
ZIQIANG PU

EXPLOITING GAN AS AN OVERSAMPLING METHOD
FOR IMBALANCED DATA AUGMENTATION WITH
APPLICATION TO THE FAULT DIAGNOSIS OF AN

INDUSTRIAL ROBOT

UNIVERSIDADE DO ALGARVE
Faculty of Sciences and Technology

2022

EXPLOITING GAN AS AN OVERSAMPLING METHOD
FOR IMBALANCED DATA AUGMENTATION WITH
APPLICATION TO THE FAULT DIAGNOSIS OF AN

INDUSTRIAL ROBOT

Declaração de autoria de trabalho

Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos con-
sultados estão devidamente citados no texto e constam da listagem de referências in-
cluída.

I hereby declare to be the author of this work, which is original and unpublished. Authors and
works consulted are properly cited in the text and included in the reference list.

(Ziqiang Pu)

©2022, ZIQIANG PU

A Universidade do Algarve reserva para si o direito, em conformidade com o dis-
posto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir
e publicar a obra, independentemente do meio utilizado, bem como de a divulgar
através de repositórios científicos e de admitir a sua cópia e distribuição para fins mera-
mente educacionais ou de investigação e não comerciais, conquanto seja dado o devido
crédito ao autor e editor respetivos.

The University of the Algarve reserves the right, in accordance with the terms of the Copy-
right and Related Rights Code, to file, reproduce and publish the work, regardless of the meth-
ods used, as well as to publish it through scientific repositories and to allow it to be copied
and distributed for purely educational or research purposes and never for commercial purposes,
provided that due credit is given to the respective author and publisher.

i

Resumo

O diagnóstico inteligente de falhas baseado em aprendizagem máquina geralmente re-

quer um conjunto de dados balanceados para produzir um desempenho aceitável. No

entanto, a obtenção de dados quando o equipamento industrial funciona com falhas é

uma tarefa desafiante, resultando frequentemente num desequilíbrio entre dados obti-

dos em condições nominais e com falhas. As técnicas de aumento de dados são das

abordagens mais promissoras para mitigar este problema.

Redes adversárias generativas (GAN) são um tipo de modelo generativo que con-

siste de um módulo gerador e de um discriminador. Por meio de aprendizagem adver-

sária entre estes módulos, o gerador otimizado pode produzir padrões sintéticos que

podem ser usados para amumento de dados.

Investigamos se as GAN podem ser usadas como uma ferramenta de sobre amostra-

-gem para compensar um conjunto de dados desequilibrado em uma tarefa de diag-

nóstico de falhas num manipulador robótico industrial. Realizaram-se uma série de

experiências para validar a viabilidade desta abordagem. A abordagem é comparada

com seis cenários, incluindo o método clássico de sobre amostragem SMOTE. Os re-

sultados mostram que a GAN supera todos os cenários comparados.

Para mitigar dois problemas reconhecidos no treino das GAN, ou seja, instabilidade

de treino e colapso de modo, é proposto o seguinte.

Propomos uma generalização da GAN de erro quadrado médio (MSE GAN) da

Wasserstein GAN com penalidade de gradiente (WGAN-GP), referida como VGAN

iii

(GAN baseado numa matriz V) para mitigar a instabilidade de treino. Além disso,

propomos um novo critério para rastrear o modelo mais adequado durante o treino.

Experiências com o MNIST e no conjunto de dados do manipulador robótico industrial

mostram que o VGAN proposto supera outros modelos competitivos.

A rede adversária generativa com consistência de ciclo (CycleGAN) visa lidar com

o colapso de modo, uma condição em que o gerador produz pouca ou nenhuma vari-

abilidade. Investigamos a distância fatiada de Wasserstein (SWD) na CycleGAN. O

SWD é avaliado tanto no CycleGAN incondicional quanto no CycleGAN condicional

com e sem mecanismos de compressão e excitação. Mais uma vez, dois conjuntos de

dados são avaliados, ou seja, o MNIST e o conjunto de dados do manipulador robótico

industrial. Os resultados mostram que o SWD tem menor custo computacional e su-

pera o CycleGAN convencional.

Palavras chave: Redes generativas adversárias, aumentação de dados, diagnóstico

de falhas, matriz-V, distância de Wasserstein fatiada, manipulador robótico, dados des-

balanceados

iv

Abstract

Machine learning based intelligent fault diagnosis often requires a balanced data set for

yielding an acceptable performance. However, obtaining faulty data from industrial

equipment is challenging, often resulting in an imbalance between data acquired in

normal conditions and data acquired in the presence of faults. Data augmentation

techniques are among the most promising approaches to mitigate such issue.

Generative adversarial networks (GAN) are a type of generative model consisting

of a generator module and a discriminator. Through adversarial learning between

these modules, the optimised generator can produce synthetic patterns that can be

used for data augmentation.

We investigate whether GAN can be used as an oversampling tool to compensate

for an imbalanced data set in an industrial robot fault diagnosis task. A series of ex-

periments are performed to validate the feasibility of this approach. The approach is

compared with six scenarios, including the classical oversampling method (SMOTE).

Results show that GAN outperforms all the compared scenarios.

To mitigate two recognised issues in GAN training, i.e., instability and mode col-

lapse, the following is proposed.

We proposed a generalization of both mean sqaure error (MSE GAN) and Wasser-

stein GAN with gradient penalty (WGAN-GP), referred to as VGAN (the V-matrix

based GAN) to mitigate training instability. Also, a novel criterion is proposed to keep

track of the most suitable model during training. Experiments on both the MNIST

v

and the industrial robot data set show that the proposed VGAN outperforms other

competitive models.

Cycle consistency generative adversarial network (CycleGAN) is aiming at dealing

with mode collapse, a condition where the generator yields little to none variability.

We investigate the sliced Wasserstein distance (SWD) for CycleGAN. SWD is evalu-

ated in both the unconditional CycleGAN and the conditional CycleGAN with and

without squeeze-and-excitation mechanisms. Again, two data sets are evaluated, i.e.,

the MNIST and the industrial robot data set. Results show that SWD has less compu-

tational cost and outperforms conventional CycleGAN.

Keywords: Generative adversarial networks, data augmentation, fault diagnosis,

V-matrix, sliced Wasserstein distance, industrial robots, imbalanced data

vi

To the memory of my maternal grandparents

vii

Acknowledgements

This work would not have been possible without the unconditional support of my

supervisor José Valente de Oliveira. In his enthusiasm, his technical soundness, and

his great efforts to explain things clearly and simply I found inspiration to bring this

work to a good end. I still remember the word he told me "Speed cannot grant you a

P.hD, but the quality will". This word has inspired me a lot to focus on the research

itself in my Ph.D. program.

I am heartily thankful to my co-supervisor, Chuan Li, whose encouragement, amity

and support were generously distributed when most needed. The exchange of ideas

and encouragement that he offered me were crucial at a time when the work was in

need of gaining momentum.

I cannot finish without saying how grateful I am to my family for providing a loving

environment. Thanks to my parents, my father Pu Zhaojun and my mother Xiang Fang

whom have always educated me to do my best in all matters of life. My father’s hard-

working spirit gave me the motivation to move forward, and my mother’s meticulous

care made me feel the warmth of the family. Thanks for providing financial support

for my study abroad, giving me the opportunity to see the world.

I would like to thank the Chinese Embassy in Portugal and the China Scholarship

Council for the study abroad scholarship, number 2021-A591, which is a recognition

of my research. Besides, thanks to my best friend Tang Miao for keeping in touch with

me on the internet.

ix

Contents

List of Tables . xiv

List of Figures . xvi

List of Abbreviations . xxi

1 Introduction . 1
1.1 Context and Motivation . 1
1.2 Research Aims . 4
1.3 Main Research Contributions . 4
1.4 Thesis Outline . 6

2 The problem: Fault diagnosis of an industrial robot 9
2.1 Introduction . 10
2.2 The industrial robot . 13

2.2.1 The transmission system . 13
2.2.2 The perception system . 14
2.2.3 The movement of the industrial robot 15

2.3 Challenge in the fault diagnosis of the industrial robot 15
2.4 Experimental apparatus of the industrial robot 16

2.4.1 Experimental test rig . 16
2.4.2 Data measurement . 17
2.4.3 Imbalanced data set . 20

2.5 Conclusion . 20

3 GAN Overview . 23
3.1 Introduction . 23
3.2 Theoretical Background on GANs . 25

3.2.1 Artificial Neural networks . 25
3.2.2 Adversarial idea . 29
3.2.3 Loss function . 30
3.2.4 Optimization strategy . 31
3.2.5 Challenges in GAN . 33

3.3 Important variants of GAN . 34
3.3.1 Deep convolutional GAN . 34
3.3.2 Least square GAN . 35
3.3.3 Wasserstein GAN . 36
3.3.4 Conditional GAN . 37
3.3.5 Auxiliary classifier GAN . 37
3.3.6 Bidirectional GAN . 38

xi

CONTENTS

3.3.7 Cycle consistency GAN . 38
3.3.8 Auto-encoder with GAN . 40

3.4 Evaluation metrics for GAN . 41
3.4.1 Inception score . 42
3.4.2 Mode score . 42
3.4.3 Fréchet Inception distance . 42
3.4.4 Multi-scale structural similarity (MS-SSIM) 42

3.5 Application of GAN . 43
3.5.1 Image and computer vision . 43
3.5.2 Machine translation . 44
3.5.3 Industrial machinery fault diagnosis 45
3.5.4 Other applications . 46

3.6 Case study: GAN as an oversampling method for data augmentation in
an industrial robot fault diagnosis task . 46
3.6.1 Introduction . 46
3.6.2 Methodology . 49
3.6.3 Experiments . 53
3.6.4 Results and discussion . 54

3.7 Conclusion . 63
3.8 Appendix . 65

3.8.1 Random forests for fault classification 65

4 VGAN: a V-matrix based generative adversarial network 67
4.1 Introduction . 68
4.2 Methodology . 69

4.2.1 On GAN, Wasserstein GAN and conditional Wasserstein GAN . 69
4.2.2 VGAN . 70
4.2.3 On the early stopping in GANs 74

4.3 Experiments . 76
4.3.1 The MNIST data set . 76
4.3.2 The industrial robot data set . 77
4.3.3 Considered scenarios . 78

4.4 Results and discussion . 79
4.4.1 Comparisons of the different scenarios 79
4.4.2 Convergence curves . 83
4.4.3 On imbalance data sets . 84
4.4.4 On the model sensitivity . 85
4.4.5 Results with MNIST data set . 87

4.5 Conclusion . 88
4.6 Appendix . 89

5 SW-CylcyeGAN: a sliced Wasserstein distance-based cycle consistency gen-
erative adversarial network . 91
5.1 Introduction . 92
5.2 Methodology . 93

5.2.1 Sliced Wasserstein CycleGAN . 94
5.2.2 Procedure of our proposed approach 101

5.3 Experiments . 102
5.3.1 MNIST data set . 102

xii

CONTENTS

5.3.2 The industrial robot data set . 103
5.3.3 Considered scenarios . 106

5.4 Results and discussion . 106
5.4.1 Unconditional CycleGAN . 106
5.4.2 Conditional CycleGAN . 111

5.5 Conclusions . 117
5.6 Appendix . 117

6 Conclusions and Future Research . 119
6.1 Conclusions . 119

6.1.1 Exploit GANs for data augmentation 120
6.1.2 Developing GANs with V-matrix based loss function 121
6.1.3 Considering the Sliced Wasserstein distance on CycleGAN 122

6.2 Future Research . 123

xiii

List of Tables

2.1 Different fault patterns in the industrial robot. 17
2.2 The number of examples available for each operating condition. C0

stands for the class of nominal operating state, while C1, C2, and C3 rep-
resent faulty states classes. 20

3.1 Wilcoxon posthoc pair-wise tests for the different scenarios. 55

4.1 Wilcoxon post-hoc results for the six studied scenarios. 80
4.2 Calculation burden via different scenario for fault data generation 83

5.1 Wilcoxon post-hoc results of unconditional CycleGAN for the four stud-
ied scenarios. 111

5.2 Wilcoxon post-hoc results for the four studied scenarios with conditional
CycleGAN . 113

xv

List of Figures

2.1 The flow chart of the fault diagnosis. 11
2.2 The industrial robot: (a) Tandem robot; (b) Parallel robot [1] 14
2.3 The experimental apparatus . 16
2.4 Examples of each one of the 8 monitoring conditions: (a) Healthy state;

(b) Pitting in Sun gear A; (c) Broken tooth in Sun gear A; (d) Cracking
in Planetary gear B. (e) Cracking in Planetary gear A; (f) Broken tooth
in Planetary gear B; (g) Broken tooth in Sun gear B; and (h) Cracking in
Sun gear A; (i) Broken tooth in Planetary gear A. 18

2.5 The time length of vibration signal visualization in each fault condition:
(a) Healthy condition (C0); (b) Pitting in Sun gear A (C1); (c) Broken tooth
in Sun gear A (C2); (d) Cracking in Planetary gear B (C3); (e) Cracking
in Planetary gear A (C4); (f) Broken tooth in Planetary gear B (C5); (g)
Broken tooth in Sun gear B (C6); (h) Cracking in Sun gear A (C7); (i)
Broken tooth in Planetary gear A (C8). 20

3.1 The architecture of multilayer perceptron with three layers: x stands for
the input neurons, z is the hidden neurons and y represents the output
neurons. See text for details. 26

3.2 The schematic of convolutional process 27
3.3 Neural network with batch normalization: x is the input neurons, z

stands the hidden neurons, z̃ is the normalized hidden neurons, z̃ is the
hidden neurons with batch normalization, y denotes the output neu-
rons, µb and σb are the mean and the standard deviation of the hidden
neurons z and z̄i and βbn are learnable parameters in the batch normal-
ization. See text for details. 28

3.4 The architecture of a generative adversarial network(GAN). 30
3.5 The architecture of conditional generative adversarial network (cGAN). 37
3.6 The architecture of AC-GAN. 38
3.7 The architecture of Bi-GAN. 38
3.8 The architecture of CycleGAN. 39
3.9 The architecture of auto-encoder: x represents the input neurons, z stands

the neurons in the latent space and x̄ denotes the reconstructed x. See
text for details. 40

3.10 The architecture of AAE. 41
3.11 Face samples generated by Progressive GAN [2]. 44
3.12 The decomposition levels of a wavelet packet transform of the signal

u(t). 50
3.13 The learning scheme of the fault diagnoser. 51
3.14 The flow chart of the procedure of the proposed approach. 52

xvii

LIST OF FIGURES

3.15 The complete data pipeline for fault diagnosis of the manipulator. 53
3.16 Boxplots exhibiting the relative distributions of accuracy obtained with

the different scenarios considered for fault classification. See text for
details. 54

3.17 Recall indicators for the different scenarios: (a) RF-i; and (b) RF-b2; (c)
RF-GAN; (d) RF-GAN1; (e) RF-GAN2; and (f) SMOTE. 57

3.18 F1-score for scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN; (d) RF-GAN1;
(e) RF-GAN2; and (f) SMOTE. 58

3.19 The confusion matrix for: scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN;
(d) RF-GAN1; (e) RF-GAN2; and (f) SMOTE. 60

3.20 Learning curve of scenario RF-GAN for i =1, 2, 4, 6, 8, 10, 20, 40, 60, 80,
and 100% of the training set. 61

3.21 The effect of shuffling input data for training a GAN based model: (a)
With shuffling and (b) Without shuffling. 61

3.22 The effect of the distribution used for sampling the input z of the GAN
generator: (a) standard normal distribution and (b) normalized uniform
distribution. 62

3.23 The effect of initial weights (generated from different random generator
seeds) on the classification accuracy of RF-GAN. 63

3.24 Steps for building a random forest . 66

4.1 The architecture of VGAN for MNIST dataset 77
4.2 Boxplots exhibiting the distribution of accuracy over 30 independent

runs for the different scenarios. 79
4.3 Confusion matrices for scenario (a) Normal; (b) Normal_l; (c) mse; (d)

mse_l; (e) v; and (f) v_l. 81
4.4 t-SNE representation of each data generation scenario: (a) normal; (b)

normal_l; (c) mse; (d) mse_l; (e) v and (f) v_l. 82
4.5 Typical convergence curves for VGAN with early stopping: (a) discrim-

inator and (b) generator. 83
4.6 Typical convergence curves for cWGAN-GP without early stopping: (a)

discriminator and (b) generator. 84
4.7 Results of the difference scenarios for dealing with the imbalance train-

ing data; see text for details. 84
4.8 Accuracy values for the v model (VGAN with early stopping) and v_l

model (VGAN without early stopping) for different values of γ in (4.15). 85
4.9 A learning curve taking into account a percentage perc of the faulty ex-

amples relatively to the number of healthy examples. 86
4.10 Classification accuracy obtained for VGAN using (4.22) as generator, as

a function of the epochs. 87
4.11 Boxplots exhibiting the distribution of accuracy over 3 independent runs

for the different scenarios. 88

5.1 Random projections and permutation of two distributions Pd and Pz,
adapted from [3] . 96

5.2 The flow chart of a conditional CycleGAN. 98
5.3 The ResNet architecture: (a) the classical ResNet block; (b) the modified

ResNet block. 99
5.4 The architecture of CycleGAN for MNIST dataset. 103

xviii

LIST OF FIGURES

5.5 The architecture of CycleGAN for the industrial robot data set.: (a) un-
conditional CycleGAN; (b) conditional CycleGAN. 105

5.6 t-SNE visualization with the MNIST dataset: (a) initial state; (b) wd ;(c)
wd-sem; (d) swd and (e) swd-sem. 108

5.7 t-SNE visualization with the industrial robot dataset: (a) initial state; (b)
wd ;(c) wd+sem; (d) swd and (e) swd+sem. 109

5.8 The Boxplot of different scenarios: (a) MNIST dataset;(b) Industrial robot
dataset. 110

5.9 Dispersion of the required number of iterations to reach the same level
of performance, over 30 independent runs: (a) MNIST dataset ;(b) In-
dustrial robot. 110

5.10 t-SNE visualization with the MNIST data set: (a) initial learning state;
(b) wd ;(c) wd-sem; (d) swd and (e) swd-sem. 112

5.11 t-SNE visualization with the industrial robot data set: (a) initial learning
state; (b) wd ;(c) wd-sem; (d) swd and (e) swd-sem. 114

5.12 Boxplots for different scenarios: (a) MNIST; (b) Industrial robot. 115
5.13 The convergence curves for the different scenarios: (a) MNIST; (b) In-

dustrial robot. 115
5.14 Typical convergence curve on MNIST data set for (a) Generator; (b) Dis-

criminator. 116
5.15 Typical convergence curve on the industrial robot data set for (a) Gener-

ator; (b) Discriminator. 116

xix

List of Abbreviations

AE Auto-encoder.

ANN Artificial neural networks.

Adam Adaptive moment estimation.

AC-GAN Auxiliary classifier GANs.

AAE Adversarial auto-encoder.

Bi-GAN Bi-directional GANs.

CNN Convolutional neural network.

CycleGAN Cycle consistency GANs.

cGAN Conditional GANs.

DT Decision tree.

DBN Deep belief network.

DBM Deep Boltzmann machine.

DCGAN Deep convolutional GANs.

EMD Earth-Mover distance.

FT Fourier transform.

FID Fréchet inception score.

GANs Generative adversarial networks.

IS Inception score.

JSD Jensen-Shannon divergence.

KL Kullback Leibler.

xxi

LSGAN Least square GANs.

MSE Mean square error.

MLP Multilayer perception.

MS Mode score.

MS-SSIM Multi-scale structural similarity.

MMD Maximum mean discrepancy.

MC The model compatibility score.

NN Neural network.

NLP Natural language processing.

PHM prognostics and health management.

RF Random forest.

RV Rotate Vector.

RBM restricted Boltzmann machines.

RL Reinforced learning.

SVM Support vector machine.

SVR Support vector regression.

SAE Sparse auto-encoder.

SMOTE Synthetic minority oversampling technique.

SWD Sliced Wasserstein distance

SW-CycleGAN CycleGAN using SWD.

SFT Short-time Fourier transform.

SGD Stochastic gradient descent

TL Transfer learning.

VGAN V-matrix based GANs.

VAE Variational auto-encoder.

WD Wasserstein distance.

WGAN Wasserstein GANs.

WGAN-GP Wasserstein GANs with gradient penalty.

WPT Wavelet package transform.

xxii

1
Introduction

In which we state the problem and the motivation for this work, present the research

objectives, the contributions and draw a road map for the reading of the dissertation.

1.1 Context and Motivation

The industrial robot is being more and more adopted to facilitate harsh operations

such as blanking, injection molding, die casting, assembling and testing [4]. Those

operations may lead to failures occurring at the robot. Without appropriate mainte-

1

1.1. CONTEXT AND MOTIVATION

nance, it may result in economic loss and serious damage. Hence, fault diagnosis of

industrial robots is a crucial task for machinery maintenance. A common way to detect

different faulty states is by using experts’ experience [5] or processing some amplitude-

frequency conversion techniques [6, 7]. Machine learning based fault diagnosis usually

applies techniques such as support vector machine (SVM) [8], logistic regression [9],

Bayes classification [10], decision tree [11] and neural network (NN) [12].

Deep learning [13], the training of many layers of NN, has become a promising

strategy for fault diagnosis [14]. Chen et al. [15] stated that the different acquired vibra-

tion signals may lead to effective diagnostic results. Particularly, a multi-sensory data

fusion technique is proposed for the fault diagnosis of rotating machinery bearings. In

this method, a sparse auto-encoder (SAE) with a deep belief network (DBN) is com-

bined, called SAE-DBN scheme. The results demonstrate that the proposal can effec-

tively identify the machine running conditions. Gong et al. [16] designed another fault

diagnosis method based on a modified convolutional neural network (CNN) frame-

work. This framework uses one-dimensional convolutional computing to deal with

raw time series, and a non-linear SVM is adopted as the final classifier. Experimental

results show that the proposed approach had a faster diagnosis speed and a higher

accuracy than the conventional CNN. Long et al. [17] addressed a hybrid algorithm,

named evolving echo state network (ESN). This algorithm combine ESN with a swarm

optimizer for the fault diagnosis of machineries. They analysed the effectiveness of

the algorithm by comparing with other scenarios such as SAE, CNN and ESN. Results

show that the proposal is promising for complicated fault diagnosis problems.

The deep learning models [18] include but are not limited to auto-encoder (AE),

DBN [19], deep Boltzmann machines (DBM) [20], or CNN [21]. Remarkable results

have been reported on the application of such models. However, several issues remain

to be clarified. These include a (probabilistic or information-based) interpretation for

the data processing [22] inside such models and the amount of data required for train-

ing a given deep model for a certain task. This is particularly relevant as, without

enough data, these methods do not work. In mechanical systems such as industrial

2

1.1. CONTEXT AND MOTIVATION

robots, acquiring data under faulty conditions is rather difficult. This is because, an

industrial robot has a relatively low probability of failure due to its robustness. On

the other hand, when it fails it is rather difficult to keep it in operation long enough in

this faulty state. Consequently, the fault data is scarce when compared to healthy data

(imbalanced) and might not meet the requirements for training deep neural networks.

The above approaches need a large amount of data [23, 24, 25] to predict good results.

Insufficient data will cause bias in the data-driven models such as deep learning mod-

els. Therefore, it is necessary to monitor the health state of this equipment with enough

data set. That is to say, the above data issues become even more important.

To solve this problem, data augmentation techniques have been introduced to in-

crease faulty data sets. Zhang et al. [26] employed the synthetic minority oversam-

pling technique (SMOTE) for the rotating machinery fault diagnosis. Han et al. [27]

integrated improved SMOTE with SVM for diagnosing bearing faults. Yu et al. [28]

raised a multi-stage semi-supervised learning approach with the data augmentation

technique for the fault diagnosis of rolling bearings. Recently the generative adversar-

ial network (GAN) [29, 30, 31, 32, 33] has been proposed and shown to be a promising

learning strategy to address data augmentation. Zhou et al. [34] used a global opti-

mized with AE for faulty data generation. Pu et al. [35] exploited GAN as an oversam-

pling method for the fault diagnosis of an industrial robot. The objective is to eliminate

the imbalance between healthy and faulty data.

In the GAN framework, two (deep) models are trained to perform a zero-sum game.

One of the models, the generator, aims at reproducing synthetic samples while the

other model, the discriminator, tries to detect whether the samples were synthetic or

from a given data set. In this framework, the two models are trained simultaneously,

each improving its own performance.

GAN is suffering from three main problems [36] which are mode collapse, training

oscillation and vanishing gradient, which limits the performance of GAN and makes

the training difficult. Mode collapse refers to a lack of diversity in the generator, train-

ing oscillation is the oscillating loss value during training and the vanishing gradient

3

1.2. RESEARCH AIMS

occurs whenever the discriminator becomes rapidly too accurate. The thesis aims at

addressing these problems and to bring the GAN framework as suitable as possible for

data augmentation to satisfy the needs of industrial robot fault diagnosis.

1.2 Research Aims

The objective of our research can be enunciated as follows:

• To study the data needed for deep learning, in GAN, in the context of the fault

diagnosis of an industrial robot.

• To investigate the critical learning problem and possible improvements in GAN.

• To study the loss function of GAN in what concerns training convergence and

stability.

1.3 Main Research Contributions

Our main research contributions can be summarized as follows:

• We have applied, for the first time, GAN in fault diagnosis of a real six-of-freedom

industrial robot.

• We investigate the application of GAN to generate synthetic examples represent-

ing fault states for mitigating the presence of an imbalanced data set in a fault di-

agnosis task of the industrial robot. More concretely, GAN generates a synthetic

wavelet packet transform (WPT) based feature vector of a vibrational signal as

acquired by an accelerometer. A comprehensive study taking into account six

different scenarios for mitigating the imbalanced data, including classical under

and oversampling (e.g., SMOTE) methods, as well as for assessing the effect of

factors such as generator selection, the number of training examples in each class,

data shuffling in training data, the distribution used for sampling input random

data and initial conditions.

4

1.3. MAIN RESEARCH CONTRIBUTIONS

Published paper: Pu Z, Cabrera D, Sánchez R V, Cerrada M, Li C and Valente

de Oliveira J, “Exploiting Generative Adversarial Networks as an Oversampling

Method for Fault Diagnosis of an Industrial Robotic Manipulator,” Applied Sci-

ences, vol. 10, pp. 7712, 2020. [37]

• For mitigating training oscillations, motivated by both the theoretical background

and the empirical evidence obtained in classification and regression problems,

a V-matrix based regularization is used within the conditional GAN (cGAN)

framework. The V-matrix based criterion proposed by Vapnik et al [38, 39] gen-

eralizes the well-known and widely used mean square error (MSE) criterion. In

the same vein, our proposed GAN framework, VGAN, generalizes both the MSE

GAN [40] and the WGAN-GP frameworks. Also, a novel stop criterion like strat-

egy that keeps track during training of the most suitable model is proposed (Sec-

tion 4.2.3). The application of the proposed VGAN to an industrial robot fault

diagnosis where the VGAN is used as a data augmentation tool to cope with an

imbalanced data set. Results show that VGAN outperforms nine other scenarios

including vanilla GAN, conventional regularization and SMOTE. Furthermore,

the stop criterion like mechanism allows to obtain a monotonic increasing per-

formance of the model during training and, when combined with the proposed

regularization, yields the highest fault classification accuracy among all other sce-

narios.

Published paper: Pu Z, Cabrera D, Li C and Valente de Oliveira J, “VGAN: Gen-

eralizing MSE GAN and WGAN-GP for robot fault diagnosis,” IEEE Intelligent

System, vol. 37, no. 3, pp. 65-75, 2022. [41]

• The sliced Wasserstein distance is applied, for the first time, in the development

of unconditional and conditional CycleGANs aiming at smoother, faster, more

efficient convergence while addressing mode collapse. To the best of our knowl-

edge, it is the first time that either unconditional or conditional CycleGAN (either

with Wasserstein or sliced Wasserstein distance) is used to transfer healthy states

5

1.4. THESIS OUTLINE

to different fault states for addressing the imbalanced data problem in fault di-

agnosis of an industrial robot. A comprehensive set of experiments show that,

for both the unconditional and the conditional cases, sliced Wasserstein distance

outperforms classic Wasserstein distance in CycleGANs. For the unconditional

case of the robot faulty data augmentation, the improvement in convergence ef-

ficiency can be greater than 2 (two) orders of magnitude.

Published paper: Ziqiang Pu, Diego Cabrera, Chuan Li, José Valente de Oliveira,

"Sliced Wasserstein cycle consistency generative adversarial networks for fault

data augmentation of an industrial robot," Expert Systems with Applications, vol.

222, 119754, ISSN 0957-4174, 2023. [42]

1.4 Thesis Outline

This dissertations is organized as follows:

• Chapter 2 states the problem of fault diagnosis with industrial robots. This chap-

ter first gives a brief introduction to the significance of fault diagnosis. Then

illustrates intelligent fault diagnosis, which is mainly based on artificial neural

networks. Next, an introduction about the industrial robots is covered, includ-

ing their transmission, perception systems, and the characteristic of the track of

the dynamic movement. Then, the chapter notes the main challenge for the fault

diagnosis of industrial robots. Finally, an experimental test rig of the industrial

robot is established to obtain data.

• Chapter 3 illustrates the state of the art in GAN. The chapter begins with an intro-

duction to the deep generative model and the associate research topics. Then the

theoretical background and derivation of GAN, including the adversarial idea,

loss functions, optimizations, and challenges are introduced. After this, we show

some remarkable variants of GAN. Next, the evaluation metrics of GAN are in-

troduced. In addition, the application of GAN and their open research are inter-

preted. Then, a case study of using a GAN as an oversampling method for an

6

1.4. THESIS OUTLINE

imbalanced data set is presented. Finally, we statistically analyse the obtained

results to assess the feasibility of the proposal.

• Chapter 4 proposes a V-matrix based GAN to mitigate training oscillation. The

chapter first gives us an introduction and motivation about the loss function in

GANs. Then it presents the used methodology, including V-matrix theoretical

derivation, the improved version of MSE estimation, and the novel early stop-

ping for selecting the best generator for data generation. Finally, we present ex-

perimental results and draw some conclusions.

