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A B S T R A C T   

Spectra-based methods are becoming increasingly important in Precision Agriculture as they offer non- 
destructive, quick tools for measuring the quality of produce. This study introduces a novel approach for esti-
mating the soluble solids content (SSC) of ‘Rocha’ pears using the SpectraNet–32 deep learning architecture, 
which operates on 1D fruit spectra in the visible to near-infrared region (Vis-NIRS). This method was also able to 
estimate fruit temperatures, which improved the SSC prediction performance. The dataset consisted of 3300 
spectra from 1650 ‘Rocha’ pears collected from local markets over several weeks during the 2010 and 2011 
seasons, which had varying edaphoclimatic conditions. Two types of partial least squares (PLS) feature selection 
methods, under various configurations, were applied to the input spectra to identify the most significant 
wavelengths for training SpectraNet–32. The model’s robustness was also compared to a similar state-of-the-art 
deep learning architecture, DeepSpectra, as well as four other classical machine learning algorithms: PLS, 
multiple linear regression (MLR), support vector machine (SVM), and multi-layer perceptron (MLP). In total, 23 
different experimental method configurations were assessed, with 150 neural networks each. SpectraNet–32 
consistently outperformed other methods in several metrics. On average, it was 6.1% better than PLS in terms of 
the root mean square error of prediction (RMSEP, 1.08 vs. 1.15%), 7.7% better in prediction gain (PG, 1.67 vs. 
1.55), 3.6% better in the coefficient of determination (R2, 0.58 vs. 0.56) and 5.8% better in the coefficient of 
variation (CV%, 8.35 vs. 8.86).   

1. Introduction 

The current society is experiencing a significant shift in agriculture, 
with the principles of Precision Agriculture and Agriculture 5.0 gaining 
increasing traction. These concepts are centered on the efficient man-
agement of natural resources at various interconnected levels, from 
production to consumption. When it comes to fresh fruit, quality control 
assessment tends to have strict tolerances, often regulated by govern-
ment legislation that controls fruit quality at harvest (e.g., regulating 
Protected Designation of Origin fruit) or logistics chain specificities (e.g., 
cold storage requirements). The ultimate goal is to maximize the 
perceived quality of the fruit by consumers. 

Research in this field often focuses on determining the Optimal 
Harvest Date (OHD) of specific fruit, which helps to reduce spoilage by 

minimizing the time between harvest and consumption and improving 
the perceived freshness of the fruit. OHDs are typically estimated by 
evaluating various internal quality attributes (IQAs) or properties of the 
fruit, and there is an increasing use of non-destructive assessment 
techniques for this purpose, either on the field or in grading machines. 
One of the most promising techniques for this purpose is Visible-Near 
diffuse Infrared Reflectance Spectroscopy (Vis-NIRS, 400–2500 nm), 
as machine learning methods based on this range of spectral data have 
been shown to be accurate and fast predictors of several IQAs related to 
OHD optimization. 

Classical hyperspectral imaging (HI) illuminates the entire fruit and 
acquires an image at each wavelength. However, the information about 
the fruit’s pulp that is obtained through this method is largely over-
shadowed by information about the fruit’s skin, as superficial reflection 
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from the skin is much stronger than diffuse reflection from the pulp. As a 
result, classical HI is primarily useful for detecting and classifying 
external defects and pathologies, but is not well-suited for predicting 
internal quality parameters of the fruit. Most models in the literature 
that attempt to use HI data to predict internal quality parameters rely on 
indirect correlations between the skin pigments and the internal quality 
of the pulp, and are generally developed using uniform batches of 
samples, which may not be robust when applied to new batches of fruit. 
In order to accurately predict internal quality parameters of fruit using 
optical methods, it is important to ensure that the light used to probe the 
fruit’s pulp is collected by the system and that any photons reflected by 
the skin or other external parts of the fruit are not included. One way to 
do this is by using classical point spectroscopy with a reflection probe 
that has well-separated injection and collection fibers. This setup en-
sures that the light collected by the system consists primarily of photons 
that have passed through the pulp, and is therefore more reliable for 
predicting internal quality parameters than classical HI, which relies on 
superficial reflection from the skin. A detailed review on this subject can 
be read in Li et al. (2018), Walsh et al. (2020), Cavaco et al. (2022). 
Nevertheless, there is another type of hyperspectral imaging (HI) setup, 
which we can refer to as spot-HI, that was first described by Lu and Peng 
(2006). Spot-HI involves illuminating a small beam spot on the fruit’s 
surface and imaging the diffuse scattering halo around the incidence 
point. This technique is mostly sensitive to photons that emerge from the 
pulp of the fruit and satisfies the requirement of detecting only pulp 
photons. In addition, spot-HI provides spatial information about the 
light intensity of the scattering halo, which makes it theoretically su-
perior to point spectroscopy. However, the best results obtained using 
spot-HI are similar to the best results obtained using point spectroscopy, 
meaning that spot-HI has not been shown to be actually better than point 
spectroscopy in practice. The main issues with spot-HI are stray light in 
the beam spot and the non-spherical shape of the fruit surface, which can 
hinder the retrieval of spatial information. Additionally, the setup for 
spot-HI is more expensive than that of point spectroscopy, making it a 
less practical or theoretically compelling choice for predicting fruit in-
ternal quality. 

Classical machine learning approaches, such as Partial Least Squares 
(PLS) regression, have traditionally achieved good results in predicting 
internal quality attributes (IQAs) using one-dimensional (1D) spectral 
data. However, they require a case-by-case, trial-and-error process for 
selecting the best data preprocessing methods for each specific dataset 
before the regression algorithm can be applied. In contrast, deep 
learning approaches have mainly focused on fruit detection and/or 
categorization in trees (e.g., estimating fruit counts), which is a different 
problem. There is a lack of research on developing generalized regres-
sion architectures specifically for IQA prediction using 1D spectral data. 
Some recent studies have used hyperspectral imaging approaches Yu 
et al. (2018), Benelli et al. (2020), but these are expected to be com-
plementary methodologies as most hyperspectral images only capture 
fruit peel data (Benelli et al., 2020). In contrast, Vis-NIR point spec-
troscopy is designed to capture internal information of fruit, as 
demonstrated in a recent study on predicting internal browning in 
‘Rocha’ pear samples using semi-transmittance spectra (Cruz et al., 
2021). 

Mishra and Passos (2021) developed a deep multi-block regression 
method for evaluating dry matter in mango fruit by dividing the visible 
(Vis) and near-infrared (NIR) parts into separate blocks, outperforming a 
single-block CNN as well as sequential and orthogonalized partial 
least-squares (SO-PLS) regression. 

Zhang et al. (2019) introduced DeepSpectra, a novel architecture for 
predicting internal quality attributes (IQAs) based on the Inception 
module developed for GoogLeNet (Szegedy et al., 2015). It was tested on 
1D spectral data using four Vis-NIRS datasets: corn, pharmaceutical 
tablets, wheat, and soil patches. It outperformed three simpler CNN 
models and PLS results. 

Martins et al. (2022) proposed the SpectraNet–53 architecture, 

which demonstrated promising results for determining the Soluble 
Solids Content (SSC) in a dataset of ‘Newhall’ oranges with a low sample 
count (616 spectra). The authors also described the various steps and 
considerations involved in creating the architecture. The findings of this 
research served as the foundation for the current study, as it out-
performed Partial Least Squares (PLS) regression, a classical machine 
learning technique that has been successfully used for this type of 
problem. 

