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Abstract

Centrality measures assign numbers or rankings to network nodes that reflect their
importance. There are many types of centrality measures, each suitable for different
types of networks and applications. In Chapter 2, we consider a model of astronaut
health during a space mission. Katz centrality is commonly used to measure the
influence of nodes in social and biological networks. We motivate its use in this ap-
plication to estimate the expected quality time lost due to the progression of medical
conditions. In Chapter 3, we find dominating sets in satellite networks. To do this,
we use the Shapley value, a centrality measure that originates in game theory and is
computed based only on local network information. We demonstrate that the Shap-
ley value is an effective and time-efficient tool for finding small dominating sets in
various random graph families and a set of real-world networks. In Chapter 4, we
introduce a novel algorithm for categorizing which nodes are nearest the boundary,
called boundary nodes, in a network that uses Chvátal’s definition of a line in a graph.
We test this algorithm on random geometric graphs and compare its effectiveness to
other known methods for boundary node detection.

In Chapter 5, for certain sets S and equations eq, we look for the smallest number
of colors rb(S, eq) such that for every surjective rb(S, eq)-coloring of S, there exists
a solution to eq where every element of the solution set is assigned a distinct color.
We show that rb([n], x1 + x2 = x3) = ⌊log2(m) + 2⌋ and rb([m] × [n], x1 + x2 = x3) =
m + n + 1 for m, n ≥ 2. In Chapter 6, a graph G is H-semi-saturated if adding an
edge e to G that is not currently in G causes H to appear as a subgraph in G that
contains e. We say that G is H-saturated if G does not contain H as a subgraph
before adding e. The smallest number of edges in an H-semi-saturated (H-saturated)
graph is called the semi-saturation number of H (saturation number of H). We show
that the saturation and semi-saturation numbers differ by at least 1 for a disjoint
union of paths called a linear forest. Additionally, we find graph families for which
the saturation number is monotonic with respect to the subgraph relation.
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Chapter 1

Introduction

1.1 Overview

Networks are everywhere and appear in many scientific contexts, such as biology,

social sciences, math, computer science, engineering, communication, health, and

data science [1–4]. For example, a group of people and their social relationships may

be viewed as a network. More precisely, a network is a set of objects, called nodes,

connected by links that join pairs of nodes. Network analysis broadly describes a set

of tools that are used to model and analyze systems based on their network structure.

For example, community detection algorithms look for a natural division of a network

into dense clusters to describe its high-level structure [5–7]. Such structure can then

be used to map the network, classify nodes or better understand the interaction

between network structure and dynamics, such as disease spread in a social network.

Another prevalent topic in network analysis, and the focus of Part I of this disser-

tation, is the problem of measuring the importance of each node in a network [1,8,9].

There are numerous ways of defining and measuring importance, called centrality
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measures, and it all depends on the application. For example, the number of links

attached to a node could indicate its importance. Further importance can be given

to a node if the nodes it is connected to have many connections themselves, and so

on. This behavior can be captured by what is called eigenvector centrality [10] and is

related to how Google measures the importance of its web pages [11]. Alternatively,

an application may be such that we deem a node important if it is a part of many

shortest paths between other nodes. This idea is captured by betweenness centrality.

These two examples only scratch the surface of the vast number of measures available.

Some centrality measures only use information from the immediate neighborhood

of a node, called a local centrality measure. If a measure requires information from

the entire network, it is called global. In Section 1.2 and 1.3 we define many local and

global centrality measures, respectively, used in the literature and throughout Part I

of this dissertation. In future chapters, we describe uses for a few of these centrality

measures.

Chapter 2 applies the study of centrality to a medical application. The Medical

Extensible Dynamic Probabilistic Risk Assessment Tool (MEDPRAT) developed by

NASA is an event-based risk modeling tool that assesses human health and medi-

cal risk during space exploration missions. One of its key features is the ability to

represent and simulate the relationships between medical events. The Susceptibility

Inference Network (SIN) captures these relationships in an internal data structure.

We develop a model to capture the nuances of the SIN and assess the medical events

using Katz centrality to understand their risk of progressing.

In Chapter 3, we worked with the Space Communications and Navigation team

at NASA to create and develop a local algorithm for determining critical satellites

3



in the communication network. This algorithm was created for dynamic satellite

communication data (Starlink, Iridium, etc.) but has applications elsewhere. We test

the performance of our algorithm on a variety of random graphs.

Chapter 4 describes a novel approach for identifying the points nearest the bound-

ary of a shape using limited data on their relative proximity. We ultimately designed

and implemented an algorithm in Python and tested it on simulated data.

These three applications are far apart regarding underlying processes, network

models, and types of questions asked. Despite these differences, centrality measures

are an indispensable tool in each case. These applications will showcase the im-

portance of choosing the right centrality measure for the model and the problem at

hand.

1.2 Local Centrality Measures

First, we define more precisely what we mean by a graph, or network. A graph is

a tuple G = (V, E), where V is a collection of objects, called nodes or vertices, and

E ⊆ V × V is a set of node pairs, called edges. If the edges are ordered pairs, each

edge has a direction, and G is called a directed graph.

A centrality measure c is local if c(v) only requires information from vertices u such

that (u, v) ∈ E; such vertices u are said to be adjacent to v and the set of all adjacent

nodes is called the neighborhood of v, denoted N(v). The number of vertices in N(v)

is called the degree or degree centrality of v, which is the quintessential example of

a local centrality measure. If u is adjacent to v, the (u, v)th entry of the adjacency

4



matrix , typically denoted A, is 1; hence the degree of v is

deg(v) = kv =
∑
u∈V

Auv.

Two notions of degree, or degree centrality, exist in a directed graph: the in-degree

k+
v and out-degree k−

v centrality,

k+
v =

∑
u∈V

Auv and k−
v =

∑
u∈V

Avu.

For example, the in-degree in the network of citations often determines a paper’s

influence, which represents the number of articles that cite it. The remainder of

the section describes a few other local centrality measures: the clustering coefficient,

Shapley value, and neighbor-degree centrality.

The clustering coefficient [12] of a node v is

CC(v) = 2tv

kv(kv − 1) = tv(
kv

2

) .

Here, tv is the number of triangles that node v is a part of. The clustering coefficient

measures how close the neighbors of a node are to forming a clique. Since being intro-

duced in 1998, it has been used in brain networks [13], urban train line networks [14],

and more to establish a measure of local connectivity [15].

The Shapley value (SV), initially defined in game theory [16], was introduced as

a network centrality measure by Bozzo et al. [17]. We use a version defined in [18],

namely.

S(v) =
∑

u∈N(v)

1
deg(u) .

5



A node with a high Shapley value is likely adjacent to many low-degree nodes. This

definition of the Shapley value is simple and, in our case, instrumental when con-

structing dominating sets (see Chapter 3). Outside of this, the value appears many

times in the literature [19–22].

Ai et. al. define the neighbor-degree centrality (ND) of v by ND(v) =
∑

u∈N(v) ku

ki
[23].

The value ND(v) is the average degree of the neighbors of v. We define a relative

version of the neighbor-degree centrality in Chapter 3.

1.3 Global Centrality Measures

A global centrality measure requires the entire network to compute it. Here, we

describe some of a few well-known global centrality measures.

The closeness centrality (C) [24–26] of a vertex v is defined as

C(v) = n − 1∑
u d(u, v)

where d(u, v) is the length of a shortest path between u and v and n the number of

vertices in the graph. The closeness centrality helps us identify the vertices at the

smallest average distance from other vertices in the network and has been used to

study lexical processing and social networks [27,28].

The betweenness centrality (B) [29] of a vertex v is defined as

B(v) =
∑

u̸=v ̸=w

σuw(v)
σuw

where σuw(v) is the number of shortest paths starting from vertex u and ending at

6



vertex w passing through v and σuw is the total number of shortest paths from u

to w. This centrality measure gives a high score to the vertices contained in a large

number of shortest paths. It has been used to estimate the interdisciplinary influence

of a journal and to study traffic patterns [30,31].

The eigenvector centrality, initially proposed by Bonicach [10], is defined as the

solution x⃗ to the well-known equation Ax⃗ = ρx⃗ where A is the adjacency matrix of

N , and ρ is the largest eigenvalue of A. An alternative definition is

x⃗u = ρ−1 ∑
v∈V

x⃗vAuv. (1.1)

Eigenvector centrality assigns more importance to a node if its neighbors are them-

selves important. The unique eigenvector corresponding to ρ is guaranteed by the

Perron-Frobenius theorem, which states that every square matrix with non-negative

real entries will have a real, non-negative eigenvalue ρ that is greater than or equal

to all other eigenvalues [32, 33]. Consequently, the corresponding eigenvector x⃗ has

real, non-negative entries, which defines the eigenvector centrality.

The spectral radius ρ of N (or A) is the maximum modulus of the eigenvalues of

A, and a walk of length k from node u to v is a sequence of k edges (vi, vi+1) ∈ E,

i ∈ [1, k] such that v1 = u and vk+1 = w. The Katz centrality developed by Leo

Katz in 1953 [34], counts the number of all possible walks of any length going from

one vertex to another. When accounting for a walk, this centrality incorporates the

weight of every edge traversed and an additional factor α, called the Katz parameter ,

for each additional step in the walk. In short, for α ∈
(
0, 1

ρ

)
, Katz centrality is defined

7



by the matrix-vector product

(
(I − αA)−1 − I

)
· W,

where I is the n × n identity matrix, and W is the n × 1 vector of non-negative

vertex weights. The result of this computation is a vector of Katz scores. We mention

predicting neuronal activity in neuroscience from the numerous successful applications

of Katz centrality. The vertex importance in this setting is due to the influence of a

firing neuron on the firing of adjacent neurons and the decaying effect on more distant

neurons [35].
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Chapter 2

The use of Katz centrality for a

medical application

The work presented in this chapter results from a collaboration with Dr. Mona Matar,

Lauren McIntyre, and Dr. Puck Rombach, most of which is documented in [39].

2.1 Introduction

Networks are structures that naturally appear in every aspect of life and are studied

in a wide range of disciplines from sociology, biology, and engineering [1,40–42]. One

common question in network theory is how to rank the nodes according to importance,

where importance can have many meanings depending on the application [43]. Many

ranking algorithms are based on a, possibly weighted, count of walks in which a node

is contained. Examples of such centrality measures are degree, betweenness [29],

closeness [24–26], eigenvector [10, 44], PageRank [45], the Estrada index [46], and

Katz centrality [34]. We argue that the latter is suitable for our application, hence
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the focus of this paper.

We look at a model component developed by the National Aeronautics and Space

Administration’s (NASA) Human Research Program (HRP) called the Susceptibility

Inference Network (SIN). This network represents the probability that simulated med-

ical conditions may occur and progress to subsequent, clinically related conditions.

When integrated with MEDPRAT, these relationships will produce results that are a

more appropriate analog to the real-world medical system than the standing assump-

tion that conditions are probabilistically independent. The SIN is currently a proto-

type, as the data used to inform it does not have the necessary credibility required

by NASA standards 7150.2D and 7009A for use in decision support tools [47, 48].

Given the time and financial costs associated with evidence collection at this scale,

there is significant motivation to focus those efforts towards conditions, or groups of

conditions, whose relationships most influence medical risk outcomes.

Katz centrality, developed by Leo Katz in 1953 [34], has been used in numerous

applications [35,49]. The Katz centrality of a node is a weighted count of all walks of

any length starting at the node. Each walk of length k is weighted by αk, where α is

called the Katz parameter . We formally define Katz centrality in Section 2.1.1. Since

the Katz parameter has a decaying effect, we can approximate the Katz centrality by

ignoring the contribution of walks past a given length L. In [50] and [51], the authors

numerically explore this approximation type. In Section 2.2, we give a lower bound

on this value L (in terms of α) that guarantees a desired level of accuracy in terms

of the Katz centrality and its node ranking.

The network we model we use in this section is a Bayesian network, where the

nodes are variables, and their edges (u, v) are weighted the conditional probability
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P(v|u). We specifically use a dynamic Bayesian network (DBN), which is a Bayesian

network where the probabilities depend on discrete time steps [52]. For every time

step t, each edge is weighted by P(vt+1|ut). We consider a DBN of medical conditions

where each link (u, v) is weighted by the probability that condition v occurs at time

t + 1 given condition u occurs at time t. This network is called the Susceptibility

Inference Network (SIN). Each node in the SIN is weighted by the quality time one

can expect to lose if they get that condition, called the Quality Time Lost (QTL).

This paper is organized as follows. Section 2.1.1 reviews useful graph theory

concepts, definitions, and basic results. Here, we introduce the ϵ-agreement of two

centrality measures, which indicates their agreement regarding node rankings given

an assumed ϵ margin of error in their node centrality scores. Section 2.1.2 introduces

the SIN data set, which is the application of interest. In Section 2.2, we bound the

error generated from approximating the Katz centrality by restricting the number

of steps allowed in a walk, and develop a relationship between that number and

the Katz parameter α. An example of the relationship between α and the α-Katz

centrality node ranking is in Section 2.2 and our medical application in Section 2.3.

Additionally, we assess the upper bound given in Section 2.2 to the true length in

Section 2.4. Finally, the results and future work are addressed in Section 2.5.

2.1.1 Definitions

This section provides basic definitions for the graph-theoretical structures and tools

used for the results in Section 2.2. We restate many of the definitions needed for this

chapter here.
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Definition 1. (Weighted, directed network) Let N = (V, E, w) be an edge-

weighted, directed network consisting of V , the set of n nodes, E ⊆ V × V , the set of

edges, and a weight function w : E → R+.

We represent such a network by an adjacency matrix A = A(N), where the entry

Aij is the weight of the edge from node i to node j, or Aij = 0 if there is no edge from

i to j in N . Let W be an n-dimensional vector of non-negative node weights. In a

setting where edges and/or nodes are unweighted, weights in A and W are set to 1.

For example, in our application in Section 2.3, our weighted, directed network has

nodes that represent medical conditions, and the node weights represent their severity,

while edge weights represent the probability of one medical condition progressing to

another.