• Chapter 5 considers another alternative loss function in CycleGAN named sliced

Wasserstein distance (SWD) for fast convergence and stable training. The chap-

ter first introduces GAN loss function and motivation for this work. Then, the

theoretical knowledge background about SWD, both unconditional and condi-

tional CycleGAN, the squeezed-and-excitation mechanism and a new metric for

generator selection are also detailed. Next, we present experimental and qualita-

tive results on both unconditional and conditional CycleGAN (with and without

squeeze-and-excitation mechanisms) with two data sets (both the public data set

of MNIST and the in-house industrial robot data set) to see the generalization

ability of the proposal. Finally, we draw some conclusions.

• Chapter 6 summarizes the conclusions of our research and outlines some promis-

ing directions for future works.

7

2
The problem: Fault diagnosis of an

industrial robot

In which we introduce fault diagnosis, the industrial robot, the existing challenges

in the fault diagnosis area and illustrate the experimental apparatus of an industrial

robot.

9

2.1. INTRODUCTION

2.1 Introduction

With the advancement of science and technology and the popularization of modern-

ization, mechanical equipment and production systems [43] gradually play an increas-

ingly important role in developing the national economy and society. There might be

unpredictable conditions in these systems, various parts of the industrial equipment

with long-term operation may cause unforeseen failures, leading to system malfunc-

tions [44]. These failures will reduce work efficiency and stop production in the worst

case, resulting in considerable property losses and even accidents. In response to these

problems, researchers and engineers assess the system’s health state by monitoring and

predicting [45]. Early fault diagnosis [46] is generally performed by professional main-

tenance personnel. Firstly, engineers should observe the operating state of the equip-

ment and then test the abnormal changes in its noise, trajectory, temperature, vibration,

and other parameters. Finally, through comparison with the normal state, the corre-

sponding diagnosis results are obtained through empirical analysis [47]. However,

this kind of detection is time-consuming and requires high specialized maintenance

personnel. Therefore, with the continuous development of intelligent manufacturing,

timely and accurate intelligent fault diagnosis of equipment failures has become a top

priority.

A type of data-driven intelligent fault diagnosis flow chart is shown in Fig. 2.1.

This has three main steps: signal acquisition, feature extraction and recognition and

prediction. In the first step, each type of time series signal will be measured by sen-

sors, e.g., the accelerometer and then collected by the data acquisition system. In the

second step, some feature extraction methods, e.g., amplitude-frequency conversion

technique, will be performed on the collected signals to get the main information of

the signals. In the final step, some machine learning based methods are conducted to

realize the recognition and prediction. Glowacz et al. [48] proposed a feature extrac-

tion using thermal images BCAoID (Binarized Common Areas of Image Differences),

which is used for the fault diagnosis of electric impact drills. Zhang et al. [49] pre-

sented the adaptive and concise empirical Wavelet transform for the fault diagnosis of

10

2.1. INTRODUCTION

Signal acquisition Feature extraction Recongnition and
prediction

Vibrational signals

Sound signals

Magnetic signals

Electric signals

Time domain
Statistical features

Axis track

Frequency domain
Foutier transform

Spectral analysis

Time-frequency domain
Wavelet transform
Short-time Fourier

transform

R
em

ai
ni

ng
 li

fe

pr
ed

ic
tio

n

Regression model

Support vector
machine

Gaussian model

Fa
ul

t p
at

te
rn

re

co
gn

is
tio

n K-nearest neighbour

Clustering

Neural network

Figure 2.1: The flow chart of the fault diagnosis.

rolling bearings in rotating machinery. Due to the difficulty in realizing the fine diag-

nosis of motor faults under such high-speed, long-period, and heavy-load operations,

Wu et al. [50] established a multilevel fine fault diagnosis method for fractional-order

or integer-order faults on the basis of the powerful extraction ability of the fractional

Fourier transform. Zhou et al. [51] proposed a detection method based on Transient-

extracting transform and linear discriminant analysis for the fault diagnosis of rolling

bearings. Nguyen et al. [52] used a NN with transformed vibration signals for bearing

fault diagnosis. Han et al. [53] applied the idea of transfer learning (usually neural

networks) to increase faulty data sets for machinery fault diagnosis. Pan et al. [54]

designed a NN via restricted Boltzmann machines (RBM) with the layer-wise strategy

for gearbox fault diagnosis. Tang et al. [55] applied CNN for the intelligent fault diag-

nosis of ratting machinery. Aydemir et al. argue that anomaly detection will improve

the remaining useful life estimation of industrial machinery [56]. Lee et al. [57] pro-

posed a method that combines CNN and a gated recurrent unit for anomaly detection

of the rotating machinery. Dhiman et al. [58] developed anomaly detection based on

an adaptive threshold and twin SVM. Besides, less research is reported about fuse in-

11

2.1. INTRODUCTION

formation from the data of different sensors. To this end, Ma et al. [59] designed an

information fusion method of the variational auto-encoder (VAE) and the random for-

est (RF) for fault diagnosis of rolling bearings. In this method, the signals measured

by the accelerometer, the magnetic sensor, and the temperature sensor are fused for

subsequent life evolution analysis. Applying the theory of artificial neural network to

mechanical fault diagnosis for developing intelligent fault diagnosis is a new way of

mechanical fault diagnosis. This intelligent fault diagnosis has been widely used and

has become an important research direction in fault diagnosis.

Deep learning is now quite popular in fault diagnoiss. Wang et al. [60] proposed

a novel deep CNN with multiple dimensions of signal features for bearing fault diag-

nosis. Firstly, the frequency domain signals are collected using the short-time Fourier

transform and the wavelet transform. Then, the time domain signals, the frequency

domain signals, and the time-frequency graph are fused into the model. Finally, the

fault diagnosis task is performed to recognize the bearing position, damage location

within the bearing, and the damage size. Du et al. [61] used the sparse isolation encod-

ing forest to anomaly detection and novel detection on the wind turbine gearboxes.

Since the multiple fault variables and minor faults will bring obstacles to fault di-

agnosis, Zheng et al. [62] presented a fault detection technique for multivariate fault

diagnosis. Firstly, the deviation factor area is adopted as the features of samples, and

Bayesian decision theory is applied to calculate the probability of the equipment being

faulty. Then, the multidimensional reconstruction-based contribution is used for fault

identification. Besides, Pu et al. [63] developed a deep enhanced fusion network for the

fault diagnosis for wind turbine gearboxes. The general idea is to fuse multi-channel

signals with a feature extraction mapping for better feature capturing.

This chapter is organized as follows. In Section 2.2, we introduce some basic notions

about industrial robots, including their transmission, perception systems and their

characteristic of dynamic movements. In Section 2.3, we present the main challenge in

intelligent fault diagnosis, especially in such a precision device as the industrial robot.

In Section 2.4, we present the industrial robot considered in this thesis and describe the

12

2.2. THE INDUSTRIAL ROBOT

performed data acquisition experiments. In Section 2.5, we draw some conclusions.

2.2 The industrial robot

Most industrial robots [64] are multi-joint manipulators or multi-degree-of-freedom

robots. They can be seen as automatic actuators. In 1959, the world’s first industrial

robot was produced by Unimation [65]. With the progress of human society, indus-

trial robots have been divided into three main generations: the first generation is the

teaching-reproducing robot, the second generation is the sensory robot, and the last

generation is the intelligent robot. With the recent changes in the global economic

situation and the increase in labor costs, industrial robots are widely used in various

industrial systems.

2.2.1 The transmission system

Regarding mechanical structure, industrial robots are generally divided into tandem

robots (e.g., robotic arms) and parallel robots (e.g., 3-D printers) [66]. Tandem robots

[67], such as six-degree-of-freedom industrial robots (with six independent movements),

are characterized by the fact that the movement of one axis changes the origin of the

other axis. In contrast, parallel robots [68] use a parallel mechanism in which the move-

ment of one axis does not change the coordinate origin of the other axis. Tandem and

Parallel robots are mainly connected by hinge connections. Unlike tandem robots, the

Tandem robot is a closed-loop mechanism driven in parallel. The tandem and parallel

robots are shown in Fig. 2.2.

The rotary joint of the tandem robot is the action point of the driving force of the

robot movement, which is generally driven by the motor through the reducer. The re-

ducer is a crucial part of the robot, and its cost accounts for about 1/3 of the cost of

the robot body. Currently, two reducers are mainly used: the harmonic gear reducer

and the rotate vector (RV) reducer. The harmonic drive technique was developed by

C. Walt Musser et al. [69] in the mid-1950s. Teijin Corporation [70, 71] pioneered the

13

2.2. THE INDUSTRIAL ROBOT

(a) (b)

Figure 2.2: The industrial robot: (a) Tandem robot; (b) Parallel robot [1]

development of RV reducers in the 1980s. The RV reducer consists of a front stage of a

planetary gear reducer and a rear stage of a cycloid reducer. Compared with the har-

monic gear reducer, the RV reducer has better rotation accuracy and accuracy retention.

It is widely used in industrial robots and has become an indispensable core component

of industrial robots with its stable transmission and high positioning accuracy.

2.2.2 The perception system

The perception system of the robot converts various internal state information and en-

vironmental information to data that the robot itself or between robots can understand

and apply. The visual servo system uses visual information as a feedback signal to con-

trol and adjust the position and attitude of the robot. The application of this aspect is

mainly reflected in the semiconductor and electronics industries. Machine vision sys-

tems are also widely used in quality inspection, work-piece identification, food sorting,

and packaging.

14

2.3. CHALLENGE IN THE FAULT DIAGNOSIS OF THE INDUSTRIAL ROBOT

2.2.3 The movement of the industrial robot

In order to let the robot complete some specific tasks in the shortest possible time and

improve work efficiency, it is necessary to design a reasonable motion plan. Motion

planning is divided into path planning and trajectory planning. Path planning aims to

make the distance between the path and the obstacle as far as possible while the path

length is as short as possible. The primary purpose of trajectory planning is to make the

robot run as short as possible or the energy as small as possible in the movement of the

robot joint space [72]. Trajectory planning adds time series information based on path

planning. It plans the speed and acceleration of the robot when it performs tasks to

meet the requirements of smoothness and speed controllability. Teaching reproduction

is one of the methods to realize path planning. Teaching through the teaching box and

recording the teaching results can intuitively and clearly show the running movement

of the robot.

2.3 Challenge in the fault diagnosis of the industrial

robot

The main challenge in the intelligent fault diagnosis is the difficulty in acquiring fault

state data [73]. Due to the uncertainty of system faults, the problem of mechanical

fault diagnosis becomes more complicated. Most of the current intelligent fault diag-

nosis research resort to labelled data [74]. However, labelling enough data becomes

particularly difficult and time-consuming in the industrial field [75].

After acquiring data through sensors, the amount of health data is more signifi-

cant than faulty data, resulting in an imbalanced data set. This can significantly cause

deviations in intelligent fault diagnosis (usually based on artificial neural networks).

A balanced dataset is needed for intelligent fault diagnosis. When the fault data is

balanced by reducing the normal data, the health status of the equipment cannot be

comprehensively analyzed [76]. Therefore, obtaining sufficient fault datasets plays a

crucial role in fault diagnosis. To this end, many researchers use oversampling meth-

15

2.4. EXPERIMENTAL APPARATUS OF THE INDUSTRIAL ROBOT

6th aixs
(J6)

5th aixs
(J5)

4th aixs
(J4)3th aixs

(J3)

2th aixs
(J2)

1th aixs
(J1)

Base

First
arm

Second
arm

RV
reducer

NI data
acquisition

system

Host computer

Accelerometer

Teaching box

Figure 2.3: The experimental apparatus

ods to overcome this imbalanced problem in data acquisition by increasing the amount

of fault data. Recently, GANs have been used for that reason

2.4 Experimental apparatus of the industrial robot

2.4.1 Experimental test rig

The main objective of fault diagnosis is to detect and classify incipient faults while the

robot is operating. The test rig is shown in Fig. 2.3 and consists of an industrial robot

(Brtirus 1510A), an accelerometer (PCB 622B01), a NI data acquisition system and a

laptop (DELL XPS 9380). The accelerometer is mounted on the robot arm. The robot

has six axes labeled from J1 to J6. Each axis has an RV reducer to operate the robot’s

dynamic movement. Therefore, the central part of dynamic monitoring for the fault

diagnosis is on the RV reducer.

16

2.4. EXPERIMENTAL APPARATUS OF THE INDUSTRIAL ROBOT

Table 2.1
Different fault patterns in the industrial robot.

Fault id Part Fault type

C0 None Healthy
C1 Sun gear A Pitting
C2 Sun gear A Broken tooth
C3 Planetary gear B Cracking
C4 Planetary gear A Cracking
C5 Planetary gear B Broken tooth
C6 Sun gear B Broken tooth
C7 Sun gear A Cracking
C8 Planetary gear A Broken tooth

2.4.2 Data measurement

During measurements, the working conditions of this industrial robot are with low-

speed rotation of 600 r/min and a heavy load of 9.6 kg. The robot is moved by the

motors, and the teaching box gives the instructions to the robot to start its next move-

ment. At the beginning of the process, the robot is in its original position of 0 degree.

Firstly, it will start back and forth movement from -115 degrees to 140 degrees of the

limit range point in the first axis. Secondly, the same movement and the same limit

range which is from -50 degrees to 35 degrees. Thirdly, the robot will move from -60

degrees to 90 degrees. Fourthly, the same configuration of movement is from -180 de-

grees to 180 degrees. Fifthly, the movement range will be decreased that the range is

from -90 degrees to 90 degrees. At last, the robot will move from -180 degrees to 180

degrees and stop in the original place. This series of dynamic movements is only one

experiment process. Next, we replace the faulty part to restart the above movement

for the next experiment. Finally, the signal in each channel is collected by the NI acqui-

sition system, which is an analog-to-digital conversion system that the digital samples

are collected with an interface on the laptop. Note that all the data are collected in the

School of mechanical engineering, Dongguan University of Technology, China.

Table 2.1 shows the each operating condition and Fig.2.4 shows an example of each

one of the 8 types of faults. Measurements were performed at a sampling rate of 100

kHz. The sampling duration of each measurement is 20 s. The sampling interval was

17

2.4. EXPERIMENTAL APPARATUS OF THE INDUSTRIAL ROBOT

C 0
(a)

C 1
(b)

C 2
(c)

C 3
(d)

C4
(e)

C5
(f)

C6
(g)

C7
(h)

C8
(i)

Figure 2.4: Examples of each one of the 8 monitoring conditions: (a) Healthy state; (b)
Pitting in Sun gear A; (c) Broken tooth in Sun gear A; (d) Cracking in Planetary gear B.
(e) Cracking in Planetary gear A; (f) Broken tooth in Planetary gear B; (g) Broken tooth
in Sun gear B; and (h) Cracking in Sun gear A; (i) Broken tooth in Planetary gear A.

18

2.4. EXPERIMENTAL APPARATUS OF THE INDUSTRIAL ROBOT

1 32 4 5 6 70
Time length s

×106
-0.2
-0.1
0.0
0.1

A
cc

el
er

at
io

n
(m

 /s
)

0.2
2

(a)

1 32 4 5 6 70
Time length s

×106-0.6
-0.4
-0.2
0.0
0.2

A
cc

el
er

at
io

n
(m

 /s
)

0.4
0.6

2

(b)

1 32 4 5 6 70
Time length s

×106

-0.1

0.0

A
cc

el
er

at
io

n
(m

 /s
)

0.1

2

(c)

1 32 4 5 6 70
Time length s

×106

-0.15

0.0

A
cc

el
er

at
io

n
(m

 /s
)

0.15

2
(d)

1 32 4 5 6 70
Time length s

-0.75
-0.50
0.00
0.50
0.75
1.00

A
cc

el
er

at
io

n
(m

 /s
)

2

×106

(e)

1 32 4 5 6 70
Time length s

-2.0
-1.0
0.0
1.0
2.0

×106

A
cc

el
er

at
io

n
(m

 /s
)

(f)

1 32 4 5 6 70
Time length s

-2.0
-1.0
0.0
1.0
2.0

×106A
cc

el
er

at
io

n
(m

 /s
)

2

(g)

1 32 4 5 6 70
Time length s

-2.0
-1.0
0.0
1.0

×106A
cc

el
er

at
io

n
(m

 /s
)

2

(h)

1 32 4 5 6 70
Time length s

-1.0

1.0

3.0

×106A
cc

el
er

at
io

n
(m

 /s
)

2

5.0

(i)

19

2.5. CONCLUSION

Figure 2.5: The time length of vibration signal visualization in each fault condition: (a)
Healthy condition (C0); (b) Pitting in Sun gear A (C1); (c) Broken tooth in Sun gear A
(C2); (d) Cracking in Planetary gear B (C3); (e) Cracking in Planetary gear A (C4); (f)
Broken tooth in Planetary gear B (C5); (g) Broken tooth in Sun gear B (C6); (h) Cracking
in Sun gear A (C7); (i) Broken tooth in Planetary gear A (C8).

Table 2.2
The number of examples available for each operating condition. C0 stands for the class
of nominal operating state, while C1, C2, and C3 represent faulty states classes.

Class C0 C1 C2 C3

Training set 14000 140 140 140

Validation set 6000 6000 6000 6000

set to 0.2 seconds. Thus, 20000 observations were obtained in each fault condition, and

20 k points were chosen for each observation. For hold-out validation, the data set was

divided into two disjoint subsets, the training and the test (sub)sets. The training set

has 70% of the data while the test set has the remaining 30%. Fig. 2.5 shows the time

length of the vibration signal acquired in each one of the fault types.

2.4.3 Imbalanced data set

Since the fault diagnosis is critically dependent on the existence of a balanced, repre-

sentative, large enough data set that is hard to obtain. With this in mind, we simulate

such data scarcity in the experiments. That is, we start with less faulty state data than

healthy data and use GAN as a data augmentation tool for obtaining the required bal-

anced and representative data set. Four faults (C0,C1,C2,C3) were taken in to consider-

ation which is detailed in Table 2.2 with an imbalanced data state.

2.5 Conclusion

In this chapter, we introduced the problem of the fault diagnosis of the industrial robot

by elaborating on the machine learning based intelligent fault diagnosis, deep learn-

ing based intelligent fault diagnosis, the basic structure of the industrial robot, the

challenges in fault diagnosis and the experimental apparatus of an industrial robot.

20

2.5. CONCLUSION

The core part of the industrial robot for dynamic movement is the RV reducer, espe-

cially the gearboxes. The fault gear will cause the wrong trajectory motion and bring

troubles to the industrial process. Thus fault diagnosis becomes more necessary to

find the faults in time. Traditional fault diagnosis is based on engineers’ experience,

which is time-consuming for maintenance. With the rise of artificial intelligence, the

deep learning based intelligent fault diagnosis has been applied in the industrial field,

usually based on ANN.

However, acquiring enough data in the industrial field is difficult. As a preci-

sion mechanical system like the industrial robot, its reducer (e.g., the RV reducer) will

hardly work if damaged during operation. Without enough data, it will not be com-

pletely possible to monitor the health state of such devices. Thus, researchers need to

find a way to increase the fault data set for the intelligent fault diagnosis of the indus-

trial robot. With a balanced data set, the intelligent fault diagnosis can avoid deviation

from the results, decreasing economic costs and saving time.

21

3
GAN Overview

In which we present a comprehensive survey of generative adversarial networks, elab-

orate on their role as a mean to data generation and address some key problems.

3.1 Introduction

The deep generative models such as DBN [77], RBM [78], denoising AE [79] and VAE

[80] have shown their advantages for addressing significant effects on capturing the la-

tent distribution of the data. Generally, generative modeling is an unsupervised learn-

23

3.1. INTRODUCTION

ing task in machine learning that aims to discover hidden variables from data so that

the model can be used to generate new examples. It has been widely used in images,

speeches and videos. However, the above models generate blurry less than accurate

samples.

In 2014, Goodfellow et al. [29] proposed generative adversarial networks (GAN) to

capture data distributions for generative models. It is a powerful class of deep genera-

tive models to learn data distribution from a given random distribution, e.g., Gaussian

distribution. GAN consists of two adversarial models (neural networks) [81]: a gener-

ator and a discriminator. The learning process can be described as a min-max game.

The generator produces synthetic examples while the discriminator (like a binary clas-

sifier) tries to decide whether the current input is a real or a synthetic example. The

goal of the generator is to deceive the discriminator by producing real-like samples that

are indistinguishable from real ones. Both models improve their performance simulta-

neously up to a Nash equilibrium [82] using gradient-based optimization techniques

[83, 84]. In the initial stage of training GAN, the discriminator can easily differentiate

the generated data from the generator. With more iterations of adversarial learning be-

tween them, the discriminator cannot distinguish between two sets of samples, which

means the generator is feasible to capture the underlying distribution of real samples.

The number of GAN applications has been steadily increasing. In the image pro-

cessing field, Isola et al. [32] demonstrated that a conditional adversarial network is a

promising approach for image-to-image translation tasks. Zhu et al. [33] presented an

approach for learning to translate an image from a source domain to a target domain

in the absence of paired examples. In the fault diagosis area, Li et al. [85] proposed a

novel fault detection method for 3D printers using GAN, which consider only normal

condition signals for training. Mao et al. [86] used GAN for an imbalanced data-driven

fault diagnosis of rolling bearings. Pu et al. [87] developed a multi-functional frame-

work with GAN for the anomaly detection of the industrial robot. Also, for rolling

bearings, Jiang et al. [88] proposed a novel anomaly detection approach based on GAN

with only health data. Li et al. [89] applied a GAN for the feature space learning in

24

3.2. THEORETICAL BACKGROUND ON GANS

fault diagnosis of 3D printers using only one sample in each faulty state. Wang et al.

[90] proposed a method based on a conditional VAE and GAN for imbalanced fault

diagnosis of the planetary gearbox. In the machine translation field, Zhang et al. [91]

applied bidirectional GAN to tackle the exposure bias problem of machine translation.

Experiment results on German-English and Chinese-English translation tasks demon-

strate that this method can achieve significant improvements over baseline systems.

Yang et al. [92] used GAN to build sentences for machine translation.

Despite its success in these applications, one problem with GAN is the training os-

cillation because of the adversarial learning between two neural networks. This critical

challenge in the training phase often separates mere attempts from successful applica-

tions. In addition, if the discriminator can easily recognize the generated samples from

the generator, it means that the discriminator’s gradient has vanished and cannot pro-

vide any gradient for the generator to be updated. Besides, the mode collapse problem

also happens in GAN, that is the trained generator only learns part of the distribution

resulting in synthetic results with little or none diversity.

This chapter is organized as follows. In Section 3.2, we review the background

of GAN. In Section 3.3, we introduce the theoretical basis of GANs variants and ex-

plain how GANs variants can address some issues in GAN. In Section 3.4, we describe

some evaluation metrics. In Section 3.5, we present some application scenarios with

GAN for image, machine translation, and industrial machinery fault diagnosis field.

In Section 3.6, a case study is introduced about GAN as an oversampling tool for data

augmentation. In Section 3.7, we summarize some relevant conclusions.

3.2 Theoretical Background on GANs

3.2.1 Artificial Neural networks

Artificial Neural Networks (ANN) [93] are complex structures inspired by the function

of the brain. It is a simulation of the biological nervous system, and the information

processing function is defined by the input and output characteristics (activation char-

25

3.2. THEORETICAL BACKGROUND ON GANS

x1

x2

x3

x4

z1

z2

z3

y1

y2

Figure 3.1: The architecture of multilayer perceptron with three layers: x stands for the
input neurons, z is the hidden neurons and y represents the output neurons. See text
for details.

acteristics) of the units of the network, the topology of the network (neuron connec-

tions), and it has strong linear characteristics [94]. These networks, including multi-

layer perceptron (MLP) and convolutional neural networks (CNN) can perform model

function estimation and handle linear or non-linear functions by learning from data.

(a) Multilayer perceptron

MLP is a powerful modelling tool to generate a set of outputs from inputs with a set of

the fully connected layer. Generally, MLP is a feedward ANN, which has at least three

layers (an input layer, a hidden layer and an output layer) shown in Fig. 3.1. Each

circle in Fig. 3.1 stands for a neuron. Given a set of input neurons xi (i = 1, 2, 3, 4), they

will map to the hidden layer to obtain the hidden neurons z1, z2 and z3. Finally, the

hidden neurons will map to the output layer to get the output neurons y1 and y2. Each

layer utilizes a transform, e.g., the f (·) in (3.1), to get the outputs from given inputs xi

and weights {wi}. A backpropagation technique is used for MLP optimization.

y = f (
N

∑
i=0

wixi) (3.1)

(b) Convolutional neural networks

CNN can perform better in training than MLP when more layers are increased. It is

a kind of neural network specifically used for image recognition and tasks involving

26

3.2. THEORETICAL BACKGROUND ON GANS

Filter

Filter
scanning
direction

Conv
layer 1

Conv
layer 2

Conv
layer 3

Conv
layer M

Convolutional process

Flatten

Output

Figure 3.2: The schematic of convolutional process

pixel data processing. The basic convolutional process is shown in Fig. 3.2. At the

first convolutional layer, the filter is moved from the top to the bottom. Secondly,

the dot product is conducted in each shift. The shift for this matrix multiplication

operation is called stride. For instance, with 1 stride, the filter will move 1 block. After

the dot product operation, the value in each block will sum up to a total value with

biases that are represented as the input for the next convolutional layer. Finally, after

several convolutional processes, all the acquired vectors are flattened into one single

vector which is the output of CNN. Given the raw data x={ x1, x2, x3,. . . , xm } ∈ Rm.

The convolutional layer involves all the inputs with convolutional kernels and then is

followed by the activation f (·) to generate the output for the next convolutional layer.

This can be formulated by

xi′(l) = f (
m

∑
i=1

(kii′(l) · xi(l−1))(ks,s) + bi′(l)) (3.2)

where k stands for the convolution kernel, bi′(l) is the l-th bias, l is the number of layers

in the network, i={1,2,3,. . . ,m } is the index of the input dimensions, i
′
= { 1,2,3,. . . ,m

′ }

is the index of the output dimensions, · denotes the dot product, ks is the kernel size of

k, and s is the stride option that the kernel will move every s steps on the input data.

27

3.2. THEORETICAL BACKGROUND ON GANS

µ σ

γ ,β
z1

z2

z3

x1

x2

x3

x4
z3￣

～z1
～z2
～z3

y1

y2

b b

z2￣

z1￣
bn bn

Figure 3.3: Neural network with batch normalization: x is the input neurons, z stands
the hidden neurons, z̃ is the normalized hidden neurons, z̃ is the hidden neurons with
batch normalization, y denotes the output neurons, µb and σb are the mean and the
standard deviation of the hidden neurons z and z̄i and βbn are learnable parameters in
the batch normalization. See text for details.

(c) Normalization techniques

During the backpropagation of ANN, the weights of each neuron are updated using

the gradient of the loss function. With large number of layers for training in ANN, it

will cause the vanishing gradient problem, which prevents the network from training.

One reason for this difficulty is the input distributions may change after each mini-

batch when the weights are updated. A mini-batch is a subset of the training dataset

that reduce the variance of the gradient when using gradient descent based optimiza-

tion. Batch normalization (BN) can help the convergence and avoid vanishing gradient

when training a neural network. It was first proposed by Sergey et al. in 2015 [18]. The

structure of the classical neural network with BN is shown in Fig. 3.3.

As shown in Fig. 3.3, the only difference is that the data in each layer will be nor-

malized before propagation into the next layer. Given a set of neurons xi (i = 1, 2, 3, 4),

they will map to the next layer to get hidden neurons zi(z1,z2 and z3). Then, BN will be

performed on this hidden vector to get the mean and standard deviation of zi known

as µb and σb, respectively. Next, the newly hidden vector z̃i is calculated by the mean

and standard deviation of zi. Finally, the output of BN (z̄i) can be acquired with ap-

propriate γbn and βbn. Therefore, the idea of BN is to scale the data firstly through the

28

3.2. THEORETICAL BACKGROUND ON GANS

mean and variance and then scaling and shifting with parameters, e.g., γbn and βbn.

The whole process of batch normalization can be formulate as

µb =
1
m

m

∑
i=1

zii = {1, 2, 3}, (3.3)

where µb stands for the mean of zi.

σb =

√
1
m

m

∑
1
(zi − µb)2, (3.4)

where σb stands for the standard deviation of zi.

z̃i =
zi − µb

σb
(3.5)

Even though the data has been scaled, the learned distribution in each layer will be

changed. To this end, the following equation can avoid this problem

z̄i = γbnz̃i + βbn (3.6)

where z̄i is the final output of batch normalization, γbn and βbn are the scaling and

shifting parameters. These two parameters are learnable parameters during neural

network training ensuring the accurate normalization of each mini-batch.

3.2.2 Adversarial idea

A GAN is based on the adversarial learning of two neural networks, a generator G

and a discriminator D. Both G and D play a min-max game where the goal of G is to

produce generated samples similar to real samples, and the goal of D is to discriminate

the samples generated by G and samples from the real data distribution.

In order to learn the G’s distribution pg over data x, a prior random distribution

(say Gaussian distribution) is defined as pz and z is a set of noise vectors. Then, G

maps from noise pz to data space pdata. G(z, θg) is a neural network with weights θg.

29

3.2. THEORETICAL BACKGROUND ON GANS

GeneratorRandom
noise

Logits
(Real or Fake)

Generated
sample

pgpz
G(z, θg)

Discriminator

D(x, θd)

Real
 sample

pdata

Figure 3.4: The architecture of a generative adversarial network(GAN).

The D(x, θd) is defined with weights θd and will define whether the output of D(x) is

from pg or pdata. The discriminator D outputs the probability that x is from the data

distribution rather than the generator G. The discriminator D is trained to maximize

the probability of giving the correct label to both samples and generated samples. The

generator G aims to minimize log(1− D(G(z))) (See Figure 3.4).

3.2.3 Loss function

The loss function of GAN is considered as

min
θg

max
θd

V(G, D) = min
G

max
D

Ex∼pdata [logD(x, θd)] + Ez∼pz [log(1−D(G(z, θg)))] (3.7)

where V(G, D) is a binary cross entropy function. The gradient-based optimization is

used for updating θg and θd that is solved via the following two gradient updates.

