
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

CGU Theses & Dissertations CGU Student Scholarship 

Fall 2022 

The Future of Plastics Trade: Identifying Determinants and The Future of Plastics Trade: Identifying Determinants and 

Impacts of the Shifting Global Plastic Scraps Network Impacts of the Shifting Global Plastic Scraps Network 

Ana Ortiz Salazar 
Claremont Graduate University 

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd 

 Part of the Political Science Commons 

Recommended Citation Recommended Citation 
Ortiz Salazar, Ana. (2022). The Future of Plastics Trade: Identifying Determinants and Impacts of the 
Shifting Global Plastic Scraps Network. CGU Theses & Dissertations, 490. 
https://scholarship.claremont.edu/cgu_etd/490. 

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/386?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


i 
 

 

 

 

 

 

 

 

 

 

 

The Future of Plastics Trade: Identifying determinants and impacts of the shifting global plastic 
scraps network 

By 

Ana Ortiz Salazar 

 

 

 

 

 

 

 

 

 

 

Claremont Graduate University 

2022 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright Ana Ortiz Salazar, 2022. 

All rights reserved 



iii 
 

Approval of Dissertation Committee  

This dissertation has been duly read, reviewed, and critiqued by the Committee listed below, 
which hereby approves the manuscript of Ana Ortiz Salazar as fulfilling the scope and quality 
requirements for meriting the degree of Doctor of Philosophy in International Politics and 
Political Science.  

 

Javier Rodriguez, Chair 
Claremont Graduate University 

Associate Professor 
 
 

Jacek Kugler 
Claremont Graduate University 

Elisabeth Helm Rosecrans Professor of International Relations 
 
 

Mark Abdollahian 
Claremont Graduate University 

Full Clinical Professor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 
 

Abstract 
 

The Future of Plastics Trade: Identifying determinants and impacts of the shifting global plastic 
scraps network 

By 

Ana Ortiz Salazar 

 

Claremont Graduate University: 2022 

 

 Plastic waste management is an area of increasing concern for environmental and public health. 

Existing research shows that as of 2019, 79% of total generated plastic waste has accumulated in landfills 

or leaked into the environment, 12% incinerated, and 9% recycled. China’s Operation National Sword, 

launched in 2017, banned the import of plastic waste and other materials, triggering ripple effects 

throughout the global plastic scraps trade network. The impacts are cross-sectoral and multi-scalar, 

cascading across markets, policy, the natural environment, public health, and have increased uncertainty 

about the future of the global trade of plastics. To understand shifts across the global plastic scraps 

network, the author of this dissertation first uses a Social Network Analysis (SNA) approach to explore the 

structural changes over time of the plastic trade network, especially due to China’s Operation National 

Sword. Results show that Southeast Asian, and Western and Central European countries became the 

most important traders of plastic waste after China’s Operation National Sword. A cross-sectional time-

series multi-method analysis additionally shows that poorer countries with large manufacturing sectors 

were the most affected by the policy, becoming havens for plastic waste. Trade partners of top plastic 

traders such as China became more likely to import waste as well. Results from a System Generalized 

Method of Moments (SGMM) analysis reveals that wealthier countries trade more plastic scraps of mixed 

materials, while large manufacturers import more polyethylene plastic. Countries with higher 

environmental performance were better to prevent plastic import increases relative to their exports.  
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Introduction 

China launched Operation National Sword in 2017, banning post-consumer mixed plastic and 

paper waste imports to reduce the volume of contaminated material entering the country. The 

initiative had significant, global ramifications, triggering a ripple effect that stifled global plastic 

waste exports and increased imports across countries in Southeast Asia. National Sword’s effects 

have also been cross-sectoral, with its impacts cascading across the global plastic scraps market, 

domestic recycling industries, and marine ecosystems. 

The ramifications of National Sword are well documented, especially with respect to public 

health and environmental externalities. Literature on the subject has pointed to an increase in 

environmental and health risks for vulnerable communities in countries now receiving the plastic 

waste that China has declined, primarily through exposure to toxins from waste decomposition 

through air and water systems and the improper burning of plastic. Exposure to these toxins and 

carcinogens are tied to cardiovascular and respiratory disease, as well as cancer (Posnack, 2021; 

Verma, 2016). With respect to environmental externalities, waste burning and decomposition 

contribute to greenhouse gas (GHG) emissions, which are a significant driver of climate change, 

as well as the seeping of pollutants into oceanic environments that can harm marine ecosystems. 

While research to date has largely focused on the immediate economic impacts of National 

Sword, namely the consequent shifts in plastic scrap import and export levels and the impacts on 

domestic recycling industries, few studies have attempted to explain the rerouting of plastic 

waste to certain countries. More specifically, they have not investigated which factors may have 

actually predisposed some countries to take China’s place as the primary destination of the 
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world’s plastic waste. The factors that are driving changes in the plastic trade network, and by 

consequence a range of social, economic, and environmental impacts, are important to 

understand: they could inform the design and implementation of policy, both international and 

domestic, that addresses how plastic waste is handled and thus mitigate or remedy inequalities 

in the environmental and economic burdens borne by plastic waste havens, or countries that 

import more plastic waste than they export. Furthermore, identifying the countries most 

affected by National Sword can shed light on the structural conditions that enabled other 

countries to send their plastic waste abroad, thus directing some policy solutions to also reduce 

overall waste generation in addition to waste handling, disposal, and recycling. 

This study expands upon existing literature by estimating the effect of structural economic and 

relational measures on countries’ plastic scraps trade volumes, as well as their likelihood to 

become waste havens. Although macroeconomic variables (i.e., economic development and 

manufacturing industry size) are relevant explanatory factors of plastic scraps trade patterns, in 

isolation they are not able to illustrate the connectivity dynamics that predisposed some 

countries to take in a large fraction of plastic waste that was once going to China.  

This study also offers methodological contributions to the existing literature by employing 

methods that recognize the endogenous nature of international trade processes, such as the 

relationship between economic development and trade, and manufacturing output and supply, 

producing unbiased estimations of the effects of economic and policy factors. As such, this 

research implements a dynamic panel data estimator, which is suitable to address endogeneity 

concerns. The robustness of the findings is also tested through an alternative estimation via 

maximum likelihood.   
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Research Design Overview 

This research takes a quasi-experimental approach, using non-experimental data to make 

inferences about the effect of structural variables on countries’ plastic trade tendencies. 

Specifically, this study combines relational with attribute measures to identify which 

characteristics make countries more prone to import or export plastic waste.  

Figure 1 shows a flow diagram summarizing the methods implemented in this study. To evaluate 

the impacts of a shifting global plastic scraps network, a Social Network Analysis (SNA) approach 

is used, described in Chapter 1, to explore the network’s topological changes over time. This 

chapter describes changes in the centrality—measured as eigenvector centrality—of trading 

countries in the plastic scraps network, showing how Western and Central European countries 

and Southeast Asian countries experienced abrupt changes in plastic trade patterns after 

National Sword. SNA approaches apply mathematical concepts of graph theory to quantify the 

characteristics of relational structures. In the context of this research, trade interactions 

between countries are mapped as a network where countries are nodes linked by plastic waste 

import or export transactions. The role and influence of each country in the global plastic waste 

trade network can then be quantified with measures of centrality.  
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Figure 1. Research Design Flow Diagram  

 

Chapter 2 follows with a cross-sectional time-series multi-method analysis, quantifying the effect 

that changes in countries’ level of development, network centrality, and manufacturing sector 

size have on plastic import and export amounts through a Generalize Method of Moments 

(GMM) dynamic panel data estimator. GMM estimators are built from an instrumental-variable 

approach with the goal of overcoming endogeneity or simultaneity between the explanatory 

variables and the dependent variable, especially when the process is dynamic, with past levels of 

the dependent variable included as explanatory variables. More specifically, the centrality 

measure produced through SNA complements other non-relational variables in a dynamic panel 

regression via GMM estimation in Chapter 2. This chapter analyzes disaggregated levels of plastic 

trade by type recognizing that the desirability of different plastic types can impact the effect of 

countries’ characteristics on their plastic waste trade levels. For example, it is expected that large 

manufacturers will import more polyethylene (PE) plastic waste (i.e., the most used and 

produced plastic), and import mixed plastic scraps to a lesser degree, assuming a less profitable 

domestic market and available technology to process mixed material. It is important to note that 

although level of development and manufacturing economic sector size are found to be relevant 



5 
 

determinants for differences within and between countries’ plastic waste trade levels, limitations 

in the environmental performance measure only allow for the estimation of its effect across 

countries. 

The most immediate effects of level of development, environmental performance, and 

manufacturing sector size, particularly before the plastics ban, on countries’ probability to 

become waste havens are also estimated using a multinomial logistic regression. Countries are 

classified based on their pre- and post-ban plastic trade tendencies. They are specifically 

categorized as net importers if they import more plastic than they export—assumed to be 

potential waste havens—or net exporters if they export more plastic than they import. Chapter 3 

presents a description of plastic trade and policy patterns for selected countries and a discussion 

of the implications of the findings. This analysis concludes, in Chapter 4, with an outline of the 

limitations of this study and suggested pathways for future research.  

Plastics Scraps Trade and the National Sword Policy 

Up until 2018, China was the primary destination for plastic scraps or waste – herein used 

interchangeably – accounting for an average of 73% of global plastic imports from 2003 through 

2016.1 As one of the largest manufacturers in the world, China exercised demand for raw 

materials such that it was profitable to import plastic scraps from other countries. Given that 

producing plastic from scratch consumes more energy and generates more material residue than 

using recycled plastics to manufacture new products, producers perceived importing plastic 

scraps as an environmentally beneficial economic opportunity. 

 
1 This percentage includes plastic scraps exports to Hong Kong. 
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However, plastic scraps are often contaminated in commingled and single-stream recycling 

processes. This reduces the quality, and thus the profitability, of the material. The diversity of 

plastic’s chemical and physical properties also complicates its recycling, since material collection, 

sorting, and recovery processes can vary across polymer types (OECD, 2018). Additionally, lax 

regulations on the transnational trade of plastic waste have created a loophole for exporters to 

mix electronic scraps (e-scrap) and organic waste into recyclable plastic material shipments 

without meaningful consequence. These complexities, alongside a lack of sorting and recycling 

technologies, reduce the market value of plastic scraps, its reutilization, and recycling. 

Consequently, as of 2019, it is estimated that 79% of total generated plastic waste has 

accumulated in landfills, 12% has been incinerated, and only 9% has been recycled (Jambeck et 

al., 2015; Geyer et al., 2017; OECD, 2022).  

The 1989 Basel Convention, the most comprehensive international agreement regulating the 

transboundary movement and disposal of waste, introduced new amendments to plastic waste 

regulations that went into effect in 2021. However, the Convention has not been ratified by the 

United States, one of the top exporters of plastic scraps. Furthermore, the Convention still allows 

non-halogenated polymers, such as polyethylene and polyethylene terephthalate (PET), to be 

exported without “prior informed consent” from the receiving country so long as the plastic is 

“destined for recycling in an environmentally sound manner and almost free from contamination 

and other types of wastes” (Secretariat of the Basel Convention, n.d.). This kind of exception 

creates opportunities for exporting countries to continue to send their plastic waste abroad 

without much hesitation.  
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Motivated by the growing number of unauthorized plastic imports, the low quality and recycling 

potential of imported material, and increasing environmental pollution, China implemented 

Operation Green Fence (OGF) in 2013, under which customs officials were required to conduct 

extensive inspections of arriving containers to enforce quality control (i.e., minimal levels of non-

recyclable waste present in the containers; Resource Recycling, 2020). However, the initiative 

was only partially successful in reducing illegal trade and was only slated to last for ten months. 

Chinese officials ultimately announced Operation National Sword in 2017, a much stricter effort 

that targeted criminal activity surrounding illegal permits and increased quality controls. A few 

months after its implementation in 2018, China also set limits to contamination levels for most 

recyclables and banned specific types of solid waste imports, including ethylene polymers such 

as recyclable PET, PE, polyvinyl chloride (PVC), and polystyrene (PS)—all among the most 

common plastic polymers produced worldwide (Nerland et al., 2014). As of 2021, the ban was 

updated to include almost all solid waste imports. 

Operation National Sword can also be perceived as a political tool by the Chinese government to 

put pressure on Western economies. Soon after China announced the import ban on solid waste 

to the World Trade Organization (WTO), the United States, Canada, Australia, South Korea, and 

some European Union countries expressed concerns about the lack of specificity and detail of 

the notification. They requested China to adhere to notification obligations—providing 

clarification about the restrictions—as the ban impacted multi-billion markets (World Trade 

Organization, 2017). The announcement of the ban was perceived to be purposefully vague, as 

lack of clarification on the new requirements would affect shipments if they did not comply with 

the new regulations.  
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Given China’s status at the time as the largest importer of plastic scraps, the effect of this policy 

change on the global plastics market was drastic, evidencing international over-dependence on 

China as the world’s plastics bin. As the profitability of recyclable plastic decreased, recycling 

companies in North America and other regions stockpiled material and were sometimes forced 

to send it to landfill. As countries looked for alternative destinations to export plastic scraps, 

countries in Southeast Asia show overwhelming increases in their plastic scrap imports. During 

OGF, Southeast Asian countries received substantial amounts of plastic scrap, sorting and 

cleaning with the goal to meet China’s strict requirements before re-exporting scraps to China. 

Consequently, when China stopped receiving foreign plastic after National Sword, those 

countries were forced to handle the plastic domestically. For example, in 2018, Malaysia, 

Indonesia, and Thailand experienced an increase in imports of 59%, 149%, and 262% respectively 

from 2017 levels. Some Chinese recycling companies have also relocated to other countries with 

more flexible regulations and to enjoy tariff exemptions under the ASEAN-China Free Trade 

Agreement, where they produce pellets of recycled plastic to export to China (Yoshida, 2021). 

Unfortunately, most of 2018’s top importers have waste mismanagement rates exceeding 50%, 

including but not limited to India (87%), Indonesia (83%), China (76%), Thailand (57%), and 

Malaysia (57%), based on 2010 figures (Jambeck et al., 2015).2  

As responses to National Sword, Western countries that heavily relied on China were also forced 

to adapt their domestic waste management practices. The New South Wales government, for 

example, announced a $47 million support package to help local government and industry to 

 
2 The authors define mismanaged waste as “waste that arise through littering or dumping in low quality landfill or 
open dump sites.” 
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adapt to the changes (New South Wales government, 2018). Through the Waste Less, Recycle 

More initiative, the government aims to support curbside recycling and promote industry 

innovation. Similarly, the United States’ Environmental Protection Agency (EPA) developed a 

Solid Waste Infrastructure for Recycling (SWIFR) grant program which will request input to guide 

the development of new waste and recycling programs. This grant is part of the Infrastructure 

Investment and Jobs Act bill passed in 2021, which allocated $357 million to “developing 

programs for recycling infrastructure and recycling education…” (Quinn, 2022).  

National Sword’s impacts extend beyond trade and operations. Newer, leading importers often 

lack the processing capabilities to adequately handle the incoming waste. As a result, they have 

been significantly burdened by the environmental and public health impacts from 

inappropriately managed plastic, including the toxins and greenhouse gases (GHGs) emitted 

from overfilling landfills and improperly burnt plastic. Specifically, the most commonly used 

plastics (e.g., PE, PET, and PS) release methane and ethylene when exposed to solar radiation, 

the rate of which increases with time (Royer et al., 2018). These same plastics also produce GHG 

emissions when incubated in water for long periods of time. In 2010 alone, it is estimated that 

between 4.8 and 12.7 million metric tons (MMT) of plastic waste generated by coastal regions 

entered the ocean, which falls between 1.7% and 4.6% of the total plastic generated by these 

regions (Jambeck et al., 2015). Most recently, 22 MMT of plastic materials leaked into the 

environment in 2019 alone (OECD, 2022). Similarly, the informal burning of plastic releases toxic 

chemicals that are harmful to human health. For instance, burning PVC releases vinyl chloride 

and benzol, which are carcinogenic compounds (Alabi et al., 2019). Overall, plastics contribute 

about 3.4% of global GHG emissions throughout their lifecycle (OECD, 2022). Plastic waste 
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management is thus an area of increasing concern with respect to environmental and public 

health. 

At the local and national levels, plastic waste management has significant environmental, social, 

and public health implications. For example, in low-income countries, over 90% of waste is 

dumped in unregulated landfills or is openly burned (World Bank, 2022). As aforementioned, 

unregulated landfills and plastic burns are tied to significant acute and chronic disease health 

risks in neighboring communities, primarily through pollutants seeping into the air and 

waterways. In addition, in developing countries, the recycling sector heavily relies on informal 

workers who collect and recycle 15 to 20 percent of waste. Research has brought to light poor 

working conditions and the lack of labor protection laws in this informal industry, posing serious 

threats to the livelihoods of workers. 

As the new top importers follow China’s footsteps and impose their own restrictions, the future 

of plastic scraps trade is more uncertain than ever. It is unclear whether governments will rely on 

alternative domestic processing methods or instead continue to look for other destinations to 

which to send their plastic waste. Although the environmental and market impacts of National 

Sword have been studied before, few researchers have examined the factors that predispose 

countries to become plastic waste havens in the first place. Moreover, analyses of National 

Sword’s environmental and economic consequences have not provided estimates or 

approximate quantifications of how structural differences in economic development, industry 

size, environmental regulations, and other relevant factors have affected countries’ plastic waste 

trade levels. Ignoring economic development differences, especially, overlooks the unequal 
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distribution of environmental and socioeconomic burden brought by increased plastic imports 

among countries with inadequate environmental stringency and processing capacity.  

However, the waste trade network has been studied through various empirical approaches and 

research methodologies, including social network analysis (SNA), gravity trade models, and panel 

data models. This research recognizes the value of all of these approaches but implements a 

more holistic and multi-method approach, while also introducing new estimations methods to 

quantify shifts in trade levels while accounting for the aforementioned structural differences and 

impact distributions.  