As a reminder, the spectral radius ρ of N (or A) is the maximum modulus of

the eigenvalues of A. A walk of length k from node u to v is a sequence of k edges

(vi, vi+1) ∈ E, i ∈ [1, k] such that v1 = u and vk+1 = w. The distance from u to

v is the length of a shortest walk from u to v. The k-hop neighborhood of a node

v ∈ V is the set of nodes at a distance less than or equal to k from v, denoted

Nk(v). A centrality measure is a function that assigns a real number to each node,

to evaluate its relative importance to other nodes. Each centrality measure gives a

(partial) ranking of the nodes, which reflects their relative importance.

Here, we define Katz centrality, a parameterized centrality measure whose param-

eter α takes in walk length considerations.

Definition 2. (Katz centrality) Let N be an edge-weighted, directed network with

node weights W . Let A = A(N) with spectral radius ρ, and let α ∈ (0, 1/ρ). The
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α-Katz centrality vector [34,53,54], is defined as

C(α) =
( ∞∑

i=1
αkAk

)
· W =

(
(I − αA)−1 − I

)
· W.

The α-Katz score of a particular node i can then be expressed as

C(α)i =
∞∑

k=1

n∑
j=1

Wjα
k
(
Ak
)

ij
.

The (α, ℓ)-Katz centrality vector [55–57] is

C(α, ℓ) =
(

ℓ∑
i=1

αkAk

)
· W

and for a particular node i, the (α, ℓ)-Katz score can be written as

C(α, ℓ)i =
ℓ∑

k=1

n∑
j=1

Wjα
k
(
Ak
)

ij
.

Both C(α) and C(α, ℓ) measure the downstream influence of nodes since they

are weighted sums over outgoing walks. Replacing the matrix A by its transpose

AT reverses edge directions, taking weighted sums over incoming walks instead and

measuring the upstream influence [1, 53].

Definition 3 provides a tool to compare centrality measures purely in terms of

their relative node rankings. Intuitively, we may set a threshold ϵ for a centrality

measure C, such that |Ci − Cj| ≥ ϵ implies that C provides a relative ranking of

nodes i and j. If |Ci − Cj| < ϵ, we cannot reliably recover a ranking from C. For

two centrality measures C and C ′, we compare their rankings and conclude that they

agree on a ranking if they agree for every node pair where both rankings are reliable.
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Definition 3. (ϵ-agreement) Let N be a weighted, directed network, ϵ, ϵ′ > 0, and

C and C ′ be centrality measures. The nodes i, j ∈ V (N) are (ϵ, ϵ′)-properly ranked

with respect to C and C ′ if the following holds:

1. |Ci − Cj| < ϵ or |C ′
i − C ′

j| < ϵ′,

2. otherwise, Ci − Cj and C ′
i − C ′

j have the same sign.

We say that C and C ′ (ϵ, ϵ′)-agree on N if every pair of nodes in N is (ϵ, ϵ′)-properly

ranked with respect to C and C ′. If ϵ = ϵ′, we simply say ϵ-proper ranking and

ϵ-agreement.

Definition 4. Let N be an edge-weighted, directed network, ϵ > 0, α ∈ (0, 1/ρ). We

let

Lα,ϵ(N) = min{ℓ | C(α) and C(α, ℓ) ϵ-agree on N}.

When the parameters are clear from the context, we will let L = Lα,ϵ(N).

Proposition 1. Let C and C ′ be two centrality measures on a network N . If

∥C − C ′∥∞ < ϵ,

then C and C ′ ϵ-agree.

Proof. Suppose for the sake of contradiction that C and C ′ do not ϵ-agree. Then,

there exists a pair of nodes u, v ∈ V (N) that is not ϵ-properly ranked. By part (1)

of Definition 3, we have |Cu − Cv|> ϵ and |C ′
u − C ′

v|> ϵ. By part (2), without loss of

generality, we have Cu − Cv < 0 and C ′
u − C ′

v > 0.
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We have

C ′
u − Cu = C ′

u − C ′
v︸ ︷︷ ︸

>ϵ

+ C ′
v − Cv︸ ︷︷ ︸
>−ϵ

+ Cv − Cu︸ ︷︷ ︸
>ϵ

> ϵ,

which contradicts that ∥C − C ′∥∞ < ϵ.

Proposition 2. Let C and C ′ be two centrality measures on a network N such that

for all v ∈ V (N), 0 ≤ Cv − C ′
v < 2ϵ, then C and C ′ ϵ-agree.

Proof. Suppose for the sake of contradiction that C and C ′ do not ϵ-agree. Then,

there exists a pair of nodes u, v ∈ V (N) that is not ϵ-properly ranked. By part (1)

of Definition 3, we have |Cu − Cv|> ϵ and |C ′
u − C ′

v|> ϵ. By part (2), without loss of

generality, we have Cu − Cv < 0 and C ′
u − C ′

v > 0.

We have

Cu − C ′
u = Cu − Cv︸ ︷︷ ︸

<−ϵ

+ Cv − C ′
v︸ ︷︷ ︸

<2ϵ

+ C ′
v − C ′

u︸ ︷︷ ︸
<−ϵ

< 0,

which contradicts that Cu − C ′
u ≥ 0.

In Section 2.2, we use this notion to compare two closely related centrality mea-

sures, C(α) and C(α, ℓ), and we therefore only use ϵ-proper ranking and ϵ-agreement.

However, we state the definition here in a more general form. It can be used to

compare any pair of centrality measures, even if their distributions of values differ

significantly. The vector C(α, ℓ) converges to C(α) as ℓ → ∞. In Theorem 1, we

show that this implies that for all ϵ > 0, there exists an L so that for any ℓ > L, C(α)

and C(α, ℓ) ϵ-agree.
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2.1.2 Susceptibility Inference Network

The Medical Extensible Dynamic Probabilistic Risk Assessment Tool (MEDPRAT)

developed by NASA is an event-based risk modeling tool that assesses human health

and medical risk during space exploration missions [58, 59]. One of its key features

is the ability to represent and simulate the relationships between medical events.

These relationships are captured in an internal data structure called the Susceptibility

Inference Network (SIN).

The SIN is a directed network where nodes represent medical conditions. The data

in this network is subject matter expert informed and is currently a prototype. There

is an edge from u to v if medical condition u can progress into medical condition v.

This directed edge (u, v) is weighted by the probability of such a progression. Note

that a medical condition may progress to multiple other conditions simultaneously,

or to no other conditions. Therefore, this matrix is not a transition matrix. The

SIN currently has 99 nodes and 1078 edges. Medical conditions included are, for

example, acute radiation syndrome, which has many outgoing edges towards other

medical conditions. On the other hand, anxiety has many incoming edges.

This expert-informed data does not contain information about the time it takes

for progressions. As a simplified model, we view the SIN as a Dynamic Bayesian

Network [52]. Each node in the SIN has an associated weight that evaluates the

severity of the condition regardless of the progression from or to that condition. This

severity of a condition is quantified by Quality Time Lost (QTL), which we call

primary QTL of that condition. The primary QTL measures the productive time a

crew member is expected to lose and is equal to the ith entry Wi of the weight vector
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W .

In our condition progression networks, each edge (i, j) is weighted by Aij, which

is the probability that condition j is present at time t + 1 given that condition i is

present at time t. Then, this edge contributes AijWj to E[QTLi]. We assume that

progressions occur independently, and therefore a path of length two from i to j via

a node k contributes AikAkjWj to E[QTLi]. Under the assumption of uninterrupted

progressions, we have, in general,

E[QTLi] =
∞∑

k=0

n∑
j=1

Wj

(
Ak
)

ij
= Wi + C(1)i.

Note that Wi is the primary QTL of node i and C(1)i the subsequent QTL under

the assumption of uninterrupted progression. We highlight a few subtleties in this

model. Note that we allow two types of cycles in our network: there may be multiple

directed paths from a condition i to a condition j, in which case j contributes multiple

times to the total expected QTL of i. There may also be directed cycles, wherein a

condition i contributes multiple ways to its total expected QTL. We motivate this in

terms of the application later. First, we consider an illustration. Table 2.1 contains

examples of small condition progression networks.

To make this estimate more realistic, we consider that the progression of conditions

will likely be interrupted by medical interventions and time constraints on the mission.

The parameter α provides a damping factor that decreases the weight of walks as they

get longer. This application, therefore, illustrates the importance of using realistic

walk lengths to guide the choice of α. We provide a theoretic foundation for this in

Section 2.2. In Section 2.3, we discuss how different values of α produce different

rankings for the SIN due to subsequent QTL.
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Condition Progression Network E(QTLi)

i j k Wi + AijWj + AijAjkWk

i

j

k

ℓ Wi + AijWj + AikWk + (AijAjℓ + AikAkℓ)Wℓ

i j ∑∞
k=0(AijAji)kWi + Aij

∑∞
k=0(AijAji)kWj = Wi+AijWj

1−AijAji

Table 2.1: Three networks with the expected QTL of node i.
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2.2 The Katz parameter and Walk

Length

This section describes the relationship between maximum walk lengths ℓ and the

parameter α. In Theorem 1, we find a lower bound on ℓ that guarantees that C(α)

and C(α, ℓ) ϵ-agree. This sheds light on the length of walks that decide the ranking

provided by C(α). We provide a small, illustrative example of the effect of α on node

rankings.

Lemma 1 gives an upper bound on the difference between values in C(α) and

C(α, ℓ).

Lemma 1. (Absolute Error Tolerance) Let p ∈ {1, 2, ∞} and α ∈ (0, 1/ρ). Then

∥C(α) − C(α, ℓ)∥∞ ≤ (α∥A∥p)ℓ ∥C(α)∥p := ϵℓ.

Proof. First, note that ∥V ∥∞ ≤ ∥V ∥2 ≤ ∥V ∥1 for all vectors V . Furthermore, the

p-norm is sub-multiplicative. We have
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∥C(α) − C(α, ℓ)∥∞ ≤ ∥C(α) − C(α, ℓ)∥p

=

∥∥∥∥∥∥
 ∞∑

i=ℓ+1
αkAk

 · W

∥∥∥∥∥∥
p

=
∥∥∥∥∥αℓAℓ

( ∞∑
i=1

αkAk

)
· W

∥∥∥∥∥
p

≤ αℓ∥Aℓ∥p

∥∥∥∥∥
( ∞∑

i=1
αkAk

)
· W

∥∥∥∥∥
p

≤ (α∥A∥p)ℓ ∥C(α)∥p .

In Lemma 2, we show that there exists an L so that for all ℓ > L, the difference

between the scores in C(α) and C(α, ℓ) is small.

Lemma 2. (Error Tolerance Guarantee) Let p ∈ {1, 2, ∞}, α ∈ (0, 1/∥A∥p) and

ϵ > 0. If

ℓ > logα∥A∥p

(
2ϵ

∥C(α)∥p

)
:= Lup

then ∥C(α) − C(α, ℓ)∥∞ < 2ϵ.

Proof. Note that α < 1/∥A∥p ≤ 1/ρ. By Lemma 1, it suffices to show that ϵℓ < 2ϵ

when ℓ > Lup. We have
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ϵℓ = ∥C(α)∥p (α∥A∥p)ℓ

< ∥C(α)∥p (α∥A∥p)Lup

= ∥C(α)∥p (α∥A∥p)logα∥A∥p

(
2ϵ

∥C(α)∥p

)
= ∥C(α)∥p

2ϵ

∥C(α)∥p

= 2ϵ.

Lemma 2 bounds the difference between C(α) and C(α, ℓ) when ℓ is large enough.

Theorem 1 shows that this also ensures that C(α) and C(α, ℓ) ϵ-agree.

Theorem 1. Let p ∈ {1, 2, ∞}, α ∈ (0, 1/∥A∥p), ϵ > 0 and Lup be as in Lemma 2.

If ℓ > Lup then C(α) and C(α, ℓ) ϵ-agree.

Proof. By Lemma 2 we have that ∥C(α) − C(α, ℓ)∥∞ < 2ϵ. Therefore, by Proposi-

tion 2, we have that C(α) and C(α, ℓ) ϵ-agree.

We choose ϵ so that two nodes with Katz scores within ϵ of each other can be

considered equivalent in terms of ranking. Of course, such a value must be chosen

relative to the Katz scores. In Corollary 1, we suggest letting ϵ be some fraction of

∥C(α)∥p, and α a fraction of 1/∥A∥p for p ∈ {1, 2, ∞}.

Corollary 1 (Relative Error). Let p ∈ {1, 2, ∞} and α0, ϵ0 ∈ (0, 1). For α =

α0/∥A∥p, and ϵ = ϵ0∥C(α)∥p, if ℓ > logα0(ϵ0) = Lup then C(α) and C(α, ℓ) ϵ-agree.
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We present a small example illustrating the effect of α on node rankings. Consider

the edge-weighted directed network N in Figure 2.1a. Let α1 be the positive solution

to C(α)b = C(α)c, let α2 be the positive solution to C(α)a = C(α)c, and let α3 be the

positive solution to C(α)a = C(α)b. When α is small, the walks of length 1 determine

the ranking. As α increases, walks of length 2 and later walks of length 3, become

more important. Node c has the most walks of length 1, node b the most of length 2,

and node a the most of length 3, and they are each ranked on top for different ranges

of α.

Figure 2.1b also shows the value of L = Lα,ϵ(N) as a function of α. For example,

at α1, the walks of length 2 become significant enough for node b to overtake node c

in the ranking. Therefore, L switches from 1 to 2. This switch happens at a value

of α slightly greater than α1, once the difference in scores of b and c has exceeded ϵ.

Note that the ranking switch of node a and c at α2 is also due to paths of length 2

gaining significance and does not cause a change in L.

2.3 Application to the Susceptibility In-

ference Network

We use α-Katz centrality to rank medical conditions in the SIN by their expected

subsequent QTL. We inspect the distribution of the differences between Katz scores

of nodes and set ϵ so that 5% of the differences are less than the chosen ϵ. This

implies that 95% of the pairs are ranked correctly. We run the analysis for α = 1

and α = 0.4. When α = 1, (α, ℓ)-Katz centrality and α-Katz centrality ϵ-agree

when ℓ ≥ 5, and when α = 0.4, (α, ℓ)-Katz centrality and α-Katz centrality ϵ-agree
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(b) The node rankings from the Katz scores of the network
in Figure 2.1a.

