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Abstract. From both practical and theoretical perspectives,
it is essential to be able to express observed salinity distri-
butions in terms of simplified theoretical models, which en-
able qualitative assessments to be made in many problems
concerning water resource utilization (such as intake of fresh
water) in estuaries. In this study, we propose a general and
analytical salt intrusion model inspired by Guo’s general unit
hydrograph theory for flood hydrograph prediction in a wa-
tershed. To derive a simple, general and analytical model of
salinity distribution, we first make four hypotheses on the
longitudinal salinity gradient based on empirical observa-
tions; we then derive a general unit hydrograph for the salin-
ity distribution along a partially mixed or well-mixed estu-
ary. The newly developed model can be well calibrated using
a minimum of three salinity measurements along the estuary
axis and does converge towards zero when the along-estuary
distance approaches infinity asymptotically. The theory has
been successfully applied to reproduce the salt intrusion in
21 estuaries worldwide, which suggests that the proposed
method can be a useful tool for quickly assessing the spread
of salinity under a wide range of riverine and tidal conditions
and for quantifying the potential impacts of human-induced
and natural changes.

1 Introduction

An estuary is the place where the fresh water meets the saline
water. It is crucial to quantify the spatiotemporal salinity dy-
namics determined by the competition between the advective
salt flux due to river flow and the dispersive salt flux caused
by tidal currents, since it directly affects water quality and
the related water resource management in general. It is well
known that the key to quantifying the salinity distribution
along an estuary is the efficient dispersion coefficient, which
incorporates all mixing mechanisms that counteract the ad-
vective salt transport and regards the complex estuarine sys-
tem as a whole. With the one-dimensional steady-state salt
balance equation, indicating the equilibrium between the ad-
vective and dispersive transports of salt, it is possible to de-
rive an empirical relationship for the salt intrusion in estuar-
ies (Prandle, 1981; Savenije,1986, 1989, 1993, 2005, 2012;
Lewis and Uncles, 2003; Gay and O’Donnell, 2007, 2009;
Kuijper and Van Rijn, 2011; Cai et al., 2015; Zhang and
Savenije, 2017, 2018). Amongst the proposed solutions, the
empirical model using Van der Burgh’s coefficient (e.g., Van
der Burgh, 1972; Savenije, 1986) functions well in a wide
range of estuaries worldwide (e.g., Savenije, 2005, 2012). In
addition to practical applications, such an empirical model
can be very useful from a physical perspective when its the-
oretical basis is well understood.
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Recently, Guo (2022a, b, c) revisited the classical unit hy-
drograph (UH) theory, which is widely used in hydrology for
predicting a flood hydrograph from a known storm in a wa-
tershed. Based on three hypotheses on instantaneous UHs de-
rived from observations, he obtained a general and analytical
expression which represents the discharge from a continuous
excess rainfall occurring at a uniform rate for an indefinite
period. This so-called S-hydrograph is expressed in terms
of a unit volume of excess rainfall and is used to derive a
UH of any storm duration. It appears that the shape of the S-
hydrograph is rather similar to the salinity distribution curve
along estuaries, while the instantaneous UH curve resembles
the longitudinal salinity gradient. This correspondence opens
the possibility that the UH method can be applied to describe
the spread of salinity in estuaries.

The objective of this study is to derive a general and ana-
lytical expression of the salinity distribution and thus to de-
rive the salinity gradient analytically following Guo’s UH
method (Guo, 2022a, b, c). To this end, we start with a review
on Guo’s general UH theory, together with the Savenije’s
empirical salt intrusion model, which is derived from the
steady-salt balance equation and performs well against nu-
merous salt measurements along many different estuaries
(e.g., Savenije, 2005, 2012). Subsequently, we make four hy-
potheses based on empirical observations and follow the gen-
eral UH theory, which leads to a newly developed analyti-
cal model for the spread of salinity in estuaries. The model
was then applied to real estuaries with a wide range of river-
ine and tidal conditions. After that, the proposed model was
compared with the conventional Savenije’s model to discuss
the physical foundation of the proposed model, which re-
quires further study in the future.

2 Review of the general unit hydrograph and empirical
salt intrusion model

2.1 General unit hydrograph theory

It was shown that a classical instantaneous UH u(t) [T−1]
(representing the discharge due to a unit volume input of ex-
cess rainfall) with regard to time t [T] should satisfy the fol-
lowing properties (Chow et al., 1988):

u(t)= 0 for t ≤ 0, (1)
0≤ u(t)≤ up for t > 0, (2)
u(t)→ 0 for t→∞, (3)

and
∞∫

0

u(t)dt = 1, (4)

where up [T−1] in Eq. (2) represents the peak discharge of
the instantaneous UH. Equation (4) is the mass conserva-
tion equation, indicating that the total outflow volume (i.e.,