Fruit temperature was also an important factor to consider. As 
demonstrated by Kaur et al. (2022), rising temperatures tend to broaden 
and shift absorbance peaks to shorter wavelengths (as molecules move 
faster) with an accompanying intensity shift that may be higher or lower 
depending on the spectral region. These changes in spectral shape and 
characteristics can complicate accurate SSC prediction. If a method is 
able to infer fruit temperature from spectra, some of this effect can be 
accounted for, leading to improved generalization. 

It is essential to consider that certain wavelengths are more impor-
tant than others when analyzing spectra for specific prediction models. 
The informativeness of spectra, the presence of inter-correlated features 
that repeat information, and the potential for hindering regression 
performance for specific internal quality attributes (IQAs) can all vary 
depending on the substance being analyzed. To address these issues, 
feature selection on the input data is critical for helping machine 
learning models identify the most informative features for a particular 
fruit attribute. Partial Least Squares (PLS) regression is a reliable tech-
nique for analyzing spectral data, and several feature selection methods 
based on this method have been developed in the literature (Mehmood 
et al., 2012). These methods can help improve the accuracy and effi-
ciency of prediction models by focusing on the most relevant features in 
the data. 

The SpectraNet–53 architecture, which was first introduced in our 
research on oranges (Martins et al., 2022), has not been widely evalu-
ated as a reliable method in the literature. Prior to this study, it had only 
been applied to one specific use-case, and its effectiveness on other types 
of fruit, such as pears, was uncertain. Additionally, SpectraNet–32, 
which has 40% fewer layers than SpectraNet–53, is a distinct architec-
ture that operates on feature-selected data, and had not been previously 
tested. To the best of our knowledge, SpectraNet represents the first 
residual architecture applied to Vis-NIR fruit spectra. 

In summary, this article presents a comparison of the performance of 
DeepSpectra (Zhang et al., 2019) and a shallower configuration of 
SpectraNet (Martins et al., 2022) with 32 layers, referred to as 
SpectraNet–32, in conjunction with two PLS–based input feature selec-
tion methods on a dataset of ‘Rocha’ pears. The goal of this study was to 
reduce input and architecture complexity, decrease the training time of 
the network, and improve generalization performance by focusing on 
important input features. The main contributions of this article are thus: 
.  

1. Evaluating the performance of three deep learning approaches 
(DeepSpectra, SpectraNet–32, and SpectraNet–53) on a ‘Rocha’ pear 
dataset for predicting SSC and temperature.  

2. Assessing the role of two PLS–based input feature selection methods 
on the three deep learning approaches for the same dataset. 

3. Comparing the performance of SpectraNet–32 to previously pub-
lished classical machine learning results on the same dataset (Passos 
et al., 2019).  

4. Achieving state-of-the-art performance results for SSC prediction on 
an external validation dataset. 

The organization of the article is as follows: In Section 2, the mate-
rials and methods used for the ‘Rocha’ pear dataset creation are 
described, including the spectra collection, processing, and measure-
ment of fruit attributes. In Section 2.4.1, the DeepSpectra network 
configurations used in training and for performance comparisons are 
detailed. In Section 2.4.2, an overview of the SpectraNet architecture is 
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presented, and the feature selection methodologies and hyperparameter 
configurations are described in detail. In Section 3, all performance as-
sessments are presented and discussed, with comparisons to other 
methods. In Section 4, the main achievements and contributions are 
highlighted and the article is concluded. 

2. Materials and methods 

The ‘Rocha’ pear is a variety of fruit that is grown in the western 
region of Portugal and has gained Protected Designation of Origin (PDO) 
status. It is a key commodity for both the national and export markets in 
Portugal, with an annual production of around 173,000 metric tons 
(ANP, 2022). In order to preserve its high quality and desirable organ-
oleptic characteristics, such as flavor, smell, shape, texture, and color, 
‘Rocha’ pears must be harvested at the optimal ripening stage, which 
typically falls between late July and mid-August. PDO legislation in 
Portugal sets specific requirements for the optimal harvest date (OHD) 
of ‘Rocha’ pears, including requirements for pulp firmness, soluble 
solids content (SSC), acidity, days past full flowering, and seed color. To 
meet these requirements, ‘Rocha’ pears must have a pulp firmness be-
tween 5.5 and 6.5 Kg/0.5 cm2, SSC between 11 % and 13 %, acidity 
between 2 and 3 g/L of malic acid, at least 135–140 days past full 
flowering, and an appropriate brown seed color. These criteria are 
established in order to ensure that the ‘Rocha’ pear maintains its high 
quality and is suitable for consumption. 

2.1. Fruit processing: evaluating temperature, spectra and soluble solids 
content (SSC) 

For this dataset, 1650 pears were acquired from local markets, in 
batches with circa 50 pears each, over many weeks, as described in 
Passos et al. (2019). These were processed at three different temperature 
ranges: (a) after storage in a cooling chamber (885 fruit); (b) at room 
temperature (555 fruit); and (c) after heating (210 fruit). The goal was to 
replicate the typical real-world temperatures at which these fruit are 
measured: in cold storage, after harvest or while in the tree, respectively. 
Thus, for each fruit: .  

1. The peel temperature was registered with an infrared thermometer 
(Fluke FoodPro Plus, Everett, WA, USA), at the equatorial zone 
(Passos et al., 2019); 

2. Two spectra measurements were taken, 180∘ apart, along the equa-
tor. The hardware configuration used for this task is described below;  

3. The two probed regions were cut out and the pulp squeezed. A few 
drops of juice were deposited on a digital refractometer (Atago 
Model PAL-1, Atago Co. Ltd., Tokyo, Japan), thus obtaining two for 
SSC measurements per fruit. Histograms are represented in Fig. 1(a) 
for SSC, and Fig. 1(b) for the three temperature ranges. The mean 
SSC value was 12.95% with a standard deviation of 1.75%. 

In total the 1650 pears resulted in 3300 spectra, with 1024 wavelengths 
each, between 432.6 and 1146.74 nm. 

We also measured the firmness of the pears, but our showed that it is 
difficult to predict with a high degree of accuracy. As a result, we have 
not included the firmness data in our analysis. Firmness assessment in 
fruit remains a significant challenge in postharvest research. The tradi-
tional method of assessment is destructive, involving the insertion of a 
penetrometer into the fruit. In recent years, there have been many 
claims for the non-invasive assessment of fruit firmness using Vis-NIRS. 
However, despite being a popular topic in the literature, with approxi-
mately 10% of all papers published in the period 2015–2020 involving 
the assessment of firmness, there is still no consensus on the robustness 
of using Vis-NIRS for direct firmness assessment. Firmness is mainly a 
physical parameter, and no obvious chemical bands may be assigned to 
it. While firmness changes are associated with biochemical processes, 
such as changes in pectin levels, this correlation is faint and easily 

masked by other processes occurring during ripening. It is generally 
believed that the scattering coefficient of the pulp tissue is a good 
measure of firmness, but this has not proven to be a robust relation. 
Additionally, firmness levels are correlated to a range of other attributes, 
such as water content, pigment level and starch-sugar conversion during 
ripening, providing fertile ground for secondary Vis-NIRS correlations. 
Thus, the non-invasive assessment of fruit firmness remains a ’holy grail’ 
in postharvest research, and further investigations are needed to 
establish a reliable method for assessing firmness using Vis-NIRS (Walsh 
et al., 2020). 