Chapter 1 provides a descriptive analysis of the shifting plastic waste trade network, specifically 

through the lens of SNA. It includes an overview of existing research on the impact of Operation 

National Sword and earlier national regulations on the global plastic trade network. Chapter 1 

finally expands upon previous research by mapping trade networks that account for more recent 

years, while discussing how node-level relational measures have evolved. Chapter 2 discusses 

determinants of international waste trade (overall and plastic) as well as previously implemented 

methodological approaches. The first section of Chapter 2 includes econometric tests for 

relevance of these established determinants in the context of plastic scraps trade and robustness 

to the implementation of different estimation approaches. Chapter 3 includes descriptive case 

studies of plastic trade and discussion of policy strategies for important regions in the market of 

plastic waste in relation to the results from the preceding chapters. Chapter 4 concludes with a 

summary of this study’s findings, its limitations and possible research extensions. 
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Chapter 1 | The Shifting Plastic Waste Trade Network: Before and After National Sword  

To better understand the impact of National Sword on the global plastics trade, we must 

uncover and assess the direct impact of China’s import ban on other trading countries over time. 

To do this, we can treat the trade system as a network: shifting our focus toward the 

composition and structural properties of trade relations and their change over time. To this end, 

we can use a Social Network Analysis (SNA) approach, commonly used in literature to explore 

the topological evolutions of networks and the relational characteristics of the individual nodes 

therein. It also provides quantitative measures of those characteristics. 

Mapping relational structures has facilitated researchers to visualize channels through which 

nodes, usually representing individuals, organizations, or other entities, can influence each 

other. These configurations, known as sociograms in the context of interpersonal relationships, 

are used to visualize and identify influential nodes and non-reciprocal or asymmetrical 

relationships. In the context of plastic waste trade, influential nodes are top traders, importing or 

exporting large amounts of plastic scraps with many countries. Several measures of influence or 

centrality have been developed in the SNA framework. Some measures emphasize nodes’ 

number of connections, their distance to other nodes, their importance as bridges connecting 

other nodes, or the prestige of their connections. The centrality measure discussed in this 

descriptive analysis will focus on the latter, considering the trading profile of nodes’ connections, 

with the assumption that countries trading with influential countries like China were more likely 

to assume more central roles once National Sword was implemented. For example, Abdollahian 

and Yang (2013) use SNA metrics to examine the global trade system, which they state are able 

to measure the relative importance of countries “embedded in the larger context of global 
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trade.” Asymmetrical relationships can also be explored, were some Southeast Asian countries 

receive large amounts of plastic waste, but do not export as much. 

This chapter will discuss how researchers have identified and quantified the effects of National 

Sword through SNA. The review of this literature will show how SNA has been used to measure 

the effects not only on each individual country, but also on the trade network as a whole. Later 

in this chapter, SNA is applied to complete a similar assessment of the plastics trade network 

post-National Sword, expanding upon previous studies by including additional years within the 

analysis and incorporating other measures of connectivity and centrality that tell a more 

complete story of the network’s evolution over time. 

 

How did National Sword Impact the Plastic Scraps Trade Network? 

Multiple studies have shown how National Sword, despite being a domestic policy, has had an 

observable ripple effect that can be observed within and across countries in the plastic scraps 

trade network. Several analyses point to a shift in the network, whereby China’s role as the most 

central node was consequently assumed by other countries after the plastics ban. 

Wang et al. (2020), for example, analyze the spatiotemporal evolution of the network, showing 

that the heterogeneity index (i.e., a measure of the overall variance of each node’s number of 

ties) had remained constant at high levels during the 2000s but started increasing after 2010 – 

when China implemented OGF. High levels of heterogeneity are characteristic of a network with 

few highly connected countries, which in turn reflects high vulnerability to targeted “attacks,” or 

in this context, vulnerability to restrictions on imports and exports by top trading countries. Their 
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findings suggest that, even after China’s efforts to reduce their role as the top importer of plastic 

scraps, exporting countries continue to send plastic waste to only a limited number of countries. 

The density of the network or the degree of connectivity, as well as nodes’ closeness centrality 

(i.e., the average number of trading partners shared with all other countries), have in turn 

decreased after National Sword (Wang et al., 2020; Zhao et al., 2021). A lower density reflects 

lower connectivity or a smaller number of connections relative to all possible connections in a 

network, indicating that China’s plastics ban triggered a reduction in overall plastic waste trade. 

In other words, some countries were forced to find alternative means to manage their plastic 

waste other than exporting it, and some importing countries stopped importing plastic waste. 

Similarly, the reduction in the average closeness centrality of nodes indicates an increase in the 

average distance or “steps” from one country to all other countries, again reflecting a shrinkage 

of the plastic scraps trade.  

Using an Ecological Network Analysis (ENA), an application of network analysis to ecosystems 

formed by interactive elements linked by the “flow of energy or matter,” Huang et al. (2019) 

identify China, the United States, Germany, and the European Union as the “major controllers” 

of the supply in the global plastic waste trade network. They find that most European countries 

heavily depend on Germany to export their waste, whereas countries like Canada and Mexico 

also rely on the United States. Pacini et al. (2021) similarly show that, in 2018, Germany acted as 

the most important trade hub in the network, with other important hubs such as Belgium, Italy, 

Turkey, and the Netherlands clustered under the influence of Germany. They also show that 

countries in which logistical facilities and harbors have a high presence tend to be connected to 

top trading countries, such as in the case of Malaysia and Thailand.  
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These network analyses illustrate some of the impacts, or non-impacts, of National Sword. 

Despite China’s ban on imports, plastic waste exports did not necessarily cease. However, overall 

trade decreased, shrinking the overall size of the trade network. These analyses also reveal 

significant players and intermediary countries in the trade network, showing their importance in 

the trade network. 

 

The Plastic Waste Network’s Evolution: The Emergence of Influential Nodes   

The aforementioned studies provide insight into the evolution of the plastic scraps trade 

network after the implementation of Operation National Sword, and they reveal how SNA offers 

useful perspectives to understand the impacts of the ban. In this section, SNA is similarly applied 

to more recent data, in this case incorporated to expand existing research and to lay the 

foundations for subsequent analyses in this study. 

For the present analysis using SNA, bilateral trade data were collected from the United Nations 

(UN) Comtrade Database. Trade is measured in kilograms of plastic scraps imported for each 

year between 1999 and 2020. We use these data to construct a network of 119 countries with 

UCINET software (Borgatti et al., 2002). Subsequently, we estimate country-level measures of 

eigenvector centrality and clustering coefficients.  

In this analysis, eigenvector centrality is based on the idea that a large number of trade 

connections to other highly-connected nodes makes a node more influential (i.e., “central”) than 

a node with the same number of connections but connected to poorly-connected nodes. An 

eigenvector centrality estimate can therefore be used to assess the degree to which a country 
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trades with other countries that in turn have many other trading partners. Unlike degree 

centrality, eigenvector centrality does not only consider the number of trade connections of a 

given country, but it also takes into account how well-connected that country’s connected trade 

partners are. As such, two countries with the same number of connections can have different 

eigenvector centrality scores if one of those countries is connected to countries that are highly 

connected to other countries.  As a result, an eigenvector centrality score shows whether a given 

country is more likely to import more plastic scraps given the overall plastic trade connections of 

its trade partners. More specifically, for a given network 𝐺𝐺 with adjacency matrix 𝐴𝐴 = (𝑎𝑎𝑖𝑖,𝑗𝑗), 

where 𝑎𝑎𝑖𝑖,𝑗𝑗 = 1 if country 𝑖𝑖 is connected to country 𝑗𝑗, the eigenvector centrality score of country 

𝑖𝑖 is defined as: 

𝑋𝑋𝑖𝑖 =
1
𝜆𝜆
�𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝐽𝐽
𝑗𝑗∈𝐺𝐺

 

where, for country 𝑖𝑖, the centrality scores 𝑥𝑥𝐽𝐽 of all its 𝑗𝑗 connections are summed recursively. 𝜆𝜆 is 

a constant that, when expressed in the vector notation of the equation, is the largest eigenvalue 

of the adjacency matrix that produces a non-zero eigenvector with non-negative entries. The 

intuition is that, as is the case with some Southeast Asian countries that are used as “third-

parties” for sorting and pre-processing plastic, once these countries trade with China, they will 

show large eigenvector centrality scores (and therefore high levels of both imports and exports 

of plastic waste). 

Similarly, the clustering coefficient is also estimated to measure a node’s tendency to form trade 

clusters. In this context, a clustering coefficient assesses the level of connectivity of a given 

node—i.e., the density of a node’s trading neighborhood. In other words, a clustering coefficient 
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measures how many connections exist among a country’s trading partners relative to the total 

number of possible connections they could have. For our purposes, the clustering coefficient is 

included to assess changes in countries’ tendencies to trade with a limited number of countries. 

Top traders before the National Sword policy are expected to exhibit low clustering scores after 

it.  

As evidence of the radical structural changes experienced by the network, Figure 2 shows chord 

diagrams of the plastic trade network by region in 2016 (before the China ban was announced) 

and 2018. A chord diagram visualizes connections between entities (in this case, regions), 

wherein fragments of the circumference or arcs are representative of the size of flows between 

regions (in this case, the portion of total plastic waste exported). The horizontal bar charts show 

the fraction of total imports accounted by each region.3 The colors of the bar graphs correspond 

to those of the chords. In 2016, most regions sent their scraps to East Asia (i.e., mainland China 

and Hong Kong), as represented by the weight of each outgoing chord (as a fraction of total 

imports). The chord that comes out but remains in East Asia represents plastic waste that was 

exported to Hong Kong and re-exported to mainland China. The bar graph also shows that 

Western and Central Europe (i.e., Austria, Belgium, France, Germany, Ireland, Netherlands, 

Switzerland, and the United Kingdom) accounted for the second largest fraction of imports. 

However, most of the imports came from within the region. In other words, Western and Central 

European countries mostly imported from other Western and Central European countries given 

their laxer intraregional trade regulations. North Asia and Southeast Asia (i.e., Japan, South 

 
3 NIS stands for Newly Independent States 



18 
 

Korea, Cambodia, Indonesia, Malaysia, Laos, Myanmar, the Philippines, Singapore, Thailand, 

Vietnam, and Brunei) had the third largest combined fraction of imports, with most (if not all) 

chords coming from other regions. Also evident in Figure 2, is that almost the totality of their 

exports went to East Asia. This exemplifies the role that those nearby countries played as 

intermediary processers for China before the ban.  

Figure 2 also shows that North America was responsible for an important fraction of imports 

before the ban. Yet, most of North America’s plastic imports mainly came from within the 

continent. Overall, Africa, Oceania, the Middle East, Scandinavian countries, NIS and Russia, 

South Asia, and Latin America made up small portions of total trade, with East Asia alone 

manifesting a larger volume than all of them combined. 
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Figure 2. Chord Diagrams of Plastic Scraps Trade Before (2016) and After ONS (2018) 

 

In 2018, after the implementation of National Sword, plastic waste exports changed 

destinations. Directionality and partnerships also changed. For example, Europe increased the 

intra-trade of plastic waste. From the number of chords going toward Southeast Asia, it is also 
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evident that more countries redirected plastic exports to this region. The largest portion of 

plastic imports to this region came from North America, North Asia (i.e., Japan and South Korea), 

and Western and Central Europe. Although countries in Western and Central Europe 

substantially increased trade after the ban, it was mostly with countries within the region or with 

Eastern and Mediterranean Europe countries. Figure 2 also shows that most of Hong Kong’s and 

China’s plastic waste exports went to Southeast Asia. 

Given the differences in the sizes and trade partners for imports and exports, it is important to 

consider imports in the context of net trade. This is because net trade values account for 

exports. For instance, looking at differences between imports and exports in Figure 2, countries 

in Southeast Asia import substantially more than they export, whereas many European countries 

are mostly net exporters (i.e., they export more plastic than they import). Particularly, Southeast 

Asian countries imported almost 10 times more plastic waste (from other regions) than what 

they exported after the ban in 2018.  

Figure 3 shows country-level eigenvector centrality trends for selected countries over the 1999-

2020 period (blue trend, left Y-axis). Evident in Figure 3, drastic trend changes occurred due to 

National Sword. It is also possible to identify gradual shifts in centrality occurring since the early 

2010s, when OGF regulations were implemented. Figure 3 also shows the trend of plastic 

imports (in logged kilograms) over time (red trend, right Y-axis).4 Although for countries like 

China, the relationship between centrality and levels of imports is more evident, it is important 

 
4 The countries in Figure 3 are those with average centrality scores larger than 0.1 and who exhibited more evident 
changes during the period of analysis. Trends for all countries in the analytic sample are included in Figure A in the 
Appendix. 
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to consider that the units of plastic imports are in a logarithmic scale. Turkey, for example, shows 

a sharp increase in eigenvector centrality since 2017—from almost 0 in 2016 to 0.41 in 2020, 

which is a susbtantial increase considering that the total range of this centrality score is from 0 to 

0.66. Although Turkey’s increase in plastic imports seems gradual, the total amount of plastic 

imports increased by 395% between 2016 and 2020.  

Levels of imports for the United States appear stable relative to changes in other countries. Yet, 

its eigenvector centrality shows high variability. More specifically, while the U.S. continued 

importing between 420M and 440M kilograms of plastic scraps after the ban, its eigenvector 

centrality decreased from 0.32 (before the ban) to 0.15 (after the ban). In other words, although 

its imports seem unaffected by China’s policies, the profile of its trading partners (i.e., whether it 

traded with top or bottom plastic traders) did change. Although self-reported trade data for the 

United States is unavailable for a couple of years after the ban’s implementation, its overall 

export levels recentlly decreased by more than 60% relative to its 2015 levels. Yet the United 

States increased plastic scraps exports to other regions immediately after the ban, sending, for 

example, 12 times more plastic to Thailand, five times more to Malaysia, Turkey and Germany, 

and four times more to the Netherlands (per self-reported exports data in 2016 and 2018).  

As expected, both China and Hong Kong experienced sharp drops in eigenvector centrality after 

the ban. Interestingly, while for China its eigenvector centrality dropped together with its 

imports, for Hong Kong a similar drop occurred without a drastic decline in its imports. 

Differently, the Netherlands, Germany, and the United Kingdom experienced sharp increases in 

their eigenvector centrality; import trends remained basically uninterrupted. For example, the 

Netherlands did not report imports from Thailand and Malaysia (both highly connected 
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countries) in 2016, but it did report imports from Thailand in 2018 and from Malaysia in 2019. 

The United Kingdom also gradually increased imports and exports during the 1999-2017 period, 

but trade started to decline slowly since 2010, and more evidently since 2017. Most of their 

exports were redirected to Southeast Asia. Countries like Thailand and Malaysia experienced 

substantial increases in both level of plastic imports and eigenvector centrality immediately after 

the ban, but then manifested similar decreases the following year. Both of these countries 

quickly followed China’s footsteps, implementing plastic imports restrictions of their own: 

Thailand announced a total ban of plastic imports by 2025, while Malaysia is phasing out imports 

gradually (Ananthalakshmi, 2018; Wladeck, 2022).  

Critically, Figure 3 shows radical differences between key plastic trade trends like imports and 

those of network centrality (here assessed using the eigenvector centrality). Most of the world 

nations manifest relatively stable import trends, with smooth changes, if any, from before to 

after China’s ban. This is not the case for trade connectivity. Figure 3 shows that China’s ban had 

a detectable effect on eigenvector centrality’s volatility. Clearly, for China both imports and 

plastic trade network connectivity covary to an imporant degree. This is not the case for many of 

the other key players in the plastic global market. This situation highlights the importance of 

trade connectivity as a measure of trade dynamics not captured by traditional macroeconomic 

measures like imports. Given that the overall production and consumption of plastic remained 

practically unchanged from before to after the ban, most of the trade dynamics occur in bilateral 

trade patterns depending on pre-established connectivity and trade partners. 
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Figure 3. Eigenvector Centrality and Plastic Imports (Logged Kilograms) for Select Countries 
(1999-2020) 

 

While observed changes in plastic waste trade levels bring attention to top traders, considering 

the profile of trading partners can highlight the conditions in which plastic scraps are processed 

as well as the quality of traded material. For instance, Japan and the United States did not 

experience substantive changes in plastic imports, but their eigenvector centralities decreased. 

Japan substantially reduced trade with China, but it also started trading with more European 

countries and some in Southeast Asia and Africa, each region with varying processing technology 

and capabilities. Whereas plastic waste in African and Southeast Asian countries is less likely to 
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be recycled, recycling rates in a country like Germany (between 60-70%) imply a smaller portion 

of plastic going to landfills and entering the ocean. The increase in trade between the United 

States, and Europe and Southeast Asia has similar implications. For example, a report by the 

United Nations Environment Programme (UNEP) evaluating waste management in 10 

Association of Southeast Asian Nations (ASEAN) member countries shows that open dumping 

and open burning of waste are prevalent in these countries, and that the recycling sector is 

mostly comprised of informal workers (Jain, 2017).    

The clustering coefficient of these countries (Figure B in the Appendix) aligns with the described 

changes of eigenvector centrality. As countries trade with more countries, hence import more 

plastic waste, their clustering coefficient decreases. Increases in the number of trade partners 

drive this measure down as more partners imply more possible connections among those 

partners that do not always exist. For example, since 2010, more countries started importing to 

Turkey, Indonesia, and Vietnam, but they did not increase trade with each other. They 

disproportionally sent plastic waste to these three countries, but not to each other. If plastic 

scraps were being more equally distributed across traders, the clustering coefficient of all traders 

would be higher and more similar.  

Figures 4 and 5 show a more disaggregated picture, displaying the 2016 and 2018 network 

connections, where nodes with darker colors and bigger nodes have the highest degree 

centralities (i.e., highest imports of plastic scraps). As such, the size and color of the nodes 

represent ranks in imports and not exports. The weight of imports between each pair of nodes 

determines the intensity of the color (bluer for lower weights and redder for higher weights) and 

the thickness of the edges. The location of the nodes also represents a country’s centrality in the 
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network. Comparing the networks provides a more holistic picture of the dynamics of plastic 

waste trade than would be observed by looking only at the countries individually or in aggregate.  

The 2016 network shows China and Hong Kong as the most central nodes in the plastics imports 

network. Although Hong Kong is as large a node as China, the edge between the two captures in 

part one aspect more directly detectable in the data: that most of the imported plastic scraps 

arriving to Hong Kong were re-exported to mainland China. The edges from India and Vietnam to 

China and Hong Kong are again examples of the role as intermediary processers played by 

countries in South and Southeast Asia. Other Southeast Asian and European countries are also 

centrally located (although with significantly lower import levels than China), including Germany, 

Italy, Spain, Belgium, and France among others. The United States is also central; indeed, it is one 

of the top importers in 2016. Its exports to Hong Kong are among the largest bilateral 

transactions in the world. In fact, 42% of its exports were directed to Hong Kong alone. 
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Figure 4. Plastic Scraps Trade Network in 2016 
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Figure 5. Plastic Scraps Trade Network in 2018 

 

Note: The bottom network replicates the 2018 network but rotates the image thus placing most central nodes at the 
left so that connections are more visible. 
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Differently, In Figure 5, the 2018 network shows several equally central nodes. While in 2016 

Hong Kong and China were the only two most central ones, Malaysia, Thailand, Germany, Qatar, 

Turkey, Vietnam, the Netherlands, Germany, Spain, Italy, Belgium, South Korea, and the United 

States became central by 2018. Most notably, Malaysia received the highest fraction of plastic 

scraps from the United States, and a smaller but significant portion from Japan’s and Indonesia’s. 