Figure 1. Illustration of the instantaneous UH analytically com-
puted using Eq. (6) for given values of α1 = α2 = 3.

the left side) corresponds to the unit volume input (i.e., the
right side). Making use of the definition of the instantaneous
UH u(t)= dU/dt (where U represents the dimensionless S-
hydrograph), Eq. (4) can be rewritten as follows:

U (∞)= 1. (5)

Nash (1957) derived an analytical expression for the instanta-
neous UH that satisfies Eqs. (1)–(4), which is the well-known
Nash’s gamma function, written as follows:

u(t)=
1

α10(α2)

(
t

α1

)α2−1

exp(−t/α1) , (6)

where α1 and α2 are model parameters, while 0(α2) is the
gamma function. Figure 1 illustrates an arbitrary distribution
(t = 0–30) of the instantaneous UH for given values of α1 =

α2 = 3. It can be seen from Fig. 1 that the instantaneous UH
consists of the following two distinct regions: the rising limb
described by the power function in Eq. (6) and the recessing
limb described by the exponential function in Eq. (6).

Although Eq. (6) is widely used as the analytical solution
of an instantaneous UH, it has the following two weaknesses:
(1) it has an initial condition of zero, which is not necessarily
the case for real instantaneous UHs; and (2) a general and an-
alytical solution of the S-hydrograph does not exist. In order
to remove these weaknesses, Guo (2022a) made the follow-
ing three hypotheses on the instantaneous UH based on em-
pirical observations: (1) the instantaneous UH increases ex-
ponentially along the rising limb; (2) the instantaneous UH
decreases exponentially along the recessing limb; (3) the in-
stantaneous UH tends towards 0, and the S-hydrograph tends
towards 1, as t tends towards infinity. Subsequently, he de-
rived the following general and analytical solution for the
S-hydrograph:

U (t)= 1−
{
1+β2 exp

[
β1
(
t/tp

)
− 1

]}−1/β2 , (7)
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Figure 2. Illustration of the S-hydrograph and instantaneous UH
analytically computed using Eqs. (7) and (9), respectively, for given
values of β1 = β2 = 3 and tp = 10.

where β1 is the dimensionless rising coefficient determined
by the watershed characteristics, β2 is the dimensionless re-
cessing coefficient affected by the downstream water surface
condition, while t = tp corresponds to the inflection point
with the maximum instantaneous UH as follows:

du
dt

∣∣∣∣
t=tp

=
d2U

dt2

∣∣∣∣
t=tp

= 0. (8)

With Eq. (7), the instantaneous UH u(t) is expressed as

u(t)=

β1 exp
[
β1
(
t/tp

)
− 1

]{
1+β2 exp

[
β1
(
t/tp

)
− 1

]}−(1+1/β2)

tp
. (9)

To illustrate the general and analytical solutions of the S-
hydrograph from Eq. (7) and of the instantaneous UH from
Eq. (9), Fig. 2 shows the computed U(t) (solid line) and u(t)
(dashed line) for given values of β1 = β2 =3 and tp =10.

2.2 Savenije’s salt intrusion model

In estuaries, the key to deriving an empirical relationship for
the salinity distribution is the dispersion coefficient, which
is either constant (e.g., Gay and O’Donnell, 2007) or vari-
able (e.g., Van der Burgh, 1972; Prandle, 1981). Based on
the effective tidal average dispersion under steady-state con-
ditions, Van der Burgh (1972) proposed the following empir-
ical relationship for the dispersion coefficient:

∂D

∂x
=−K

|Q|

A
, (10)

whereD [L2T−1] is the longitudinal dispersion coefficient, x
[L] is the longitudinal coordinate measured in the upstream
direction, Q [L3T−1] is the fresh-water discharge, A [L2] is

the tidally averaged cross-sectional area, andK is the dimen-
sionless Van der Burgh coefficient.

It is assumed that the longitudinal cross-sectional area fol-
lows an exponential function as follows:

A= A0 exp(−x/a), (11)

where A0 is the cross-sectional area at the estuary mouth,
and a is the convergence length. Integration of Eq. (10) and
taking into account the exponential variation of the cross-
sectional area using Eq. (11) yields the following analytical
description of the longitudinal effective dispersion (Savenije,
2005, 2012):

D

D0
= 1−

Ka|Q|

D0A0

[
exp(x/a)− 1

]
, (12)

where D0 is the dispersion coefficient at the estuary mouth.
With Eq. (10), Savenije (2005, 2012) derived a one-

dimensional empirical model for salt intrusion based on the
tidally averaged cross-sectional mass conservation equation:

F =−|Q|S−AD
∂S

∂x
, (13)

where F [MT−1] and S [ML−3] are the tidally averaged salt
flux and salinity, respectively.