Figure 2.1: The relationship between the Katz parameter α and the vertex ranking in a
directed, edge-weighted example network.

when ℓ ≥ 3. Table 2.2 shows a comparison of rankings of the top 10 conditions, and

Figure 2.3 illustrates the subnetwork of the SIN containing the 12 nodes that appear

in Table 2.2.

We note that one significant change in the ranking as α decreases from 1 to 0.4 is

the one that swaps the positions of nodes i and j. Figure 2.2 plots the contributions of

walks of length ℓ to the Katz scores of these two nodes. When α = 1, the contribution

of walks of lengths 2 and 3 contribute enough to the score of node i to place it above

j. When α = 0.4 these longer walks contribute significantly less, lowering the ranking

of node i to fall below that of j. In this and other applications, there is no universal

value of α that is best. Here, one would have to consider the length of the space

mission and other factors that affect how realistic any number of progressions is.
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Rank α = 1 α = 0.4
1 a a
2 b b
3 c d
4 d c
5 e e
6 f f
7 g g
8 h j
9 i h
10 j l

Table 2.2: The effect of the choice of α on the ranking of medical conditions in the
SIN due to subsequent QTL.

(a) α = 1 (b) α = 0.4

Figure 2.2: Contribution of walks of length ℓ to the scores of nodes i and j in 1-Katz
centrality (a) and 0.4-Katz centrality (b).
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Figure 2.3: Subnetwork of the SIN with 12 most influential nodes with weighted edges. The
thickness of the edges that point outwards illustrates the total outgoing edge weight towards
nodes in the remainder of the network.
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2.4 Testing the Upper Bound on Simu-

lated Data

We would like to better understand for which values of ℓ that C(α) and C(α, ℓ) ϵ-

agree. Theorem 1 gives an upper bound on Lα,ϵ(N). In Figure 2.4, we compare the

upper bound Lup to Lα,ϵ(N) on two families of undirected graphs. At each instance

of α0 in Figures 2.4a and 2.4b, we sample 10 graphs from each specified graph family

and plot the average upper bound and average Lα,ϵ(N) across the samples.

We use two different random graph models. The Erdős-Rényi model creates n

points V and includes an edge between two points u, v ∈ V if with probability p

to form the edge set E. We say that G = (V, E) is sampled from G(n, p), denoted

by G ∼ G(n, p). The Chung-Lu model creates n points and a length n vector D =

(d1, d2, . . . , dn) containing the expected degree of each node in the network. The pair

(u, v) ∈ V × V is included in the edge set E with probability

puv = dudv∑
i di

.

With these probabilities, the expected degree distribution of the network is D.

In Figure 2.4a, we sample from the Erdős-Rényi model G(n, p) where n = 1000

and p = 0.008. In Figure 2.4b we sample from the Chung-Lu model, which inputs

a list of node degrees. We individually sampled 1000 numbers from the negative

binomial distribution to create this list. This distribution takes a probability p of

success and a number n of desired successes. We use p = 0.1 as the probability of

success, and n = 3 as the number of desired successes.
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The Chung-Lu model, as described here, produces graphs with a longer-tailed

degree distribution than graphs sampled from the Erdős-Rényi model. In Figure 2.4,

the value for ϵ that we use is calculated using the same technique as in Section 2.3

for each iteration. We create a list of pairwise differences between the Katz scores

and set ϵ so that 5% of the differences are less than it.

(a) Erdős-Rényi. (b) Chung-Lu.

Figure 2.4: Comparing the upper bound to Lα,ϵ(N) using the Erdős-Rényi model
G(1000, 0.008) in (a) and the Chung-Lu model with degrees sampled from the negative bi-
nomial distribution in (b).

2.5 Discussion and Conclusions

This paper introduced a tool to help compare different centrality measures. We

applied this to α- and (α, ℓ)-Katz centrality to help better understand the effect of

the α-parameter on the walk lengths considered when it comes to the ranking of

nodes. For a given α, we provide an upper bound on the walk length L so that, when

ℓ > L, the Katz scores in α- and (α, ℓ)-Katz centrality are within 2ϵ of each other.

We show that two nodes with both centrality measures differing by at least ϵ are in

the same order in both rankings when ℓ > L.

If we want to find a minimal value of L such that α-Katz and (α, ℓ)-Katz centrality
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ϵ-agree for all ℓ ≥ L, then Theorem 1 provides an upper bound. We can find a stronger

upper bound by iteratively increasing L until for all ℓ ≥ L, ∥C(α) − C(α, ℓ)∥ < 2ϵ.

This guarantees ϵ-agreement, although ϵ-agreement may still happen sooner, so care

should be taken when interpreting these bounds.

All of the results in this paper require α to be in (0, 1/∥A∥2), a subset of the

possible values that can be used as a Katz parameter. It may be possible to extend

these results to all Katz parameters, namely, values in (0, 1/ρ). These ranges match

for undirected graphs, which applies to directed, edge-weighted graphs.

We showed the effect of changing the α parameter in the Susceptibility Inference

Network. In this case, changes in the ranking were visible even among the top 10

nodes, and they may have significant implications for decision-making. It is, therefore,

important that the choice of α is made carefully and tailored to each application. This

also holds for ϵ.

The work presented in this paper will be leveraged to identify subsets of the

prototype SIN that are expected to produce the largest effect in MEDPRAT and thus

act as a scalable road map for future work, which will be focused on collecting and

validating higher credibility clinical evidence. Given the significant cost associated

with evidence collection, it is critical to narrow the scope and focus the effort where it

will be most valuable, which is to say where interactions between conditions produce

the largest change in spaceflight medical risk.
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Chapter 3

Generating Dominating Sets Using

Locally-Defined Centrality Mea-

sures

The work presented in this chapter results from a collaboration with Dr. Robert Short

and Dr. Puck Rombach. The Vermont Space Grant Consortium supported this work.

3.1 Introduction

A dominating set in a network is a set of nodes so that every node in the dominating

set is either in the set or has a neighbor in the set. Dominating sets and their

variations have many applications [60–62], and usually one objective is to minimize

the size of such a set.

Deciding whether or not a graph has a dominating set of size k is NP-complete [63].

The current fastest exact algorithm for identifying a minimal dominating set was
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introduced in 2011 by Van Rooij and Bodlaender [64] and runs in O(1.4969n) time.

Instead of identifying a dominating set globally, there are also distributed algorithms

where decisions are made at the level of individual nodes with limited rounds of

communications [65–70]. In most of these distributed algorithms, it is assumed that

each node has full global information regarding the structure of the network, but only

local information regarding the dominating set assignment. In some applications,

nodes may have none or limited global information. A pertinent example of such an

application are ad-hoc and wireless sensor networks [71–74].

The Space Communication and Navigation (SCaN) program office manages NASA’s

space communication activities. One of their goals is to understand satellite commu-

nication, including routing, radio technology, and network modeling. Satellites in a

swarm may play different roles during a mission: sending information, taking pictures,

storing data, and more. However, whether a satellite is best suited for a particular

task at any time depends on its position relative to other satellites and the ground.

For instance, if a satellite is well-positioned to communicate, its primary role should

be sending or receiving information. We aim to have the satellites selected in these

important roles to form a dominating set.

Finding a minimum dominating set in these types of applications is not feasible.

Instead, the objective is to find an approximately minimum dominating set in a

distributed manner where nodes can access only local information in the network.

Let G(V, E) be a simple, undirected graph on n nodes, and let γ(G) be the dom-

ination number of G; the cardinality of a minimum dominating set. One of the most

fundamental results in the theory of dominating sets is an upper bound in terms of
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the minimum degree δ(G) of G:

γ(G) ≤ 1 + ln(1 + δ(G))
1 + δ(G) n. (3.1)

This result was proved independently by [75–78]. The proof given in [75] has become

a standard example of the power of the probabilistic method. It gives a simple,

two-step probabilistic algorithm that yields a dominating set whose cardinality is

in expectation the upper bound in Inequality 3.1. The algorithm works as follows.

In the first round, each vertex is assigned to a set X with a fixed probability p,

independently of other vertices. In the second round, each vertex not dominated by

X is added to a set Y . The output is an approximately minimum dominating set

X ∪ Y . This algorithm is both fast, as it is linear in the size of the graph, and highly

local, as decisions are made at the vertex level with communication only to immediate

neighbors.

Wu and Li [70], proposed a similar algorithm with a deterministic first step. It

uses the local clustering coefficient to select a dominating set [12]. This algorithm

assigns a node v to the dominating set if it has a clustering coefficient less than 1. In

this case, a connected dominating set is guaranteed, and there is no need for a second

round.

Inspired by this style of algorithm, we propose an algorithm for generating domi-

nating sets with the help of local centrality measures. Our algorithm is not guaranteed

to generate a minimum dominating set, but we show that it performs well in practice

in finding small dominating sets. In the first step, the algorithm selects vertices based

on a centrality measure meeting a certain threshold. In the second step, more vertices

are added as needed to guarantee a dominating set.
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We compare several different centrality measures on synthetic and real-world net-

works. The best-performing measure in our analysis is the Shapley value, introduced

in game theory [16]. It is used in various contexts to measure the importance of an

actor in game theory [17,18,20,79]. There are various definitions of the Shapley value

in the literature. Here we use the definition from [18], which defines the Shapley value

of a node as the sum of the reciprocals of the degrees of its neighbors. (These authors

then subtract 1 from each value, which we will not do.)

We are particularly interested in applying this algorithm to wireless ad hoc network

(WANET), which is a computer network that shares resources through wireless data

connections, called links. We also apply it to a mobile ad hoc network (MANET),

which is a WANET where each node moves freely, and the links change accordingly.

These networks are decentralized and are often used for forwarding data. For example,

a collection of satellites orbiting a planet form a MANET, called a satellite network.

In Section 3.2, we define the two-step algorithm and a few centrality measures that

appear to effectively select small dominating sets. We compare their performance in

the two-step algorithm on various synthetic and real-world networks in Section 3.3

and 3.4, respectively. Section 3.5 provides counterexamples to a few conjectures about

the two-step algorithm from the simulations.

3.2 Dominating Set Algorithms using

Thresholds

In Section 3.2.1, we outline the two-step algorithm explicitly. In Section 3.2.2, we

define the centrality measures considered in this study with a few basic observations
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that motivate their use in this context.

3.2.1 The Two-step Algorithm

Let c(v) be a locally computed node centrality measure on the node set of a network

V (G), and τ ≥ 0 a threshold constant. The two-step algorithm has two rounds: the

first round selects all nodes v such that c(v) > τ , and the second round selects all

nodes v such that neither v nor any of its neighbors were selected in the first round.

The second step ensures that the final set of selected nodes forms a dominating set

in G. As a reminder, N1(v) = {u ∈ V |(u, v) ∈ E(G)}.

Two-step Algorithm

1. Let X be the set of nodes v with c(v) > τ .

2. Let Y be the set of nodes v such that (N1(v) ∪ {v}) ∩ X = ∅.

3. Let D = X ∪ Y .

This algorithm can be executed in a distributed manner. To perform the first

step, each node sends the necessary information to its neighbors so that each of them

can calculate c(v). Then, each node communicates to its neighbors whether they

are in the set and carries out the second step. All of the measures we consider in

Section 3.2.2 can be computed using one round of communication with the immediate

neighborhood of each node, supposing each node knows its degree. However, local or

not, any centrality measure can be used in the algorithm.

This algorithm performs best when X is close to a dominating set so that Y is

small. Thus, the goal of the measure c(v) is to capture nodes in X likely to appear

34



in a minimum dominating set. In Section 3.2.2, we define a few centrality measures

of interest. We compare their performance in the two-step algorithm on various

synthetic and real-world networks in Section 3.3 and 3.4, respectively.

3.2.2 Centrality measures

Since we want our two-step algorithm to be local, we use centrality measures that

can be determined locally. Specifically, we consider centrality measures that depend

only on the immediate neighborhood of a node.

Uniform random measure (URM): Alon investigates which threshold mini-

mizes the expected size of the set constructed in the two-step algorithm and gives an

upper bound on the domination number [80]. Refer to Section 3.1 for more informa-

tion.

Clustering coefficient (CC and ICC): In [70], Li and Wu show that the

collection of all nodes with two non-adjacent neighbors is a connected dominating

set. This is quantified by finding the proportion of non-adjacent neighbors, known as

the clustering coefficient [12] of a node v

CC(v) = tv(
kv

2

) = 2tv

kv(kv − 1) .

Here, tv is the number of triangles that node v is a part of, and kv is the degree of

node v.

Based on simulated data, we suspect that the nodes representative of stronger

dominating set candidates tend to have lower values of CC(v). For this reason, we
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let

ICC(v) = 1 − CC(v) =

(
kv

2

)
− tv(

kv

2

) .

It is worth noting that ICC is not a new centrality measure but rather our adjustment

of the clustering coefficient that allows for more convenient comparisons with the

other centrality measures, as they all tend to correlate positively with the likelihood

of appearing in minimum dominating sets.

Using the language of our paper, Li and Wu show that the first step of two-step

algorithms constructs a connected dominating set with measure ICC and a threshold

of 0.

Relative neighbor degree (RND): Ai, Li, Su, Jiang, and Xiong define the

neighbor-degree centrality of v as ND(v) =
∑

u∈N1(v) ku

ki
[23]. We propose the relative

neighbor-degree centrality of v as

RND(v) = kv

ND(v) = k2
v∑

u∈N1(v) ku

which measures how the average degree of nodes in N1(v) compares to the degree of

v itself. If a node v has a relative neighbor degree of 1, then the average degree of

the neighbors of v equals the degree of v. If v has a relative neighbor degree larger

than 1, then v makes for a good dominating set candidate as its degree is larger than

its neighbor’s degree on average.

Shapley value (SV) [16,18]: The Shapley value was originally proposed in [16],

but was not introduce in network theory until later. Bozzo, Franceschet, and Rinaldi

describe the Shapley value of a node v in a network as the sum of the reciprocals of
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the neighbors’ degrees,

SV (v) =
∑

u∈N1(v)

1
deg(u) .

A node with a high Shapley value is likely adjacent to many low-degree nodes.

For the remainder of the paper, we compare all four measures and specifically

look at how SV and RND, as they seem to perform best in this setting. From some

simple analysis, these two measures are related. For instance, Proposition 3 shows

that the number of nodes selected in the first round of the two-step algorithm with

SV is always greater than that with RND.