θt+1
g = θt

g + λt∇θgV(D, G) (3.8)

θt+1
d = θt

d + λt∇θdV(D, G) (3.9)

where θg and θd are the weights of G and D, respectively. λ is the learning rate, and t

denotes the iteration.

30

3.2. THEORETICAL BACKGROUND ON GANS

3.2.4 Optimization strategy

Gradient-based optimizations such as adaptive moment estimation (Adam), Root Mean

Squared Propagation or stochastic gradient descent (SGD) are widely applied in neural

networks to find the minimum of the performance index. The discriminator D and the

generator G are trying to minimize their own loss function. For the discriminator D,

the loss function is as follows

lossD = max
θd

Ex∼pdata [logD(x)] + Ez∼pz [log(1− D(G(z)))], (3.10)

And the loss function of the generator G is given by

lossG = min
θg

Ez∼pz [−log(D(G(z)))], (3.11)

The min-max game denotes the solution includes minimization and maximization,

therefore,

lossD + lossG = 0 (3.12)

As the loss function of the discriminator, lossD can be seen as

lossD(θd, θg) = −
1
2

∫
pdata(x)[logD(x)]dx− 1

2

∫
pg(x)[log(1− D(x))]dx (3.13)

The above equation (3.13) represents the classical cross-entropy optimization mini-

mized during the training of a binary classifier with a sigmoid output. In the min-max

game, the generator G attempts to fool the discriminator by minimizing and maximiz-

ing the log probability of the discriminator D. Suppose y = 0 means generated data

and y = 1 denotes real one, the density ratio between the real sample and generated

sample in GAN is represented as follows.

D(x) =
pdata(x)
pg(x)

=
p(x|y = 1)
p(x|y = 0)

=
D∗(x)

1− D∗(x)
, (3.14)

Through training D, it learns to distinguish samples from data for any given G.

31

3.2. THEORETICAL BACKGROUND ON GANS

Combined with Eq. (3.13), the optimal D∗ is searched by the derivative

dlossD(θd, θg)

dD(x)
=

1
2

∫
pdata(x)

1
D(x)

dx− 1
2

∫
pg(x)

1
1− D(x)

dx, (3.15)

From the necessary condition dlossD(θd,θg)

dD(x) = 0, we have

1
2

∫
pdata(x)

1
D(x)

=
1
2

∫
pg(x)

1
1− D(x)

dx, (3.16)

Or

pdata(x)
1

D(x)
= pg(x)

1
1− D(x)

dx, (3.17)

And it can be re-written as

D∗ =
pdata(x)

pdata(x) + pg(x)
. (3.18)

After sufficient training iterations, G and D will converge to pg=pdata. This denotes

that the range of D∗(x) is between 0 to 1
2 . Next, let D∗(x)=1

2 in (3.7) and we have

max
θd

V(G, D) = −2log2 + 2(DJS(pdata||pg)), (3.19)

where JS denotes the Jensen-Shannon (JS) divergence. Suppose there are two distribu-

tions p and q, the JS can be defined as

JS(p||q) = 1
2

KL(p|| p + q
2

) +
1
2

KL(q|| p + q
2

), (3.20)

where KL is the KullbackLeibler (KL) divergence which can be shown as

KL(p||q) =
∫

p(x)log
p(x)
q(x)

dx. (3.21)

However, finding the Nash equilibrium in GAN is very challenging as loss func-

tions are non-convex, parameters are continuous, and the parameter space is high-

dimensional [36], e.g., an update to θd that reduce LossD can increase lossG and vice

32

3.2. THEORETICAL BACKGROUND ON GANS

versa.

3.2.5 Challenges in GAN

GAN suffers from limitations such as a lack of diversity, leading to generating similar

or redundant samples [95], which is the so-called model collapse. Besides, the gener-

ator G and the discriminator D oscillate during adversarial training. When a player

(say discriminator) gets more powerful than the other player (say generator), it may

be possible that the system does not learn and can not provide gradients for updating

relative weights (vanishing gradients) [96]. Also, the stop criterion for the generator

selection is essential for GAN to get the best generator for optimal data generation. In

this subsection, we will explain the above challenges in GAN.

(a) Oscillating convergence curves and gradient vanishment

Traditional deep learning-based models are trained alone to reach the lower loss value

using gradient-based algorithms. In GAN, the loss value oscillates during training

since there are two adversarial neural networks. In detail, the loss function of the gen-

erator G is Ez[logD(G(z))] while the loss function of the discriminator D is Ez[log(1−

D(G(z)))]. The former loss function can cause gradient vanishing problems when D

can easily differentiate between real and fake samples. The minimization of G’s loss

function equals minimizing KL divergence, which causes unstable gradients.

(b) Mode collapse

Mode collapse problems can occur in GAN when the generator loses diversity; a con-

sequence of poor generalization. There can be two types of mode collapse: (1) most

modes from the input data are absent from the generated data, and (2) only a subset of

particular modes is learned by G. An ill-suited objective function can be a significant

reason for the mode collapse problem where several GAN variants, including mod-

ifying D’s objective [97, 98] and modifying G’s objective [99], have been proposed.

G is shown at equilibrium in these variants and can learn the whole data distribu-

33

3.3. IMPORTANT VARIANTS OF GAN

tion, but convergence is elusive in practice. To handle this issue, several recent studies

have introduced new network architectures with new objective functions or alternative

training schemes.

(c) Stop criterion for GAN

GAN model has been used for wide applications in deep learning. However, its eval-

uation tools are still qualitative (i.e., visual examination of samples by a human) even

though several approaches and measures have been introduced to evaluate GAN’s

performance. Visual inspection is time-consuming, subjective and cannot capture dis-

tributional characteristics, which is an important factor for unsupervised learning. As

selecting an appropriate model is essential for getting good performance for an appli-

cation, selecting relevant evaluation metrics is vital for drawing the correct conclusion.

Designing a better GAN model requires overcoming the limitations of the qualitative

stop criterion by developing or using proper quantitative metrics.

3.3 Important variants of GAN

There are many variants of GAN that have been created over last years. The major

innovations include model architecture, training strategies and loss functions. In this

section, we will introduce some important variants of GAN.

3.3.1 Deep convolutional GAN

Traditional GAN is defined using MLP. In deep convolutional GAN, the generator G

and the discriminator D are deep CNN (DCGAN) [100], which have better perfor-

mance on feature extraction. DCGAN has the same flow-chart of training as the con-

ventional GAN.

There are three main features in DCGAN: (1) The overall architecture is mainly

based on the all-convolutional net [101]. This architecture has neither pooling nor un-

pooling layers. When G needs to increase the spatial dimensionality of the represen-

34

3.3. IMPORTANT VARIANTS OF GAN

tation, it uses transposed convolution (deconvolution) with a stride greater than 1; (2)

Utilize batch normalization for most layers of both G and D. The last layer of G and

the first layer of D are without batch normalization so that GAN can learn the correct

means and scales of data distributions; (3) The adam optimization is utilized instead

of SGD.

3.3.2 Least square GAN

The least square GAN (LSGAN) in [102] are designed to address the vanishing gradi-

ent problem in the original GAN. This work reported that the decision boundary for

the discriminator D of the original GAN penalizes minimal errors to update the gen-

erator G for those generated samples far from the decision boundary. LSGAN uses the

least squares loss instead of the cross-entropy loss (the JSD-based loss) in the original

GAN. The a− b coding is used for the LSGAN discriminator, where a and b are the la-

bels for generated and real samples, respectively. There are two advantages of LSGAN

compared to the conventional GAN: (1) The new decision boundary produced by D pe-

nalizes large errors to those generated samples far from the decision boundary, which

makes those low quality generated samples move toward the decision boundary. This

is good for generating higher-quality samples; (2) Penalizing the generated samples

far from the decision boundary can supply more gradient when updating G, which

overcomes the vanishing gradient problems in the conventional GAN. The losses in

the discriminator D and the generator G can be defined as:

VLSGAN(G, D) =
1
2

Ex∼pdata(x)[(D(x)− b)2] +
1
2

Ez∼pz(z)[(D(G(z))− a)2], (3.22)

VLSGAN(G) =
1
2

Ez∼pz(z)[(D(G(z))− c)2]. (3.23)

where c is the value that G hopes for D to believe for generated samples.

35

3.3. IMPORTANT VARIANTS OF GAN

3.3.3 Wasserstein GAN

Since the real data distribution has less overlap with the generated data, JSD-based

objective function can be a constant, which causes the vanishing gradient and training

oscillation. Arjovsky et al. [103] proposed Wasserstein GAN (WGAN) by using the

Earth-Mover distance (EMD) to replace JSD for measuring the distribution between the

real data and the generated one. WGAN resorts to the Kantorovich-Rubinstein duality

to define the loss function. WGAN made the progress of the training oscillation in

GAN. The loss function of WGAN is shown as follows

VWGAN(G, D) = Ex∼pdata(x)[D(x)] + Ez∼pz(z)[D(G(z))], (3.24)

where the discriminator D is optimized over the set of 1-Lipschitz functions. Infor-

mally, a 1-Lipschitz function is a differentiable function whose gradient has norm at

most 1 everywhere. The adoption of such D in (3.24) allows for a smoother conver-

gence relatively to (3.7).

However, it can still generate low-quality samples or fail to converge in some set-

tings. In light of that, Gulrajani et al. [104] discovered that the training failures are

often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on

the discriminator, which can lead to pathological behaviour. Thus they propose an al-

ternative method for enforcing the 1-Lipschitz constraint instead of clipping weights,

penalizing the norm of the gradient of the discriminator concerning its input. Their

method (clipping with gradient penalty, also known as WGAN-GP) converges faster

and generates higher-quality samples than WGAN. The loss function of WGAN-GP is

shown as

VWGAN−GP(G, D) = Ez∼pz(z)[(D(G(z))] + λgpEz∼pz(z)[(∇D(αx− (1− αG(z)))| − 1)2].

(3.25)

where α is a user-defined scaling factor and λgp stands for the gradient penalty coeffi-

cient and ∇D is the gradient of D.

36

3.3. IMPORTANT VARIANTS OF GAN

G(z)

D

Real data x

z Logits
(Real or Fake)

c=1
c=2
…

G

Label

Figure 3.5: The architecture of conditional generative adversarial network (cGAN).

3.3.4 Conditional GAN

GAN can be extended to a conditional model if the discriminator D and the generator

G are conditioned on some extra information y, i.e., labels, shown in Fig 3.5. The loss

function of conditional GAN (cGAN) is

VCGAN(G, D) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1− D(G(z|y)))]. (3.26)

where D(x|y) and G(z|y) represent conditional probabilities while y is the class label

information.

Based on this formulation, the inputs are concatenated (embedded) with y to start

training. Ultimately, we can generate desired samples by feeding corresponding y. The

conditional information y can be formed like class labels [105], or text [106],[107],[108].

cGAN has been used for convolutional face generation [109], face editing [110], image

translation [111], natural image description [112], 3D-aware scene manipulation [113]

and machine translation [92].

3.3.5 Auxiliary classifier GAN

Odena et al. [114] proposed auxiliary classifier GAN (AC-GAN) for semi-supervised

learning. The key to AC-GAN is that it can incorporate label information into the gen-

erator and adjust the loss function to be suitable for the discriminator. The difference

between cGAN and AC-GAN is that cGAN’s output is the probability of whether the

image is real. For AC-GAN, the input to the discriminator is an image, while the out-

put is the probability that the image is real and its class label. Thus, the loss function

37

3.3. IMPORTANT VARIANTS OF GAN

G(z)

D

Real data x

z Logits
(Real or Fake)

c=1
c=2
…

G

Label

Figure 3.6: The architecture of AC-GAN.

Logits
(Real or Fake)

G(z)Decz

Encx E(z)

D
G(z), z

x, E(z)

Figure 3.7: The architecture of Bi-GAN.

of AC-GAN is the same as cGAN but with a different framework shown in Fig. 3.6

3.3.6 Bidirectional GAN

Donahue et al. [115] raised a framework named bidirectional GAN (Bi-GAN) to map

the real data to the latent space to achieve adversarial feature learning. Bi-GAN adds

an extra encoder E on the basic GANs to map the real data x to latent space that the

optimization problem is converted to min
G,E

max
D

V(G, E, D). The framework of Bi-GAN

is shown in Fig. 3.7 and its loss function is as follows.

VBi−GAN(G, E, D) = Ex∼pdata(x)[logD(x, E(x))] + Ez∼pz(z)[log(1− D(G(z), z))]. (3.27)

3.3.7 Cycle consistency GAN

The image-to-image translation is a research topic of interest in computer vision and

image processing, where the objective is to learn the mapping relationship between

output and input images using a set of aligned image pairs. However, reference [116]

can not be used for unpaired data (no input/output pairs), which was well solved by

cycle consistency GAN (CycleGAN) [33]; a promising approach for unpaired data.

The architecture of CycleGAN is shown in Fig. 3.8. In the first part, the real image

38

3.3. IMPORTANT VARIANTS OF GAN

from domain A is sent to a generator (G12) to produce generated image of domain

B. On the one hand, the generated domain B image and the real image of domain B

will start adversarial learning. On the other hand, this generated image will be passed

through another generator (G21) to reconstruct the image of the domain A. Both two

processes learn together to form the first part of CycleGAN. The second part is the

inverse version of the first part. These two parts are formed as CyclgeGAN. The loss

function for CycleGAN is shown as

VCycleGAN(G, D) = L12
adv + L21

adv + λc ∗ Lcyc (3.28)

where L12
adv and L21

adv are adversarial losses, Lcyc is the cycle consistent loss, λc is the

correspond hyper-parameter. The specific formulations for these losses are as follows.

L12
adv = E

x∼PB
[D12(xB)] + E

x∼PA
[(D12(G12(xA))]

+ λ E
x∼PA

[(|δD12(α12x− (1− α12G12(z)))| − 1)2,
(3.29)

L21
adv = E

x∼PA
[D21(xA)] + E

x∼PB
[(D21(G21(xB))]

+ λ E
x∼PB

[(|δD21(α21x− (1− α21G21(z)))| − 1)2,
(3.30)

Lcyc = ExA [||xA −G21(G12(xA))||2]

+ ExB [||xB −G12(G21(xB))||2].
(3.31)

Domain A Generated
Domain B

D12Domain B

Generated
Domain A

D21Domain A
Logits

(Real or Fake)
Logits

(Real or Fake)

G12 G21

Figure 3.8: The architecture of CycleGAN.

39

3.3. IMPORTANT VARIANTS OF GAN

3.3.8 Auto-encoder with GAN

The auto-encoder (AE) is an ANN that learns to compress data. Briefly, we introduce

three layers of AE (it can be more layers in the hidden layer) shown in Fig. 3.9. Suppose

given the input vector x = {x1, x2, x3, x4}, it will go through the encoder Enc to the

latent space of z = {z1, z2, z3}, and then it will reconstruct z to x̄ = {x̄1, x̄2, x̄3} in the

decoder Dec. Generally, the mapping process can be shown as

z = Enc(x), (3.32)

x̄ = Dec(z). (3.33)

3
￣

￣

￣x1

x2

x3

x4

z1

z2

z3

x2

x1

x

4x̄

Figure 3.9: The architecture of auto-encoder: x represents the input neurons, z stands
the neurons in the latent space and x̄ denotes the reconstructed x. See text for details.

However, the objective of compressing data is not only to reduce the number of

dimensions of the data but to keep the major part of the data structure information in

the reduced representation. In AE, the number of dimensions in the reduced repre-

sentation should be carefully adjusted to suit the regularity of the latent space. In the

generation process, the latent vector in AE may not be regular enough to get the de-

sired output. Besides, with high-dimensional data for compressing in AE, will lead to

overfitting, implying that some points of the latent space will give meaningless content

once decoded. To this end, the Variational auto-encoder (VAE) is introduced which has

the same neural network architecture as AE. In VAE, the encoding distribution is reg-

ularised during the training to avoid overfitting and can ensure that the latent space

40

3.4. EVALUATION METRICS FOR GAN

Logits
(Real or Fake)

x’Dec

z

Encx

D

Latent

Figure 3.10: The architecture of AAE.

has good properties to generate data, which has the main data structure information.

In VAE, KL-divergence measures the differences between two distributions, shrinking

the encoded latent variables into a normal distribution.

The adversarial auto-encoder (AAE) in [117] is a AE based on GANs. It is an inter-

esting framework for blending AE architecture with the adversarial concept. It uses a

similar concept to VAE, except that it uses adversarial loss to regularize the latent code

instead of the KL-divergence. The encoder of AAE will act as the generator. It uses

an adversarial loss where an additional discriminator component is added to force the

model to learn more realistic distributions. Unlike GAN, where the output of the gen-

erator is the generated samples, and the input for the discriminator is both the real

and fake samples, AAE’s generator (Enc in Fig. 3.10) generates a latent code and tries

to fool the discriminator into believing that the latent code is sampled from the cho-

sen distribution. The discriminator will automatically evaluate whether a given latent

variable is generated by the auto-encoder (fake) or a random vector sampled from the

normal distribution (real). AAE is a different learning mechanism from the conven-

tional GAN that takes an image as an input instead of the random distribution. The

framework of AAE is shown in Fig. 3.10.

3.4 Evaluation metrics for GAN

Another issue in GAN design is the metric for selecting the best generator. Due to

the adversarial learning, the convergence curve oscillates and thus the generator in the

41

3.4. EVALUATION METRICS FOR GAN

last iteration is hardly the best one. Thus, designing a metric for generator selection is

significant for enhancing the generation performance of GAN. In this section, we show

some evaluation metrics for keeping track of the best generator during training.

3.4.1 Inception score

The inception score (IS) [118] uses for every generated sample to get the conditional la-

bel distribution p(y|x). It is an automatic evaluation of the quality of generated images.

The formula for IS is shown as

IS = exp(ExKL(p(y|x)||p(y))) . (3.34)

3.4.2 Mode score

The mode score (MS)[119, 120] is an improved IS. The difference is that MS can measure

the dissimilarity between the real distribution and generated distribution.

3.4.3 Fréchet Inception distance

The Fréchet Inception distance (FID) [121] is another metric to estimate the perfor-

mance of GANs. Given two distributions pdata from real samples and pg from the

generator, the corresponding formula is shown as

FID(pdata, pg) = ||µr − µg||+ tr(Cr + Cg − 2(CrCg)
1
2), (3.35)

where Cr and Cg are empirical covariance.

3.4.4 Multi-scale structural similarity (MS-SSIM)

The Multi-scale structural similarity (MS-SSIM) [122] is designed to capture the simi-

larity between two samples (the real samples and the generated one). It quantitatively

evaluates samples’ similarity by attempting to predict human perceptual similarity

42

3.5. APPLICATION OF GAN

judgment. The corresponding formula for calculating the similarity is shown as

SSIM(x, y) = f (l(x, y), c(x, y), s(x, y)) (3.36)

where l(x, y), c(x, y) and s(x, y) are well detailed in [122].

How to select a good evaluation metric for GAN is still a challenging problem [123].

Hopefully, there will be better methods for evaluating the generative quality of GAN

models in the future.

3.5 Application of GAN

As discussed, GAN is a powerful tool to generate real-like samples. Besides, GAN has

been widely used for speech and machine translation. In this section, we introduce

some applications of GAN.

3.5.1 Image and computer vision

The most successful applications scenarios of GAN are in image processing and com-

puter vision, such as high-resolution image synthesis and video processing. Due to

its outstanding performance in generating images, Wang et al. [124] introduced a

DCGAN architecture method for synthesizing high-resolution photo-realistic images.

Results demonstrate that this framework can generate more diverse of the generated

images given the same input images, allowing users to edit the objective appearance.

Odena et al. [125] constructed a model based on AC-GAN for image synthesis. Results

showed that this new method could improve the training of GANs for image synthesis.

Ledig et al. [31] used GAN for image super-resolution (SRGAN). In the experiment,

the VGG network is applied in the discriminator, and the residual network is used in

the generator. Experimental results show that SRGAN can obtain rich texture details

for estimating realistic super-resolution images. Ghosh et al. [126] argued that recent

progress in GAN cannot provide an inference model for image editing or classification.

43

3.5. APPLICATION OF GAN

Figure 3.11: Face samples generated by Progressive GAN [2].

Besides, these methods are not useful for extending to novel datasets or architectures.

Under these two issues, they proposed a general framework called Invertible GANs

(InvGAN) that are agnostic to architectures and datasets. Qualitative and quantita-

tive experiments showed that InvGAN can successfully transform image in painting,

merging, interpolation, and on-line data augmentation.

3.5.2 Machine translation

The objective of machine translation is to translate one language to another as per-

formed through software and unaided by the human hand. However, since the data

are discrete, it is difficult for GAN to generate such text samples. GAN will score

the entire text sequence when generating text sequences. For a partially generated

sequence, it is tough to judge its score when generating a complete sequence later.

To migrate this problem and successfully generate synthetic text, in 2016, Zhang

et al. [127] proposed a generic framework employing long short-term memory and

CNN for adversarial training to generate realistic text. The method adopts an objective

function similar to feature matching [36] instead of the loss function of conventional

GAN. Experimental results demonstrate that the proposed model can generate realis-

tic sentences via adversarial training. Since it is difficult to pass the gradient update

from the discriminator to the generator when producing discrete output during adver-

44

3.5. APPLICATION OF GAN

sarial training, Yu et al. [128] developed a sequence GAN framework named SeqGAN

for modeling sequence data. The method is based on a process of sequential decision-

making and reinforced learning (RL). Experiments conclude that SeqGAN can signifi-

cantly improve the quality of synthesis sequence data. In 2017, Li et al. [129] used the

adversarial learning idea for open-domain dialogue generation. The method also pro-

cessed RL problems with GANs like SeqGAN. The experimental results show that the

proposed method with an adversarial training mechanism can generate higher-quality

responses. Pfau et al. [130] applied a method named actor-critic methods with GAN

for sequence prediction.

3.5.3 Industrial machinery fault diagnosis

Typically, the objective of a deep learning-based fault diagnosis is automatic feature

generation. It played a significant role in the machinery fault diagnosis. In these tasks,

data acquisition is performed by sensors such as accelerometers and attitude sensor. in

general, labelled data are required. However, acquiring labelled data from equipment

operating under faulty conditions is relatively more complicated than acquiring data

from healthy states. Some faulty conditions are not sustainable and may lead to a ma-

chine operation interruption before sufficient data can be acquired. As a consequence,

an imbalanced data set is all one can acquired. The imbalanced data set can lead to

poor model performance, especially in deep learning, where large quantities of data

are required.

To mitigate this problem, some researchers studied data augmentation techniques

based on GANs. Pu et al. [35] investigated GANs as an oversampling tool for generat-

ing a synthetic data set for an industrial robot fault classification. Cabrera et al. [131]

proposed a generator selection method for GANs under extremely imbalanced data for

machinery condition monitoring. Mao et al. [86] used GANs for an imbalanced data-

driven fault diagnosis of rolling bearings. Also, for rolling bearings, Jiang et al. [88]

designed a novel anomaly detection approach based on GANs with only health data.

Li et al. [89] applied GANs for the feature space learning in fault diagnosis of 3D print-

45

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

ers using only one sample of each faulty state. Wang et al. [90] proposed a technique

based on a conditional VAE and GANs for imbalanced fault diagnosis of planetary

gearboxes. Li et al. [132] proposed a novel deep learning on CNN for rotating machin-

ery fault diagnosis with limited labeled data. Peng et al. [133] presented an improved

SMOTE for data set optimization and then used an optimized k-nearest neighbour for

wind turbine blade fault classification. Shao et al. [134] developed an AC-GAN based

framework to produce enough data for fault diagnosis and test its performance on an

induction motor fault simulator. Han et al. [135] designed a novel deep adversarial

CNN for intelligent fault diagnosis of mechanical faults.

3.5.4 Other applications

Enterprises are interested in modeling natural and commercial phenomena. Since

modeling financial time series is a challenge for GAN, Wiese et al. [136] developed

a quant GAN for financial time-series modelling. To assist with classifying credit card

fraudulent transactions, Ba et al. [137] applied GAN to generate synthesis data for

credit card fraud detection. In the medical area, Wu et al. [138] used medical genera-

tive adversarial network (MedGAN) for generating of screening cancer images.

3.6 Case study: GAN as an oversampling method for

data augmentation in an industrial robot fault

diagnosis task

3.6.1 Introduction

Data-driven machine learning techniques play an important role in the machinery fault

diagnosis and prognostic [139, 140, 141]. Recently, deep learning [142] emerged as one

that has been progressively adopted to develop health monitoring systems for the ma-

chinery. One way of looking at deep learning is as a feature engineering method [143]

46

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

that automatically extracts features from the collected signals. Propagating these sig-

nals from the input layer to layers with fewer and fewer neurons, the neural network is

forced to represent the input data space into a lower dimensional feature space which,

in general, reduces overfitting and increases the accuracy.

Deep learning models such as CNN [144], deep AE [145], DBN [146] and DBM [147]

have achieved outstanding results in fault diagnosis and other fields essentially due to

the dimensionality reduction effect. In the industrial robot field, Nho Cho et al. [148]

proposed an algorithm based on MLP for the robot actuator fault detection. Wang, et

al. [149] proposed a multi-data fusion with an optimized CNN for fault detection of

rotating machinery. Ma et al. [150] proposed the convolutional multi-time scale ESN

for efficient classification. Three different ESNs with different time scales were used

to allow the recurrent neural network to successively refine the features in a similar

way to a kernel in a CNN. Hu et al. [151] presented an approach with DBM and multi-

grained scanning forest to effectively deal with industrial fault diagnosis. Wang et al.

[152] proposed a new deep ANN model based on a DBM for condition prognosis. Lee

et al. [153] proposed a real-time fault diagnosis model using a deep ANN. Shao, et al.

[154] presented a continuous DBN for bearings fault detection. Shen et al. [146] used a

DBN with an optimized function of Nesterov momentum for bearing fault diagnosis.

Polic et al. [155] presented a new method of a CNN-based encoder for feature extrac-

tion in tactile robotics. D’Elia et al. [156] based on the study of how the power flows

inside the time synchronous average of the ring gear and a modified statistical param-

eter for planet gears fault diagnosis. Zaidan et al. [157] used a Bayesian hierarchical

model that utilizes fleet data from multiple assets to perform probabilistic estimation

of remaining useful life for civil aerospace gas turbine engines.

However, all the above models are critically dependent on a representative, bal-

anced, large enough data set that require data that, more often than not, are hard to

obtain [158]. While data from a healthy state are abundant, data from faulty states are

rare, sparse, and hardly representative of all possible faults. This could lead to low

diagnosis precision in these intelligent fault diagnosis techniques. Without appropri-

47

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

ate data, these machine learning methods simply do not have acceptable performance

[159]. It is important to consider a method that mitigates such a data shortage.

Robots are wildly used in the industry as they can be used in a range of tasks such

as assembly, painting or welding [160]. However, the transmission system of the robot

is prone to faults due to prolonged working periods [161]. Typically, these faults man-

ifest in the connection parts, bearings, gears, or gear shafts. A faulty robot will be less

precise, less efficient, less productive, and less secure. Even though, it could be a tricky

task to obtain fault data for such precision machinery. Therefore, the monitoring of the

robot health condition with limited data sources is of paramount interest.

For mitigating this, some fault diagnosis works resorted to the SMOTE. SMOTE

stands for Synthetic Minority Oversampling Technique and aims at compensating for

the data unbalance of a given class by increasing the number of samples in that class.

Roughly, it creates a new synthetic sample by interpolating two existing similar sam-

ples of the same class, the new sample has the same class of the two originating sam-

ples [162]. SMOTE is a popular method, but sometimes, by increasing the number of

samples, it will also increase the overlapping between classes. An alternative approach

to cope with the imbalanced data set problem is to resort to deep learning and in par-

ticular to GANs. The idea is to use the generative model of GANs to generate enough

samples for effective training of the diagnoser.

In the remaining of this section, the proposed GANs-based fault diagnosis scheme

is specified in Section 3.6.2, including feature extraction using Wavelet packet trans-

form, the theoretical background of random forest for fault classification. In section

3.6.3, the considered scenarios and the hyper-parameter settings are detailed. In sec-

tion 3.6.4, we provide a complete analysis under the fault diagnosis of an industrial

robot.

48

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

3.6.2 Methodology

(a) Feature extraction

Wavelet packet transform (WPT) can be viewed as a time-frequency conversion tech-

nique of a non-stationary signal [163]. It complements the shortage of wavelet trans-

forms that only decomposes the low frequency components but cannot extract high-

resolution on high frequency components. The discrete wavelet transform of the dis-

crete signal f (t) is given by [164]:

wm,n(t) =< f (t), Ψm,n(t) >=
1√
m

∫ +∞

−∞
Ψm,n(

t− n
m

) f (t)dt, (3.37)

where m is the scaling factor and n is the sifting factor which are given, respectively,

by:

m = am
0 , (3.38)

n = b0am
0 . (3.39)

When a0 = 2, b0 = 1, (3.37) can be re-written as

Ψm,n(t) = 2−
m
2 Ψ(2−mt− n) (3.40)

In the wavelet transform, the signal u(t) can be separated in the Hilbert space by scal-

ing and by a wavelet function. The scaling function Φ(t) corresponds to the low fre-

quency part of the original signal while the wavelet function φ(k) corresponds to the

high frequency part of the original signal with initial conditions:

Ψ0
m,n(t) = Φ(t) (3.41)

Ψ1
m,n(t) = φ(t) (3.42)

Fig. 3.12 shows a 3-level decomposition of a WPT of a signal u(t). This is decomposed

in a high-frequency part hk(t) and in a low-frequency part gk(t). Each part is computed

49

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

h(h(h(k))) g(h(h(k))) h(g(h(k))) g(g(h(k)))

h(h(k) g(h(k))

h(k)

u(k)

h(h(g(k))) g(h(g(k))) h(g(g(k))) g(g(g(k)))

h(g(k) g(g(k))

g(k)

Figure 3.12: The decomposition levels of a wavelet packet transform of the signal u(t).

by a filter, i.e.,

hk(t) =
tk + tk+1

2
, (3.43)

gk(t) =
tk − tk+1

2
, (3.44)

The function using the above filters can be given by:

u2n(t) = ∑
k

hkun(2t− k), (3.45)

u2n+1(t) = ∑
k

gkun(2t− k) (3.46)

As illustrated in the figure, this procedure can be recursively applied to both low and

high-frequency parts. However, the number of decomposition levels will be limited

by the actual application. Due to its smoothness and non-linear characteristics, in this

paper, we applied the Daubechies WPT with 7 levels (Db7).