In a steady-state situation with no net salt flux (i.e., F = 0),
Eq. (13) can be rewritten as follows:

dS
S
=−
|Q|

AD
dx. (14)

We can combine Eqs. (10) and (14) into a general relation-
ship between the dispersion coefficient and salinity through
the Van der Burgh’s coefficient as follows (Savenije, 2005,
2012):

D/D0 = (S/S0)
K , (15)

where S0 is the salinity concentration at the estuary mouth.
Combing Eqs. (12) and (15) yields the tidally averaged

salinity along an estuary as follows (Savenije, 2005, 2012):

S

S0
=

(
1−

Ka|Q|

D0A0

[
exp(x/a)− 1

])1/K

. (16)

To make Eq. (16) dimensionless, we introduce the following
dimensionless parameters:

S∗ =
S

S0
γ =

c0

ωa
D∗ =

|Q|c0

D0A0ω
x∗ =

xω

c0
, (17)

where S∗ is the dimensionless salinity that is scaled by the
value at the estuary mouth, γ represents the estuary shape
number describing the convergence rate of an estuary, ω is
the tidal frequency, D∗ is the dimensionless dispersion coef-
ficient representing the downstream dispersion condition, x∗
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is the dimensionless longitudinal coordinate that is normal-
ized by the frictionless wavelength in prismatic channels, and
c0 is the classical wave celerity of a frictionless progressive
wave, which is defined as

c0 =
√
gh/rS, (18)

in which g [LT−2] is the acceleration due to gravity, h [L]
is the tidally averaged depth, and rS is the storage width ra-
tio (see Savenije et al., 2008). Here, the asterisk denotes a
dimensionless variable.

Thus, Eq. (16) can be rearranged as follows (Cai et al.,
2015):

S∗ =

(
1−

D∗K

γ

[
exp

(
x∗γ

)
− 1

])1/K

. (19)

With Eq. (19), it is possible to derive an analytical expression
for the salt intrusion length (i.e., the distance from the estuary
mouth to the location where the water is totally fresh), which
is obtained by setting S∗ = 0 in Eq. (19) as follows:

L∗ =
1
γ

ln
( γ

D∗K
+ 1

)
. (20)

3 General unit hydrograph theory for salt intrusion

Suppose there is an ocean coupling to an estuary with the co-
ordinate origin located at the estuary mouth. If a unit volume
of excess salinity from the ocean is locally (1x→0) released
into the estuary during the time required for an equilibrium
to occur, the resulting hydrograph is the instantaneous UH
dS∗(x)/dx that corresponds to the S-hydrograph S∗(x) in
the dimensionless form. Similar to Guo’s UH method (Guo,
2022a), we make four hypotheses on the instantaneous UH
(representing the instantaneous rate of change with respect
to the salinity at a specific position along the estuary axis,
i.e., the salinity gradient) for the salinity distribution based on
depth-average observations along estuaries (i.e., data facts).

– Hypothesis 1. Along the recessing limb, the salinity gra-
dient dS∗(x)/dx decreases exponentially, which makes
the salinity S∗(x) decay exponentially in a convex
shape.

– Hypothesis 2. The salinity is scaled by the almost-
constant salinity in the deep ocean, i.e., approximately
36 kg m−3; thus, as x tends towards negative infinity,
the salinity gradient tends towards zero, and the salin-
ity S∗(x) tends towards 1.

– Hypothesis 3. Along the rising limb, the salinity gra-
dient dS∗(x)/dx increases exponentially, which makes
the salinity S∗(x) decay exponentially in a concave
shape.

– Hypothesis 4. As x tends towards infinity, the salinity
gradient tends towards zero, and the salinity S∗(x) tends
towards zero.

It should be noted that the above hypotheses 1 and 3 are, in
principle, valid only for well-mixed or partially mixed es-
tuaries, where salt intrusion really matters. From a practical
perspective, this is not a restrictive assumption, since the salt
wedge in highly stratified conditions only occurs at the time
of high river discharge, when flood protection is generally
the main concern and salt intrusion is not relevant (Savenije,
2005, 2012).

According to the first hypothesis, along the recessing limb,
dS∗(x)/dx and S∗(x) satisfy the following relationship:

dS∗

dx
=−µS∗, (21)

where µ represents the recessing coefficient [L−1]. Mean-
while, the second hypothesis requires that dS∗(x)/dx = 0
and that S∗(x)=1 (representing the constant salinity in the
ocean) at x→−∞. To meet this requirement, we revise
Eq. (21) as follows:

dS∗

dx
=−µ

(
1− S∗,

)
(22)

since S∗(−∞)= 1. Integrating Eq. (22) for S∗(x) and apply-
ing the initial condition (i.e., x = 0, S∗ = S∗0 ) results in

S∗ = 1+
(
S∗0 − 1

)
exp(µx) . (23)

Similarly, according to the third hypothesis, along the rising
limb, we have

dS∗

dx
=−

µ

m
S∗, (24)

where m represents the dimensionless rising coefficient. In-
tegrating Eq. (24) for S∗(x) and applying the initial condition
(i.e., x = 0, S∗ = S∗0 ) results in

