a divisor of n′. Thus

A(α) =
2

s− 2

s
2
−k∑

m=1−k, m ̸=0

∣∣∣µ( n
gcd(m,n)

)∣∣∣
ϕ
(

n
gcd(m,n)

) =
2

s− 2

∑
n
d
|n′, d< s

2

cd
ϕ(n/d)

, (3.12)

where

cd =
∣∣∣{1− k ≤ m ≤ s

2
− k : gcd(m,n) = d

}∣∣∣ .
Notice that every divisor d of n such that n/d divides n′ is of the form d = d′(n/n′),

where d′ | n′. Let s′ = n′ if n′ is even and 2n′ if n′ is odd, then

cd =

∣∣∣∣{1− k ≤ m ≤ s′

2
− k : gcd(m,n′) = d′

}∣∣∣∣ =
 ad′ if 2 ∤ n′

bd′ if 2 | n′,

where ad′ and bd′ are as in Lemmas 3.3.3 and 3.3.4, respectively. The result then

follows by combining (3.12) with these lemmas.

Proof of Theorem 3.1.1. Notice that for any positive integer n with its squarefree

part n′, τ(n′) = 2ω(n). The statement of the theorem now follows by combining

Lemmas 3.3.1 and 3.3.2 with Corollary 3.3.5.
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3.4 Coherence and orthogonality defect

Throughout this section, let us write Cn, An, νn and Πn for C(ΛQ(ζn)), A(ΛQ(ζn)),

ν(ΛQ(ζn)), and Π(ΛQ(ζn)), respectively. We aim to understand the behavior of these

functions as n ranges through natural numbers. The first observation is that for odd

n, ΛQ(ζ2n) = ΛQ(ζn), and the formulas from Section 3.1 yield

C2n = Cn, A2n = An, ν2n = νn, Π2n = Πn,

as expected.

Let us start by briefly recalling the order of the arithmetic function ϕ(n) (see

Chapter 18 of [37] for further details). For all n > 2,

n

eγ log log n+ 3
log logn

< ϕ(n) < n, (3.13)

where γ = 0.57721 . . . is Euler’s constant. In fact, ϕ(n) < n
eγ log logn

for infinitely many

n, although the average order of ϕ(n) is

1

n

n∑
m=1

ϕ(m) =
3n

π2
+O(log n).

Recall now that s/2, the cardinality of S ′(ΛQ(ζn)) is n or n/2, depending on the parity

of n, whereas the rank of ΛQ(ζn) is ϕ(n). Since it is desirable to have the number of

minimal vectors as large as possible, compared to the dimension, we may want to

consider values of n for which ϕ(n) is close to the lower bound of (3.13).

A particularly interesting situation from the standpoint of signal processing and

of lattice theory arises when 2ϕ(n)/s and An are small, while νn is large: this would

mean that S(ΛQ(ζn)) is a configuration of many vectors (in comparison to dimension)

which are incoherent and non-orthogonal. Such configurations can be useful, for

instance, in recovering signals transmitted with erasures (see [38]). To this end, we
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observe that the values of n that maximize Πn for each fixed dimension ϕ(n) are

large n with small prime factors and small prime factor powers, and similarly for

maximizing νn. On the other hand, values of n minimizing An are large n (for a fixed

value of ϕ(n)) with few prime factors, whereas Cn is minimized by n with large prime

factors. In particular, it appears that large Πn is more correlated with large νn than

with small An. Indeed, consider the examples in Table 3.1: the values marked in

bold are maximal among all n with that value of ϕ(n) for νn and Πn, and minimal

for Cn and An. We have also computed many additional examples, and the same

observations seem to hold.

Further, although there is a general positive correlation between An and νn (see

for instance dimension 24 in Table 3.1), there are nevertheless sequences of closely

related values of n where the correlation is negative. Observe, for instance, dimension

72 in Table 3.1. Take n ∈ {111, 117, 135, 228, 252}. If we arrange these in order of

number of minimal vectors of ΛQ(ζn), we have s ∈ {222, 228, 234, 252, 270}. These

lattices respectively have An values of 0.027, 0.0265..., 0.0259..., 0.024, and 0.0224....

However, as An decreases, we see an increase in νn, from ν111 = ν222 = 2447.5... to

ν135 = ν270 = 1.124... · 105.

This is not a unique occurrence. It appears in many dimensions, most notably in

those which are multiples of 24. For instance, we find 4 such sequences in dimension

192, and all but one cyclotomic lattice in dimension 192 occurs in such a sequence.

It is perhaps worth noting that the prime factorization of the number of minimal

vectors in such a sequence (e.g. 222, 228, 234, 252, 270) all have the same number of

distinct prime factors, and at each step at least one large prime factor is converted

into lower prime factors. For instance, 222 = 2 · 3 · 37 while 228 = 22 · 3 · 19, which

converts the 37 to 2 · 19. This reduction of the largest term in the denominator of

(3.4) drives up νn but holds ω(n) constant so drives down An as n increases.
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ϕ(n) n Cn An νn Πn

6 7 0.166... 0.166... 1.666... 11.662...
6 9 = 32 0.5 0.125 1.539... 18.475...

8 15 = 3 · 5 0.5 0.214... 3.640... 31.857...
8 16 = 24 0 0 1 –
8 20 = 22 · 5 0.25 0.157... 2.048 16.213...
8 24 = 23 · 3 0.5 0.090... 1.777... 29.333...

24 35 = 5 · 7 0.25 0.088... 66.194... 1094.055...
24 39 = 3 · 13 0.5 0.078... 27.953... 575.369...
24 45 = 32 · 5 0.5 0.068... 48.263... 1327.257...
24 52 = 22 · 13 0.083... 0.04 4.975... 134.741...
24 56 = 23 · 7 0.166... 0.037... 7.706... 242.742...
24 72 = 23 · 32 0.5 0.028... 5.618... 294.979...
24 84 = 22 · 3 · 7 0.5 0.073... 43.297... 1035.542...

72 73 0.013... 0.013... 5.200... 379.606...
72 91 = 7 · 13 0.166... 0.033... 56350.535... 2.136... · 106
72 95 = 5 · 19 0.25 0.031... 32670.615... 1.350... · 106
72 111 = 3 · 37 0.5 0.027... 2447.523... 1.383... · 105
72 117 = 32 · 13 0.5 0.025... 21841.954... 1.372... · 106
72 135 = 33 · 5 0.5 0.022... 1.124... · 105 9.415... · 106

72 148 = 22 · 37 0.027... 0.013... 13.798... 1035.267...
72 152 = 23 · 19 0.055... 0.013... 51.545... 4081.677...
72 216 = 23 · 33 0.5 0.009... 177.376... 28469.292...
72 228 = 22 · 3 · 19 0.5 0.026... 9142.921... 5.452... · 105
72 252 = 22 · 32 · 7 0.5 0.024. 81171.032... 5.918... · 106

160 187 = 11 · 17 0.1 0.016... 1.163... · 109 8.428... · 1010
160 205 = 5 · 41 0.25 0.014... 3.928... · 108 3.594... · 1010
160 328 = 23 · 41 0.025 0.006... 233.162... 77912.090...
160 352 = 25 · 11 0.1 0.005... 104646.972... 2.014... · 107
160 400 = 24 · 52 0.25 0.005... 1.684... · 106 4.191... · 108
160 440 = 23 · 5 · 11 0.25 0.013... 1.763... · 1011 1.769... · 1013
160 492 = 22 · 3 · 41 0.5 0.012... 2.318... · 107 2.911... · 109
160 528 = 24 · 3 · 11 0.5 0.011... 1.040... · 1010 1.505... · 1012
160 600 = 23 · 3 · 52 0.5 0.010... 1.675... · 1011 3.131... · 1013
160 660 = 22 · 3 · 5 · 11 0.5 0.021... 1.753... · 1016 1.699... · 1018

Table 3.1:
Examples of coherence, average coherence, orthogonality defect and prod-
uct measure values for cyclotomic lattices
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For comparison purposes, we also record here the values of coherence, average

coherence, orthogonality defect and product measure for the standard irreducible

root lattices. We start by briefly recalling some standard notation. A lattice is called

irreducible if it is not a direct sum of nonzero sublattices. A root in a lattice is a

vector of squared-norm equal to 2, and an irreducible lattice is called a root lattice

if it is generated by its roots. In this case, the roots are the minimal vectors of the

lattice. There are precisely two infinite families of irreducible root lattices, denoted