Spectra were collected using two multimode optical fibers, with a 
600 μm core and 0.22 NA, coupled to collimating optics, were used for 
illuminating and collecting light from the fruit. The illumination fiber 
was bifurcated, with the solo tip connected to a white halogen light (HL- 
2000-FHSA, Ocean Optics, USA), and the bifurcated tips were mounted 
5 cm apart at a 5∘ vertical angle, so that the two collimated beams would 
converge. A collection fiber was positioned between the two, at a 
0∘ vertical angle, aimed at the region between the illumination spots. All 
fibers were fixed at 170 mm above the base of the cup, where fruit were 
measured, as to replicate a real-world scenario typical of an industrial 
fruit sorting machine. Spectra along the equatorial region and Vis-NIR 
range of 432–1147 nm were recorded (at a 5 nm spectral resolution) 
with a Hamamatsu TG-9405CA spectrometer (Hamamatsu, Shizuoka, 
Japan), during 50 ms. For the absolute reference material, a disk of 
white Teflon was used. Before each acquisition, a dark spectrum was 
measured and used for correcting each sample’s raw photon count. For 
more details, please refer to Passos et al. (2019). 

Fig. 2 shows the reflection spectra (XR) converted into an 
absorbance-like transform (XA) values, which is done by: (a) truncating 
negative values to zero, i.e., XR ∈ [0, ∞ ), and (b) computing XA = −

log10(XR + 0.1), so that XA ∈ ( − ∞, 1]. This differs from the usual 
absorbance formula by the addition of a 0.1 constant, resulting in 

Fig. 1. Probability Density Function (PDF) histograms for SSC and tempera-
ture, of all the pear samples in the dataset. (a) SSC (%) histogram. The dashed 
line represents the mean value and the dotted lines the standard variation 
around the mean. (b) Temperature histogram of the 3 major clusters (T < 19∘C, 
19 ≤ T ≤ 27∘C, and T > 27∘C), with 885, 555 and 210 fruit, respectively. The 
dashed lines represent cluster means. 
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max(XA) = − log10(0.1) = 1. Also, at XR = 1, XA = − log10(1.1) = −

0.0414. This transform limits the exponential scaling of low reflectance 
values into infinite absorbance, resulting in a more linear relation be-
tween adjacent low reflectance values (especially below 0.2), and helps 
to stabilize weights at the first convolutional layer during network 
training. 

The first and last 75 points of each spectra were trimmed: below 
499.73 nm and above 1101.83 nm. These correspond to zones with a 
very high noise floor, and thus lower SNR; they are represented as red 
shaded regions in Fig. 2. This also allows for a direct comparison with 
the different optimization models presented in Passos et al. (2019), 
which use the exact same wavelengths. 

2.2. Dataset partition 

The 3300 samples were divided into five sets, with sets A through C 
from the 2010 harvest season and D–E from the 2011 season, which is an 
identical split to Passos et al. (2019). These will serve as external vali-
dation (EV) sets between themselves, as each correspond to a 
non-overlapping time period, in five different combinations, as shown in  
Table 1. Of the two properties measured, the goal is to achieve the best 
possible SSC prediction, represented in Fig. 3, as it is a crucial attribute 
for both harvest date prediction and sweetness perception. Fig. 4 high-
lights the statistical differences between the five EV sets, which are ex-
pected due to the variation in fruit sources, seasons and inherent 
seasonal variability; the soil types are different across batches, as well as 
the local and general climatic conditions (e.g., colder vs. warmer sea-
sons/years). In the spring of 2011, the weather in the region of Bom-
barral (Portugal), where these fruit were sourced, had an average low 
temperature of 17∘C, average high temperature of 24∘C, and average 
relative humidity (RH) of 64%. In the spring of 2012, the average low 
temperature was 15∘C, average high temperature of 22∘C, and RH of 
62%, resulting in a colder weather during the months when pears grow 
the most. 

2.3. Feature selection 

This work compares two PLS-based feature selection methodologies, 
for selecting the most informative wavelengths for network training: .  

1. The first is a PLS wrapper method (Passos et al., 2019), based on 
backward variable elimination (BVE-PLS) (Mehmood et al., 2012). A 
fixed number of 10 latent variables was chosen for all trials. At the 
start, one PLS model is built using all available features (i.e., wave-
lengths) and the root mean square of 5-fold cross-validation (rmsecv) 
is computed. Afterwards, and at every iteration, the wavelength with 
the lowest absolute PLS regression coefficient is removed, the model 
is recalculated and rmsecv is assessed. The process continues until 
rmsecv increases, which signals that all remaining features are 
important. Fig. 5 shows an example of the bands kept and discarded 
using this method when using as input a second-order derivative 
spectra of the present dataset (Savitzky-Golay, 2nd polynomial order 
and 51-pt window). As CNNs can explore spatial relations of the 
input data, this method was also tested under two different condi-
tions, with the selected features organized in ascending order either 
by:   
(a) Their PLS regression coefficient amplitude (i.e., importance 

order); or  
(b) Their physical wavelength value. 

2. The second is a PLS filtering method, based on the variable impor-
tance in projection (VIP) scores (Abdi, 2010). This is a single-pass 
method, much quicker than the previous one, as PLS only needs to 
be computed once. VIP scores are assessed and only variables (i.e., 
wavelengths) equal to, or higher, than a specific threshold are kept 
(Gosselin et al., 2010). This filtering method was tested with three 
different VIP thresholds, at 0.8, 1.0 and 1.2, which should account 
for the threshold-choosing issues discussed in Chong and Jun (2005). 
The features were kept in their physical wavelength order. 

2.4. Neural network architectures 

2.4.1. DeepSpectra 
DeepSpectra (Zhang et al., 2019) was chosen as a reference for 

performance comparisons with SpectraNet–32. It is a similar deep 
learning architecture for quantitative spectral analysis, originating from 
the Inception model (Szegedy et al., 2015). For this work, the archi-
tecture was implemented and run with hyperparameters similar to the 
ones used by the authors on the “Wheat” dataset, used to estimate 
protein content: Zhang et al. (2019) trained DeepSpectra on 775 wheat 
samples from 7 crop years, and tested on 107 samples from a single crop 
year. The spectra ranged from 400 to 2498 nm, on a 2 nm resolution, for 
a total of 1050 wavelengths. This was a dataset with a close number of 
features to the one described in this article (which had 874 wavelengths 
after cropping), although the spectral range was much broader for the 
wheat samples (400–2498 nm). In summary, the hyperparameter 
configuration used is: kernel size 1: 7-pts, kernel size 2: 3-pts, kernel 
size 3: 5-pts, stride 1: 3-pts, stride 2: 2-pts, hidden number: 32 

Fig. 2. Absorbance spectra of the 1650 pears (3300 samples). Median wavelength in black. Vertical solid red lines delimit the excluded wavelength ranges at both 
extremes, which are not used in the model (details in §2.1). The vertical dashed lines mark the Chlorophyll a absorption peak at 677 nm and the end of Chlorophylls 
absorption influence at 730 nm. 