Proposition 3. For node v in a network N , if RND(v) ≥ τ , then SV(v) ≥ τ .

Proof. Suppose that RND(v) ≥ τ . Then the average degree of a node in Nv is less

than kv/τ . By Jensen’s inequality, the average of the set {1/ku|u ∈ Nv} is at least

τ/kv. Hence, SV(v) = ∑
u∈Nv

1/ku ≥ kv
τ
kv

= τ .

We give the expected value of SV in Proposition 4 below. This proposition shows

that even though SV is a locally computed measure, we know how each node will

compare to the average without knowing anything about the network’s structure.

The expected value of RND is not as easily described.

Proposition 4. Let G = (V, E) graph. The expected Shapley value of a node v ∈ V

is 1.

Proof. Let A be the adjacency matrix of a network N = (V, E) with n = |V |. Let M

be the stochastic matrix with Mij = Aij

kj
and 1 be the n-dimensional vector with 1 in

each entry. Notice that (M · 1)i = SVi for each i ∈ V . Since the stochastic matrix

preserves the average of vectors, then the expected Shapley value is 1.
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From Proposition 4, τ = 1 is a natural choice of threshold if we use SV in our

two-step algorithm. To round out this section, we give additional evidence suggesting

that τ = 1 is a reasonable choice of threshold in a vacuum.

Observation 1. If deg(v) = 1, then v is adjacent to a node u with SV(u) ≥ 1.

Observation 2. If deg(v) ≥ deg(u) for all u ∈ N1(v), then RND(v) ≥ 1.

According to Observation 1, a threshold of τ = 1 will, among others, select all

nodes adjacent to degree 1 nodes in the first round of the algorithm. We will see in

Section 3.3 and 3.5, other thresholds better find minimal dominating sets using the

two-step algorithm.

3.3 Simulated Data

We test our algorithm on simulated graphs generated from three random graph fam-

ilies.

One way to randomly generate a network is by way of a random geometric graph,

G(n, r, X) where n points are sampled uniformly from an object X ⊂ R2 and an edge

(u, v) is added if the euclidean distance ∥u−v∥2 is less than r. Most often, X = [0, 1]2.

In Chapter 4, we create an algorithm that identifies the nodes nearest the boundary

of the sample space X and assess this algorithm on various shapes X, orders n, and

radii r.

We also consider two other random graph models in this section: the Erdős-Rényi

and Chung-Lu model. As a reminder, we will define them here. The Erdős-Rényi

model creates n points V and includes an edge between two points u, v ∈ V if with
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probability p to form the edge set E. We say that G = (V, E) is sampled from G(n, p),

denoted by G ∼ G(n, p). The Chung-Lu model creates n points and a length n vector

D = (d1, d2, . . . , dn) containing the expected degree of each node in the network. The

pair (u, v) ∈ V × V is included in the edge set E with probability

puv = dudv∑
i di

.

With these probabilities, the expected degree distribution of the network is D. We

will use all three of these random graph models to test this algorithm.

We generate 100 networks for each family with 100 nodes and an expected degree

of 10. Below we describe the families and present the computational results.

Erdős-Rényi Model [81] In Figure 3.1, we compare the average size of a dom-

inating set created by the two-step algorithm using a variety of thresholds over in-

stances of Erdős-Rényi graphs. We sample each graph using 100 nodes and a proba-

bility p = 0.1.

Random Geometric Graphs [82] In Figure 3.2, we compare the size of the

dominating set found by the two-step algorithm with different threshold values in

random geometric graphs on the unit square with 100 nodes and a radius r = 0.178.

The motivation for using this radius is that the average degree 100(0.178)2 is about

10, consistent across the other random graph families.

Chung-Lu Model [83–85] We use the Chung-Lu model to sample graphs with

a longer-tailed degree distribution and create the degree sequence using a negative

binomial degree distribution. Figure 3.3 compares the size of the dominating set for

each threshold on 100 different graphs sampled using the Chung-Lu model. We create

the degree sequence using the negative binomial distribution with n = 1 and p = 0.1.
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In each of Figures 3.1, 3.2, and 3.3, SV and RND construct the smallest dominating

sets across all thresholds, with SV slightly outperforming RND. Notice that the

minimal dominating set in each family typically occurs at a threshold greater than 1

rather than precisely at 1. Because SV generally performed best, we use the Shapely

value in many of the applications in Section 3.4.
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Figure 3.1: Erdős-Rényi Model with 100 nodes and probability 0.1.
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Figure 3.2: A comparison of the centrality measures in the local domination algorithm for
random geometric graphs G(100, 0.178).
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Figure 3.3: Chung-Lu model with 100 nodes and a degree distribution sampled from a neg-
ative binomial distribution.

3.4 Real World Data

We test the two-step algorithm using the Shapley value on two real-world networks:

the Iridium Satellite network and the European Natural Gas Pipeline network. We

first show how the algorithm performs with τ = 1. The Iridium Satellite network

shows which nodes are chosen in a real-world network by the algorithm, and that the

algorithm finds a smaller dominating set when we use a different threshold.

3.4.1 Iridium Satellite Network

The Iridium satellites form a network in Low-Earth Orbit. Figure 3.4a indicates

which nodes are selected in the two-step algorithm (in pink) with the Shapley value

and threshold τ = 1. Figure 3.4b shows the dominating set chosen by the two-step

algorithm with the Shapley value when τ = 1.2.
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(a) τ = 1 (b) τ = 1.2

Figure 3.4: Comparing thresholds in the two-step algorithm with SV centrality measure
on an instance of the Iridium satellite network. The color pink indicates a node in the
dominating set.

3.4.2 European Natural Gas Pipeline Network

The International Energy Agency (IEA) data, analysis, and policy recommendations

help countries provide a secure and sustainable future. They have collected data

from 31 participating countries to create the European natural gas network (ENGN).

We use the Shapley value in the two-step algorithm to find a dominating set. In

Figure 3.5, the nodes colored pink are selected by the two-step algorithm with SV

centrality measure and a threshold of τ = 1.

Figure 3.6 is a subgraph of the ENGN where the Shapley value scales each node.

This visual represents how the Shapley value can vary quite a bit from node to node.
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Figure 3.5: European Natural Gas Pipeline Network with dominating set.

Figure 3.6: Subgraph of the European Natural Gas Pipeline Network. Each node size is
scaled to its Shapley value.
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3.5 Oddities

This section presents a set of counterexamples to natural conjectures regarding the

two-step algorithm with the SV centrality measure. These counterexamples are en-

lightening, revealing exciting relationships between the measures we examined here

and some general oddities surrounding the two-step algorithm.

With a threshold in the first filtering for the two-step algorithm, much of our

questioning centered on choosing the best threshold. Inspired by Wu and Li [70], we

initially sought a universal threshold for constructing a dominating set. If there were

such a threshold for SV or RND, we could reduce our two-step algorithm to just one

step: compute the measure and determine whether or not you are in the dominating

set. If the threshold is 0, only one step is necessary, but perhaps a small non-zero

threshold will also guarantee a dominating set in one step.

It turns out that there is no such non-zero threshold, but our construction to show

this is unwieldy and unlikely to appear in graphs with relatively small numbers of

nodes. We present this construction in the proof of the following proposition.

Proposition 5. Given a threshold τ > 0, let Sτ be the set of nodes such that SV(v) >

τ . There exists a graph G such that Sτ is not a dominating set of G.

Proof. We construct a graph with node a that satisfies the following properties:

1. For node a, SV(a) < τ .

2. For all nodes b ∈ N1(a), SV(b) < τ .

Given τ > 0, there exists some N1 ∈ N such that 1
N1

< τ . So, we can construct
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a set of N1 nodes {bi}N1
i=1 such that each bi is adjacent to a. Thus, deg(a) = N1, and

N1(a) = {bi}N1
i=1.

Since N1, τ > 0, there exists N2 ∈ N such that N2 > N1
τ

. For each bi, construct

N2 − 1 nodes {ci,j}N2−1
j=1 such that each is adjacent to bi. Thus, deg(bi) = N2, and

N1(bi) = {a} ∪ {ci,j}N2−1
j=1 for each i. Then, by construction, SV(a) = N1

N2
< τ .

Since 1
N1

< τ , τ − 1
N1

> 0, and since N2 ∈ N, N2 − 1 ≥ 0. Thus, there exists

N3 ∈ N such that N3 > N2−1
τ− 1

N1
. So, for each ci,j, construct N3 − 1 nodes {di,j,k}N3−1

k=1

such that each is adjacent to ci,j. Thus, deg(ci,j) = N3 for each j. So, by construction,

for each bi,

SV(bi) = 1
deg(a) +

N2−1∑
j=1

1
deg(ci,j)

= 1
N1

+ N2 − 1
N3

< τ.

Thus, any graph containing this construction as a subgraph would satisfy the condi-

tions above.

From the construction in Proposition 5, and the relationship between RND and

SV given in Proposition 3, we get the following result.

Corollary 2. Given a threshold τ > 0, let Rτ be the set of nodes such that RND(v) >

τ . There exists a graph G such that Rτ is not a dominating set of G.

The choice of threshold then depends on the graph structure we are examining.

However, in the plots we generated, the graphs appeared to have a consistent shape,

including a single local minimum. For the minimum to be unique, one condition would

be that for any three thresholds τ < σ < ρ, one could never see f(τ) < f(σ) > f(ρ).

Unfortunately, this is not true in general. Figure 3.7 depicts one counterexample

of this idea. In particular, when we use SV with the two-step algorithm at three
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different thresholds (5/6, 1, and 11/6), the size of the dominating set generated goes

from 19 to 20 and back to 19.

(a) τ = 5/6
|D| = 19

(b) τ = 1
|D| = 20

(c) τ = 11/6
|D| = 19

Figure 3.7: The size of the dominating set formed by the two-step algorithm with the Shapley
value does not achieve a unique local minimum. The purple triangles represent 100 leaf
nodes. A black node suggests that it was chosen in the first round of the two-step algorithm,
and red suggests it was chosen in the second round.

We conclude our catalog of oddities by looking at how a threshold of 1 performs

in SV and RND. Thanks to Proposition 4, we know that 1 holds a special place

concerning the SV and RND values. Moreover, the following observation connects

SV and RND to regularity.

Observation 3. If G is regular, then SV(v) = RND(v) = 1 for all v ∈ V .

However, returning to the data represented in Figures 3.1, 3.2, and 3.3, there

was one further counterexample to consider. When we set the threshold at 1, the

dominating set generated with RND was generally larger than the dominating set

developed with SV. However, Figure 3.8 shows an example where the number of
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nodes selected in the two-step algorithm is smaller in SV (Figure 3.8a) than in RND

(Figure 3.8b) using the threshold τ = 1. Here, the black nodes are chosen in the first

round and the red nodes in the second.

(a) SV (b) RND

Figure 3.8: An example where the dominating set generated using RND is greater than the
dominating set generated using SV.

There is undoubtedly more exploration in characterizing the function described in

the plots. Both experimentally and theoretically, further investigation is warranted.

3.6 Discussion

Various algorithms aim to approximate a minimum dominating set for graphs [86].

Our approach of using a two-step algorithm allows for a larger variety of node mea-

sures than we propose for generating dominating sets. However, we compared four

local measures to highlight some methods that could be practical in robot swarm and

autonomous system communications.

We see several directions to take this work into the future. First, an analysis of

different measures and their properties when plugged into the two-step algorithm may

be an excellent method for comparing the effects of other measures. Included with
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this, a more in-depth theoretical analysis of the two-step algorithm is warranted to

explore its effectiveness further.

One concept we have toyed with is constructing bounds for the thresholds in var-

ious situations. For example, one might wonder whether there are certain classes of

networks that yield natural bounds, much like how Observation 3 holds for regular

graphs. Predicting optimal thresholds based on network structure alone or time-

varying network structure alone is a powerful tool in robotic mission design. Moreover,

if the ability to find bounds analytically proves intractable, passing this information

into a neural network may be an exciting problem to pursue. A Graph Neural Net-

work that intakes graph structure and outputs a substantial threshold for achieving a

dominating set could enable more optimizations, especially if this could be computed

locally in some way.
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Chapter 4

Boundary Detection

The work presented in this chapter is the result of a collaboration with Dr. Puck

Rombach, with considerable guidance from Dr. Dominique Zosso.

4.1 Introduction

Many data sets have the form of a point cloud, where each data point represents a

point in a feature space. When each data point is sampled from a bounded subset of

the feature space, we try to understand the shape of the point cloud. Let X ⊂ Rk

be a bounded subspace. Define an (k − 1)-ball of radius r centered at p ∈ Rk to be

the set of points x ∈ Rk such that ∥p − x∥ < r and let S be the (k − 1)-ball with

the smallest radius that contains X. Suppose we sample points uniformly at random

from S and only take those contained in X. This chapter aims to understand the

shape of X by imposing a graph structure on the points we sample and using it to

infer the boundary of X.

The boundary of an object X is defined by the points on the closure of X that are
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not in the interior of X in Rk, but a graph G has no natural boundary. Hence, there

is no agreed-upon definition of a boundary node, however many authors have created

algorithms that identify them differently. We introduce an algorithm that categorizes

each data point as either a boundary node or an interior node. In the remainder of

this section, we will describe various methods already introduced in the literature.

In [87] and [88], the authors use the location of each point to determine which are

nearest the boundary. The algorithm we propose only uses the graph structure to

categorize the boundary nodes. The authors of [89–92] also only consider the graph

structure in their algorithms, so we will describe those in more depth later in this

section.

Each algorithm, including the one we introduce in this chapter, is tested on geo-

metric graphs in Section 4.3. As a reminder, a geometric graph G ∼ G(X, n, r) is a

collection of n points V in a bounded subspace X ⊂ Rk, where an edge connects two

points u, v ∈ V if ∥u − v∥2 < r. Note that G(X, n, r) is a distribution from which G

can be sampled, in which case G is a random geometric graph. We use the notation

G(n, r) if the bounded subspace X is clear from the context.