An and Dn, as well as the three exceptional examples E6, E7 and E8. We already

defined An in (3.11), and now recall that

Dn =

{
x ∈ Zn :

n∑
i=1

xi ∈ 2Z

}
, E8 = D8 ∪

{
1

2

(
8∑

i=1

ei

)
+D8

}
, (3.14)

where ei are the standard basis vectors in the corresponding Zn. Additionally,

E7 = {x ∈ E8 : ⟨x, e7 + e8⟩ = 0} , E6 = {x ∈ E7 : ⟨x, e6 + e8⟩ = 0} . (3.15)

We refer the reader to [49] (Chapter 4) or [19] (Chapter 4) for the detailed information

on the properties of root lattices. We will mention that, due to the remarkable

symmetry properties of root lattices, their minimal vectors are indistinguishable in

the following sense. Let L be a root lattice. Then for each vector x ∈ S(L) there is

the same number of vectors y ∈ S(L) that have nonzero inner product ⟨x,y⟩ ([49],

Proposition 4.10.12). Standard integrality conditions limit the only other possible

inner product value to | ⟨x,y⟩ | = 1. With this in mind, the calculation of the

average coherence of root lattices becomes straightforward, using Proposition 4.2.2

and Theorems 4.3.3, 4.4.4, 4.5.2 and 4.5.3 of [49]. The values held by the coherence,

average coherence, orthogonality defect and product measure on the corresponding

root lattices An for n ≥ 2, Dn for n ≥ 4, E6, E7, and E8 are given in Table 3.2.
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Lattice L |S ′(L)| C(L) A(L) ν(L) Π(L)

An
n(n+1)

2
0.5 2

n+2
2
n
2

n+1
(n+ 2)2

n−4
2

Dn n(n− 1) 0.5 2(n−2)
n2−n−1

2
n−4
2

(n−1)(n2−n−1)
n−2

2
n−6
2

E6 36 0.5 2
7

8
3

56

E7 63 0.5 8
31

4
√
2 13.138...

E8 120 0.5 28
119

16 1020

Table 3.2:
Coherence, average coherence, orthogonality defect and product measure
values for root lattices

This data suggests that root lattices are generally better than cyclotomic lattices at

simultaneously minimizing average coherence and maximizing orthogonality defect,

but are worse at minimizing maximal coherence. Indeed, suppose some large p is

the smallest prime dividing n and let d = ϕ(n), then ΛQ(ζn) is a lattice in Rd with

maximal coherence 1/(p−1), while Ad and Dd are root lattices in the same dimension

with maximal coherence 1/2.

In fact, an interesting feature of the cyclotomic lattices, in contrast with the root

lattices, is that their maximal and average coherence are about the same on the

average as n → ∞. Indeed, Cn = 1/(η(n) − 1), where η(n) is the smallest prime

divisor of n. Now, the average order of η(n) is known to be (1 + o(1))n/2 log n as

n → ∞ (see [39]). Hence the average order of Cn is 2 logn
n

. On the other hand,

the average order of ω(n) is log log n (see Theorem 430 of [37]). Combining this

observation with (3.5), we see that the average order of An is log 2 logn
n

.
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CHAPTER IV

Lemmas concerning average coherence

4.1 Some lemmas on average coherence

We feel we should note here a few lemmas about average coherence not used in

any of the other chapters, but which may prove useful in future.1 Recall that we

define the average coherence of a lattice L to be

A(L) :=
1

|S ′(L)| − 1
· max
x∈S′(L)

 ∑
y∈S′(L)\{x}

|(x,y)|
∥x∥∥y∥

 ,

where S ′(L) is any half-set of S(L) where just one of ±x ∈ S(L) is taken to be in

S ′(L).

Lemma 4.1.1. Suppose lattice L = L1 ⊥ L2 is the orthogonal sum of two lattices

L1 ∈ Rd1 and L2 ∈ Rd2 of equal minimal norm. Let A(L1) = a1,A(L2) = a2, s(L1) =

n1, and s(L2) = n2. Then,

A(L) =
1

n1 + n2 − 1
·max {a1(n1 − 1), a2(n2 − 1)} .

Proof. It is clear that x ∈ L is a minimal vector of L if and only if its natural

1Although unused in chapter III, one may recover the formula for the average coherence of
cyclotomic lattices using this; it is considerably less efficient and elegant than the formula presented
in that chapter.
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projection onto either L1 or L2 is a minimal vector of that lattice, and thus |L| =

|L1| = |L2|. Let x1,i and x2,j be minimal vectors in L1 and L2, respectively, and let

x̃1,i and x̃2,j be their natural embeddings into Rd1+d2 , i.e. x̃1,i = (x1,i, 0, . . . , 0) and

x̃2,j = (0, . . . , 0,x2,j). It is then clear from construction that |(x̃1,i, x̃2,j)| = 0.

What this means is that, when computing inner products of minimal vectors, we

need only look at ones “from” the same lattice L1 or L2, and so we may freely pull

back from x̃k,i to xk,i.

Thus

A(L) =
1

n1 + n2 − 1
·max

k

{
max

i

{
nk∑
j ̸=i

|(x̃k,i, x̃k,j)|
|L|2

}}
.

Pulling back, this becomes

A(L) =
1

n1 + n2 − 1
·max

k

{
max

i

{
nk∑
j ̸=i

|(xk,i,xk,j)|
|L|2

}}
,

which is simply

A(L) =
1∑
ni − 1

·max
k

{ak(nk − 1)} .

In fact, it is clear from the proof that this seamlessly generalizes to the orthogonal

sum of any number of lattices of equal minimal norm, leading immediately to the

following corollary:

Corollary 4.1.2. Suppose lattice L = L1 ⊥ · · · ⊥ Ln is the orthogonal sum of n

lattices Li ∈ Rdi of equal minimal norm. Let A(Li) = ai and s(Li) = ni. Then,

A(L) =
1∑i=n

i=1 ni − 1
·max

i
{ai(ni − 1)} .

Now consider the tensor product of lattices. Here, the picture is much more com-

plicated. It is not always the case that S(L1 ⊗L2) = {x⊗ y : x ∈ S(L1), y ∈ S(L2)} ,
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and in fact due to a proposition of Coulangeon and Nebe [20], if all minimal vectors

of L1⊗L2, rank(L1), rank(L2) ≥ 2, are split, i.e. of the form x⊗ y for x ∈ L1, y ∈ L2,

then L1 ⊗ L2 cannot be perfect, and hence cannot be extreme.

To the best of our knowledge, there is no general way to know even the size of

minimal vectors in a tensor product. An unpublished theorem of Steinberg (see [54],

theorem 9.6) says that for all dimensions n ≥ 292 there exist unimodular lattices

L,M ∈ Rn with |L⊗M | < |L| · |M |. However, Coulangeon and Nebe state they are

unaware of any explicit example containing non-split minimal vectors.

Nevertheless, some lattices are amenable to an easy calculation. Kitaoka ([40], ch.

7) describes a family of lattices he called E-type, which admit a very nice formula.

Definition 4.1.1. A lattice L is of E-type if and only if

S(L⊗M) ⊂ {x⊗ y : x ∈ L, y ∈ M}

for any lattice M .

In fact, Lemma 7.1.1 of [40], which for convenience we reproduce in relevant part,

states that for an E-type lattice L, S(L⊗M) = S(L)⊗S(M) = {x⊗ y : x ∈ S(L), y ∈ S(M)}.

In this case, then, a formula can be derived.

Lemma 4.1.3. (Kitaoka) Let L,M be positive lattices. Then we have

|L⊗M | ≤ |L| · |M |

and if L is of E-type, then we have

|L⊗M | = |L| · |M |, S(L⊗M) = S(L)⊗ S(M)

where S(L)⊗ S(M) denotes {x⊗ y : x ∈ S(L), y ∈ S(M)} for abbreviation.
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Moreover we have that if L,M are of E-type, then L ⊥ M and L⊗M are also of

E-type.

Lemma 4.1.4. Let L1 be an E-type lattice as defined above, with minimal norm |L1|

and average coherence A(L1) = a1. Let L2 be a lattice, not necessarily of E-type, of

minimal norm |L2| and average coherence A(L2) = a2, and let L = L1 ⊗ L2 be their

tensor product. Finally, let s(L1) = n1, and s(L2) = n2. Then:

A(L) =
(a1(n1 − 1) + 1) · (a2(n2 − 1) + 1)− 1

n1n2 − 1
.

