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Energy cascade of internal gravity
waves in oceans

Saranraj Gururaj

Internal gravity waves are large length scale waves that exist in the bulk of the ocean, and
they play a crucial role in the ocean’s energy budget. Variousmechanisms cause the energy
in internal gravity waves to cascade to small length scales. At small length scales, inter-
nal waves cause turbulence and mixing of waters with different densities. Mixing plays
a prominent role in sustaining climate-influencing flows such as Meridional Overturning
Circulation. This thesis is dedicated to understanding the mechanisms that cascade inter-
nal waves’ energy to small length scales. First, using multiple scale analysis, we study
triad interactions of low mode internal gravity waves that occur in the presence of slowly
varying bathymetry. The waves’ group speed and horizontal wavenumber vary with fluid
depth, and the variation influences the energy transfer between the waves. Moreover, if
the stratification is non-constant, detuning can be induced in wave-wave interactions that
occur in a region of non-constant fluid depth. Detuning can affect the energy transfer
between the waves. Nonlinear coupling coefficients and growth rates are observed to be
sensitive to changes in fluid depth. Higher order self-interactions, where the bathymetry
acts as a zero-frequency wave, are also studied. Secondly, we study 5-wave systems that
consist of two parent waves (waves with large amounts of energy) and three daughter
waves (waves with infinitesimal energy). The five waves form two different triads, where
each of these triads consists of one parent wave and two daughter waves, with one daugh-
ter wave shared between the two triads. The growth rate of 5-wave systems for different
combinations of parent wavevectors is studied. Scenarios where the 5-wave system insta-
bility is more dominant than triads are analysed in detail. Apart from influencing wave-
wave interactions, topographies can directly scatter a low mode internal wave and cause
a cascade of the wave’s energy. In the final chapter, internal wave topography interaction
in the presence of a steady surface confined current is studied by conducting numerical
simulations. The dependence of mode-1 wave scattering on the height and slope of the
topography is studied. In the presence of a current, the mode-1 wave with positive phase
speed has different properties compared to the mode-1 wave with negative phase speed,
and we study the scattering of both mode-1 waves.
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ĉg - Defined in page 150
N̂ - Defined in page 150

(W ,Wu) - Defined in page 151
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Chapter 1

Introduction

1.1 Motivation: Internal gravity waves’ part in oceans
and the Earth’s climate

Meridional Overturning Circulation (MOC) is a system of ocean currents spanning thou-
sands of kilometers transporting heat, salt, carbon, and nutrients to different parts of the
ocean. A highly simplified schematic of MOC is given in figure 1.1. MOC is composed
of surface currents, deepwater currents in the depths of the ocean, downwelling near the
poles where the surface currents sink to form deepwater, and upwelling that brings the
waters in the depths of the ocean back to the surface. Unlike the deepwater formation that
is confined to the poles mostly, upwelling is spread throughout the ocean and is the most
challenging part of MOC to model and quantify. The deepwater current that originates in
the Nordic seas is known as the North Atlantic deep water, while the deepwater current
that originates in the Southern Ocean is known as Antarctic bottom water. Interestingly,
the deep water formation in the North-Pacific ocean is not as significant as in the Atlantic
ocean (Talley, 2013). In the poles, the salinity of the water is lower in the pacific ocean
compared to their counterparts in the north Atlantic ocean. As a result, even if the water
is cooled significantly near the poles in the pacific ocean, it cannot sink to the depths of
the ocean.

MOC influences the Earth’s climate in many ways. In the North Atlantic Ocean, MOC
transports approximately 18 − 20 Sverdrups (1 Sverdrup is 106m3s−1) of water (LeBel
et al., 2008; Frajka-Williams et al., 2019) and 1.5 petawatts of heat towards the North pole

1
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Figure 1.1: A simplified picture of MOC showing various surface currents, deepwater
currents, and the locations of deep water formation (Kuhlbrodt et al., 2007).

(Johns et al., 2011). The heat transported by the MOC is a primary reason why Northwest-
ern Europe is warmer than the zonal mean temperature of its latitude (Palter, 2015). Many
global climate models show that MOC may weaken over the next few decades (Gregory
et al., 2005; Schmittner et al., 2005). The weakening of MOC can instigate a change in
rainfall patterns over the North Atlantic and tropics (Liu et al., 2020). The slow down of
the Atlantic branch of MOC can result in cooling of the Northern Hemisphere and can lead
to an increase of sea ice in the Arctic because of the reduced heat advection (Vellinga &
Wood, 2002; Liu et al., 2020). A rise in the sea level can also occur with the weakening
of MOC (Levermann et al., 2005). The sea level is heavily linked to the Deep water for-
mation in the Atlantic ocean. If the deep water formation in the North Atlantic is affected,
then the ocean slowly warms up: this is because the deep water formation is a source of
very cold water. Because of the increase in the temperature, water expands and hence sea
level rises with it. Moreover, MOC also influences many currents in the oceans. Currents
can play a huge role in increasing the local/regional sea level in some regions. Considering
the crucial role MOC plays in the Earth’s climate, modeling it accurately is necessary to
reliably predict the climate of the Earth.

To properly model MOC, we need to understand what are the factors that driveMOC. Like
all flows, MOC requires some external source of energy to counter the viscous effects/dis-
sipation. Munk & Wunsch (1998) in their pioneering paper provide a rough estimate that
approximately 0.4TWs is required to maintainMOC in its current state. There are multiple
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factors that drive MOC, and the three main contested factors are (1) temperature gradient
in the sea surface because of the latitude-dependent heating of the sun, (2) mixing waters
of different densities (diapycnal mixing), and (3) the wind stress acting on the sea surface.
First, we begin with the temperature gradient. The surface water in the poles is colder
than the surface waters near the equator, and horizontal temperature gradients are capable
of creating fluid motion. However, it has been well established now that the temperature
gradient alone cannot drive the MOC (Munk &Wunsch, 1998; Paparella & Young, 2002;
Wang & Huang, 2005). The mechanical energy obtained from the sea surface temperature
gradient is approximately 1.5GW, hence 1000 times lower than the value required (Wang
& Huang, 2005). MOC transports 1-2 PWs of heat energy, however, the efficiency in
converting this heat energy to mechanical energy is too low (∼ 10−7). The efficiency is
estimated by calculating the mechanical energy that is generated as a result of the temper-
ature gradient on the surface. For oceanic parameters, Wang & Huang (2005) provide an
estimate of around 1.5 × 109W generated due to surface temperature gradient by using
the idealised horizontal convection model of (Paparella & Young, 2002). The heat energy
carried by the currents in the ocean is approximately 2 × 1015W . Hence the ratio of me-
chanical energy generated to the heat flux advected is ≈ 10−7. As a result, other factors
(mixing and wind stress) are required for the sustenance of MOC.

Munk (1966) proposed internal waves (which can cause mixing) can be a potential source
of the mechanical energy required to sustain the MOC. In most regions of the ocean, the
density of the water increases with depth, and this variation is mainly because of salinity
and temperature. Internal gravity waves are basically perturbations in a stably stratified
fluid that can transport momentum and energy. Buoyancy acts as the restoring force for
the internal waves. There are some similarities between surface gravity waves (which we
readily observe in the ocean) and internal gravity waves. The surface waves exist in the
air-water interface because of the sharp density difference between air and water. Simi-
larly, internal waves exist in the bulk of the ocean due to a small but continuous density
stratification. A huge portion of internal gravity waves in the ocean are generated by the
tides (solar and lunar), pushing the density stratified water up and down the rough seafloor
(Baines, 1973; Bell Jr., 1975; Balmforth et al., 2002; Llewellyn Smith & Young, 2003),
and a large part of these waves have very large length scales (O(10-100)km). As a result,
the solar and lunar tides play a major role in sustainingMOC by generating internal waves.
In general, in the thesis, by large length scales, we usually mean the waves’ wavelength is
in the order of kilometers. It is very difficult for a low amplitude internal wave to break
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and create turbulence when its wavelength is in the order of kilometers. As a result, the en-
ergy has to cascade to small length scales. A mode-1 internal wave typically has a vertical
wavelength of 2 to 5kms and a horizontal wavelength of 20 to 50 km. Unlike the mode-1
internal wave, internal wave beams can have a width of only 0.5 kilometers which is much
lower than what we see in a mode-1 wave. However, the length scales are still in the or-
der of hundreds of meters to kilometers and the energy needs to cascade. However, care
should be taken when classifying the internal wave beam length scale and a low mode’s
length scale. Energy in the large length scale internal waves eventually cascades to small
length scales and causes turbulence that results in the mixing of warm water (less dense)
with the cold water (denser) (Munk &Wunsch, 1998; Wunsch & Ferrari, 2004; Kuhlbrodt
et al., 2007). Such mixing causes a downward diffusion of heat which is balanced by the
upwelling of the heavier water. Basically, mixing acts as an external source of potential
energy. Note that the water that sinks at the poles (deepwater formation) has to be returned
to the surface for an overturning circulation to exist. As a result, even though MOC is a
flow that spans thousands of kilometers, it is still influenced/sustained by turbulent mixing
that occurs at centimeter–meter length scale. Assuming a linear relationship between tem-
perature and density of the water, to estimate the diffusivity value required to upwell the
deep waters formed at the poles, Munk (1966) proposed a simplified model where, under
steady state, the vertical turbulent diffusion of temperature is balanced by the advection
of buoyancy. The simplified equation proposed was

w
dT

dz
=

d

dz

(
κ
dT

dz

)
, (1.1)

where w is the vertical velocity (or velocity in the direction of gravity), T is the tempera-
ture, and κ is the diffusivity. Using observed density profiles in the central Pacific Ocean
and assuming uniform upwelling (constant w) throughout the ocean, it was estimated that
κ ≈ 10−4m2s−1 is required to upwell 25 Sverdrups of water. Similar values for κ were
obtained by Munk & Wunsch (1998) using zonally averaged density profiles. Note that
κ ≈ 10−4m2s−1 is several orders of magnitude higher than the molecular diffusivity of
heat which is ≈ 1.4 × 10−7m2s−1. As a result, molecular diffusion on its own cannot
upwell enough water to match the downwelling at the poles. Without increased diffusiv-
ity caused by turbulence, MOC in its current state cannot exist (Samelson & Vallis, 1997;
Munk&Wunsch, 1998). Internal waves can contribute 0.6-0.9TW for mixing in the ocean
(Munk & Wunsch, 1998). Internal waves forced by the semidiurnal tide are estimated to
contain around 0.7TW (Vic et al., 2019). As a result, considering the amount of energy
internal waves possess, ocean mixing caused by them can heavily influence the large scale
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flows.

By now, we have established mixing plays an important role in sustainingMOC by provid-
ing potential energy. However, complexities arise in modeling MOC or any large length
scale flow in the ocean with the effects of mixing. Large scale ocean models which are
used to simulate and study MOC cannot resolve small scale turbulence without a tremen-
dous increase in computational resources, which is not practical currently. As a result,
the effects of turbulent mixing have to be parameterised and provided as an input to the
ocean circulation models. Since turbulent mixing effectively results in the diffusion of
heat into the ocean, the small scale turbulent motions are modeled as a local increase in
the diffusivity of temperature/salt. Several studies and models show the state of MOC is
sensitive to different parameterisations of diffusivity profiles. Meridional heat transport
in the north Atlantic, sea ice in the Antarctic, and the strength of the overturning flow
are sensitive to the background diffusivity value (Hieronymus et al., 2019). Modeling
MOC using a constant diffusivity value (higher than the molecular diffusivity) resulted
in different circulation strength compared to the results obtained using an exponentially
decaying diffusivity profile (Mashayek et al., 2015). The ocean stratification predicted
by the models varies as the diffusivity profiles are changed (Melet et al., 2013). Simula-
tions of the climate using an ocean–ice–atmosphere–land–biogeochemistry coupledmodel
showed that the ocean state can be sensitive to the lateral (and vertical) mixing profiles
(Melet et al., 2016). Oka & Niwa (2013) show that the volume transport by the MOC in
the pacific ocean is sensitive to far-field internal wave mixing parameterisations.

Considering the fact that internal waves are one of the most dominant factors that cause
mixing in the ocean (St. Laurent et al., 2002; Wunsch & Ferrari, 2004), we need to un-
derstand/know how much internal wave energy dissipates in which part of the ocean. In-
terestingly, a large portion of the internal waves does not get dissipated near the location
where they are generated. St. Laurent et al. (2002) assume that 60 − 70% of the internal
waves generated by the tide-topography interactions propagate away from the topogra-
phy. 75% − 92% of internal waves generated at Hawaiian Ridge radiates away (Klymak
et al., 2006). Observational studies using satellite altimetry show that internal waves with
large length scales can travel for a long distance -O(1000)kms (Zhao et al., 2016). More-
over, mode-1 waves near Hawaii have been observed to travel more than 1000 km (Ray
& Mitchum, 1997). Mode-3 waves have been observed to travel up to 300 km in the Bay
of Biscay (Pingree & New, 1995). Note that the percentage of internal waves’ energy
dissipated locally can vary by a wide margin depending on the specific topography. A
numerical study on the internal wave generation in Luzon Strait shows that about 50% of
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the energy is lost locally (Jan et al., 2008). To find the locations where the internal wave
dissipates, the mechanisms that can cause energy cascade in the internal waves have to be
understood so that we can ‘track’ the decay of the waves. The equations of motion used
to model internal waves are presented in the next section. Moreover, the properties of
internal waves and the most important mechanisms by which the energy in internal waves
cascade to small length scales are explained.

1.2 Modeling internal gravity waves

Tomodel internal waves and their related processes in the ocean, Navier-Stokes equations,
along with the mass conservation equation are used. Note that we want to model waves
whose time scales are similar to the tidal time scales (tides generate the waves). As a
result, the effects of the Earth’s rotation are considered, and the termsmodeling the Coriolis
effects are added to the Navier-Stokes equation. However, the sphericity of the Earth is not
considered since the waves’ length scale is not as large as the radius of the Earth. To this
end, we study the governing equations in a Cartesian form on a plane tangent to the Earth’s
surface considering its simplicity. If we incorporate the above-mentioned conditions and
simplifications, the governing equations in 3D would be

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv + f̃w

)
= −∂p

∂x
+ µ∆u (1.2)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu

)
= −∂p

∂y
+ µ∆v (1.3)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− f̃u

)
= −∂p

∂z
− ρg + µ∆w (1.4)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0 (1.5)

where x, y and z are the spatial coordinates in the zonal direction (along a constant lat-
itude), meridional direction (along a constant longitude) and the direction normal to the
earth’s surface, respectively. (u, v, w) are the zonal (from east to west), meridional (from
south to north) and vertical velocity, respectively. ρ is the total density, p is the pressure
field, and µ is the dynamic viscosity of water. f = 2Ω sin θlat and f̃ = 2Ω cos θlat , where
Ω ≈ 7×10−5s−1 is the frequency of the Earth’s rotation and θlat is the latitude at which the
tangent plane is located. The operator ∆ is defined as ∆ ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.
In the oceans, the variation in density is only about 2.5% of the mean density (Mellor &
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Ezer, 1995). As a result, the total density field can be split as

ρ = ρ0 + ρbase(z) + ρ′(x, y, z, t), where ρ0 ≫ ρbase + ρ′. (1.6)

ρ0 is the mean density value (ρ0 ≈ 1000kgm−3), ρbase(z) is the base density profile, and
ρ′(x, y, z, t) is the perturbation density. The small variation in the density allows us to use
the Boussinesq approximation in the momentum equations. This approximation leads to
a considerable simplification – density variations are only important in the gravity term.
Moreover, using equation (1.6), the mass conservation equation at leading order reduces
to (Vallis, 2017)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1.7)

The traditional approximation for the rotational effects is used (Gerkema & J. Zimmer-
man, 2008), which basically assumes that f̃ = 0. The approximation is reliant on the
fluid flow (the internal waves) being nearly horizontal with large length scales (assuming
the vertical motions are very small because of the suppression by the gravity/buoyancy
effects). Note that traditional approximation depends on the length scale of the waves and
not simply the domain height. This is because the domain height can be quite different
from the scale of internal waves sometimes (for example, localised internal wave beams).
Moreover, the traditional assumption also relies on the fact that in the vertical direction,
hydrostatic balance is nearly satisfied. In this thesis, parameters are chosen such that the
waves are nearly in hydrostatic balance. From here on, f is assumed to be constant, and
this approximation is known as f -plane approximation. The simplified equations are then
given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = − 1

ρ0

∂p′

∂x
+ ν∆u (1.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂p′

∂y
+ ν∆v (1.9)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ0

∂p′

∂z
− ρ′

ρ0
g + ν∆w (1.10)

where ν ≡ µ/ρ0 ≈ 10−6m2s−1 is the kinematic viscosity of water and p′ is the perturbation
pressure. p̄ is the hydrostatic pressure, given by

p̄ =

∫
g(ρ0 + ρbase)dz. (1.11)
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It balances the base density term in the vertical momentum equation. Note that we still
need one more equation for closure. For simplicity, we assume that density of the water
is only influenced by temperature, and a linear equation of state is used to relate density
and temperature (T ). Moreover, temperature is assumed to satisfy the advection-diffusion
equation given by

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= κ∆T. (1.12)

Using a linear equation of state ρ = ρ0 + GTT , where GT is the thermal expansion coeffi-
cient, the evolution equation for the perturbation density is written as

∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ′

∂z
+ w

dρbase
dz

= κ∆ρ′ + κ
d2ρbase
dz2

(1.13)

The final set of equations are (1.7)–(1.10) along with (1.13).

To understand the properties of internal waves, the dispersion relation for linear internal
waves is derived. We assume a 2D case (∂/∂y = 0) from here on for simplicity. Even
though ∂/∂y = 0, the y−momentum equation is still strongly linked with the other equa-
tions through the Coriolis term. To derive the dispersion relation, the nonlinear advection
terms are assumed to be very small compared to the linear terms, and they are neglected.
In oceans, the waves usually have a length scale in the order of kilometers with a typical
amplitude of 0.1ms−1. The Reynolds number (Re ≡ UL/ν) for large length scale waves
would typically be greater than 108. Hence, the viscous terms are also not considered. Fi-
nally, we define buoyancy b as b ≡ −g/ρ0ρ′ to simplify the governing equations. Note that
positive (negative) buoyancy means the water parcel experiences an upward (downward)
force. After the simplification, the linearised equations read as

∂u

∂t
− fv = − 1

ρ0

∂p′

∂x
(1.14)

∂v

∂t
+ fu = 0 (1.15)

∂w

∂t
= − 1

ρ0

∂p′

∂z
+ b (1.16)

∂b

∂t
+N2w = 0 (1.17)

∂u

∂x
+
∂w

∂z
= 0 (1.18)
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Where N2 is the square of the Brunt–Väisälä frequency, and is given by

N2(z) ≡ − g

ρ0

dρbase
dz

. (1.19)

N2 provides a measure of how rapidly the base density varies with the depth. For a stably
stratified fluid, N2 is always positive. If N2 is negative, it means heavier fluid is on top
of a lighter fluid which usually leads to Rayleigh-Taylor instability. In this thesis, N2 is
always taken to be a positive quantity. Moreover, base density is assumed to vary only in
the direction of gravity (ρbase is strictly a function of z). However, in nature, density can
vary in the horizontal directions as well (for example, density fronts), but that is not the
focus of this thesis.

Now assuming (dψ/dz,−dψ/dx) = (u,w), equations (1.14)–(1.18) can be reduced to a
single equation in terms of ψ. The linear streamfunction evolution equation is given by

∂2

∂t2

(
∂2ψ

∂x2
+
∂2ψ

∂z2

)
+N2(z)

∂2ψ

∂x2
+ f 2∂

2ψ

∂z2
= 0 (1.20)

N is taken as a constant for simplicity, and an unbounded fluid domain is taken. Under
such conditions, we consider ψ to be of the normal mode form:

ψ = ψ0 exp [i(kx+mz − ωt)], (1.21)

where ψ0 is simply a constant. (ω, k,m) are the frequency, horizontal wavenumber, and
the vertical wavenumber of the wave, respectively. Substituting (1.21) in (1.20) leads to
the dispersion relation of 2D internal waves

ω2 =
N2k2 + f 2m2

k2 +m2
=
N2(k/m)2 + f 2

(k/m)2 + 1
(1.22)

Hence for propagating internal waves, the condition f < ω < N has to be satisfied. Note
that propagating internal wave solutions are also possible if f > ω > N is satisfied.
However, in this thesis, we mainly focus on the parameter regime: f < ω < N . A very
interesting property of internal waves is that a single frequency can have an infinite number
of wavevectors as solutions of equation (1.22). Only the direction of the wavevector is
decided by the frequency. Moreover, for a given |k| and |m|, the wave can propagate in
four different directions. This is shown in figure 1.2.



Chapter 1. 10

The phase speed for a 2D internal wave is given by

cpx =
ωk

k2 +m2
cpz =

ωm

k2 +m2
(1.23)

where cpx and cpz denote the horizontal and vertical phase speed, respectively. The hori-
zontal and vertical group speed (denoted by cgx and cgz, respectively) for an internal wave
are given by

cgx =
∂ω

∂k
=
k (N2 − ω2)

ω(k2 +m2)
cgz =

∂ω

∂m
= −m(ω2 − f 2)

ω(k2 +m2)
(1.24)

Another interesting property for internal waves is that if the phase speed vector points
upward (downward), then the group speed vector points downward (upward) as shown in
figure 1.2.

A plane internal wave’s steepness is defined as the ratio of vertical gradient of buoyancy
perturbation (∂b/∂z) to the square of buoyancy frequency (N2). Mathematically, this can
be expressed as (for f = 0) (Koudella & Staquet, 2006),

S(P ) =
ψ0mk

ω
=
ψ0m

√
(k2 +m2)

N
(1.25)

Note that ψ0 is the stream function amplitude. For S(P ) = 1, the isopycnals in the fluid
medium become vertical at some locations. This means that the wave can cause convective
overturning because it essentially brings a heavier fluid parcel on top of a lighter fluid
parcel. S(P ) is often used as a measure of nonlinearity of the wave.

Before we learn more about internal waves, a brief detour is taken to introduce the other
most predominant wave in the oceans: near-inertial waves. Near-inertial waves are basi-
cally internal waves whose frequency is very close to the inertial frequency f . Note that
as ω −→ f , k −→ 0 in equation (1.22) thus implying that the horizontal length scales of
near-inertial waves is several orders of magnitude higher than the vertical length scales.
Near-inertial waves also play a major role in the ocean’s energy budget and are predomi-
nantly generated by the wind stress acting on the sea surface (Alford et al., 2016).

The Internal waves we intend to study in this thesis are of low amplitude/steepness, and
their nonlinear effects are not very high. However, the ocean contains nonlinear inter-
nal waves that exist within the fluid. Here we also provide a brief introduction to the
internal solitary waves (also known as solitons) which are nonlinear internal waves that
exist because of the balance between the steepening and the dispersion effect. Solitary
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Figure 1.2: Streamfunction contours of an internal wave, where the green and blue regions
respectively show the crest and trough. For a given |k| and |m|, the four different phase
speed directions and the corresponding group speed directions are shown. Thewavevector
of the internal waves are as follows: (a) (|k|, |m|), (b) (−|k|, |m|), (c) (−|k|,−|m|) and

(d) (|k|,−|m|).

waves are quite common in the ocean, and are usually found in coastal areas/continental
shelves. For example, solitary waves have been observed in the North China Sea (Duda
et al., 2004) and the Australian North West Shelf (Van Gastel et al., 2009). These waves
typically exist within the fluid as a large dip/elevation of isopycnals. Solitary waves can
generate strong shear as they propagate, which in turn can cause instabilities (like Kelvin-
Helmholtz) thus producing elevated turbulent dissipation and mixing (Carr et al., 2015;
Fructus et al., 2009).

1.2.1 Vertically Bounded Domain

The water in the ocean is bounded in the vertical direction by the ocean floor at the bottom
and the air-sea surface at the top. Hence it would be insightful to understand how the dis-
persion relation changes for a vertically bounded domain. For simplicity, we assume that
the ocean’s bottom surface is flat. Moreover, we also assume that the air-water interface
can be modeled as a rigid, free-slip boundary (Gerkema & J. Zimmerman, 2008). Typi-
cally, the internal waves inside the bulk of the ocean can easily have large amplitudes (>10
meters) because the density stratification is very small. However, the same wave does not
possess enough energy to displace the air-water surface where the density difference is
several orders of magnitude higher. As a result, internal waves that are generated inside
the ocean have a very weak surface presence and are approximated well using the rigid-lid
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approximation. The assumptions would mean that ψ = 0 at the top and bottom surface
thus enforcing the impenetrability condition. The coordinate system is chosen such that
the top and bottom surfaces are located at z = 0 and z = −H , respectively, where H
is the depth of the ocean. Here, the analysis is not limited to a constant N . Assuming
ψ = ϕ(z) exp [i(kx− ωt)] and substituting it in (1.20) results in

d2ϕ

dz2
+ k2

N2(z)− ω2

ω2 − f 2
ϕ = 0. (1.26)

Equation (1.26) with boundary conditions ϕ = 0 at z = 0 and −H is actually a Sturm-
Liouville eigenvalue problem. Equation (1.26) admits countably infinite solutions (unlike
the unbounded domain, where the solution set is uncountably infinite) or ‘modes’ for a
single frequency ω. The eigenvalues are ±kn, where n is a positive integer. The word
‘mode’ is used because, in a bounded domain, the vertical structure of the streamfunction
(ϕn) can be seen as different modes of vibration similar to a taut string held at both ends.
Moreover, the pair ±kn has a unique eigenfunction ϕn which satisfies (1.26). Physically,
the positive and negative eigenvalues model waves that propagate towards x and −x,
respectively. For uniform stratification (N being constant), the solution of equation (1.26)
is analytically derivable. The solution is given by:

ϕn = sin (mnz) , mn = ±nπ
H
, kn = ±nπ

H

√
ω2 − f 2

N2 − ω2
(1.27)

where ϕn is the n−th mode, and (kn,mn) are the n−th mode’s horizontal and vertical
wavenumber, respectively. Note that mn is independent of (ω, f,N). In general, the
solution for (1.26) has to be obtained numerically for non-uniform stratifications. For a
non-constant N , some examples of mode shapes are given in figure 1.3(a), and the strat-
ification profile used in constructing those mode shapes is given in 1.3(b). This profile
of buoyancy frequency is commonly used in literature as a substitute for realistic N pro-
files. Wentzel–Kramers–Brillouin method (WKB method) can be used to solve equation
(1.26) for a vertically varying stratification (Smith &Young, 2002; Echeverri et al., 2009).
However, the method has a high accuracy only when the vertical wavelength of the wave is
much smaller than the length scale of buoyancy frequency variation (Mathur et al., 2016).
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Figure 1.3: (a) The vertical mode shape (ϕ) of modes 1,2 and 3. (b) The corresponding
background stratification profile used in constructing the modes given in (a).

1.2.2 Orthogonality

Equation (1.26), being a Sturm-Liouville boundary value problem, has eigenfunctions that
form an orthogonal basis. The orthogonality property is as follows:∫ 0

−H

N2 − ω2

ω2 − f 2
ϕmϕndz = δm,n (1.28)

The proof for the above condition is not given here, however, it is easily derivable (Gerkema
& J. Zimmerman, 2008). The above property is often used in identifying the spectrum of
internal waves.

1.3 Mechanisms that cause the energy cascade in internal
waves

The primary mechanisms that cause the energy in internal gravity waves to cascade to
small length scales are wave-wave interactions, wave-topography interactions, and wave-
mean flow interactions. A simplified schematic of the three mechanisms is shown in fig-
ure 1.4. Once small length scale waves are formed because of these interactions, wave-
breaking will occur due to convective overturning or shear instabilities (Koudella & Sta-
quet, 2006; Sutherland, 2010). Convective overturning and shear instabilities are highly
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Figure 1.4: Various processes that can cause internal wave energy cascade: wave-wave in-
teractions, wave-topography interactions, and wave-mean interactions (MacKinnon et al.,

2017).

nonlinear processes that cause mixing. A brief explanation of the wave-wave interactions,
wave-topography interactions, and wave-mean flow interactions are given below.

1.3.1 Wave-wave interactions

In wave-wave interactions, a wave with a large amount of energy (often referred to as the
parent wave) ‘slowly’ transfers its energy to secondary (daughter) waves with different
frequencies and/or wavelengths. By ‘slowly’, it is meant that the rate of energy transfer
occurs at a much slower rate compared to the frequency of the waves. The daughter waves
often have infinitesimal energy at the beginning of the process. Moreover, the process
is ‘weakly’ nonlinear. This means that the nonlinear terms are necessary for the energy
transfer, however, the magnitude of the nonlinear terms is not as large as the linear terms
given in equations (1.14)–(1.17). Note that since the process is reliant on nonlinear terms,
the rate of energy transfer depends on the amplitude of the waves. A wave with large
length scale can provide its energy to a wave with small length scales. A simple image of
wave-wave interactions distorting a mode-1 internal wave is shown in figure 1.5. At t = 0,
a mode-1 internal wave structure can be seen. At t = tend, the structure is clearly different
because there are multiple waves present in the system and all of them were forced by the
mode-1 wave. More details on wave-wave interactions are provided in chapters 2 and 3.
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Figure 1.5: (a) Horizontal velocity field of a mode-1 internal gravity wave at t = 0. (b)
Horizontal velocity field consisting of multiple waves. The waves, other than mode-1,

were resonantly forced via wave-wave interactions.

1.3.2 Wave-topography interactions

When an internal wave encounters a solid obstacle in its path, the ensuing refraction and/or
reflection of the wave may result in energy cascade. An internal wave mode encountering
a topography (which is a solid obstacle) in its path can lead to wave ‘scattering’, where a
mode-1 wave gives its energy to mode-2,3 and so on. A simple schematic of the mech-
anism is shown in figure B.4. A mode-1 internal wave comes from the left side of the
domain, encounters a topography, and gets scattered. The scattering results in the gener-
ation of multiple modes that have smaller wavelengths than the incoming mode-1. The
resulting wave field often manifests in the form of a beam-like structure. An internal wave
beam is basically a superposition of multiple internal modes (Gerkema & J. Zimmerman,
2008). Unlike wave-wave interactions, the mechanism here is linear and can occur with-
out the nonlinear advection terms in the Navier-Stokes equation. Note that just because
wave-topography interactions can occur without the advection terms does not mean the
advection terms may not be important. For incoming waves with large amplitude, advec-
tion terms are crucial to model the physics accurately. In the oceans, low mode internal
waves are attenuated by wave-wave interactions more compared to wave-topography in-
teractions (de Lavergne et al., 2019, 2020). More details on wave-topography interactions
are provided in chapter 4.
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Figure 1.6: Mode-1 scattering by a topography. A mode-1 wave enters the domain from
the right side and impacts the topography resulting in a beam like structure.

1.3.3 Wave-mean flow interactions

Wave-mean interactions play a crucial role in the waves’ energy cascade. However, this
physics is not studied in detail in this thesis. Nevertheless, a brief introduction to wave-
mean interactions is provided here. Wave-mean interaction is a process where the wave
interacts with a flow that does not change much with time (the time scale of the mean flow
is much larger than the time scale of the wave itself). Some examples of mean flows in the
ocean are mesoscale eddies (horizontal length scales around ≈ 100km) and currents. The
ocean has an abundance of mesoscale eddies that are in geostrophic balance. Interaction of
an internal wave with barotropic balanced motions (eddies that do not vary in the vertical
direction) can cause horizontal isotropisation of the internal wave (Wagner et al., 2017;
Savva & Vanneste, 2018). If the balanced motions vary in the vertical direction, they
can cause an energy cascade in the internal waves. The higher wavenumbers generated
by the interaction will also have the same frequency (Dunphy & Lamb, 2014; Dunphy
et al., 2017; Kafiabad et al., 2019; Savva et al., 2021). The physics is similar to wave-
topography interactions. However, scattering by time-varying mean flows will lead to
the scattered waves having different frequencies (Dong et al., 2020). Mesoscale eddies
are one of the main reasons for energy cascade in the near-inertial waves (Perkins, 1976;
Kunze, 1985; Whalen et al., 2018) as well. The eddies reduce the horizontal length scales
of the near-inertial waves and channel them to the depths of the ocean where the waves
can cause mixing. Interestingly, the near-inertial waves can also drain the eddies’ energy
and transport it to the depths of the ocean (Barkan et al., 2021). Jets/currents can create
horizontal variations in the background density field, which are referred to as geostrophic
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fronts. An internal wave interacting with geostrophic fronts may get scattered (Kelly &
Lermusiaux, 2016; Li et al., 2019).

1.4 Problems addressed in this thesis

The rest of the thesis is dedicated to understanding the mechanisms that cause the energy
in internal waves to cascade to small length scales. As mentioned previously, many pro-
cesses lead to internal waves’ energy cascade, and the thesis primarily focuses on wave-
wave interactions and wave-topography interactions, which are two of the most important
mechanisms. A brief summary of the different problems addressed in this thesis is pro-
vided below.

1.4.1 Resonant and near-resonant internal wave triads in a vertically
bounded domain with mild-slope bathymetry

Themode-1 internal wave can travel a very long distance (O(1000)km) in the ocean. More-
over, the ocean depth may not be constant for the entire journey of the mode-1 wave. In
chapter 2, the effect of slowly varying fluid depth on wave-wave interactions of the mode-
1 wave is studied. The non-constant fluid depth changes the properties of the internal
waves, specifically, the wavenumber and the modal shape. Higher order self-interaction
of a mode-1 internal wave in the presence of a monochromatic, small-amplitude topogra-
phy is also investigated.

1.4.2 5-wave interactions in internal gravity waves

In this chapter, we focus on the stability of two parent waves that coexist in a region
without directly interacting with each other. The motivation for this study stems from
the fact that in the oceans, multiple parent waves travel in the midst of each other. The
specific focus is on 5-wave interactions that consist of two parent waves and three daughter
waves. Assuming both parent waves have the same frequency and wavevector norm, for
different parent wave vector orientations/directions, the growth rates of the 5-wave system
are calculated. Moreover, the conditions in which the 5-wave system instability is faster
than the 3-wave system instability are identified.
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1.4.3 Topographic scattering of internal waves in the presence of a
steady surface current

Surface currents are ubiquitous in the ocean, and internal waves frequently travel in the
presence of a current. In this chapter, the effect of a steady, stable surface current on the
scattering of a mode-1 internal wave by topography is studied. The current is assumed
to have a non-zero velocity only near the surface, and its amplitude in the depths of the
oceans is taken to be zero. Hence, the current is a vertically varying stable shear flow
(Richardson number (N2/(∂u/∂z)2) is always greater than 1/4.) In the presence of a
current, the mode-1 wave with a positive phase speed has different properties compared
to the mode-1 wave that has a negative phase speed. The scattering of both mode-1 waves
(positive and negative phase speeds) is explored. The amplitude of the incoming waves
is chosen to be low so that the physics is almost in a linear regime. The influence of the
current on scattering of internal waves by topographies with different heights and widths
is analysed in detail.



Chapter 2

Resonant and near-resonant internal
wave triads in a vertically bounded
domain with mild-slope bathymetry

This chapter is a modified version of the work published in Gururaj & Guha (2022), ”Res-
onant and near-resonant internal wave triads for non-uniform stratifications. part 2. verti-
cally bounded domain with mild-slope bathymetry. J. Fluid Mech. 943, A33.”

This chapter also consists of a very small portion of the work published in Gururaj & Guha
(2020), ”Energy transfer in resonant and near-resonant internal wave triads for weakly
non-uniform stratifications. Part 1. Unbounded domain. J. Fluid Mech. 899, A6.”

2.1 Introduction

An internal gravity wave can become unstable via resonant triadic wave-wave interac-
tions if it has the largest frequency in a triad (Hasselmann, 1967); through this mecha-
nism, energy is irreversibly transferred from a high frequency primary (parent) wave to
lower frequency secondary (daughter) waves. In a triad, a wave of angular frequency
ω3 and wavevector k3 (parent wave) can resonantly transfer its energy to two ‘daughter’
waves when both specific wavevector and frequency conditions are met between the par-
ent waves and the daughter waves (Davis & Acrivos, 1967; Thorpe, 1966; Hasselmann,

19
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1967; Phillips, 1977). The ‘triad’ conditions are given by

k3 = k1 + k2, and ω3 = ω1 + ω2. (2.1)

where kj = (kj, lj,mj) is the wavevector of the j−th wave. Daughter waves are denoted
by subscripts 1,2. The conditions are a consequence of the quadratic nonlinearity of the
Navier-Stokes equations. Moreover, for resonance, all three waves in a triad should satisfy
the dispersion relation. In the triad instability, amplitudes of the daughter waves’ grow
exponentially with time, while the total energy is conserved between the three waves.
Compared to the parent wave’s wavevector norm/magnitude, the daughter waves can have
a higher or a lower wavevector norm. We would like to make a small explanation on
the difference between ‘Triadic Resonant Instability’ and ‘Triadic Resonant Interaction’.
Triadic Resonant Instability is often used for cases where we study the stability of a single
parent internal gravity wave. In this case, the daughter waves’ energy at the initial times
is often negligible compared to the parent waves’ energy. Triadic Resonant Interaction is
a broader name that is used to denote the interaction of 3 internal waves that satisfy the
triad conditions. Unlike Triadic Resonant Instability where two daughter waves’ energy
at the initial times is negligible, there is no restriction on the amplitude of waves involved
in the interaction. Triadic Resonant Instability can be seen as a subset of Triadic Resonant
Interaction.

As a consequence of different conditions (triad conditions and dispersion relation) that
need to be satisfied by the daughter waves, not all waves can be a part of a triad involving
given parent wave. Using the constraints imposed by equations (1.22) and (2.1), for a
given (ω3, k3,m3) (hence a particular parent wave), all possible triads can be found by
solving (Richet et al., 2018)

s3

√
N2k23 + f 2m2

3

(k23 +m2
3)︸ ︷︷ ︸

ω3

= s1

√
N2k21 + f 2m2

1

(k21 +m2
1)︸ ︷︷ ︸

ω1

+s2

√
N2(k3 − k1)2 + f 2(m3 −m1)2

(k3 − k1)2 + (m3 −m1)2︸ ︷︷ ︸
ω2

.

(2.2)
where sj can be 1 or −1, and is used to represent the signs of each term. Note that in
equation (2.1), either |ω1| = |ω2| + |ω3|, or |ω3| = |ω2| + |ω1|, or |ω3| = |ω2| + |ω1|
can be satisfied. However, in equation (2.2) we need the sj terms to allow that same
freedom because the square root terms are always strictly positive. Without the sj term,
|ω3| = |ω2| + |ω1| would be strictly enforced in equation (2.2). We have to find (k1,m1)

which satisfy equation (2.2). The equation is solved for different values of ω1 such that
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Figure 2.1: The possible triad solutions (Bourget et al., 2013). f = 0 was taken. Wave
indices have been edited to match the notations used in this thesis. The bar variables are

used to denote vectors.