S∗ = S∗0 exp
(
−
µ

m
x
)
, (25)

which satisfies the fourth hypothesis. We can combine
Eqs. (22) and (24) into a generalized differential equation as
follows:

dS∗

dx
=−

µ

m
S∗
(
1− S∗m

)
, (26)

which reduces to Eq. (22) at x→−∞ where S∗ = 1 and
Eq. (24) at x→∞ where S∗→ 0. The inflection point x =
xp, where

d2S∗

dx2

∣∣∣∣
x=xp

= 0 (27)
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corresponds to the maximum absolute value of dS∗/dx (i.e.,
the maximum salinity gradient). Integrating Eq. (26) for
S∗(x) and applying Eq. (27) results in

S∗ =
{
1+mexp

[
µ
(
x− xp

)]}−1/m
. (28)

To make µ dimensionless, we make a transform, namely
µxp→ µ; then Eq. (28) can be revised as:

S∗ =
{
1+mexp

[
µ
(
x/xp− 1

)]}−1/m

=
{
1+mexp

[
µ
(
x∗− 1

)]}−1/m
, (29)

where x∗ = x/xp is the dimensionless distance scaled by the
position of the inflection point xp. With Eq. (29), the instan-
taneous UH dS∗/dx is written as

dS∗

dx∗
=−µexp

[
µ
(
x∗− 1

)]
{
1+mexp

[
µ
(
x∗− 1

)]}−(1+1/m)
, (30)

which satisfies the general UH definition; i.e.,
∫
+∞

−∞

dS∗
dx∗ = 1.

It can be seen from Eq. (28) that the theoretical salt intru-
sion length L∗ is not available, since S∗ tends towards 0 as
x approaches infinity asymptotically. However, it is possible
to define a specific salt intrusion length for a given salinity
threshold S∗f (such as 0.01) by substituting S∗f into Eq. (29)
as follows:

L∗ =
1
µ

ln

(
S∗−mf − 1

m

)
+ 1. (31)

Figure 3 illustrates the spatial distribution of the S-
hydrograph (salinity distribution S∗) and its instantaneous
UH (salinity gradient dS∗/dx∗) for given values of µ= 1.5
and m= 1.

4 Results and discussion

4.1 Sensitivity analysis of the proposed salt intrusion
model

Although Eqs. (29), (30) and (31) are analytical, the sen-
sitivity to the two controlled parameters (µ and m) is not
straightforward and directly clear. Thus, it is worthwhile to
have a sensitivity analysis on the two calibrated parameters.
Figure 4 presents the analytical solutions of the longitudi-
nal salinity and its gradient as a function of µ and m. It
can be clearly seen from Fig. 4 that two distinct estuarine
regions display a very different behavior. For x∗ < 1, we
see an exponential decrease of the salinity gradient until a
minimum value is reached at a critical position x = xp (or
x∗ = 1) defined by Eq. (27), beyond which the salinity gra-
dient increases exponentially until zero is reached asymptot-
ically (Fig. 4c, d). The sensitivity analysis shows that the re-
cessing coefficient µ determines the change rate of both the

Figure 3. S-hydrograph S∗ (salinity concentration) and its instan-
taneous UH dS∗/dx∗ (salinity gradient) as a function of the di-
mensionless along-estuary distance x∗ for given values of µ= 1.5,
m= 1.

rising and recessing limbs (Fig. 4a, c). With regard to the
rising coefficient m, it can be seen from Fig. 4b that the co-
efficient m exerts more influence along the rising limb and
thus affects mainly the salinity distribution after the inflec-
tion point (Fig. 4b, d). In addition, Fig. 4c and d show that
m= 1 gives a symmetric salinity gradient of about x = xp
(x∗ = 1, S∗ = 0.5),≤m< 1 gives a negatively skewed salin-
ity gradient, andm> 1 gives a positively skewed salinity gra-
dient.

To understand the response of the salt intrusion length to
both calibrated parameters, Eq. (31) was used to analytically
compute L∗ for a wide range of µ andm values (Fig. 5) con-
sidering a salinity threshold of S∗f = 0.01. We can clearly see
that the isolines are almost linear, converging towards the ori-
gin of the m–µ diagram. Generally, the salt intrusion length
increases with m, while it decreases with µ. This suggests
that the model parameter m is generally proportional to the
strength of tidal dynamics that induce dispersive transport of
salt in the upstream direction, while the model parameterµ is
proportional to the strength of the riverine flushing seaward.
With this plot, it is possible to understand the potential im-
pacts of different hydrodynamic conditions on the salt intru-
sion length, which is particularly useful to decision makers
for salt intrusion prevention.