Proof. |S ′(L)| = |S ′(L1)||S ′(L2)| = n1n2 (notice that “S(L)⊗ S(M)” counts −x⊗ y

and x⊗−y twice for the same vector, −(x⊗ y)). Then by definition

A(L) =
1

|S ′(L)| − 1
·max

i

 ∑
zk∈S′(L)\{zi}

|(zi, zk)|
|L1|2|L2|2

 .

However, all minimal vectors are split tensors, so (x⊗ y, x′ ⊗ y′) = (x, x′) · (y, y′)

and so

A(L) =
1

|S ′(L)| − 1
·max

i,j

 ∑
(m,n) ̸=(i,j)

|(zi,j, zm,n)|
|L1|2|L2|2

 .

Splitting zi,j to zi,j = xi ⊗ yj (where it is understood each x and y is a minimal

vector of its respective lattice), we have

A(L) =
1

|S ′(L)| − 1
·max

i,j

 ∑
(m,n)̸=(i,j)

|(xi,xm) · (yj,yn)|
|L1|2|L2|2

 .

The double sum omitting only the case (m,n) = (i, j) may be rewritten as

A(L) =
1

|S ′(L)| − 1
·max

i,j

{
n1∑

m=1

n2∑
n=1

|(xi,xm) · (yj,yn)|
|L1|2|L2|2

−
|(xi,xi) · (yj,yj)|

|L1|2|L2|2

}
.
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However, (xi,xi) = |L1|2 by definition, and similarly (yj,yj) = |L2|2. Thus, we have

A(L) =
1

|S ′(L)| − 1
·max

i,j

{
n1∑

m=1

n2∑
n=1

|(xi,xm) · (yj,yn)|
|L1|2|L2|2

− 1

}
.

Because i and j are independent, we may examine each part of the numerator of the

double sum separately, giving

A(L) =
1

|S ′(L)| − 1
·

(
max

i

{
n1∑

m=1

|(xi,xm)|
|L1|2

}
max

j

{
n2∑
n=1

|(yj,yn)|
|L2|2

}
− 1

)
.

But

max
i

{
n1∑

m=1

|(xi,xm)|
|L1|2

}
= max

i

{∑
m̸=i

|(xi,xm)|
|L1|2

+
(xi,xi)

|L1|2

}
= A(L1) · (n1 − 1) + 1

and the same manipulation shows

max
j

{
n2∑
n=1

|(yj,yn)|
|L2|2

}
= max

j

{∑
n̸=j

|(yj,yn)|
|L2|2

+
(yj,yj)

|L2|2

}
= A(L2) · (n2 − 1) + 1

completing the proof.

The final part of lemma 4.1.3 leads to the following immediate corollary:

Corollary 4.1.5. Suppose L1, . . . , Lk are all E-type lattices with average coherence

A(Li) = ai and s(Li) = ni. Then if L = L1 ⊗ · · · ⊗ Lk, L is an E-type lattice and we

have

A(L) =

∏k
i=1(ai(ni − 1) + 1)− 1∏k

i=1 ni − 1

Proof. The result follows immediately from repeated application of Lemma 4.1.4.

Consider now the product of sums and the sum of products. As before, we will

make the assumption of E-type lattices within each tensor product.
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Lemma 4.1.6. Suppose lattice L = (L1,1 ⊗ · · · ⊗ L1,k1) ⊥ · · · ⊥ (Lm,1 ⊗ · · · ⊗ Lm,km)

and suppose further that lattices Li,j are of E-type and that all lattices have been scaled

such that each product has the same minimal norm, i.e.

|(L1,1 ⊗ · · · ⊗ L1,k1)| = · · · = |(Lm,1 ⊗ · · · ⊗ Lm,km)|.

Letting L′
i = Li,1 ⊗ · · · ⊗ Li,ki and, as in previous lemmas, letting ni,j = s(Li,j),

ai,j = A(Li,j), n
′
i = s(L′

i), and a′i = A(L′
i), we have

L = L′
1 ⊥ · · · ⊥ L′

m.

Then

A(L) =
maxi {a′i(n′

i − 1)}∑m
i=1 n

′
i − 1

=
maxi

{∏ki
j=1(ai,j(ni,j − 1) + 1)− 1

}
∑m

i=1(
∏j=ki

j=1 ni,j)− 1

Proof. By assumption, the L′
i have equal minimal norm. The compact version of

the result is then immediate from Lemma 4.1.1. The expanded version comes from

Corollary 4.1.5 applied to L′
i.

Lemma 4.1.7. Suppose lattice L = (L1,1 ⊥ · · · ⊥ L1,k1)⊗ · · · ⊗ (Lm,1 ⊥ · · · ⊥ Lm,km)

and suppose further that lattices Li,j are of E-type and have the same minimal norm.

Letting L′
i = Li,1 ⊥ · · · ⊥ Li,ki and, as in previous lemmas, letting ni,j = s(Li,j),

ai,j = A(Li,j), n
′
i = s(L′

i), and a′i = A(L′
i), we have

L = L′
1 ⊗ · · · ⊗ L′

m.

Then

A(L) =

∏m
i=1(a

′
i(n

′
i − 1) + 1)− 1∏m

i=1 n
′
i − 1

=

∏m
i=1(maxj {ai,j(ni,j − 1)}+ 1)− 1∏m

i=1(
∑j=ki

j=1 ni,j)− 1
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Proof. By assumption, all lattices Li,j are of E-type; thus, by Lemma 4.1.3, all lattices

L′
i are also of E-type. Corollary 4.1.5 then yields the compact version of the result.

The expanded version comes from Lemma 4.1.1 applied to L′
i.
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CHAPTER V

Cyclic and well-rounded lattices

5.1 Introduction

Let n ≥ 2, and write ∥ ∥ for the Euclidean norm on Rn. Let L ⊂ Rn be a lattice

of rank n, and recall that its minimum is

|L| := min {∥x∥ : x ∈ L \ {0}} .

Recall that the set of minimal vectors of L is

S(L) := {x ∈ L : ∥x∥ = |L|} .

Let us write R+ for the set of all positive real numbers and On(R) for the group of

real orthogonal n × n matrices. We define the equivalence relation of similarity on

lattices in Rn as follows: two lattices L1 and L2 are called similar, denoted L1 ∼ L2,

if there exists α ∈ R+ and U ∈ On(R) such that L2 = αUL1. This is an equivalence

relation on the space of lattices in Rn, and we will write ⟨L⟩ for the similarity class

of L.

*This chapter is based on joint work with Lenny Fukshansky, published as [32], first published in

Moscow Journal of Combinatorics and Number Theory in 2022, published by Mathematical Sciences

Publishers.
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Recall that L is well-rounded (WR) if spanR S(L) = spanR L. We can further

define L to be generated by its minimal vectors if L = spanZ S(L), and we say L

has a basis of minimal vectors if S(L) contains a basis for L. Notice that S(L1) is

taken to S(L2) under similarity, and hence these conditions are preserved. Thus we

write WRn for the set of similarity classes of WR lattices in Rn, WR′
n for the set

of similarity classes generated by minimal vectors, and WR′′
n for the set of similarity

classes having a basis of minimal vectors. Then

WR′′
n ⊆ WR′

n ⊆ WRn,

where the first containment is known to be proper for all n ≥ 10 ([50]; see also [18])

and the second containment is proper for all n ≥ 5 (see Example 1). WR lattices

are central objects in lattice theory and discrete optimization; see [49] for many more

details, as well as [51].

A lattice L ⊂ Rn of rank k can be written as L = BZk, where 1 ≤ k ≤ n and B

is an n× k basis matrix of rank k. The determinant of L is then defined as

det(L) =
√

det(B⊤B).

A lattice L is called semi-stable if for any sublattice M of rank 1 ≤ k ≤ n,

det(L)1/n ≤ det(M)1/k,

and L is called stable if this inequality is strict for allM ̸= L. The stability condition is

again preserved under similarity, and we write Stn for the set of semi-stable similarity

classes in Rn. Semi-stable lattices, alongside well-rounded lattices, are of great interest

in lattice theory and reduction theory (see [11] and [62]).