ω1 ∈ (f, ω3−f). By fixing ω1, the relationship between k1 andm1 is fixed because of the
internal waves’ dispersion relation. As a result, there are two different parameters (ω1 and
k1) that have to spanned to get all possible solutions of the equation. s3 = 1 is assumed
without losing any generality. The solutions for equation (2.2) is given in figure 2.1 for
different s1, s2 values. The figure uses k3 = m3 = 1 for the parent wave. Moreover,
the two green and red arrows show two specific example of daughter waves combinations
that are possible for the given parent wave. The primary focus is generally given to the
(+,+) curve in the figure which is obtained by setting s1 = 1 and s2 = 1. Note that if
s1 = s2 = 1, both terms on the RHS of equation (2.2) are positive quantities. Hence, every
point on this curve satisfy the Hasselmann (1967) instability condition ( both daughter
waves’ frequencies should be lower than the parent wave’s frequency). The growth rate
of the daughter waves depends on their frequencies and wavevectors.

Stability of a single internal gravity plane wave has been studied extensively in the past
few decades. 2D instability analysis is sufficient for parent/primary waves with small am-
plitude or ‘steepness’, (Klostermeyer, 1991), where a plane internal wave’s steepness is
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defined as the ratio of horizontal velocity amplitude to the horizontal phase speed. Math-
ematically, this can be expressed as (for f = 0) (Koudella & Staquet, 2006),

S(P ) =
ψ0mk

ω
=
ψ0m

√
(k2 +m2)

N
(2.3)

where ψ0 is the stream function amplitude. S(P ) is often used as a measure of nonlinearity
of the wave. The most unstable daughter wave combination for a small amplitude par-
ent wave varies with ω3/N (Sonmor & Klaassen, 1997), kinematic viscosity (ν) (Bourget
et al., 2013, 2014) and Coriolis frequency (f ) (Young et al., 2008; Maurer et al., 2016).
Without rotational effects and under inviscid conditions, for ω3/N < 0.68, the most un-
stable subharmonic daughter wave combination satisfies |k1| < |k3| < |k2|(Sonmor &
Klaassen, 1997). However, for ω3/N > 0.68, the most dominant instability satisfies
|k3| ≪ |k2| ≈ |k1|. This instability is called as Parametric Subharmonic Instability (PSI)
(MacKinnon & Winters, 2005; Young et al., 2008). PSI is a specific type of triad interac-
tion where ω2 ≈ ω1 ≈ ω3/2. In the oceans, viscosity has very little effect on large length
scale waves. However, in laboratory conditions, viscosity can play amajor role in deciding
the type of triad because viscosity hinders daughter waves with larger wavenumbers more
compared to waves with smaller wavenumbers (Bourget et al., 2013). Viscosity can affect
PSI significantly because the daughter waves can have very high wavenumbers in PSI. In-
stability of finite amplitude parent internal waves (S(P ) > 1) is a 3 dimensional process
(Klostermeyer, 1991; Lombard & Riley, 1996; Ghaemsaidi & Mathur, 2019). Through-
out this thesis, the focus is on weakly nonlinear interactions, that is interactions where the
wave almost behaves as a linear wave while its amplitude is slowly modified.

Rotational effects can be very important for triadic interactions. MacKinnon & Winters
(2005) conducted numerical simulations where a semidiurnal mode-1 internal wave, start-
ing near the equator, was forced to propagate towards the North pole. The internal wave
lost a significant amount of energy near the ‘critical’ latitude (28.9◦), where the near-
inertial waves’ frequency (f ) is exactly half of the semidiurnal internal tide’s frequency.
Mathematically this is given by:

f28.9◦ ≈ 0.7× 10−4s−1 = ωd/2 (2.4)

Here ωd = 1.4 × 10−4s−1 is the semidiurnal frequency. The energy flux of the mode-1
wave dropped by 60% in the vicinity of the critical latitude, and the reason for the energy
loss was concluded to be Parametric Subharmonic Instability (PSI). The significant decay
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of the internal wave observed by MacKinnon & Winters (2005) was not noticed in an
observational study conducted by Alford et al. (2007). Rather a dissipation of around
10 − 20% of the internal wave energy was estimated. Numerical simulations conducted
byHazewinkel &Winters (2011) agree broadly with Alford et al. (2007) (the dissipation of
themode-1 tide was reduced to≈ 15%). Usingmultiple scale analysis, Young et al. (2008)
provides an e-folding time of approximately nine days for a mode-1 internal wave near the
critical latitude. A similar e-folding time was also observed in a numerical simulation of
Hazewinkel & Winters (2011). Near the critical latitude, the inertial daughter waves have
very small vertical length scales which can lead to increased kinetic energy dissipation (Yi
et al., 2017; Richet et al., 2017, 2018). Moreover, when semidiurnal internal wave modes
interact with an ambient wave field that follows Garrett-Munk spectrum, their decay is
fastest near the critical latitude (Hibiya et al., 1998; Onuki & Hibiya, 2018; Olbers et al.,
2020).

Poleward of the critical latitude, the decay of the parent wave cannot be instigated by
small amplitude daughter waves. The reason is, for propagating internal waves, ωj > f is
needed. However, when f > ωd/2, the conditions ω1, ω2 > f and ω1+ω2 = ωd cannot be
satisfied simultaneously. Note that for a semidiurnal parent internal wave with frequency
ω3 = ωd, equation (2.1) and ω1 > f and ω2 > f cannot be simultaneously satisfied.
For example, assume f = 0.6ωd. Then both ω1 and ω2 should be greater than 0.6ωd

so that waves-1 and 2 are propagating waves. However, if both ω1 and ω2 are greater
than 0.6ωd then ω1 + ω2 ̸= ωd. Hence triad condition is violated. Interestingly, a little
poleward of the critical latitude the resonant triads can still exist and the parent wave
can decay by those triads (Young et al., 2008). For example, the growth rates at f =

0.75× 10−4s−1 are comparable to the growth rates at critical latitude. This was observed
in numerical simulations conducted by Richet et al. (2018) as well. This is because even
though resonant triads cannot be formed poleward of the critical latitude, near-resonant
triads can still be formed. Provided the detuning is not significant, energy transfer will
still occur. Note that detuning monotonically increases as f is increased from ωd/2. Hence
energy transfer is also reduced monotonically as f is increased and at one point becomes
the transfer becomes very weak.

For constantN , triads in a vertically bounded domain are qualitatively similar to the plane
wave triads. One important distinction comes in the possible triad solutions. In a bounded
domain, the wavenumber-spectrum is discrete as a consequence of the constraint posed by
equation (1.26). As a result, the lower limit for vertical wavenumber of daughter waves
is π/H for any ω, f,N . Hence for a mode-1 primary wave, triad solutions in figure 2.1
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that have |m1/m3| < 1 are not possible (Sutherland & Jefferson, 2020). In Varma &
Mathur (2017), the conditions for the existence of resonant weakly nonlinear wave-wave
interactions in a non-uniform vertically varying stratification were studied. They proved
that resonant triads and self-interactions can exist if (i) they satisfy the frequency and the
horizontal wavenumber condition, and (ii) each wave’s functional form in z−direction is
non-orthogonal to the nonlinear forcing terms.

Triad interactions are not the only form of weakly nonlinear wave-wave interaction. In
the presence of a non-constantN , a wave with frequency (ω) and horizontal wavenumber
(k) can ‘self-interact’ and give its energy to a wave with twice the frequency and horizon-
tal wavenumber (2ω, 2k). This process is commonly known as self-interaction, and only
two waves are involved in a self-interactions unlike triads. The self-interaction process
would be resonant if both (ω, k) and (2ω, 2k) satisfy the dispersion relation. Interestingly,
a plane internal wave in a constant stratification cannot self-interact. The nonlinear terms
identically goes to zero for any (ω, k,m) (Tabaei & Akylas, 2003). A mode-1 internal
wave can only self-interact with another mode-1 internal wave. Moreover, the interac-
tion is resonant only when ω ≫ f and N ≫ ω (Wunsch, 2017). Numerical simulations
performed by Sutherland (2016) show that self interaction of a mode-1 internal wave is
faster than triad interactions when f ≈ 0. Moreover, the wave with frequency 2ω can
self interact and pass its energy to the 4ω wave (Sutherland & Dhaliwal, 2022) as well. In
realistic ocean scenarios, such resonant cascade for mode-1 is only possible near the equa-
tor where ω ≫ f . A small detuning in frequency can make the energy transfer between
the two waves periodic in time(Baker & Sutherland, 2020). It was also observed that as
detuning was increased, the energy transfer was reduced. Liang et al. (2017) showed that
self-interaction also occurs in the presence of uniform stratification, provided the nonlinear
terms in the free surface boundary condition are taken into account.

Triad interactions involving internal wave beams can be very different from the wave-
wave interactions of internal wave modes. Internal wave beams are localised in space,
hence the daughter waves’ group speed can play a major role as well. Because of the
finite nature of the internal wave beams, daughter waves with low group speeds can extract
more energy compared to daughter waves with higher group speeds. However, for internal
wave modes that span hundreds of kilometers, the group speed of the daughter waves does
not matter. Internal wave beams contain a spectrum of waves hence the resonant triad
conditions are less stringent. In the presence of uniform stratification, an internal wave
mode often contains only one or two wavevectors hence the triad conditions are more
strict. Note that the decay of both internal wave beams and modes has to be studied to
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Figure 2.2: A general schematic of the problem to be studied. The figure shows the
streamfunction field of three wave packets interacting in the presence of a varying
bathymetry h(x). H is the mean depth (equivalent to the depth in flat bathymetry sit-
uation), whileHb(x) denotes the submarine topography shape. (b) The stratification pro-
file used in constructing the modes. The same non-uniform stratification model is used

throughout the chapter.

properly estimate the decay of internal waves in the ocean as both modes and beams are
ubiquitous in the ocean.

The effect of variation of the ocean depth on internal wave triads involving low modes is
studied on this chapter. A simplified schematic of the setup is given in figure 2.2. The
motivation behind this study stems from the simple fact that ocean depth varies spatially,
hence waves can move from one depth to another while they are interacting in a medium of
varying stratification. Note that mode-mode coupling can occur due to the depth changes
and/or density gradient changes. To understand the effects of the depth change, we have
also considered the case of constant stratification. However, since the buoyancy frequency
in the ocean varies in the z− direction inmost regions. As a result, we have also considered
the variation ofN and h. As a result, consideration of constant depth that has been used in
the studies before might be an over-simplification in some scenarios. The effect of change
in fluid depth on resonant and near-resonant interactions between three distinct waves is
our primary focus.

The remaining sections are organised as follows. In §2.2, a toy model that captures the
essence of wave-amplitude derivation process used in the subsequent chapters is presented.
In §2.3, we derive the amplitude evolution equations of the constituent waves of a triad
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in the presence of a slowly varying bathymetry using the Boussinesq Navier-Stokes equa-
tions in the f−plane. To derive these equations, the streamfunction, buoyancy perturba-
tion, and meridional velocity due to each wave are assumed to be a product of a slowly
varying amplitude and a rapidly varying phase that are functions of space and time. In
§2.4 and §2.5, the effect on the horizontal wavenumber condition when waves interact in
a region of varying ocean depth in the presence of uniform and non-uniform stratification
are respectively studied. In §2.6, we have studied the effect of ocean depth variation on
the rate of energy transfer in triadic interactions and self-interactions in the presence of a
non-uniform stratification. In §2.7, we analyze higher order self-interactions of a wave in
the presence of small-amplitude monochromatic topography. In §2.8, the reduced order
equations derived in this chapter are validated by solving the full Boussinesq equations us-
ing an open source code Dedalus (Burns et al., 2020). The chapter has been summarized
in §2.9.

2.2 Toy Model

We will first look at a toy model that captures the essence of the derivation process that
is used to derive the wave amplitude equations from the Navier-Stokes Equations. To this
end, let us assume a partial differential equation given by

∂U
∂t

+ ck
∂U
∂x

+ cm
∂U
∂z

= ϵs

{
U , ∂U

∂x
+
∂U
∂z

}
, (2.5)

where U is some variable that depends on time (t) and spatial coordinates (x, z). ck and cm
are some constants. The operator {G1, G2} ≡ (∂G1/∂x)(∂G2/∂z)−(∂G1/∂z)(∂G2/∂x)

denotes the Poisson bracket. ϵs is a small parameter which is used to denote the fact that
nonlinear terms are much smaller than the linear terms. We are interested in modeling
the stability of the base flow U3 = exp i(k3.x− ω3t) + c.c to some small perturbation Up,
where c.c. denotes the complex conjugate. Substituting U3 in equation (2.5) would lead to

(k3ck +m3cm − ω3) = 0, (2.6){
U3,

∂U3

∂x
+
∂U3

∂z

}
= 0 (2.7)

Equation (2.6) is basically the dispersion relation satisfied by wave-3. Moreover, for the
wavevector k3 (or any single wavevector) the nonlinear terms are zero, hence the wave is
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a complete solution of equation (2.5). Now, let us assume the perturbation Up takes the
form given by

Up = ϵs(Ũ2(ϵst) exp i(k2.x− ω2t) + Ũ1(ϵst) exp i(k1.x− ω1t) + c.c) (2.8)

where Ũj is the amplitude of the j−th wave-like perturbation, and it is assumed to vary
in time slowly (dŨj/dt ≪ ωj). We assume Ũj is a slow function of time anticipating
the perturbation waves’ amplitude would change because of the nonlinear interactions.
The small parameter ϵs is once again used to denote the fact that the perturbation is much
smaller than the base flow. Substituting (2.8) in (2.5), at orderO(ϵs), the perturbation will
also satisfy the dispersion relation. As a result

(k1ck +m1cm − ω1) = 0, and (k2ck +m2cm − ω2) = 0. (2.9)

Note that this means the perturbation also consists of linear waves (like the parent wave)
whose amplitudes (Ũj) are slow functions of time. Now we expand the nonlinear term{

U , ∂U
∂x

+
∂U
∂z

}
=

{
U3,

∂Up

∂x
+
∂Up

∂z

}
︸ ︷︷ ︸

O(ϵs)

+

{
Up,

∂U3

∂x
+
∂U3

∂z

}
︸ ︷︷ ︸

O(ϵs)

+

{
Up,

∂Up

∂x
+
∂Up

∂z

}
︸ ︷︷ ︸

O(ϵ2s)

.

(2.10)
The final term in the RHS of (2.10)models the interaction among the different waves of the
perturbation. The final term would be much smaller than the other two terms in the RHS,
hence it is not considered. We now focus on the term ∂U3/∂x(∂

2Up/∂x∂z + ∂2Up/∂z
2).

The subsequent analysis can be easily used for the other O(ϵs) term as well. To this end,
∂U3/∂x(∂

2Up/∂x∂z + ∂2Up/∂z
2) can be expanded as

∂U3

∂x

(
∂2Up

∂x∂z
+
∂2Up

∂z2

)
=− ik3Ũ2(m

2
2 +m2k2) exp i(k3x− ω3t) exp i(k2x− ω2t)

−ik3Ũ1(m
2
1 +m1k1) exp i(k3x− ω3t) exp i(k1x− ω1t)

−ik3 ¯̃U2(m
2
2 +m2k2) exp i(k3x− ω3t) exp i(ω2t− k2x)︸ ︷︷ ︸

wave-1 phase

−ik3 ¯̃U1(m
2
1 +m1k1) exp i(k3x− ω3t) exp i(ω1t− k1x)︸ ︷︷ ︸

wave-2 phase

+c.c.

(2.11)

where ¯̃Uj denotes the complex conjugate of Ũj . Let us nowmake a crucial assumption that
(kj, ωj) satisfy k3 = k2 + k1 and ω3 = ω2 + ω1, which are same as the triad conditions
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mentioned earlier. As a result of this assumption, combination of wave-3 term with certain
wave-1 terms would have the same phase as wave-2, and this is shown in equation (2.11).
Similarly, combination of some wave-3 and wave-2 terms would have the same phase as
wave-1. Note how the parent wave term has to combine with the ‘conjugate part’ of the
perturbation flow. As a result, we have two nonlinear terms that are resonant because they
have the same phase as the perturbation waves. Considering this, the evolution equation
for Ũj at O(ϵ2s) can be written as

∂Ũ1

∂t
= C12

¯̃U2 + (N.R.T) exp i(ω1t− k1x) (2.12a)

∂Ũ2

∂t
= C21

¯̃U1 + (N.R.T) exp i(ω2t− k2x) (2.12b)

whereC12 andC21 are constants that have to determined by considering all nonlinear terms
that have the phase of wave-1 and wave-2, respectively. N.R.T denotes the non-resonant
terms: terms that do not have the phase of wave-1 or wave-2. For example, in equation
(2.11), there are nonlinear terms that are proportional to exp i((k3 + k2)x− (ω3 + ω2)t).
On a much longer time scale, these terms would not impact the system significantly, hence
they are neglected. This would further reduce equations (2.12a) and (2.12b) to

∂Ũ2

∂t
= C21

¯̃U1 and
∂Ũ1

∂t
= C12

¯̃U2 (2.13)

The system of equations given in (2.13) can admit exponentially growing solutions, and
this shows that the perturbations’ amplitude can grow indefinitely. They can grow ex-
ponentially when C̄12C21 or C̄21C12 is a positive quantity. Note that we needed equation
(2.9) (dispersion relation) to be satisfied along with the triad conditions to arrive at this
point. The perturbations are ‘almost’ linear waves whose amplitude is slowly modulated
because of the nonlinear interactions. Wave-wave interactions of internal gravity waves
can be modeled using similar mathematical techniques/procedures (multiple scale analy-
sis).

2.3 Derivation of the governing equations in terrain-following
coordinates

The incompressible, inviscid, 2D (in the x–z plane) Navier-Stokes equations on the f–
plane under the Boussinesq approximation can be expressed in terms of the perturbation
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streamfunction ψ, meridional velocity v, and the perturbation buoyancy b as follows:

∂

∂t

(
∇2ψ

)
+
∂b

∂x
− f

∂v

∂z
= −{∇2ψ, ψ}, (2.14a)

∂v

∂t
+ f

∂ψ

∂z
= −{v, ψ}, (2.14b)

∂b

∂t
−N2∂ψ

∂x
= −{b, ψ}. (2.14c)

Horizontal velocity (x-direction), u, and the vertical velocity, w, are given by u = ∂ψ/∂z,
andw = −∂ψ/∂x. The operator {G1, G2} ≡ (∂G1/∂x)(∂G2/∂z)−(∂G1/∂z)(∂G2/∂x)

denotes the Poisson bracket. Viscous effects have been neglected owing to the fact that we
consider waves with long wavelengths. The fluid domain is bounded at the top (z = 0) by
a rigid-lid (i.e., zero vertical velocity, leading to the boundary condition ψ(x, 0) = 0). The
bottom boundary at z = h(x) satisfies the impenetrable boundary condition ψ(x, h(x)) =
0.

Instead of solving the fully nonlinear equations (2.14a)–(2.14c) numerically, we combine
(2.14a)–(2.14c) into a single equation and employ a multiple-scale analysis. To this end,
we perform ∂(2.14a)/∂t+ f∂(2.14b)/∂z −∂(2.14c)/∂x, which results in

∂2

∂t2
(
∇2ψ

)
+N2∂

2ψ

∂x2
+ f 2∂

2ψ

∂z2
= − ∂

∂t

(
{∇2ψ, ψ}

)
+

∂

∂x
({b, ψ})− f

∂

∂z
({v, ψ}) .

(2.15)

Following the approach ofMaugé&Gerkema (2008), we now change the governing equa-
tions to terrain following coordinates, where a new variable (η) is defined as:

η ≡ − z

h(x)
. (2.16)

η serves as a spatial coordinate instead of z. According to the definition (2.16), the bottom
boundary condition at z = h(x) would now be enforced at η = −1, while the surface
boundary condition at z = 0 remains unaltered, except that it is now at η = 0. The
governing equations, which are in the x–z coordinates, need to be transformed into the x–
η coordinates. The correspondence between the variables in the x–z and x–η coordinate
systems are as follows:

ψ(x, z, t) ⇒ Ψ(x, η, t), b(x, z, t) ⇒ B(x, η, t), v(x, z, t) ⇒ V(x, η, t).
(2.17)
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On transforming the differential operators from x–z coordinates to x–η coordinates and
substituting the transformed variables in (2.15), we arrive at[
∂2

∂t2
(Lxx + Lηη) +N2(−h(x)η)Lxx + f 2Lηη

]
Ψ = − ∂

∂t
[J {(Lxx + Lηη)Ψ,Ψ}]

+ Lx (J {B,Ψ})− fLη (J {V,Ψ}) ,
(2.18)

where the operators Lx, Lη, Lxx, Lηη, and J {G1, G2} have the following definitions:

Lx ≡ ∂

∂x
+
∂η

∂x

∂

∂η
, Lη ≡ −1

h

∂

∂η
, Lηη ≡

1

h2
∂2

∂η2
, (2.19a)

Lxx ≡ ∂2

∂x2
+
η2

h2

(
∂h

∂x

)2
∂2

∂η2
−2

η

h

(
∂h

∂x

)
∂2

∂η∂x
+
η

h

[
2

h

(
∂h

∂x

)2

− ∂2h

∂x2

]
∂

∂η
, (2.19b)

J {G1, G2} ≡ Lx(G1)Lη(G2)− Lη(G1)Lx(G2). (2.19c)

For performingmultiple-scale analysis, we assumewavelike perturbations, and the stream-
function due to the j-th wave (j = 1, 2, 3) is given according to the following ansatz:

Ψj = aj(ϵxx, ϵtt)Ξj(x, η, t) + c.c., (2.20)

where aj is the slowly varying complex amplitude, and Ξj(x, η, t) is the rapidly varying
phase part of the j-th wave. The small parameters ϵt and ϵx are respectively used to denote
the weak variation of the amplitude function with time and streamwise (x) direction. The
amplitude is assumed to be anO(ϵa) quantity, where ϵa is a small parameter. We choose ϵa
so that the lowmodes’ steepness or Froude number is small (Legg, 2014). The bathymetry
(h), which is simply the negative of the fluid depth, is assumed to be of the form:

h = −H + ϵhHb(kbx), (2.21)

whereH represents the mean depth of the fluid domain,Hb denotes the submarine topog-
raphy shape, ϵh is its amplitude, and k−1

b represents the length scale of the bathymetry. We
always assume the bathymetry to have a ‘mild slope’; for this we use an analog condition
of that used for surface gravity waves (Meyer, 1979; Kirby, 1986):

1

Kj

∂h

∂x
= O(ϵhϵk) ≪ O(1), (2.22)
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where Kj ≡ kjh is the nondimensional horizontal wavenumber (kj being the horizontal
wavenumber) of the j−th internal wave. Moreover, the relation k−1

j = ϵkk
−1
b is used

in (2.22), which implies that either of the parameters, ϵh or ϵk, could be a small quantity
while the other could potentially be anO(1) quantity. We usemild-slope assumption in this
chapter because we want to focus only on the wave-wave interactions. Without the mild
slope assumption, the topography itself can scatter the lowmode and cause energy cascade.
This can be seen in the later results of chapter 4 where most of the topographies cannot
be classified as mild slope. The topographies are chosen to be smooth enough so that the
scattering of the internal waves is negligible. The primary assumption in this chapter is
that the scattering of internal waves by the topography is always negligible because of the
mild slope assumption. Internal wave scattering is largely dependent on the slope of the
wave, which is almost constant (wave’s slope is dependent onN , which is nearly constant
away from the pycnocline) even for higher modes whose horizontal wavenumber is much
larger. The main condition that should be satisfied for a mild slope topography is that the
criticality (Υ) of the topography should be less 0.1. The criticality is defined as:

Υ ≡ max
(

1

tanΘ
dh

dx

)
(2.23)

As long Υ ≤ 0.1, the scattering of the low mode internal wave would be very low. Note
that the mild slope condition in this case can still lead to internal gravity wave scattering.
Scaling analysis to find the relations between these small parameters is given in the end
of this chapter in appendix A. The choice of mild-slope bathymetry is also realistically
relevant. We took GEBCO Bathymetry data to verify that in certain regions topographies
vary smoothly and we believe in these cases the approach used should be valid. This is
shown in the figure below. The figure uses bathymetry data from GEBCO. The curves
plotted in figure 2.3(b) are horizontal transects of the bathymetry taken from the small
region enclosed by the blue and red lines of 2.3(a). We can see that the bathymetry changes
slowly but steadily over hundreds of kilometers in two of the 3 transects.

2.3.1 Leading order analysis

Next, equation (2.20) is substituted in (2.18). At the leading order (O(ϵa)), the governing
equation (2.18) reduces to:(

∂2

∂x2
+

1

h2
∂2

∂η2

)
∂2Ξj

∂t2
+N2(−h(x)η)∂

2Ξj

∂x2
+
f 2

h2
∂2Ξj

∂η2
= 0. (2.24)
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Figure 2.3: (a) Critical slope from Becker & Sandwell (JGR Oceans, 2008). (b) 3 longitudinal
transects of bathymetry from the highlighted area. Bathymetry data is obtained from GEBCO.

The conversion of equation (2.15) (which is in x−z coordinates) to equation (2.18) (which
is in x − η coordinates) does not involve any assumptions. The procedure outlined in
Maugé & Gerkema (2008) is simply followed. However, the ‘mild slope’ assumption is
used to study weakly nonlinear wave-wave interactions in the presence of slowly varying
topography. As a result, equation (2.24) is significantly more simplified compared to the
linear terms given in equation (2.18). Hereafter we drop the argument of N2, assuming it
is implied. Furthermore assuming Ξj = Ξ̂j(x, η)e−iωjt, where ωj is the angular frequency
of the j-th internal wave, (2.24) simplifies to[

(N2 − ω2
j )
∂2

∂x2
−
ω2
j − f 2

h2
∂2

∂η2

]
Ξ̂j = 0. (2.25)

For a mild slope bathymetry, we can use variable separation to solve (2.25) at the leading
order. To this end we assume Ξ̂j = ϕj(η; x)Pj(x), which leads to

h2

Pj

∂2Pj

∂x2
=

ω2
j − f 2

N2 − ω2
j

1

ϕj

∂2ϕj

∂η2
= −K2

j , (2.26)

where ϕj parametrically depends on x via h. The specific notation ϕj(η; x) is used to
denote that ϕj varies parametrically with h(x), and therefore with x. The primary as-
sumption is that the variation of ϕj with respect to the horizontal direction is very small.
This is because the fluid depth varies very slowly in the x−direction, which is the primary
assumption made in this chapter. We emphasize that in the x–η coordinates, the presence
of bathymetry makes N also be a function of x; see figure 2.4 for clarity. In general for
weakly varying media, dispersion relation has to be evaluated locally (for example, Refs.
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Figure 2.4: The effective change in the stratification profile N(z) when the coordinates
are changed from (a) x–z to (b) x–η in the presence of bathymetry. For the latter case,
if N is a function of z in x–z, it becomes a function of both η and x in x–η. N profiles
corresponding to the top of a seamount and an abyssal plain region have been respectively

denoted by blue and green colors.

Grimshaw (1988, 1994) also use a similar procedure to study triads in weakly varying
shear flows).

Two separate equations, one for Pj and the other for ϕj , can be formed from (2.26):[
∂2

∂x2
+

K2
j

h2

]
Pj = 0, (2.27a)

Ljϕj ≡
[
∂2

∂η2
+K2

jχ
2
j

]
ϕj = 0, (2.27b)

where χj ≡
√(

N2 − ω2
j )/(ω

2
j − f 2

)
is defined for convenience.

The boundary conditions for (2.27b) are ϕj = 0 at η = 0,−1. The nondimensional
horizontal wavenumber of the j−th wave, i.e. Kj , is the set of eigenvalues obtained from
(2.27b), which can vary in x when N is a function of x in x–η coordinates. Equation
(2.27b) is evaluated at each x to obtain ϕj for that x. However, ϕ′

js dependence on x is
slow (since h is assumed to be slowly varying); as a result, the phase part behaves as a
separate entity in the leading order. An important point to note is the convention used
in this study. While positive (negative) kj implies waves propagating along +x (−x),
owing to the fact that h is negative, Kj follows the exactly opposite convention. This
means that a negative (positive) Kj implies that the wave is traveling along +x (−x)
direction. Moreover we notice that (2.27b) does not explicitly depend on h. The only way
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(2.27b) can be influenced by h is through N when the latter varies in the z−direction (in
x–z coordinates). However, for a uniform stratification (N = constant), eigenvalues of
(2.27b) are independent of h. In this case the eigenvalues are given by

Mj ≡ Kjχj = nπ, (2.28)

where n is a positive integer. We also observe that the quantity Mj behaves like the
vertical wavenumber of the wave that is nondimensionalised by the local bathymetry h.

Meanwhile, Pj at the leading order of the WKB approximation is given by

Pj = exp
[
i
∫ x

0

Kj(x
′)

h(x′)
dx′
]
. (2.29)

Note that we do not use the WKB method in the vertical z−direction. The method would
not give accurate results ifN(z) varies rapidly in the vertical direction. TheWKBmethod
is used only for the horizontal direction where it is justified because of the slow variation
of the fluid depth. A function βj(ϵkx) is introduced such thatPj is corrected toPj/βj . This
slow varying function βj(ϵkx), which acts as a correction to the first order WKB solution
(2.29), is given in (2.37). Note that Pj/βj is still a solution of (2.27a) in the leading order
even after the above-mentioned correction. To normalize the eigenfunction of the waves
obtained from (2.27b), every wave’s ϕj is constrained to satisfy:

1

2

∫ 0

−1

1

h2

[
K2

jϕ
2
j +

(
∂ϕj

∂η

)2
]
∂η = 1. (2.30)

After this normalisation, waves having the same amplitude (aj) will also have the same
energy density at a given h, provided βj = 1.

The meridional velocity and the buoyancy perturbation at the leading order can be ob-
tained by respectively converting (2.14b) and (2.14c) into the x–η coordinates and then
substituting the streamfunction ansatz (2.20):

Vj = i
f

hωj

aj
βj

∂ϕj

∂η
Pje−iωjt + c.c., (2.31)

Bj = i
N2

ωj

aj
βj

∂Pj

∂x
ϕje−iωjt + c.c. (2.32)
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2.3.2 Second order analysis

2.3.2.1 Amplitude evolution equations for a resonant triad in the presence of a non-
uniform stratification

Triad interaction between three internal waves occurs at O(ϵ2). Below we describe the
detailed derivation that finally leads to the amplitude evolution equations (2.45a)–(2.45c)
of the waves constituting a triad.

After substituting the streamfunction (2.20), meridional velocity (2.31), and buoyancy
perturbation (2.32) in (2.18), the equation for the j-th wave can be written as:

aj
Pj

βj
Ljϕj = −OE(2)

j , (2.33)

where Pj ≡ Pje−iωjt, Lj has been defined in (2.27b), and

OE(2)
j ≡ i

∂aj
∂t

(
ϕjK2

j −
∂2ϕj

∂η2

)
2ωj

h2

(
Pj

βj

)
+ 2i(N2 − ω2

j )

(
Kj

h
ϕj
∂aj
∂x

)(
Pj

βj

)
︸ ︷︷ ︸

Linear term-1

+ i(N2 − ω2
j )
Kj

h

[
2
∂ϕj

∂x
+
ϕjh

Kj

∂

∂x

(
Kj

h

)
− 2η

h

∂h

∂x

∂ϕj

∂η
− 2

ϕj

βj

d(βj)

dx

](
aj
Pj

βj

)
︸ ︷︷ ︸

Linear term-2

−NLj.

(2.34)

OE(2)
j is the collection of all the linear and nonlinear (NLj) terms atO(ϵ2) which have the

phase of the j−th wave. Equation (2.33) can have a non-trivial solution when OE(2)
j is

orthogonal to the adjoint solutions of the linear operator Lj , and this procedure is outlined
in Craik (1971). The complete mathematical proof for using such condition is given in
detail in Ince (1956, §9.34). Following Craik (1971), OE(2)

j is multiplied by ϕj (since Lj

is a self-adjoint operator, ϕj is also the solution of the adjoint of Lj) and then integrated
in the η direction inside the boundary limits. This would result in:

2

[
iωj

∂aj
∂t

(
γ
(1)
j K2

j − γ
(2)
j

) 1

h2
+ iγ(3)j

(
Kj

h

∂aj
∂x

)]
Pj

βj

+ i
Kj

h

[
2γ

(4)
j +

hγ
(3)
j

Kj

∂

∂x

(
Kj

h

)
− γ

(5)
j

2

h

∂h

∂x
−

2γ
(3)
j

βj

dβj
dx

]
aj
Pj

βj
=

∫ 0

−1

NLjϕjdη, (2.35)
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where γ(n)j are functions that vary in the x-direction, and are obtained after integration in
the η direction. The expressions for γ(n)(j,i), which are used in §2.3.2.1 and §2.7, are provided
below:

γ
(1)
(j,i) =

∫ 0

−1

[ϕj]ϕidη, γ
(2)
(j,i) =

∫ 0

−1

[
∂2ϕj

∂η2

]
ϕidη,

γ
(3)
(j,i) =

∫ 0

−1

[
(N2 − ω2

j )ϕj

]
ϕidη, γ

(4)
(j,i) =

∫ 0

−1

[
(N2 − ω2

j )
∂ϕj

∂x

]
ϕidη,

γ
(5)
(j,i) =

∫ 0

−1

[
η(N2 − ω2

j )
∂ϕj

∂η

]
ϕidη, γ

(6)
(j,i) =

∫ 0

−1

[
η2(N2 − ω2

j )
∂2ϕj

∂η2

]
ϕidη,

γ
(7)
(j,i) =

∫ 0

−1

[
η(N2 − ω2

j )
∂2ϕj

∂x∂η

]
ϕidη, γ

(8)
(j,i) =

∫ 0

−1

[
(N2 − ω2

j )
∂2ϕj

∂x2

]
ϕidη.

(2.36)

Throughout this chapter, γ(j,j) is simply denoted by γj for convenience. Up to this point,
βj is an arbitrary function, and for convenience, βj is defined such that the second square-
bracketed term in the LHS of (2.35) vanishes identically. It also implies that ‘Linear
term-2’ in (2.34) also vanishes identically. In mathematical terms this means,

βj = exp

{∫ x

0

h

2Kj

1

γ
(3)
j

[(
2γ

(4)
j − γ

(5)
j

2

h

∂h

∂x

)(
Kj

h

)
+ γ

(3)
j

∂

∂x

(
Kj

h

)]
dx

}
. (2.37)

For constant N , βj can be analytically simplified to βj = h(x)/h(0) = −h(x)/H , where
it is assumed that h(0) = −H . Equivalent βj functions were derived in Lahaye & Smith
(2020) using a different approach. For this particular choice of βj , if the amplitudes aj are
x−invariant, the energy flux will be x−invariant as well, regardless of the modal shape,
or depth. More importantly, a wave packet’s maximum amplitude does not change when
βj , given by (2.37), is used in (2.35). For example, let us assume that the wave packet
travels from a depth H1 to H2. Moreover, let us assume that the packet at H1 is given
by aj = Aj exp(−x2), where Aj is some constant. Then aj , after the packet propagates
to a depth H2 would be aj = Aj exp(−(cjx)

2), where cj is a function which depends
on the wave properties, H1 and H2. Notice that the maximum wave-amplitude Aj is still
unchanged. Hence growth rates, under pumpwave approximation, can be calculated using
Aj . This invariance of the maximum value of the aj with varying h is very useful in
estimating wave growth rates in this study, in which a major focus is on wave interactions
in a region of varying h.

Next we outline the procedure to obtain
∫ 0

−1
NLjϕjdη in (2.35) to complete the amplitude
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evolution equations. The streamfunction, meridional velocity and buoyancy frequency
ansatz are substituted in the nonlinear terms of (2.18), and all the terms with the phase of
the j−th wave are collected. In terrain following coordinates, There would be a significant
number of nonlinear terms but the quantity can be reduced by using some assumptions.
The operator ∂/∂x is assumed to operate only on the phase of the wave. This is because
amplitude (aj) and the eigenfunction (ϕj) are slow functions of x, and the length scale of
their variation would be an order of magnitude higher than wavelength of the waves as
per our initial assumption. Moreover, differential operators in equations (2.19a)–(2.19c)
having coefficients dh/dx, d2h/dx2 are also neglected. Hence, the following relations are
used while evaluating nonlinear terms:

Lx

(
ajϕj

βj
Pj

)
≈ ajϕj

βj

(
∂Pj

∂x

)
≈ ajϕj

βj
(kjPj) , (2.38)

Lxx

(
ajϕj

βj
Pj

)
≈ ajϕj

βj

(
∂2Pj

∂x2

)
≈ ajϕj

βj

(
−k2jPj

)
(2.39)

Note that using (2.38) and (2.39), the Poisson bracket (J {}) can also be simplified eas-
ily. Considering the above simplifications, the resultant resonant nonlinear terms, after
omitting non-resonant terms, can be written in a compact form as given below:∫ 0

−1

NL1ϕ1dη =

[∫ 0

−1

(
N̂L(Ψ,1) + N̂L(B,1) + N̂L(V,1)

)
ϕ1dη

]
a3ā2
β2β3

P3P̄2 (2.40a)∫ 0

−1

NL2ϕ2dη =

[∫ 0

−1

(
N̂L(Ψ,2) + N̂L(B,2) + N̂L(V,2)

)
ϕ2dη

]
a3ā1
β1β3

P3P̄1 (2.40b)∫ 0

−1

NL3ϕ3dη =

[∫ 0

−1

(
N̂L(Ψ,3) + N̂L(B,3) + N̂L(V,3)

)
ϕ3dη

]
a1a2
β1β2

P1P2 (2.40c)

NL(∗,j) ≡
∫ 0

−1
N̂L(∗,j)ϕjdη is defined for convenience and their expressions are given by

NL(Ψ,1) =
ω1

h4

[
K3

(
ζ3ω

2
3Γ

(1)
2 − ζ3Γ

(2)
2 − Γ

(3)
3

)
−K2

(
ζ2ω

2
2Γ

(1)
3 − ζ2Γ

(2)
3 − Γ

(3)
2

)]
+
ω1

h4

[(
K2

2 −K2
3

)
(K2Γ

(1)
3 +K3Γ

(1)
2 )
]
,

NL(Ψ,2) =
ω2

h4

[
K3

(
ζ3ω

2
3Γ

(1)
1 − ζ3Γ

(2)
1 − Γ

(3)
3

)
−K1

(
ζ1ω

2
1Γ

(1)
3 − ζ1Γ

(2)
3 − Γ

(3)
1

)]
+
ω2

h4

[(
K2

1 −K2
3

)
(K1Γ

(1)
3 +K3Γ

(1)
1 )
]
,

NL(Ψ,3) =
ω3

h4

[
K1

(
ζ2ω

2
2Γ

(1)
1 − ζ2Γ

(2)
1 − Γ

(3)
2

)
+K2

(
ζ1ω

2
1Γ

(1)
2 − ζ1Γ

(2)
2 − Γ

(3)
1

)]
+
ω3

h4

[(
K2

2 −K2
1

) (
K1Γ

(1)
2 −K2Γ

(1)
1

)]
. (2.41)
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NL(B,1) =
(K3 −K2)

h4

[
K2K3

(
1

ω2

− 1

ω3

)
Γ(4) +

(
K3

ω3

− K2

ω2

)(
K3Γ

(2)
2 −K2Γ

(2)
3

)]
,

NL(B,2) =
(K3 −K1)

h4

[
K1K3

(
1

ω1

− 1

ω3

)
Γ(4) +

(
K3

ω3

− K1

ω1

)(
K3Γ

(2)
1 −K1Γ

(2)
3

)]
,

NL(B,3) =
(K1 +K2)

h4

[
K1K2

(
1

ω1

+
1

ω2

)
Γ(4) +

(
K2

ω2

− K1

ω1

)(
K1Γ

(2)
2 −K2Γ

(2)
1

)]
(2.42)

NL(V,1) =
f 2

h4

[(
1

ω3

+
1

ω2

)
(K2 +K3)

(
ζ3ω

2
3Γ

(1)
2 − ζ3Γ

(2)
2 + ζ2ω

2
2Γ

(1)
3 − ζ2Γ

(2)
3

)]
+
f 2

h4

[(
K2

ω3

+
K3

ω2

)(
Γ
(3)
2 + Γ

(3)
3

)]
,

NL(V,2) =
f 2

h4

[(
1

ω3

+
1

ω1

)
(K1 +K3)

(
ζ3ω

2
3Γ

(1)
1 − ζ3Γ

(2)
1 + ζ1ω

2
1Γ

(1)
3 − ζ1Γ

(2)
3

)]
+
f 2

h4

[(
K1

ω3

+
K3

ω1

)(
Γ
(3)
1 + Γ

(3)
3

)]
,

NL(V,3) =
f 2

h4

[(
1

ω1

− 1

ω2

)
(K1 −K2)

(
ζ1ω

2
1Γ

(1)
2 − ζ1Γ

(2)
2 + ζ2ω

2
2Γ

(1)
1 − ζ2Γ

(2)
1

)]
− f 2

h4

[(
K2

ω1

+
K1

ω2

)(
Γ
(3)
2 + Γ

(3)
1

)]
. (2.43)

Moreover, Γ(n)
j are defined as follows:

Γ
(1)
1 =

∫ 0

−1

ϕ2ϕ3
∂ϕ1

∂η
dη, Γ

(1)
2 =

∫ 0

−1

ϕ1ϕ3
∂ϕ2

∂η
dη, Γ

(1)
3 =

∫ 0

−1

ϕ2ϕ1
∂ϕ3

∂η
dη,

Γ
(2)
1 =

∫ 0

−1

N2ϕ2ϕ3
∂ϕ1

∂η
dη, Γ

(2)
2 =

∫ 0

−1

N2ϕ1ϕ3
∂ϕ2

∂η
dη, Γ

(2)
3 =

∫ 0

−1

N2ϕ2ϕ1
∂ϕ3

∂η
dη,

Γ
(3)
1 =

∫ 0

−1

ϕ2ϕ3
∂3ϕ1

∂η3
dη, Γ

(3)
2 =

∫ 0

−1

ϕ1ϕ3
∂3ϕ2

∂η3
dη, Γ

(3)
3 =

∫ 0

−1

ϕ2ϕ1
∂3ϕ3

∂η3
dη,

Γ(4) =

∫ 0

−1

∂N2

∂η
ϕ1ϕ2ϕ3dη. (2.44)

Note that NL(∗,j) is directly used in amplitude evolution equations as given just below in
equations (2.45a)–(2.45c) and (2.46b).