Table 1 
Combinations of train/test pairs for external validation.  

Number of training 
sets 

Possible combinations  

5 C5
4 × 1 =

5 
ABCD/E, ABCE/D, ABDE/C, ACDE/B, 
BCDE/A  
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neurons, mini-batch size: 128, dropout rate: 10%, regularization 
coefficient: λ = 0.01, learning rate: 1 × 10− 2, with a decay of 
1 × 10− 3 ( − 0.1%) at each epoch, and epochs: 10. 

Two variations of the DeepSpectra architecture were used: one with a 
single output variable (SSC), referred below as DeepSpectra, and another 
with two outputs (SSC and fruit temperature), referred below as 

DeepSpectra2. 

2.4.2. SpectraNet–32 
SpectraNet is a robust deep regression residual network for spectra 

processing, designed for SSC estimation and able to be trained on a low 
amount of data. In a previous work by Martins et al. (2022), the Spec-
traNet architecture was used in a 53 layer configuration, with six Re-
sidual Unit (RU) blocks (He et al., 2016), which the current work 
reduces to just three, for a total of 32 layers. A performance comparison 
of both architecture configurations is presented in Section 3. This 
configuration can be trained much quicker than SpectraNet–53, as it has 
almost half as many optimizable parameters (0.7 M vs 1.3 M), which is 
also a bonus to inference performance. 

The complete architecture for SpectraNet–32 is shown in Table 2, 
with a total of 702,276 trainable parameters. Each row is a consecutive 
layer that is connected to the one above and below, unless stated 
otherwise, as is the case for skip connections. Batch Normalization (BN) 
is directly applied to the input vector, at L1, effectively functioning as a 
learnable input standardization procedure and as a form of data 
augmentation (Simon et al., 2016). Each RU then starts with a con-
volutional layer, followed by BN and a Gaussian Error Linear Unit 
(GELU) activation (Hendrycks and Gimpel, 2016), which has several 
desirable properties as an activation function – the transfer function is 
the expected transformation of a stochastic regularizer, which facilitates 
network generalization by reducing overfit. The shortcut connections 
also use two types of identity mappings (He et al., 2016): (a) a direct 
path from L4 to L10 or (b) through 1 × 1 convolutional shortcuts on RUs 
two and three, as the network is designed to spatially downsample 
activation widths while upsampling channels. 

Fig. 3. SSC (%) for the 3300 samples in the dataset, divided into the five sets. Horizontal red lines represent the mean values of each set, with shaded 95% CI.  

Fig. 4. SSC (%) for the 5 EV sets, with shaded 95% confidence intervals. Sta-
tistical significance of the differences was assessed with a one-way ANOVA [F 
(4, 3295) = 115.61, p < 10− 93]. A Tukey post-hoc test revealed significant 
pairwise differences between any element of the set {A,B,D} with any element 
of {C,E} (p < 10− 4), but not within-set. 

Fig. 5. (top) The Savitzky-Golay second-order 
derivative (2nd degree polynomial, 51-pt win-
dow) of the pear spectra, overlaid for the 5 EV 
sets. Selected features are shaded in green 
(white bands are discarded). Darker greens 
represent features selected in more than one set. 
Median wavelengths in black. The vertical 
dashed lines mark the Chlorophyll a absorption 
peak at 677 nm and the end of the Chlorophylls 
absorption influence at 730 nm. (bottom) The 
occurrence of selected features across the 5 EV 
sets, by wavelength.   
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2.5. Overview 

The next paragraphs briefly summarize all the data processing steps 
taken and neural network hyperparameters chosen for training. For 
preprocessing the raw spectra: 

– As previously stated in 2.1, the raw reflectance spectra were con-

verted into absorbance-like values, such that xA = log10

(
1
xR
+ 0.1

)
. 

– The absorbance-like data was normalized using a Quantile Normal 
Variate (QNV) transform (Martins et al., 2022) with 15 quantiles. 
This is an alternative to the Standard Normal Variate (SNV) trans-
form, which can be helpful to reduce the skew effect of 
low-percentile and high-percentile noisy data, by using quantiles as 
representative samples of the underlying signal. QNV approaches 
SNV as the number of quantiles increases to “infinity”, i.e., a quantile 
for each data point. 
– Savitzky-Golay smoothing was used on the normalized data, with 
similar parameters to Passos et al. (2019): 1st or 2nd order deriva-
tive, 2nd polynomial order, 51 point window (about 35.0 nm). 
– The smoothed spectra are used as inputs for either the PLS wrapper 
method or PLS filter method, previously described in 2.3. The 
selected features for the first are shown in Fig. 5, and detailed below. 

Either DeepSpectra or SpectraNet are then trained on the pre-
processed data. For DeepSpectra, its hyperparameters were presented in 
2.4.1, while regarding SpectraNet the following hyperparameters were 
used: 

– Standard ADAM was used, with default parameters. 
– 1 × 10− 3, with a drop multiplier of 0.90 ( − 10%) at each epoch. 

– All networks were trained during 15 epochs, which was enough for 
the training error to stabilize. 
– The training mini-batch size was set at 128. 
– A 21-pt filter window was used in all convolutional layers. 
– The dropout layer at L32 had a drop probability value of 25%. 
– With a coefficient of λ = 0.05. L2 Regularization (also designated 
as weight decay) adds a regularizing term to the weights of the loss 
function, reducing possible overfitting by a large gradient descent 
update. If L(x) is the expected loss function, then LR(x) = L(x) 
+ λΩ(W), with Ω(W) = 1

2W
TW. 

– Another overfitting prevention measure. If the global L2-norm (Lg
2) 

of all the gradients of learnable hyperparamenters is higher than 0.8, 
then all are scaled by a factor of 0.8/Lg

2. This avoids gradient ex-
plosion by stabilizing and allowing training at initial higher learning 
rates, while reducing the training vulnerability to outlier gradients. 
– Convolutional layers are initialized with He weights (He et al., 
2015), and the final fully connected layer (L33) is initialized with 
Glorot weights (Glorot and Bengio, 2010). 
– The networks were trained on two output configurations, referred 
as either SpectraNet with only SSC as output, or SpectraNet2 with two 
outputs, SSC and temperature. 
The output data was normalized using a Quantile Normal Variate 
transform (Martins et al., 2022) with 15 quantiles. 

Architectural changes between sets 
Network layer activations vary between EV sets, as each set has a 

different number of input features, due to the feature selection proced-
ure (Fig. 5). Regarding Table 2, for the PLS wrapper method, these are: 

Table 2 
SpectraNet–32 Architecture.  

Layer Type Activations Learnable Parameters Total Param.   