There is another interesting class of lattices we would like to introduce. A lattice

73



L ⊂ Rn, not necessarily of full rank, is called cyclic in Rn if it closed under the

rotation shift linear operator ρ : Rn → Rn, given by

ρ(c1, c2, . . . , cn) = (cn, c1, . . . , cn−1), (5.1)

i.e. if ρ(L) = L. This property is not preserved under similarity: indeed, the integer

lattice Z2 is cyclic and is similar to

1 −a

a 1

Z2, which is not cyclic for any irrational

a. On the other hand, a full-rank lattice L ⊂ Rn is similar to a cyclic lattice if and

only if L has an isometry with minimal polynomial xn − 1. Cyclic lattices have been

especially studied in the context of lattice-based cryptography, e.g. [52], [59].

Reduction theory aims to specify some “canonical” choice of representatives of

similarity classes, and from this point of view it is interesting to understand the

relation between the classes of lattices defined above. In general, these conditions on

lattices are independent: stable lattices do not need to be well-rounded, and there

are families of well-rounded nearly orthogonal lattices that are not semi-stable (see

Lemma 1.1 of [27]). Further, well-rounded lattices are also not necessarily nearly-

orthogonal (see Chapter II in general). The situation, however, is much simpler in

dimension two: here we have the following chain of inclusions:

WR′′
2 = WR′

2 = WR2 = W∗
2 = W2 ⊊ St2 .

One can ask where cyclic lattices fit in this picture. This is our first observation.

Theorem 5.1.1. Every WR lattice L ⊂ R2 is similar to a unique cyclic lattice

M(x) =

1 x

x 1

Z2 (5.2)
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with x ∈ [0, 2−
√
3]. Further, if K ⊆ R is a subfield such that L ⊂ K2, then x ∈ K.

We prove Theorem 5.1.1 in Section 5.2, where our main tool is the circulant precon-

ditioner for arbitrary matrices originally defined by Tony Chan [12] in the context of

certain numerical linear optimization problems. Notice, on the other hand, that the

converse of Theorem 5.1.1 is not true: not all cyclic lattices in the plane are WR. In

fact, not all of them are even stable: for instance, the cyclic lattice

3 2

2 3

Z2 is not

stable.

Using Theorem 5.1.1, for each WR lattice L ⊂ R2, let xL ∈ [0, 2 −
√
3] be the

unique real number so that L ∼ M(xL) as in (5.2). This description of similarity

classes allows for a way to count them. Given a real number field K, we will say that

a lattice L ⊂ R2 is defined over K if L ⊂ K2. Further, we say that a similarity class is

defined over K if it contains a lattice defined over K. Theorem 5.1.1 guarantees that

if a well-rounded lattice L is defined over K, then so is M(xL). Then WR similarity

classes defined over K are precisely those containing M(x) as in (5.2) with x ∈ K.

We can define the height of a similarity class ⟨L⟩ defined over K to be the Weil height

of xL, denoted H(⟨L⟩). With this notation, we can prove the following estimate.

Theorem 5.1.2. Let K be a real number field of degree d, then for any T ≥ 1,

|{⟨L⟩ defined over K : H(⟨L⟩) ≤ T}| ≤ π

2
√
12

(
1 + 42(d+1)

(
2 +

√
3
)d

T 2d

)
.

We review all the necessary notation of height functions and prove Theorem 5.1.2

in Section 5.3. Our main tool there is a counting estimate for algebraic numbers of

bounded height due to Loher and Masser( [44]). Notice that introducing the height

machinery allows for explicit counting: any set of points of explicitly bounded height

over a fixed number field is necessarily finite by Northcott’s theorem ([57]). Indeed,

our approach here is different from some previous counting estimates on planar well-
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rounded lattices, where the lattices in question would be taken to be sublattices of a

fixed lattice in the plane and counted with respect to index (see [23], [24], [26], [34],

[3], [42]). Instead, we are counting all similarity classes defined over a fixed number

field. In contrast, arithmetic similarity classes of well-rounded lattices have been

counted with respect to a somewhat differently defined height in [28]: these lattices

are defined over quadratic number fields. We compare the estimate obtained in [28]

with our Theorem 5.1.2 in Section 5.3.

In higher dimensions well-rounded lattices cannot be so nicely parameterized by

cyclic ones (Lemma 5.2.2). This being said, there are plenty of important lattices that

are cyclic. Indeed, the condition that a lattice L of rank n is cyclic is equivalent to

the condition that Aut(L), the automorphism group of L, contains the permutation

matrix corresponding to the standard n-cycle (1 . . . n), which is not trivial (for a

generic lattice Aut(L) = {±In}), and lattices with large automorphism groups are of

special interest in lattice theory and the arithmetic theory of quadratic forms. We

distinguish a special subclass of cyclic lattices: we will say that a lattice L of rank n

is simple cyclic if there exists a ∈ L so that

L = Λ(a) := spanZ
{
a, ρ(a), . . . , ρn−1(a)

}
,

i.e. simple cyclic lattices are generated by the rotation shifts of a single vector. We

discuss basic properties of cyclic lattices in more details in Section 5.4. In Section 5.5

we prove the following observation on the cyclic properties of the root lattices.

Theorem 5.1.3. The following statements hold for the root lattices and their duals:

1. For every n ≥ 2, the root lattice An and its dual A∗
n are both simple cyclic

lattices of rank n in Rn+1.

2. For every n ≥ 2, the root lattice Dn and its dual D∗
n are both cyclic of full rank

in Rn. Further, Dn and D∗
n are simple cyclic if and only if n is odd.
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3. The self-dual root lattice E8 is cyclic, but not simple cyclic, in R8.

4. The root lattices E6, E7 are non-cyclic sublattices of E8 in R8.

We briefly recall the definitions and necessary properties of the classical root lattices in

Section 5.5 before proving Theorem 5.1.3 in a series of lemmas. Finally, in Section 5.6

we focus on lattices coming from rings of integers of Galois number fields. We prove

the following result, where the lattices in question are viewed as cyclic under the

rotational shift operator as in (5.1), but on Cn instead of Rn.

Theorem 5.1.4. Let K be a Galois number field and ΛK be the lattice coming from

the ring of integers OK via a standard embedding into KR = K⊗QR ⊆ Cd. Then ΛK

is cyclic in Cd if and only if K/Q is a cyclic extension. Further, it is simple cyclic

if and only if K/Q is tamely ramified. In particular, a cyclotomic lattice ΛQ(ζn) with

ζn = e2πi/n is cyclic if and only if n = 2, 4, pk, or 2pk for an odd prime p and integer

k ≥ 1, and it is simple cyclic if and only if n = 2, p, or 2p.

We recall all the necessary number field notation in Section 5.6. Further, we com-

ment on well-roundness properties of such cyclic lattices ΛK and discuss some non-

cyclotomic examples (Remark 5.6.1). We are now ready to proceed.

5.2 Approximations by circulant matrices

In this section we define circulant approximation to a matrix and use it to prove

Theorem 5.1.1. For an n×n real matrix A, write ∥A∥ for its Frobenius norm, i.e. the

Euclidean norm of A viewed as a vector in Rn2
. Let ⟨ , ⟩ stand for the corresponding
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inner product on vectors and on matrices. For each vector c = (c1, . . . , cn) ∈ Rn, let

P(c) =



c1 c2 . . . cn

cn c1 . . . cn−1

...
...

. . .
...

c2 c3 . . . c1


(5.3)

be the corresponding n× n circulant matrix. Let

Πn =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

1 0 0 . . . 0


be a permutation matrix of order n. Then Πk

n for 0 ≤ k ≤ n−1 is also a permutation

matrix.

We can now define a circulant approximation to an n× n matrix A (also called a

circulant preconditioner), as in [12], [14], by P(A) := P(c1, . . . , cn), where

ck =
1

n

〈
A,Πk−1

n

〉
,

for each 1 ≤ k ≤ n; in other words, each entry ck of this circulant matrix is the

average of the corresponding diagonal of A wrapped around to extend to full length.

This circulant approximation P(A) was introduced by T. Chan [12], who showed that

it minimizes ∥A− C∥ among all circulant matrices C.

Let L ⊂ Rn be a full-rank lattice with a basis {a1, . . . ,an}. Write A = (a1 . . . an)

for the corresponding basis matrix. Define PA(L) = P(A⊤)⊤Zn to be the correspond-

ing cyclic lattice, which we call a cyclic approximation to L. Let us consider this
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construction for n = 2, in which case L = AZ2, where

A = (a1 a2) =

a11 a21

a12 a22

 , and so PA(L) =
1

2

a11 + a22 a12 + a21

a12 + a21 a11 + a22

Z2. (5.4)

We can assume that at least one of a11 + a22, a12 + a21 is nonzero: if both of them

are, replace a1 with −a1 (or a2 with −a2).