While China was no longer among the most important plastic traders, Hong Kong continued to 

receive plastic scraps from 78 countries, with the largest amount coming from the United States. 

Although the centrality of Southeast Asian countries decreased by 2020, a few of them such as 

Malaysia, Thailand, and Indonesia sustained high import levels. 

Figure 5 also shows that, although Germany continued to be an important European importer, it 

also exported the second highest amount of plastic to the Netherlands (a piece of information 

also revealed in self-reported data). While Japan experienced reductions in plastic waste 

imports, it is Asia’s biggest packaging waste producer, now exporting its waste to Thailand, 

Malaysia, and South Korea in 2018 (Lee, 2022). Turkey and Qatar remained large recipients of 

foreign plastic waste. For example, Turkey became the largest export destination for plastic 

scraps from the United Kingdom, as well as the largest non-European destination of Germany’s 

plastic waste exports due to the lax domestic enforcement of licensing and inspection of 

recycling facilities laws (Human Rights Watch, 2022). Qatar’s plastic imports decreased overall by 

2018; yet, after the ban, governmental efforts have mainly focused on strategies to increase 

domestic waste management (Mohamed, 2021). 

A more recent 2020 plastic trade network is visualized in Figure 6, showing an overall reduction 

in trade of plastic scraps and an even smaller (relative to 2018’s network) number of central 
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countries. The combined effect of the COVID-19 pandemic and growing plastic trade restrictions 

across Southeast Asian countries brought the network’s density downward. Intraregional trade 

in North America increased by 2020, with the United States receiving plastic from (and sending 

to) countries within the continent (i.e., from and to Mexico and Canada). Europe also increased 

its plastic trade within the European region by more than 11% relative to 2016 levels. This is also 

reflected by the fact that, in 2020, OECD countries accounted for 89% of global reported exports 

and 67% of imports (Brown et al., 2022). Interestingly, Turkey became the largest recipient of 

the European Union plastic waste exports by 2020. More European countries increased their 

number of trade partners and, as a consequence, the amount of plastic imported. Exports from 

Germany to the Netherlands and from the United Kingdom to Turkey were the largest reported 

(in weight). 
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Figure 6. Plastic Scraps Trade Network 2020 

 

Despite these shifts in the destination of plastic scraps also implying potential changes in their 

processing and management (i.e., whether they are recycled, incinerated, or landfilled), the 

utilized reported data does not distinguish between intermediary or transit countries and final 

destinations of plastic. In other words, re-exports are not distinguished from exports. Therefore, 

not all imported plastic can be assumed to be processed domestically. Furthermore, given that 

trade data is self-reported, values available for download from the United Nations (UN) 

Comtrade are constantly updated, especially for more recent years. At the time of writing, 

available data for 2021 was incomplete and thus excluded from the analysis, and 2020 figures 

were updated several months after data collection for this analysis. As such, estimates and 

descriptions for more recent years should be interpreted with caution. 
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SNA is a valuable tool through which to analyze and illustrate the changes in the global plastic 

trade network triggered by National Sword. However, SNA is a descriptive analysis, and alone it 

cannot necessarily offer insight into the specific mechanism underlying changes in the trade 

network. It is important to also investigate the specific characteristics that predisposed certain 

countries to more easily accept incoming plastic pairings and scraps from countries who could no 

longer rely on China to receive their exported waste. Importantly, as evinced by SNA results, 

trade connectivity matters. The origin and destiny of plastics after China’s ban seem to follow 

patterns pre-established in trade among nations that are not readily captured by traditional 

trade measures. It seems, therefore, that the future of plastic trade—and with it its 

environmental and public health implications—can be usefully described by trade connectivity. 

Indeed, this study proposes the idea that measures resulting from SNA may become useful 

descriptors and tools for quantification in the context of other statistical tools.  
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 Chapter 2 | The Determinants of Plastic Scraps Trade 

This chapter explores and identifies the characteristics of countries that may have made them 

more prone to importing plastic post-National Sword. It begins with a discussion of the existing 

literature on economic and structural factors that drive plastic imports, as well as trade of other 

waste types that might be relevant in the context of plastic scraps. Their effect on the 

transboundary movement of plastic scraps is then estimated using appropriate methodologies 

for dynamic panel data, with a focus on disaggregated trade data by plastic type given 

differences in each type’s recycling potential and determinants for demand. This chapter also 

introduces an innovative macro-level measure of environmental performance and incorporates 

structural economic country-level characteristics, with special attention toward observed 

changes within the years immediately before and after National Sword. It also incorporates 

eigenvector centrality, calculated in the previous chapter, as a relevant measure of trade 

connectivity useful to explain countries’ plastic scraps trade levels. The latter section of this 

chapter examines changes in countries’ probabilities to import more plastic than they export, an 

indicator of potential waste havens, distinguishing between the countries increasingly importing 

of plastic with high recycling potential from those receiving plastic that is more difficult to 

process. 

 

Literature Review: Why Do Countries Import Waste? 

Research on countries’ motivations to import waste has largely focused on the overall trade of 

waste, which includes both hazardous and non-hazardous waste. However, few studies address 
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the conditions that make countries more prone to specifically import plastic scraps. Among the 

country-level characteristics discussed in the literature as correlated to patterns of international 

waste trade, the strength of environmental regulations has been commonly used to test whether 

bilateral differences in environmental policy stringency increase the trade of waste between two 

countries.  

Kellenberg (2012), for example, constructs an environmental regulation index with survey 

responses from the Global Competitiveness Report (GCR) across 102 countries. Certain survey 

questions relate to perceptions of each country’s stringency of “air, water, chemical, and toxic 

waste regulations relative to other countries in the world.” Kellenberg’s findings show that the 

relative environmental stringency gradient between countries is an important and robust 

determinant of bilateral waste trade. Although the survey responses do not capture perceptions 

of regulations on non-toxic waste such as plastic scraps, global data of that granularity are not 

available. Kellenberg shows the findings’ robustness by using an alternative “environmental 

sustainability indicator” as a measure of environmental stringency. However, the GCR survey 

respondents mostly include company executives who might not provide a representative picture 

of nation-level perceptions. Alternative measures of environmental policy stringency could 

potentially be used in the context of plastic scraps trade. Similarly, the Basel Convention 

ratification has been included in analyses of international waste trade to control for its effect on 

overall waste trade reduction over time (Baggs, 2009; Kellenberg, 2012). Historically, the 

Convention’s effect has been most noticeable on hazardous waste trade, but new amendments 

concerning plastic waste, introduced in 2021, will make the Convention relevant for analyses of 

2021 data and future years. 
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D’Amato et al. (2012) are among the few authors that study how policy, and economic and 

institutional characteristics affect countries’ plastic waste trade flows. They analyze polyethylene 

export flows of 27 European Union countries from 2004 to 2007. Through a negative binomial 

regression, the authors find that the number of kilograms of waste per capita destined to landfill 

is negatively associated with PE exports. Their waste management policy measures are proxied 

by the amount of waste that is landfilled. They argue that their results show that more landfilled 

waste per capita implies a weaker waste management policy, and thus less recyclable waste 

available to be exported. In the same way, a higher recycling rate negatively affects polyethylene 

scraps exports, which is assumed to be used in domestic production of PE. Counterintuitively, 

their results also show that countries with more patent applications of waste material recycling 

technologies tend to export more polyethylene plastic waste. On the other hand, they find that 

measures of geographical distance do not have a statistically significant effect on polyethylene 

plastic waste exports.  

Lower levels of development are also a commonality among recent top net importers of plastic 

waste. During the late 1980s and early 1990s researchers focused on the lack of enforcement of 

waste trade regulations, which allowed developed countries to send hazardous waste to 

developing countries. Strohm (1993) discusses the political context of the international waste 

trade and whether “North-to-South” waste imports occur due to a sovereign free choice from 

the South to accept the risk in exchange for the economic benefit, or if they constitute transfer 

of risk to vulnerable groups. The author explores the interaction between a desire for greater 

environmental protection, but greater consumption of manufactured products in Western 

countries, and how these affect domestic waste management policies. She notes that 
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overwhelmed domestic disposal capacities create the need for international waste trade since 

waste can be more cheaply dumped or incinerated in developing countries. Strohm claims that 

the “Prior Informed Consent” regime, where waste recipient nations consent is enough, fails 

when the information that guides the recipient’s decision to consent is inadequate. For example, 

environmental risk evaluations about shipments often fail to reach officials in the recipient 

country.  

In the same way, Clapp (1994) describes how developing countries allied politically to strictly 

regulate trade of hazardous waste with less-industrialized countries through the Basel 

Convention. She also shows that although some perceive the environmental risk that developing 

countries take as the price for the economic benefit of receiving the developed world’s waste, 

the environmental impact they suffer also “threatens their future economic prospects.” Cleanup 

costs of hazardous waste dumps, lower agricultural productivity due to contamination of 

groundwater, and diminished public health all combine to harm their economic growth. 

Higashida and Managi (2014), Brooks et al. (2018), and Kellenberg (2012) also identify that, over 

the last two decades, an exponentially increasing proportion of waste has been going to 

developing countries. While some developed countries are among the top importers of waste, 

their share of imports is low when compared to their share of world exports. A similar trend is 

observed when only considering plastic waste: 87% of plastic waste exports between 1988 and 

2018 came from high-income countries (Brooks, 2018). In fact, D’Amato et al. (2012) show that 

upper-middle income countries tend to export substantially more polyethylene scraps. Similarly, 

they find that countries with lower labor wages attract more PE waste exports from European 



36 
 

Union countries, which they associate to a “pollution haven” incentive for exporting countries 

“to exploit the wage differential.”  

Another economic driver considered by existing research is that higher capital-to-labor 

(capital/labor) ratios can lead to increased waste imports, assuming that the ratio reflects the 

country’s technological recycling capabilities (Baggs, 2009). Kellenberg (2015) notes that this 

argument contradicts the idea that developing countries are the main destinations of the 

developed world’s waste, given that developing countries tend to have low capital/labor ratios. 

However, in the context of plastic waste, these findings are consistent when looking at absolute 

plastic waste imports (i.e., import quantities not adjusted by export quantities), which show 

countries like the United States, the Netherlands, and Germany among the top importers. An 

additional relevant economic factor, recycling productivity across countries, has been measured 

with recycling wage rates. Alternatively, it has been proxied with gross domestic product (GDP) 

per capita on the rationale that countries with high productivity overall also tend to have a highly 

productive recycling sector (Kellenberg, 2012). Population size is also a common structural 

control, especially considering that the amount of produced waste in a country is a direct 

product of the number of people (Lebreton and Andrady, 2019). 

Literature discussing the properties of different plastic types and their relevance in the 

treatment process can also inform analysis of countries’ motivations to import specific plastic 

types that align with their processing capabilities and demand. Out of the two major categories 

of plastic material, thermoset polymers are less relevant when discussing the international 

plastic scraps trade since they tend to be infusible and insoluble after their initial forming, thus 

making the material undesirable for recycling purposes. Thermoplastics, on the other hand, 
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soften to a malleable state or melt into liquid when heated, making them recyclable and 

processable through various methods. One important characteristic for the categorization of 

thermoplastic polymers is their glass transition temperature (Tg). The flexibility of polymers such 

as PVC and PS, for example, is reduced when they are cooled below their respective Tg (Grigore, 

2017). Furthermore, given that most types melt at different temperatures, they are often 

processed separately.  

The processing methods available in each country also offer a factor for consideration when 

examining plastic waste trade. Most curbside and drop-off recycling programs in Europe and the 

United States take high density PE (HDPE) and PET, while PVC is less commonly accepted given 

its high chlorine content and hazardous additives (North Carolina Department of Environmental 

Quality, n.d.). Recycling of PS is also limited because it is commonly contaminated with food or 

other organic materials, and because it is expensive to transport due to its low density. Taking 

these properties into consideration can then be useful to give meaning to observed import levels 

of each plastic type. Specifically, PE and PET can be considered the most desirable types of 

plastic scraps and pairings to import, while PS and PVC are expected to be less desirable and thus 

in lower demand. 

Most of the reviewed literature estimates the effect of several economic factors on the 

international trade of waste using gravity models of bilateral trade (Baggs, 2009; Kellenberg, 

2012; Higashida and Managi, 2014). The use of the gravity model implies that countries with 

larger economies trade more waste than smaller countries because (1) they consume more and 

thus produce more waste to export; or (2) they have a more developed disposal and processing 

capacity to import more waste (Kellenberg, 2015). The model also assumes that longer distances 
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between countries entail higher costs of transportation, which in turn decrease trade between 

any two countries. However, considering that plastic scraps are mainly transported 

internationally via sea freight, distance between trading countries might not be the most 

appropriate proxy for shipping prices. Over time, other factors such as number of maritime lines, 

product characteristics, port efficiency, and trade restrictions have become important factors 

affecting prices of maritime transports (Sánchez et al., 2003; Clark et al., 2004). Furthermore, by 

definition, the gravity model is estimated with dyadic data, which considers each country pair as 

the unit of analysis. Thus, the included covariates in a cross-sectional time-series data model 

need to be transformed to become relative measures (i.e., variables that vary by country-pair). 

Accordingly, the gravity model might not be an appropriate estimation method when the 

research question concerns country-level characteristics that are evaluated in absolute terms 

and not relative to other countries. 

 

Dynamic Modeling of Plastic Scraps Trade  

An additional challenge in the analysis of trade is the simultaneous relationship between trade 

levels and other economic factors. For instance, trade drives economic growth (Frankel and 

Romer 1999), but economic growth is often associated with more economic openness, hence 

more trade (Commission on Growth and Development and International Bank for Reconstruction 

and Development, 2008). Similarly, modelling dynamic processes, where trade levels depend on 

their past realizations, requires methodologies that address the violation of exogeneity 

assumptions in econometric models. Dynamic panel data estimators (Anderson and Hsiao, 1982; 
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Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998), developed with 

these limitations in mind, are the main estimation approach of this section. 

 

Data 

To operationalize each country’s trade of plastic scraps, data on imports and exports of plastic 

waste, parings, and scraps (in kilograms) were collected from the UN Comtrade Database. The 

compiled data go from 1999 to 2020, constituting 21 years of data for 119 countries. Given that 

some countries do not have data available for plastic trade for all the years of the analysis, the 

number of countries per year varies, making the data unbalanced. The waste categories 

collected include ethylene, styrene, and vinyl chloride polymers, as well as other types of plastic 

that are not classified elsewhere.5 Again, it is important to note that national trade data in the 

UN Comtrade Database is reported voluntarily and may exclude certain data (e.g., illegally traded 

plastics), and thus may not be fully representative of a given country’s actual plastic waste trade. 

Misreporting issues can be partially overcome by mirroring reported imports data, assuming that 

countries will be less likely to underreport imports than exports. All plastic trade variables are 

normalized through a logarithmic transformation.  

Between 31-34% of total plastic trade reported during the period of study were categorized as 

ethylene polymers (PE) waste, pairings and scrap.6 The biggest fraction, however, comprises 

 
5 The specific UN Comtrade HS commodity codes used are 391510 (Ethylene polymers waste, pairings and scrap), 391520 
(Styrene), 391530 (Vinyl Chloride), and 391590 (Not elsewhere classified). 
6 Due to misreporting, the proportion differs when looking at exports and imports. As such, both estimates are given as lower 
and upper bounds. The baseline used only includes countries with complete information of plastic types traded.  
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“other” plastic not classified elsewhere, accounting for 56-58% of total plastic traded. This 

commodity category includes plastic without an assigned commodity code as well as scraps of 

mixed types such as polyethylene terephthalate (PET) and polypropylene (PP; Brown, 2022). 

Styrene polymers make up about 5% of plastic trade, and vinyl chloride polymers make up 

between 5-8%. Considering the recycling potential and desirability of each of these plastic 

categories, these proportions align with the expected demand and production rate of overall PE 

and PET. As aforementioned, most recycling facilities and technology are equipped to process 

PE, which is also the most commonly used plastic worldwide. Nevertheless, the fact that 

“uncategorized” plastic makes up more than half of all plastic traded is concerning, since mixed 

materials have a lower recycling potential and determining whether the destination country 

possesses the technological capacity to process it is harder if the plastic’s characteristics are 

unknown. Furthermore, this commodity code might also present an opportunity for countries to 

export unwanted plastic waste legally.    

Table 1 reports summary statistics for the sample of study of 1,906 complete observations. 