The amplitude evolution equations for the three internal gravity waves are finally obtained
after equating the LHS of (2.35) with its RHS; where the latter has been expressed in terms
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of (2.41)–(2.43):

∂a1
∂t

+ c
(g)
(x,1)

∂a1
∂x

= N1a3ā2exp
[∫ x

0

i(K3 −K1 −K2)/h dx
′ + i∆ωt

]
, (2.45a)

∂a2
∂t

+ c
(g)
(x,2)

∂a2
∂x

= N2a3ā1exp
[∫ x

0

i(K3 −K1 −K2)/h dx
′ + i∆ωt

]
, (2.45b)

∂a3
∂t

+ c
(g)
(x,3)

∂a3
∂x

= N3a1a2exp
[∫ x

0

i(K1 +K2 −K3)/h dx
′ − i∆ωt

]
, (2.45c)

where

c
(g)
(x,j) =

[
2iKjγ

(3)
j

hDj

]
, inwhich Dj = 2iωj

(
γ
(1)
j K2

j − γ
(2)
j

)
/h2, (2.46a)

Nj =
1

Dj

[
NL(V,j) + NL(B,j) + NL(Ψ,j)

]
. (2.46b)

In the above equation

D1 = D1
β2β3
β1

, D2 = D2
β1β3
β2

, D3 = D3
β1β2
β3

. (2.47)

The coefficient c(g)(x,j) denotes the (weakly varying) horizontal group speed andNj denotes
the nonlinear coupling coefficient of the j-th wave;Nj determines the rate of energy trans-
fer between the waves. ∆ω ≡ ω1 + ω2 − ω3 denotes the detuning in the frequency. The
argument of the exponential terms in (2.45a)–(2.45c) denote both the detuning in the hor-
izontal wavenumber condition and the frequency condition. For a pure resonant triad,
K3 − K1 − K2 = 0 and ∆ω = 0. When K3 − K1 − K2 ̸= 0 or ∆ω ̸= 0, the triad is said
to be detuned. The equations are only valid when both∆ω/ωj ≪ 1 and∆K/Kj ≪ 1 are
satisfied, that is, the equations are valid only near the vicinity of resonance. Analytical
methods have also been developed for studying wave-wave interactions in non-resonant
regimes in the presence of a slowly varying background shear flow (for example: Voelker
et al. (2021); Grimshaw (1988, 1994)), where thewave train can pass through non-resonant
regimes and resonant regimes. However, this is not in the scope of this study. To sum-
marize, amplitude (aj) in the wave amplitude equations can vary because of the group
speed term, or the nonlinear term. The group speed term is responsible for the advection
of a wave packet, while the nonlinear term is responsible for energy transfer among the
waves. Moreover, waves’ energy density changes because of its motion through a region
of varying h. ϕj and βj are heavily involved in the change in energy density that occur in
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a wave due to its motion through a region of varying h. Note that the evolution of aj does
not provide complete information of the changes in a wave’s quantities. This is because
Ψj = ajϕj/βjPje−iωjt, where ϕj and βj themselves are functions of x.

For a triad, the parent wave is always the wave-3, while the daughter waves (subharmonic
waves) are wave-1 and wave-2. To determine how fast the daughter waves grow, a growth
rate parameter (σ) is defined as follows:

σ ≡
√

N1N2A2
3, (2.48)

where A3 is the parent wave’s amplitude, which is held constant. To obtain this expres-
sion, the pump wave approximation of Craik et al. (1978) is used. Pump wave approxi-
mation is a strong assumption which is only valid at initial times where the parent wave
has much more energy than the daughter waves. Equation (2.48) reveals that growth rate
is directly dependent on the nonlinear coupling coefficients. If we ignore the nonlinear
terms, equations (2.45a)–(2.45c) model the movements of internal wavepackets over a
mild-slope bathymetry. We emphasize here that wave scattering is not included in these
equations. The amplitude variation of internal waves was recently analyzed by Lahaye
& Smith (2020) (the authors focused on internal wave scattering, which is essentially a
linear mechanism). While we have restricted our study to mild-slope conditions, we have
extended the previous works by including the physics of (i) finite width wave packets, (ii)
nonlinearity, and (iii) detuning in the horizontal wavenumber condition and hence inves-
tigation of both resonant (zero detuning) and near-resonant conditions. In this paper, we
mainly focus on the variation of detuning, and growth rates (using pump wave approxima-
tion) with h/H for wave-wave interactions. Even though equations (2.45a)–(2.45c) allows
finite width wave packets, we do not discuss it significantly since these have been studied
in Gururaj & Guha (2020). The combined effect of nonlinear coupling coefficients, group
speed and detuning have been discussed in Gururaj & Guha (2020).

The main results of scaling analysis, detailed in appendix A, is summarized here. There
can be three different relations/combinations between the small parameters and they are
given by:

ϵt ∼
N

ω
ϵa (2.49a)

ϵt ∼ ĉgϵx (2.49b)

ϵt ∼
N

ω
ϵa, ĉgϵx (2.49c)
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where ĉg is a non-dimensional term that gives a scale of the group speed. Equations
(2.49a)–(2.49c) provides the scaling for ‘Linear term-1’ and NLj given in (2.34). These
are also the final terms which are present in wave amplitude equations (2.45a)–(2.45c).
The wave amplitude (aj) can evolve due to the group speed term or the nonlinear term.
Note that if N or ϵa is reduced (implying that nonlinear coupling coefficients or ampli-
tude is reduced), then we can expect nonlinear effects to decrease. In such cases, equation
(2.49b) would be satisfied. However, if ϵx is reduced (which means packet width is in-
creased), then the effect of group speed, which advects the packets, is reduced. In these
cases, equation (2.49a) would be satisfied.

2.3.2.2 Amplitude evolution equations for self-interaction in non-uniform stratifi-
cation

Self-interactions can be considered as a special case of triad interactions. The evolution
equations for the self-interaction of a mode can be obtained from the set of equations
(2.45a)–(2.45c) after some straightforward modifications. The complete set of governing
equations for the self-interaction of a mode in the presence of a mild-slope bathymetry h
is given below:

∂a(3,s)
∂t

+ c
(g)
(x,3)

∂a(3,s)
∂x

= N3a
2
(1,s)exp

[∫ x

0

i(2K1 −K3)/h dx
′ + i∆ωst

]
, (2.50a)

∂a(1,s)
∂t

+ c
(g)
(x,1)

∂a(1,s)
∂x

= N1a(3,s)ā(1,s)exp
[∫ x

0

i(K3 − 2K1)/h dx
′ − i∆ωst

]
, (2.50b)

where the subscript ‘s’ denotes self-interaction. Moreover, ∆ωs = 2ω1 − ω3. Unlike
the triad case, the parent wave for self-interaction is wave-1 while the daughter (superhar-
monic) wave is wave-3. The notation throughout this chapter follows the convention that
wave-3 always has the highest frequency (hence for triads, wave-3 becomes the parent
wave). The functions c(g)(x,j) are the same as the expressions given in (2.46a). The func-
tionsNj , which are the nonlinear coupling coefficients for the self-interaction process, are
given by:

N1 = N2, (2.51a)

N3 =
2K3

1

h4D3

(
Γ(4)

ω1

)
− 2f 2

h4D3

(
Γ
(3)
1 K1

ω1

)
+

K1ω3

h4D3

(
ζ1ω

2
1Γ

(1)
1 − ζ1Γ

(2)
1 − Γ

(3)
1

)
. (2.51b)
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where ζj ≡ K2
j/(ω

2
j − f 2) is defined for convenience. Here all Γ,Dj terms in equations

(2.51a) and (2.51b) are evaluated using (2.44) and (2.47) by simply considering all ‘2’
subscripts as ‘1’. For example, substituting β1 for β2 in Dj and similarly substituting ϕ1

for ϕ2 in Γ expressions. This is because in self-interaction, wave-2 is the same as wave-1.

The equations (2.50a)–(2.50b) can predict the growth of the daughter wave and the con-
sequent decay of the parent wave. For obtaining the growth rate of the daughter waves,
the pump wave approximation is used again and hence the parent wave’s amplitude a(1,s)
is treated as constant. This yields (assuming plane waves in the x−direction):

a(3,s) =
[
N3a

2
(1,s)

]
t, (2.52)

where the term in square brackets denote the growth rate. To evaluate the growth rates, the
maximum amplitude is assumed to not vary in the x−direction. This is possible because
of the βj functions. Note that while solving the wave-amplitude equations, the exponential
term and the group speed can influence the evolution of the wave. However, growth rates
are mainly evaluated for cases where the detuning is very low or zero (hence the exponen-
tial term does not any effect). In addition, by assuming the wave packets are very long in
the x−direction, the group speed term’s influence can also be minimised. Note that the
main purpose of evaluating the growth rates is to get a measure/estimate of the strength
of the nonlinear term. From the above equation it is evident thatN3 acts as a proxy to the
growth rate. Note that PSI can also simultaneously occur for the same parent wave. The
most dominant instability will depend on the stratification, amplitude, and wavevector of
the parent wave.

2.3.3 Energy evaluation

The time average energy density for an internal gravity wave over its time period is given
by:

⟨TEj⟩ =
ωj

2π

∫ 2π/ωj

0

ρ0
2

[(
∂ψj

∂z

)2

+

(
∂ψj

∂x

)2

+ v2j +
b2j
N2

]
dt. (2.53)

The domain integrated total energy per unit length in y-direction is given by:

T̂Ej =

D∫
0

0∫
h

⟨TEj⟩dzdx =

D∫
0

0∫
−1

⟨TEj⟩(−h(x))dηdx. (2.54)
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After some simplification, we arrive at:

T̂Ej =

Lenx∫
0

0∫
−1

−2

h

[
K2

jϕ
2
j +

(
∂ϕj

∂η

)2
]
|aj|2

ρ0
β2
j

dηdx, (2.55)

where Lenx is the length of the domain in the x-direction. T̂Ej is non-dimensionalized
with the initial energy of parent wave (abbreviated as ‘Pw’): Ej = T̂Ej/T̂EPw|t=0. Note
that Pw = 3 (i.e. wave-3) for triads and Pw = 1 (i.e. wave-1) for self-interactions.

2.4 Triad interactions in a uniform stratification in the
presence of a mild-slope bathymetry

2.4.1 Effect of bathymetry on the triad resonance conditions

A key question to address here is – are the resonant triad conditions met when three waves
interact in a region of varying domain height (which inherently means that the waves
are travelling over a varying bottom bathymetry). It is shown that there is no violation
of the resonant triad conditions (both horizontal and vertical wavenumbers) anywhere in
the domain, provided the conditions are perfectly satisfied for any given domain height.
Without any loss of generality, the condition for the horizontal wavenumber is:

k3 = k1 + k2, or in nondimensional terms K3 = K1 +K2, (2.56)

where kj = Mj/(χjh), and χj is defined below (2.27b). The dimensional horizontal
wavenumber condition provides more insight into this situation, and yields:

1

h

(
M1

χ1

+
M2

χ2

− M3

χ3

)
= 0. (2.57)

Since χj and Mj are constants for uniform stratification, the triad conditions will still
be satisfied everywhere in the domain (provided it is satisfied for any given h), even
though the bathymetry varies. For near resonant triads, the non-dimensionalized detun-
ing between the horizontal wavenumbers is constant, as is shown below. Let us consider
three waves which have a mismatch of∆k in the horizontal wavenumber condition when
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h = −H1. This can be written as:

− 1

H1

(
M1

χ1

+
M2

χ2

− M3

χ3

)
= ∆k. (2.58)

Now, if the same waves or modes interact at a different location for which h = −H2, then
the detuning at that location is (∆kH1)/H2. However, the dimensional wavenumbers also
change by the factor H1/H2. Thus the ratio ∆k/kj is maintained.

2.4.2 Effect of bathymetry on the nonlinear coupling coefficients of
resonant triads

Here we focus on the nonlinear coupling coefficients in resonant triad interactions (i.e.
no detuning) in the presence of a uniform stratification and a weakly varying bathymetry.
Equation (2.48) revealed that the growth rate of the daughter waves is dependent on the
nonlinear coupling coefficients. For constant N , the nonlinear coupling coefficients (Nj)
in (2.46b) can be further simplified:

N1 =
iH

2h2ω1κ1κ2κ3

[
N2(K3 −K2)

{(
K3

ω3

− K2

ω2

)
(K2M3 −K3M2)

}
+ ω1

{
(K2M3 −K3M2)

(
M2

2 +K2
2 −K2

3 −M2
3

)}
,

+ f 2 (M3 −M2)

{(
K3

ω3

+
K2

ω2

)
(M3M2)−

(
K2

ω3

+
K3

ω2

)(
M2

2 +M2
3

)}]
,

(2.59a)

N2 =
iH

2h2ω2κ1κ2κ3

[
N2(K3 −K1)

{(
K3

ω3

− K1

ω1

)
(K1M3 −K3M1)

}
+ ω2

{
(K1M3 −K3M1)

(
M2

1 +K2
1 −K2

3 −M2
3

)}
,

+ f 2 (M3 −M1)

{(
K1

ω1

+
K3

ω3

)
(M1M3)−

(
K1

ω3

+
K3

ω1

)(
M2

1 +M2
3

)}]
,

(2.59b)
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N3 =
iH

2h2ω3κ1κ2κ3

[
N2(K1 +K2)

{(
K1

ω1

− K2

ω2

)
(K2M1 −K1M2)

}
+ ω3

{
(K2M1 −K1M2)

(
M2

1 +K2
1 −K2

2 −M2
2

)}
+ f 2 (M1 +M2)

{(
K1

ω2

+
K2

ω1

)(
M2

1 +M2
2

)
−
(
K1

ω1

+
K2

ω2

)
(M1M2)

}]
,

(2.59c)

where κj =
√

M2
j +K2

j . Note that the above expressions are obtained only when the ver-
tical wavenumber condition is satisfied. The terms inside the square brackets are constant
and hence do not vary with the bathymetry h (the fact that Kj andMj are constants for a
constant N is given in (2.28)). For constant N , βj = −h(x)/H , which has been used in
(2.59a)–(2.59c), and this finally results in Nj ∝ 1/h2. Hence for waves traveling from a
given fluid depth to a lesser depth (i.e. as the waves climb up a seamount), the nonlinear
coupling coefficients, and hence the growth rates, increase following the inverse square
rule.

In summary, for a uniform stratification, if three modes satisfy the resonant triad condi-
tion at a particular domain height, then they would satisfy the resonant triad condition for
any domain height. Moreover, we also showed that the nonlinear coupling coefficients
increase (decrease) as the fluid depth decreases (increases) following an inverse square
law.

2.5 Triad and self interactions in a non-uniform strati-
fication in the presence of a mild-slope bathymetry:
detuning effects

In §2.4, it was shown that in the presence of a uniform stratification, if the triad condition
is satisfied between three modes at a particular h, then they are satisfied for all h. However
in non-uniform stratification, such a simple outcome is not possible. In certain types of
triads, there can be a heavymismatch in the horizontal wavenumber condition as the waves
involved in the triad interact in a region of varying domain height. This may affect the
energy transfer between the waves.
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In this section we study the factors that decide the detuning (or mismatch) between the
horizontal wavenumber of the waves as h is varied in the presence of non-uniform strati-
fication. Here as well as in the rest of this paper, we will consider a Gaussian function to
represent the buoyancy frequency:

N(z) = Nb +Nmax exp[−{(z − zc) /Wp}2], (2.60)

where the parameters Nb, Nmax,Wp, and zc are varied. This kind of profile (see figure
2.2(b)) is a simplified representation of oceanic stratification and is widely used in the
literature; see Grisouard et al. (2011), Mathur et al. (2014), and Varma & Mathur (2017).
The peak in the buoyancy frequency near the surface is used to model the typical thermo-
cline/pycnocline observed in the oceans. In oceans, the thermocline is usually very close
to the surface. Moreover, near the thermocline the density of the water varies rapidly as
depth increases because of the drop in temperature (heat does not penetrate significantly
into depth of the oceans). Because of the rapid variation in the density, buoyancy fre-
quency has a spike near the surface. The stratification profiles are chosen such that the
pycnocline is above the topography. If the topography cuts the pycnocline, internal wave
scattering may be significant as shown in Hall et al. (2013).

2.5.1 Effect of varying h on the horizontal wavenumber condition for
waves satisfying f ≪ ωj ≪ Nb

First we study the class of triads for which the angular frequencies of the constituent waves
obey the condition f ≪ ωj ≪ Nb. It is assumed that the parent wave (angular frequency
ω3) gives its energy to two subharmonic daughter waves of angular frequencies ω1 and ω2

respectively, that is, the condition ω1 <ω3 and ω2 <ω3 is always assumed. A parameter
α ∈ (0, 1) is defined such that ω1 = αω3 and ω2 = (1 − α)ω3. Two different types of
interactions, Class-1 and Class-2, are defined for which a parent wave can form a triad
with the subharmonic daughter waves.

2.5.1.1 Class-1 interactions

Three waves with angular frequencies (ω3, ω1, ω2) such that ω3 = ω1 + ω2 is assumed.
Furthermore we assume that at a particular h, the horizontal wavenumber condition is
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satisfied between mode i of wave-1, mode j of wave-2, mode k of wave-3, i.e.

K3(k) = K1(i) +K2(j), (2.61)

where i, j and k are not all equal. This constitutes a Class-1 interaction. Now if the
stratification profile changes (the stratification profile will change in x–η coordinates pro-
vided h is varying), then the wavenumbers K1(i),K2(j),K3(k) will also change. However,
for a given change in h, all the wavenumbers need not change in a way such that the
condition (2.61) is satisfied. For example, if K1(i) = func(h), then it is possible that
K2(j) ̸= c func(h), where c and func( ) denote an arbitrary constant and function respec-
tively. Therefore, even though the triad condition may be satisfied at a particular h, it
may not be satisfied for all h. Hence Class-1 triads might get detuned as they interact in a
region of varying h.

To measure the detuning (or mismatch) in the horizontal wavenumber, we define a new
variable ∆K:

∆K ≡
K3(k) −K1(i) −K2(j)

Kmin
, (2.62)

where Kmin is the minimum wavenumber of the three wavenumbers at a particular x-
coordinate. ∆K basically acts as a non-dimensional measure of the detuning between
the waves, and for a resonant triad, ∆K = 0.

We now study how different (nondimensional) wavenumbersK3(n) of frequencyω3 change
as h is varied in the presence of a non-uniform stratification. To obtain K3(n) for a given
stratification profile, we solve (2.27b) for h/H ∈ [−1,−0.2]. The functional form of
h, as long it is mildly varying, does not influence the wavenumbers or detuning at a
particular h. The non-uniform stratification profile given by (2.60) is used throughout
this chapter. The stratification profiles are chosen such that Nmax = (2Nb, 4Nb, ...12Nb),
Wp = (H/200, 2H/200...5H/200), and zc = (H/80, H/40, H/20, H/10); and we con-
sider all possible (120) combinations. Moreover, ω3 = 0.1Nb and f = 0 is used consis-
tently for all combinations. Figure 2.5 show the variation of K̂3(n) ≡ K3(n)(h)/K3(n)(H)

with h/H for different modes n. Figures 2.5(a)–2.5(c) uses the stratification profile N (1)

with the following parameters: Nmax = 2Nb, Wp = H/200, and zc = H/80. Moreover,
figures 2.5(d)–2.5(f) uses the profile N (2) given by: Nmax = 10Nb, Wp = H/50, and
zc = H/10. Note that N (1) has a sharp pycnocline, while N (2) has a largerWp resulting
in a wider pycnocline. For profiles where all three parameters are low (e.g. N (1)), K̂3(1)

is nearly constant for some range of h/H and then starts decreasing. This can be seen
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Figure 2.5: Variation of K̂3(n) with h/H for two different stratification profiles. For
stratification profile N (1): (a) modes 1-5, (b) modes 6-10 and (c) modes 11-15. For

stratification profile N (2): (d) modes 1-5, (e) modes 6-10 and (f) modes 11-15.

in figure 2.5(a), where the first five modes exhibit this behaviour. Moreover, for profiles
where all zc,Wp, Nmax are high (e.g. N (2)), K̂3(1) decreases almost linearly with h/H , as
can be clearly seen in figure 2.5(d). For any profile, K̂3(1) always decreases as the fluid
depth is reduced for h/H ∈ [−1,−0.2]. However this behaviour does not hold for any
mode other than mode 1. For example, for zc = H/10 (regardless of Wp, Nmax), K̂3(2)

increases for some h/H as fluid depth is reduced, see figure 2.5(d) (blue curve). Similar
behaviour is also observed for modes 3,4 and 5whenWp is low. In summary, the variation
of K̂3(1) with h/H can be different from that of the higher modes’ wavenumber, which
can result in detuning.

For profiles with high Wp, K̂3(n) for n > 10 starts to collapse on each other, see figure
2.5(f). In such kind of scenarios, since K̂3(n) remains nearly the same, ∆K will not be
induced by the difference in higher modes’ K̂3(n). In general it was observed that asWp is
reduced, n has to be higher for the modes to collapse on each other.

The interaction of mode-1 internal wave (wave-3) with different modes in the presence of
two different non-uniform stratification profiles is considered next. These profiles are a
part of the 120 profiles that was already mentioned. Sample results are shown in figure
2.6 in which the frequencies and stratification profile parameters are as follows:
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Figure 2.6: Variation of detuning (∆K) with h/H for various modal interactions per-
taining to the stratification profiles (a) N (3), and (b) N (4). The legends indicate what

daughter waves were involved in the triad interactions. α ≡ ω1/ω3.

• N (3): ω3 = 0.1Nb, f = 0,Nmax = 10Nb,Wp = H/100 and zc = H/10.

• N (4): ω3 = 0.1Nb, f = 0,Nmax = 10Nb,Wp = H/50 and zc = H/20.

For each profile, 5 different modal interactions are shown. Figure 2.6 clearly reveals that
the detuning can be quite sensitive to the changes in the domain height. The triad in-
teractions whose detuning is minimal as h is varied will be favored provided they also
have comparable growth rates to the interactions that are heavily detuned during the free
evolution.

2.5.1.2 Class-2 interactions: A special case of triad interactions

The interaction in Class-2 is between the n-th modes (where n ∈ Z+) of different waves
constituting a triad. For example, if mode 1 with frequency ω1, mode 1 with frequency ω2

and mode 1 with frequency ω3 form a triad, it is classified as a Class-2 interaction. This
kind of triad is possible when f ≪ ωj ≪ Nb. To show how this interaction is possible,
we consider the eigen-problem concerning the n−th mode of the j−th wave:

∂2ϕj(n)

∂η2
+K2

j(n)χ
2
jϕj(n) ≈

∂2ϕj(n)

∂η2
+

(
Kj(n)

ωj

)2

N2ϕj(n) = 0, (2.63)

where χj ≈ N/ωj is used (under the approximation f ≪ ωj ≪ Nb), and the system
is solved using the boundary conditions: ϕj(n) = 0 at η = 0 and η = −1. However,
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by Sturm Liouville theory, for a given operator (here ∂2/∂η2) and weight function (here
N(z)2), the n−th eigenvalue (hereKj(n)/ωj) is unique, i.e.,Kj(n)/ωj = INV(x) ∀j. Note
that the INV(x) does not vary with j, however, the INV(x) can vary in the x−direction.
Therefore, if the triad condition for frequency: ω3 = ω2 + ω1 is valid, this automatically
implies validity of the wavenumber condition K3(n) = K1(n) +K2(n).

The situation mentioned above is true for all stratification profiles satisfying f ≪ ωj ≪
N(z) (at all z locations). This is especially important because in the presence of a bathymetry,
the stratification profile changes in the x direction in x − η coordinates. However, for
Class-2 interaction, all three non-dimensional wavenumbers (eigenvalues) are the same
functions of h since they are the same eigenvalues divided by their frequency. Thus the res-
onant triad condition will be still be satisfied even if h is varied significantly (i.e. variation
of hwill not cause detuning). Note that, in the parameter regime of f ≪ ωj ≪ N(z), only
class-2 self interactions were observed in numerical experiments of Sutherland (2016),
hence class-2 triads may always be dominated by self interactions, resulting in parent
wave’s energy transfer to the superharmonics instead of subharmonics. As a result, class-
2 triads may not be practically as relevant as class-2 self interactions.

2.5.1.3 Mismatch in the vertical wavenumber condition for vertically propagating
waves in a weakly varying stratification

Until now, we focused on the detuning induced in triads that contain low mode internal
waves. However, small scale internal waves that propagate vertically can get dissipated
before they get projected as modes. For example, internal wave beams generated by a to-
pography often encounter a pycnocline where they can engage in wave-wave interactions
and get dissipated (Diamessis et al., 2014; Gayen & Sarkar, 2013, 2014). For these ver-
tically propagating waves, change in the background stratification can induce detuning.
This is because when a wave propagates vertically in a region of varying stratification, its
vertical wavenumber changes while frequency and horizontal wavenumber remain con-
stant. Therefore, if three waves form a resonant triad on a particular background stratifica-
tion, they will fail to do so once they move to another region with a different background
stratification – there will be a detuning (∆m) of the vertical wavenumbers, which is given
by

∆m = m3− (m1+m2) = k3

√
N2 − ω2

3

ω2
3 − f 2

−

(
k1

√
N2 − ω2

1

ω2
1 − f 2

+ k2

√
N2 − ω2

2

ω2
2 − f 2

)
. (2.64)
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Figure 2.7: Variation of detuning in vertical wavenumber for different values of ω3/Nb.
(a) ω3/Nb = 0.9, (b) ω3/Nb = 0.75, (c) ω3/Nb = 0.4 and (d) ω3/Nb = 0.2. Here
mmin represents the lowest vertical wavenumber among the three waves at that particular

stratification. Rotational effects are neglected (f = 0).

HereN is assumed to slowly vary in the z−direction. Themain factors which influence de-
tuning are the waves’ frequencies, wavenumbers and the background stratification, whose
effect is elaborated in figures 2.7 and 2.8.

To study the variation of ∆m, four different values of ω3/Nb are chosen. At N = Nb,
the vertical wavenumber condition is assumed to be satisfied without any detuning and
Nb is referred as base stratification. For each value of ω3/Nb, we consider four different
α values. For each α, there are four unique wavevectors for the daughter waves which
encompass the (+,+) curve in figure 2.1. The four unique triad combinations (for a par-
ticular α and ω3/Nb) can be characterized as:

• (k2/k3, |m2/m1|) ∈ (1,∞)× (0, 1),

• (k2/k3, |m2/m1|) ∈ (0, 1)× (1,∞),

• (k2/k3, |m2/m1|) ∈ (0, 1)× (0, 1),

• (k2/k3, |m2/m1|) ∈ (1,∞)× (1,∞).

Initially we study the effect of the variation ofω3/Nb andα on detuning. To this end, we fo-
cus on those triadswhose daughter waves havewavenumbers satisfying (k2/k3, |m2/m1|) ∈
(0, 1)× (1,∞). The results are given in figure 2.7. It can be observed that, for a given α,
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Figure 2.8: Variation of detuning for ω3/Nb = 0.9 and various daughter wave combina-
tions. (a) (k2/k3, |m2/m1|) ∈ (1,∞) × (0, 1), (b) (k2/k3, |m2/m1|) ∈ (0, 1) × (0, 1),
(c) (k2/k3, |m2/m1|) ∈ (0, 1) × (1,∞), and (d) (k2/k3, |m2/m1|) ∈ (1,∞) × (1,∞).

Rotational effects are neglected.

detuning significantly increases as ω3/Nb is increased for the same increase in the back-
ground stratification. Detuning asymptotes to a constant value as N is increased, hence
the difference in detuning caused by moderate and strong stratifications would be mini-
mal. We observe that detuning has a strong sensitivity to stratification for higher values
of ω3/Nb. For example, figure 2.7(a) shows that a small variation in stratification causes
significant detuning for ω3/Nb = 0.9 near Nb.

In figure 2.8, we focus on the detuning for different wavevector (of daughter waves) com-
binations with ω3/Nb fixed at 0.9. We observe that out of all combinations, the triads
satisfying (k2/k3, |m2/m1|) ∈ (1,∞) × (1,∞) undergo the least amount of detuning
with changes in the background stratification. Therefore, such triads may be the path-
way through which the parent wave decomposes for high values of ω3/Nb. The triads
shown in figure 2.8(a) have values of non-dimensional detuning close to 1, which would
mean that such triads are not possible in varying stratifications. Moreover, for a partic-
ular ω3/Nb value, detuning can increase or decrease with an increase in α depending on
the wavevector of the daughter waves. For example, figures 2.8(a) and 2.8(b) show that
detuning increases with decrease in α. However, for the triads in figures 2.8(c) and 2.8(d)
detuning increases with an increase in α.
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2.5.2 Effect of bathymetry on horizontal wavenumber condition for
Class-1 self-interaction

Detuning can also be introduced during a self-interaction process as h is varied. Follow-
ing the same terminology as before, we classify self-interactions as Class-1 and Class-2.
As shown by Wunsch (2017), Class-2 self-interactions will always be slightly detuned,
where the detuning increases as f increases. This is due to the fact that in a non-uniform
stratification, if the n−th mode of (ω) satisfies the dispersion relation, then the n-th mode
of (2ω) will be able to satisfy it only approximately.

Following (2.62), the detuning for a self-interaction process is defined as

∆Ks =
K3(k) − 2K1(i)

K1(i)

, (2.65)

where wave-3 is the superharmonic (daughter) wave, while wave-1 is the parent wave,
i.e.ω1 = ω3/2 (following the convention used throughout this chapter that wave-3 has
the highest frequency). The amplitude evolution equations for a self-interaction process
is discussed in §2.3.2.2.

For the range f ≪ ωj ≪ N(z), Class-2 self-interaction process will follow similar prin-
ciples outlined in §2.5.1.2. As mentioned in §2.5.1.2, significant variations in h for this
frequency range will not introduce detuning in Class-2 self-interactions. The other end
of the parameter space where (N2 − ω2

j ) ≈ N2 is no longer valid is studied. Hence, out
of Class-1 and Class-2 self-interactions, only the latter is possible. This would mean that
as the domain height changes, the detuning introduced could be significant. Interestingly
though, if the wavenumbers involved in the self-interaction change with h/H in a similar
way, the detuning is insignificant, see figure 2.9. The frequencies and the stratification
profile parameters used here are:

• N (6): Nmax = 10Nb,Wp = H/100 and zc = H/10.

• N (7): Nmax = 10Nb,Wp = H/100 and zc = H/20,

and f = 0 always. Figure 2.9(a) uses the setN (6), and shows the variation of the horizontal
wavenumber of mode-2 (of ω3 = 0.89Nb) and mode-3 (of ω1 = ω3/2). These modes
satisfy the condition for resonant self-interaction. We observe that these twowavenumbers
behave quite similarly for a wide range of h/H , and hence the detuning, shown in figure
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2.9(b), is small (and constant for an appreciable range), in spite of the fact that it is a
Class-1 interaction. The same phenomenon is also shown for several other self-interaction
combinations in figure 2.9(c), where the parameter set N (7) is used.

The detuning for all the combinations shown stays constant for a certain range of h/H .
Class-1 triad interactions may also give rise to a small detuning for a range of h/H , pro-
vided all the modes involved behave in a similar way. However, this is a more stringent
condition than a self-interaction process, where only two waves are involved. Note that
the reduced order equations are valid only when ∆Ks ≪ 1 or ∆K ≪ 1. However,
the above statement does not necessarily mean that the wavenumbers themselves cannot
change significantly. The only requirement is detuning should be a small quantity in a
self-interaction, or a triad interaction. This occurs when all the wavenumbers in a weakly
nonlinear interaction nearly have the same functional dependence on h. For example, the
detuning will not vary significantly with h if:

k1(h) ≈ C1Y(h), k2(h) ≈ C2Y(h), k3(h) ≈ C3Y(h), (2.66)

whereC1, C2, C3 are some constants, andY is some function that depends on h. As long as
the wavenumbers follow equation (2.66), then∆k = k1+k2−k3 (and hence∆K) does not
vary significantly with h. For example, this is shown for some self-interactions in figure
2.10, where ∆Ks is a small quantity even as the depth change significantly. For the same
parameters used in figure 2.9 of the chapter, the horizontal wavenumber of the two modes
involved in a self-interaction is plotted in figure 2.10. Note that the normalised, non-
dimensionalised horizontal wavenumber (K̂) is plotted. It can be seen that the horizontal
wavenumbers at h/H = −0.5 is nearly twice as much as their value at h/H = −1.
However,∆Ks still follows∆Ks ≪ 1. As a result, for this specific interaction, the reduced
order equation is at least valid for h/H ∈ [−1,−0.5].

For any class-2 self-interaction (same n−th mode interaction) in the presence of non-
uniform stratification, detuning is expected to be a small quantity for the O(1) changes
in depth and wavenumber. Baker & Sutherland (2020) and Sutherland (2016) focus on
such Class-2 self interactions. Detuning would satisfy ∆Ks ≪ 1 even for O(1) changes
in depth and horizontal wavenumber.

To summarize, in the presence of a non-uniform stratification, we divide triad and self-
interactions into two classes: Class-1 and Class-2. Class-1 interactions contain waves
whose mode numbers are all not the same, while Class-2 interactions contain waves which
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Figure 2.9: (a) Variations of K3(2) and K1(3) with h/H for the parameter set N (6). (b)
Variation of detuningwithh/H for the same case. (c) The detuning for three different self-
interaction combinations for the parameter set N (7). Here the notation (Pa)(Db) implies

‘Parent wave’ with ‘mode-a’ and ‘Daughter wave’ with ‘mode-b’.

Figure 2.10: (a) Variations of k3(2) and k1(3) with h/H for the stratification profileN (6).
(b) Variation of detuning (∆Ks) with h/H for the same case.

are the n−th modes of their respective frequencies. Class-1 interactions, may undergo
detuning with the variation in h, irrespective of the frequency. However, interestingly,
certain Class-1 self-interactions do not undergo detuning as h is varied inside a certain
range. For both triads and self-interactions, Class-2 interactions can only exist for f ≪
ωj ≪ N(z), and does not get detuned as h is varied.
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2.6 Variation of growth rates and nonlinear coupling co-
efficients with depth for non-uniform stratification

In this section, we focus on the effects of domain height variation on the growth rate (σ) of
triads, and the nonlinear coupling coefficientN3, which provides a measure of the growth
of the daughter wave in a self-interaction. The non-uniform stratification profile (2.60)
will be used in this section.

2.6.1 Variation of growth rates with domain height for triads

Triad interactions are important for the decay of internal waves near the 28.9◦ latitude
(MacKinnon & Winters, 2005; MacKinnon et al., 2013), specifically the mode-1 wave,
which is the most energy containing mode (Vic et al., 2019). Here we study this phe-
nomenon in the high latitude region (f/ω3 ≥ 0.3) for varying N(z) and h. The mode-1
wave (which, being the parent wave, is wave-3) can decay forming various triad combi-
nations; we restrict the subharmonic daughter waves (wave-1 and wave-2) up to mode-50.
Moreover, for studying growth rates in the presence of varying h, the triads are identified
separately at different h/H . This is because a triad combination at a particular h/H value
may not satisfy the horizontal wavenumber condition at a different h/H (as explained in
§2.5). Three main branches of triads are considered here for the mode-1 internal wave:

K3 = K2 −K1︸ ︷︷ ︸
Branch-1

or K3 = K1 −K2︸ ︷︷ ︸
Branch-2

or K3 ≈ K1 +K2︸ ︷︷ ︸
Branch-3

. (2.67)

For Branch-1(2) triads, wavenumber of wave-2(1) is larger in magnitude than that of
wave-1(2). The only possible Branch-3 interaction is a Class-2 interaction, where both
the daughter waves are also mode-1 of their respective frequencies. However this inter-
action, like the Class-2 self-interaction, also undergoes heavy detuning for high f values.
Therefore Branch-3 being an inefficient energy transfer pathway, we restrict our focus to
Branch-1 and Branch-2. Triads are studied for f/ω3 = (0.3, 0.4, 0.45) in the presence of
various stratification profiles. The triads are computed for α ∈ [0.31, 0.5], α ∈ [0.41, 0.5]

andα ∈ [0.455, 0.5] for f/ω3 = 0.3, 0.4 and 0.45 respectively (see §2.5.1 for the definition
of α).