Lemma 5.2.1. Suppose that L ⊂ R2 is well-rounded and A is a minimal basis matrix.

Then L is similar to PA(L).

Proof. Assuming A as above is a minimal basis matrix is equivalent to saying that

∥a1∥2 = a211 + a212 = a221 + a222 = ∥a2∥2, (5.5)

and cosine of the angle θ(a1,a2) between a1 and a2 satisfies

| cos θ(a1,a2)| =
| ⟨ a1,a2⟩ |
∥a1∥∥a2∥

=
|a11a21 + a12a22|

a211 + a212
≤ 1

2
.

Let us write

B = (b1 b2) =

a11 + a22 a12 + a21

a12 + a21 a11 + a22

 ,

so PA(L) =
1
2
BZ2. Clearly ∥b1∥ = ∥b2∥, and so L is similar to PA(L) if and only if

| cos θ(a1,a2)| = | cos θ(b1, b2)|.

Observe a basic algebraic identity for any four real numbers p, q, s, t:

p+ q

s+ t
=

p

s
if and only if pt = qs. (5.6)
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Using (5.6) along with (5.5), we notice that

cos θ(b1, b2) =
2(a11 + a22)(a12 + a21)

(a11 + a22)2 + (a12 + a21)2

=
(a11a21 + a12a22) + (a11a12 + a21a22)

(a211 + a212) + (a11a22 + a12a21)
= cos θ(a1,a2),

because

(a11a21 + a12a22)(a11a22 + a12a21) = (a11a12 + a21a22)(a
2
11 + a212).

Hence L is similar to PA(L).

Proof of Theorem 5.1.1. Write L = AZ2 as in (5.4), then by Lemma 5.2.1, L is similar

to PA(L) as in (5.4). Notice that

(a11 + a22)(a12 + a21) = 0 (5.7)

if and only if PA(L) is similar to Z2, which is precisely M(x) as in (5.2) with x = 0.

On the other hand, (5.7) does not hold if and only if PA(L) is similar to M(x) with

x =
a12 + a21
a11 + a22

. (5.8)

Suppose now that x ̸= y are such that

1 x

x 1

 ,

1 y

y 1


are minimal basis matrices for M(x) and M(y), respectively, and M(x) is similar to

M(y). Then absolute values of cosines of the angles between these minimal basis
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vectors are equal and ≤ 1/2, in particular

2|x|
x2 + 1

=
2|y|

y2 + 1
.

This is true if and only if y = −x or y = ±1/x. Hence, to ensure uniqueness, we can

take 0 < x ≤ 1. Additionally, we need

2x

x2 + 1
≤ 1

2
,

which means 0 < x ≤ 2 −
√
3. Combining this with the case x = 0 completes the

proof of the first part of the theorem. The second part follows from the fact that x

is given by either ± the expression in (5.8) or its inverse, which therefore lies in the

same field that contains aij’s.

Remark 5.2.1. There is a standard parameterization of well-rounded similarity classes

in the plane by lattices of the form

Λ(a, b) =

1 a

0 b

Z2,

where 0 ≤ a ≤ 1/2 with a2 + b2 = 1 (see, for instance, [28]). However, if a lattice L

is similar to some such Λ(a, b), they are not necessarily defined over the same field,

unlike the parameterization of our Theorem 5.1.1.

Our observations above imply, in particular, that in R2 well-rounded lattices are

always similar to cyclic lattices. Unsurprisingly, this is not true in higher dimensions.

Lemma 5.2.2. A well-rounded lattice of rank ≥ 3 is not necessarily similar to a

cyclic lattice.

Proof. We can give a simple dimensional argument. First, consider the set WR′′
n, i.e.

similarity classes of WR lattices with a basis of minimal vectors. For all n ≥ 2, the
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set WR′′
n is determined by n× n matrices A = (aij) with

a11 = 1, a21 = · · · = an1 = 0,
n∑

j=1

a2ij = 1 ∀ 2 ≤ i ≤ n,

also satisfying some inequalities. Since inequalities do not reduce the dimension, this

space has dimension

n2 − n− (n− 1) = (n− 1)2.

Of course, for n ≥ 5, WR′′
n ̸= WRn, however each WR lattice L has only finitely many

sublattices with a basis consisting of some minimal vectors of L, and each WR lattice

with a basis of minimal vectors is contained in only finitely many WR lattices with

these vectors among the minimal (see [48]). Hence, the sets WRn and WR′′
n have the

same dimension.

On the other hand, the space of similarity classes of cyclic lattices in Rn is deter-

mined by n× n matrices A = (aij) with

a11 = 1, aij = ρj(ai1) ∀ 2 ≤ i ≤ n.

This space has dimension

n− 1 < (n− 1)2 ∀ n ≥ 3.

Thus the space of WR similarity classes is too big to be parameterized by cyclic

lattices. Notice, however, that when n = 2 these dimensions coincide.
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5.3 Counting WR similarity classes

Let K be a number field of degree d := [K : Q] ≥ 1. We write

M(K) = M∞(K) ∪Mf (K),

for the set of places of K, split into the subsets M∞(K) of archimedean and Mf (K)

of non-archimedean places. The archimedean places correspond to the embeddings

σ1, . . . , σd : K ↪→ C

of K as usual: M∞(K) = {v : v = v(σi) for some 1 ≤ i ≤ d}, where for each

1 ≤ i ≤ d and x ∈ K,

|x|v(σi) = |σi(x)| = |σ̄i(x)| = |x|v(σ̄i)

since complex conjugate embeddings give rise to the same place (we regard places

in M∞(K) without repetition). We order the embeddings so that σ1 extends to

the identity map on C and so v1 = v(σ1) is the place corresponding to it. For

each v ∈ M(K) let dv = [Kv : Qv] be the local degree, then for each u ∈ M(Q),∑
v|u dv = d. We normalize the absolute values so that for each nonzero x ∈ K the

product formula reads ∏
v∈M(K)

|x|dvv = 1.

Let n ≥ 2, and for any place v ∈ M(K) and x = (x1, . . . , xn) ∈ Kn we define the

corresponding sup-norm |x|v = max{|x1|v, . . . , |xn|v}. Then the height H : Kn →

R≥0 is given by

H(x) =
∏

v∈M(K)

|x|
dv
d
v .
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The Weil height h : K → R≥1 is then defined by h(x) = H(1, x). This height is

absolute, meaning that H(x) is the same when computed over any number field K

containing the coordinates of x: this is due to the normalizing exponent 1/d in the

definition.

We also define local and “anti-local” heights following [44]. Let x ∈ Qn
and let

K ′ be an extension of K containing the coordinates of x. For each archimedean

v ∈ M(K), define

Hv(x) =
∏

w∈M(K′),w|v

|x|
dw

[K′:Q]
w , Hv(x) =

∏
w∈M(K′),w∤v

|x|
dw

[K′:Q]
w ,

so that H(x) = Hv(x)H
v(x).

Lemma 5.3.1. Let K be a number field of degree d and α ∈ Q. Let K ′ = K(α) and

let u ∈ M∞(K). For real T ≥ 1, define

SK(α, T ) = {x ∈ K : |x|u ≤ |α|u, h(x) ≤ T} .

Then

|SK(α, T )| ≤
π√
12

(
1 + 42(d+1)(Th(α))2d

)
.

Proof. Define

S ′
K(α, T ) = {x ∈ K : |x|u ≤ |α|u, H(α, x) ≤ T} ,

and notice that for x ∈ SK(α, T ), we have

Th(α) ≥ h(x)h(α) ≥ H(α, x),

which means that |SK(α, T )| ≤ |S ′
K(α, Th(α))|. Notice that

H(α, x) = Hu(α, x)H
u(α, x),
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and so

|x|u ≤ |α|u ⇔ Hu(α, x) =
∏

w∈M(K′),w|u

max{|α|w, |x|w}
dw

[K′:Q]

≤ |α|
1

[K′:Q]

∑
w|u dw

u = |α|
[K′:K]

[K′:Q]
u = Hu(α).

