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Syngnathids (seahorses, pipefishes and seadragons) are an attractive resource for

Traditional Chinese Medicine (TCM). Despite few scientific studies supporting

seahorse nutritional benefits, they are believed to possess medicinal properties

that enhance human health. The European short-snout seahorse Hippocampus

hippocampus is classified as Data Deficient by the IUCN Red List of Threatened

Species. Nevertheless, there are increasing records of this species being illegally

captured and traded to supply TCM. This study investigated the fatty acid (FA)

profiles of the trunk muscles of cultured female and male H. hippocampus, to

assess sex and intraspecific variation, as well as their potential nutritional value. The

contents of crude lipid (4.05 ± 2.15% dry weight, DW in females and 2.82 ± 1.48%

DW inmales) and phospholipid (8.23 ± 3.34 mgmg−1 DW in females and 7.91 ± 2.36

mg mg−1 DW in males) were not significantly different between the two sexes. The

absolute FA compositions ofH. hippocampus trunkmuscles revealed highermean

values for FA 16:0, 18:0, 18:1 n-9 and 22:6 n-3 (DHA), in both female (2.82 ± 1.11,

1.81 ± 0.89, 0.90 ± 0.41 and 0.93 ± 0.35 mg mg−1 DW, respectively) and male

specimens (1.99 ± 0.95, 1.52 ± 0.78, 0.74 ± 0.44 and 0.80 ± 0.41 mg mg−1 DW,

respectively). In terms of FA classes, saturated fatty acids (SFA) showed the highest

absolute value of the total pool of FA, for both sexes (4.73 ± 1.94 mg mg−1 DW in

females and 3.58 ± 1.76 mg mg−1 DW in males). Males tended to exhibit a more

suitable profile for human nutrition, displaying a lower atherogenic index (AI) and

thrombogenic index (TI). The relative composition of H. hippocampus trunk

muscles followed the patterns of seahorse species valued in TCM, with DHA

ranking amongst the PUFA with higher mean relative abundances (12.0% of total

FA). While seahorse FA profiles may be of interest in terms of their nutritional value

for humans, only specimens originating from sustainable production practices

should be traded and the conservation of their populations in the wild should

continue to be a global priority.
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1 Introduction

Seahorse species within genus Hippocampus are vulnerable to

illegal, unregulated and unreported (IUU) trade (Foster et al., 2019)

mostly due to their demand by Traditional Chinese Medicine (TCM)

and, to a lesser extent, to the marine ornamental and curio trades

(Cohen et al., 2017). Global seahorse extraction is substantial,

rounding tens of millions of specimens per year (Vincent et al.,

2007; Vincent et al., 2011; Foster et al., 2019; Vaidyanathan et al.,

2021). One way to address the pressure on wild populations is the

implementation of sustainable aquaculture practices with the upside of

supporting small communities that are dependent on seahorses as a

source of income (Cohen et al., 2017). In 2002, the increase recorded

in the live trade of farmed seahorses somehow signaled the growing

international effort towards their aquaculture (Koldewey and Martin-

Smith, 2010; Olivotto et al., 2011; Planas et al., 2017). There are,

however, several seahorse species that by being caught in large

numbers from the wild, highlight the pressing need to diversify the

scope of seahorse aquaculture (Koldewey and Martin-Smith, 2010).

Most seahorse specimens supplying TCM are obtained from the

wild to be consumed dried (Foster et al., 2019), as they are believed

to have nutritional properties that are beneficial for human health

(Kim et al., 2019). Dried seahorses are placed whole in beverages or

consumed in the form of powder to treat several illnesses such as

respiratory diseases and arteriosclerosis (Vincent, 1996; Vincent

et al., 2011). Biomolecules with nutritional relevance already

reported from Hippocampus spp. include lipids and amino acids,

as well as minerals, namely some trace elements (Lin et al., 2009;

Kim et al., 2019). Among the health promoting benefits that have

been described to date from pharmacological studies addressing

natural derivatives from seahorse species valued in TCM one can

highlight the anti-oxidant activity reported from H. abdominalis

(Kim et al., 2019) and its, as well as H. comes, anti-cancer potential

(Xu et al., 2020; Ghasemi et al., 2021). Additionally, the phenolic

compound paeonol isolated from H. kuda has been reported to

display activity against neuro-inflammation (Himaya et al., 2012).

Marine fish are commonly recognized as a rich source of

polyunsaturated fatty acids (PUFA), especially omega-3 fatty

acids (FA), namely docosahexaenoic acid (DHA, 22:6 n-3) and

eicosapentaenoic acid (EPA, 20:5 n-3) (Woods, 2003; Huang et al.,

2010). Docosahexaenoic acid and EPA are abundant FA in fish cell

membranes (Johnston et al., 2020), being the first a relevant

component of cell membranes involved in the synthesis of muscle

fibers (Planas et al., 2020). These omega-3 FA, as well as some

omega-6 FA (arachidonic acid, ARA, 20:4 n-6), are known to be of

major importance in human metabolism, for contributing to the

prevention of multiple non-communicable diseases (e.g.,

cardiovascular disorders) and modulate immune responses

(Crawford et al., 1999; Nestel, 2000; Sonnweber et al., 2018).