4.2 Application to real estuaries

The proposed salt intrusion model has been applied to obser-
vations in real estuaries worldwide with a wide range of dif-
ferent riverine and tidal hydrodynamics. In Table 1, a selec-
tion is presented for 21 estuaries where 89 salt intrusion mea-
surements were collected at either high water slack (HWS)
or low water slack (LWS; all observations are available on
the web at https://salinityandtides.com/data-sources/, last ac-
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Figure 4. Sensitivity analysis of the dimensionless salinity S∗ and its gradient dS∗/dx with regard to the recessing coefficient µ and the
rising coefficient m.

cess: 3 May 2023). In this table, the three model parameters
xp, µ andm were obtained by fitting Eq. (29) to the observed
longitudinal salt intrusion. This can be easily done by means
of a nonlinear curve-fitting method in the least-squares sense
(such as using the MATLAB “lsqcurvefit.m” function). The
model performance was evaluated by using the root-mean-
square error (RMSE). Figure 6 shows the comparison of the
observed and computed salinity concentrations in different
estuaries. It can be seen from Fig. 6 that the correspondence
with the observed salt intrusion is good, with the RMSE be-
ing 1.1 kg m−3 on average (see also the model performance
reported in Table 1 for many estuaries worldwide with dis-
tinct salt intrusion lengths).

For illustrations, Fig. 7 shows the longitudinal computa-
tion applied to the Pungue, Incomati and Limpopo estuaries
by means of both the newly proposed and Savenije’s models.
Generally, the results of the two models are satisfactory for
the following different shapes of salt intrusion curves in well-
mixed or partially mixed estuaries (Savenije, 2005, 2012):
(1) a dome-shape intrusion curve (such as along the Pungue
estuary – Fig. 7a), which generally occurs in strong funnel-
shaped estuaries; (2) a bell-shaped intrusion curve (such as
along the Incomati estuary – Fig. 7c), which generally oc-
curs in estuaries that have a trumpet shape; (3) a recession-
shape intrusion curve (such as along the Limpopo estuary –
Fig. 7e), which generally occurs in narrow estuaries with a
near-prismatic shape and a high river discharge. It is worth

Figure 5. Response of the salt intrusion length L∗ to the dimension-
less parameters µ and m for a given salinity threshold S∗

f
= 0.01.

noting that these types of salt intrusion curves are very much
linked to the geometry of the estuary (Savenije, 2005, 2012).
However, we observe from Table 1 that the calibrated model
parameters (µ and m) are rather sensitive to the varied river-
ine and tidal forcing for a specific estuary. Thus, further stud-
ies concerning the relationship between the forcing condi-
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Table 1. Measured salinity distribution, calibrated parameters, computed salt intrusion length and model performance in terms of RMSE.

Estuary Date Condition xp µ m L RMSE
(ddmmyy) (km) (km) (kg m−3)