We further compute an informative statistics from the WPT [165] as follows:

p(m) =

√√√√ N

∑
n=1

(wm,n(t))2 (3.47)

where N denotes the number of data in each node of the 7th decomposition level and

wm,n(t) and is given by (3.37). Hence, a feature vector p can be defined for the signal

u(t) as follows:

u(t)↔ p = [p(1), p(2), . . . , p(d)]T (3.48)

where d is the number of features, i.e., with 7 levels d = 27 = 128.

50

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

Real data x

D(x)
Random
Gaussian

distribution z

P

G(z)

0
1

or

WPT feature
extraction

G(x)
Leaky Relu

Figure 3.13: The learning scheme of the fault diagnoser.

With this in mind, Fig. 3.13 shows a block diagram of GAN as used in this work.

For learning, GAN implements an adversarial competition between the generator G(z)

and the discriminator D(x). Initially, a real sample u(t) is processed by the above de-

scribed WPT feature extraction technique, and (3.48) is set as the real input of D(x).

A random signal z(n) with a given distribution is inputted to the generator, which in

turn produces a synthetic feature vector G(z). The discriminator is trained with a target

value of 1 when a real sample is presented at its input and 0 for a synthetic example.

This process repeats until a Nash equilibrium is reached.

(b) Keeping track of the best generator

Cabrera et al. [131] proposed a stop criterion aiming at keeping track of the best current

generator while training progresses. The metric is given by:

||Dr −Dg|| = (Rmean − Gmean)
2 + (Rstd − Gstd)

2 (3.49)

where Rmean and Gmean are the centroids of the real and generated data clusters, re-

spectively, while Rstd and Gstd are the real and generated data dispersion (standard

deviation), respectively.

The smaller (3.49), the closer the generated data is to real data. In each training step,

51

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

Split

Training set

70%

Testing set

30%

WPT

WPT

Health data

Faulty data Train GAN with
each class

Generate
sythetic faulty
data trhrough a
trained GAN

Balanced data set

Random Forest Fault diagnosis

Abundant Healthy data

Rare Faulty data

Imbalanced
Data set

Evaluate

Figure 3.14: The flow chart of the procedure of the proposed approach.

(3.49) is computed for the current generator and the generator exhibiting the lower

current distance is viewed as the best current generator. Hereafter we refer to this

process as (model) generator selection.

(c) Data generation for fault classification

Based on the feature extraction process that uses WPT, illustrated in subsection 3.6.2

(a) and an RF classifier detailed in the previous section, one can be set up the learning

scheme for the robot fault diagnoser. As shown in Fig. 3.13, a real data observation of

from each class is sent to the WPT to extract the vector of features (3.48). Meanwhile,

a random signal z is input into the generator that will produce a vector of synthetic

features G(z).

The goal of the discriminator D(x) is to distinguish between the real vector of fea-

tures, outputting a 1, and the synthetic vector of features, outputting a 0. The learning

process described in section 3.2 is applied. Once both the generator and discriminator

are trained, the generator can be used to generate as much synthetic data as required.

Notice that the learning process and subsequent synthetic generation are carried out

for each faulty class, i.e., for each class, we need to increase the number of observa-

tions. Finally, (health and faulty) real data together with faulty generated data are

used in the random forest classifier for fault classification. Based on the above descrip-

tion, the procedure can be outlined in the following flow chart (Fig. 3.14). Besides, this

whole process is illustrated in Fig. 3.15.

52

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

Generate new faulty samples through the trained GAN
Balanced
Dataset

Imbalance faulty data

Random Forest

Training GAN model
Generative

adversarial networkReal
data x

D(x)Random
Gaussian

distribution
z

P

G(z)

0
1or

WPT
feature

extraction

G(x)
Leaky Relu

Training
samples

Random select samples with
Bagging technique

Subset 1

Consctruct DTs

Tree 1

Tree 2

Tree s

Majority
Voting

Final
ClassSubset 2

Subset S

Health data

0 1 2 3 4 5 6 7 8

106

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Synthetic data in each
faulty class

Industrial robot data acquisition system

6th aixs
(J6)

5th aixs
(J5)

4th aixs
(J4)3th aixs

(J3)

2th aixs
(J2)

1th aixs
(J1)

Base

First
arm

Second
arm

RV
reducer

NI data
acquisition

system

Host computer

Accelerometer

Teaching box

Figure 3.15: The complete data pipeline for fault diagnosis of the manipulator.

3.6.3 Experiments

(a) Considered scenarios

Several scenarios were considered to assess the effectiveness of the proposed model.

In all these scenarios, we all used an RF with 1000 trees for classification. The differ-

ent scenarios are identified as follows: RF-i denotes a random forest trained with the

imbalanced dataset described in Table 2.2; RF-b2 denotes a random forest trained with

a subsampled balanced dataset with only 140 observations per condition; RF-GAN

and RF-GAN2 stand for rand forests trained with data sets that have the real 14,000

healthy observations and 14,000 faulty observations, the only difference between these

scenarios is that RF-GAN uses the technique described in Section 3.6.2 to select the

best current model for generating samples while RF-GAN2 uses the model obtained in

the last iteration (i.e., iteration 10 000) of the training process to generate the samples.

RF-GAN1 is similar to RF-GAN with the difference that only 13860 synthetic faulty

states were generated while the remaining 140 are the original faulty states presented

in the training data set. For comparison purposes, we also considered a random for-

est trained with a data set previously processed by SMOTE, a popular oversampling

53

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

method for dealing with imbalanced data sets.

(b) Hyper-parameter settings

In all GAN-based models, the generators are MLP with a 64:1014:128 fully connected

topology while discriminators are also MLP with a 128:1024:2048:1 fully connected

topology. These were selected empirically after some preliminary tests. The Adam

optimizer is used with its key parameter settings of β1=0.9, β2=0.999 and ϵ=1e-08. The

learning rate for the generators is set to 1e-5 while for the discriminators is set to 1e-

4. The α and λ are set to 1e-4 and 1.0, respectively. A maximum number of 10,000

iterations was set for training.

3.6.4 Results and discussion

(a) On different scenarios for dealing with the imbalanced data set

80
82.5
85.0
87.5

90
92.50
95.0

97.50
100

RF-i RF-b2 RF-
GAN

RF-
GAN1

Smote

Different Scenarios

RF-
GAN2

Figure 3.16: Boxplots exhibiting the relative distributions of accuracy obtained with
the different scenarios considered for fault classification. See text for details.

Fig. 3.16 shows the distribution of the obtained accuracy for each scenario using

boxplots. A boxplot summarizes a data distribution stressing five characteristic values:

minimum, lower quartile, median, upper quartile, and maximum value. The red line

denotes the median value. The distribution pertains to 20 independent repetitions.

54

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

The results presented in Fig. 3.16 were analyzed by the Friedman test, a non-

parametric statistic test of hypotheses, to evaluate whether or not there is a statistically

significant difference between the results of the different scenarios. The Friedman null

hypothesis is that there is no statistically significant difference between the results of

the different scenarios. Given a significant level, α, this hypothesis cannot be rejected

whenever the pFriedman, the p-value generated by the test, satisfies pFriedman > α. The null

hypothesis is rejected otherwise, meaning that there is a statistically significant dif-

ference between the analyzed scenarios. In such a case, we can detect which of the

scenario is responsible for such a difference by resorting to a pairwise posthoc test. A

ranking can be obtained by counting the number of times that a method was a winner

in the pairwise comparison. See [166, 167] for further details. Here we use the usual

α = 0.05 and the Wilcoxon test as posthoc.

Table 3.1
Wilcoxon posthoc pair-wise tests for the different scenarios.

Pair p-value Winner
RF-i vs. RF-b2 8.857E-05 RF-b2
RF-i vs. RF-GAN 8.857E-05 RF-GAN
RF-i vs. RF-GAN1 8.857E-05 RF-GAN1
RF-i vs. RF-GAN2 8.857E-05 RF-GAN2
RF-i vs. SMOTE 8.857E-05 SMOTE
RF-b2 vs. RF-GAN 8.857E-05 RF-GAN
RF-b2 vs. RF-GAN1 8.857E-05 RF-GAN1
RF-b2 vs. RF-GAN2 8.857E-05 RF-GAN2
RF-b2 vs. SMOTE 1.204E-04 SMOTE
RF-GAN vs. RF-GAN1 0.079 –
RF-GAN vs. RF-GAN2 8.857E-05 RF-GAN
RF-GAN vs. SMOTE 8.857E-05 RF-GAN
RF-GAN1 vs. RF-GAN2 8.845E-05 RF-GAN1
RF-GAN1 vs. SMOTE 8.844E-05 RF-GAN1

RF-GAN / RF-GAN1

When Friedman was applied to the results in Fig. 3.16 yielded pFriedman = 1.865E−

19 < 0.05 meaning there is a statistically significant difference between the six scenar-

ios. Table 3.1 shows the subsequent posthoc results. From these, one should conclude

that there is no statistically significant difference between scenarios RF-GAN and RF-

GAN1 and that these outperform all the others. This is an interesting observation as

both RF-GAN and RF-GAN1 use the technique described in Section 3.6.2 (b) to select

55

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

the best current generator and that the only difference between these scenarios is that

in RF-GAN all the faulty state data are synthetic while in RF-GAN1 only 13860 faulty

examples are synthetic while the remaining 140 are the original faulty states presented

in the training data set. This further endorses the quality of the obtained generators.

The average accuracy of RF-i was 87.88% while with an undersampling balanced

dataset, RF-b2 reached 94.5%. RF-GAN had an average accuracy of 97.06%, RF-GAN1

97.75%, and RF-GAN2 95.38%. SMOTE had an average accuracy of 95.17% . We ob-

serve that the GANs-based average accuracies are all higher than the imbalanced (RF-

i), undersampling (RF-b2), and oversampling (SMOTE) scenarios. Within the GANs-

based scenarios, RF-GAN has shown a difference of 1.68% relative to RF-GAN2 in

average accuracy.

(b) On of the performance in each class

To further analyze the above results, the recall indicator of each fault class is studied.

As it is shown in Fig. 3.17, the recall indicator in the RF-i model of the health state

reaches 100% while for the other 3 faulty classes comes down to 63.88% in gear pitting;

84.3% in gear broken tooth, and 63.35% in gear cracking for an average of 77.88%. This

clearly shows the effect of the imbalanced data set. For RF-GAN the recall indicator in

each class is 99.53%, 99.73%, 99.63% and 99.87%, respectively. In RF-GAN1, the recall

indicator in each class is 98.63%, 98.67%, 98.28%, and 95.40%, respectively. For the RF-

GAN2 model, the recall indicator in each class is 99.30%, 93.08%, 98.15%, and 90.08%,

respectively. The high recall indicators are due to sufficient examples in each class.

This is also visible in the recall of SMOTE.

The fit score is another metric that can be used to compare the relative performance

of the different scenarios in each class. From Fig. 3.18, one can see that the performance

of RF-i as measured by the F1-score is 70.38% in fault A, 77.54% in fault B, 90.03% in

fault C, and 76.49% in fault D. The performance of RF-b2 in each faulty condition is

91.05% in fault A, 92.25% in fault B, 96.50% in fault C and 94.3% in fault D respectively.

The performance of RF-GAN is 98.52% in fault A, 98.83% in fault B, 95.66% in fault C

56

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

100

50

90

80

70

60

R
ec

al
l (

%
)

C0 C1 C2 C3 Average
Each class using RF-i scenario

(a)

fig_10_b

100

86

94
92
90
88

R
ec

al
l (

%
) 96

98

C0 C1 C2 C3 Average
Each class using RF-b2 scenario

(b)

fig_10_c

100

75

95

90

85

80

R
ec

al
l (

%
)

C0 C1 C2 C3 Average
Each class using RF-GAN scenario

(c)

100
97.5

R
ec

al
l (

%
) 95.0

92.5
90.0
87.5
85.0
82.5
80.0

C0 C1 C2 C3 Average
Each class using RF-GAN1 scenario

(d)

100

75

95

90

85

80R
ec

al
l (

%
)

70
C0 C1 C2 C3 Average
Each class using RF-GAN2 scenario

(e)

100
97.5

R
ec

al
l (

%
) 95.0

92.5
90.0
87.5
85.0
82.5
80.0

C0 C1 C2 C3 Average
Each class using RF-Smote scenario

(f)

Figure 3.17: Recall indicators for the different scenarios: (a) RF-i; and (b) RF-b2; (c)
RF-GAN; (d) RF-GAN1; (e) RF-GAN2; and (f) SMOTE.

and 95.23 in fault D. The performance of RF-GAN1 is 98.55% in fault A, 98.95% in fault

B, 96.87% in fault C and 96.62 in fault D. The performance of RF-GAN2 is 95.70% in

fault A, 96.54% in fault B, 90.01% in fault C, and 94.57% in fault D. For SMOTE, the

57

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

perform is 89.72% in fault A, 93.08% in fault B, 97.56% in fault C, and 95.28% in fault

D.

100

60

85

75
70
65

F1
-s

co
re

 (%
)

80

90
95

C0 C1 C2 C3 Average
Each class using RF-i scenario

(a)

100
97.5

R
ec

al
l (

%
) 95.0

92.5
90.0
87.5
85.0
82.5
80.0

C0 C1 C2 C3 Average
Each class using RF-b scenario

(b)

100

75

95

90

85

80R
ec

al
l (

%
)

70
C0 C1 C2 C3 Average
Each class using RF-GAN scenario

(c)

100
97.5

R
ec

al
l (

%
) 95.0

92.5
90.0
87.5
85.0
82.5
80.0 C0 C1 C2 C3 Average

Each class using RF-GAN1 scenario
(d)

100
97.5

R
ec

al
l (

%
) 95.0

92.5
90.0
87.5
85.0
82.5
80.0 C0 C1 C2 C3 Average

Each class using RF-GAN1 scenario
(e)

100
97.5

R
ec

al
l (

%
) 95.0

92.5
90.0
87.5
85.0
82.5
80.0 C0 C1 C2 C3 Average

Each class using RF-GAN1 scenario
(f)

Figure 3.18: F1-score for scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN; (d) RF-GAN1;
(e) RF-GAN2; and (f) SMOTE.

For completeness, the confusion matrices are presented in Fig. 3.19. All these ma-

58

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

trices consider the 6000 test observations as per Table 2.2. For RF-i (Fig. 3.19 (a)),

one can see a high number of misclassifications in non-healthy states due to the im-

balanced training set. These misclassifications are strongly reduced (especially in the

GAN-based scenarios) when enough data is generated and used for training.

(c) On the training set

Learning curves: The performance of the proposed model under different data set

sizes is now considered. Fig. 3.20 shows the average performance over 20 indepen-

dent runs in the testing set for the scenario RF-GAN when only a given percentage of

faulty observations are available for training. More concretely, the following percent-

ages were considered i =1, 2, 4, 6, 8, 10, 20, 40, 60, 80, and 100 %. For instance, when

i = 4%, the number of training examples in each faulty state is 14000× 0, 04 = 560. It

can be seen that the average accuracy increased from 56.25% to 97.05% by increasing

the availability of faulty data from 1% (140 examples) to 100 % (14000 examples) in each

fault type. There was a strong increase in performance up to 20%. After that point the

improvement in accuracy was slower and slower until about 80%. After this value, the

improvement was neglectable. That is, adding more data after a certain point hardly

improves the performance.

Shuffling data: When generating training examples from a GAN-based model, shuf-

fling the training data is a key important factor for obtaining an acceptable perfor-

mance. Fig. 3.21 illustrates the importance of data shuffling. The results presented

in this figure were obtained with exactly the same RF-GAN configuration, the only

difference being the way data is presented to the GAN for training. For non-shuffled

data, the model is simply not able to generate no matter the other initial conditions

(weights).

59

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

100%

68%

84%

64%35.6%

14% 2%

0.3% 0.1%

0%

0% 0% 0%

30.8% 1%0.2%

C0 C1 C2 C3

C0

C1

C2

C3

Predict label

Tr
ue

 la
be

l

(a)

92.3% 2.8% 0.9% 4%

6.97% 90.5% 0.66% 1.87%

2.3%0.4%0.4%

1.2%0.11%1.2%

96.9%

97.49%

C0 C3C1 C2
Predict label

C0

C1

C2

C3

Tr
ue

 la
be

l

(b)

C0

C1

C2

C3

Tr
ue

 la
be

l

C0 C3C1 C2
Predict label

98.88% 0.22% 0.22% 0.33%

98.65%

94.97%

98.63%

1.1%

0.9%

0.32%

0.23%

0.1% 0.15%

3.9%

0.93%0.12%

(c)

C0

C1

C2

C3

Tr
ue

 la
be

l

C0 C3C1 C2
Predict label

0.18% 0.6% 0.37%98.85%

98.72%

95.92%

98.48%

0.1% 0.11%1.07%

0.77% 0.16% 3.15%

0.16% 0.07% 1.29%

(d)

C0

C1

C2

C3

Tr
ue

 la
be

l

C0 C3C1 C2
Predict label

99.96%

98.42%

94.97%

92.78%

0% 0.02% 0.02%

13.83% 0.05% 0.02%

4.05% 0.06% 0.92%

5.22% 0.38% 1.62%

(e)

C0

C1

C2

C3

Tr
ue

 la
be

l

C0 C3C1 C2
Predict label

0.13%

0.37%

1.32%

0.28% 0.7% 0.23%

0.23% 0.03%

3.91%0.45%

0.06% 1.85%

98.79%

98.42%

95.32%

97.96%

(f)

Figure 3.19: The confusion matrix for: scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN;
(d) RF-GAN1; (e) RF-GAN2; and (f) SMOTE.

60

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

 1
Variable (i)

20 40 60 80 100

100

0

80

60

40

20Av
er

ag
e

ac
cu

ra
cy

 (%
)

Figure 3.20: Learning curve of scenario RF-GAN for i =1, 2, 4, 6, 8, 10, 20, 40, 60, 80,
and 100% of the training set.

100
97.5

Av
er

ag
e A

cc
ur

ac
y

(%
)

95.0
92.5
90.0
87.5
85.0
82.5
80.0

C0 C1 C2 C3 Average
Each class with data shuffling

(a)

100

40

80

70

60

50Av
er

ag
e

ac
cu

ra
cy

 (%
) 90

C0 C1 C2 C3 Average
Each class without data shuffling

(b)

Figure 3.21: The effect of shuffling input data for training a GAN based model: (a)
With shuffling and (b) Without shuffling.

61

3.6. CASE STUDY: GAN AS AN OVERSAMPLING METHOD FOR DATA
AUGMENTATION IN AN INDUSTRIAL ROBOT FAULT DIAGNOSIS TASK

100
97.5

Av
er

ag
e A

cc
ur

ac
y

(%
)

95.0
92.5
90.0
87.5
85.0
82.5
80.0

C0 C1 C2 C3 Average
Each class with standard normal

distribution
(a)

100

20

80

60

40
30Av

er
ag

e
ac

cu
ra

cy
 (%

)

50

70

90

C0 C1 C2 C3 Average
Each class with normalized uniform

distribution
(b)

Figure 3.22: The effect of the distribution used for sampling the input z of the GAN
generator: (a) standard normal distribution and (b) normalized uniform distribution.

(d) On the distribution used for sampling random inputs

In a GAN-based model, the z signal presented to the generator (recall Fig. 3.13) can be

drawn from any distribution. However, for this particular application, some distribu-

tions are better than others for the training process. Fig. 3.22 shows the classification

results for RF-GAN when a) z is sampled from the standard normal distribution (0

mean and variance 1) and b) an uniform distribution in [-1,1]. No doubt that the for-

mer outperforms the latter.

(e) On the initial conditions

GAN is trained using a gradient-based method that is sensitive to initial conditions

(weights). Fig 3.23 illustrates the impact of the initial conditions on the fault classifi-

cation results. As shown in that figure, RF-GAN was able to produce an acceptable

accuracy for any of the initial sets of weights used. However and as expected for lo-

cal optimization methods, in 30 independent runs (initializations), it was possible to

identify a particular set of initial random weights that outperformed all the others.

For generating these results, we spent about 80 hours in google colab with the fol-

lowing configurations:

• 1 GPU of Tesla T4.

62

3.7. CONCLUSION

100

92

96
95
94
93

Av
er

ag
e

ac
cu

ra
cy

 (%
)

97
98
99

1 5 10 15 20 25 3027
Different random seeds

Figure 3.23: The effect of initial weights (generated from different random generator
seeds) on the classification accuracy of RF-GAN.

• The tensorflow version of 1.15.1.

3.7 Conclusion

In this chapter, we survey the state of the art of GAN and elaborate on several perspec-

tives on GAN, i.e., theory, variants of GAN, metrics, applications, and open research

problems. Due to the adoption of the adversarial learning, GAN has received more

and more attention in the AI community. It brings the theory of a two-player min-max

game between two agents into the generative model so that the model can generate

real-like samples through adversarial learning.

However, GAN is hard to train since three main obstacles exist: mode collapse,

training oscillation and vanishing gradient. The possible solutions to these challenges

are designing an efficient model by choosing appropriate network architectures, loss

functions, and metrics. Even though we state that many different GANs variants have

been proposed to avoid the above problem, some issues still remain. As a powerful

generative model, GAN does not explicitly estimate the distribution of real samples.

The ability to generate new samples from latent variables significantly applies to ma-

chine vision, image processing, machine translation, speech recognition, information

security, or fault diagnosis.

Moreover, a case study is introduced that applies GAN as an oversampling method

63

3.7. CONCLUSION

for fault diagnosis. Since robots are wildly used in the industry and their maintenance

and monitoring systems are resorting more and more to data intensive machine learn-

ing methods. Methods such as MLP, CNN, ESN or DBM have all been used for such

endeavours. However, all these methods rely on a representative, balanced, and large

enough training set, which due to the very nature of (some) faults is very hard to col-

lect from the equipment. Motivated by the recent success of generative adversarial

networks (GANs), in this study, we have applied, for the first time, this type of gener-

ative model as an oversampling method for data augmentation in an industrial robot.

A comprehensive empirical analysis was performed, taking into account six differ-

ent scenarios for mitigating the imbalanced data, including classical under and over-

sampling (SMOTE) methods. In all of these, a WPT combined with GAN is used for

feature generation while an RF is used for fault classification. Studies were also con-

ducted to assess the sensibility of aspects such as generator selection, the number of

training examples in each class, training data shuffling, the distribution used for sam-

pling input random data, and initial conditions.

The main conclusion is that it was possible to increase the performance of the fault

diagnosis for an industrial robot for any of the GAN-based models over classical un-

dersampling and oversampling (SMOTE) methods. This is accomplished at the ex-

pense of a much higher design and computational effort. Training GAN is not an

easy task due to the model collapse and other factors and it is certainly a quite time-

consuming process. After training a GAN for each fault, one will have a set of genera-

tors able to produce synthetic data in an efficient way. Within the GAN-based models,

those that keep track of the best current generator during training yielded the best re-

sults. No statistically significant difference was observed between the scenario that

uses exclusively synthetic data for the faulty states and the scenario that uses the avail-

able real data for such states. This is yet another piece of evidence on the quality of the

obtained GAN generators.

In many cases like prognostics and health management (PHM), enough data can

effectively improve the monitoring capability of the industrial system. But it can not

64

3.8. APPENDIX

completely be executed due to a lack of faulty data. GAN is an efficient tool to get rid

of the limitation of data imbalance state, which can enhance the monitoring capability

in PHM. Therefore, this study provided a data background for PHM. However, this

approach still has limitations, one is that this model can only learn the data distribution

from a limited faulty data source while there are many kinds of faulty data in the

industrial system. For the new faulty data, it needs to be sent to this model to learn the

new distribution again to generate enough data that will bring time cost for training.

Another one is that this approach is trained by sending one single faulty class as input

to GAN to obtain a generator. That means we need to train several GAN models for

several faulty classes, which is computationally demanding and time-consuming.

3.8 Appendix

3.8.1 Random forests for fault classification

Ensemble learning uses a group of algorithms to get a better prediction than any of

its base algorithms. A random forest (RF) is a homogeneous ensemble classifier that

uses a set of decision trees (DT) [168, 169]. Each DT is grown independently using

the Bagging technique. In addition, and to increase diversity (reducing the correlation

between trees), a RF grows each tree from a random selection of data features. Once

trained a RF uses a majority voting mechanism for making its classification (or regres-

sion) prediction. The CART algorithm is frequently used to grow a decision tree. In

the CART algorithm, the Gini index is the metric used for selecting the data set feature

to be used in a given node of the tree. Given a node m̂ and the estimated probability

p(c|m̂)(c = 1, 2, 3, . . . , C), the Gini impurity index is defined as:

G(m) = ∑
c1 ̸=c2

p(c1|m̂)p(c2|m̂) = 1−
C

∑
c=1

p2(c|m̂) (3.50)

Let n̂ be the splitting point of node m̂, that separates the node into two portions

in which a proportion Pa of the samples in m is assigned to m̂a and a proportion Pb

65

3.8. APPENDIX

Training
samples

Random select
samples with Bagging

technique

Subset 1
Consctruct DTs

Tree 1

Tree 2

Tree s

Majority
Voting

Final
Class

Subset 2

Subset S

Figure 3.24: Steps for building a random forest

is assigned to m̂b, i.e., Pa + Pb = 1. Thus, the decrease in the Gini impurity index is

defined as follows:

δG(m̂, n̂) = G(m̂)− PaG(m̂a)− PbG(m̂b) (3.51)

The optimal feature j∗ and the optimal splitting point n̂∗ that produces the largest

decrease in the Gini impurity corresponds to

n̂∗, j∗ = arg max δG(m̂, n̂) (3.52)

The flowchart for building an RF is shown in Fig. 3.24.

66

4
VGAN: a V-matrix based generative

adversarial network

In which we introduce a V-matrix based loss function for GAN to handle the training

instability, design an early stopping like mechanism for the generator, and present

experimental results and conclusions.

67

4.1. INTRODUCTION

4.1 Introduction

As a powerful framework, generative adversarial network (GAN) have the ability

to learn non-trivial distributions from random signals and real-world examples [29].

However, one problem with GANs is the training oscillation [170]. This is related

to the simultaneous and adversarial training of two neural networks composing the

GANs.

For mitigating the oscillation effect, the loss function is a critical issue. The original

GAN resort to the KL divergence [171] to measure the distance between the generated

and real distributions. To improve the training process, some variants were proposed

that concentrated on improving the loss function, such as WGAN [103] that resorts to

the EMD or Wasserstein-1 distance, Bi-GAN [172], GAN using MSE loss [40], cGAN

[30], WGAN-GP[104], LSGAN [173] and AC-GAN [174].

Another issue in GAN design is the stop criterion for selecting the "best" data gen-

erator. The naif selection of the generator obtained in the last epoch might simply not

produce the desired results due to the above mentioned oscillation effect. In other

words, the desired generator may have appeared in an earlier iteration during the

training, not necessarily in the last one.

This chapter addresses both of the mentioned design and training issues in GANs

with the following main contributions:

i) For mitigating loss function oscillations during training, motivated by both the

theoretical background and the empirical evidence obtained in classification and

regression problems, a V-matrix based regularization is used within the cGAN

framework. The V-matrix based criterion proposed by Vapnik et al.[38, 39] gen-

eralizes the well-known and widely used MSE criterion. In the same vein, our

proposed GAN framework, VGAN, generalizes both the MSE GAN [40] and the

WGAN-GP frameworks (Section 4.2.2);

ii) A novel early stopping like a strategy that keeps track during training of the most

suitable model (Section 4.2.3);

68

4.2. METHODOLOGY

iii) The application of the proposed VGAN to an industrial robot fault diagnosis

where the VGAN is used as a data augmentation tool to cope with an imbalanced

data set (Section 4.4). Results show that VGAN outperforms nine other scenarios

including vanilla GAN, conventional regularization and SMOTE, a classic data

augmentation technique. Furthermore, the early stopping like mechanism al-

lows to obtain a monotonic increasing performance of the model during training

and, when combined with the proposed regularization, yields the highest fault

classification accuracy among all other scenarios.

The remainder of this chapter is organized as follows. The proposed framework is

presented in section 4.2, including conditional WGAN, VGAN and the novel stop crite-

rion. The experimental settings such as neural network architecture, hyper-parameter

settings and considered scenarios are detailed in section 4.3. Results and discussion

are analyzed in Section 4.4. Finally, conclusions is addressed in Section 4.5.

4.2 Methodology

4.2.1 On GAN, Wasserstein GAN and conditional Wasserstein GAN

Both the generator G and the discriminator D forming a GAN are simultaneously re-

fined through an adversarial learning process. The goal of the learning process is to

allow the generation of synthetic data via G (Pg distributed) that are indistinguishable

from real data (Pdata distributed). The equilibrium Pdata = Pg can be achieved with

G⋆, D⋆ = arg min
G

max
D

V(G, D) (4.1)

where max denotes the maximization of the distribution of the discriminator, min

stands for the minimization of the probability in the generator, and V(G, D) is the

loss function.

Typically, traditional GAN with KL-based loss function (Eq. (3.7)) can not ensure a

69

4.2. METHODOLOGY

better performance which WGAN (Eq. (3.24)) can improve this strongly oscillates.

The conditional version of GAN, cGAN (refer to subsection 3.3.4), is designed for

giving some controls over the generation process [30]. Specifically, cGAN adds extra

information, say y, to both the generator G and the discriminator D. The loss function

of cGAN can be found in Eq. (3.26).

A vanilla GAN model is learned through unsupervised learning and its generator

generates data for a single distribution. If examples are required from k different dis-

tributions k GANs are need to be trained; a quite inefficient and time consuming task.