Nevertheless, the biosynthesis pathway that allow de novo

synthesis of DHA and EPA from its precursor, the essential a-
linoleic acid (18:3 n-3, ALA) that needs to be obtained from dietary

sources and cannot be biosynthesized, is very limited in humans

(Burdge and Calder, 2005; Scaioli et al., 2017). For this reason,
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consumers and nutritionists value marine fish and seafood as

important sources of omega-3 FA (Tocher, 2015).

The European short-snout seahorse H. hippocampus and long-

snout seahorse H. guttulatus co-occur in sympatry in shallow

European coastal habitats (Curtis et al., 2017). In Ria Formosa

coastal lagoon (south of Portugal), the populations of these two

species have suffered pronounced declines associated to multiple

factors, such as habitat degradation, by-catch, natural phenomena

(e.g., silting events) and illegal fishing; yet the direct causes for this

decline are still being assessed (Caldwell and Vincent, 2012; Correia

et al., 2018). Hippocampus hippocampus is classified, at global level,

as Data Deficient by the IUCN Red List of Threatened Species (The

IUCN Red List of Threatened Species, 2017a) and it is not

extensively traded (Curtis et al., 2017), as other seahorse species

that are targeted for TCM. Nevertheless, in the Mediterranean

region, this species has been classified as Near Threatened (The

IUCN Red List of Threatened Species, 2017b) and there are a few

records of its illegal capture and trade to supply TCM

(Planelles, 2017).

Nowadays , consumers are more concerned about

environmental and food security matters and, as a result, are

interested in knowing the origin and production processes of

seafood (Leal et al., 2015; Doubleday et al., 2022). As such,

seahorse aquaculture can potentially enhance consumers’ safety

by providing a legal product to traditional and emerging markets.

The FA profiles of edible muscles of farmed fish are influenced by

the diet supplied during grow-out (Bordignon et al., 2020) and

culture conditions, ultimately affecting the quality of the fillets that

will reach the final consumer (Monge-Ortiz et al., 2018). As wild

and cultured marine fish experience contrasting feeding regimes,

their biochemical and geochemical profiles may be used to

discriminate farmed seahorses from wild ones (Leal et al., 2015).

Indeed, a geochemical tool has already been successfully applied to

confirm the geographic origin of cultured H. guttulatus (Cabral

et al., 2021), confirming the potential of these approaches to help

fighting IUU fishing, as well as promoting the certification of origin

for sustainably farmed seahorses.

The present study aimed to determine the FA profiles of

cultured specimens of H. hippocampus and investigate the

existence of intraspecific variation. While seahorses are usually

consumed whole (muscle, viscera, bones and skin), the present

study only analyzed the FA profile of trunk muscle. Muscle is an

important lipid storage tissue in fish (Jobling et al., 1998) and

while the FA profile of trunk muscle does not reflect the full FA

pool of seahorses, it displays a more stable profile than that of

gonads (e.g., ovaries) and reserve organs (e.g., liver) which are

more susceptible to short-term shifts promoted by diet and

abiotic factors (Planas et al., 2020; Zhang et al., 2022).

Therefore, when aiming to perform intraspecific comparisons

(e.g., male vs. female specimens), a more stable biological matrix

will be less prone to bias in the pool of FA promoted by diet or

different stages of sexual maturation (Zhang et al., 2022). The FA

profiles of cultured short-snout seahorse’s trunk muscles are

compared, from a nutritional point of view, to those of the
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whole-body of other cultured Hippocampus species described in

the literature, acknowledging that the pool of FA of H.

hippocampus is only partly represented by trunk muscle.

Valuing the nutritional and functional potential of cultured

seahorses is of main importance, as this may represent a

potential pathway for relieving the ongoing fishing pressure

over wild populations. This goal can be more easily achieved if

a product with a more stable FA profile is presented to

consumers, namely by encouraging the use of seahorse trunk

muscle alone, rather than whole dried specimens featuring a

much more variable FA profile.
2 Materials and methods

2.1 Seahorse samples

Fourteen specimens of captive bred H. hippocampus were

sourced from Centro de Ciências do Mar (CCMAR, University of

Algarve, Faro, Portugal). The captive breeding program for H.

hippocampus (Project HIPPONUTRE, reference 16-02-01-FMP-

54) was approved by the ethics committee from the Veterinary

Medicines Directorate, Ministry of Agriculture, Rural Development

and Fisheries, Portugal. Under this approval, the program is

conducted in accordance with the Guidelines of the European

Union Council (86/609/EU) and Portuguese legislation for the

use of laboratory animals. These short-snout seahorses (6 males

and 8 females) were cultured using natural seawater from Ria

Formosa coastal lagoon, located in Portugal’s southern Atlantic

coast (36°59’ N; 7°51’ W). Temperature and salinity followed

natural seasonal patterns with annual mean values of 20 °C and

35.7, respectively. During grow-out seahorses were fed on wild

mysidsMesopodopsis slabberi and/or Leptomysis spp., depending on

daily and/or seasonal availability.