Bernam 01/06/12 HWS 22.73 2.17 0.47 51.97 0.18
Bernam 01/06/12 LWS 10.41 1.07 0.36 34.44 0.39
Chaophy 05/06/62 HWS 23.61 1.47 0.32 61.44 0.71
Chaophy 05/06/62 LWS 2.49 0.13 0.10 35.48 0.40
Chaophy 23/02/82 HWS 19.99 1.23 0.10 48.69 0.56
Chaophy 29/01/83 HWS 28.08 1.72 0.17 59.86 0.42
Chaophy 16/01/87 HWS 5.68 0.38 0.10 32.05 1.04
Corantijn 09/12/78 HWS 20.43 1.04 0.45 73.81 0.21
Corantijn 09/12/78 LWS 11.05 3.30 3.38 59.09 0.10
Corantijn 14/12/78 HWS 13.80 0.66 0.60 81.26 0.01
Corantijn 14/12/78 LWS 6.63 1.31 2.69 64.51 0.22
Corantijn 20/12/78 HWS 15.27 0.52 0.10 66.90 0.21
Corantijn 20/12/78 LWS 2.99 0.61 2.87 62.63 0.18
Elbe 09/07/02 HWS 0.01 0.00 0.10 44.03 0.58
Elbe 04/04/04 HWS 10.21 0.31 0.10 67.82 0.90
Elbe 21/09/04 HWS 35.77 1.18 0.10 89.37 0.88
Elbe 21/09/04 LWS 14.36 0.46 0.15 73.98 0.65
Endau 28/03/13 HWS 14.81 2.16 0.10 26.89 1.17
Endau 28/03/13 LWS 3.83 0.46 0.10 18.64 0.82
Incomati 05/09/82 HWS 20.61 4.41 1.80 56.48 0.32
Incomati 23/06/93 HWS 16.62 3.94 1.43 42.78 0.66
Incomati 23/06/93 LWS 9.46 1.52 0.78 33.21 0.27
Incomati 07/07/93 HWS 16.56 3.88 1.56 45.37 0.27
Incomati 07/07/93 LWS 8.56 2.01 1.41 34.60 0.72
Kurau 27/02/13 HWS 8.78 1.89 0.10 16.98 1.72
Kurau 27/02/13 LWS 0.00 0.00 0.10 5.54 0.86
Kurau 28/02/13 HWS 9.06 1.97 0.10 17.17 1.40
Kurau 28/02/13 LWS 0.00 0.00 0.10 6.29 0.42
Lalang 20/10/89 HWS 24.60 1.28 0.10 58.50 2.64
Lalang 20/10/89 LWS 0.00 0.00 0.10 17.02 1.96
Landak 15/09/09 HWS 15.93 0.57 0.10 65.20 0.71
Landak 15/09/09 LWS 7.18 0.35 0.10 42.94 0.39
Limpopo 04/04/80 LWS 3.17 0.40 0.10 17.31 0.70
Limpopo 31/12/82 HWS 39.06 2.13 0.10 71.49 0.36
Limpopo 31/12/82 LWS 30.23 1.49 0.10 66.16 0.27
Limpopo 14/07/94 HWS 24.73 1.59 0.10 52.18 0.67
Limpopo 24/07/94 HWS 20.67 3.29 2.01 74.36 1.45
Limpopo 24/07/94 LWS 12.22 2.26 2.76 75.31 1.92
Limpopo 10/08/94 HWS 16.65 5.26 6.15 100.58 1.24
Limpopo 10/08/94 LWS 13.78 1.96 2.28 82.03 1.26
Maeklong 09/04/77 HWS 15.65 2.01 0.21 31.48 1.16
Maeklong 09/04/77 LWS 7.65 0.91 0.10 22.52 1.34
Maputo 28/04/82 HWS 18.65 4.09 0.30 29.08 0.69
Maputo 28/04/82 LWS 2.20 0.90 2.04 23.52 0.00
Maputo 15/07/82 HWS 18.07 5.05 1.77 45.25 0.22
Maputo 19/04/84 HWS 15.09 2.18 0.10 27.32 0.64
Maputo 19/04/84 LWS 4.25 1.93 0.90 13.63 0.05
Maputo 17/05/84 HWS 16.78 3.18 0.16 26.91 0.90
Maputo 17/05/84 LWS 1.55 2.45 5.25 15.77 2.13
Maputo 29/05/84 HWS 6.14 1.09 0.25 18.31 0.32
Maputo 29/05/84 LWS 18.59 2.66 0.10 30.92 1.20
Muar 01/08/12 HWS 11.09 1.22 0.66 41.90 0.50
Muar 01/08/12 LWS 0.50 0.05 0.53 30.05 0.24

https://doi.org/10.5194/os-19-603-2023 Ocean Sci., 19, 603–614, 2023



610 H. Cai et al.: Unit hydrograph for salinity

Table 1. Continued.

Estuary Date Condition xp µ m L RMSE
(ddmmyy) (km) (km) (kg m−3)

Pangani 27/10/07 HWS 21.27 3.61 0.10 31.66 2.14
Pangani 27/10/07 LWS 8.78 1.32 0.10 20.50 0.63
Pangani 11/12/07 HWS 16.89 3.37 0.10 25.74 1.67
Pangani 11/12/07 LWS 6.47 1.11 0.10 16.72 0.51
Perak 13/03/13 HWS 5.02 1.01 0.81 24.61 0.40
Pungue 26/09/80 HWS 55.28 2.93 0.10 88.64 0.63
Pungue 26/05/82 HWS 33.10 2.10 0.10 60.99 0.39
Pungue 06/08/82 HWS 39.44 2.87 0.10 63.72 0.36
Pungue 06/08/82 LWS 23.37 0.96 0.10 66.15 0.67
Pungue 22/09/82 HWS 46.59 3.34 0.10 71.24 0.54
Pungue 22/09/82 LWS 29.20 1.41 0.10 65.74 0.75
Pungue 29/10/82 LWS 23.77 1.73 0.10 47.98 0.01
Pungue 03/10/93 HWS 61.29 4.71 0.10 84.26 1.70
Pungue 12/10/93 HWS 54.61 6.09 0.10 70.44 0.63
Pungue 12/10/93 LWS 39.86 3.21 0.10 61.82 1.59
Pungue 16/10/93 HWS 74.46 7.52 0.10 91.96 0.68
Pungue 16/10/93 LWS 54.74 3.16 0.10 85.32 0.82
Pungue 31/01/02 HWS 17.77 1.16 0.25 50.52 0.58
Pungue 27/02/02 HWS 13.26 1.54 1.14 57.38 1.00
Pungue 27/02/02 LWS 1.88 0.26 0.61 25.62 0.38
Pungue 01/03/02 HWS 17.54 1.26 0.76 69.29 0.62
Selangor 01/08/12 HWS 10.48 2.11 0.10 19.25 1.52
Selangor 01/08/12 LWS 0.00 0.00 0.10 6.13 3.18
Sinnamary 12/11/93 HWS 5.67 1.95 0.10 10.80 0.89
Sinnamary 27/04/94 HWS 5.75 1.32 0.10 13.42 1.34
Sinnamary 02/11/94 HWS 9.06 2.53 0.10 15.38 1.56
Sinnamary 02/11/94 LWS 0.88 0.23 0.10 7.51 0.29
Sinnamary 03/11/94 HWS 7.49 1.77 0.10 14.99 1.23
Tha-chin 16/04/81 HWS 22.45 1.00 0.10 62.00 0.62
Tha-chin 27/02/86 HWS 16.88 1.77 0.63 48.47 0.01
Tha-chin 01/03/86 HWS 18.79 2.19 0.85 53.64 0.02
Tha-chin 13/08/87 HWS 15.90 1.11 0.10 41.27 0.72
Tha-chin 13/08/87 LWS 4.77 2.22 2.25 25.32 0.16
Thames 07/04/49 LWS 43.41 1.82 0.10 85.55 0.73
Westerschelde 02/11/00 HWS 82.23 2.93 0.10 131.81 0.84
Westerschelde 02/11/00 LWS 73.90 2.41 0.10 128.11 0.99