Summary statistics for the earliest and latest year are also included. Average plastic trade levels, 

as well as ethylene polymers and uncategorized scraps, have grown over time despite China’s 

initiatives and despite overall trade going down drastically after National Sword’s 

implementation. Data quality and availability have also improved in later years. Accordingly, the 

average of both imports and exports of ethylene and uncategorized plastic scraps have increased 

for the analytic sample. The overall average of logged plastic imports, for example, is equivalent 

to about 3,470,000 kilograms, about the amount imported by Singapore in 2016; while the 

maximum equates to 8,900,000,000 kilograms, China’s total imports in 2012. 
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Table 1. Summary Statistics 

 Variable  Mean Std. dev. Min Max 
Logged Plastic Imports (Kg)         
    Full Sample (N=1,906) 15.06 2.98 0.00 22.91 
    2000  14.64  2.73 4.47  19.65  
    2020  15.38  3.22 3.47  20.44  
Logged Plastic Exports (Kg)         
    Full Sample  15.92 2.49 0.00 21.60 
    2000  14.97  2.68  6.87  20.14  
    2020  16.01  1.97  10.59  19.84  
Logged Ethylene Plastic Imports (Kg)         
    Full Sample  12.34 5.12 0.00 22.21 
    2000  11.73  5.19  0.00  18.13  
    2020  13.19  5.13  0.00  19.90  
Logged Ethylene Plastic Exports (Kg)         
    Full Sample  12.69 5.57 0.00 20.67 
    2000  11.72 5.47 0.00 19.01 
    2020  12.80 5.53 0.00 20.19 
Logged Other Plastic Imports (Kg)         
    Full Sample  14.11 3.47 0.00 22.25 
    2000  13.32 3.45  0.00  19.51  
    2020  14.24  4.05  0.00  19.55  
Logged Other Plastic Exports (Kg)         
    Full Sample  15.24 3.03 0.00 21.48 
    2000  13.70  4.28  0.00 19.56  
    2020  15.18  2.56  0.00  18.88  
Environmental Performance Index         
    Full Sample  57.40 12.56 25.1 90.68 
    2000  54.80  8.32  33.7  76.20  
    2020  51.02  15.22  27.6  81.50  
Logged GDP Per Capita (2010 US Dollars)         
    Full Sample  9.02 1.30 5.91 11.39 
    2000  9.13 1.24  6.26  11.21  
    2020  8.88  1.26  6.44  11.36  
Manufacturing Sector (% of GDP)     
    Full Sample  14.77 5.65 2.60 48.80 
    2000  16.51 5.69 4.32 30.86 
    2020  13.57 4.90 3.11 26.18 
Eigenvector Centrality     
    Full Sample  0.026 0.078 0 0.646 
    2000  0.020 0.066 0 0.456 
    2020  0.039 0.098 0 0.523 
Weighted Average Distance to Top 5 Exporters (miles)     
    Full Sample  6,891.9 2,409.1 2,830.0 14,628.8 
    2000  6,321.2 2,292.2 3,987.7 13,536.8 
    2020  7,122.5 2,906.6 3,840.7 14,016.0 
Weighted Average Distance to Top 5 Importers (miles)     
    Full Sample  7,002.6 2,827.1 2,824.1 16,458.2 
    2000  6,770.3 2,763.1  3,987.1  15,554.9  
    2020  7,512.2  2,566.7  5,195.8  13,716.4 
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An independent variable of interest is the centrality measure described in Chapter 1, here 

included as a measure of the connectivity profile of countries’ trading partners. Again, a larger 

score indicates a high degree of plastic trade connectivity—i.e., that a given country trades 

plastic with highly influential countries in the overall plastic trade (i.e., top importers). This 

centrality measure is not only a property of the trading country itself but of the robustness of its 

trading network. Including this variable in the analysis is critical as it offers an alternative 

perspective to plastic trade dynamics than those traditionally developed in macroeconomic 

research. Table 1 shows that the average centrality increased substantively from the earliest to 

latest year of the analysis. While plastic waste imports were primarily concentrated in East Asia 

in 2000, plastic waste trade was redistributed among more countries after the ban, increasing 

the average eigenvector centrality score in the sample. 

As a measure of environmental stringency, the Environmental Performance Index (EPI) out of the 

Yale Center for Environmental Law and Policy and the Center for International Earth Science 

Information Network (CIESIN) at Columbia University is used. The EPI ranks 180 countries on 

“climate change performance, environmental health, and ecosystem vitality” (Wolf et al., 2022). 

The index, going from 0 to 1 (with 1 representing the best performance), aggregates 40 

performance indicators that measure how close countries are to meeting established 

environmental targets. Although this is a macrolevel indicator, this variable aims to test the claim 

that better environmental performance reduces waste trade levels. Nevertheless, this measure 

has a moderately strong correlation with GDP per capita (~0.60), so mixed results are expected 

(as discussed in the literature). In other words, while wealth has been found to be associated 

with lower levels of plastic waste imports, larger differences in environmental performance 
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between trading partners increase waste imports. The analytic sample consists of countries of 

varying EPI scores, with an overall minimum of 25.1 (e.g., Myanmar’s score in 2019) and 

maximum of 90.7 (e.g., Finland’s score in 2016). Although average EPI scores in the sample are 

lower in 2020 than 2000, the range of variation and maximum value are larger. 

As additional independent variables, the size of the manufacturing sector (percentage value 

added of GDP) and GDP per capita (in constant 2010 USD) are obtained from the World Bank’s 

“World Development Indicators.” GDP per capita, a proxy for level of development, tests the 

literature finding that developing countries tend to import more plastic waste than developed 

countries (hence that wealthier countries export more plastic waste). Both measures remain 

relatively stable over time, but average GDP per capita is lower in 2020 and the variance 

increases, possibly signaling unequal growth across the sample of countries. Similarly, the size of 

the manufacturing sector as a percentage of GDP decreases, which is expected as most countries 

shift to service-based economies. 

As discussed in the literature review, it is expected that large manufacturing countries will show 

the largest trade of plastic waste. Figures 7 and 8 visualize the relationship between imports of 

plastic scraps and the size of a country’s manufacturing sector with scatterplots of logged 

imports of mixed and polyethylene plastic scraps (in kilograms) and manufacturing sector for 

select years, where each region is also distinguished by color and shape. The earliest (2000) and 

latest (2020) years in the sample are included, as well as a baseline year before the 

implementation of OGF (2010) and National Sword (2016), and a year after (2018).  
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Figure 7 shows Locally Weighted Scatterplot Smoothing (LOWESS) trends in selected years for 

the relationship between imports of polyethylene plastic waste and the manufacturing value as 

percent of GDP. Figure 7 shows that, in spite of the presence of countries with zero or near-zero 

imports, the relationship became increasingly positive and linear over time before the 

implementation of National Sword. Similarly, Figure 8 shows in the Y-axis the imports of “other” 

plastic waste as a function of manufacturing value. Both figures 7 and 8 show that in 2016—the 

year immediately before the ban—the strength of the relationship was the tightest, with plastic 

imports increasing almost linearly as manufacturing value added increased.  

There are other qualitative aspects of the associations illustrated in the figures worth 

mentioning. For instance, both figures show that, although the relationship remained positive 

after National Sword’s implementation, its slope decreased afterward, illustrating the effects of 

the policy. Importantly, these effects are noticeable even though nations, overall, did not shift 

their overall location in the Euclidean space. In other words, the dispersion of nations across 

imports and manufacturing levels did not drastically change: what changed is their specific 

locations within the same area in the Euclidean space. China’s ban generated a 

reaccommodating process that seems to be dictated by factors related to imports and 

manufacturing yet not captured by the overall dispersion of the data. We argue about the 

possibility that trade connectivity is responsible in part for such dynamics.  

Also interesting, is that imports trends of both types of plastic are almost identical. More 

countries reported no imports of polyethylene scraps, while almost all countries in the sample 

reported some level of mixed plastic scraps imports. This is expected given that most plastic 

products are often made of multiple types of plastic, and so their classification as exclusively PE 
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plastic is not common. Should other factors not accounted for in the figures be responsible for 

the similarity of the trends between plastics with such different implications, those factors may 

be related to aspects that dictate trade and manufacturing yet, again, not readily captured in the 

dispersion of the data. Network location matters. And location of nations relative to other 

nations, too. This is one of the contributions of this study, as trade connectivity could play an 

important yet unobservable role in typical macroeconomic indicators. 

Figure 7. Scatterplots of Manufacturing Value Added and Imports of Polyethylene Scraps by Year 

 

Looking at specific regions, the figures also show that the 2016 trend most closely resembles 

that of Southeast Asian countries (black diamonds), which follows an almost non-positive 

relationship in the earliest year of the analytic sample. They continued to be among the top 

importers of plastic scraps after the ban, yet some large manufacturers reported very small 
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imports in 2020. China, for example, decreased polyethylene imports by 99.6% from 2016 to 

2018. According to recent data, China reported zero imports in 2020. It seems, therefore, that 

China’s ban generated a cascade of effects across other plastic trade nations and on the 

distribution of the types of plastics those nations used to trade on. For example, Turkey, the 

largest plastic trader in Western and Central Asia, increased its imports of mixed plastic waste by 

more than 180% from 2016 to 2018.  

Turning to African countries, they did not report much plastic waste trade data during the 

earliest years of the study period, and thus most of our missing data come from those nations. 

This missingness also has methodological implications, making the panel data unbalanced. What 

we can detect in the data, nevertheless, is that, over the years, African countries have 

maintained mid-size levels of manufacturing value added and of mixed and polyethylene plastic 

imports. On the other hand, Western and Southern European countries have moderately 

reduced levels of imports of both mixed and polyethylene plastic scraps while manifesting large 

variation in their manufacturing value added levels. Overall, Western and Southern European 

countries tend to be above the fitted trend, signaling the relevance of other factors other than 

manufacturing driving plastic scraps trade in this region. 

Variation in plastic trade is also detected in other key European nations; for example, Germany 

decreased its polyethylene plastic imports by 33% from 2016 to 2018, while the Netherlands’ 

import levels remained practically unchanged. Similarly, North American countries, primarily the 

United States and Canada, were among top importers during the earlier years of the study 

period in spite of manifesting relatively low- to mid-size levels of manufacturing value added. 

Taken together, China’s ban triggered many changes in plastic type trade in spite of having no 
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effect on the overall use of plastics and manufacturing. Findings bring to light the possibility that 

the distribution of the size of plastic trade and the type of plastic—i.e., which countries increased 

or decreased plastic imports or exports, and of what type of plastic, and their overall shares in 

the global plastic trade—is due to other trade-related factors, like network connectivity.  

Figure 8. Scatterplots of Manufacturing Value Added and Imports of Mixed Plastic Scraps by Year 

 

Figure 9 shows the relationship between exports of mixed plastic scraps and logged GDP per 

capita. For comparison purposes, the panels in Figure 9 are for the same years as those in figures 

7 and 8, and each region is also distinguished by color and the shape of the marker. Since mixed 

or uncategorized plastic scraps are assumed to have the lowest recycling potential—or at least 

lower than PE plastics—it is expected that countries with larger imports of this type of plastic will 

be more likely to become waste havens after China’s ban. Importantly, Figure 9 illustrates once 
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again that overall levels of both exports and economic development did not change much—e.g., 

the area of variation in the Euclidean space remains similar from before to after China’s ban—

suggesting that there are qualitative aspects of plastic trade making nations change their 

location in the association even though levels remained quite stable. Plastic trade and economic 

development remain stable, roles of nations do not. We argue that network connectivity is an 

important aspect of these associations that goes beyond traditional models developed in 

macroeconomic theory.   

Figure 9. Scatterplots of GDP per capita and Exports of Mixed Plastic Scraps by Year 

 

 

The relationship between exports of mixed plastic scraps and level of economic development is, 

overall, moderately positive. In 2020, however, African countries reported higher levels of 

exports, flattening the LOWESS trend. 2016 is again the year best fitted by the LOWESS trend, 

with African countries increasing their plastic exports but continuing to be the poorest region in 

the world. That in 2016 (i.e., before China’s ban) the dispersion of the data clearly describes the 

association, and then, in 2018 or 2020, the correlation between the variables decrease, is a sign 

of the disruptions imparted by China’s ban.   

 

In Figure 9, Southeast Asia is the region with the largest variation in GDP per capita, still showing 

a moderately positive relationship between development and plastic exports. Thailand and 
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Malaysia, for example, manifest mid- to high-economic development relative to other countries 

in the region. Although not evident due to the logarithmic scale, Thailand’s plastic exports 

decreased by 36% from 2016 to 2018. Turning to the Americas, the trend is also similar among 

Latin American countries, which show low to medium levels of development and exports. The 

United States was also the top exporter of uncategorized plastic waste during earlier years, and 

although it stopped reporting disaggregated data in later years, it continues to be one of the top 

exporters of overall plastic scraps. Lastly, countries in Western and Southern Europe are mostly 

rich and with large amounts of plastic scraps exports. Nevertheless, looking at the Netherlands 

and Germany, they both moderately decreased exports and imports of plastic scraps in 2018. 

Unlike Figures 7 and 8, in Figure 9 the trend fits well the pattern of European countries. In the 

following section these relationships are statistically tested and quantified while also controlling 

for relevant confounders such as population and geographical proximity to top traders. 

 

Methods 

In addition to gravity models of trade, other methodologies prove useful for analyzing the 

determinants of plastic scraps trade, especially when recognizing that levels of trade tend to be 

stable in the absence of exogenous shocks such as Operation National Sword. An appropriate 

estimation method should not only account for the dynamicity of plastic trade, but it should also 

be able to isolate effects of structural variables, whose estimates can be biased in panel data 

settings given their correlation to country-specific heterogeneity. Generalized Method of 

Moments (GMM) for dynamic panel data estimators are especially suitable for these cases 
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(Anderson and Hsiao, 1982; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and 

Bond, 1998).  

Given that a dynamic model of plastic trade includes a lagged version of the dependent variable 

as a regressor, estimations through fixed effects approaches will be biased due to the correlation 

of the autoregressive term and the error term. GMM for dynamic panel data models overcomes 

this issue by augmenting an instrumental variable approach, using transformed versions of the 

endogenous variables as instruments. Specifically, Anderson and Hsiao (1982) proposed to take 

first differences of the model equation to get rid of the constant and panel-specific effects 

terms. The researcher can then use lagged versions of the variables (or their differences) as 

instruments of the endogenous regressors. Arellano and Bond (1991) extend this approach, 

noting that using all available information for instrumentation can increase efficiency. With 

difference GMM, issues of under-identification that arise when more instruments than 

parameters are available can be overcome, implying that all available lags can serve as 

instruments for the endogenous covariates. Furthermore, unlike standard two-stage least square 

(2SLS) standard instruments, GMM-type instrumentation does not drop observations as lag 

length increases. As such, with this type of estimator, all available lags can be used as 

instruments without reducing the sample size. Arellano and Bover (1995) and Blundell and Bond 

(1998) further augment the difference-GMM estimator, proposing a simultaneous system of 

equations estimation. In addition to an equation of first differences instrumented with lags, the 

equation in levels is estimated with first differences (and their lags) as instruments. The intuition 

behind system GMM is that past levels of the dependent variable convey little information about 
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future changes, especially if the coefficient estimate of the autoregressive parameters is close to 

one, making lags of the levels poor instruments for the differences.  

System-GMM estimation can overcome other data and econometric limitations. Because the 

bias introduced by endogenous covariates can decrease as more time periods are included in the 

analysis, this estimation is particularly suitable for panel structures with many panels relative to 

its number of periods, which is a characteristic of the data used in this analysis (119 countries 

over 21 years). System-GMM can also produce robust estimates to the presence of 

heteroskedasticity within the panels. Lastly, in addition to the autoregressive parameter, this 

estimation method can produce less unbiased and more precise estimates of the effect of other 

endogenous covariates. Accordingly, a system-GMM dynamic panel data model is implemented 

to estimate the effects of economic and structural variables on plastic scraps trade. Specifically, 

for each plastic waste category (including overall plastic waste), the system-GMM model 

estimates equations with the following econometric specification, separately for imports and 

exports: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃)𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾[𝑙𝑙𝑙𝑙𝑙𝑙 (𝑃𝑃)𝑖𝑖(𝑖𝑖−1)] + 𝛽𝛽[𝑙𝑙𝑙𝑙𝑙𝑙 (𝐺𝐺)𝑖𝑖𝑖𝑖]  + 𝜌𝜌𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜆𝜆𝐶𝐶𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑀𝑀𝑖𝑖𝑖𝑖 + �𝛿𝛿𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑇𝑇 + 𝜀𝜀𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

      (1) 

 

where 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃)𝑖𝑖𝑖𝑖 is the natural log of kilograms of plastic imports (exports) for country 𝑖𝑖 in time 𝑡𝑡. 

The term 𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙 (𝑃𝑃)𝑖𝑖(𝑖𝑖−1) stands for the 1-year lagged version of the dependent variable and its 

respective coefficient 𝛾𝛾.7 𝑙𝑙𝑙𝑙𝑙𝑙 (𝐺𝐺)𝑖𝑖𝑖𝑖 is the natural log of GDP per capita for country 𝑖𝑖 in time 𝑡𝑡. 𝐸𝐸𝑖𝑖𝑖𝑖 

is the environmental performance index, 𝐶𝐶𝑖𝑖𝑖𝑖 is our independent variable of interest: the 

 
7 The model for ethylene polymers includes an additional 2-year lag (t-2) as it reached statistical significance in model 
specifications. 
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eigenvector centrality score for country 𝑖𝑖 in time 𝑡𝑡. 𝑀𝑀𝑖𝑖𝑖𝑖 is the size of the manufacturing sector for 

country 𝑖𝑖 in time 𝑡𝑡. The term ∑ 𝛿𝛿𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1  is a vector of n covariates 𝑋𝑋𝑖𝑖𝑖𝑖 (assumed to be 

endogenous) for country 𝑖𝑖 in time 𝑡𝑡, each with its respective coefficient 𝛿𝛿𝑗𝑗. These covariates 

include logged population size and the weighted average distance to top exporters 

(importers).8,9 Lastly, 𝑇𝑇 stands for year fixed effects.  

Given the observed changes in eigenvector centrality after the implementation of ONS, an 

interaction term between a pre- and post-ONS dummy variable and eigenvector centrality will be 

introduced to the models as well. Data on other determinants discussed in the literature, 

including recycling sector productivity and port efficiency, were not as widely available as those 

used in the present analyses and thus are not included in these models. To assess goodness of 

fit, the Andrews-Lu (2001) moment selection criteria (MMSC) AIC and BIC are reported in 

addition to Hansen’s J-statistic. MMSC-AIC and MMSC-BIC are based on Hansen’s J-test statistic, 

but they are adjusted to offset increases in controls 𝑋𝑋𝑖𝑖𝑖𝑖 that occur for any additional, respective 

instrument even if they are valid instruments.  

 

 

 
8 Given the propensity of System-GMM to overfit endogenous variables due to instrument proliferation, this study tests for over-
identification using a series of Sargan-Hansen and difference-in-Hansen tests, which are also used as guides for instruments 
selection. The tests indicate that lags t-3 and t-4 as instruments for the autoregressive term in the differenced equation, and lags 
t-2 and t-3 for the other covariates are valid, while the first lag of first differences for the equation in levels are valid instruments 
for the models of ethylene and uncategorized plastic imports and exports. The tests output table A is included in the Appendix. 
As suggested by Arellano (2003) and Roodman (2009), I curtail (i.e., truncate) the number of instruments and collapse the 
instrument set to further avoid instrument proliferation. 

9 Using the Arellano-Bond test for serial autocorrelation (Arellano and Bond, 1991), the study finds no evidence of second-order 
autocorrelation. Results are included in the Appendix (Table B).  
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Results  

System-GMM (SGMM) parameter estimates for four models excluding connectivity measures are 

listed in Table 2. Models 1 and 2 report the estimated effect of the covariates on logged imports 

and exports of ethylene polymers—assumed to be the most desirable type of plastic scraps—

respectively. Models 3 and 4 are for logged imports and exports of “uncategorized” plastic 

scraps—assumed to be the least desirable type of plastic waste. The interaction term and the 

pre- post-ONS dummy did not reach statistical significance, and so are reported in Table C in the 

Appendix. Results for the model of overall plastic waste are also included in Table D in the 

Appendix. 