Beghdad and Lamraoui in [89] propose an algorithm that starts by considering the

neighborhood of a node v in a graph G, denoted N(v). Let G[N(v)] be the induced

subgraph of G on the nodes in N(v). If G[N(v)] contains a maximal independent set

of fewer than 3 nodes, then v is categorized as a boundary node; otherwise, v is an

interior node. They repeat this process for every node.

Destino and Freitas de Abreu in [90] use the idea of clustering to categorize the

boundary nodes in a graph. First, they partition the nodes into clusters. The nodes

with the lowest betweenness centrality for each cluster are the cluster boundary nodes.
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Then, they merge clusters that contain adjacent nodes. If a node labeled as a cluster

boundary node is adjacent to other clusters, it is called an interior node. Otherwise,

it is a boundary node.

Fekete et. al. [91] introduce two new centrality measures. Namely, they introduce

stress centrality and restricted stress centrality. The stress centrality of a node v,

denoted stress(v) in a graph is defined as the number of shortest paths in G containing

v over all pairs of endpoints. The restricted stress centrality stress(v, δ) is defined as

the stress centrality of v in the induced subgraph created by nodes in Nδ(v). In

both cases, if a node’s centrality measure is high, their algorithm assumes it is in the

interior of X. If the measure is low, the algorithm assumes the node is a boundary

node.

Li, et. al. proposed in [92] to identify a node v as a boundary node if the between-

ness centrality is larger than τb and the closeness is smaller than τc. They investigate

how well these two centrality measures perform when categorizing boundary nodes

in geometric graphs. Another study by Giles, Georgiou, and Dettmann shows that

betweenness centrality alone does well at predicting boundary nodes in dense random

geometric graphs [93].

Huang, Wu, Gao, and Zhang in [94] construct a local boundary detection algo-

rithm, with a 2-neighborhood of each node. In the first step, they say that if a node

is not contained in a closed cycle within its 2-hop neighborhood, it is a boundary

node candidate. In the second step, the set of nodes selected as candidates is re-

fined by calculating the minimum hop count from a boundary node candidate to all

non-boundary node candidates f . Finally, the nodes with maximal f in each 2-hop

neighborhood are chosen as boundary nodes. The algorithm’s performance is tested
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on wireless sensor networks and is improved on lower-density graphs.

The remainder of this chapter describes a new boundary detection algorithm.

4.2 Boundary Detection using Lines in

a Graph

This section contains our contribution, a geometrically motivated algorithm for bound-

ary node detection. We will start by stating Chvátal’s definition of a line in a graph.

Definition 5. [95] Let u and v be nodes in G. A line L(u, v) in G is as follows:

L(u, v) is a set of nodes w so that one of the three are satisfied

1. d(u, w) = d(u, v) + d(v, w)

2. d(v, w) = d(v, u) + d(u, w)

3. d(u, v) = d(u, w) + d(w, v)

This definition holds for any metric space, including graphs. This is a natural

generalization of a line in Euclidean space that uses the idea of betweenness originating

as an axiom of Coxeter [96]. In a graph, we select the nodes which are furthest from

either u or v in L(u, v) to be the candidates for boundary nodes, called the endpoints.

Definition 6. Let L(u, v) be a line in a finite, simple graph G. The endpoints

of L(u, v) are the nodes in L(u, v) of maximal distance from u together with the

nodes in L(u, v) of maximal distance from v. We will denote this set of endpoints by
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endpoints(u, v). The line centrality of a node v is

LC(v) =
∑

u,w∈V

|endpoints(u, w) ∩ {v}|.

Figure 4.1 gives an example of a line. The nodes in E(u, v) are the boundary

node candidates in our algorithm. This section outlines a deterministic approach for

selecting which candidates are indeed boundary nodes.

u v

Figure 4.1: Example of a line L(u, v), where the green and red nodes are in L(u, v) and
E(u, v), respectively.

Algorithm 1, namely Endpoints(G, u, v), finds the endpoints of a line through

two nodes u and v in the graph and is used as a subroutine in Algorithm 2, namely

LineCentrality(G). LineCentrality(G) runs through each pair of nodes in the graph
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and assigns to each node the number of times it was selected as an endpoint. Algo-

rithm 3, called BoundaryDetection(G, τ), indicates that a node is a boundary node so

long as it was chosen more than τ times in LineCentrality(G). We often approximate

the Line centrality for computational reasons by selecting only a subset of the node

pairs.

Each algorithm can be used on any graph, but we test the algorithm on graphs

where each node has a physical location. In Section 4.3 we test the effectiveness

of Algorithms 3 on various sample spaces X and graph densities. We test the per-

formance of the line centrality for boundary detection by comparing it to the true

distance from the boundary. We compare the performance of line centrality against

other well-known centrality measures.

Algorithm 1: Endpoints(G,u,v)

Input: G = (V, E) is a graph and u, v ∈ V ;

Let B be an empty set;

for w in L(u, v) do

if w is of maximal distance from u or v then
add w to B

end

end

return B
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Algorithm 2: LineCentrality(G)

Input: let G = (V, E) be a graph;

Let T be an array of size |V |;

for u, v ∈ V do

P = Endpoints(G,u,v);

for i in P do

add 1 to the ith entry in T ;

end

end

return T

Algorithm 3: BoundaryDetection(G,τ)

Input: let G = (V, E) be a graph;

Let B be an array;

C = LineCentrality(G);

for u in V do

if C[u] ≥ τ then

Append u to B;

end

end

return B
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4.3 Application to Random Geometric

Graphs

Every node in a random geometric graph was sampled from a bounded subspace

X of Rk. We use the location information of each node to test the effectiveness of

BoundaryDetection(G, τ) in Algorithm 3. In particular, we consider three different

feature spaces X: a circle, a square, and a star. In Figures 4.2, 4.3, and 4.4, we create

a random geometric graph G ∼ G(n, r, X) where X is a circle, square, and star, and

show which nodes are chosen as boundary nodes in BoundaryDetection(G, τ). We let

n = 300, and set the radius r so that the average degree is near 20.

We use our algorithm with betweenness centrality to select the corner nodes, which

intuitively are the nodes nearest the corners of X. Of the nodes selected as boundary

nodes in Algorithm 3, the ones with the lowest betweenness centrality are selected as

corner nodes. These are displayed in Figure 4.5 as the blue nodes.

Figure 4.2: 300 points in
square with average degree
of 20.

Figure 4.3: 300 points in
circle with average degree of
20.

Figure 4.4: 300 points in
star with average degree of
20.

Figure 4.5: Boundary nodes (orange) chosen from Algorithm 3 with τ = 20 and corner
nodes (blue).
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Figure 4.6: Sample 100 graphs G ∼ G(100, r, X) for a variety of radii r, and find the
Pearson correlation coefficient with popular centrality measures and the distance from the
boundary when X is the unit square.

The performance of BoundaryDetection(G, τ) depends on the edge density of the

graph. Suppose the ith entry of the vector D is the Euclidean distance of node i

to the true boundary of X. To test the performance of each algorithm, we find the

Pearson correlation coefficient of the line centrality and D, and plot it for a range

of graph densities. In Figure 4.6 we let n = 100 and test graphs with the expected

average degree between 0 and 25 when X is a square. In this figure, we compare the

performance of the line centrality against other well-known centrality measures.
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4.4 Discussion

Many authors have used their own definition for a boundary node in a graph, but there

is no agreed-upon definition. This chapter proposes a new, geometrically motivated,

definition for a boundary node in a graph. Chvátal introduced a definition for a line in

a graph, and we propose to apply this definition to define a boundary node in a graph.

In particular, we define a new centrality measure, called the line centrality, which

counts the number of times a node v is contained in the endpoints of a line L(u, w)

across all node pairs u, w in the set of nodes. BoundaryDetection(G, τ) defines a node

as a boundary node if the line centrality is larger than some predefined threshold τ .

We tested the line centrality’s correlation with the true distance to the boundary

on various edge densities in random geometric graphs in Figure 4.6. The line centrality

will outperform degree and betweenness centrality for certain densities and approach

the harmonic and closeness centrality correlation coefficients as the density increases.

In Figure 4.6, the line centrality ranks in the top three in our analysis. In par-

ticular, line centrality correlates more with the distance from the boundary than

betweenness centrality. In [92], the authors show that using closeness and between-

ness centrality together does well at predicting the boundary nodes. In future work,

we plan to see how the line centrality paired with other centrality measures, like

closeness or harmonic centrality, performs in boundary node detection.

While boundary detection is one application of Chvátal’s line in a graph, this

work only scratches the surface of its potential. In basic geometry, many definitions

come from a line: intersections, angles, and shapes. In future work, we plan to use

Chvátal’s line to characterize different graph objects like this. The ultimate goal of
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this work is to understand the ‘shape of the data,’ and determining how to categorize

boundary nodes brings us one step closer.

59



Part II

Extremal Combinatorics:

Semi-Saturation and Rainbow

Numbers
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Chapter 5

Rainbow Numbers

The work presented in this chapter is the result of a collaboration with Kean Fallon,

Colin Giles, Ethan Manhart, Joe Miller, Dr. Nathan Warnberg, Simon Wagner, and

Laura Zinnel, most of which is documented in [97] and [98].

5.1 Introduction

One of the most notable problems in extremal combinatorics is due to Frank Ramsey:

the Ramsey number.

Definition 7 (Ramsey number (2-color definition)). [99] The Ramsey number for

integers r, b ≥ 1, written as n = R(r, b), is the smallest integer n such that ev-

ery 2-edge-coloring of Kn, using the colors red and blue for edges, there is a red

monochromatic subgraph Kr or a blue monochromatic subgraph Kb.

In Example 1, we give a classical proof that R(3, 3) = 6.

Example 1. We will show that R(3, 3) = 6.
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Figure 5.1 contains a 2-edge-coloring of K5 that does not contain a monochromatic

K3 subgraph. This shows that 6 ≤ R(3, 3). To show that R(3, 3) ≤ 6, we want to

show that every 2-edge-coloring of K6 will contain a monochromatic K3 subgraph.

Start by considering a single vertex v, and notice that by the pigeonhole principle,

at least three of the edges, say (v, x), (v, y), (v, z), must be the same color, say red.

Hence a monochromatic K3 is present, and it will contain one or more of the edges

(x, y), (y, z), (z, x).

If any of the three edges are red, say (x, y), then the triangle formed by vertices

x, y, v is monochromatic. However, if all three edges (x, y), (y, z), (z, x) are blue, then

a monochromatic triangle is formed by the vertices x, y, z. A monochromatic triangle

exists in both cases, so R(3, 3) is at most 6, therefore equal to 6.

Figure 5.1: A 2-edge-coloring of K5 that avoids a monochromatic K3 subgraph.

Ramsey theory is a branch of combinatorics. Other authors have contributed to

the field of Ramsey theory by investigating subsets of the integers. A classic example

of this are the Schur numbers, named after Issai Schur, which he defined in 1917 [100].

Note that [n] = {1, . . . , n} for n ∈ Z.

Definition 8 (Schur number). [100] For a given integer c, the Schur number, de-

noted S(c), is the smallest integer so that every exact (surjective) c-coloring of [S(c)]

contains a monochromatic solution to the equation x + y = z.
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1 2 3 4

Figure 5.2: Lower bound for s(2).

Example 2. In this example, we show that s(2) = 5. Figure 5.2 contains a coloring

of [4] = {1, 2, 3, 4} that avoids monochromatic solutions to x + y = z. This shows

that 5 ≤ s(2). Now suppose c is a coloring of [5]. Note that (1, 1, 2) and (2, 2, 4) are

solutions to x + y = z. If neither of these solutions is monochromatic, then without

loss of generality c(1) = red, c(2) = blue, and c(4) = red. Because (1, 3, 4) is a

solution c(3) = blue. Since (1, 4, 5) is a solution c(5) = blue. But then (2, 3, 5) is

monochromatic.

We only know the Schur numbers for 1 through 5. The 5th Schur number, S(5),

was recently found by Heule in 2018 [101]. The proof was done by computer and took

two petabytes of space to solve.

Each question in Ramsey theory has a corresponding question in Anti-Ramsey

theory. Instead of aiming to guarantee monochromatic structures, Anti-Ramsey the-

ory aims to guarantee structures where every element has a different color, called a

rainbow structure. We say that G contains a rainbow copy of H if H is a subgraph

of G and for all e1, e2 ∈ E(H), c(e1) = c(e2) implies e1 = e2. As an example, we

consider the anti-Ramsey numbers.

Definition 9 (Anti-Ramsey numbers). [102] The anti-Ramsey number AR(G, H)

is the smallest number of colors k such that every k-edge-coloring of G contains a

rainbow copy of H.

The Anti-Ramsey number AR(G, H) is known for a variety of graphs G and

H [103–106]. Anti-Ramsey numbers and Schur numbers inspired studying rainbow
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numbers on [n] with respect to the equation x1 + x2 = x3, which we explore in

Section 5.2.

5.2 Rainbow Numbers on [n]

Let [n] = {1, 2, . . . , n} and eq be any equation. Here, an r-coloring of a set S is

a function c : S → [r], where [r] = {1, 2, . . . , r}, and an r-coloring is exact if it is

surjective. If X ⊆ S, then c(X) = {c(x) : x ∈ X}. The rainbow number is the

smallest number of colors k so that for every exact k-coloring of [n], there exists

a solution to eq with every member of the solution set colored distinctly, denoted

rb([n], eq). While any equation is valid in this definition, we investigate specific linear

equations [97].

Let c be an exact r-coloring on [n]. Define Ci = {a ∈ [n] | c(a) = i} and define

si ∈ Ci such that si is the smallest element of Ci for each color i. Note that for any

exact r-coloring c, it is always possible to have si < sj for i < j. If that is not the

case, say si > sj and i < j, an isomorphic coloring can be created by swapping the

color of any number with color i to have color j and vice versa.

We begin the analysis with Observation 4. This observation establishes the proof

structure for each Proposition, Lemma, and Theorem in this section.

Observation 4. [97] If c is an exact (r − 1)-coloring of [n] that avoids rainbow

solutions for eq, then r ≤ rb([n], eq). If every exact r-coloring of [n] guarantees a

rainbow solution to eq, then rb([n], eq) ≤ r.