tions and the model parameters (µ and m) are required in
the future. It can be seen from Fig. 7 that one important dif-
ference in terms of performance between these two models
lies in the rising limb when the distance approaches infinity.
As x tends towards infinity, the salinity gradient of the newly
proposed model asymptotically approaches zero, while it re-
duces to zero at a critical position corresponding to the salt
intrusion length from Eq. (20) for Savenije’s model. This fea-
ture allows an improved fit with observations at the toe of
the salt intrusion curve (e.g., Fig. 7a). Figures S1–S8 in the
Supplement show the comparison between the observed lon-
gitudinal salinity and the analytically computed salt intrusion
curves along 21 estuaries worldwide (see the Supplement).

4.3 Analytical difference with Savenije’s salt intrusion
model

In order to understand the differences between the newly
proposed model and empirical solutions based on the steady
salt balance equation, we have made a comparison with the
widely used Savenije’s salt intrusion model (Savenije, 2005,
2012) by means of a Taylor expansion. The Taylor expansion
of Savenije’s salt intrusion model, i.e., Eq. (19), is written as

S∗ = 1−D∗x∗+
1
2

(
D∗2−D∗γ −D∗2K

)
x∗2+O

(
x∗3.

)
(32)

To make a comparison of the proposed model (i.e., Eq. 29)
with Eq. (19), we introduce −m→K (Van der Burgh’s co-
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Figure 6. Comparison between the analytically computed salinity
concentrations and 89 observations in 21 estuaries worldwide.

efficient); then Eq. (29) becomes

S∗ =
{
1−K exp

[
µ
(
x∗− 1

)]}1/K
. (33)

The Taylor expansion of Eq. (33) is written as

S∗ =
(
1−Ke−µ

)1/K
−
(
1−Ke−µ

)(1/K−1)
e−µµx∗

+
1
2

(
1−Ke−µ

)(1/K−2)
e−µµ2 (e−µ− 1

)
x∗2+O

(
x∗3

)
. (34)

It is difficult to directly compare Eqs. (32) and (34). Alter-
natively, the difference between Eqs. (19) and (33) can be
explored by looking at the exponential function parts, which
can be expanded by the Taylor series as follows:

D∗

γ

[
exp

(
x∗γ

)
− 1

]
=D∗x+

1
2
D∗γ x∗2+O

(
x∗3
)
, (35)

exp
[
µ
(
x∗− 1

)]
= e−µ+ e−µµx∗+

1
2
e−µµ2x∗2+O

(
x∗3

)
. (36)

Interestingly, if we slightly modified Eq. (35) by removing 1
from the brackets, then the Taylor expansion of Eq. (35) can
be rewritten as

D∗

γ

[
exp

(
x∗γ

)]
=
D∗

γ
+D∗x+

1
2
D∗γ x∗2+O

(
x∗3

)
. (37)

In this case, Eqs. (36) and (37) are identical if they satisfy the
following conditions:

D∗ = e−µµ, (38)
γ = µ. (39)

Thus, for given prior conditions Eqs. (38) and (39), the main
difference between the newly proposed model and Savenije’s
model lies in the inclusion of the term – KD∗/γ =

mexp(−µ) in the braces of Eq. (33), which is closely re-
lated to the upstream river discharge, the dispersion coeffi-
cient at the estuary mouth, the tidal frequency and the geom-
etry of the estuary according to Eq. (17). As an illustration,
Fig. 8 displays the longitudinal variations of the dimension-
less salinity S∗ and its gradient dS∗/dx∗ for different values
of the recessing coefficient µ and the rising coefficient m,
where the solid and dashed lines represent the solutions ob-
tained by Savenije’s model and the newly proposed model,
respectively. It can be seen from Fig. 8 that the additional
term mexp(−µ) mainly affects the downstream part of the
salt intrusion curve, while the two methods tend to be the
same for larger values of x∗ (at the toe of the salt intrusion
curve).