Figure 2.11 shows the non-dimensionalised growth rate contour for a mode-1 wave. All
growth rates σ are non-dimensionalised with a reference growth rate value σref, where the
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Figure 2.11: Contours of non-dimensional growth rate (σ/σref) of triads formed between
mode-n, mode-m, and mode-1 (i.e., wave-3). Blue and red colors respectively represent
Branch-1 and Branch-2 triads, and both colors represent positive values. For Branch-1
triads, mode-m(n) is wave-1(2), while for Branch-2 triads, mode-n(m) is wave-1(2).

latter denotes the maximum growth rate for all Branch-1 triads at h = −H (hence the
value of A3 does not impact the results shown). The frequency of the mode-1 wave is
ω3/Nb = 0.2, while f/ω3 = 0.4 is taken. The stratification profile is given by

• N (8): Nmax = 10Nb,Wp = H/50, zc = H/20.

Branch-1(2) triads have the higher(lower) frequency daughter wave propagating in the
same direction as the parent wave. Figure 2.11 reveals that from both branches, the high-
est growth rates are centered around n ≈ m. However, majority of the white region con-
tains resonant triads, but their growth rates are significantly lower in comparison to that
clustered around n ≈ m. Note that the central region is asymmetric between Branch-1
and Branch-2 triads, and this is purely a consequence of internal wave’s dispersion rela-
tion. When the lower frequency daughter wave (wave-1) travels in the same direction as
the parent wave (i.e. Branch-2), wave-1’s modenumber (n) should always be higher than
wave-2’s modenumber (m) for the triad condition to be satisfied. However for Branch-1,
where wave-2 travels in the same direction as the parent wave, the modenumber of wave-2
(n) need not be higher than wave-1’s modenumber (m).

The clustering around n ≈ m is consistently observed for any setting or stratification
profile considered in this study. As a result instead of focusing on all possible triads, we
choose specific lines of interaction near the central region and plot the growth rate along
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Figure 2.12: Plots of non-dimensional growth rates of mode-1 triads for profileN (8) with
f/ω3 = 0.4 and ω3/Nb = 0.2. (a) Line (n, n) of Branch-1, (b) line (n+1, n) of Branch-

1, (c) line (n, n+ 1) of Branch-1, and (d) line (n+ 4, n) of Branch-2.

Figure 2.13: Plots of non-dimensional growth rates of mode-1 triads for profileN (9) with
f/ω3 = 0.4 and ω3/Nb = 0.2. (a) Line (n, n) of Branch-1, (b) line (n+1, n) of Branch-

1, (c) line (n, n+ 1) of Branch-1, and (d) line (n+ 6, n) of Branch-2.
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that line of interaction. For example, the interaction lines (n,n), (n + 1,n) and (n,n + 1)
are plotted for n ∈ (1, 50) in figures 2.12(a)–2.12(c) for Branch-1 triads, and (n+ 4,n) in
figure 2.12(d) for Branch-2 triads. The notation (a,b) means wave-1(2) is mode-a(b). The
notation is same for both branches. The dominant nature of the interaction lines (n,n),
(n,n + 1), (n + 1,n) has also been observed in Young et al. (2008) while studying the
stability of mode-1 internal wave in the presence of near inertial daughter waves (with
frequency f ). Furthermore, figure 2.12 also reveals that the different lines are sensitive to
h. For completeness, we explore another stratification profile given by:

• N (9): Nmax = 10Nb,Wp = H/50, zc = H/80,

and the corresponding plots are in figure 2.13. Both figures 2.12 and 2.13 show that the
growth rates along different lines of interaction have a significant oscillatory nature with
n. In general, line (n, n) has the largest amplitude of oscillations. More importantly, the
growth rate of a modal combination can significantly change as h changes. For example,
figure 2.12(a) shows that the most unstable modal combination at h = −H is (5,5). How-
ever, for h = −0.8H , the most unstable triad is the modal combination (4,4). Moreover,
the combination (5,5) has approximately 0.25 times of (4,4) growth rate at h = −0.8H .
This behavior can be seen for the line (n, n) in both figures 2.12 and 2.13. This effec-
tively means that the growth rate of certain daughter wave combinations can be sensitive
to changes in h (especially the combinations which involve lower modes). Such combi-
nations may not be effective in a region of varying h because of the significant drop in the
growth rates. However, sensitivity to h is slowly reduced as the modenumber is increased
for both the branches. Even though Branch-2 triads have considerably less growth rates
for the profiles N (8) and N (9), for different profiles (not displayed here) Branch-2 can
have σ comparable to that of the Branch-1 triads. Growth rate of some particular modal
combinations rapidly changes in certain scenarios as the depth is varied. This is due to
a combination of factors such as the change in wavenumber, wave’s z−direction mode
shape (ϕj) etc. The change in mode shape, which in turn effects the nonlinear coefficients
(Γ’s), can especially make the growth rates sensitive to changes in h. Note that nonlin-
ear coefficients are terms that arise from projecting the nonlinear terms on to a wave’s
z−direction modal shape.

A particular example is given to highlight the change in nonlinear coefficients. The in-
teraction K3(1),K1(5),K2(5) at h = −H and h = −0.8H is studied, and the background
stratification profile N (8) is taken. The growth rate at h/H = −1 is ten times more than
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Figure 2.14: Variation of Γ as h/H is varied. Note that the y-axis is given in logarithmic
scale.

h = −0.8H . A comparison between the nonlinear coefficients (Γ) at h = −H and
h = −0.8H is plotted in figure 2.14. It can be seen that some of them vary by a factor of
≈ 9 due to the change in depth.

2.6.1.1 Effect of variation of f/ω3 and ω3/Nb on different Branches.

For both stratification profiles used in §2.6.1, f/ω3 = (0.3, 0.45) for ω3/Nb = (0.2, 0.7) is
explored (hence total of 4 different combinations). For N (8), in all 4 cases, the qualitative
behaviour of all Branch-1 lines are similar to figure 2.12. However, the maximum growth
rate has a significant increase from h = −H to h = −0.8H for ω3/Nb = 0.7. Moreover,
Branch-2 triads’ maximum growth rate significantly increases in 2 cases of f/ω3 = 0.3

in comparison to f/ω3 = 0.4. For N (9), the qualitative behaviour of line (n, n) is similar
to what was observed in f/ω3 = 0.4. In general, the maximum growth rate is the (n, n)
modal combination. Interestingly, it is found that the maximum growth rate among all
triads increased nearly twice from h = −H to h = −0.8H for (f/ω3 = 0.45, ω3/Nb =

0.7). Significant increase in maximum growth rate is also found for ω3/Nb = 0.2 for the
same f . For (f/ω3 = 0.3, ω3/Nb = 0.7) the behaviour of line (n+ 1, n) has a significant
oscillation with n, similar to line (n, n). Note that this is different from the line (n+1, n)

shown in figure 2.13. In general, it is also observed that reducing the fluid depth increases
the maximum growth rate of all possible triads even without considering the β term of the
parent wave amplitude.
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2.6.2 Variation of nonlinear coupling coefficient with domain height
for self-interaction process

Here we restrict to self-interaction of internal gravity waves that do not experience signif-
icant detuning ∆K with changes in h. In this subsection, we mainly focus on the super-
harmonic wave’s nonlinear coupling coefficient N3 given in (2.51b).

2.6.2.1 Class-1 interactions

As previously mentioned in §2.5.2, some Class-1 self-interactions can have negligible
detuning even for a finite range of h/H . We study the variation of Ñ3 under such circum-
stances; the different interactions considered (denoted by Ip) are given below:

I1 - [P3, D2] I2 - [P4, D2] I3 - [P4, D3] I4 - [P5, D3] I5 - [P5, D4]

I6 - [P6, D3] I7 - [P6, D4] I8 - [P6, D5] I9 - [P7, D4] I10 - [P7, D5]

Here the notation [Pm,Dn] denotes that the parent wave is them−th mode and daughter
(superharmonic) wave is the n−th mode.

The stratification profiles are chosen such thatNmax = (2Nb, 5Nb, 10Nb),Wp = (H/200, H/100, H/50),
and zc = (H/40, H/20, H/10). For the profiles considered, we study variations of Ñ3

for interactions that strictly satisfy |∆Ks| < 0.01 for h/H ∈ [−1,−0.8]. Figure 2.15
shows variations of Ñ3 ≡ |N3|/max(|N3|) for two Class-1 self-interactions. Figure 2.15
reveals that interactions can have a non-monotonic variation of Ñ3 with h/H . Moreover,
the figure reveals that even relatively small changes in h/H can lead to significant varia-
tions in Ñ3. For all interactions considered in table 2.2, small changes in h/H can cause
significant change in Ñ3. Some generic features are summarised below. Sensitivity of Ñ3

to h/H increases as zc is increased for a givenWp, Nmax
1. Moreover, increasingWp also

increases the sensitivity of Ñ3 to changes in h/H . Increasing Nmax for a given (zc,Wp)

also increases the sensitivity of Ñ3 to h/H .

1For every interaction, there are specific combinations ofWp, Nmax where this behaviour is not exhib-
ited.



Chapter 2. 62

Figure 2.15: Variation of Ñ3 with h for Class-1 self-interactions (a) I1 and (b) I10. Each
sub-figure is plotted for two different stratification profiles (for details see legend).

Figure 2.16: The variation of non-dimensionalised nonlinear coupling coefficient (Ñ3)
of wave-3 (the superharmonic wave) as h is varied. Altogether there are 9 blocks, each
consisting of 5 units, and each unit represents the modenumber (given by n). For each
block, (Nmax,Wp, zc) is fixed. The figure is further subdivided into three horizontal pan-
els (each panel consisting of three blocks): (a) Nmax = 2Nb, Wp = H/200, and zc is
varied, (b) Nmax = 5Nb, zc = H/20 andWp is varied, and (c) zc = H/10,Wp = H/50

and Nmax is varied.
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2.6.2.2 Class-2 interactions

We initially study the variation ofN3 with h for Class-2 self interactions. To this end, we
considerN3 of the first 5modes for 27 different stratification profiles. Similar to the case of
Class-1 self-interactions in §2.6.2.1, the stratification profiles are chosen such thatNmax =

(2Nb, 5Nb, 10Nb),Wp = (H/200, H/100, H/50), and zc = (H/40, H/20, H/10), where
all possible (33) combinations are considered. Out of the 33 = 27 combinations, 9 profiles
are chosen for plotting figure 2.16 and thereby elucidating the effect of each individual
parameter in the stratification profile. For all cases, ω3 = 0.1Nb and f = 0. For some
higher modes, the nonlinear coupling coefficient has a band like structure; there exists
some range of h/H where Ñ3 is significantly higher in magnitude than that corresponding
to other values of h/H . For example, the mode n = 5 corresponding to Nmax = 5Nb

in figure 2.16(c) reveals a large increase in Ñ3 near h/H ≈ −0.75, while it is much
lower at either ends. Wunsch (2017) also observed such banded structure in the self-
interaction of different modes as the stratification profile was changed. The reason behind
the direct analogy between the observations in this chapter and that ofWunsch (2017) is as
straightforward – when an internal wave travels to a different domain height, it essentially
travels to a different stratification profile.

For mode-1, when zc,Wp, Nmax are all on the lower side, we observe that Ñ3 ∝ 1/h4. For
higher Nmax, even lower values of zc andWp do not have the property of Ñ3 ∝ 1/h4. In
general for modes> 1, proportionality to 1/h4 is lost faster as zc,Wp, Nmax is increased. In
several profiles, Ñ3 of highermodes is alsomore sensitive to changes in h than Ñ3 ∝ 1/h4.

2.7 Higher order self-interactions in the presence of a small
amplitude monochromatic topography

The focus of this section is on higher order self-interactions between a parent wave of
frequencyω1 and a superharmonic daughter wave of frequencyω3 = 2ω1 in the presence of
a small amplitude monochromatic topography. In such kind of scenarios, the topography
can act as a ‘zero frequency wave’, which can lead to resonant higher order interactions,
and is similar to the Class-2 studied in Alam et al. (2009) for surface gravity waves. The
pathways by which a parent wave provides its energy to a daughter wave through higher
order self interaction is given in figure 2.17. Such kind of higher order self-interactions
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Figure 2.17: Schematic of a higher order self interaction.

might be important for mode-1 internal waves propagating in regions where f > ωd/2

(ωd is the semidiurnal frequency), since triad interactions involving two (subharmonic)
daughter waves is not possible. Moreover, resonant self-interaction for mode-1 internal
wave of frequency ωd is also not possible when f > ωd/2 for any stratification profile
as a consequence of its dispersion relation (Wunsch, 2017). This arises from the fact
that a mode-1 parent wave with frequency ωd and a superharmonic daughter wave with
frequency 2ωd fail to satisfy the horizontal wavenumber condition for a self-interaction
process. Moreover, it is believed that the result is applicable for any stratification profile.
This is a consequence of the dispersion relation being influenced by the (ω2 − f 2) term in
the denominator as shown below:

d2ϕ

dz2
+ k2

N2 − ω2

ω2 − f 2
ϕ = 0 (2.68)

The (ω2−f 2) in the denominator provides a lower bound for detuning which will make the
interaction detuned for any N profile. If ω ≪ N , then the above equation can be written
as,

d2ϕ

dz2
+ k̂2(N2)ϕ = 0 (2.69)

where k̂ = k2/(ω2 − f 2). Note that for a particularN2, eigenvalue spectrum (k̂2) is fixed.
For resonance, (ω, k) and (2ω, 2k) must satisfy the dispersion relation. In other words,

k2

(ω2 − f 2)
= k̂n and

4k2

(4ω2 − f 2)
= k̂n (2.70)

should be satisfied. k̂n is the n−th eigenvalue of equation (2.69). This will not be possible
as f −→ ω for any k̂n and hence N profile.

Higher order interactions are different fromBragg resonance focused in Buhler &Holmes-
Cerfon (2011), which is also a mechanism via which a parent mode–1 wave can decay
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by transferring its energy to the higher modes. In a standard Bragg resonance, resonant
wave-topography interaction occurs if the bottom topography has a wavenumber kb such
that (ω1, kb ± k1) satisfies the dispersion relation. More details on Bragg resonance are
given in Chapter 4.

To study higher order self-interactions, we follow the streamfunction ansatz used in Cous-
ton et al. (2017) for studying internal wave Bragg resonance, and in Lahaye & Smith
(2020) for studying internal wave scattering due to interaction with a large amplitude to-
pography. This ansatz for the streamfunction of the j−th wave is as follows:

Ψj = Aj(x)ϕj(η; x)e−iωjt + c.c.. (2.71)

The corresponding buoyancy frequency and meridional velocity is given by

Bj =
iN2

ωj

∂Aj

∂x
ϕje−iωjt + c.c.., (2.72)

Vj =
if
ωj

Aj

h

∂ϕj

∂η
e−iωjt + c.c.. (2.73)

The above-mentioned ansatz can also be used to study systems where the detuning∆Ks ∼
O(1) in the presence of a flat or slowly varying bathymetry. The functions ϕj are same
as the functions used in §2 and are given by solving (2.27b). Here only small amplitude
topography whose wavenumber is comparable to the parent wave is considered (ϵh ≪
O(1) and ϵk ∼ O(1)).

To study higher order interactions of a parent wave propagating in the presence of a small
amplitude topography, we also consider the linear scattering of the parent wave. Note
that the linear scattering of the parent wave on its own is not resonant (resonant Bragg
scattering is not allowed) and hence over a long distance has a negligible effect on the
parent wave’s amplitude. Note that resonant Bragg scattering is a more dominant decay
mechanism than the higher order self interaction. To illustrate higher order self interaction,
we needed to select cases where resonant Bragg scattering is negligible. However, even
the non-resonant linear interaction of the parent wave with the topography, which leads to
higher modes with ω1 frequency, can significantly impact the growth of the superharmonic
wave. To derive the linear scattering of the parent wave as it moves through a topography,



Chapter 2. 66

we assume the streamfunction of the waves to be:

Ψ1 =
n=Mn∑
n=1

A(1,n)(x)ϕ(1,n)(η; x)e−iω1t + c.c.. (2.74)

whereMn is the maximum mode number after which the series is truncated, and ϕ(1,n) is
the n−th eigenfunction of ω1 frequency. The streamfunction ansatz (2.74) is substituted
in (2.18), and similar to §2.3, the linear terms of (2.18) is multiplied by ϕ(1,n) and inte-
grated in the η direction. This leads toMn ordinary differential equations, where the n−th
differential equation is given by:

γ(3)n

[
∂2A(1,n)

∂x2
+K2

(1,n)

A(1,n)

h2

]
= −

m=Mn∑
m=1

[
2γ

(5)
(m,n) + γ

(6)
(m,n)

h2

(
∂h

∂x

)2

−
2γ

(7)
(m,n)

h

∂h

∂x

]
A(1,m)

−
m=Mn∑
m=1

[
γ
(8)
(m,n) −

γ
(5)
(m,n)

h

(
∂2h

∂x2

)]
A(1,m)

−
m=Mn∑
m=1

2

[
γ
(4)
(m,n) −

γ
(5)
(m,n)

h

∂h

∂x

]
∂A(1,m)

∂x
, (2.75)

where K(1,n) is the corresponding eigenvalue of ϕ(1,n). Moreover γ(∗)(m,n) are evaluated
using the expressions given in section 2.3.2.1. The above set of equations are similar to
the equations derived in Lahaye & Smith (2020), except that we do not consider waves that
travel in the direction opposite to the parent wave since they are assumed to be negligible.
Now that we have the full wave spectrum with ω1 frequency by solving (2.75), we model
the evolution of the superharmonic wave. For simplicity, the feedback to the parent wave
is neglected, which is analogous to the pump-wave approximation used in §2.3.

The streamfunction of the superharmonic wave Ψ3 is substituted in (2.18), and the linear
terms are multiplied by ϕ3 and integrated in the η direction. This leads to:

LIN3 ≡
[(
γ
(3)
3

∂2A3

∂x2

)
+K2

3

(
A3

h2
γ
(3)
3

)]
e−iω3t + 2

[
γ
(5)
3

h2

(
∂h

∂x

)2

− γ
(7)
3

h

∂h

∂x

]
A3e−iω3t

+

[
γ
(6)
3

h2

(
∂h

∂x

)2

− γ
(5)
3

h

(
∂2h

∂x2

)
+ γ

(8)
3

]
A3e−iω3t + 2

(
γ
(4)
3 − γ

(5)
3

h

∂h

∂x

)
∂A3

∂x
e−iω3t,

(2.76)

LIN3 only contains linear terms, and models the propagation of superharmonic wave in
the presence of a topography. Note that superharmonic wave cannot exchange energy
with higher modes of ω3. Now we move on to deriving the nonlinear terms which force
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the superharmonic wave. Since we are focusing on higher order interactions, all nonlinear
terms (including terms containing x−direction derivatives of ϕ and h), which have the
same angular frequency as the superharmonic wave, are retained. In the terrain following
coordinates, this would however lead to a large number of terms that need to be evaluated.
This issue can be circumvented following the procedure outlined below. The nonlinear
terms in the terrain following coordinates are given by right hand side of (2.18).

We assume that the superharmonic wave is forced nonlinearly by the ω1 spectrum. To
model this, we substitute Ψ1,B1,V1 into the nonlinear terms of (2.18). Note that we can
obtain B1 and V1 from (2.72) and (2.73) respectively.

After the substitution, similar to the linear terms of wave-3, the nonlinear terms are multi-
plied by ϕ3 and integrated in η direction within the domain limits. The resultant expression
obtained is as follows:

NonL3 =

∫ 0

−1

ϕ3 [iω3J {(Lxx + Lηη)Ψ1,Ψ1}+ Lx (J {B1,Ψ1})− fLη (J {V1,Ψ1})] dη.

(2.77)
Therefore the final superharmonic wave equation can be written in a compact form:

LIN3 = NonL3. (2.78)

In equations (2.76) and (2.77), instead of splitting Aj into a product of slowly varying
amplitude and rapidly varying phase part, we simply solve the equations numerically by
retainingAj as it is. This is mainly because, as mentioned above, the number of nonlinear
terms would be significantly high in terrain following coordinates. For high ratios of f/ω1

(for example, north of critical latitude), the parent wave cannot resonantly self interact with
the superharmonic wave in the presence of a flat bottom. However, a resonant higher order
self-interaction can occur provided the topography has a wavenumber kb such that:

kb = k3 − 2k1, (2.79)

where k3 is the wavenumber of the superharmonic wave and the k1 is the wavenumber
of the parent wave. In such scenarios, the daughter wave’s amplitude will consistently
grow. However this being a higher order interaction, the growth rate of daughter wave
(consequently, the decay of the parent wave) can be expected to be slower than a resonant
self interaction. The choice of kb is indeed special here, however, the system is similar to
Bragg resonance focused in Refs. Couston et al. (2017); Buhler & Holmes-Cerfon (2011)
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Figure 2.18: Higher order self-interaction of mode-1 internal wave in the presence of a
monochromatic bathymetry for three different cases: (a) Case-1, (b) Case-2, and (c) Case-
3. uz=0 and u

(N)
z=0 denote the results obtained from the reduced order model and the 2D

Boussinesq equations, respectively. The topography profile (not to scale) is shown for all
three cases.

where resonance occurs only for a specific set of kb. Moreover, under small amplitude
topography assumption, the ‘non-resonant’ wavenumbers in the bathymetry cannot influ-
ence the growth due to resonant wavenumbers if they are present. Even if a spectrum of
wavenumbers are present, as long as a specific wavenumber is resonant, then resonant
interactions will occur. This is a consequence of the small amplitude bottom boundary
condition.

To elucidate and validate the higher order self interaction process, we perform numerical
simulations by solving the complete 2D Boussinesq equations and comparing the output
with the results of the reduced order model derived in this section. We run three simula-
tions where the parent and daughter waves’ frequencies are held fixed. They are denoted
by Case-1, Case-2, and Case-3. For all the simulations, the parent wave frequency is
ω1/Nb = 0.2, where ω1 is the semi-diurnal frequency, i.e. ω1 = 1.4× 10−4s−1. Both the
parent and daughter waves are mode-1 of their respective frequencies (ω1 and 2ω1). These
parameters would result in a significant detuning between the two waves at high f values.
The bathymetry profile is given by:

h = −H + [ϵhH sin (kb(x− Lenx/2))]×
1

(1 + (x− Lenx/2)32/W 32
T )

, (2.80)
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Wp/H zc/H Nmax/Nb f/ωd umax(ms−1) WT/Lenx
Case-1 1/16 1.5/1000 4.5 0.58 0.0120 0.30
Case-2 29.5/400 1.5/1000 7 0.64 0.0227 0.30
Case-3 1/20 1.5/1000 10 0.60 0.0232 0.31

Table 2.1: The stratification profile parameters, Coriolis frequency,WT , and the velocity
amplitude of the three waves for Case-1, Case-2, and Case-3.

where ϵh = 0.01, H = 3000m, and domain length Lenx = 540H are held fixed across
all three simulations. The stratification profile parameters, f value, incoming maximum
velocity of the parent mode (umax), andWT for the three simulations are given in table 2.1.
The results after solving the reduced order model and 2D Boussinesq equations for the
above mentioned parameters are shown in figure 2.18. The 2D Boussinesq equations are
solved using Dedalus. More details on the simulations are given in the end of §2.8. In all
three sub-figures, the amplitude of the daughter wave is observed to be slowly increasing
due to the higher order self-interaction. Moreover, the daughter wave’s amplitude also
rapidly oscillates because of the non-resonant standard self-interaction process between
the parent wave and the daughter wave. In the absence of a varying bathymetry, only
the rapid non-resonant interaction would be present without any consistent growth in the
daughter wave’s amplitude. The rapid oscillations that are much faster than the steady
linear growth can be visualised in figure 2.17 for all the cases. Therefore we have shown
that for scenarios where Bragg resonances are not resonant, higher order interaction might
be a possible mechanism that can scatter the energy of the mode–1 internal wave.

2.8 Numerical Validation

In this section, numerical validations are provided for the reduced–order equations derived
in section 2.3. We solve the 2D Boussinesq equations in terrain-following coordinates
using an open–source, pseudo–spectral code Dedalus (Burns et al., 2020), and compare
the results with output of the reduced order models. Class-1 triad interactions and self-
interactions are validated, and we begin with the Class-1 triad interactions.
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2.8.1 Class-1 triad interactions

The 2D Boussinesq equations in primitive variables and in terrain following coordinates
with diffusion/dissipation terms are given below:

∂U
∂t

+ Lx(P) + ULx(U) +WLη(U)− fV = Dif(U), (2.81a)

∂V
∂t

+ ULx(V) +WLη(V) + fU = Dif(V), (2.81b)

∂W
∂t

+ Lη(P) + ULx(W) +WLη(W) = Dif(W) + B, (2.81c)

∂B
∂t

+N2W+ ULx(B) +WLη(B) = Dif(B), (2.81d)

Lx(U) + Lη(W) = 0. (2.81e)

Here (U,W) = (Lη(Ψ),−Lx(Ψ)), which are the equivalent velocity field defined in x–η
instead of x–z coordinates. The operator Dif() is used for dissipation and diffusing small
scale waves. It is defined as

Dif() ≡ νLηη() +

(
ν
∂2

∂x2
() + ν12x

∂12

∂x12
()

)
(2.82)

where ν ∼ 10−5m2s−1 and ν12x ∼ 1025m12s−1 are used for all simulations. For the time-
stepping, modified Crank-Nicholson method is always used, and 500 time steps are used
per one time period of the parent wave. The vertical direction is resolved using Chebyshev
polynomials, where 128 or 160 grid points/polynomials are used. The horizontal direction
is resolved using 768 or 862 Fourier modes. The reduced order equations (2.45a)–(2.45c)
are solved using RK4 method for time-stepping and second order accurate discretization
scheme for the term ∂aj/∂x, where the scheme is forward or backward depending on the
group speed direction of the particular wave.

In this subsection, 3 pairs of Class-1 triad simulations are run, and for each pair, one is for
varying fluid depth (denoted by Case-j) while the other is for flat topography (denoted by
Case-(j+3)), where j = 1, 2, 3. The bathymetry profile (h(x)) is the same for Cases-1, -2,
and -3, and is given by

h(x) = −H + 0.2H exp [−(x− Lenx/2)2/(0.15Lenx)2]. (2.83)

Here H = 3000m, and Lenx = 1000H . For flat topography, h(x) = −H is taken con-
sistently. Note that the topography used is a Gaussian shaped topography. For shapes
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Figure 2.19: Class-1 interactions in the presence of a topography. (a) Case-1, (b) Case-
2, and (c) Case-3. t̂ ≡ ω3t/2π. Superscript ‘(N)′ denotes results from 2D Boussinesq

equations.

that are very close to the Gaussian shape, internal wave mode-mode coupling may not be
present at all (Maas, 2011). Hence the results can be sensitive to the topography shape as
well.

The stratification profile (2.60) is used again, and Nmax,Wp, and zc used in the three pairs
of simulations are given in table 2.2.

At t = 0, the wave packets in Case-j and Case-(j+3) (for j = 1, 2, 3) have the same
energy in the presence of the same background stratification profile. In this way, the energy
transfer betweenwave packets having same initial energy, modenumber, and frequency are
compared in the presence of a flat and a non-flat topography. Non-zero Coriolis frequency
is considered for all the simulations, and it is varied across the three pairs of simulations
(see table 2.2). In all cases, the results obtained from the reduced order model with the
results obtained from solving the full 2D Boussinesq equations are plotted.

For all simulations, ω3/Nb = 0.2 is taken with Nb = 10−3s−1, and (ω3, k3) is the parent
wave (which is always mode-1). Moreover, modenumber, and the frequency of the waves
are also given in table 2.2.
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Figure 2.20: Class-1 interactions in a flat domain, with the wave-packets having the same
energy as the packets in the presence of a topography. (a) Case-4, (b) Case-5, and (c)

Case-6.

Wp/H zc/H Nmax/Nb f/ω3 α Waves-involved
Case-1&4 3/100 1/100 10 0.30 0.414 (−K1(3),K2(4),K3(1))
Case-2&5 2/100 1/100 8 0.20 0.432 (−K1(4),K2(5),K3(1))
Case-3&6 3/100 1/100 14 0.35 0.446 (−K1(5),K2(6),K3(1))

Table 2.2: Stratification profile parameters, Coriolis frequency, and the modal numbers
of the three waves for Case-1&4, Case-2&5, and Case-3&6 are given.

The initial conditions used in the reduced order model are provided below. The wave-
packet envelope of the streamfunction (aj) for the three waves at t = 0 is given by:

aj(x, 0) = u(max,j)F (x)

[
max

(
2
F (x)

hβj

∂ϕ

∂η

) ∣∣∣∣
η=0

]−1

,

F (x) =

[
1

[1 + (x− Lenx/2)8/(0.3Lenx)8]
exp (−(x− Lenx/2)2/(0.3Lenx)2)

]
(2.84)

Because of the normalising constant, u(max,j) would simply give the maximum u-velocity
of the wave in the entire domain. u(max,j) for the three waves in the three simulations with
a varying h are given below:

• Case-1: u(max,1) = 0.02ms−1, u(max,2) = 0.00ms−1, u(max,3) = 0.08ms−1.

• Case-2: u(max,1) = 0.02ms−1, u(max,2) = 0.00ms−1, u(max,3) = 0.08ms−1.

• Case-3: u(max,1) = 0.015ms−1, u(max,2) = 0.00ms−1, u(max,3) = 0.08ms−1.

Note that packets are on top of the topography at t = 0 for all three simulations with a
varying h so that they can interact in a region of varying h. The evolution of the three
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waves’ energy (Euj) obtained from theory and simulations is shown in figure 2.19 for all
three cases with a varying h. The definition of Euj is given by:

Euj ≡
∫
A(R) u

2
j dA

(R)∫
A(R) (u21 + u22 + u23)|t=0 dA(R)

(2.85)

where the operator
∫
A(R) dA

(R) denotes the quantity is integrated throughout the simula-
tion domain. Note that using horizontal velocity field (uj) alone is enough because in the
simulations it was observed that

∫
A(R) u

2
j dA

(R) ≈
∫
A(R) (u

2
j + w2

j ) dA
(R).

In the 2D Boussinesq simulations, the daughter waves’ energy is isolated from the parent
wave’s energy by using the orthogonality property of the eigenfunction in the z−direction.
The energy exchange between wave packets in a flat domain is given in figure 2.20. By
comparing figures 2.19 and 2.20, it can be seen that the energy exchanged is different,
which means that the energy transfer rate is different. Energy contained in each wave is
found by using the orthogonality property of the functions dϕj/dz. Note that the orthog-
onality property is strictly valid only for waves with the same frequency as previously
shown. However, for waves with ωj ≪ N , the property can still be used with high accu-
racy.

Daughter waves at the end of Case-1 have 6.4% more energy than Case-4. Moreover,
daughter waves at the end of Case-2 have 7.7% more energy than Case-5. Furthermore,
daughter waves at the end of Case-3 have 3.4% more energy than Case-6. For the same
energies at t = 0, the energy exchanged among the packets is higher in the presence of
the topography considered, implying that the growth rates are also higher in comparison
to the flat topography situation.
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2.8.2 Self-interactions

The 2DBoussinesq equations used in this sub-section to validate self interactions are given
by

∂U
∂t

+ Lx(P) + ULx(U) +WLη(U) = νLηη(U) +
(
ν6z
H6

∂6U
∂η6

+ ν6x
∂6U
∂x6

)
, (2.86a)

∂V
∂t

+ ULx(V) +WLη(V) = νLηη(W) + B, (2.86b)

∂W
∂t

+ Lη(P) + ULx(W) +WLη(W) = νLηη(B) +
(
ν6z
H6

∂6B
∂η6

+ ν6x
∂6B
∂x6

)
, (2.86c)

Lx(U) + Lη(W) = 0. (2.86d)

where ν = 10−5m2s−1, ν6x = 108m6s−1 and ν6z = 81m6s−1 is used consistently. For the
time-stepping, modified Crank-Nicholson method is once again used for all simulations,
and 1000 time steps are used per one time period of the parent wave. We estimate the
validity of the reduced order equations (2.50a)–(2.50b) for two different cases. All the
hyperviscous terms perform the same function: they damp the small scale waves which
cannot be resolved without a tremendous increase in computational power. However, over
the course of the study, we realised that some hyperviscous terms (numerically) are simply
more efficient than the other terms. As a result, hyperviscous terms were changed in §2.8.1
and §2.8.2. We do not expect results to change with respect to the hyperviscous terms.

For Case 1, self interaction of a plane wave in the presence of a constant h is simulated.
The parameters of the simulation are as follows: H = 3000m and Nb = 10−3s−1. The
frequency of the parent wave is taken as ω1/Nb = 0.447, while f = 0 is chosen. The
stratification profile (2.60) is considered and the parameters used are:

• N (13): Nmax = 3Nb,Wp = 3H/100, zc = H/10.

Mode-3 of parent wave frequency (ω1) in this scenario resonantly self interacts with mode-
2 of 2ω1 (Varma & Mathur, 2017). The parent wave streamfunction input (initial condi-
tion) to the full numerical simulation is given by:

Ψ = A1ϕ1 sin(k1x) exp(−(x− xPCK)
2/W 2

PCK), (2.87)

where |A1| = 0.06,WPCK → ∞ is chosen (note that xPCK can be any value sinceWPCK →
∞). Ψ is used to obtain all the other fields. The numerical code is also initialised with the
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Figure 2.21: (a) The energy evolution of waves for Case-1 from reduced–order equations
and numerical simulations. The superscript (N) denotes the results from numerical sim-
ulation of 2D Boussinesq equations. (b) The energy evolution of waves for Case-2 from
reduced–order equations and numerical simulations in the time span t∗ = 30 to t∗ ≈ 40,

where t∗ ≡ ω1t/2π. (c) Fourier transform of B at η = −0.42 and t∗ = 40.

corresponding buoyancy frequency for the streamfunction given in (2.87). The vertical
(horizontal) direction is resolved using 192 Chebyshev (Fourier) modes.

For estimating the energy of parent and daughter waves from the numerical simulations,
only the potential energy of the waves is considered. This is valid because when f = 0, en-
ergy is equally partitioned between potential energy and kinetic energy. For evaluating the
potential energy of the two waves, we take the Fourier transform of B in the x−direction.
Then by simply isolating the k3 and k1 wavenumbers, the respective fields due to wave-3
and wave-1 can be obtained for all time. The resulting energy evolution of the waves for
Case 1 is shown in figure 2.21(a). At the end of the simulation, the parent wave energy
was observed to be 86% of the total energy in the Boussinesq equations simulation, while
the reduced order model predicted that 85.5% of the total energy will be contained in the
parent wave at the specified time interval. Moreover, at the end of the simulation, the
daughter wave’s energy in Boussinesq equations simulation and the reduced order model
are 13.0% and 14.4% respectively.

In Case 2, we consider the self interaction of a parent wave packet travelling in the presence
of a slowly varying bathymetry. The parameters considered are as follows: H = 3000m
and Nb = 2.5× 10−3s−1. The following stratification profile is used:

• N (14): Nmax = 5Nb,Wp = 3H/100, zc = H/10.
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Figure 2.22: Horizontal velocity plot (u) from Case-2 simulation at (a) t∗ = 0 and (b)
t∗ = 30. The stratification profile shape used is also shown for visual purposes. A faint
but clear mode-2 trail left by the mode-3 parent wave can be seen at (b). The shape of the

stratification profile used in Case-2 is given by green curves in (b).

ω1/Nb = 0.447 with f = 0 is chosen. Mode-3 of ω1 resonantly self interacts with mode-2
of 2ω1 for h/H ∈ [−1,−0.8]. The bathymetry is given by:

h = −H + 0.1H [tanh((x− 25H)/2.7H) + tanh((83H − x)/3.5H)] , (2.88)

and Lenx = 100H is taken. The bathymetry shape can be visualised in figure 2.22.

The parent wave streamfunction of the form (2.87) is used with |A1| = 0.022, WPCK =

3.57H and xPCK = 10.2H is chosen. Here k1 is evaluated at h = −H for the initial
conditions. The xPCK value is chosen such that the wave packet is just at the bottom of
the ‘plateau-like’ topography at t = 0 (as shown in figure 2.22(a)). The bathymetry is
considered to be slowly varying so that the wave packet scattering by the bathymetry is
negligible. For this simulation, the vertical direction is resolved using 144 Chebyshev
polynomials, while the horizontal direction is resolved 576 Fourier modes.

The same procedure of energy evaluation as Case 1 is followed, except the energy is eval-
uated from t∗ = 30, when the entire energy of both wave packets is almost confined to
the top of the plateau region (where h = −0.8H). This makes the energy evaluation
straightforward. We only consider B in the range x/H ∈ [33, 68] (where most of the en-
ergy is contained), and then again perform Fourier transform to separate the energy of the
daughter and parent wave packets.
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In Case-2, since wave packets are considered, the Fourier transform ofB would not have a
sharp peak at k1 and k3. Instead, a smoother peak in k–space would be produced as shown
in figure 2.21(c). We define a nondimensional wavenumber k̃ as k̃ ≡ k/k1. For evaluating
the energy of both wave packets, amplitude (|ak̃|) in a finite range of k̃ is considered.
The energy contained in (k̃ ∈ [0.6, 1.4]) is considered as the energy of the parent wave
packet, while the energy in (k̃ ∈ [1.6, 2.4]) is considered as the daughter wave’s energy.
For example, the k̃ range considered for the parent and daughter waves are highlighted
in figure 2.21(c) using colored dotted lines for a specific η and t∗. For the parent wave,
|ak̃| between the blue dotted lines is considered. Similarly for evaluating the energy of
the daughter wave packet, we consider the amplitude (|ak̃|) between the red dotted lines.
The energy evolution of the wave packets are shown in 2.21(b). The Parent wave packet
energy in Boussinesq equations simulation and the reduced order model was observed to
be 88.1% and 88.9% respectively at the end of the simulations. At the same time, the
daughter wave’s energy in Boussinesq equations simulation and the reduced order model
are 8.95% and 10.6% respectively.

We now briefly mention the method used to obtain the numerical results of higher order
self interactions given in figure 2.18. Equations (2.81a)–(2.81e) were solved with ν12x =

1.4×1025m12s−1. The kinematic viscosity was chosen to be ν = 10−3m2s−1. The primary
wavewas forced by using a forcing function in the zonal momentum equation, which sends
a constant amplitude mode-1 wave train onto the small amplitude topography.

2.9 Summary and Conclusion

Weakly nonlinear wave-wave interactions is one of the mechanisms through which in-
ternal gravity waves’ energy cascade from large length scales (hundreds of kilometers) to
small scales (centimeters to meters). At small length scales, internal waves can give rise to
convective or shear instabilities (Koudella & Staquet, 2006) and cause mixing, thus result-
ing in increased diffusion in oceans. The 2D Boussinesq equations are written in terrain
following coordinates (x–η). Using multiple-scale analysis, we derive the amplitude evo-
lution equations for internal gravity waves undergoing weakly nonlinear wave-wave inter-
actions in the presence of varying density stratification (resembling that of actual oceanic
scenarios) as well as mild slope bathymetry in a vertically bounded domain. If the strat-
ification varies with z in the x–z coordinates, then it becomes a function of both x and
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Figure 2.23: A summary diagram shows how different factors such as detuning, nonlinear
coefficients can vary for different classes of interaction in the presence of non-uniform
stratification. It also provides a brief picture of the higher order self interaction studied in

§2.7.