This section finds the rainbow number for the equation ∑k−1
i=1 xi = xk. To begin,

assumed that eq is x1 + x2 = x3. Also, if we say (a, b, c) is a solution to eq, this
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means that x1 = a, x2 = b and x3 = c. Every exact r-coloring uses the color

set {0, 1, . . . , r − 1}. Lemma 3 starts with a specific coloring that avoids rainbow

solutions, thus giving a lower bound.

Lemma 3. [97] For n ≥ 3, ⌊log2(n) + 2⌋ ≤ rb([n], eq).

Proof. The number of trailing zeros that an integer has is the number of zeros, starting

from the right, before there is a nonzero digit. Define an exact (⌊log2(n) + 1⌋)-coloring

of [n] as

c(x) = the number of trailing zeros in the binary representation of x

(see Example 3). Let a, b ∈ [n]. If a and b are odd, then c(a) = c(b) = 0 since their

binary representation ends with a 1. This means {a, b, a+b} is not a rainbow solution.

If a is odd and b is even, then a+b is odd so c(a) = c(a+b) = 0, thus {a, b, a+b} is not

a rainbow solution. Finally, consider the case where a and b are both even. If a and

b have the same number of trailing zeros, then c(a) = c(b) meaning {a, b, a + b} is not

a rainbow solution. If c(a) ̸= c(b) assume, without loss of generality, that c(a) < c(b).

Since the number of trailing zeros of b exceeds the number of trailing zeros of a, it

follows, via binary arithmetic, that b + a has the same number of trailing zeros as

a. Thus, c(a + b) = c(a) and {a, b, a + b} is not a rainbow solution. Therefore, no

rainbow solutions exist with this coloring, and ⌊log2(n) + 2⌋ ≤ rb([n], eq).
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Example 3. [97] A table describing the coloring from Lemma 3.

x x in binary c(x)

1 1 0

2 10 1

3 11 0

4 100 2

5 101 0

6 110 1

7 111 0

8 1000 3

Lemma 4 indicates that when attempting to color [n] and avoid rainbow solutions,

there are restrictions on how quickly new colors can be added.

Lemma 4. [97] Let c be an exact r-coloring of [n], with color set {0, 1, . . . , r − 1},

that avoids rainbow solutions, then

1. if si = ℓ, then 2ℓ ≤ si+1 for 0 ≤ i ≤ r − 2,

2. 2i ≤ si for 0 ≤ i ≤ r − 1.

Proof. For the first claim, if ℓ = 1, then i = 0, so the smallest m for which s2 = m

is m = 2. If ℓ ≥ 2, let 1 ≤ a < ℓ with a + ℓ ≤ n. Then c(a) ̸= c(ℓ), so c(a + ℓ) ∈

{c(a), c(ℓ)}. Thus, c(a + ℓ) ̸= i + 1, hence 2ℓ ≤ si+1.

Proving the second claim proceeds by induction on k. The base case is easily

observed, in particular, s0 = 1 = 20. For the induction hypothesis, assume 2k ≤ sk for
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0 ≤ k ≤ r−2. Applying part 1 to our induction hypothesis yields 2(2k) = 2k+1 ≤ sk+1

which completes the proof.

Theorem 2 follows almost directly from Lemmas 3 and 4.

Theorem 2. [97] For n ≥ 3, rb([n], eq) = ⌊log2(n) + 2⌋.

Proof. By Lemma 3 ⌊log2(n) + 2⌋ ≤ rb([n], 3). Let r = ⌊log2(n) + 2⌋ and c be an

exact r-coloring, with color set {0, 1, . . . , r − 1}, of [n] that avoids rainbow solutions.

Then, by Lemma 4, 2r−1 ≤ sr−1, so

2r−1 = 2⌊log2(n)+1⌋ ≤ sr−1.

Thus, n < sr−1. So if color r − 1 appears in a coloring of [n] there must be a

rainbow solution, a contradiction that such a coloring exists. Therefore, rb([n], eq) =

⌊log2(n) + 2⌋.

This concludes the analysis for when eq is x1 +x2 = x3. Next, we find the number

for when eq is x1 + x2 + x3 = x4 in [n] in Theorem 3. Lemma 5 provides a coloring

that establishes a lower bound on the rainbow number for eq.

Observation 5. [97] Define L = b1 with ℓ = 2. Now, L can be used to define a

coloring on [n] that avoids rainbow solutions to eq. In particular, L =
⌈

n−1
2

⌉
gives

the point in [n] such that no solutions to eq exist if two of x1, x2 or x3 are greater

than or equal to L. This is useful in the proof of Lemma 5.

Note that Lemma 5 is just a specific case of a more general, namely Theorem 4.

Lemma 5 is included here to help Section 3 stand alone.
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Lemma 5. [97] For n ≥ 5,
⌊1

2(n + 7)
⌋

≤ rb([n], eq).

Proof. Let L =
⌈

n−1
2

⌉
and define

c(x) =


1 if 1 ≤ x < L

i + 2 if x = L + i
.

Note that if a solution to eq is rainbow, it must contain three or more numbers

greater than or equal to L. However, Observation 5 shows no such solutions. Hence,

this coloring avoids rainbow solutions.

It remains to count how many colors are used. The number of elements that are

not colored 1 is n − L + 1 = n −
⌈

n − 1
2

⌉
+ 1 =

⌊
n + 1

2

⌋
+ 1. Including the color 1

gives
⌊

n + 1
2

⌋
+ 2 colors. Since this coloring avoids rainbow solutions, Observation 4

implies
⌊

n + 1
2

⌋
+ 3 =

⌊1
2(n + 7)

⌋
≤ rb([n], eq).

Lemma 6 serves as the base case for the inductive proof of Theorem 6.

Lemma 6. [97] If n = 7, then rb([n], eq) = 7 and there is a unique extremal coloring.

Proof. The lower bound is a result of Lemma 5. The upper bound is trivial since the

only coloring of [7] with seven colors is to color each number distinctly. Now let c be

an exact 6-coloring of [7]. Observe that c(1) = 1 and that if s6 ̸= 7, then {1, 2, 3, 6}

would be a rainbow. Thus, s6 = 7. If s2 = 2, then 1+2+4 = 7 implies c(4) ∈ {1, 2} so

c(3) = 3, c(5) = 4 and c(6) = 5. However, this gives the rainbow solution {1, 2, 3, 6}.

Therefore, the only extremal coloring of [7] is the coloring described in Lemma 5.

Proposition 6. [97] If n is odd and n ≥ 5, then rb([n], eq) = 1
2(n + 7) and there is

a unique extremal coloring of [n].
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Proof. When n = 5 the result is immediate and n = 7 is given by Lemma 6. For

the induction hypothesis, assume that for all odd k with 7 ≤ k ≤ n, n odd, that

rb([k], eq) = 1
2(k + 7) and there is a unique extremal coloring of [k], namely the

coloring provided in Lemma 5. Define r = 1
2((n + 2) + 7), L = n − 1

2 and let c be an

exact r-coloring of [n + 2] with color set {1, . . . , r}. The induction hypothesis implies

that if r or r−1 colors appear in [n], then there is a rainbow solution, so sr = n+2 and

sr−1 = n + 1. The induction hypothesis also implies that if r − 2 colors appear in [n],

a unique coloring of [n] with r −2 colors avoids rainbow solutions. However, applying

the unique coloring yields c(1) = 1, c(L) = 2, c(L + 1) = 3 and c(n + 1) = r − 1 > 3,

thus {1, L, L + 1, n + 1} is a rainbow solution. Therefore, rb([n + 2], eq) ≤ 1
2(n + 9).

Equality comes from the lower bound in Lemma 5.

Now let c be an exact (r − 1)-coloring of [n + 2], with color set {1, 2, . . . , r − 1},

that avoids rainbow solutions. If r − 1 colors appear in [n] the inductive hypothesis

implies there is a rainbow solution, thus n + 1 ≤ sr−1 ≤ n + 2.

If r − 2 colors appear in [n], then [n] has the coloring from Lemma 5. This means

s2 = L and s3 = L + 1. Hence, either {1, L, L + 1, n + 1} or {2, L, L + 1, n + 2} is

a rainbow solution since n + 1 ≤ sr−1 ≤ n + 2. Therefore, n < sr−2 which implies

sr−2 = n + 1 and sr−1 = n + 2.

Consider the case where r − 3 colors appear in [n]. If r − j − 1 colors appear

in [n − 2j + 2], for 2 ≤ j ≤ n + 3
4 , then the coloring from Lemma 5 gives Lj =

n − 2j + 2 − 1
2 = L − j + 1 = s2, L − j + 2 = s3, . . . ,n − 2j + 2 = sr−j−1. However,

notice that

L − j + 1 ≤ L < L + 1 ≤ n − 2j + 2 < n + 1,

thus {1, L, L + 1, n + 1} is a rainbow solution which implies n − 2j + 3 ≤ sr−j−1.
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Combining this with si < si+1 gives

n − 2j + 3 ≤ sr−j−1 ≤ n − j + 2. (*)

Note that Inequality (*) gives s2 = sr−(r−3)−1 ≤ n − (r − 3) + 2 = L + 1 and (*) is

also crucial in Case 3 below. The remainder of the proof will show that if s2 ̸= L + 1,

there is a rainbow solution.

Case analysis will proceed by considering s2 = L − i.

1

1

2

1

3

1

· · ·
· · ·

s2

2

· · · L−1 L L+1 · · · n−5 n−4 n−3 n−2 n−1 n n+1

r−2

n+2

r−1
sr−4

sr−5 sr−3

Set B and B′ need colors
{3, 4, 5, . . . , r − 4, r − 3}

Figure 5.3: The situation for Cases 1,2, and 3. The top row is elements in [n + 2], and the
bottom is their corresponding colors.

Case 1: L

2 < s2 ≤ L, i.e. 0 ≤ i < L/2

Notice that n = 2L + 1, since L = n − 1
2 . For 1 ≤ α ≤ i, the equation

α + [L − i] + [2L + 2 − (L − i) − α] = 2L + 2 (1)

and

1 + [L − i] + [2L + 3 − (L − i) − 1] = 2L + 3 (2)

imply {α, L−i, 2L+2−(L−i)−α, 2L+2} and {α, L−i, 2L+3−(L−i)−1, 2L+3}

are nondegenerate solutions since
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L − i < L + 2 + L + i − L − i ≤ 2L + 2 − (L − i) − α

and

2L + 2 − (L − i) − α < 2L + 3 − (L − i) − 1 ≤ 2L + 1.

Further, c(α) = 1, c(L − i) = 2, c(2L + 2) = r − 2 and c(2L + 3) = r − 1. Define

A = {2L + 2 − (L − i) − α | 1 ≤ α ≤ i} ∪ {2L + 3 − (L − i) − 1},

i.e. A = {L + 2, . . . , L + 2 + i}. If any element of A is not color 1 or 2, then

Equation(s) (1) or (2) give a rainbow solution, thus c(A) ⊆ {1, 2}. Now define

B = {L − i + 1, . . . , 2L + 1} and notice that elements in the set B\A have not yet

been assigned a color and there are |{3, 4, . . . , r − 3}| = L colors left to be assigned

(see Figure 5.3). However, |B\A| = |B| − |A| = (L + i + 1) − (i + 1) = L. So every

element in B\A is colored distinctly. Observe, L + 1 ∈ B\A and L ∈ B\A or L = s2.

Therefore, {1, L, L + 1, 2L + 2} is rainbow solution.

Case 2: L

2 = s2, i.e. i = L

2 is an integer

In this case, Equation (1) is valid for 1 ≤ α ≤ i − 1 and Equation (2) is

valid. Define A′ = {L + 3, L + 4, . . . , 3L/2 + 2} and notice c(A′) ⊆ {1, 2}. Let-

ting B′ = {L/2 + 1, . . . , 2L + 1} gives that |B′\A′| = L + 1 elements need to be

assigned one of |{3, 4, . . . , r − 3}| = L colors. This means either, one of the colors

{1, 2} appear in c(B′\A′) exactly once or there exists exactly one pair of elements

ℓ, ℓ′ ∈ B′\A′ with c(ℓ), c(ℓ′) ̸∈ {1, 2} and c(ℓ) = c(ℓ′). Consider c(L/2 + 1) and
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c(L + 2). Notice that S = {1, L/2, L/2 + 1, L + 2} is a solution, and if it is rainbow

there is a contradiction. If S is not rainbow, then either c(L/2 + 1) = c(L + 2) or

c(L/2 + 1) ∈ {1, 2} or c(L + 2) ∈ {1, 2}. In these scenarios, |c({L, L + 1})\{1, 2}| = 2

and {1, L, L + 1, 2L + 2} is a rainbow solution.

Case 3: 2 ≤ s2 <
L

2 , i.e. L/2 < i ≤ L − 2

Consider the equations

β + [L − i] + [n + 1 − (L − i) − β] = n + 1 (3)

and

1 + [L − i] + [n + 2 − (L − i) − 1] = n + 2 (4)

for 1 ≤ β ≤ L − i − 1. To assure that Equations (3) and (4) are valid, i.e.

non-degenerate, consider the following inequalities:

L/2 < i

L < 3L/2 + 3 < 3i + 3

L − i < 2i + 3 = n − 2L + 2i + 2

and

i ≤ L − 2

n − L + i + 2 ≤ n
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n − L + i + 1 ≤ n − 1.

Now, if A′′ = {n−2L+2i+2, n−2L+2i+3, . . . , n−L+ i+1} and recalling that

c(β) = 1, c(L − i) = 2, c(n + 1) = r − 2 and c(n + 2) = r − 1, gives c(A′′) ⊆ {1, 2}.

Using Inequality (*), and it’s restrictions on j, observe that if j′ = L − i + 1, then

L/2 < i ≤ L − 2 gives 3 ≤ j′ <
n + 3

4 . Thus,

n − 2L + 2i + 1 ≤ sr−j′−1 ≤ n − L + i + 1 (see Figure 5.3).

However, all possible values for sr−j′−1 are in A′′ except for n − 2L + 2i + 1, so

sr−j′−1 = n − 2L + 2i + 1.

A similar argument using j′ + 1 = L − i and the upper bound of Inequality (*)

gives sr−j′ = n−L+i+2. However, since 1+s2 +sr−j′−1 = sr−j′ , {1, s2, sr−j′−1, sr−j′}

is a rainbow solution.