As expected from the literature, results confirm that wealthier countries trade more plastic, all 

else equal (Table 2). Specifically, they trade more uncategorized plastic. On average, a one-

percent increase in GDP per capita is associated with a 0.60% increase in kilograms of 

uncategorized traded plastic. Considering the large range of variation in plastic trade for the 

countries in the sample, an average 0.60% increase in imports can translate into an average 

increase of 24,000 kilograms for a country like Norway, or an increase of 388,000 kilograms for a 

country like Vietnam. This effect is robust to the specifications in both models of uncategorized 

plastic scraps. As such, countries with higher levels of economic development not only import 

more plastic, but they also export more plastic. These effects are robust when controls are 

included in the models.  
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Table 2. SGMM Parameter Estimates, Plastic Imports and Exports by Type (Excluding Eig. 
Centrality) 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
 

 

  Model 1 Model 2 Model 3 Model 4 

VARIABLES 
Logged Imports 

Ethylene 
Logged Exports 

Ethylene 
Logged Imports 

Other 
Logged Exports 

Other 
     

Logged Plastic Imports (Type for 
given model) (t-1) 

0.346***  0.292***  

 (0.064)  (0.125)  

Logged Plastic Imports (Type for 
given model) (t-2) 

0.166*** 
  

 

 (0.0512)    
EPI -0.0129 -0.015 0.017 -0.007 

 (0.039) (0.044) (0.020) (0.016) 
Logged Plastic Exports (Type for 
given model) 

0.138*  -0.113 
 

 (0.079)  (0.107)  
Logged GDPpc (constant 2010 USD) 0.4349 0.313 0.595** 0.608** 

 (0.544) (0.564) (0.269) (0.309) 

Manufacturing (% GDP) 0.207** 0.077 0.130* 0.013 
 (0.113) (0.103) (0.067) (0.047) 
Logged Population -0.407 0.078 0.184 0.218 
 (0.722) (0.970) (0.637) (0.320) 

Weighted Average Distance to Top 5 
Exporters -0.00003  -0.0002 

 

 (0.00024)  (0.0001)  
Logged Plastic Exports (Type for 
given model) (t-1) 

 0.612***  0.578*** 
  (0.075)  (0.095) 
Logged Plastic Exports (Type for 
given model) (t-2)  0.221***   

  (0.053)   

Logged Plastic Imports (Type for 
given model) 

 0.228**  0.036 

  (0.121)  (0.076) 
Average Distance to Top 5 Importers  0.00024  0.00006 
  (0.0003)  (0.0001) 
Time Fixed Effects Yes Yes Yes Yes 
Constant 4.75 -6.55 2.11 -3.36 
 (15.39) (18.69) (11.78) (6.37) 

Observations 1,906 1,906 1,904 1,904 

Number of countries 119 119 119 119 

R-squared 0.628 0.717 0.573 0.762 



55 
 

The size of a country’s manufacturing sector also has a positive, statistically significant effect on 

imports of both ethylene and uncategorized polymers. As hypothesized, countries that 

manufacture more goods as a percentage of their total GDP import more plastic: a one-percent 

increase in the size of the manufacturing sector is associated with a 0.21% increase in kilograms 

of polyethylene plastic scraps imports and 0.13% of uncategorized plastic. This finding is 

consistent with the fact that ethylene polymers are the most widely used type of plastics, since 

the demand of this material is high for large manufacturers. Given that uncategorized plastics 

comprise more than half of plastic scraps trade, and that using reused plastic for the production 

of goods can make the manufacturing process cheaper, it is also not surprising that larger 

manufacturers import more plastic waste, pairings, and scraps. Most countries in South and East 

Asia have large manufacturing sectors, with average GDP value added percentages ranging from 

15-28%. On the other hand, European Union countries’ average values are about 15-16%. 

Notably, the effect of manufacturing is not statistically significant for plastic exports. Thus, even 

assuming that large producers also generate the most waste, these countries do not necessarily 

export the most waste.  

The autoregressive coefficient estimates indicate that plastic scraps import levels are less stable 

over time compared to export levels. This might be attributed to global shifts since the early 

2010s due to China’s Operation Green Fence initiative and its eventual complete ban via 

Operation National Sword in 2017. Although import patterns changed, exporters continued to 

send plastic waste abroad, only changing destinations. This is, again, one of the reasons why 

countries changed their specific location in figures 7, 8 and 9 even though import and exports of 

plastic, and macroeconomic conditions overall, did not drastically change levels globally. In more 
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detail, the scatterplots in figures 7, 8, and 9 show that countries in Southeast Asia were already 

large traders of plastic waste even before the implementation of ONS. Although their trade 

levels were expected to be high even without ONS, the observed growth rates in imports, 

specifically, would not have been as high. One of the reasons for the movement and relocation 

of countries in the plastic trade market follow plastic-trade network connectivity.  

Another aspect of the data is that import levels are positively associated and statistically 

significant predictors of export levels, and vice versa, which is also evidenced in the similarity of 

the estimated effects on imports and exports. The estimated coefficients of additional controls 

of population size and geographical distance did not reach statistical significance. The null effect 

of the distance measure might be a result of the estimation method. The measure is a weighted 

average of the distance between a given country and the top 5 exporters (or importers for 

models 2 and 4) where the weight assigned to each distance is based on the portion of global 

plastic trade that the country exports (or imports). Although this variable is shown to be relevant 

in models of bilateral trade, our results show that its effect dilutes in models that consider other 

countries—i.e., when the network of traders (not merely bilateral trade associations) is 

accounted for. At the theoretical level, these null effects are expected since trade is multilateral 

by nature, trade has become increasingly globalized, and variables of connectivity in trade 

networks (like eigenvector centrality) should capture most of the essential variation in plastic 

trade. 

To assess the explanatory contribution of the eigenvector centrality measure (described in 

Chapter 1), six additional models are estimated through SGMM. Parameter estimates from these 

models are reported in Table 3. In Table 3, models 1 to 3 use imports of polyethylene (PE) plastic 
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waste as the dependent variable. Model 1 is a base model with only autoregressive terms, and 

uses PE exports as an independent variable, too. Model 2 incorporates to Model 1 all control 

variables. While Model 3 follows the specification in equation 1, Model 2 excludes eigenvector 

centrality. Similarly, Models 4 to 6 replicate these models using imports of mixed or 

uncategorized plastic as the dependent variable.  

Goodness-of-fit statistics improve drastically from model 1 to 2 and from model 4 to 5. Overall, 

models 3 and 6, which use both attribute and relational characteristics, fit better the plastic 

imports data. The coefficients of attribute variables (i.e., manufacturing, GDP per capita, 

population, and weighted average geographical distance to top exporters) remain relatively 

stable even after the inclusion of eigenvector centrality.  

Again, eigenvector centrality—our variable of interest—measures how well connected a country 

is by emphasizing the connections of its trading partners. Eigenvector centrality does not only 

consider the profile of a country’s immediate trading partners, but “second-degree” 

connections, which are countries with whom a country could indirectly trade plastic waste 

through the trading partners they have in common—i.e., nodes in the network. Given that this 

variable assesses the degree of connectivity of a given country through direct and indirect plastic 

trading partners, this variable contains essential variation as to how countries would adapt to the 

effects imparted by China’s ban.  
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Table 3. SGMM Parameter Estimates, Plastic Imports by Type 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

VARIABLES 
Logged Imports 

Ethylene 
Logged Imports 

Ethylene 
Logged Imports 

Ethylene 
Logged Imports 

Other 
Logged Imports 

Other 
Logged Imports 

Other 
       

Logged Plastic Imports 
(Type for given model) (t-1) 

0.301*** 0.357*** 0.367*** 0.318*** 0.281*** 0.303*** 

 (0.084) (0.062) (0.060) (0.083) (0.070) (0.067) 
Logged Plastic Imports 
(Type for given model) (t-2) 0.109 0.178*** 0.189***   

 

 (0.069) (0.049) (0.051)    
EPI  -0.009 -0.0190  0.015 0.004 

  (0.039) (0.039)  (0.021) (0.019) 
Logged Plastic Exports (Type 
for given model) -0.020 0.153* 0.154* 0.147 -0.167 -0.156* 

 (0.158) (0.080) (0.079) (0.213) (0.131) (0.088) 
Logged GDPpc (constant 
2010 USD) 

 
0.352 0.288 

 
0.649** 0.578** 

  (0.524) (0.558)  (0.308) (0.288) 

Manufacturing (% GDP)  0.215* 0.210*  0.136** 0.106 
  (0.118) (0.118)  (0.069) (0.071) 
Eigenvector Centrality   11.92**   8.660* 

   (4.968)   (4.411) 
Logged Population  -0.352 -0.474  0.160 -0.122 
  (0.700) (0.871)  (0.681) (0.612) 

Weighted Average Distance 
to Top 5 Exporters 

 
0.00005 -0.00011 

 
-0.0002 -0.0002* 

  (0.00024) (0.00025)  (0.0001) (0.0001) 
Time Fixed Effects Yes Yes Yes Yes Yes Yes 
Constant 7.97** 3.81 5.69 7.502** 3.162 8.853 
 (3.56) (14.94) (17.95) (3.292) (12.43) (11.25) 

Observations 1,895 1,895 1,895 1,893 1,893 1,893 

Number of countries 119 119 119 119 119 119 

Hansen’s J-statistic 0.555 7.51 7.60 17.63 16.26 18.6 

MMSC-AIC -5.45 -18.49 -22.40 7.63 -23.74 -27.40 

MMSC-BIC -13.78 -54.62 -64.08 -6.26 -79.32 -91.32 
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The addition of eigenvector centrality improved MMSC-AIC and MMSC-BIC in both polyethylene 

and mixed plastic scraps models.10 11 The estimated coefficient for eigenvector centrality is 

substantively and statistically significant across models. Specifically, a one-unit increase (i.e., 

going from being a country that does not trade plastic waste to being the most central country in 

the network) is associated with an almost 1,200% increase in polyethylene waste imports (�̂�𝛽 =

11.92) and more than an 860% increase in mixed plastic waste imports (�̂�𝛽 = 8.66). This is a 93% 

increase in PE waste imports and 67% in mixed scraps imports with a one-standard deviation 

increase in eigenvector centrality (𝜎𝜎 = 0.078) which are substantive increases considering that 

the sample’s total range of variation is 0.646. This is, for example, the difference in the 2018 

centrality score between Germany (0.31) and Malaysia (0.39). 

The distribution of eigenvector centrality is highly skewed to the right. Yet, the estimated 

coefficient remains statistically and substantively significant even when countries with centrality 

scores smaller than 0.01 are excluded from the models. This robustness check only includes 460 

observations—i.e., it excludes from the analysis those nations that either do not significantly 

belong to the global plastic trade network, or that trade plastic waste only in the periphery of 

nations that operate at the core of the network. In this robustness exercise, as expected, the 

coefficient estimate for eigenvector centrality shrinks to 6.9 (p < 0.05), bringing to light that 

plastic trade is not only explained by connectivity but also, almost equally important, by not 

being connected to the plastic trade network (Table F, Appendix). That considering the totality of 

 
10 The estimated effect of eigenvector centrality is not statistically significant and small in the models of exports. These results 
are included in table E in the Appendix.  
11 The distribution of eigenvector centrality is notably skewed to the right and cannot be normalized via logarithmic 
transformation due to zero inflation, which would drop an important number of observations.  
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the sample (i.e., connected and unconnected nations) retrieves a larger size of the coefficient, 

suggests that eigenvector centrality covers a single dimension ranging from low- to high-

connectivity. Once we include unconnected nations into the sample, the effect increases 

because it is now capturing the variation of well-connected nations in relation to those that are 

not connected. 

One possible limitation of the present study lies in the similarity between the dependent variable 

and aspects of the way the eigenvector centrality measure is developed. Total plastic trade is a 

product of the number of countries with whom a country trades plastic waste, and at the same 

time, a country’s number of trade partners is also affected by the determinants of total amount 

of plastic waste traded. Given such similarity, we would need to further investigate the extent to 

which the centrality score measures a different variable from the dependent variable, or 

whether it measures the same phenomena that we are aiming to explain. Yet, it is important to 

note that our SGMM models account for lags of our dependent variable. This suggests that our 

estimated effects for eigenvector centrality are independent from variation attributable to the 

dependent variable.  

More generally, we can also investigate the correlations between the dependent variables and 

eigenvector centrality. To do this, Table 4 shows correlation matrices between eigenvector 

centrality, and logged imports and exports of PE and mixed plastic before and after the 

implementation of ONS. The correlation between imports of both PE and mixed plastic waste, 

and eigenvector centrality before ONS is positive and moderate, with correlation coefficients of 

0.32 and 0.39, respectively. The correlation between exports of both plastics and eigenvector 

centrality is even smaller. As expected, the correlations become moderately stronger after the 
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implementation of ONS, with the correlations between imports of PE and mixed plastic waste, 

and eigenvector centrality increasing to 0.42 and 0.46, respectively. Especially after the ban, 

eigenvector centrality was a relevant determinant of plastic waste trade. We thus believe that, 

given the moderate levels of correlation between these variables and the way our SGMM models 

control for lagged variation of the dependent variable, our estimates bring support to our 

hypothesis. 

It is also important to note that the models reported in Table 3 additionally control for indicators 

traditionally believed to be explanatory variables of trade. One good example of such control is 

the level of economic development. Interestingly, the coefficient estimate for GDP per capita 

shrinks (from model 2 to model 3, and from model 5 to model 6) once the model accounts for 

connectivity. Commonly excluded from macroeconomic models of trade, our results show that 

increased mixed plastic waste imports due to higher economic development can be partially 

explained by changes in the profile of country partners and the connectivity among them. So, 

changes among trade partners, and in the size of trade among them, occur independently from 

the economic development of the countries involved in trade networks. In this sense, our 

connectivity variable seems to represent variation attributable to other aspects of trade that are 

not captured by traditional macroeconomic variables. For example, trade agreements can be 

theorized to have a substantial impact on plastic waste trade independent from geographical 

proximity and economic development. Overall, the positive effect of eigenvector centrality 

indicates that countries that trade with top importers are more likely to import plastic waste as 

well.  

 



62 
 

Table 4. Correlation Matrix Before and After the ONS  

Pre-ONS (2000-2017) 

 

Post-ONS (2018-2020) 

 

Coefficient estimates for GDP per capita are not null, however. Our results also reaffirm the 

previously established relationship between economic development and plastic waste trade. As 

with overall international trade, wealthier countries exhibit higher levels of plastic trade. 

Nevertheless, results suggest that they mostly trade uncategorized plastic scraps, which, again, 

include mixed materials that are harder to recycle. If they export mostly to countries without the 

 Eigenvector 
Centrality 

Imports of 
Mixed Plastic 
(Logged) 

Imports of 
PE Plastic 
(Logged) 

Exports of 
Mixed Plastic 
(Logged) 

Exports of PE 
Plastic 
(Logged) 

Eigenvector Centrality 1     

Imports of Mixed Plastic (Logged) 0.384 1    

Imports of PE Plastic (Logged) 0.319 0.647 1   

Exports of Mixed Plastic (Logged) 0.320 0.492 0.440 1  

Exports of PE Plastic (Logged) 0.277 0.511 0.543 0.538 1 

 Eigenvector 
Centrality 

Imports of 
Mixed Plastic 
(Logged) 

Imports of 
PE Plastic 
(Logged) 

Exports of 
Mixed Plastic 
(Logged) 

Exports of PE 
Plastic 
(Logged) 

Eigenvector Centrality 1     

Imports of Mixed Plastic (Logged) 0.459 1    

Imports of PE Plastic (Logged) 0.422 0.739 1   

Exports of Mixed Plastic (Logged) 0.490 0.510 0.482 1  

Exports of PE Plastic (Logged) 0.364 0.415 0.560 0.560 1 
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technology to recycle properly, the portion that is actually reutilized and recycled is even lower. 

The finding that a larger manufacturing sector is associated with more imports of both ethylene 

and uncategorized plastics, but not exports, is intuitive but also revealing. The countries with the 

largest average manufacturing sectors (as GDP valued added) are, in descending order, China, 

Thailand, Malaysia, Ireland, and Indonesia, four of which are among the most impacted 

Southeast Asian countries.  The effect of manufacturing remains stable when centrality is 

included in the model. 

Despite the inclusion of time fixed effects that capture the effects of the implementation of 

important policies such as National Sword, Green Fence, and amendments to the Basel 

Convention, the immediate effects of China’s plastics ban are still unclear. Moreover, results so 

far have suggested that there is a close tendency for those who import plastic waste to also 

export it. Nevertheless, if it is assumed that plastic that is not re-exported is handled 

domestically, looking at differences between exports and imports levels (i.e., whether countries 

are net exporters or net importers) might provide a clearer picture of the factors that make 

countries more likely to be potential waste havens. The next part of this analysis will thus focus 

on the changes between 2016 and 2018, estimating countries’ probabilities of being net 

importers before and after National Sword. 

Multinomial Logistic Regression: Modeling Plastic Trade Tendencies  

Results from the dynamic panel data analysis uncovered large manufacturers and wealthier 

countries as the countries with largest levels of plastic trade. Yet, other classification 

methodologies can be implemented to examine changes in probabilities of countries becoming 
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net importers, or assumedly, potential waste havens, before and after the implementation of 

National Sword. The following analysis attempts to determine which of the previously analyzed 

factors characterized net importers before the National Sword policy and which factors 

prevented countries from becoming waste havens after the China ban. 