Hence

S ′
K(α, Th(α)) = {x ∈ K : Hu(α, x) ≤ Hu(α), H(α, x) ≤ Th(α)} ,

and so if

Hu(α, x) ≤ Hu(α), Hu(α, x) ≤ Th(α)Hu(α), (5.9)

then x ∈ S ′
K(α, Th(α)), since H(α) = Hu(α)Hu(α) = 1 by the product formula. Let

NK(α, T ) be the number of elements x ∈ K satisfying conditions (5.9), then

|SK(α, T )| ≤ |S ′
K(α, Th(α))| ≤ NK(α, T ),

and by the Proposition in Section 3 of [44],

NK(α, T ) ≤
π√
12

(
1 + 42(d+1)(Th(α))2d

)
.

This completes the proof of the lemma.

Proof of Theorem 5.1.2. By Theorem 5.1.1,

|{⟨L⟩ defined over K : H(⟨L⟩) ≤ T}| = 1

2

∣∣∣{x ∈ K : |x|v1 ≤ 2−
√
3, h(x) ≤ T

}∣∣∣ ,
where 1/2 accounts for the fact that we are only considering positive x. The theorem

85



then follows from Lemma 5.3.1 combined with the fact that

h(2−
√
3) =

∏
v∈M(Q(

√
3))

max
{
1, |2−

√
3|v
}dv/2

=
∏
v|∞

max
{
1, |2−

√
3|v
}1/2

= max
{
1, 2−

√
3
}1/2

max
{
1, 2 +

√
3
}1/2

=

√
2 +

√
3.

Remark 5.3.1. We can compare the estimate of Theorem 5.1.2 in the case where K

is a quadratic number field to the estimate obtained in [28]. As indicated in [28], an

arithmetic well-rounded lattice in the plane is of the form

L(a, b) =

1 a
b

0
√
b2−a2

b

Z2,

where a, b ∈ Z are relatively prime with 0 < a ≤ b/2, or a = 0, b = 1. These are

precisely the WR lattices similar to those with integer-valued quadratic norm forms.

Such a lattice L(a, b) is similar to the cyclic lattice M(x) as in (5.2) with

x =
a√

b2 − a2 + b
. (5.10)

Notice that for x as in (5.10), h(x) is of the order of magnitude O(
√
b). Then bounding

b by T , the upper bound of our Theorem 5.1.2 grows like O(T 2), which is consistent

with the growth order of N3(T ) in Theorem 1.1 of [28]. On the other hand, N3(T )

counts all arithmetic lattices with b ≤ T , whereas our Theorem 5.1.2 counts only

those defined over a fixed number field. The difference, however, is that the set

of WR lattices defined over a fixed quadratic field is far more general than those

corresponding to x as in (5.10), i.e. not nearly all of them are arithmetic. For
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instance, the WR lattices

1 1√
5

0 2√
5

Z2 ∼

 1 1
2+

√
5

1
2+

√
5

1

Z2

are defined over Q(
√
5), but are not arithmetic.

5.4 Cyclic lattices

In this section we discuss some basic properties of cyclic lattices. Let c ∈ Rn be

a nonzero vector and P(c) be the corresponding circulant matrix as in (5.3). Let us

write

c(x) =
n∑

k=1

ckx
k−1 (5.11)

for the polynomial of degree n− 1 with c as its coefficient vector. It is a well-known

fact that

det P(c) =
n∏

j=1

c(ωj
n), (5.12)

where ωn is a primitive n-th root of unity. Therefore P(c) is singular if and only

if c(x) is divisible by some cyclotomic polynomial Φd(x) for d | n. Otherwise, the

simple cyclic lattice Λ(c) = P(c)⊤Zn has full rank.

Lemma 5.4.1. A full-rank lattice L ⊂ Rn is cyclic if and only if its dual L∗ is cyclic.

Further, L is simple cyclic if and only if L∗ is simple cyclic.

Proof. Recall that

L∗ = {x ∈ Rn : ⟨x,y⟩ ∈ Z ∀ y ∈ L} .

Assume that L is cyclic. Let x ∈ L∗ and y ∈ L, then

⟨ρ(x),y⟩ = xny1 + x1y2 + x2y3 + · · ·+ xn−1yn =
〈
x, ρ−1(y)

〉
∈ Z,
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since ρ−1(y) = ρn−1(y) ∈ L. Thus ρ(x) ∈ L∗ for every x ∈ L∗, hence L∗ is cyclic.

Conversely, suppose L∗ is cyclic, then L = (L∗)∗ is cyclic by the argument above.

Now suppose L is simple cyclic. Then L = P(c)⊤Zn for some c ∈ L, and so

L∗ =
(
P(c)⊤

)−⊤ Zn = P(c)−1Zn.

Since the transpose and inverse of a circulant matrix are both also circulant, we can

conclude that L∗ has a circulant basis matrix, and hence L∗ is also simple cyclic.

Conversely, if L∗ is simple cyclic, then L = (L∗)∗ is simple cyclic by the argument

above.

Cyclic sublattices of Zn can be constructed algebraically. Indeed, let Rn be the

quotient ring Z[x]/ ⟨xn − 1⟩ and define a map ϕ : Rn → Zn that sends a polynomial

c(x) =
∑n

k=1 ckx
k−1 ∈ Rn to its vector of coefficients c ∈ Zn. The map ϕ is a free

Z-module isomorphism, which maps ideals in Rn to sublattices in Zn. In fact, a

sublattice L ⊆ Zn is cyclic if and only if L = ϕ(I) for some ideal I ⊆ Rn: the cyclic

rotation operator ρ on Zn corresponds to multiplication by x in Rn, i.e.,

ϕ(xc(x)) = ρ(c).

Further details on cyclic sublattices of Zn that were extensively studied in the context

of lattice cryptography can be found in [52] and [59]. In fact, cyclic sublattices of Zn

are a special case of the more general class of ideal lattices from quotient polynomial

rings (see [46] and [22] for more details on these). The following simple observation

will be useful to us (see also Propositions 2.1 and 2.2 of [22]). We provide a proof

here for self-containment.

Lemma 5.4.2. Let I = ⟨c(x)⟩ be an ideal in Rn = Z[x]/ ⟨xn − 1⟩. Then ϕ(I) =

Λ(c) ⊆ Zn has full rank if and only if c(x) is not a zero-divisor in R.
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Proof. The polynomial c(x) is not a zero-divisor in Rn if and only if for any nonzero

a(x) =
∑n

k=0 akx
k−1 ∈ Rn,

a(x)c(x) =
n∑

k=1

akx
k−1c(x) ̸= 0.

This is equivalent to the statement that

n∑
k=1

akρ
k−1(c) ̸= 0

in Λ(c) = ϕ(I), i.e. c, ρ(c), . . . , ρn−1(c) are linearly independent, meaning that Λ(c)

has full rank.

Lemma 5.4.3. A full-rank sublattice L ⊆ Zn is simple cyclic if and only if L = ϕ(I)

where I ⊆ Rn is a principal ideal such that the quotient ring Rn/I is finite.

Proof. A sublattice L ⊆ Zn is cyclic if and only if L = ϕ(I) for some ideal I ⊆ Rn

and

|Rn/I| = |ϕ(Rn)/ϕ(I)| = |Zn/L| .

Hence Rn/I is finite if and only if L is a full-rank sublattice of Zn. Further, L = Λ(c)

for some c ∈ Zn if and only if I = ⟨c(x)⟩, i.e. I is principal.

Corollary 5.4.4. A full-rank sublattice L ⊆ Zn is simple cyclic if and only if L =

ϕ(⟨c(x)⟩) where c(x) ∈ Rn is not a zero-divisor.

Proof. Combine Lemmas 5.4.2 and 5.4.3.

Remark 5.4.1. Recall that

xn − 1 =
∏
d|n

Φd(x),

where Φd(x) stands for d-th cyclotomic polynomial. Then it follows from [61] (The-

orem A combined with Theorem 1.2) that the number of ideals in Rn (hence the
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number of cyclic sublattices of Zn) with index ≤ T grows like O
(
T (log T )τ(n)−1

)
as

T → ∞, where τ(n) is the number of divisors of n (see also Theorem 2.3 of [33] for a

convenient formulation). Simple cyclic sublattices of full rank correspond to principal

ideals of finite index, and hence their number also grows like O
(
T (log T )τ(n)−1

)
. This

follows from the proof of Theorem 2.3 of [33], since every ideal class in Rn contributes

equally to the total number of ideals of bounded index.1

5.5 Cyclic representation of root lattices

In this section we focus on the cyclic properties of the standard root lattices, in

particular proving Theorem 5.1.3.