Input 1 × N × 1 — 0  
1 Batch Normalization 1 × N × 1 Offset: 1 × 1 Scale: 1 × 1  2  
2 Convolution 1 × N × 32 Weights: 1 × 21 × 1 × 32 Bias: 1 × 1 × 32  704  
3 Batch Normalization 1 × N × 32 Offset: 1 × 1 × 32 Scale: 1 × 1 × 32  64  
4 GELU 1 × N × 32 Mean: 1 × 1 × 32 Std: 1 × 1 × 32  64  
5 S1U1 Convolution 1 × N × 32 Weights: 1 × 21 × 32 × 32 Bias: 1 × 1 × 32  21.536  
6 S1U1 Batch Normalization 1 × N × 32 Offset: 1 × 1 × 32 Scale: 1 × 1 × 32  64  
7 S1U1 GELU 1 × N × 32 Mean: 1 × 1 × 32 Std: 1 × 1 × 32  64  
8 S1U1 Convolution 1 × N × 32 Weights: 1 × 21 × 32 × 32 Bias: 1 × 1 × 32  21.536  
9 S1U1 Batch Normalization 1 × N × 32 Offset: 1 × 1 × 32 Scale: 1 × 1 × 32  64  
10 Addition (L9 + L4) 1 × N × 32 — 0  
11 GELU 1 × N × 32 Mean: 1 × 1 × 32 Std: 1 × 1 × 32  64  
12 S2U1 Convolution (stride 2) 1 × (N/2) × 64 Weights: 1 × 21 × 32 × 64 Bias: 1 × 1 × 64  43072  
13 S2U1 Batch Normalization 1 × (N/2) × 64 Offset: 1 × 1 × 64 Scale: 1 × 1 × 64  128  
14 S2U1 GELU 1 × (N/2) × 64 Mean: 1 × 1 × 64 Std: 1 × 1 × 64  128  
15 S2U1 Convolution 1 × (N/2) × 64 Weights: 1 × 21 × 64 × 64 Bias: 1 × 1 × 64  86.080  
16 S2U1 Batch Normalization 1 × (N/2) × 64 Offset: 1 × 1 × 64 Scale: 1 × 1 × 64  128  
17 Skip Conn. ∣ Convolution (input L11, stride 2) 1 × (N/2) × 64 Weights: 1 × 1 × 32 × 64 Bias: 1 × 1 × 64  2.112  
18 Skip Conn. ∣ Batch Normalization 1 × (N/2) × 64 Offset: 1 × 1 × 64 Scale: 1 × 1 × 64  128  
19 Addition (L16 + L18) 1 × (N/2) × 64 — 0  
20 GELU 1 × (N/2) × 64 Mean: 1 × 1 × 64 Std: 1 × 1 × 64  128  
21 S3U1 Convolution (stride 2) 1 × (N/4) × 128 Weights: 1 × 21 × 64 × 128 Bias: 1 × 1 × 128  172.160  
22 S3U1 Batch Normalization 1 × (N/4) × 128 Offset: 1 × 1 × 128 Scale: 1 × 1 × 128  256  
23 S3U1 GELU 1 × (N/4) × 128 Mean: 1 × 1 × 128 Std: 1 × 1 × 128  256  
24 S3U1 Convolution 1 × (N/4) × 128 Weights: 1 × 21 × 128 × 128 Bias: 1 × 1 × 128  344.192  
25 S3U1 Batch Normalization 1 × (N/4) × 128 Offset: 1 × 1 × 128 Scale: 1 × 1 × 128  256  
26 Skip Conn. ∣ Convolution (input L20, stride 2) 1 × (N/4) × 128 Weights: 1 × 1 × 64 × 128 Bias: 1 × 1 × 128  8.320  
27 Skip Conn. ∣ Batch Normalization 1 × (N/4) × 128 Offset: 1 × 1 × 128 Scale: 1 × 1 × 128  256  
28 Addition (L25 + L27) 1 × (N/4) × 128 — 0  
29 GELU 1 × (N/4) × 128 Mean: 1 × 1 × 128 Std: 1 × 1 × 128  256  
30 Global Average Pooling 1 × 1 × 128 — 0  
31 Dropout (25%) 1 × 1 × 128 — 0  
32 Fully Connected 1 × 1 × 2 Weights: 2 × 128 Bias: 2 × 1  258   

MSE evaluation — — 0 

Notes. N is the length of the input vector. Non-integer N/2 or N/4 values are rounded towards positive infinity (i.e., the ceiling). More info in 2.5. 
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378 features selected (N) and 496 discarded. The activations are: 
1 × 378 × 1 (L1), 1 × 378 × 32 (L2–L11), 1 × 189 × 64 (L12–L20), 
1 × 95 × 128 (L21–L29), 1 × 1 × 128 (L30–L31) and 1 × 1 × 2 
(L32); 
548 features selected (N) and 326 discarded. Activations: 
1 × 548 × 1 (L1), 1 × 548 × 32 (L2–L11), 1 × 274 × 64 (L12–L20), 
1 × 95 × 137 (L21–L29), 1 × 1 × 128 (L30–L31) and 1 × 1 × 2 
(L32); 
319 features selected (N) and 555 discarded. Activations: 
1 × 319 × 1 (L1), 1 × 319 × 32 (L2–L11), 1 × 160 × 64 (L12–L20), 
1 × 80 × 128 (L21–L29), 1 × 1 × 128 (L30–L31) and 1 × 1 × 2 
(L32); 
229 features selected (N) and 645 discarded. Activations: 
1 × 229 × 1 (L1), 1 × 229 × 32 (L2–L11), 1 × 115 × 64 (L12–L20), 
1 × 58 × 128 (L21–L29), 1 × 1 × 128 (L30–L31) and 1 × 1 × 2 
(L32); 
449 features selected (N) and 425 discarded. Activations: 
1 × 449 × 1 (L1), 1 × 449 × 32 (L2–L11), 1 × 225 × 64 (L12–L20), 
1 × 113 × 128 (L21–L29), 1 × 1 × 128 (L30–L31) and 1 × 1 × 2 
(L32); 

The software used for implementing DeepSpectra and SpectraNet 
was MathWorks Matlab R2021a, with partial use of its Deep Learning 
Toolbox. The PLS wrapper method was implemented in Python 3.9 and 
the PLS filtering method in Matlab. Training on an AMD Ryzen 9 5900X 
CPU and Nvidia RTX 2080 Ti system took about 30 s per network 
(around 40% GPU usage at 1980 MHz and 1.8 GiB of VRAM). Each 
saved network occupies around 2.52MiB of disk space in the Matlab 
Version 7 binary file format. To assess inference time, a network 
assessment with 2657 train and 643 test spectra was run, resulting in an 
inference time for predicting 16500 spectra of 2.0594 s. This corre-
sponds to 1.2381E-04 s per spectra, or 8012 spectra per second. 

3. Results and discussion 

The quality of predictions for citrus fruit in the literature is heavily 
influenced by several factors, including the quality of the spectrometer, 
the validation scheme used, the stability of the environmental condi-
tions, and the homogeneity of the samples. In this study, we faced 
challenges in all of these areas: .  

1. The spectrometer we used, the Hamamatsu TG-9405 CA, suffered 
from a significant etaloning effect in the IR region, which is a known 
limitation of back-thinned CCD spectrometers that is difficult to 
compensate for. This puts us at a disadvantage compared to the 
scientific-grade tabletop systems used in most other studies.  

2. We used strict external validation, with a validation dataset that had 
different spectral characteristics from the calibration dataset (due to 
differences in origin, storage time, etc.). Most results in the literature 
are obtained using homogeneous datasets where the validation 
dataset has the same spectral characteristics as the calibration 
dataset, which leads to better performance figures for the final 
model.  

3. The data was acquired at different temperatures, i.e., thermal 
equilibration, used in most papers, was deliberately not followed. 
This makes the predictions even harder, but more representative of 
the conditions that are typically encountered in fruit packing houses.  