 

Methods 

To categorize countries as potential waste havens and others, countries that imported more 

plastic waste than they exported in a given year are flagged, creating a dummy variable where 

those countries are assigned a value of 1 and others 0. Then, a categorical variable is created 

considering the years 2016 and 2018, the most immediate years before and after National Sword 

was implemented. This variable takes the value of 1 if a given country imported more than it 

exported in both 2016 and 2018, a value of 2 if it no longer had an import surplus in 2018 (i.e., 

2016 dummy = 1 and 2018 dummy = 0), a value of 3 if it did not import more than it exported in 

either year  (i.e., both years = 0), and a value of 4 if in 2016 it did not have an imports surplus but 

did import more than it exported in 2018 (i.e., 2016 dummy = 0 and 2018 dummy = 1). After this 

categorization, 102 countries remained in the analytic sample.12 

A multinomial logistic regression is implemented to estimate the effects of the covariates on the 

country-specific categories before and after National Sword. As an extension of binary logistic 

regression, multinomial logit estimates the changes in the log odds of observing each category of 

the dependent variable through maximum likelihood estimation. One of its underlying 

 
12 Countries excluded did not have available data for both 2016 and 2018. 
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assumptions, the independence of irrelevant alternatives, states that the addition/deletion of 

alternative outcome categories does not affect the odds among the remaining options. In other 

words, if any of the four categories were removed as an option, the estimated changes in the log 

odds per every unit change in the independent variables should not be statistically differentiable 

from the ones in the model with all options included. Considering how the dependent 

categorical variable was constructed, where 2016 and 2018 outcomes were combined into single 

categories, this assumption is tested accordingly via a Hausman-McFadden test (1984)13. 

Equation 2 shows the econometric specification of the multinomial logit model: 

𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙 (𝐺𝐺)𝑖𝑖 + 𝜌𝜌𝑗𝑗𝐸𝐸𝑖𝑖 + 𝜃𝜃𝑗𝑗𝑀𝑀𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑗𝑗            (2) 
 

where 𝑌𝑌𝑖𝑖𝑗𝑗 is the probability of observing each 𝑗𝑗 outcome for country 𝑖𝑖, regressed on an outcome-

specific intercept, 𝛼𝛼𝑗𝑗, the natural log of GDP per capita, log (𝐺𝐺), with one coefficient 𝛽𝛽𝑗𝑗 per 

outcome, the environmental performance index, 𝐸𝐸𝑖𝑖 and the size of manufacturing sector, 𝑀𝑀𝑖𝑖. 

Due to the limited sample size, other covariates are not included to simplify the model. However, 

estimates of the model controlling for population size, which does not substantially alter the 

coefficients or levels of statistical significance, are included in the Appendix in Table G. 

 

 

 

 
13 The test compares coefficient estimates of the model with different subset of outcomes included/excluded for statistically 
significant differences. 
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Results 

Table 3 reports the estimated changes in relative risk ratios of observing each outcome, with 

outcome 3 (i.e., never being a net importer) as a baseline comparison. Relative risk ratios are the 

probability of observing one outcome over the probability of observing the baseline category 

(i.e., the log odds coefficient exponentiated). The first column shows the estimates for outcome 

1, being a net importer before and after the ban. Column 2 reports them for being a net 

importer before the plastics ban, but not after it. And lastly, column 4 shows results for being a 

net importer after the plastics ban, but not before it.  

Table 5. Multinomial Logistic Regression Parameter Estimates, Status 2016 and 2018 

 
(1)  

Net importer both 
years 

(2)  
Net importer 

only 2016 

(4) 
 Net importer only 2018 

 
Logged GDPpc (constant 2010 USD) (2016) 0.670 0.354** 1.301 

 (0.275) (0.174) (0.452) 
EPI (2016) 1.057 1.212*** 0.948 
 (0.048) (0.078) (0.037) 
Manufacturing (% GDP) (2016) 1.077 1.118 1.088* 

 (0.062) (0.078) (0.055) 
Constant 0.076 0.000* 0.341 

 (0.142) (0.000) (0.510) 
Observations 102 102 102 
Pseudo R2 0.067 0.067 0.067 
Wald Chi2 19.89** 19.89** 19.89** 
Note: standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

The Hausman-McFadden test and a generalized version of the test, each comparing the 

coefficients of the complete model and three additional models that remove one category of the 

dependent variable at a time, find no evidence for statistically significant systematic differences 

in the coefficients (Table H, Appendix). Consequently, the test does not suggest that the 

independence of irrelevant alternatives assumption is violated.  
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The coefficient estimates for EPI suggest that as environmental performance increases, countries 

are more likely to have been a potential waste haven in 2016 (i.e., importing more than what 

they exported) and to have no longer been one in 2018 than to have never been one at all. More 

specifically, increasing the environmental performance score by one unit, the relative risk of 

having been a net importer in 2016 but not in 2018, relative to never having been one at all, is 

expected to increase by a factor of 1.21 (p <0.01). In other words, the relative risk of having been 

a potential waste haven in 2016 and no longer being one in 2018 is 1.21 times more likely given 

a one-unit increase in EPI. Considering that EPI scores in the analytical sample vary from 37.10 to 

90.68 (Table H in Appendix), a 20% change in the relative risk of observing outcome 2 relative to 

outcome 3, associated with a one-unit increase of EPI, is a substantive increase.  

To facilitate the interpretation of these results, Figure 10 visualizes the predicted probabilities of 

each outcome at different levels of environmental performance. As environmental performance 

improves, countries are also more likely to never have been potential waste havens. In the same 

way, they are less likely to have become a waste haven after National Sword. However, they are 

also more likely to have been net importers in both years. Overall, this result suggests that 

greater environmental performance prevented countries from becoming potential waste havens, 

but it did not help correct behaviors immediately after National Sword was implemented. Thus, 

countries who were already importing more than they exported before the plastics ban were 

more likely to remain net importers despite high environmental performance scores. 
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Figure 10. Predictive Margins of Probability as EPI Scores Increase 

 

The effect of logged GDP per capita is also statistically significant on the probability of being a 

net importer before the plastics ban and no longer being one after it (relative to never being one 

at all), showing a decrease of the relative risk by a factor of 0.35 with every one-unit increase in 

the log of GDP per capita. This is a 65% relative decrease associated to a one-unit increase in the 

economic development measure. In the context of the included sample of countries, this log 

difference in GDP per capita is approximately equivalent to the difference in 2016 levels 

between Indonesia and Romania. As shown in Figure 11, a higher level of economic development 

decreases the probability of being a net importer before the plastics ban, and it increases the 

probability of not being a net importer before and after the ban. This implies that poorer 
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countries were more likely to be net importers even before National Sword. However, a higher 

level of economic development increases the probability of becoming a net importer in 2018. 

These results are consistent with the overall findings of this study: poorer countries tend to 

import more than they export; yet, even some wealthy countries also experienced increases in 

imports immediately after National Sword’s implementation. 

Figure 11. Predictive Margins of Probability as Logged GDP Per Capita Increases 

 

Nonetheless, the clearest result is the effect of a large manufacturing sector in the probability of 

being a net importer of plastic scraps. The effect is consistently positive across all categories of 

the dependent variable, but only statistically significant for outcome 4 relative to outcome 3 

(p<0.1). A one-percentage point increase in the value added of a country’s manufacturing sector 
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increases the probability of not being a net importer in 2016, and becoming one after National 

Sword was implemented, by about 9% relative to never being a net importer. Accordingly, only 

the probability of never being a net importer decreases with the increase of the manufacturing 

sector value added. Manufacturing countries thus have tended to be net importers regardless of 

changes in international plastic waste trade policies.  

Overall, results from the multinomial logit regression coincide with those of the dynamic panel 

data analysis. Poorer countries with large manufacturing industries are more likely to import 

more plastic than what they export. Given the non-comparability of the environmental 

performance index over time, this analysis took advantage of the cross-sectional comparability of 

the index, showing that it can affect the likelihood of a country becoming a waste haven.  
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Chapter 3 | Case Studies and Discussion  

China and Southeast Asia 

Results from our analyses showed that the manufacturing sector is critical for the desirability of 

plastic scraps imports. Before ONS, China’s plastic imports were driven by the low-cost, recycled 

raw materials demand of the manufacturing industry that could not be met domestically. 

Whereas plastic imports increased from 2003 to 2004 by 35%—when the manufacturing sector 

accounted for about 32% of GDP—they decreased by 11% a decade later, from 2012 to 2013. 

Interestingly, 2013 was the first year of OGF’s implementation. Yet, a few years later, plastic 

imports decreased once again by 34% (from 2016 to 2017)—when 28% of GDP value added was 

attributed to manufacturing.  

Whereas in 2016 (before the ban) about 41% of China’s imports were polyethylene (PE) scraps 

and 52% were mixed plastic, about 72% of plastic imports were mixed and 25% were PE in 

2018—right after the ban. Yet, the composition of China’s plastic exports was similar before and 

after the ban, with about 86% of plastic exports categorized as mixed or “other” plastic scraps in 

both years. The ban clearly affected the plastic composition of plastic imports alone—i.e., 

without affecting the plastic composition of exports. China became a large producer and 

exporter of mixed plastic scraps—relative to its own import levels—after the ban. Chinese plastic 

imports before the ban (by far the largest across the globe) were smoothly absorbed by and re-

directed among plastic traders after the ban depending on their connections. 

Although the initial goal of the Chinese government was to reduce the contamination level of 

scraps imports, this goal shifted with ONS toward a complete elimination of foreign-produced 
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contamination. With a recycling rate of only 30%, and a production of over 60 MMT of plastic 

every year, the implementation of China’s ONS did not stop the country’s growing use of plastic 

in packaging, product manufacturing, and other sectors (Lai, 2022). Moreover, once imports 

collapsed after the ban bringing down imports by a factor of about 30, China’s plastic scraps 

exports remained unaltered. China’s role in the plastic market shifted from the top importer to 

an important exporter of plastics. 

Meanwhile, Hong Kong experienced reductions in both imports and exports, showing a different 

trend from that of mainland China after the ban. Analyzing self-reported bilateral plastic trade 

from China and Hong Kong to other regions (i.e., excluding plastic trade between Hong Kong and 

China) during the most immediate years before and after ONS’ implementation, total combined 

plastic scraps exports shifted from 55,000 MT in 2016 to 276,000 MT in 2018, an increase of 

over 400%.14  

Figure 12 shows the distribution of China’s and Hong Kong’s combined plastic exports by 

regional destination in 2016 and 2018. Figure 12 shows that 48% of combined plastic exports 

went to South and Southeast Asian countries while only 4% to Europe, before the ban in 2016. 

By 2018, 85% of plastic scraps exports went to 12 South and Southeast Asian countries, while 

merely 1% went to over 30 European countries. Accordingly, China’s unilateral move to ban 

imports of plastic waste was accompanied by their own (and that of Hong Kong) shift of export 

partners, who after the ban mainly received mixed plastic waste from them.  

 
14 Due to discrepancies between total plastic trade and total bilateral trade reports this figure might omit unreported 
transactions. 
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Figure 12. China’s and Hong Kong’s Plastic Scraps Exports by Destination - 2016 and 2018   

 

 

This in-depth description shades some light on where the plastic ends up its process—beyond 

understanding the different paths (i.e., countries) it goes through.  Particularly, there seems to 

be evidence to state that, after the ban, countries with high eigenvector centrality scores, such 

as those in Southeast Asia, became direct recipients of the plastic waste that would have 

otherwise accumulated in mainland China. Furthermore, countries with whom China traded 

plastic the most before the ban became, as a result, not only large recipients of plastic arriving 

from all China but also from other continents.  

Despite that China’s imports of foreign plastic scraps after the ban collapsed to practically zero, 

the country’s demand for raw materials did not diminish. The profitability of the recycling 

industries in Southeast Asian countries is thus partially driven by this demand—and, to an 

South and Southeast Asia Europe Other

2016 2018 
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important degree, these are the trade dynamics that create trading networks, and the ones that 

got activated after the ban. Importantly, the dynamics that nourish trade partnerships add 

meaning to plastic trade beyond macroeconomic variables. For example, in figures 7 through 9, 

macroeconomic activity changed very slowly in time, including before and after China’s ban, 

whereas plastic trade based on connectivity shuffled the roles of countries. 

As discussed in Chapter 2, Southeast Asian countries tend to have large manufacturing industries 

and, thus, a stable large demand for raw materials, including plastic. Taking Malaysia as an 

example, this study showed that it was one of the most affected countries in Southeast Asia, 

with an overall growth in plastic imports of 200% from 2016 to 2018. This growth did not happen 

in isolation, as Malaysia also manifested one of the sharpest increases in eigenvector centrality 

immediately after the ban. Malaysia has been among many ASEAN countries welcoming Chinese 

recycling enterprises who have moved facilities, investment, and equipment away from China 

after the ban reduced the available scraps to produce plastic pellets.  

There are other case studies that suggest that trading follows policy outcomes—which in turn 

follows network connectivity—independently from macroeconomic ones. For example, research 

points out that China’s domestic policy focus has also aligned with their trade policy, phasing out 

single-use plastics and increasing recycling and incineration capabilities (Lai, 2022). Similarly, 

although Thailand imposed bans of waste imports after the rapid influx of plastic waste post-

ONS, the domestic recycling industry (primarily composed of informal workers) advocated for a 

slower timeline since they heavily relied on foreign plastic scraps. The ban, which was 

consequently reversed, is expected to take effect in 2025 (Campbell, 2022). In the meantime, 

China is the main destination of plastic pellets produced in Thailand, accounting for about 60% of 
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exports (The Nation, 2022). This shuffling of roles in imports and exports between “good” and 

“bad” plastic scraps clearly follows connectivity patterns that cannot be captured by neither 

traditional macroeconomic nor gravity models of trade. 

Overall, ASEAN countries have limited recycling infrastructure for plastic. Due to the low 

profitability of plastic, there is low incentive for the private sector to invest in plastic recycling 

infrastructure (Jain, 2017). Countries like Cambodia, Myanmar, and the Philippines lack 

comprehensive strategies to increase recycling rates. A UNEP 2017 report explains that these 

countries often fail to segregate waste and, instead, they directly dispose of it in dumpsites or 

openly burn it (Jain, 2017). Accordingly, as long as ASEAN countries have an incentive to fulfill 

raw plastic material global demand, regulations remain lax, and therefore domestic demand for 

scraps from the manufacturing industry remains high, they will continue to be the center of 

plastic waste accumulation. These trends, again, are better illuminated by trade connectivity 

considering that overall manufacturing industry output in ASEAN countries, remained unchanged 

after the ban. 

Western Europe 

In Chapter 1 we showed that European countries are also important players in the plastic scraps 

trade network. A closer look into the Netherlands and Germany—both countries accounting for 

over a third of global exports and imports originating from Europe in 2016 and 2018—shows a 

similar but less drastic picture to that of China. As shown in Figure 13, in 2016, the Netherlands 

sent 34% of plastic waste exports to China and Hong Kong, 62% to other European countries, 

and only 3% to the rest of South and Southeast Asia. Differently, Germany relied more heavily on 
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China, sending 49% of plastic exports to Hong Kong and mainland China, 43% to the rest of 

Europe, and 6% to South and Southeast Asia. In 2018, after the ban, both countries increased 

exports to other European nations and to a lesser extent to South and Southeast Asia. 

Specifically, 21% of Germany’s and 16% of the Netherlands’ exports went to South and 

Southeast Asia, while 64% and 70%, respectively, went to other European countries.   

Figure 13. The Netherlands’ and Germany’s Plastic Scraps Exports by Destination - 2016 and 

2018   
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Unlike China, these countries’ imports were more evenly composed of PE and mixed scraps—

e.g., 48% of Germany’s plastic imports in 2016 were PE plastic scraps and 41% were mixed 

plastic waste. This percentages moderately changed in 2018, with 40% of imports being PE 

plastic scraps and 48% reported as mixed scraps. The Netherlands similarly maintained almost an 

even composition of imports (i.e., about 50% PE and 50% mixed) during 2016 and 2018. 

Germany’s manufacturing sector is also one of the largest manufacturers in Western Europe, a 

significant driver of plastic scraps trade as seen in Chapter 2. Interestingly, China’s ban did not 

change the composition of plastic imports in Germany and the Netherlands; it changed the origin 

and destiny of plastics and their volumes on the basis of pre-established connectivity. 

In terms of exports, the Netherlands primarily exported mixed plastic both in 2016 and 2018 

(i.e., over 50%), whereas Germany exported more PE waste than other plastic scraps. Even 

though recycling rates in Europe are the highest in the world, with Germany leading waste 

recovery at over 65%, the country exports more plastic than what it imports. In fact, the data 

shows that in recent years, both the Netherlands and Germany have often been ranked among 

the global top-5 plastic waste exporters, with Germany as the top exporter in 2018 and the 

Netherlands reaching second place in 2020. After the implementation of ONS, Germany 

exported twice as much plastic as it imported. The Netherlands, however, imported more overall 

plastic than it exported. Nevertheless, in 2018, the largest amount of plastic waste exported to 

the Netherlands came precisely from Germany (about 43%). Thus, without considering the 

bilateral transactions that make up the plastic waste trade network, the role of a country like the 

Netherlands in global plastic waste trade would be undistinguishable from that of a country like 

Malaysia. 
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Results from Chapter 2 are consistent with the behaviors of Germany and the Netherlands: 

developed countries tend to export, and to some extent import, more plastic waste. Yet, our 

analysis shows that increasing imports in wealthier European countries are predominantly 

coming from within the region, showing that the sharp increases in eigenvector centrality they 

experienced are primarily due to increased intraregional trade. Despite the lack of an accurate 

estimate of national plastic waste generation for each of these countries, the fact that they are 

the primary exporters of global plastic waste, suggests that they do not possess the capacity to 

process a large portion of the waste they generate or import. This theoretical framework seems 

to fit well with our regression estimates. Connectivity is a primary driver of both imports and 

exports, and the paths plastics go through.  

Domestically, Germany’s waste management and sorting policies and systems are considered 

the most effective in the world—e.g., in 2020, Germany reported an overall recycling rate of 70% 

(Federal Statistical Office of Germany, n.d.). It also reported that 16% of waste was landfilled, 

and about 12% was treated for energy recovery, which generally entails combustion or 

incineration, and anaerobic digestion. Looking at residues and waste (specifically from 

manufacturing and other economic activities), 48% was recycled, 25% was treated for energy 

recovery, and 19% was landfilled. The results of our analysis, especially the stability of the 

manufacturing industry over time, suggest that it is not expected that China’s ban would 

generate drastic changes in existing infrastructure—which is rather linked to stable budgeting 

and operational environmental policy strategies—especially in large plastic traders. Contrarily, 

changes in plastic trade and processes after the ban followed changes in connectivity. At the 

theoretical level, part of connectivity and bilateral trade would be a function of the existing 
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infrastructure and policy framework that allow to meet supply and demand of plastic, in volume 

and for specific processing. 