Lemma 5.5.1. The root lattice

An =

{
x ∈ Zn+1 :

n+1∑
i=1

xi = 0

}

and its dual A∗
n are simple cyclic lattices of rank n in Rn+1 for each n ≥ 2.

Proof. Write
∑

(x) for the sum of all the coordinates of the vector x, and notice that∑
(x) =

∑
(ρ(x)) for any vector x ∈ Rn for any n ≥ 1. Then the lattice An is closed

under ρ : Rn+1 → Rn+1, and hence is a cyclic lattice of rank n in Rn+1. In fact,

An = spanZ
{
a, ρ(a), . . . , ρn−1(a)

}
for the vector a = (1,−1, 0, . . . , 0)⊤, hence it is simple cyclic.

Let us write 1n+1 for the vector in Rn+1 with all the coordinates equal to 1 and

1⊥
n+1 for the co-dimension one subspace of Rn+1 orthogonal to 1n+1. Then An =

1⊥
n+1 ∩ Zn+1 and A∗

n is the orthogonal projection of Zn+1 onto 1⊥
n+1. As described in

1This observation is due to Stefan Kühnlein.
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Proposition 4.2.3 of [49], A∗
n is generated by the vectors

yi =
1

n+ 1
((n+ 1)ei − 1n+1) , 1 ≤ i ≤ n+ 1,

which are rotation shifts of y1. Hence A∗
n is also simple cyclic in Rn+1.

Lemma 5.5.2. The root lattice

Dn =

{
x ∈ Zn :

n∑
i=1

xi ≡ 0 (mod 2)

}

is cyclic in Rn for each n ≥ 2. It is simple cyclic if and only if n is odd.

Proof. Since
∑

(x) =
∑

(ρ(x)) for any x ∈ Rn, we see that Dn is cyclic. Let n ≥ 3 be

odd, and take c = (1, 1, 0, . . . , 0)⊤ ∈ Dn. We will show that Dn = P(c)⊤Zn. Recall

that detDn = 2, hence it is sufficient to show that det P(c)⊤ = ±2. Notice that

P(c)⊤ =



1 0 0 . . . 0 1

1 1 0 . . . 0 0

0 1 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 0

0 0 0 . . . 1 1


.

Performing the Laplace expansion along the first row and keeping in mind that n is

odd, we see that det P(c)⊤ = 2, and hence Dn = Λ(c).

Now suppose n ≥ 2 is even. Arguing toward a contradiction, suppose that there

exists some c ∈ Dn such that Dn = Λ(c). Let c(x) be as in (5.11), then by (5.12),

det P(c) =
n∏

j=1

c(ωj
n) = ± detDn = ±2.
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In particular, 1 = ωn
n and −1 = ω

n/2
n are both n-th roots of unity, and so c(1)c(−1)

is a nonzero integer. Then the remaining product

n−1∏
j=1, j ̸=n

2

c(ωj
n) = ± 2

c(1)c(−1)
∈ Q,

but this product is also an algebraic integer, hence it is in Z. This means that

|c(1)c(−1)| ≤ 2. On the other hand, c(1) =
∑n

i=1 ci is even, since c ∈ Dn, thus

c(1) = ±2 and so c(−1) = ±1. Let α be the sum of coefficients of c(x) in front of

even powers of x and β be the sum of coefficients in front of odd powers of x, then

2 | c(1) = α + β, 2 ∤ c(−1) = α− β,

implying that 2 ∤ c(1) + c(−1) = 2α. This is a contradiction, and hence Dn is not

simple cyclic.

Remark 5.5.1. The cyclic lattice An can be constructed from the ideal ⟨x− 1⟩ of rank

n in Rn+1 = Z[x]/ ⟨xn+1 − 1⟩ andDn from an ideal of full rank in Rn = Z[x]/ ⟨xn − 1⟩,

as we discussed in Section 5.4. The lattices An (in Rn+1) and Dn for odd n are simple

cyclic; the latter one can also be easily obtained from the ideal ⟨x+ 1⟩ in Rn (see

also Propositions 4.5 and 4.2 of [22]). However, Dn for even n is of full rank but not

simple cyclic, and hence cannot come from a principal ideal in Rn, by Lemma 5.4.3.

In fact, it can easily be seen as the image under ϕ of the ideal

I = ⟨2, x+ 1⟩ =
〈
xn−1 + xn−2,−xn−1 + 1

〉
⊂ Rn.

This can be compared to Proposition 4.4 of [22], where Dn for even n ≥ 4 is obtained

as the image of the principal ideal ⟨x+ 1⟩ in Z[x]/ ⟨xn + 1⟩ under the same kind of

coefficient embedding into Zn.

92



Lemma 5.5.3. The lattice E8 is cyclic, but not simple cyclic. The lattices E6 and

E7 are not cyclic.

Proof. Recall that the lattice E8 can be defined as

E8 = D8 ∪
(
1

2
18 +D8

)
.

Notice that the vector 18 is invariant under ρ, and hence 1
2
18 + D8 is closed under

ρ, as is D8. This means that E8 is cyclic. On the other hand, if c ∈ E8, then either

c ∈ D8 or c ∈ 1
2
18 + D8. If c ∈ D8, then Λ(c) ⊆ D8, so Λ(c) ̸= E8. We now argue

similarly to our proof of Lemma 5.5.2 above. Suppose that c ∈ 1
2
18 +D8 is such that

Λ(c) = E8, then c = 1
2
18 + c′ for some c′ ∈ D8, and

8∏
j=1

c(ωj
8) = ± detE8 = ±1. (5.13)

Notice that

c(x) =
1

2

7∑
k=0

xk + c′(x) =
x8 − 1

2(x− 1)
+ c′(x),

for all x ̸= 1, and so c(ωj
8) = c′(ωj

8) ∈ Z for every 1 ≤ j ≤ 7 and c(1) = 4 + c′(1). In

order for (5.13) to hold, we must in particular have

c(1)c(−1) = (4 + c′(1))c′(−1) = ±1.

However, c′(1) and c′(−1) must both be even, since c′ ∈ D8. This is a contradiction,

and hence E8 is not simple cyclic.

The root lattices E7 and E6 can be described as sublattices of E8 orthogonal to

the vector e7 + e8 and to the pair of vectors e7 + e8, e6 + e8, respectively. These
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lattices are not cyclic, since the spaces

spanR{e7 + e8}, spanR{e7 + e8, e6 + e8}

are not closed under ρ. For instance, x = e4 + e5 ∈ E7 ∩E6, however ρ(x) ̸∈ E6 and

ρ2(x) ̸∈ E7.

Proof of Theorem 5.1.3. The theorem follows by combining Lemmas 5.5.1, 5.5.2, and 5.5.3

with Lemma 5.4.1.

A family of lattices heavily related to An, the Coxeter lattices A
r
n, are also simple

cyclic for certain values of r, as observed by Martinet:

Lemma 5.5.4. Let r = n+1
2

with odd n ≥ 5. Then Ar
n is simple cyclic.

Proof. See [49], proposition 5.2.3 (iv).

5.6 Number field lattices

Yet another important class of lattices comes from rings of integers of number

fields. In this section we classify those of them that are cyclic, proving Theorem 5.1.4.

As in Section 5.3, let K be a number field of degree d = r1 + 2r2 with embeddings

σ1, . . . , σd : K ↪→ C,

where r1 of them are real and 2r2 are complex, split into conjugate pairs. Then

KR = K ⊗Q R can be viewed as a subspace of Rr1 × C2r2 ⊆ Cd, given by (up to a

permutation of the coordinates)

{
(x,y) ∈ Rr1 × C2r2 : yr2+j = ȳj ∀ 1 ≤ j ≤ r2

} ∼= Rr1 × Cr2 ⊆ Cd.
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Notice that in this last containment, we identify each copy of R with the real part

of the corresponding copy of C. It is a Euclidean space with respect to the bilinear

form induced by the trace-form ⟨α, β⟩ on the number field K:

⟨α, β⟩ := TrK(αβ̄) ∈ R (5.14)

for any α, β ∈ K, where TrK stands for the usual trace map on the number field K.

We can define the embedding

ΣK = (σ1, . . . , σd) : K ↪→ KR

of K into KR. The ring of integers OK becomes a lattice of full rank in KR under this

embedding, and we write ΛK for the image ΣK(OK). An equivalent description of ΛK

is as a free Z-module OK equipped with the bilinear form ⟨·, ·⟩ we defined in (5.14).