The seahorse samples considered for FA analysis died from

natural causes, during the same time frame (during the year of

2020). In the laboratory, frozen seahorse samples, maintained at

-20 °C, were washed with distilled water and freeze-dried (Labogene

CoolSafe 55-9L PRO), prior to the extraction of their trunk muscle.

Seahorses’ whole body dry weight (DW) was registered, presenting

mean values (± standard deviation, SD) of 1.41 ± 0.23 g in females

and 1.49 ± 0.67 g in males. Seahorse sex was determined through

the presence of brood pouch in the specimens, a trait exclusive

to males.

Seahorses’ trunk was considered to be the extension from the

cleithral ring to the last trunk ring, as described by Lourie (2003).

This body part was separated from the rest of the whole body (98.34

± 0.41% in females and 98.18 ± 0.53% in males) using ceramic

coated blades, with dorsal trunk muscles (Figure 1) being removed

with the help of stainless-steel tweezers. Tweezers and blades were

cleaned with 99% (w/v) ethanol between the replicates of each sex

group, to avoid cross contamination. Trunk muscle samples were

stored at -20 °C until further analysis.
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2.2 Biochemical analysis

2.2.1 Lipid extraction
Freeze-dried samples with a mean DW of 23.99 ± 7.43 mg were

macerated in the extraction tube using a stainless-steel spatula.

Lipid extraction was performed using a modified Bligh and Dyer

(1959) method. Briefly, 2500 μL of methanol (MeOH) (HPLC

grade, Fisher Scientific, UK) and 1250 μL of dichloromethane

(CH2Cl2) (HPLC grade, Fisher Scientific, UK) were added to each

sample, which were then sonicated for 1 min and incubated on ice

in an orbital shaker at 150 rpm (Stuart SSL2 Reciprocating Shaker)

for 30 min. After a second addition of 1250 μL CH2Cl2, samples

were centrifuged at 1207 g force for 10 min (Centurion Scientific

Pro Analytical C4000R with a BRK5324 rotor, Stoughton, UK) and

the organic phase was collected. Biomass residue was re-extracted

by adding another 2500 μL of MeOH and 2500 μL of CH2Cl2,

followed by centrifugation. A volume of 2250 μL of Mili Q water

(Synergysup®, Millipore Corporation, Billerica, MA, USA) was

added in the organic phases to promote phase separation and

after a new centrifugation for 10 min at 537 g force, the organic

phase was collected. The aqueous phase was re-extracted with 1880

μL of CH2Cl2 and centrifuged. The combined organic phases were

dried under a nitrogen stream and total lipid content was

determined by gravimetry.
2.2.2 Phospholipid quantification
Phospholipid (PL) amount in total lipid extracts were

determined spectrophotometrically through the phosphorus

assay, as described by Bartlett and Lewis (1970). Briefly, the

lipid extracts were re-suspended in 300 μL of CH2Cl2 and 10 μL of

the samples were transferred to glass tubes. The samples were
FIGURE 1

Trunk cross-section of a female short-snout seahorse Hippocampus
hippocampus cultured at Centro de Ciências do Mar (CCMAR,
University of Algarve, Faro, Portugal). Trunk muscles were extracted
from the dorsal region highlighted by the yellow circle.
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dried under a nitrogen stream and 125 μL of perchloric acid

(HClO4) (70% w/v) were posteriorly added. The tubes were then

placed in a heating block (SBH200D/3, Stuart, Bibby Scientific

Ltd., Stone, UK) at 180 °C for 60 min. A volume of 825 μL of Milli

Q water and 125 μL sodium molybdate (NaMoO4.H2O) (2.5% w/

v) were added to the tubes containing the samples. After

homogenization, 125 μL of ascorbic acid (C6H8O6) (10% w/v)

were added and the samples were incubated in a water bath

(Precisterm, JP Selecta, Barcelona, Spain) at 100 °C for 10 min.

The standard solutions of 0.1–2.0 μg of phosphate (solution of

100 μg. mL−1 NaH2PO4·2H2O), were subjected to the same

treatment as the samples, except for the placement in the

heating block. A volume of 200 μL of the samples and

standards was transferred to a 96-well plate and the absorbance

was measured at 797 nm, using a microplate ultraviolet-visible

spectrophotometer (Multiskan GO, Thermo Fisher Scientific,

Vantaa, Finland). The conversion factor 775/31 (25) was

applied in order to obtain the amount of PL in the lipid extracts.