For example, at a more general level, European countries have heavily relied on “waste-to-

energy” strategies, incinerating their waste to produce energy, with countries like Britain burning 

almost 50% of their waste (Gardiner, 2021). However, carbon footprint concerns have pushed 

the EU to reduce funding for new incinerating facilities, and instead be redirected toward waste 

prevention, reuse, and recycling. As reflected in our regression estimates, it is thus expected that 

plastic trade connectivity within European nations would allow changes in the movement of 

plastic after the ban without contradicting existing policy. 

The Netherlands also outperforms other developed countries in recycling and waste 

management. It recently followed Germany’s footsteps and introduced a plastic bottles 

“deposit” program (Government of the Netherlands, 2022). Under this program, purchasers are 

charged a small deposit on plastic bottles, which they can recover once they return the bottles 

to the place of purchase. Yet, like in other European countries, national guidelines and criteria 

defining which waste counts as recycled often include waste that is sorted and shipped overseas 

when calculating recycling rates. Nuances like these are not captured in our data. Our trade 

variables are crude measures of import and export volume, and as such they certainly include 

measurement error. The quality of our inferences relies, therefore, on the robustness of our 

regression estimates.  
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North America 

Although more recently the United States does not rank as high as European nations on exports 

of plastic scraps, it continues to send a large portion of its plastic waste to Southeast Asia. The 

United States did not report total plastic waste exports for some years after the ONS was 

implemented. However, reported data for total imports and exports in 2015 and 2020 show 

that, in 2015, the United States exported more than five times as much plastic as it imported. By 

2020, it was still exporting more plastic than it imported but to a lesser extent (i.e., 1.4 times as 

much exports as imports). Figure 14, which visualizes the United States’ plastic waste exports by 

destination in 2016 and 2018, shows that before ONS, most of its exports (about 80%) were 

going to Hong Kong and China.  

In 2018, 66% of exports went to South and Southeast Asia and 30% went to Hong Kong. Results 

from the social network analysis in Chapter 1 suggest that Hong Kong was delayed in fully 

implementing the ONS. Yet, Figure 12 shows that, in spite of continuing to receive plastic from 

other regions, Hong Kong also exported most of plastic waste to South and Southeast Asia after 

the ban. Contrarily, most of the United States’ imports in 2018 (66%) came from within the 

North American region—specifically, from Mexico (40%) and Canada (26%).  
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Figure 14. The United States’ Plastic Scraps Exports by Destination - 2016 and 2018   

 

 

 

 

 

 

 

As aforementioned, the United States has recently introduced policies to increase the domestic 

processing of their plastic waste, not only motivated by ONS but by new international regulations 

and restrictions from Southeast Asian governments. The Environmental Protection Agency (EPA) 

reported that only 9% of overall plastic waste in 2018 was recycled. Aiming to increase this rate, 

EPA recently developed a Solid Waste Infrastructure for Recycling (SWIFR) grant program which 

will request input to guide the development of new waste and recycling programs (United States 

Environmental Protection Agency, 2020). These domestic and foreign policy implementations 

represent an important factor regulating where plastic would go after China’s ban. It is expected 

that variation that arises from factors like these would be directly and indirectly captured by our 

connectivity variable.  

Once again, this case-study examination of selected countries showcases the different 

implications of changes in trade in Western countries versus Southeast Asian countries. More 
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developed nations and nations with large manufacturing industry (including China) possess 

better infrastructure and technology to process plastic waste, but they re-export a large fraction 

of their waste to South and Southeast Asia, where it accumulates in landfills. If this is so, then 

trade connectivity is serving multiple purposes in our models. This is, again, due to the fact that 

our variables are rough measures of the volume of plastic trade without differentiating 

qualitative aspects of that trade. This lack of specificity in our variables should be explored in 

future research to help determine the different roles of connectivity.   
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Chapter 4 | Limitations, Future Research, and Concluding Remarks  

This study presented an investigation of the global plastic waste trade network, describing its 

evolution after the implementation of China’s Operation National Sword—the most important 

plastic waste regulation of the century. This analysis also emphasized the importance of trade 

connectivity in determining national and regional plastic waste trade levels. Although 

macroeconomic variables (i.e., economic development and manufacturing industry size) are still 

relevant explanatory factors of plastic scraps trade patterns, they are not suitable to illustrate 

the network dynamics that predisposed some countries to take in a large fraction of plastic 

waste that was once going to China. Accordingly, this study illustrated how trade connectivity 

offers a new perspective on plastic trade independent from traditional macroeconomic 

approaches.  

Findings showed that large manufacturing countries continue to attract foreign plastic waste, 

becoming the newest waste havens of the world. Particularly, Southeast Asian countries tend to 

have large manufacturing industries and, thus, a stable large demand for raw materials, including 

plastic. Four of the top five manufacturers in the analytic sample are East and Southeast Asian 

countries. Results thus showed that countries with large manufacturing industries import more 

mixed plastic scraps, and to a larger extent, more PE plastic waste.  

Our findings show that, while wealthier countries also take a substantial portion of the world’s 

plastic waste, they still contribute the most to overall plastic exports, especially uncategorized 

and mixed plastic with lower recycling potential. Estimates indicated that economic 

development was a determinant for both imports and exports of mixed plastic waste, but not for 
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PE scraps. Nevertheless, a closer look to plastic trade patterns in Western European, countries 

that accounted for over a third of trade originating in Europe, before and after ONS, and that 

occupy the highest levels of economic development in the analytic sample, showed that 

increases in their imports were predominantly driven by plastic waste trade within Europe. 

Differently, Southeast Asian countries’ imports were, for the most part, coming from other 

regions. 

These are the dynamics that cannot be captured without considering the relational and 

qualitative context of plastic waste trade. As our social network analysis showed, Southeast Asian 

countries who received almost half of China’s and Hong Kong’s combined exports before the 

ban, experienced increases in eigenvector centrality even since Operation Green Fence in the 

early 2010s, and sharper increases after ONS. This was not the case for other key plastic traders. 

For example, although Germany also experienced similar increases in eigenvector centrality, it 

exported the largest portion of plastic to the Netherlands. Southeast Asian countries, on the 

other hand, imported more plastic waste than they exported, rarely sending it to other regions. 

This study showed that all these dynamics were a function of trade connectivity, independent 

from macroeconomic conditions. 

We also show that observed changes in eigenvector centrality reflect other drivers of the 

demand for plastic scraps, such as shifts of plastic pellets production from China to Southeast 

Asian countries. Similarly, eigenvector centrality also showed other changes in country-specific 

policies that facilitated the relocation of countries within the plastic waste trade network.  
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This connectivity measure also partially explained effects initially attributed to higher levels of 

economic development. In other words, as recycling enterprises and plastic pellets producers 

continue to move operations to Southeast Asian countries, these countries consequently 

increase plastic imports and take plastic scraps that China would have otherwise imported 

directly before the ban. As such, changes in the profile of trade partners and the size of plastic 

waste trade among them—occurring independently from economic development—were 

captured by the variation of the centrality measure. Indeed, eigenvector centrality showed to be 

the most important determinant of plastic imports. Overall, the positive effect of eigenvector 

centrality indicated that countries that trade with top importers are more likely to import plastic 

waste as well. 

This study was also intended to provide a more in-depth investigation of the drastic and rapid 

changes experienced by countries in the global plastic waste trade network after National 

Sword’s implementation in 2018. Our analyses revealed that the Southeast Asian countries that 

have historically played the role of pre-processers and intermediaries for plastic scraps and 

pairings, as well as European top-trading countries, were most significantly affected by National 

Sword. While the European nations are generally better equipped to process plastic, other 

countries in Southeast Asia were not adequately prepared for the influx of waste, resulting in 

overfilling landfills, plastics contamination in oceans and waterways, and both air pollution and 

excess GHG emissions.  

There are several limitations in this study worth mentioning. Although the environmental 

performance measure used in this study is not granular enough to capture the specific effect of 

waste management policy, even this macrolevel indicator suggests that countries with better 



86 
 

climate change performance, environmental health, and proximity to achieving their 

environmental policy targets had the ability to prevent other countries from redirecting their 

plastic waste to them after China’s plastic ban was implemented. However, the lack of 

environmental performance indicators available for longer periods that exclusively capture policy 

and performance on plastic waste management prevents us from drawing specific inferences 

regarding plastic policy.  

Indeed, the environmental performance index is based on 40+ indicators including climate 

change mitigation, air quality, and biodiversity and habitat protection. Among the 11 main issue 

categories, waste management performance has a weight of 2% in the overall score. As such, 

instead of using aggregations of multi-issue evaluations regarding the environment, future 

research will benefit from using indices that capture legislation and policy that are more 

specifically related to plastic and other types of waste. Also important to mention, is that EPI is 

not comparable over time. This is because the aggregation methodology varies on an annual 

basis. The lack of comparability does not only emerge from measuring different aspects of policy 

at different levels and with different weighting, but also the insertion of measurement error 

varies. Accordingly, within-country comparisons are not possible. And, as such, our inferences 

were carried out with caution. Our models nevertheless controlled for time fixed effects, which 

could remove part of time-related heterogeneity in the measure. 

Overall, other challenges and limitations of this research are primarily related to data quality and 

availability. For instance, although plastic exports and imports are by definition symmetrical, 

plastic scraps trade data is self-reported by nations, often being underreported or missing. A 

direct result of this, is that less information on country exports was available. Not only are values 
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often missing, but the inability to distinguish between transit countries and final destinations of 

plastic conditions the type of inferences that can be drawn from our findings.  

Ideally, future research could benefit from using a better categorization of plastic imports—i.e., 

one enabling the separation of low-density PE (LDPE) from high-density (HDPE) and PET imports. 

Considering the low profitability of recycling LDPE products, such as plastic bags, this type of 

scrap would ideally be excluded from the “ethylene polymers” model estimation, which is 

assumed to be the most desirable plastic in the market. However, the available data are not as 

granular, with LDPE being included in the same commodity code as HDPE and PET. Our current 

inferences therefore are agnostic to the type of plastic, which are known to have different trade, 

environmental, and policy properties and implications. 

As for measures of other relevant factors discussed in the literature, the percentage of employed 

population in the production of plastic and rubber products, available from the International 

Labor Organization (ILO), was available only for 2009 and for a limited number of countries. This 

situation brings to light the need of plastic-relevant confounders that future research should 

incorporate in their models. This is especially true as researchers would be interested in 

developing and testing connectivity models that can be operationalized differently from 

traditional macroeconomic models of trade. 

Given that plastic scraps are not individually tracked, it is not possible to determine whether 

plastic that is imported is processed domestically or if it is re-exported to other countries. In the 

same way, without data on the generation of plastic waste, it is difficult to distinguish between 

plastic waste that is produced in the country from which it is being imported and waste 
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produced in a different country. Accordingly, our estimates do not distinguish between, for 

example, intraregional trade and trade to “intermediary” countries. Again, our measures are, 

therefore, a crude quantification of the size of trade and the direction of it without distinguishing 

what happens in-between processes and paths of the traded plastic. Future research should 

explore within-country changes in plastic waste policy and the production, origin, and paths of it. 

By observing how changes in waste affect different countries and in different forms—e.g., 

countries that account for large portions of global trade, and, equally important, those that 

operate in the periphery of the plastic market. Furthermore, a closer look at the behavior of 

highly central countries can provide a more detailed understanding of the regions in which 

plastic waste has accumulated, such as the descriptions included in chapter 3 of this study. 

Another limitation of the study is that one of our main independent variables of interest—i.e., 

eigenvector centrality—is the product of an estimation process—namely, a social network 

analysis. In this case, the SNA incorporated some of the variation in trade that may also be part 

of the dependent variable. To be precise, whereas eigenvector centrality incorporates variation 

from country-dyads of bilateral imports of all types of plastic, our dependent variables in the 

regression models are both total imports and total exports of specific types of plastic. Yet, 

connectivity—in the way that has been conceptualized and operationalized here—is a measure 

that assesses the degree to which a country trades plastic with other countries accounting for 

the fact that those nations have in turn other plastic trading partners. That is, imports and 

exports of specific plastics—i.e., our dependent variables—may be an indirect function of the 

strength of plastic trading networks. This situation increases the risk of invalidly testing a null 

hypothesis on the basis of shared-variance at both sides of the equation. 
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Two strategies were applied to increase our confidence that our estimates were not the product 

of this situation. Firstly, as a robustness check and risking for overcontrol, we included in the 

right side of the equation total plastic imports as a control in models of total exports, and vice 

versa (i.e., we controlled for total exports in models of total imports). Our estimates showed to 

be robust to the inclusion of such controls (see tables 2 and 3). A second strategy comes from 

our SGMM estimation (estimates retrieved from these analyses are the ones we interpreted in 

this study), which accounts for endogenous processes in the model. In our particular case, we 

control—depending on the model—for 1- and 2-year lagged versions of the dependent variable, 

which in turn are instrumented by deeper lags of themselves. Our estimates for eigenvector 

centrality are therefore free of time-dependent variation of the dependent variable—i.e., 

independent from an important fraction of the variation it presumably shares with the 

dependent variable.  

This study examined a short span of plastic scraps trade data, covering up to 2020. Yet, the 

COVID-19 pandemic—which started on the last year of our data series—represents a shock wave 

affecting supply chains, macroeconomic indicators and policy, manufacturing and plastic trade. 

Drastic changes are rapidly being incorporated to the new plastic trade landscape that could not 

be estimated with our data. For example, by 2021, the effects of the amendments to the Basel 

convention—which established more strict regulations on the international trade of plastic—

were left out of the scope of this study. Future research should incorporate post-amendment 

data to quantify an evaluate the effects of this international policy, which is paramount as it can 

settle a long-lasting debate about the effectiveness of environmental international agreements. 
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We also believe that improving the quality, coverage, and availability of the data would enable 

researchers to make use of other relevant methodologies. For instance, we experimented with 

Latent Class Analysis (LCA) and Latent Transition Analysis (LTA), which are two classification 

methods that benefit from large sample sizes. Classification methodologies like these would 

provide valuable insights into the latent plastic trade proclivities of countries, how unobservable 

heterogeneity operates in the background of the associations of interest in typical regression 

analyses, as well as how they have changed over time and which factors primarily drive changes 

(preliminary analyses implementing these methodologies are included Section 2 of the 

Appendix).  

Future research can also further explore the role of relational characteristics in a country’s 

plastic waste trade. Although affected by high-leverage observations, the eigenvector centrality 

measure showed to be an important determinant of imports of polyethylene and other plastic 

scraps, suggesting that countries’ roles within the global plastic trade context may be influenced 

by factors beyond macroeconomic ones. This approach would also inform dimensions of policy 

according to relational country characteristics. This is because plastic waste trade policy is a 

multilateral issue that requires action from both producers and recipients of plastic waste, and 

many times governments act on the basis of their own interests—which are better captured by 

country-specific characteristics in a modeling setting.  

Overall, the results of this analysis highlight the importance of countries’ relational context over 

macroeconomic indicators as determinants of plastic scraps trade. Although large manufacturers 

were found to be more likely to import more plastic scraps with high recycling potential (i.e., 

polyethylene waste) and more mixed scraps (though to a lesser extent), it was those with higher 
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eigenvector centrality instead (i.e., those importing from top plastic waste traders) who reported 

the largest plastic scraps imports—especially after the implementation of ONS. Similarly, while 

wealthier countries were found to import and export more plastic waste (including Western 

European countries), highly connected countries in Southeast Asia are the ones that have 

accumulated plastic waste from other regions, being the largest receptors of Chinese and 

American exports after the ban. 

These findings have important implications: namely, that plastic waste accumulation is an 

environmental, socioeconomic, and public health burden borne mostly by poorer and less-

resourced nations across Southeast Asia. For instance, plastic scraps are often contaminated in 

commingled and single-stream recycling processes, and as a result a substantial amount of the 

incoming plastic will continue to accumulate in landfills of countries without neither the 

technology nor the infrastructure to properly recycle it. Furthermore, open dumping and waste 

burning prevails in these countries, which have recycling sectors that mostly consist of informal 

workers without proper physical and labor protections. Consequently, it is they who will remain 

at greater risk of exposure to toxic pollutants and carcinogens from decomposing or burning 

plastic. These implications thus reinforce the notion that the plastic waste trade is not solely an 

economic issue, but also an environmental justice issue. 
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Appendix 

Section 1: Supplementary Figures and Tables 

Figure A. Eigenvector Centrality and Plastic Imports (Logged Kilograms) for Other Countries 

(1999-2020) 
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Figure B. Clustering Coefficient and Plastic Imports (Logged Kg) for Select Countries 
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Table A. Sargan-Hansen (difference) test of overidentifying restrictions  

  Excluding Difference 

  Moment conditions chi2 df p-value chi2 df p-value 

Ethylene 
Imports  

 

Diff. Model (Autoregressive Term L3 and L4) 6.9436 11 0.8036 0.7306 2 0.6940 
Diff. Model (Covariates L2 and L3) 0.5048 1 0.4774 7.1694 12 0.8462 

Level Model (L1 Differences) . -15 . . . . 

Difference Model . -1 . . . . 

Ethylene 
Exports 

Diff. Model (Autoregressive Term L3 and L4) 12.8989 11 0.3000 2.2261 2 0.3286 
Diff. Model (Covariates L2 and L3) 1.1858 1 0.2762 13.9392 12 0.3046 

Level Model (L1 Differences) . -15 . . . . 
Difference Model . -1 . . . . 