η in the x–η coordinates when bathymetry, h, varies with x. In other words, the effec-
tive stratification profile varies with the ocean depth. Both triads and self-interactions are
studied, and both pure resonant conditions as well as systems with wavenumber detuning
are analyzed.

In the presence of uniform stratification, we show that the horizontal wavenumber triad
condition, given by k(1,a) + k(2,b) + k(3,c) = 0, is not violated due to changes in h. Here
(a, b, c) are the modenumbers of waves 1, 2, and 3 respectively. Moreover, in the presence
of uniform stratification, the nonlinear coupling coefficients are inversely proportional to
the square of the fluid depth (∝ 1/h2).

For non-uniform stratifications, we define two classes of interaction for both triads and
self-interactions. Class-1 involves weakly nonlinear interactions of waves that do not
have the same mode number. Class-2 is a special situation that involves interactions of
waves with the same modenumber, i.e. a = b = c. Note that a = b = c violates the
vertical wavenumber condition in the presence of a uniform stratification. However, in
the presence of non-uniform stratification, the vertical wavenumber is replaced by a non-
orthogonality condition (Varma & Mathur 2017). This condition is not as stringent as the
vertical wavenumber condition. Hence, there is no violation of the triad conditions. Class-
2 triad interactions can exist only in the parameter regime of f ≪ ωj ≪ N . Moreover,
in the same parameter regime, near-resonant Class-2 self-interactions can exist with very



Chapter 2. 79

low detuning even as h is varied. This is because the wavenumbers involved in a self-
interaction, change in the same way as h changes. For Class-1 interactions, detuning
may be induced in triads and self-interactions if the waves interact in a region of varying
h. This is because in a vertically bounded domain, the horizontal wavenumbers are not
only a function of h but is also a function of the modenumber. Moreover, the functional
dependence of the wavenumber on hmay change as the modenumber changes. Therefore,
in a weakly nonlinear interaction where different modenumbers are involved, there is no
constraint for the wavenumbers to satisfy the triad condition in a given range of h.

The variation of the growth rate of the daughter waves in both triadic- and self-interactions
is studied when h is varied. For both Class-1 and Class-2 self-interactions, it is observed
that small changes in h may result in large changes in the growth rate of the daughter
waves. This characteristic is especially observed for Class-1 self-interactions. Variation
of growth rates with h is studied for triads of a mode-1 parent wave in the presence of
non-uniform stratification. Triads were identified such that the daughter waves can be
up to mode-50. For relatively small changes in h, the growth rates can vary significantly
for triads that involve only lower modes. Moreover, the most unstable daughter wave
combination for the same parent wave can also change for relatively small changes in h.
Unlike uniform stratification, in non-uniform stratification, the growth rates do not have
a monotonic behavior with h. This was observed for both triadic- and self-interactions.

Reduced-order equations for higher-order self-interactions of an internal wave in the pres-
ence of a small amplitude, monochromatic topography is also derived. In the higher-
order self-interaction process, the small amplitude topography behaves as a zero frequency
wave. It is shown that such higher-order interactions can cause resonant growth of the su-
perharmonic wave. Such higher-order interactions can play a crucial role in the decay of
the mode-1 internal wave at latitudes greater than 28.9◦. This is because sum-type triad
interactions are not possible (Olbers et al., 2020) and a mode-1 internal wave cannot res-
onantly self-interact for high values of f (Wunsch, 2017).
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5 wave interactions in internal gravity
waves

3.1 Introduction

In the last chapter, the main focus was on the stability of a single internal wave mode in a
vertically bounded domain. However, in the ocean, apart from low mode internal waves,
vertically propagating internal waves (plane waves) are abundant as well. In this chap-
ter, we study the stability of two weakly nonlinear plane parent waves that coexist in a
region. The motivation for this study is parent internal waves generated in different loca-
tions meet/overlap in the oceans often. For example, tide-topography interactions result
in the generation of internal waves that propagate in horizontally opposite directions, and
these waves overlap and coexist above the topography. This is shown in figure 3.1. When
two energetic parent waves meet in a region, they can resonantly interact with each other.
Internal wave beam collision is an example of such direct interaction between the parent
waves, and it has been studied extensively over the last few decades (Tabaei et al., 2005;
Jiang & Marcus, 2009; Akylas & Karimi, 2012). Parent waves, however, do not always
resonantly interact with each other and form a triad. In the absence of direct interaction,
each parent wave would still be susceptible to triad interactions leading to the growth of
daughter waves, and this is the setting explored in this paper. Specifically, we focus on
the 5-wave system instability. In this instability, five waves (two parent waves and three
daughter waves) are involved, and two distinct triads are formed between the five waves.
Note that this implies one daughter wave is forced by both parent waves and is a part of

80
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two different triads. Some examples of parent waves overlapping (that commonly occurs
in the topographic generation of internal waves) are given in figures 3.2(a)–3.2(b). In both
figures, the region enclosed inside the green box would be a potential location for a 5-wave
system. The wavevector and frequency condition satisfied in a 5-wave system is given in
figure 3.2(c). Note that the study in this chapter 3 focuses only on plane waves. The study
can be extended to wave beams in the future, and the results would be applicable in cases
where multiple internal wave beams meet (often occurs near topographies). A finite-width
beam of a given frequency contains a spectrum of internal waves with different wavevec-
tors. Interaction of involving beamsmeans an interaction between two different spectrums
of waves, and this is a much more complicated scenario than the one we have considered
in the thesis. For simplicity, we chose to begin with plane waves. For two parent plane
waves, there are only two wavevectors and as a result, the problem can be explored in
depth for a wide parameter space. Note that the results should be applicable for wide
internal wave beams since wide beams essentially behave like plane waves.

In the context of internal gravity waves, 5-wave systems have been studied recently (Pan
et al., 2021a,b). Pan et al. (2021a) focus on 5-wave systems where the same parent wave
generates four different daughter waves, which is not the focus of this paper. Pan et al.
(2021b) explore 5-wave interactions that consist of two parent waves and three daughter
waves, but their focus is on rogue wave generation. They study the 5-wave systems in a
2D setting without the rotational effects. Moreover, no detailed study was conducted on
the growth rates. In this paper, we consider a 3D setting with rotational effects, which
is observed to be important in our case. The primary focus is on the growth rates of the
daughter waves and to understand scenarios in which the 5-wave system instability is
faster than the 3-wave system instability (standard triads). In our study, the frequencies
of the two parent waves are always assumed to be the same, and this assumption can be
important in an oceanographic context. This is because different internal waves generated
by the same tide have the same frequency.

The remaining sections are organised as follows. In §3.2, we use multiple scale analysis
to simplify the 3D, Boussinesq, Navier-Stokes equations in the f−plane and derive the
wave amplitude equations. Expressions for growth rates are provided. In §3.3, theoretical
comparisons between 3-wave systems’ growth rates and 5-wave systems’ growth rates for
different combinations of parent waves are conducted. In §3.4, numerical validation is
provided for the 5-wave system. The chapter is summarized in §3.5.
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Figure 3.1: Simulations in (a) (Nikurashin & Legg, 2011) and (b) Richet et al. (2018)
showing the parent wave intersections. The black dotted lines in (a) show the trajectory

of the internal wave beam.

Figure 3.2: Examples of different orientations of propagating parent waves: in (a) ver-
tically and (b) horizontally opposite directions, with the intersection region marked in
green. (c) Frequency and wavevector triad conditions that are satisfied between the 5
waves that are involved in the interaction region. Waves 1 and 5 are parent waves, while
waves 2,3, and 4 are daughter waves, with wave-3 being the common daughter wave.

3.2 Governing Equations and Multiple Scale Analysis

In this section, the 3D, incompressible, Boussinesq, Navier-Stokes equations in the f−plane
and the advection-diffusion for the buoyancy in three dimensions is considered. The equa-
tions are given in Chapter 1, see (1.7)–(1.10) along with (1.13). Similar to the previous
chapter, a multiple scale analysis approach is used to estimate the growth rate of the daugh-
ter waves. It is convenient to derive the reduced order equations by combining the above
set of governing equations into a single equation. Following Neef (2004), the operation
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∂/∂t(1.10) −g/ρ0(1.13) is first performed which leads to:

∂2w

∂t2
+
∂

∂t
(u.∇w) +N2w+ u.∇b = ∂

∂t

(
− 1

ρ0

∂p′

∂z
+ ν∆w

)
+ κ∆

(
b− gρbase

ρ0

)
(3.1)

where u = (u, v, w) is the velocity vector. Now to cancel the pressure term, ∇2
h(3.1) −

∂/∂t(∂/∂x(∂/∂z(1.8)))−∂/∂t(∂/∂y(∂/∂z(1.9))) is conducted. This leads to (after some
simplification),

∂2(∇2
hw)

∂t2
+
∂

∂t
∇2

h (u.∇w) +N2(∇2
hw) = ν

∂

∂t

(
∆2w

)
+∇2

h(κ∆b)

+∇2
h(u.∇b)−

∂3(u.∇u)
∂x∂z∂t

− ∂3(u.∇v)
∂y∂z∂t

− f
∂3v

∂x∂z∂t
+ f

∂3u

∂y∂z∂t
(3.2)

where∇2
h ≡ ∂2/∂x2+∂2/∂y2. Using (1.8) and (1.9), the term f∂3u/∂y∂z∂t−f∂3v/∂x∂z∂t

can be re-written as,

f
∂3u

∂y∂z∂t
− f

∂3v

∂x∂z∂t
=− ∂2(u.∇u)

∂y∂z
+
∂2(u.∇v)
∂x∂z

+ f 2 ∂
2u

∂x∂z
+ f 2 ∂

2v

∂y∂z

+ fν
∂2(∆u)

∂y∂z
− fν

∂2(∆v)

∂x∂z
(3.3)

Using ∇.u = 0 and (3.3), (3.2) can be further simplified to,

∂2(∆w)

∂t2
+N2(∇2

hw) + f 2∂
2w

∂z2
+ NLT = VT (3.4)

where NLT denotes all the nonlinear terms, and is given by,

NLT = ∇2
h

∂(u.∇w)
∂t

+∇2
h(u.∇b)−

∂3(u.∇u)
∂x∂z∂t

(3.5)

+ f
∂2(u.∇u)
∂y∂z

− f
∂2(u.∇v)
∂x∂z

− ∂3(u.∇v)
∂y∂z∂t

(3.6)

Moreover, VT denotes all the viscous terms and is given by,

VT = ν
∂

∂t

(
∆2w

)
+∇2

h(κ∆b) + fν
∂2(∆u)

∂y∂z
− fν

∂2(∆v)

∂x∂z
(3.7)

For simplicity, κ = 0 is assumed hereafter. Furthermore, the primary focus is on plane
waves. Similar to the procedure used in Bourget et al. (2013), the vertical velocity of the
j−th wave (j = 1, 2, . . . , 5) is assumed to be a product of a rapidly varying phase and an
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amplitude that slowly varies in time. Mathematically this can be written as

wj(x, y, z, t) = aj(ϵtt) exp [i(kjx+ ljy +mjz − ωjt)] + c.c., (3.8)

where kj, lj,mj, and ωj are respectively the zonal wavenumber, meridional wavenumber,
vertical wavenumber, and frequency of the j−internal wave. The amplitude is assumed to
evolve on a slow time scale ϵtt, where ϵt is a small parameter. Moreover, aj itself isO(ϵa),
where ϵa≪1. Basically ϵa is chosen such that waves have small steepness, and this is the
condition needed for the resonant wave-wave interaction instability to occur (Koudella &
Staquet, 2006). Note that the amplitude only varies in time unlike the previous chapter.
This is because the primary focus is here on growth rates, and the temporal variation alone
is sufficient for that. Significant focus is not given to the finite width effects that can arise
when the amplitude is also a function of space. On substituting (3.8) in (3.4), at the leading
order (O(ϵa)) we obtain the dispersion relation in 3D:

ω2
j =

N2(k2j + l2j ) + f 2m2
j

k2j + l2j +m2
j

. (3.9)

All 5 waves involved in the interaction must satisfy this dispersion relation. Energy trans-
fer between the waves due to weakly nonlinear wave-wave interactions occurs at O(ϵ2a).
For the j-th wave, the amplitude evolution equation reads

D(3)
j

∂aj
∂t

= −NLTj + VTj, (3.10)

where D(3)
j ≡ 2iωj(k

2
j + l2j + m2

j) is defined for convenience. NLTj and VTj represent
all the nonlinear and viscous terms with the phase of the j−th wave, respectively. The
expression for VTj is given by

VTj = −D(3)
j ν/2

(
f 2m2

j

ω2
j

+m2
j + l2j + k2j

)
. (3.11)

NLTj is obtained by substituting the fields (uj, vj, wj, bj) in NLT, and by retaining all the
nonlinear terms that have the same phase as the j−th wave. Nonlinear terms that do not
have the phase of any of the five waves are the ‘non-resonant terms’ and are neglected.
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From wj , we can obtain uj, vj, and bj by using the polarisation relations:

uj

vj

bj

pj


=



Uj

Vj

Bj

Pj


wj =



−mj(ωjkj + iljfj)/[ωj(k
2
j + l2j )]

−mj(ωjlj − ikjfj)/[ωj(k
2
j + l2j )]

−iN2/ωj

(ω2
j −N2)/ωjmj


wj. (3.12)

Polarisation expressions are also used to evaluate NLTj , and the expressions for NLTj are
provided in section 3.2.1 given below.

3.2.1 Wave-amplitude equations and growth rates

The amplitude evolution of each of the 5 waves can be obtained from (3.10):

da1
dt

= S1a2a3 − V1a1,
da2
dt

= S2a1ā3 − V2a2 (3.13)

da5
dt

= E5a4a3 − V5a5
da4
dt

= E4a5ā3 − V4a4 (3.14)

da3
dt

= S3a1ā2 + E3a5ā4 − V3a3 (3.15)

where Vj = −VTj/D(3)
j . As depicted in figure 3.2(c), wave-1,-2, and -3 form a triad,

whose nonlinear coefficients are given by Sj . Likewise, wave-3, -4, and -5 also form a
triad, whose nonlinear coefficients are given by Ej . Expressions for Sj and Ej are given
below. Two quantities E(j,p,d) andO(j,b,c) are defined so that the nonlinear coefficients can
be written in a compact form.
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E(j,p,d) =− (ωp − ωd)kjmj

[(
UpŪd(kj) + UpV̄dlp − VpŪdld + Upmp −mdŪd

)]
− (ωp − ωd)ljmj

[(
VpV̄d(lj)− UpV̄dkd + VpŪdkp + Vpmp −mdV̄d

)]
+ (ωp − ωd)(l

2
j + k2j )

[
V̄dlp − ldVp +mj + kpŪd − Upkd

]
+ i(l2j + k2j )

[
ŪdBpkp − UpB̄dkd + V̄dBplp − VpB̄dld + Bpmp − B̄dmd

]
+ ifljmj

[(
UpŪd(kj) + UpV̄dlp − VpŪdld + Upmp −mdŪd

)]
− ifkjmj

[(
VpV̄d(lj)− UpV̄dkd + VpŪdkp + Vpmp −mdV̄d

)]
(3.16)

O(j,b,c) =− (ωb + ωc)kjmj [(UbUc(kj) + UbVclb + VbUclc + Ubmb + Ucmc)]

− (ωb + ωc)ljmj [(VbVclj + UbVckc + VbUckb + Vbmb +mcVc)]

+ (ωb + ωc)(l
2
j + k2j ) [Vclb + lcVb +mj + kbUc + Ubkc]

+ i(l2j + k2j ) [UcBbkb + UbBckc + VcBblb + VbBclc + Bbmb + Bcmc]

+ ifljmj [(UbUckj + UbVclb + VbUclc + Ubmb +mcUc)]

− ifkjmj [(VbVclj + UbVckc + VbUckb + Vbmb +mcVc)] (3.17)

where the indices (j, p, d, b, c) are used to denote waves. Using equations (3.16) and (3.17),
the nonlinear terms and coefficients can be written in a compact form as given below

S1 =
O(1,2,3)

D(3)
1

, S2 =
E(2,1,3)

D(3)
2

, S3 =
E(3,1,2)

D(3)
3

, (3.18)

E5 =
O(5,3,4)

D(3)
5

, E4 =
E(4,5,3)

D(3)
4

, E3 =
E(3,5,4)

D(3)
3

, (3.19)

NLT4 = E4D(3)
4 a5ā3, NLT3 = E3D(3)

3 a5ā4 + S3D(3)
3 a1ā2, NLT2 = S2D(3)

2 a1ā3.

NLT1 = S1D(3)
1 a2a3, NLT5 = E5D(3)

5 a3a4, (3.20)

Using pump wave approximation (McEwan & Plumb, 1977; Young et al., 2008), (3.13)–
(3.15) can be simplified to a set of linear differential equations which are given below in
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a compact form: 

dā2
dt

dā4
dt

da3
dt


=



−V2 0 S̄2Ā1

0 −V4 Ē4Ā5

S3A1 E3A5 −V3





ā2

ā4

a3


. (3.21)

Note that a1(a5) has been changed toA1(A5) to denote the fact that they are now constants.
By assuming daj/dt = σaj , we arrive at the equation

(σ + V2)(σ + V3)(σ + V4)− Ē4E3|A5|2(σ + V2)− S̄2S3|A1|2(σ + V4) = 0, (3.22)

where σ is the growth rate of the system of equations given in (3.21). A real, positive σ
implies the daughter waves can extract energy from the parent wave. For ν = 0 (inviscid
flow), the growth rate has a simple expression given by

σ =
√

S̄2S3|A1|2 + Ē4E3|A5|2. (3.23)

Note that by setting either A1 = 0 or A5 = 0, we arrive at the standard growth expression
for triads (3-wave systems). Moreover, we can also obtain the condition√

S̄2S3|A1|2 + Ē4E3|A5|2 ≤
√
2σ̂1 or

√
S̄2S3|A1|2 + Ē4E3|A5|2 ≤

√
2σ̂5 (3.24)

where σ̂1(σ̂5) is the maximum growth rate of all 3-wave systems of parent wave-1(5). If
both the parent waves have the same amplitude (A1 = A5), frequency, and wavevector
norm, then σ̂1 = σ̂5. In such cases, (3.24) implies that any 5-wave system’s growth rate
could, in principle, be higher (maximum being

√
2 times) than the maximum growth rate

of all 3-wave systems. For all the parent wave combinations considered in this paper,
A1 = A5 is consistently taken to study the growth rates. Note that a 5-wave interaction can
be faster than a 3-wave interaction because in a 5-wave interaction the daughter waves are
being forced by two different parent waves. As a result, the small amplitude perturbations
grow using two different reservoirs of energy.
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3.2.1.1 5-wave system identification method

For a resonant 5-wave system, all three daughter waves should satisfy the dispersion rela-
tion. This leads to 3 constraints, which are given below:

ω2
3 =

N2(k23 + l23) + f 2m2
3

k23 + l23 +m2
3

, (3.25a)

ω2
2 =

N2(k22 + l22) + f 2m2
2

k22 + l22 +m2
2

, (3.25b)

ω2
4 =

N2(k24 + l24) + f 2m2
4

k24 + l24 +m2
4

. (3.25c)

The following triad conditions also add additional constraints:

ω2 = ω1 − ω3, k2 = k1 − k3, (3.26a)

ω4 = ω5 − ω3, k4 = k5 − k3, (3.26b)

where kj = (kj, lj,mj) is the wavevector of the j−wave. Substitution of (3.26a) in
(3.25b), and (3.26b) in (3.25c) lead to

ω2
3 =

N2(k23 + l23) + f 2m2
3

k23 + l23 +m2
3

, (3.27a)

(ω1 − ω3)
2 =

N2((k1 − k3)
2 + (l1 − l3)

2) + f 2(m1 −m3)
2

(k1 − k3)2 + (l1 − l3)2 + (m1 −m3)2
, (3.27b)

(ω5 − ω3)
2 =

N2((k5 − k3)
2 + (l5 − l3)

2) + f 2(m5 −m3)
2

(k5 − k3)2 + (l5 − l3)2 + (m5 −m3)2
. (3.27c)

Solutions for (3.27a)-(3.27c) would provide resonant 5-wave systems, and they are found
by varying (ω3, k3, l3,m3). Hereafter we always assume |k1| = |k5|, however, k1 ̸= k5,
and ω1 = ω5 = 0.1N . Such small frequency values appear in many other studies, for
example, Mathur et al. (2014); Nikurashin & Legg (2011).
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3.3 Results from the reduced–order model

3.3.1 Parent waves in the same vertical plane

3.3.1.1 k1 = (k1, 0,m1) and k5 = (k1, 0,−m1)

We first consider the scenariowhere the two parent waves have the same horizontal wavevec-
tor (k, l) but travel in vertically opposite directions, see figure 3.2(a). For simplicity, the
meridional wavenumbers of the parent waves (l1 and l5) are assumed to be 0. Internal
waves propagating in vertically opposite directions can arise in many different circum-
stances. For example, internal wave beams getting reflected from the bottom surface of
the ocean, or from the air-water interface, or even from the pycnocline, will result in sce-
narios where parent waves travelling in vertically opposite directions meet.

For the given set of parent waves, a resonant 5-wave system is possible only when ω3 ≊
ω1 − f . No other resonant 5-wave systems were found for 0 < f/ω1 < 0.5. Equations
(3.27a)–(3.27c) were solved numerically for many f− values and the solution for ω3 was
ω3 = ω1 − f . Specifically, for f/ω1 = (0.05, 0.1, 0.2, 0.4), no resonant 5-wave systems
were found for ω3 ∈ (f+δω, ω1−f−δω), where δω = 0.01ω1. Hence, the 5-wave system
always consists of (a) two parent waves, each with frequency ω1 (as per our assumption),
(b) a common daughter wave with frequency ω1 − f , and (c) two inertial (frequency f )
daughter waves, which also propagate in vertically opposite directions.

Next we study the growth rates of the 5-wave system. First, we decide on the viscosity
values in a non-dimensionalised form. In this regard we choose |A1|/k1ν = 104 and
|A1|/k1ν = 107, which are used throughout the chapter. At |A1|/k1ν = 107, viscous
effects are usually negligible, hence |A1|/k1ν = 104 is also considered to see what 5-wave
systems are affected by the viscosity. We note in passing that |A1|/k1ν ≈ 3×106 was used
by Bourget et al. (2013) to study triads with realistic oceanic parameters. Figure 3.3(a)
shows how the maximum growth rate of the 5-wave system and 3-wave systems vary with
f/ω1 for different ν. The growth rates are evaluated by fixing k1 and A1 as f is varied.
Figures 3.3(b)–3.3(c) respectively show the horizontal and the vertical wavenumbers of
the daughter waves involved in the 5-wave interaction. Note that the common daughter
wave’s horizontal wavevector (k1, 0) is always the same as that of the parent waves. This
is expected since the other two daughter waves are near-inertial waves. Moreover, the
common daughter wave can have a positive or negative vertical wavenumber, and both
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cases have the same growth rate. In a 5-wave interaction (or a 3-wave interaction), the
length scale of the near-inertial daughter waves generated strictly depends on the length
scale of the parent waves and also on the depth of the domain. For low f values, the 3-
wave system has a higher growth rate, hence it is the dominant instability. This is because
the two 3-wave systems that combine to form the 5-wave system always contain inertial
daughter waves. Moreover, the growth rate of 3-wave systems containing near-inertial
waves is much smaller than the maximum possible growth rate (Richet et al., 2018, figure
8). As a result, the resonant 5-wave system is of little significance at low latitudes. An
important point to realise is that triads with the highest growth rates need not necessarily
combine to form 5-wave systems because the conditions required for a resonant 5-wave
system (equations (3.27a)–(3.27c)) are more stringent.

As f is increased, the 5-wave system’s growth rate becomes higher than the maximum
growth rate of all 3-wave systems. The transition occurs near f/ω1 ≈ 0.3, see figure
3.3(a). For high values of f/ω1, 5-wave systems may be faster in locations where an
internal wave beam gets reflected from a flat bottom surface or from a nearly flat air-water
surface. However, for inclined reflecting surfaces, the results presented here (which are
based on the assumption that the two parent waves have the same wavevector norm) may
not be valid since inclination results in a significant change in wavevector norm (Phillips,
1977).

Finally, we note that two parent waves with equal amplitude travelling in vertically oppo-
site directions in a constant N produce a field that resembles an internal wave mode in a
vertically bounded domain (Johnston & Merrifield, 2003). Hence, the predictions made
in this section should also hold for modes in a bounded domain. However, in a vertically
bounded domain, only a discrete set of vertical wavenumbers are allowed for a particular
frequency. As a result, for a resonant 5-wave system to exist, the vertical wavenumbers
of the daughter waves should be a part of the discrete vertical wavenumber spectrum.
Note that this means considering only three waves (as we have done in the chapter 2) may
under-predict the growth rates at certain latitudes.

3.3.1.2 k1 = (k1, 0,m1) and k5 = (−k1, 0,m1)

Herewe focus on the scenariowhere the two parent waves have the same vertical wavenum-
ber but travel in horizontally opposite directions, as given in figure 3.2(b). Moreover,
l1 = l5 = 0 is again assumed. For this particular combination of parent wavevectors,
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Figure 3.3: (a) Variation of 5-wave system’s growth rate(denoted by 5WS in the leg-
end) and the maximum growth rate of all 3-wave systems (denoted by 3WS) with f for
k1 = (k1, 0,m1) and k5 = (k1, 0,−m1). Two different viscosity values are used. The
horizontal wavenumber and vertical wavenumber of the daughter waves in the 5-wave

system are shown in (b) and (c), respectively.

resonant 5-wave systems are possible for ω3 ∈ (f, 0.53ω1). For f/ω1 = 0.01, resonant
5-wave systems exist up to ω3 ≈ 0.53ω1. As f increases, the maximum possible value of
ω3 slowly reduces to 0.5ω1. We define two branches: 5-wave systems where the common
daughter wave has a positive (negative) vertical wave number is defined as Branch-1(2).
Figures 3.4(a)–3.4(b) show how the maximum growth rate for each of these two branches
varies with f for two different viscosity values. The maximum growth rate of 3-wave
systems is once again plotted so as to provide a clear comparison between 5-wave and
3-wave systems. For lower f values, resonant 5-wave systems have a lesser maximum
growth rate than the maximum growth rate of 3-wave systems (σ/σref < 1). However,
the 5-wave instability is faster than the 3-wave instability for the higher f values. The
transition once again occurs near f ≈ 0.3ω1. All these observations are similar to that
in figure 3.3(a). Viscosity has a non-negligible effect only when f ≈ ω1/2, where the
daughter waves have a high vertical wavenumber.

Figures 3.5(a)–3.5(c) show how the growth rate of both the branches vary with ω3/ω1 for
three different f/ω1 values that are greater than 0.3. Figure 3.5 reveals that growth rates
always decrease as ω3 is increased, indicating the maximum growth rate is at ω3 = f . For
f/ω1 > 0.3, the common daughter wave is always an inertial wave in the most unstable 5-
wave system. For high f values, the maximum growth rate of both branches is almost the
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Figure 3.4: Comparison ofmaximum growth rates of 5-wave systems and 3-wave systems
for k1 = (k1, 0,m1) and k5 = (−k1, 0,m1). (a) |A1|/k1ν = 104, and (b) |A1|/k1ν =

107.

same. The viscous effect is more apparent for |A1|/k1ν = 104, and Branch-1 is affected by
viscous effectsmore thanBranch-2. Interestingly, asω3 is increased from f , themeridional
wavenumber of the common daughter wave increases, hence making the instability 3D.
Moreover, for the three f values analysed in figure 3.5, the zonal wavenumber of the
common daughter wave (k3) is nearly zero for all the 5-wave systems. Note that the
maximum growth rate occurs at ω3 ≈ f where (k3, l3) −→ 0. As a result, the system’s
most unstable mode can be studied/simulated by considering a 2D system.

For high f values, near-inertial waves have been observed to be the daughter waves of a
parent internal wave with semidiurnal frequency, see Yi et al. (2017); Richet et al. (2017,
2018); Chen et al. (2019). In topographic generation of internal waves, internal wave
beams intersecting each other is quite common. The locations where internal wave beams
intersect can serve as spots where a single inertial wave can extract energy from two dif-
ferent internal wave beams.

3.3.2 Oblique parent waves

In the oceans, parent waves that are not on the same vertical plane can also propagate
amidst each other. Here we study the maximum growth rate for 5-wave systems where the
parent waves have a non-zero meridional wavenumber. The parent wavevectors are given



Chapter 3. 93

Figure 3.5: Growth rate variation with ω3/ω1 for Branch-1 and 2 for (a) f/ω1 = 0.40,
(b) f/ω1 = 0.45, and (c) f/ω1 = 0.48.

by

k1 = (k1 sin (θ/2), k1 cos (θ/2),m1), k5 = (−k1 sin (θ/2), k1 cos (θ/2),m1),

(3.28)
where the parameter θ is used to vary the angle between the two parent wavevectors in
the (k, l) plane. Note that θ = π leads to the wavevector combination k1 = (k1, 0,m1)

and k5 = (−k1, 0,m1) considered in §3.3.1.2. Following (3.28), the condition |k1| = |k5|
will be automatically satisfied. The direction of the parent wavevectors can be changed by
varying θ, and how that impacts the growth rates of 5-wave systems will be explored and
analysed. Figures 3.6(a)–3.6(c) show the variation of the maximum growth rate of 3-wave
systems and 5-wave systems with f respectively for three different θ values: π/4, π/2, and
3π/4. Increasing θ results in 5-wave systems being less effective than 3-wave systems in
the lower latitudes. For θ = π/4, the 5-wave system is the dominant instability regardless
of the latitude. A similar result is observed for θ = π/2, however, the difference between
the 5-wave and 3-wave systems is clearly reduced compared to θ = π/4. For θ = 3π/4,
the 5-wave system is the dominant instability only for f/ω1 ⪆ 0.25. Note that regardless
of the θ value, 5-wave instability is expected to be faster than the 3-wave instability when
f/ω1 ⪆ 0.3 considering the results from §3.3.1.2. For θ = π and f/ω1 ⪆ 0.3, the
maximum growth rate for 5-wave systems occurs when ω3 = f . However, for θ = π/4

and π/2, in the most unstable 5-wave system, wave-3 is not an inertial wave even for
f/ω1 = 0.45. Hence, as θ is reduced, it is not necessary that the most unstable 5-wave
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Figure 3.6: Variation of maximum growth rate with f for 5-wave systems and 3-wave
systems for a oblique set of parent waves. (a) θ = π/4, (b) θ = π/2, and (c) θ = 3π/4.

system contains near-inertial waves. Note that the predictions for the 5-wave system will
fail as θ −→ 0 since both parent waves will have the same wavevector.

3.4 Numerical simulations

Here we present results from numerical simulations conducted to validate the predictions
from reduced-order analysis presented in §3.3, with the primary focus being on §3.3.1.1
and §3.3.1.2. Equations (1.7)–(1.10) along with equation (1.13) are solved with Dedalus.
For numerical validations, we only consider 2D situations, i.e. ∂/∂y = 0, implying
l = 0. The details of the simulations are as follows: we fix the parent waves’ horizontal
wavenumber at k1 = 1/H , where H = 500m. We consistently use N = 10−3s−1 and
ω1/N = 0.1. However f/ω1 is varied, and hence the vertical wavenumber of the parent
waves (m1) is a function of f/ω1. The amplitude of the parent waves is chosen such that
the maximum zonal velocity (u) is always 0.001ms−1. Computational time is variable
and depends on the simulation in question. For all simulations, 4-th order Runge-Kutta
method is used as the time-stepping scheme with a time step size of (2π/ω1)/800 (i.e.
800 steps for one time period of the parent wave). All the fields are expressed as Fourier
modes in the horizontal direction, and either 64 or 128 grid points/modes are used per one
horizontal wavelength of the parent wave. Moreover, the vertical direction is resolved us-
ing Chebyshev polynomials or Fourier modes, and the vertical resolution is varied from a
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minimum of 96 to a maximum of 512 grid points per one vertical wavelength of the parent
wave. All simulations are initialised with a small amplitude noise, the spectrum of which
is given by

Rnoise(x, z) =

∫ knoise

0

∫ mnoise

mlowest

Anoise sin(kx+mz + Phasenoise(k,m))dmdk, (3.29)

where Phasenoise(k,m) ∈ [0, 2π] is the random phase part, which is generated using the
‘rand’ function in Matlab for each (k,m). Unless otherwise specified, knoise = 48k1 and
mnoise = 48m1. Moreover, mlowest = 2π/Lenz, where Lenz is the length of the domain
in the z-direction. Equation (3.29) is added to the b or v field. The noise amplitude
Anoise is at least 10−3 times smaller than the primary waves’ corresponding amplitude.
The simulations are initialised with small amplitude noise so that the growth of daughter
waves is completed in a shorter time. As a result, to consume fewer computer resources
and run more simulations more efficiently, we initialise simulations with the small am-
plitude noise. If there is no small amplitude noise, the daughter waves will take much
longer time to completely extract the parent wave’s energy as the daughter wave’s ampli-
tude will be very low (depending on the number of decimal places the computer uses/re-
solves the numbers with) at the beginning of the simulation. Unless otherwise mentioned,
ν = 10−6m2s−1 is taken.

3.4.1 k1 = (k1, 0,m1) and k5 = (k1, 0,−m1)

We first focus on the parent wavevector combinationk1 = (k1, 0,m1) andk5 = (k1, 0,−m1).
As mentioned previously, the combination of wavevectors k1 = (k1, 0,m1) and k5 =

(k1, 0,−m1) leads to fields that are very similar to an internal wave mode in a vertically
bounded domain. As a result, we also simulate low modes (modes-1 and 2) in a vertically
bounded domain to observe whether there is an emergence of the ‘5-wave instability’. The
decay of the parent waves are simulated at specific latitudes where the daughter waves’
vertical wavenumbers in the resonant 5-wave system are multiples ofm1/3 orm1/2. The
reason for this selection is as follows. For example, when the vertical wavenumbers are
chosen to be multiples ofm1/2 so that the domain height can be chosen as twice the verti-
cal wavelength of the parent wave. Any vertical wavenumber that is a multiple ofm1/2 is
a possible solution of the dispersion relation where the domain height H = 4π/m1. This
reduces the computational resources required for the simulations because of the shorter
computational domain. Note that if the vertical wavenumbers are chosen such that they
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are multiples of m1/3, then the domain height has to be at least H = 6π/m1. Hence,
the number of grid points per 2π/m1 decreases in the simulations. This choice helps in
reducing the computational resources required for the simulations. To estimate the en-
ergy (per unit length in the y− direction) in different wavevectors, we simply use the
Fast Fourier Transform (FFT) for both x and z directions in simulations where the parent
waves are plane waves. In a vertically bounded domain, FFT is used only in the x di-
rection, while for the z−direction, the orthogonal nature of the modes is exploited. As a
measure of the energy (per unit length in the y− direction) contained in a wavevector, a
non-dimensionalised energy Ê is introduced:

Ê(k, 0,m, t) =
|ûFR(k, 0,m, t)|2 + |ŵFR(k, 0,m, t)|2 + |v̂FR(k, 0,m, t)|2 + |b̂FR(k, 0,m, t)|2/N2

Eref
(3.30)

where the hat variables (ûFR, ŵFR, v̂FR, b̂FR) respectively denote the Fourier amplitudes of
(u,w, v, b). Eref serves as the measure of parent waves’ energy per unit length in the y−
direction at t = 0 and is defined as

Eref =
(
|ûFR(k1, 0,m1)|2 + |ŵFR(k1, 0,m1)|2 + |v̂FR(k1, 0,m1)|2 + |b̂FR(k1, 0,m1)|2/N2

) ∣∣∣∣
t=0

(3.31)
We simulate a total of 6 cases: 2 cases for parent waves in an unbounded domain (plane
waves), and 2 cases each for mode-1 and mode-2 waves in a vertically bounded domain.
For mode-1, mnoise = 96m1 is chosen. For every simulation, a different f value is used,
and hence the resonant 5-wave system is different in each case. Figure 3.7 shows the expo-
nential growth of daughter waves at 6 different latitudes due to 5-wave interactions. Fig-
ures 3.7(a)–3.7(e) plot four different wavevectors. The wavevector (|k1|, 0, |m1|) contains
the energy of both parent waves, while the other three wavevectors indicate the daughter
waves. All three daughter waves grow exponentially, which provides clear evidence that
this is a 5-wave system. In 3.7(f), two different 5-wave systems emerge and both of them
are plotted. In triad interactions, the transfer of energy is cyclical in nature: the daughter
waves extract the energy from the parent and after some time, they can give back that en-
ergy. However, if the daughter waves have very small length scales, they can act as parent
waves and give their energy to daughter waves of their own. In this process, the energy
will cascade to small length scales and eventually causes turbulence and mixing. This
is what happens in figure 3.7(f). As the f value increases, the daughter waves’ vertical
wavenumber also increases in the simulations (see the legend) which is in line with the
theoretical predictions given in figure 3.3(c). In all six simulations, near-inertial waves
are present (k = 0). The growth rate of the daughter waves is calculated by estimating
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d ln (Ê)/dt. The comparison of growth rates from simulations and theory is presented in
figure 3.8, which shows a reasonably good agreement. For all the cases, the average of
the three daughter waves’ growth rate in a particular 5-wave system is taken. Moreover,
figure 3.8 reveals that the growth rates are well above the maximum growth rate of all
3-wave systems. Note that the 5-wave interactions can happen for standing modes only
at specific latitudes because the vertical wavenumbers are discrete, not continuous. How-
ever, for plane waves, there is no such constraint. As per the predictions in §3.3, 5-wave
interactions should be faster than the 3-wave interactions provided f/ω1 ⪆ 0.3. Consid-
ering the results (for modes) we have seen in this chapter, the triad interaction equations
given in chapter 2 may under-predict the growth rates of daughter waves at very specific
latitudes since only 3 waves are considered. Resonant 5-wave interactions require near-
inertial waves to be a part of the interaction which inherently means it also requires a wave
with frequency ω1 − f . As a result, for modes, at latitudes where k1 is an eigenvalue of
frequency ω1 − f , resonant 5-wave interactions are possible. In chapter 2, we saw how
the stratification profile can play a major role in deciding the wavenumber spectrum for
a given frequency. Hence, the latitudes where the 5-wave interaction can occur will also
depend on the stratification profile.