A cGAN can simplify this task as it uses only one model for data generation even from

different distributions. This is accomplished by resorting to the label information of

the real-world examples. By using this information the learning becomes a supervised

learning process. Due to this, several improvements can be conceived for the learning

process. One possibility is to adopt a WGAN-GP type of loss function (see equation

3.25) in which case (3.26) becomes:

VcWGAN-GP(G, D) =Ex∼Pdata [D(x|y)] + Ez∼PG [1− D(G(z|y)|y)]+

λgpEx∼Pdata [(||∇D(x|y)|| − 1)2]
(4.2)

4.2.2 VGAN

In the mitigation of oscillations during adversarial training, the loss function plays a

critical role in GAN. To address this problem, the previous WGAN used Wasserstein

distance as the loss function for better data generation. But this measurement still has

some drawbacks in generating desired signals that need to be further improved. To

address this problem, we are proposing the adoption of a V-matrix based regulariza-

tion criterion within the conditional WGAN framework that considered the mutual

point for data generation. The V- matrix based criterion proposed by Vapnik et al

[38, 39] generalizes the well-known and widely used MSE criterion. In the same vein,

our proposed GAN framework, VGAN, generalizes both the MSE GAN [13] and the

WGAN-GP frameworks. This criterion can be viewed as a generalization of the widely

used mean square error criterion. For brevity the idea is presented below for the sim-

70

4.2. METHODOLOGY

plest case. For a more general treatment see [39].

The binary classification problem can be viewed as the problem of estimating the con-

ditional probability of class y = 1 given an observation x ∈ Rd, p(y = 1|x). Following

[39], we can rethink the computation of f (x) = p(y = 1|x) by viewing it as a solution

of the Fredholm integral equation [175]:

∫
Rd

θ(x− x′) f (x′)dp(x′) = p(y = 1, x) (4.3)

where the kernel θ(z) = 1 if z ≥ 0; 0 otherwise. Both the unknown cumulative dis-

tribution functions p(x) and p(y, x) can be estimated from iid data {xi, yi}N
1 sampled

from p(y, x) with xi ∈ Rd and yi ∈ {0, 1}. In particular, the empirical estimates can be

given respectively by

p̂(x) =
1
N

N

∑
i=1

θ(x− xi) (4.4)

p̂(y = 1, x) =
1
N

N

∑
i=1

yθ(x− xi) (4.5)

Using these estimates and from (4.3) one has:

N

∑
i=1

θ(x− xi) f (xi) =
N

∑
i=1

yiθ(x− xi) (4.6)

Solutions for the above equation can be found by minimizing

ρ2 = ρ(f)2(
N

∑
i=1

θ(x− xi) f (xi),
N

∑
i=1

yiθ(x− xi)) (4.7)

71

4.2. METHODOLOGY

that, when ρ is viewed as the Euclidean distance, translates into

ρ2 =
∫
(

N

∑
i=1

θ(x− xi) f (xi)−
N

∑
i=1

yiθ(x− xi))
2dx

=
N

∑
i=1

N

∑
j=1

f (xi) f (xj)V(i, j)+

N

∑
i=1

N

∑
j=1

yiyjV(i, j)− 2
N

∑
i=1

N

∑
j=1

f (xi)yjV(i, j)

(4.8)

where V = [V(i, j)] is the so-called V-matrix and

V(i, j) =
∫

θ(x− xi)θ(x− xj)dx (4.9)

In the d-dimensional case where x ∈ [0, c]d , one has

V(i, j) =
∫ d

∏
k=1

θ(x− xi)θ(x− xj)dx (4.10)

Furthermore, (4.10) with c = (c1, . . . , cd)
T can be represented as

V(i, j) =
d

∏
k=1

(ck −max(xk
i , xk

j)) (4.11)

where ck represents the maximum value of the k-th coordinate (k = 1, . . . , d) while

xk
i denotes the k-th coordinate of the i-th example (i = 1, . . . , n). However, this mul-

tiplicative form is hard for high-dimensional space [39]. In this work, the alternative

additive form of (4.11) is used, i.e.,

V(i, j) =
d

∑
k=1

(ck −max(xk
i , xk

j)) (4.12)

72

4.2. METHODOLOGY

From (4.8) we have

ρ2
V =

N

∑
i=1

N

∑
j=1

(yi − f (xi))(yj − f (xj))V(i, j) (4.13)

Notice that (4.13) holds as a special case the classical mean square error

ρ2
MSE =

N

∑
i=1

(yi − f (xi))
2 (4.14)

whenever the V-matrix equals the identity matrix. That is, while in (4.14) only the

residuals ∆i = yi− f (xi) are taken into account while searching for f , in (4.13) both the

residuals and the relative dispersion of observations xi and xj are considered, resulting

in a more general criterion.

Now, aiming at smoothing the learning process, motivated by the above develop-

ment, and by the empirical evidence from some classification and regression problems

(e.g., [38, 39]), we regularize (4.2) using the (4.13) as regularizer yielding

VVGAN(G, D) = VcWGAN-GP(G, D) + γρ2
V(G) (4.15)

where γ is a user-defined regularizing coefficient. Notice that the regularizer ρ2
V(G)

concerns only the generator G, where relatively to (4.13) xi and yi are now the generator

i-th input and corresponding desired output, respectively. For brevity, hereafter (4.15)

is referred to as V-regularization, and this type of generative model is VGAN. Notice

that VGAN can be viewed as a generalization of the MSE GAN [40] and degenerates

into it for γ = 1 and V-matrix equal to the identity matrix. Also, VGAN can be viewed

as a generalization of the cWGAN-GP (4.2) and degenerates into it for γ = 0. To the

best of our knowledge this is the first study where the V-matrix is applied in the realm

of GANs and deep learning in general. For comparison purposes, in Section 4.4, the

73

4.2. METHODOLOGY

traditional MSE based regularization, i.e., MSE GAN

VMSE(G, D) = VcWGAN-GP(G, D) + γρ2
MSE(G) (4.16)

is also considered.

4.2.3 On the early stopping in GANs

Classification accuracy is a metric that summarizes the performance of a classifica-

tion model as the proportion of correct predictions divided by the total number of

predictions. Inspired by this, we proposed new stop criteria named early stopping,

which used the idea of classification accuracy for evaluating the performance of GAN.

Roughly speaking, early stopping means interrupting the learning process whenever

a theoretical, such as a bias-variance trade-off, or, e.g., a holdout validation-based cri-

terion is verified.

We follow a holdout strategy where the available real data is divided into disjoint

training and validation sets. In the following, these are denoted as {x(t), y(t)} and

{x(v), y(v)}, respectively, the superscripts (t) and (v) referring to the training and vali-

dation sets, respectively. The input data of the training set is x(t) = {x(t)1 , x(t)2 , . . . , x(t)N }

while the label information is given by y(t) = {y(t)1 , y(t)2 , . . . , y(t)N }. A similar notation is

used for the validation set.

Let K be the number of epochs. Thus, K successive generators will be available

during learning. The generator available at iteration j, Gj, (j = 1, 2, . . . , K) generates

x(g)
j = {x(g)

j1 , . . . , x(g)
jN } when y(t) is presented at its input. Thus, we can write

x(g)
j = Gj(z|y(t)) = Gj(y(t)) (4.17)

Notice that the superscript (g) refers to generated data; as before, z is a random variable

(e.g., Gaussian).

Now consider a classifier, say a random forest R, the formulation of R can be shown

74

4.2. METHODOLOGY

as

M = {n̂∗, j∗|I(m̂, n̂)} (4.18)

where I stands for the Gini index, m is the tree node, n̂ refers to the splitting node, n̂∗

represents the optimal splitting node and j∗ is the optimal feature.

For each j of the K generated data sets x(g)
j , train a model Mj, s.t.,

Mj = R(x(g)
j) = R(Gj(y(t))) (4.19)

At this time, employ the validation set to evaluate the j-th model as follow:

y(p)
j = Mj(x

(v)
j) (4.20)

where the superscript (p) refers to a predicted label.

The performance of the j-th model Mj is viewed as a proxy for the performance of

the j-th generator Gj. We use accuracy (Acc) for evaluating such performance. The Acc

of the j-th model is computed in a straightforward way:

Acc(Gj) =
1
N

N

∑
i=1

1(y(t)ji , y(p)
ji) (4.21)

where the 1(α, β) is the indicator function that returns 1 if α equals β; 0 otherwise.

We term Gmax the generator whose generated data x(g)
j , yields the max accuracy,

i.e.,

Gmax = arg max
Gj;j=1,...,K

Acc(Gj) (4.22)

At this point, one can legitimately ask why using all of this if one can directly use

the GAN discriminator to compute the accuracy. The reason is twofold. On one hand,

during learning (especially in the initial epochs) the discriminator is not yet properly

trained, so it is still a poor option for evaluating generated data; On the other hand, if

we would get a poor performance we were not able to tell which of the generator or

discriminator would be to blame. So by using a classifier such as random forest (See

75

4.3. EXPERIMENTS

Appendix 3.8) for evaluating the generated data we can best control the selection of

Gmax. Notice that the discriminator is still and indeed an important part of the GAN

learning process as only simultaneous learning of the generator and the discriminator

allows for the best results [176].

4.3 Experiments

4.3.1 The MNIST data set

The MNIST shown in Fig. is a digit handwriting data set of 60,000 training and 10,000

testing images [177]. It contains ten digits from 0 to 9. Each image has a size of 28×28

pixels. We randomly extract 10,000 images from the data set for out-of-sample valida-

tion. In the experiments, 6000 examples are used for training while other 4000 are used

for out-of-sample validation.

(a) Neural network architectures

The neural network architectures of the generator and the discriminator are shown in

Fig. 4.1. As shown in Fig. 4.1, in the generator, the input random distribution is firstly

combined with label information and then send to one Dense layer (also called fully

connected layer) and reshape to the 2-D feature map. Finally, it will send to three CNN

blocks (CNN block up) to generate synthetic images. In the discriminator, the input

image (real or synthetic one) will embed with label information and then send to 2

CNN blocks (CNN block down) and finally flattened to get the outputs. Moreover, the

details of CNN block down and CNN block up are given in 4.1 (c).

(b) Hyper-parameter settings

The learning rate for both the generator and the discriminator was set to 2× 10−4. The

Adam optimizer was used with key parameters β1 = 0.5, β2 = 0.9999 in both the

discriminator and the generator. A maximum number of K = 10, 000 iterations were

considered.

76

4.3. EXPERIMENTS

CNN block up:

Transpose CNN
[Filters,kernel size,strides,padding]

Batch normalization
Activation= Relu

Output size=(1)

CNN block down
[64,(4,4),(2,2),padding=same]

CNN block down
[128,(4,4),(2,2),padding=same]

Flatten

CNN block up
[1,(4,4),(1,1),padding=same]

 CNN block up
[64,(4,4),(2,2),padding=same]

CNN block up
[32,(4,4),(2,2),padding=same]

Output size=(28,28,1)

(a) Generator (b) Discriminator (c) Block descriptions

CNN block down:

CNN
[Filters,kernel size,strides,padding]

Batch normalization
Activation= Leaky Relu

Dropout= 0.3

Reshape=(110)

Dense=(7*7*128)

Reshape=(7,7,128)

Input size=(100) with input label
size=(10)

Input size=(28,28,1) with embedding
input label size=(28,28,1)

Figure 4.1: The architecture of VGAN for MNIST dataset

4.3.2 The industrial robot data set

In the previous chapter, we used GAN as a data augmentation tool to deal with the

fault diagnosis of the industrial robot. We know that this activity is critically depen-

dent on the existence of a balanced data set which is obliviously hard to be obtained

in a real world. To validate the performance of VGAN, we also start from a perspec-

tive of the fault diagnosis under the imbalanced data set (see Table. 2.2) with the same

faults configuration (C0,C1,C2,and C3). In the training phase, the training data is used

together with fault label information in the training of the VGAN. After training the

VGAN, Gmax (4.22) is used for generating enough synthetic data for achieving an aug-

mented balanced training set. This is the data set used for training the fault classifier.

The validation data set which was never used during training is subsequently used for

assessing the fault classification performance.

(a) Neural network architectures

In this application, both the discriminator and the generator are multi-layer-perceptrons

with a fully connected topology. With the label information, the topology of the gener-

77

4.3. EXPERIMENTS

ator is 67:1024:128 while that of the discriminator is 131:1024:2048:1.

(b) Hyper-parameter settings

The learning rate for the generator is set to 2× 10−4, while for the discriminator is set

to 1× 10−4. These were selected empirically after some preliminary tests. The Adam

optimizer was used with key parameters β1 = 0.9, β2 = 0.9999 in both the discrimina-

tor and the generator. A maximum number of K = 20, 000 iterations were considered.

The V-matrix regularization coefficient γ is discussed in Section 4.4.4 below.

4.3.3 Considered scenarios

Several scenarios were taken into consideration to assess the effectiveness of the pro-

posed model. In all these scenarios, all the hyper-parameter of each GAN are the same

as mentioned before except for the loss function. Besides, we use the additive form

(4.12) of V-matrix in VGAN. We used an SVM (support vector machine) classifier with

an RBF (radial basis function) kernel for fault classification. For early stopping, we use

a random forest for selecting (See 3.6.2) Gmax (4.22). The different scenarios are:

i) normal, i.e., cWGAN-GP loss (4.2) and early stopping, i.e., the employed genera-

tor given by (4.22);

ii) normal_l, i.e., cWGAN-GP without early stopping, i.e., the employed generator

corresponding to the generator obtained in the last iteration;

iii) mse, i.e., MSE GAN (4.16) and early stopping;

iv) mse_l, i.e., MSE GAN without early stopping;

v) v, i.e., VGAN (4.15) and early stopping;

vi) v_l , i.e., VGAN without early stopping

78

4.4. RESULTS AND DISCUSSION

4.4 Results and discussion

In this section, results on the above mentioned issues such as the imbalanced data set

problem, the convergence problem, and the sensitivity of the algorithm to relevant

hyper-parameters are presented. The subsequent discussion takes into account confu-

sion matrices and statistical tests of hypotheses.

4.4.1 Comparisons of the different scenarios

To draw statistically significant conclusions on the results obtained from the differ-

ent scenarios, the Friedman test was applied and the the Wilcoxon test is used as the

posthoc (see subsection 3.6.4 (a)).

95

94

93

92

91

90

normal normal_l mse mse_l v v_l

A
cc

ur
ac

y
(%
)

Scenarios

Figure 4.2: Boxplots exhibiting the distribution of accuracy over 30 independent runs
for the different scenarios.

As the Friedman test for the results presented in Fig. 4.2 yielded pFriedman = 8.79×

10−61 < 0.05, we must conclude that a statistically significant difference exists between

the six scenarios. Consequently, we present in Table 5.1 the obtained Wilcoxon post hoc

results.

From Table 4.1 one can see that scenario v (VGAN with early stopping) has 5 wins

meaning that it ranks first among all the others.

From Fig. 4.2 we observe that median accuracy is i) normal: 91.756%; ii) normal_l:

91.483%; iii) mse: with 91.961%; iv) mse_l: 92.47%; v) v: 92.93%; and vi) v_l: 92.36%.

Also, with or without early stopping, VGAN outperforms all the other scenarios. More

79

4.4. RESULTS AND DISCUSSION

Table 4.1
Wilcoxon post-hoc results for the six studied scenarios.

Comparison p-value Winner

normal vs. normali_l 0.032 normal

normal vs. mse 0.0198 -

normal vs. mse_l 6.88× 10−5 mse_l

normal vs. v 1.7× 10−6 v

normal vs. v_l 1.73× 10−6 v_l

normal vs. mse 0.02 mse

normal vs. mse_l 9.77× 10−6 mse_l

normal vs. v 1.73× 10−6 v

normal vs. v_l 1.73× 10−6 v_l

mse vs. mse_l 0.01 mse_l

mse vs. v 1.73× 10−6 v

mse vs. v_l 1.73× 10−6 v_l

mse_l vs. v 1.73× 10−6 v

mse_l vs. v_l 1.7× 10−63 v_l

v vs. v_l 0.0125 v

specifically, scenario v) has an accuracy 1.169% higher than the normal scenario i).

The confusion matrices for the different scenarios are presented in Fig. 4.3. As

observed in Fig. 4.3, all these matrices concern the 6000 validation set mentioned in

Table. 2.2. In each matrix the diagonal refers to the correct classification rate in the cor-

responding class. All the other entries refer to mis-classifications. From these figures

one can see also that confusion matrix for scenario v (VGAN with early stopping) has

the best classification performance.

To further illustrate the performance, t-Distributed Stochastic Neighbour Embed-

ding (t-SNE) is used to characterize the fault data generation that is represented in Fig.

4.4. As shown in Fig. 4.4, the green part is C1, the blue part is C2 and the rest part is

C3. From Fig. 4.4, Both of the clustering performance is worse except 4.4 (e), which is

our proposal in this work. This is an evidence that our data generation method is more

appropriate for fault data generation than any other model.

Besides, the calculation burden of the above scenarios is presented in Table. 4.2, it

80

4.4. RESULTS AND DISCUSSION

98%

86%

90%

94%4%

4% 6%

1% 1%

0%

0% 1% 1%

7% 5%2%

C1 C2 C3 C4

C1

C2

C3

C4

Predict label

Tr
ue

 la
be

l

(a)

99% 0% 0% 1%

4% 95% 0% 1%

2%0%5%

10%3%6%

92%

81%

C1 C2 C3 C4
Predict label

C1

C2

C3

C4

Tr
ue

 la
be

l

(b)

C1

C2

C3

C4

Tr
ue

 la
be

l

C1 C2 C3 C4
Predict label

99% 0% 0% 1%

94%

91%

87%

4%

5%

5%

0%

1% 1%

3%

6%2%

(c)

C1

C2

C3

C4

Tr
ue

 la
be

l

C1 C2 C3 C4
Predict label

0% 1% 1%98%

94%

93%

84%

1% 1%4%

4% 0% 3%

5% 2% 9%

(d)

C1

C2

C3

C4

Tr
ue

 la
be

l

C1 C2 C3 C4
Predict label

99%

97%

95%

91%

0% 1% 1%

2% 0% 1%

3% 0% 2%

3% 2% 5%

(e)

C1

C2

C3

C4

Tr
ue

 la
be

l

C1 C2 C3 C4
Predict label

3%

3%

3%

0% 1% 1%

1% 1%

4%0%

2% 3%

98%

95%

93%

92%

(f)

Figure 4.3: Confusion matrices for scenario (a) Normal; (b) Normal_l; (c) mse; (d)
mse_l; (e) v; and (f) v_l.

81

4.4. RESULTS AND DISCUSSION

T-sne 1

60

40

20

0

-20

-40

-60

T-
sn

e
2

-40 -20 0 20 40-60 60-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

t-SNE 1

t-S
N

E
2

C1
C2
C3

(a)

T-sne 1

60

40

20

0

-20

-40

-60

T-
sn

e
2

-40 -20 0 20 40-60 60-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

t-SNE 1

t-S
N

E
2

C1
C2
C3

(b)

T-sne 1

60

40

20

0

-20

-40

-60

T-
sn

e
2

-40 -20 0 20 40-60 60-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

t-SNE 1

t-S
N

E
2

C1
C2
C3

(c)

T-sne 1

60

40

20

0

-20
-40

-60

T-
sn

e
2

-40 -20 0 20 40-60 60-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

t-SNE 1

t-S
N

E
2

C1
C2
C3

(d)

T-sne 1

60

40

20

0

-20

-40

-60

T-
sn

e
2

-40 -20 0 20 40-60 60-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

t-SNE 1

t-S
N

E
2

C1
C2
C3

(e)

T-sne 1

60

40

20

0

-20

-40

-60

T-
sn

e
2

-40 -20 0 20 40-60 60-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

t-SNE 1

t-S
N

E
2

C1
C2
C3

(f)

Figure 4.4: t-SNE representation of each data generation scenario: (a) normal; (b) nor-
mal_l; (c) mse; (d) mse_l; (e) v and (f) v_l.82

4.4. RESULTS AND DISCUSSION

Table 4.2
Calculation burden via different scenario for fault data generation

Scenario normal norma_l mse mse_l v v_l

Times (seconds) 2905 3152 2463 3092 2138 3653

0 2.5 5.0 7.5 10 12.5 15 17.5 20
Steps

D
is

cr
im

in
at

or
 lo

ss

0

-10

-20

-30

-40

10

-50

(a)

0 2.5 5.0 7.5 10 12.5 15 17.5 20
Steps

G
en

er
at

or
 lo

ss

0

-10

-20

10

20

30

40

(b)

Figure 4.5: Typical convergence curves for VGAN with early stopping: (a) discrimina-
tor and (b) generator.

can be found that with our early stopping and the V-matrix based loss function, this

model can quickly find the desired generator for optimal data generation.

4.4.2 Convergence curves

Fig. 4.5 shows typical convergence curves for scenario v (VGAN with early stopping).

As shown in Fig. 4.5 the loss curves of both discriminator and generator are still

oscillating. We hypothesize that this is an inevitable side effect of adversarial learn-

ing between the generator and the discriminator. Notice however that, without V-

regularization, oscillations are way worse: Fig. 4.6 shows for the non-regularized case

that while the loss evolution looks similar to Fig. 4.5 the loss ranges are much smaller

([-35; 5] vs [-50; 10] for the discriminator; [-15; 10] vs [-20; 40] for the generator).

83

4.4. RESULTS AND DISCUSSION

0 2.5 5.0 7.5 10 12.5 15 17.5 20
Steps

D
is

cr
im

in
at

or
 lo

ss

0
-5

-10

-15

-20

5

-25

-30

-35

(a)

0 2.5 5.0 7.5 10 12.5 15 17.5 20
Steps

G
en

er
at

or
 lo

ss

-10

-5

0

5

10

(b)

Figure 4.6: Typical convergence curves for cWGAN-GP without early stopping: (a)
discriminator and (b) generator.

1 2 3 4 5 6 7 8 9 10

60

70

80

90

95

A
cc

ur
ac

y
(%
)

Scenarios

85

75

65

55

Figure 4.7: Results of the difference scenarios for dealing with the imbalance training
data; see text for details.

4.4.3 On imbalance data sets

To assess the effectiveness of the model when dealing with an imbalanced data set, ten

scenarios were studied, as follows: 1: normal; 2: normal_l; 3: mse; 4: mse_l; 5: v;

6: v_l (all the above with the previous presented meaning); 7: imbalance training set,

i.e., 14000 health examples and only 1% of examples (140) for each fault; 8: imbalance

training set, as above, but processed by the SMOTE technique; 9: vanilla unsupervised

GAN with early stopping as per [131]; 10: vanilla unsupervised GAN without early

stopping; In all these scenarios, an SVM classifier with the RBF kernel was used for

fault classification.

84

4.4. RESULTS AND DISCUSSION

80

70

60

50

40

30
A

cc
ur

ac
y
(%
)

90

 1 2 3 4 5 6 7 8 9 10
Scenarios

Figure 4.8: Accuracy values for the v model (VGAN with early stopping) and v_l
model (VGAN without early stopping) for different values of γ in (4.15).

.

From the above Fig. 4.7, we can see that the 5th model (VGAN with early stopping)

has the highest median accuracy. The Friedman test reveals a statistical significant

difference pFriedman = 0.012 < α = 0.05.

4.4.4 On the model sensitivity

Below we present a sensitivity discussion on four relevant aspects of the model: reg-

ularization term, ratios between healthy and faulty data, weight initialization, and ac-

curacy vs. epochs.

Regularization term: To evaluate the effect of the V-regularization coefficient γ in

(4.15), we compared a v model (VGAN with early stopping) with v_l (VGAN without

early stopping). Both scenarios share the same hyper-parameter settings except for

γ that takes values in {1 e−1, 1 e−2, 1 e−3, 1 e−4, 0} see Fig. 4.8. In this figure, 1 to 10

stands for ve1, ve1_l, (), ve2, ve2_l, ve3, ve3_l, ve4, ve4_l, 0, 0_l, respectively. Besides,

Labels ve1, ve1_l correspond to γ = 1 e−1, ..., ve4, ve4_l to γ = 1 e−4, while labels 0

and 0_l correspond to γ = 0 in a v and v_l model, respectively.

The value of γ = 1 e−4 yielded the highest accuracy values among all other cases,

including the case where γ = 0 corresponds to the cWGAN-GP model (4.2). Another

observation is that early stopping is a better option.

Friedman and Wilcoxon post hoc tests are also performed for evaluating the effect

85

4.4. RESULTS AND DISCUSSION

A
cc

ur
ac

y
(%
)

20

0

40

60

80

100

0 4020 60 80 100
perc

Figure 4.9: A learning curve taking into account a percentage perc of the faulty exam-
ples relatively to the number of healthy examples.

of the regularization term. The ten scenarios in Fig. 4.8 yield pFriedman = 6.21× 10−61

meaning that there exists a significant difference among them. Afterward, the post hoc

analysis using Wilcoxon test shows that the regularization term γ = 1 e−4 with early

stopping (ve4 model) with 9 wins ranks first among all the others.

Faulty vs. healthy data ratios: To illustrate the importance of using a balanced data set

in this application, we evaluate the performance of the SVM fault classifier under dif-

ferent faulty to healthy data ratios. As always, the number of healthy examples in the

training set is 14000 and the initial number of examples in each fault class is 140 as per

Table. 2.2. The following percentages were considered perc = 1, 2, 4, 6, 8, 10, 20, 40, 60,

80, and 100%. For instance, when perc=10%, only 14000× 10% = 1400 examples were

used for each fault class. From these 1400-140=1260 examples were generated with our

best model (VGAN with early stopping). The resulting learning curve is shown in Fig.

4.9. The average accuracy increased from 56.25% to 95.17% by increasing the avail-

ability of faulty data from 1% (140 examples) to 100% (14,000 examples). That is, the

imbalanced data set had a strong negative impact on the fault classifier. Furthermore,

there was a 20%+ increase in performance in the range 1% ≤ perc ≤ 40%; afterward

the improvement in accuracy was slower and slower. For perc ≥ 80% the improve-

ment was neglectable. That is, adding more data after that point hardly improved the

performance.

Weight initialization: In our experiments we considered 30 different random seeds

86

4.4. RESULTS AND DISCUSSION

A
cc

ur
ac

y
(%
)

20

0

40

60

80

100

0
Step j

272 1151 1435 1950 2204 3706 5819 10000

(a)

A
cc

ur
ac

y
(%
)

20

0

40

60

80

100

0
Step j

100002000 4000 6000 8000

(b)

Figure 4.10: Classification accuracy obtained for VGAN using (4.22) as generator, as a
function of the epochs.

for weight initialization. The impact of the different initial weights are reflected in the

dispersion of accuracy as presented in the boxplots of the above figures.

Accuracy vs. epochs: Fig. 4.10)(a) shows the classification accuracy obtained using

(4.22) as a generator as a function of the current number of epochs for VGAN. From

Fig. 4.10 as the number of epochs increased a monotonic increase in the accuracy is

observed, from 38% up to 93.28%.

When the model v_l (VGAN without early stopping) is used in Fig. 4.10(b), we can

see that the accuracy in each epoch is not monotonic increasing.

4.4.5 Results with MNIST data set

With the same scenarios described in 4.3.3, the results of the boxplot using the MNIST

data set are shown in Fig. 4.11.

From Fig. 4.11 we observe that median accuracy is i) normal: 72.53%; ii) normal_l:

61.50%; iii) mse: with 72.56%; iv) mse_l: 58.54%; v) v: 77.50% ; and vi) v_l: 66.91%.

Also, with or without early stopping, VGAN outperforms all the other scenarios. More

specifically, scenario v) has an accuracy 4.97% higher than the normal scenario i).

For generating the above results, we spent around 210 hours in google colab with

the following configurations:

87

4.5. CONCLUSION

normal normal_l mse mse_l v v_l
Different scenario

77.50

75.00

72.50

70.00

A
cc

ur
ac

y
(%
)

67.50

65.00

62.50

60.00

57.50

Figure 4.11: Boxplots exhibiting the distribution of accuracy over 3 independent runs
for the different scenarios.

• 1 GPU of Tesla V100.

• The tensorflow version of 1.15.1.

4.5 Conclusion

Generative adversarial networks have a great potential for applications ranging from

image processing to machinery fault diagnosis. However, in general, it is still hard

to train them to obtain a generator with the desired performance. With this in mind,

we proposed VGAN, a V-regularized conditional Wasserstein GAN with gradient pe-

nalization. V-regularization is based on a criterion that generalizes the mean square

error criterion in the sense that it takes into account not only residuals but also the dis-

persion among the independent variable in input data. VGAN generalizes both MSE

GAN and cWGAN-GP. A novel early stopping like strategy was also proposed.

The effectiveness of the proposed formalisms was illustrated through a comprehen-

sive set of experiments on a fault diagnosis task for an industrial robot where VGAN

was used as a data augmentation tool for dealing with imbalanced data sets. Results

show that the VGAN outperforms nine other scenarios including vanilla GAN, condi-

tional WGAN-GP with and without MSE based regularization, and SMOTE, a classic

data augmentation technique. Furthermore, the early stopping like mechanism allows

one to obtain a monotonic increasing performance of the model during training and,

88

4.6. APPENDIX

when combined with the V-regularization, ranks first in terms of classification accuracy

among all other scenarios.

4.6 Appendix

This appendix specifies the used procedures. In the light of reproducible research, the

python code used for generating the presented MNIST examples is publicly available

from https://github.com/pzq522362451/VGAN

89

https://github.com/pzq522362451/VGAN

5
SW-CylcyeGAN: a sliced Wasserstein

distance-based cycle consistency

generative adversarial network

In which we explore an alternative loss function for cycleGAN named the sliced

Wasserstein distance to replace Wasserstein distance for fast convergence, design a

new metric for qualitative evaluation of GAN, present experimental results and main

conclusions.

91

5.1. INTRODUCTION

5.1 Introduction

In its vanilla form, a GAN is formed of two units, a generator and a discriminator. The

former generates synthetic data given a random distribution while the latter tries to

distinguish between real and the generated synthetic data. Both modules are trained si-

multaneously, aiming at achieving an equilibrium where the discriminator cannot dif-

ferentiate between real and synthetic examples meaning that the generator has learned

the real data distribution.