4. Our fruit was obtained from a variety of sources (collected over 
several months) and stored under different conditions (in storage 
chambers with varying conditions), resulting in a dataset that was 
less homogeneous than those used in most studies, where the fruit is 
typically obtained from the same batch and producer. 

Despite these challenges, we believe that the results we obtained are 
acceptable and demonstrate that it is possible to achieve adequate per-
formance even under the most adverse conditions, highlighting the 

robustness of the chosen methods. Table 3 and Table 4 show key per-
formance metrics for SSC and Temperature results (SN is an abbrevia-
tion of SpectraNet, with the synthax SN < #outputs > - < #layers > ). 
Each row corresponds to a specific input data type – i.e., raw reflectance 
data, absorbance-like converted data, and the three types of PLS feature 
selection applied on the absorbance-like data: wavelength ordered 
(λ-ord), importance ordered (R-ord) or wavelength-ordered VIP 
thresholded data – and method. For each row, 30 networks were trained 
in each of the five EV conditions (Table 1), resulting in 150 trained 
networks per row, and a total of 23 × 150 = 3450 networks. The table 
columns show the following performance metrics: rmsec – root mean 
squared (rms) error in the training (calibration) set; rmsep – rms error of 
prediction in the test (validation) set; sdr – standard deviation ratio 
=

std(y)
rmsep, where y represents the reference test data; pg – prediction gain 

=
rmsep′
rmsep , where rmsep’ is calculated using the average y′ of the calibration 

set as an universal predictor; R 2 – squared correlation coefficient; cv – 
coefficient of variation (%) = rmsep

mean(y) × 100; bias – the mean(ŷ) −

mean(y), where ŷ represents the predicted test data; slope – the slope of 
the linear regression y vs. ŷ. Each value represents a mean of means 

± the standard deviation of the means, i.e., for each set, the results of all 
30 networks are averaged and then those averages are used to determine 
the mean and standard deviation across the 5 EV sets. 

Looking at Table 3, all methods were able to meet or surpass a 
minimum standard of model performance, which was chosen as SDR > 1 
(i.e., predictions are better than a random guess around the test popu-
lation mean), PG > 1 (i.e., predictions are better than a random guess 
around the training population mean) and R2 > 0.16 (i.e., ∣R∣ > 0.4 
meaning there is some linearity between predicted and true values).  
Fig. 6 details the SSC root-mean-squared error of prediction (rmsep) for 
the 5 external validation sets, by method. 

Analyzing both Table 3 and Fig. 6: .  

• For the raw spectra, the DeepSpectra methods were very similar in 
rmsep performance (averaging between [1.53, 1.56]), while SN2–32 
results were either of comparable performance, or much better (on 
the second, third and fourth sets of Fig. 6), averaging between [1.34, 
1.35];  

• For the wavelength-ordered PLS feature selection method, FS(λ-ord), 
DeepSpectra had comparable performance to the raw spectra results, 
while SN2–32 networks showed marked improvements, especially 
the method using Savitzky-Golay second order filtering of the input 
data. The best overall performance was for the SN2–32 architecture, 
with Savitzky–Golay 2nd order smoothing; SN1 architectures were 
also less perform than SN2 architectures.  

• For the PLS regression coefficient-ordered feature selection method, 
FS(R-ord), there is a similar improvement on applying it after 
Savitzky-Golay first or second order filtering. When compared to FS 
(λ-ord), the performance is very similar for SN2–32 with 1st or 2nd 
order Savitzky–Golay filtering, or even in the SN2–53 case – which 
suggests that the SN architecture can be robust to training overfit, by 
the fact that 21 additional layers only very slightly worsened the 
generalization capability of the method, when looking at perfor-
mance scores.  

• The PLS VIP-based feature selection methods were all worse than 
either FS(λ-ord) or FS(R-ord), although much better than using either 
reflectance or absorbance spectra for prediction, with the added 
benefit of requiring a trivial computation time. FS-VIP(≥0.8) and FS- 
VIP(≥1.0) had comparable metrics, while FS-VIP(≥1.2) may have 
filtered important features, resulting in a worse performance on 
several metrics.  

• All SN2 networks, which also predicted fruit temperature along SSC, 
had better results than networks trained only on an SSC output 
(SN1). These were SN2–32 and SN2–53 in FS(λ-ord) and SN2–32 in 
FS(R-ord), which were always better than their counterpart SN1 
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methods. This was expected, as CNN-based deep neural networks can 
create shared representations of information using internal correla-
tions between targets as cues during prediction (Padarian et al., 
2019; Ramsundar et al., 2015), as well as increasing prediction ac-
curacy by reducing overfitting (Ruder, 2017). 

Fig. 7 depicts the scatter plots of the best SpectraNet2–32 methods 
for predicting SSC and fruit temperature, which were SN2–32 on SGol 
(2ndOrd) with FS(λ-ord) and SN2–32 on SGol(1stOrd) with FS(R-ord), 
respectively. For illustration of the results of each of the five sets, 5 
representative networks per graph were selected, which were the ones 
(from the pool of 30 per set) that had the closest rmsep value to the 
median of each set. Aggregated statistics across all networks are also 
shown. Additional performance metrics are shown for the following 
parameters: res – resolution, defined as rmsep

max(y)− min(y) × 100, which is a 
measure of how the prediction error resolves the range of y–variation; N 
– the total number of data points in each figure; %OK – the percentage of 

test samples which are correctly assigned below or above the population 
mean (shown as @ y); this value is further detailed in %TN and %TP, 
representing the percentages of correct assignments below (True 
Negative) or above (True Positive) the population mean. 

Table 5 compares the SSC results obtained for the SN2–32 on SGol 
(2ndOrd) with FS(λ-ord) data to Passos et al. (2019). The authors re-
ported that their full spectra results were very similar between evaluated 
methods, but removing the chlorophyll bands below 730 nm improved 
most results, in varying degrees, except for the multilayer perceptron 
(MLP) case. Their overall best results were for the support-vector ma-
chine (SVM) ‘No Chls’ case. Comparing it to SpectraNet2–32, the full 
spectra results are very similar (if only slightly better) to the SVM ‘No 
Chls’ case, which means that the network was able to achieve a good 
generalization performance, without being hindered by the chlorophyll 
bands. Overall, these are good results for SN–32 and highlight the 
robustness of the network in achieving a good generalization perfor-
mance without depending on removing the most troublesome bands of 

Table 3 
Summary of the SSC performance results for all trained networks and input types.  