A rainbow solution has been found in all cases with s2 ≤ L. Therefore, s2+i =

L + 1 + i for 0 ≤ i ≤ r − 3 is the only way to color [n + 2] with r − 1 colors which is

the coloring described in Lemma 5.

Lemma 7. [97] If n ≥ 5 is odd, then rb([n + 1], eq) ≤ 1
2(n + 7).

Proof. Let r = 1
2(n+7) and c be an exact r-coloring of [n+1]. If r colors appear in [n],

then, by Proposition 3, there exists a rainbow solution. Thus c(n + 1) = r and r − 1

colors appear in [n]. Note that there is unique extremal coloring of [n] with r−1 colors,

thus
{

1,
n − 1

2 ,
n + 1

2 , n + 1
}

is a rainbow solution since c(1) = 1, c((n − 1)/2) = 2,

c((n + 1)/2) = 3 and c(n + 1) = r. Therefore, rb([n + 1], eq) ≤ 1
2(n + 7).

Theorem 3 follows Proposition 6 and Lemma 7.
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Theorem 3. [97] For n ≥ 5, rb([n], eq) =
⌊1

2(n + 7)
⌋
.

This concludes our analysis when eq is x1 + x2 + x3 = x4. For a more general

linear equation, a similar coloring to the one established in Lemma 5 can be used to

avoid rainbow solutions and arrive at Theorem 4. We skip the proof here, but refer

to [97] for more details.

Theorem 4. [97] Let eq : ∑k−1
i=1 xi = xk, k ≥ 4 and define L =

⌈
2n−ℓ(ℓ−1)

2ℓ

⌉
for

ℓ = k − 2. Then

rb([n], eq) ≥


n + 1 if n < (k−1)k

2

n − L + 3 otherwise
.

5.3 Rainbow Numbers on [m] × [n]

In Section 5.2, we outline the results in [97] to find rb([n], eq) for certain equations

eq. In this section, we consider the same question but with eq fixed as x1 + x2 = x3,

and instead, we use the set

[m] × [n] = {(i, j) : i, j ∈ Z, 1 ≤ i ≤ m and 1 ≤ j ≤ n}

with 1 ≤ m ≤ n. In short, we determine that rb([m] × [n], x1 + x2 = x3) = m + n + 1.

Note that addition is component-wise in [m] × [n], and if an exact (surjective) r-

coloring c : [m] × [n] → [r] does not contain a rainbow solution, then c is said to be

rainbow-free.

The analysis in [98] is rather lengthy, so we outline many important results instead
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of rewriting the whole paper. To enable this dialog, we define

Dk =
{
(i, j) ∈ [m] × [n] : m − k = i − j

}

as the kth-diagonal in [m] × [n]. The mth-diagonal, Dm, is called the main diagonal,

and every other diagonal is an off-diagonal. On a high level, we categorize each

coloring by the number of colors in the main diagonal. That is, we analyze when

|c(Dm)| < 3, |c(Dm)| = 3, and |c(Dm)| > 3. The final section in [98] ties it together

and states the desired result. The remainder of this discussion gives a high-level

outline of the paper.

Firstly, we establish a lower bound on rb([m] × [n], eq) in Lemma 8.

Lemma 8. [98] For 2 ≤ m ≤ n, m + n + 1 ≤ rb([m] × [n], eq).

Proof. Let c : [m] × [n] → [m + n] be defined by

c((i, j)) =


1 if i < m and j < n,

i + 1 if i < m and j = n,

j + m if i = m.

Note that (1, n) and (m, 1) are not in any solution to eq. If α, β, γ ∈ [m] × [n]

such that α + β = γ, then c(α) = c(β) = 1. Therefore, c is rainbow-free for eq and

m + n + 1 ≤ rb([m] × [n], eq).

Lemma 9 indicates that the color set of an off-diagonal cannot differ from the

color set of the main diagonal by more than one color.

Lemma 9. [98] If c is a rainbow-free coloring of [m] × [n] for eq with m ≤ n, then,

for all Dx with x ̸= m,
∣∣∣c(Dx) \ c

(
Dm

)∣∣∣ ≤ 1.
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Proof. If m = 1 each diagonal has one element and the result follows. Thus, assume

2 ≤ m. Since |D1| = |Dm+n−1| = 1, it is certainly true that |c(D1) \ c(Dm)| ≤ 1 and

|c(Dm+n−1) \ c(Dm)| ≤ 1.

For the purpose of contradiction, assume 1 < x < m+n−1 and |c(Dx)\c(Dm)| ≥ 2.

Then there exists β, γ ∈ Dx such that c(β), c(γ) ∈ c(Dx) \ c(Dm). However, there

exists α ∈ Dm such that {α, β, γ} or {α, γ, β} is a rainbow solution, a contradiction.

Thus,
∣∣∣c(Dx) \ c

(
Dm

)∣∣∣ ≤ 1.

Of the collection of off-diagonals that contain a color, not in the main diagonal,

the one with the smallest index is called a contributing diagonal. As an immediate

consequence of Lemma 9, Corollary 3 indicates that for an (m + n + 1)-coloring c to

be rainbow-free, |c(Dm)| ≥ 3.

Corollary 3. [98] If c is an exact, rainbow-free (m + n + 1)-coloring of [m] × [n] for

eq with 3 ≤ m ≤ n, then |c(Dm)| ≥ 3.

Let c be an (m + n + 1)-coloring of [m] × [n] and suppose |c(Dm)| = 3. The

motivation for many of the following results is derived from the notable staircase

pattern in the extremal m + n-colorings. A description of this pattern, which we call

the staircase pattern, is regarding consecutive contributing diagonals. This begins

with Lemma 10 stating that each off-diagonal must contribute if |c(Dm)| = 3.

Lemma 10. [98] If c is an exact, rainbow-free (m + n + 1)-coloring of [m] × [n] for

eq with 3 ≤ m ≤ n and |c(Dm)| = 3, then each off-diagonal Dk contributes exactly

one color ck such that ck /∈ c([m] × [n] \ Dk).

If α ∈ Da, β ∈ Da+1 where Da and Da+1 are contributing, and c(α), c(β) /∈ c(Dm),

then {α, β} are a consecutive contributing pair of elements. If {α, β} is a consecutive
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contributing pair of elements with α = (a1, a2) and β = (a1, a2 + 1), then {α, β} is

a horizontal pair and if α = (a1, a2) and β = (a1 − 1, a2), then {α, β} is a vertical

pair . Let Pv be a vertical pair, Ph be a horizontal pair, and define P = Pv ∪ Ph. If

Pv ∩ Ph = ∅, Pv ∩ W ̸= ∅, and Ph ∩ W ̸= ∅, P is called a contributing disjoint corner .

Many of the results to come are leveraged to force certain structures in [m] × [n].

For example, Lemma 11 indicates that the elements in the diagonals that are colored

distinctly must be next to each other in one of two ways, as either a horizontal or

vertical pair as pictured in Figure 5.4, taken from [98].

Lemma 11. [98] If c is an exact, rainbow-free (m + n + 1)-coloring of [m] × [n]

for eq with 3 ≤ m ≤ n and |c(Dm)| = 3, then there are no jumps from α to β with

c(α), c(β) /∈ c(Dm) and c(α) ̸= c(β).

h1 h2

v1

v2

(s2, s2)
W1
W2
Y1
Y2
Ph

Pv

Figure 5.4: An example of [m] × [n] when (s2, s2) = (3, 3) with corresponding Y1, Y2, W1
and W2 highlighted. Further, a contributing disjoint corner, Ph ∪ Pv, with c(h1), c(h2), c(v1)
and c(v2) pairwise distinct, is shown.

Lemma 12 shows that if both a horizontal and vertical pair are in [m] × [n], there

must also be a rainbow solution.
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Lemma 12. [98] If c is a rainbow-free coloring of [m] × [n] for eq with m ≤ n, then

there are no contributing disjoint corners P = Pv ∪ Ph in [m] × [n].

To rule out the case where |c(Dm)| = 3, in Theorem 5, we show that every

(m + n + 1)-coloring with |c(Dm)| = 3 must contain a horizontal and vertical pair,

and hence a rainbow solution.

Theorem 5. [98] If c is an exact (m + n + 1)-coloring of [m] × [n] with 3 ≤ m ≤ n

and |c(Dm)| ≤ 3, then [m] × [n] contains a rainbow solution to eq.

Now that we have determined that every exact (m + n + 1)-coloring c with

|c(Dm)| ≤ 3 must have a rainbow solution, we investigate colorings where |c(Dm)| ≥ 4.

We show that if two elements α, β ∈ [m] × [n] are distinctly colored with colors that

are not in the main diagonal, then there cannot exist a solution of the form α+ δ = β

(called a jump) for any δ = (d1, d2). We arrive at this result by bounding the size of

d1 + d2 above and below, which leads to a contradiction and ultimately Theorem 6,

indicating that no jumps can exist.

Theorem 6. [98] Let c be an exact, rainbow free (m + n + 1)-coloring of [m] × [n]

for eq with 3 ≤ m ≤ n, and suppose there is a jump from α ∈ Da to β ∈ Db such

that α + δ = β for some δ = (d1, d2) ∈ Dt. Then c(α) ∈ c(Dm) or c(β) ∈ c(Dm) or

c(α) = c(β).

Now that we have eliminated all jumps, we conclude with the analysis of |c(Dm)| ≥

4. We use the limitations imposed by Theorem 6 to show in Lemma 13 that only a

certain number of horizontal and vertical pairs can exist.

Lemma 13. [98] Let c be an exact, rainbow-free (m + n + 1)-coloring of [m] × [n]

for eq with 4 ≤ m ≤ n. If there is a horizontal pair Ph intersecting W , then there
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are at most 2s2 − 2 vertical pairs in [m] × [n]. Likewise, if there is a vertical pair Pv

intersecting W , then there are at most 2s2 − 2 horizontal pairs in [m] × [n].

Finally, in the proof of Theorem 7, we contradict Lemma 13, giving us the final

result. That is, rb([m] × [n], x1 + x2 = x3) = m + n + 1.

Theorem 7. [98] If c is an exact (m + n + 1)-coloring of [m] × [n] with 8 ≤ m ≤ n,

then [m] × [n] contains a rainbow solution to eq.

In [107], the authors found the rainbow number for x1 + x2 = ax3 in the group

Zn. In [108], the authors found more general results for the linear equations a1x1 +

a2x2 +a3x3 = b on the group Zn. The rainbow number has not been studied for other

equations eq or sets S beyond this. In future work, we plan to investigate non-abelian

groups, such as the dihedral groups, with various linear equations.

79



Chapter 6

Graph Saturation

6.1 Introduction

The forbidden subgraph problem is a question of the form: find the maximal num-

ber of edges ex(n, H) so every n-vertex graph with ex(n, H) edges does not have a

subgraph isomorphic to H. The value ex(n, H) is called the extremal number or the

Turán number .

The history of extremal numbers goes back to 1906 when the following question

was posed by Mantel: What is the maximum number of edges in a K3-saturated

graph? This was answered in [109]. Wythoff showed that a complete bipartite graph

with the same size partite sets (or sizes off by one) maximizes the number of edges

in a K3-saturated graph on n vertices. It was not until 1945 that this result was

extended to Kr-saturated graphs (r ≥ 3) by Turán in [110]. Turán proved that

a unique graph maximizes the number of edges over all Kr-saturated graphs. The

graph that realizes the extremal number ex(n, Kr) is the complete (r − 1)-partite

graph on n vertices where each partite set is the same size or within 1 of each other,
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known as balanced. Since then, many authors have found the extremal number for

various graph families [111].

There are a large number of questions that arise from the forbidden graph problem.

Typically, we aim to characterize the set of graphs that do not contain a subgraph H.

In particular, we ask, what is the smallest number of edges in a graph G so that adding

any edge e to G forces a subgraph isomorphic to H containing e? If G is a graph sp

that adding any edge creates a copy of H containing that edge, then G is H-semi-

saturated. The fewest number of edges in an H-semi-saturated graph on n vertices is

the semi-saturation number of H, denoted ssat(n, H). If an H-semi-saturated graph

G does not contain a subgraph isomorphic to H, called H-free, then we say G is

H-saturated. The smallest number of edges in such a graph on n vertices is called

the saturation number of H, denoted sat(n, H). To give an example of saturation,

we start with a few definitions.

A complete graph on n vertices, denoted Kn, is a graph where an edge connects

each pair of the n vertices. A complete bipartite graph G = (V, E), denoted Km,n,

is a graph where V can be partitioned into two sets V1 and V2, with |V1| = n and

|V2| = m, where every edge of the form (v1, v2) with v1 ∈ V1 and v2 ∈ V2 is in E,

and no other edges are present. Each set V1 and V2 is called a partite set, a maximal

independent set. We sometimes call K1,n a star graph on n vertices. A k-partite

graph is a graph whose vertices are (or can be) partitioned into k different partite

sets. Next, we present an example of saturation that uses K1,5 and K3.

Consider the star graph K1,5 in Figure 6.1. A triangle is a complete graph on 3

vertices, denoted K3. K1,5 does not contain any triangles. However, as Figure 6.2

demonstrates, replacing any non-edge with an edge creates a triangle. Thus, adding
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an edge to K1,5 forms K3 as a subgraph. Therefore K1,5 is K3-saturated. This shows

that sat(6, K3) ≤ 5.

Figure 6.1: Star (K1,5) Figure 6.2: Add edge to K1,5

Before continuing our example, we go through a few definitions. A graph G = (V, E)

is connected if there is a path between every pair of vertices in the graph. Otherwise,

G is disconnected. A subgraph of G is a subset of the vertex and edge sets. An induced

subgraph, denoted G[V ′], is the subgraph on vertex set V ′ where the edge set is all

edges in E with both endpoints contained in V ′. If a subset V ′ of V is a maximal set

so that the induced subgraph G[V ′] is connected, then G[V ′] is a connected component

of G. Connected graphs with the smallest number of edges are called trees. That is,

if removing any edge disconnects the graph, then it is a tree.

Now, continuing our example on K3-saturated graphs, we show that K1,5 is a K3-

saturated graph with the fewest edges over all graphs on 6 vertices. That is, we show

that sat(6, K3) ≥ 5.