It was observed that as f/ω1 −→ 0.5, multiple daughter wave combinations grow as a
result of the subharmonic instability and extract a considerable amount of energy from the
parent waves. This can even be seen in figure 3.7(f), where two different 5-wave systems
emerge and extract a significant amount of energy. As f/ω1 −→ 0.5, multiple 5-wave
systems can become coupled and grow at a rate which is faster than any single 5-wave
system (discussed in detail in §3.4.2). Hence, the growth rates predicted from a single 5-
wave interaction will not be accurate when f ≈ ω1/2. The growth rate for a mode-1 wave
as f −→ ω1/2 will approach 2σcl instead of

√
2σcl, where σcl is the maximum growth rate

for a plane wave with zonal velocity amplitude 0.001ms−1 at the critical latitude (Young
et al., 2008). We realise that in Young et al. (2008), the mode-1 wave was considered in
the presence of a non-constantN . However, their prediction is still expected to hold in the
present scenario (constant N ). Our numerical simulations (results not shown here) also
show the growth rates of the daughter waves being well above

√
2σcl for f ≈ ω1/2. Note

that considering just three waves near the critical latitude may be an oversimplification,
hence care should be taken while using wave amplitude equations given in chapter 2 for
f ≈ ω1/2.
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Figure 3.7: 5-wave interactions for plane waves, mode-1, and mode-2 different f values
(i.e. latitudes), plotted in ascending order. t̂ ≡ tω1/2π.

Figure 3.8: Comparison between theoretical growth rates and growth rates obtained from
the simulations for k1 = (k1, 0,m1) and k5 = (k1, 0,−m1). Red (blue) markers indicate
results from the simulations (theory), see legend. The black curve plots the variation of

maximum growth rate of 3-wave systems with f .

3.4.2 k1 = (k1, 0,m1) and k5 = (−k1, 0,m1)

We now validate 5-wave interactions for parent waves propagating in horizontally oppo-
site directions. In this regard, we focus on latitudes where the daughter waves’ vertical
wavenumbers are multiples of m1/2. Figure 3.9 shows the growth of daughter waves
for four different f/ω1 values. Figures 3.9(a)–3.9(b) show energy in three wavevectors
growing exponentially. The three wavevectors encompass both branch-1 and branch-2
daughter waves’ wavevectors, and the simulation results are in line with theoretical pre-
dictions. The green curve (the wave with non-zero horizontal wavenumber) contains the
energy of both leftward and rightward propagating waves. The growth rates estimated
from the simulations are much higher than what is expected for a 3-wave interaction. For
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Figure 3.9: Four different 5-wave interactions for parent waves with wavevectors k1 =
(k1, 0,m1) and k5 = (−k1, 0,m1).

Figure 3.10: Comparison between theoretical growth rates and growth rates obtained from
the simulations for k1 = (k1, 0,m1) and k5 = (−k1, 0,m1). Red markers indicate
results from the simulations. Blue and green markers are predictions from the reduced
order model. The black curve plots the variation of maximum growth rate of all 3-wave

systems with f .

example, at f = 0.298ω1, the growth rate of the daughter waves is ≈ 30% more than the
growth rate of the individual 3-wave interactions that combine to form the 5-wave interac-
tion. Figure 3.9(c) shows only two daughter waves, which are part of the Branch-2 5-wave
system. In this case, Branch-1 did not have a growth comparable to Branch-2. Finally,
3.9(d) has three distinct 5-wave systems

• System-1 (daughter waves): (k1, 0, 4m1), (−k1, 0, 4m1), (0, 0,−3m1),

• System-2 (daughter waves): (k1, 0, 4.5m1), (−k1, 0, 4.5m1), (0, 0,−3.5m1),

• System-3 (daughter waves): (k1, 0,−4.5m1), (−k1, 0,−4.5m1), (0, 0, 5.5m1).
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System-1 is also present for f/ω1 = 0.476. This 5-wave system is present in both f/ω1 =

0.476 and 0.48 because the change in f is not that significant and hence the specific interac-
tion is not expected to be detuned significantly. As a result, the system has an exponential
growth. Even though the growth rates of System-2 and System-3 are observed to be higher
than the growth rate of System-1, System-1 drains the largest amount of energy from the
parent waves because the daughter waves in this system have a slightly higher energy at
t = 0. Growth rates obtained from the reduced order models are once again compared with
the growth rates obtained from the numerical simulations, see figure 3.10. When there are
multiple branches growing, the average growth rate of the (two) branches is taken since
both branches have nearly the same growth rate. For f/ω1 = 0.48 in figure 3.9(d), the
average of system-2 and system-3’s growth rates is compared with the theoretical growth
rate since these are the two resonant Branch-1 and Branch-2 systems at f/ω1 = 0.48. It
can be seen that theoretical predictions match reasonably well with the simulations. More-
over, similar to §3.4.1, the growth rates of 5-wave systems are well above the maximum
growth of 3-wave systems (shown by the black curve in figure 3.10) for f/ω1 > 0.4.

3.4.3 Simulations and analysis for f ≈ ω1/2

In §3.4.1, we saw that the theoretical growth rates of 5-wave systems are not accurate for
f ≈ ω1/2. To test whether the 5-wave systems’ growth rate holds near the critical lati-
tude for k1 = (k1, 0,m1) and k5 = (−k1, 0,m1), we ran simulations for three different
f/ω1 values: f/ω1 = 0.496, 0.498 and 0.499. Moreover, for each f , we ran three sim-
ulations: one with ν = 10−6m2s−1, one with ν = 0.25 × 10−6m2s−1, and finally one
simulation with hyperviscous terms instead of viscous terms (i.e. by setting ν = 0). The
hyperviscous operator −νH∆4() is added to right hand side of (1.8)–(1.10) and (1.13)
with νH = 0.25 × 10−6m8s−1. Hyperviscous terms are intended to make the simulation
nearly inviscid, and they have been used previously to study PSI (Hazewinkel & Winters,
2011). All simulations are run for 150 time periods of the parent wave. The simulations
are stopped before the small-scale daughter waves attain energy comparable to the parent
waves. The small-scale waves will break in such cases, and the ensuing turbulence is not
resolved and is also not the focus of this study. We are only interested in the growth rate
of the daughter waves.

Figure 3.11 shows the non-dimensionalised growth rates (σ/σcl) of the daughter waves
for all nine cases. In figure 3.11, each row is for a different f value. Moreover, for each
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column, ν or νH is held constant. For the hyperviscous simulations and simulations with
the lower viscosity, it can be seen that the non-dimensionalised growth rates are well above
√
2 for all three f -values (second and third column of figure 3.11). Daughter waves with

m = 20− 40m1 have σ/σcl ≈ 1.85 in the simulations with hyperviscous terms. For each
f , simulations with ν = 10−6m2s−1 have considerably lower growth rates (especially for
higher wavenumbers) compared to the other simulations because of the viscous effects.

We provide the reason for σ/σcl being well above
√
2 using the reduced order model. The

dispersion relation for the daughter waves can be rewritten as

(f + δω)2 =
N2(nk1)

2 + f 2m2

(nk1)2 +m2
, (3.32)

where δω is the difference between the wave’s frequency (f + δω) and the inertial fre-
quency (f ), and n is some constant (but for our purposes, will primarily be an integer).
Note that k1 is the zonal wavenumber of the parent waves, but m is not the vertical
wavenumber of parent waves. Near the critical latitude, in a wave-wave interaction, any
daughter wave’s frequency would be approximately equal to the inertial frequency, im-
plying δω≪f . Hence (3.32) leads to

δω

f
≈ (N2 − f 2)(nk1)

2

2f 2[(nk1)2 +m2]
≪ 1. (3.33)

In scenarios where N2 ≫ f 2, this yields

m2 ≫ N2(nk1)
2

2f 2
. (3.34)

Near the critical latitude, 2f ≈ ω1. As a result, the sum of two daughter waves’ frequencies
would be≈ω1 provided their wavenumbers satisfy (3.34). As a consequence of this special
scenario, a chain of coupled triads is possible as shown in figure 3.12. Every box contains
the wavevector of a daughter wave. The absolute value of the horizontal wavenumber
is lowest at the center of the chain, and it increases in either direction. However, the
vertical wavenumber takes only two values. Note that n would be an integer considering
how the absolute value of the horizontal wavenumber increases in either direction of the
central box (0, 0,m). Any two boxes that are connected by the same blue line add up
to give a parent wave’s wavevector. For example, (2k1, 0,m) + (−k1, 0,m1 −m) gives
(k1, 0,m1), which is the wavevector of one of the parent waves. Moreover, (−k1, 0,m1−
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Figure 3.11: Growth rate contours (σ/σcl) for the parent waves with wavevectors k1 =
(k1, 0,m1) and k5 = (−k1, 0,m1) near the critical latitude (f/ω1 ≈ 0.5). f/ω1 = 0.496
for Row-1 ((a), (b) and (c)), f/ω1 = 0.498 for Row-2 ((d), (e) and (f)), and f/ω1 =
0.499 for Row-3 ((g), (h) and (i)). Viscosity/hyperviscosity values used are as follows:
ν = 10−6m2s−1 for Column-1 ((a), (d) and (g)), ν = 0.25 × 10−6m2s−1 for Column-2

((b), (e) and (h)), and νH = 0.25× 10−6m8s−1 for Column-3 ((c), (f) and (i)).

m) + (0, 0,m) gives (−k1, 0,m1), which is the other parent wave’s wavevector. Except
for the daughter waves at the ends of the chain, every daughter wave would be forced
by both parent waves. Assuming the wavenumbers of the daughter waves in the chain
satisfy (3.34), the sum of any two waves’ frequencies would be ≈ ω1, thus satisfying all
the required triad conditions. For a fixed m, δω would increase as n is increased, which
is evident from (3.32). Hence for very large n, the daughter wave’s frequency (f + δω)
cannot be approximated by f and the sum of two daughter waves’ frequencies cannot be
approximated by ω1 simply because δω would be large. As a result, the triad conditions
would not be satisfied for very large n. Assuming δω is negligible up to some n, the wave
amplitude equations for the 2n+1 daughter waves shown in figure 3.12 can be written in
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a compact way as follows:

da
dt

= Qā (3.35)

a = [a−n a1−n . . . an−1 an]
T (3.36)

Q =



−V−n E(−n,1−n)A5 0 0 0

E(1−n,−n)A5 −V1−n S(1−n,2−n)A1 0 0
... . . . . . . . . . ...
0 0 E(n−1,n−2)A5 −Vn−1 S(n−1,n)A1

0 0 0 S(n,n−1)A1 −Vn


(3.37)

where the coefficients E(i,j) and S(i,j) are given by

E(i,j) =
E(i,5,j)

D(3)
i

, S(i,j) =
E(i,1,j)

D(3)
i

. (3.38)

The expression for E(i,∗,j) is given in section 3.2. Equation (3.35) is an extension of the
system given in (3.21) to an arbitrary number of daughter waves. Note that using n = 1 in
(3.35) would result in equation (3.21). The growth rate for the system given in (3.35) can
be found by calculating the eigenvalues ofQ. In addition to the k1 = (k1, 0,m1) and k5 =
(−k1, 0,m1) case, we also analyze the theoretical growth rates for oblique parent waves
near the critical latitude using (3.35). To this end, we consider four θ values: θ = π/4,
π/2, 3π/4, and π (see (3.28) for the definition of θ). For θ ̸= π, the parent waves have a
non-zeromeridional wavenumber (l1). In such cases, themeridional wavenumber of all the
daughter waves in the chain is simply assumed to be l1/2. For all four θ values, figure 3.13
shows the gradual increase of the growth rate as n increases for two different m values.
The vertical wavenumbers are chosen to be a large value so that they satisfy (3.34) up to
n = 7. For all the θ values, σ/σcl ≈ 2 for the higher n values, which is what we observed
in the simulation results shown in figure 3.11. Moreover, for n = 1, σ/σcl ≈

√
2 which

is what we would expect for a 5-wave system with three daughter waves. Interestingly,
for an oblique set of parent waves, the results are similar to the 2D case. Hence, 5-wave
system growth rates do not apply near the critical latitude for an oblique set of parent waves
as well. Note that even though high values of m are used in the reduced order model,
simulations show that the resonance can occur even at m = 20 − 40m1. Note that by
resonance, here we mean the exponential growth of the daughter waves. The exponential
growth is what we observed for resonant 5-wave systems earlier as well. As a result, near
the critical latitude, regardless of the θ value, two parent waves force daughter waves as
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Figure 3.12: A simplified schematic showing how different daughter waves are coupled.
Any two wavevectors (boxes) connected by the same blue line can act as a daughter wave

combination for the wavevector k1 = (k1, 0,m1) or k5 = (−k1, 0,m1).

Figure 3.13: Variation of maximum growth rate with n for triad chains near the critical
latitude. (a) θ = π/4, (b) θ = π/2, (c) θ = 3π/4, and (d) θ = π. Two differentm values

are shown for each θ.

if they are a single wave with approximately twice the amplitude.

3.5 Conclusions

Wave-wave interactions play a major role in the energy cascade of internal gravity waves.
In this paper, we use multiple scale analysis to study wave-wave interactions of two plane
parent waves co-existing in a region. The main instability mechanism that is focused on
is the 5-wave system instability that involves two parent waves and three daughter waves.
The 5-wave system is composed of two different triads (3-wave systems) with one daugh-
ter wave being a part of both triads (see figure 3.2(c)). For parent waves with wavevectors
(k1, 0,m1) and (k1, 0,−m1), the 5-wave system is only possible when the common daugh-
ter wave’s frequency is almost equal to ω1 − f (where ω1 is the parent wave’s frequency).
The other two daughter waves are near-inertial waves that always propagate in vertically
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opposite directions. The growth rate of the above-mentioned 5-wave system is higher
than the maximum growth rate of 3-wave systems for f/ω1 ⪆ 0.3. For parent waves with
wavevectors (k1, 0,m1) and (−k1, 0,m1) (parent waves that propagate in horizontally op-
posite directions), similar to the previous parent wave combination, the maximum growth
rate of 5-wave systems is higher than the maximum growth rate of 3-wave systems for
f/ω1 ⪆ 0.3. For f/ω1 ⪆ 0.3, the common daughter wave’s frequency is nearly equal to
f in the most unstable 5-wave system. Moreover, as the common daughter wave’s fre-
quency is increased from f , the meridional wavenumber increases significantly while the
zonal wavenumber of the common daughter wave stays negligible.

We also study 5-wave systems for cases where the two parent waves are not confined to
the same vertical plane. In such scenarios, the dominance of the 5-wave systems increase
as the angle between the horizontal wavevectors of the parent waves (denoted by θ) is
decreased. Moreover, for any θ, the 5-wave system’s instability is more dominant than
the 3-wave system’s instability for f ⪆ 0.3ω1. Numerical simulations are conducted
to test the theoretical predictions, and the theoretical growth rate of the 5-wave systems
matches reasonably well with the results of the numerical simulations for a wide range of
f−values. However, for all the 2D parent wave combinations considered, the growth rates
from the simulations do not match the theoretical 5-wave systems’ growth rate near the
critical latitude where f ≈ ω1/2. Near the critical latitude, more than two triads become
coupled, hence a chain of daughter waves is forced by the two parent waves. Bymodifying
the reduced order model to account for a chain of daughter waves, the maximum growth
rate is shown to be twice the maximum growth rate of all 3-wave systems. Moreover,
the reduced order model showed similar results for parent waves that are not on the same
vertical plane. Hence, near the critical latitude, the 5-wave systems’ prediction is not
expected to hold for oblique parent waves as well.

Note that the study was conducted only for plane waves. The study can be extended to
wave beams in future, and the results would be applicable in cases where multiple inter-
nal wave beams meet (often occurs near topographies). A finite width beam of a given
frequency contains a spectrum of internal waves with different wavevectors. Interaction
of involving beams means an interaction between two different spectrum of waves, and
this is much more complicated scenario than the one we have considered in the thesis.
For simplicity, we chose to begin with plane waves. For two parent plane waves, there
are only two wavevectors and as a result the problem can be explored in depth for a wide
parameter space. Note that the results should be applicable for wide internal wave beams
since wide beams essentially behave like plane waves.
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Topographic scattering of internal
waves in the presence of a steady
surface current

4.1 Introduction

In chapter 2, we saw that topography influences mode-1 internal wave in multiple ways. It
can alter the properties of the internal waves without directly inducing an energy cascade.
As a result of the change in properties, wave-wave interactions aremodified in the presence
of topography. Moreover, we also saw how topography can behave as a zero-frequency
wave and facilitate some higher-order interactions which otherwise would not be possible.
Hence, even for modelling wave-wave interactions properly, topographies are important.
In this chapter, wave-topography interactions are considered where the topography plays
a more direct role in causing the energy cascade.

Internal wave-topography interactions is one of the primary mechanisms through which
the low-mode internal wave energy cascades to small length scales (de Lavergne et al.,
2019, 2020). Figure 4.1 shows what basically happens in an internal wave (mode-1)-
topography interaction. An internal wave (mode-1) encounters a topography and three
main things occur: (1) Some amount of energy is transmitted past the topography in the
form of mode-1, (2) some amount of energy is reflected by the topography in the form of
mode-1, and (3) some amount of energy is ‘scattered’ into higher modes. Note that the
higher modes can be transmitted, reflected, or both. The ‘scattering’ process, where the

106
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Figure 4.1: Basics of an internal wave-topography interaction. An incomingmode-1wave
impacts the topography resulting in energy getting transmitted, reflected and scattered.

energy in a mode-1 wave is transferred to modes higher than 1, is why wave-topography
interactions are primarily studied. The word scattering is used to denote the generation of
waves with higher wavenumbers at the cost of the incoming mode-1. The energy transfer
among the modes can occur only in the regions where dh/dx ̸= 0. Note that interaction of
surface barotropic tide with the topography generates also multiple internal waves/modes.
The scattering process can be similar: a barotropic surface tide can be thought of a mode-0
wave generating modes > 0, where as an internal wave mode-1 interacting with a topog-
raphy generates modes >= 1 by scattering. Interestingly, the interaction of a stratified
tide and the topography can also create small scale bottom intensified residual currents
that has lower frequency compared to the tidal frequency (Maas & Zimmerman, 1989).

Internal wave-topography interactions have been extensively studied over the last few
decades. A low mode internal wave can interact with isolated large amplitude topogra-
phies (Müller & Liu, 2000; Johnston &Merrifield, 2003; Klymak et al., 2013; Legg, 2014;
Mathur et al., 2014), as well as continental shelf like structures (Hall et al., 2013; Legg
& Adcroft, 2003; Klymak et al., 2011; Nazarian & Legg, 2017a,b). A low mode internal
wave can also resonantly interact with small amplitude, sinusoidal topographies (Buhler
& Holmes-Cerfon, 2011; Li & Mei, 2014; Couston et al., 2017). Assuming the incoming
mode-1 wave’s amplitude is low, interactions involving small amplitude and large am-
plitude topography have been studied extensively using analytical techniques such as ray
tracing, asymptotic methods, and Green’s functions. Shape, criticality, and height of the
topography are the important factors in internal wave scattering (Müller & Liu, 2000).
Criticality (Υ) is the ratio of the maximum slope of the topography to the slope of the
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Figure 4.2: Subplots (a), (b), (c) show subcritical, critical, and supercritical topographies,
respectively. The red parallel lines represent an internal wave beam with a slope tanΘ,
while the black triangle at the base is assumed to be a model topography with a slope

tan θ.

internal wave:
Υ ≡ max

(
1

tanΘ
dh

dx

)
(4.1)

where h(x) is the topography function, and tan2 Θ ≡ ω2/(N2 − ω2) is the slope of inter-
nal wave when f = 0. Here ω is the frequency of the incoming wave, and N is the local
Brunt-Vaisala frequency as always. Topographies withΥ > 1 are referred to as supercriti-
cal topographies, whileΥ < 1 are known as subcritical topographies. A simple schematic
of this classification is given in figure 4.2. Transmission of the incoming internal wave
energy is much higher for subcritical topographies than supercritical topographies (Müller
& Liu, 2000; Johnston &Merrifield, 2003; Mathur et al., 2014). Large amplitude topogra-
phies withΥ > 1 have more reflection than transmission. However, even small amplitude
supercritical topographies can have high transmission and can scatter nearly 20− 40% of
the incoming mode-1 wave’s energy (Mathur et al., 2014). In general, scattering is lesser
for subcritical topographies compared to supercritical topographies when the incoming
mode-1 wave has a very low amplitude (linear limit). For Υ < 1, small amplitude to-
pographies may cause more scattering than large amplitude topographies. Large ampli-
tude, critical topographies cause the highest scattering (Mathur et al., 2014). A mode-1
internal wave interacting with a critical topography can result in a significant generation
of waves with high wavenumbers.

Interaction with small amplitude, sinusoidal topographies can also result in a significant
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cascade of mode-1 internal wave’s energy. If the topography has ‘resonant’ wavenum-
bers, then there can be a continuous cascade of energy from the incoming low mode to
higher modes. For a 2D setting (x − z), Buhler & Holmes-Cerfon (2011) showed that
the decay of mode-1’s flux is exponential in nature due to scattering by the sinusoidal to-
pography. The decay rate increased with the topography’s amplitude and was found to
be independent of (ω, f,N). Note that the patch of topography has to be long enough to
cause a non-negligible energy cascade. Scattering by a small amplitude, subcritical, ran-
dom topography (the topography was assumed to be a stationary Gaussian process) was
also studied, and the decay of the mode-1 internal wave flux was observed to be expo-
nential in nature again. Using multiple scale analysis, Li & Mei (2014) studied scattering
due to small amplitude random topographies that vary in both zonal and meridional direc-
tions (2D topography). In the absence of rotation, an isotropic random 2D topography was
found to be less proficient in scattering the mode-1 compared to a 1D topography. The
decay rate of mode-1 increased with f/ω for an isotropic 2D topography. Couston et al.
(2017) studied mode-1 internal wave scattering due to small amplitude resonant subcriti-
cal topographies and focused on the effects of detuning and oblique incidence. Oblique
incidence leads to detuning and the explanation is as follows. For a chain resonance, the
topography’s wavenumber kb should be equal to k1 (incoming wave’s wavenumber). With
this specific choice of kb, a chain resonance can occur, where the energy goes from k1 to
2k1 and then to 3k1 and so on. The chain resonance can only occur with waves whose
wavenumber is a integer multiple of the parent wave’s horizontal wavenumber. This is
because the 2k1, 3k1 (up to nk1) all satisfy the dispersion relation. For an oblique inci-
dence of the internal wave, the wave also has a meridional component (l1). Because of
the meridional wavenumber (l1), the energy cannot go from (k1, l1) to (2k1, l1) and then
to (3k1, l1) because (3k1, l1) simply does not satisfy the internal wave dispersion relation.
As a result, the resonance is cut off. As the detuning was increased, the scattering of
the mode-1 wave was significantly reduced. Oblique incidence of the mode-1 wave can
introduce a detuning that significantly reduces the continuous energy cascade to higher
modes. Detuning can also affect the Bragg-resonance interactions. For Bragg-resonance,
the wavenumber of the topography should be an integer multiple of the incoming mode-1
wave for the continuous cascade of the internal waves’ energy in the presence of uniform
stratification. If the ‘integer-multiple’ condition is not satisfied, then the detuning will
affect the energy transfer.

Nonlinearity cannot be ignored if the incoming wave has a large amplitude. Legg (2014)
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showed that even for small amplitude Υ < 1 topographies, rate of kinetic energy dissi-
pation can be non-negligible when the incoming wave’s Froude number is large. One of
the mechanisms by which wave breaking can occur is when the wave’s Froude number
increases significantly due to shoaling and reaches a critical value. Results show that if a
wave’s Froude number is in the range (0.3−1), then the internal mode-1 wave will break.
Even topographies with low Υ can lead to significant dissipation provided it has a large
amplitude, and the incoming wave’s Froude number is large enough. Under linear limit,
scattering is quite low (< 10%) for the same topographies (Mathur et al., 2014), hence am-
plitude of the waves can play a major role in scattering. For critical topographies, it was
observed that dissipation increases linearly with height of the topography, and it is nearly
independent of the incoming wave’s Froude number (Legg, 2014). ForΥ = 1, dissipation
was not negligible even for small amplitude topographies. Legg & Adcroft (2003) studied
the interaction of finite amplitude internal wave with different shapes (convex, concave
and linear) of topographies, and observed mixing regardless of the shape of the topogra-
phy. This is because the interaction caused the generation of very small length scale waves
in locations where the topography slope was almost equal to the internal wave slope. Non-
linear features such as internal bores were observed for different shapes of topography.

Waves getting reflected from a topography increase asΥ increases even for high amplitude
incoming mode-1 waves (Hall et al., 2013; Klymak et al., 2013). A significant portion of
the reflected energy is in the form of lower modes for tall supercritical topographies,. For
supercritical topographies with very high criticality (also known as knife-edge topogra-
phies), very tall ridges dissipate less energy locally than relatively shorter ridges if the
incoming wave is mode-1 (Klymak et al., 2013). For a supercritical topography, the per-
centage of incomingmode-1’s energy dissipated increases monotonically with the incident
wave’s amplitude regardless of the topography’s height. Interestingly, it was concluded
that knife-edge topographies with high criticality were not that efficient in scattering/dis-
sipating the incoming internal waves (Klymak et al., 2013). A similar result was also
observed in Hall et al. (2013) for different non-uniform stratification profiles.

Understanding internal wave scattering and dissipation occurring in the presence of non-
uniform stratification is also vital. Internal waves’ dissipation in the presence of non-
uniform stratification can be qualitatively similar to the constantN case whenWKB scaled
vertical coordinate is used to rescale the topography’s height (Hall et al., 2013; Legg,
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2014). The WKB scaled vertical coordinate (Hall et al., 2013) is given by:

zWKB =

∫ 0

z

N(z′)

Nmean
dz′ (4.2)

where Nmean is the average/mean value of N(z). As long as the assumptions underlying
WKB still hold, scattering in (x − zWKB) in the presence of constant Nmean is similar to
scattering in (x − z) in the presence of varying N(z). The above theory can even hold
for wave-breaking scenarios as shown by the results in (Legg, 2014). Strong stratification
near the surface enhances transmission of the internal wave energy (Hall et al., 2013;
Mathur et al., 2014). Interestingly, for a large amplitude continental shaped topography, it
was observed that the amount of energy reflected depended only on Υ even for different
non-uniform stratification profiles (Hall et al., 2013).

Until now, studies have primarily focused on internal wave scattering in a quiescent fluid
whichmay have constant or varying stratification. In this chapter, the scattering of a mode-
1 wave in the presence of a steady surface current is studied. The current is assumed to
vary only in the vertical direction, and is not susceptible to shear instabilities. Surface
currents are ubiquitous in nature (for example, the north equatorial countercurrent), and
internal waves may propagate in the presence of a surface current. Internal wave gen-
eration due to tide-topography interaction in the presence of a surface current has been
recently studied (Lamb & Dunphy, 2018) as well. Hence, understanding internal wave
topography interactions when the mode-1 wave propagates in the presence of a surface
current may help in developing better parametrisations, especially near the equator where
strong currents such as Equatorial counter current exist.

The remaining sections are organised as follows. Section 4.2 outlines the derivation of the
governing equations, which will be solved numerically. In section 4.3, we focus on the
simulations run, results, and analysis. Section 4.4 provides a summary of the chapter. The
numerical methods and validation processes are given in detail in Appendix B.

4.2 Governing equations

The incompressible, 2D (in x − z plane) Navier-Stokes equations under the Boussinesq
approximation, the continuity equation, along with the advection-diffusion equation for
density are the governing equations considered in this study. Rotational effects are not
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considered for this study. Moreover, we assume the horizontal velocity utotal of the fluid
to be the sum of a steady surface current ubase(z) varying in the vertical direction, and a
perturbation quantity u(x, z, t):

utotal = ubase(z) + u(x, z, t). (4.3)

Considering (4.3), the complete set of governing equations are as follows:

Du

Dt
+ w

dubase
dz

= −u∂u
∂x

− w
∂u

∂z
− 1

ρ0

∂p

∂x
+ ν∆2Du− SP(x)u+ Fu +H(u), (4.4)

Dw

Dt
− b = −u∂w

∂x
− w

∂w

∂z
− 1

ρ0

∂p

∂z
+ ν∆2Dw − SP(x)w + Fw +H(w), (4.5)

Db

Dt
+N2w = −u ∂b

∂x
− w

∂b

∂z
+ κ∆2Db− SP(x)b+ Fb +H(b), (4.6)

∂u

∂x
+
∂w

∂z
= 0, (4.7)

where D/Dt ≡ ∂/∂t+ ubase∂/∂x is the linearised material derivative, ∆2D ≡ ∂2/∂x2 +

∂2/∂z2, ρ0 is the reference density, ν and κ are respectively the kinematic viscosity and
diffusivity of the stratifying agent. Throughout this study, we consider a constant strat-
ification of N = 10−3s−1. The terms SP(x)(u,w, b) are the Rayleigh sponge terms, the
functional form of SP(x) being

SP(x) = ϑS

[
1 + tanh

(
−x+ xs1
Ws

)]
+ ϑS

[
1 + tanh

(
x− xs2
Ws

)]
. (4.8)

The values of xs1, xs2,Ws, and ϑS are varied according to the requirements of the simu-
lation in question. The Rayleigh sponge terms are used to dampen the internal waves that
propagate away from the topography. Without the damping, the waves would eventually
reach the horizontal limits of the computational domain and then come back into the topog-
raphy. While ϑS decides the strength of the sponge layer, xs1, xs2, andWs are chosen such
that SP(x) is zero around the region of interest (here, the region where wave-topography
interaction takes place), and non-zero near the horizontal limits of the computational do-
main, so as to absorb the waves scattered by the topography. The sponge terms, however,
do not affect or dampen the base flow ubase(z). Furthermore, Fu,Fw, and Fb are the wave
generator functions, respectively given in (4.14)–(4.16), which send a constant amplitude
mode-1 internal gravity wave towards the topography. Hu,Hw, and Hb are the hypervis-
cous terms used for numerical stability, details about which are given in Appendix B.
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We use impenetrability condition at the bottom surface, while rigid lid approximation is
used at the top surface. Mathematically, these respectively result in

w = (ubase(z) + u)dh/dx at z = h(x), (4.9)

w = 0, at z = 0 (4.10)

where h(x) is the bottom topography profile. Moreover, we also assume free slip boundary
conditions at both the bottom and top surfaces. The surface current profile is chosen such
that dubase/dz ≈ 0 at z = 0 and z = h(x); in addition, ubase ≈ 0 at z = h(x). We use
ν = κ consistently for simplicity. Note that we have not included the term νd2ubase/dz

2

in the equation (4.4), the reason for this approximation is provided in Appendix B. The
governing equations (4.4)–(4.7) are solved numerically using Dedalus. Details about the
simulations such as time-stepping scheme, grid size used along with validation of the code
are provided in Appendix B. A simplified schematic of the simulation setup is given in
figure 4.3. The topography is always taken to be an idealised Gaussian function, given by

h(x) = H

[
− 1 +

hT
H

exp
{
− (x− xT )

2

W 2
T

}]
, (4.11)

where H (= 5000m throughout the chapter) is the mean depth of the ocean, hT/H is
the non-dimensionalised topography height, and xT decides the horizontal location of the
topography. Furthermore, hT/H andWT together decides the criticality(Υ) of the topog-
raphy. Internal waves or modes’ properties in the presence of a shear flow and a constant
buoyancy frequency can be obtained by solving the Taylor-Goldstein equation (Drazin &
Reid, 2004). Solutions from the Taylor Goldstein equation are used in the forcing func-
tions Fu,Fw, and Fb. Moreover, the solutions are also needed/used to understand the
modal composition of the wave field that ensues from the scattering of a mode-1 wave.

4.2.1 Taylor-Goldstein equation

The waves’ modal shape in the z−direction, and the corresponding horizontal wavenum-
bers, can be obtained by solving the Taylor-Goldstein equation, given by:

d2Φ

dz2
+ k2

(
N2

(ubasek − ωd)2
− 1

k(ubasek − ωd)

d2ubase
dz2

− 1

)
Φ = 0, (4.12)
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Figure 4.3: Schematic of the numerical setup. A mode-1 internal wave is generated by
the forcing functions (Fu,Fw,Fb), and the wave propagates toward the topography in
the presence of a steady surface current. (b) u-velocity plot for a model simulation.

where Φ(z) is the streamfunction eigenfunction in the z−direction. k is the horizontal
wavenumber. The boundary conditions used are Φ = 0 at z = 0 and z = −H . In
this study, we only assume surface current profiles yielding stable configurations, that is
Ri ≡ N2/(dubase/dz)

2 > 1/4 for all z values. The frequency of the mode-1 wave is
chosen to be the semi-diurnal frequency ωd = 1.4× 10−4s−1. The surface current profile
is given by:

ubase(z) =
Uc

4

[
1 + tanh

(
z − zcrt
Wcrt

)]2
, (4.13)

where the maximum surface current strength Uc > 0 is measured in terms of the velocity
scale NH . We fixWcrt = −0.06H , and zcrt = −0.25H for all the simulations, and only
vary Uc. Similar surface current profile has been used in Lamb & Dunphy (2018). In
the presence of a surface current profile, the wavenumbers k are not symmetric around
0, implying that if kn is a solution, then −kn may not be a solution in general (Lamb &
Dunphy, 2018). From here on, we follow the notation that the least positive wavenumber
is denoted by k1 and the subsequent positive eigenvalues are denoted by k2, k3, etc. In a
similar way, k−n denotes the negative wavenumbers where k−1 denotes the least absolute
value of the negative wavenumbers. This study only focuses on the scattering of mode-
1 internal waves. Mode-1 wave propagating with the current (wave with positive phase
speed since the current itself travels along the positive x−direction) is denoted by M1W,
while that propagating counter to the current (wave with negative phase speed) is denoted
by M1C. dΦ/dz for some modes are shown in figure 4.4, and the modes are obtained by
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Figure 4.4: dΦ/dz for modes 1,2 and 3. (a) modes travelling with the current, and (b)
modes travelling against the current. The legend provides the mode number.

solving the Taylor-Goldstein equation with Uc = 0.10NH .

The functions (Fu,Fw, and Fb) are responsible for generating the mode-1 wave in the
domain, and are given by:

Fw = ϑF exp (−(x− xF )
2/W 2

F )kjΦj sin (kj(x− xF )) (4.14)

Fb = −ϑF exp (−(x− xF )
2/W 2

F )kjΦj sin (kj(x− xF ))
N2kj

(ωd − ubasekj)2
(4.15)

Fu = ϑF exp (−(x− xF )
2/W 2

F )kj
dΦj

dz
cos (kj(x− xF )) (4.16)

where j = (1,−1) implies M1W (M1C). The values of (xF ,WF , and ϑF ) are varied
according to the requirements of the simulation. While ϑF decides the amplitude of the
incoming wave, xF and WF respectively decide the horizontal location and the width of
the forcing function.

4.2.2 Energy equation

The total energy equation, obtained from the incompressible, 2D Navier-Stokes equations
under the Boussinesq approximation, can be written in a compact form as follows:

d(Eke + Epe)

dt
+∇.((Eke + Epe + p)utotal) = E(vis) + E

(vis)
H , (4.17)
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where,

Eke =
1

2

(
u2base + 2ubaseu+ u2 + w2

)
, Epe =

1

2

(
b2

N2

)
,

E(vis) = ν(utotal∆u+ w∆w) +
κ

N2
b∆b, E

(vis)
H = utotalH(u) +

b

N2
H(b) + wH(w).

(4.18)

Here Eke is the total kinetic energy possessed by a fluid parcel, and Epe is its potential
energy. E(vis) represents the energy dissipation and diffusion due to viscosity and molec-
ular diffusion, while E(vis)

H indicates the hyperviscous terms. utotal = (ubase + u,w) is the
total velocity vector. Note that the sponge terms and the forcing (wave-generator terms)
are not present in the above equation since we only use the energy equation in regions or
control areas where these terms are negligible. Integration of (4.17) inside a control area
whose vertical bounds are at z = h(x) and z = 0 would lead to:

d(Ẽke + Ẽpe)

dt
+ TF

∣∣∣∣
xR

− TF
∣∣∣∣
xL

= ˜E(vis) + ˜E(vis)
H . (4.19)

Here xL and xR respectively represent the left and right ends of the control area in question.
All tilde quantities denote the area integral:

J̃ =

∫
A(R)

J dA(R), (4.20)

where A(R) denotes the control area chosen. TF, i.e. total flux across a vertical section, is
mathematically defined as

TF =

∫ 0

h

[utotal((Eke + Epe) + p)]dz

=

∫ 0

h

[
(ubase + u)

(
1

2

(
u2base + 2ubaseu+ u2 + w2

)
+ Epe + p

)]
dz

=

∫ 0

h

1

2
ubase

(
u2base + 3ubaseu+ 3u2

)
+

1

2
u
(
u2
)
dz︸ ︷︷ ︸

Advection of horizontal kinetic energy

+

∫ 0

h

p(ubase + u)dz︸ ︷︷ ︸
Pressure Work

+

∫ 0

h

1

2
(ubase + u)

(
w2
)
dz︸ ︷︷ ︸

Advection of vertical kinetic energy

+

∫ 0

h

1

2
(ubase + u) (Epe)dz︸ ︷︷ ︸

Advection of potential energy

(4.21)
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Note that the kinetic and potential energy can be advected by the surface current ubase,
and also the perturbation velocity u. Equation (4.19) implies that the energy inside a
control area varies because of the flux, viscous and the hyperviscous terms. Diffusion
at the horizontal limits of the control area is usually negligible for the parameter regime
considered in this study. The rate of kinetic energy dissipation inside the control domain
is given by

K̃D = −ν
∫
A(R)

[(
∂u

∂x

)2

+

(
∂w

∂x

)2

+

(
∂u

∂z

)2

+

(
∂w

∂z

)2

+

(
∂u

∂z

∂ubase
∂z

)]
dA(R).

(4.22)

Note that the integral of the viscous term (E(vis)) would include both viscous diffusion
and viscous dissipation. We only require rate of kinetic energy dissipation, which is the
measure of how much kinetic energy is destroyed in the control volume per unit time.
Note that kinetic energy diffusion does not destroy the energy. It simply moves the ki-
netic energy outside the control volume/area. The final term in (4.22) is a consequence
of the assumption that the base flow is non-dissipative. We mainly focus on the modal
composition of the scattered field which has the same frequency as the incoming mode-1
wave (ωd). To measure how much energy resides in a particular mode, we concentrate on
the ‘linear’ flux terms of equation (4.21) (Lamb & Dunphy, 2018). By linear flux terms,
we refer to the terms that can have a non-zero contribution (in a time averaged sense) when
only a linear wave is considered. These terms are given by,

T =

∫ 0

h

pu+
ubase
2

(
3u2 + w2 +

b2

N2

)
dz. (4.23)

Note that terms like pubase and 3u2baseu/2, which arise in (4.21), can have a non-negligible
contribution, in a time-averaged sense, only when the nonlinear terms in the Navier-Stokes
equations are considered. Because of nonlinearity, p and u contain time-invariant mean
fields (Lamb & Dunphy, 2018). However, these flux terms do not provide any extra in-
formation on the amplitude, or the energy, residing in a particular mode after scattering.
As a result, these terms are not taken into consideration. The linear fluxes we are focusing
on is expected to be nearly same with or without the nonlinear terms (Lamb & Dunphy,
2018) because the incoming wave amplitude is chosen such that the scattering process is
nearly at a linear regime. The simulations are still run with the nonlinear terms because
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we also want to study superharmonic generation due to internal wave scattering. Defining

⟨...⟩ ≡
∫ 2π/ωd

0

... dt,

the normalised, time-integrated, total linear flux due to j−th internal wave mode with
frequency ωd is given by

⟨Tj⟩ =
1

⟨Tinc⟩

∫ 2π/ωd

0

∫ 0

h

pjuj +
ubase
2

(
3u2j + w2

j +
b2j
N2

)
dzdt (4.24)

where

⟨Tinc⟩ =
∫ 2π/ωd

0

∫ 0

h

pincuinc +
ubase
2

(
3u2inc + w2

inc +
b2inc
N2

)
dzdt.