Other 
Plastic 

Imports 

Diff. Model (Autoregressive Term L3 and L4) 15.7943 18 0.6069 0.5585 2 0.7564 
Diff. Model (Covariates L2 and L3) 0.5000 2 0.7788 15.8528 18 0.6028 

Level Model (L1 Differences) . -8 . . . . 
Difference Model 0 0 . 16.3528 20 0.6945 

Other 
Plastic 

Exports 

Diff. Model (Autoregressive Term L3 and L4) 24.3990 18 0.1424 0.2473 2 0.8837 
Diff. Model (Covariates L2 and L3) 0.3664 2 0.8326 24.2799 18 0.1461 

Level Model (L1 Differences) . -8 . . . . 
Difference Model 0.6467 0 . 23.9996 20 0.2424 

 

 

Table B. Arellano-Bond test for autocorrelation of the first-differenced residuals 

 Z p-value 
Ethylene Imports -0.4837 0.6286 
Ethylene Exports -1.7150 0.0862 
Other Plastic Imports -0.1319 0.8950 
Other Plastic Exports 0.4382 0.6612 
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Standard errors in parentheses    *** p<0.01, ** p<0.05, * p<0.1 

Table C. SGMM Parameter Estimates, Plastic Imports and Exports by Type (with interaction term) 
  Model 1 Model 2 Model 3 Model 4 

VARIABLES 
Logged Imports 

Ethylene 
Logged Exports 

Ethylene 
Logged Imports 

Other 
Logged Exports 

Other 
     

Logged Plastic Imports (Type for given model) (t-1) 0.370***  0.249***  
 (0.0572)  (0.0874)  

Logged Plastic Imports (Type for given model) (t-2) 0.181***  -0.0174  
 (0.0480)  (0.0903)  
EPI -0.0121 0.00912 0.0184 -0.0108 

 (0.0403) (0.0582) (0.0219) (0.0161) 
Logged Plastic Exports (Type for given model) 0.184**  -0.144**  

 (0.0717)  (0.0729)  
Logged GDPpc (constant 2010 USD) 0.0148 0.182 0.293 0.767*** 

 (0.531) (0.717) (0.350) (0.274) 

Manufacturing (% GDP) 0.169 0.0895 0.0800 0.0198 
 (0.116) (0.107) (0.0778) (0.0402) 
Eigenvector Centrality 10.78** -4.950 8.926** 1.410 
 (4.687) (4.478) (3.622) (2.138) 

Before ONS Dummy 
0.558 

(0.513) 
-0.558 
(0.732) 

-0.0109 
(0.380) 

0.411** 
(0.176) 

Eigenvector * Before ONS  
-3.017 
(3.896) 

2.212 
(4.727) 

1.660 
(3.701) 

-1.141 
(2.474) 

Logged Population 
-0.912* 0.581 -0.297 0.322 

 
 (0.468) (0.613) (0.332) (0.217) 

Weighted Average Distance to Top 5 Exporters 
7.26e-05  -0.000298*  

 (0.000224)  (0.000154)  

Logged Plastic Exports (Type for given model) (t-1)  0.603***  0.524*** 

  (0.0768)  (0.0871) 
Logged Plastic Exports (Type for given model) (t-2)  0.210***   
  (0.0575)   

Logged Plastic Imports (Type for given model)  0.233*  0.0250 

  (0.141)  (0.0663) 
Average Distance to Top 5 Importers  0.000230  5.76e-05 
  (0.000214)  (8.53e-05) 

Time Fixed Effects Yes Yes Yes Yes 
Constant 15.68* -14.85 15.47*** -5.380 
 (8.810) (10.01) (5.849) (4.220) 

Observations 1,895 1,895 1,873 1,893 

Number of countries 119 119 119 119 
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Standard errors in parentheses    *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table D.  SGMM Parameter Estimates, Plastic Imports and Exports All Types 
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

VARIABLES Logged Plastic 
Imports 

Logged Plastic 
Imports 

Logged Plastic 
Imports 

Logged Plastic 
Exports 

Logged Plastic 
Exports 

Logged Plastic 
Exports 

 
 

     
Logged Plastic Imports (t-
1) 

0.802*** 0.729*** 0.770*** 
   

 (0.125) (0.105) (0.110)    

Logged Plastic Exports (t-1)    0.920*** 0.872*** 0.848*** 
    (0.098) (0.099) (0.094) 
EPI 0.021** 0.0058  0.0067 0.0023  

 (0.009) (0.014)  (0.010) (0.014)  
Logged Exports of Plastic 
for Packaging 

 
0.026 -0.018 

   

  (0.159) (0.170)    
Logged GDPpc (constant 
2010 USD) 

 
0.253 0.307 

 
0.176 0.172 

  (0.339) (0.352)  (0.182) (0.151) 
Manufacturing (% GDP)  0.0339 0.029  0.041 0.0425 
  (0.039) (0.040)  (0.049) (0.046) 
Weighted Average 
Distance to Top 5 
Exporters 

 
-0.00013 -0.00013 

   

  (0.000) (0.0001)    

Logged Population  0.269 0.319  -0.008 -0.0357 

  (0.270) (0.379)  (0.155) (0.140) 

Logged Plastic Imports 
 

 
  

0.009 0.009 

     (0.064) (0.055) 

Average Distance to Top 5 
Importers 

 
 

  
0.00007 0.00004 

     (0.00001) (0.00008) 
Constant  -2.992 -  - - 
  (6.056) -  - - 
       

Observations 2,058 2,058 2,058 2,107 2,017 2,017 

Number of countries 127 127 127 122 122 122 
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Table E. SGMM Parameter Estimates, Plastic Imports and Exports by Type with Eigenvector 
Centrality 

 

  Model 1 Model 2 Model 3 Model 4 

VARIABLES 
Logged Imports 

Ethylene 
Logged Exports 

Ethylene 
Logged Imports 

Other 
Logged Exports 

Other 
     

Logged Plastic Imports (Type for 
given model) (t-1) 

0.367***  0.303***  

 (0.060)  (0.067)  

Logged Plastic Imports (Type for 
given model) (t-2) 

0.189*** 
  

 

 (0.051)    
EPI -0.0190 -0.027 0.004 -0.008 

 (0.039) (0.040) (0.019) (0.017) 
Logged Plastic Exports (Type for 
given model) 

0.154*  -0.156* 
 

 (0.079)  (0.088)  
Logged GDPpc (constant 2010 USD) 0.288 0.389 0.578** 0.704** 

 (0.558) (0.551) (0.288) (0.316) 

Manufacturing (% GDP) 0.210* 0.010 0.106 0.015 
 (0.118) (0.093) (0.071) (0.049) 
Eigenvector Centrality 11.92** 0.732 8.660** 1.981 
 (4.968) (2.628) (4.411) (1.527) 
Logged Population -0.474 -0.271 -0.122 0.245 
 (0.871) (1.128) (0.612) (0.263) 

Weighted Average Distance to Top 5 
Exporters -0.00011  -0.0002* 

 

 (0.00025)  (0.0001)  
Logged Plastic Exports (Type for 
given model) (t-1) 

 0.587***  0.527*** 
  (0.074)  (0.103) 
Logged Plastic Exports (Type for 
given model) (t-2)  0.231***   

  (0.046)   

Logged Plastic Imports (Type for 
given model) 

 0.147  0.034 

  (0.114)  (0.080) 
Average Distance to Top 5 Importers  0.00015  0.00005 
  (0.0002)  (0.0001) 
Time Fixed Effects Yes Yes Yes Yes 
Constant 5.69 0.759 8.853 -4.036 
 (17.95) (21.60) (11.25) (5.13) 

Observations 1,895 1,895 1,893 1,893 

Number of countries 119 119 119 119 
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Table F. SGMM Parameter Estimates, Plastic Imports and Exports by Type with Limited Sample 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Model 1 Model 3 

VARIABLES 
Logged Imports 

Ethylene 
Logged Imports 

Other 
   

Logged Plastic Imports (Type for 
given model) (t-1) 

0.280* 0.796*** 

 (0.160) (0.173) 
Logged Plastic Imports (Type for 
given model) (t-2) 0.088 

 

 (0.198)  
EPI -0.009 0.007 

 (0.030) (0.019) 
Logged Plastic Exports (Type for 
given model) 0.203 -0.034 

 (0.192) (0.044) 
Logged GDPpc (constant 2010 USD) -0.551 -0.146** 

 (0.777) (0.435) 

Manufacturing (% GDP) -0.020 -0.040 
 (0.053) (0.055) 
Eigenvector Centrality 6.97** 3.93* 
 (2.762) (2.38) 
Logged Population -0.268 -0.3187 
 (0.227) (0.228) 

Weighted Average Distance to Top 5 
Exporters 

-0.00014 0.0000 

 (0.00025) (0.0001) 
Logged Plastic Exports (Type for 
given model) (t-1) 

  
   
Logged Plastic Exports (Type for 
given model) (t-2) 

  

   

Logged Plastic Imports (Type for 
given model) 

  

   
Average Distance to Top 5 Importers   
   
Time Fixed Effects Yes Yes 
Constant 18.20*** 10.62* 
 (6.36) (5.64) 

Observations 460 448 

Number of countries 44 44 
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Table I. Summary Statistics 

Variable  Obs Mean Std. dev. Min Max 
EPI 102 71.87 13.73 37.1 90.68 
Log GDP pc 102 8.87 1.40 5.94 11.36 
Manufacturing 102 12.91 5.15 2.99 33.35 

 

                                          Table H. Hausman McFadden Tests   
 Removing Class 1 

Base outcome: Class 4 
Removing Class 2 

Base outcome: Class 4 
Removing Class 3 

Base outcome: Class 4 
Removing Class 4 

Base outcome: Class 3 
  

Chi2 2.40 -0.24 6.69 0.78 
Prob > Chi2 0.9662 . 0.4621 0.998 

     

    
 

 

 

 

 

 

Table G. Multinomial Logistic Regression Parameter Estimates, Status 2016 and 2018 Including 
Population Size 

 
(1)  

Net importer both 
years 

(2)  
Net importer only 

2016 

(4) 
 Net importer only 2018 

 
Logged GDPpc (constant 2010 USD) (2016) 0.689 0.321** 1.445 

 (0.295) (0.173) (0.545)     
EPI (2016) 1.063 1.269*** 0.951 
 (0.052) (0.142) (0.040)     
Manufacturing (% GDP) (2016) 1.059 1.113 1.059 

 (0.064) (0.072) (0.054) 
Logged Population 1.246 1.811 1.408* 

 (0.283) (0.765) (0.270)     
Constant 0.001 0.000 0.001 

 (0.005) (0.000) (0.002)      
Observations 102 102 102 
Pseudo R2 0.089 0.089 0.089 
Wald Chi2 19.20** 19.20** 19.20** 
Note: standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Section 2: Latent Class Analysis Preliminary Findings 

Through Latent Class Analysis (LCA) countries can be categorized in “latent classes” of plastic 

trade tendencies based on their given characteristics (e.g., level of development and 

environmental performance). Since LCA takes each value of a variable as a category, all variables 

were recoded as categorical variables, using quintiles as levels, to facilitate the classification 

process. In other words, each variable was recoded into 5 levels, one per quintile.  LCA fits the 

number of classes specified prior to estimation and output conditional probabilities of observing 

each category-value of each covariate in a given class, (i.e., it estimates the probability for 

countries in each class to exhibit a specific characteristic). 

Countries’ class membership (in the generated latent classes) can be estimated with or without 

the inclusion of covariates. The basic model with no covariates assumes that countries’ prior 

probabilities of class membership are the same, whereas including covariates allows the prior 

probabilities to vary for each country according to the observed values of the covariates. If the 

first approach is implemented, one can also estimate the effect of the covariates on class 

membership by predicting posterior class membership probabilities and using them as the 

dependent variable in a regression with the covariates of interest. 

I start by fitting a basic latent class model for 127 countries based on levels of plastic imports, 

exports, and the difference between them (exports(kg)-imports (kg)). The difference measure is 

introduced to identify top net importers and net exporters, which are countries that import 

more than they export and vice versa. Accordingly, net importer countries, would be identified 

as potential waste havens. Table J shows conditional category response probabilities (i.e., the 
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probability of observing each category value in a given class) for the year 2010. The year 2010 

was selected as a representative year before the implementation of the ban since regulatory 

measures in China were launched in the early 2010s and started being implemented as early as 

2013. Only 114 countries were fitted since the remaining did not have complete data. Three 

classes are selected as the number of classes producing the best fit. Each class was assigned an 

identifying name according to the probabilities in each category. Countries in class 2, for 

example, are characterized by being either top net importers or top exporters, but nothing in 

between. This means that class 2 countries either import substantially more plastic than they 

export, or they export substantially more than they import. Countries in class 1 are those that 

trade the least plastic and those in Class 3 have medium-high levels of trade. 40.7% of countries 

are assigned to class 1, 31% to class 2, and 28.3% to class 3. 

 

Table J. 2010 LCA Conditional Probabilities  

Plastic Imports Levels (1 Lowest - 5 Highest) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.4622 0.3182 0.2195 0.0000 0.0000 
Class 2 – Polarized Diff 0.0000 0.0000 0.0908 0.2853 0.6238 
Class 3 – Higher Levels 0.0797 0.2529 0.3783 0.3783 0.0000 
Plastic Exports Levels (1 Lowest - 5 Highest) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.5249 0.4751 0.0000 0.0000 0.0000 
Class 2 – Polarized Diff 0.0308 0.0596 0.0400 0.2722 0.5975 
Class 3 – Higher Levels 0.0000 0.0000 0.6499 0.3501 0.0000 
Difference (1 High imports relative to exports – 5 High exports relative to imports) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.1367 0.5180 0.3453 0.0000 0.0000 
Class 2 – Polarized Diff 0.3916 0.0000 0.0000 0.0324 0.5760 
Class 3 – Higher Levels 0.0542 0.0597 0.2386 0.6475 0.0000 
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To evaluate more immediate trade behaviors before and after the enactment of the National 

Sword Policy, the year 2016 is compared to 2010 and 2018. Table K shows the posterior 

probabilities of the 2016 LCA model, showing similar patterns to 2010. 36% of countries are 

assigned to class 1, 41% to class 2, and 23% to class 3. Compared to 2010, class 2 membership 

increased by 10%. Similarly, the posterior probability of observing a value of 1 in the difference 

between exports and imports (signaling greater imports compared to exports) increased to 49% 

from 39% in 2010. This indicates that even before the ban implementation, top plastic trading 

countries (those in class 2) were experiencing a more rapid increase of their imports relative to 

their exports.  

The output of a latent class model for the year 2018, the year the ban went into effect, is 

reported in Table L. 35.2% of countries were assigned to class 1, 35.6% to class 2, and 29.2% to 

class 3. One of the most evident differences to the previous years is seen in the “polarized 

differences” class (i.e., class 2). Whereas in 2016 49% of countries in this class were countries 

with the largest imports relative to their exports (category 1), this percentage increased to 58% 

in 2018. While this is a similar increase from 2010 to 2016, that 10% increase happened over a 

period of six years, whereas the same increase was observed in 2018 just after 2 years. 

Membership in class 2 decreased from 41% of countries in 2016 to about 36% in 2018. These 

results suggest that immediately after the ban went into effect, some countries (~5%) with the 

highest levels of both imports and exports reduced their overall trade. However, countries who 

stayed in the top of plastic scrap traders, saw an increase in their imports relative to their 

exports of plastic scraps. 
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Table K. 2016 LCA Conditional Probabilities 

Plastic Imports Levels (1 Lowest - 5 Highest) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.4970 0.4362 0.0669 0.0000 0.0000 
Class 2 – Polarized Diff 0.0000 0.0000 0.1364 0.3834 0.4803 
Class 3 – Higher Levels 0.1273 0.1867 0.5125 0.1735 0.0000 
Plastic Exports Levels (1 Lowest - 5 Highest) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.5273 0.4727 0.0000 0.0000 0.0000 
Class 2 – Polarized Diff 0.0422 0.0880 0.0639 0.3210 0.4849 
Class 3 – Higher Levels 0.0000 0.0000 0.7197 0.2803 0.0000 
Difference (1 High imports relative to exports – 5 High exports relative to imports) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.0000 0.5385 0.4615 0.0000 0.0000 
Class 2 – Polarized Diff 0.4867 0.0000 0.0000 0.0266 0.4867 
Class 3 – Higher Levels 0.0000 0.0721 0.1442 0.7837 0.0000 

 

As aforementioned, to estimate the effect of the covariates on class membership, I take the 

posterior probabilities of the yearly models and calculate their differences to use as dependent 

variables. Specifically, I subtract 2016’s posterior probability of belonging to class 2 (i.e., the class 

of interest) from 2018’s. This difference is then a measure of the change in countries’ probability 

of being a top net exporter or importer before and after the ban implementation. Estimates 

from an OLS linear regression with robust standard errors are reported in Table M for the 

difference between 2016 and 2018. The geographical distance variable is not included since this 

does not vary over time. Additionally, given the size of the sample, the included covariates are 

limited to the baseline values (values in 2016) GDP per capita, environmental performance, size 

of manufacturing sector, and population size. The direction of the difference (2018 – 2016) 

means that positive values represent a higher probability of membership in 2018 and negative 

values mean that the probability was greater in 2016. The baseline GDP per capita estimate has a 
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robust positive effect on the difference in the probability of class 2 membership between 2016 

and 2018. This means that the greater the level of development in 2016, the greater the 

difference, hence the higher the probability of class 2 membership in 2018.  The coefficient for 

environmental performance is negative, reducing the probability of belonging to class 2 in 2018. 

However, its effect is small and only statistically significant in the presence of other controls. 

 

Table L. 2018 LCA Conditional Probabilities 

Plastic Imports Levels (1 Lowest - 5 Highest) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.5226 0.3015 0.1759 0.0000 0.0000 
Class 2 – Polarized Diff 0.0000 0.0000 0.0346 0.4003 0.5651 
Class 3 – Higher Levels 0.0632 0.3189 0.4232 0.1947 0.0000 
Plastic Exports Levels (1 Lowest - 5 Highest) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.5263 0.4737 0.0000 0.0000 0.0000 
Class 2 – Polarized Diff 0.0510 0.1020 0.0489 0.2366 0.5615 
Class 3 – Higher Levels 0.0000 0.0000 0.6120 0.3880 0.0000 
Difference (1 High imports relative to exports – 5 High exports relative to imports) 
 Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) 
Class 1 – Lower Levels 0.0000 0.4474 0.4474 0.1053 0.0000 
Class 2 – Polarized Diff 0.5795 0.0000 0.0000 0.0274 0.3932 
Class 3 – Higher Levels 0.0000 0.1457 0.1457 0.4930 0.2156 
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Table M. OLS Estimates – Differences in Posterior Probabilities 
 

 Model 1 Model 2 Model 3  
Logged GDPpc (constant 2010 USD) (2016) 0.072** 0.086*** 0.105*** 

 (0.037) (0.037) (0.038)     
EPI (2016) -0.005 -0.006** -0.004 

 (0.004) (0.004) (0.004)     
Manufacturing (% GDP) (2016)  0.011*** 0.008 

  (0.006) (0.006)     
Logged Population (number of people)   0.048*** 

   (0.022)     
Posterior Probability Class 2 - 2016 -0.378*** -0.440*** -0.543*** 

 (0.071) (0.077) (0.089)     
Constant -0.170 -0.334* -1.316*** 

 (0.207) (0.221) (0.502)      
Observations 127 126 126 
R2 0.234 0.261 0.289 
Adjusted R2 0.215 0.237 0.260 
Residual Std. Error 0.326  0.323  0.318  
F Statistic 12.509***  10.700*** 9.765***   
Note: Standard errors in parentheses                       *** p<0.01, ** p<0.05, * p<0.1 
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