2.2.3 Fatty acid analysis by gas chromatography
mass spectrometry

Fatty acid methyl esters (FAME) were prepared from total

lipid extracts of the trunk muscle of H. hippocampus by alkaline

transmethylation. An amount of total lipid extract corresponding

to 10 μg of PL were transferred to tubes previously washed with n-

hexane (95%). After drying the lipid extract under a nitrogen

stream, 1 mL of internal standard 19:0 FA (1.08 μg mL−1, CAS

number1731-94-8, Merck) in n-hexane (99%) was added to the

tube containing the lipids, followed by the addition of 200 μL of a

methanolic potassium hydroxide (KOH) solution (2 M). After

sample homogenization, 2 mL of a saturated sodium chloride

solution (NaCl) (10 mg mL−1) were added and the sample tubes

were centrifuged for 5 min at 537 g force. A volume of 600 μL of

the organic phase containing the FAME was extracted and dried

under a nitrogen stream. For gas chromatography mass

spectrometry (GC-MS) analysis, FAME were re-suspended in

100 μL of n-hexane (99%). A volume of 2.0 μL of the FAME

solution was injected in the GC-MS equipment (Agilent

Technologies 5977 B GC/MSD, Santa Clara, CA, USA) with a

DB-FFAP column (123-3232, J and W Scientific, Folsom CA,

USA) presenting the following specifications: 30 m in length, an

internal diameter of 320 μm and a film thickness of 0.25 μm. The

equipment was connected to a Mass Selective Detector operating

with an electron impact mode at 70 eV and a scanning mass range

of m/z 50–550 (1 s cycle in a full scan mode). Concerning the

system conditions, helium was used as the carrier gas (constant

flow 1.4 mL min−1), inlet temperature 220 °C and detector

temperature 230 °C. Oven temperature was programmed as

follows: initial temperature of 58 °C for 2 min; linear increase

to 160 °C (25 °C min−1); linear increase to 210 °C (2 °C min−1);

linear increase to 225 °C (20 °C min−1) and maintenance at 225 °

C for 15 min. The data acquisition software employed was the

GCMS 5977B/Enhanced MassHunter.
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Fatty acid peaks were identified using Agilent MassHunter

Qualitative Analysis 10.0 software, through retention time values

and comparison of MS spectra with the NIST chemical database

library and MS spectra of a FAME certified standard mixture

(Supelco 37 Component FAME Mix, Sigma-Aldrich, Darmstadt,

Germany). The absolute composition of FA (μg mg−1 DW) was

determined using calibration curves of the FAME certified

standard mixture under the same instrumental conditions and

the FA 19:0 as the internal standard, while the relative

abundances (%) were obtained from absolute values.

2.3 Lipid indexes
The assessment of nutritional quality of H. hippocampus trunk

muscle, in terms of FA relative abundance (% of total fatty acids,

TFA) was determined according to four lipid indexes. The

atherogenic (AI), thrombogenic (TI) and hypocholesterolemic/

hypercholesterolemic indexes (HH), were obtained from the

formulas described by Ulbricht and Southgate (1991), while the

polyene index (PI) was determined according to Lubis and Buckle

(1990). The FA 12:0 and 14:0 were not included in the equations, as

they were not detected in the trunk muscles ofH. hippocampus. The

equations for these lipid indexes are as follows (MUFA refers to

monounsaturated FA and PUFA to polyunsaturated FA):

AI =
12:0+4 x 14:0+16:0

S MUFA + S PUFA n − 6 + S PUFA n� 3
equation (1)

TI =
14:0+16:0+18:0

(0:5  SMUFA) + (0:5  S  PUFA   n − 6) + (3  S  PUFA   n − 3) + S   PUFA   n−3
PUFA   n−6  

equation (2)

HH   =
18:1 n−9+18:2 n−6+20:4 n−6+18:3 n−3+20:5 n−3+22:5 n−3+22:6 n−3

14 : 0 + 16 : 0
equation (3)

PI =
EPA +DHA

16 : 0
equation (4)
2.4 Statistical analysis

To assess the existence of significant differences (p-value ≤ 0.05) in

the absolute abundance (mg mg−1 DW) of FA composition betweenH.

hippocampus males and females, both groups were compared.

Although the absolute abundance of some FA exhibited a normal

distribution (determined by Shapiro-Wilk test), due to the low number

of replicates, a non-parametric version of the t-test for unpaired

samples (Mann -Whitney U) was performed. The same approach

was applied to assess if both groups were significantly different, in terms

of their pool of saturated FA (SFA),MUFA and PUFA, in terms of their

lipid indexes and for lipid and PL contents. Bonferroni’s correction was

applied whenever multiple comparisons were performed.

All statistical analyses were performed using RStudio v4.0.2

(RStudio Team, 2019), as well as the graphical representations

which were obtained with ggplot2 package (Wickham, 2016).
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3 Results

The crude lipid content of H. hippocampus trunk muscles was

4.05 ± 2.15% DW in females and 2.82 ± 1.48% DW in males

(Supplementary Table S1). Regarding PL content, the mean values

were 8.23 ± 3.34 μg mg−1 DW in females and 7.91 ± 2.36 μg mg−1

DW in males. Lipid and PL contents did not present significant

differences between females and males (Mann-Whitney U, p-value =

0.18 for lipid content and p-value = 0.95 for PL content).