It is easy to verify that ⟨α, β⟩ is equal to the usual dot product of the vectors ΣK(α)

and ΣK(β) in KR. We write Aut(ΛK) for the automorphism group of the lattice ΛK ,

i.e. the group of isometries of this trace-induced bilinear form.

Lemma 5.6.1. Suppose K/Q is a Galois extension with the Galois group G. Then

G ≤ Aut(ΛK).

Proof. Notice that all the embeddings of K are precisely the elements of G, and for

every τ ∈ G and α, β ∈ OK ,

⟨τ(α), τ(β)⟩ = TrK(τ(αβ̄)) =
∑
σ∈G

στ(αβ̄)

=
∑
σ∈G

σ(αβ̄) = TrK(αβ̄) = ⟨α, β⟩ ,

since right-multiplication by τ simply permutes elements of G. Therefore G is a

subgroup of Aut(ΛK).
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Notice, however, that Aut(ΛK) can be quite a bit larger than the Galois group of

K/Q. For example, ΛQ(i) is similar to Z2, which has automorphism group of order 8,

and ΛQ(
√
−3) is similar to the hexagonal lattice, which has automorphism group of

order 12; in both cases, Galois groups of the quadratic fields have order 2. Hence

there are often automorphisms of the lattice that do not come from the Galois action.

This observation raises a question: if ΛK is cyclic, does the cyclic shift operator ρ

necessarily come from the Galois action? In the next lemma we answer this question

in the affirmative. To avoid ambiguity, in this section we view lattices as cyclic under

the rotational shift operator ρ as in (5.1) but on Cd.

Lemma 5.6.2. Suppose K/Q is a Galois extension with Galois group G. Then ΛK is

cyclic (for an appropriate ordering of the embeddings) if and only if K/Q is a cyclic

extension with G = ⟨σ⟩, where the automorphism σ : K → K is such that

ρ (ΣK(α)) = ΣK(σ(α)), (5.15)

for every α ∈ OK.

Proof. Suppose first that ΛK is cyclic, then for any α ∈ OK ,

ρ (σ1(α), . . . , σd(α)) = (σd(α), σ1(α), . . . , σd−1(α)) ∈ ΛK .

This means that σd(α) ∈ OK and

σ1σd(α) = σd(α), σ2σd(α) = σ1(α), . . . , σ
2
d(α) = σd−1(α),

for all α ∈ OK . Then σ1 is the identity map, and

σ2σd = σ1, σ3σd = σ2, σ4σd = σ3, . . . , σ
2
d = σd−1.
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This implies that

σj = σd−j+1
d , ∀ 1 ≤ j ≤ d− 1,

and the action of ρ on ΛK is given by the action of σd on OK as specified in (5.15).

On the other hand, suppose that K/Q is cyclic with Galois group G = ⟨σ⟩ so that

the embeddings are ordered as

σj = σd−j+1, ∀ 1 ≤ j ≤ d− 1. (5.16)

Then for any Σ(α) ∈ ΛK , we have

ρ
(
α, σd−1(α), σd−2(α), . . . , σ(α)

)
=

(
σ(α), α, σd−1(α), . . . , σ2(α)

)
= ΣK(σ(α)) ∈ ΛK ,

and so ΛK is closed under ρ, hence is cyclic.

In fact, one can also ask which of these cyclic lattices of the form ΛK are simple

cyclic. We discuss this next. A normal basis for a Galois number field K is a basis

consisting of all conjugates of one algebraic number, and a normal integral basis for

K is a Z-basis like this for OK . The normal basis theorem guarantees that every

number field has a normal basis. However, having a normal integral basis is a much

more delicate property. The finite Galois extension K/Q is called tamely ramified

if all the ramification indices for every rational prime p are relatively prime with p.

The Hilbert-Speiser theorem asserts that an abelian number field (i.e. Galois number

field with abelian Galois group) has a normal integral basis if and only if it is tamely

ramified (see, for instance, Chapter 9 of [45] for the details).

Lemma 5.6.3. Let K be a cyclic Galois number field. Then the lattice ΛK is simple

cyclic (for an appropriate ordering of the embeddings) if and only if K/Q is tamely

ramified.
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Proof. Let d = [K : Q] and G = ⟨σ⟩ be the Galois group of K/Q. Let σ1, . . . , σd be

the embeddings of K, ordered as in (5.16). By the Hilbert-Speiser theorem K/Q is

tamely ramified if and only if K has a normal integral basis. First assume that such

a basis exists, i.e. σ1(θ), . . . , σd(θ) form a Z-basis for OK for some θ ∈ OK . Notice

that

Σ(σ1(θ)), . . . ,Σ(σd(θ))

forms a basis for ΛK . Now for each 1 ≤ j ≤ d,

ΣK(σj(θ)) = ΣK(σ
d−j+1(θ)) = ρ(ΣK(σ

d−j(θ)))

= ρ2(ΣK(σ
d−j−1(θ))) = · · · = ρd−j(ΣK(σ(θ))) = ρd−j+1(ΣK(θ)),

by recursive application of (5.15). Therefore ΛK is spanned by the basis

ΣK(θ), ρ(ΣK(θ)) . . . , ρ
d−1(ΣK(θ)),

and hence it is simple cyclic.

Next suppose ΛK is simple cyclic, then

ΛK = spanZ{x, ρ(x), . . . , ρd−1(x)}

for some x ∈ ΛK . Let θ ∈ OK be such that ΣK(θ) = x, then

ΣK(θ), ρ(ΣK(θ)) . . . , ρ
d−1(ΣK(θ))

is a basis for ΛK , where for each 1 ≤ j ≤ d,

ΣK(σj(θ)) = ρd−j+1(ΣK(θ)),
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as we derived above. Therefore σ1(θ), . . . , σd(θ) form a Z-basis for OK , i.e. K has a

normal integral basis.

An example of a family of such number fields comes from the cyclotomic fields.

Corollary 5.6.4. Let K = Q(ζn) be n-th cyclotomic field. There exists an ordering

of the embeddings

σ1, . . . , σϕ(n) : K ↪→ C,

for which the lattice ΛK = ΣK(OK) is cyclic if and only if n = 2, 4, pk, or 2pk for

some odd prime p and positive integer k. Further, the cyclotomic lattice ΛK is simple

cyclic if and only if n = 2, p, or 2p for an odd prime p.

Proof. Recall that K/Q is Galois with the Galois group G ∼= (Z/nZ)×, which is cyclic

if and only if n = 2, 4, pk, or 2pk for some odd prime p and positive integer k: these

are precisely the values of n for which primitive roots modulo n exist. If G = ⟨σ⟩

is cyclic, order the embeddings as in (5.16), and the first statement follows from

Lemma 5.6.2. Further, the cyclotomic field K = Q(ζn) is tamely ramified if and only

if n is squarefree. Thus for K to be cyclic and tamely ramified, n must be equal to

2, p, or 2p for an odd prime p. The second assertion then follows by Lemma 5.6.3.

Proof of Theorem 5.1.4. The theorem now follows from Lemmas 5.6.2, 5.6.3 and

Corollary 5.6.4.

Remark 5.6.1. It is known that the lattice ΛK is well-rounded if and only if K is a

cyclotomic field: this was proved in [36] for a slightly different embedding, but the

argument is identical for our embedding ΣK (see also Lemma 7.1.5 of [40]). Hence

the only cyclic well-rounded lattices of the form ΛK are those characterized in Corol-

lary 5.6.4, while there are also other cyclic lattices ΛK (from non-cyclotomic cyclic

extensions) that are not well-rounded. Indeed, consider for example the real quadratic
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(hence cyclic) extension Q(
√
5)/Q. It is tamely ramified, and hence has a normal in-

tegral basis

1 +
√
5

2
,
1−

√
5

2
.

Thus ΛK is simple cyclic by Lemma 5.6.3. However, it is not well-rounded: its only

minimal vectors are ±

1

1

 (on the other hand, it is stable). In fact, any quadratic

number field Q(
√
D) for squarefree D is cyclic, and thus (when D ̸= −1,−3) gives

rise to a non-well-rounded cyclic lattice (although not necessarily simple cyclic like in

the example above, e.g. if D ̸≡ 1 (mod 4) then Q(
√
D) is not tamely ramified).
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