The loss function is recognized as a crucial factor in the efficiency of GANs training

[36]. Both the losses of the generator and the discriminator oscillate during adversarial

learning. In addition, when the discriminator gets more accurate than the generator, it

may be possible that the whole system does not learn as gradients become unavailable

for updating the weights. Designing an appropriate loss function can help GANs to

obtain faster and stabler convergence.

Many works have paid attention to the loss function of GAN. The least squares

GAN [173] was designed to deal with the vanishing gradient problem. This adopts the

least squares loss rather than the divergence-based loss of the conventional GAN. Ge-

ometric GANs was proposed in [178] based on the idea of the support vector machine

to search for a decision boundary between real and synthetic examples with the hinge

loss [179, 180]. Zhu et al. [33] proposed a cycle consistency GAN (CycleGAN, hereafter

also referred to as unconditional CycleGAN) that combines two traditional GANs for

the unpaired image-to-image transference and that avoids mode collapse. Che et al.

[181] introduced several methods of regularizing the loss function, which can improve

the training of GAN.

Another type of approach is found in Wasserstein GAN (WGAN) [103] as it resorts

to the Wasserstein-1 distance (WD for short), also called EMD [182]. In [104], the gra-

dient penalty was introduced to improve the performance of WGANs. More recently,

Pu et al. [41] proposed VGAN that uses a regularization based on Vapnik V-matrix

generalizing WGAN with gradient penalty.

The sliced Wasserstein distance (SWD) is based on random projections [183] to

92

5.2. METHODOLOGY

quantity the two distributions difference with a low-level computational cost com-

pared to WD. SWD has previously been applied in vanilla GAN [184] and in auto-

encoders [185]. Motivated by the obtained results in those works and by the need to

avoid mode collapse, in this chapter, we investigate the usage of SWD in CycleGANs.

This distance is first applied to unconditional CycleGANs and then extended to con-

ditional CycleGANs. These models are evaluated with both a public data set (MNIST)

and in the data set of the industrial robot.

The main contributions of the chapter are:

1: The sliced Wasserstein distance is applied, for the first time, in the development

of unconditional and conditional CycleGANs aiming at smoother, faster, more

efficient convergence while addressing mode collapse;

2: To the best of our knowledge, it is the first time that either unconditional or condi-

tional CycleGAN (either with Wasserstein or sliced Wasserstein distance) is used

to transfer healthy states to different fault states for addressing the imbalanced

data problem in fault diagnosis of an industrial robot.

The remaining of this chapter is organized as follows. section 5.2 details the sliced

Wasserstein CycleGAN. section 5.3 introduces the experimental settings, including

nenural network architectures, hyper-parameter settings and the considered scenar-

ios. section 5.4 interprets the results and discussions. Finally, section 5.5 draws some

conclusions.

5.2 Methodology

The designed SW-CycleGAN is presented in subsection 5.2.1. The metric for our pro-

posal is presented in Section 5.2.1 (d). The whole procedure of the proposal is illus-

trated in Section 5.2.2

93

5.2. METHODOLOGY

5.2.1 Sliced Wasserstein CycleGAN

In this section, we first present in sequence, the sliced Wasserstein distance, a SWD-

based unconditional CycleGAN (SW-CycleGAN) and its conditional variant. The mech-

anisms of the residual networks are also presented at the end.

(a) The sliced Wasserstein distance

The Wasserstein-p distance between distributions Pd and Gθ(Pz) is given by [186]:

Wp(Pd, Gθ(Pz)) = inf
γ∈Π(Pd,Gθ(Pz))

(E
(x,y)∼γ

[||x− y||p])
1
p , (5.1)

where for p is a user-defined positive integer, x denotes real data points, y represents

synthetic one from Gθ(Pz), Π(Pd, Gθ(Pz)) stands for the set of all joint distributions

γ(x, y). Informally, γ(x, y) denotes how much ’mass’ must be transposed from x to y

in order to transform the distribution Pd into Gθ(Pz)). With Kantorovich-Rubinstein

duality, (5.1) yields

Wp(Pd, Gθ(Pz)) = sup
|| fw||L<=1

E
x∼Pd

[fw(x)]

− E
z∼Pz

[fw(Gθ(z))],
(5.2)

where the sup is defined over all 1-Lipschitz functions fw : χ→ R. Therefore, (5.2) can

be used in (3.24) in the definition of WGAN.

With this in mind, consider the case p ̸= 1 in (5.1). Suppose that data x belongs to

the real data set D and the generated data x̂ = Gθ(z) belongs to a synthetic data set F

(D and F ∈). The minimum distance estimation is defined as [187]:

arg min
θ
|Pd, Gθ(Pz)|, (5.3)

where |Pd, Gθ(Pz)| denotes a divergence between probability distributions. Using a

Wasserstein measurement, (5.3) can be re-written as

arg min
θ

Wp, (5.4)

94

5.2. METHODOLOGY

Considering the Wasserstein quadratic distance W2
2 (D,F) between two distributions,

(5.1) can be re-written as [188]

W2
2 (D,F) = 1

|F | min
s∈∑|F |

|F |

∑
i=1
||xsD(i) − x̂sF (i)||

2
2, (5.5)

where ∑|F | is the set of all projections of |F | points, s(i) is the index needs to be

searched for mapping x̂ to x. For facilitating the convergence of (5.5), the optimal

searching for s∗ is defined as an integer linear program with constant matrices M, i.e.,

W2
2 (D,F) = 1

|F | min
M

|F |

∑
i=1

|D|

∑
j=1

Mi,j||xsD(j) − x̂sF (i)||
2
2, (5.6)

where the matrix M is also known as a permutation matrix that can be estimated

through a linear programming solver. For approximation between these two distri-

butions with permutation matrix M, a summation over random directions of vectors

Ω in the projection sphere (Fig. 5.1) is subject to the following sorting conditions [184]:

xr
sD(i)
≤ xr

sD(i+1), ∃i ∈ {0 ≤ i < |D|}, (5.7)

x̂r
sF (i)
≤ x̂r

sF (i+1), ∃i ∈ {0 ≤ i < |F |}, (5.8)

As illustrated in Fig. 5.1, the data and synthetic points are projected into the one-

dimensional spaces by sorting the projections of all possible directions ri on the projec-

tion sphere Ω [188]:

SW2
2 (D,F) =

∮
ri∈Ω

W2
2 (Dri ,F ri)dr, (5.9)

Therefore, the approximation for sliced Wasserstein distance SWD2 with all possi-

ble directions over Ω can be found by computing the average distance between sorted

samples [189]:

SWD2 = min
θ

1
|Ω| ∑

ri∈Ω
W2

2 (Dri ,F ri), (5.10)

95

5.2. METHODOLOGY

ri ∈ Ωri ∈ Ω
Gθ(Pz)Gθ(Pz)

PdPd

Projection sphere
Sorted true distribution

in projected space
PdPd

Sorted generated distribution
 in projected spaceGθ(Pz)Gθ(Pz)

Figure 5.1: Random projections and permutation of two distributions Pd and Pz,
adapted from [3]

.

Specifically, combined with (5.5), the above expression can be re-written as

SWD2 = min
θ

1
|Ω|

|F |

∑
i=1
||xr

sD(i)
− x̂r

sF (i)
||22. (5.11)

(b) Unconditional cycle generative adversarial networks

In [33], a new variant of GAN, CycleGAN, was proposed for unpaired image-to-image

translation[190]. A CycleGAN is composed of two classic GANs. Since these two

GANs have a symmetric architecture, only one part of the CycleGAN is detailed in

Fig. 5.2. For illustrative purposes, consider the MNIST dataset. In the first GAN, real

images (say images of ’3’) from domain A are sent to the generator G12 to produce syn-

thetic images from domain B (say images of ’0’), which in turn are compared with real

domain B images in the discriminator D12. At the same time, the generated domain B

images will be passed through another generator G21 to reconstruct images of the do-

main A. The loss between real domain A images and reconstructed domain A images

is the cycle consistency loss 12. The second GAN uses real images from domain B to

generate images for domain A via generator G21. Adversarial training will compare

the generated domain A images with real domain A images through the discriminator

D21.

96

5.2. METHODOLOGY

The involved losses of a CycleGAN are [33] :

VCycleGAN = L12
adv + L21

adv + λc ∗ Lcyc, (5.12)

where L12
adv and L21

adv are adversarial losses, Lcyc is the cycle consistent loss, λc is the

corresponding hyper-parameter. The expressions for these losses are as follows.

L12
adv = E

x∼PB
[D12(xB)] + E

x∼PA
[(D12(G12(xA))]

+ λ E
x∼PA

[(|∇D12(α12x− (1− α12G12(z)))| − 1)2,
(5.13)

L21
adv = E

x∼PA
[D21(xA)] + E

x∼PB
[(D21(G21(xB))]

+ λ E
x∼PB

[(|∇D21(α21x− (1− α21G21(z)))| − 1)2,
(5.14)

Lcyc = E
xA
[||xA −G21(G12(xA))||2]

+ E
xB
[||xB −G12(G21(xB))||2].

(5.15)

This scheme is particularly effective for dealing with mode collapse as it forces

each generator to produce a new output for each new input. However, training for

multi-domains (classes) is quite time-consuming as it needs to be repeated for each

new domain pairs. In the MNIST example, for each and every digit in domain B.

(c) Conditional variant of cycle generative adversarial network

A conditional variant of CycleGAN can be considered that adds extra information (a

label) to each input which is used to specify the desired output [191]. Returning to the

MNIST example as illustrated in Fig. 5.2, the first GAN receives a domain A image

together with a label yB ∈ {1, 2, ..., 9} at the generator G12 to generate the correspond-

ing yB domain image. Generated domain B images will compare with real domain B

images in the discriminator D12. At the same time, generated domain B images and

labels yA will be sent to the other generator G21 to reconstruct domain A images.

In the conditional case, the losses are:

97

5.2. METHODOLOGY

Reconstructed
domain A

G12Real
domain A

Generated domain ByB

yA

D12

Cycle consistency loss 12

G21

Adversarial loss
(fake or real)

Real domain B

Figure 5.2: The flow chart of a conditional CycleGAN.

L12
adv = E

x∼PB
[D12(xB|yB)]

+ E
x∼PA

[(D12(G12(xA|yB)|yB)]

+ λ E
x∼PA

[(∇D12(α12x− (1− α12G12(xA|yB)))

− 1|yB)2,

(5.16)

L21
adv = E

x∼PB
[D21(xA|yA)]

+ E
x∼PA

[(D21(G21(xB|yA)|yA)]

+ λ E
x∼PA

[(∇D21(α21x− (1− α21G21(xB|yA)))

− 1|yA)2,

(5.17)

Lcyc = E
xA
[||xA −G21(G12(xA|yB)|yA)||2]

+ E
xB
[||xB −G12(G21(xB|yA)|yB)||2].

(5.18)

(d) Residual networks

To address gradient degradation in deep neural networks, He et al. [192] proposed the

residual network (ResNet). The ResNet consists of a series of residual blocks, whose

98

5.2. METHODOLOGY

basic diagram is shown in Fig. 5.3 (a), the corresponding expression being

x
′
ResNet = x + Q(x), (5.19)

where Q(x) is the residual mapping, x is the input, and x
′
ResNet is the output from

Conv1D

Relu

IN

Conv1D

IN

x

Concat
x′ x′

R
es

id
ua

l b
lo

ck

(a)(a)

Global Pooling

Dense

Relu
Dense

Sigmoid

IN

̂x ̂x

Residual block

x′ x′

Dot

x

IN

Concat

(b)

Sq
ue

ez
e-

an
d-

ex
ci

ta
tio

n
m

ec
ha

ni
sm

ResNet

M-ResNet

Figure 5.3: The ResNet architecture: (a) the classical ResNet block; (b) the modified
ResNet block.

the residual block. Even though this process can release the pressure when adding

more layers to the neural network, it may cause a certain insensitivity to the inputs.

To this end, a modified ResNet network, i.e., ResNet with the squeeze-and-excitation

mechanism (SEM) [193], can be considered to enhance the sensitivity to the inputs.

SEM consists of the squeeze block and the excitation block. Firstly, the input vectors

are Q(x) and then input to the global average pooling (the squeeze block) is used to

shrink inputs in the squeeze stage:

x̂ = Fsq(Q(x)) =
1

H ×W

H

∑
i=1

W

∑
j=1

Q(x)(i, j), (5.20)

99

5.2. METHODOLOGY

where Fsq is the squeeze operation, x̂ is the output from the squeeze block, also known

as the input for the excitation block. Then in the excitation block, two dense layers are

used to learn the non-linear relationship between each channel, which is shown as

s = Fe(x̂, W) = f2(W2 × f1(W1 × x̂)), (5.21)

where Fe is the excitation operation, f1 and f2 are Relu and Sigmoid activations, re-

spectively; W1 and W2 are weights for these two dense layers; s is the weight for the

feature channel. Next, the output of excitation block s and the x̂ are combined through

the so-called ’dot’ operation, i.e.,

Fsem = Fscale(x̂× s), (5.22)

Finally, with instance normalization of Fsem, one gets (see also Fig. 5.3 (b)):

x
′
M−ResNet = Fscale(Fsem + x). (5.23)

(e) Metrics for generator selection

Selecting a generator during the adversarial learning is difficult since the convergence

curve is not decreasing monotonically, and the generator obtained in the last generator

may not be the best one. Therefore, keeping the current best generator is a crucial

aspect during GAN training.

The following model compatibility (MC) rate metric can be used to access the gen-

erator qualitatively:

MCi(D,F) = 1− e(D,F)i=K, K ≥ 0
e(D,F)i=0

,

subject to eK < e0

(5.24)

where i refers to the iteration number, e is the metric measuring how close D, the real

100

5.2. METHODOLOGY

data set, is from F , the corresponding generated data set. We defined e as follows:

ei =
1
|D|

|D|

∑
j=1
||xB(j), Gi

12(xA(j))||2

+ ||xA(j), Gi
21(xB(j))||2.

(5.25)

where ||.||2 as the Euclidean metric. The lower the value of this expression the better,

meaning that the generated domain has more overlapped with the real domain.

As for the MC rate, initially, e0 is large but will be reduced with training. The closer

the two data sets D and F are, the closer ei will be to zero, the closer MCi(D,F) will

be of to 1. The current best generator is the one with the highest MC.

5.2.2 Procedure of our proposed approach

The whole procedure of the proposed model is shown in Algorithm 1. Besides, the

Algorithm for calculating SWD is specified in Algorithm 2.

Algorithm 1 Sliced Wasserstein conditional CycleGAN
input : Mini batch images xA and yB in source domain; Mini batch images xB and yA

in target domain; number of iterations S;batch size K.
output: Gbest: The generator yielding max MC rate over the considered number of

epochs, K.
Set MaxMC rate= 0 for i = 1 to S do

for j = 1 to K do
Calculate adversarial losses (L12

adv and L21
adv) by (5.16) and (5.17) with Sliced Wass-

restein distance. (See Algorithm 2)
Calculate cycle consistency losses Lcyc with (5.18).
Obtain the overall losses for conditional CycleGAN through (5.12).
Calculate the initial L2 distance with (5.24).
Update and optimize weights θ ∈ {θg12, θg21, θd12, θd21}
Calculate the updated L2 distance with (5.24)
Calculate the current MC rate using with (5.25) if MC > MaxMC then

MaxMC = MC Gbest = Gi
end

end
end
return Gbest

101

5.3. EXPERIMENTS

Algorithm 2 Sliced Wasserstein distance
input : Images x ∈ {xA, xB}; Generated images y ∈ {G12(xA), G21(xB)}; sample size

n;number of random projections m, learning rate α.
output: Optimized weight θg
while θg not converged do

Sample random projection directions Ω = {r1:m}; Inirial loss Lg=0.
for each ri ∈ Ω do

xr ← {rTxi}n
i=1,yr ← {rTyi}n

i=1;
xr

s ← sorted xr , yr
s ← sorted yr with (5.7) and (5.8) ;

Lg ← Lg +
1
n ||xr

s − yr
s||2;

end

return Lg
m

θ ← θ − α∇θ Lg
end

5.3 Experiments

Two data sets are considered: the MNIST data set and an in-house six-of-freedom in-

dustrial robot data set acquired for fault diagnosis.

5.3.1 MNIST data set

(a) Neural network architectures

The network architectures of the generator and the discriminator in both CycleGAN

and conditional CycleGAN are shown in Fig. 5.4.

As shown in Fig. 5.4, in the unconditional generator, the input images went through

two CNN blocks (CNN block down) and two modified ResNet blocks to enhance fea-

tures. Finally, these features are sent to two transposed CNN blocks (CNN block up)

and one transposed CNN for generating synthetic images. The activation of the last

layer in the generator is the tanh. Moreover, the details of CNN and the modified

CNN blocks are given in 5.4 (c). For the architecture of the unconditional discrimina-

tor, the input is the same as the generator as it also receives digit images. The input

goes through two convolutional layers with both instance normalization and leaky

Relu. The output is flattened through one dense layer to get logits whereas dropout

rate was set to 0.3. The architectures for the conditional CycleGAN are similar to the

102

5.3. EXPERIMENTS

CNN block down:

CNN
[Filters,kernel size,strides,padding]

Instance normalization
Activation= Leaky Relu

CNN block up:

Transpose CNN
[Filters,kernel size,strides,padding]

Instance normalization
Activation= Relu

Output size=(1)

CNN
[64,(4,4),(2,2),padding=same]

Instance normalization
Activation=Leaky Relu

Dropout=0.3

CNN
[128,(4,4),(2,2),padding=same]

Instance normalization
Activation=Leaky Relu

Dropout=0.3

Flatten and Dense layer

CNN block down
[64,(4,4),(2,2),padding=same]

 CNN block down
[128,(4,4),(2,2),padding=same]

CNN block up
[64,(4,4),(2,2),padding=same]

CNN block up
[32,(4,4),(2,2),padding=same]

CNN
[1,(4,4),(1,1),padding=same]

Activation=tanh

Output size=(28,28,1)

(a) Generator (b) Discriminator (c) Block descriptions

Input size=(28,28,1)
 Conditional case: Embedding input label size=(28,28,1)

(Modified) ResNet block
[64,(1,5),(1,1),padding=same]

K>2 Yes
No

Figure 5.4: The architecture of CycleGAN for MNIST dataset.

unconditional one just described except for the inputs that were extended with labels.

(b) Hyper-parameter settings

In the experiment of CycleGAN and conditional CycleGAN, the learning rates of both

the discriminator and the generator are set to 2e-4 with the Adam optimizer. A sliced

Wasserstein distance with 32 random projections (r = 32) was considered for the gen-

erator loss. The L2 norm is used in cycle consistency loss with the λ|c set to 10. The

batch size is 32, and the number of the max iterations is 1,000 and 10,000 for the uncon-

ditional and conditional CyleGAN, respectively.

5.3.2 The industrial robot data set

In this experiment, six different fault conditions were taken into consideration. These

conditions are (1) Health condition (C0); (2) Cracking in Planetary gear A (C4); (3) Bro-

ken tooth in Planetary gear A (C5); (4) Broken tooth in Sun gear A (C6); (5) Cracking in

Planetary gear B (C7) and (6) Broken tooth in Planetary gear B (C8) (See Table 2.1).

103

5.3. EXPERIMENTS

(a) Neural network architectures

The neural network architectures of the generator and the discriminator in both Cycle-

GAN and conditional CycleGAN are shown in Fig. 5.5.

Unlike the MNIST dataset that uses 2-dimensional CNN for computation, the robot

data set resorts to 1-dimensional CNN (1D-CNN). For instance, if the input vector has

N features, it needs to be reshaped to the shape of (N,1) to be suitable for the 1D-CNN.

Therefore, the input for the generator and the discriminator is a series of reshaped

vectors. Similar to the above description of the MNIST dataset, the unconditional Cy-

cleGAN only receives data from each domain. The features are sent to two CNN blocks

and went through two Modified ResNet blocks. Repeat this operation three times to

get the output of these blocks. Then the output is sent to two CNN blocks and went

through two Modified ResNet blocks (repeat three times) to generate synthetic data.

The tanh activation is used at the end of the model. (see Fig. 5.5 (a) Generator). For the

discriminator, the input will go through seven CNN blocks (CNN block down 2) and

then flattened to get logits (Fig. 5.5 (a) Discriminator).

As for the conditional CycleGAN, the features are extended with labels to sent

to three CNN blocks (CNN block down 1) and went through four Modified ResNet

blocks. In turn, the output of these blocks is sent to two other transposed CNN blocks

(CNN block up) to produce synthetic data. Again, in the last layer, the tanh activation

is applied (see Fig. 5.5 (b) Generator). For the discriminator, the input will go through

six CNN blocks (CNN block down 2) and then flattened to get logits (Fig. 5.5 (b) Dis-

criminator). The descriptions and architectures of CNN block down 1, CNN block up,

and CNN block down 2 are illustrated in Fig. 5.5 (b) Block descriptions.

Leaky relu activations are used in every convolutional layer except for the last layer

of the generators. In contrast, the relu activation was used for the convolutional layer

in the discriminators as no vanished gradient was observed for such modules.

104

5.3. EXPERIMENTS

CNN block down 1
[64,(1,5),(1,2),padding=same]

CNN block down 1
[128,(1,5),(1,2),padding=same]

Transpose CNN
[1,(1,5),(1,1),padding=same]

Activation=tanh

Output size=(1,1024,1)

Input size=(1,1024,1)

CNN block down 1
[128,(1,5),(1,2),padding=same]

CNN block down 1
[256,(1,5),(1,2),padding=same]

(Modified) ResNet block
[128,(1,5),(1,1),padding=same]

K>2 Yes
No

(Modified) ResNet block
[256,(1,5),(1,1),padding=same]

K>2 Yes
No

CNN block down 1
[512,(1,5),(1,2),padding=same]

CNN block down 1
[1024,(1,5),(1,2),padding=same]

(Modified) ResNet block
[1024,(1,5),(1,1),padding=same]

K>2 Yes
No

CNN block up
[512,(1,5),(1,2),padding=same]

CNN block up
[256,(1,5),(1,2),padding=same]

CNN block up
[128,(1,5),(1,2),padding=same]

CNN block up
[64,(1,5),(1,2),padding=same]

(Modified) ResNet block
[256,(1,5),(1,1),padding=same]

K>2 Yes
No

(Modified) ResNet block
[64,(1,5),(1,1),padding=same]

K>2 Yes
No

CNN block up
[32,(1,5),(1,2),padding=same]

 Discriminator

Output size=(1)

Flatten

CNN block down 2
[64,(1,5),(1,2),padding=same]

CNN block down 2
[128,(1,5),(1,2),padding=same]

CNN block down 2
[256,(1,5),(1,2),padding=same]

CNN block down 2
[512,(1,5),(1,2),padding=same]

CNN block down 2
[1024,(1,5),(1,2),padding=same]

CNN block down 2
[1,(1,5),(1,2),padding=same]

CNN block down 2
[32,(1,5),(1,2),padding=same]

Input size=(1,1024,1)

Generator
(a)

CNN block down 1
[64,(1,5),(1,2),padding=same]

CNN block down 1
[128,(1,5),(1,2),padding=same]

Transpose CNN
[1,(1,5),(1,1),padding=same]

Activation=tanh

Output
size=(1,1024,1)

 Generator Discriminator

CNN block down 1:
CNN

[Filters,kernel size,strides,padding]

Instance normalization
Activation= Leaky Relu

 Block descriptions

Input size=(1,1024,1) with embedding input label
size=(1,1024,1)

(Modified) ResNet block
[64,(1,5),(1,1),padding=same]

K>4 Yes
No

CNN block down 1
[64,(1,5),(1,2),padding=same]

CNN block up
[32,(1,5),(1,2),padding=same]

CNN block up
[16,(1,5),(1,2),padding=same]

CNN block up:

Transpose CNN
[Filters,kernel size,strides,padding]

Instance normalization
Activation= Relu

CNN block down 2:

CNN
[Filters,kernel size,strides,padding]

Instance normalization
Activation= Relu

Output size=(1)

Flatten

CNN block down 2
[64,(1,5),(1,2),padding=same]

CNN block down 2
[128,(1,5),(1,2),padding=same]

CNN block down 2
[256,(1,5),(1,2),padding=same]

CNN block down 2
[512,(1,5),(1,2),padding=same]

CNN block down 2
[1024,(1,5),(1,2),padding=same]

CNN block down 2
[1,(1,5),(1,2),padding=same]

(b)

Figure 5.5: The architecture of CycleGAN for the industrial robot data set.: (a) uncon-
ditional CycleGAN; (b) conditional CycleGAN.

105

5.4. RESULTS AND DISCUSSION

(b) Hyper-parameter settings

Again, a sliced Wasserstein distance with 32 random projections (r = 32) was used in

the loss function of the generator. The L2 norm is also considered in the cycle consis-

tency loss with the λc set to 10. The discriminator and generator learning rates were

1e-4 and 2e-5, respectively. All modules were being optimized with Adam. The max-

imum iterations of unconditional and conditional CycleGAN were set to 10,000 and

18,000, respectively.

5.3.3 Considered scenarios

Four scenarios were taken into consideration:

1: wd, i.e., Wasserstein distance loss in both CycleGAN and conditional CycleGAN

with the neural network architecture of the ResNet;

2: wd-sem, i.e., Wasserstein distance loss in both CycleGAN and conditional Cycle-

GAN with the neural network architecture of the modified ResNet;

3: swd, i.e., sliced Wasserstein distance loss in both CycleGAN and conditional Cy-

cleGAN with the neural network architecture of the ResNet;

4: swd-sem, i.e., sliced Wasserstein distance loss in both CycleGAN and conditional

CycleGAN with the neural network architecture of the modified ResNet.

5.4 Results and discussion

5.4.1 Unconditional CycleGAN

Fig. 5.6 shows a two-dimensional visualization of the (high-dimensional) feature space

using t-distributed stochastic neighbor embedding (t-SNE) [194]. In the figure, C0

(shown in red) presents the class of handwriting ’0’ (viewed as the source domain)

while C1 (shown in green) stands for the digit ’6’ (viewed as the target domain). G0

stands for the generated data of class C0, while G1 denotes the generated data of class

106

5.4. RESULTS AND DISCUSSION

C1. At the beginning of the training (shown in Fig. 5.6), the examples of each one of

these classes are well separated. For data augmentation purposes, the goal is to gener-

ate G0 and G1 as close as possible to C0 and C1, respectively. That would correspond to

a successful data transference from the source to the target domain. From this figure, it

is apparent that the SWD-based CycleGAN scenarios (swd and swd-sem) are perform-

ing better when compared to the vanilla CycleGAN (scenarios wd and wd-sem). The

modified residual network scenario (swd-sem) appears to outperform the others.

The same relative performance was also observed for the robot data set as illus-

trated in Fig. 5.7. In this figure, the number 1 (in red) stands for the nominal condition

C0. In contrast, the number 2 (in green) stands for condition C1. Moreover, numbers 0

and 3 denote the generated data of C0 and C1, respectively. Again, it is apparent that

SWD-based CycleGANs outperform WD-based CycleGANs.

For the sake of statistical analysis, 30 independent runs (with different random

weights) were executed for each scenario. The MC rate is used to measure the per-

formance of each scenario. The results obtained for each scenario are presented in the

boxplots in Fig. 5.8. A boxplot consists of the min, the median (red line), and the max

values, as well as outliers, of a given data sample. From this figure, one can be found

that on the MNIST dataset, the median MC rate is i) wd: 57.86%; ii) wd-sem: 54.26%;

iii) swd: 62.17%; and vi) swd-sem: 61.78%. For the industrial robot dataset, the me-

dian MC rate is i) wd: 93.22%; ii) wd-sem: 81.90%; iii) swd: 99.40%; and vi) swd-sem:

99.21%.

For accessing training efficiency, a threshold on the MC rate was set to check the

minimum iterations required to reach such a threshold. MC thresholds of 60% for the

MNIST dataset and 99.50% for the industrial robot data set were set. The results shown

in Fig. 5.9 are (a). For the MNIST data set, we observed that to reach MC = 60%, the

average steps for each scenario are i) wd: 427; i)wd-sem: 419; iii) swd: 125; and vi)

swd-sem: 73.

For the industrial robot data set, the average number of iterations for reaching an

MC of 99.5% in each scenario are i) wd: 7561; i)wd-sem: 5078; iii) swd: 130; and vi)

107

5.4. RESULTS AND DISCUSSION

t-S
N

E
2

t-SNE 1
-20 0 20 40-60

-40

-20

0

20

40

60

-40 60

(a)
t-S

N
E

2

t-SNE 1
-20 0 20 40-60

-40

-20

0

20

40

60

-40

(b)

-40
t-SNE 1

-20 0 20 40

t-S
N

E
2

-60

-40

-20

0

20

40

60

(c)

t-S
N

E
2

t-SNE 1
-20 0 20 40-60

-40

-20

0

20

40

60

-40

(d)

t-S
N

E
2

t-SNE 1
-20 0 20 40-60

-40

-20

0

20

40

60

-40

(e)

Figure 5.6: t-SNE visualization with the MNIST dataset: (a) initial state; (b) wd ;(c)
wd-sem; (d) swd and (e) swd-sem.

108

5.4. RESULTS AND DISCUSSION

t-S
N

E
2

t-SNE 1
-20 0 20 40

-40

-20

0

20

40

-40

(a)

t-S
N

E
2

-20

0

20

40

t-SNE 1
-20 0 20 40-40

(b)

t-S
N

E
2

-10
0

10
20
30

-20
-30

t-SNE 1
-10 0 5 10-15 -5 15

(c)

t-S
N

E
2

-20

0

20
40

60

-40
-60

t-SNE 1
-20 0 10 20-30 -10 30

(d)

t-SNE 1
-20 0 10 20-30 -10 30

t-S
N

E
2

-10

0

10

20

-20

(e)

Figure 5.7: t-SNE visualization with the industrial robot dataset: (a) initial state; (b) wd
;(c) wd+sem; (d) swd and (e) swd+sem. 109

5.4. RESULTS AND DISCUSSION

40

M
C

 ra
te

 (%
)

80
70
60
50

30
20

wd wd-sem swd swd-sem
Different scenarios

(a)

85

M
C

 ra
te

 (%
)

100
95
90

80
75

wd wd-sem swd swd-sem
Different scenarios

(b)

Figure 5.8: The Boxplot of different scenarios: (a) MNIST dataset;(b) Industrial robot
dataset.