A total of 16 FA were identified in the trunk muscle of cultured

adult males and females of H. hippocampus. The absolute FA

compositions revealed high mean values for 16:0, 18:0, 18:1 n-9

and 22:6 n-3 (DHA), in both female (2.82 ± 1.11, 1.81 ± 0.89, 0.90 ±

0.41 and 0.93 ± 0.35 mg mg−1 DW, respectively) and male specimens

(1.99 ± 0.95, 1.52 ± 0.78, 0.74 ± 0.44 and 0.80 ± 0.41 mg mg−1 DW,

respectively) (Table 1). Concerning lipid classes, SFA displayed the

highest absolute values in both sexes, with females tending to exhibit

higher mean values (4.73 ± 1.94 mg mg−1 DW) than males (3.58 ±

1.76 mg mg−1 DW). The amount of PUFA followed SFA in terms of

absolute composition (2.25 ± 0.98 mg mg−1 DW in females and 1.88 ±

0.98 mg mg−1 DW in males), with MUFA displaying the lowest values

(1.15 ± 0.55 mg mg−1 DW in females and 0.85 ± 0.53 mg mg−1 DW in

males). Concerning n-3 and n-6 PUFA, the former exhibited the

highest mean absolute values (1.46 ± 0.62 mg mg−1 DW in females

and 1.09 ± 0.49 mg mg−1 DW in males) (Table 1). The n-6/n-3 ratio

exhibited values lower than 1, in both females and males (Table 1).

Table 2 summarizes the lipid indexes (AI, TI, HH and PI) recorded

for cultured females and males of H. hippocampus. Females tended to

present higher AI (0.87 ± 0.18) and TI (0.91 ± 0.17) than males (AI:

0.75 ± 0.14; TI: 0.84 ± 0.18), while males showed a tendency for higher

HH (1.24 ± 0.25) and PI (0.52 ± 0.13) than females (HH: 1.06 ± 0.23;

PI: 0.40 ± 0.07). Females and males did not present significant

differences (Mann-Whitney U, p-value > 0.05) in lipid indexes.
4 Discussion

4.1 Fatty acid profiles and lipid indexes of
Hippocampus hippocampus trunk muscle

Marine fish are usually rich in highly unsaturated FA (HUFA),

especially DHA and EPA (Woods, 2003; Lin et al., 2008; Huang

et al., 2010). In the case of H. hippocampus specimens surveyed in

the present study, both females and males displayed higher absolute

values of 16:0, 18:0, 18:1 n-9 and DHA, in their trunk muscles.

These findings are in accordance with available literature, in which

16:0 is the SFA with highest expression in fish tissues and 18:1 n-9 is

one of the most abundant MUFA (Amoussou et al., 2022). The

HUFA DHA, one of the FA displaying a higher absolute abundance

in the trunk muscles of H. hippocampus females and males, is an

important component of cell membranes involved in the synthesis
Frontiers in Marine Science 05
of muscle fibers in fish (Planas et al., 2020; Sushchik et al., 2020). In

the work developed by Planas et al. (2020), DHA and EPA were two

of the most dominant FA in mysidaceans (Siriella armata and

Leptomysis sp.) commonly used as prey for adult H. hippocampus

and H. guttulatus. The absolute abundance of DHA in the trunk

muscles of male and female H. hippocampus may therefore be a

consequence of their diet in captivity. Nevertheless, in line with the

work developed by Xu et al. (2018), the absolute value of EPA in

trunk muscles apparently did not reflect as linearly the dietary

regime experienced by seahorses in captivity.
frontiersin.or
TABLE 1 Absolute fatty acid composition (µg mg-1 DW) of trunk muscle
from cultured female (n = 8) and male (n = 6) short snout seahorses
Hippocampus hippocampus.

Fatty Acid Hippocampus hippocampus p-value

Absolute composition (µg mg -1 DW)