It is worth noting that the above analysis suggests that Van
der Burgh’s coefficient K (being equal to −m) should be
negative rather than positive, since m is generally positive
(see Table 1). This indicates that the dispersion coefficient
D should be increased along the estuary axis according to
Eq. (10). Figure 9 shows the analytically computed longi-
tudinal dimensionless salinity S∗ using Eq. (19) for a wide
range of the input parameters K and D∗ when γ = 1. We
can see that the computed S∗ does converge to 0 when the
distance x∗ approaches infinity when K values are negative,
which is very different from the performance of the previ-
ous analytical solutions using positive K values, where the
computed S∗ generally diverges for larger values of x∗. Con-
sequently, from a curve-fitting perspective, the Savenije’s
model using negative K values can be regarded as a special
case of the newly proposed salt intrusion model if we further
rescale the salinity by the dimensionless salinity in the deep
ocean (see Fig. S9 in the Supplement). This also suggests that
an enhanced empirical relationship concerning the effective
dispersion coefficient (instead of the conventional Van der
Burgh’s relationship) is required for deriving an accurate salt
intrusion curve from a theoretic point of view.

It should be noted that, although the model fits the obser-
vations very well, the physical foundation of Eq. (29) needs
further study in the future. This limitation could be relaxed
by carefully comparing the proposed model with those based
on the steady-state salt balance equation. Specifically, sev-
eral idealized numerical models (1-D, 2-D or 3-D models)
have been adopted as a first approximation to quantify the
along-channel salinity dynamics (e.g., Pein et al., 2018; Di-
jkstra and Schuttelaars, 2021; Wei et al., 2022). With these
idealized numerical models, the physics behind Eq. (29) can
be understood in order to make the model fully predictive
through the relation of the three model parameters (xp, µ
and m) to measurable or quantifiable variables (e.g., river
discharge, tidal amplitude and cross-sectional area conver-
gence length) by means of regression techniques or simi-
lar approaches. It should be noted that the proposed salt in-
trusion model is, in principle, valid only for well-mixed or
partially mixed estuaries, where salt intrusion really matters.
From a practical perspective, this is not a restrictive assump-
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Figure 7. Observed and analytically computed salt intrusion curves using the newly proposed and Savenije’s models in the Pungue estu-
ary (a, b), in the Incomati estuary (d, e) and in the Limpopo estuary (g, h), together with the idealized shape of the estuary ((c) funnel shape,
(f) trumpet shape and (i) prismatic shape).

Figure 8. Longitudinal variations of the dimensionless salinity S∗ (a, b) and its gradient dS∗dx∗ (c, d) along the estuary axis for different
values of input parameters. The solid and dashed lines indicate the solutions obtained by Savenije’s model and the newly proposed model,
respectively.
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Figure 9. Longitudinal variation of the dimensionless salinity S∗ computed using Eq. (19) along the estuary axis for different values of K
and D∗ when γ = 1.

tion, since the salt wedge in highly stratified conditions only
occurs at the time of high river discharge, when flood pro-
tection is generally the main concern and salt intrusion is not
relevant (Savenije, 2005, 2012). Moreover, the proposed salt
intrusion model is particularly useful for quantifying the al-
terations in salt intrusion dynamics owing to climate change
or human interventions by comparing the three calibrated
model parameters for different periods with considerably dif-
ferent conditions.

5 Conclusions

In this paper, we revisited the empirical salt intrusion model,
making use of Guo’s general unit hydrograph theory (Guo,
2022a, b, c), and proposed a general and analytical model for
the salinity distribution in estuaries of the partially mixed to
well-mixed types. The newly developed method does not re-
quire observed or calibrated salinity at the estuary mouth and
can be well calibrated using a minimum of three salt mea-
surements along the estuary axis. This is mainly due to the
fact that Eq. (29) is a monotonic function whose first deriva-
tive (i.e., Eq. 30) does not change sign and has only one
minimum. In addition, the salinity converges towards zero
as the along-estuary distance approaches infinity asymptoti-
cally, which might improve the model performance near the
toe of the salt intrusion curve when compared to empirical
solutions based on the salt balance equation. The model has
been applied to numerous estuaries worldwide, and the re-

sults agree very well with the observations. This indicates
that the proposed model can be a useful tool to understand
the dynamics of salt intrusion in estuaries and for assessing
the potential impacts of human-induced (e.g., dredging) or
natural (e.g., mean sea level rise) changes. However, the un-
derlying physical foundation of the proposed model and the
physics of the model parameters need further study in the
future.
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