400

N
um

be
r o

f i
te

ra
tio

n 1000
800
600

200
0

wd wd-sem swd swd-sem
Different scenarios

(a)

8000

6000

4000

2000

0N
um

be
r o

f i
te

ra
tio

n

wd wd-sem swd swd-sem
Different scenarios

(b)

Figure 5.9: Dispersion of the required number of iterations to reach the same level of
performance, over 30 independent runs: (a) MNIST dataset ;(b) Industrial robot.

swd-sem: 39.

This is, SWD-based models need way fewer iterations to achieve the same perfor-

mance level when compared with their counterparts equipped with WD. In the case

of the robot, scenario swd required 1 (one) order of magnitude less iterations than the

original one (scenario wd) while scenario swd-sem required 2 (two) orders of magni-

tude fewer iterations than the corresponding one (wd-sem).

To quantitatively evaluate the results of Fig. 5.8, a statistical analysis was per-

formed. The Friedman test is used for checking possible differences among the dis-

tributions. If such a difference exists, then a post hoc test, i.e., the Wilcoxon test, is

used for ranking (see [167] for details). Friedman test yielded a pFriedman = 0.0455 in the

110

5.4. RESULTS AND DISCUSSION

Table 5.1
Wilcoxon post-hoc results of unconditional CycleGAN for the four studied scenarios.

Dataset Comparison p-value Winner

MNIST

wd vs. wd-sem 8.16× 10−6 wd-sem
wd vs. swd 5.26× 10−6 swd

wd vs. swd-sem 6.94× 10−4 swd-sem
wd-sem vs. swd 3.789× 10−6 swd

wd-sem vs. swd-sem 3.789× 10−6 swd-sem
swd vs. swd-sem 1.88× 10−4 swd-sem

Industrial robot

wd vs. wd-sem 8.167× 10−5 wd
wd vs. swd 5.25× 10−6 swd

wd vs. swd-sem 6.914× 10−4 swd-sem
wd-sem vs. swd 3.78× 10−6 swd

wd-sem vs. swd-sem 3.78× 10−6 swd-sem
swd vs. swd-sem 1.88× 10−4 swd-sem

MNIST data set and a pFriedman = 2.4 ×10−13 in the industrial robot data set, revealing

that the null-hypothesis must be rejected (i.e., there is a statistically significant differ-

ence among samples) and therefore post hocs were ran whose results are shown in

Table 5.2.

From Table 5.1 shows that scenario swd-sem has three wins for both the MNSIT

and the industrial robot data sets, ranking first among other scenarios. Do this relative

performance also hold for the conditional cycleGAN?

5.4.2 Conditional CycleGAN

Figs. 5.10 and 5.11 present t-SNE projection of real feature space into the plan. For the

MNIST data set, the source domain is the class of digits ’0’ and the remaining classes of

digits ’1’ to ’9’ are defined as different target domains. Notice that, in the conditional

CycleGAN, the source domain is transferred to the target domain specified by an input

label. In the initial state (shown in Fig. 5.10 (a)), the corresponding generated data sets

(G1 to G9) are far away from the real data sets (C1 to C9). As shown in Fig 5.10 (b)

to (d), denoting each one of the four above mentioned scenarios, after training, the

generated data sets become closer to their corresponding real data sets, the swd-sem

scenario having the largest inter-class distance among all others, as desired.

Fig. 5.11 (a) shows the generated data for G1 to G5 are distinct from the real data at

111

5.4. RESULTS AND DISCUSSION

t-S
N

E
2

t-SNE 1
-20 0 20 40

-60

-40

-20

0

20

40

60

-40 60

(a)

t-S
N

E
2

-60

-40

-20

0

20

40

60

t-SNE 1
-20 0 20 40-40 60

(b)

t-S
N

E
2

-60

-40

-20

0

20

40

60

t-SNE 1
-20 0 20 40-40 60

(c)

t-S
N

E
2

-60

-40

-20

0

20

40

60

t-SNE 1
-20 0 20 40-40 60

(d)

t-S
N

E
2

-60

-40

-20

0

20

40

60

t-SNE 1
-20 0 20 40-40 60

(e)

Figure 5.10: t-SNE visualization with the MNIST data set: (a) initial learning state; (b)
wd ;(c) wd-sem; (d) swd and (e) swd-sem.

112

5.4. RESULTS AND DISCUSSION

Table 5.2
Wilcoxon post-hoc results for the four studied scenarios with conditional CycleGAN .

Dataset Comparison p-value Winner

MNIST

wd vs. wd-sem 4.35× 10−4 wd-sem
wd vs. swd 1.36× 10−5 swd

wd vs. swd-sem 3.51× 10−6 swd-sem
wd-sem vs. swd 1.03× 10−3 swd

wd-sem vs. swd-sem 8.46× 10−6 swd-sem
swd vs. swd-sem 9.9× 10−4 swd-sem

Industrial robot

wd vs. wd-sem 1.4× 10−2 wd
wd vs. swd 1.45× 10−5 swd

wd vs. swd-sem 2.84× 10−6 swd-sem
wd-sem vs. swd 2.9× 10−4 swd

wd-sem vs. swd-sem 2.847× 10−6 swd-sem
swd vs. swd-sem 1.7× 10−4 swd-sem

the beginning of the training. Fig 5.11 (b) to (e) show the obtained results after training

for different scenarios. From the result presented in the figure, it is apparent that swd-

sem outperforms all the others.

Fig. 5.12 shows the dispersion of the MC rate obtained from 30 independent runs.

From this, we can find that for the MNIST data set, the median MC rate is i) wd: 54%;

ii) wd-sem: 54.42%; iii) swd: 54.80%; and vi) swd-sem: 55.16%, and for the industrial

robot i) wd: 98.96%; ii) wd-sem: 99.29%; iii) swd: 99.69%; and vi) swd-sem: 99.73%.

Since SWD has a faster convergence rate than WD in unconditional CycleGAN,

considering its generalization performance, we further evaluate this phenomenon in

conditional CycleGAN as shown in Fig. 5.13. A threshold of MC 54% for the MNIST

data set and 99.5% for the robot was set. For MNIST the average number of iterations

required were i) wd: 1,560; i)wd-sem: 1,466; iii swd: 1,153; and vi) swd-sem: 1,080.

For the robot, the average number of iterations required were i) wd: 16,249; i)wd-sem:

15,637; iii) swd: 13,668; and vi) swd-sem: 13,034.

Again, SWD-based models needed fewer iterations than their traditional counter-

parts; not as notorious as the unconditional case, though.

Statistical tests of hypotheses yielded the results displayed in Table 5.2. From the

above analysis, one can find that swd-sem outperforms all the others for both MNIST

and the industrial robot data sets.

113

5.4. RESULTS AND DISCUSSION

t-S
N

E
2

-40

-20

0

20

40

t-SNE 1
-20 0 20 40-40

(a)

t-SNE 1
-20 0 20 40-40

t-S
N

E
2

-40

-20

0

20

40

(b)

t-SNE 1
-20 0 20 40-40

t-S
N

E
2

-40

-20

0

20

40

(c)

t-SNE 1
-20 0 20 40-40

t-S
N

E
2

-40

-20

0

20

40

(d)

t-SNE 1
-20 0 20 40-40

t-S
N

E
2

-40

-20

0

20

40

(e)

Figure 5.11: t-SNE visualization with the industrial robot data set: (a) initial learning
state; (b) wd ;(c) wd-sem; (d) swd and (e) swd-sem.

114

5.4. RESULTS AND DISCUSSION

53

M
C

 ra
te

 (%
) 56

55
54

52
51

wd wd-sem swd swd-sem
Different scenarios

(a)

95M
C

 ra
te

 (%
)

98
97
96

94
93

wd wd-sem swd swd-sem
Different scenarios

99
100

(b)

Figure 5.12: Boxplots for different scenarios: (a) MNIST; (b) Industrial robot.

2000

N
um

be
r o

f i
te

ra
tio

n 5000

4000

3000

1000

wd wd-sem swd swd-sem
Different scenarios

(a)

10000

N
um

be
r o

f i
te

ra
tio

n 18000

14000
12000

8000

16000

wd wd-sem swd swd-sem
Different scenarios

(b)

Figure 5.13: The convergence curves for the different scenarios: (a) MNIST; (b) Indus-
trial robot.

115

5.4. RESULTS AND DISCUSSION

wd-sem
swd-sem

G
en

er
at

or
 lo

ss

1000080006000400020000
-4

-3

-2

-1

0

Number of iterations
(a)

wd-sem
swd-sem

D
is

cr
im

in
at

or
 lo

ss

1000080006000400020000
-6
-4

Number of iterations

0

4
2

6
8

-2

(b)

Figure 5.14: Typical convergence curve on MNIST data set for (a) Generator; (b) Dis-
criminator.

wd-sem
swd-sem

Number of iterations
0 10000 140006000 180002000

G
en

er
at

or
 lo

ss

-6

-4

-2

0

2

(a)

wd-sem
swd-sem

0 10000 140006000 180002000

20

40

60

80

100

0

Number of iterations

××10 3
D

is
cr

im
in

at
or

 lo
ss

(b)

Figure 5.15: Typical convergence curve on the industrial robot data set for (a) Genera-
tor; (b) Discriminator.

Besides, convergence curves of both generator and discriminator on these two data

sets are shown in Fig. 5.14 and 5.15. Here, scenarios swd-sem and wd-sem are intro-

duced to see the phenomenon. It is clearly shown that scenario swd-sem has a smother

curve than wd-sem on MNIST or the industrial robot data set.

For generating these results, we spent about 40 days in google colab with the fol-

lowing configurations:

• 1 GPU named Tesla V100.

• The tensorflow version is 2.3.0.

116

5.5. CONCLUSIONS

5.5 Conclusions

Generative adversarial networks (GANs) are becoming the tool of election for data

generation. This is particularly so in data-driven fault diagnosis, where data from the

nominal state is relatively accessible to be acquired while data from the different faulty

states can be expensive to acquire, if possible. Without a balanced data set for training,

fault classifiers simply do not have an acceptable out-of-sample performance.

One of the main problems in practical applications of GANs is the oscillatory be-

havior of loss during training and mode collapse. The loss function used plays a crucial

role in the first issue. Mode collapse can be addressed by resorting to CycleGANs, a

combination of two GANs used in such a way that for each input, a different synthetic

example should be generated and from which the original input can be reconstructed.

With the above two premises in mind, we advocate the employment of sliced Wasser-

stein distance in CycleGANs, which has shown smoother, faster, and more efficient

than the traditional Wasserstein CycleGAN to transfer abundant normal state data to

the different scarce faulty data for an industrial robot fault diagnosis.

We based our findings on a comprehensive set of experiments over both the MNIST

data set and an in-house industrial robot fault diagnosis data set. These include the un-

conditional and conditional versions of CycleGAN with ResNet with and without the

squeeze-and-excitation mechanism. The conclusions are grounded on non-parametric

statistical tests of hypotheses over the MC rate metric. For the unconditional case, the

improvement in efficiency can be greater than 2 (two) orders of magnitude.

5.6 Appendix

This appendix specifies the used procedures. In the light of reproducible research, the

python code used for generating the presented MNIST examples is publicly available

from https://github.com/pzq522362451/SW-CycleGAN

117

https://github.com/pzq522362451/SW-CycleGAN

6
Conclusions and Future Research

In which we present a summary of the main results of this dissertation and pinpoint

some paths for future follow-ups.

6.1 Conclusions

This dissertation has presented work relevant to a new insight into the relationships

between loss functions and GAN and the impact of those relationship on the GAN-

training and performance. In the following, we present a summary of the main results

119

6.1. CONCLUSIONS

and deliverables from this dissertation.

6.1.1 Exploit GANs for data augmentation

The deep learning-based fault diagnosis task needs a large amount of data. However,

fault data acquisition is more difficult in the mechanical system. Consequently, an

imbalanced data set can be obtained that cannot ensure good performance on the in-

telligent fault diagnosis. Therefore, it is necessary to acquire enough faulty data. With

some data augmentation techniques like SMOTE or VAE, researchers have the ability

to obtain a large dataset. In this work, we utilize GANs for data augmentation. The

results from this part of the work derive from our attempt to answer the following

questions:

• Can GAN replace oversampling techniques such as SMOTE for imbalanced data aug-

mentation in the industrial field?

In this context, we investigate GAN as an oversampling technique for data aug-

mentation. Generally, a WPT combined with GAN is used for feature generation while

an RF is used for fault classification. The features were firstly calculated using WPT,

then the acquired features were sent to WGAN for data generation. Finally, with a

balanced data set, a classification task is performed to show the feasibility of GAN for

data augmentation.

We performed a comprehensive evaluation of the impact of this framework on sev-

eral perspectives with different scenarios for comparison. The perspective, such as

generator selection, the number of training examples in each class, training data shuf-

fling, the distribution used for sampling input random data, and initial conditions, are

well discussed. Interestingly enough, the obtained experimental results show that the

proposed framework can be viewed as an oversampling tool in terms of data augmen-

tation.

An additional argument supporting the effectiveness of our approach comes from

that it was possible to increase the performance of the fault diagnosis for an industrial

120

6.1. CONCLUSIONS

robot for any of the GANs-based models over classical undersampling and oversam-

pling (SMOTE) methods. Besides, in many cases like prognostics and health manage-

ment, without enough data set, the performance of the monitoring capability of the

industrial system will be decreased. GAN is an efficient tool to get rid of the limitation

of data imbalance state, which can enhance the monitoring capability in PHM.

6.1.2 Developing GANs with V-matrix based loss function

Due to the adversarial learning between the discriminator and the generator in GAN,

the loss curve is not steady which makes GAN training become oscillating. It is still

difficult to train them to obtain a generator with the desired performance. Different

from traditional deep learning-based models where the lower loss tends to appear in

the last iteration, GAN cannot ensure the best value at the end of training. To this end,

we performed a study to address the training oscillation problem from a perspective

of the loss function and pose the following research question:

• Can V-matrix be used as the loss function of GAN to address training oscillation?

Besides, traditional GAN can learn the data distribution from a limited faulty data

class where there are many kinds of faulty data classes in the industrial system. For

the new faulty data class, it needs to be sent to this model to learn the new distribution

again to generate enough data that will bring time cost for training. Thus, we also pose

the question:

• Can GAN generates different kinds of faulty data classes at one time in the industrial

field?

To answer these two questions, in this work, we propose a generalization of both

mean square error (MSE) GAN and Wasserstein GAN (WGAN) with gradient penalty,

referred to as VGAN. Within conditional WGAN with gradient penalty, VGAN resorts

to the Vapnik V-matrix-based criterion that generalizes MSE. Also, a novel stop crite-

rion is proposed to keep track of the most suitable model during training.

121

6.1. CONCLUSIONS

The proposed algorithm is tested with different scenarios through a comprehensive

set of experiments on both the MNIST case and a fault-diagnosis task for an industrial

robot where the generative model is used as a data augmentation tool for dealing with

imbalanced datasets is presented. The statistical analysis of the results demonstrates

that the proposed model in this study outperforms other models, including vanilla

GAN, conditional WGAN with and without conventional regularization, and synthetic

minority oversampling technique, a classic data augmentation technique.

6.1.3 Considering the Sliced Wasserstein distance on CycleGAN

In this context, we aimed at answering the following:

• Can the sliced Wasserstein distance be used in GAN for data estimation?

• Can the sliced Wasserstein distance be better than the Wasserstein distance for data trans-

fer using CycleGAN?

• Can we use a conditional version of CycleGAN for data transfer to enhance the training

efficiency?

In this regard, we propose CycleGAN with the sliced Wasserstein distance (SWD)

to transfer abundant normal data of the industrial robot to different scarce fault data.

In this work, we evaluate the feasibility of SWD from unconditional CycleGAN to the

conditional CycleGAN with and without squeeze-and-excitation mechanisms.

We believe that the point of departure is worthy since we found further develop-

ments in the training stabilization of GAN. We traduced SWD, which is usually for

the measurement of two distributions distance into the loss function of CycleGAN,

and demonstrated its generalization ability and feasibility via a comprehensive set of

experiments.

The results are also encouraging because, in the proposed experiments, the pro-

posed algorithm converges faster and is more stable than using the Wasserstein dis-

tance. More importantly, this algorithm in the conditional state can transfer normal

122

6.2. FUTURE RESEARCH

data to different fault data by sending desired label information. In addition, there is

no need to re-train the model several times, which reduces the computational cost.

In the following section we draw some lines for further developments regarding

Chapters 3, 4 and 5.

6.2 Future Research

GAN currently holds the state-of-the-art on most image generation tasks according to

some evaluation metrics like FID, IS, or MS-SSIM. However, those metrics do not fully

capture diversities, and there is a report showing that GAN captures less diversity of

data distribution than likelihood-based models. With three main problems on GAN,

it is very challenging to be well trained. This dissertation leaves some open questions

that we hope can provide a foothold for further developments.

1. The results in Chapter 3 state that the application of GANs for the data aug-

mentation of the industrial robot is very promising and indicates that the proposed

framework is plausible. Hence we can use GAN as the oversampling tool to satisfy the

data need for the intelligent fault diagnosis. However, the time series is transformed

with Wavelet packet transform with features calculation. We would like to raise the

opportunity to answer "Can GAN has the ability to generate the raw time series signals?"

2. Considering the training instability problem in GAN, Chapter 4 used a V-matrix

based loss function as a regularization on WGAN to improve the generation perfor-

mance. The GANs we used here is the conditional version of GANs that can generate

desired outputs. In this setting, the following question seems pertinent "Can we show

the theoretical convergence under V-matrix based losses?"

3. Wasserstein GAN has shown remarkable progress in GANs’ research. In Chapter

5, we consider an alternative loss function named the Sliced Wasserstein distance for

GAN for transferring data from abundant normal state data to different scarce faulty

data. So we pose the following question "Can the sliced Wasserstein distance completely

capture the data distribution in any GANs model?"

123

6.2. FUTURE RESEARCH

Drawbacks in GAN make it challenging to scale and apply to new domains. In

[195, 196, 197], they use likelihood-based models to achieve GAN-like sample quality

except for VAE. Thus the likelihood-based models capture more diversity and are easy

to train than GAN.

With this in mind, the diffusion model [198] is a class of likelihood-based mod-

els that have been shown to generate high-quality samples. It shows easy scalability,

distribution convergence, and, importantly, a stationary training process than GAN.

124

Bibliography

[1] Pawel Andrzej Laski and Mateusz Smykowski. Using a development platform
with an stm32 processor to prototype an inexpensive 4-dof delta parallel robot.
Sensors, 21(23), 2021.

[2] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing
of gans for improved quality, stability, and variation. CoRR, abs/1710.10196,
2017.

[3] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced
wasserstein discrepancy for unsupervised domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10285–
10295, 2019.

[4] Jianyu Long, Yaoxin Qin, Zhe Yang, Yunwei Huang, and Chuan Li. Discrimi-
native feature learning using a multiscale convolutional capsule network from
attitude data for fault diagnosis of industrial robots. Mechanical Systems and Sig-
nal Processing, 182:109569, 2023.

[5] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics and Au-
tonomous Systems, 53(2):73–88, 2005.

[6] Bouchra Abouelanouar, Mostafa Elamrani, Bachir Elkihel, and Fabienne De-
launois. Application of wavelet analysis and its interpretation in rotating ma-
chines monitoring and fault diagnosis. a review. Int J Eng Technol, 7(4):3465–3471,
2018.

[7] Yiyuan Gao, Dejie Yu, and Haojiang Wang. Fault diagnosis of rolling bearings
using weighted horizontal visibility graph and graph fourier transform. Mea-
surement, 149:107036, 2020.

[8] Georgios Mademlis, Nimananda Sharma, Yujing Liu, and Junfei Tang. Zero-
sequence current reduction technique for electrical machine emulators with dc-
coupling by regulating the svm zero states. IEEE Transactions on Industrial Elec-
tronics, 2021.

[9] Hui Zhang, Ping Chen, and Qiang Wang. Fault diagnosis method based on eemd
and multi-class logistic regression. In 2018 3rd International Conference on Smart
City and Systems Engineering (ICSCSE), pages 859–863. IEEE, 2018.

[10] Wanke Yu and Chunhui Zhao. Online fault diagnosis for industrial processes
with bayesian network-based probabilistic ensemble learning strategy. IEEE
Transactions on Automation Science and Engineering, 16(4):1922–1932, 2019.

125

6.2. FUTURE RESEARCH

[11] Imad Abdallah, V Dertimanis, H Mylonas, Konstantinos Tatsis, Eleni Chatzi,
N Dervili, K Worden, and Eoghan Maguire. Fault diagnosis of wind turbine
structures using decision tree learning algorithms with big data. In Safety and
Reliability–Safe Societies in a Changing World, pages 3053–3061. CRC Press, 2018.

[12] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria
Dada, Abubakar Malah Umar, Okafor Uchenwa Linus, Humaira Arshad, Abdul-
lahi Aminu Kazaure, Usman Gana, and Muhammad Ubale Kiru. Comprehen-
sive review of artificial neural network applications to pattern recognition. IEEE
Access, 7:158820–158846, 2019.

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[14] Feng Jia, Yaguo Lei, Liang Guo, Jing Lin, and Saibo Xing. A neural network
constructed by deep learning technique and its application to intelligent fault
diagnosis of machines. Neurocomputing, 272:619–628, 2018.

[15] Zhuyun Chen and Weihua Li. Multisensor feature fusion for bearing fault diag-
nosis using sparse autoencoder and deep belief network. IEEE Transactions on
Instrumentation and Measurement, 66(7):1693–1702, 2017.

[16] Wenfeng Gong, Yuanzhe Wang, Meiling Zhang, Ehsan Mihankhah, Hui Chen,
and Danwei Wang. A fast anomaly diagnosis approach based on modified cnn
and multi-sensor data fusion. IEEE Transactions on Industrial Electronics, 2021.

[17] Jianyu Long, Shaohui Zhang, and Chuan Li. Evolving deep echo state net-
works for intelligent fault diagnosis. IEEE Transactions on Industrial Informatics,
16(7):4928–4937, 2019.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In International conference on
machine learning, pages 448–456. PMLR, 2015.

[19] Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton. Acoustic mod-
eling using deep belief networks. IEEE transactions on audio, speech, and language
processing, 20(1):14–22, 2011.

[20] Nitish Srivastava and Russ R Salakhutdinov. Multimodal learning with deep
boltzmann machines. Advances in neural information processing systems, 25, 2012.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information process-
ing systems, 25, 2012.

[22] Willem E ávan der Linden et al. Tutorial review—data processing by neural
networks in quantitative chemical analysis. Analyst, 118(4):323–328, 1993.

[23] Aliaksei Sandryhaila and José MF Moura. Big data analysis with signal process-
ing on graphs: Representation and processing of massive data sets with irregular
structure. IEEE Signal Processing Magazine, 31(5):80–90, 2014.

126

6.2. FUTURE RESEARCH

[24] S Joe Qin. Process data analytics in the era of big data. AIChE Journal, 60(9):3092–
3100, 2014.

[25] Konstantinos Makantasis, Konstantinos Karantzalos, Anastasios Doulamis, and
Nikolaos Doulamis. Deep supervised learning for hyperspectral data classifica-
tion through convolutional neural networks. In 2015 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), pages 4959–4962. IEEE, 2015.

[26] Yuyan Zhang, Xinyu Li, Liang Gao, Lihui Wang, and Long Wen. Imbalanced data
fault diagnosis of rotating machinery using synthetic oversampling and feature
learning. Journal of manufacturing systems, 48:34–50, 2018.

[27] MingHong Han, Yaman Wu, Yunfeng Huang, and Yumin Wang. A fault diagno-
sis method based on improved synthetic minority oversampling technique and
svm for unbalanced data. In IOP Conference Series: Materials Science and Engineer-
ing, volume 1043, page 052034. IOP Publishing, 2021.

[28] Kun Yu, Tian Ran Lin, Hui Ma, Xiang Li, and Xu Li. A multi-stage semi-
supervised learning approach for intelligent fault diagnosis of rolling bearing
using data augmentation and metric learning. Mechanical Systems and Signal Pro-
cessing, 146:107043, 2021.

[29] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adver-
sarial networks. Communications of the ACM, 63(11):139–144, 2020.

[30] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
Computing Research Repository, page arXiv:1411.1784, 2014.

[31] Christian Ledig, Lucas Theis, Ferenc Huszár, José Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. Photo-realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4681–4690, 2017.

[32] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1125–1134, 2017.

[33] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision, pages 2223–2232, 2017.

[34] Funa Zhou, Shuai Yang, Hamido Fujita, Danmin Chen, and Chenglin Wen. Deep
learning fault diagnosis method based on global optimization gan for unbal-
anced data. Knowledge-Based Systems, 187:104837, 2020.

[35] Ziqiang Pu, Diego Cabrera, René-Vinicio Sánchez, Mariela Cerrada, Chuan Li,
and José Valente de Oliveira. Exploiting generative adversarial networks as an
oversampling method for fault diagnosis of an industrial robotic manipulator.
Applied Sciences, 10(21):7712, 2020.

127

6.2. FUTURE RESEARCH

[36] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. Advances in neural informa-
tion processing systems, 29, 2016.

[37] Ziqiang Pu, Diego Cabrera, René-Vinicio Sánchez, Mariela Cerrada, Chuan Li,
and José Valente de Oliveira. Exploiting generative adversarial networks as an
oversampling method for fault diagnosis of an industrial robotic manipulator.
Applied Sciences, 10(21), 2020.

[38] Vladimir Vapnik and Rauf Izmailov. V-matrix method of solving statistical infer-
ence problems. J. Mach. Learn. Res., 16(51):1683–1730, 2015.

[39] Vladimir Vapnik and Rauf Izmailov. Rethinking statistical learning theory: learn-
ing using statistical invariants. Machine Learning, 108(3):381–423, 2019.

[40] Shan Yang, Lei Xie, Xiao Chen, Xiaoyan Lou, Xuan Zhu, Dongyan Huang, and
Haizhou Li. Statistical parametric speech synthesis using generative adversar-
ial networks under a multi-task learning framework. In IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pages 685–691. IEEE, 2017.

[41] Ziqiang Pu, Diego Cabrera, Chuan Li, and José Valente de Oliveira. Vgan: Gener-
alizing mse gan and wgan-gp for robot fault diagnosis. IEEE Intelligent Systems,
pages 1–1, 2022.

[42] Sliced wasserstein cycle consistency generative adversarial networks for fault
data augmentation of an industrial robot. Expert Systems with Applications,
222:119754, 2023.

[43] Junjun Zhu, Quansheng Jiang, Yehu Shen, Chenhui Qian, Fengyu Xu, and Qixin
Zhu. Application of recurrent neural network to mechanical fault diagnosis: A
review. Journal of Mechanical Science and Technology, pages 1–16, 2022.

[44] S Manikandan and K Duraivelu. Fault diagnosis of various rotating equipment
using machine learning approaches–a review. Proceedings of the Institution of Me-
chanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2):629–642,
2021.

[45] Haoqiang Liu, Hongbo Zhao, Jiayue Wang, Shuai Yuan, and Wenquan Feng.
Lstm-gan-ae: A promising approach for fault diagnosis in machine health mon-
itoring. IEEE Transactions on Instrumentation and Measurement, 71:1–13, 2021.

[46] Qiao Xue, Guang Li, Yuanjian Zhang, Shiquan Shen, Zheng Chen, and Yong-
gang Liu. Fault diagnosis and abnormality detection of lithium-ion battery packs
based on statistical distribution. Journal of Power Sources, 482:228964, 2021.

[47] Jinde Zheng, Miaoxian Su, Wanming Ying, Jinyu Tong, and Ziwei Pan. Improved
uniform phase empirical mode decomposition and its application in machinery
fault diagnosis. Measurement, 179:109425, 2021.

[48] Adam Glowacz. Fault diagnosis of electric impact drills using thermal imaging.
Measurement, 171:108815, 2021.

128

6.2. FUTURE RESEARCH

[49] Kun Zhang, Chaoyong Ma, Yonggang Xu, Peng Chen, and Jianxi Du. Feature
extraction method based on adaptive and concise empirical wavelet transform
and its applications in bearing fault diagnosis. Measurement, 172:108976, 2021.

[50] Hao Wu, Xue Ma, and Chenglin Wen. Multilevel fine fault diagnosis method
for motors based on feature extraction of fractional fourier transform. Sensors,
22(4):1310, 2022.

[51] Yuguo Zhou, Shaoting Yan, Yanbo Ren, and Shiliang Liu. Rolling bearing fault
diagnosis using transient-extracting transform and linear discriminant analysis.
Measurement, 178:109298, 2021.

[52] Van-Cuong Nguyen, Duy-Tang Hoang, Xuan-Toa Tran, Mien Van, and Hee-Jun
Kang. A bearing fault diagnosis method using multi-branch deep neural net-
work. Machines, 9(12):345, 2021.

[53] Te Han, Chao Liu, Rui Wu, and Dongxiang Jiang. Deep transfer learning with
limited data for machinery fault diagnosis. Applied Soft Computing, 103:107150,
2021.

[54] Tongyang Pan, Jinglong Chen, Jun Pan, and Zitong Zhou. A deep learning net-
work via shunt-wound restricted boltzmann machines using raw data for fault
detection. IEEE Transactions on Instrumentation and Measurement, 69(7):4852–4862,
2019.

[55] Shengnan Tang, Shouqi Yuan, and Yong Zhu. Data preprocessing techniques in
convolutional neural network based on fault diagnosis towards rotating machin-
ery. IEEE Access, 8:149487–149496, 2020.

[56] Gurkan Aydemir and Burak Acar. Anomaly monitoring improves remaining
useful life estimation of industrial machinery. Journal of Manufacturing Systems,
56:463–469, 2020.

[57] Kwangsuk Lee, Jae-Kyeong Kim, Jaehyong Kim, Kyeon Hur, and Hagbae Kim.
Cnn and gru combination scheme for bearing anomaly detection in rotating ma-
chinery health monitoring. In 2018 1st IEEE International conference on knowledge
innovation and invention (ICKII), pages 102–105. IEEE, 2018.