Female Male

15:0 0.010 ± 0.01 0.007 ± 0.012 1

16:0 2.819 ± 1.110 1.988 ± 0.953 1

17:0 0.048 ± 0.029 0.038 ± 0.017 1

18:0 1.807 ± 0.887 1.517 ± 0.780 1

20:0 0.035 ± 0.017 0.033 ± 0.011 1

16:1 n-7 0.101 ± 0.071 0.038 ± 0.023 0.948

17:1 n-7 0.038 ± 0.020 0.027 ± 0.015 1

18:1 0.115 ± 0.064 0.054 ± 0.053 1

18:1 n-9 0.896 ± 0.408 0.735 ± 0.440 1

18:2 n-6 0.154 ± 0.092 0.115 ± 0.060 1

20:4 n-6 0.486 ± 0.234 0.515 ± 0.358 1

20:5 n-3 0.347 ± 0.213 0.185 ± 0.057 1

22:4 n-6 0.061 ± 0.023 0.056 ± 0.031 1

22:5 n-6 0.093 ± 0.040 0.095 ± 0.047 1

22:5 n-3 0.177 ± 0.078 0.111 ± 0.055 1

22:6 n-3 0.933 ± 0.346 0.797 ± 0.405 1

n-3 1.457 ± 0.623 1.094 ± 0.494 0.568

n-6 0.793 ± 0.384 0.781 ± 0.493 1

n-6/n-3 0.544 ± 0.115 0.742 ± 0.137 0.282

SSFA1 4.728 ± 1.940 3.581 ± 1.759 0.847

SMUFA2 1.149 ± 0.551 0.853 ± 0.528 0.847

SPUFA 3 2.251 ± 0.984 1.875 ± 0.984 1
Values are expressed as mean ± standard deviation. SFA1- saturated fatty acids: 15:0, 16:0,
17:0, 18:0 and 20:0; MUFA2 - monounsaturated fatty acids: 16:1 n-7, 17:1 n-7; 18:1 and 18:1 n-
9; PUFA3- polyunsaturated fatty acids: 18:2 n-6, 20:4 n-6, 20:5 n-3, 22:4 n-6, 22:5 n-6, 22:5 n-3
and 22:6 n-3; n-3 and n-6 correspond to PUFA (n-3) and PUFA (n-6). p-values (significant
differences when p-value ≤ 0.05) from Mann-Whitney U, with Bonferroni corrections for
multiple comparisons.
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Trunk muscles of both females and males demonstrated a higher

content of n-3 PUFA than n-6 PUFA. A high content of n-3 PUFA

in the muscles from males and females results in an n-6/n-3 ratio

lower than 1, highlighting the nutritional potential of H.

hippocampus (Table 1). Although it has been suggested a

minimum n-6/n-3 ratio of 1:1 for balanced diets, since modern

human diets are rich in n-6 PUFA, which increases the probability

of developing health disorders, such as cardiovascular,

inflammatory, and autoimmune diseases (Simopoulos, 2002;

Scaioli et al., 2017), an increase in n-3 PUFA consumption will

contribute to balance the n-6/n-3 ratio towards a healthier diet

(Vallecillos et al., 2021).

The trunk muscles from H. hippocampus, which, to our best

knowledge, had not yet been described in terms of the FA profile,

presented higher absolute compositions of SFA in both sex groups

(Table 1). While diet influences the FA composition of the fillets in

cultured fish (Vallecillos et al., 2021), Ballester-Lozano et al. (2011)

highlight that one must also account for the lipid content of the fillet

(neutral and polar fractions), as this is also a source of variability in

FA profiles. Triacylglycerols (TAG) are rich in MUFA and SFA,

while polar lipids present a high proportion of PUFA (Cowey and

Sargent, 1977; Rey et al., 2018; Sushchik et al., 2020; Vallecillos et al.,

2021). An increase in fillet lipid content is related to an increase in

fat deposits, usually rich in TAG, resulting in higher MUFA and

lower PUFA relative abundances (%TFA) (Ballester-Lozano et al.,

2011; Vallecillos et al., 2021). Additionally, the study developed by

Osako et al. (2003) addressing horse-mackerel (Trachurus

japonicus) described that the relative abundances of SFA in the

muscle’s total lipid content decreased with starvation, which was

metabolized for energy production. Faleiro and Narciso (2013)

reported that SFA abundance was linearly transferred from prey

to juvenile H. guttulatus, while the transferring of MUFA and

PUFA was not straightforward. SinceH. hippocampus were fed with

mysidacea, one of the main prey consumed by seahorses in the wild

and that is known to exhibit high relative abundances of PUFA and

SFA (Planas et al., 2020), the predominance of these two FA classes

in seahorse trunk muscles may reflect their dietary regime.

According to Jobling et al. (1998), the liver and skeletal muscles

are important sites for lipid storage, with some differences between

fish species. In terms of fat content, fish can be grouped into four

categories: lean (< 2%), low fat (2-4%), medium fat (4-8%) and high

fat (> 8%) (in terms of wet weight) (Tonial et al., 2014). Since the

lipid value of H. hippocampus trunk muscle ranged between 4.05 ±
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2.15% DW (females) and 2.82 ± 1.48% DW (males) (Supplementary

Table S1), this species ranks in the lean category, as our data refer to

dried specimens and average moisture content in seahorses

represent 75% of their wet weight (Lin et al., 2008; Lin et al., 2009).

Differences in reproductive investment of male and female fish,

may lead to different nutritional profiles (Lin et al., 2009). However,

this likely depends on the type of breeding strategy exhibited by

fishes. Capital breeding is based on the buildup of reserves by

breeders, which are allocated for the spawning season, while in the

income strategy breeders use the food ingested, directly for

reproductive purposes (Sainmont et al., 2014). Studies carried out

in the temperate H. guttulatus and the tropical H. reidi suggested

that seahorses display a mixed capital-income strategy, which might

be modulated by species-specific differences on inter-batch intervals

and temperature thresholds (Planas et al., 2020; Planas et al., 2021).

Accordingly, an initial mixed capital-income period is followed by

an income breeding period with progressive exhaustion of body

reserves. It is likely, however, that most lipid and FA changes on

muscle tissue (i.e., a rather conservative tissue) due to dietary

resources occur to a much lower extent than in gonads, especially

in females. In the case of the trunk muscle, females and males of H.

hippocampus did not exhibit significant differences between the

absolute abundance of FA and FA classes (i.e., SFA, MUFA and

PUFA). Lean fish store their lipids in the liver (Njinkoué et al., 2002;

Calder, 2013) and, as such, the FA composition of trunk muscles of

H. hippocampus may be more stable, between sexes. However,

additional studies should be performed during the reproductive

season, for a better understanding of how FA are mobilized from

different tissues during this stage.