Suppose G is a graph on 6 vertices with fewer than 5 edges that is K3-saturated.

Notice that K1,5 is a tree. Therefore, G, having one less edge than K1,5, must have

at least two connected components, call them G1 and G2 with vertex sets V1 and

V2, respectively. Adding any edge (v1, v2) for v1 ∈ V1 and v2 ∈ V2 does not form

a cycle, and, thus, does not form a K3, contradicting the assumption that G was
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K3-saturated. Therefore, the smallest number of edges in a K3-saturated graph on 6

vertices is 5. Thus, sat(6, K3) = 5. A similar argument applies to K1,n−1. Thus, K1,n

is a K3-saturated graph on n vertices with the fewest possible edges. This shows that

sat(n, K3) = n − 1.

The semi-saturation and saturation numbers can be defined on a family of graphs,

as in Definitions 11 and 10.

Definition 10. For a family of graphs F , a graph G = (V, E) is F-semi-saturated if

for all e ̸∈ E, G + e contains a subgraph isomorphic to some H ∈ F which contains

e. The semi-saturation number of F on n vertices, denoted ssat(n, F), is the smallest

number of edges in an F-semi-saturated graph on n vertices.

Definition 11. Let G = (V, E) be a simple undirected graph. If v, w ∈ V , and

e = (v, w) not contained in E, then G + e := (V, E ∪ {e}). For a family of graphs

F , a graph G is F-saturated if G is H-free for all H ∈ F , and for all e ̸∈ E(G),

the graph G + e contains a subgraph isomorphic to some H ∈ F . The saturation

number of F on n vertices, denoted sat(n, F), is the smallest number of edges in an

F-saturated graph on n vertices.

Kászonyi and Tuza found a general upper bound for the saturation number of a

graph H, sat(n, F), which is linear in n [112].

In summary, we have

ssat(n, H) = min{||G|| : |G| = n, G is H-semi-saturated}

sat(n, H) = min{||G|| : |G| = n, G is H-saturated}

ex(n, H) = max{||G|| : |G| = n, G is H-saturated}
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where sat(n, H) ≤ ex(n, H). We say the saturation spectrum of H is a set of integers,

the minimum of which is sat(n, H) and the maximum ex(n, H).

A graph that is H-saturated is already H-semi-saturated. Therefore, ssat(n, H) ≤

sat(n, H). There are examples of (n, H) pairs where the saturation and semi-saturation

numbers are unequal. For example, Burr, in their Master’s thesis [113], describes that

ssat(n, H) < sat(n, H) when H is a path graph. Additionally, Furëdi and Kim showed

a similar result for cycles of any length [114]. We find graphs where the saturation

and semi-saturation numbers differ.

For example, define a path on n vertices Pn is a collection of n vertices V =

(v1, v2, . . . , vn) so that (vi, vi + 1) for i = 1, . . . , n − 1 are all the edges. A disjoint

union of graphs G and H, denoted G ∪ H, has vertex set V = V (G) ∪ V (H) and edge

set E = E(G) ∪ E(H). A disjoint union of paths is called a linear forest. The graph

in Figure 6.3 is the smallest P5-semi-saturated graph [113]. Any edges you add to this

graph forms a copy P5. This graph contains a copy of P5, so it is not P5-saturated

but rather is P5-semi-saturated. Figure 6.4 is the smallest P5-saturated graph [112].

This shows that ssat(8, P5) < sat(8, P5). Thus relaxing the H-free condition on the

saturation number changes the question. Burr [113] proved that for big enough n,

ssat(n, Pk) < sat(n, Pk). We use a result from [115] in Section 6.2 to show that a

linear forest has a similar property.

1 2

3 4 5 6 7 8

Figure 6.3: P5-semi-saturated graph
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1 2

3 4 5 6 7 8

Figure 6.4: P5-saturated graph

6.2 Linear Forests

In this section, we show that for large enough n, ssat(n, F ) < sat(n, F ) where F is a

linear forest. We will reference results on saturation of linear forests from [115] and

results on semi-saturation of paths from [113]. Suppose that Pk denotes a path graph

on k vertices with k − 1 edges for the following propositions.

Proposition 7. Let F = Pk1 ∪ · · · ∪ Pkt with k1 ≥ · · · ≥ kt = k. Then ssat(n, F ) ≤

ssat(n − ℓ, Pk) + c(F ) where c(F ) =
(

ℓ
2

)
with ℓ = −1 +∑t

i=1 ki.

Proof. Let ℓ = −1 +∑t
i=1 ki and consider the complete graph on ℓ vertices, Kℓ. Let

T be a graph on n − ℓ vertices which is Pk-semi-saturated. We want to show that

G = Kℓ∪T is F -semi-saturated. First note that Kℓ contains a copy of Pk1 ∪· · ·∪Pkt−1 .

Therefore, if the addition of an edge in T creates a copy of Pk, it creates a copy of

F in G. Consider adding an edge e with one endpoint in Kℓ and one in T . Then

this edge forms a path of length k by considering e and k − 1 vertices in Kℓ. Kℓ will

contain Pk1 ∪ · · · ∪ Pk2 which creates a copy of F in G. Thus G is F -semi-saturated.

Notice that G has ssat(n − ℓ, Pk) edges in T . Additionally, there are
(

ℓ
2

)
edges in

Kℓ. This shows that ssat(n, F ) ≤ ssat(n − ℓ, Pk) + c(F ) where c(F ) =
(

ℓ
2

)
with

ℓ = −1 +∑t
i=1 ki for large enough n.

Corollary 4. If F = Pk1 ∪· · ·∪Pkt with k1 ≥ · · · ≥ kt = k, then ssat(n, F ) < sat(n, F )
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for large enough n.

Proof. Define ℓ = −1+∑t
i=1 ki. In [113], it is shown that ssat(n, Pk) < sat(n, Pk) and

that the difference between them grows with n. Therefore, there exists an integer N

so that ssat(n − ℓ, Pk) + c(F ) < sat(n − ℓ, Pk) for every n ≥ N . Since saturation

is monotonic in n for paths [112], we have sat(n − ℓ, Pk) ≤ sat(n, Pk). Therefore,

ssat(n−ℓ, Pk)+c(F ) < sat(n−ℓ, Pk) ≤ sat(n, Pk) for all n greater than N . In [115], the

authors show that sat(n, Pk) ≤ sat(n, F ). Thus, by these results and Proposition 7,

we get that

ssat(n, F ) ≤ ssat(n − ℓ, Pk) + c(F ) < sat(n, Pk) ≤ sat(n, F )

which gives us our result.

6.3 Monotonicity

The results in this section are motivated by the monotonicity of the extremal number.

The extremal number has three monotonic properties, as described in Lemma 14.

Lemma 14. [111] For H a subgraph of H ′ and F ⊂ F ′,

1. ex(n, H) ≤ ex(n, H ′)

2. ex(n − 1, H) ≤ ex(n, H)

3. ex(n, F) ≥ ex(n, F ′)

All three types of monotonicity that hold for the extremal numbers do not gen-

erally hold for saturation. In Example 4, we show that monotonicity does not hold
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with respect to the subgraph relation (analogous to part 1 in Lemma 14).

Example 4. Consider the stars K1,s and K1,t for s < t. Notice that K1,s is a subgraph

of K1,t. In this case, it is true that sat(n, K1,s) ≤ sat(n, K1,t) for all s < t.

On the contrary, consider the graph K1,m and the graph Hm = K1,m + e (examples

given in Figure 6.5 and 6.6 for when m = 3). Notice that each non-edge is isomorphic,

so the choice of e is arbitrary. We will show that even though K1,m is a subgraph of

Hm, sat(n, Hm) ≤ sat(n, K1,m). Note that K1,n−1 is H saturated so

sat(n, Hm) = n − 1.

To show that sat(n, K1,m) is greater than sat(n, Hm), we will show that at least

n−1 vertices in a K1,m-saturated graph G must have degree m−1 or greater. Suppose

two vertices u and v in G have degrees less than m − 1. Then the addition of the edge

(u, v) to G does not create a vertex with degree m and thus does not create a subgraph

isomorphic to K1,m. Therefore,

sat(n, K1,m) ≥ (n − 1)(m − 1)
2 .

This shows that sat(n, Hm) ≤ sat(n, K1,m) for m ≥ 3.

1

2

3

4

Figure 6.5: K1,3

1

2

3

4

Figure 6.6: H3 = K1,3 + e

Example 4 shows that, in general, saturation is not monotonic with respect to the
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subgraph relation. For which graph families is it monotonic? Let G + H denote the

join of two graphs. That is, G + H has a vertex set and edge set

V (G + H) = V (G) ∪ V (H)

and

E(G + H) = E(G) ∪ E(H) ∪ {(g, h)|g ∈ V (G) and h ∈ V (H)},

respectively. In [116], Cameron and Puleo show that if H is a graph and H ′ = H +K1

then sat(H, n) ≤ sat(H ′, n − 1) + n − 1. Here, we show that ssat(n, H) ≤ ssat(n, H ′).

Proposition 8. Let H be a graph and H ′ = H + K1. For all e ∈ E(H ′), there exists

a copy of H as a subgraph of H ′ so that e ∈ E(H).

Proof. Recall that H ′ = H + K1. Partition the edge set as E(H ′) = E(H) ∪ E(v)

where E(v) is every edge in E(H ′) incident to the dominating vertex v. Choose e

arbitrarily from E(H ′). We have our result if e is already contained in E(H). Now

suppose that e ∈ E(v). Let e = (v, w) where v is the dominating vertex of H ′, and

w is contained in H. Let u be a vertex in H incident to w, and N(u) denote the

collection of vertices incident to u. Consider the subgraph with vertices V (H ′) \ u

and edges E(H) \ E(u) ∪ A where A is the collection of edges incident to v and every

vertex in N(u) ∩ V (H). This subgraph is isomorphic to H, and since the subgraph

contains e, we have our result.

Figure 6.7 and 6.8 show an example of Proposition 8.

Proposition 9. If H is a nonempty graph and H ′ = H + K1, then ssat(n, H) ≤

ssat(n, H ′).
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Figure 6.7: W5 = C5 + v.
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Figure 6.8: A C5 in W5 using e.

Proof. Let G be an H ′-semi-saturated graph. Consider G + e for some e ̸∈ V (G).

Since G is H ′-saturated then G + e contains a copy of H ′ in G. By Proposition 8, H ′

contains a copy of H which contains e as an edge. Therefore, G + e has a subgraph

isomorphic to H that contains e. Therefore, G is H-semi-saturated.

6.4 Discussion

Bushaw, Johnston, and Rombach define that a graph G is rainbow H-saturated if there

is some proper edge coloring of G, which is rainbow H-free, but where the addition

of any edge makes such a rainbow H-free coloring impossible [117]. The minimum

number of edges among all rainbow H-saturated graphs is called the rainbow H-

saturation number , denoted by sat∗(n, H).

The authors in [117] say it is unknown how the saturation and rainbow-saturation

numbers relate since an H-saturated graph may not be rainbow H-saturated. That

is, there could be a proper edge coloring of G that avoids rainbow copies of H, even

though G has H as a subgraph.

One way to find such a coloring is to find examples where the H-saturation and

H-semi-saturation numbers differ. These the candidates of H to consider when in-

vestigating if sat∗(n, H) < sat(n, H). In Section 6.2, we show that linear forests F
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have the property that ssat(n, F ) < sat(n, F ). In future work, we plan to find other

examples of this, with the ultimate goal of showing that sat∗(n, H) < sat(n, H).
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Index

(α, ℓ)-Katz centrality, 14

(α, ℓ)-Katz score, 14

(ϵ, ϵ′)-agree on N , 15

(ϵ, ϵ′)-properly ranked with respect to

C and C ′, 15

(k − 1)-ball, 49

H-free, 81

H-saturated, 81

H-semi-saturated, 81

α-Katz score, 14

ϵ-agree, 15

ϵ-proper ranking, 15

F -saturated, 83

F -semi-saturated, 83

k-partite graph, 81

kth-diagonal, 75

r-coloring, 64

adjacency matrix, 5

adjacent, 4

anti-Ramsey number, 63

balanced, 81

Bayesian network, 11

betweenness centrality, 6

centrality measure, 3

Chung-Lu model, 27, 39

closeness centrality, 6

cluster boundary node, 50

clustering coefficient, 5, 35

complete bipartite graph, 81

complete graph on n vertices, 81

connected, 82

connected component, 82

consecutive contributing pair of
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elements, 76

contributing diagonal, 76

contributing disjoint corner, 77

corner nodes, 56

degree, 4

degree centrality, 4

directed graph, 4

disconnected, 82

dominating set, 30

domination number, 31

downstream influence, 14

dynamic Bayesian network, 12

edge-weighted, directed network, 13

edges, 4

eigenvector centrality, 7

endpoints of L(u, v), 52

Erdős-Rényi model, 27, 38

exact coloring, 64

extremal number, 80

geometric graph, 50

global centrality measure, 6

graph, 4

horizontal pair, 77

in-degree, 5

induced subgraph, 82

join, 88

jump, 78

Katz centrality, 7

Katz parameter, 7, 11

Katz scores, 8

line, 52

line centrality, 53

linear forest, 84

local centrality measure, 4

main diagonal, 75

mobile ad hoc network, 33

neighbor-degree centrality, 6

neighborhood, 50

network, 2

nodes, 4

off-diagonal, 75

out-degree, 5

partite set, 81

path on n vertices, 84

primary QTL, 17

92



Quality Time Lost (QTL), 12

rainbow H-saturated, 89

rainbow H-saturation number, 89

rainbow copy of H, 63

rainbow number, 64

rainbow structure, 63

rainbow-free, 74

Ramsey number, 61

random geometric graph, 38

ranking, 13

relative neighbor-degree centrality, 36

restricted stress centrality, 51

saturation number, 81

saturation number of F on n vertices,

83

saturation spectrum, 84

Schur number, 62

semi-saturation number, 81, 83

Shapley value, 5

star graph on n vertices, 81

stress centrality, 51

subgraph, 82

tree, 82

triangle, 81

Turán number, 80

upstream influence, 14

vertical pair, 77

vertices, 4

walk of length k, 7, 13

wireless ad hoc network, 33
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