[58] Harsh S Dhiman, Dipankar Deb, SM Muyeen, and Innocent Kamwa. Wind tur-
bine gearbox anomaly detection based on adaptive threshold and twin support
vector machines. IEEE Transactions on Energy Conversion, 36(4):3462–3469, 2021.

[59] Jianpeng Ma, Chengwei Li, and Guangzhu Zhang. Rolling bearing fault diag-
nosis based on deep learning and autoencoder information fusion. Symmetry,
14(1):13, 2021.

[60] Yang Wang, Miaomiao Yang, Yong Li, Zeda Xu, Jie Wang, and Xia Fang. A multi-
input and multi-task convolutional neural network for fault diagnosis based on
bearing vibration signal. IEEE Sensors Journal, 21(9):10946–10956, 2021.

[61] Wenliao Du, Zhen Guo, Chuan Li, Xiaoyun Gong, and Ziqiang Pu. From
anomaly detection to novel fault discrimination for wind turbine gearboxes with

129

6.2. FUTURE RESEARCH

a sparse isolation encoding forest. IEEE Transactions on Instrumentation and Mea-
surement, 71:1–10, 2022.

[62] Ying Zheng, Wei Zhou, Weidong Yang, Lang Liu, Yuanle Liu, and Yong Zhang.
Multivariate/minor fault diagnosis with severity level based on bayesian deci-
sion theory and multidimensional rbc. Journal of Process Control, 101:68–77, 2021.

[63] Ziqiang Pu, Chuan Li, Shaohui Zhang, and Yun Bai. Fault diagnosis for wind
turbine gearboxes by using deep enhanced fusion network. IEEE Transactions on
Instrumentation and Measurement, 70:1–11, 2020.

[64] Anh-Duc Pham and Hyeong-Joon Ahn. High precision reducers for industrial
robots driving 4th industrial revolution: state of arts, analysis, design, perfor-
mance evaluation and perspective. International journal of precision engineering
and manufacturing-green technology, 5(4):519–533, 2018.

[65] Alessandro Gasparetto and Lorenzo Scalera. A brief history of industrial robotics
in the 20th century. Advances in Historical Studies, 8(1):24–35, 2019.

[66] Meng Fanzhao, Zhao Hongxia, and Wei Dongpo. Design of a three-degree-of-
freedom redundant drive parallel robot. In Journal of Physics: Conference Series,
volume 1676, page 012201. IOP Publishing, 2020.

[67] Xiaolin Zhang, Peng Han, Li Xu, Fei Zhang, Yongping Wang, and Lu Gao. Re-
search on bearing fault diagnosis of wind turbine gearbox based on 1dcnn-pso-
svm. IEEE Access, 8:192248–192258, 2020.

[68] Zhaokun Zhang, Guangqiang Xie, Zhufeng Shao, and Clément Gosselin. Kine-
matic calibration of cable-driven parallel robots considering the pulley kinemat-
ics. Mechanism and Machine Theory, 169:104648, 2022.

[69] Hexu Yang, Xiaopeng Li, Jinchi Xu, Yajing Guo, and Baitao Li. Modeling and
fatigue characteristic analysis of the gear flexspline of a harmonic reducer. Math-
ematics, 10(6):868, 2022.

[70] Yuanchang Lin, Wencheng Sun, Guotian He, and Zhenjun Zhang. Overview
of robotic reducer testing technology. Journal of Physics: Conference Series,
2002(1):012025, aug 2021.

[71] Izaz Raouf, Hyewon Lee, and Heung Soo Kim. Mechanical fault detection based
on machine learning for robotic rv reducer using electrical current signature
analysis: a data-driven approach. Journal of Computational Design and Engineering,
9(2):417–433, 2022.

[72] Ting Ye and Lihong Zhao. Design of industrial robot teaching system based on
machine vision. In 2021 IEEE 5th Information Technology,Networking,Electronic and
Automation Control Conference (ITNEC), volume 5, pages 279–284, 2021.

[73] Weihua Li, Ruyi Huang, Jipu Li, Yixiao Liao, Zhuyun Chen, Guolin He, Ruqiang
Yan, and Konstantinos Gryllias. A perspective survey on deep transfer learning
for fault diagnosis in industrial scenarios: Theories, applications and challenges.
Mechanical Systems and Signal Processing, 167:108487, 2022.

130

6.2. FUTURE RESEARCH

[74] Chuanxia Jian, Kaijun Yang, and Yinhui Ao. Industrial fault diagnosis based on
active learning and semi-supervised learning using small training set. Engineer-
ing Applications of Artificial Intelligence, 104:104365, 2021.

[75] Tianci Zhang, Jinglong Chen, Fudong Li, Kaiyu Zhang, Haixin Lv, Shuilong He,
and Enyong Xu. Intelligent fault diagnosis of machines with small and imbal-
anced data: A state-of-the-art review and possible extensions. ISA Transactions,
119:152–171, 2022.

[76] Shaowei Liu, Hongkai Jiang, Zhenghong Wu, and Xingqiu Li. Data synthesis
using deep feature enhanced generative adversarial networks for rolling bearing
imbalanced fault diagnosis. Mechanical Systems and Signal Processing, 163:108139,
2022.

[77] Jungang Xu, Hui Li, and Shilong Zhou. An overview of deep generative models.
IETE Technical Review, 32(2):131–139, 2015.

[78] Aurélien Decelle and Cyril Furtlehner. Restricted boltzmann machine: Recent
advances and mean-field theory. Chinese Physics B, 30(4):040202, 2021.

[79] Yihui Xiong and Renguang Zuo. Robust feature extraction for geochemi-
cal anomaly recognition using a stacked convolutional denoising autoencoder.
Mathematical Geosciences, 54(3):623–644, 2022.

[80] Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech. In International Confer-
ence on Machine Learning, pages 5530–5540. PMLR, 2021.

[81] Hojjat Navidan, Parisa Fard Moshiri, Mohammad Nabati, Reza Shahbazian,
Seyed Ali Ghorashi, Vahid Shah-Mansouri, and David Windridge. Generative
adversarial networks (gans) in networking: A comprehensive survey & evalua-
tion. Computer Networks, 194:108149, 2021.

[82] Sixin Zhang. On the nash equilibrium of moment-matching gans for stationary
gaussian processes. ArXiv, abs/2203.07136, 2022.

[83] M Premkumar, Pradeep Jangir, C Ramakrishnan, G Nalinipriya, Hassan Haes
Alhelou, and B Santhosh Kumar. Identification of solar photovoltaic model pa-
rameters using an improved gradient-based optimization algorithm with chaotic
drifts. IEEE Access, 9:62347–62379, 2021.

[84] Slawomir Koziel and Anna Pietrenko-Dabrowska. Accelerated gradient-
based optimization of antenna structures using multifidelity simulations and
convergence-based model management scheme. IEEE Transactions on Antennas
and Propagation, 69(12):8778–8789, 2021.

[85] Chuan Li, Diego Cabrera, Fernando Sancho, René-Vinicio Sánchez, Mariela Cer-
rada, Jianyu Long, and José Valente de Oliveira. Fusing convolutional generative
adversarial encoders for 3d printer fault detection with only normal condition
signals. Mechanical Systems and Signal Processing, 147:107108.

131

6.2. FUTURE RESEARCH

[86] Wentao Mao, Yamin Liu, Ling Ding, and Yuan Li. Imbalanced fault diagnosis of
rolling bearing based on generative adversarial network: A comparative study.
IEEE Access, 7:9515–9530, 2019.

[87] Ziqiang Pu, Diego Cabrera, Yun Bai, and Chuan Li. A one-class generative adver-
sarial detection framework for multifunctional fault diagnoses. IEEE Transactions
on Industrial Electronics, 69(8):8411–8419, 2022.

[88] Wenqian Jiang, Yang Hong, Beitong Zhou, Xin He, and Cheng Cheng. A gan-
based anomaly detection approach for imbalanced industrial time series. IEEE
Access, 7:143608–143619, 2019.

[89] Chuan Li, Diego Cabrera, Fernando Sancho, René-Vinicio Sánchez, Mariela Cer-
rada, and José Valente de Oliveira. One-shot fault diagnosis of 3d printers
through improved feature space learning. IEEE Trans. On Industrial Electronics,
147:107108.

[90] You-ren Wang, Guo-dong Sun, and Qi Jin. Imbalanced sample fault diagnosis
of rotating machinery using conditional variational auto-encoder generative ad-
versarial network. Applied Soft Computing, page 106333, 2020.

[91] Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and Enhong Chen. Bidirectional
generative adversarial networks for neural machine translation. In Proceedings of
the 22nd conference on computational natural language learning, pages 190–199, 2018.

[92] Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. Improving neural machine
translation with conditional sequence generative adversarial nets. arXiv preprint
arXiv:1703.04887, 2017.

[93] Baojie Li, Claude Delpha, Demba Diallo, and A Migan-Dubois. Application of ar-
tificial neural networks to photovoltaic fault detection and diagnosis: A review.
Renewable and Sustainable Energy Reviews, 138:110512, 2021.

[94] Jasir Jawad, Alaa H Hawari, and Syed Javaid Zaidi. Artificial neural network
modeling of wastewater treatment and desalination using membrane processes:
A review. Chemical Engineering Journal, 419:129540, 2021.

[95] Victor Costa, Nuno Lourenço, João Correia, and Penousal Machado. Exploring
the evolution of gans through quality diversity. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, pages 297–305, 2020.

[96] Ian J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. CoRR,
abs/1701.00160, 2017.

[97] Jonas Adler and Sebastian Lunz. Banach wasserstein gan. Advances in neural
information processing systems, 31, 2018.

[98] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. Advances in neural information processing systems, 30, 2017.

[99] David Warde-Farley and Yoshua Bengio. Improving generative adversarial net-
works with denoising feature matching. In ICLR, 2017.

132

6.2. FUTURE RESEARCH

[100] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In Yoshua
Bengio and Yann LeCun, editors, 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings, 2016.

[101] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for sim-
plicity: The all convolutional net. In ICLR (workshop track), 2015.

[102] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 2813–2821, 2017.

[103] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In International conference on machine learning, pages 214–
223. PMLR, 2017.

[104] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of wasserstein gans. Advances in neural
information processing systems, 30, 2017.

[105] Jinrui Wang, Baokun Han, Huaiqian Bao, Mingyan Wang, Zhenyun Chu, and
Yuwei Shen. Data augment method for machine fault diagnosis using condi-
tional generative adversarial networks. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, 234(12):2719–2727, 2020.

[106] Yogesh Balaji, Martin Renqiang Min, Bing Bai, Rama Chellappa, and Hans Pe-
ter Graf. Conditional gan with discriminative filter generation for text-to-video
synthesis. In IJCAI, volume 1, page 2, 2019.

[107] Tao Hu, Chengjiang Long, and Chunxia Xiao. A novel visual representation on
text using diverse conditional gan for visual recognition. IEEE Transactions on
Image Processing, 30:3499–3512, 2021.

[108] Ayushman Dash, John Cristian Borges Gamboa, Sheraz Ahmed, Marcus Liwicki,
and Muhammad Zeshan Afzal. Tac-gan - text conditioned auxiliary classifier
generative adversarial network. CoRR, abs/1703.06412, 2017.

[109] Jon Gauthier. Conditional generative adversarial nets for convolutional face gen-
eration. Class project for Stanford CS231N: convolutional neural networks for visual
recognition, Winter semester, 2014(5):2, 2014.

[110] Shuyang Gu, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen, and Lu Yuan.
Mask-guided portrait editing with conditional gans. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 3436–3445,
2019.

[111] Hao Tang, Dan Xu, Nicu Sebe, Yanzhi Wang, Jason J Corso, and Yan Yan. Multi-
channel attention selection gan with cascaded semantic guidance for cross-view
image translation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2417–2426, 2019.

133

6.2. FUTURE RESEARCH

[112] Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. Towards diverse and nat-
ural image descriptions via a conditional gan. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2970–2979, 2017.

[113] Shunyu Yao, Tzu Ming Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill Free-
man, and Josh Tenenbaum. 3d-aware scene manipulation via inverse graphics.
Advances in neural information processing systems, 31, 2018.

[114] Minguk Kang, Woohyeon Joseph Shim, Minsu Cho, and Jaesik Park. Reboot-
ing ACGAN: Auxiliary classifier GANs with stable training. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, 2021.

[115] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learn-
ing. In International Conference on Learning Representations, 2017.

[116] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5967–5976, 2017.

[117] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adver-
sarial autoencoders. In International Conference on Learning Representations, 2016.

[118] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans. CoRR,
abs/1606.03498, 2016.

[119] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode
regularized generative adversarial networks. CoRR, abs/1612.02136, 2016.

[120] Gao Huang, Yang Yuan, Qiantong Xu, Chuan Guo, Yu Sun, Felix Wu, and Kilian
Weinberger. An empirical study on evaluation metrics of generative adversarial
networks. 2018.

[121] Abhay Yadav, Sohil Shah, Zheng Xu, David Jacobs, and Tom Goldstein. Stabi-
lizing adversarial nets with prediction methods. In International Conference on
Learning Representations, 2018.

[122] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image qual-
ity assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4):600–612, 2004.

[123] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative
models. In International Conference on Learning Representations, Apr 2016.

[124] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-resolution image synthesis and semantic manipulation with
conditional gans. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[125] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image
synthesis with auxiliary classifier GANs. In Doina Precup and Yee Whye Teh,

134

6.2. FUTURE RESEARCH

editors, Proceedings of the 34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research, pages 2642–2651. PMLR, 06–
11 Aug 2017.

[126] Partha Ghosh, Dominik Zietlow, Michael J. Black, Larry S. Davis, and Xiaochen
Hu. Invgan: Invertible gans. CoRR, abs/2112.04598, 2021.

[127] Yizhe Zhang, Zhe Gan, and Lawrence Carin. Generating text via adversarial
training. In NIPS workshop on Adversarial Training, volume 21, pages 21–32, 2016.

[128] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

[129] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky.
Adversarial learning for neural dialogue generation. In EMNLP, 2017.

[130] David Pfau and Oriol Vinyals. Connecting generative adversarial networks and
actor-critic methods. ArXiv, abs/1610.01945, 2016.

[131] Diego Cabrera, Fernando Sancho, Jianyu Long, René-Vinicio Sánchez, Shaohui
Zhang, Mariela Cerrada, and Chuan Li. Generative adversarial networks selec-
tion approach for extremely imbalanced fault diagnosis of reciprocating machin-
ery. IEEE Access, 7:70643–70653, 2019.

[132] Xiang Li, Wei Zhang, Qian Ding, and Jian-Qiao Sun. Intelligent rotating machin-
ery fault diagnosis based on deep learning using data augmentation. Journal of
Intelligent Manufacturing, 31(2):433–452, 2020.

[133] Cheng Peng, Qing Chen, Longxin Zhang, Lanjun Wan, and Xinpan Yuan. Re-
search on fault diagnosis of wind power generator blade based on sc-smote and
knn. Journal of Information Processing Systems, 16(4):870–881, 2020.

[134] Siyu Shao, Pu Wang, and Ruqiang Yan. Generative adversarial networks for data
augmentation in machine fault diagnosis. Computers in Industry, 106:85–93, 2019.

[135] Te Han, Chao Liu, Wenguang Yang, and Dongxiang Jiang. A novel adversarial
learning framework in deep convolutional neural network for intelligent diag-
nosis of mechanical faults. Knowledge-based systems, 165:474–487, 2019.

[136] Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. Quant gans:
deep generation of financial time series. Quantitative Finance, 20(9):1419–1440,
2020.

[137] Hung Ba. Improving detection of credit card fraudulent transactions using gen-
erative adversarial networks. ArXiv, abs/1907.03355, 2019.

[138] Eric Wu, Kevin Wu, and William Lotter. Synthesizing lesions using contextual
gans improves breast cancer classification on mammograms, 2020.

[139] Stephan Schmidt, P Stephan Heyns, and Konstantinos C Gryllias. A discrep-
ancy analysis methodology for rolling element bearing diagnostics under vari-
able speed conditions. Mechanical Systems and Signal Processing, 116:40–61, 2019.

135

6.2. FUTURE RESEARCH

[140] Martha A Zaidan, Robert F Harrison, Andrew R Mills, and Peter J Fleming.
Bayesian hierarchical models for aerospace gas turbine engine prognostics. Ex-
pert Systems with Applications, 42(1):539–553, 2015.

[141] Xiaohang Jin, Zijun Que, Yi Sun, Yuanjing Guo, and Wei Qiao. A data-driven
approach for bearing fault prognostics. IEEE Transactions on Industry Applications,
55(4):3394–3401, 2019.

[142] Miao He and David He. Deep learning based approach for bearing fault diagno-
sis. IEEE Transactions on Industry Applications, 53(3):3057–3065, 2017.

[143] Haining Liu, Chengliang Liu, and Yixiang Huang. Adaptive feature extraction
using sparse coding for machinery fault diagnosis. Mechanical Systems and Signal
Processing, 25(2):558–574, 2011.

[144] Chunzhi Wu, Pengcheng Jiang, Chuang Ding, Fuzhou Feng, and Tang Chen.
Intelligent fault diagnosis of rotating machinery based on one-dimensional con-
volutional neural network. Computers in Industry, 108:53–61, 2019.

[145] Yuyan Zhang, Xinyu Li, Liang Gao, Wen Chen, and Peigen Li. Intelligent fault di-
agnosis of rotating machinery using a new ensemble deep auto-encoder method.
Measurement, 151:107232, 2020.

[146] Changqing Shen, Jiaqi Xie, Dong Wang, Xingxing Jiang, Juanjuan Shi, and
Zhongkui Zhu. Improved hierarchical adaptive deep belief network for bear-
ing fault diagnosis. Applied Sciences, 9(16):3374, 2019.

[147] Shengcai Deng, Zhiwei Cheng, Chuan Li, Xingyan Yao, Zhiqiang Chen, and
René-Vinicio Sanchez. Rolling bearing fault diagnosis based on deep boltzmann
machines. In 2016 Prognostics and System Health Management Conference (PHM-
Chengdu), pages 1–6. IEEE, 2016.

[148] Chang Nho Cho, Ji Tae Hong, and Hong Ju Kim. Neural network based adaptive
actuator fault detection algorithm for robot manipulators. Journal of Intelligent &
Robotic Systems, 95(1):137–147, 2019.

[149] Huaqing Wang, Shi Li, Liuyang Song, and Lingli Cui. A novel convolu-
tional neural network based fault recognition method via image fusion of multi-
vibration-signals. Computers in Industry, 105:182–190, 2019.

[150] Qianli Ma, Enhuan Chen, Zhenxi Lin, Jiangyue Yan, Zhiwen Yu, and Wing WY
Ng. Convolutional multitimescale echo state network. IEEE Transactions on Cy-
bernetics, 2019.

[151] Guangzheng Hu, Huifang Li, Yuanqing Xia, and Lixuan Luo. A deep boltzmann
machine and multi-grained scanning forest ensemble collaborative method and
its application to industrial fault diagnosis. Computers in Industry, 100:287–296,
2018.

[152] Jinjiang Wang, Kebo Wang, Yangshen Wang, Zuguang Huang, and Ruijuan Xue.
Deep boltzmann machine based condition prediction for smart manufacturing.
Journal of Ambient Intelligence and Humanized Computing, 10(3):851–861, 2019.

136

6.2. FUTURE RESEARCH

[153] Kuei-Peng Lee, Bo-Huei Wu, and Shi-Lin Peng. Deep-learning-based fault de-
tection and diagnosis of air-handling units. Building and Environment, 157:24–33,
2019.

[154] Haidong Shao, Hongkai Jiang, Xingqiu Li, and Tianchen Liang. Rolling bearing
fault detection using continuous deep belief network with locally linear embed-
ding. Computers in Industry, 96:27–39, 2018.

[155] Marsela Polic, Ivona Krajacic, Nathan Lepora, and Matko Orsag. Convolutional
autoencoder for feature extraction in tactile sensing. IEEE Robotics and Automa-
tion Letters, 4(4):3671–3678, 2019.

[156] Gianluca D’Elia, Emiliano Mucchi, and Marco Cocconcelli. On the identifica-
tion of the angular position of gears for the diagnostics of planetary gearboxes.
Mechanical Systems and Signal Processing, 83:305–320, 2017.

[157] Martha A Zaidan, Andrew R Mills, Robert F Harrison, and Peter J Fleming. Gas
turbine engine prognostics using bayesian hierarchical models: A variational
approach. Mechanical Systems and Signal Processing, 70:120–140, 2016.

[158] Jaouher Ben Ali, Nader Fnaiech, Lotfi Saidi, Brigitte Chebel-Morello, and Farhat
Fnaiech. Application of empirical mode decomposition and artificial neural net-
work for automatic bearing fault diagnosis based on vibration signals. Applied
Acoustics, 89:16–27, 2015.

[159] Ke Yan, Zhiwei Ji, Huijuan Lu, Jing Huang, Wen Shen, and Yu Xue. Fast and
accurate classification of time series data using extended elm: Application in
fault diagnosis of air handling units. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 49(7):1349–1356, 2017.

[160] Jamshed Iqbal, Raza Ul Islam, Syed Zain Abbas, Abdul Attayyab Khan, and
Syed Ali Ajwad. Automating industrial tasks through mechatronic systems–a
review of robotics in industrial perspective. Tehnički vjesnik, 23(3):917–924, 2016.

[161] F Caccavale, P Cilibrizzi, F Pierri, and L Villani. Actuators fault diagnosis for
robot manipulators with uncertain model. Control Engineering Practice, 17(1):146–
157, 2009.

[162] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelli-
gence research, 16:321–357, 2002.

[163] MY Gokhale, Daljeet Kaur Khanduja, et al. Time domain signal analysis using
wavelet packet decomposition approach. Int’l J. of Communications, Network and
System Sciences, 3(03):321, 2010.

[164] Lori Mann Bruce, Cliff H Koger, and Jiang Li. Dimensionality reduction of hy-
perspectral data using discrete wavelet transform feature extraction. IEEE Trans-
actions on geoscience and remote sensing, 40(10):2331–2338, 2002.

[165] Chuan Li, René-Vinicio Sanchez, Grover Zurita, Mariela Cerrada, Diego Cabrera,
and Rafael E Vásquez. Gearbox fault diagnosis based on deep random forest

137

6.2. FUTURE RESEARCH

fusion of acoustic and vibratory signals. Mechanical Systems and Signal Processing,
76:283–293, 2016.

[166] J Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30, 2006.

[167] Fannia Pacheco, José Valente de Oliveira, René-Vinicio Sánchez, Mariela Cer-
rada, Diego Cabrera, Chuan Li, Grover Zurita, and Mariano Artés. A statistical
comparison of neuroclassifiers and feature selection methods for gearbox fault
diagnosis under realistic conditions. Neurocomputing, 194:192 – 206, 2016.

[168] Mark A Friedl and Carla E Brodley. Decision tree classification of land cover
from remotely sensed data. Remote sensing of environment, 61(3):399–409, 1997.

[169] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomfor-
est. R news, 2(3):18–22, 2002.

[170] Pui Y Lee, Siu C Hui, and Alvis Cheuk M Fong. Neural networks for web content
filtering. IEEE intelligent systems, 17(5):48–57, 2002.

[171] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[172] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learn-
ing. arXiv preprint arXiv:1605.09782, 2016.

[173] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. Least squares generative adversarial networks. In Proceedings of
the IEEE international conference on computer vision, pages 2794–2802, 2017.

[174] Wei Li, Xiang Zhong, Haidong Shao, Baoping Cai, and Xingkai Yang. Multi-
mode data augmentation and fault diagnosis of rotating machinery using mod-
ified acgan designed with new framework. Advanced Engineering Informatics,
52:101552, 2022.

[175] Vasily Shapeev, Sergey Golushko, Vasily Belyaev, Luka Bryndin, and Pavel Kir-
illov. New versions of the least-squares collocation method for solving differen-
tial and integral equations. In Journal of Physics: Conference Series, volume 1715,
page 012031. IOP Publishing, 2021.

[176] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence
and stability of gans. In International Conference on Learning Representations, 2018.

[177] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[178] Jae Hyun Lim and J. C. Ye. Geometric gan. ArXiv, abs/1705.02894, 2017.

[179] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spec-
tral normalization for generative adversarial networks. CoRR, abs/1802.05957,
2018.

138

6.2. FUTURE RESEARCH

[180] Dustin Tran, Rajesh Ranganath, and David Blei. Hierarchical implicit models and
likelihood-free variational inference. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[181] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode
regularized generative adversarial. 2016.

[182] Alexander Levine and Soheil Feizi. Wasserstein smoothing: Certified robustness
against wasserstein adversarial attacks. In International Conference on Artificial
Intelligence and Statistics, pages 3938–3947. PMLR, 2020.

[183] Kimia Nadjahi. Sliced-Wasserstein distance for large-scale machine learning: theory,
methodology and extensions. PhD thesis, Institut polytechnique de Paris, 2021.

[184] I. Deshpande, Z. Zhang, and A. Schwing. Generative modeling using the sliced
wasserstein distance. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3483–3491, Los Alamitos, CA, USA, jun 2018. IEEE
Computer Society.

[185] Ke Zhao, Hongkai Jiang, Chaoqiang Liu, Yanfeng Wang, and Ke Zhu. A new
data generation approach with modified wasserstein auto-encoder for rotating
machinery fault diagnosis with limited fault data. Knowledge-Based Systems,
238:107892, 2022.

[186] Dror Freirich, Tomer Michaeli, and Ron Meir. A theory of the distortion-
perception tradeoff in wasserstein space. Advances in Neural Information Process-
ing Systems, 34, 2021.

[187] Sajjad Piradl and Ali Shadrokh. Robust minimum distance estimation of a linear
regression model with correlated errors in the presence of outliers. Communica-
tions in Statistics-Theory and Methods, 50(23):5488–5498, 2021.

[188] Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling
using the sliced wasserstein distance. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3483–3491, 2018.

[189] Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Sim-
sekli. Fast approximation of the sliced-wasserstein distance using concentra-
tion of random projections. Advances in Neural Information Processing Systems, 34,
2021.

[190] Hao Tang, Hong Liu, Dan Xu, Philip HS Torr, and Nicu Sebe. Attentiongan: Un-
paired image-to-image translation using attention-guided generative adversarial
networks. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[191] Yongyi Lu, Yu-Wing Tai, and Chi-Keung Tang. Attribute-guided face generation
using conditional cyclegan. In Proceedings of the European conference on computer
vision (ECCV), pages 282–297, 2018.

[192] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

139

6.2. FUTURE RESEARCH

[193] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

[194] Yongming Han, Shuang Liu, Di Cong, Zhiqiang Geng, Jinzhen Fan, Jingyang
Gao, and Tingrui Pan. Resource optimization model using novel extreme learn-
ing machine with t-distributed stochastic neighbor embedding: Application to
complex industrial processes. Energy, 225:120255, 2021.

[195] Tomoki Uemura, Janne J Näppi, Yasuji Ryu, Chinatsu Watari, Tohru Kamiya, and
Hiroyuki Yoshida. A generative flow-based model for volumetric data augmen-
tation in 3d deep learning for computed tomographic colonography. International
journal of computer assisted radiology and surgery, 16(1):81–89, 2021.

[196] Liangwei Zhang, Jing Lin, Haidong Shao, Zhicong Zhang, Xiaohui Yan, and
Jianyu Long. End-to-end unsupervised fault detection using a flow-based model.
Reliability Engineering & System Safety, 215:107805, 2021.

[197] Haoliang Sun, Ronak Mehta, Hao H Zhou, Zhichun Huang, Sterling C Johnson,
Vivek Prabhakaran, and Vikas Singh. Dual-glow: Conditional flow-based gen-
erative model for modality transfer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10611–10620, 2019.

[198] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image
synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

140

	List of Tables
	List of Figures
	List of Abbreviations
	 1 Introduction
	Context and Motivation
	Research Aims
	Main Research Contributions
	Thesis Outline

	 2 The problem: Fault diagnosis of an industrial robot
	Introduction
	The industrial robot
	The transmission system
	The perception system
	The movement of the industrial robot

	Challenge in the fault diagnosis of the industrial robot
	Experimental apparatus of the industrial robot
	Experimental test rig
	Data measurement
	Imbalanced data set

	Conclusion

	 3 GAN Overview
	Introduction
	Theoretical Background on GANs
	Artificial Neural networks
	Adversarial idea
	Loss function
	Optimization strategy
	Challenges black in GAN

	Important variants of GAN
	Deep convolutional GAN
	Least square GAN
	Wasserstein GAN
	Conditional GAN
	Auxiliary classifier GAN
	Bidirectional GAN
	Cycle consistency GAN
	Auto-encoder with GAN

	Evaluation metrics for GAN
	Inception score
	Mode score
	Fréchet Inception distance
	Multi-scale structural similarity (MS-SSIM)

	Application of GAN
	Image and computer vision
	Machine translation
	Industrial machinery fault diagnosis
	Other applications

	Case study: GAN as an oversampling method for data augmentation in an industrial robot fault diagnosis task
	Introduction
	Methodology
	Experiments
	Results and discussion

	Conclusion
	Appendix
	Random forests for fault classification

	 4 VGAN: a V-matrix based generative adversarial network
	Introduction
	Methodology
	On GAN, Wasserstein GAN and conditional Wasserstein GAN
	VGAN
	On the early stopping in GANs

	Experiments
	The MNIST data set
	The industrial robot data set
	Considered scenarios

	Results and discussion
	Comparisons of the different scenarios
	Convergence curves
	On imbalance data sets
	On the model sensitivity
	Results with MNIST data set

	Conclusion
	Appendix

	 5 SW-CylcyeGAN: a sliced Wasserstein distance-based cycle consistency generative adversarial network
	Introduction
	Methodology
	Sliced Wasserstein CycleGAN
	Procedure of our proposed approach

	Experiments
	MNIST data set
	The industrial robot data set
	Considered scenarios

	Results and discussion
	Unconditional CycleGAN
	Conditional CycleGAN

	Conclusions
	Appendix

	 6 Conclusions and Future Research
	Conclusions
	Exploit GANs for data augmentation
	Developing black GANs with V-matrix based loss function
	Considering the Sliced Wasserstein distance on CycleGAN

	Future Research