The lipid indexes considered in the present study, AI, TI, PI and

HH, provide important information on the nutritional value and

suitability of nutritional resources for human health (Marques et al.,

2019; Conde et al., 2021). Low values of AI and TI are predictors of

a low risk for developing cardiovascular diseases in humans (Tonial

et al., 2014; Conde et al., 2021). The AI and TI of H. hippocampus

trunk muscles were higher than those recorded for the muscles of

other marine fish species (Rueda et al., 2001). However, male

seahorses tended to present lower values for both indexes than

females (Table 2). In the case of HH, the higher the value, the more

adequate is the fish fat for human nutrition (Tonial et al., 2014). In

the present study, males exhibited a tendency for higher HH values,

than females. The PI is considered a proxy of lipid oxidation

(Marques et al., 2019), expressing the retention of PUFA in
TABLE 2 Lipid indexes of cultured female and male Hippocampus hippocampus.

Lipid Index Female Male p-value

AI 0.87 ± 0.18 0.75 ± 0.14 1

TI 0.91 ± 0.17 0.84 ± 0.18 1

PI 0.40 ± 0.07 0.52 ± 0.13 0.17

HH 1.06 ± 0.23 1.24 ± 0.25 1
fron
Atherogenic index (AI), thrombogenic index (TI), polyene index (PI) and hypocholesterolemic/hypercholesterolemic index (HH). Mean values ± standard deviation (SD);p-values (significant
differences when p-value ≤ 0.05), from Mann-Whitney U, with Bonferroni corrections.
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relation to more stable FA 16:0 (Chaula et al., 2019). The higher

mean values in HH and PI, as well as lower values for AI and TI in

males, may suggest that trunk muscles of male seahorses are more

suitable for human consumption than those from females.

Nonetheless, it is worth highlighting that there were no

significant differences between the lipid indexes recorded for both

males and females H. hippocampus and future analysis should be

performed to support these findings.
4.2 Interspecific variability of fatty acid
profiles of cultured Hippocampus spp.

Fish present different lipid contents according to species-

specific factors, their geographical origin and diet, as well as

variable intra-specific features, such as size and sexual maturity

(Rueda et al., 2001). The relative abundances (%) of FA common to

the trunk muscles of H. hippocampus and to the whole body of

cultured adults H. kuda, H. trimaculatus, H. comes and H. erectus

described in the literature, were compared. As no significant

differences were observed between the FA profiles recorded in

trunk muscles of female and male H. hippocampus, data from the

two sexes were pooled. The seahorse species considered for the

interspecific comparison performed in the present study are

amongst the most valued syngnathids in TCM (Lin et al., 2008;

Chang et al., 2013). Furthermore, they are believed to have several

beneficial effects on human health, such as in reducing fatigue and

caducity or enhancing immunity (Lin et al., 2008; Lin et al., 2009;

Kang et al., 2017), even though there are few scientific studies that

have investigated the nutritional value and healthy benefits of

Hippocampus spp. (Shen et al., 2016).

The essential DHA has been described to play a relevant role

in humans’ nervous tissues (Crawford et al., 1999; Ahmmed et al.,

2020). This FA was amongst the most abundant FA in the whole

body of cultured H. kuda (27.2% TFA) and H. trimaculatus

(22.4% TFA) (Figures 2A, B, respectively and Supplementary

Table S1). In line with these two species, the DHA levels in H.

hippocampus trunk muscles (12% TFA) were amongst those of

FA with a higher relative abundance, which may indicate that

cultured specimens of this species could indeed be an interesting

source of DHA for humans. The other two seahorse species

considered, revealed lower relative abundances of DHA (5.5%

TFA for H. comes and 5.6% TFA for H. erectus) than H.

hippocampus trunk muscles (Figures 2C, D, respectively and

Supplementary Table S1). Additionally, 18:1 n-9 was also one

of the most abundant FA, in H. hippocampus (11% TFA), H.

comes (11.4% TFA) and H. erectus (20.4% TFA) (Figures 2C, D,

respectively and Supplementary Table S1). This FA has

modulatory effects in human physiological activities and has

been suggested to have a protective role in autoimmune and

inflammatory diseases (Sales-Campos et al., 2013). Other

important FA to human health that were common in the FA

pool of H. hippocampus, as well as other seahorse species already

farmed, were EPA and ARA (information only available to date

for H. comes (Buen-Ursua et al., 2015) and H. erectus (Vargas-
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Abúndez et al., 2021)) (Figures 2C, D, respectively and

Supplementary Table S1). The relative abundance of EPA was

always higher in the four species of seahorses considered than in

H. hippocampus trunk muscles, while ARA was higher in H.

erectus (7.5% TFA). Eicosapentaenoic acid has been pointed as

potentially having a preventive effect in cardiac diseases (Nestel,

2000; Schunck et al., 2018), while ARA has an important role in

the fostering of immunity (Sonnweber et al., 2018).