For all variables, the subscript ‘inc’ denotes the corresponding incoming mode-1’s field.

4.2.3 Mode-isolation method

The subsection explains the method used to find the amplitude of a particular internal
wave mode which oscillates in time with frequency ωd. The amplitude of the mode can
then be used to find the flux ⟨Tj⟩. To this end, we focus on the perturbation horizontal ve-
locity field. In the simulation data, the perturbation velocity contains multiple frequencies
(0, ωd, 2ωd,…) apart from the frequency (ωd) we are interested in because of the nonlin-
ear terms in the governing Navier-Stokes equations. We first obtain the ωd component
of the u−field (denoted by uωd

hereafter) using Fourier transforms. Note that uωd
is not

the Fourier coefficient, rather the horizontal velocity field which oscillates in time only
with frequency ωd. Now, we assume that for every (x, t), uωd

can be written as a linear
combination of discrete internal wave modes (Φn), where the latter is obtained by solving
equation (4.12). Mathematically, this implies

uωd
≈ uR =

n=Mn∑
n=1

An(x, t)
dΦn

dz
(4.25)

where uR denotes the reconstructed horizontal velocity field, Mn is the total number of
modes considered, and An(x, t) is the amplitude coefficient of n−th mode, which will be
obtained using the simulation data. For a particular (x, t), An is obtained by solving the
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linear system of equations provided below in a compact form:

∫ 0

−H

(
dΦ1

dz

)2
dz

∫ 0

−H

(
dΦ1

dz
dΦ2

dz

)
dz . . .

... . . .

... . . .

∫ 0

−H

(
dΦMn

dz

)2
dz





A1

A2

...

AMn


=



∫ 0

−H
uωd

dΦ1

dz
dz

∫ 0

−H
uωd

dΦ2

dz
dz

...

∫ 0

−H
uωd

dΦMn

dz
dz


(4.26)

Without the current, the square matrix in the LHS of (4.26) will be a diagonal matrix. The
presence of surface current renders the modes non-orthogonal, hence the non-diagonal
entries are non-zero in general. Moreover, the modal coefficients (An) themselves can
vary depending on the choice ofMn, which is not the case for the orthogonal modes. In
spite of these, as explained below, we observe that the above method of mode isolation
provides a reasonably accurate reconstruction of the fluxes. Moreover, we observe that
the uR obtained by our method matches exactly with the uR obtained using Gram-Schmidt
Orthonormalization.

In section 4.3, the above mentioned method is used to estimate the flux (⟨Tj⟩) for each
mode after the scattering of the mode-1 wave. ⟨Tj⟩ is calculated using the amplitude
An(x, t), and by assuming the waves nearly satisfy the normal mode form. Using the nor-
mal mode assumption, the amplitude of a particular mode’s other fields (w, b, and p) can
be found using An(x, t). To see whether uR is a good approximation of uωd

and to verify
the validity of the normal mode assumption, we compare the time and depth-integrated
linear pressure work and linear horizontal kinetic energy flux of the reconstructed fields
with the flux data obtained from simulations. We do not consider the linear vertical ki-
netic energy and potential energy flux because, for all the simulations, the sum of time and
depth-integrated vertical kinetic energy and potential energy flux is less than 4% of sum
of pressure work and linear horizontal kinetic energy flux. Mathematically,

max
∣∣∣∣⟨∫ 0

h
ubase/2

(
w2

ωd
+ b2ωd

/N2
)
dz⟩
∣∣∣∣

max
∣∣∣∣⟨∫ 0

h
pωd

uωd
+ ubase/2

(
3u2ωd

)
dz⟩
∣∣∣∣ < 0.04 (4.27)

where (pωd
, wωd

, bωd
) denote the pressure, vertical velocity, and buoyancy fields that os-

cillate in time with frequency ωd, respectively. Hence, we only use the sum of pressure
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work and horizontal kinetic energy for validation. The sum of time and depth-integrated
linear pressure work and horizontal kinetic energy flux for a range of x using pωd

and uωd

is first calculated. Mathematically the quantity is given by,

P
(N)
f2 =

∫ 2π/ωd

0

∫ 0

−H

(
pωd

uωd
+

3

2
ubase (uωd

)2
)
dzdt (4.28)

Note that P (N)
f2 is directly obtained from the simulation data without any mode separation.

Now using uR and pR we once again evaluate the same flux quantity, where pR denotes the
reconstructed pressure field, and it can be found using uR and the linearised u−momentum
equation as given below

pR =
n=Mn∑
n=1

[(
ωd

kn
− ubase

)
dΦn

dz
+
dubase
dz

Φn

]
An(x, t). (4.29)

dAn/dx ≈ iknAn is used to arrive at equation (4.29). The sum of time and depth-
integrated linear pressure work and horizontal kinetic energy flux calculated using pR and
uR is given by,

Pf2 =

∫ 2π/ωd

0

∫ 0

−H

(
pRuR +

3

2
ubase (uR)

2

)
dzdt. (4.30)

P
(N)
f2 and Pf2 are functions of x only. For every simulation, we compare P

(N)
f2 and Pf2 for

a range of x to validate the method. Two quantities are defined to estimate the difference
between P (N)

f2 and Pf2:

Eravg =
1

xR − xL

∫ xL

xR

∣∣∣∣∣P
(N)
f2 − Pf2

⟨Tinc⟩

∣∣∣∣∣ dx, Ermax = max

(∣∣∣∣∣P
(N)
f2 − Pf2

⟨Tinc⟩

∣∣∣∣∣
)

(4.31)

Eravg gives a measure of the average error induced in the reconstruction in a given range
of x. Moreover, Ermax gives the maximum error in the reconstruction for the same range.
For all the simulations, Eravg is observed to be < 0.01. For all the simulations, includ-
ing supercritical topographies, Ermax is observed to be < 0.03. Only 5 simulations have
Ermax > 0.015, indicating that for majority of the simulations Ermax < 0.015. All sim-
ulations involving a subcritical topography have Ermax < 0.015. For supercritical to-
pographies, we apply the mode-isolation method for both transmitted and reflected wave
fields. As a result, for a single simulation, we use the method twice. Considering this,
for supercritical topographies, 5 instances (out of 60) Ermax > 0.015 was observed, where
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Figure 4.5: (a) compares normalized P (N)
f2 and Pf2 obtained after the scattering of M1W

by a topography with parameters Υ = 0.5 and hT /H = 0.5. Uc = 0.1NH is used. (b)
shows the normalised difference between the two quantities plotted in (a).

the maximum Ermax is ≈ 0.03. Figure 4.5 shows P (N)
f2 and Pf2 obtained from the sim-

ulation which models the scattering of M1W (Uc = 0.10NH) by a topography with
(Υ, hT/H) = (0.5, 0.5). The method is applied to a region where the scattered wave
field is present. It can be seen that the reconstruction of the flux is within < 0.002, and
the mode-1 loses around 50% of its energy due to the scattering in this particular case. For
the same control area, figure 4.6 shows the reconstructed velocity field and the pressure
field (15 modes are used), and pωd

and uωd
obtained from the simulation at a particu-

lar instance. In this particular case, it can be seen that the features in uωd
and pωd

have
been reconstructed in uR and pR, respectively. Likewise, figure 4.7 shows a comparison
between (uωd

, pωd
) and (uR, pR) from the simulation that models the scattering of M1C

(Uc = 0.10NH) by a topography with (Υ, hT/H) = (0.75, 0.35).

4.3 Results

4.3.1 Subcritical topographies

We first focus on subcritical (Υ < 1) topographies. In this regard, we consider three
different heights: hT/H = 0.2, 0.35, and 0.5, and for each height, we vary Υ. For all
topographies, scattering of both M1C and M1W is studied. All simulations are at least
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Figure 4.6: (a) and (b) show the reconstructed u-velocity field (uR) and the pressure
field (pR) after the incoming M1W was scattered, respectively. (c) and (d) show the u-
velocity field (with frequency ωd) (uωd

) and the pressure field (pωd
) obtained from the

simulation, respectively. Topography used in this simulation has parameters Υ = 0.5
and hT /H = 0.5. The values given in the colorbar applies for all the subplots with

appropriate units.

Figure 4.7: Caption same as figure 4.6 except the fields shown are from the simulation
modeling the scattering of M1C by a topography with Υ = 0.75 and hT /H = 0.35.
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run for 30 time periods of the parent wave. A complete list of simulations run for the
subcritical topographies is given in table 4.1. The table provides the different values of
current strength Uc used for each topography, along with the incoming mode-1 wave’s
amplitude and the kinematic viscosity value used. Note that a high value of viscosity is
used. High values of viscosity has been used so that the small scale waves/features dissi-
pate. Reducing viscosity effectively means that we are increasing Reynolds number, and
as we increase Reynolds Number we need to increase the resolution of the simulations as
well. However, it is very computationally expensive to match the exact Reynolds num-
ber observed in the ocean. As a result, we increase the viscosity value. High values of
viscosity have been used previously in studies involving internal wave interactions with
topographies (Nikurashin & Legg, 2011; Nazarian & Legg, 2017b).

hT/H Υ max(dΦinc/dz) (ms−1) ν (m2s−1) Uc/NH for M1W and M1C
0.20 (0.1,0.2) 0.03 0.01 (0, 0.1)
” (0.25,0.50,0.75) ” ” (0, 0.04, 0.07, 0.1)
” (0.40,0.60,0.90) ” ” (0, 0.04, 0.1)
0.35 (0.10) ” ” (0, 0.1)
” (0.25,0.50) ” ” (0, 0.04, 0.07, 0.1)
” (0.40,0.60) ” ” (0, 0.04, 0.1)
” (0.75) 0.015 0.005 (0, 0.04, 0.07, 0.1)
” (0.85) ” ” (0, 0.04, 0.1)
0.5 (0.10) 0.03 0.01 (0, 0.1)
” (0.25,0.50) ” ” (0, 0.04, 0.07, 0.1)
” (0.40,0.60) ” ” (0, 0.04, 0.1)
” (0.75) 0.015 0.005 (0, 0.04, 0.07, 0.1)
” (0.85) ” ” (0, 0.04, 0.1)

Table 4.1: List of simulations run for subcritical (Υ < 1) topographies. The double
quotation mark indicates that the value or array is the same as the one above it.

4.3.1.1 Scattering of M1W andM1C for hT/H = 0.2.

We first focus on mode-1’s interaction with small amplitude topographies for different Υ
values with hT/H = 0.2 held fixed. For both M1W and M1C, there is generally a consis-
tent and gradual change in scattering behavior with the inclusion of a surface current, see
figure 4.8. For any Υ, the maximum difference in scattering (difference in ⟨T1⟩) induced
by the surface current is ≈ 7% for both M1W and M1C. For both M1W and M1C, the
change in scattering introduced by the current has a complex behaviour asΥ is varied, and
this is shown in figure 4.9 where ∆⟨T1⟩ – the difference between ⟨T1⟩ values computed
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Figure 4.8: ⟨Tn⟩ plots for the first 10 modes. Top row: M1W, bottom row: M1C. Υ =
0.25 ((a) & (d)),Υ = 0.5 ((b)& (e)), andΥ = 0.75 ((c) & (f)). For all cases, hT /H = 0.2.

Colors correspond to various Uc values (see legend).

at Uc = 0.10NH and at Uc = 0 is plotted. Note that a negative (positive) ∆⟨T1⟩ implies
the current increased (decreased) the scattering compared to the ‘no-current’ Uc = 0 case.
For a very lowΥ, the current has very little influence on the scattering: ∆⟨T1⟩ is very low
for Υ = 0.1 for both M1W and M1C. As Υ is increased, ∆⟨T1⟩ is positive (negative) for
M1C (M1W) for a small range of Υ. However, as Υ is increased further, ∆⟨T1⟩ changes
to a negative (positive) quantity for M1C (M1W), which is the opposite of the behaviour
seen previously. For Υ ⪆ 0.25, the current strictly decreases the scattering of M1W com-
pared to the Uc = 0 case, while for Υ ⪆ 0.40 the current strictly increases the scattering
for M1C. Note that |∆⟨T1⟩| is similar for both M1W and M1C, however, there can still
be > 10% difference in ⟨T1⟩ between M1C and M1W because the current increases (de-
creases) the scattering for M1C (M1W) for the higher Υ values. Moreover, the difference
between M1C and M1W’s scattering is expected to increase if the wave is scattered by an
array of small amplitude topographies instead of a single topography.

4.3.1.2 Scattering of M1W andM1C for hT/H = 0.35.

For hT/H = 0.35, figure 4.10 shows the modal composition of the transmitted wave
field after the scattering. For both M1W and M1C, scattering changes gradually as Uc is
varied, which is similar to what was observed for hT/H = 0.2. However, the magnitude
of the change in scattering introduced by the current is higher compared to hT/H = 0.2.
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Figure 4.9: Difference between ⟨T1⟩ for Uc = 0.10NH and Uc = 0.0 for various topo-
graphic configurations with hT /H = 0.2. ∆⟨T1⟩ ≡ ⟨T1⟩(Uc = 0.10NH) − ⟨T1⟩(Uc =

0).

The maximum |∆⟨T1⟩| observed for M1W (M1C) is ≈ 0.11(0.17). Increasing the height
of the topography does not necessarily mean the scattering also increases, and this can
be seen by comparing the Υ = 0.25 case for hT/H = 0.2 and 0.35. For low Υ, small
amplitude topographies can be more proficient in scattering the mode-1 wave (Mathur
et al., 2014, figure 4). As Υ is increased, scattering is higher for hT/H = 0.35 compared
to 0.2 regardless of the current strength.

Similar to hT/H = 0.2, for both M1W and M1C, the current may increase or decrease the
scattering compared to the Uc = 0 case depending on theΥ value, as shown in figure 4.11.
The behaviour of∆⟨T1⟩ is very similar to what was observed for the case of hT/H = 0.2.
For very low Υ values, the current does not create much of a difference and this can be
seen for M1W whenΥ = 0.1, and for M1C whenΥ ≤ 0.25. Moreover, asΥ is increased,
the current increases (decreases) the scattering of M1W (M1C) for a finite range of Υ.
Furthermore, beyond a certainΥ, the current decreases (increases) scattering forM1W and
M1C. For M1W (M1C),∆⟨T1⟩ changes from a negative (positive) to a positive (negative)
quantity at Υ ≈ 0.4 (0.6). The transition is permanent (the sign of∆⟨T1⟩ does not change
again), and this will be evident in the section focusing on supercritical topographies. Note
that for M1W (M1C), the transition occurred at Υ ≈ 0.25(0.4) for hT/H = 0.2. Hence,
the Υ at which ∆⟨T1⟩ changes sign is observed to be a function of hT/H .

4.3.1.3 Scattering of M1W andM1C for hT/H = 0.5.

The results for hT/H = 0.5 are shown in figure 4.12. For large amplitude topographies,
the influence of the current on the scattering is much higher for M1W than what was
observed for hT/H = 0.2 and 0.35. Note that for M1W, even if the ‘no-current’ (Uc =
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Figure 4.10: Caption same as figure 4.8 except hT /H = 0.35.

Figure 4.11: Caption same as figure 4.9 except hT /H = 0.35.

0) case has negligible scattering for a particular topography, Uc ̸= 0 cases can have a
significant scattering. In contrast, for M1C, topographies which cause minimal scattering
when Uc = 0 also cause very little scattering when Uc ̸= 0. This can be seen for Υ ≤ 0.5

where there is very little scattering for Uc = 0, and there is not a significant change in
the scattering behaviour as Uc is increased. Similar behaviour can also be seen in figure
4.10 for hT/H = 0.35 when Υ ≤ 0.25. As a result, for M1C, the current will not cause a
significant difference in scattering if the Uc = 0 case has very low scattering.

We can once again observe a similar pattern for∆⟨T1⟩ for both M1W and M1C, as shown
in figure 4.13. For very low Υ, ∆⟨T1⟩ is negligible. For M1W and for 0.1 ⪅ Υ ⪅ 0.6,
∆⟨T1⟩ is a negative quantity, while for Υ ⪆ 0.6, the current reduces scattering (∆⟨T1⟩ is
positive). The value at which the transition occurs (∆⟨T1⟩ changing from a positive to a
negative quantity) monotonically increases with the height of the topography. For M1C,



Chapter 4. 127

the current has a stabilising effect for 0.5 ⪅ Υ ⪅ 0.85. Hence for large amplitude subcrit-
ical topographies adding a current reduces the scattering of M1C for a significant range of
Υ. Note that forM1C,∆⟨T1⟩was observed to be a negative quantity after a certainΥ value,
however, that is not apparent in figure 4.13. This is because the transition of∆⟨T1⟩ from a
positive to a negative quantity occurs atΥ ≈ 0.85. ForΥ ≥ 0.85,∆⟨T1⟩ is strictly a nega-
tive quantity aswill be shown in the section focusing on supercritical topographies. Similar
toM1W, theΥ at which∆⟨T1⟩ changes sign monotonically increases with the height of the
topography for M1C. The results for ∆⟨T1⟩(4) ≡ ⟨T1⟩(Uc = 0.04NH)− ⟨T1⟩(Uc = 0) is
qualitatively very similar to∆⟨T1⟩. The primary difference is in the magnitude: |∆⟨T1⟩(4)|
is in general lower than |∆⟨T1⟩|. Moreover, the Υ at which ∆⟨T1⟩ and ∆⟨T1⟩(4) change
sign is slightly different. For example,∆⟨T1⟩(4) is a negative quantity atΥ = 0.75 forM1C
(see figure 4.12(f)) while ∆⟨T1⟩ switches from positive to negative only at Υ ≈ 0.85.

Note that subcritical topographies can also reflect internal waves. However, the quantity
of energy reflected back is quite low compared to the energy that is transmitted. In our nu-
merical simulations, we did find a small amount of waves moving in the opposite direction
of the incoming mode-1 internal wave when it interacts with the subcritical topography.
In general, as Υ is increased, the amount of energy reflected from the topography also
increases.

In summary, for hT/H = 0.2, the maximum change in the scattering introduced by the
current is less than 7.5% of ⟨Tinc⟩, however the difference in ⟨T1⟩ betweenM1C andM1W
can be greater than 0.1⟨Tinc⟩. The influence of the current on the scattering increases
monotonically with the height. If the height of the topography andΥ are both high, then the
inclusion of a current is expected to create a significant difference in scattering. For M1W
and M1C, depending on the Υ value, the current can increase or decrease the scattering
compared to the ‘no-current’ case.

4.3.2 Supercritical topographies

In this subsection, we focus on supercritical topographies (Υ > 1). The list of simulations
run are given in table 4.2. We consider Υ = 1.25, 1.5 and 1.75 for hT/H = 0.2, 0.35

and 0.5 leading to a total of 9 different combinations of hT/H and Υ. For supercritical
topographies, a significant portion of the incoming wave’s energy can get reflected and
travel in the opposite direction of the incoming mode-1. In this regard, we modify the
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Figure 4.12: Caption same as figure 4.8 except hT /H = 0.5.

Figure 4.13: Caption same as figure 4.9 except hT /H = 0.5.

mode-isolation method given in section 4.2.3 to also calculate the modal composition of
the internal waves that propagate in the opposite direction of the incoming mode-1 wave.

hT/H Υ max(dΦinc/dz) (ms−1) ν (m2s−1) Uc/NH for M1W and M1C
0.20 (1.25) 0.015 0.01 (0, 0.1)
0.20 (1.5,1.75) ” ” (0, 0.04, 0.1)
0.35 (1.25) ” 0.005 (0, 0.1)
0.35 (1.5,1.75) ” ” (0, 0.04, 0.1)
0.50 (1.25) ” ” (0, 0.1)
0.50 (1.5,1.75) ” ” (0, 0.04, 0.1)

Table 4.2: List of simulations run for supercritical (Υ > 1) topographies.
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4.3.2.1 Mode-isolation method for Reflected waves

For M1W (M1C), in the region left (right) of the supercritical topography, the wave field
consists of an incoming mode-1 wave and reflected waves that propagate away from the
topography. As a result, uωd

can be written as

uωd
= uref + uinc, (4.32)

where uref denotes the u−velocity field of the waves that travel in the opposite direction
(horizontally) of the incoming mode-1 wave. The method described in section 4.2.3 has
to be applied to uref to find the modal composition of the reflected waves, however, uref
cannot be directly obtained from the simulation data like uωd

. We need to first find uinc and
then use equation (4.32) to find uref. In the simulations, at any given time, uinc is assumed
to have a normal mode form as given below,

uinc = Ainc
dΦ∓1

dz
sin (k∓1x− ωdt+ Anginc) (4.33)

To determine uinc, amplitude (Ainc) and the phase (Anginc) of the wave have to be deter-
mined. To this end, we run a separate low-resolution simulation without the topography
while other parameters are kept constant. Using the low-resolution simulation, the in-
coming mode-1’s amplitude and phase are determined. Now uref can be found by using
equation (4.32). After obtaining uref, the isolation method given in section 4.2.3 can be
used straightforwardly to express uref as a sum of Taylor-Goldstein normal modes. Note
that the waves that travel in the opposite direction of the incoming mode-1 wave have to
be used. Finally, the reconstructed u−velocity can be compactly written as,

uωd
≈ uR =

[
n=Mn∑
n=1

A±n(x, t)
dΦ±n

dz

]
+ Ainc

dΦ∓1

dz
sin (k∓1x− ωdt+ Anginc). (4.34)

4.3.2.2 Scattering of M1W andM1C for hT/H = 0.35

We begin our analysis with hT/H = 0.35. Results for hT/H = 0.2 are qualitatively
similar to hT/H = 0.35. Hence to avoid repetitiveness, we do not plot the results for
hT/H = 0.2, however they will be discussed in the analysis. The modal composition of
the transmitted and reflected waves for hT/H = 0.35 is shown for Υ = 1.5 and 1.75 in
figure 4.14. The reflected waves’ amplitude is less compared to the transmitted waves’
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amplitude because the height of the topography is not very large (Mathur et al., 2014),
and adding a current does not massively change this fact. From figures 4.14(a) and (b),
a clear pattern can be seen: for M1W, increasing Uc increases transmitted ⟨T1⟩ compared
to Uc = 0. For M1C, increasing the current strength decreases transmitted ⟨T1⟩ compared
to the Uc = 0 case. A monotonic increase in ⟨T1⟩ is observed starting from M1C-Uc =

0.1NH to M1W-Uc = 0.1NH . Moving on to the reflected wave field, we observe that
increasing the current strength slightly increases (decreases) the reflected ⟨T1⟩ for M1C
(M1W) as shown in figures 4.14(c) and (d). Note that reflected ⟨T1⟩ decreases fromM1C-
Uc = 0.1NH to M1W-Uc = 0.1NH (this trend is observed for both Υ values), which is
the exact opposite of ⟨T1⟩’s behaviour in the transmitted wave field. The same patterns
were also observed for hT/H = 0.2 (results not shown). However, for hT/H = 0.2,
the reflected waves’ amplitudes are significantly lesser compared to hT/H = 0.35. Flux
of mode-1 wave after the scattering (considering both reflected and transmitted mode-1)
monotonically decreases fromM1Wwith Uc = 0.10NH to M1C with Uc = 0.10NH , see
figure 4.15. This is in line with the results observed for subcritical topographies with high
Υ where increasing Uc reduces (increases) scattering for M1W (M1C). A similar pattern
was also observed for hT/H = 0.2 . Finally, the discussion until now has been only for
Υ = 1.5 and 1.75. The results for Υ = 1.25 were qualitatively very similar to the two Υ
values discussed above (results not shown).

4.3.2.3 Scattering of M1W andM1C for hT/H = 0.50

The results for hT/H = 0.50 are shown in figure 4.16. For large amplitude supercritical
topographies, reflected waves have a higher amplitude than the transmitted waves forUc =

0. Adding a current does not change this fact for bothM1W andM1C even for highUc. We
once again observe the same pattern for hT/H = 0.5 that was observed for hT/H = 0.35:
increasing Uc increases (decreases) the transmission of M1W (M1C) compared to Uc = 0.
Moreover, increasing Uc increases (decreases) the reflection of M1C (M1W) compared to
Uc = 0. Now we move on to the discussion of scattering for hT/H = 0.5. Similar to
hT/H = 0.35, for M1C (M1W), the scattering increases (decreases) as Uc is increased.
This is shown in figure 4.17. Once again, the results for Υ = 1.25 were qualitatively very
similar to the two Υ values discussed. Interestingly, the difference between M1W and
M1C is more pronounced in hT/H = 0.35 than hT/H = 0.5. However, as hT/H −→ 0,
the difference is also expected to be shrink. The scattering properties and the reflection-
transmission properties do not change significantly from Υ = 1.5 to Υ = 1.75 for all the
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Figure 4.14: ⟨Tn⟩ for Υ = 1.5 and 1.75 where hT /H = 0.35 is held fixed. The first col-
umn (consisting (a) and (c)) show results forΥ = 1.5, and the second column (consisting
(b) and (d)) show results for Υ = 1.75. (a) and (b) show ⟨Tn⟩ for transmitted wave field,

while (c) and (d) show ⟨Tn⟩ for reflected wave field.

Figure 4.15: Sum of reflected and transmitted ⟨T1⟩ for supercritical topographies with
hT /H = 0.35. The horizontal axis shows the current strength and the type of mode-1

wave (M1W or M1C) studied.

heights. For uniform stratification, scattering does not vary significantly asΥ is increased
beyond a certain value (Mathur et al., 2014). Introducing a current does not seem to change
this fact significantly. Hence, for Υ > 1.75 similar results to the simulations presented in
this section can be expected.

Using results from subcritical and supercritical topographies, we summarise the conclu-
sions. For M1C, the current does not have any influence on scattering when Υ is very
low. Then for a range of Υ, scattering is lower for Uc ̸= 0 compared to the ‘no-current’
Uc = 0 case. Moreover, increasing the Υ further results in the scattering of M1C being
more for Uc ̸= 0 cases compared to Uc = 0. The transition is observed to be permanent
regardless of the Uc or hT/H value as shown in this subsection. For M1W, the current has
a negligible influence on scattering when Υ is very low. As Υ is increased, scattering is
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Figure 4.16: Caption same as figure 4.14 except hT /H = 0.5.

Figure 4.17: Caption same as figure 4.15 except hT /H = 0.5.

higher for Uc ̸= 0 compared to Uc = 0. By increasing the Υ further, we see that the scat-
tering of M1W is lesser for Uc ̸= 0 cases compared to Uc = 0. Once again the transition
is observed to be permanent for all the Uc or hT/H values studied.

4.3.3 Flux of modes higher than 3

In the oceans, higher modes do not travel as far as the mode-1 wave because of their lower
group speed and they get attenuated by wave-wave interactions at a faster rate compared
to a mode-1 wave (de Lavergne et al., 2019; Olbers et al., 2020). As a result, higher
modes get dissipated very close to the place of their origin. For calculating near field
dissipation, Vic et al. (2019) assumes that the modes higher than 3 (mode-3 not included)
get dissipated at or very close near to their place of generation. To this end, it would be
useful to see howmuch energy resides in modes higher than 3 after the scattering of mode-
1 wave. For the three heights, figure 4.18 plots ⟨T4−∞⟩ ≡

∑n=∞
n=4 ⟨Tn⟩ for M1W and M1C
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Figure 4.18: ⟨T4−∞⟩ for M1C and M1W with Uc = 0.10NH is shown along with the
Uc = 0 case for the three heights. (a) hT /H = 0.2, (b) hT /H = 0.35, and (c) hT /H =

0.5.

for Uc = 0.10NH . ⟨T4−∞⟩ is also plotted for the Uc = 0 case. Interestingly, for all three
heights, M1W andM1C have lesser energy residing in the higher modes forUc = 0.10NH

compared to the Uc = 0 case. M1W especially has very low energy residing in the higher
modes, and the difference between M1W and the no-current case is especially large for
hT/H = 0.5 andΥ > 0.75. Energy in the higher modes is higher for M1C and than M1W
except at the lowΥ values for hT/H = 0.35 and 0.5. This is line with the observation that
at lowΥ values the current increases scattering forM1W for large amplitude topographies.

4.3.4 Generation of 2ωd superharmonics

In the process of low mode scattering, internal wave beams can be produced (for example,
Johnston&Merrifield (2003)). Moreover, superharmonic waves (with frequency 2ωd) can
be generated by nonlinear interactions that ensues from the reflection of an internal wave
beam from a rigid surface (Lamb, 2004; Tabaei et al., 2005). As a result, internal wave
beams with frequency ωd (hereafter referred as primary wave beam) generated due to scat-
tering of the low mode can force superharmonic internal wave beams as they get reflected
from the air-water interface in the ocean, or from bottom surface (bottom topography).
Note that the surface current can also reflect internal wave beams. In this sub-section, we
focus on the influence of the current on the generation of superharmonic waves that ensues
from the scattering of a mode-1 internal wave with frequency ωd.
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We first focus on subcritical topographies with Υ ≥ 0.75 where clear beams are observed
after the scattering of the incoming mode-1 wave. To this end, we first focus on the topog-
raphy with parameters (hT/H = 0.5,Υ = 0.85), and then generalise the results observed
for all other topographies. Figure 4.19 shows uωd

and u2ωd
fields after the scattering of

M1C and M1W, and the figure shows simulations that use Uc = 0.10NH . For M1C, the
primary internal wave beam gets reflected after it impacts the current near x/H ≈ 62, see
figure 4.19(a). As a result, the incident and the reflected primary wave beam nonlinearly
interact and generate superharmonic wave beams. A notable superharmonic wave field
can be noticed on the top of the topography in figure 4.19(b). Superharmonic beams are
also generated due to the reflection of the primary internal wave beam from the bottom
surface in the lee of the topography near x/H ≈ 57. In contrast, for M1W, the primary
beam loses its coherence on its impact with the current and does not have a strong reflected
beam, see near x/H ≈ 60 in figure 4.19(c). Hence, the generated superharmonic wave
field is weak compared to what was observed in the case of M1C. To quantify the super-
harmonic wave field, we measure the energy flux of the superharmonic wave fields. For
M1C, the superharmonic flux is approximately 3.3% of ⟨Tinc⟩ for Uc = 0.10NH . How-
ever, for M1W, the superharmonic flux is approximately 0.068% of ⟨Tinc⟩. In the presence
of a strong current, similar contrast between M1W and M1C was observed for all subcriti-
cal topographies withΥ ≥ 0.75. Note that even without the current, the primary beam can
get reflected from the top surface. As a result, even for Uc = 0, a notable superharmonic
wave field was observed. It was only in the case of M1W, the superharmonic wave fields
were very weak. For topographies with Υ < 0.6, a consistent pattern between M1C and
M1W was not observed for all the heights.

For supercritical topographies, the superharmonicwaves’ energy flux is lesser (⪅ 0.01⟨Tinc⟩)
than the maximum flux that was observed for subcritical topographies with high Υ. This
is because in supercritical topographies, considerable portion of the incoming mode-1’s
energy is reflected by the topography. Since the energy is split between a reflected and
transmitted primary wave beam, the respective amplitudes of the primary beams will be
lower compared to the case of subcritical topography where most of the energy would
reside in the transmitted primary beam. As a consequence of the lesser amplitude, the
nonlinear interaction is also weaker thus resulting in weaker superharmonics.

We now focus on the supercritical topography with parameters (hT/H = 0.5,Υ = 1.75).
Other supercritical topographies are qualitatively similar to the case focused here. For
M1W, in the transmitted wave field, the results are similar to what was observed for the
subcritical topographies, see figure 4.20(d). The primary beam loses coherence near the
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Figure 4.19: uωd
and u2ωd

field that ensues from the interaction of M1C and M1W with
a subcritical topography (Υ = 0.85 and hT /H = 0.5). (a) and (c) show uωd

due to the
scattering of M1C and M1W, respectively. (b) and (d) show u2ωd

due to the scattering of
M1C and M1W, respectively. The unit of the colorbar values is ms−1.

Figure 4.20: Caption same as figure 4.19 except Υ = 1.75.
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current hence no notable superharmonic waves are found after x/H ≥ 55. For super-
critical topographies, internal wave beams with frequency ωd are created on either side of
the topography after the scattering. For M1W, the beam which propagates in the opposite
direction of the incoming mode does not lose coherence on its impact with the current.
Note that there is a stronger superharmonic wave field (in the form of an internal wave
beam) which propagates against the incoming mode-1 wave. The superharmonic beam
originates near x/H ≈ 46 where the primary wave beam gets reflected from the bottom
surface.

For M1C, the beam composed of reflected waves travels in the same direction as the cur-
rent, as shown in figure 4.20(a). As a result, the beam will lose its coherence as soon as
it impacts the current, which can be seen near x/H ≈ 47. However, unlike the beam
composed of the transmitted waves, the beam composed of the reflected waves travels
towards the bottom surface first, and as a result of this bottom reflection, a superharmonic
wave beam can be generated. This can be seen in figure 4.20(b) near x/H ≈ 42. Note
that the superharmonic and primary wave beam lose their coherence once they reach the
current , and the superharmonic flux is observed to be very small compared to subcritical
topographies.

In Figure 4.20(b), an interesting non-resonant signal is found: A superharmonic wave
beam has the same inclination as the parent wave beam. As a result, the superharmonic
wave beam cannot satisfy the dispersion relation. Usually a parent internal wave beam
does not self interact in an unbounded domain under inviscid conditions. However, we
believe the viscous and the boundedness of the domain cause a non-resonant interaction in
the primary internal wave beamwhich produces this specific superharmonic internal wave
beam. We note that the daughter waves stay on top of the parent internal wave beam, and
this may give the daughter wave ample time to extract considerable energy. Non-resonant
interactions usually do not cause the parent wave to lose significant amount of energy. For
example, many studies show that as the detuning (which is a measure of non-resonance) is
increased, the energy transfer from the parent wave to the daughter waves is reduced. Even
in our case, the simulation was run for a sufficiently long time to generate Figure 4.20(b),
however, the non-resonant signal is still weak. We note that the points we made may not
be applicable in this case and hence to conclusively show that non-resonant interactions
are not as effective as resonant interactions more studies have to be undertaken.
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4.3.5 Rate of Kinetic energy dissipation

Rate of kinetic energy dissipation is one of the key quantities that is used in parameterising
ocean mixing (for example, Nikurashin & Legg (2011)). In this subsection, we focus on
rate of kinetic energy dissipation normalised by the incoming mode-1 wave’s linear flux.
Mathematically, the above-mentioned quantity is given by ⟨K̃D⟩/⟨Tinc⟩. Topographies
with high Υ (Υ ≥ 0.85) are focused. To evaluate the rate of dissipation, we choose a
control area that encloses the full topography. In the horizontal direction, the length of
the control area is 5WT , where WT is the standard deviation for a particular topographic
configuration (see equation 4.11). The center of the control area in the horizontal direc-
tion coincides with the location where the topography height is maximum. In the vertical
direction, the control area spans from z = −h at the bottom to z = 0 at the top. Figure
4.21 shows ⟨K̃D⟩/⟨Tinc⟩ for six different topography configurations with Υ ≥ 0.85. The
configurations are given in the legend of the figure. For each topography, dissipation that
ensues from the scattering of M1C and M1W for different Uc values is shown. Note that
the horizontal axis of figure 4.21 provides information on the type of mode-1 and the cur-
rent strength. In general, we can see a monotonic behaviour: ⟨K̃D⟩/⟨Tinc⟩ is consistently
higher for modes that travel against the current compared to modes that travel with the cur-
rent. Similar contrast between M1C and M1W was also observed for hT/H = 0.2, and
for all the heights with Υ = 1.25 (results not shown in figure). For the smaller Υ values,
a consistent pattern was not observed. Near Υ = 1, the slope of the internal waves match
with the slope of the topography. As a result, the reflected internal waves are focused
indefinitely and this results in a very large increase in the wavenumber of the reflected
waves. As a consequence of the increase in wavenumbers, rate of kinetic energy dissipa-
tion also increases. Note that we only focus on the scattering of small amplitude mode-1
internal wave. Strong nonlinear phenomena such as wave breaking or internal wave bores
are not present because of the incoming mode-1’s low amplitude. As a result, dissipation
is a measure of small scale waves generated due to the scattering of the mode-1 wave.
Higher amount of small scale waves are generated by the scattering of M1C compared to
M1W for Υ ≥ 0.85.
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Figure 4.21: The figure shows the normalised kinetic dissipation for different topographic
configurations, and for different current strengths for both M1C and M1W.

4.4 Summary and Conclusion

Internal wave topography interaction can facilitate energy cascade in large length scale
mode-1 waves. Using numerical simulations, we study a mode-1 internal wave’s inter-
action with topography in the presence of a steady, stable, surface-confined current. The
mode-1’s amplitude is assumed to be small so that the physics is almost in a linear regime.
Amode-1wave travellingwith the current (denoted byM1W) can have different properties
compared to a mode-1 wave that travels against the current (denoted by M1C). Scattering
of both M1W and M1C is studied. The current’s depth and the shear layer thickness are
fixed, while the amplitude of the current (Uc) is varied (Uc = 0 simply implies that there
is no current). The topography is modeled by the Gaussian function, and the height and
the criticality of the topography are varied. Some of the main results of this chapter are
given succinctly in figure 4.22.

For small amplitude, subcritical (Υ < 1) topographies, the inclusion of a current does not
induce a very significant change in the scattering of mode-1 compared to the Uc = 0 case.
In general, there is approximately a 10% difference between M1W and M1C’s flux after
the scattering. This is observed for a wide range of criticality. Increasing the height of
the topography results in the current having a more pronounced effect on the scattering
for both M1W and M1C. For some large amplitude topographies, the inclusion of the
current has increased or decreased the scattering by 40% compared to the Uc = 0 case.
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Figure 4.22: A summary of the main (but not exhaustive) results of this chapter.

For M1C, if the scattering is low for Uc = 0, then increasing Uc does not create much of a
difference. However, for M1W, the scattering properties may significantly change as the
current amplitude is increased even if scattering is very low for Uc = 0. For all the heights
considered, the current does not have a singular effect: it can reduce or increase scattering
depending on the criticality value. This is observed for both M1W and M1C. For M1W,
the current has a very low effect on the scattering for very low Υ values. However, as Υ
is increased, the current increases the scattering compared to the Uc = 0 case. Moreover,
as Υ is increased further, the scattering is always lower for Uc ̸= 0 in comparison to
Uc = 0. Thus the effect of the current changes after a certain Υ. The above-mentioned
transition was observed for all the heights. For Υ > 1, current always reduces scattering
for M1W. Interestingly, for M1C, the exact opposite effect is observed. Up to a certain
Υ value, the current has no effect on the scattering. Then as Υ is increased further, the
current reduces the scattering of the mode-1. As Υ is increased furthermore, the current
increases the scattering compared to the Uc = 0 case. ForΥ > 1, current always increases
the scattering of M1C compared to the ‘no-current’ case. Increasing the amplitude of the
current almost always increases the influence of the current on the scattering process.