Input Type Method rmsec rmsep SDR PG R2 CV (%) Bias Slope 

Reflectance DeepSpectra 1.44 ± 0.08 1.56 ± 0.33 1.04 ± 0.05 1.17 ± 0.29 0.27 ± 0.10 12.08 ± 2.66 − 0.03 ± 0.80 0.28 ± 0.11 
Absorbance DeepSpectra 1.43 ± 0.08 1.55 ± 0.35 1.04 ± 0.05 1.18 ± 0.31 0.29 ± 0.10 12.03 ± 2.77 − 0.03 ± 0.82 0.28 ± 0.11  

DeepSpectra2 1.44 ± 0.08 1.53 ± 0.35 1.06 ± 0.07 1.20 ± 0.33 0.29 ± 0.11 11.86 ± 2.86 0.05 ± 0.75 0.27 ± 0.12  
SpectraNet2–32 1.22 ± 0.06 1.34 ± 0.24 1.21 ± 0.18 1.34 ± 0.28 0.41 ± 0.12 10.35 ± 1.98 − 0.03 ± 0.38 0.47 ± 0.17  
SGol(1stOrd) + SN2–32 1.18 ± 0.07 1.35 ± 0.34 1.22 ± 0.23 1.37 ± 0.39 0.44 ± 0.13 10.48 ± 2.69 − 0.02 ± 0.56 0.49 ± 0.20  
SGol(2ndOrd) + SN2–32 1.26 ± 0.08 1.34 ± 0.36 1.23 ± 0.17 1.39 ± 0.41 0.39 ± 0.16 10.40 ± 2.97 0.00 ± 0.42 0.40 ± 0.17 

FS(λ-ord) DeepSpectra2 1.42 ± 0.06 1.53 ± 0.34 1.06 ± 0.09 1.19 ± 0.31 0.30 ± 0.12 11.86 ± 2.77 0.02 ± 0.75 0.29 ± 0.14  
SpectraNet2–32 1.01 ± 0.08 1.21 ± 0.17 1.34 ± 0.21 1.47 ± 0.28 0.50 ± 0.11 9.35 ± 1.36 − 0.12 ± 0.15 0.57 ± 0.15  
SGol(1stOrd) + SN2–32 1.04 ± 0.05 1.16 ± 0.26 1.40 ± 0.16 1.57 ± 0.37 0.55 ± 0.06 8.95 ± 1.96 − 0.04 ± 0.36 0.60 ± 0.15  
SGol(2ndOrd) + SN1–32 0.98 ± 0.05 1.12 ± 0.22 1.44 ± 0.02 1.62 ± 0.37 0.57 ± 0.05 8.63 ± 1.72 − 0.02 ± 0.32 0.60 ± 0.14  
SGol(2ndOrd) + SN1–53 1.04 ± 0.02 1.18 ± 0.27 1.37 ± 0.07 1.54 ± 0.35 0.53 ± 0.04 9.09 ± 1.99 − 0.07 ± 0.43 0.54 ± 0.08  
SGol(2ndOrd) + SN2–32 1.01 ± 0.04 1.08 ± 0.22 1.49 ± 0.06 1.67 ± 0.37 0.58 ± 0.05 8.35 ± 1.67 − 0.06 ± 0.14 0.57 ± 0.11  
SGol(2ndOrd) + SN2–53 1.00 ± 0.03 1.11 ± 0.20 1.45 ± 0.13 1.61 ± 0.31 0.57 ± 0.06 8.59 ± 1.47 0.01 ± 0.31 0.61 ± 0.10 

FS(R-ord) DeepSpectra 1.42 ± 0.07 1.53 ± 0.35 1.06 ± 0.08 1.20 ± 0.32 0.30 ± 0.12 11.83 ± 2.82 0.01 ± 0.75 0.28 ± 0.13  
DeepSpectra2 1.42 ± 0.07 1.52 ± 0.34 1.06 ± 0.08 1.20 ± 0.32 0.30 ± 0.12 11.80 ± 2.80 0.02 ± 0.74 0.28 ± 0.13  
SpectraNet2–32 1.02 ± 0.05 1.28 ± 0.24 1.27 ± 0.20 1.41 ± 0.31 0.45 ± 0.14 9.90 ± 1.95 − 0.02 ± 0.29 0.53 ± 0.19  
SGol(1stOrd) + SN2–32 0.96 ± 0.05 1.10 ± 0.22 1.46 ± 0.16 1.64 ± 0.36 0.58 ± 0.07 8.54 ± 1.73 0.01 ± 0.26 0.62 ± 0.15  
SGol(2ndOrd) + SN1–32 0.98 ± 0.05 1.11 ± 0.22 1.44 ± 0.02 1.62 ± 0.37 0.57 ± 0.04 8.63 ± 1.72 − 0.03 ± 0.33 0.60 ± 0.13  
SGol(2ndOrd) + SN2–32 0.96 ± 0.03 1.08 ± 0.20 1.48 ± 0.13 1.66 ± 0.36 0.58 ± 0.06 8.40 ± 1.61 0.04 ± 0.20 0.61 ± 0.13  
SGol(2ndOrd) + SN2–53 0.94 ± 0.03 1.09 ± 0.18 1.47 ± 0.11 1.63 ± 0.31 0.58 ± 0.05 8.46 ± 1.40 0.02 ± 0.32 0.62 ± 0.09 

FS-VIP(≥0.8) SGol(2ndOrd) + SN2–32 1.08 ± 0.05 1.17 ± 0.20 1.38 ± 0.10 1.54 ± 0.32 0.53 ± 0.08 9.03 ± 1.67 − 0.01 ± 0.30 0.54 ± 0.12 
FS-VIP(≥1.0)  1.09 ± 0.05 1.17 ± 0.24 1.38 ± 0.10 1.56 ± 0.37 0.52 ± 0.07 9.03 ± 1.93 0.00 ± 0.26 0.55 ± 0.13 
FS-VIP(≥1.2)  1.10 ± 0.04 1.21 ± 0.24 1.34 ± 0.15 1.50 ± 0.33 0.50 ± 0.10 9.34 ± 1.92 0.02 ± 0.35 0.54 ± 0.13 

Notes. SSC (%) and SEL = 0.1, with SEL being the standard error of laboratory. All values represent the mean ± standard deviation of 150 networks (30 per EV set). All 
methods attained the minimum standard of performance, consisting of SDR ≥ 1, PG ≥ 1 and R2 > 0.16 (meaning that ∣R∣ > 0.4). Bold: Top-3 performance methods for 
each column. 

Table 4 
Summary of the Temperature performance results for all trained networks and input types.  

Input Type Method rmsec rmsep SDR PG R2 CV (%) Bias Slope 

Absorbance DeepSpectra2 4.78 ± 0.16 5.53 ± 0.75 1.41 ± 0.31 1.53 ± 0.27 0.62 ± 0.08 30.83 ± 9.13 − 0.25 ± 3.01 0.52 ± 0.06  
SpectraNet2–32 1.85 ± 0.11 2.09 ± 0.19 3.72 ± 0.92 4.00 ± 0.33 0.94 ± 0.02 11.67 ± 3.45 0.12 ± 0.82 0.89 ± 0.06  
SN2–32 + SGol(1stOrd) 1.97 ± 0.12 2.14 ± 0.20 3.67 ± 1.03 3.93 ± 0.31 0.93 ± 0.03 11.86 ± 3.13 0.04 ± 0.82 0.91 ± 0.05  
SN2–32 + SGol(2ndOrd) 2.46 ± 0.12 2.83 ± 0.34 2.75 ± 0.72 2.96 ± 0.34 0.89 ± 0.05 15.64 ± 3.72 − 0.04 ± 1.36 0.84 ± 0.05 