Total SFA was the most abundant FA class in H. hippocampus

trunk muscles (58.5% TFA), as well as in three of the four species

identified in the literature (H. kuda, with 47.8% TFA; H.

trimaculatus , 47.8% TFA and H. erectus , 45.2% TFA).

Polyunsaturated fatty acids followed SFA in terms of their

mean relative abundances (H. hippocampus, 28.1% TFA; H.

kuda, 33.7% TFA and H. trimaculatus, 31.9% TFA), with the

exception of H. erectus, which presented a high relative

abundance of MUFA (31.0% TFA) (Figure 3; Supplementary

Table S1). Four of the species considered, including H.

hippocampus from the present study, were fed with mysids,

while H. erectus was fed with amphipods. The higher relative

abundance of MUFA than PUFA in H. erectus, may be related to

the diet in captivity, since the fatty acid profile of captured

amphipods was richer in SFA, followed by MUFA (Vargas-

Abúndez et al., 2021). There were no data for FA classes (%

TFA) of H. comes. Some of these inter-specific differences might

rely, however, on both the effect of temperature and the

reproductive stage of the specimens analyzed, factor that

deserve further investigation.

Values of PUFA/SFA ratio below 0.45 have been described as

not ideal for human health, as they express the potential of

increasing cholesterol levels in the blood (Tonial et al., 2014). The

trunk muscles of H. hippocampus presented a PUFA/SFA ratio of

0.49, while cultured H. kuda and H. trimaculatus presented values

of 0.91 and 0.87, respectively (Supplementary Table S1).

Nevertheless, according to Chen and Liu (2020), the protective

role of some MUFA, such as 18:1 n-9, should also be taken into

account, as they contribute to the activity of protein receptors that

decrease cholesterol in the serum.

The absolute and relative compositions of H. hippocampus trunk

muscles may indicate that cultured specimens of this species have the

potential to be an interesting source of health-promoting FA, such as

DHA, a feature shared with other seahorse species already valued by

TCM. While seahorses FA profiles composition may be of interest in

terms of their nutritional value, it is important to underline the need

to develop sustainable seahorse production practices and foster the

conservation of wild populations.
5 Conclusions

Hippocampus hippocampus is a species, for which aquaculture

practices are still being established (Planas et al., 2013) and, although

it is apparently not targeted for human consumption, there are some

reports of illegal capture in the southern coast of mainland Portugal

(Planelles, 2017). This preliminary study provided some clues
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concerning the nutritional potential of the trunk muscles of cultured

H. hippocampus, with male specimens tending to present the best

results in terms of the lipid indexes considered (AI, TI, HH and PI),

even though there were no significant differences between the two

sexes. Furthermore, this species exhibited some trends already

highlighted for other cultured seahorse species valued in TCM,

such as high relative abundances of DHA and 18:1 n-9 and, to a

smaller extent, of EPA and ARA. Cultured H. hippocampusmay be a
Frontiers in Marine Science 08
sustainable component of functional foods, as long as its production

is framed within strict good practices and can be reliably traced from

farm to fork to contribute towards the conservation of wild

populations of these flagship marine species.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.

Ethics statement

Ethical review and approval was not required for the animal

study because The seahorses considered in this study were not

euthanized and died from natural causes. The captive breeding

program forH. hippocampus (Project HIPPONUTRE, reference 16-

02-01-FMP-54) was approved by the ethics committee from the

Veterinary Medicines Directorate, Ministry of Agriculture, Rural

Development and Fisheries, Portugal. Under this approval, the

program is conducted in accordance with the Guidelines of the

European Union Council (86/609/EU) and Portuguese legislation

for the use of laboratory animals.

Author contributions

Conceptualization, FR, MRD, and RC; methodology, FR, MRD,

and MC; validation, FR, MRD, and MC; formal analysis, AEC, FR,

and MC; investigation, AEC, FR, and RC; resources, MRD, JP, MP,

and RC; data curation AEC, FR, and MC; writing—original draft
A B

DC

FIGURE 2

Mean fatty acid relative abundances (% of total fatty acids) of trunk muscle of cultured adult short snout seahorses Hippocampus hippocampus (n =
14) and whole body of cultured adults of H. kuda (n = 8, as described by Lin et al., 2009) (A), H. trimaculatus (n = 8, as described by Lin et al., 2009)
(B), H. comes (n = 6, as described by Buen-Ursua et al., 2015) (C) and H. erectus (n = 16, as described by Vargas-Abúndez et al., 2021) (D). The mean
relative values of fatty acids from H. kuda and H. trimaculatus, with the exception of 22:6 n-3, are estimated values retrieved from bar graphs.
FIGURE 3

Mean relative abundance (% of total fatty acids) of saturated fatty acids
(SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty
acids (PUFA) of trunk muscle of cultured adult short snout seahorses
Hippocampus hippocampus (n = 14) and whole body of cultured
adults of H. kuda (n = 8, as described by Lin et al., 2009), H.
trimaculatus (n = 8, as described by Lin et al., 2009) and H. erectus (n
= 16, as described by Vargas-Abúndez et al., 2021). Hippocampus
kuda and H. trimaculaus SFA relative compositions are estimated
values retrieved from the data available in Lin et al. (2009).
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