Scattering by a supercritical topography produces a constant pattern: energy leaving in
the form of a mode-1 wave is always higher in the case of M1W compared to the case of
M1C. As a result, a supercritical topography is more efficient in scattering a mode-1 wave
that travels against the current compared to a mode that travels with the current.

Superharmonic wave generation ensuing from the scattering of M1C and M1W is studied
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for topographies with high Υ. For subcritical topographies with high Υ (Υ = 0.75, 0.85),
the scattering of M1C consistently produces a stronger superharmonic beam compared
to M1W. In the case of M1C, the primary beam (beam with frequency ωd) generated by
the scattering process does not lose coherence when it impacts the surface current. As
a result, the incident and the reflected (by reflected, we mean the beam that is reflected
by the current) wave beam interact to generate a superharmonic wave beam. In the case
of M1W, the primary beam loses coherence when it impacts the current. Thus without
a strong reflected beam, superharmonic field generation is weaker compared to results
observed for M1C. Rate of kinetic energy dissipation is studied for topographies with high
Υ. It is observed that normalised dissipation is always higher for M1C than M1W. As a
result, for high Υ, the scattering of M1C results in a higher amount of energy cascading
to small length scales in comparison to M1W.



Chapter 5

Summary of the thesis

5.1 Thesis overall summary

Internal waves influence the Earth’s climate by mixing waters of different densities (di-
apycnal mixing) in the bulk of the ocean. The mixing plays a vital role in sustaining the
overturning circulation, and alters the temperature and salinity (and hence the stratifica-
tion) in the ocean. To model the Earth’s climate properly, we need to include the effects
of mixing. However, mixing occurs at very small length scales (centimeters to meters),
whereas the ocean we are trying to model spans thousands of kilometers. Because of the
massive scale separation, we cannot simply resolve all the vital processes in the ocean.
To circumvent this issue, the flow is compartmentalised into multiple manageable subdi-
visions. The mixing and the processes that cause it are studied in idealised settings, and
then the effects of the mixing are parameterised and provided as an input to the Ocean
general circulation models. This thesis is dedicated to understanding the mechanisms that
cause the energy in an internal wave to cascade to small length scales. With a better under-
standing of the mechanisms, the locations in the oceans where internal waves cause mixing
can be predicted reliably. To this end, the thesis is dedicated to understanding wave-wave
interactions and wave-topography interactions, which are the two of the most dominant
mechanisms that reduce the length scales of the internal waves (de Lavergne et al., 2019,
2020).

Estimating diffusivity in oceans requires detailed individual studies of wave-topography
interactions and wave-wave interaction under numerous realistic scenarios. In the past
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Figure 5.1: The focus of the thesis.

two decades, wave-wave interactions and wave-topography interactions have been stud-
ied extensively. However, there are still certain underlying physics that have remained
unclear. The objective/overall aim of the thesis is to improve/add to the current theories
and reduced-order models that are used to model IGW cascade (and dissipation) due to
wave-topography interactions and wave-wave interactions in the ocean. The results will
aid in the estimation of the decay of an IGW as it propagates through the ocean under
circumstances which mimic realistic ocean scenarios. Such compartmentalised studies
of different physics, such as wave-topography interaction and wave-wave interaction, are
required because IGWs can break through either mechanism. Moreover, the rate and quan-
tity of IGW cascade (and dissipation) significantly vary according to the mechanism, and
the conditions in which the mechanism itself takes place (for example: amplitude of the
wave, topography, Brunt-Väisälä frequency). The thesis is dedicated to understanding
the IGW energy cascade (and dissipation) through both wave-topography interaction and
wave-wave interaction. In this thesis, 3 processes of wave-wave interactions and wave-
topography interactions, under conditions that are relevant to oceanic scenarios are studied.
Each individual chapter of the thesis is dedicated to understanding a particular scenario
of wave-wave interaction and/or wave-topography interaction, which paves the way for
a better diffusivity parameterization. Figure 5.1 shows the overall outline of the thesis;
it shows how each chapter is dedicated to a specific mechanism behind IGWs’ energy
cascade, as well as the connection between the chapters.

The specific focus of the thesis has been on the effects of the topography on the internal
wave energy cascade. We have shown that topography plays different kinds of roles in the
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cascade of internal waves’ energy. Topography, smooth or rough, has to be taken when es-
timating the internal wave’s decay. Although smooth topographies do not cause direct in-
ternal wave cascade, they can change the dispersion relation of the internal waves and thus
influence wave-wave interactions. The energy transfer rate can rapidly vary as the fluid
depth varies. We also saw that topographies can cause wave-wave interactions (Higher or-
der interactions) which otherwise would not be possible. These higher order interactions
can cause an energy cascade of semidiurnal internal tides even for f > 7×10−5s−1 thus the
topographies play a major role here as well. The studies in the thesis also showed inertial
waves can play a very important role in the energy cascade of internal waves when there
are multiple parent waves present in the same region. In oceans, multiple energetic internal
gravity waves often co-exist in a region, for example, leftward and rightward propagating
internal waves generated by tide-topography interactions overlap in the vicinity of the to-
pography. Moreover, multiple internal waves with different wavevectors are often gener-
ated even when an internal wave mode-1 gets scattered by the topography. When multiple
small amplitude parent waves are present in a region, we observe that the standard triad
interactions (3-wave systems) may not be the most dominant instability. Specifically, for
two co-existing plane internal gravity waves with the same frequencies (ω1) and wavevec-
tor norms, we observe that 5-wave interactions are the most dominant instability for a
wide range of latitudes. The results in the thesis also show that internal wave-topography
interactions traveling in the presence of the current can be quite different compared to the
‘no-current’ scenario. As a result, internal wave scattering by topographies in the equa-
torial regions, where strong surface currents such as the North equatorial counter current
and equatorial counter current are present, can be quite different from other regions where
there are no currents present.

We now present a short summary of the main results/conclusions from chapters 2,3 and 4.

5.2 Summary for chapters 2,3 and 4

Low mode internal waves often travel long distances, and they carry a significant amount
of energy. Mapping their decay across the ocean is vital for mixing parameterisations. Al-
though, the depth of the fluid (from the free-surface to the seafloor) may not be constant as
they propagate in the ocean. Considering this, in chapter 2, weakly nonlinear interactions
of low mode internal waves that occur in the presence of a varying bathymetry is studied.
Oceans typically have a non-uniform density stratification profile as well. Under these
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conditions and assuming mild-slope bathymetry, multiple-scale analysis is used to derive
wave amplitude equations for weakly nonlinear wave-wave interactions. The waves are
assumed to have a slowly (rapidly) varying amplitude (phase) in space and time. The
horizontal wavenumber (k) condition for waves (1,2,3) is given by,

k(1,a) + k(2,b) + k(3,c) = ∆k (5.1)

where (a, b, c) denote the modenumber, and ∆k is the detuning. For uniform stratifica-
tion (constantN ), regardless of the mode number of the waves involved in the interaction,
detuning does not vary with h. As a result, if the waves are resonant for any single value
of h, then they are resonant for all values of h. Moreover, the nonlinear coupling coef-
ficients (NLC) are proportional to 1/h2, implying that the waves grow faster as the fluid
depth decreases. The physics becomes more interesting for non-uniform stratifications.
For non-uniform stratifications, triads that do not satisfy the condition a = b = c may not
satisfy the horizontal wavenumber condition as h is varied. This is because the horizontal
wavenumbers’ (eigenvalues of a Sturm-Liouville problem) variation with h depends on
the mode number of the wave. The same applies to self-interactions. For self-interactions
where the parent wave and the daughter wave are of the same mode number, change in
h does not increase detuning. These kinds of self-interactions can dominant triads when
f ≈ 0 as shown in Sutherland (2016) and Sutherland & Dhaliwal (2022). For triads, the
nonlinear coupling coefficients may not decrease (increase) monotonically with increasing
(decreasing) h. Nonlinear coupling coefficients, and hence wave growth rates for weakly
nonlinear wave-wave interactions, can also vary rapidly with h. The most unstable daugh-
ter wave combination of a triad with a mode-1 parent wave can also change for relatively
small changes in h. Higher-order self-interactions in the presence of a monochromatic,
small amplitude topography are studied; here the topography behaves as a zero frequency
wave. In summary, chapter 2 shows that the topography can significantly influence wave-
wave interactions as well.

Apart from low mode internal waves, internal waves generated by rough topographies can
dissipate in the vicinity of the topography itself. Moreover, in such cases, multiple parent
waves often co-exist in the presence of each other. In chapter 3, we analyse the stability
of two parent waves co-existing in a region. Specifically, we use multiple scale analysis
to study a 5-wave system (5WS) composed of two different internal gravity wave triads.
Each of these triads consists of a parent wave and two daughter waves, with one daughter
wave common between the two triads. The parent waves are assumed to have the same
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frequency and wavevector norm co-existing in a region of constant background stratifi-
cation. We consider two cases where the parent waves are confined to the same vertical
plane: Case 1(2) has parent waves with the same horizontal (vertical) wavenumber but
with different vertical (horizontal) wavenumber. Note that parent waves need not have
the same frequency and wavevector norm for resonant 5-wave interactions to occur. The
cases we have studied falls under the mentioned assumption, and the assumption is mainly
made for simplicity. We believe 5-wave interactions can also occur when these conditions
are not satisfied. For both cases, the 5-wave system instability is more dominant than tri-
ads for f/ω1 ⪆ 0.3, where ω1 and f are the parent wave and the local Coriolis frequency,
respectively. For f/ω1 ⪆ 0.3, the common daughter wave’s frequency is ≈ ω1 − f and
f for case 1 and 2, respectively. For oblique parent waves, 5-wave system instability be-
come more dominant as the angle between the horizontal wavevectors of the parent waves
(denoted by θ) is decreased. Moreover, for any θ, 5-wave system instabilities are more
dominant than triads for f/ω1 ⪆ 0.3. Numerical simulations match the theoretical growth
rates of 5-wave system instabilities for a wide range of latitude except when f/ω1 ≈ 0.5

(critical latitude). More than three daughter waves are forced by the two parent waves
when f/ω1 ≈ 0.5. Using the reduced order model, for any θ, the maximum growth rate
near the critical latitude is shown to be approximately twice the maximum growth rate of
all triads. Numerical simulations showed that 5-wave interactions can also occur for ver-
tically bounded modes. Hence, the wave amplitude equations given in chapter 2 (which
only takes three waves into account) may under-predict the growth rates at certain lati-
tudes. Moreover, the latitude where the 5-wave interactions can occur will also change
with the stratification profile itself.

In chapter 2, the topography played a passive but significant role in wave-wave interac-
tions. By altering the fluid depth, the topography changed the properties of the internal
waves. This caused the wave-wave interactions to be impacted as well. In chapter 4, we
study wave-topography interactions where the topography plays a more direct role and
causes the energy to cascade. In chapter 4, the interaction of a mode-1 internal wave with
topography in the presence of a steady surface current is studied. The mode-1 wave that
travels with the current (denoted by M1W) has different properties compared to the mode-
1 wave that travels against the current (denoted by M1C), and we study the scattering of
bothM1W andM1C. The influence of the surface current on the scattering increases as the
height of the topography is increased. Moreover, in general, the influence of the current
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increases as the amplitude of the current is increased. For M1W, for the low criticality val-
ues, either the current has negligible impact or increases the scattering compared to the no-
current case. However, the current reduces the scattering of M1W for high criticality. For
supercritical topographies (Υ > 1), the current always decreases the scattering of M1W
compared to the no-current case. For M1C, an opposite effect seems to occur. For the low
criticality values, the current has negligible influence or decreases the scattering compared
to the no-current case. Moreover, for highΥ values, the current always increases the scat-
tering of M1C. For supercritical topographies, the current always increases the scattering
of M1C compared to the no-current case. For most of the topographies, the flux in modes
higher than 3 after the scattering is lower if a current is present. Higher modes’ flux is
especially low for M1W for almost all the topographies. We also studied the generation of
superharmonics due to the scattering of the mode-1. Superharmonics generated in the case
of M1W scattering are low compared to what is observed for M1C. Rate of kinetic energy
dissipation is always higher for M1C compared to M1W for topographies with Υ ≥ 0.85.

5.3 Future work

The studies presented in this thesis can be easily extended for a better understanding of
the fate of internal waves in the ocean. In this section, a brief outline of the most valuable
avenues where the studies can be improved is provided.

5.3.1 Chapter 2

The stability of a mode-1 wave to small amplitude perturbations in the presence of varying
depth was studied in detail. To understand the decay rate of a mode-1 wave in the ocean,
its interactions with a wave field that follows the Garrett-Munk spectrum in a region of
varying fluid depth should be studied. Moreover, time-invariant mean flows (balanced
flows) are ubiquitous in the ocean and a significant portion of the internal wave lowmodes
have to propagate through the balanced flows. There is increasing evidence (from both
observations and models) that wave-wave interactions are influenced/modified by mean
flows (for example, see Richet et al. (2017); Fan & Akylas (2019); Xu et al. (2022)).
Understanding how the decay of a low mode by wave-wave interactions is impacted by
the presence of mesoscale eddies is necessary and a vital step in quantifying their decay.
Interestingly, in the fully nonlinear simulations conducted by Savva et al. (2021), there
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is no evidence of wave-wave interactions even at the critical latitude as the low mode is
getting scattered by baroclinic geostrophic flows. Our study also mostly focuses on mode-
1 internal wave. However, the fate of mode-2 and mode-3 waves are important to track as
well.

5.3.2 Chapter 3

For Chapter 3, analyses were conducted for plane waves, and briefly for internal wave
modes. However, the stability of overlapping internal wave beams should be studied to
understand the near field dissipation of the small amplitude rough topographies. Internal
wave beams often intersect other beams when tides interact with the rough seafloor or a
large seamount. Note that we can see internal wave beams collision even when a mode-1
wave gets scattered in chapter 4. 5-wave interactions for internal wave beams can be quite
interesting since the three daughter waves have to be confined to the region where the
beams collide. This may pose a more stringent condition on the daughter waves’ group
speed. 5-wave interactions were studied for parent waves whose wave vector magnitudes
were equal. However, in the ocean, waves often propagate in the presence of other waves
with higher or lower wavevector magnitude. For example, mode-1 and mode-2 often
travel together for hundreds of kilometers. Understanding the 5-wave interactions (or triad
chains) in such scenarios can be central to tracking the decay of the internal wave modes.
The current study also assumes the frequency of the parent waves to be the same. The
underlying reason for that assumptionwas thewaves generated by a particular tide have the
same frequency. However, in the oceans, internal waves can be generated by different tidal
constituents, for example,M2, K2, K1. Hence, considering the geophysical significance,
5-wave interactions that consist parent waves with different frequencies should also be
studied.

5.3.3 Chapter 4

All the simulations presented in Chapter 4 model the scattering by isolated large ampli-
tude topographies. However, a major portion of the ocean’s seafloor can be essentially
modeled as a continuous, small amplitude, polychromatic deviation from a mean depth.
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Mathematically, the topographies are usually expressed as

h(x) = −H
(
1 + ϵh

∫ ∞

−∞
ASk sin(kx+ Zk)dk

)
(5.2)

where ϵh is used to denote the small amplitude nature (with respect to the mean depthH)
of the corrugations. ASk andZk denote the amplitude and phase of a particular wavenum-
ber k, respectively. It is important to know how the scattering of internal wave modes by
the small amplitude corrugations with a realistic wavenumber spectrum (for example, see
Goff & Jordan (1989)) changes in the presence of a surface current. Moreover, extending
the theory provided by Li & Mei (2014) for a randomly rough seabed to the setting con-
sidered here may also be needed. Interactions of the mode-1 with a continental shelf in
the presence of a steady surface current may also be important, since a major portion of
low mode internal waves are estimated to reach the continental shelves (Waterhouse et al.,
2014; Buijsman et al., 2016).

For all the simulations in this thesis, the incoming mode-1 wave has a very low amplitude.
This results in the physics being almost linear. The scattering of large amplitude mode-1
waves and the ensuing nonlinear physics are vital for quantifying the energy dissipation
near a topography. Legg (2014) showed that shoaling of an internal wave causes wave
breaking even for subcritical topographies with very low criticality provided the wave
reaches a large enough amplitude/Froude number. Note that this may seem contradictory
with the assumptions we have made in chapter 2. However, if the amplitude of the parent
wave is low, then shoaling does not increase the energy density significantly. As a result,
weakly nonlinear wave-wave interactions will still occur. Shoaling in the presence of a
surface current is an important topic that should be explored. Similar to chapter 2, the
study exclusively focuses on mode-1 internal wave. The scattering properties of mode-2
and mode-3 wave is necessary to understand as well.



Appendix A

Scaling analysis for finding the relation
between the small parameters in
Chapter 2

Here we perform a scaling analysis for all the terms appearing in (2.35). Equation (2.35)
is chosen here so that scaling analysis can be also done for the different terms that com-
pose the βj function (2.37). Integrals (γj) in (2.35) (γj expressions are given in (2.36))
cannot be analytically simplified for non-uniform stratification profiles. Hence, we adopt
a numerical approach where we study how different integrals scale in an ensemble of
stratification profiles that resemble the profiles used throughout the paper. Using this
information, we scale the different terms. To this end, the stratification profiles are cho-
sen such that Nmax = (5Nb, 10Nb, 15Nb), Wp = (H/100, 2H/100, 3H/100), and zc =

(H/80, H/40, H/20, H/10); and we consider all possible (36) combinations.

The analysis provides a relation between the time scale of the amplitude’s temporal evo-
lution (ϵtt), length scale of the amplitude function (ϵxx), and the magnitude of the waves’
amplitude (ϵaaj). Small parameters (ϵh, ϵk) represent the bathymetry and they also in-
fluence the wave amplitude evolution. Equation (2.35), after some simplifications to the
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nonlinear term, is given below:
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(A.1)

where N̂j is defined as:

N̂j =
1

Dj

[
NL(V,j) + NL(B,j) + NL(Ψ,j)

]
. (A.2)

The analysis is similar for all three waves, hence from here on all subscripts j (denoting
the j−th wave) are dropped for convenience. Moreover, a term containing γ(6) is also
included in the above equation. It will be proved in this section that this term is an order
of magnitude smaller than the other terms for the parameter regime we consider.

The time scale of wave amplitude’s evolution is assumed to be at least an order of mag-
nitude larger than the time period of the wave. Therefore ∂a/∂t will approximately scale
as: ∂a/∂t ∼ ϵtϵaω. The amplitude’s length scale is assumed to be much larger than the
wavelength of the wave. Hence ∂a/∂x will scale as ∂a/∂x ∼ ϵxϵaK/h. Using the above
scaling, the ∂a/∂x term in (A.1) (including its coefficients) will scale as:

2
γ(3)

D

(
K
h

∂a

∂x

)
∼ 1

ω

γ(3)K2

γ(1)K2 − γ(2)
ϵxϵa ∼ (ĉgϵx)ωϵa, (A.3)

where ĉg represents the scale of group speed term for the packet, and is given by:

ĉg ≡
(ω2 − f 2)

ω2

[
γ(3)

(ω2 − f 2)γ(1) + γ(3)

]
. (A.4)

It can be noticed that as ϵx is reduced, the effect of group speed diminishes as expected
since a decrease in ϵx means the length scale of the packet is increased. Here we also
emphasize that for ω ≈ N : γ(3) ≪ ω2γ(1). In such kind of parameter regime, ĉg ≪ 1,
hence ∂a/∂x term will have a reduced effect on the amplitude evolution. Moreover, for
ω ≈ f , similar behavior is observed since ĉg ≪ 1.
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Now we focus on the term containing γ(6) in (A.1), which is given below (after some
simplification): (

dh

dx

)2 W
K2

ωa

2
, (A.5)

whereW is a non-dimensional quantity defined as:

W =
ω2 − f 2

ω2

γ(6)

(ω2 − f 2)γ(1) + γ(3)
. (A.6)

The integral γ(6) is evaluated numerically to study its scaling. For uniform stratification,
W can be evaluated analytically, which is given below:

Wu = −M2

[
ω2 − f 2

ω2

N2
b − ω2

N2
b − f 2

](
1

3
− 1

2M2

)
(A.7)

where Wu is used to denote W in constant stratification Nb, and M = nπ is the non-
dimensionalised vertical wavenumber of thewave. Moreover, using (dh/dx)2 ∼ (ϵhϵk)

2K2,
the term given in equation (A.5) will scale as(

(ϵhϵk)
2

2
W
)
ωϵa. (A.8)

Hence for the multiple-scale analysis to be consistent, W((ϵhϵk)
2/2) has to be a small

quantity. W is plotted in figure A.1 for nine stratification profiles, where f = 0 and
ω/Nb = 0.4 were used. In all subfigures, Wu is also plotted for reference, where Wu is
evaluated with constant stratificationNb (henceWu in all subfigures is same). From figure
A.1, it can be seen that in general for any stratification profile, W is almost proportional
to the square of the modenumber n, similar toWu. Hence the bathymetry has to be more
slowly varying (ϵk has to be smaller) as the modenumber increases. Other pycnocline
depths (zc = H/20, H/40, H/80) were also tested for different combinations ofWp, Nmax

used in figure A.1 that provided similar results.

The term which contains the γ(5) integral is now analysed. For all non-uniform stratifica-
tion profiles used in this appendix, it was observed that

γ(5) ≲ 1

2
γ(3). (A.9)

Using (A.9), the term containing γ(5) can be scaled to:
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Figure A.1: The variation in W for modes 1–10 for different stratification profiles. (a)
Nmax = 5Nb is used with zc = H/10 and Wp is varied. (b) Nmax = 10Nb is used with
zc = H/10 and Wp is varied. (c) Nmax = 15Nb is used with zc = H/10 and Wp is

varied.

The changes in the wavenumber of a mode as h is varied is analysed. To this end, (2.27b),
which provides the n-th eigenfunction, is differentiated in x−direction, yielding:[

∂2

∂η2
+K2

nχ
2

]
∂ϕn
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= −K2

n
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dK2
n

dx
χ2ϕn, (A.11)

where Kn = knh. Equation (A.11) can have a non-trivial solution only when the RHS is
orthogonal to the solution of the self adjoint operator in the LHS. Hence mutliplying RHS
with ϕn, and then integrating in the η–direction between the domain limits would result
in:
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From (A.12), it can be noticed that the dimensional wavenumber kn can change due to:
(a) change in the domain height, and (b) change in the effective stratification profile. For
uniform stratification, dKn/dx = 0. For the lower modes (1–10) in profiles considered in
this appendix, it was observed that

O
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dkn
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)/
O
(
1

h

dh

dx

)
∼ O(1). (A.13)

Moreover, in general it was observed that as the modenumber increases, the term given in
(A.13) increases. Using (A.13), the term containing the derivative of the wavenumber can
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be scaled as:
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We now evaluate γ(4) for the stratification profiles considered in this appendix. For modes
1–10, we find

γ(4)

γ(3)
∼ O
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1

h

dh

dx

)
. (A.15)

Using (A.15), the term containing γ(4) can be scaled to:

1

Dj

[
2K
h
γ(4)a

]
∼ (ĉgϵhϵk)ωϵa. (A.16)

Using (A.10), (A.14) and (A.16), we observe that for the lower modes, the three terms
that compose the β function can scale to a maximum value which is of the same order of
magnitude. Hence they are all retained and are used in evaluating the β function (2.37).
Moreover, it can be seen that the topographic terms are all dependent on the magnitude
of the group speed. This relation is naturally there because a wavepacket has to travel
to different h fast enough to feel the effect of h variation. Scaling (A.16) also holds for
uniform stratification, where ϕ still varies in the x−direction. This is because of the nature
of the ϕ normalisation, i.e. (2.30), used in this paper.

The nonlinear coupling coefficient in the RHS cannot be further simplified, hence the
nonlinear term scales as:

RHS ∼ N̂ϵ2a. (A.17)

Hence the final scaling for (2.45a)–(2.45c), using all the scaling derived, and with the
inclusion of the γ(6) term, is given below after some simplification:

ϵt ∼
N

ω
ϵa − ĉgϵx −

(ϵhϵk)
2

2
W . (A.18)

Here an important point to remember is that the multiple-scale analysis was derived with
the assumption that internal waves do not scatter/exchange energy to different modes of
the same angular frequency. Therefore the reduced order equations provide the most ac-
curate results when the internal waves do not scatter significant amount of its energy as
it passes over a bathymetry. Moreover, even when O(ϵhϵk) ≪ O(1) is satisfied, there
could be special circumstances when waves may still get scattered significantly. An ex-
ample of such a scenario is Bragg resonance of internal waves due to small amplitude,



Chapter 5 154

subcritical topographies (Buhler & Holmes-Cerfon, 2011; Li &Mei, 2014; Couston et al.,
2017). Scattering/energy exchange can also occur for large amplitude, slowly varying to-
pographies. However, it was observed that modes 1–8 are scattered very little for large
amplitude topographies (ϵh ≈ 0.5) with low criticality (≲ 0.1) in the presence of uniform
stratification. Criticality is defined as the ratio of the maximum slope of the topography
to the slope of the internal wave. Mode-8 has ≈ 8% variation in its amplitude as it prop-
agates through a Gaussian topography with ϵh = 0.5 and criticality = 0.1. Low criticality
topographies for mode n of any ω/Nb is obtained when the condition nϵk ≪ O(1) is sat-
isfied. Moreover for the condition nϵk ≪ O(1), the last term in (A.18) becomes an ϵ2k
term even for large amplitude topographies. This can be seen by consideringWu (which
can also be used as a reference for non-uniform stratifications) given in (A.7). Hence this
term is neglected in the governing equations (2.45a)–(2.45c).

A.0.1 Scaling analysis for the governing equations in §2.7

The scaling analysis for the governing equation (2.78) derived in §2.7 is done with the
help of results derived previously. The above-mentioned governing equations are given
below:[(
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(A.19)

From here on the subscripts are omitted, since the analysis is similar for both the waves.
The leading order terms scale as follows:[

∂2A
∂x2

,K2 A
h2

]
∼ ϵa

K2

h2
. (A.20)

Using (2.22), the scalings derived in appendix A, and the small amplitude assumption for
topography (ϵh ≪ O(1) and ϵk ∼ O(1)), the following relations can be obtained:
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. (A.21)



Chapter 5 155

For the profiles and the parameters used in appendix A, it is observed that (ω2−f 2)γ(1)+

γ(3) ∼ γ(3). Hence the γ(6) term can be scaled as:

γ(6)

γ(3)
1

h2

(
∂h
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)2

A ∼
(
Wϵ2h

)
ϵa
K2

h2
, (A.22)

where W is plotted in figure A.1 for various stratification profiles. Therefore similar to
appendix A, the term Wϵ2h has to be a small number for the multiple-scale analysis to be
consistent. Furthermore, the γ(7)j term was observed to scale as:

(
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(
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h
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2ϵa, (A.23)

where Kn is the nondimensional wavenumber of wave-1 (or wave-3), and n gives the
wave’s modenumber. Note that this scaling has a similar behavior asW , which is nearly
proportional to n2. The scaling of the integral γ(8) is focused upon:

γ(8) =

(
dh

dx

)2 ∫ 0
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For a uniform stratification, ∂2ϕ/∂h2 = 0. Moreover, for the non-uniform stratification
profiles used in appendix A, it was observed that:∫ 0
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Hence using (A.25), the scaling for γ(8) can be given in a simpler form which is as follows:
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For low modes in the presence of small amplitude topographies, the second term in RHS
of (A.26) would be significantly higher than the first term. For anymild-slope bathymetry,
the nonlinear termsNonL3 in (A.19) can be scaled using the relation dnA/dxn ≈ (K/h)nA,
where n ∈ Z+. Using this approximation, the nonlinear term can be scaled as:

NonL3 ∼
1

γ(3)
[
NL(V,3) + NL(B,3) + NL(Ψ,3)

]
ϵ2a. (A.27)

The nonlinear coupling coefficients cannot be simplified further. Moreover the nonlinear
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terms have to be at least one order of magnitude lesser than the leading order terms (given
in (A.20)).



Appendix B

Numerical method used to solve the
governing equations in Chapter 4

Dedalus is once again used to solve the governing equations. Equations (4.4)–(4.7) are first
converted to terrain following coordinates. Corresponding to the change in coordinates,
new variables for (u,w, b, p) in x− η coordinates are introduced:

u(x, z, t) ⇒ U(x, η, t), b(x, z, t) ⇒ B(x, η, t), (B.1)

w(x, z, t) ⇒ W(x, η, t) p(x, z, t) ⇒ P(x, η, t). (B.2)

Note that the new variables are same as the previous definitions in the chapter 2, however,
we are redefining this for the convenience of the reader. Then the governing equations
(4.4)–(4.7) change to:

D̂U
D̂t

+WLη(ubase) +
Lx(P)
ρ0

= −ULx(U)−WLη(U) + ν∆̂2D(U)− SP(x)U+ Fu + Ĥ(U)

(B.3)

D̂W
D̂t

− B+
Lη(P)
ρ0

= −ULx(W)−WLη(W) + ν∆̂2D(W)− SP(x)W+ Fw + Ĥ(W)

(B.4)

D̂B
D̂t

+N2W = −ULx(B)−WLη(B) + κ∆̂2D(B)− SP(x)B+ Fb + Ĥ(B) (B.5)

Lx(U) + Lη(W) = 0 (B.6)
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where the linearised material derivative in (x − η) coordinates is defined as: D̂/D̂t ≡
(∂/∂t+ ubaseLx). Here ∆̂2D ≡ (Lxx + Lηη). The definitions of Lx, Lη, Lxx, Lηη are
given in chapter 2. The η direction is resolved using Chebyshev polynomials, while the
x−direction is resolved using Cosine/Sinemodes. The vertical resolution was chosen such
that for all simulations with ν = 10−2m2s−1, 192 Chebyshev polynomials were used. For
all simulations with ν = 0.5 × 10−2m2s−1, 256 Chebyshev polynomials were used. In
general, horizontal resolution was increased as Υ was increased. For simulations with
Υ = 0.1, there is not much scattering hence low horizontal resolution (dx = 750m) was
used. For Υ = 0.4 − 0.9, dx ≈ 260 − 340m was used. For supercritical topographies,
a resolution of 138− 286m was used, where in general resolution increased as the height
increased. Second order IMEX (Implicit-Explicit) time stepping scheme given in equation
(14) of Ascher et al. (1995) is used. For all simulations, 2000 time steps were taken for
one time period of the wave (2π/ωd). Two types of hyperviscous operators are used and
they are given by

Ĥ12() ≡ ν12
∂12

∂x12
(), Ĥ16() ≡ ν16

∂16

∂x16
(), (B.7)

where Ĥj is the equivalent operator of Hj in terrain following coordinates. ν12 and ν16
are constants. For a particular simulation, either Ĥ12 or Ĥ16 is used. It is ensured that
the artificial hyperviscous term does not significantly affect the large scale physics. The
above statement is verified by analysing themagnitude of ˜E(vis)

H (in energy equation 4.19)
which gives a measure of the effect of the hyper viscosity term. ⟨ ˜E(vis)

H⟩/⟨Tinc⟩was in the
order of 10−4 (or lower) for any simulation with Υ ≤ 0.75. Moreover, for any simulation
with Υ ≥ 0.85, ⟨ ˜E(vis)

H⟩/⟨Tinc⟩ was in the order of 10−3 (or lower).

B.0.1 Validation of the numerical methods

To validate the code, following Lamb & Dunphy (2018), we estimate the residual in the
energy equation (4.19). Mathematically the residual (denoted by Rsd) is given by:

Rsd ≡ d(Ẽke + Ẽpe)

dt
+ TF

∣∣∣∣
xR

− TF
∣∣∣∣
xL

− ˜E(vis) − ˜E(vis)
H (B.8)

Here, we only focus on the residual in regions where the sponge and the forcing terms are
negligible. Note that Rsd is a function of time only. Theoretically, Rsd = 0 when the
governing equations are solved perfectly. Due to a finite time step and grid size, compu-
tational errors will be introduced. We analyse Rsd for all the simulations. To this end, the
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control area is chosen such that its length is 5WT in x−direction (WT is the standard de-
viation of the topography), and in the η direction it spans from −1 to 0 thus enclosing the
full fluid column. The horizontal center of the control area coincides with the top of the
topography. For all simulations with Uc ̸= 0, it was observed that Rsd is always less than
0.15% of the maximum value of the total flux of the incoming wave. Moreover, Rsd was
observed to be less than 0.1% (henceO(10−4)) for majority of the simulations (> 80%). In
this chapter, we consistently use time averaged/integrated quantities (for example, modes’
flux and the rate of kinetic energy dissipation are all time averaged). As a result, we also
estimate time integrated Rsd for all the simulations. For all the simulations that involves
a surface current, ⟨Rsd⟩/⟨Tinc⟩ is observed to be O(10−4) or lesser.

For further validation, we compare the modal composition obtained in the Uc = 0 nu-
merical simulations with results from analytical model of Lahaye & Smith (2020). We
compare results for 6 simulations, and the comparison is given in figure B.1. The results
from the simulations match reasonably well with the analytical model which validates the
resolution we used. We further run simulations for 3 different topography configurations
with Uc = 0 in the linear regime, and a comparison is made with results fromMathur et al.
(2014). ω = ωd is used, however, N2 = 3 × 10−5s−2 is used which is the value used in
Mathur et al. (2014). The results of Mathur et al. (2014) are obtained from figure 3 of their
paper by an approximate manner. The topography configurations along with the results
are all shown in table B.1. It can be seen that the values obtained from the simulations
match reasonably close with the previous models/results. Note that since the results match
with theoretical models, the sponges on the horizontal ends of the computational domain
are also functioning as intended.

We also verify that the viscosity value used in the simulations for supercritical topogra-
phies does not significantly influence the modal composition of the transmitted and the
reflected wave field. To this end, we run two simulations that model the scattering of
M1C and M1W with a higher grid and with a lower viscosity. For both simulations,
Uc = 0.10NH and the topography with Υ = 1.5, hT/H = 0.5 is chosen. The results
presented in section 4.3 for Υ = 1.5, hT/H = 0.5 were obtained from simulations that
are run with 256 × 2592 grid (with ν = 0.5 × 10−2m2s−1) while the higher resolution
simulations use a 384× 3840 grid with ν = 0.3× 10−2m2s−1. The comparison is shown
in figure B.2. The figure shows both transmitted and reflected waves’ modal composition.
It can be seen that the difference in modal composition is not significant which validates
the use of the current resolution which we employ.
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Figure B.1: ⟨Tn⟩ obtained from simulations conducted for this chapter, and the results
obtained from the analytical model provided in Lahaye & Smith (2020). Each subplot is
for a different topography configuration which is as follows: (a) Υ = 0.5, hT /H = 0.2.
(b) Υ = 0.5, hT /H = 0.35. (c) Υ = 0.5, hT /H = 0.5. (d) Υ = 0.75, hT /H = 0.2. (e)

Υ = 0.75, hT /H = 0.35. (f) Υ = 0.75, hT /H = 0.5.

Figure B.2: ⟨Tn⟩ obtained from simulations with grids 256× 2592 and 384× 3840. For
the comparison between the grids, Scattering of M1C and M1W for UC = 0.10NH by
a supercritical topography with Υ = 1.5 and hT /H = 0.5 is considered. (a) and (c)
show the modal composition of the transmitted field while (b) and (d) show the modal

composition of the reflected internal waves.
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(Υ, hT/H) Mode-1 (GG22,MM14) Mode-2 (GG22,MM14)
(0.43,0.34) (72.7,71.5) (21.3,21.7)
(0.59,0.34) (54.6,54.0) (27.5,27.1)
(0.81,0.34) (47.8,47.4) (23.0,22.4)

Table B.1: Criticality and topography height is shown in column-1. Columns 2 and 3
show the normalised transmitted mode-1 and mode-2 pressure flux respectively obtained
from our simulations (denoted by GG22) and Mathur et al. (2014) (denoted by MM14).

Figure B.3: Comparison of ⟨Tn⟩ for simulations with and without the term νd2ubase/dz
2

for four different topography configurations. The scattering of M1C for (Υ =
0.5, hT /H = 0.35) and (Υ = 0.75, hT /H = 0.35) are shown in (a) and (c), respectively.
The scattering of M1W for (Υ = 0.5, hT /H = 0.5) and (Υ = 0.75, hT /H = 0.5) are

shown in (b) and (d), respectively.

B.0.1.1 On base flow diffusion

We do not consider the term νd2ubase/dz
2 because the simulations are run for a long time

and the dissipation/diffusion term will change the base flow profile. The base flow dif-
fusion term does not directly influence the scattering. However, the incoming wave and
the other modes’ modal shape in z−direction will slowly change with time because of
the changes in the base flow, and the transient effect is undesired in this study. Running
simulations without base flow diffusion is analogous to adding a “forcing” term in the
u−momentum equation which counters the effect of νd2ubase/dz2, and makes ubase time
invariant. Such forcing terms have been previously used in weakly nonlinear analysis in
Cudby & Lefauve (2021), and in fully nonlinear direct numerical simulations in How-
land et al. (2018). For 4 different topography configurations, we show that simulations
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with a higher viscosity and without νd2ubase/dz2 term (results from section 4.3) provide
nearly the same modal composition compared to simulations that are run with the term
νd2ubase/dz

2 and with a lower ν. ν = 0.25 × 10−2m2s−1 is taken consistently for simu-
lations that are run with the term νd2ubase/dz

2, and the comparisons are shown in figure
B.3. It can be seen that the results are nearly same, hence validating our current setup.

B.0.1.2 Rayleigh sponge to dampen the internal waves

The Rayleigh sponge terms are used to dampen the internal waves far away from the
topography. The damping stops the wave from reflecting back from the horizontal limits of
the computational domain. Rayleigh sponge terms are quite common and are used in open-
source codes like MITgcm (MIT General Circulation Model). To calculate the efficiency
we send amode-1 internal wave into the sponge andmeasure howmuch the internal wave’s
flux changes. The measurement of the flux starts before the wave touches the sponge. If
the sponge reflects significant energy, then the energy flux after the wave reaches the
sponge will be quite different compared to the flux before the wave reaches the sponge.
Figure B.4(a) shows an image of the horizontal velocity field before the wave reaches the
sponge. The sponge region is marked for the convenience of the reader. We measure the
energy flux of the wave near the region where the wave is forced (x/L ≈ 0.35). We
employ the same procedure for three different simulations: simulation (1) is for a mode
that travels with the current (M1W with UC = 0.10NH), simulation (2) is for a mode that
travels against the current (M1C with UC = 0.10NH), and simulation (3) is for a mode
that travels without any current (Uc = 0). The flux data for all three simulations are shown
in figure B.5. Note that the flux variation is less than < 1% for all three simulations. We
started to take the measurement before the wave reaches the sponge. From the results, we
can conclude that the sponge does not reflect a significant amount of energy.
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Figure B.4: (a) Horizontal velocity field when the flux is initially measured. (b) Horizon-
tal velocity field when the wave touches the sponge. The sponge region is also shown for

the convenience of the reader.

Figure B.5: Normalised flux data for three different simulations. The flux in all three
simulations does not vary significantly as the wave impacts the sponge. Tωd

≡ 2π/ωd.
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