FS(λ-ord) DeepSpectra2 4.32 ± 0.10 5.10 ± 0.84 1.55 ± 0.40 1.68 ± 0.36 0.67 ± 0.10 28.49 ± 9.28 − 0.16 ± 2.76 0.59 ± 0.07  
SpectraNet2–32 1.71 ± 0.08 2.01 ± 0.15 3.85 ± 0.98 4.14 ± 0.24 0.94 ± 0.02 11.17 ± 2.78 0.10 ± 0.86 0.92 ± 0.05  
SN2–32 + SGol(1stOrd) 1.67 ± 0.08 1.83 ± 0.18 4.21 ± 1.01 4.55 ± 0.33 0.95 ± 0.02 10.09 ± 2.00 − 0.23 ± 0.60 0.92 ± 0.03  
SN2–32 + SGol(2ndOrd) 1.77 ± 0.11 2.08 ± 0.30 3.80 ± 1.17 4.05 ± 0.50 0.94 ± 0.02 11.50 ± 3.06 0.00 ± 1.02 0.88 ± 0.07 

FS(R-ord) DeepSpectra 4.27 ± 0.19 5.01 ± 0.76 1.56 ± 0.39 1.70 ± 0.35 0.69 ± 0.07 27.87 ± 8.22 − 0.25 ± 2.72 0.60 ± 0.07  
DeepSpectra2 4.30 ± 0.25 5.07 ± 0.71 1.54 ± 0.37 1.68 ± 0.33 0.68 ± 0.07 28.19 ± 7.98 − 0.28 ± 2.80 0.60 ± 0.07  
SpectraNet2–32 1.70 ± 0.09 2.17 ± 0.43 3.65 ± 0.96 3.94 ± 0.66 0.94 ± 0.02 11.68 ± 1.25 − 0.33 ± 1.05 0.89 ± 0.07  
SN2–32 + SGol(1stOrd) 1.60 ± 0.12 1.83 ± 0.27 4.25 ± 0.92 4.62 ± 0.63 0.95 ± 0.01 9.93 ± 1.34 − 0.50 ± 0.66 0.93 ± 0.03  
SN2–32 + SGol(2ndOrd) 1.85 ± 0.15 2.17 ± 0.21 3.54 ± 0.84 3.82 ± 0.29 0.93 ± 0.03 11.97 ± 2.27 − 0.24 ± 0.94 0.90 ± 0.06  
SN2–53 + SGol(2ndOrd) 1.84 ± 0.13 2.15 ± 0.33 3.69 ± 1.19 3.92 ± 0.51 0.93 ± 0.03 12.03 ± 4.03 − 0.04 ± 1.04 0.92 ± 0.04 

FS-VIP(≥0.8) SN2–32 + SGol(2ndOrd) 2.30 ± 0.11 2.57 ± 0.18 2.96 ± 0.53 3.22 ± 0.28 0.90 ± 0.03 14.18 ± 2.88 − 0.10 ± 1.10 0.87 ± 0.05 
FS-VIP(≥1.0)  3.03 ± 0.27 3.51 ± 0.52 2.19 ± 0.45 2.38 ± 0.36 0.83 ± 0.04 19.17 ± 3.19 0.02 ± 1.73 0.80 ± 0.06 
FS-VIP(≥1.2)  3.36 ± 0.15 4.02 ± 0.68 1.95 ± 0.57 2.09 ± 0.34 0.77 ± 0.10 22.30 ± 6.38 0.01 ± 2.14 0.76 ± 0.09 

Notes. Not all methods are shown. All values are the mean ± standard deviation of 150 networks (30 per EV set). All methods attained the minimum standard of 
performance, consisting of SDR ≥ 1, PG ≥ 1 and R2 

> 0.16 (meaning that ∣R∣ > 0.4). Bold: Top-3 performance methods for each column. 
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the input data. 4. Conclusion and final remarks 

This study introduced a novel approach for predicting the soluble 
solids content (SSC) and temperature of ‘Rocha’ pears using the 

Fig. 6. Box plot of the Table 3 SSC results for the root-mean-squared error of prediction (rmsep). Each box represents 30 neural networks. These were trained using 
23 different methods (of which 19 are shown here), across 5 training/validation population splits (from BCDE/A to ABCD/E). The shaded and notched regions of each 
bar represent the 95% confidence interval. 

Fig. 7. Regression scatter plots of the best overall method for (a) SSC and (b) Temperature, using representative networks. In each graphic, these were the 5 networks 
with an rmsep value closest to the median of the 30 trained on each set, across the 5 EV sets. Statistics are computed across the 5 networks (one per set). Each marker 
colour corresponds to a different EV set. 

Table 5 
Comparison of SSC results with Passos et al. (2019).   

PLS MLR SVM MLP (NN) SN2–32  

Full No Chls Full No Chls Full No Chls Full No Chls SG (2nd)+FS (λ) 

rmsec  0.96  0.97  0.89  0.91  0.93  0.92  0.6  0.49  1.01 
rmsep  1.15  1.11  1.15  1.11  1.16  1.09  1.15  1.21  1.08 
PG  1.55  1.6  1.54  1.59  1.56  1.63  1.55  1.46  1.67 
R2  0.56  0.58  0.55  0.57  0.57  0.6  0.57  0.51  0.58 
CV%  8.86  8.57  8.9  8.63  8.94  8.45  8.89  9.64  8.35 

Notes. Italic methods are results from Passos et al. (2019). The best prediction values are displayed in bold. 
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SpectraNet deep learning architecture and 1D visible to near-infrared 
(Vis-NIRS) spectra. Feature selection was also applied to the input 
spectra, utilizing two types of partial least squares (PLS) methods, in 
order to identify the most significant wavelengths for training the 
model. For assessing the performance of SpectraNet–32, inference re-
sults were compared to a similar state-of-the-art deep learning archi-
tecture, DeepSpectra, as well as four classical machine learning 
algorithms: PLS, multiple linear regression (MLR), support vector ma-
chine (SVM), and multi-layer perceptron (MLP). 

Our results have demonstrated that the modified SpectraNet–32 ar-
chitecture, with a reduced number of layers and the incorporation of 
PLS-based input feature selection, is able to achieve superior perfor-
mance for predicting both SSC and temperature of ‘Rocha’ pears. On 
average, it outperformed PLS, MLR and MLP in all metrics, including a 
6.1% improvement in terms of the root mean square error of prediction 
(RMSEP) and a 7.7% improvement in prediction gain (PG) compared to 
PLS. It also outperformed SVM in three of the four measured metrics. 
Additionally, the SpectraNet–32 model exhibited a consistent low 
variability in performance for repeated training, highlighting its po-
tential as a robust and reliable tool for predicting fruit quality attributes. 

Additionally, simultaneously predicting temperature and SSC always 
resulted in better SSC estimates than using networks only trained to 
predict SSC. This highlights the importance of considering the influence 
of temperature on the spectral properties of fruit and the potential for 
improving prediction performance by accounting for it in machine- 
learning models. 

The results presented in this article demonstrate the potential of the 
SpectraNet–32 model as a powerful tool for predicting fruit quality at-
tributes, and highlight the importance of considering the relevance of 
individual wavelengths in the prediction process. The use of spectra- 
based methods in Precision Agriculture offers non-destructive, quick 
tools for measuring the quality of produce, making them a valuable asset 
in the field. The fast inference time of SpectraNet–32, at around 8000 
spectra per second, makes it a practical tool for real-time quality 
assessment in precision agriculture. These findings provide valuable 
insights for future research, as the successful application of the 
SpectraNet–32 model to ‘Rocha’ pears paves the way for further 
exploration of its potential in predicting other fruit quality attributes, as 
well as in different commodities. 
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